Update my e-mail address.
[binutils-gdb.git] / bfd / elfxx-mips.c
blobd279e0b94c0f358fa29f17284e808cf75b1f03fb
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
47 #include "hashtab.h"
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
122 long symndx;
123 union
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
153 /* This structure is used to hold .got information when linking. */
155 struct mips_got_info
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
187 /* Structure passed when merging bfds' gots. */
189 struct mips_elf_got_per_bfd_arg
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
217 struct mips_elf_traverse_got_arg
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
224 struct _mips_elf_section_data
226 struct bfd_elf_section_data elf;
227 union
229 bfd_byte *tdata;
230 } u;
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
268 immediately before a PIC function "func". The second is to add:
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
274 to a separate trampoline section.
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
291 /* Macros for populating a mips_elf_la25_stub. */
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
306 struct mips_elf_hash_sort_data
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
331 struct plt_entry
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
355 struct mips_elf_link_hash_entry
357 struct elf_link_hash_entry root;
359 /* External symbol information. */
360 EXTR esym;
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
421 /* MIPS ELF linker hash table. */
423 struct mips_elf_link_hash_table
425 struct elf_link_hash_table root;
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
538 /* MIPS ELF private object data. */
540 struct mips_elf_obj_tdata
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
575 /* Get MIPS ELF private object data from BFD's tdata. */
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
609 /* Structure used to pass information to mips_elf_output_extsym. */
611 struct extsym_info
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
620 /* The names of the runtime procedure table symbols used on IRIX5. */
622 static const char * const mips_elf_dynsym_rtproc_names[] =
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
633 typedef struct
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
643 typedef struct
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
653 typedef struct
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
663 typedef struct
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
672 typedef struct
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
679 typedef struct
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
685 /* These are the constants used to swap the bitfields in a crinfo. */
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1010 We record any stubs that we find in the symbol table. */
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1189 /* microMIPS 32-bit opcode helper installer. */
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1198 /* microMIPS 32-bit opcode helper retriever. */
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1213 /* Traverse a MIPS ELF linker hash table. */
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1245 /* Create an entry in a MIPS ELF linker hash table. */
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1288 return (struct bfd_hash_entry *) ret;
1291 /* Allocate MIPS ELF private object data. */
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1303 if (!sec->used_by_bfd)
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1314 return _bfd_elf_new_section_hook (abfd, sec);
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1372 debug->fdr = NULL;
1374 return TRUE;
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1422 /* Create a runtime procedure table from the .mdebug section. */
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1458 size = swap->external_pdr_size;
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1556 return TRUE;
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1587 if (micromips_p)
1588 value |= 1;
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1657 const char *name;
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1690 return 0;
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1754 const struct mips_elf_la25_stub *entry;
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1783 struct mips_elf_link_hash_table *htab;
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1795 return TRUE;
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1831 else
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1984 struct mips_htab_traverse_info *hti;
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1990 if (mips_elf_local_pic_function_p (h))
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2009 hti->error = TRUE;
2010 return FALSE;
2013 return TRUE;
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2020 The format of these instructions is:
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2086 A typical instruction will have a format like this:
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2108 switch (r_type)
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2126 default:
2127 return FALSE;
2131 /* Check if a microMIPS reloc. */
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2303 bfd_vma first, second, val;
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2326 bfd_vma first, second, val;
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2334 second = val & 0xffff;
2335 first = val >> 16;
2337 else if (r_type != R_MIPS16_26)
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2342 else
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2375 _bfd_mips_elf_sign_extend (val, 16);
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2384 if (reloc_entry->howto->partial_inplace)
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2392 else
2393 reloc_entry->addend = val;
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2398 return bfd_reloc_ok;
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2406 struct mips_hi16
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2414 /* FIXME: This should not be a static variable. */
2416 static struct mips_hi16 *mips_hi16_list;
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2433 struct mips_hi16 *n;
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2451 return bfd_reloc_ok;
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2496 while (mips_hi16_list != NULL)
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2501 hi = mips_hi16_list;
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2525 mips_hi16_list = hi->next;
2526 free (hi);
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2548 relocatable = (output_bfd != NULL);
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2564 if (!relocatable)
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2598 if (status != bfd_reloc_ok)
2599 return status;
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2605 return bfd_reloc_ok;
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2643 unsigned long l;
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2714 /* Swap in an options header. */
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2726 /* Swap out an options header. */
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2738 /* Swap in an abiflags structure. */
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2758 /* Swap out an abiflags structure. */
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2871 if (strip)
2872 return TRUE;
2874 if (h->esym.ifd == -2)
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2887 const char *name;
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2912 else
2913 h->esym.asym.sc = scUndefined;
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2920 const char *name;
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2931 name = bfd_section_name (output_section->owner, output_section);
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2978 else
2980 struct mips_elf_link_hash_entry *hd = h;
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2985 if (hd->needs_lazy_stub)
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3011 einfo->failed = TRUE;
3012 return FALSE;
3015 return TRUE;
3018 /* A comparison routine used to sort .gptab entries. */
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3029 /* Functions to manage the got entry hash table. */
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3076 const struct mips_got_page_ref *ref;
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3088 const struct mips_got_page_ref *ref1, *ref2;
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3102 const struct mips_got_page_entry *entry;
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3111 const struct mips_got_page_entry *entry1, *entry2;
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3118 /* Create and return a new mips_got_info structure. */
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3123 struct mips_got_info *g;
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3139 return g;
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3148 struct mips_elf_obj_tdata *tdata;
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3159 /* Record that ABFD should use output GOT G. */
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3164 struct mips_elf_obj_tdata *tdata;
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3177 tdata->got = g;
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3208 return sreloc;
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3225 return GOT_TLS_NONE;
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3233 switch (type)
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3239 case GOT_TLS_IE:
3240 return 1;
3242 case GOT_TLS_NONE:
3243 return 0;
3245 abort ();
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3270 if (!need_relocs)
3271 return 0;
3273 switch (tls_type)
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3278 case GOT_TLS_IE:
3279 return 1;
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3284 default:
3285 return 0;
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3297 if (entry->tls_type)
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3310 /* Output a simple dynamic relocation into SRELOC. */
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3320 Elf_Internal_Rela rel[3];
3322 memset (rel, 0, sizeof (rel));
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3327 if (ABI_64_P (output_bfd))
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3359 sgot = htab->root.sgot;
3361 indx = 0;
3362 if (h != NULL)
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3373 if (entry->tls_initialized)
3374 return;
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3392 switch (entry->tls_type)
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3398 if (need_relocs)
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3414 else
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3421 break;
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3461 default:
3462 abort ();
3465 entry->tls_initialized = TRUE;
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3496 return got_address - got_value;
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->root.sgot->size);
3553 return got_index;
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3587 if (lookup.tls_type)
3589 bfd_vma value = MINUS_ONE;
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3600 return gotidx;
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3620 if (!entry)
3621 return MINUS_ONE;
3623 got_index = entry->gotidx;
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3628 return got_index;
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3639 struct mips_got_entry *entry;
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3673 sgot = htab->root.sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3721 else if (h == NULL)
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3726 else
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3738 return entry;
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3773 *entry = lookup;
3774 *loc = entry;
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
3789 + entry->gotidx);
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3798 return entry;
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3809 bfd_size_type count;
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3815 asection *p;
3816 const struct elf_backend_data *bed;
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3825 return count;
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3838 htab = mips_elf_hash_table (info);
3839 BFD_ASSERT (htab != NULL);
3841 if (htab->root.dynsymcount == 0)
3842 return TRUE;
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
3867 htab->global_gotsym = hsd.low;
3869 return TRUE;
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3879 struct mips_elf_hash_sort_data *hsd = data;
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
3884 return TRUE;
3886 switch (h->global_got_area)
3888 case GGA_NONE:
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
3893 break;
3895 case GGA_NORMAL:
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 break;
3900 case GGA_RELOC_ONLY:
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
3907 return TRUE;
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3938 lookup->tls_initialized = FALSE;
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3958 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
3960 using the GOT entry for calls. */
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
3965 bfd_boolean for_call, int r_type)
3967 struct mips_elf_link_hash_table *htab;
3968 struct mips_elf_link_hash_entry *hmips;
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
3972 htab = mips_elf_hash_table (info);
3973 BFD_ASSERT (htab != NULL);
3975 hmips = (struct mips_elf_link_hash_entry *) h;
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
3981 if (h->dynindx == -1)
3983 switch (ELF_ST_VISIBILITY (h->other))
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 break;
3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 return FALSE;
3994 tls_type = mips_elf_reloc_tls_type (r_type);
3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996 hmips->global_got_area = GGA_NORMAL;
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 struct bfd_link_info *info, int r_type)
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
4014 struct mips_got_entry entry;
4016 htab = mips_elf_hash_table (info);
4017 BFD_ASSERT (htab != NULL);
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026 return mips_elf_record_got_entry (info, abfd, &entry);
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
4038 struct mips_elf_link_hash_table *htab;
4039 struct mips_got_info *g1, *g2;
4040 struct mips_got_page_ref lookup, *entry;
4041 void **loc, **bfd_loc;
4043 htab = mips_elf_hash_table (info);
4044 BFD_ASSERT (htab != NULL);
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
4049 if (h)
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4054 else
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061 if (loc == NULL)
4062 return FALSE;
4064 entry = (struct mips_got_page_ref *) *loc;
4065 if (!entry)
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4071 *entry = lookup;
4072 *loc = entry;
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081 if (!bfd_loc)
4082 return FALSE;
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4087 return TRUE;
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4099 htab = mips_elf_hash_table (info);
4100 BFD_ASSERT (htab != NULL);
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4109 if (s->size == 0)
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4127 struct mips_got_entry *entry;
4128 struct mips_elf_traverse_got_arg *arg;
4130 entry = (struct mips_got_entry *) *entryp;
4131 arg = (struct mips_elf_traverse_got_arg *) data;
4132 if (entry->abfd != NULL && entry->symndx == -1)
4134 struct mips_elf_link_hash_entry *h;
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4140 arg->value = TRUE;
4141 return 0;
4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
4145 return 1;
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4156 struct mips_got_entry new_entry, *entry;
4157 struct mips_elf_traverse_got_arg *arg;
4158 void **slot;
4160 entry = (struct mips_got_entry *) *entryp;
4161 arg = (struct mips_elf_traverse_got_arg *) data;
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
4167 struct mips_elf_link_hash_entry *h;
4169 new_entry = *entry;
4170 entry = &new_entry;
4171 h = entry->d.h;
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
4179 entry->d.h = h;
4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182 if (slot == NULL)
4184 arg->g = NULL;
4185 return 0;
4187 if (*slot == NULL)
4189 if (entry == &new_entry)
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4194 arg->g = NULL;
4195 return 0;
4197 *entry = new_entry;
4199 *slot = entry;
4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
4202 return 1;
4205 /* Return the maximum number of GOT page entries required for RANGE. */
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4213 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 asection *sec, bfd_signed_vma addend)
4219 struct mips_got_info *g = arg->g;
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237 if (!entry)
4238 return FALSE;
4240 entry->sec = sec;
4241 *loc = entry;
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257 if (!range)
4258 return FALSE;
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4284 else
4285 range->max_addend = addend;
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4296 return TRUE;
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4317 if (ref->symndx < 0)
4319 struct mips_elf_link_hash_entry *h;
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4336 else
4338 Elf_Internal_Sym *isym;
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4345 arg->g = NULL;
4346 return 0;
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4353 arg->g = NULL;
4354 return 0;
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4363 void *secinfo;
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4373 else
4374 addend = isym->st_value + ref->addend;
4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4378 arg->g = NULL;
4379 return 0;
4381 return 1;
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4396 oldg = *g;
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
4409 return FALSE;
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4415 htab_delete (oldg.got_entries);
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4427 return TRUE;
4430 /* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
4454 if (bfd_link_executable (info) && h->has_static_relocs)
4455 return TRUE;
4457 return FALSE;
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_info *g;
4473 info = (struct bfd_link_info *) data;
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
4476 if (h->global_got_area != GGA_NONE)
4478 /* Make a final decision about whether the symbol belongs in the
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
4492 else if (h->global_got_area == GGA_RELOC_ONLY)
4494 g->reloc_only_gotno++;
4495 g->global_gotno++;
4498 return 1;
4501 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
4516 arg->g = NULL;
4517 return 0;
4519 if (!*slot)
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
4524 return 1;
4527 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
4542 arg->g = NULL;
4543 return 0;
4545 if (!*slot)
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4550 return 1;
4553 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4564 struct mips_elf_traverse_got_arg tga;
4565 unsigned int estimate;
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4572 /* And conservatively estimate how many local and TLS entries
4573 would be needed. */
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
4579 conservatively as well. */
4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4589 /* Transfer the bfd's got information from FROM to TO. */
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
4594 return 0;
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
4598 return 0;
4600 mips_elf_replace_bfd_got (abfd, to);
4601 return 1;
4604 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
4615 unsigned int estimate;
4616 int result;
4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619 return FALSE;
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4633 if (estimate <= arg->max_count)
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4639 arg->primary = g;
4640 return TRUE;
4643 /* Try merging with the primary GOT. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645 if (result >= 0)
4646 return result;
4649 /* If we can merge with the last-created got, do it. */
4650 if (arg->current)
4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653 if (result >= 0)
4654 return result;
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
4660 g->next = arg->current;
4661 arg->current = g;
4663 return TRUE;
4666 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4673 struct mips_got_entry *entry;
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4678 struct mips_got_entry *new_entry;
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4688 entry->gotidx = gotidx;
4689 return TRUE;
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
4702 /* We're only interested in TLS symbols. */
4703 entry = (struct mips_got_entry *) *entryp;
4704 if (entry->tls_type == GOT_TLS_NONE)
4705 return 1;
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4710 arg->g = NULL;
4711 return 0;
4714 /* Account for the entries we've just allocated. */
4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716 return 1;
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
4741 the size of one GOT entry. Set DATA->g to null on failure. */
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4757 arg->g = NULL;
4758 return 0;
4760 arg->g->assigned_low_gotno += 1;
4762 if (bfd_link_pic (arg->info)
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
4769 return 1;
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
4790 && entry->d.h->needs_lazy_stub)
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
4796 return 1;
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4804 if (!g->next)
4805 return 0;
4807 g = mips_elf_bfd_got (ibfd, FALSE);
4808 if (! g)
4809 return 0;
4811 BFD_ASSERT (g->next);
4813 g = g->next;
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 asection *got, bfd_size_type pages)
4826 struct mips_elf_link_hash_table *htab;
4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828 struct mips_elf_traverse_got_arg tga;
4829 struct mips_got_info *g, *gg;
4830 unsigned int assign, needed_relocs;
4831 bfd *dynobj, *ibfd;
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835 BFD_ASSERT (htab != NULL);
4837 g = htab->got_info;
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 / MIPS_ELF_GOT_SIZE (abfd))
4845 - htab->reserved_gotno);
4846 got_per_bfd_arg.max_pages = pages;
4847 /* The number of globals that will be included in the primary GOT.
4848 See the calls to mips_elf_set_global_got_area below for more
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4862 /* If we do not find any suitable primary GOT, create an empty one. */
4863 if (got_per_bfd_arg.primary == NULL)
4864 g->next = mips_elf_create_got_info (abfd);
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
4878 mips_elf_replace_bfd_got (abfd, g);
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884 g->global_gotno = gg->global_gotno;
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4892 /* Now go through the GOTs assigning them offset ranges.
4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
4907 gg->tls_gotno = 0;
4908 assign = 0;
4909 gg->next = gg;
4913 struct mips_got_info *gn;
4915 assign += htab->reserved_gotno;
4916 g->assigned_low_gotno = assign;
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919 g->assigned_high_gotno = g->local_gotno - 1;
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4940 g = gn;
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
4944 if (g)
4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4947 while (g);
4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4951 needed_relocs = 0;
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4954 unsigned int save_assign;
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964 if (!tga.g)
4965 return FALSE;
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
4969 if (bfd_link_pic (info))
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
4975 + htab->reserved_gotno);
4977 needed_relocs += g->relocs;
4979 needed_relocs += g->relocs;
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
4985 return TRUE;
4989 /* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4999 while (relocation < relend)
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 return relocation;
5005 ++relocation;
5008 /* We didn't find it. */
5009 return NULL;
5012 /* Return whether an input relocation is against a local symbol. */
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
5017 asection **local_sections)
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
5021 size_t extsymoff;
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5027 if (r_symndx < extsymoff)
5028 return TRUE;
5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030 return TRUE;
5032 return FALSE;
5035 /* Sign-extend VALUE, which has the indicated number of BITS. */
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5044 return value;
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048 range expressible by a signed number with the indicated number of
5049 BITS. */
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
5058 return TRUE;
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
5061 return TRUE;
5063 /* All is well. */
5064 return FALSE;
5067 /* Calculate the %high function. */
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5075 /* Calculate the %higher function. */
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5080 #ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083 abort ();
5084 return MINUS_ONE;
5085 #endif
5088 /* Calculate the %highest function. */
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5093 #ifdef BFD64
5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096 abort ();
5097 return MINUS_ONE;
5098 #endif
5101 /* Create the .compact_rel section. */
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5107 flagword flags;
5108 register asection *s;
5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116 if (s == NULL
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 return FALSE;
5121 s->size = sizeof (Elf32_External_compact_rel);
5124 return TRUE;
5127 /* Create the .got section to hold the global offset table. */
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
5135 struct bfd_link_hash_entry *bh;
5136 struct mips_elf_link_hash_table *htab;
5138 htab = mips_elf_hash_table (info);
5139 BFD_ASSERT (htab != NULL);
5141 /* This function may be called more than once. */
5142 if (htab->root.sgot)
5143 return TRUE;
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151 if (s == NULL
5152 || ! bfd_set_section_alignment (abfd, s, 4))
5153 return FALSE;
5154 htab->root.sgot = s;
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
5159 bh = NULL;
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163 return FALSE;
5165 h = (struct elf_link_hash_entry *) bh;
5166 h->non_elf = 0;
5167 h->def_regular = 1;
5168 h->type = STT_OBJECT;
5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170 elf_hash_table (info)->hgot = h;
5172 if (bfd_link_pic (info)
5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174 return FALSE;
5176 htab->got_info = mips_elf_create_got_info (abfd);
5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5180 /* We also need a .got.plt section when generating PLTs. */
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
5186 if (s == NULL)
5187 return FALSE;
5188 htab->root.sgotplt = s;
5190 return TRUE;
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5200 return (mips_elf_hash_table (info)->is_vxworks
5201 && bfd_link_pic (info)
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5223 switch (r_type)
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
5234 return TRUE;
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5239 default:
5240 return FALSE;
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5248 The result of the relocation calculation is stored in VALUEP.
5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
5267 bfd_boolean save_addend)
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
5276 bfd_vma gp;
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
5281 bfd_vma gp0;
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
5290 /* TRUE if the symbol referred to by this relocation is a local
5291 symbol. */
5292 bfd_boolean local_p, was_local_p;
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
5305 /* TRUE if overflow occurred during the calculation of the
5306 relocation value. */
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
5310 bfd_boolean target_is_micromips_code_p = FALSE;
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313 bfd_boolean resolved_to_zero;
5315 dynobj = elf_hash_table (info)->dynobj;
5316 htab = mips_elf_hash_table (info);
5317 BFD_ASSERT (htab != NULL);
5319 /* Parse the relocation. */
5320 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5321 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5322 p = (input_section->output_section->vma
5323 + input_section->output_offset
5324 + relocation->r_offset);
5326 /* Assume that there will be no overflow. */
5327 overflowed_p = FALSE;
5329 /* Figure out whether or not the symbol is local, and get the offset
5330 used in the array of hash table entries. */
5331 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5332 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5333 local_sections);
5334 was_local_p = local_p;
5335 if (! elf_bad_symtab (input_bfd))
5336 extsymoff = symtab_hdr->sh_info;
5337 else
5339 /* The symbol table does not follow the rule that local symbols
5340 must come before globals. */
5341 extsymoff = 0;
5344 /* Figure out the value of the symbol. */
5345 if (local_p)
5347 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5348 Elf_Internal_Sym *sym;
5350 sym = local_syms + r_symndx;
5351 sec = local_sections[r_symndx];
5353 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5355 symbol = sec->output_section->vma + sec->output_offset;
5356 if (!section_p || (sec->flags & SEC_MERGE))
5357 symbol += sym->st_value;
5358 if ((sec->flags & SEC_MERGE) && section_p)
5360 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5361 addend -= symbol;
5362 addend += sec->output_section->vma + sec->output_offset;
5365 /* MIPS16/microMIPS text labels should be treated as odd. */
5366 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5367 ++symbol;
5369 /* Record the name of this symbol, for our caller. */
5370 *namep = bfd_elf_string_from_elf_section (input_bfd,
5371 symtab_hdr->sh_link,
5372 sym->st_name);
5373 if (*namep == NULL || **namep == '\0')
5374 *namep = bfd_section_name (input_bfd, sec);
5376 /* For relocations against a section symbol and ones against no
5377 symbol (absolute relocations) infer the ISA mode from the addend. */
5378 if (section_p || r_symndx == STN_UNDEF)
5380 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5381 target_is_micromips_code_p = (addend & 1) && micromips_p;
5383 /* For relocations against an absolute symbol infer the ISA mode
5384 from the value of the symbol plus addend. */
5385 else if (bfd_is_abs_section (sec))
5387 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5388 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5390 /* Otherwise just use the regular symbol annotation available. */
5391 else
5393 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5394 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5397 else
5399 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5401 /* For global symbols we look up the symbol in the hash-table. */
5402 h = ((struct mips_elf_link_hash_entry *)
5403 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5404 /* Find the real hash-table entry for this symbol. */
5405 while (h->root.root.type == bfd_link_hash_indirect
5406 || h->root.root.type == bfd_link_hash_warning)
5407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5409 /* Record the name of this symbol, for our caller. */
5410 *namep = h->root.root.root.string;
5412 /* See if this is the special _gp_disp symbol. Note that such a
5413 symbol must always be a global symbol. */
5414 if (strcmp (*namep, "_gp_disp") == 0
5415 && ! NEWABI_P (input_bfd))
5417 /* Relocations against _gp_disp are permitted only with
5418 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5419 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5420 return bfd_reloc_notsupported;
5422 gp_disp_p = TRUE;
5424 /* See if this is the special _gp symbol. Note that such a
5425 symbol must always be a global symbol. */
5426 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5427 gnu_local_gp_p = TRUE;
5430 /* If this symbol is defined, calculate its address. Note that
5431 _gp_disp is a magic symbol, always implicitly defined by the
5432 linker, so it's inappropriate to check to see whether or not
5433 its defined. */
5434 else if ((h->root.root.type == bfd_link_hash_defined
5435 || h->root.root.type == bfd_link_hash_defweak)
5436 && h->root.root.u.def.section)
5438 sec = h->root.root.u.def.section;
5439 if (sec->output_section)
5440 symbol = (h->root.root.u.def.value
5441 + sec->output_section->vma
5442 + sec->output_offset);
5443 else
5444 symbol = h->root.root.u.def.value;
5446 else if (h->root.root.type == bfd_link_hash_undefweak)
5447 /* We allow relocations against undefined weak symbols, giving
5448 it the value zero, so that you can undefined weak functions
5449 and check to see if they exist by looking at their
5450 addresses. */
5451 symbol = 0;
5452 else if (info->unresolved_syms_in_objects == RM_IGNORE
5453 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5454 symbol = 0;
5455 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5456 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5458 /* If this is a dynamic link, we should have created a
5459 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5460 in _bfd_mips_elf_create_dynamic_sections.
5461 Otherwise, we should define the symbol with a value of 0.
5462 FIXME: It should probably get into the symbol table
5463 somehow as well. */
5464 BFD_ASSERT (! bfd_link_pic (info));
5465 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5466 symbol = 0;
5468 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5470 /* This is an optional symbol - an Irix specific extension to the
5471 ELF spec. Ignore it for now.
5472 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5473 than simply ignoring them, but we do not handle this for now.
5474 For information see the "64-bit ELF Object File Specification"
5475 which is available from here:
5476 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5477 symbol = 0;
5479 else
5481 (*info->callbacks->undefined_symbol)
5482 (info, h->root.root.root.string, input_bfd,
5483 input_section, relocation->r_offset,
5484 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5485 || ELF_ST_VISIBILITY (h->root.other));
5486 return bfd_reloc_undefined;
5489 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5493 /* If this is a reference to a 16-bit function with a stub, we need
5494 to redirect the relocation to the stub unless:
5496 (a) the relocation is for a MIPS16 JAL;
5498 (b) the relocation is for a MIPS16 PIC call, and there are no
5499 non-MIPS16 uses of the GOT slot; or
5501 (c) the section allows direct references to MIPS16 functions. */
5502 if (r_type != R_MIPS16_26
5503 && !bfd_link_relocatable (info)
5504 && ((h != NULL
5505 && h->fn_stub != NULL
5506 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5507 || (local_p
5508 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5509 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5510 && !section_allows_mips16_refs_p (input_section))
5512 /* This is a 32- or 64-bit call to a 16-bit function. We should
5513 have already noticed that we were going to need the
5514 stub. */
5515 if (local_p)
5517 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5518 value = 0;
5520 else
5522 BFD_ASSERT (h->need_fn_stub);
5523 if (h->la25_stub)
5525 /* If a LA25 header for the stub itself exists, point to the
5526 prepended LUI/ADDIU sequence. */
5527 sec = h->la25_stub->stub_section;
5528 value = h->la25_stub->offset;
5530 else
5532 sec = h->fn_stub;
5533 value = 0;
5537 symbol = sec->output_section->vma + sec->output_offset + value;
5538 /* The target is 16-bit, but the stub isn't. */
5539 target_is_16_bit_code_p = FALSE;
5541 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5542 to a standard MIPS function, we need to redirect the call to the stub.
5543 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5544 indirect calls should use an indirect stub instead. */
5545 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5546 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5547 || (local_p
5548 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5549 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5550 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5552 if (local_p)
5553 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5554 else
5556 /* If both call_stub and call_fp_stub are defined, we can figure
5557 out which one to use by checking which one appears in the input
5558 file. */
5559 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5561 asection *o;
5563 sec = NULL;
5564 for (o = input_bfd->sections; o != NULL; o = o->next)
5566 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5568 sec = h->call_fp_stub;
5569 break;
5572 if (sec == NULL)
5573 sec = h->call_stub;
5575 else if (h->call_stub != NULL)
5576 sec = h->call_stub;
5577 else
5578 sec = h->call_fp_stub;
5581 BFD_ASSERT (sec->size > 0);
5582 symbol = sec->output_section->vma + sec->output_offset;
5584 /* If this is a direct call to a PIC function, redirect to the
5585 non-PIC stub. */
5586 else if (h != NULL && h->la25_stub
5587 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5588 target_is_16_bit_code_p))
5590 symbol = (h->la25_stub->stub_section->output_section->vma
5591 + h->la25_stub->stub_section->output_offset
5592 + h->la25_stub->offset);
5593 if (ELF_ST_IS_MICROMIPS (h->root.other))
5594 symbol |= 1;
5596 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5597 entry is used if a standard PLT entry has also been made. In this
5598 case the symbol will have been set by mips_elf_set_plt_sym_value
5599 to point to the standard PLT entry, so redirect to the compressed
5600 one. */
5601 else if ((mips16_branch_reloc_p (r_type)
5602 || micromips_branch_reloc_p (r_type))
5603 && !bfd_link_relocatable (info)
5604 && h != NULL
5605 && h->use_plt_entry
5606 && h->root.plt.plist->comp_offset != MINUS_ONE
5607 && h->root.plt.plist->mips_offset != MINUS_ONE)
5609 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5611 sec = htab->root.splt;
5612 symbol = (sec->output_section->vma
5613 + sec->output_offset
5614 + htab->plt_header_size
5615 + htab->plt_mips_offset
5616 + h->root.plt.plist->comp_offset
5617 + 1);
5619 target_is_16_bit_code_p = !micromips_p;
5620 target_is_micromips_code_p = micromips_p;
5623 /* Make sure MIPS16 and microMIPS are not used together. */
5624 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5625 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5627 _bfd_error_handler
5628 (_("MIPS16 and microMIPS functions cannot call each other"));
5629 return bfd_reloc_notsupported;
5632 /* Calls from 16-bit code to 32-bit code and vice versa require the
5633 mode change. However, we can ignore calls to undefined weak symbols,
5634 which should never be executed at runtime. This exception is important
5635 because the assembly writer may have "known" that any definition of the
5636 symbol would be 16-bit code, and that direct jumps were therefore
5637 acceptable. */
5638 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5639 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5640 && ((mips16_branch_reloc_p (r_type)
5641 && !target_is_16_bit_code_p)
5642 || (micromips_branch_reloc_p (r_type)
5643 && !target_is_micromips_code_p)
5644 || ((branch_reloc_p (r_type)
5645 || r_type == R_MIPS_JALR)
5646 && (target_is_16_bit_code_p
5647 || target_is_micromips_code_p))));
5649 local_p = (h == NULL || mips_use_local_got_p (info, h));
5651 gp0 = _bfd_get_gp_value (input_bfd);
5652 gp = _bfd_get_gp_value (abfd);
5653 if (htab->got_info)
5654 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5656 if (gnu_local_gp_p)
5657 symbol = gp;
5659 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5660 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5661 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5662 if (got_page_reloc_p (r_type) && !local_p)
5664 r_type = (micromips_reloc_p (r_type)
5665 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5666 addend = 0;
5669 resolved_to_zero = (h != NULL
5670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5671 &h->root));
5673 /* If we haven't already determined the GOT offset, and we're going
5674 to need it, get it now. */
5675 switch (r_type)
5677 case R_MIPS16_CALL16:
5678 case R_MIPS16_GOT16:
5679 case R_MIPS_CALL16:
5680 case R_MIPS_GOT16:
5681 case R_MIPS_GOT_DISP:
5682 case R_MIPS_GOT_HI16:
5683 case R_MIPS_CALL_HI16:
5684 case R_MIPS_GOT_LO16:
5685 case R_MIPS_CALL_LO16:
5686 case R_MICROMIPS_CALL16:
5687 case R_MICROMIPS_GOT16:
5688 case R_MICROMIPS_GOT_DISP:
5689 case R_MICROMIPS_GOT_HI16:
5690 case R_MICROMIPS_CALL_HI16:
5691 case R_MICROMIPS_GOT_LO16:
5692 case R_MICROMIPS_CALL_LO16:
5693 case R_MIPS_TLS_GD:
5694 case R_MIPS_TLS_GOTTPREL:
5695 case R_MIPS_TLS_LDM:
5696 case R_MIPS16_TLS_GD:
5697 case R_MIPS16_TLS_GOTTPREL:
5698 case R_MIPS16_TLS_LDM:
5699 case R_MICROMIPS_TLS_GD:
5700 case R_MICROMIPS_TLS_GOTTPREL:
5701 case R_MICROMIPS_TLS_LDM:
5702 /* Find the index into the GOT where this value is located. */
5703 if (tls_ldm_reloc_p (r_type))
5705 g = mips_elf_local_got_index (abfd, input_bfd, info,
5706 0, 0, NULL, r_type);
5707 if (g == MINUS_ONE)
5708 return bfd_reloc_outofrange;
5710 else if (!local_p)
5712 /* On VxWorks, CALL relocations should refer to the .got.plt
5713 entry, which is initialized to point at the PLT stub. */
5714 if (htab->is_vxworks
5715 && (call_hi16_reloc_p (r_type)
5716 || call_lo16_reloc_p (r_type)
5717 || call16_reloc_p (r_type)))
5719 BFD_ASSERT (addend == 0);
5720 BFD_ASSERT (h->root.needs_plt);
5721 g = mips_elf_gotplt_index (info, &h->root);
5723 else
5725 BFD_ASSERT (addend == 0);
5726 g = mips_elf_global_got_index (abfd, info, input_bfd,
5727 &h->root, r_type);
5728 if (!TLS_RELOC_P (r_type)
5729 && !elf_hash_table (info)->dynamic_sections_created)
5730 /* This is a static link. We must initialize the GOT entry. */
5731 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5734 else if (!htab->is_vxworks
5735 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5736 /* The calculation below does not involve "g". */
5737 break;
5738 else
5740 g = mips_elf_local_got_index (abfd, input_bfd, info,
5741 symbol + addend, r_symndx, h, r_type);
5742 if (g == MINUS_ONE)
5743 return bfd_reloc_outofrange;
5746 /* Convert GOT indices to actual offsets. */
5747 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5748 break;
5751 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5752 symbols are resolved by the loader. Add them to .rela.dyn. */
5753 if (h != NULL && is_gott_symbol (info, &h->root))
5755 Elf_Internal_Rela outrel;
5756 bfd_byte *loc;
5757 asection *s;
5759 s = mips_elf_rel_dyn_section (info, FALSE);
5760 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5762 outrel.r_offset = (input_section->output_section->vma
5763 + input_section->output_offset
5764 + relocation->r_offset);
5765 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5766 outrel.r_addend = addend;
5767 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5769 /* If we've written this relocation for a readonly section,
5770 we need to set DF_TEXTREL again, so that we do not delete the
5771 DT_TEXTREL tag. */
5772 if (MIPS_ELF_READONLY_SECTION (input_section))
5773 info->flags |= DF_TEXTREL;
5775 *valuep = 0;
5776 return bfd_reloc_ok;
5779 /* Figure out what kind of relocation is being performed. */
5780 switch (r_type)
5782 case R_MIPS_NONE:
5783 return bfd_reloc_continue;
5785 case R_MIPS_16:
5786 if (howto->partial_inplace)
5787 addend = _bfd_mips_elf_sign_extend (addend, 16);
5788 value = symbol + addend;
5789 overflowed_p = mips_elf_overflow_p (value, 16);
5790 break;
5792 case R_MIPS_32:
5793 case R_MIPS_REL32:
5794 case R_MIPS_64:
5795 if ((bfd_link_pic (info)
5796 || (htab->root.dynamic_sections_created
5797 && h != NULL
5798 && h->root.def_dynamic
5799 && !h->root.def_regular
5800 && !h->has_static_relocs))
5801 && r_symndx != STN_UNDEF
5802 && (h == NULL
5803 || h->root.root.type != bfd_link_hash_undefweak
5804 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5805 && !resolved_to_zero))
5806 && (input_section->flags & SEC_ALLOC) != 0)
5808 /* If we're creating a shared library, then we can't know
5809 where the symbol will end up. So, we create a relocation
5810 record in the output, and leave the job up to the dynamic
5811 linker. We must do the same for executable references to
5812 shared library symbols, unless we've decided to use copy
5813 relocs or PLTs instead. */
5814 value = addend;
5815 if (!mips_elf_create_dynamic_relocation (abfd,
5816 info,
5817 relocation,
5819 sec,
5820 symbol,
5821 &value,
5822 input_section))
5823 return bfd_reloc_undefined;
5825 else
5827 if (r_type != R_MIPS_REL32)
5828 value = symbol + addend;
5829 else
5830 value = addend;
5832 value &= howto->dst_mask;
5833 break;
5835 case R_MIPS_PC32:
5836 value = symbol + addend - p;
5837 value &= howto->dst_mask;
5838 break;
5840 case R_MIPS16_26:
5841 /* The calculation for R_MIPS16_26 is just the same as for an
5842 R_MIPS_26. It's only the storage of the relocated field into
5843 the output file that's different. That's handled in
5844 mips_elf_perform_relocation. So, we just fall through to the
5845 R_MIPS_26 case here. */
5846 case R_MIPS_26:
5847 case R_MICROMIPS_26_S1:
5849 unsigned int shift;
5851 /* Shift is 2, unusually, for microMIPS JALX. */
5852 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5854 if (howto->partial_inplace && !section_p)
5855 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5856 else
5857 value = addend;
5858 value += symbol;
5860 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5861 be the correct ISA mode selector except for weak undefined
5862 symbols. */
5863 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5864 && (*cross_mode_jump_p
5865 ? (value & 3) != (r_type == R_MIPS_26)
5866 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5867 return bfd_reloc_outofrange;
5869 value >>= shift;
5870 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5871 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5872 value &= howto->dst_mask;
5874 break;
5876 case R_MIPS_TLS_DTPREL_HI16:
5877 case R_MIPS16_TLS_DTPREL_HI16:
5878 case R_MICROMIPS_TLS_DTPREL_HI16:
5879 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5880 & howto->dst_mask);
5881 break;
5883 case R_MIPS_TLS_DTPREL_LO16:
5884 case R_MIPS_TLS_DTPREL32:
5885 case R_MIPS_TLS_DTPREL64:
5886 case R_MIPS16_TLS_DTPREL_LO16:
5887 case R_MICROMIPS_TLS_DTPREL_LO16:
5888 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5889 break;
5891 case R_MIPS_TLS_TPREL_HI16:
5892 case R_MIPS16_TLS_TPREL_HI16:
5893 case R_MICROMIPS_TLS_TPREL_HI16:
5894 value = (mips_elf_high (addend + symbol - tprel_base (info))
5895 & howto->dst_mask);
5896 break;
5898 case R_MIPS_TLS_TPREL_LO16:
5899 case R_MIPS_TLS_TPREL32:
5900 case R_MIPS_TLS_TPREL64:
5901 case R_MIPS16_TLS_TPREL_LO16:
5902 case R_MICROMIPS_TLS_TPREL_LO16:
5903 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5904 break;
5906 case R_MIPS_HI16:
5907 case R_MIPS16_HI16:
5908 case R_MICROMIPS_HI16:
5909 if (!gp_disp_p)
5911 value = mips_elf_high (addend + symbol);
5912 value &= howto->dst_mask;
5914 else
5916 /* For MIPS16 ABI code we generate this sequence
5917 0: li $v0,%hi(_gp_disp)
5918 4: addiupc $v1,%lo(_gp_disp)
5919 8: sll $v0,16
5920 12: addu $v0,$v1
5921 14: move $gp,$v0
5922 So the offsets of hi and lo relocs are the same, but the
5923 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5924 ADDIUPC clears the low two bits of the instruction address,
5925 so the base is ($t9 + 4) & ~3. */
5926 if (r_type == R_MIPS16_HI16)
5927 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5928 /* The microMIPS .cpload sequence uses the same assembly
5929 instructions as the traditional psABI version, but the
5930 incoming $t9 has the low bit set. */
5931 else if (r_type == R_MICROMIPS_HI16)
5932 value = mips_elf_high (addend + gp - p - 1);
5933 else
5934 value = mips_elf_high (addend + gp - p);
5936 break;
5938 case R_MIPS_LO16:
5939 case R_MIPS16_LO16:
5940 case R_MICROMIPS_LO16:
5941 case R_MICROMIPS_HI0_LO16:
5942 if (!gp_disp_p)
5943 value = (symbol + addend) & howto->dst_mask;
5944 else
5946 /* See the comment for R_MIPS16_HI16 above for the reason
5947 for this conditional. */
5948 if (r_type == R_MIPS16_LO16)
5949 value = addend + gp - (p & ~(bfd_vma) 0x3);
5950 else if (r_type == R_MICROMIPS_LO16
5951 || r_type == R_MICROMIPS_HI0_LO16)
5952 value = addend + gp - p + 3;
5953 else
5954 value = addend + gp - p + 4;
5955 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5956 for overflow. But, on, say, IRIX5, relocations against
5957 _gp_disp are normally generated from the .cpload
5958 pseudo-op. It generates code that normally looks like
5959 this:
5961 lui $gp,%hi(_gp_disp)
5962 addiu $gp,$gp,%lo(_gp_disp)
5963 addu $gp,$gp,$t9
5965 Here $t9 holds the address of the function being called,
5966 as required by the MIPS ELF ABI. The R_MIPS_LO16
5967 relocation can easily overflow in this situation, but the
5968 R_MIPS_HI16 relocation will handle the overflow.
5969 Therefore, we consider this a bug in the MIPS ABI, and do
5970 not check for overflow here. */
5972 break;
5974 case R_MIPS_LITERAL:
5975 case R_MICROMIPS_LITERAL:
5976 /* Because we don't merge literal sections, we can handle this
5977 just like R_MIPS_GPREL16. In the long run, we should merge
5978 shared literals, and then we will need to additional work
5979 here. */
5981 /* Fall through. */
5983 case R_MIPS16_GPREL:
5984 /* The R_MIPS16_GPREL performs the same calculation as
5985 R_MIPS_GPREL16, but stores the relocated bits in a different
5986 order. We don't need to do anything special here; the
5987 differences are handled in mips_elf_perform_relocation. */
5988 case R_MIPS_GPREL16:
5989 case R_MICROMIPS_GPREL7_S2:
5990 case R_MICROMIPS_GPREL16:
5991 /* Only sign-extend the addend if it was extracted from the
5992 instruction. If the addend was separate, leave it alone,
5993 otherwise we may lose significant bits. */
5994 if (howto->partial_inplace)
5995 addend = _bfd_mips_elf_sign_extend (addend, 16);
5996 value = symbol + addend - gp;
5997 /* If the symbol was local, any earlier relocatable links will
5998 have adjusted its addend with the gp offset, so compensate
5999 for that now. Don't do it for symbols forced local in this
6000 link, though, since they won't have had the gp offset applied
6001 to them before. */
6002 if (was_local_p)
6003 value += gp0;
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 16);
6006 break;
6008 case R_MIPS16_GOT16:
6009 case R_MIPS16_CALL16:
6010 case R_MIPS_GOT16:
6011 case R_MIPS_CALL16:
6012 case R_MICROMIPS_GOT16:
6013 case R_MICROMIPS_CALL16:
6014 /* VxWorks does not have separate local and global semantics for
6015 R_MIPS*_GOT16; every relocation evaluates to "G". */
6016 if (!htab->is_vxworks && local_p)
6018 value = mips_elf_got16_entry (abfd, input_bfd, info,
6019 symbol + addend, !was_local_p);
6020 if (value == MINUS_ONE)
6021 return bfd_reloc_outofrange;
6022 value
6023 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6028 /* Fall through. */
6030 case R_MIPS_TLS_GD:
6031 case R_MIPS_TLS_GOTTPREL:
6032 case R_MIPS_TLS_LDM:
6033 case R_MIPS_GOT_DISP:
6034 case R_MIPS16_TLS_GD:
6035 case R_MIPS16_TLS_GOTTPREL:
6036 case R_MIPS16_TLS_LDM:
6037 case R_MICROMIPS_TLS_GD:
6038 case R_MICROMIPS_TLS_GOTTPREL:
6039 case R_MICROMIPS_TLS_LDM:
6040 case R_MICROMIPS_GOT_DISP:
6041 value = g;
6042 overflowed_p = mips_elf_overflow_p (value, 16);
6043 break;
6045 case R_MIPS_GPREL32:
6046 value = (addend + symbol + gp0 - gp);
6047 if (!save_addend)
6048 value &= howto->dst_mask;
6049 break;
6051 case R_MIPS_PC16:
6052 case R_MIPS_GNU_REL16_S2:
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 18);
6056 /* No need to exclude weak undefined symbols here as they resolve
6057 to 0 and never set `*cross_mode_jump_p', so this alignment check
6058 will never trigger for them. */
6059 if (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 1
6061 : ((symbol + addend) & 3) != 0)
6062 return bfd_reloc_outofrange;
6064 value = symbol + addend - p;
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 18);
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
6069 break;
6071 case R_MIPS16_PC16_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 17);
6075 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 && (*cross_mode_jump_p
6077 ? ((symbol + addend) & 3) != 0
6078 : ((symbol + addend) & 1) == 0))
6079 return bfd_reloc_outofrange;
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6088 case R_MIPS_PC21_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 23);
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6095 value = symbol + addend - p;
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 23);
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6102 case R_MIPS_PC26_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 28);
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6109 value = symbol + addend - p;
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 28);
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6116 case R_MIPS_PC18_S3:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6120 if ((symbol + addend) & 7)
6121 return bfd_reloc_outofrange;
6123 value = symbol + addend - ((p | 7) ^ 7);
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6130 case R_MIPS_PC19_S2:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6134 if ((symbol + addend) & 3)
6135 return bfd_reloc_outofrange;
6137 value = symbol + addend - p;
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6142 break;
6144 case R_MIPS_PCHI16:
6145 value = mips_elf_high (symbol + addend - p);
6146 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 overflowed_p = mips_elf_overflow_p (value, 16);
6148 value &= howto->dst_mask;
6149 break;
6151 case R_MIPS_PCLO16:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 16);
6154 value = symbol + addend - p;
6155 value &= howto->dst_mask;
6156 break;
6158 case R_MICROMIPS_PC7_S1:
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 8);
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6168 value = symbol + addend - p;
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 8);
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6173 break;
6175 case R_MICROMIPS_PC10_S1:
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 11);
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend + 2) & 3) != 0
6182 : ((symbol + addend + 2) & 1) == 0))
6183 return bfd_reloc_outofrange;
6185 value = symbol + addend - p;
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 11);
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6190 break;
6192 case R_MICROMIPS_PC16_S1:
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 17);
6196 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 && (*cross_mode_jump_p
6198 ? ((symbol + addend) & 3) != 0
6199 : ((symbol + addend) & 1) == 0))
6200 return bfd_reloc_outofrange;
6202 value = symbol + addend - p;
6203 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 overflowed_p = mips_elf_overflow_p (value, 17);
6205 value >>= howto->rightshift;
6206 value &= howto->dst_mask;
6207 break;
6209 case R_MICROMIPS_PC23_S2:
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 25);
6212 value = symbol + addend - ((p | 3) ^ 3);
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 25);
6215 value >>= howto->rightshift;
6216 value &= howto->dst_mask;
6217 break;
6219 case R_MIPS_GOT_HI16:
6220 case R_MIPS_CALL_HI16:
6221 case R_MICROMIPS_GOT_HI16:
6222 case R_MICROMIPS_CALL_HI16:
6223 /* We're allowed to handle these two relocations identically.
6224 The dynamic linker is allowed to handle the CALL relocations
6225 differently by creating a lazy evaluation stub. */
6226 value = g;
6227 value = mips_elf_high (value);
6228 value &= howto->dst_mask;
6229 break;
6231 case R_MIPS_GOT_LO16:
6232 case R_MIPS_CALL_LO16:
6233 case R_MICROMIPS_GOT_LO16:
6234 case R_MICROMIPS_CALL_LO16:
6235 value = g & howto->dst_mask;
6236 break;
6238 case R_MIPS_GOT_PAGE:
6239 case R_MICROMIPS_GOT_PAGE:
6240 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6241 if (value == MINUS_ONE)
6242 return bfd_reloc_outofrange;
6243 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6244 overflowed_p = mips_elf_overflow_p (value, 16);
6245 break;
6247 case R_MIPS_GOT_OFST:
6248 case R_MICROMIPS_GOT_OFST:
6249 if (local_p)
6250 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6251 else
6252 value = addend;
6253 overflowed_p = mips_elf_overflow_p (value, 16);
6254 break;
6256 case R_MIPS_SUB:
6257 case R_MICROMIPS_SUB:
6258 value = symbol - addend;
6259 value &= howto->dst_mask;
6260 break;
6262 case R_MIPS_HIGHER:
6263 case R_MICROMIPS_HIGHER:
6264 value = mips_elf_higher (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6268 case R_MIPS_HIGHEST:
6269 case R_MICROMIPS_HIGHEST:
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6274 case R_MIPS_SCN_DISP:
6275 case R_MICROMIPS_SCN_DISP:
6276 value = symbol + addend - sec->output_offset;
6277 value &= howto->dst_mask;
6278 break;
6280 case R_MIPS_JALR:
6281 case R_MICROMIPS_JALR:
6282 /* This relocation is only a hint. In some cases, we optimize
6283 it into a bal instruction. But we don't try to optimize
6284 when the symbol does not resolve locally. */
6285 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6286 return bfd_reloc_continue;
6287 /* We can't optimize cross-mode jumps either. */
6288 if (*cross_mode_jump_p)
6289 return bfd_reloc_continue;
6290 value = symbol + addend;
6291 /* Neither we can non-instruction-aligned targets. */
6292 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6293 return bfd_reloc_continue;
6294 break;
6296 case R_MIPS_PJUMP:
6297 case R_MIPS_GNU_VTINHERIT:
6298 case R_MIPS_GNU_VTENTRY:
6299 /* We don't do anything with these at present. */
6300 return bfd_reloc_continue;
6302 default:
6303 /* An unrecognized relocation type. */
6304 return bfd_reloc_notsupported;
6307 /* Store the VALUE for our caller. */
6308 *valuep = value;
6309 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6312 /* Obtain the field relocated by RELOCATION. */
6314 static bfd_vma
6315 mips_elf_obtain_contents (reloc_howto_type *howto,
6316 const Elf_Internal_Rela *relocation,
6317 bfd *input_bfd, bfd_byte *contents)
6319 bfd_vma x = 0;
6320 bfd_byte *location = contents + relocation->r_offset;
6321 unsigned int size = bfd_get_reloc_size (howto);
6323 /* Obtain the bytes. */
6324 if (size != 0)
6325 x = bfd_get (8 * size, input_bfd, location);
6327 return x;
6330 /* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
6333 relocation applies.
6334 CROSS_MODE_JUMP_P is true if the relocation field
6335 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6337 Returns FALSE if anything goes wrong. */
6339 static bfd_boolean
6340 mips_elf_perform_relocation (struct bfd_link_info *info,
6341 reloc_howto_type *howto,
6342 const Elf_Internal_Rela *relocation,
6343 bfd_vma value, bfd *input_bfd,
6344 asection *input_section, bfd_byte *contents,
6345 bfd_boolean cross_mode_jump_p)
6347 bfd_vma x;
6348 bfd_byte *location;
6349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6350 unsigned int size;
6352 /* Figure out where the relocation is occurring. */
6353 location = contents + relocation->r_offset;
6355 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6357 /* Obtain the current value. */
6358 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6360 /* Clear the field we are setting. */
6361 x &= ~howto->dst_mask;
6363 /* Set the field. */
6364 x |= (value & howto->dst_mask);
6366 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6367 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6369 bfd_vma opcode = x >> 26;
6371 if (r_type == R_MIPS16_26 ? opcode == 0x7
6372 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6373 : opcode == 0x1d)
6375 info->callbacks->einfo
6376 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6377 input_bfd, input_section, relocation->r_offset);
6378 return TRUE;
6381 if (cross_mode_jump_p && jal_reloc_p (r_type))
6383 bfd_boolean ok;
6384 bfd_vma opcode = x >> 26;
6385 bfd_vma jalx_opcode;
6387 /* Check to see if the opcode is already JAL or JALX. */
6388 if (r_type == R_MIPS16_26)
6390 ok = ((opcode == 0x6) || (opcode == 0x7));
6391 jalx_opcode = 0x7;
6393 else if (r_type == R_MICROMIPS_26_S1)
6395 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6396 jalx_opcode = 0x3c;
6398 else
6400 ok = ((opcode == 0x3) || (opcode == 0x1d));
6401 jalx_opcode = 0x1d;
6404 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6405 convert J or JALS to JALX. */
6406 if (!ok)
6408 info->callbacks->einfo
6409 (_("%X%H: Unsupported jump between ISA modes; "
6410 "consider recompiling with interlinking enabled\n"),
6411 input_bfd, input_section, relocation->r_offset);
6412 return TRUE;
6415 /* Make this the JALX opcode. */
6416 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6418 else if (cross_mode_jump_p && b_reloc_p (r_type))
6420 bfd_boolean ok = FALSE;
6421 bfd_vma opcode = x >> 16;
6422 bfd_vma jalx_opcode = 0;
6423 bfd_vma sign_bit = 0;
6424 bfd_vma addr;
6425 bfd_vma dest;
6427 if (r_type == R_MICROMIPS_PC16_S1)
6429 ok = opcode == 0x4060;
6430 jalx_opcode = 0x3c;
6431 sign_bit = 0x10000;
6432 value <<= 1;
6434 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6436 ok = opcode == 0x411;
6437 jalx_opcode = 0x1d;
6438 sign_bit = 0x20000;
6439 value <<= 2;
6442 if (ok && !bfd_link_pic (info))
6444 addr = (input_section->output_section->vma
6445 + input_section->output_offset
6446 + relocation->r_offset
6447 + 4);
6448 dest = (addr
6449 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6451 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6453 info->callbacks->einfo
6454 (_("%X%H: Cannot convert branch between ISA modes "
6455 "to JALX: relocation out of range\n"),
6456 input_bfd, input_section, relocation->r_offset);
6457 return TRUE;
6460 /* Make this the JALX opcode. */
6461 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6463 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6465 info->callbacks->einfo
6466 (_("%X%H: Unsupported branch between ISA modes\n"),
6467 input_bfd, input_section, relocation->r_offset);
6468 return TRUE;
6472 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6473 range. */
6474 if (!bfd_link_relocatable (info)
6475 && !cross_mode_jump_p
6476 && ((JAL_TO_BAL_P (input_bfd)
6477 && r_type == R_MIPS_26
6478 && (x >> 26) == 0x3) /* jal addr */
6479 || (JALR_TO_BAL_P (input_bfd)
6480 && r_type == R_MIPS_JALR
6481 && x == 0x0320f809) /* jalr t9 */
6482 || (JR_TO_B_P (input_bfd)
6483 && r_type == R_MIPS_JALR
6484 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6486 bfd_vma addr;
6487 bfd_vma dest;
6488 bfd_signed_vma off;
6490 addr = (input_section->output_section->vma
6491 + input_section->output_offset
6492 + relocation->r_offset
6493 + 4);
6494 if (r_type == R_MIPS_26)
6495 dest = (value << 2) | ((addr >> 28) << 28);
6496 else
6497 dest = value;
6498 off = dest - addr;
6499 if (off <= 0x1ffff && off >= -0x20000)
6501 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6502 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6503 else
6504 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6508 /* Put the value into the output. */
6509 size = bfd_get_reloc_size (howto);
6510 if (size != 0)
6511 bfd_put (8 * size, input_bfd, x, location);
6513 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6514 location);
6516 return TRUE;
6519 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6520 is the original relocation, which is now being transformed into a
6521 dynamic relocation. The ADDENDP is adjusted if necessary; the
6522 caller should store the result in place of the original addend. */
6524 static bfd_boolean
6525 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6526 struct bfd_link_info *info,
6527 const Elf_Internal_Rela *rel,
6528 struct mips_elf_link_hash_entry *h,
6529 asection *sec, bfd_vma symbol,
6530 bfd_vma *addendp, asection *input_section)
6532 Elf_Internal_Rela outrel[3];
6533 asection *sreloc;
6534 bfd *dynobj;
6535 int r_type;
6536 long indx;
6537 bfd_boolean defined_p;
6538 struct mips_elf_link_hash_table *htab;
6540 htab = mips_elf_hash_table (info);
6541 BFD_ASSERT (htab != NULL);
6543 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6544 dynobj = elf_hash_table (info)->dynobj;
6545 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6546 BFD_ASSERT (sreloc != NULL);
6547 BFD_ASSERT (sreloc->contents != NULL);
6548 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6549 < sreloc->size);
6551 outrel[0].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6553 if (ABI_64_P (output_bfd))
6555 outrel[1].r_offset =
6556 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6557 outrel[2].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6561 if (outrel[0].r_offset == MINUS_ONE)
6562 /* The relocation field has been deleted. */
6563 return TRUE;
6565 if (outrel[0].r_offset == MINUS_TWO)
6567 /* The relocation field has been converted into a relative value of
6568 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6569 the field to be fully relocated, so add in the symbol's value. */
6570 *addendp += symbol;
6571 return TRUE;
6574 /* We must now calculate the dynamic symbol table index to use
6575 in the relocation. */
6576 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6578 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6579 indx = h->root.dynindx;
6580 if (SGI_COMPAT (output_bfd))
6581 defined_p = h->root.def_regular;
6582 else
6583 /* ??? glibc's ld.so just adds the final GOT entry to the
6584 relocation field. It therefore treats relocs against
6585 defined symbols in the same way as relocs against
6586 undefined symbols. */
6587 defined_p = FALSE;
6589 else
6591 if (sec != NULL && bfd_is_abs_section (sec))
6592 indx = 0;
6593 else if (sec == NULL || sec->owner == NULL)
6595 bfd_set_error (bfd_error_bad_value);
6596 return FALSE;
6598 else
6600 indx = elf_section_data (sec->output_section)->dynindx;
6601 if (indx == 0)
6603 asection *osec = htab->root.text_index_section;
6604 indx = elf_section_data (osec)->dynindx;
6606 if (indx == 0)
6607 abort ();
6610 /* Instead of generating a relocation using the section
6611 symbol, we may as well make it a fully relative
6612 relocation. We want to avoid generating relocations to
6613 local symbols because we used to generate them
6614 incorrectly, without adding the original symbol value,
6615 which is mandated by the ABI for section symbols. In
6616 order to give dynamic loaders and applications time to
6617 phase out the incorrect use, we refrain from emitting
6618 section-relative relocations. It's not like they're
6619 useful, after all. This should be a bit more efficient
6620 as well. */
6621 /* ??? Although this behavior is compatible with glibc's ld.so,
6622 the ABI says that relocations against STN_UNDEF should have
6623 a symbol value of 0. Irix rld honors this, so relocations
6624 against STN_UNDEF have no effect. */
6625 if (!SGI_COMPAT (output_bfd))
6626 indx = 0;
6627 defined_p = TRUE;
6630 /* If the relocation was previously an absolute relocation and
6631 this symbol will not be referred to by the relocation, we must
6632 adjust it by the value we give it in the dynamic symbol table.
6633 Otherwise leave the job up to the dynamic linker. */
6634 if (defined_p && r_type != R_MIPS_REL32)
6635 *addendp += symbol;
6637 if (htab->is_vxworks)
6638 /* VxWorks uses non-relative relocations for this. */
6639 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6640 else
6641 /* The relocation is always an REL32 relocation because we don't
6642 know where the shared library will wind up at load-time. */
6643 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6644 R_MIPS_REL32);
6646 /* For strict adherence to the ABI specification, we should
6647 generate a R_MIPS_64 relocation record by itself before the
6648 _REL32/_64 record as well, such that the addend is read in as
6649 a 64-bit value (REL32 is a 32-bit relocation, after all).
6650 However, since none of the existing ELF64 MIPS dynamic
6651 loaders seems to care, we don't waste space with these
6652 artificial relocations. If this turns out to not be true,
6653 mips_elf_allocate_dynamic_relocation() should be tweaked so
6654 as to make room for a pair of dynamic relocations per
6655 invocation if ABI_64_P, and here we should generate an
6656 additional relocation record with R_MIPS_64 by itself for a
6657 NULL symbol before this relocation record. */
6658 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6659 ABI_64_P (output_bfd)
6660 ? R_MIPS_64
6661 : R_MIPS_NONE);
6662 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6664 /* Adjust the output offset of the relocation to reference the
6665 correct location in the output file. */
6666 outrel[0].r_offset += (input_section->output_section->vma
6667 + input_section->output_offset);
6668 outrel[1].r_offset += (input_section->output_section->vma
6669 + input_section->output_offset);
6670 outrel[2].r_offset += (input_section->output_section->vma
6671 + input_section->output_offset);
6673 /* Put the relocation back out. We have to use the special
6674 relocation outputter in the 64-bit case since the 64-bit
6675 relocation format is non-standard. */
6676 if (ABI_64_P (output_bfd))
6678 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6679 (output_bfd, &outrel[0],
6680 (sreloc->contents
6681 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6683 else if (htab->is_vxworks)
6685 /* VxWorks uses RELA rather than REL dynamic relocations. */
6686 outrel[0].r_addend = *addendp;
6687 bfd_elf32_swap_reloca_out
6688 (output_bfd, &outrel[0],
6689 (sreloc->contents
6690 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6692 else
6693 bfd_elf32_swap_reloc_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6697 /* We've now added another relocation. */
6698 ++sreloc->reloc_count;
6700 /* Make sure the output section is writable. The dynamic linker
6701 will be writing to it. */
6702 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6703 |= SHF_WRITE;
6705 /* On IRIX5, make an entry of compact relocation info. */
6706 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6708 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6709 bfd_byte *cr;
6711 if (scpt)
6713 Elf32_crinfo cptrel;
6715 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6716 cptrel.vaddr = (rel->r_offset
6717 + input_section->output_section->vma
6718 + input_section->output_offset);
6719 if (r_type == R_MIPS_REL32)
6720 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6721 else
6722 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6723 mips_elf_set_cr_dist2to (cptrel, 0);
6724 cptrel.konst = *addendp;
6726 cr = (scpt->contents
6727 + sizeof (Elf32_External_compact_rel));
6728 mips_elf_set_cr_relvaddr (cptrel, 0);
6729 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6730 ((Elf32_External_crinfo *) cr
6731 + scpt->reloc_count));
6732 ++scpt->reloc_count;
6736 /* If we've written this relocation for a readonly section,
6737 we need to set DF_TEXTREL again, so that we do not delete the
6738 DT_TEXTREL tag. */
6739 if (MIPS_ELF_READONLY_SECTION (input_section))
6740 info->flags |= DF_TEXTREL;
6742 return TRUE;
6745 /* Return the MACH for a MIPS e_flags value. */
6747 unsigned long
6748 _bfd_elf_mips_mach (flagword flags)
6750 switch (flags & EF_MIPS_MACH)
6752 case E_MIPS_MACH_3900:
6753 return bfd_mach_mips3900;
6755 case E_MIPS_MACH_4010:
6756 return bfd_mach_mips4010;
6758 case E_MIPS_MACH_4100:
6759 return bfd_mach_mips4100;
6761 case E_MIPS_MACH_4111:
6762 return bfd_mach_mips4111;
6764 case E_MIPS_MACH_4120:
6765 return bfd_mach_mips4120;
6767 case E_MIPS_MACH_4650:
6768 return bfd_mach_mips4650;
6770 case E_MIPS_MACH_5400:
6771 return bfd_mach_mips5400;
6773 case E_MIPS_MACH_5500:
6774 return bfd_mach_mips5500;
6776 case E_MIPS_MACH_5900:
6777 return bfd_mach_mips5900;
6779 case E_MIPS_MACH_9000:
6780 return bfd_mach_mips9000;
6782 case E_MIPS_MACH_SB1:
6783 return bfd_mach_mips_sb1;
6785 case E_MIPS_MACH_LS2E:
6786 return bfd_mach_mips_loongson_2e;
6788 case E_MIPS_MACH_LS2F:
6789 return bfd_mach_mips_loongson_2f;
6791 case E_MIPS_MACH_LS3A:
6792 return bfd_mach_mips_loongson_3a;
6794 case E_MIPS_MACH_OCTEON3:
6795 return bfd_mach_mips_octeon3;
6797 case E_MIPS_MACH_OCTEON2:
6798 return bfd_mach_mips_octeon2;
6800 case E_MIPS_MACH_OCTEON:
6801 return bfd_mach_mips_octeon;
6803 case E_MIPS_MACH_XLR:
6804 return bfd_mach_mips_xlr;
6806 case E_MIPS_MACH_IAMR2:
6807 return bfd_mach_mips_interaptiv_mr2;
6809 default:
6810 switch (flags & EF_MIPS_ARCH)
6812 default:
6813 case E_MIPS_ARCH_1:
6814 return bfd_mach_mips3000;
6816 case E_MIPS_ARCH_2:
6817 return bfd_mach_mips6000;
6819 case E_MIPS_ARCH_3:
6820 return bfd_mach_mips4000;
6822 case E_MIPS_ARCH_4:
6823 return bfd_mach_mips8000;
6825 case E_MIPS_ARCH_5:
6826 return bfd_mach_mips5;
6828 case E_MIPS_ARCH_32:
6829 return bfd_mach_mipsisa32;
6831 case E_MIPS_ARCH_64:
6832 return bfd_mach_mipsisa64;
6834 case E_MIPS_ARCH_32R2:
6835 return bfd_mach_mipsisa32r2;
6837 case E_MIPS_ARCH_64R2:
6838 return bfd_mach_mipsisa64r2;
6840 case E_MIPS_ARCH_32R6:
6841 return bfd_mach_mipsisa32r6;
6843 case E_MIPS_ARCH_64R6:
6844 return bfd_mach_mipsisa64r6;
6848 return 0;
6851 /* Return printable name for ABI. */
6853 static INLINE char *
6854 elf_mips_abi_name (bfd *abfd)
6856 flagword flags;
6858 flags = elf_elfheader (abfd)->e_flags;
6859 switch (flags & EF_MIPS_ABI)
6861 case 0:
6862 if (ABI_N32_P (abfd))
6863 return "N32";
6864 else if (ABI_64_P (abfd))
6865 return "64";
6866 else
6867 return "none";
6868 case E_MIPS_ABI_O32:
6869 return "O32";
6870 case E_MIPS_ABI_O64:
6871 return "O64";
6872 case E_MIPS_ABI_EABI32:
6873 return "EABI32";
6874 case E_MIPS_ABI_EABI64:
6875 return "EABI64";
6876 default:
6877 return "unknown abi";
6881 /* MIPS ELF uses two common sections. One is the usual one, and the
6882 other is for small objects. All the small objects are kept
6883 together, and then referenced via the gp pointer, which yields
6884 faster assembler code. This is what we use for the small common
6885 section. This approach is copied from ecoff.c. */
6886 static asection mips_elf_scom_section;
6887 static asymbol mips_elf_scom_symbol;
6888 static asymbol *mips_elf_scom_symbol_ptr;
6890 /* MIPS ELF also uses an acommon section, which represents an
6891 allocated common symbol which may be overridden by a
6892 definition in a shared library. */
6893 static asection mips_elf_acom_section;
6894 static asymbol mips_elf_acom_symbol;
6895 static asymbol *mips_elf_acom_symbol_ptr;
6897 /* This is used for both the 32-bit and the 64-bit ABI. */
6899 void
6900 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6902 elf_symbol_type *elfsym;
6904 /* Handle the special MIPS section numbers that a symbol may use. */
6905 elfsym = (elf_symbol_type *) asym;
6906 switch (elfsym->internal_elf_sym.st_shndx)
6908 case SHN_MIPS_ACOMMON:
6909 /* This section is used in a dynamically linked executable file.
6910 It is an allocated common section. The dynamic linker can
6911 either resolve these symbols to something in a shared
6912 library, or it can just leave them here. For our purposes,
6913 we can consider these symbols to be in a new section. */
6914 if (mips_elf_acom_section.name == NULL)
6916 /* Initialize the acommon section. */
6917 mips_elf_acom_section.name = ".acommon";
6918 mips_elf_acom_section.flags = SEC_ALLOC;
6919 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6920 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6921 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6922 mips_elf_acom_symbol.name = ".acommon";
6923 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6924 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6925 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6927 asym->section = &mips_elf_acom_section;
6928 break;
6930 case SHN_COMMON:
6931 /* Common symbols less than the GP size are automatically
6932 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6933 if (asym->value > elf_gp_size (abfd)
6934 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6935 || IRIX_COMPAT (abfd) == ict_irix6)
6936 break;
6937 /* Fall through. */
6938 case SHN_MIPS_SCOMMON:
6939 if (mips_elf_scom_section.name == NULL)
6941 /* Initialize the small common section. */
6942 mips_elf_scom_section.name = ".scommon";
6943 mips_elf_scom_section.flags = SEC_IS_COMMON;
6944 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6945 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6946 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6947 mips_elf_scom_symbol.name = ".scommon";
6948 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6949 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6950 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6952 asym->section = &mips_elf_scom_section;
6953 asym->value = elfsym->internal_elf_sym.st_size;
6954 break;
6956 case SHN_MIPS_SUNDEFINED:
6957 asym->section = bfd_und_section_ptr;
6958 break;
6960 case SHN_MIPS_TEXT:
6962 asection *section = bfd_get_section_by_name (abfd, ".text");
6964 if (section != NULL)
6966 asym->section = section;
6967 /* MIPS_TEXT is a bit special, the address is not an offset
6968 to the base of the .text section. So subtract the section
6969 base address to make it an offset. */
6970 asym->value -= section->vma;
6973 break;
6975 case SHN_MIPS_DATA:
6977 asection *section = bfd_get_section_by_name (abfd, ".data");
6979 if (section != NULL)
6981 asym->section = section;
6982 /* MIPS_DATA is a bit special, the address is not an offset
6983 to the base of the .data section. So subtract the section
6984 base address to make it an offset. */
6985 asym->value -= section->vma;
6988 break;
6991 /* If this is an odd-valued function symbol, assume it's a MIPS16
6992 or microMIPS one. */
6993 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6994 && (asym->value & 1) != 0)
6996 asym->value--;
6997 if (MICROMIPS_P (abfd))
6998 elfsym->internal_elf_sym.st_other
6999 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7000 else
7001 elfsym->internal_elf_sym.st_other
7002 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7006 /* Implement elf_backend_eh_frame_address_size. This differs from
7007 the default in the way it handles EABI64.
7009 EABI64 was originally specified as an LP64 ABI, and that is what
7010 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7011 historically accepted the combination of -mabi=eabi and -mlong32,
7012 and this ILP32 variation has become semi-official over time.
7013 Both forms use elf32 and have pointer-sized FDE addresses.
7015 If an EABI object was generated by GCC 4.0 or above, it will have
7016 an empty .gcc_compiled_longXX section, where XX is the size of longs
7017 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7018 have no special marking to distinguish them from LP64 objects.
7020 We don't want users of the official LP64 ABI to be punished for the
7021 existence of the ILP32 variant, but at the same time, we don't want
7022 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7023 We therefore take the following approach:
7025 - If ABFD contains a .gcc_compiled_longXX section, use it to
7026 determine the pointer size.
7028 - Otherwise check the type of the first relocation. Assume that
7029 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7031 - Otherwise punt.
7033 The second check is enough to detect LP64 objects generated by pre-4.0
7034 compilers because, in the kind of output generated by those compilers,
7035 the first relocation will be associated with either a CIE personality
7036 routine or an FDE start address. Furthermore, the compilers never
7037 used a special (non-pointer) encoding for this ABI.
7039 Checking the relocation type should also be safe because there is no
7040 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7041 did so. */
7043 unsigned int
7044 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7046 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7047 return 8;
7048 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7050 bfd_boolean long32_p, long64_p;
7052 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7053 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7054 if (long32_p && long64_p)
7055 return 0;
7056 if (long32_p)
7057 return 4;
7058 if (long64_p)
7059 return 8;
7061 if (sec->reloc_count > 0
7062 && elf_section_data (sec)->relocs != NULL
7063 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7064 == R_MIPS_64))
7065 return 8;
7067 return 0;
7069 return 4;
7072 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7073 relocations against two unnamed section symbols to resolve to the
7074 same address. For example, if we have code like:
7076 lw $4,%got_disp(.data)($gp)
7077 lw $25,%got_disp(.text)($gp)
7078 jalr $25
7080 then the linker will resolve both relocations to .data and the program
7081 will jump there rather than to .text.
7083 We can work around this problem by giving names to local section symbols.
7084 This is also what the MIPSpro tools do. */
7086 bfd_boolean
7087 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7089 return SGI_COMPAT (abfd);
7092 /* Work over a section just before writing it out. This routine is
7093 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7094 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7095 a better way. */
7097 bfd_boolean
7098 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7100 if (hdr->sh_type == SHT_MIPS_REGINFO
7101 && hdr->sh_size > 0)
7103 bfd_byte buf[4];
7105 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7106 BFD_ASSERT (hdr->contents == NULL);
7108 if (bfd_seek (abfd,
7109 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7110 SEEK_SET) != 0)
7111 return FALSE;
7112 H_PUT_32 (abfd, elf_gp (abfd), buf);
7113 if (bfd_bwrite (buf, 4, abfd) != 4)
7114 return FALSE;
7117 if (hdr->sh_type == SHT_MIPS_OPTIONS
7118 && hdr->bfd_section != NULL
7119 && mips_elf_section_data (hdr->bfd_section) != NULL
7120 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7122 bfd_byte *contents, *l, *lend;
7124 /* We stored the section contents in the tdata field in the
7125 set_section_contents routine. We save the section contents
7126 so that we don't have to read them again.
7127 At this point we know that elf_gp is set, so we can look
7128 through the section contents to see if there is an
7129 ODK_REGINFO structure. */
7131 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7132 l = contents;
7133 lend = contents + hdr->sh_size;
7134 while (l + sizeof (Elf_External_Options) <= lend)
7136 Elf_Internal_Options intopt;
7138 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7139 &intopt);
7140 if (intopt.size < sizeof (Elf_External_Options))
7142 _bfd_error_handler
7143 /* xgettext:c-format */
7144 (_("%B: Warning: bad `%s' option size %u smaller than"
7145 " its header"),
7146 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7147 break;
7149 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7151 bfd_byte buf[8];
7153 if (bfd_seek (abfd,
7154 (hdr->sh_offset
7155 + (l - contents)
7156 + sizeof (Elf_External_Options)
7157 + (sizeof (Elf64_External_RegInfo) - 8)),
7158 SEEK_SET) != 0)
7159 return FALSE;
7160 H_PUT_64 (abfd, elf_gp (abfd), buf);
7161 if (bfd_bwrite (buf, 8, abfd) != 8)
7162 return FALSE;
7164 else if (intopt.kind == ODK_REGINFO)
7166 bfd_byte buf[4];
7168 if (bfd_seek (abfd,
7169 (hdr->sh_offset
7170 + (l - contents)
7171 + sizeof (Elf_External_Options)
7172 + (sizeof (Elf32_External_RegInfo) - 4)),
7173 SEEK_SET) != 0)
7174 return FALSE;
7175 H_PUT_32 (abfd, elf_gp (abfd), buf);
7176 if (bfd_bwrite (buf, 4, abfd) != 4)
7177 return FALSE;
7179 l += intopt.size;
7183 if (hdr->bfd_section != NULL)
7185 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7187 /* .sbss is not handled specially here because the GNU/Linux
7188 prelinker can convert .sbss from NOBITS to PROGBITS and
7189 changing it back to NOBITS breaks the binary. The entry in
7190 _bfd_mips_elf_special_sections will ensure the correct flags
7191 are set on .sbss if BFD creates it without reading it from an
7192 input file, and without special handling here the flags set
7193 on it in an input file will be followed. */
7194 if (strcmp (name, ".sdata") == 0
7195 || strcmp (name, ".lit8") == 0
7196 || strcmp (name, ".lit4") == 0)
7197 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7198 else if (strcmp (name, ".srdata") == 0)
7199 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7200 else if (strcmp (name, ".compact_rel") == 0)
7201 hdr->sh_flags = 0;
7202 else if (strcmp (name, ".rtproc") == 0)
7204 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7206 unsigned int adjust;
7208 adjust = hdr->sh_size % hdr->sh_addralign;
7209 if (adjust != 0)
7210 hdr->sh_size += hdr->sh_addralign - adjust;
7215 return TRUE;
7218 /* Handle a MIPS specific section when reading an object file. This
7219 is called when elfcode.h finds a section with an unknown type.
7220 This routine supports both the 32-bit and 64-bit ELF ABI.
7222 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7223 how to. */
7225 bfd_boolean
7226 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7227 Elf_Internal_Shdr *hdr,
7228 const char *name,
7229 int shindex)
7231 flagword flags = 0;
7233 /* There ought to be a place to keep ELF backend specific flags, but
7234 at the moment there isn't one. We just keep track of the
7235 sections by their name, instead. Fortunately, the ABI gives
7236 suggested names for all the MIPS specific sections, so we will
7237 probably get away with this. */
7238 switch (hdr->sh_type)
7240 case SHT_MIPS_LIBLIST:
7241 if (strcmp (name, ".liblist") != 0)
7242 return FALSE;
7243 break;
7244 case SHT_MIPS_MSYM:
7245 if (strcmp (name, ".msym") != 0)
7246 return FALSE;
7247 break;
7248 case SHT_MIPS_CONFLICT:
7249 if (strcmp (name, ".conflict") != 0)
7250 return FALSE;
7251 break;
7252 case SHT_MIPS_GPTAB:
7253 if (! CONST_STRNEQ (name, ".gptab."))
7254 return FALSE;
7255 break;
7256 case SHT_MIPS_UCODE:
7257 if (strcmp (name, ".ucode") != 0)
7258 return FALSE;
7259 break;
7260 case SHT_MIPS_DEBUG:
7261 if (strcmp (name, ".mdebug") != 0)
7262 return FALSE;
7263 flags = SEC_DEBUGGING;
7264 break;
7265 case SHT_MIPS_REGINFO:
7266 if (strcmp (name, ".reginfo") != 0
7267 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7268 return FALSE;
7269 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7270 break;
7271 case SHT_MIPS_IFACE:
7272 if (strcmp (name, ".MIPS.interfaces") != 0)
7273 return FALSE;
7274 break;
7275 case SHT_MIPS_CONTENT:
7276 if (! CONST_STRNEQ (name, ".MIPS.content"))
7277 return FALSE;
7278 break;
7279 case SHT_MIPS_OPTIONS:
7280 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7281 return FALSE;
7282 break;
7283 case SHT_MIPS_ABIFLAGS:
7284 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7285 return FALSE;
7286 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7287 break;
7288 case SHT_MIPS_DWARF:
7289 if (! CONST_STRNEQ (name, ".debug_")
7290 && ! CONST_STRNEQ (name, ".zdebug_"))
7291 return FALSE;
7292 break;
7293 case SHT_MIPS_SYMBOL_LIB:
7294 if (strcmp (name, ".MIPS.symlib") != 0)
7295 return FALSE;
7296 break;
7297 case SHT_MIPS_EVENTS:
7298 if (! CONST_STRNEQ (name, ".MIPS.events")
7299 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7300 return FALSE;
7301 break;
7302 default:
7303 break;
7306 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7307 return FALSE;
7309 if (flags)
7311 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7312 (bfd_get_section_flags (abfd,
7313 hdr->bfd_section)
7314 | flags)))
7315 return FALSE;
7318 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7320 Elf_External_ABIFlags_v0 ext;
7322 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7323 &ext, 0, sizeof ext))
7324 return FALSE;
7325 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7326 &mips_elf_tdata (abfd)->abiflags);
7327 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7328 return FALSE;
7329 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7332 /* FIXME: We should record sh_info for a .gptab section. */
7334 /* For a .reginfo section, set the gp value in the tdata information
7335 from the contents of this section. We need the gp value while
7336 processing relocs, so we just get it now. The .reginfo section
7337 is not used in the 64-bit MIPS ELF ABI. */
7338 if (hdr->sh_type == SHT_MIPS_REGINFO)
7340 Elf32_External_RegInfo ext;
7341 Elf32_RegInfo s;
7343 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7344 &ext, 0, sizeof ext))
7345 return FALSE;
7346 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7347 elf_gp (abfd) = s.ri_gp_value;
7350 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7351 set the gp value based on what we find. We may see both
7352 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7353 they should agree. */
7354 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7356 bfd_byte *contents, *l, *lend;
7358 contents = bfd_malloc (hdr->sh_size);
7359 if (contents == NULL)
7360 return FALSE;
7361 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7362 0, hdr->sh_size))
7364 free (contents);
7365 return FALSE;
7367 l = contents;
7368 lend = contents + hdr->sh_size;
7369 while (l + sizeof (Elf_External_Options) <= lend)
7371 Elf_Internal_Options intopt;
7373 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7374 &intopt);
7375 if (intopt.size < sizeof (Elf_External_Options))
7377 _bfd_error_handler
7378 /* xgettext:c-format */
7379 (_("%B: Warning: bad `%s' option size %u smaller than"
7380 " its header"),
7381 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7382 break;
7384 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7386 Elf64_Internal_RegInfo intreg;
7388 bfd_mips_elf64_swap_reginfo_in
7389 (abfd,
7390 ((Elf64_External_RegInfo *)
7391 (l + sizeof (Elf_External_Options))),
7392 &intreg);
7393 elf_gp (abfd) = intreg.ri_gp_value;
7395 else if (intopt.kind == ODK_REGINFO)
7397 Elf32_RegInfo intreg;
7399 bfd_mips_elf32_swap_reginfo_in
7400 (abfd,
7401 ((Elf32_External_RegInfo *)
7402 (l + sizeof (Elf_External_Options))),
7403 &intreg);
7404 elf_gp (abfd) = intreg.ri_gp_value;
7406 l += intopt.size;
7408 free (contents);
7411 return TRUE;
7414 /* Set the correct type for a MIPS ELF section. We do this by the
7415 section name, which is a hack, but ought to work. This routine is
7416 used by both the 32-bit and the 64-bit ABI. */
7418 bfd_boolean
7419 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7421 const char *name = bfd_get_section_name (abfd, sec);
7423 if (strcmp (name, ".liblist") == 0)
7425 hdr->sh_type = SHT_MIPS_LIBLIST;
7426 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7427 /* The sh_link field is set in final_write_processing. */
7429 else if (strcmp (name, ".conflict") == 0)
7430 hdr->sh_type = SHT_MIPS_CONFLICT;
7431 else if (CONST_STRNEQ (name, ".gptab."))
7433 hdr->sh_type = SHT_MIPS_GPTAB;
7434 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7435 /* The sh_info field is set in final_write_processing. */
7437 else if (strcmp (name, ".ucode") == 0)
7438 hdr->sh_type = SHT_MIPS_UCODE;
7439 else if (strcmp (name, ".mdebug") == 0)
7441 hdr->sh_type = SHT_MIPS_DEBUG;
7442 /* In a shared object on IRIX 5.3, the .mdebug section has an
7443 entsize of 0. FIXME: Does this matter? */
7444 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7445 hdr->sh_entsize = 0;
7446 else
7447 hdr->sh_entsize = 1;
7449 else if (strcmp (name, ".reginfo") == 0)
7451 hdr->sh_type = SHT_MIPS_REGINFO;
7452 /* In a shared object on IRIX 5.3, the .reginfo section has an
7453 entsize of 0x18. FIXME: Does this matter? */
7454 if (SGI_COMPAT (abfd))
7456 if ((abfd->flags & DYNAMIC) != 0)
7457 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7458 else
7459 hdr->sh_entsize = 1;
7461 else
7462 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7464 else if (SGI_COMPAT (abfd)
7465 && (strcmp (name, ".hash") == 0
7466 || strcmp (name, ".dynamic") == 0
7467 || strcmp (name, ".dynstr") == 0))
7469 if (SGI_COMPAT (abfd))
7470 hdr->sh_entsize = 0;
7471 #if 0
7472 /* This isn't how the IRIX6 linker behaves. */
7473 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7474 #endif
7476 else if (strcmp (name, ".got") == 0
7477 || strcmp (name, ".srdata") == 0
7478 || strcmp (name, ".sdata") == 0
7479 || strcmp (name, ".sbss") == 0
7480 || strcmp (name, ".lit4") == 0
7481 || strcmp (name, ".lit8") == 0)
7482 hdr->sh_flags |= SHF_MIPS_GPREL;
7483 else if (strcmp (name, ".MIPS.interfaces") == 0)
7485 hdr->sh_type = SHT_MIPS_IFACE;
7486 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7488 else if (CONST_STRNEQ (name, ".MIPS.content"))
7490 hdr->sh_type = SHT_MIPS_CONTENT;
7491 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7492 /* The sh_info field is set in final_write_processing. */
7494 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7496 hdr->sh_type = SHT_MIPS_OPTIONS;
7497 hdr->sh_entsize = 1;
7498 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7500 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7502 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7503 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7505 else if (CONST_STRNEQ (name, ".debug_")
7506 || CONST_STRNEQ (name, ".zdebug_"))
7508 hdr->sh_type = SHT_MIPS_DWARF;
7510 /* Irix facilities such as libexc expect a single .debug_frame
7511 per executable, the system ones have NOSTRIP set and the linker
7512 doesn't merge sections with different flags so ... */
7513 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7514 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7516 else if (strcmp (name, ".MIPS.symlib") == 0)
7518 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7519 /* The sh_link and sh_info fields are set in
7520 final_write_processing. */
7522 else if (CONST_STRNEQ (name, ".MIPS.events")
7523 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7525 hdr->sh_type = SHT_MIPS_EVENTS;
7526 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7527 /* The sh_link field is set in final_write_processing. */
7529 else if (strcmp (name, ".msym") == 0)
7531 hdr->sh_type = SHT_MIPS_MSYM;
7532 hdr->sh_flags |= SHF_ALLOC;
7533 hdr->sh_entsize = 8;
7536 /* The generic elf_fake_sections will set up REL_HDR using the default
7537 kind of relocations. We used to set up a second header for the
7538 non-default kind of relocations here, but only NewABI would use
7539 these, and the IRIX ld doesn't like resulting empty RELA sections.
7540 Thus we create those header only on demand now. */
7542 return TRUE;
7545 /* Given a BFD section, try to locate the corresponding ELF section
7546 index. This is used by both the 32-bit and the 64-bit ABI.
7547 Actually, it's not clear to me that the 64-bit ABI supports these,
7548 but for non-PIC objects we will certainly want support for at least
7549 the .scommon section. */
7551 bfd_boolean
7552 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7553 asection *sec, int *retval)
7555 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7557 *retval = SHN_MIPS_SCOMMON;
7558 return TRUE;
7560 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7562 *retval = SHN_MIPS_ACOMMON;
7563 return TRUE;
7565 return FALSE;
7568 /* Hook called by the linker routine which adds symbols from an object
7569 file. We must handle the special MIPS section numbers here. */
7571 bfd_boolean
7572 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7573 Elf_Internal_Sym *sym, const char **namep,
7574 flagword *flagsp ATTRIBUTE_UNUSED,
7575 asection **secp, bfd_vma *valp)
7577 if (SGI_COMPAT (abfd)
7578 && (abfd->flags & DYNAMIC) != 0
7579 && strcmp (*namep, "_rld_new_interface") == 0)
7581 /* Skip IRIX5 rld entry name. */
7582 *namep = NULL;
7583 return TRUE;
7586 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7587 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7588 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7589 a magic symbol resolved by the linker, we ignore this bogus definition
7590 of _gp_disp. New ABI objects do not suffer from this problem so this
7591 is not done for them. */
7592 if (!NEWABI_P(abfd)
7593 && (sym->st_shndx == SHN_ABS)
7594 && (strcmp (*namep, "_gp_disp") == 0))
7596 *namep = NULL;
7597 return TRUE;
7600 switch (sym->st_shndx)
7602 case SHN_COMMON:
7603 /* Common symbols less than the GP size are automatically
7604 treated as SHN_MIPS_SCOMMON symbols. */
7605 if (sym->st_size > elf_gp_size (abfd)
7606 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7607 || IRIX_COMPAT (abfd) == ict_irix6)
7608 break;
7609 /* Fall through. */
7610 case SHN_MIPS_SCOMMON:
7611 *secp = bfd_make_section_old_way (abfd, ".scommon");
7612 (*secp)->flags |= SEC_IS_COMMON;
7613 *valp = sym->st_size;
7614 break;
7616 case SHN_MIPS_TEXT:
7617 /* This section is used in a shared object. */
7618 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7620 asymbol *elf_text_symbol;
7621 asection *elf_text_section;
7622 bfd_size_type amt = sizeof (asection);
7624 elf_text_section = bfd_zalloc (abfd, amt);
7625 if (elf_text_section == NULL)
7626 return FALSE;
7628 amt = sizeof (asymbol);
7629 elf_text_symbol = bfd_zalloc (abfd, amt);
7630 if (elf_text_symbol == NULL)
7631 return FALSE;
7633 /* Initialize the section. */
7635 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7636 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7638 elf_text_section->symbol = elf_text_symbol;
7639 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7641 elf_text_section->name = ".text";
7642 elf_text_section->flags = SEC_NO_FLAGS;
7643 elf_text_section->output_section = NULL;
7644 elf_text_section->owner = abfd;
7645 elf_text_symbol->name = ".text";
7646 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7647 elf_text_symbol->section = elf_text_section;
7649 /* This code used to do *secp = bfd_und_section_ptr if
7650 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7651 so I took it out. */
7652 *secp = mips_elf_tdata (abfd)->elf_text_section;
7653 break;
7655 case SHN_MIPS_ACOMMON:
7656 /* Fall through. XXX Can we treat this as allocated data? */
7657 case SHN_MIPS_DATA:
7658 /* This section is used in a shared object. */
7659 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7661 asymbol *elf_data_symbol;
7662 asection *elf_data_section;
7663 bfd_size_type amt = sizeof (asection);
7665 elf_data_section = bfd_zalloc (abfd, amt);
7666 if (elf_data_section == NULL)
7667 return FALSE;
7669 amt = sizeof (asymbol);
7670 elf_data_symbol = bfd_zalloc (abfd, amt);
7671 if (elf_data_symbol == NULL)
7672 return FALSE;
7674 /* Initialize the section. */
7676 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7677 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7679 elf_data_section->symbol = elf_data_symbol;
7680 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7682 elf_data_section->name = ".data";
7683 elf_data_section->flags = SEC_NO_FLAGS;
7684 elf_data_section->output_section = NULL;
7685 elf_data_section->owner = abfd;
7686 elf_data_symbol->name = ".data";
7687 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7688 elf_data_symbol->section = elf_data_section;
7690 /* This code used to do *secp = bfd_und_section_ptr if
7691 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7692 so I took it out. */
7693 *secp = mips_elf_tdata (abfd)->elf_data_section;
7694 break;
7696 case SHN_MIPS_SUNDEFINED:
7697 *secp = bfd_und_section_ptr;
7698 break;
7701 if (SGI_COMPAT (abfd)
7702 && ! bfd_link_pic (info)
7703 && info->output_bfd->xvec == abfd->xvec
7704 && strcmp (*namep, "__rld_obj_head") == 0)
7706 struct elf_link_hash_entry *h;
7707 struct bfd_link_hash_entry *bh;
7709 /* Mark __rld_obj_head as dynamic. */
7710 bh = NULL;
7711 if (! (_bfd_generic_link_add_one_symbol
7712 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7713 get_elf_backend_data (abfd)->collect, &bh)))
7714 return FALSE;
7716 h = (struct elf_link_hash_entry *) bh;
7717 h->non_elf = 0;
7718 h->def_regular = 1;
7719 h->type = STT_OBJECT;
7721 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7722 return FALSE;
7724 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7725 mips_elf_hash_table (info)->rld_symbol = h;
7728 /* If this is a mips16 text symbol, add 1 to the value to make it
7729 odd. This will cause something like .word SYM to come up with
7730 the right value when it is loaded into the PC. */
7731 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7732 ++*valp;
7734 return TRUE;
7737 /* This hook function is called before the linker writes out a global
7738 symbol. We mark symbols as small common if appropriate. This is
7739 also where we undo the increment of the value for a mips16 symbol. */
7742 _bfd_mips_elf_link_output_symbol_hook
7743 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7744 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7745 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7747 /* If we see a common symbol, which implies a relocatable link, then
7748 if a symbol was small common in an input file, mark it as small
7749 common in the output file. */
7750 if (sym->st_shndx == SHN_COMMON
7751 && strcmp (input_sec->name, ".scommon") == 0)
7752 sym->st_shndx = SHN_MIPS_SCOMMON;
7754 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7755 sym->st_value &= ~1;
7757 return 1;
7760 /* Functions for the dynamic linker. */
7762 /* Create dynamic sections when linking against a dynamic object. */
7764 bfd_boolean
7765 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7767 struct elf_link_hash_entry *h;
7768 struct bfd_link_hash_entry *bh;
7769 flagword flags;
7770 register asection *s;
7771 const char * const *namep;
7772 struct mips_elf_link_hash_table *htab;
7774 htab = mips_elf_hash_table (info);
7775 BFD_ASSERT (htab != NULL);
7777 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7778 | SEC_LINKER_CREATED | SEC_READONLY);
7780 /* The psABI requires a read-only .dynamic section, but the VxWorks
7781 EABI doesn't. */
7782 if (!htab->is_vxworks)
7784 s = bfd_get_linker_section (abfd, ".dynamic");
7785 if (s != NULL)
7787 if (! bfd_set_section_flags (abfd, s, flags))
7788 return FALSE;
7792 /* We need to create .got section. */
7793 if (!mips_elf_create_got_section (abfd, info))
7794 return FALSE;
7796 if (! mips_elf_rel_dyn_section (info, TRUE))
7797 return FALSE;
7799 /* Create .stub section. */
7800 s = bfd_make_section_anyway_with_flags (abfd,
7801 MIPS_ELF_STUB_SECTION_NAME (abfd),
7802 flags | SEC_CODE);
7803 if (s == NULL
7804 || ! bfd_set_section_alignment (abfd, s,
7805 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7806 return FALSE;
7807 htab->sstubs = s;
7809 if (!mips_elf_hash_table (info)->use_rld_obj_head
7810 && bfd_link_executable (info)
7811 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7813 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7814 flags &~ (flagword) SEC_READONLY);
7815 if (s == NULL
7816 || ! bfd_set_section_alignment (abfd, s,
7817 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7818 return FALSE;
7821 /* On IRIX5, we adjust add some additional symbols and change the
7822 alignments of several sections. There is no ABI documentation
7823 indicating that this is necessary on IRIX6, nor any evidence that
7824 the linker takes such action. */
7825 if (IRIX_COMPAT (abfd) == ict_irix5)
7827 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7829 bh = NULL;
7830 if (! (_bfd_generic_link_add_one_symbol
7831 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7832 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7833 return FALSE;
7835 h = (struct elf_link_hash_entry *) bh;
7836 h->non_elf = 0;
7837 h->def_regular = 1;
7838 h->type = STT_SECTION;
7840 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7841 return FALSE;
7844 /* We need to create a .compact_rel section. */
7845 if (SGI_COMPAT (abfd))
7847 if (!mips_elf_create_compact_rel_section (abfd, info))
7848 return FALSE;
7851 /* Change alignments of some sections. */
7852 s = bfd_get_linker_section (abfd, ".hash");
7853 if (s != NULL)
7854 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7856 s = bfd_get_linker_section (abfd, ".dynsym");
7857 if (s != NULL)
7858 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7860 s = bfd_get_linker_section (abfd, ".dynstr");
7861 if (s != NULL)
7862 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7864 /* ??? */
7865 s = bfd_get_section_by_name (abfd, ".reginfo");
7866 if (s != NULL)
7867 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7869 s = bfd_get_linker_section (abfd, ".dynamic");
7870 if (s != NULL)
7871 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7874 if (bfd_link_executable (info))
7876 const char *name;
7878 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7879 bh = NULL;
7880 if (!(_bfd_generic_link_add_one_symbol
7881 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7882 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7883 return FALSE;
7885 h = (struct elf_link_hash_entry *) bh;
7886 h->non_elf = 0;
7887 h->def_regular = 1;
7888 h->type = STT_SECTION;
7890 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7891 return FALSE;
7893 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7895 /* __rld_map is a four byte word located in the .data section
7896 and is filled in by the rtld to contain a pointer to
7897 the _r_debug structure. Its symbol value will be set in
7898 _bfd_mips_elf_finish_dynamic_symbol. */
7899 s = bfd_get_linker_section (abfd, ".rld_map");
7900 BFD_ASSERT (s != NULL);
7902 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7903 bh = NULL;
7904 if (!(_bfd_generic_link_add_one_symbol
7905 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7906 get_elf_backend_data (abfd)->collect, &bh)))
7907 return FALSE;
7909 h = (struct elf_link_hash_entry *) bh;
7910 h->non_elf = 0;
7911 h->def_regular = 1;
7912 h->type = STT_OBJECT;
7914 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7915 return FALSE;
7916 mips_elf_hash_table (info)->rld_symbol = h;
7920 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7921 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7922 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7923 return FALSE;
7925 /* Do the usual VxWorks handling. */
7926 if (htab->is_vxworks
7927 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7928 return FALSE;
7930 return TRUE;
7933 /* Return true if relocation REL against section SEC is a REL rather than
7934 RELA relocation. RELOCS is the first relocation in the section and
7935 ABFD is the bfd that contains SEC. */
7937 static bfd_boolean
7938 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7939 const Elf_Internal_Rela *relocs,
7940 const Elf_Internal_Rela *rel)
7942 Elf_Internal_Shdr *rel_hdr;
7943 const struct elf_backend_data *bed;
7945 /* To determine which flavor of relocation this is, we depend on the
7946 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7947 rel_hdr = elf_section_data (sec)->rel.hdr;
7948 if (rel_hdr == NULL)
7949 return FALSE;
7950 bed = get_elf_backend_data (abfd);
7951 return ((size_t) (rel - relocs)
7952 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7955 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7956 HOWTO is the relocation's howto and CONTENTS points to the contents
7957 of the section that REL is against. */
7959 static bfd_vma
7960 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7961 reloc_howto_type *howto, bfd_byte *contents)
7963 bfd_byte *location;
7964 unsigned int r_type;
7965 bfd_vma addend;
7966 bfd_vma bytes;
7968 r_type = ELF_R_TYPE (abfd, rel->r_info);
7969 location = contents + rel->r_offset;
7971 /* Get the addend, which is stored in the input file. */
7972 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7973 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7974 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7976 addend = bytes & howto->src_mask;
7978 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7979 accordingly. */
7980 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7981 addend <<= 1;
7983 return addend;
7986 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7987 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7988 and update *ADDEND with the final addend. Return true on success
7989 or false if the LO16 could not be found. RELEND is the exclusive
7990 upper bound on the relocations for REL's section. */
7992 static bfd_boolean
7993 mips_elf_add_lo16_rel_addend (bfd *abfd,
7994 const Elf_Internal_Rela *rel,
7995 const Elf_Internal_Rela *relend,
7996 bfd_byte *contents, bfd_vma *addend)
7998 unsigned int r_type, lo16_type;
7999 const Elf_Internal_Rela *lo16_relocation;
8000 reloc_howto_type *lo16_howto;
8001 bfd_vma l;
8003 r_type = ELF_R_TYPE (abfd, rel->r_info);
8004 if (mips16_reloc_p (r_type))
8005 lo16_type = R_MIPS16_LO16;
8006 else if (micromips_reloc_p (r_type))
8007 lo16_type = R_MICROMIPS_LO16;
8008 else if (r_type == R_MIPS_PCHI16)
8009 lo16_type = R_MIPS_PCLO16;
8010 else
8011 lo16_type = R_MIPS_LO16;
8013 /* The combined value is the sum of the HI16 addend, left-shifted by
8014 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8015 code does a `lui' of the HI16 value, and then an `addiu' of the
8016 LO16 value.)
8018 Scan ahead to find a matching LO16 relocation.
8020 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8021 be immediately following. However, for the IRIX6 ABI, the next
8022 relocation may be a composed relocation consisting of several
8023 relocations for the same address. In that case, the R_MIPS_LO16
8024 relocation may occur as one of these. We permit a similar
8025 extension in general, as that is useful for GCC.
8027 In some cases GCC dead code elimination removes the LO16 but keeps
8028 the corresponding HI16. This is strictly speaking a violation of
8029 the ABI but not immediately harmful. */
8030 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8031 if (lo16_relocation == NULL)
8032 return FALSE;
8034 /* Obtain the addend kept there. */
8035 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8036 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8038 l <<= lo16_howto->rightshift;
8039 l = _bfd_mips_elf_sign_extend (l, 16);
8041 *addend <<= 16;
8042 *addend += l;
8043 return TRUE;
8046 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8047 store the contents in *CONTENTS on success. Assume that *CONTENTS
8048 already holds the contents if it is nonull on entry. */
8050 static bfd_boolean
8051 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8053 if (*contents)
8054 return TRUE;
8056 /* Get cached copy if it exists. */
8057 if (elf_section_data (sec)->this_hdr.contents != NULL)
8059 *contents = elf_section_data (sec)->this_hdr.contents;
8060 return TRUE;
8063 return bfd_malloc_and_get_section (abfd, sec, contents);
8066 /* Make a new PLT record to keep internal data. */
8068 static struct plt_entry *
8069 mips_elf_make_plt_record (bfd *abfd)
8071 struct plt_entry *entry;
8073 entry = bfd_zalloc (abfd, sizeof (*entry));
8074 if (entry == NULL)
8075 return NULL;
8077 entry->stub_offset = MINUS_ONE;
8078 entry->mips_offset = MINUS_ONE;
8079 entry->comp_offset = MINUS_ONE;
8080 entry->gotplt_index = MINUS_ONE;
8081 return entry;
8084 /* Look through the relocs for a section during the first phase, and
8085 allocate space in the global offset table and record the need for
8086 standard MIPS and compressed procedure linkage table entries. */
8088 bfd_boolean
8089 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8090 asection *sec, const Elf_Internal_Rela *relocs)
8092 const char *name;
8093 bfd *dynobj;
8094 Elf_Internal_Shdr *symtab_hdr;
8095 struct elf_link_hash_entry **sym_hashes;
8096 size_t extsymoff;
8097 const Elf_Internal_Rela *rel;
8098 const Elf_Internal_Rela *rel_end;
8099 asection *sreloc;
8100 const struct elf_backend_data *bed;
8101 struct mips_elf_link_hash_table *htab;
8102 bfd_byte *contents;
8103 bfd_vma addend;
8104 reloc_howto_type *howto;
8106 if (bfd_link_relocatable (info))
8107 return TRUE;
8109 htab = mips_elf_hash_table (info);
8110 BFD_ASSERT (htab != NULL);
8112 dynobj = elf_hash_table (info)->dynobj;
8113 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8114 sym_hashes = elf_sym_hashes (abfd);
8115 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8117 bed = get_elf_backend_data (abfd);
8118 rel_end = relocs + sec->reloc_count;
8120 /* Check for the mips16 stub sections. */
8122 name = bfd_get_section_name (abfd, sec);
8123 if (FN_STUB_P (name))
8125 unsigned long r_symndx;
8127 /* Look at the relocation information to figure out which symbol
8128 this is for. */
8130 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8131 if (r_symndx == 0)
8133 _bfd_error_handler
8134 /* xgettext:c-format */
8135 (_("%B: Warning: cannot determine the target function for"
8136 " stub section `%s'"),
8137 abfd, name);
8138 bfd_set_error (bfd_error_bad_value);
8139 return FALSE;
8142 if (r_symndx < extsymoff
8143 || sym_hashes[r_symndx - extsymoff] == NULL)
8145 asection *o;
8147 /* This stub is for a local symbol. This stub will only be
8148 needed if there is some relocation in this BFD, other
8149 than a 16 bit function call, which refers to this symbol. */
8150 for (o = abfd->sections; o != NULL; o = o->next)
8152 Elf_Internal_Rela *sec_relocs;
8153 const Elf_Internal_Rela *r, *rend;
8155 /* We can ignore stub sections when looking for relocs. */
8156 if ((o->flags & SEC_RELOC) == 0
8157 || o->reloc_count == 0
8158 || section_allows_mips16_refs_p (o))
8159 continue;
8161 sec_relocs
8162 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8163 info->keep_memory);
8164 if (sec_relocs == NULL)
8165 return FALSE;
8167 rend = sec_relocs + o->reloc_count;
8168 for (r = sec_relocs; r < rend; r++)
8169 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8170 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8171 break;
8173 if (elf_section_data (o)->relocs != sec_relocs)
8174 free (sec_relocs);
8176 if (r < rend)
8177 break;
8180 if (o == NULL)
8182 /* There is no non-call reloc for this stub, so we do
8183 not need it. Since this function is called before
8184 the linker maps input sections to output sections, we
8185 can easily discard it by setting the SEC_EXCLUDE
8186 flag. */
8187 sec->flags |= SEC_EXCLUDE;
8188 return TRUE;
8191 /* Record this stub in an array of local symbol stubs for
8192 this BFD. */
8193 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8195 unsigned long symcount;
8196 asection **n;
8197 bfd_size_type amt;
8199 if (elf_bad_symtab (abfd))
8200 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8201 else
8202 symcount = symtab_hdr->sh_info;
8203 amt = symcount * sizeof (asection *);
8204 n = bfd_zalloc (abfd, amt);
8205 if (n == NULL)
8206 return FALSE;
8207 mips_elf_tdata (abfd)->local_stubs = n;
8210 sec->flags |= SEC_KEEP;
8211 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8213 /* We don't need to set mips16_stubs_seen in this case.
8214 That flag is used to see whether we need to look through
8215 the global symbol table for stubs. We don't need to set
8216 it here, because we just have a local stub. */
8218 else
8220 struct mips_elf_link_hash_entry *h;
8222 h = ((struct mips_elf_link_hash_entry *)
8223 sym_hashes[r_symndx - extsymoff]);
8225 while (h->root.root.type == bfd_link_hash_indirect
8226 || h->root.root.type == bfd_link_hash_warning)
8227 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8229 /* H is the symbol this stub is for. */
8231 /* If we already have an appropriate stub for this function, we
8232 don't need another one, so we can discard this one. Since
8233 this function is called before the linker maps input sections
8234 to output sections, we can easily discard it by setting the
8235 SEC_EXCLUDE flag. */
8236 if (h->fn_stub != NULL)
8238 sec->flags |= SEC_EXCLUDE;
8239 return TRUE;
8242 sec->flags |= SEC_KEEP;
8243 h->fn_stub = sec;
8244 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8247 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8249 unsigned long r_symndx;
8250 struct mips_elf_link_hash_entry *h;
8251 asection **loc;
8253 /* Look at the relocation information to figure out which symbol
8254 this is for. */
8256 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8257 if (r_symndx == 0)
8259 _bfd_error_handler
8260 /* xgettext:c-format */
8261 (_("%B: Warning: cannot determine the target function for"
8262 " stub section `%s'"),
8263 abfd, name);
8264 bfd_set_error (bfd_error_bad_value);
8265 return FALSE;
8268 if (r_symndx < extsymoff
8269 || sym_hashes[r_symndx - extsymoff] == NULL)
8271 asection *o;
8273 /* This stub is for a local symbol. This stub will only be
8274 needed if there is some relocation (R_MIPS16_26) in this BFD
8275 that refers to this symbol. */
8276 for (o = abfd->sections; o != NULL; o = o->next)
8278 Elf_Internal_Rela *sec_relocs;
8279 const Elf_Internal_Rela *r, *rend;
8281 /* We can ignore stub sections when looking for relocs. */
8282 if ((o->flags & SEC_RELOC) == 0
8283 || o->reloc_count == 0
8284 || section_allows_mips16_refs_p (o))
8285 continue;
8287 sec_relocs
8288 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8289 info->keep_memory);
8290 if (sec_relocs == NULL)
8291 return FALSE;
8293 rend = sec_relocs + o->reloc_count;
8294 for (r = sec_relocs; r < rend; r++)
8295 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8296 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8297 break;
8299 if (elf_section_data (o)->relocs != sec_relocs)
8300 free (sec_relocs);
8302 if (r < rend)
8303 break;
8306 if (o == NULL)
8308 /* There is no non-call reloc for this stub, so we do
8309 not need it. Since this function is called before
8310 the linker maps input sections to output sections, we
8311 can easily discard it by setting the SEC_EXCLUDE
8312 flag. */
8313 sec->flags |= SEC_EXCLUDE;
8314 return TRUE;
8317 /* Record this stub in an array of local symbol call_stubs for
8318 this BFD. */
8319 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8321 unsigned long symcount;
8322 asection **n;
8323 bfd_size_type amt;
8325 if (elf_bad_symtab (abfd))
8326 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8327 else
8328 symcount = symtab_hdr->sh_info;
8329 amt = symcount * sizeof (asection *);
8330 n = bfd_zalloc (abfd, amt);
8331 if (n == NULL)
8332 return FALSE;
8333 mips_elf_tdata (abfd)->local_call_stubs = n;
8336 sec->flags |= SEC_KEEP;
8337 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8339 /* We don't need to set mips16_stubs_seen in this case.
8340 That flag is used to see whether we need to look through
8341 the global symbol table for stubs. We don't need to set
8342 it here, because we just have a local stub. */
8344 else
8346 h = ((struct mips_elf_link_hash_entry *)
8347 sym_hashes[r_symndx - extsymoff]);
8349 /* H is the symbol this stub is for. */
8351 if (CALL_FP_STUB_P (name))
8352 loc = &h->call_fp_stub;
8353 else
8354 loc = &h->call_stub;
8356 /* If we already have an appropriate stub for this function, we
8357 don't need another one, so we can discard this one. Since
8358 this function is called before the linker maps input sections
8359 to output sections, we can easily discard it by setting the
8360 SEC_EXCLUDE flag. */
8361 if (*loc != NULL)
8363 sec->flags |= SEC_EXCLUDE;
8364 return TRUE;
8367 sec->flags |= SEC_KEEP;
8368 *loc = sec;
8369 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8373 sreloc = NULL;
8374 contents = NULL;
8375 for (rel = relocs; rel < rel_end; ++rel)
8377 unsigned long r_symndx;
8378 unsigned int r_type;
8379 struct elf_link_hash_entry *h;
8380 bfd_boolean can_make_dynamic_p;
8381 bfd_boolean call_reloc_p;
8382 bfd_boolean constrain_symbol_p;
8384 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8385 r_type = ELF_R_TYPE (abfd, rel->r_info);
8387 if (r_symndx < extsymoff)
8388 h = NULL;
8389 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8391 _bfd_error_handler
8392 /* xgettext:c-format */
8393 (_("%B: Malformed reloc detected for section %s"),
8394 abfd, name);
8395 bfd_set_error (bfd_error_bad_value);
8396 return FALSE;
8398 else
8400 h = sym_hashes[r_symndx - extsymoff];
8401 if (h != NULL)
8403 while (h->root.type == bfd_link_hash_indirect
8404 || h->root.type == bfd_link_hash_warning)
8405 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8407 /* PR15323, ref flags aren't set for references in the
8408 same object. */
8409 h->root.non_ir_ref_regular = 1;
8413 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8414 relocation into a dynamic one. */
8415 can_make_dynamic_p = FALSE;
8417 /* Set CALL_RELOC_P to true if the relocation is for a call,
8418 and if pointer equality therefore doesn't matter. */
8419 call_reloc_p = FALSE;
8421 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8422 into account when deciding how to define the symbol.
8423 Relocations in nonallocatable sections such as .pdr and
8424 .debug* should have no effect. */
8425 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8427 switch (r_type)
8429 case R_MIPS_CALL16:
8430 case R_MIPS_CALL_HI16:
8431 case R_MIPS_CALL_LO16:
8432 case R_MIPS16_CALL16:
8433 case R_MICROMIPS_CALL16:
8434 case R_MICROMIPS_CALL_HI16:
8435 case R_MICROMIPS_CALL_LO16:
8436 call_reloc_p = TRUE;
8437 /* Fall through. */
8439 case R_MIPS_GOT16:
8440 case R_MIPS_GOT_HI16:
8441 case R_MIPS_GOT_LO16:
8442 case R_MIPS_GOT_PAGE:
8443 case R_MIPS_GOT_OFST:
8444 case R_MIPS_GOT_DISP:
8445 case R_MIPS_TLS_GOTTPREL:
8446 case R_MIPS_TLS_GD:
8447 case R_MIPS_TLS_LDM:
8448 case R_MIPS16_GOT16:
8449 case R_MIPS16_TLS_GOTTPREL:
8450 case R_MIPS16_TLS_GD:
8451 case R_MIPS16_TLS_LDM:
8452 case R_MICROMIPS_GOT16:
8453 case R_MICROMIPS_GOT_HI16:
8454 case R_MICROMIPS_GOT_LO16:
8455 case R_MICROMIPS_GOT_PAGE:
8456 case R_MICROMIPS_GOT_OFST:
8457 case R_MICROMIPS_GOT_DISP:
8458 case R_MICROMIPS_TLS_GOTTPREL:
8459 case R_MICROMIPS_TLS_GD:
8460 case R_MICROMIPS_TLS_LDM:
8461 if (dynobj == NULL)
8462 elf_hash_table (info)->dynobj = dynobj = abfd;
8463 if (!mips_elf_create_got_section (dynobj, info))
8464 return FALSE;
8465 if (htab->is_vxworks && !bfd_link_pic (info))
8467 _bfd_error_handler
8468 /* xgettext:c-format */
8469 (_("%B: GOT reloc at %#Lx not expected in executables"),
8470 abfd, rel->r_offset);
8471 bfd_set_error (bfd_error_bad_value);
8472 return FALSE;
8474 can_make_dynamic_p = TRUE;
8475 break;
8477 case R_MIPS_NONE:
8478 case R_MIPS_JALR:
8479 case R_MICROMIPS_JALR:
8480 /* These relocations have empty fields and are purely there to
8481 provide link information. The symbol value doesn't matter. */
8482 constrain_symbol_p = FALSE;
8483 break;
8485 case R_MIPS_GPREL16:
8486 case R_MIPS_GPREL32:
8487 case R_MIPS16_GPREL:
8488 case R_MICROMIPS_GPREL16:
8489 /* GP-relative relocations always resolve to a definition in a
8490 regular input file, ignoring the one-definition rule. This is
8491 important for the GP setup sequence in NewABI code, which
8492 always resolves to a local function even if other relocations
8493 against the symbol wouldn't. */
8494 constrain_symbol_p = FALSE;
8495 break;
8497 case R_MIPS_32:
8498 case R_MIPS_REL32:
8499 case R_MIPS_64:
8500 /* In VxWorks executables, references to external symbols
8501 must be handled using copy relocs or PLT entries; it is not
8502 possible to convert this relocation into a dynamic one.
8504 For executables that use PLTs and copy-relocs, we have a
8505 choice between converting the relocation into a dynamic
8506 one or using copy relocations or PLT entries. It is
8507 usually better to do the former, unless the relocation is
8508 against a read-only section. */
8509 if ((bfd_link_pic (info)
8510 || (h != NULL
8511 && !htab->is_vxworks
8512 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8513 && !(!info->nocopyreloc
8514 && !PIC_OBJECT_P (abfd)
8515 && MIPS_ELF_READONLY_SECTION (sec))))
8516 && (sec->flags & SEC_ALLOC) != 0)
8518 can_make_dynamic_p = TRUE;
8519 if (dynobj == NULL)
8520 elf_hash_table (info)->dynobj = dynobj = abfd;
8522 break;
8524 case R_MIPS_26:
8525 case R_MIPS_PC16:
8526 case R_MIPS_PC21_S2:
8527 case R_MIPS_PC26_S2:
8528 case R_MIPS16_26:
8529 case R_MIPS16_PC16_S1:
8530 case R_MICROMIPS_26_S1:
8531 case R_MICROMIPS_PC7_S1:
8532 case R_MICROMIPS_PC10_S1:
8533 case R_MICROMIPS_PC16_S1:
8534 case R_MICROMIPS_PC23_S2:
8535 call_reloc_p = TRUE;
8536 break;
8539 if (h)
8541 if (constrain_symbol_p)
8543 if (!can_make_dynamic_p)
8544 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8546 if (!call_reloc_p)
8547 h->pointer_equality_needed = 1;
8549 /* We must not create a stub for a symbol that has
8550 relocations related to taking the function's address.
8551 This doesn't apply to VxWorks, where CALL relocs refer
8552 to a .got.plt entry instead of a normal .got entry. */
8553 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8554 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8557 /* Relocations against the special VxWorks __GOTT_BASE__ and
8558 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8559 room for them in .rela.dyn. */
8560 if (is_gott_symbol (info, h))
8562 if (sreloc == NULL)
8564 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8565 if (sreloc == NULL)
8566 return FALSE;
8568 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8569 if (MIPS_ELF_READONLY_SECTION (sec))
8570 /* We tell the dynamic linker that there are
8571 relocations against the text segment. */
8572 info->flags |= DF_TEXTREL;
8575 else if (call_lo16_reloc_p (r_type)
8576 || got_lo16_reloc_p (r_type)
8577 || got_disp_reloc_p (r_type)
8578 || (got16_reloc_p (r_type) && htab->is_vxworks))
8580 /* We may need a local GOT entry for this relocation. We
8581 don't count R_MIPS_GOT_PAGE because we can estimate the
8582 maximum number of pages needed by looking at the size of
8583 the segment. Similar comments apply to R_MIPS*_GOT16 and
8584 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8585 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8586 R_MIPS_CALL_HI16 because these are always followed by an
8587 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8588 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8589 rel->r_addend, info, r_type))
8590 return FALSE;
8593 if (h != NULL
8594 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8595 ELF_ST_IS_MIPS16 (h->other)))
8596 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8598 switch (r_type)
8600 case R_MIPS_CALL16:
8601 case R_MIPS16_CALL16:
8602 case R_MICROMIPS_CALL16:
8603 if (h == NULL)
8605 _bfd_error_handler
8606 /* xgettext:c-format */
8607 (_("%B: CALL16 reloc at %#Lx not against global symbol"),
8608 abfd, rel->r_offset);
8609 bfd_set_error (bfd_error_bad_value);
8610 return FALSE;
8612 /* Fall through. */
8614 case R_MIPS_CALL_HI16:
8615 case R_MIPS_CALL_LO16:
8616 case R_MICROMIPS_CALL_HI16:
8617 case R_MICROMIPS_CALL_LO16:
8618 if (h != NULL)
8620 /* Make sure there is room in the regular GOT to hold the
8621 function's address. We may eliminate it in favour of
8622 a .got.plt entry later; see mips_elf_count_got_symbols. */
8623 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8624 r_type))
8625 return FALSE;
8627 /* We need a stub, not a plt entry for the undefined
8628 function. But we record it as if it needs plt. See
8629 _bfd_elf_adjust_dynamic_symbol. */
8630 h->needs_plt = 1;
8631 h->type = STT_FUNC;
8633 break;
8635 case R_MIPS_GOT_PAGE:
8636 case R_MICROMIPS_GOT_PAGE:
8637 case R_MIPS16_GOT16:
8638 case R_MIPS_GOT16:
8639 case R_MIPS_GOT_HI16:
8640 case R_MIPS_GOT_LO16:
8641 case R_MICROMIPS_GOT16:
8642 case R_MICROMIPS_GOT_HI16:
8643 case R_MICROMIPS_GOT_LO16:
8644 if (!h || got_page_reloc_p (r_type))
8646 /* This relocation needs (or may need, if h != NULL) a
8647 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8648 know for sure until we know whether the symbol is
8649 preemptible. */
8650 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8652 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8653 return FALSE;
8654 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8655 addend = mips_elf_read_rel_addend (abfd, rel,
8656 howto, contents);
8657 if (got16_reloc_p (r_type))
8658 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8659 contents, &addend);
8660 else
8661 addend <<= howto->rightshift;
8663 else
8664 addend = rel->r_addend;
8665 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8666 h, addend))
8667 return FALSE;
8669 if (h)
8671 struct mips_elf_link_hash_entry *hmips =
8672 (struct mips_elf_link_hash_entry *) h;
8674 /* This symbol is definitely not overridable. */
8675 if (hmips->root.def_regular
8676 && ! (bfd_link_pic (info) && ! info->symbolic
8677 && ! hmips->root.forced_local))
8678 h = NULL;
8681 /* If this is a global, overridable symbol, GOT_PAGE will
8682 decay to GOT_DISP, so we'll need a GOT entry for it. */
8683 /* Fall through. */
8685 case R_MIPS_GOT_DISP:
8686 case R_MICROMIPS_GOT_DISP:
8687 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8688 FALSE, r_type))
8689 return FALSE;
8690 break;
8692 case R_MIPS_TLS_GOTTPREL:
8693 case R_MIPS16_TLS_GOTTPREL:
8694 case R_MICROMIPS_TLS_GOTTPREL:
8695 if (bfd_link_pic (info))
8696 info->flags |= DF_STATIC_TLS;
8697 /* Fall through */
8699 case R_MIPS_TLS_LDM:
8700 case R_MIPS16_TLS_LDM:
8701 case R_MICROMIPS_TLS_LDM:
8702 if (tls_ldm_reloc_p (r_type))
8704 r_symndx = STN_UNDEF;
8705 h = NULL;
8707 /* Fall through */
8709 case R_MIPS_TLS_GD:
8710 case R_MIPS16_TLS_GD:
8711 case R_MICROMIPS_TLS_GD:
8712 /* This symbol requires a global offset table entry, or two
8713 for TLS GD relocations. */
8714 if (h != NULL)
8716 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8717 FALSE, r_type))
8718 return FALSE;
8720 else
8722 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8723 rel->r_addend,
8724 info, r_type))
8725 return FALSE;
8727 break;
8729 case R_MIPS_32:
8730 case R_MIPS_REL32:
8731 case R_MIPS_64:
8732 /* In VxWorks executables, references to external symbols
8733 are handled using copy relocs or PLT stubs, so there's
8734 no need to add a .rela.dyn entry for this relocation. */
8735 if (can_make_dynamic_p)
8737 if (sreloc == NULL)
8739 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8740 if (sreloc == NULL)
8741 return FALSE;
8743 if (bfd_link_pic (info) && h == NULL)
8745 /* When creating a shared object, we must copy these
8746 reloc types into the output file as R_MIPS_REL32
8747 relocs. Make room for this reloc in .rel(a).dyn. */
8748 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8749 if (MIPS_ELF_READONLY_SECTION (sec))
8750 /* We tell the dynamic linker that there are
8751 relocations against the text segment. */
8752 info->flags |= DF_TEXTREL;
8754 else
8756 struct mips_elf_link_hash_entry *hmips;
8758 /* For a shared object, we must copy this relocation
8759 unless the symbol turns out to be undefined and
8760 weak with non-default visibility, in which case
8761 it will be left as zero.
8763 We could elide R_MIPS_REL32 for locally binding symbols
8764 in shared libraries, but do not yet do so.
8766 For an executable, we only need to copy this
8767 reloc if the symbol is defined in a dynamic
8768 object. */
8769 hmips = (struct mips_elf_link_hash_entry *) h;
8770 ++hmips->possibly_dynamic_relocs;
8771 if (MIPS_ELF_READONLY_SECTION (sec))
8772 /* We need it to tell the dynamic linker if there
8773 are relocations against the text segment. */
8774 hmips->readonly_reloc = TRUE;
8778 if (SGI_COMPAT (abfd))
8779 mips_elf_hash_table (info)->compact_rel_size +=
8780 sizeof (Elf32_External_crinfo);
8781 break;
8783 case R_MIPS_26:
8784 case R_MIPS_GPREL16:
8785 case R_MIPS_LITERAL:
8786 case R_MIPS_GPREL32:
8787 case R_MICROMIPS_26_S1:
8788 case R_MICROMIPS_GPREL16:
8789 case R_MICROMIPS_LITERAL:
8790 case R_MICROMIPS_GPREL7_S2:
8791 if (SGI_COMPAT (abfd))
8792 mips_elf_hash_table (info)->compact_rel_size +=
8793 sizeof (Elf32_External_crinfo);
8794 break;
8796 /* This relocation describes the C++ object vtable hierarchy.
8797 Reconstruct it for later use during GC. */
8798 case R_MIPS_GNU_VTINHERIT:
8799 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8800 return FALSE;
8801 break;
8803 /* This relocation describes which C++ vtable entries are actually
8804 used. Record for later use during GC. */
8805 case R_MIPS_GNU_VTENTRY:
8806 BFD_ASSERT (h != NULL);
8807 if (h != NULL
8808 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8809 return FALSE;
8810 break;
8812 default:
8813 break;
8816 /* Record the need for a PLT entry. At this point we don't know
8817 yet if we are going to create a PLT in the first place, but
8818 we only record whether the relocation requires a standard MIPS
8819 or a compressed code entry anyway. If we don't make a PLT after
8820 all, then we'll just ignore these arrangements. Likewise if
8821 a PLT entry is not created because the symbol is satisfied
8822 locally. */
8823 if (h != NULL
8824 && (branch_reloc_p (r_type)
8825 || mips16_branch_reloc_p (r_type)
8826 || micromips_branch_reloc_p (r_type))
8827 && !SYMBOL_CALLS_LOCAL (info, h))
8829 if (h->plt.plist == NULL)
8830 h->plt.plist = mips_elf_make_plt_record (abfd);
8831 if (h->plt.plist == NULL)
8832 return FALSE;
8834 if (branch_reloc_p (r_type))
8835 h->plt.plist->need_mips = TRUE;
8836 else
8837 h->plt.plist->need_comp = TRUE;
8840 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8841 if there is one. We only need to handle global symbols here;
8842 we decide whether to keep or delete stubs for local symbols
8843 when processing the stub's relocations. */
8844 if (h != NULL
8845 && !mips16_call_reloc_p (r_type)
8846 && !section_allows_mips16_refs_p (sec))
8848 struct mips_elf_link_hash_entry *mh;
8850 mh = (struct mips_elf_link_hash_entry *) h;
8851 mh->need_fn_stub = TRUE;
8854 /* Refuse some position-dependent relocations when creating a
8855 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8856 not PIC, but we can create dynamic relocations and the result
8857 will be fine. Also do not refuse R_MIPS_LO16, which can be
8858 combined with R_MIPS_GOT16. */
8859 if (bfd_link_pic (info))
8861 switch (r_type)
8863 case R_MIPS16_HI16:
8864 case R_MIPS_HI16:
8865 case R_MIPS_HIGHER:
8866 case R_MIPS_HIGHEST:
8867 case R_MICROMIPS_HI16:
8868 case R_MICROMIPS_HIGHER:
8869 case R_MICROMIPS_HIGHEST:
8870 /* Don't refuse a high part relocation if it's against
8871 no symbol (e.g. part of a compound relocation). */
8872 if (r_symndx == STN_UNDEF)
8873 break;
8875 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8876 and has a special meaning. */
8877 if (!NEWABI_P (abfd) && h != NULL
8878 && strcmp (h->root.root.string, "_gp_disp") == 0)
8879 break;
8881 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8882 if (is_gott_symbol (info, h))
8883 break;
8885 /* FALLTHROUGH */
8887 case R_MIPS16_26:
8888 case R_MIPS_26:
8889 case R_MICROMIPS_26_S1:
8890 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8891 _bfd_error_handler
8892 /* xgettext:c-format */
8893 (_("%B: relocation %s against `%s' can not be used"
8894 " when making a shared object; recompile with -fPIC"),
8895 abfd, howto->name,
8896 (h) ? h->root.root.string : "a local symbol");
8897 bfd_set_error (bfd_error_bad_value);
8898 return FALSE;
8899 default:
8900 break;
8905 return TRUE;
8908 /* Allocate space for global sym dynamic relocs. */
8910 static bfd_boolean
8911 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8913 struct bfd_link_info *info = inf;
8914 bfd *dynobj;
8915 struct mips_elf_link_hash_entry *hmips;
8916 struct mips_elf_link_hash_table *htab;
8918 htab = mips_elf_hash_table (info);
8919 BFD_ASSERT (htab != NULL);
8921 dynobj = elf_hash_table (info)->dynobj;
8922 hmips = (struct mips_elf_link_hash_entry *) h;
8924 /* VxWorks executables are handled elsewhere; we only need to
8925 allocate relocations in shared objects. */
8926 if (htab->is_vxworks && !bfd_link_pic (info))
8927 return TRUE;
8929 /* Ignore indirect symbols. All relocations against such symbols
8930 will be redirected to the target symbol. */
8931 if (h->root.type == bfd_link_hash_indirect)
8932 return TRUE;
8934 /* If this symbol is defined in a dynamic object, or we are creating
8935 a shared library, we will need to copy any R_MIPS_32 or
8936 R_MIPS_REL32 relocs against it into the output file. */
8937 if (! bfd_link_relocatable (info)
8938 && hmips->possibly_dynamic_relocs != 0
8939 && (h->root.type == bfd_link_hash_defweak
8940 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8941 || bfd_link_pic (info)))
8943 bfd_boolean do_copy = TRUE;
8945 if (h->root.type == bfd_link_hash_undefweak)
8947 /* Do not copy relocations for undefined weak symbols with
8948 non-default visibility. */
8949 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8950 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8951 do_copy = FALSE;
8953 /* Make sure undefined weak symbols are output as a dynamic
8954 symbol in PIEs. */
8955 else if (h->dynindx == -1 && !h->forced_local)
8957 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8958 return FALSE;
8962 if (do_copy)
8964 /* Even though we don't directly need a GOT entry for this symbol,
8965 the SVR4 psABI requires it to have a dynamic symbol table
8966 index greater that DT_MIPS_GOTSYM if there are dynamic
8967 relocations against it.
8969 VxWorks does not enforce the same mapping between the GOT
8970 and the symbol table, so the same requirement does not
8971 apply there. */
8972 if (!htab->is_vxworks)
8974 if (hmips->global_got_area > GGA_RELOC_ONLY)
8975 hmips->global_got_area = GGA_RELOC_ONLY;
8976 hmips->got_only_for_calls = FALSE;
8979 mips_elf_allocate_dynamic_relocations
8980 (dynobj, info, hmips->possibly_dynamic_relocs);
8981 if (hmips->readonly_reloc)
8982 /* We tell the dynamic linker that there are relocations
8983 against the text segment. */
8984 info->flags |= DF_TEXTREL;
8988 return TRUE;
8991 /* Adjust a symbol defined by a dynamic object and referenced by a
8992 regular object. The current definition is in some section of the
8993 dynamic object, but we're not including those sections. We have to
8994 change the definition to something the rest of the link can
8995 understand. */
8997 bfd_boolean
8998 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8999 struct elf_link_hash_entry *h)
9001 bfd *dynobj;
9002 struct mips_elf_link_hash_entry *hmips;
9003 struct mips_elf_link_hash_table *htab;
9004 asection *s, *srel;
9006 htab = mips_elf_hash_table (info);
9007 BFD_ASSERT (htab != NULL);
9009 dynobj = elf_hash_table (info)->dynobj;
9010 hmips = (struct mips_elf_link_hash_entry *) h;
9012 /* Make sure we know what is going on here. */
9013 BFD_ASSERT (dynobj != NULL
9014 && (h->needs_plt
9015 || h->u.weakdef != NULL
9016 || (h->def_dynamic
9017 && h->ref_regular
9018 && !h->def_regular)));
9020 hmips = (struct mips_elf_link_hash_entry *) h;
9022 /* If there are call relocations against an externally-defined symbol,
9023 see whether we can create a MIPS lazy-binding stub for it. We can
9024 only do this if all references to the function are through call
9025 relocations, and in that case, the traditional lazy-binding stubs
9026 are much more efficient than PLT entries.
9028 Traditional stubs are only available on SVR4 psABI-based systems;
9029 VxWorks always uses PLTs instead. */
9030 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9032 if (! elf_hash_table (info)->dynamic_sections_created)
9033 return TRUE;
9035 /* If this symbol is not defined in a regular file, then set
9036 the symbol to the stub location. This is required to make
9037 function pointers compare as equal between the normal
9038 executable and the shared library. */
9039 if (!h->def_regular)
9041 hmips->needs_lazy_stub = TRUE;
9042 htab->lazy_stub_count++;
9043 return TRUE;
9046 /* As above, VxWorks requires PLT entries for externally-defined
9047 functions that are only accessed through call relocations.
9049 Both VxWorks and non-VxWorks targets also need PLT entries if there
9050 are static-only relocations against an externally-defined function.
9051 This can technically occur for shared libraries if there are
9052 branches to the symbol, although it is unlikely that this will be
9053 used in practice due to the short ranges involved. It can occur
9054 for any relative or absolute relocation in executables; in that
9055 case, the PLT entry becomes the function's canonical address. */
9056 else if (((h->needs_plt && !hmips->no_fn_stub)
9057 || (h->type == STT_FUNC && hmips->has_static_relocs))
9058 && htab->use_plts_and_copy_relocs
9059 && !SYMBOL_CALLS_LOCAL (info, h)
9060 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9061 && h->root.type == bfd_link_hash_undefweak))
9063 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9064 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9066 /* If this is the first symbol to need a PLT entry, then make some
9067 basic setup. Also work out PLT entry sizes. We'll need them
9068 for PLT offset calculations. */
9069 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9071 BFD_ASSERT (htab->root.sgotplt->size == 0);
9072 BFD_ASSERT (htab->plt_got_index == 0);
9074 /* If we're using the PLT additions to the psABI, each PLT
9075 entry is 16 bytes and the PLT0 entry is 32 bytes.
9076 Encourage better cache usage by aligning. We do this
9077 lazily to avoid pessimizing traditional objects. */
9078 if (!htab->is_vxworks
9079 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9080 return FALSE;
9082 /* Make sure that .got.plt is word-aligned. We do this lazily
9083 for the same reason as above. */
9084 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9085 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9086 return FALSE;
9088 /* On non-VxWorks targets, the first two entries in .got.plt
9089 are reserved. */
9090 if (!htab->is_vxworks)
9091 htab->plt_got_index
9092 += (get_elf_backend_data (dynobj)->got_header_size
9093 / MIPS_ELF_GOT_SIZE (dynobj));
9095 /* On VxWorks, also allocate room for the header's
9096 .rela.plt.unloaded entries. */
9097 if (htab->is_vxworks && !bfd_link_pic (info))
9098 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9100 /* Now work out the sizes of individual PLT entries. */
9101 if (htab->is_vxworks && bfd_link_pic (info))
9102 htab->plt_mips_entry_size
9103 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9104 else if (htab->is_vxworks)
9105 htab->plt_mips_entry_size
9106 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9107 else if (newabi_p)
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9110 else if (!micromips_p)
9112 htab->plt_mips_entry_size
9113 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9114 htab->plt_comp_entry_size
9115 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9117 else if (htab->insn32)
9119 htab->plt_mips_entry_size
9120 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9121 htab->plt_comp_entry_size
9122 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9124 else
9126 htab->plt_mips_entry_size
9127 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9128 htab->plt_comp_entry_size
9129 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9133 if (h->plt.plist == NULL)
9134 h->plt.plist = mips_elf_make_plt_record (dynobj);
9135 if (h->plt.plist == NULL)
9136 return FALSE;
9138 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9139 n32 or n64, so always use a standard entry there.
9141 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9142 all MIPS16 calls will go via that stub, and there is no benefit
9143 to having a MIPS16 entry. And in the case of call_stub a
9144 standard entry actually has to be used as the stub ends with a J
9145 instruction. */
9146 if (newabi_p
9147 || htab->is_vxworks
9148 || hmips->call_stub
9149 || hmips->call_fp_stub)
9151 h->plt.plist->need_mips = TRUE;
9152 h->plt.plist->need_comp = FALSE;
9155 /* Otherwise, if there are no direct calls to the function, we
9156 have a free choice of whether to use standard or compressed
9157 entries. Prefer microMIPS entries if the object is known to
9158 contain microMIPS code, so that it becomes possible to create
9159 pure microMIPS binaries. Prefer standard entries otherwise,
9160 because MIPS16 ones are no smaller and are usually slower. */
9161 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9163 if (micromips_p)
9164 h->plt.plist->need_comp = TRUE;
9165 else
9166 h->plt.plist->need_mips = TRUE;
9169 if (h->plt.plist->need_mips)
9171 h->plt.plist->mips_offset = htab->plt_mips_offset;
9172 htab->plt_mips_offset += htab->plt_mips_entry_size;
9174 if (h->plt.plist->need_comp)
9176 h->plt.plist->comp_offset = htab->plt_comp_offset;
9177 htab->plt_comp_offset += htab->plt_comp_entry_size;
9180 /* Reserve the corresponding .got.plt entry now too. */
9181 h->plt.plist->gotplt_index = htab->plt_got_index++;
9183 /* If the output file has no definition of the symbol, set the
9184 symbol's value to the address of the stub. */
9185 if (!bfd_link_pic (info) && !h->def_regular)
9186 hmips->use_plt_entry = TRUE;
9188 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9189 htab->root.srelplt->size += (htab->is_vxworks
9190 ? MIPS_ELF_RELA_SIZE (dynobj)
9191 : MIPS_ELF_REL_SIZE (dynobj));
9193 /* Make room for the .rela.plt.unloaded relocations. */
9194 if (htab->is_vxworks && !bfd_link_pic (info))
9195 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9197 /* All relocations against this symbol that could have been made
9198 dynamic will now refer to the PLT entry instead. */
9199 hmips->possibly_dynamic_relocs = 0;
9201 return TRUE;
9204 /* If this is a weak symbol, and there is a real definition, the
9205 processor independent code will have arranged for us to see the
9206 real definition first, and we can just use the same value. */
9207 if (h->u.weakdef != NULL)
9209 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9210 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9211 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9212 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9213 return TRUE;
9216 /* Otherwise, there is nothing further to do for symbols defined
9217 in regular objects. */
9218 if (h->def_regular)
9219 return TRUE;
9221 /* There's also nothing more to do if we'll convert all relocations
9222 against this symbol into dynamic relocations. */
9223 if (!hmips->has_static_relocs)
9224 return TRUE;
9226 /* We're now relying on copy relocations. Complain if we have
9227 some that we can't convert. */
9228 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9230 _bfd_error_handler (_("non-dynamic relocations refer to "
9231 "dynamic symbol %s"),
9232 h->root.root.string);
9233 bfd_set_error (bfd_error_bad_value);
9234 return FALSE;
9237 /* We must allocate the symbol in our .dynbss section, which will
9238 become part of the .bss section of the executable. There will be
9239 an entry for this symbol in the .dynsym section. The dynamic
9240 object will contain position independent code, so all references
9241 from the dynamic object to this symbol will go through the global
9242 offset table. The dynamic linker will use the .dynsym entry to
9243 determine the address it must put in the global offset table, so
9244 both the dynamic object and the regular object will refer to the
9245 same memory location for the variable. */
9247 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9249 s = htab->root.sdynrelro;
9250 srel = htab->root.sreldynrelro;
9252 else
9254 s = htab->root.sdynbss;
9255 srel = htab->root.srelbss;
9257 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9259 if (htab->is_vxworks)
9260 srel->size += sizeof (Elf32_External_Rela);
9261 else
9262 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9263 h->needs_copy = 1;
9266 /* All relocations against this symbol that could have been made
9267 dynamic will now refer to the local copy instead. */
9268 hmips->possibly_dynamic_relocs = 0;
9270 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9273 /* This function is called after all the input files have been read,
9274 and the input sections have been assigned to output sections. We
9275 check for any mips16 stub sections that we can discard. */
9277 bfd_boolean
9278 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9279 struct bfd_link_info *info)
9281 asection *sect;
9282 struct mips_elf_link_hash_table *htab;
9283 struct mips_htab_traverse_info hti;
9285 htab = mips_elf_hash_table (info);
9286 BFD_ASSERT (htab != NULL);
9288 /* The .reginfo section has a fixed size. */
9289 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9290 if (sect != NULL)
9291 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9293 /* The .MIPS.abiflags section has a fixed size. */
9294 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9295 if (sect != NULL)
9296 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9298 hti.info = info;
9299 hti.output_bfd = output_bfd;
9300 hti.error = FALSE;
9301 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9302 mips_elf_check_symbols, &hti);
9303 if (hti.error)
9304 return FALSE;
9306 return TRUE;
9309 /* If the link uses a GOT, lay it out and work out its size. */
9311 static bfd_boolean
9312 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9314 bfd *dynobj;
9315 asection *s;
9316 struct mips_got_info *g;
9317 bfd_size_type loadable_size = 0;
9318 bfd_size_type page_gotno;
9319 bfd *ibfd;
9320 struct mips_elf_traverse_got_arg tga;
9321 struct mips_elf_link_hash_table *htab;
9323 htab = mips_elf_hash_table (info);
9324 BFD_ASSERT (htab != NULL);
9326 s = htab->root.sgot;
9327 if (s == NULL)
9328 return TRUE;
9330 dynobj = elf_hash_table (info)->dynobj;
9331 g = htab->got_info;
9333 /* Allocate room for the reserved entries. VxWorks always reserves
9334 3 entries; other objects only reserve 2 entries. */
9335 BFD_ASSERT (g->assigned_low_gotno == 0);
9336 if (htab->is_vxworks)
9337 htab->reserved_gotno = 3;
9338 else
9339 htab->reserved_gotno = 2;
9340 g->local_gotno += htab->reserved_gotno;
9341 g->assigned_low_gotno = htab->reserved_gotno;
9343 /* Decide which symbols need to go in the global part of the GOT and
9344 count the number of reloc-only GOT symbols. */
9345 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9347 if (!mips_elf_resolve_final_got_entries (info, g))
9348 return FALSE;
9350 /* Calculate the total loadable size of the output. That
9351 will give us the maximum number of GOT_PAGE entries
9352 required. */
9353 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9355 asection *subsection;
9357 for (subsection = ibfd->sections;
9358 subsection;
9359 subsection = subsection->next)
9361 if ((subsection->flags & SEC_ALLOC) == 0)
9362 continue;
9363 loadable_size += ((subsection->size + 0xf)
9364 &~ (bfd_size_type) 0xf);
9368 if (htab->is_vxworks)
9369 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9370 relocations against local symbols evaluate to "G", and the EABI does
9371 not include R_MIPS_GOT_PAGE. */
9372 page_gotno = 0;
9373 else
9374 /* Assume there are two loadable segments consisting of contiguous
9375 sections. Is 5 enough? */
9376 page_gotno = (loadable_size >> 16) + 5;
9378 /* Choose the smaller of the two page estimates; both are intended to be
9379 conservative. */
9380 if (page_gotno > g->page_gotno)
9381 page_gotno = g->page_gotno;
9383 g->local_gotno += page_gotno;
9384 g->assigned_high_gotno = g->local_gotno - 1;
9386 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9387 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9388 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9390 /* VxWorks does not support multiple GOTs. It initializes $gp to
9391 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9392 dynamic loader. */
9393 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9395 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9396 return FALSE;
9398 else
9400 /* Record that all bfds use G. This also has the effect of freeing
9401 the per-bfd GOTs, which we no longer need. */
9402 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9403 if (mips_elf_bfd_got (ibfd, FALSE))
9404 mips_elf_replace_bfd_got (ibfd, g);
9405 mips_elf_replace_bfd_got (output_bfd, g);
9407 /* Set up TLS entries. */
9408 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9409 tga.info = info;
9410 tga.g = g;
9411 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9412 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9413 if (!tga.g)
9414 return FALSE;
9415 BFD_ASSERT (g->tls_assigned_gotno
9416 == g->global_gotno + g->local_gotno + g->tls_gotno);
9418 /* Each VxWorks GOT entry needs an explicit relocation. */
9419 if (htab->is_vxworks && bfd_link_pic (info))
9420 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9422 /* Allocate room for the TLS relocations. */
9423 if (g->relocs)
9424 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9427 return TRUE;
9430 /* Estimate the size of the .MIPS.stubs section. */
9432 static void
9433 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9435 struct mips_elf_link_hash_table *htab;
9436 bfd_size_type dynsymcount;
9438 htab = mips_elf_hash_table (info);
9439 BFD_ASSERT (htab != NULL);
9441 if (htab->lazy_stub_count == 0)
9442 return;
9444 /* IRIX rld assumes that a function stub isn't at the end of the .text
9445 section, so add a dummy entry to the end. */
9446 htab->lazy_stub_count++;
9448 /* Get a worst-case estimate of the number of dynamic symbols needed.
9449 At this point, dynsymcount does not account for section symbols
9450 and count_section_dynsyms may overestimate the number that will
9451 be needed. */
9452 dynsymcount = (elf_hash_table (info)->dynsymcount
9453 + count_section_dynsyms (output_bfd, info));
9455 /* Determine the size of one stub entry. There's no disadvantage
9456 from using microMIPS code here, so for the sake of pure-microMIPS
9457 binaries we prefer it whenever there's any microMIPS code in
9458 output produced at all. This has a benefit of stubs being
9459 shorter by 4 bytes each too, unless in the insn32 mode. */
9460 if (!MICROMIPS_P (output_bfd))
9461 htab->function_stub_size = (dynsymcount > 0x10000
9462 ? MIPS_FUNCTION_STUB_BIG_SIZE
9463 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9464 else if (htab->insn32)
9465 htab->function_stub_size = (dynsymcount > 0x10000
9466 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9467 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9468 else
9469 htab->function_stub_size = (dynsymcount > 0x10000
9470 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9471 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9473 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9476 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9477 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9478 stub, allocate an entry in the stubs section. */
9480 static bfd_boolean
9481 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9483 struct mips_htab_traverse_info *hti = data;
9484 struct mips_elf_link_hash_table *htab;
9485 struct bfd_link_info *info;
9486 bfd *output_bfd;
9488 info = hti->info;
9489 output_bfd = hti->output_bfd;
9490 htab = mips_elf_hash_table (info);
9491 BFD_ASSERT (htab != NULL);
9493 if (h->needs_lazy_stub)
9495 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9496 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9497 bfd_vma isa_bit = micromips_p;
9499 BFD_ASSERT (htab->root.dynobj != NULL);
9500 if (h->root.plt.plist == NULL)
9501 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9502 if (h->root.plt.plist == NULL)
9504 hti->error = TRUE;
9505 return FALSE;
9507 h->root.root.u.def.section = htab->sstubs;
9508 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9509 h->root.plt.plist->stub_offset = htab->sstubs->size;
9510 h->root.other = other;
9511 htab->sstubs->size += htab->function_stub_size;
9513 return TRUE;
9516 /* Allocate offsets in the stubs section to each symbol that needs one.
9517 Set the final size of the .MIPS.stub section. */
9519 static bfd_boolean
9520 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9522 bfd *output_bfd = info->output_bfd;
9523 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9524 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9525 bfd_vma isa_bit = micromips_p;
9526 struct mips_elf_link_hash_table *htab;
9527 struct mips_htab_traverse_info hti;
9528 struct elf_link_hash_entry *h;
9529 bfd *dynobj;
9531 htab = mips_elf_hash_table (info);
9532 BFD_ASSERT (htab != NULL);
9534 if (htab->lazy_stub_count == 0)
9535 return TRUE;
9537 htab->sstubs->size = 0;
9538 hti.info = info;
9539 hti.output_bfd = output_bfd;
9540 hti.error = FALSE;
9541 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9542 if (hti.error)
9543 return FALSE;
9544 htab->sstubs->size += htab->function_stub_size;
9545 BFD_ASSERT (htab->sstubs->size
9546 == htab->lazy_stub_count * htab->function_stub_size);
9548 dynobj = elf_hash_table (info)->dynobj;
9549 BFD_ASSERT (dynobj != NULL);
9550 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9551 if (h == NULL)
9552 return FALSE;
9553 h->root.u.def.value = isa_bit;
9554 h->other = other;
9555 h->type = STT_FUNC;
9557 return TRUE;
9560 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9561 bfd_link_info. If H uses the address of a PLT entry as the value
9562 of the symbol, then set the entry in the symbol table now. Prefer
9563 a standard MIPS PLT entry. */
9565 static bfd_boolean
9566 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9568 struct bfd_link_info *info = data;
9569 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9570 struct mips_elf_link_hash_table *htab;
9571 unsigned int other;
9572 bfd_vma isa_bit;
9573 bfd_vma val;
9575 htab = mips_elf_hash_table (info);
9576 BFD_ASSERT (htab != NULL);
9578 if (h->use_plt_entry)
9580 BFD_ASSERT (h->root.plt.plist != NULL);
9581 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9582 || h->root.plt.plist->comp_offset != MINUS_ONE);
9584 val = htab->plt_header_size;
9585 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9587 isa_bit = 0;
9588 val += h->root.plt.plist->mips_offset;
9589 other = 0;
9591 else
9593 isa_bit = 1;
9594 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9595 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9597 val += isa_bit;
9598 /* For VxWorks, point at the PLT load stub rather than the lazy
9599 resolution stub; this stub will become the canonical function
9600 address. */
9601 if (htab->is_vxworks)
9602 val += 8;
9604 h->root.root.u.def.section = htab->root.splt;
9605 h->root.root.u.def.value = val;
9606 h->root.other = other;
9609 return TRUE;
9612 /* Set the sizes of the dynamic sections. */
9614 bfd_boolean
9615 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9616 struct bfd_link_info *info)
9618 bfd *dynobj;
9619 asection *s, *sreldyn;
9620 bfd_boolean reltext;
9621 struct mips_elf_link_hash_table *htab;
9623 htab = mips_elf_hash_table (info);
9624 BFD_ASSERT (htab != NULL);
9625 dynobj = elf_hash_table (info)->dynobj;
9626 BFD_ASSERT (dynobj != NULL);
9628 if (elf_hash_table (info)->dynamic_sections_created)
9630 /* Set the contents of the .interp section to the interpreter. */
9631 if (bfd_link_executable (info) && !info->nointerp)
9633 s = bfd_get_linker_section (dynobj, ".interp");
9634 BFD_ASSERT (s != NULL);
9635 s->size
9636 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9637 s->contents
9638 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9641 /* Figure out the size of the PLT header if we know that we
9642 are using it. For the sake of cache alignment always use
9643 a standard header whenever any standard entries are present
9644 even if microMIPS entries are present as well. This also
9645 lets the microMIPS header rely on the value of $v0 only set
9646 by microMIPS entries, for a small size reduction.
9648 Set symbol table entry values for symbols that use the
9649 address of their PLT entry now that we can calculate it.
9651 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9652 haven't already in _bfd_elf_create_dynamic_sections. */
9653 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9655 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9656 && !htab->plt_mips_offset);
9657 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9658 bfd_vma isa_bit = micromips_p;
9659 struct elf_link_hash_entry *h;
9660 bfd_vma size;
9662 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9663 BFD_ASSERT (htab->root.sgotplt->size == 0);
9664 BFD_ASSERT (htab->root.splt->size == 0);
9666 if (htab->is_vxworks && bfd_link_pic (info))
9667 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9668 else if (htab->is_vxworks)
9669 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9670 else if (ABI_64_P (output_bfd))
9671 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9672 else if (ABI_N32_P (output_bfd))
9673 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9674 else if (!micromips_p)
9675 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9676 else if (htab->insn32)
9677 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9678 else
9679 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9681 htab->plt_header_is_comp = micromips_p;
9682 htab->plt_header_size = size;
9683 htab->root.splt->size = (size
9684 + htab->plt_mips_offset
9685 + htab->plt_comp_offset);
9686 htab->root.sgotplt->size = (htab->plt_got_index
9687 * MIPS_ELF_GOT_SIZE (dynobj));
9689 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9691 if (htab->root.hplt == NULL)
9693 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9694 "_PROCEDURE_LINKAGE_TABLE_");
9695 htab->root.hplt = h;
9696 if (h == NULL)
9697 return FALSE;
9700 h = htab->root.hplt;
9701 h->root.u.def.value = isa_bit;
9702 h->other = other;
9703 h->type = STT_FUNC;
9707 /* Allocate space for global sym dynamic relocs. */
9708 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9710 mips_elf_estimate_stub_size (output_bfd, info);
9712 if (!mips_elf_lay_out_got (output_bfd, info))
9713 return FALSE;
9715 mips_elf_lay_out_lazy_stubs (info);
9717 /* The check_relocs and adjust_dynamic_symbol entry points have
9718 determined the sizes of the various dynamic sections. Allocate
9719 memory for them. */
9720 reltext = FALSE;
9721 for (s = dynobj->sections; s != NULL; s = s->next)
9723 const char *name;
9725 /* It's OK to base decisions on the section name, because none
9726 of the dynobj section names depend upon the input files. */
9727 name = bfd_get_section_name (dynobj, s);
9729 if ((s->flags & SEC_LINKER_CREATED) == 0)
9730 continue;
9732 if (CONST_STRNEQ (name, ".rel"))
9734 if (s->size != 0)
9736 const char *outname;
9737 asection *target;
9739 /* If this relocation section applies to a read only
9740 section, then we probably need a DT_TEXTREL entry.
9741 If the relocation section is .rel(a).dyn, we always
9742 assert a DT_TEXTREL entry rather than testing whether
9743 there exists a relocation to a read only section or
9744 not. */
9745 outname = bfd_get_section_name (output_bfd,
9746 s->output_section);
9747 target = bfd_get_section_by_name (output_bfd, outname + 4);
9748 if ((target != NULL
9749 && (target->flags & SEC_READONLY) != 0
9750 && (target->flags & SEC_ALLOC) != 0)
9751 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9752 reltext = TRUE;
9754 /* We use the reloc_count field as a counter if we need
9755 to copy relocs into the output file. */
9756 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9757 s->reloc_count = 0;
9759 /* If combreloc is enabled, elf_link_sort_relocs() will
9760 sort relocations, but in a different way than we do,
9761 and before we're done creating relocations. Also, it
9762 will move them around between input sections'
9763 relocation's contents, so our sorting would be
9764 broken, so don't let it run. */
9765 info->combreloc = 0;
9768 else if (bfd_link_executable (info)
9769 && ! mips_elf_hash_table (info)->use_rld_obj_head
9770 && CONST_STRNEQ (name, ".rld_map"))
9772 /* We add a room for __rld_map. It will be filled in by the
9773 rtld to contain a pointer to the _r_debug structure. */
9774 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9776 else if (SGI_COMPAT (output_bfd)
9777 && CONST_STRNEQ (name, ".compact_rel"))
9778 s->size += mips_elf_hash_table (info)->compact_rel_size;
9779 else if (s == htab->root.splt)
9781 /* If the last PLT entry has a branch delay slot, allocate
9782 room for an extra nop to fill the delay slot. This is
9783 for CPUs without load interlocking. */
9784 if (! LOAD_INTERLOCKS_P (output_bfd)
9785 && ! htab->is_vxworks && s->size > 0)
9786 s->size += 4;
9788 else if (! CONST_STRNEQ (name, ".init")
9789 && s != htab->root.sgot
9790 && s != htab->root.sgotplt
9791 && s != htab->sstubs
9792 && s != htab->root.sdynbss
9793 && s != htab->root.sdynrelro)
9795 /* It's not one of our sections, so don't allocate space. */
9796 continue;
9799 if (s->size == 0)
9801 s->flags |= SEC_EXCLUDE;
9802 continue;
9805 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9806 continue;
9808 /* Allocate memory for the section contents. */
9809 s->contents = bfd_zalloc (dynobj, s->size);
9810 if (s->contents == NULL)
9812 bfd_set_error (bfd_error_no_memory);
9813 return FALSE;
9817 if (elf_hash_table (info)->dynamic_sections_created)
9819 /* Add some entries to the .dynamic section. We fill in the
9820 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9821 must add the entries now so that we get the correct size for
9822 the .dynamic section. */
9824 /* SGI object has the equivalence of DT_DEBUG in the
9825 DT_MIPS_RLD_MAP entry. This must come first because glibc
9826 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9827 may only look at the first one they see. */
9828 if (!bfd_link_pic (info)
9829 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9830 return FALSE;
9832 if (bfd_link_executable (info)
9833 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9834 return FALSE;
9836 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9837 used by the debugger. */
9838 if (bfd_link_executable (info)
9839 && !SGI_COMPAT (output_bfd)
9840 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9841 return FALSE;
9843 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9844 info->flags |= DF_TEXTREL;
9846 if ((info->flags & DF_TEXTREL) != 0)
9848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9849 return FALSE;
9851 /* Clear the DF_TEXTREL flag. It will be set again if we
9852 write out an actual text relocation; we may not, because
9853 at this point we do not know whether e.g. any .eh_frame
9854 absolute relocations have been converted to PC-relative. */
9855 info->flags &= ~DF_TEXTREL;
9858 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9859 return FALSE;
9861 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9862 if (htab->is_vxworks)
9864 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9865 use any of the DT_MIPS_* tags. */
9866 if (sreldyn && sreldyn->size > 0)
9868 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9869 return FALSE;
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9872 return FALSE;
9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9875 return FALSE;
9878 else
9880 if (sreldyn && sreldyn->size > 0)
9882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9883 return FALSE;
9885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9886 return FALSE;
9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9889 return FALSE;
9892 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9893 return FALSE;
9895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9896 return FALSE;
9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9899 return FALSE;
9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9902 return FALSE;
9904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9905 return FALSE;
9907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9908 return FALSE;
9910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9911 return FALSE;
9913 if (IRIX_COMPAT (dynobj) == ict_irix5
9914 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9915 return FALSE;
9917 if (IRIX_COMPAT (dynobj) == ict_irix6
9918 && (bfd_get_section_by_name
9919 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9920 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9921 return FALSE;
9923 if (htab->root.splt->size > 0)
9925 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9926 return FALSE;
9928 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9929 return FALSE;
9931 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9932 return FALSE;
9934 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9935 return FALSE;
9937 if (htab->is_vxworks
9938 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9939 return FALSE;
9942 return TRUE;
9945 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9946 Adjust its R_ADDEND field so that it is correct for the output file.
9947 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9948 and sections respectively; both use symbol indexes. */
9950 static void
9951 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9952 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9953 asection **local_sections, Elf_Internal_Rela *rel)
9955 unsigned int r_type, r_symndx;
9956 Elf_Internal_Sym *sym;
9957 asection *sec;
9959 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9961 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9962 if (gprel16_reloc_p (r_type)
9963 || r_type == R_MIPS_GPREL32
9964 || literal_reloc_p (r_type))
9966 rel->r_addend += _bfd_get_gp_value (input_bfd);
9967 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9970 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9971 sym = local_syms + r_symndx;
9973 /* Adjust REL's addend to account for section merging. */
9974 if (!bfd_link_relocatable (info))
9976 sec = local_sections[r_symndx];
9977 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9980 /* This would normally be done by the rela_normal code in elflink.c. */
9981 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9982 rel->r_addend += local_sections[r_symndx]->output_offset;
9986 /* Handle relocations against symbols from removed linkonce sections,
9987 or sections discarded by a linker script. We use this wrapper around
9988 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9989 on 64-bit ELF targets. In this case for any relocation handled, which
9990 always be the first in a triplet, the remaining two have to be processed
9991 together with the first, even if they are R_MIPS_NONE. It is the symbol
9992 index referred by the first reloc that applies to all the three and the
9993 remaining two never refer to an object symbol. And it is the final
9994 relocation (the last non-null one) that determines the output field of
9995 the whole relocation so retrieve the corresponding howto structure for
9996 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9998 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9999 and therefore requires to be pasted in a loop. It also defines a block
10000 and does not protect any of its arguments, hence the extra brackets. */
10002 static void
10003 mips_reloc_against_discarded_section (bfd *output_bfd,
10004 struct bfd_link_info *info,
10005 bfd *input_bfd, asection *input_section,
10006 Elf_Internal_Rela **rel,
10007 const Elf_Internal_Rela **relend,
10008 bfd_boolean rel_reloc,
10009 reloc_howto_type *howto,
10010 bfd_byte *contents)
10012 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10013 int count = bed->s->int_rels_per_ext_rel;
10014 unsigned int r_type;
10015 int i;
10017 for (i = count - 1; i > 0; i--)
10019 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10020 if (r_type != R_MIPS_NONE)
10022 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10023 break;
10028 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10029 (*rel), count, (*relend),
10030 howto, i, contents);
10032 while (0);
10035 /* Relocate a MIPS ELF section. */
10037 bfd_boolean
10038 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10039 bfd *input_bfd, asection *input_section,
10040 bfd_byte *contents, Elf_Internal_Rela *relocs,
10041 Elf_Internal_Sym *local_syms,
10042 asection **local_sections)
10044 Elf_Internal_Rela *rel;
10045 const Elf_Internal_Rela *relend;
10046 bfd_vma addend = 0;
10047 bfd_boolean use_saved_addend_p = FALSE;
10049 relend = relocs + input_section->reloc_count;
10050 for (rel = relocs; rel < relend; ++rel)
10052 const char *name;
10053 bfd_vma value = 0;
10054 reloc_howto_type *howto;
10055 bfd_boolean cross_mode_jump_p = FALSE;
10056 /* TRUE if the relocation is a RELA relocation, rather than a
10057 REL relocation. */
10058 bfd_boolean rela_relocation_p = TRUE;
10059 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10060 const char *msg;
10061 unsigned long r_symndx;
10062 asection *sec;
10063 Elf_Internal_Shdr *symtab_hdr;
10064 struct elf_link_hash_entry *h;
10065 bfd_boolean rel_reloc;
10067 rel_reloc = (NEWABI_P (input_bfd)
10068 && mips_elf_rel_relocation_p (input_bfd, input_section,
10069 relocs, rel));
10070 /* Find the relocation howto for this relocation. */
10071 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10073 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10074 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10075 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10077 sec = local_sections[r_symndx];
10078 h = NULL;
10080 else
10082 unsigned long extsymoff;
10084 extsymoff = 0;
10085 if (!elf_bad_symtab (input_bfd))
10086 extsymoff = symtab_hdr->sh_info;
10087 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10088 while (h->root.type == bfd_link_hash_indirect
10089 || h->root.type == bfd_link_hash_warning)
10090 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10092 sec = NULL;
10093 if (h->root.type == bfd_link_hash_defined
10094 || h->root.type == bfd_link_hash_defweak)
10095 sec = h->root.u.def.section;
10098 if (sec != NULL && discarded_section (sec))
10100 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10101 input_section, &rel, &relend,
10102 rel_reloc, howto, contents);
10103 continue;
10106 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10108 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10109 64-bit code, but make sure all their addresses are in the
10110 lowermost or uppermost 32-bit section of the 64-bit address
10111 space. Thus, when they use an R_MIPS_64 they mean what is
10112 usually meant by R_MIPS_32, with the exception that the
10113 stored value is sign-extended to 64 bits. */
10114 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10116 /* On big-endian systems, we need to lie about the position
10117 of the reloc. */
10118 if (bfd_big_endian (input_bfd))
10119 rel->r_offset += 4;
10122 if (!use_saved_addend_p)
10124 /* If these relocations were originally of the REL variety,
10125 we must pull the addend out of the field that will be
10126 relocated. Otherwise, we simply use the contents of the
10127 RELA relocation. */
10128 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10129 relocs, rel))
10131 rela_relocation_p = FALSE;
10132 addend = mips_elf_read_rel_addend (input_bfd, rel,
10133 howto, contents);
10134 if (hi16_reloc_p (r_type)
10135 || (got16_reloc_p (r_type)
10136 && mips_elf_local_relocation_p (input_bfd, rel,
10137 local_sections)))
10139 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10140 contents, &addend))
10142 if (h)
10143 name = h->root.root.string;
10144 else
10145 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10146 local_syms + r_symndx,
10147 sec);
10148 _bfd_error_handler
10149 /* xgettext:c-format */
10150 (_("%B: Can't find matching LO16 reloc against `%s'"
10151 " for %s at %#Lx in section `%A'"),
10152 input_bfd, name,
10153 howto->name, rel->r_offset, input_section);
10156 else
10157 addend <<= howto->rightshift;
10159 else
10160 addend = rel->r_addend;
10161 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10162 local_syms, local_sections, rel);
10165 if (bfd_link_relocatable (info))
10167 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10168 && bfd_big_endian (input_bfd))
10169 rel->r_offset -= 4;
10171 if (!rela_relocation_p && rel->r_addend)
10173 addend += rel->r_addend;
10174 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10175 addend = mips_elf_high (addend);
10176 else if (r_type == R_MIPS_HIGHER)
10177 addend = mips_elf_higher (addend);
10178 else if (r_type == R_MIPS_HIGHEST)
10179 addend = mips_elf_highest (addend);
10180 else
10181 addend >>= howto->rightshift;
10183 /* We use the source mask, rather than the destination
10184 mask because the place to which we are writing will be
10185 source of the addend in the final link. */
10186 addend &= howto->src_mask;
10188 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10189 /* See the comment above about using R_MIPS_64 in the 32-bit
10190 ABI. Here, we need to update the addend. It would be
10191 possible to get away with just using the R_MIPS_32 reloc
10192 but for endianness. */
10194 bfd_vma sign_bits;
10195 bfd_vma low_bits;
10196 bfd_vma high_bits;
10198 if (addend & ((bfd_vma) 1 << 31))
10199 #ifdef BFD64
10200 sign_bits = ((bfd_vma) 1 << 32) - 1;
10201 #else
10202 sign_bits = -1;
10203 #endif
10204 else
10205 sign_bits = 0;
10207 /* If we don't know that we have a 64-bit type,
10208 do two separate stores. */
10209 if (bfd_big_endian (input_bfd))
10211 /* Store the sign-bits (which are most significant)
10212 first. */
10213 low_bits = sign_bits;
10214 high_bits = addend;
10216 else
10218 low_bits = addend;
10219 high_bits = sign_bits;
10221 bfd_put_32 (input_bfd, low_bits,
10222 contents + rel->r_offset);
10223 bfd_put_32 (input_bfd, high_bits,
10224 contents + rel->r_offset + 4);
10225 continue;
10228 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10229 input_bfd, input_section,
10230 contents, FALSE))
10231 return FALSE;
10234 /* Go on to the next relocation. */
10235 continue;
10238 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10239 relocations for the same offset. In that case we are
10240 supposed to treat the output of each relocation as the addend
10241 for the next. */
10242 if (rel + 1 < relend
10243 && rel->r_offset == rel[1].r_offset
10244 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10245 use_saved_addend_p = TRUE;
10246 else
10247 use_saved_addend_p = FALSE;
10249 /* Figure out what value we are supposed to relocate. */
10250 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10251 input_section, info, rel,
10252 addend, howto, local_syms,
10253 local_sections, &value,
10254 &name, &cross_mode_jump_p,
10255 use_saved_addend_p))
10257 case bfd_reloc_continue:
10258 /* There's nothing to do. */
10259 continue;
10261 case bfd_reloc_undefined:
10262 /* mips_elf_calculate_relocation already called the
10263 undefined_symbol callback. There's no real point in
10264 trying to perform the relocation at this point, so we
10265 just skip ahead to the next relocation. */
10266 continue;
10268 case bfd_reloc_notsupported:
10269 msg = _("internal error: unsupported relocation error");
10270 info->callbacks->warning
10271 (info, msg, name, input_bfd, input_section, rel->r_offset);
10272 return FALSE;
10274 case bfd_reloc_overflow:
10275 if (use_saved_addend_p)
10276 /* Ignore overflow until we reach the last relocation for
10277 a given location. */
10279 else
10281 struct mips_elf_link_hash_table *htab;
10283 htab = mips_elf_hash_table (info);
10284 BFD_ASSERT (htab != NULL);
10285 BFD_ASSERT (name != NULL);
10286 if (!htab->small_data_overflow_reported
10287 && (gprel16_reloc_p (howto->type)
10288 || literal_reloc_p (howto->type)))
10290 msg = _("small-data section exceeds 64KB;"
10291 " lower small-data size limit (see option -G)");
10293 htab->small_data_overflow_reported = TRUE;
10294 (*info->callbacks->einfo) ("%P: %s\n", msg);
10296 (*info->callbacks->reloc_overflow)
10297 (info, NULL, name, howto->name, (bfd_vma) 0,
10298 input_bfd, input_section, rel->r_offset);
10300 break;
10302 case bfd_reloc_ok:
10303 break;
10305 case bfd_reloc_outofrange:
10306 msg = NULL;
10307 if (jal_reloc_p (howto->type))
10308 msg = (cross_mode_jump_p
10309 ? _("Cannot convert a jump to JALX "
10310 "for a non-word-aligned address")
10311 : (howto->type == R_MIPS16_26
10312 ? _("Jump to a non-word-aligned address")
10313 : _("Jump to a non-instruction-aligned address")));
10314 else if (b_reloc_p (howto->type))
10315 msg = (cross_mode_jump_p
10316 ? _("Cannot convert a branch to JALX "
10317 "for a non-word-aligned address")
10318 : _("Branch to a non-instruction-aligned address"));
10319 else if (aligned_pcrel_reloc_p (howto->type))
10320 msg = _("PC-relative load from unaligned address");
10321 if (msg)
10323 info->callbacks->einfo
10324 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10325 break;
10327 /* Fall through. */
10329 default:
10330 abort ();
10331 break;
10334 /* If we've got another relocation for the address, keep going
10335 until we reach the last one. */
10336 if (use_saved_addend_p)
10338 addend = value;
10339 continue;
10342 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10343 /* See the comment above about using R_MIPS_64 in the 32-bit
10344 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10345 that calculated the right value. Now, however, we
10346 sign-extend the 32-bit result to 64-bits, and store it as a
10347 64-bit value. We are especially generous here in that we
10348 go to extreme lengths to support this usage on systems with
10349 only a 32-bit VMA. */
10351 bfd_vma sign_bits;
10352 bfd_vma low_bits;
10353 bfd_vma high_bits;
10355 if (value & ((bfd_vma) 1 << 31))
10356 #ifdef BFD64
10357 sign_bits = ((bfd_vma) 1 << 32) - 1;
10358 #else
10359 sign_bits = -1;
10360 #endif
10361 else
10362 sign_bits = 0;
10364 /* If we don't know that we have a 64-bit type,
10365 do two separate stores. */
10366 if (bfd_big_endian (input_bfd))
10368 /* Undo what we did above. */
10369 rel->r_offset -= 4;
10370 /* Store the sign-bits (which are most significant)
10371 first. */
10372 low_bits = sign_bits;
10373 high_bits = value;
10375 else
10377 low_bits = value;
10378 high_bits = sign_bits;
10380 bfd_put_32 (input_bfd, low_bits,
10381 contents + rel->r_offset);
10382 bfd_put_32 (input_bfd, high_bits,
10383 contents + rel->r_offset + 4);
10384 continue;
10387 /* Actually perform the relocation. */
10388 if (! mips_elf_perform_relocation (info, howto, rel, value,
10389 input_bfd, input_section,
10390 contents, cross_mode_jump_p))
10391 return FALSE;
10394 return TRUE;
10397 /* A function that iterates over each entry in la25_stubs and fills
10398 in the code for each one. DATA points to a mips_htab_traverse_info. */
10400 static int
10401 mips_elf_create_la25_stub (void **slot, void *data)
10403 struct mips_htab_traverse_info *hti;
10404 struct mips_elf_link_hash_table *htab;
10405 struct mips_elf_la25_stub *stub;
10406 asection *s;
10407 bfd_byte *loc;
10408 bfd_vma offset, target, target_high, target_low;
10410 stub = (struct mips_elf_la25_stub *) *slot;
10411 hti = (struct mips_htab_traverse_info *) data;
10412 htab = mips_elf_hash_table (hti->info);
10413 BFD_ASSERT (htab != NULL);
10415 /* Create the section contents, if we haven't already. */
10416 s = stub->stub_section;
10417 loc = s->contents;
10418 if (loc == NULL)
10420 loc = bfd_malloc (s->size);
10421 if (loc == NULL)
10423 hti->error = TRUE;
10424 return FALSE;
10426 s->contents = loc;
10429 /* Work out where in the section this stub should go. */
10430 offset = stub->offset;
10432 /* Work out the target address. */
10433 target = mips_elf_get_la25_target (stub, &s);
10434 target += s->output_section->vma + s->output_offset;
10436 target_high = ((target + 0x8000) >> 16) & 0xffff;
10437 target_low = (target & 0xffff);
10439 if (stub->stub_section != htab->strampoline)
10441 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10442 of the section and write the two instructions at the end. */
10443 memset (loc, 0, offset);
10444 loc += offset;
10445 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10447 bfd_put_micromips_32 (hti->output_bfd,
10448 LA25_LUI_MICROMIPS (target_high),
10449 loc);
10450 bfd_put_micromips_32 (hti->output_bfd,
10451 LA25_ADDIU_MICROMIPS (target_low),
10452 loc + 4);
10454 else
10456 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10457 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10460 else
10462 /* This is trampoline. */
10463 loc += offset;
10464 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10466 bfd_put_micromips_32 (hti->output_bfd,
10467 LA25_LUI_MICROMIPS (target_high), loc);
10468 bfd_put_micromips_32 (hti->output_bfd,
10469 LA25_J_MICROMIPS (target), loc + 4);
10470 bfd_put_micromips_32 (hti->output_bfd,
10471 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10472 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10474 else
10476 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10477 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10478 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10479 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10482 return TRUE;
10485 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10486 adjust it appropriately now. */
10488 static void
10489 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10490 const char *name, Elf_Internal_Sym *sym)
10492 /* The linker script takes care of providing names and values for
10493 these, but we must place them into the right sections. */
10494 static const char* const text_section_symbols[] = {
10495 "_ftext",
10496 "_etext",
10497 "__dso_displacement",
10498 "__elf_header",
10499 "__program_header_table",
10500 NULL
10503 static const char* const data_section_symbols[] = {
10504 "_fdata",
10505 "_edata",
10506 "_end",
10507 "_fbss",
10508 NULL
10511 const char* const *p;
10512 int i;
10514 for (i = 0; i < 2; ++i)
10515 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10517 ++p)
10518 if (strcmp (*p, name) == 0)
10520 /* All of these symbols are given type STT_SECTION by the
10521 IRIX6 linker. */
10522 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10523 sym->st_other = STO_PROTECTED;
10525 /* The IRIX linker puts these symbols in special sections. */
10526 if (i == 0)
10527 sym->st_shndx = SHN_MIPS_TEXT;
10528 else
10529 sym->st_shndx = SHN_MIPS_DATA;
10531 break;
10535 /* Finish up dynamic symbol handling. We set the contents of various
10536 dynamic sections here. */
10538 bfd_boolean
10539 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10540 struct bfd_link_info *info,
10541 struct elf_link_hash_entry *h,
10542 Elf_Internal_Sym *sym)
10544 bfd *dynobj;
10545 asection *sgot;
10546 struct mips_got_info *g, *gg;
10547 const char *name;
10548 int idx;
10549 struct mips_elf_link_hash_table *htab;
10550 struct mips_elf_link_hash_entry *hmips;
10552 htab = mips_elf_hash_table (info);
10553 BFD_ASSERT (htab != NULL);
10554 dynobj = elf_hash_table (info)->dynobj;
10555 hmips = (struct mips_elf_link_hash_entry *) h;
10557 BFD_ASSERT (!htab->is_vxworks);
10559 if (h->plt.plist != NULL
10560 && (h->plt.plist->mips_offset != MINUS_ONE
10561 || h->plt.plist->comp_offset != MINUS_ONE))
10563 /* We've decided to create a PLT entry for this symbol. */
10564 bfd_byte *loc;
10565 bfd_vma header_address, got_address;
10566 bfd_vma got_address_high, got_address_low, load;
10567 bfd_vma got_index;
10568 bfd_vma isa_bit;
10570 got_index = h->plt.plist->gotplt_index;
10572 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10573 BFD_ASSERT (h->dynindx != -1);
10574 BFD_ASSERT (htab->root.splt != NULL);
10575 BFD_ASSERT (got_index != MINUS_ONE);
10576 BFD_ASSERT (!h->def_regular);
10578 /* Calculate the address of the PLT header. */
10579 isa_bit = htab->plt_header_is_comp;
10580 header_address = (htab->root.splt->output_section->vma
10581 + htab->root.splt->output_offset + isa_bit);
10583 /* Calculate the address of the .got.plt entry. */
10584 got_address = (htab->root.sgotplt->output_section->vma
10585 + htab->root.sgotplt->output_offset
10586 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10588 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10589 got_address_low = got_address & 0xffff;
10591 /* Initially point the .got.plt entry at the PLT header. */
10592 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10593 if (ABI_64_P (output_bfd))
10594 bfd_put_64 (output_bfd, header_address, loc);
10595 else
10596 bfd_put_32 (output_bfd, header_address, loc);
10598 /* Now handle the PLT itself. First the standard entry (the order
10599 does not matter, we just have to pick one). */
10600 if (h->plt.plist->mips_offset != MINUS_ONE)
10602 const bfd_vma *plt_entry;
10603 bfd_vma plt_offset;
10605 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10607 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10609 /* Find out where the .plt entry should go. */
10610 loc = htab->root.splt->contents + plt_offset;
10612 /* Pick the load opcode. */
10613 load = MIPS_ELF_LOAD_WORD (output_bfd);
10615 /* Fill in the PLT entry itself. */
10617 if (MIPSR6_P (output_bfd))
10618 plt_entry = mipsr6_exec_plt_entry;
10619 else
10620 plt_entry = mips_exec_plt_entry;
10621 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10622 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10623 loc + 4);
10625 if (! LOAD_INTERLOCKS_P (output_bfd))
10627 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10628 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10630 else
10632 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10633 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10634 loc + 12);
10638 /* Now the compressed entry. They come after any standard ones. */
10639 if (h->plt.plist->comp_offset != MINUS_ONE)
10641 bfd_vma plt_offset;
10643 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10644 + h->plt.plist->comp_offset);
10646 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10648 /* Find out where the .plt entry should go. */
10649 loc = htab->root.splt->contents + plt_offset;
10651 /* Fill in the PLT entry itself. */
10652 if (!MICROMIPS_P (output_bfd))
10654 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10656 bfd_put_16 (output_bfd, plt_entry[0], loc);
10657 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10658 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10659 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10660 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10661 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10662 bfd_put_32 (output_bfd, got_address, loc + 12);
10664 else if (htab->insn32)
10666 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10668 bfd_put_16 (output_bfd, plt_entry[0], loc);
10669 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10670 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10671 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10672 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10673 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10674 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10675 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10677 else
10679 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10680 bfd_signed_vma gotpc_offset;
10681 bfd_vma loc_address;
10683 BFD_ASSERT (got_address % 4 == 0);
10685 loc_address = (htab->root.splt->output_section->vma
10686 + htab->root.splt->output_offset + plt_offset);
10687 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10689 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10690 if (gotpc_offset + 0x1000000 >= 0x2000000)
10692 _bfd_error_handler
10693 /* xgettext:c-format */
10694 (_("%B: `%A' offset of %Ld from `%A' "
10695 "beyond the range of ADDIUPC"),
10696 output_bfd,
10697 htab->root.sgotplt->output_section,
10698 gotpc_offset,
10699 htab->root.splt->output_section);
10700 bfd_set_error (bfd_error_no_error);
10701 return FALSE;
10703 bfd_put_16 (output_bfd,
10704 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10705 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10706 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10707 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10708 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10709 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10713 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10714 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10715 got_index - 2, h->dynindx,
10716 R_MIPS_JUMP_SLOT, got_address);
10718 /* We distinguish between PLT entries and lazy-binding stubs by
10719 giving the former an st_other value of STO_MIPS_PLT. Set the
10720 flag and leave the value if there are any relocations in the
10721 binary where pointer equality matters. */
10722 sym->st_shndx = SHN_UNDEF;
10723 if (h->pointer_equality_needed)
10724 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10725 else
10727 sym->st_value = 0;
10728 sym->st_other = 0;
10732 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10734 /* We've decided to create a lazy-binding stub. */
10735 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10736 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10737 bfd_vma stub_size = htab->function_stub_size;
10738 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10739 bfd_vma isa_bit = micromips_p;
10740 bfd_vma stub_big_size;
10742 if (!micromips_p)
10743 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10744 else if (htab->insn32)
10745 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10746 else
10747 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10749 /* This symbol has a stub. Set it up. */
10751 BFD_ASSERT (h->dynindx != -1);
10753 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10755 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10756 sign extension at runtime in the stub, resulting in a negative
10757 index value. */
10758 if (h->dynindx & ~0x7fffffff)
10759 return FALSE;
10761 /* Fill the stub. */
10762 if (micromips_p)
10764 idx = 0;
10765 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10766 stub + idx);
10767 idx += 4;
10768 if (htab->insn32)
10770 bfd_put_micromips_32 (output_bfd,
10771 STUB_MOVE32_MICROMIPS, stub + idx);
10772 idx += 4;
10774 else
10776 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10777 idx += 2;
10779 if (stub_size == stub_big_size)
10781 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10783 bfd_put_micromips_32 (output_bfd,
10784 STUB_LUI_MICROMIPS (dynindx_hi),
10785 stub + idx);
10786 idx += 4;
10788 if (htab->insn32)
10790 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10791 stub + idx);
10792 idx += 4;
10794 else
10796 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10797 idx += 2;
10800 /* If a large stub is not required and sign extension is not a
10801 problem, then use legacy code in the stub. */
10802 if (stub_size == stub_big_size)
10803 bfd_put_micromips_32 (output_bfd,
10804 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10805 stub + idx);
10806 else if (h->dynindx & ~0x7fff)
10807 bfd_put_micromips_32 (output_bfd,
10808 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10809 stub + idx);
10810 else
10811 bfd_put_micromips_32 (output_bfd,
10812 STUB_LI16S_MICROMIPS (output_bfd,
10813 h->dynindx),
10814 stub + idx);
10816 else
10818 idx = 0;
10819 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10820 idx += 4;
10821 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10822 idx += 4;
10823 if (stub_size == stub_big_size)
10825 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10826 stub + idx);
10827 idx += 4;
10829 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10830 idx += 4;
10832 /* If a large stub is not required and sign extension is not a
10833 problem, then use legacy code in the stub. */
10834 if (stub_size == stub_big_size)
10835 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10836 stub + idx);
10837 else if (h->dynindx & ~0x7fff)
10838 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10839 stub + idx);
10840 else
10841 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10842 stub + idx);
10845 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10846 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10847 stub, stub_size);
10849 /* Mark the symbol as undefined. stub_offset != -1 occurs
10850 only for the referenced symbol. */
10851 sym->st_shndx = SHN_UNDEF;
10853 /* The run-time linker uses the st_value field of the symbol
10854 to reset the global offset table entry for this external
10855 to its stub address when unlinking a shared object. */
10856 sym->st_value = (htab->sstubs->output_section->vma
10857 + htab->sstubs->output_offset
10858 + h->plt.plist->stub_offset
10859 + isa_bit);
10860 sym->st_other = other;
10863 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10864 refer to the stub, since only the stub uses the standard calling
10865 conventions. */
10866 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10868 BFD_ASSERT (hmips->need_fn_stub);
10869 sym->st_value = (hmips->fn_stub->output_section->vma
10870 + hmips->fn_stub->output_offset);
10871 sym->st_size = hmips->fn_stub->size;
10872 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10875 BFD_ASSERT (h->dynindx != -1
10876 || h->forced_local);
10878 sgot = htab->root.sgot;
10879 g = htab->got_info;
10880 BFD_ASSERT (g != NULL);
10882 /* Run through the global symbol table, creating GOT entries for all
10883 the symbols that need them. */
10884 if (hmips->global_got_area != GGA_NONE)
10886 bfd_vma offset;
10887 bfd_vma value;
10889 value = sym->st_value;
10890 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10891 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10894 if (hmips->global_got_area != GGA_NONE && g->next)
10896 struct mips_got_entry e, *p;
10897 bfd_vma entry;
10898 bfd_vma offset;
10900 gg = g;
10902 e.abfd = output_bfd;
10903 e.symndx = -1;
10904 e.d.h = hmips;
10905 e.tls_type = GOT_TLS_NONE;
10907 for (g = g->next; g->next != gg; g = g->next)
10909 if (g->got_entries
10910 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10911 &e)))
10913 offset = p->gotidx;
10914 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10915 if (bfd_link_pic (info)
10916 || (elf_hash_table (info)->dynamic_sections_created
10917 && p->d.h != NULL
10918 && p->d.h->root.def_dynamic
10919 && !p->d.h->root.def_regular))
10921 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10922 the various compatibility problems, it's easier to mock
10923 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10924 mips_elf_create_dynamic_relocation to calculate the
10925 appropriate addend. */
10926 Elf_Internal_Rela rel[3];
10928 memset (rel, 0, sizeof (rel));
10929 if (ABI_64_P (output_bfd))
10930 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10931 else
10932 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10933 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10935 entry = 0;
10936 if (! (mips_elf_create_dynamic_relocation
10937 (output_bfd, info, rel,
10938 e.d.h, NULL, sym->st_value, &entry, sgot)))
10939 return FALSE;
10941 else
10942 entry = sym->st_value;
10943 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10948 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10949 name = h->root.root.string;
10950 if (h == elf_hash_table (info)->hdynamic
10951 || h == elf_hash_table (info)->hgot)
10952 sym->st_shndx = SHN_ABS;
10953 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10954 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10956 sym->st_shndx = SHN_ABS;
10957 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10958 sym->st_value = 1;
10960 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10962 sym->st_shndx = SHN_ABS;
10963 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10964 sym->st_value = elf_gp (output_bfd);
10966 else if (SGI_COMPAT (output_bfd))
10968 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10969 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10971 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10972 sym->st_other = STO_PROTECTED;
10973 sym->st_value = 0;
10974 sym->st_shndx = SHN_MIPS_DATA;
10976 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10978 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10979 sym->st_other = STO_PROTECTED;
10980 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10981 sym->st_shndx = SHN_ABS;
10983 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10985 if (h->type == STT_FUNC)
10986 sym->st_shndx = SHN_MIPS_TEXT;
10987 else if (h->type == STT_OBJECT)
10988 sym->st_shndx = SHN_MIPS_DATA;
10992 /* Emit a copy reloc, if needed. */
10993 if (h->needs_copy)
10995 asection *s;
10996 bfd_vma symval;
10998 BFD_ASSERT (h->dynindx != -1);
10999 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11001 s = mips_elf_rel_dyn_section (info, FALSE);
11002 symval = (h->root.u.def.section->output_section->vma
11003 + h->root.u.def.section->output_offset
11004 + h->root.u.def.value);
11005 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11006 h->dynindx, R_MIPS_COPY, symval);
11009 /* Handle the IRIX6-specific symbols. */
11010 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11011 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11013 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11014 to treat compressed symbols like any other. */
11015 if (ELF_ST_IS_MIPS16 (sym->st_other))
11017 BFD_ASSERT (sym->st_value & 1);
11018 sym->st_other -= STO_MIPS16;
11020 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11022 BFD_ASSERT (sym->st_value & 1);
11023 sym->st_other -= STO_MICROMIPS;
11026 return TRUE;
11029 /* Likewise, for VxWorks. */
11031 bfd_boolean
11032 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11033 struct bfd_link_info *info,
11034 struct elf_link_hash_entry *h,
11035 Elf_Internal_Sym *sym)
11037 bfd *dynobj;
11038 asection *sgot;
11039 struct mips_got_info *g;
11040 struct mips_elf_link_hash_table *htab;
11041 struct mips_elf_link_hash_entry *hmips;
11043 htab = mips_elf_hash_table (info);
11044 BFD_ASSERT (htab != NULL);
11045 dynobj = elf_hash_table (info)->dynobj;
11046 hmips = (struct mips_elf_link_hash_entry *) h;
11048 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11050 bfd_byte *loc;
11051 bfd_vma plt_address, got_address, got_offset, branch_offset;
11052 Elf_Internal_Rela rel;
11053 static const bfd_vma *plt_entry;
11054 bfd_vma gotplt_index;
11055 bfd_vma plt_offset;
11057 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11058 gotplt_index = h->plt.plist->gotplt_index;
11060 BFD_ASSERT (h->dynindx != -1);
11061 BFD_ASSERT (htab->root.splt != NULL);
11062 BFD_ASSERT (gotplt_index != MINUS_ONE);
11063 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11065 /* Calculate the address of the .plt entry. */
11066 plt_address = (htab->root.splt->output_section->vma
11067 + htab->root.splt->output_offset
11068 + plt_offset);
11070 /* Calculate the address of the .got.plt entry. */
11071 got_address = (htab->root.sgotplt->output_section->vma
11072 + htab->root.sgotplt->output_offset
11073 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11075 /* Calculate the offset of the .got.plt entry from
11076 _GLOBAL_OFFSET_TABLE_. */
11077 got_offset = mips_elf_gotplt_index (info, h);
11079 /* Calculate the offset for the branch at the start of the PLT
11080 entry. The branch jumps to the beginning of .plt. */
11081 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11083 /* Fill in the initial value of the .got.plt entry. */
11084 bfd_put_32 (output_bfd, plt_address,
11085 (htab->root.sgotplt->contents
11086 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11088 /* Find out where the .plt entry should go. */
11089 loc = htab->root.splt->contents + plt_offset;
11091 if (bfd_link_pic (info))
11093 plt_entry = mips_vxworks_shared_plt_entry;
11094 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11095 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11097 else
11099 bfd_vma got_address_high, got_address_low;
11101 plt_entry = mips_vxworks_exec_plt_entry;
11102 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11103 got_address_low = got_address & 0xffff;
11105 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11106 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11107 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11108 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11109 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11110 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11111 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11112 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11114 loc = (htab->srelplt2->contents
11115 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11117 /* Emit a relocation for the .got.plt entry. */
11118 rel.r_offset = got_address;
11119 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11120 rel.r_addend = plt_offset;
11121 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11123 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11124 loc += sizeof (Elf32_External_Rela);
11125 rel.r_offset = plt_address + 8;
11126 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11127 rel.r_addend = got_offset;
11128 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11130 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11131 loc += sizeof (Elf32_External_Rela);
11132 rel.r_offset += 4;
11133 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11134 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11137 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11138 loc = (htab->root.srelplt->contents
11139 + gotplt_index * sizeof (Elf32_External_Rela));
11140 rel.r_offset = got_address;
11141 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11142 rel.r_addend = 0;
11143 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11145 if (!h->def_regular)
11146 sym->st_shndx = SHN_UNDEF;
11149 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11151 sgot = htab->root.sgot;
11152 g = htab->got_info;
11153 BFD_ASSERT (g != NULL);
11155 /* See if this symbol has an entry in the GOT. */
11156 if (hmips->global_got_area != GGA_NONE)
11158 bfd_vma offset;
11159 Elf_Internal_Rela outrel;
11160 bfd_byte *loc;
11161 asection *s;
11163 /* Install the symbol value in the GOT. */
11164 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11165 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11167 /* Add a dynamic relocation for it. */
11168 s = mips_elf_rel_dyn_section (info, FALSE);
11169 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11170 outrel.r_offset = (sgot->output_section->vma
11171 + sgot->output_offset
11172 + offset);
11173 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11174 outrel.r_addend = 0;
11175 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11178 /* Emit a copy reloc, if needed. */
11179 if (h->needs_copy)
11181 Elf_Internal_Rela rel;
11182 asection *srel;
11183 bfd_byte *loc;
11185 BFD_ASSERT (h->dynindx != -1);
11187 rel.r_offset = (h->root.u.def.section->output_section->vma
11188 + h->root.u.def.section->output_offset
11189 + h->root.u.def.value);
11190 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11191 rel.r_addend = 0;
11192 if (h->root.u.def.section == htab->root.sdynrelro)
11193 srel = htab->root.sreldynrelro;
11194 else
11195 srel = htab->root.srelbss;
11196 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11197 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11198 ++srel->reloc_count;
11201 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11202 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11203 sym->st_value &= ~1;
11205 return TRUE;
11208 /* Write out a plt0 entry to the beginning of .plt. */
11210 static bfd_boolean
11211 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11213 bfd_byte *loc;
11214 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11215 static const bfd_vma *plt_entry;
11216 struct mips_elf_link_hash_table *htab;
11218 htab = mips_elf_hash_table (info);
11219 BFD_ASSERT (htab != NULL);
11221 if (ABI_64_P (output_bfd))
11222 plt_entry = mips_n64_exec_plt0_entry;
11223 else if (ABI_N32_P (output_bfd))
11224 plt_entry = mips_n32_exec_plt0_entry;
11225 else if (!htab->plt_header_is_comp)
11226 plt_entry = mips_o32_exec_plt0_entry;
11227 else if (htab->insn32)
11228 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11229 else
11230 plt_entry = micromips_o32_exec_plt0_entry;
11232 /* Calculate the value of .got.plt. */
11233 gotplt_value = (htab->root.sgotplt->output_section->vma
11234 + htab->root.sgotplt->output_offset);
11235 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11236 gotplt_value_low = gotplt_value & 0xffff;
11238 /* The PLT sequence is not safe for N64 if .got.plt's address can
11239 not be loaded in two instructions. */
11240 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11241 || ~(gotplt_value | 0x7fffffff) == 0);
11243 /* Install the PLT header. */
11244 loc = htab->root.splt->contents;
11245 if (plt_entry == micromips_o32_exec_plt0_entry)
11247 bfd_vma gotpc_offset;
11248 bfd_vma loc_address;
11249 size_t i;
11251 BFD_ASSERT (gotplt_value % 4 == 0);
11253 loc_address = (htab->root.splt->output_section->vma
11254 + htab->root.splt->output_offset);
11255 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11257 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11258 if (gotpc_offset + 0x1000000 >= 0x2000000)
11260 _bfd_error_handler
11261 /* xgettext:c-format */
11262 (_("%B: `%A' offset of %Ld from `%A' beyond the range of ADDIUPC"),
11263 output_bfd,
11264 htab->root.sgotplt->output_section,
11265 gotpc_offset,
11266 htab->root.splt->output_section);
11267 bfd_set_error (bfd_error_no_error);
11268 return FALSE;
11270 bfd_put_16 (output_bfd,
11271 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11272 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11273 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11274 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11276 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11278 size_t i;
11280 bfd_put_16 (output_bfd, plt_entry[0], loc);
11281 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11282 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11283 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11284 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11285 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11286 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11287 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11289 else
11291 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11292 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11293 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11294 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11295 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11296 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11297 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11298 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11301 return TRUE;
11304 /* Install the PLT header for a VxWorks executable and finalize the
11305 contents of .rela.plt.unloaded. */
11307 static void
11308 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11310 Elf_Internal_Rela rela;
11311 bfd_byte *loc;
11312 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11313 static const bfd_vma *plt_entry;
11314 struct mips_elf_link_hash_table *htab;
11316 htab = mips_elf_hash_table (info);
11317 BFD_ASSERT (htab != NULL);
11319 plt_entry = mips_vxworks_exec_plt0_entry;
11321 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11322 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11323 + htab->root.hgot->root.u.def.section->output_offset
11324 + htab->root.hgot->root.u.def.value);
11326 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11327 got_value_low = got_value & 0xffff;
11329 /* Calculate the address of the PLT header. */
11330 plt_address = (htab->root.splt->output_section->vma
11331 + htab->root.splt->output_offset);
11333 /* Install the PLT header. */
11334 loc = htab->root.splt->contents;
11335 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11336 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11337 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11338 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11339 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11340 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11342 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11343 loc = htab->srelplt2->contents;
11344 rela.r_offset = plt_address;
11345 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11346 rela.r_addend = 0;
11347 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11348 loc += sizeof (Elf32_External_Rela);
11350 /* Output the relocation for the following addiu of
11351 %lo(_GLOBAL_OFFSET_TABLE_). */
11352 rela.r_offset += 4;
11353 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11354 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11355 loc += sizeof (Elf32_External_Rela);
11357 /* Fix up the remaining relocations. They may have the wrong
11358 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11359 in which symbols were output. */
11360 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11362 Elf_Internal_Rela rel;
11364 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11365 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11366 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11367 loc += sizeof (Elf32_External_Rela);
11369 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11370 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11371 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11372 loc += sizeof (Elf32_External_Rela);
11374 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11375 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11376 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11377 loc += sizeof (Elf32_External_Rela);
11381 /* Install the PLT header for a VxWorks shared library. */
11383 static void
11384 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11386 unsigned int i;
11387 struct mips_elf_link_hash_table *htab;
11389 htab = mips_elf_hash_table (info);
11390 BFD_ASSERT (htab != NULL);
11392 /* We just need to copy the entry byte-by-byte. */
11393 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11394 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11395 htab->root.splt->contents + i * 4);
11398 /* Finish up the dynamic sections. */
11400 bfd_boolean
11401 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11402 struct bfd_link_info *info)
11404 bfd *dynobj;
11405 asection *sdyn;
11406 asection *sgot;
11407 struct mips_got_info *gg, *g;
11408 struct mips_elf_link_hash_table *htab;
11410 htab = mips_elf_hash_table (info);
11411 BFD_ASSERT (htab != NULL);
11413 dynobj = elf_hash_table (info)->dynobj;
11415 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11417 sgot = htab->root.sgot;
11418 gg = htab->got_info;
11420 if (elf_hash_table (info)->dynamic_sections_created)
11422 bfd_byte *b;
11423 int dyn_to_skip = 0, dyn_skipped = 0;
11425 BFD_ASSERT (sdyn != NULL);
11426 BFD_ASSERT (gg != NULL);
11428 g = mips_elf_bfd_got (output_bfd, FALSE);
11429 BFD_ASSERT (g != NULL);
11431 for (b = sdyn->contents;
11432 b < sdyn->contents + sdyn->size;
11433 b += MIPS_ELF_DYN_SIZE (dynobj))
11435 Elf_Internal_Dyn dyn;
11436 const char *name;
11437 size_t elemsize;
11438 asection *s;
11439 bfd_boolean swap_out_p;
11441 /* Read in the current dynamic entry. */
11442 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11444 /* Assume that we're going to modify it and write it out. */
11445 swap_out_p = TRUE;
11447 switch (dyn.d_tag)
11449 case DT_RELENT:
11450 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11451 break;
11453 case DT_RELAENT:
11454 BFD_ASSERT (htab->is_vxworks);
11455 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11456 break;
11458 case DT_STRSZ:
11459 /* Rewrite DT_STRSZ. */
11460 dyn.d_un.d_val =
11461 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11462 break;
11464 case DT_PLTGOT:
11465 s = htab->root.sgot;
11466 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11467 break;
11469 case DT_MIPS_PLTGOT:
11470 s = htab->root.sgotplt;
11471 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11472 break;
11474 case DT_MIPS_RLD_VERSION:
11475 dyn.d_un.d_val = 1; /* XXX */
11476 break;
11478 case DT_MIPS_FLAGS:
11479 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11480 break;
11482 case DT_MIPS_TIME_STAMP:
11484 time_t t;
11485 time (&t);
11486 dyn.d_un.d_val = t;
11488 break;
11490 case DT_MIPS_ICHECKSUM:
11491 /* XXX FIXME: */
11492 swap_out_p = FALSE;
11493 break;
11495 case DT_MIPS_IVERSION:
11496 /* XXX FIXME: */
11497 swap_out_p = FALSE;
11498 break;
11500 case DT_MIPS_BASE_ADDRESS:
11501 s = output_bfd->sections;
11502 BFD_ASSERT (s != NULL);
11503 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11504 break;
11506 case DT_MIPS_LOCAL_GOTNO:
11507 dyn.d_un.d_val = g->local_gotno;
11508 break;
11510 case DT_MIPS_UNREFEXTNO:
11511 /* The index into the dynamic symbol table which is the
11512 entry of the first external symbol that is not
11513 referenced within the same object. */
11514 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11515 break;
11517 case DT_MIPS_GOTSYM:
11518 if (htab->global_gotsym)
11520 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11521 break;
11523 /* In case if we don't have global got symbols we default
11524 to setting DT_MIPS_GOTSYM to the same value as
11525 DT_MIPS_SYMTABNO. */
11526 /* Fall through. */
11528 case DT_MIPS_SYMTABNO:
11529 name = ".dynsym";
11530 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11531 s = bfd_get_linker_section (dynobj, name);
11533 if (s != NULL)
11534 dyn.d_un.d_val = s->size / elemsize;
11535 else
11536 dyn.d_un.d_val = 0;
11537 break;
11539 case DT_MIPS_HIPAGENO:
11540 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11541 break;
11543 case DT_MIPS_RLD_MAP:
11545 struct elf_link_hash_entry *h;
11546 h = mips_elf_hash_table (info)->rld_symbol;
11547 if (!h)
11549 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11550 swap_out_p = FALSE;
11551 break;
11553 s = h->root.u.def.section;
11555 /* The MIPS_RLD_MAP tag stores the absolute address of the
11556 debug pointer. */
11557 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11558 + h->root.u.def.value);
11560 break;
11562 case DT_MIPS_RLD_MAP_REL:
11564 struct elf_link_hash_entry *h;
11565 bfd_vma dt_addr, rld_addr;
11566 h = mips_elf_hash_table (info)->rld_symbol;
11567 if (!h)
11569 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11570 swap_out_p = FALSE;
11571 break;
11573 s = h->root.u.def.section;
11575 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11576 pointer, relative to the address of the tag. */
11577 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11578 + (b - sdyn->contents));
11579 rld_addr = (s->output_section->vma + s->output_offset
11580 + h->root.u.def.value);
11581 dyn.d_un.d_ptr = rld_addr - dt_addr;
11583 break;
11585 case DT_MIPS_OPTIONS:
11586 s = (bfd_get_section_by_name
11587 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11588 dyn.d_un.d_ptr = s->vma;
11589 break;
11591 case DT_PLTREL:
11592 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11593 if (htab->is_vxworks)
11594 dyn.d_un.d_val = DT_RELA;
11595 else
11596 dyn.d_un.d_val = DT_REL;
11597 break;
11599 case DT_PLTRELSZ:
11600 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11601 dyn.d_un.d_val = htab->root.srelplt->size;
11602 break;
11604 case DT_JMPREL:
11605 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11606 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11607 + htab->root.srelplt->output_offset);
11608 break;
11610 case DT_TEXTREL:
11611 /* If we didn't need any text relocations after all, delete
11612 the dynamic tag. */
11613 if (!(info->flags & DF_TEXTREL))
11615 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11616 swap_out_p = FALSE;
11618 break;
11620 case DT_FLAGS:
11621 /* If we didn't need any text relocations after all, clear
11622 DF_TEXTREL from DT_FLAGS. */
11623 if (!(info->flags & DF_TEXTREL))
11624 dyn.d_un.d_val &= ~DF_TEXTREL;
11625 else
11626 swap_out_p = FALSE;
11627 break;
11629 default:
11630 swap_out_p = FALSE;
11631 if (htab->is_vxworks
11632 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11633 swap_out_p = TRUE;
11634 break;
11637 if (swap_out_p || dyn_skipped)
11638 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11639 (dynobj, &dyn, b - dyn_skipped);
11641 if (dyn_to_skip)
11643 dyn_skipped += dyn_to_skip;
11644 dyn_to_skip = 0;
11648 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11649 if (dyn_skipped > 0)
11650 memset (b - dyn_skipped, 0, dyn_skipped);
11653 if (sgot != NULL && sgot->size > 0
11654 && !bfd_is_abs_section (sgot->output_section))
11656 if (htab->is_vxworks)
11658 /* The first entry of the global offset table points to the
11659 ".dynamic" section. The second is initialized by the
11660 loader and contains the shared library identifier.
11661 The third is also initialized by the loader and points
11662 to the lazy resolution stub. */
11663 MIPS_ELF_PUT_WORD (output_bfd,
11664 sdyn->output_offset + sdyn->output_section->vma,
11665 sgot->contents);
11666 MIPS_ELF_PUT_WORD (output_bfd, 0,
11667 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11668 MIPS_ELF_PUT_WORD (output_bfd, 0,
11669 sgot->contents
11670 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11672 else
11674 /* The first entry of the global offset table will be filled at
11675 runtime. The second entry will be used by some runtime loaders.
11676 This isn't the case of IRIX rld. */
11677 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11678 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11679 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11682 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11683 = MIPS_ELF_GOT_SIZE (output_bfd);
11686 /* Generate dynamic relocations for the non-primary gots. */
11687 if (gg != NULL && gg->next)
11689 Elf_Internal_Rela rel[3];
11690 bfd_vma addend = 0;
11692 memset (rel, 0, sizeof (rel));
11693 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11695 for (g = gg->next; g->next != gg; g = g->next)
11697 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11698 + g->next->tls_gotno;
11700 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11701 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11702 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11703 sgot->contents
11704 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11706 if (! bfd_link_pic (info))
11707 continue;
11709 for (; got_index < g->local_gotno; got_index++)
11711 if (got_index >= g->assigned_low_gotno
11712 && got_index <= g->assigned_high_gotno)
11713 continue;
11715 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11716 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11717 if (!(mips_elf_create_dynamic_relocation
11718 (output_bfd, info, rel, NULL,
11719 bfd_abs_section_ptr,
11720 0, &addend, sgot)))
11721 return FALSE;
11722 BFD_ASSERT (addend == 0);
11727 /* The generation of dynamic relocations for the non-primary gots
11728 adds more dynamic relocations. We cannot count them until
11729 here. */
11731 if (elf_hash_table (info)->dynamic_sections_created)
11733 bfd_byte *b;
11734 bfd_boolean swap_out_p;
11736 BFD_ASSERT (sdyn != NULL);
11738 for (b = sdyn->contents;
11739 b < sdyn->contents + sdyn->size;
11740 b += MIPS_ELF_DYN_SIZE (dynobj))
11742 Elf_Internal_Dyn dyn;
11743 asection *s;
11745 /* Read in the current dynamic entry. */
11746 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11748 /* Assume that we're going to modify it and write it out. */
11749 swap_out_p = TRUE;
11751 switch (dyn.d_tag)
11753 case DT_RELSZ:
11754 /* Reduce DT_RELSZ to account for any relocations we
11755 decided not to make. This is for the n64 irix rld,
11756 which doesn't seem to apply any relocations if there
11757 are trailing null entries. */
11758 s = mips_elf_rel_dyn_section (info, FALSE);
11759 dyn.d_un.d_val = (s->reloc_count
11760 * (ABI_64_P (output_bfd)
11761 ? sizeof (Elf64_Mips_External_Rel)
11762 : sizeof (Elf32_External_Rel)));
11763 /* Adjust the section size too. Tools like the prelinker
11764 can reasonably expect the values to the same. */
11765 elf_section_data (s->output_section)->this_hdr.sh_size
11766 = dyn.d_un.d_val;
11767 break;
11769 default:
11770 swap_out_p = FALSE;
11771 break;
11774 if (swap_out_p)
11775 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11776 (dynobj, &dyn, b);
11781 asection *s;
11782 Elf32_compact_rel cpt;
11784 if (SGI_COMPAT (output_bfd))
11786 /* Write .compact_rel section out. */
11787 s = bfd_get_linker_section (dynobj, ".compact_rel");
11788 if (s != NULL)
11790 cpt.id1 = 1;
11791 cpt.num = s->reloc_count;
11792 cpt.id2 = 2;
11793 cpt.offset = (s->output_section->filepos
11794 + sizeof (Elf32_External_compact_rel));
11795 cpt.reserved0 = 0;
11796 cpt.reserved1 = 0;
11797 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11798 ((Elf32_External_compact_rel *)
11799 s->contents));
11801 /* Clean up a dummy stub function entry in .text. */
11802 if (htab->sstubs != NULL)
11804 file_ptr dummy_offset;
11806 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11807 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11808 memset (htab->sstubs->contents + dummy_offset, 0,
11809 htab->function_stub_size);
11814 /* The psABI says that the dynamic relocations must be sorted in
11815 increasing order of r_symndx. The VxWorks EABI doesn't require
11816 this, and because the code below handles REL rather than RELA
11817 relocations, using it for VxWorks would be outright harmful. */
11818 if (!htab->is_vxworks)
11820 s = mips_elf_rel_dyn_section (info, FALSE);
11821 if (s != NULL
11822 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11824 reldyn_sorting_bfd = output_bfd;
11826 if (ABI_64_P (output_bfd))
11827 qsort ((Elf64_External_Rel *) s->contents + 1,
11828 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11829 sort_dynamic_relocs_64);
11830 else
11831 qsort ((Elf32_External_Rel *) s->contents + 1,
11832 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11833 sort_dynamic_relocs);
11838 if (htab->root.splt && htab->root.splt->size > 0)
11840 if (htab->is_vxworks)
11842 if (bfd_link_pic (info))
11843 mips_vxworks_finish_shared_plt (output_bfd, info);
11844 else
11845 mips_vxworks_finish_exec_plt (output_bfd, info);
11847 else
11849 BFD_ASSERT (!bfd_link_pic (info));
11850 if (!mips_finish_exec_plt (output_bfd, info))
11851 return FALSE;
11854 return TRUE;
11858 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11860 static void
11861 mips_set_isa_flags (bfd *abfd)
11863 flagword val;
11865 switch (bfd_get_mach (abfd))
11867 default:
11868 case bfd_mach_mips3000:
11869 val = E_MIPS_ARCH_1;
11870 break;
11872 case bfd_mach_mips3900:
11873 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11874 break;
11876 case bfd_mach_mips6000:
11877 val = E_MIPS_ARCH_2;
11878 break;
11880 case bfd_mach_mips4010:
11881 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11882 break;
11884 case bfd_mach_mips4000:
11885 case bfd_mach_mips4300:
11886 case bfd_mach_mips4400:
11887 case bfd_mach_mips4600:
11888 val = E_MIPS_ARCH_3;
11889 break;
11891 case bfd_mach_mips4100:
11892 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11893 break;
11895 case bfd_mach_mips4111:
11896 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11897 break;
11899 case bfd_mach_mips4120:
11900 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11901 break;
11903 case bfd_mach_mips4650:
11904 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11905 break;
11907 case bfd_mach_mips5400:
11908 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11909 break;
11911 case bfd_mach_mips5500:
11912 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11913 break;
11915 case bfd_mach_mips5900:
11916 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11917 break;
11919 case bfd_mach_mips9000:
11920 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11921 break;
11923 case bfd_mach_mips5000:
11924 case bfd_mach_mips7000:
11925 case bfd_mach_mips8000:
11926 case bfd_mach_mips10000:
11927 case bfd_mach_mips12000:
11928 case bfd_mach_mips14000:
11929 case bfd_mach_mips16000:
11930 val = E_MIPS_ARCH_4;
11931 break;
11933 case bfd_mach_mips5:
11934 val = E_MIPS_ARCH_5;
11935 break;
11937 case bfd_mach_mips_loongson_2e:
11938 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11939 break;
11941 case bfd_mach_mips_loongson_2f:
11942 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11943 break;
11945 case bfd_mach_mips_sb1:
11946 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11947 break;
11949 case bfd_mach_mips_loongson_3a:
11950 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11951 break;
11953 case bfd_mach_mips_octeon:
11954 case bfd_mach_mips_octeonp:
11955 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11956 break;
11958 case bfd_mach_mips_octeon3:
11959 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11960 break;
11962 case bfd_mach_mips_xlr:
11963 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11964 break;
11966 case bfd_mach_mips_octeon2:
11967 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11968 break;
11970 case bfd_mach_mipsisa32:
11971 val = E_MIPS_ARCH_32;
11972 break;
11974 case bfd_mach_mipsisa64:
11975 val = E_MIPS_ARCH_64;
11976 break;
11978 case bfd_mach_mipsisa32r2:
11979 case bfd_mach_mipsisa32r3:
11980 case bfd_mach_mipsisa32r5:
11981 val = E_MIPS_ARCH_32R2;
11982 break;
11984 case bfd_mach_mips_interaptiv_mr2:
11985 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11986 break;
11988 case bfd_mach_mipsisa64r2:
11989 case bfd_mach_mipsisa64r3:
11990 case bfd_mach_mipsisa64r5:
11991 val = E_MIPS_ARCH_64R2;
11992 break;
11994 case bfd_mach_mipsisa32r6:
11995 val = E_MIPS_ARCH_32R6;
11996 break;
11998 case bfd_mach_mipsisa64r6:
11999 val = E_MIPS_ARCH_64R6;
12000 break;
12002 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12003 elf_elfheader (abfd)->e_flags |= val;
12008 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12009 Don't do so for code sections. We want to keep ordering of HI16/LO16
12010 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12011 relocs to be sorted. */
12013 bfd_boolean
12014 _bfd_mips_elf_sort_relocs_p (asection *sec)
12016 return (sec->flags & SEC_CODE) == 0;
12020 /* The final processing done just before writing out a MIPS ELF object
12021 file. This gets the MIPS architecture right based on the machine
12022 number. This is used by both the 32-bit and the 64-bit ABI. */
12024 void
12025 _bfd_mips_elf_final_write_processing (bfd *abfd,
12026 bfd_boolean linker ATTRIBUTE_UNUSED)
12028 unsigned int i;
12029 Elf_Internal_Shdr **hdrpp;
12030 const char *name;
12031 asection *sec;
12033 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12034 is nonzero. This is for compatibility with old objects, which used
12035 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12036 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12037 mips_set_isa_flags (abfd);
12039 /* Set the sh_info field for .gptab sections and other appropriate
12040 info for each special section. */
12041 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12042 i < elf_numsections (abfd);
12043 i++, hdrpp++)
12045 switch ((*hdrpp)->sh_type)
12047 case SHT_MIPS_MSYM:
12048 case SHT_MIPS_LIBLIST:
12049 sec = bfd_get_section_by_name (abfd, ".dynstr");
12050 if (sec != NULL)
12051 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12052 break;
12054 case SHT_MIPS_GPTAB:
12055 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12056 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12057 BFD_ASSERT (name != NULL
12058 && CONST_STRNEQ (name, ".gptab."));
12059 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12060 BFD_ASSERT (sec != NULL);
12061 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12062 break;
12064 case SHT_MIPS_CONTENT:
12065 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12066 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12067 BFD_ASSERT (name != NULL
12068 && CONST_STRNEQ (name, ".MIPS.content"));
12069 sec = bfd_get_section_by_name (abfd,
12070 name + sizeof ".MIPS.content" - 1);
12071 BFD_ASSERT (sec != NULL);
12072 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12073 break;
12075 case SHT_MIPS_SYMBOL_LIB:
12076 sec = bfd_get_section_by_name (abfd, ".dynsym");
12077 if (sec != NULL)
12078 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12079 sec = bfd_get_section_by_name (abfd, ".liblist");
12080 if (sec != NULL)
12081 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12082 break;
12084 case SHT_MIPS_EVENTS:
12085 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12086 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12087 BFD_ASSERT (name != NULL);
12088 if (CONST_STRNEQ (name, ".MIPS.events"))
12089 sec = bfd_get_section_by_name (abfd,
12090 name + sizeof ".MIPS.events" - 1);
12091 else
12093 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12094 sec = bfd_get_section_by_name (abfd,
12095 (name
12096 + sizeof ".MIPS.post_rel" - 1));
12098 BFD_ASSERT (sec != NULL);
12099 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12100 break;
12106 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12107 segments. */
12110 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12111 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12113 asection *s;
12114 int ret = 0;
12116 /* See if we need a PT_MIPS_REGINFO segment. */
12117 s = bfd_get_section_by_name (abfd, ".reginfo");
12118 if (s && (s->flags & SEC_LOAD))
12119 ++ret;
12121 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12122 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12123 ++ret;
12125 /* See if we need a PT_MIPS_OPTIONS segment. */
12126 if (IRIX_COMPAT (abfd) == ict_irix6
12127 && bfd_get_section_by_name (abfd,
12128 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12129 ++ret;
12131 /* See if we need a PT_MIPS_RTPROC segment. */
12132 if (IRIX_COMPAT (abfd) == ict_irix5
12133 && bfd_get_section_by_name (abfd, ".dynamic")
12134 && bfd_get_section_by_name (abfd, ".mdebug"))
12135 ++ret;
12137 /* Allocate a PT_NULL header in dynamic objects. See
12138 _bfd_mips_elf_modify_segment_map for details. */
12139 if (!SGI_COMPAT (abfd)
12140 && bfd_get_section_by_name (abfd, ".dynamic"))
12141 ++ret;
12143 return ret;
12146 /* Modify the segment map for an IRIX5 executable. */
12148 bfd_boolean
12149 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12150 struct bfd_link_info *info)
12152 asection *s;
12153 struct elf_segment_map *m, **pm;
12154 bfd_size_type amt;
12156 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12157 segment. */
12158 s = bfd_get_section_by_name (abfd, ".reginfo");
12159 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12161 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12162 if (m->p_type == PT_MIPS_REGINFO)
12163 break;
12164 if (m == NULL)
12166 amt = sizeof *m;
12167 m = bfd_zalloc (abfd, amt);
12168 if (m == NULL)
12169 return FALSE;
12171 m->p_type = PT_MIPS_REGINFO;
12172 m->count = 1;
12173 m->sections[0] = s;
12175 /* We want to put it after the PHDR and INTERP segments. */
12176 pm = &elf_seg_map (abfd);
12177 while (*pm != NULL
12178 && ((*pm)->p_type == PT_PHDR
12179 || (*pm)->p_type == PT_INTERP))
12180 pm = &(*pm)->next;
12182 m->next = *pm;
12183 *pm = m;
12187 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12188 segment. */
12189 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12190 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12192 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12193 if (m->p_type == PT_MIPS_ABIFLAGS)
12194 break;
12195 if (m == NULL)
12197 amt = sizeof *m;
12198 m = bfd_zalloc (abfd, amt);
12199 if (m == NULL)
12200 return FALSE;
12202 m->p_type = PT_MIPS_ABIFLAGS;
12203 m->count = 1;
12204 m->sections[0] = s;
12206 /* We want to put it after the PHDR and INTERP segments. */
12207 pm = &elf_seg_map (abfd);
12208 while (*pm != NULL
12209 && ((*pm)->p_type == PT_PHDR
12210 || (*pm)->p_type == PT_INTERP))
12211 pm = &(*pm)->next;
12213 m->next = *pm;
12214 *pm = m;
12218 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12219 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12220 PT_MIPS_OPTIONS segment immediately following the program header
12221 table. */
12222 if (NEWABI_P (abfd)
12223 /* On non-IRIX6 new abi, we'll have already created a segment
12224 for this section, so don't create another. I'm not sure this
12225 is not also the case for IRIX 6, but I can't test it right
12226 now. */
12227 && IRIX_COMPAT (abfd) == ict_irix6)
12229 for (s = abfd->sections; s; s = s->next)
12230 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12231 break;
12233 if (s)
12235 struct elf_segment_map *options_segment;
12237 pm = &elf_seg_map (abfd);
12238 while (*pm != NULL
12239 && ((*pm)->p_type == PT_PHDR
12240 || (*pm)->p_type == PT_INTERP))
12241 pm = &(*pm)->next;
12243 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12245 amt = sizeof (struct elf_segment_map);
12246 options_segment = bfd_zalloc (abfd, amt);
12247 options_segment->next = *pm;
12248 options_segment->p_type = PT_MIPS_OPTIONS;
12249 options_segment->p_flags = PF_R;
12250 options_segment->p_flags_valid = TRUE;
12251 options_segment->count = 1;
12252 options_segment->sections[0] = s;
12253 *pm = options_segment;
12257 else
12259 if (IRIX_COMPAT (abfd) == ict_irix5)
12261 /* If there are .dynamic and .mdebug sections, we make a room
12262 for the RTPROC header. FIXME: Rewrite without section names. */
12263 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12264 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12265 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12267 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12268 if (m->p_type == PT_MIPS_RTPROC)
12269 break;
12270 if (m == NULL)
12272 amt = sizeof *m;
12273 m = bfd_zalloc (abfd, amt);
12274 if (m == NULL)
12275 return FALSE;
12277 m->p_type = PT_MIPS_RTPROC;
12279 s = bfd_get_section_by_name (abfd, ".rtproc");
12280 if (s == NULL)
12282 m->count = 0;
12283 m->p_flags = 0;
12284 m->p_flags_valid = 1;
12286 else
12288 m->count = 1;
12289 m->sections[0] = s;
12292 /* We want to put it after the DYNAMIC segment. */
12293 pm = &elf_seg_map (abfd);
12294 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12295 pm = &(*pm)->next;
12296 if (*pm != NULL)
12297 pm = &(*pm)->next;
12299 m->next = *pm;
12300 *pm = m;
12304 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12305 .dynstr, .dynsym, and .hash sections, and everything in
12306 between. */
12307 for (pm = &elf_seg_map (abfd); *pm != NULL;
12308 pm = &(*pm)->next)
12309 if ((*pm)->p_type == PT_DYNAMIC)
12310 break;
12311 m = *pm;
12312 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12313 glibc's dynamic linker has traditionally derived the number of
12314 tags from the p_filesz field, and sometimes allocates stack
12315 arrays of that size. An overly-big PT_DYNAMIC segment can
12316 be actively harmful in such cases. Making PT_DYNAMIC contain
12317 other sections can also make life hard for the prelinker,
12318 which might move one of the other sections to a different
12319 PT_LOAD segment. */
12320 if (SGI_COMPAT (abfd)
12321 && m != NULL
12322 && m->count == 1
12323 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12325 static const char *sec_names[] =
12327 ".dynamic", ".dynstr", ".dynsym", ".hash"
12329 bfd_vma low, high;
12330 unsigned int i, c;
12331 struct elf_segment_map *n;
12333 low = ~(bfd_vma) 0;
12334 high = 0;
12335 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12337 s = bfd_get_section_by_name (abfd, sec_names[i]);
12338 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12340 bfd_size_type sz;
12342 if (low > s->vma)
12343 low = s->vma;
12344 sz = s->size;
12345 if (high < s->vma + sz)
12346 high = s->vma + sz;
12350 c = 0;
12351 for (s = abfd->sections; s != NULL; s = s->next)
12352 if ((s->flags & SEC_LOAD) != 0
12353 && s->vma >= low
12354 && s->vma + s->size <= high)
12355 ++c;
12357 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12358 n = bfd_zalloc (abfd, amt);
12359 if (n == NULL)
12360 return FALSE;
12361 *n = *m;
12362 n->count = c;
12364 i = 0;
12365 for (s = abfd->sections; s != NULL; s = s->next)
12367 if ((s->flags & SEC_LOAD) != 0
12368 && s->vma >= low
12369 && s->vma + s->size <= high)
12371 n->sections[i] = s;
12372 ++i;
12376 *pm = n;
12380 /* Allocate a spare program header in dynamic objects so that tools
12381 like the prelinker can add an extra PT_LOAD entry.
12383 If the prelinker needs to make room for a new PT_LOAD entry, its
12384 standard procedure is to move the first (read-only) sections into
12385 the new (writable) segment. However, the MIPS ABI requires
12386 .dynamic to be in a read-only segment, and the section will often
12387 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12389 Although the prelinker could in principle move .dynamic to a
12390 writable segment, it seems better to allocate a spare program
12391 header instead, and avoid the need to move any sections.
12392 There is a long tradition of allocating spare dynamic tags,
12393 so allocating a spare program header seems like a natural
12394 extension.
12396 If INFO is NULL, we may be copying an already prelinked binary
12397 with objcopy or strip, so do not add this header. */
12398 if (info != NULL
12399 && !SGI_COMPAT (abfd)
12400 && bfd_get_section_by_name (abfd, ".dynamic"))
12402 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12403 if ((*pm)->p_type == PT_NULL)
12404 break;
12405 if (*pm == NULL)
12407 m = bfd_zalloc (abfd, sizeof (*m));
12408 if (m == NULL)
12409 return FALSE;
12411 m->p_type = PT_NULL;
12412 *pm = m;
12416 return TRUE;
12419 /* Return the section that should be marked against GC for a given
12420 relocation. */
12422 asection *
12423 _bfd_mips_elf_gc_mark_hook (asection *sec,
12424 struct bfd_link_info *info,
12425 Elf_Internal_Rela *rel,
12426 struct elf_link_hash_entry *h,
12427 Elf_Internal_Sym *sym)
12429 /* ??? Do mips16 stub sections need to be handled special? */
12431 if (h != NULL)
12432 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12434 case R_MIPS_GNU_VTINHERIT:
12435 case R_MIPS_GNU_VTENTRY:
12436 return NULL;
12439 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12442 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12444 bfd_boolean
12445 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12446 elf_gc_mark_hook_fn gc_mark_hook)
12448 bfd *sub;
12450 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12452 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12454 asection *o;
12456 if (! is_mips_elf (sub))
12457 continue;
12459 for (o = sub->sections; o != NULL; o = o->next)
12460 if (!o->gc_mark
12461 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12462 (bfd_get_section_name (sub, o)))
12464 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12465 return FALSE;
12469 return TRUE;
12472 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12473 hiding the old indirect symbol. Process additional relocation
12474 information. Also called for weakdefs, in which case we just let
12475 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12477 void
12478 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12479 struct elf_link_hash_entry *dir,
12480 struct elf_link_hash_entry *ind)
12482 struct mips_elf_link_hash_entry *dirmips, *indmips;
12484 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12486 dirmips = (struct mips_elf_link_hash_entry *) dir;
12487 indmips = (struct mips_elf_link_hash_entry *) ind;
12488 /* Any absolute non-dynamic relocations against an indirect or weak
12489 definition will be against the target symbol. */
12490 if (indmips->has_static_relocs)
12491 dirmips->has_static_relocs = TRUE;
12493 if (ind->root.type != bfd_link_hash_indirect)
12494 return;
12496 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12497 if (indmips->readonly_reloc)
12498 dirmips->readonly_reloc = TRUE;
12499 if (indmips->no_fn_stub)
12500 dirmips->no_fn_stub = TRUE;
12501 if (indmips->fn_stub)
12503 dirmips->fn_stub = indmips->fn_stub;
12504 indmips->fn_stub = NULL;
12506 if (indmips->need_fn_stub)
12508 dirmips->need_fn_stub = TRUE;
12509 indmips->need_fn_stub = FALSE;
12511 if (indmips->call_stub)
12513 dirmips->call_stub = indmips->call_stub;
12514 indmips->call_stub = NULL;
12516 if (indmips->call_fp_stub)
12518 dirmips->call_fp_stub = indmips->call_fp_stub;
12519 indmips->call_fp_stub = NULL;
12521 if (indmips->global_got_area < dirmips->global_got_area)
12522 dirmips->global_got_area = indmips->global_got_area;
12523 if (indmips->global_got_area < GGA_NONE)
12524 indmips->global_got_area = GGA_NONE;
12525 if (indmips->has_nonpic_branches)
12526 dirmips->has_nonpic_branches = TRUE;
12529 #define PDR_SIZE 32
12531 bfd_boolean
12532 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12533 struct bfd_link_info *info)
12535 asection *o;
12536 bfd_boolean ret = FALSE;
12537 unsigned char *tdata;
12538 size_t i, skip;
12540 o = bfd_get_section_by_name (abfd, ".pdr");
12541 if (! o)
12542 return FALSE;
12543 if (o->size == 0)
12544 return FALSE;
12545 if (o->size % PDR_SIZE != 0)
12546 return FALSE;
12547 if (o->output_section != NULL
12548 && bfd_is_abs_section (o->output_section))
12549 return FALSE;
12551 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12552 if (! tdata)
12553 return FALSE;
12555 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12556 info->keep_memory);
12557 if (!cookie->rels)
12559 free (tdata);
12560 return FALSE;
12563 cookie->rel = cookie->rels;
12564 cookie->relend = cookie->rels + o->reloc_count;
12566 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12568 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12570 tdata[i] = 1;
12571 skip ++;
12575 if (skip != 0)
12577 mips_elf_section_data (o)->u.tdata = tdata;
12578 if (o->rawsize == 0)
12579 o->rawsize = o->size;
12580 o->size -= skip * PDR_SIZE;
12581 ret = TRUE;
12583 else
12584 free (tdata);
12586 if (! info->keep_memory)
12587 free (cookie->rels);
12589 return ret;
12592 bfd_boolean
12593 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12595 if (strcmp (sec->name, ".pdr") == 0)
12596 return TRUE;
12597 return FALSE;
12600 bfd_boolean
12601 _bfd_mips_elf_write_section (bfd *output_bfd,
12602 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12603 asection *sec, bfd_byte *contents)
12605 bfd_byte *to, *from, *end;
12606 int i;
12608 if (strcmp (sec->name, ".pdr") != 0)
12609 return FALSE;
12611 if (mips_elf_section_data (sec)->u.tdata == NULL)
12612 return FALSE;
12614 to = contents;
12615 end = contents + sec->size;
12616 for (from = contents, i = 0;
12617 from < end;
12618 from += PDR_SIZE, i++)
12620 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12621 continue;
12622 if (to != from)
12623 memcpy (to, from, PDR_SIZE);
12624 to += PDR_SIZE;
12626 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12627 sec->output_offset, sec->size);
12628 return TRUE;
12631 /* microMIPS code retains local labels for linker relaxation. Omit them
12632 from output by default for clarity. */
12634 bfd_boolean
12635 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12637 return _bfd_elf_is_local_label_name (abfd, sym->name);
12640 /* MIPS ELF uses a special find_nearest_line routine in order the
12641 handle the ECOFF debugging information. */
12643 struct mips_elf_find_line
12645 struct ecoff_debug_info d;
12646 struct ecoff_find_line i;
12649 bfd_boolean
12650 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12651 asection *section, bfd_vma offset,
12652 const char **filename_ptr,
12653 const char **functionname_ptr,
12654 unsigned int *line_ptr,
12655 unsigned int *discriminator_ptr)
12657 asection *msec;
12659 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12660 filename_ptr, functionname_ptr,
12661 line_ptr, discriminator_ptr,
12662 dwarf_debug_sections,
12663 ABI_64_P (abfd) ? 8 : 0,
12664 &elf_tdata (abfd)->dwarf2_find_line_info))
12665 return TRUE;
12667 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12668 filename_ptr, functionname_ptr,
12669 line_ptr))
12670 return TRUE;
12672 msec = bfd_get_section_by_name (abfd, ".mdebug");
12673 if (msec != NULL)
12675 flagword origflags;
12676 struct mips_elf_find_line *fi;
12677 const struct ecoff_debug_swap * const swap =
12678 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12680 /* If we are called during a link, mips_elf_final_link may have
12681 cleared the SEC_HAS_CONTENTS field. We force it back on here
12682 if appropriate (which it normally will be). */
12683 origflags = msec->flags;
12684 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12685 msec->flags |= SEC_HAS_CONTENTS;
12687 fi = mips_elf_tdata (abfd)->find_line_info;
12688 if (fi == NULL)
12690 bfd_size_type external_fdr_size;
12691 char *fraw_src;
12692 char *fraw_end;
12693 struct fdr *fdr_ptr;
12694 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12696 fi = bfd_zalloc (abfd, amt);
12697 if (fi == NULL)
12699 msec->flags = origflags;
12700 return FALSE;
12703 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12705 msec->flags = origflags;
12706 return FALSE;
12709 /* Swap in the FDR information. */
12710 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12711 fi->d.fdr = bfd_alloc (abfd, amt);
12712 if (fi->d.fdr == NULL)
12714 msec->flags = origflags;
12715 return FALSE;
12717 external_fdr_size = swap->external_fdr_size;
12718 fdr_ptr = fi->d.fdr;
12719 fraw_src = (char *) fi->d.external_fdr;
12720 fraw_end = (fraw_src
12721 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12722 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12723 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12725 mips_elf_tdata (abfd)->find_line_info = fi;
12727 /* Note that we don't bother to ever free this information.
12728 find_nearest_line is either called all the time, as in
12729 objdump -l, so the information should be saved, or it is
12730 rarely called, as in ld error messages, so the memory
12731 wasted is unimportant. Still, it would probably be a
12732 good idea for free_cached_info to throw it away. */
12735 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12736 &fi->i, filename_ptr, functionname_ptr,
12737 line_ptr))
12739 msec->flags = origflags;
12740 return TRUE;
12743 msec->flags = origflags;
12746 /* Fall back on the generic ELF find_nearest_line routine. */
12748 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12749 filename_ptr, functionname_ptr,
12750 line_ptr, discriminator_ptr);
12753 bfd_boolean
12754 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12755 const char **filename_ptr,
12756 const char **functionname_ptr,
12757 unsigned int *line_ptr)
12759 bfd_boolean found;
12760 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12761 functionname_ptr, line_ptr,
12762 & elf_tdata (abfd)->dwarf2_find_line_info);
12763 return found;
12767 /* When are writing out the .options or .MIPS.options section,
12768 remember the bytes we are writing out, so that we can install the
12769 GP value in the section_processing routine. */
12771 bfd_boolean
12772 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12773 const void *location,
12774 file_ptr offset, bfd_size_type count)
12776 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12778 bfd_byte *c;
12780 if (elf_section_data (section) == NULL)
12782 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12783 section->used_by_bfd = bfd_zalloc (abfd, amt);
12784 if (elf_section_data (section) == NULL)
12785 return FALSE;
12787 c = mips_elf_section_data (section)->u.tdata;
12788 if (c == NULL)
12790 c = bfd_zalloc (abfd, section->size);
12791 if (c == NULL)
12792 return FALSE;
12793 mips_elf_section_data (section)->u.tdata = c;
12796 memcpy (c + offset, location, count);
12799 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12800 count);
12803 /* This is almost identical to bfd_generic_get_... except that some
12804 MIPS relocations need to be handled specially. Sigh. */
12806 bfd_byte *
12807 _bfd_elf_mips_get_relocated_section_contents
12808 (bfd *abfd,
12809 struct bfd_link_info *link_info,
12810 struct bfd_link_order *link_order,
12811 bfd_byte *data,
12812 bfd_boolean relocatable,
12813 asymbol **symbols)
12815 /* Get enough memory to hold the stuff */
12816 bfd *input_bfd = link_order->u.indirect.section->owner;
12817 asection *input_section = link_order->u.indirect.section;
12818 bfd_size_type sz;
12820 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12821 arelent **reloc_vector = NULL;
12822 long reloc_count;
12824 if (reloc_size < 0)
12825 goto error_return;
12827 reloc_vector = bfd_malloc (reloc_size);
12828 if (reloc_vector == NULL && reloc_size != 0)
12829 goto error_return;
12831 /* read in the section */
12832 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12833 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12834 goto error_return;
12836 reloc_count = bfd_canonicalize_reloc (input_bfd,
12837 input_section,
12838 reloc_vector,
12839 symbols);
12840 if (reloc_count < 0)
12841 goto error_return;
12843 if (reloc_count > 0)
12845 arelent **parent;
12846 /* for mips */
12847 int gp_found;
12848 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12851 struct bfd_hash_entry *h;
12852 struct bfd_link_hash_entry *lh;
12853 /* Skip all this stuff if we aren't mixing formats. */
12854 if (abfd && input_bfd
12855 && abfd->xvec == input_bfd->xvec)
12856 lh = 0;
12857 else
12859 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12860 lh = (struct bfd_link_hash_entry *) h;
12862 lookup:
12863 if (lh)
12865 switch (lh->type)
12867 case bfd_link_hash_undefined:
12868 case bfd_link_hash_undefweak:
12869 case bfd_link_hash_common:
12870 gp_found = 0;
12871 break;
12872 case bfd_link_hash_defined:
12873 case bfd_link_hash_defweak:
12874 gp_found = 1;
12875 gp = lh->u.def.value;
12876 break;
12877 case bfd_link_hash_indirect:
12878 case bfd_link_hash_warning:
12879 lh = lh->u.i.link;
12880 /* @@FIXME ignoring warning for now */
12881 goto lookup;
12882 case bfd_link_hash_new:
12883 default:
12884 abort ();
12887 else
12888 gp_found = 0;
12890 /* end mips */
12891 for (parent = reloc_vector; *parent != NULL; parent++)
12893 char *error_message = NULL;
12894 bfd_reloc_status_type r;
12896 /* Specific to MIPS: Deal with relocation types that require
12897 knowing the gp of the output bfd. */
12898 asymbol *sym = *(*parent)->sym_ptr_ptr;
12900 /* If we've managed to find the gp and have a special
12901 function for the relocation then go ahead, else default
12902 to the generic handling. */
12903 if (gp_found
12904 && (*parent)->howto->special_function
12905 == _bfd_mips_elf32_gprel16_reloc)
12906 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12907 input_section, relocatable,
12908 data, gp);
12909 else
12910 r = bfd_perform_relocation (input_bfd, *parent, data,
12911 input_section,
12912 relocatable ? abfd : NULL,
12913 &error_message);
12915 if (relocatable)
12917 asection *os = input_section->output_section;
12919 /* A partial link, so keep the relocs */
12920 os->orelocation[os->reloc_count] = *parent;
12921 os->reloc_count++;
12924 if (r != bfd_reloc_ok)
12926 switch (r)
12928 case bfd_reloc_undefined:
12929 (*link_info->callbacks->undefined_symbol)
12930 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12931 input_bfd, input_section, (*parent)->address, TRUE);
12932 break;
12933 case bfd_reloc_dangerous:
12934 BFD_ASSERT (error_message != NULL);
12935 (*link_info->callbacks->reloc_dangerous)
12936 (link_info, error_message,
12937 input_bfd, input_section, (*parent)->address);
12938 break;
12939 case bfd_reloc_overflow:
12940 (*link_info->callbacks->reloc_overflow)
12941 (link_info, NULL,
12942 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12943 (*parent)->howto->name, (*parent)->addend,
12944 input_bfd, input_section, (*parent)->address);
12945 break;
12946 case bfd_reloc_outofrange:
12947 default:
12948 abort ();
12949 break;
12955 if (reloc_vector != NULL)
12956 free (reloc_vector);
12957 return data;
12959 error_return:
12960 if (reloc_vector != NULL)
12961 free (reloc_vector);
12962 return NULL;
12965 static bfd_boolean
12966 mips_elf_relax_delete_bytes (bfd *abfd,
12967 asection *sec, bfd_vma addr, int count)
12969 Elf_Internal_Shdr *symtab_hdr;
12970 unsigned int sec_shndx;
12971 bfd_byte *contents;
12972 Elf_Internal_Rela *irel, *irelend;
12973 Elf_Internal_Sym *isym;
12974 Elf_Internal_Sym *isymend;
12975 struct elf_link_hash_entry **sym_hashes;
12976 struct elf_link_hash_entry **end_hashes;
12977 struct elf_link_hash_entry **start_hashes;
12978 unsigned int symcount;
12980 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12981 contents = elf_section_data (sec)->this_hdr.contents;
12983 irel = elf_section_data (sec)->relocs;
12984 irelend = irel + sec->reloc_count;
12986 /* Actually delete the bytes. */
12987 memmove (contents + addr, contents + addr + count,
12988 (size_t) (sec->size - addr - count));
12989 sec->size -= count;
12991 /* Adjust all the relocs. */
12992 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12994 /* Get the new reloc address. */
12995 if (irel->r_offset > addr)
12996 irel->r_offset -= count;
12999 BFD_ASSERT (addr % 2 == 0);
13000 BFD_ASSERT (count % 2 == 0);
13002 /* Adjust the local symbols defined in this section. */
13003 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13004 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13005 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13006 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13007 isym->st_value -= count;
13009 /* Now adjust the global symbols defined in this section. */
13010 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13011 - symtab_hdr->sh_info);
13012 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13013 end_hashes = sym_hashes + symcount;
13015 for (; sym_hashes < end_hashes; sym_hashes++)
13017 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13019 if ((sym_hash->root.type == bfd_link_hash_defined
13020 || sym_hash->root.type == bfd_link_hash_defweak)
13021 && sym_hash->root.u.def.section == sec)
13023 bfd_vma value = sym_hash->root.u.def.value;
13025 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13026 value &= MINUS_TWO;
13027 if (value > addr)
13028 sym_hash->root.u.def.value -= count;
13032 return TRUE;
13036 /* Opcodes needed for microMIPS relaxation as found in
13037 opcodes/micromips-opc.c. */
13039 struct opcode_descriptor {
13040 unsigned long match;
13041 unsigned long mask;
13044 /* The $ra register aka $31. */
13046 #define RA 31
13048 /* 32-bit instruction format register fields. */
13050 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13051 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13053 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13055 #define OP16_VALID_REG(r) \
13056 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13059 /* 32-bit and 16-bit branches. */
13061 static const struct opcode_descriptor b_insns_32[] = {
13062 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13063 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13064 { 0, 0 } /* End marker for find_match(). */
13067 static const struct opcode_descriptor bc_insn_32 =
13068 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13070 static const struct opcode_descriptor bz_insn_32 =
13071 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13073 static const struct opcode_descriptor bzal_insn_32 =
13074 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13076 static const struct opcode_descriptor beq_insn_32 =
13077 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13079 static const struct opcode_descriptor b_insn_16 =
13080 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13082 static const struct opcode_descriptor bz_insn_16 =
13083 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13086 /* 32-bit and 16-bit branch EQ and NE zero. */
13088 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13089 eq and second the ne. This convention is used when replacing a
13090 32-bit BEQ/BNE with the 16-bit version. */
13092 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13094 static const struct opcode_descriptor bz_rs_insns_32[] = {
13095 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13096 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13097 { 0, 0 } /* End marker for find_match(). */
13100 static const struct opcode_descriptor bz_rt_insns_32[] = {
13101 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13102 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13103 { 0, 0 } /* End marker for find_match(). */
13106 static const struct opcode_descriptor bzc_insns_32[] = {
13107 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13108 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13109 { 0, 0 } /* End marker for find_match(). */
13112 static const struct opcode_descriptor bz_insns_16[] = {
13113 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13114 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13115 { 0, 0 } /* End marker for find_match(). */
13118 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13120 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13121 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13124 /* 32-bit instructions with a delay slot. */
13126 static const struct opcode_descriptor jal_insn_32_bd16 =
13127 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13129 static const struct opcode_descriptor jal_insn_32_bd32 =
13130 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13132 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13133 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13135 static const struct opcode_descriptor j_insn_32 =
13136 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13138 static const struct opcode_descriptor jalr_insn_32 =
13139 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13141 /* This table can be compacted, because no opcode replacement is made. */
13143 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13144 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13146 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13147 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13149 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13150 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13151 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13152 { 0, 0 } /* End marker for find_match(). */
13155 /* This table can be compacted, because no opcode replacement is made. */
13157 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13158 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13160 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13161 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13162 { 0, 0 } /* End marker for find_match(). */
13166 /* 16-bit instructions with a delay slot. */
13168 static const struct opcode_descriptor jalr_insn_16_bd16 =
13169 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13171 static const struct opcode_descriptor jalr_insn_16_bd32 =
13172 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13174 static const struct opcode_descriptor jr_insn_16 =
13175 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13177 #define JR16_REG(opcode) ((opcode) & 0x1f)
13179 /* This table can be compacted, because no opcode replacement is made. */
13181 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13182 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13184 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13185 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13186 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13187 { 0, 0 } /* End marker for find_match(). */
13191 /* LUI instruction. */
13193 static const struct opcode_descriptor lui_insn =
13194 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13197 /* ADDIU instruction. */
13199 static const struct opcode_descriptor addiu_insn =
13200 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13202 static const struct opcode_descriptor addiupc_insn =
13203 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13205 #define ADDIUPC_REG_FIELD(r) \
13206 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13209 /* Relaxable instructions in a JAL delay slot: MOVE. */
13211 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13212 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13213 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13214 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13216 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13217 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13219 static const struct opcode_descriptor move_insns_32[] = {
13220 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13221 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13222 { 0, 0 } /* End marker for find_match(). */
13225 static const struct opcode_descriptor move_insn_16 =
13226 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13229 /* NOP instructions. */
13231 static const struct opcode_descriptor nop_insn_32 =
13232 { /* "nop", "", */ 0x00000000, 0xffffffff };
13234 static const struct opcode_descriptor nop_insn_16 =
13235 { /* "nop", "", */ 0x0c00, 0xffff };
13238 /* Instruction match support. */
13240 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13242 static int
13243 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13245 unsigned long indx;
13247 for (indx = 0; insn[indx].mask != 0; indx++)
13248 if (MATCH (opcode, insn[indx]))
13249 return indx;
13251 return -1;
13255 /* Branch and delay slot decoding support. */
13257 /* If PTR points to what *might* be a 16-bit branch or jump, then
13258 return the minimum length of its delay slot, otherwise return 0.
13259 Non-zero results are not definitive as we might be checking against
13260 the second half of another instruction. */
13262 static int
13263 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13265 unsigned long opcode;
13266 int bdsize;
13268 opcode = bfd_get_16 (abfd, ptr);
13269 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13270 /* 16-bit branch/jump with a 32-bit delay slot. */
13271 bdsize = 4;
13272 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13273 || find_match (opcode, ds_insns_16_bd16) >= 0)
13274 /* 16-bit branch/jump with a 16-bit delay slot. */
13275 bdsize = 2;
13276 else
13277 /* No delay slot. */
13278 bdsize = 0;
13280 return bdsize;
13283 /* If PTR points to what *might* be a 32-bit branch or jump, then
13284 return the minimum length of its delay slot, otherwise return 0.
13285 Non-zero results are not definitive as we might be checking against
13286 the second half of another instruction. */
13288 static int
13289 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13291 unsigned long opcode;
13292 int bdsize;
13294 opcode = bfd_get_micromips_32 (abfd, ptr);
13295 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13296 /* 32-bit branch/jump with a 32-bit delay slot. */
13297 bdsize = 4;
13298 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13299 /* 32-bit branch/jump with a 16-bit delay slot. */
13300 bdsize = 2;
13301 else
13302 /* No delay slot. */
13303 bdsize = 0;
13305 return bdsize;
13308 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13309 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13311 static bfd_boolean
13312 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13314 unsigned long opcode;
13316 opcode = bfd_get_16 (abfd, ptr);
13317 if (MATCH (opcode, b_insn_16)
13318 /* B16 */
13319 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13320 /* JR16 */
13321 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13322 /* BEQZ16, BNEZ16 */
13323 || (MATCH (opcode, jalr_insn_16_bd32)
13324 /* JALR16 */
13325 && reg != JR16_REG (opcode) && reg != RA))
13326 return TRUE;
13328 return FALSE;
13331 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13332 then return TRUE, otherwise FALSE. */
13334 static bfd_boolean
13335 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13337 unsigned long opcode;
13339 opcode = bfd_get_micromips_32 (abfd, ptr);
13340 if (MATCH (opcode, j_insn_32)
13341 /* J */
13342 || MATCH (opcode, bc_insn_32)
13343 /* BC1F, BC1T, BC2F, BC2T */
13344 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13345 /* JAL, JALX */
13346 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13347 /* BGEZ, BGTZ, BLEZ, BLTZ */
13348 || (MATCH (opcode, bzal_insn_32)
13349 /* BGEZAL, BLTZAL */
13350 && reg != OP32_SREG (opcode) && reg != RA)
13351 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13352 /* JALR, JALR.HB, BEQ, BNE */
13353 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13354 return TRUE;
13356 return FALSE;
13359 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13360 IRELEND) at OFFSET indicate that there must be a compact branch there,
13361 then return TRUE, otherwise FALSE. */
13363 static bfd_boolean
13364 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13365 const Elf_Internal_Rela *internal_relocs,
13366 const Elf_Internal_Rela *irelend)
13368 const Elf_Internal_Rela *irel;
13369 unsigned long opcode;
13371 opcode = bfd_get_micromips_32 (abfd, ptr);
13372 if (find_match (opcode, bzc_insns_32) < 0)
13373 return FALSE;
13375 for (irel = internal_relocs; irel < irelend; irel++)
13376 if (irel->r_offset == offset
13377 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13378 return TRUE;
13380 return FALSE;
13383 /* Bitsize checking. */
13384 #define IS_BITSIZE(val, N) \
13385 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13386 - (1ULL << ((N) - 1))) == (val))
13389 bfd_boolean
13390 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13391 struct bfd_link_info *link_info,
13392 bfd_boolean *again)
13394 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13395 Elf_Internal_Shdr *symtab_hdr;
13396 Elf_Internal_Rela *internal_relocs;
13397 Elf_Internal_Rela *irel, *irelend;
13398 bfd_byte *contents = NULL;
13399 Elf_Internal_Sym *isymbuf = NULL;
13401 /* Assume nothing changes. */
13402 *again = FALSE;
13404 /* We don't have to do anything for a relocatable link, if
13405 this section does not have relocs, or if this is not a
13406 code section. */
13408 if (bfd_link_relocatable (link_info)
13409 || (sec->flags & SEC_RELOC) == 0
13410 || sec->reloc_count == 0
13411 || (sec->flags & SEC_CODE) == 0)
13412 return TRUE;
13414 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13416 /* Get a copy of the native relocations. */
13417 internal_relocs = (_bfd_elf_link_read_relocs
13418 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13419 link_info->keep_memory));
13420 if (internal_relocs == NULL)
13421 goto error_return;
13423 /* Walk through them looking for relaxing opportunities. */
13424 irelend = internal_relocs + sec->reloc_count;
13425 for (irel = internal_relocs; irel < irelend; irel++)
13427 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13428 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13429 bfd_boolean target_is_micromips_code_p;
13430 unsigned long opcode;
13431 bfd_vma symval;
13432 bfd_vma pcrval;
13433 bfd_byte *ptr;
13434 int fndopc;
13436 /* The number of bytes to delete for relaxation and from where
13437 to delete these bytes starting at irel->r_offset. */
13438 int delcnt = 0;
13439 int deloff = 0;
13441 /* If this isn't something that can be relaxed, then ignore
13442 this reloc. */
13443 if (r_type != R_MICROMIPS_HI16
13444 && r_type != R_MICROMIPS_PC16_S1
13445 && r_type != R_MICROMIPS_26_S1)
13446 continue;
13448 /* Get the section contents if we haven't done so already. */
13449 if (contents == NULL)
13451 /* Get cached copy if it exists. */
13452 if (elf_section_data (sec)->this_hdr.contents != NULL)
13453 contents = elf_section_data (sec)->this_hdr.contents;
13454 /* Go get them off disk. */
13455 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13456 goto error_return;
13458 ptr = contents + irel->r_offset;
13460 /* Read this BFD's local symbols if we haven't done so already. */
13461 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13463 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13464 if (isymbuf == NULL)
13465 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13466 symtab_hdr->sh_info, 0,
13467 NULL, NULL, NULL);
13468 if (isymbuf == NULL)
13469 goto error_return;
13472 /* Get the value of the symbol referred to by the reloc. */
13473 if (r_symndx < symtab_hdr->sh_info)
13475 /* A local symbol. */
13476 Elf_Internal_Sym *isym;
13477 asection *sym_sec;
13479 isym = isymbuf + r_symndx;
13480 if (isym->st_shndx == SHN_UNDEF)
13481 sym_sec = bfd_und_section_ptr;
13482 else if (isym->st_shndx == SHN_ABS)
13483 sym_sec = bfd_abs_section_ptr;
13484 else if (isym->st_shndx == SHN_COMMON)
13485 sym_sec = bfd_com_section_ptr;
13486 else
13487 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13488 symval = (isym->st_value
13489 + sym_sec->output_section->vma
13490 + sym_sec->output_offset);
13491 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13493 else
13495 unsigned long indx;
13496 struct elf_link_hash_entry *h;
13498 /* An external symbol. */
13499 indx = r_symndx - symtab_hdr->sh_info;
13500 h = elf_sym_hashes (abfd)[indx];
13501 BFD_ASSERT (h != NULL);
13503 if (h->root.type != bfd_link_hash_defined
13504 && h->root.type != bfd_link_hash_defweak)
13505 /* This appears to be a reference to an undefined
13506 symbol. Just ignore it -- it will be caught by the
13507 regular reloc processing. */
13508 continue;
13510 symval = (h->root.u.def.value
13511 + h->root.u.def.section->output_section->vma
13512 + h->root.u.def.section->output_offset);
13513 target_is_micromips_code_p = (!h->needs_plt
13514 && ELF_ST_IS_MICROMIPS (h->other));
13518 /* For simplicity of coding, we are going to modify the
13519 section contents, the section relocs, and the BFD symbol
13520 table. We must tell the rest of the code not to free up this
13521 information. It would be possible to instead create a table
13522 of changes which have to be made, as is done in coff-mips.c;
13523 that would be more work, but would require less memory when
13524 the linker is run. */
13526 /* Only 32-bit instructions relaxed. */
13527 if (irel->r_offset + 4 > sec->size)
13528 continue;
13530 opcode = bfd_get_micromips_32 (abfd, ptr);
13532 /* This is the pc-relative distance from the instruction the
13533 relocation is applied to, to the symbol referred. */
13534 pcrval = (symval
13535 - (sec->output_section->vma + sec->output_offset)
13536 - irel->r_offset);
13538 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13539 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13540 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13542 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13544 where pcrval has first to be adjusted to apply against the LO16
13545 location (we make the adjustment later on, when we have figured
13546 out the offset). */
13547 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13549 bfd_boolean bzc = FALSE;
13550 unsigned long nextopc;
13551 unsigned long reg;
13552 bfd_vma offset;
13554 /* Give up if the previous reloc was a HI16 against this symbol
13555 too. */
13556 if (irel > internal_relocs
13557 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13558 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13559 continue;
13561 /* Or if the next reloc is not a LO16 against this symbol. */
13562 if (irel + 1 >= irelend
13563 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13564 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13565 continue;
13567 /* Or if the second next reloc is a LO16 against this symbol too. */
13568 if (irel + 2 >= irelend
13569 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13570 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13571 continue;
13573 /* See if the LUI instruction *might* be in a branch delay slot.
13574 We check whether what looks like a 16-bit branch or jump is
13575 actually an immediate argument to a compact branch, and let
13576 it through if so. */
13577 if (irel->r_offset >= 2
13578 && check_br16_dslot (abfd, ptr - 2)
13579 && !(irel->r_offset >= 4
13580 && (bzc = check_relocated_bzc (abfd,
13581 ptr - 4, irel->r_offset - 4,
13582 internal_relocs, irelend))))
13583 continue;
13584 if (irel->r_offset >= 4
13585 && !bzc
13586 && check_br32_dslot (abfd, ptr - 4))
13587 continue;
13589 reg = OP32_SREG (opcode);
13591 /* We only relax adjacent instructions or ones separated with
13592 a branch or jump that has a delay slot. The branch or jump
13593 must not fiddle with the register used to hold the address.
13594 Subtract 4 for the LUI itself. */
13595 offset = irel[1].r_offset - irel[0].r_offset;
13596 switch (offset - 4)
13598 case 0:
13599 break;
13600 case 2:
13601 if (check_br16 (abfd, ptr + 4, reg))
13602 break;
13603 continue;
13604 case 4:
13605 if (check_br32 (abfd, ptr + 4, reg))
13606 break;
13607 continue;
13608 default:
13609 continue;
13612 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13614 /* Give up unless the same register is used with both
13615 relocations. */
13616 if (OP32_SREG (nextopc) != reg)
13617 continue;
13619 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13620 and rounding up to take masking of the two LSBs into account. */
13621 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13623 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13624 if (IS_BITSIZE (symval, 16))
13626 /* Fix the relocation's type. */
13627 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13629 /* Instructions using R_MICROMIPS_LO16 have the base or
13630 source register in bits 20:16. This register becomes $0
13631 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13632 nextopc &= ~0x001f0000;
13633 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13634 contents + irel[1].r_offset);
13637 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13638 We add 4 to take LUI deletion into account while checking
13639 the PC-relative distance. */
13640 else if (symval % 4 == 0
13641 && IS_BITSIZE (pcrval + 4, 25)
13642 && MATCH (nextopc, addiu_insn)
13643 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13644 && OP16_VALID_REG (OP32_TREG (nextopc)))
13646 /* Fix the relocation's type. */
13647 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13649 /* Replace ADDIU with the ADDIUPC version. */
13650 nextopc = (addiupc_insn.match
13651 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13653 bfd_put_micromips_32 (abfd, nextopc,
13654 contents + irel[1].r_offset);
13657 /* Can't do anything, give up, sigh... */
13658 else
13659 continue;
13661 /* Fix the relocation's type. */
13662 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13664 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13665 delcnt = 4;
13666 deloff = 0;
13669 /* Compact branch relaxation -- due to the multitude of macros
13670 employed by the compiler/assembler, compact branches are not
13671 always generated. Obviously, this can/will be fixed elsewhere,
13672 but there is no drawback in double checking it here. */
13673 else if (r_type == R_MICROMIPS_PC16_S1
13674 && irel->r_offset + 5 < sec->size
13675 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13676 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13677 && ((!insn32
13678 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13679 nop_insn_16) ? 2 : 0))
13680 || (irel->r_offset + 7 < sec->size
13681 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13682 ptr + 4),
13683 nop_insn_32) ? 4 : 0))))
13685 unsigned long reg;
13687 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13689 /* Replace BEQZ/BNEZ with the compact version. */
13690 opcode = (bzc_insns_32[fndopc].match
13691 | BZC32_REG_FIELD (reg)
13692 | (opcode & 0xffff)); /* Addend value. */
13694 bfd_put_micromips_32 (abfd, opcode, ptr);
13696 /* Delete the delay slot NOP: two or four bytes from
13697 irel->offset + 4; delcnt has already been set above. */
13698 deloff = 4;
13701 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13702 to check the distance from the next instruction, so subtract 2. */
13703 else if (!insn32
13704 && r_type == R_MICROMIPS_PC16_S1
13705 && IS_BITSIZE (pcrval - 2, 11)
13706 && find_match (opcode, b_insns_32) >= 0)
13708 /* Fix the relocation's type. */
13709 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13711 /* Replace the 32-bit opcode with a 16-bit opcode. */
13712 bfd_put_16 (abfd,
13713 (b_insn_16.match
13714 | (opcode & 0x3ff)), /* Addend value. */
13715 ptr);
13717 /* Delete 2 bytes from irel->r_offset + 2. */
13718 delcnt = 2;
13719 deloff = 2;
13722 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13723 to check the distance from the next instruction, so subtract 2. */
13724 else if (!insn32
13725 && r_type == R_MICROMIPS_PC16_S1
13726 && IS_BITSIZE (pcrval - 2, 8)
13727 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13728 && OP16_VALID_REG (OP32_SREG (opcode)))
13729 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13730 && OP16_VALID_REG (OP32_TREG (opcode)))))
13732 unsigned long reg;
13734 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13736 /* Fix the relocation's type. */
13737 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13739 /* Replace the 32-bit opcode with a 16-bit opcode. */
13740 bfd_put_16 (abfd,
13741 (bz_insns_16[fndopc].match
13742 | BZ16_REG_FIELD (reg)
13743 | (opcode & 0x7f)), /* Addend value. */
13744 ptr);
13746 /* Delete 2 bytes from irel->r_offset + 2. */
13747 delcnt = 2;
13748 deloff = 2;
13751 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13752 else if (!insn32
13753 && r_type == R_MICROMIPS_26_S1
13754 && target_is_micromips_code_p
13755 && irel->r_offset + 7 < sec->size
13756 && MATCH (opcode, jal_insn_32_bd32))
13758 unsigned long n32opc;
13759 bfd_boolean relaxed = FALSE;
13761 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13763 if (MATCH (n32opc, nop_insn_32))
13765 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13766 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13768 relaxed = TRUE;
13770 else if (find_match (n32opc, move_insns_32) >= 0)
13772 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13773 bfd_put_16 (abfd,
13774 (move_insn_16.match
13775 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13776 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13777 ptr + 4);
13779 relaxed = TRUE;
13781 /* Other 32-bit instructions relaxable to 16-bit
13782 instructions will be handled here later. */
13784 if (relaxed)
13786 /* JAL with 32-bit delay slot that is changed to a JALS
13787 with 16-bit delay slot. */
13788 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13790 /* Delete 2 bytes from irel->r_offset + 6. */
13791 delcnt = 2;
13792 deloff = 6;
13796 if (delcnt != 0)
13798 /* Note that we've changed the relocs, section contents, etc. */
13799 elf_section_data (sec)->relocs = internal_relocs;
13800 elf_section_data (sec)->this_hdr.contents = contents;
13801 symtab_hdr->contents = (unsigned char *) isymbuf;
13803 /* Delete bytes depending on the delcnt and deloff. */
13804 if (!mips_elf_relax_delete_bytes (abfd, sec,
13805 irel->r_offset + deloff, delcnt))
13806 goto error_return;
13808 /* That will change things, so we should relax again.
13809 Note that this is not required, and it may be slow. */
13810 *again = TRUE;
13814 if (isymbuf != NULL
13815 && symtab_hdr->contents != (unsigned char *) isymbuf)
13817 if (! link_info->keep_memory)
13818 free (isymbuf);
13819 else
13821 /* Cache the symbols for elf_link_input_bfd. */
13822 symtab_hdr->contents = (unsigned char *) isymbuf;
13826 if (contents != NULL
13827 && elf_section_data (sec)->this_hdr.contents != contents)
13829 if (! link_info->keep_memory)
13830 free (contents);
13831 else
13833 /* Cache the section contents for elf_link_input_bfd. */
13834 elf_section_data (sec)->this_hdr.contents = contents;
13838 if (internal_relocs != NULL
13839 && elf_section_data (sec)->relocs != internal_relocs)
13840 free (internal_relocs);
13842 return TRUE;
13844 error_return:
13845 if (isymbuf != NULL
13846 && symtab_hdr->contents != (unsigned char *) isymbuf)
13847 free (isymbuf);
13848 if (contents != NULL
13849 && elf_section_data (sec)->this_hdr.contents != contents)
13850 free (contents);
13851 if (internal_relocs != NULL
13852 && elf_section_data (sec)->relocs != internal_relocs)
13853 free (internal_relocs);
13855 return FALSE;
13858 /* Create a MIPS ELF linker hash table. */
13860 struct bfd_link_hash_table *
13861 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13863 struct mips_elf_link_hash_table *ret;
13864 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13866 ret = bfd_zmalloc (amt);
13867 if (ret == NULL)
13868 return NULL;
13870 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13871 mips_elf_link_hash_newfunc,
13872 sizeof (struct mips_elf_link_hash_entry),
13873 MIPS_ELF_DATA))
13875 free (ret);
13876 return NULL;
13878 ret->root.init_plt_refcount.plist = NULL;
13879 ret->root.init_plt_offset.plist = NULL;
13881 return &ret->root.root;
13884 /* Likewise, but indicate that the target is VxWorks. */
13886 struct bfd_link_hash_table *
13887 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13889 struct bfd_link_hash_table *ret;
13891 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13892 if (ret)
13894 struct mips_elf_link_hash_table *htab;
13896 htab = (struct mips_elf_link_hash_table *) ret;
13897 htab->use_plts_and_copy_relocs = TRUE;
13898 htab->is_vxworks = TRUE;
13900 return ret;
13903 /* A function that the linker calls if we are allowed to use PLTs
13904 and copy relocs. */
13906 void
13907 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13909 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13912 /* A function that the linker calls to select between all or only
13913 32-bit microMIPS instructions, and between making or ignoring
13914 branch relocation checks for invalid transitions between ISA modes. */
13916 void
13917 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13918 bfd_boolean ignore_branch_isa)
13920 mips_elf_hash_table (info)->insn32 = insn32;
13921 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13924 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13926 struct mips_mach_extension
13928 unsigned long extension, base;
13932 /* An array describing how BFD machines relate to one another. The entries
13933 are ordered topologically with MIPS I extensions listed last. */
13935 static const struct mips_mach_extension mips_mach_extensions[] =
13937 /* MIPS64r2 extensions. */
13938 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13939 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13940 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13941 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13942 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13944 /* MIPS64 extensions. */
13945 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13946 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13947 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13949 /* MIPS V extensions. */
13950 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13952 /* R10000 extensions. */
13953 { bfd_mach_mips12000, bfd_mach_mips10000 },
13954 { bfd_mach_mips14000, bfd_mach_mips10000 },
13955 { bfd_mach_mips16000, bfd_mach_mips10000 },
13957 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13958 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13959 better to allow vr5400 and vr5500 code to be merged anyway, since
13960 many libraries will just use the core ISA. Perhaps we could add
13961 some sort of ASE flag if this ever proves a problem. */
13962 { bfd_mach_mips5500, bfd_mach_mips5400 },
13963 { bfd_mach_mips5400, bfd_mach_mips5000 },
13965 /* MIPS IV extensions. */
13966 { bfd_mach_mips5, bfd_mach_mips8000 },
13967 { bfd_mach_mips10000, bfd_mach_mips8000 },
13968 { bfd_mach_mips5000, bfd_mach_mips8000 },
13969 { bfd_mach_mips7000, bfd_mach_mips8000 },
13970 { bfd_mach_mips9000, bfd_mach_mips8000 },
13972 /* VR4100 extensions. */
13973 { bfd_mach_mips4120, bfd_mach_mips4100 },
13974 { bfd_mach_mips4111, bfd_mach_mips4100 },
13976 /* MIPS III extensions. */
13977 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13978 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13979 { bfd_mach_mips8000, bfd_mach_mips4000 },
13980 { bfd_mach_mips4650, bfd_mach_mips4000 },
13981 { bfd_mach_mips4600, bfd_mach_mips4000 },
13982 { bfd_mach_mips4400, bfd_mach_mips4000 },
13983 { bfd_mach_mips4300, bfd_mach_mips4000 },
13984 { bfd_mach_mips4100, bfd_mach_mips4000 },
13985 { bfd_mach_mips5900, bfd_mach_mips4000 },
13987 /* MIPS32r3 extensions. */
13988 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
13990 /* MIPS32r2 extensions. */
13991 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
13993 /* MIPS32 extensions. */
13994 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13996 /* MIPS II extensions. */
13997 { bfd_mach_mips4000, bfd_mach_mips6000 },
13998 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13999 { bfd_mach_mips4010, bfd_mach_mips6000 },
14001 /* MIPS I extensions. */
14002 { bfd_mach_mips6000, bfd_mach_mips3000 },
14003 { bfd_mach_mips3900, bfd_mach_mips3000 }
14006 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14008 static bfd_boolean
14009 mips_mach_extends_p (unsigned long base, unsigned long extension)
14011 size_t i;
14013 if (extension == base)
14014 return TRUE;
14016 if (base == bfd_mach_mipsisa32
14017 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14018 return TRUE;
14020 if (base == bfd_mach_mipsisa32r2
14021 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14022 return TRUE;
14024 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14025 if (extension == mips_mach_extensions[i].extension)
14027 extension = mips_mach_extensions[i].base;
14028 if (extension == base)
14029 return TRUE;
14032 return FALSE;
14035 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14037 static unsigned long
14038 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14040 switch (isa_ext)
14042 case AFL_EXT_3900: return bfd_mach_mips3900;
14043 case AFL_EXT_4010: return bfd_mach_mips4010;
14044 case AFL_EXT_4100: return bfd_mach_mips4100;
14045 case AFL_EXT_4111: return bfd_mach_mips4111;
14046 case AFL_EXT_4120: return bfd_mach_mips4120;
14047 case AFL_EXT_4650: return bfd_mach_mips4650;
14048 case AFL_EXT_5400: return bfd_mach_mips5400;
14049 case AFL_EXT_5500: return bfd_mach_mips5500;
14050 case AFL_EXT_5900: return bfd_mach_mips5900;
14051 case AFL_EXT_10000: return bfd_mach_mips10000;
14052 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14053 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14054 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14055 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14056 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14057 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14058 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14059 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14060 default: return bfd_mach_mips3000;
14064 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14066 unsigned int
14067 bfd_mips_isa_ext (bfd *abfd)
14069 switch (bfd_get_mach (abfd))
14071 case bfd_mach_mips3900: return AFL_EXT_3900;
14072 case bfd_mach_mips4010: return AFL_EXT_4010;
14073 case bfd_mach_mips4100: return AFL_EXT_4100;
14074 case bfd_mach_mips4111: return AFL_EXT_4111;
14075 case bfd_mach_mips4120: return AFL_EXT_4120;
14076 case bfd_mach_mips4650: return AFL_EXT_4650;
14077 case bfd_mach_mips5400: return AFL_EXT_5400;
14078 case bfd_mach_mips5500: return AFL_EXT_5500;
14079 case bfd_mach_mips5900: return AFL_EXT_5900;
14080 case bfd_mach_mips10000: return AFL_EXT_10000;
14081 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14082 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14083 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14084 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14085 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14086 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14087 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14088 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14089 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14090 case bfd_mach_mips_interaptiv_mr2:
14091 return AFL_EXT_INTERAPTIV_MR2;
14092 default: return 0;
14096 /* Encode ISA level and revision as a single value. */
14097 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14099 /* Decode a single value into level and revision. */
14100 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14101 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14103 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14105 static void
14106 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14108 int new_isa = 0;
14109 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14111 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14112 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14113 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14114 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14115 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14116 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14117 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14118 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14119 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14120 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14121 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14122 default:
14123 _bfd_error_handler
14124 /* xgettext:c-format */
14125 (_("%B: Unknown architecture %s"),
14126 abfd, bfd_printable_name (abfd));
14129 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14131 abiflags->isa_level = ISA_LEVEL (new_isa);
14132 abiflags->isa_rev = ISA_REV (new_isa);
14135 /* Update the isa_ext if ABFD describes a further extension. */
14136 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14137 bfd_get_mach (abfd)))
14138 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14141 /* Return true if the given ELF header flags describe a 32-bit binary. */
14143 static bfd_boolean
14144 mips_32bit_flags_p (flagword flags)
14146 return ((flags & EF_MIPS_32BITMODE) != 0
14147 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14148 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14149 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14150 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14151 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14152 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14153 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14156 /* Infer the content of the ABI flags based on the elf header. */
14158 static void
14159 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14161 obj_attribute *in_attr;
14163 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14164 update_mips_abiflags_isa (abfd, abiflags);
14166 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14167 abiflags->gpr_size = AFL_REG_32;
14168 else
14169 abiflags->gpr_size = AFL_REG_64;
14171 abiflags->cpr1_size = AFL_REG_NONE;
14173 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14174 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14176 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14177 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14178 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14179 && abiflags->gpr_size == AFL_REG_32))
14180 abiflags->cpr1_size = AFL_REG_32;
14181 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14182 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14183 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14184 abiflags->cpr1_size = AFL_REG_64;
14186 abiflags->cpr2_size = AFL_REG_NONE;
14188 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14189 abiflags->ases |= AFL_ASE_MDMX;
14190 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14191 abiflags->ases |= AFL_ASE_MIPS16;
14192 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14193 abiflags->ases |= AFL_ASE_MICROMIPS;
14195 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14196 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14197 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14198 && abiflags->isa_level >= 32
14199 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14200 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14203 /* We need to use a special link routine to handle the .reginfo and
14204 the .mdebug sections. We need to merge all instances of these
14205 sections together, not write them all out sequentially. */
14207 bfd_boolean
14208 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14210 asection *o;
14211 struct bfd_link_order *p;
14212 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14213 asection *rtproc_sec, *abiflags_sec;
14214 Elf32_RegInfo reginfo;
14215 struct ecoff_debug_info debug;
14216 struct mips_htab_traverse_info hti;
14217 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14218 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14219 HDRR *symhdr = &debug.symbolic_header;
14220 void *mdebug_handle = NULL;
14221 asection *s;
14222 EXTR esym;
14223 unsigned int i;
14224 bfd_size_type amt;
14225 struct mips_elf_link_hash_table *htab;
14227 static const char * const secname[] =
14229 ".text", ".init", ".fini", ".data",
14230 ".rodata", ".sdata", ".sbss", ".bss"
14232 static const int sc[] =
14234 scText, scInit, scFini, scData,
14235 scRData, scSData, scSBss, scBss
14238 htab = mips_elf_hash_table (info);
14239 BFD_ASSERT (htab != NULL);
14241 /* Sort the dynamic symbols so that those with GOT entries come after
14242 those without. */
14243 if (!mips_elf_sort_hash_table (abfd, info))
14244 return FALSE;
14246 /* Create any scheduled LA25 stubs. */
14247 hti.info = info;
14248 hti.output_bfd = abfd;
14249 hti.error = FALSE;
14250 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14251 if (hti.error)
14252 return FALSE;
14254 /* Get a value for the GP register. */
14255 if (elf_gp (abfd) == 0)
14257 struct bfd_link_hash_entry *h;
14259 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14260 if (h != NULL && h->type == bfd_link_hash_defined)
14261 elf_gp (abfd) = (h->u.def.value
14262 + h->u.def.section->output_section->vma
14263 + h->u.def.section->output_offset);
14264 else if (htab->is_vxworks
14265 && (h = bfd_link_hash_lookup (info->hash,
14266 "_GLOBAL_OFFSET_TABLE_",
14267 FALSE, FALSE, TRUE))
14268 && h->type == bfd_link_hash_defined)
14269 elf_gp (abfd) = (h->u.def.section->output_section->vma
14270 + h->u.def.section->output_offset
14271 + h->u.def.value);
14272 else if (bfd_link_relocatable (info))
14274 bfd_vma lo = MINUS_ONE;
14276 /* Find the GP-relative section with the lowest offset. */
14277 for (o = abfd->sections; o != NULL; o = o->next)
14278 if (o->vma < lo
14279 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14280 lo = o->vma;
14282 /* And calculate GP relative to that. */
14283 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14285 else
14287 /* If the relocate_section function needs to do a reloc
14288 involving the GP value, it should make a reloc_dangerous
14289 callback to warn that GP is not defined. */
14293 /* Go through the sections and collect the .reginfo and .mdebug
14294 information. */
14295 abiflags_sec = NULL;
14296 reginfo_sec = NULL;
14297 mdebug_sec = NULL;
14298 gptab_data_sec = NULL;
14299 gptab_bss_sec = NULL;
14300 for (o = abfd->sections; o != NULL; o = o->next)
14302 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14304 /* We have found the .MIPS.abiflags section in the output file.
14305 Look through all the link_orders comprising it and remove them.
14306 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14307 for (p = o->map_head.link_order; p != NULL; p = p->next)
14309 asection *input_section;
14311 if (p->type != bfd_indirect_link_order)
14313 if (p->type == bfd_data_link_order)
14314 continue;
14315 abort ();
14318 input_section = p->u.indirect.section;
14320 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14321 elf_link_input_bfd ignores this section. */
14322 input_section->flags &= ~SEC_HAS_CONTENTS;
14325 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14326 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14328 /* Skip this section later on (I don't think this currently
14329 matters, but someday it might). */
14330 o->map_head.link_order = NULL;
14332 abiflags_sec = o;
14335 if (strcmp (o->name, ".reginfo") == 0)
14337 memset (&reginfo, 0, sizeof reginfo);
14339 /* We have found the .reginfo section in the output file.
14340 Look through all the link_orders comprising it and merge
14341 the information together. */
14342 for (p = o->map_head.link_order; p != NULL; p = p->next)
14344 asection *input_section;
14345 bfd *input_bfd;
14346 Elf32_External_RegInfo ext;
14347 Elf32_RegInfo sub;
14349 if (p->type != bfd_indirect_link_order)
14351 if (p->type == bfd_data_link_order)
14352 continue;
14353 abort ();
14356 input_section = p->u.indirect.section;
14357 input_bfd = input_section->owner;
14359 if (! bfd_get_section_contents (input_bfd, input_section,
14360 &ext, 0, sizeof ext))
14361 return FALSE;
14363 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14365 reginfo.ri_gprmask |= sub.ri_gprmask;
14366 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14367 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14368 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14369 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14371 /* ri_gp_value is set by the function
14372 mips_elf32_section_processing when the section is
14373 finally written out. */
14375 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14376 elf_link_input_bfd ignores this section. */
14377 input_section->flags &= ~SEC_HAS_CONTENTS;
14380 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14381 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14383 /* Skip this section later on (I don't think this currently
14384 matters, but someday it might). */
14385 o->map_head.link_order = NULL;
14387 reginfo_sec = o;
14390 if (strcmp (o->name, ".mdebug") == 0)
14392 struct extsym_info einfo;
14393 bfd_vma last;
14395 /* We have found the .mdebug section in the output file.
14396 Look through all the link_orders comprising it and merge
14397 the information together. */
14398 symhdr->magic = swap->sym_magic;
14399 /* FIXME: What should the version stamp be? */
14400 symhdr->vstamp = 0;
14401 symhdr->ilineMax = 0;
14402 symhdr->cbLine = 0;
14403 symhdr->idnMax = 0;
14404 symhdr->ipdMax = 0;
14405 symhdr->isymMax = 0;
14406 symhdr->ioptMax = 0;
14407 symhdr->iauxMax = 0;
14408 symhdr->issMax = 0;
14409 symhdr->issExtMax = 0;
14410 symhdr->ifdMax = 0;
14411 symhdr->crfd = 0;
14412 symhdr->iextMax = 0;
14414 /* We accumulate the debugging information itself in the
14415 debug_info structure. */
14416 debug.line = NULL;
14417 debug.external_dnr = NULL;
14418 debug.external_pdr = NULL;
14419 debug.external_sym = NULL;
14420 debug.external_opt = NULL;
14421 debug.external_aux = NULL;
14422 debug.ss = NULL;
14423 debug.ssext = debug.ssext_end = NULL;
14424 debug.external_fdr = NULL;
14425 debug.external_rfd = NULL;
14426 debug.external_ext = debug.external_ext_end = NULL;
14428 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14429 if (mdebug_handle == NULL)
14430 return FALSE;
14432 esym.jmptbl = 0;
14433 esym.cobol_main = 0;
14434 esym.weakext = 0;
14435 esym.reserved = 0;
14436 esym.ifd = ifdNil;
14437 esym.asym.iss = issNil;
14438 esym.asym.st = stLocal;
14439 esym.asym.reserved = 0;
14440 esym.asym.index = indexNil;
14441 last = 0;
14442 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14444 esym.asym.sc = sc[i];
14445 s = bfd_get_section_by_name (abfd, secname[i]);
14446 if (s != NULL)
14448 esym.asym.value = s->vma;
14449 last = s->vma + s->size;
14451 else
14452 esym.asym.value = last;
14453 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14454 secname[i], &esym))
14455 return FALSE;
14458 for (p = o->map_head.link_order; p != NULL; p = p->next)
14460 asection *input_section;
14461 bfd *input_bfd;
14462 const struct ecoff_debug_swap *input_swap;
14463 struct ecoff_debug_info input_debug;
14464 char *eraw_src;
14465 char *eraw_end;
14467 if (p->type != bfd_indirect_link_order)
14469 if (p->type == bfd_data_link_order)
14470 continue;
14471 abort ();
14474 input_section = p->u.indirect.section;
14475 input_bfd = input_section->owner;
14477 if (!is_mips_elf (input_bfd))
14479 /* I don't know what a non MIPS ELF bfd would be
14480 doing with a .mdebug section, but I don't really
14481 want to deal with it. */
14482 continue;
14485 input_swap = (get_elf_backend_data (input_bfd)
14486 ->elf_backend_ecoff_debug_swap);
14488 BFD_ASSERT (p->size == input_section->size);
14490 /* The ECOFF linking code expects that we have already
14491 read in the debugging information and set up an
14492 ecoff_debug_info structure, so we do that now. */
14493 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14494 &input_debug))
14495 return FALSE;
14497 if (! (bfd_ecoff_debug_accumulate
14498 (mdebug_handle, abfd, &debug, swap, input_bfd,
14499 &input_debug, input_swap, info)))
14500 return FALSE;
14502 /* Loop through the external symbols. For each one with
14503 interesting information, try to find the symbol in
14504 the linker global hash table and save the information
14505 for the output external symbols. */
14506 eraw_src = input_debug.external_ext;
14507 eraw_end = (eraw_src
14508 + (input_debug.symbolic_header.iextMax
14509 * input_swap->external_ext_size));
14510 for (;
14511 eraw_src < eraw_end;
14512 eraw_src += input_swap->external_ext_size)
14514 EXTR ext;
14515 const char *name;
14516 struct mips_elf_link_hash_entry *h;
14518 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14519 if (ext.asym.sc == scNil
14520 || ext.asym.sc == scUndefined
14521 || ext.asym.sc == scSUndefined)
14522 continue;
14524 name = input_debug.ssext + ext.asym.iss;
14525 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14526 name, FALSE, FALSE, TRUE);
14527 if (h == NULL || h->esym.ifd != -2)
14528 continue;
14530 if (ext.ifd != -1)
14532 BFD_ASSERT (ext.ifd
14533 < input_debug.symbolic_header.ifdMax);
14534 ext.ifd = input_debug.ifdmap[ext.ifd];
14537 h->esym = ext;
14540 /* Free up the information we just read. */
14541 free (input_debug.line);
14542 free (input_debug.external_dnr);
14543 free (input_debug.external_pdr);
14544 free (input_debug.external_sym);
14545 free (input_debug.external_opt);
14546 free (input_debug.external_aux);
14547 free (input_debug.ss);
14548 free (input_debug.ssext);
14549 free (input_debug.external_fdr);
14550 free (input_debug.external_rfd);
14551 free (input_debug.external_ext);
14553 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14554 elf_link_input_bfd ignores this section. */
14555 input_section->flags &= ~SEC_HAS_CONTENTS;
14558 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14560 /* Create .rtproc section. */
14561 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14562 if (rtproc_sec == NULL)
14564 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14565 | SEC_LINKER_CREATED | SEC_READONLY);
14567 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14568 ".rtproc",
14569 flags);
14570 if (rtproc_sec == NULL
14571 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14572 return FALSE;
14575 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14576 info, rtproc_sec,
14577 &debug))
14578 return FALSE;
14581 /* Build the external symbol information. */
14582 einfo.abfd = abfd;
14583 einfo.info = info;
14584 einfo.debug = &debug;
14585 einfo.swap = swap;
14586 einfo.failed = FALSE;
14587 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14588 mips_elf_output_extsym, &einfo);
14589 if (einfo.failed)
14590 return FALSE;
14592 /* Set the size of the .mdebug section. */
14593 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14595 /* Skip this section later on (I don't think this currently
14596 matters, but someday it might). */
14597 o->map_head.link_order = NULL;
14599 mdebug_sec = o;
14602 if (CONST_STRNEQ (o->name, ".gptab."))
14604 const char *subname;
14605 unsigned int c;
14606 Elf32_gptab *tab;
14607 Elf32_External_gptab *ext_tab;
14608 unsigned int j;
14610 /* The .gptab.sdata and .gptab.sbss sections hold
14611 information describing how the small data area would
14612 change depending upon the -G switch. These sections
14613 not used in executables files. */
14614 if (! bfd_link_relocatable (info))
14616 for (p = o->map_head.link_order; p != NULL; p = p->next)
14618 asection *input_section;
14620 if (p->type != bfd_indirect_link_order)
14622 if (p->type == bfd_data_link_order)
14623 continue;
14624 abort ();
14627 input_section = p->u.indirect.section;
14629 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14630 elf_link_input_bfd ignores this section. */
14631 input_section->flags &= ~SEC_HAS_CONTENTS;
14634 /* Skip this section later on (I don't think this
14635 currently matters, but someday it might). */
14636 o->map_head.link_order = NULL;
14638 /* Really remove the section. */
14639 bfd_section_list_remove (abfd, o);
14640 --abfd->section_count;
14642 continue;
14645 /* There is one gptab for initialized data, and one for
14646 uninitialized data. */
14647 if (strcmp (o->name, ".gptab.sdata") == 0)
14648 gptab_data_sec = o;
14649 else if (strcmp (o->name, ".gptab.sbss") == 0)
14650 gptab_bss_sec = o;
14651 else
14653 _bfd_error_handler
14654 /* xgettext:c-format */
14655 (_("%B: illegal section name `%A'"), abfd, o);
14656 bfd_set_error (bfd_error_nonrepresentable_section);
14657 return FALSE;
14660 /* The linker script always combines .gptab.data and
14661 .gptab.sdata into .gptab.sdata, and likewise for
14662 .gptab.bss and .gptab.sbss. It is possible that there is
14663 no .sdata or .sbss section in the output file, in which
14664 case we must change the name of the output section. */
14665 subname = o->name + sizeof ".gptab" - 1;
14666 if (bfd_get_section_by_name (abfd, subname) == NULL)
14668 if (o == gptab_data_sec)
14669 o->name = ".gptab.data";
14670 else
14671 o->name = ".gptab.bss";
14672 subname = o->name + sizeof ".gptab" - 1;
14673 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14676 /* Set up the first entry. */
14677 c = 1;
14678 amt = c * sizeof (Elf32_gptab);
14679 tab = bfd_malloc (amt);
14680 if (tab == NULL)
14681 return FALSE;
14682 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14683 tab[0].gt_header.gt_unused = 0;
14685 /* Combine the input sections. */
14686 for (p = o->map_head.link_order; p != NULL; p = p->next)
14688 asection *input_section;
14689 bfd *input_bfd;
14690 bfd_size_type size;
14691 unsigned long last;
14692 bfd_size_type gpentry;
14694 if (p->type != bfd_indirect_link_order)
14696 if (p->type == bfd_data_link_order)
14697 continue;
14698 abort ();
14701 input_section = p->u.indirect.section;
14702 input_bfd = input_section->owner;
14704 /* Combine the gptab entries for this input section one
14705 by one. We know that the input gptab entries are
14706 sorted by ascending -G value. */
14707 size = input_section->size;
14708 last = 0;
14709 for (gpentry = sizeof (Elf32_External_gptab);
14710 gpentry < size;
14711 gpentry += sizeof (Elf32_External_gptab))
14713 Elf32_External_gptab ext_gptab;
14714 Elf32_gptab int_gptab;
14715 unsigned long val;
14716 unsigned long add;
14717 bfd_boolean exact;
14718 unsigned int look;
14720 if (! (bfd_get_section_contents
14721 (input_bfd, input_section, &ext_gptab, gpentry,
14722 sizeof (Elf32_External_gptab))))
14724 free (tab);
14725 return FALSE;
14728 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14729 &int_gptab);
14730 val = int_gptab.gt_entry.gt_g_value;
14731 add = int_gptab.gt_entry.gt_bytes - last;
14733 exact = FALSE;
14734 for (look = 1; look < c; look++)
14736 if (tab[look].gt_entry.gt_g_value >= val)
14737 tab[look].gt_entry.gt_bytes += add;
14739 if (tab[look].gt_entry.gt_g_value == val)
14740 exact = TRUE;
14743 if (! exact)
14745 Elf32_gptab *new_tab;
14746 unsigned int max;
14748 /* We need a new table entry. */
14749 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14750 new_tab = bfd_realloc (tab, amt);
14751 if (new_tab == NULL)
14753 free (tab);
14754 return FALSE;
14756 tab = new_tab;
14757 tab[c].gt_entry.gt_g_value = val;
14758 tab[c].gt_entry.gt_bytes = add;
14760 /* Merge in the size for the next smallest -G
14761 value, since that will be implied by this new
14762 value. */
14763 max = 0;
14764 for (look = 1; look < c; look++)
14766 if (tab[look].gt_entry.gt_g_value < val
14767 && (max == 0
14768 || (tab[look].gt_entry.gt_g_value
14769 > tab[max].gt_entry.gt_g_value)))
14770 max = look;
14772 if (max != 0)
14773 tab[c].gt_entry.gt_bytes +=
14774 tab[max].gt_entry.gt_bytes;
14776 ++c;
14779 last = int_gptab.gt_entry.gt_bytes;
14782 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14783 elf_link_input_bfd ignores this section. */
14784 input_section->flags &= ~SEC_HAS_CONTENTS;
14787 /* The table must be sorted by -G value. */
14788 if (c > 2)
14789 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14791 /* Swap out the table. */
14792 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14793 ext_tab = bfd_alloc (abfd, amt);
14794 if (ext_tab == NULL)
14796 free (tab);
14797 return FALSE;
14800 for (j = 0; j < c; j++)
14801 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14802 free (tab);
14804 o->size = c * sizeof (Elf32_External_gptab);
14805 o->contents = (bfd_byte *) ext_tab;
14807 /* Skip this section later on (I don't think this currently
14808 matters, but someday it might). */
14809 o->map_head.link_order = NULL;
14813 /* Invoke the regular ELF backend linker to do all the work. */
14814 if (!bfd_elf_final_link (abfd, info))
14815 return FALSE;
14817 /* Now write out the computed sections. */
14819 if (abiflags_sec != NULL)
14821 Elf_External_ABIFlags_v0 ext;
14822 Elf_Internal_ABIFlags_v0 *abiflags;
14824 abiflags = &mips_elf_tdata (abfd)->abiflags;
14826 /* Set up the abiflags if no valid input sections were found. */
14827 if (!mips_elf_tdata (abfd)->abiflags_valid)
14829 infer_mips_abiflags (abfd, abiflags);
14830 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14832 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14833 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14834 return FALSE;
14837 if (reginfo_sec != NULL)
14839 Elf32_External_RegInfo ext;
14841 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14842 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14843 return FALSE;
14846 if (mdebug_sec != NULL)
14848 BFD_ASSERT (abfd->output_has_begun);
14849 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14850 swap, info,
14851 mdebug_sec->filepos))
14852 return FALSE;
14854 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14857 if (gptab_data_sec != NULL)
14859 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14860 gptab_data_sec->contents,
14861 0, gptab_data_sec->size))
14862 return FALSE;
14865 if (gptab_bss_sec != NULL)
14867 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14868 gptab_bss_sec->contents,
14869 0, gptab_bss_sec->size))
14870 return FALSE;
14873 if (SGI_COMPAT (abfd))
14875 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14876 if (rtproc_sec != NULL)
14878 if (! bfd_set_section_contents (abfd, rtproc_sec,
14879 rtproc_sec->contents,
14880 0, rtproc_sec->size))
14881 return FALSE;
14885 return TRUE;
14888 /* Merge object file header flags from IBFD into OBFD. Raise an error
14889 if there are conflicting settings. */
14891 static bfd_boolean
14892 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14894 bfd *obfd = info->output_bfd;
14895 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14896 flagword old_flags;
14897 flagword new_flags;
14898 bfd_boolean ok;
14900 new_flags = elf_elfheader (ibfd)->e_flags;
14901 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14902 old_flags = elf_elfheader (obfd)->e_flags;
14904 /* Check flag compatibility. */
14906 new_flags &= ~EF_MIPS_NOREORDER;
14907 old_flags &= ~EF_MIPS_NOREORDER;
14909 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14910 doesn't seem to matter. */
14911 new_flags &= ~EF_MIPS_XGOT;
14912 old_flags &= ~EF_MIPS_XGOT;
14914 /* MIPSpro generates ucode info in n64 objects. Again, we should
14915 just be able to ignore this. */
14916 new_flags &= ~EF_MIPS_UCODE;
14917 old_flags &= ~EF_MIPS_UCODE;
14919 /* DSOs should only be linked with CPIC code. */
14920 if ((ibfd->flags & DYNAMIC) != 0)
14921 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14923 if (new_flags == old_flags)
14924 return TRUE;
14926 ok = TRUE;
14928 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14929 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14931 _bfd_error_handler
14932 (_("%B: warning: linking abicalls files with non-abicalls files"),
14933 ibfd);
14934 ok = TRUE;
14937 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14938 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14939 if (! (new_flags & EF_MIPS_PIC))
14940 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14942 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14943 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14945 /* Compare the ISAs. */
14946 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14948 _bfd_error_handler
14949 (_("%B: linking 32-bit code with 64-bit code"),
14950 ibfd);
14951 ok = FALSE;
14953 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14955 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14956 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14958 /* Copy the architecture info from IBFD to OBFD. Also copy
14959 the 32-bit flag (if set) so that we continue to recognise
14960 OBFD as a 32-bit binary. */
14961 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14962 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14963 elf_elfheader (obfd)->e_flags
14964 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14966 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14967 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14969 /* Copy across the ABI flags if OBFD doesn't use them
14970 and if that was what caused us to treat IBFD as 32-bit. */
14971 if ((old_flags & EF_MIPS_ABI) == 0
14972 && mips_32bit_flags_p (new_flags)
14973 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14974 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14976 else
14978 /* The ISAs aren't compatible. */
14979 _bfd_error_handler
14980 /* xgettext:c-format */
14981 (_("%B: linking %s module with previous %s modules"),
14982 ibfd,
14983 bfd_printable_name (ibfd),
14984 bfd_printable_name (obfd));
14985 ok = FALSE;
14989 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14990 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14992 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14993 does set EI_CLASS differently from any 32-bit ABI. */
14994 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14995 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14996 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14998 /* Only error if both are set (to different values). */
14999 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15000 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15001 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15003 _bfd_error_handler
15004 /* xgettext:c-format */
15005 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15006 ibfd,
15007 elf_mips_abi_name (ibfd),
15008 elf_mips_abi_name (obfd));
15009 ok = FALSE;
15011 new_flags &= ~EF_MIPS_ABI;
15012 old_flags &= ~EF_MIPS_ABI;
15015 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15016 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15017 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15019 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15020 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15021 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15022 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15023 int micro_mis = old_m16 && new_micro;
15024 int m16_mis = old_micro && new_m16;
15026 if (m16_mis || micro_mis)
15028 _bfd_error_handler
15029 /* xgettext:c-format */
15030 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15031 ibfd,
15032 m16_mis ? "MIPS16" : "microMIPS",
15033 m16_mis ? "microMIPS" : "MIPS16");
15034 ok = FALSE;
15037 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15039 new_flags &= ~ EF_MIPS_ARCH_ASE;
15040 old_flags &= ~ EF_MIPS_ARCH_ASE;
15043 /* Compare NaN encodings. */
15044 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15046 /* xgettext:c-format */
15047 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15048 ibfd,
15049 (new_flags & EF_MIPS_NAN2008
15050 ? "-mnan=2008" : "-mnan=legacy"),
15051 (old_flags & EF_MIPS_NAN2008
15052 ? "-mnan=2008" : "-mnan=legacy"));
15053 ok = FALSE;
15054 new_flags &= ~EF_MIPS_NAN2008;
15055 old_flags &= ~EF_MIPS_NAN2008;
15058 /* Compare FP64 state. */
15059 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15061 /* xgettext:c-format */
15062 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15063 ibfd,
15064 (new_flags & EF_MIPS_FP64
15065 ? "-mfp64" : "-mfp32"),
15066 (old_flags & EF_MIPS_FP64
15067 ? "-mfp64" : "-mfp32"));
15068 ok = FALSE;
15069 new_flags &= ~EF_MIPS_FP64;
15070 old_flags &= ~EF_MIPS_FP64;
15073 /* Warn about any other mismatches */
15074 if (new_flags != old_flags)
15076 /* xgettext:c-format */
15077 _bfd_error_handler
15078 (_("%B: uses different e_flags (%#x) fields than previous modules "
15079 "(%#x)"),
15080 ibfd, new_flags, old_flags);
15081 ok = FALSE;
15084 return ok;
15087 /* Merge object attributes from IBFD into OBFD. Raise an error if
15088 there are conflicting attributes. */
15089 static bfd_boolean
15090 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15092 bfd *obfd = info->output_bfd;
15093 obj_attribute *in_attr;
15094 obj_attribute *out_attr;
15095 bfd *abi_fp_bfd;
15096 bfd *abi_msa_bfd;
15098 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15099 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15100 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15101 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15103 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15104 if (!abi_msa_bfd
15105 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15106 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15108 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15110 /* This is the first object. Copy the attributes. */
15111 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15113 /* Use the Tag_null value to indicate the attributes have been
15114 initialized. */
15115 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15117 return TRUE;
15120 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15121 non-conflicting ones. */
15122 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15123 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15125 int out_fp, in_fp;
15127 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15128 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15129 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15130 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15131 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15132 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15133 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15134 || in_fp == Val_GNU_MIPS_ABI_FP_64
15135 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15137 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15138 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15140 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15141 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15142 || out_fp == Val_GNU_MIPS_ABI_FP_64
15143 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15144 /* Keep the current setting. */;
15145 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15146 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15148 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15149 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15151 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15152 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15153 /* Keep the current setting. */;
15154 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15156 const char *out_string, *in_string;
15158 out_string = _bfd_mips_fp_abi_string (out_fp);
15159 in_string = _bfd_mips_fp_abi_string (in_fp);
15160 /* First warn about cases involving unrecognised ABIs. */
15161 if (!out_string && !in_string)
15162 /* xgettext:c-format */
15163 _bfd_error_handler
15164 (_("Warning: %B uses unknown floating point ABI %d "
15165 "(set by %B), %B uses unknown floating point ABI %d"),
15166 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15167 else if (!out_string)
15168 _bfd_error_handler
15169 /* xgettext:c-format */
15170 (_("Warning: %B uses unknown floating point ABI %d "
15171 "(set by %B), %B uses %s"),
15172 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15173 else if (!in_string)
15174 _bfd_error_handler
15175 /* xgettext:c-format */
15176 (_("Warning: %B uses %s (set by %B), "
15177 "%B uses unknown floating point ABI %d"),
15178 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15179 else
15181 /* If one of the bfds is soft-float, the other must be
15182 hard-float. The exact choice of hard-float ABI isn't
15183 really relevant to the error message. */
15184 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15185 out_string = "-mhard-float";
15186 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15187 in_string = "-mhard-float";
15188 _bfd_error_handler
15189 /* xgettext:c-format */
15190 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15191 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15196 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15197 non-conflicting ones. */
15198 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15200 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15201 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15202 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15203 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15204 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15206 case Val_GNU_MIPS_ABI_MSA_128:
15207 _bfd_error_handler
15208 /* xgettext:c-format */
15209 (_("Warning: %B uses %s (set by %B), "
15210 "%B uses unknown MSA ABI %d"),
15211 obfd, "-mmsa", abi_msa_bfd,
15212 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15213 break;
15215 default:
15216 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15218 case Val_GNU_MIPS_ABI_MSA_128:
15219 _bfd_error_handler
15220 /* xgettext:c-format */
15221 (_("Warning: %B uses unknown MSA ABI %d "
15222 "(set by %B), %B uses %s"),
15223 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15224 abi_msa_bfd, ibfd, "-mmsa");
15225 break;
15227 default:
15228 _bfd_error_handler
15229 /* xgettext:c-format */
15230 (_("Warning: %B uses unknown MSA ABI %d "
15231 "(set by %B), %B uses unknown MSA ABI %d"),
15232 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15233 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15234 break;
15239 /* Merge Tag_compatibility attributes and any common GNU ones. */
15240 return _bfd_elf_merge_object_attributes (ibfd, info);
15243 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15244 there are conflicting settings. */
15246 static bfd_boolean
15247 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15249 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15250 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15251 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15253 /* Update the output abiflags fp_abi using the computed fp_abi. */
15254 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15256 #define max(a, b) ((a) > (b) ? (a) : (b))
15257 /* Merge abiflags. */
15258 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15259 in_tdata->abiflags.isa_level);
15260 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15261 in_tdata->abiflags.isa_rev);
15262 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15263 in_tdata->abiflags.gpr_size);
15264 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15265 in_tdata->abiflags.cpr1_size);
15266 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15267 in_tdata->abiflags.cpr2_size);
15268 #undef max
15269 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15270 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15272 return TRUE;
15275 /* Merge backend specific data from an object file to the output
15276 object file when linking. */
15278 bfd_boolean
15279 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15281 bfd *obfd = info->output_bfd;
15282 struct mips_elf_obj_tdata *out_tdata;
15283 struct mips_elf_obj_tdata *in_tdata;
15284 bfd_boolean null_input_bfd = TRUE;
15285 asection *sec;
15286 bfd_boolean ok;
15288 /* Check if we have the same endianness. */
15289 if (! _bfd_generic_verify_endian_match (ibfd, info))
15291 _bfd_error_handler
15292 (_("%B: endianness incompatible with that of the selected emulation"),
15293 ibfd);
15294 return FALSE;
15297 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15298 return TRUE;
15300 in_tdata = mips_elf_tdata (ibfd);
15301 out_tdata = mips_elf_tdata (obfd);
15303 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15305 _bfd_error_handler
15306 (_("%B: ABI is incompatible with that of the selected emulation"),
15307 ibfd);
15308 return FALSE;
15311 /* Check to see if the input BFD actually contains any sections. If not,
15312 then it has no attributes, and its flags may not have been initialized
15313 either, but it cannot actually cause any incompatibility. */
15314 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15316 /* Ignore synthetic sections and empty .text, .data and .bss sections
15317 which are automatically generated by gas. Also ignore fake
15318 (s)common sections, since merely defining a common symbol does
15319 not affect compatibility. */
15320 if ((sec->flags & SEC_IS_COMMON) == 0
15321 && strcmp (sec->name, ".reginfo")
15322 && strcmp (sec->name, ".mdebug")
15323 && (sec->size != 0
15324 || (strcmp (sec->name, ".text")
15325 && strcmp (sec->name, ".data")
15326 && strcmp (sec->name, ".bss"))))
15328 null_input_bfd = FALSE;
15329 break;
15332 if (null_input_bfd)
15333 return TRUE;
15335 /* Populate abiflags using existing information. */
15336 if (in_tdata->abiflags_valid)
15338 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15339 Elf_Internal_ABIFlags_v0 in_abiflags;
15340 Elf_Internal_ABIFlags_v0 abiflags;
15342 /* Set up the FP ABI attribute from the abiflags if it is not already
15343 set. */
15344 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15345 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15347 infer_mips_abiflags (ibfd, &abiflags);
15348 in_abiflags = in_tdata->abiflags;
15350 /* It is not possible to infer the correct ISA revision
15351 for R3 or R5 so drop down to R2 for the checks. */
15352 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15353 in_abiflags.isa_rev = 2;
15355 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15356 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15357 _bfd_error_handler
15358 (_("%B: warning: Inconsistent ISA between e_flags and "
15359 ".MIPS.abiflags"), ibfd);
15360 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15361 && in_abiflags.fp_abi != abiflags.fp_abi)
15362 _bfd_error_handler
15363 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15364 ".MIPS.abiflags"), ibfd);
15365 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15366 _bfd_error_handler
15367 (_("%B: warning: Inconsistent ASEs between e_flags and "
15368 ".MIPS.abiflags"), ibfd);
15369 /* The isa_ext is allowed to be an extension of what can be inferred
15370 from e_flags. */
15371 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15372 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15373 _bfd_error_handler
15374 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15375 ".MIPS.abiflags"), ibfd);
15376 if (in_abiflags.flags2 != 0)
15377 _bfd_error_handler
15378 (_("%B: warning: Unexpected flag in the flags2 field of "
15379 ".MIPS.abiflags (0x%lx)"), ibfd,
15380 in_abiflags.flags2);
15382 else
15384 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15385 in_tdata->abiflags_valid = TRUE;
15388 if (!out_tdata->abiflags_valid)
15390 /* Copy input abiflags if output abiflags are not already valid. */
15391 out_tdata->abiflags = in_tdata->abiflags;
15392 out_tdata->abiflags_valid = TRUE;
15395 if (! elf_flags_init (obfd))
15397 elf_flags_init (obfd) = TRUE;
15398 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15399 elf_elfheader (obfd)->e_ident[EI_CLASS]
15400 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15402 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15403 && (bfd_get_arch_info (obfd)->the_default
15404 || mips_mach_extends_p (bfd_get_mach (obfd),
15405 bfd_get_mach (ibfd))))
15407 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15408 bfd_get_mach (ibfd)))
15409 return FALSE;
15411 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15412 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15415 ok = TRUE;
15417 else
15418 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15420 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15422 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15424 if (!ok)
15426 bfd_set_error (bfd_error_bad_value);
15427 return FALSE;
15430 return TRUE;
15433 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15435 bfd_boolean
15436 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15438 BFD_ASSERT (!elf_flags_init (abfd)
15439 || elf_elfheader (abfd)->e_flags == flags);
15441 elf_elfheader (abfd)->e_flags = flags;
15442 elf_flags_init (abfd) = TRUE;
15443 return TRUE;
15446 char *
15447 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15449 switch (dtag)
15451 default: return "";
15452 case DT_MIPS_RLD_VERSION:
15453 return "MIPS_RLD_VERSION";
15454 case DT_MIPS_TIME_STAMP:
15455 return "MIPS_TIME_STAMP";
15456 case DT_MIPS_ICHECKSUM:
15457 return "MIPS_ICHECKSUM";
15458 case DT_MIPS_IVERSION:
15459 return "MIPS_IVERSION";
15460 case DT_MIPS_FLAGS:
15461 return "MIPS_FLAGS";
15462 case DT_MIPS_BASE_ADDRESS:
15463 return "MIPS_BASE_ADDRESS";
15464 case DT_MIPS_MSYM:
15465 return "MIPS_MSYM";
15466 case DT_MIPS_CONFLICT:
15467 return "MIPS_CONFLICT";
15468 case DT_MIPS_LIBLIST:
15469 return "MIPS_LIBLIST";
15470 case DT_MIPS_LOCAL_GOTNO:
15471 return "MIPS_LOCAL_GOTNO";
15472 case DT_MIPS_CONFLICTNO:
15473 return "MIPS_CONFLICTNO";
15474 case DT_MIPS_LIBLISTNO:
15475 return "MIPS_LIBLISTNO";
15476 case DT_MIPS_SYMTABNO:
15477 return "MIPS_SYMTABNO";
15478 case DT_MIPS_UNREFEXTNO:
15479 return "MIPS_UNREFEXTNO";
15480 case DT_MIPS_GOTSYM:
15481 return "MIPS_GOTSYM";
15482 case DT_MIPS_HIPAGENO:
15483 return "MIPS_HIPAGENO";
15484 case DT_MIPS_RLD_MAP:
15485 return "MIPS_RLD_MAP";
15486 case DT_MIPS_RLD_MAP_REL:
15487 return "MIPS_RLD_MAP_REL";
15488 case DT_MIPS_DELTA_CLASS:
15489 return "MIPS_DELTA_CLASS";
15490 case DT_MIPS_DELTA_CLASS_NO:
15491 return "MIPS_DELTA_CLASS_NO";
15492 case DT_MIPS_DELTA_INSTANCE:
15493 return "MIPS_DELTA_INSTANCE";
15494 case DT_MIPS_DELTA_INSTANCE_NO:
15495 return "MIPS_DELTA_INSTANCE_NO";
15496 case DT_MIPS_DELTA_RELOC:
15497 return "MIPS_DELTA_RELOC";
15498 case DT_MIPS_DELTA_RELOC_NO:
15499 return "MIPS_DELTA_RELOC_NO";
15500 case DT_MIPS_DELTA_SYM:
15501 return "MIPS_DELTA_SYM";
15502 case DT_MIPS_DELTA_SYM_NO:
15503 return "MIPS_DELTA_SYM_NO";
15504 case DT_MIPS_DELTA_CLASSSYM:
15505 return "MIPS_DELTA_CLASSSYM";
15506 case DT_MIPS_DELTA_CLASSSYM_NO:
15507 return "MIPS_DELTA_CLASSSYM_NO";
15508 case DT_MIPS_CXX_FLAGS:
15509 return "MIPS_CXX_FLAGS";
15510 case DT_MIPS_PIXIE_INIT:
15511 return "MIPS_PIXIE_INIT";
15512 case DT_MIPS_SYMBOL_LIB:
15513 return "MIPS_SYMBOL_LIB";
15514 case DT_MIPS_LOCALPAGE_GOTIDX:
15515 return "MIPS_LOCALPAGE_GOTIDX";
15516 case DT_MIPS_LOCAL_GOTIDX:
15517 return "MIPS_LOCAL_GOTIDX";
15518 case DT_MIPS_HIDDEN_GOTIDX:
15519 return "MIPS_HIDDEN_GOTIDX";
15520 case DT_MIPS_PROTECTED_GOTIDX:
15521 return "MIPS_PROTECTED_GOT_IDX";
15522 case DT_MIPS_OPTIONS:
15523 return "MIPS_OPTIONS";
15524 case DT_MIPS_INTERFACE:
15525 return "MIPS_INTERFACE";
15526 case DT_MIPS_DYNSTR_ALIGN:
15527 return "DT_MIPS_DYNSTR_ALIGN";
15528 case DT_MIPS_INTERFACE_SIZE:
15529 return "DT_MIPS_INTERFACE_SIZE";
15530 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15531 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15532 case DT_MIPS_PERF_SUFFIX:
15533 return "DT_MIPS_PERF_SUFFIX";
15534 case DT_MIPS_COMPACT_SIZE:
15535 return "DT_MIPS_COMPACT_SIZE";
15536 case DT_MIPS_GP_VALUE:
15537 return "DT_MIPS_GP_VALUE";
15538 case DT_MIPS_AUX_DYNAMIC:
15539 return "DT_MIPS_AUX_DYNAMIC";
15540 case DT_MIPS_PLTGOT:
15541 return "DT_MIPS_PLTGOT";
15542 case DT_MIPS_RWPLT:
15543 return "DT_MIPS_RWPLT";
15547 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15548 not known. */
15550 const char *
15551 _bfd_mips_fp_abi_string (int fp)
15553 switch (fp)
15555 /* These strings aren't translated because they're simply
15556 option lists. */
15557 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15558 return "-mdouble-float";
15560 case Val_GNU_MIPS_ABI_FP_SINGLE:
15561 return "-msingle-float";
15563 case Val_GNU_MIPS_ABI_FP_SOFT:
15564 return "-msoft-float";
15566 case Val_GNU_MIPS_ABI_FP_OLD_64:
15567 return _("-mips32r2 -mfp64 (12 callee-saved)");
15569 case Val_GNU_MIPS_ABI_FP_XX:
15570 return "-mfpxx";
15572 case Val_GNU_MIPS_ABI_FP_64:
15573 return "-mgp32 -mfp64";
15575 case Val_GNU_MIPS_ABI_FP_64A:
15576 return "-mgp32 -mfp64 -mno-odd-spreg";
15578 default:
15579 return 0;
15583 static void
15584 print_mips_ases (FILE *file, unsigned int mask)
15586 if (mask & AFL_ASE_DSP)
15587 fputs ("\n\tDSP ASE", file);
15588 if (mask & AFL_ASE_DSPR2)
15589 fputs ("\n\tDSP R2 ASE", file);
15590 if (mask & AFL_ASE_DSPR3)
15591 fputs ("\n\tDSP R3 ASE", file);
15592 if (mask & AFL_ASE_EVA)
15593 fputs ("\n\tEnhanced VA Scheme", file);
15594 if (mask & AFL_ASE_MCU)
15595 fputs ("\n\tMCU (MicroController) ASE", file);
15596 if (mask & AFL_ASE_MDMX)
15597 fputs ("\n\tMDMX ASE", file);
15598 if (mask & AFL_ASE_MIPS3D)
15599 fputs ("\n\tMIPS-3D ASE", file);
15600 if (mask & AFL_ASE_MT)
15601 fputs ("\n\tMT ASE", file);
15602 if (mask & AFL_ASE_SMARTMIPS)
15603 fputs ("\n\tSmartMIPS ASE", file);
15604 if (mask & AFL_ASE_VIRT)
15605 fputs ("\n\tVZ ASE", file);
15606 if (mask & AFL_ASE_MSA)
15607 fputs ("\n\tMSA ASE", file);
15608 if (mask & AFL_ASE_MIPS16)
15609 fputs ("\n\tMIPS16 ASE", file);
15610 if (mask & AFL_ASE_MICROMIPS)
15611 fputs ("\n\tMICROMIPS ASE", file);
15612 if (mask & AFL_ASE_XPA)
15613 fputs ("\n\tXPA ASE", file);
15614 if (mask & AFL_ASE_MIPS16E2)
15615 fputs ("\n\tMIPS16e2 ASE", file);
15616 if (mask == 0)
15617 fprintf (file, "\n\t%s", _("None"));
15618 else if ((mask & ~AFL_ASE_MASK) != 0)
15619 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15622 static void
15623 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15625 switch (isa_ext)
15627 case 0:
15628 fputs (_("None"), file);
15629 break;
15630 case AFL_EXT_XLR:
15631 fputs ("RMI XLR", file);
15632 break;
15633 case AFL_EXT_OCTEON3:
15634 fputs ("Cavium Networks Octeon3", file);
15635 break;
15636 case AFL_EXT_OCTEON2:
15637 fputs ("Cavium Networks Octeon2", file);
15638 break;
15639 case AFL_EXT_OCTEONP:
15640 fputs ("Cavium Networks OcteonP", file);
15641 break;
15642 case AFL_EXT_LOONGSON_3A:
15643 fputs ("Loongson 3A", file);
15644 break;
15645 case AFL_EXT_OCTEON:
15646 fputs ("Cavium Networks Octeon", file);
15647 break;
15648 case AFL_EXT_5900:
15649 fputs ("Toshiba R5900", file);
15650 break;
15651 case AFL_EXT_4650:
15652 fputs ("MIPS R4650", file);
15653 break;
15654 case AFL_EXT_4010:
15655 fputs ("LSI R4010", file);
15656 break;
15657 case AFL_EXT_4100:
15658 fputs ("NEC VR4100", file);
15659 break;
15660 case AFL_EXT_3900:
15661 fputs ("Toshiba R3900", file);
15662 break;
15663 case AFL_EXT_10000:
15664 fputs ("MIPS R10000", file);
15665 break;
15666 case AFL_EXT_SB1:
15667 fputs ("Broadcom SB-1", file);
15668 break;
15669 case AFL_EXT_4111:
15670 fputs ("NEC VR4111/VR4181", file);
15671 break;
15672 case AFL_EXT_4120:
15673 fputs ("NEC VR4120", file);
15674 break;
15675 case AFL_EXT_5400:
15676 fputs ("NEC VR5400", file);
15677 break;
15678 case AFL_EXT_5500:
15679 fputs ("NEC VR5500", file);
15680 break;
15681 case AFL_EXT_LOONGSON_2E:
15682 fputs ("ST Microelectronics Loongson 2E", file);
15683 break;
15684 case AFL_EXT_LOONGSON_2F:
15685 fputs ("ST Microelectronics Loongson 2F", file);
15686 break;
15687 case AFL_EXT_INTERAPTIV_MR2:
15688 fputs ("Imagination interAptiv MR2", file);
15689 break;
15690 default:
15691 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15692 break;
15696 static void
15697 print_mips_fp_abi_value (FILE *file, int val)
15699 switch (val)
15701 case Val_GNU_MIPS_ABI_FP_ANY:
15702 fprintf (file, _("Hard or soft float\n"));
15703 break;
15704 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15705 fprintf (file, _("Hard float (double precision)\n"));
15706 break;
15707 case Val_GNU_MIPS_ABI_FP_SINGLE:
15708 fprintf (file, _("Hard float (single precision)\n"));
15709 break;
15710 case Val_GNU_MIPS_ABI_FP_SOFT:
15711 fprintf (file, _("Soft float\n"));
15712 break;
15713 case Val_GNU_MIPS_ABI_FP_OLD_64:
15714 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15715 break;
15716 case Val_GNU_MIPS_ABI_FP_XX:
15717 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15718 break;
15719 case Val_GNU_MIPS_ABI_FP_64:
15720 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15721 break;
15722 case Val_GNU_MIPS_ABI_FP_64A:
15723 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15724 break;
15725 default:
15726 fprintf (file, "??? (%d)\n", val);
15727 break;
15731 static int
15732 get_mips_reg_size (int reg_size)
15734 return (reg_size == AFL_REG_NONE) ? 0
15735 : (reg_size == AFL_REG_32) ? 32
15736 : (reg_size == AFL_REG_64) ? 64
15737 : (reg_size == AFL_REG_128) ? 128
15738 : -1;
15741 bfd_boolean
15742 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15744 FILE *file = ptr;
15746 BFD_ASSERT (abfd != NULL && ptr != NULL);
15748 /* Print normal ELF private data. */
15749 _bfd_elf_print_private_bfd_data (abfd, ptr);
15751 /* xgettext:c-format */
15752 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15754 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15755 fprintf (file, _(" [abi=O32]"));
15756 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15757 fprintf (file, _(" [abi=O64]"));
15758 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15759 fprintf (file, _(" [abi=EABI32]"));
15760 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15761 fprintf (file, _(" [abi=EABI64]"));
15762 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15763 fprintf (file, _(" [abi unknown]"));
15764 else if (ABI_N32_P (abfd))
15765 fprintf (file, _(" [abi=N32]"));
15766 else if (ABI_64_P (abfd))
15767 fprintf (file, _(" [abi=64]"));
15768 else
15769 fprintf (file, _(" [no abi set]"));
15771 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15772 fprintf (file, " [mips1]");
15773 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15774 fprintf (file, " [mips2]");
15775 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15776 fprintf (file, " [mips3]");
15777 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15778 fprintf (file, " [mips4]");
15779 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15780 fprintf (file, " [mips5]");
15781 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15782 fprintf (file, " [mips32]");
15783 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15784 fprintf (file, " [mips64]");
15785 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15786 fprintf (file, " [mips32r2]");
15787 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15788 fprintf (file, " [mips64r2]");
15789 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15790 fprintf (file, " [mips32r6]");
15791 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15792 fprintf (file, " [mips64r6]");
15793 else
15794 fprintf (file, _(" [unknown ISA]"));
15796 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15797 fprintf (file, " [mdmx]");
15799 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15800 fprintf (file, " [mips16]");
15802 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15803 fprintf (file, " [micromips]");
15805 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15806 fprintf (file, " [nan2008]");
15808 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15809 fprintf (file, " [old fp64]");
15811 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15812 fprintf (file, " [32bitmode]");
15813 else
15814 fprintf (file, _(" [not 32bitmode]"));
15816 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15817 fprintf (file, " [noreorder]");
15819 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15820 fprintf (file, " [PIC]");
15822 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15823 fprintf (file, " [CPIC]");
15825 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15826 fprintf (file, " [XGOT]");
15828 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15829 fprintf (file, " [UCODE]");
15831 fputc ('\n', file);
15833 if (mips_elf_tdata (abfd)->abiflags_valid)
15835 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15836 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15837 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15838 if (abiflags->isa_rev > 1)
15839 fprintf (file, "r%d", abiflags->isa_rev);
15840 fprintf (file, "\nGPR size: %d",
15841 get_mips_reg_size (abiflags->gpr_size));
15842 fprintf (file, "\nCPR1 size: %d",
15843 get_mips_reg_size (abiflags->cpr1_size));
15844 fprintf (file, "\nCPR2 size: %d",
15845 get_mips_reg_size (abiflags->cpr2_size));
15846 fputs ("\nFP ABI: ", file);
15847 print_mips_fp_abi_value (file, abiflags->fp_abi);
15848 fputs ("ISA Extension: ", file);
15849 print_mips_isa_ext (file, abiflags->isa_ext);
15850 fputs ("\nASEs:", file);
15851 print_mips_ases (file, abiflags->ases);
15852 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15853 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15854 fputc ('\n', file);
15857 return TRUE;
15860 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15862 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15863 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15864 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15865 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15866 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15867 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15868 { NULL, 0, 0, 0, 0 }
15871 /* Merge non visibility st_other attributes. Ensure that the
15872 STO_OPTIONAL flag is copied into h->other, even if this is not a
15873 definiton of the symbol. */
15874 void
15875 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15876 const Elf_Internal_Sym *isym,
15877 bfd_boolean definition,
15878 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15880 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15882 unsigned char other;
15884 other = (definition ? isym->st_other : h->other);
15885 other &= ~ELF_ST_VISIBILITY (-1);
15886 h->other = other | ELF_ST_VISIBILITY (h->other);
15889 if (!definition
15890 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15891 h->other |= STO_OPTIONAL;
15894 /* Decide whether an undefined symbol is special and can be ignored.
15895 This is the case for OPTIONAL symbols on IRIX. */
15896 bfd_boolean
15897 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15899 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15902 bfd_boolean
15903 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15905 return (sym->st_shndx == SHN_COMMON
15906 || sym->st_shndx == SHN_MIPS_ACOMMON
15907 || sym->st_shndx == SHN_MIPS_SCOMMON);
15910 /* Return address for Ith PLT stub in section PLT, for relocation REL
15911 or (bfd_vma) -1 if it should not be included. */
15913 bfd_vma
15914 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15915 const arelent *rel ATTRIBUTE_UNUSED)
15917 return (plt->vma
15918 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15919 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15922 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15923 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15924 and .got.plt and also the slots may be of a different size each we walk
15925 the PLT manually fetching instructions and matching them against known
15926 patterns. To make things easier standard MIPS slots, if any, always come
15927 first. As we don't create proper ELF symbols we use the UDATA.I member
15928 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15929 with the ST_OTHER member of the ELF symbol. */
15931 long
15932 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15933 long symcount ATTRIBUTE_UNUSED,
15934 asymbol **syms ATTRIBUTE_UNUSED,
15935 long dynsymcount, asymbol **dynsyms,
15936 asymbol **ret)
15938 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15939 static const char microsuffix[] = "@micromipsplt";
15940 static const char m16suffix[] = "@mips16plt";
15941 static const char mipssuffix[] = "@plt";
15943 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15944 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15945 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15946 Elf_Internal_Shdr *hdr;
15947 bfd_byte *plt_data;
15948 bfd_vma plt_offset;
15949 unsigned int other;
15950 bfd_vma entry_size;
15951 bfd_vma plt0_size;
15952 asection *relplt;
15953 bfd_vma opcode;
15954 asection *plt;
15955 asymbol *send;
15956 size_t size;
15957 char *names;
15958 long counti;
15959 arelent *p;
15960 asymbol *s;
15961 char *nend;
15962 long count;
15963 long pi;
15964 long i;
15965 long n;
15967 *ret = NULL;
15969 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15970 return 0;
15972 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15973 if (relplt == NULL)
15974 return 0;
15976 hdr = &elf_section_data (relplt)->this_hdr;
15977 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15978 return 0;
15980 plt = bfd_get_section_by_name (abfd, ".plt");
15981 if (plt == NULL)
15982 return 0;
15984 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15985 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15986 return -1;
15987 p = relplt->relocation;
15989 /* Calculating the exact amount of space required for symbols would
15990 require two passes over the PLT, so just pessimise assuming two
15991 PLT slots per relocation. */
15992 count = relplt->size / hdr->sh_entsize;
15993 counti = count * bed->s->int_rels_per_ext_rel;
15994 size = 2 * count * sizeof (asymbol);
15995 size += count * (sizeof (mipssuffix) +
15996 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15997 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15998 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16000 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16001 size += sizeof (asymbol) + sizeof (pltname);
16003 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16004 return -1;
16006 if (plt->size < 16)
16007 return -1;
16009 s = *ret = bfd_malloc (size);
16010 if (s == NULL)
16011 return -1;
16012 send = s + 2 * count + 1;
16014 names = (char *) send;
16015 nend = (char *) s + size;
16016 n = 0;
16018 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16019 if (opcode == 0x3302fffe)
16021 if (!micromips_p)
16022 return -1;
16023 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16024 other = STO_MICROMIPS;
16026 else if (opcode == 0x0398c1d0)
16028 if (!micromips_p)
16029 return -1;
16030 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16031 other = STO_MICROMIPS;
16033 else
16035 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16036 other = 0;
16039 s->the_bfd = abfd;
16040 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16041 s->section = plt;
16042 s->value = 0;
16043 s->name = names;
16044 s->udata.i = other;
16045 memcpy (names, pltname, sizeof (pltname));
16046 names += sizeof (pltname);
16047 ++s, ++n;
16049 pi = 0;
16050 for (plt_offset = plt0_size;
16051 plt_offset + 8 <= plt->size && s < send;
16052 plt_offset += entry_size)
16054 bfd_vma gotplt_addr;
16055 const char *suffix;
16056 bfd_vma gotplt_hi;
16057 bfd_vma gotplt_lo;
16058 size_t suffixlen;
16060 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16062 /* Check if the second word matches the expected MIPS16 instruction. */
16063 if (opcode == 0x651aeb00)
16065 if (micromips_p)
16066 return -1;
16067 /* Truncated table??? */
16068 if (plt_offset + 16 > plt->size)
16069 break;
16070 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16071 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16072 suffixlen = sizeof (m16suffix);
16073 suffix = m16suffix;
16074 other = STO_MIPS16;
16076 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16077 else if (opcode == 0xff220000)
16079 if (!micromips_p)
16080 return -1;
16081 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16082 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16083 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16084 gotplt_lo <<= 2;
16085 gotplt_addr = gotplt_hi + gotplt_lo;
16086 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16087 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16088 suffixlen = sizeof (microsuffix);
16089 suffix = microsuffix;
16090 other = STO_MICROMIPS;
16092 /* Likewise the expected microMIPS instruction (insn32 mode). */
16093 else if ((opcode & 0xffff0000) == 0xff2f0000)
16095 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16096 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16097 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16098 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16099 gotplt_addr = gotplt_hi + gotplt_lo;
16100 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16101 suffixlen = sizeof (microsuffix);
16102 suffix = microsuffix;
16103 other = STO_MICROMIPS;
16105 /* Otherwise assume standard MIPS code. */
16106 else
16108 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16109 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16110 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16111 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16112 gotplt_addr = gotplt_hi + gotplt_lo;
16113 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16114 suffixlen = sizeof (mipssuffix);
16115 suffix = mipssuffix;
16116 other = 0;
16118 /* Truncated table??? */
16119 if (plt_offset + entry_size > plt->size)
16120 break;
16122 for (i = 0;
16123 i < count && p[pi].address != gotplt_addr;
16124 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16126 if (i < count)
16128 size_t namelen;
16129 size_t len;
16131 *s = **p[pi].sym_ptr_ptr;
16132 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16133 we are defining a symbol, ensure one of them is set. */
16134 if ((s->flags & BSF_LOCAL) == 0)
16135 s->flags |= BSF_GLOBAL;
16136 s->flags |= BSF_SYNTHETIC;
16137 s->section = plt;
16138 s->value = plt_offset;
16139 s->name = names;
16140 s->udata.i = other;
16142 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16143 namelen = len + suffixlen;
16144 if (names + namelen > nend)
16145 break;
16147 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16148 names += len;
16149 memcpy (names, suffix, suffixlen);
16150 names += suffixlen;
16152 ++s, ++n;
16153 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16157 free (plt_data);
16159 return n;
16162 /* Return the ABI flags associated with ABFD if available. */
16164 Elf_Internal_ABIFlags_v0 *
16165 bfd_mips_elf_get_abiflags (bfd *abfd)
16167 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16169 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16172 void
16173 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16175 struct mips_elf_link_hash_table *htab;
16176 Elf_Internal_Ehdr *i_ehdrp;
16178 i_ehdrp = elf_elfheader (abfd);
16179 if (link_info)
16181 htab = mips_elf_hash_table (link_info);
16182 BFD_ASSERT (htab != NULL);
16184 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16185 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16188 _bfd_elf_post_process_headers (abfd, link_info);
16190 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16191 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16192 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16196 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16198 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16201 /* Return the opcode for can't unwind. */
16204 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16206 return COMPACT_EH_CANT_UNWIND_OPCODE;