1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright (C) 1996-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-unwind.h"
23 #include "frame-base.h"
34 #include "arch-utils.h"
36 #include "trad-frame.h"
39 #include "m32r-tdep.h"
42 /* The size of the argument registers (r0 - r3) in bytes. */
43 #define M32R_ARG_REGISTER_SIZE 4
48 m32r_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
50 /* Align to the size of an instruction (so that they can safely be
51 pushed onto the stack. */
58 The little endian mode of M32R is unique. In most of architectures,
59 two 16-bit instructions, A and B, are placed as the following:
67 In M32R, they are placed like this:
75 This is because M32R always fetches instructions in 32-bit.
77 The following functions take care of this behavior. */
80 m32r_memory_insert_breakpoint (struct gdbarch
*gdbarch
,
81 struct bp_target_info
*bp_tgt
)
83 CORE_ADDR addr
= bp_tgt
->placed_address
= bp_tgt
->reqstd_address
;
86 gdb_byte contents_cache
[4];
87 gdb_byte bp_entry
[] = { 0x10, 0xf1 }; /* dpt */
89 /* Save the memory contents. */
90 val
= target_read_memory (addr
& 0xfffffffc, contents_cache
, 4);
92 return val
; /* return error */
94 memcpy (bp_tgt
->shadow_contents
, contents_cache
, 4);
95 bp_tgt
->shadow_len
= 4;
97 /* Determine appropriate breakpoint contents and size for this address. */
98 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
102 buf
[0] = bp_entry
[0];
103 buf
[1] = bp_entry
[1];
104 buf
[2] = contents_cache
[2] & 0x7f;
105 buf
[3] = contents_cache
[3];
109 buf
[0] = contents_cache
[0];
110 buf
[1] = contents_cache
[1];
111 buf
[2] = bp_entry
[0];
112 buf
[3] = bp_entry
[1];
115 else /* little-endian */
119 buf
[0] = contents_cache
[0];
120 buf
[1] = contents_cache
[1] & 0x7f;
121 buf
[2] = bp_entry
[1];
122 buf
[3] = bp_entry
[0];
126 buf
[0] = bp_entry
[1];
127 buf
[1] = bp_entry
[0];
128 buf
[2] = contents_cache
[2];
129 buf
[3] = contents_cache
[3];
133 /* Write the breakpoint. */
134 val
= target_write_memory (addr
& 0xfffffffc, buf
, 4);
139 m32r_memory_remove_breakpoint (struct gdbarch
*gdbarch
,
140 struct bp_target_info
*bp_tgt
)
142 CORE_ADDR addr
= bp_tgt
->placed_address
;
145 gdb_byte
*contents_cache
= bp_tgt
->shadow_contents
;
147 buf
[0] = contents_cache
[0];
148 buf
[1] = contents_cache
[1];
149 buf
[2] = contents_cache
[2];
150 buf
[3] = contents_cache
[3];
152 /* Remove parallel bit. */
153 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
155 if ((buf
[0] & 0x80) == 0 && (buf
[2] & 0x80) != 0)
158 else /* little-endian */
160 if ((buf
[3] & 0x80) == 0 && (buf
[1] & 0x80) != 0)
164 /* Write contents. */
165 val
= target_write_raw_memory (addr
& 0xfffffffc, buf
, 4);
169 /* Implement the breakpoint_kind_from_pc gdbarch method. */
172 m32r_breakpoint_kind_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
)
174 if ((*pcptr
& 3) == 0)
180 /* Implement the sw_breakpoint_from_kind gdbarch method. */
182 static const gdb_byte
*
183 m32r_sw_breakpoint_from_kind (struct gdbarch
*gdbarch
, int kind
, int *size
)
185 static gdb_byte be_bp_entry
[] = {
186 0x10, 0xf1, 0x70, 0x00
188 static gdb_byte le_bp_entry
[] = {
189 0x00, 0x70, 0xf1, 0x10
194 /* Determine appropriate breakpoint. */
195 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
202 return le_bp_entry
+ 2;
206 static const char *m32r_register_names
[] = {
207 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
208 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
209 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
214 m32r_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
218 if (reg_nr
>= M32R_NUM_REGS
)
220 return m32r_register_names
[reg_nr
];
224 /* Return the GDB type object for the "standard" data type
225 of data in register N. */
228 m32r_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
230 if (reg_nr
== M32R_PC_REGNUM
)
231 return builtin_type (gdbarch
)->builtin_func_ptr
;
232 else if (reg_nr
== M32R_SP_REGNUM
|| reg_nr
== M32R_FP_REGNUM
)
233 return builtin_type (gdbarch
)->builtin_data_ptr
;
235 return builtin_type (gdbarch
)->builtin_int32
;
239 /* Write into appropriate registers a function return value
240 of type TYPE, given in virtual format.
242 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
245 m32r_store_return_value (struct type
*type
, struct regcache
*regcache
,
246 const gdb_byte
*valbuf
)
248 struct gdbarch
*gdbarch
= regcache
->arch ();
249 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
251 int len
= TYPE_LENGTH (type
);
253 regval
= extract_unsigned_integer (valbuf
, len
> 4 ? 4 : len
, byte_order
);
254 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
, regval
);
258 regval
= extract_unsigned_integer (valbuf
+ 4,
259 len
- 4, byte_order
);
260 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
+ 1, regval
);
264 /* This is required by skip_prologue. The results of decoding a prologue
265 should be cached because this thrashing is getting nuts. */
268 decode_prologue (struct gdbarch
*gdbarch
,
269 CORE_ADDR start_pc
, CORE_ADDR scan_limit
,
270 CORE_ADDR
*pl_endptr
, unsigned long *framelength
)
272 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
273 unsigned long framesize
;
276 CORE_ADDR after_prologue
= 0;
277 CORE_ADDR after_push
= 0;
278 CORE_ADDR after_stack_adjust
= 0;
279 CORE_ADDR current_pc
;
280 LONGEST return_value
;
285 for (current_pc
= start_pc
; current_pc
< scan_limit
; current_pc
+= 2)
287 /* Check if current pc's location is readable. */
288 if (!safe_read_memory_integer (current_pc
, 2, byte_order
, &return_value
))
291 insn
= read_memory_unsigned_integer (current_pc
, 2, byte_order
);
296 /* If this is a 32 bit instruction, we dont want to examine its
297 immediate data as though it were an instruction. */
298 if (current_pc
& 0x02)
300 /* Decode this instruction further. */
307 if (current_pc
== scan_limit
)
308 scan_limit
+= 2; /* extend the search */
310 current_pc
+= 2; /* skip the immediate data */
312 /* Check if current pc's location is readable. */
313 if (!safe_read_memory_integer (current_pc
, 2, byte_order
,
317 if (insn
== 0x8faf) /* add3 sp, sp, xxxx */
318 /* add 16 bit sign-extended offset */
321 -((short) read_memory_unsigned_integer (current_pc
,
326 if (((insn
>> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
327 && safe_read_memory_integer (current_pc
+ 2,
330 && read_memory_unsigned_integer (current_pc
+ 2,
334 /* Subtract 24 bit sign-extended negative-offset. */
335 insn
= read_memory_unsigned_integer (current_pc
- 2,
337 if (insn
& 0x00800000) /* sign extend */
338 insn
|= 0xff000000; /* negative */
340 insn
&= 0x00ffffff; /* positive */
344 after_push
= current_pc
+ 2;
348 op1
= insn
& 0xf000; /* Isolate just the first nibble. */
350 if ((insn
& 0xf0ff) == 0x207f)
356 if ((insn
>> 8) == 0x4f) /* addi sp, xx */
357 /* Add 8 bit sign-extended offset. */
359 int stack_adjust
= (signed char) (insn
& 0xff);
361 /* there are probably two of these stack adjustments:
362 1) A negative one in the prologue, and
363 2) A positive one in the epilogue.
364 We are only interested in the first one. */
366 if (stack_adjust
< 0)
368 framesize
-= stack_adjust
;
370 /* A frameless function may have no "mv fp, sp".
371 In that case, this is the end of the prologue. */
372 after_stack_adjust
= current_pc
+ 2;
378 after_prologue
= current_pc
+ 2;
379 break; /* end of stack adjustments */
382 /* Nop looks like a branch, continue explicitly. */
385 after_prologue
= current_pc
+ 2;
386 continue; /* nop occurs between pushes. */
388 /* End of prolog if any of these are trap instructions. */
389 if ((insn
& 0xfff0) == 0x10f0)
391 after_prologue
= current_pc
;
394 /* End of prolog if any of these are branch instructions. */
395 if ((op1
== 0x7000) || (op1
== 0xb000) || (op1
== 0xf000))
397 after_prologue
= current_pc
;
400 /* Some of the branch instructions are mixed with other types. */
403 int subop
= insn
& 0x0ff0;
404 if ((subop
== 0x0ec0) || (subop
== 0x0fc0))
406 after_prologue
= current_pc
;
407 continue; /* jmp , jl */
413 *framelength
= framesize
;
415 if (current_pc
>= scan_limit
)
419 if (after_stack_adjust
!= 0)
420 /* We did not find a "mv fp,sp", but we DID find
421 a stack_adjust. Is it safe to use that as the
422 end of the prologue? I just don't know. */
424 *pl_endptr
= after_stack_adjust
;
426 else if (after_push
!= 0)
427 /* We did not find a "mv fp,sp", but we DID find
428 a push. Is it safe to use that as the
429 end of the prologue? I just don't know. */
431 *pl_endptr
= after_push
;
434 /* We reached the end of the loop without finding the end
435 of the prologue. No way to win -- we should report
436 failure. The way we do that is to return the original
437 start_pc. GDB will set a breakpoint at the start of
438 the function (etc.) */
439 *pl_endptr
= start_pc
;
444 if (after_prologue
== 0)
445 after_prologue
= current_pc
;
448 *pl_endptr
= after_prologue
;
451 } /* decode_prologue */
453 /* Function: skip_prologue
454 Find end of function prologue. */
456 #define DEFAULT_SEARCH_LIMIT 128
459 m32r_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
461 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
462 CORE_ADDR func_addr
, func_end
;
463 struct symtab_and_line sal
;
464 LONGEST return_value
;
466 /* See what the symbol table says. */
468 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
470 sal
= find_pc_line (func_addr
, 0);
472 if (sal
.line
!= 0 && sal
.end
<= func_end
)
477 /* Either there's no line info, or the line after the prologue is after
478 the end of the function. In this case, there probably isn't a
481 func_end
= std::min (func_end
, func_addr
+ DEFAULT_SEARCH_LIMIT
);
485 func_end
= pc
+ DEFAULT_SEARCH_LIMIT
;
487 /* If pc's location is not readable, just quit. */
488 if (!safe_read_memory_integer (pc
, 4, byte_order
, &return_value
))
491 /* Find the end of prologue. */
492 if (decode_prologue (gdbarch
, pc
, func_end
, &sal
.end
, NULL
) < 0)
498 struct m32r_unwind_cache
500 /* The previous frame's inner most stack address. Used as this
501 frame ID's stack_addr. */
503 /* The frame's base, optionally used by the high-level debug info. */
506 /* How far the SP and r13 (FP) have been offset from the start of
507 the stack frame (as defined by the previous frame's stack
512 /* Table indicating the location of each and every register. */
513 struct trad_frame_saved_reg
*saved_regs
;
516 /* Put here the code to store, into fi->saved_regs, the addresses of
517 the saved registers of frame described by FRAME_INFO. This
518 includes special registers such as pc and fp saved in special ways
519 in the stack frame. sp is even more special: the address we return
520 for it IS the sp for the next frame. */
522 static struct m32r_unwind_cache
*
523 m32r_frame_unwind_cache (struct frame_info
*this_frame
,
524 void **this_prologue_cache
)
526 CORE_ADDR pc
, scan_limit
;
531 struct m32r_unwind_cache
*info
;
534 if ((*this_prologue_cache
))
535 return (struct m32r_unwind_cache
*) (*this_prologue_cache
);
537 info
= FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache
);
538 (*this_prologue_cache
) = info
;
539 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
543 info
->uses_frame
= 0;
545 scan_limit
= get_frame_pc (this_frame
);
546 for (pc
= get_frame_func (this_frame
);
547 pc
> 0 && pc
< scan_limit
; pc
+= 2)
551 op
= get_frame_memory_unsigned (this_frame
, pc
, 4);
552 if ((op
& 0x80000000) == 0x80000000)
554 /* 32-bit instruction */
555 if ((op
& 0xffff0000) == 0x8faf0000)
557 /* add3 sp,sp,xxxx */
558 short n
= op
& 0xffff;
559 info
->sp_offset
+= n
;
561 else if (((op
>> 8) == 0xe4)
562 && get_frame_memory_unsigned (this_frame
, pc
+ 2,
565 /* ld24 r4, xxxxxx; sub sp, r4 */
566 unsigned long n
= op
& 0xffffff;
567 info
->sp_offset
+= n
;
568 pc
+= 2; /* skip sub instruction */
571 if (pc
== scan_limit
)
572 scan_limit
+= 2; /* extend the search */
573 pc
+= 2; /* skip the immediate data */
578 /* 16-bit instructions */
579 op
= get_frame_memory_unsigned (this_frame
, pc
, 2) & 0x7fff;
580 if ((op
& 0xf0ff) == 0x207f)
583 int regno
= ((op
>> 8) & 0xf);
584 info
->sp_offset
-= 4;
585 info
->saved_regs
[regno
].addr
= info
->sp_offset
;
587 else if ((op
& 0xff00) == 0x4f00)
590 int n
= (signed char) (op
& 0xff);
591 info
->sp_offset
+= n
;
593 else if (op
== 0x1d8f)
596 info
->uses_frame
= 1;
597 info
->r13_offset
= info
->sp_offset
;
598 break; /* end of stack adjustments */
600 else if ((op
& 0xfff0) == 0x10f0)
602 /* End of prologue if this is a trap instruction. */
603 break; /* End of stack adjustments. */
607 info
->size
= -info
->sp_offset
;
609 /* Compute the previous frame's stack pointer (which is also the
610 frame's ID's stack address), and this frame's base pointer. */
611 if (info
->uses_frame
)
613 /* The SP was moved to the FP. This indicates that a new frame
614 was created. Get THIS frame's FP value by unwinding it from
616 this_base
= get_frame_register_unsigned (this_frame
, M32R_FP_REGNUM
);
617 /* The FP points at the last saved register. Adjust the FP back
618 to before the first saved register giving the SP. */
619 prev_sp
= this_base
+ info
->size
;
623 /* Assume that the FP is this frame's SP but with that pushed
624 stack space added back. */
625 this_base
= get_frame_register_unsigned (this_frame
, M32R_SP_REGNUM
);
626 prev_sp
= this_base
+ info
->size
;
629 /* Convert that SP/BASE into real addresses. */
630 info
->prev_sp
= prev_sp
;
631 info
->base
= this_base
;
633 /* Adjust all the saved registers so that they contain addresses and
635 for (i
= 0; i
< gdbarch_num_regs (get_frame_arch (this_frame
)) - 1; i
++)
636 if (trad_frame_addr_p (info
->saved_regs
, i
))
637 info
->saved_regs
[i
].addr
= (info
->prev_sp
+ info
->saved_regs
[i
].addr
);
639 /* The call instruction moves the caller's PC in the callee's LR.
640 Since this is an unwind, do the reverse. Copy the location of LR
641 into PC (the address / regnum) so that a request for PC will be
642 converted into a request for the LR. */
643 info
->saved_regs
[M32R_PC_REGNUM
] = info
->saved_regs
[LR_REGNUM
];
645 /* The previous frame's SP needed to be computed. Save the computed
647 trad_frame_set_value (info
->saved_regs
, M32R_SP_REGNUM
, prev_sp
);
653 m32r_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
655 return frame_unwind_register_unsigned (next_frame
, M32R_SP_REGNUM
);
660 m32r_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
661 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
662 struct value
**args
, CORE_ADDR sp
, int struct_return
,
663 CORE_ADDR struct_addr
)
665 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
666 int stack_offset
, stack_alloc
;
667 int argreg
= ARG1_REGNUM
;
670 enum type_code typecode
;
673 gdb_byte valbuf
[M32R_ARG_REGISTER_SIZE
];
676 /* First force sp to a 4-byte alignment. */
679 /* Set the return address. For the m32r, the return breakpoint is
680 always at BP_ADDR. */
681 regcache_cooked_write_unsigned (regcache
, LR_REGNUM
, bp_addr
);
683 /* If STRUCT_RETURN is true, then the struct return address (in
684 STRUCT_ADDR) will consume the first argument-passing register.
685 Both adjust the register count and store that value. */
688 regcache_cooked_write_unsigned (regcache
, argreg
, struct_addr
);
692 /* Now make sure there's space on the stack. */
693 for (argnum
= 0, stack_alloc
= 0; argnum
< nargs
; argnum
++)
694 stack_alloc
+= ((TYPE_LENGTH (value_type (args
[argnum
])) + 3) & ~3);
695 sp
-= stack_alloc
; /* Make room on stack for args. */
697 for (argnum
= 0, stack_offset
= 0; argnum
< nargs
; argnum
++)
699 type
= value_type (args
[argnum
]);
700 typecode
= TYPE_CODE (type
);
701 len
= TYPE_LENGTH (type
);
703 memset (valbuf
, 0, sizeof (valbuf
));
705 /* Passes structures that do not fit in 2 registers by reference. */
707 && (typecode
== TYPE_CODE_STRUCT
|| typecode
== TYPE_CODE_UNION
))
709 store_unsigned_integer (valbuf
, 4, byte_order
,
710 value_address (args
[argnum
]));
711 typecode
= TYPE_CODE_PTR
;
717 /* Value gets right-justified in the register or stack word. */
718 memcpy (valbuf
+ (register_size (gdbarch
, argreg
) - len
),
719 (gdb_byte
*) value_contents (args
[argnum
]), len
);
723 val
= (gdb_byte
*) value_contents (args
[argnum
]);
727 if (argreg
> ARGN_REGNUM
)
729 /* Must go on the stack. */
730 write_memory (sp
+ stack_offset
, val
, 4);
733 else if (argreg
<= ARGN_REGNUM
)
735 /* There's room in a register. */
737 extract_unsigned_integer (val
,
738 register_size (gdbarch
, argreg
),
740 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
743 /* Store the value 4 bytes at a time. This means that things
744 larger than 4 bytes may go partly in registers and partly
746 len
-= register_size (gdbarch
, argreg
);
747 val
+= register_size (gdbarch
, argreg
);
751 /* Finally, update the SP register. */
752 regcache_cooked_write_unsigned (regcache
, M32R_SP_REGNUM
, sp
);
758 /* Given a return value in `regbuf' with a type `valtype',
759 extract and copy its value into `valbuf'. */
762 m32r_extract_return_value (struct type
*type
, struct regcache
*regcache
,
765 struct gdbarch
*gdbarch
= regcache
->arch ();
766 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
767 int len
= TYPE_LENGTH (type
);
770 /* By using store_unsigned_integer we avoid having to do
771 anything special for small big-endian values. */
772 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
, &tmp
);
773 store_unsigned_integer (dst
, (len
> 4 ? len
- 4 : len
), byte_order
, tmp
);
775 /* Ignore return values more than 8 bytes in size because the m32r
776 returns anything more than 8 bytes in the stack. */
779 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
+ 1, &tmp
);
780 store_unsigned_integer (dst
+ len
- 4, 4, byte_order
, tmp
);
784 static enum return_value_convention
785 m32r_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
786 struct type
*valtype
, struct regcache
*regcache
,
787 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
789 if (TYPE_LENGTH (valtype
) > 8)
790 return RETURN_VALUE_STRUCT_CONVENTION
;
794 m32r_extract_return_value (valtype
, regcache
, readbuf
);
795 if (writebuf
!= NULL
)
796 m32r_store_return_value (valtype
, regcache
, writebuf
);
797 return RETURN_VALUE_REGISTER_CONVENTION
;
804 m32r_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
806 return frame_unwind_register_unsigned (next_frame
, M32R_PC_REGNUM
);
809 /* Given a GDB frame, determine the address of the calling function's
810 frame. This will be used to create a new GDB frame struct. */
813 m32r_frame_this_id (struct frame_info
*this_frame
,
814 void **this_prologue_cache
, struct frame_id
*this_id
)
816 struct m32r_unwind_cache
*info
817 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
820 struct bound_minimal_symbol msym_stack
;
823 /* The FUNC is easy. */
824 func
= get_frame_func (this_frame
);
826 /* Check if the stack is empty. */
827 msym_stack
= lookup_minimal_symbol ("_stack", NULL
, NULL
);
828 if (msym_stack
.minsym
&& info
->base
== BMSYMBOL_VALUE_ADDRESS (msym_stack
))
831 /* Hopefully the prologue analysis either correctly determined the
832 frame's base (which is the SP from the previous frame), or set
833 that base to "NULL". */
834 base
= info
->prev_sp
;
838 id
= frame_id_build (base
, func
);
842 static struct value
*
843 m32r_frame_prev_register (struct frame_info
*this_frame
,
844 void **this_prologue_cache
, int regnum
)
846 struct m32r_unwind_cache
*info
847 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
848 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
851 static const struct frame_unwind m32r_frame_unwind
= {
853 default_frame_unwind_stop_reason
,
855 m32r_frame_prev_register
,
857 default_frame_sniffer
861 m32r_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
863 struct m32r_unwind_cache
*info
864 = m32r_frame_unwind_cache (this_frame
, this_cache
);
868 static const struct frame_base m32r_frame_base
= {
870 m32r_frame_base_address
,
871 m32r_frame_base_address
,
872 m32r_frame_base_address
875 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
876 frame. The frame ID's base needs to match the TOS value saved by
877 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
879 static struct frame_id
880 m32r_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
882 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, M32R_SP_REGNUM
);
883 return frame_id_build (sp
, get_frame_pc (this_frame
));
887 static gdbarch_init_ftype m32r_gdbarch_init
;
889 static struct gdbarch
*
890 m32r_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
892 struct gdbarch
*gdbarch
;
893 struct gdbarch_tdep
*tdep
;
895 /* If there is already a candidate, use it. */
896 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
898 return arches
->gdbarch
;
900 /* Allocate space for the new architecture. */
901 tdep
= XCNEW (struct gdbarch_tdep
);
902 gdbarch
= gdbarch_alloc (&info
, tdep
);
904 set_gdbarch_wchar_bit (gdbarch
, 16);
905 set_gdbarch_wchar_signed (gdbarch
, 0);
907 set_gdbarch_unwind_sp (gdbarch
, m32r_unwind_sp
);
909 set_gdbarch_num_regs (gdbarch
, M32R_NUM_REGS
);
910 set_gdbarch_pc_regnum (gdbarch
, M32R_PC_REGNUM
);
911 set_gdbarch_sp_regnum (gdbarch
, M32R_SP_REGNUM
);
912 set_gdbarch_register_name (gdbarch
, m32r_register_name
);
913 set_gdbarch_register_type (gdbarch
, m32r_register_type
);
915 set_gdbarch_push_dummy_call (gdbarch
, m32r_push_dummy_call
);
916 set_gdbarch_return_value (gdbarch
, m32r_return_value
);
918 set_gdbarch_skip_prologue (gdbarch
, m32r_skip_prologue
);
919 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
920 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, m32r_breakpoint_kind_from_pc
);
921 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, m32r_sw_breakpoint_from_kind
);
922 set_gdbarch_memory_insert_breakpoint (gdbarch
,
923 m32r_memory_insert_breakpoint
);
924 set_gdbarch_memory_remove_breakpoint (gdbarch
,
925 m32r_memory_remove_breakpoint
);
927 set_gdbarch_frame_align (gdbarch
, m32r_frame_align
);
929 frame_base_set_default (gdbarch
, &m32r_frame_base
);
931 /* Methods for saving / extracting a dummy frame's ID. The ID's
932 stack address must match the SP value returned by
933 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
934 set_gdbarch_dummy_id (gdbarch
, m32r_dummy_id
);
936 /* Return the unwound PC value. */
937 set_gdbarch_unwind_pc (gdbarch
, m32r_unwind_pc
);
939 /* Hook in ABI-specific overrides, if they have been registered. */
940 gdbarch_init_osabi (info
, gdbarch
);
942 /* Hook in the default unwinders. */
943 frame_unwind_append_unwinder (gdbarch
, &m32r_frame_unwind
);
945 /* Support simple overlay manager. */
946 set_gdbarch_overlay_update (gdbarch
, simple_overlay_update
);
952 _initialize_m32r_tdep (void)
954 register_gdbarch_init (bfd_arch_m32r
, m32r_gdbarch_init
);