1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2020 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
9 This file is part of GAS, the GNU Assembler.
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "safe-ctype.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
39 #include "dw2gencfi.h"
42 #include "dwarf2dbg.h"
45 /* Must be at least the size of the largest unwind opcode (currently two). */
46 #define ARM_OPCODE_CHUNK_SIZE 8
48 /* This structure holds the unwinding state. */
53 symbolS
* table_entry
;
54 symbolS
* personality_routine
;
55 int personality_index
;
56 /* The segment containing the function. */
59 /* Opcodes generated from this function. */
60 unsigned char * opcodes
;
63 /* The number of bytes pushed to the stack. */
65 /* We don't add stack adjustment opcodes immediately so that we can merge
66 multiple adjustments. We can also omit the final adjustment
67 when using a frame pointer. */
68 offsetT pending_offset
;
69 /* These two fields are set by both unwind_movsp and unwind_setfp. They
70 hold the reg+offset to use when restoring sp from a frame pointer. */
73 /* Nonzero if an unwind_setfp directive has been seen. */
75 /* Nonzero if the last opcode restores sp from fp_reg. */
76 unsigned sp_restored
:1;
79 /* Whether --fdpic was given. */
84 /* Results from operand parsing worker functions. */
88 PARSE_OPERAND_SUCCESS
,
90 PARSE_OPERAND_FAIL_NO_BACKTRACK
91 } parse_operand_result
;
100 /* Types of processor to assemble for. */
102 /* The code that was here used to select a default CPU depending on compiler
103 pre-defines which were only present when doing native builds, thus
104 changing gas' default behaviour depending upon the build host.
106 If you have a target that requires a default CPU option then the you
107 should define CPU_DEFAULT here. */
110 /* Perform range checks on positive and negative overflows by checking if the
111 VALUE given fits within the range of an BITS sized immediate. */
112 static bfd_boolean
out_of_range_p (offsetT value
, offsetT bits
)
114 gas_assert (bits
< (offsetT
)(sizeof (value
) * 8));
115 return (value
& ~((1 << bits
)-1))
116 && ((value
& ~((1 << bits
)-1)) != ~((1 << bits
)-1));
121 # define FPU_DEFAULT FPU_ARCH_FPA
122 # elif defined (TE_NetBSD)
124 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
126 /* Legacy a.out format. */
127 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
129 # elif defined (TE_VXWORKS)
130 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
132 /* For backwards compatibility, default to FPA. */
133 # define FPU_DEFAULT FPU_ARCH_FPA
135 #endif /* ifndef FPU_DEFAULT */
137 #define streq(a, b) (strcmp (a, b) == 0)
139 /* Current set of feature bits available (CPU+FPU). Different from
140 selected_cpu + selected_fpu in case of autodetection since the CPU
141 feature bits are then all set. */
142 static arm_feature_set cpu_variant
;
143 /* Feature bits used in each execution state. Used to set build attribute
144 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
145 static arm_feature_set arm_arch_used
;
146 static arm_feature_set thumb_arch_used
;
148 /* Flags stored in private area of BFD structure. */
149 static int uses_apcs_26
= FALSE
;
150 static int atpcs
= FALSE
;
151 static int support_interwork
= FALSE
;
152 static int uses_apcs_float
= FALSE
;
153 static int pic_code
= FALSE
;
154 static int fix_v4bx
= FALSE
;
155 /* Warn on using deprecated features. */
156 static int warn_on_deprecated
= TRUE
;
157 static int warn_on_restrict_it
= FALSE
;
159 /* Understand CodeComposer Studio assembly syntax. */
160 bfd_boolean codecomposer_syntax
= FALSE
;
162 /* Variables that we set while parsing command-line options. Once all
163 options have been read we re-process these values to set the real
166 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
167 instead of -mcpu=arm1). */
168 static const arm_feature_set
*legacy_cpu
= NULL
;
169 static const arm_feature_set
*legacy_fpu
= NULL
;
171 /* CPU, extension and FPU feature bits selected by -mcpu. */
172 static const arm_feature_set
*mcpu_cpu_opt
= NULL
;
173 static arm_feature_set
*mcpu_ext_opt
= NULL
;
174 static const arm_feature_set
*mcpu_fpu_opt
= NULL
;
176 /* CPU, extension and FPU feature bits selected by -march. */
177 static const arm_feature_set
*march_cpu_opt
= NULL
;
178 static arm_feature_set
*march_ext_opt
= NULL
;
179 static const arm_feature_set
*march_fpu_opt
= NULL
;
181 /* Feature bits selected by -mfpu. */
182 static const arm_feature_set
*mfpu_opt
= NULL
;
184 /* Constants for known architecture features. */
185 static const arm_feature_set fpu_default
= FPU_DEFAULT
;
186 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED
= FPU_ARCH_VFP_V1
;
187 static const arm_feature_set fpu_arch_vfp_v2
= FPU_ARCH_VFP_V2
;
188 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED
= FPU_ARCH_VFP_V3
;
189 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED
= FPU_ARCH_NEON_V1
;
190 static const arm_feature_set fpu_arch_fpa
= FPU_ARCH_FPA
;
191 static const arm_feature_set fpu_any_hard
= FPU_ANY_HARD
;
193 static const arm_feature_set fpu_arch_maverick
= FPU_ARCH_MAVERICK
;
195 static const arm_feature_set fpu_endian_pure
= FPU_ARCH_ENDIAN_PURE
;
198 static const arm_feature_set cpu_default
= CPU_DEFAULT
;
201 static const arm_feature_set arm_ext_v1
= ARM_FEATURE_CORE_LOW (ARM_EXT_V1
);
202 static const arm_feature_set arm_ext_v2
= ARM_FEATURE_CORE_LOW (ARM_EXT_V2
);
203 static const arm_feature_set arm_ext_v2s
= ARM_FEATURE_CORE_LOW (ARM_EXT_V2S
);
204 static const arm_feature_set arm_ext_v3
= ARM_FEATURE_CORE_LOW (ARM_EXT_V3
);
205 static const arm_feature_set arm_ext_v3m
= ARM_FEATURE_CORE_LOW (ARM_EXT_V3M
);
206 static const arm_feature_set arm_ext_v4
= ARM_FEATURE_CORE_LOW (ARM_EXT_V4
);
207 static const arm_feature_set arm_ext_v4t
= ARM_FEATURE_CORE_LOW (ARM_EXT_V4T
);
208 static const arm_feature_set arm_ext_v5
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5
);
209 static const arm_feature_set arm_ext_v4t_5
=
210 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T
| ARM_EXT_V5
);
211 static const arm_feature_set arm_ext_v5t
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5T
);
212 static const arm_feature_set arm_ext_v5e
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5E
);
213 static const arm_feature_set arm_ext_v5exp
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
);
214 static const arm_feature_set arm_ext_v5j
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5J
);
215 static const arm_feature_set arm_ext_v6
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6
);
216 static const arm_feature_set arm_ext_v6k
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
);
217 static const arm_feature_set arm_ext_v6t2
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2
);
218 /* Only for compatability of hint instructions. */
219 static const arm_feature_set arm_ext_v6k_v6t2
=
220 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
| ARM_EXT_V6T2
);
221 static const arm_feature_set arm_ext_v6_notm
=
222 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM
);
223 static const arm_feature_set arm_ext_v6_dsp
=
224 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP
);
225 static const arm_feature_set arm_ext_barrier
=
226 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER
);
227 static const arm_feature_set arm_ext_msr
=
228 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR
);
229 static const arm_feature_set arm_ext_div
= ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
);
230 static const arm_feature_set arm_ext_v7
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7
);
231 static const arm_feature_set arm_ext_v7a
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
);
232 static const arm_feature_set arm_ext_v7r
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
);
234 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7M
);
236 static const arm_feature_set arm_ext_v8
= ARM_FEATURE_CORE_LOW (ARM_EXT_V8
);
237 static const arm_feature_set arm_ext_m
=
238 ARM_FEATURE_CORE (ARM_EXT_V6M
| ARM_EXT_V7M
,
239 ARM_EXT2_V8M
| ARM_EXT2_V8M_MAIN
);
240 static const arm_feature_set arm_ext_mp
= ARM_FEATURE_CORE_LOW (ARM_EXT_MP
);
241 static const arm_feature_set arm_ext_sec
= ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
);
242 static const arm_feature_set arm_ext_os
= ARM_FEATURE_CORE_LOW (ARM_EXT_OS
);
243 static const arm_feature_set arm_ext_adiv
= ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
);
244 static const arm_feature_set arm_ext_virt
= ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
);
245 static const arm_feature_set arm_ext_pan
= ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN
);
246 static const arm_feature_set arm_ext_v8m
= ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M
);
247 static const arm_feature_set arm_ext_v8m_main
=
248 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN
);
249 static const arm_feature_set arm_ext_v8_1m_main
=
250 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN
);
251 /* Instructions in ARMv8-M only found in M profile architectures. */
252 static const arm_feature_set arm_ext_v8m_m_only
=
253 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M
| ARM_EXT2_V8M_MAIN
);
254 static const arm_feature_set arm_ext_v6t2_v8m
=
255 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M
);
256 /* Instructions shared between ARMv8-A and ARMv8-M. */
257 static const arm_feature_set arm_ext_atomics
=
258 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS
);
260 /* DSP instructions Tag_DSP_extension refers to. */
261 static const arm_feature_set arm_ext_dsp
=
262 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E
| ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
);
264 static const arm_feature_set arm_ext_ras
=
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS
);
266 /* FP16 instructions. */
267 static const arm_feature_set arm_ext_fp16
=
268 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
);
269 static const arm_feature_set arm_ext_fp16_fml
=
270 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML
);
271 static const arm_feature_set arm_ext_v8_2
=
272 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A
);
273 static const arm_feature_set arm_ext_v8_3
=
274 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A
);
275 static const arm_feature_set arm_ext_sb
=
276 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
);
277 static const arm_feature_set arm_ext_predres
=
278 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
);
279 static const arm_feature_set arm_ext_bf16
=
280 ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16
);
281 static const arm_feature_set arm_ext_i8mm
=
282 ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM
);
283 static const arm_feature_set arm_ext_crc
=
284 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
);
285 static const arm_feature_set arm_ext_cde
=
286 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE
);
287 static const arm_feature_set arm_ext_cde0
=
288 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE0
);
289 static const arm_feature_set arm_ext_cde1
=
290 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE1
);
291 static const arm_feature_set arm_ext_cde2
=
292 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE2
);
293 static const arm_feature_set arm_ext_cde3
=
294 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE3
);
295 static const arm_feature_set arm_ext_cde4
=
296 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE4
);
297 static const arm_feature_set arm_ext_cde5
=
298 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE5
);
299 static const arm_feature_set arm_ext_cde6
=
300 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE6
);
301 static const arm_feature_set arm_ext_cde7
=
302 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE7
);
304 static const arm_feature_set arm_arch_any
= ARM_ANY
;
305 static const arm_feature_set fpu_any
= FPU_ANY
;
306 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED
= ARM_FEATURE (-1, -1, -1);
307 static const arm_feature_set arm_arch_t2
= ARM_ARCH_THUMB2
;
308 static const arm_feature_set arm_arch_none
= ARM_ARCH_NONE
;
310 static const arm_feature_set arm_cext_iwmmxt2
=
311 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
);
312 static const arm_feature_set arm_cext_iwmmxt
=
313 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
);
314 static const arm_feature_set arm_cext_xscale
=
315 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
);
316 static const arm_feature_set arm_cext_maverick
=
317 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
);
318 static const arm_feature_set fpu_fpa_ext_v1
=
319 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1
);
320 static const arm_feature_set fpu_fpa_ext_v2
=
321 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2
);
322 static const arm_feature_set fpu_vfp_ext_v1xd
=
323 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD
);
324 static const arm_feature_set fpu_vfp_ext_v1
=
325 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1
);
326 static const arm_feature_set fpu_vfp_ext_v2
=
327 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2
);
328 static const arm_feature_set fpu_vfp_ext_v3xd
=
329 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD
);
330 static const arm_feature_set fpu_vfp_ext_v3
=
331 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3
);
332 static const arm_feature_set fpu_vfp_ext_d32
=
333 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32
);
334 static const arm_feature_set fpu_neon_ext_v1
=
335 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
);
336 static const arm_feature_set fpu_vfp_v3_or_neon_ext
=
337 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_VFP_EXT_V3
);
338 static const arm_feature_set mve_ext
=
339 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE
);
340 static const arm_feature_set mve_fp_ext
=
341 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE_FP
);
342 /* Note: This has more than one bit set, which means using it with
343 mark_feature_used (which returns if *any* of the bits are set in the current
344 cpu variant) can give surprising results. */
345 static const arm_feature_set armv8m_fp
=
346 ARM_FEATURE_COPROC (FPU_VFP_V5_SP_D16
);
348 static const arm_feature_set fpu_vfp_fp16
=
349 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16
);
350 static const arm_feature_set fpu_neon_ext_fma
=
351 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA
);
353 static const arm_feature_set fpu_vfp_ext_fma
=
354 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA
);
355 static const arm_feature_set fpu_vfp_ext_armv8
=
356 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8
);
357 static const arm_feature_set fpu_vfp_ext_armv8xd
=
358 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD
);
359 static const arm_feature_set fpu_neon_ext_armv8
=
360 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8
);
361 static const arm_feature_set fpu_crypto_ext_armv8
=
362 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8
);
363 static const arm_feature_set fpu_neon_ext_v8_1
=
364 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA
);
365 static const arm_feature_set fpu_neon_ext_dotprod
=
366 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD
);
368 static int mfloat_abi_opt
= -1;
369 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
371 static arm_feature_set selected_arch
= ARM_ARCH_NONE
;
372 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
374 static arm_feature_set selected_ext
= ARM_ARCH_NONE
;
375 /* Feature bits selected by the last -mcpu/-march or by the combination of the
376 last .cpu/.arch directive .arch_extension directives since that
378 static arm_feature_set selected_cpu
= ARM_ARCH_NONE
;
379 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
380 static arm_feature_set selected_fpu
= FPU_NONE
;
381 /* Feature bits selected by the last .object_arch directive. */
382 static arm_feature_set selected_object_arch
= ARM_ARCH_NONE
;
383 /* Must be long enough to hold any of the names in arm_cpus. */
384 static const struct arm_ext_table
* selected_ctx_ext_table
= NULL
;
385 static char selected_cpu_name
[20];
387 extern FLONUM_TYPE generic_floating_point_number
;
389 /* Return if no cpu was selected on command-line. */
391 no_cpu_selected (void)
393 return ARM_FEATURE_EQUAL (selected_cpu
, arm_arch_none
);
398 static int meabi_flags
= EABI_DEFAULT
;
400 static int meabi_flags
= EF_ARM_EABI_UNKNOWN
;
403 static int attributes_set_explicitly
[NUM_KNOWN_OBJ_ATTRIBUTES
];
408 return (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
);
413 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
414 symbolS
* GOT_symbol
;
417 /* 0: assemble for ARM,
418 1: assemble for Thumb,
419 2: assemble for Thumb even though target CPU does not support thumb
421 static int thumb_mode
= 0;
422 /* A value distinct from the possible values for thumb_mode that we
423 can use to record whether thumb_mode has been copied into the
424 tc_frag_data field of a frag. */
425 #define MODE_RECORDED (1 << 4)
427 /* Specifies the intrinsic IT insn behavior mode. */
428 enum implicit_it_mode
430 IMPLICIT_IT_MODE_NEVER
= 0x00,
431 IMPLICIT_IT_MODE_ARM
= 0x01,
432 IMPLICIT_IT_MODE_THUMB
= 0x02,
433 IMPLICIT_IT_MODE_ALWAYS
= (IMPLICIT_IT_MODE_ARM
| IMPLICIT_IT_MODE_THUMB
)
435 static int implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
437 /* If unified_syntax is true, we are processing the new unified
438 ARM/Thumb syntax. Important differences from the old ARM mode:
440 - Immediate operands do not require a # prefix.
441 - Conditional affixes always appear at the end of the
442 instruction. (For backward compatibility, those instructions
443 that formerly had them in the middle, continue to accept them
445 - The IT instruction may appear, and if it does is validated
446 against subsequent conditional affixes. It does not generate
449 Important differences from the old Thumb mode:
451 - Immediate operands do not require a # prefix.
452 - Most of the V6T2 instructions are only available in unified mode.
453 - The .N and .W suffixes are recognized and honored (it is an error
454 if they cannot be honored).
455 - All instructions set the flags if and only if they have an 's' affix.
456 - Conditional affixes may be used. They are validated against
457 preceding IT instructions. Unlike ARM mode, you cannot use a
458 conditional affix except in the scope of an IT instruction. */
460 static bfd_boolean unified_syntax
= FALSE
;
462 /* An immediate operand can start with #, and ld*, st*, pld operands
463 can contain [ and ]. We need to tell APP not to elide whitespace
464 before a [, which can appear as the first operand for pld.
465 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
466 const char arm_symbol_chars
[] = "#[]{}";
482 enum neon_el_type type
;
486 #define NEON_MAX_TYPE_ELS 5
490 struct neon_type_el el
[NEON_MAX_TYPE_ELS
];
494 enum pred_instruction_type
500 IF_INSIDE_IT_LAST_INSN
, /* Either outside or inside;
501 if inside, should be the last one. */
502 NEUTRAL_IT_INSN
, /* This could be either inside or outside,
503 i.e. BKPT and NOP. */
504 IT_INSN
, /* The IT insn has been parsed. */
505 VPT_INSN
, /* The VPT/VPST insn has been parsed. */
506 MVE_OUTSIDE_PRED_INSN
, /* Instruction to indicate a MVE instruction without
507 a predication code. */
508 MVE_UNPREDICABLE_INSN
, /* MVE instruction that is non-predicable. */
511 /* The maximum number of operands we need. */
512 #define ARM_IT_MAX_OPERANDS 6
513 #define ARM_IT_MAX_RELOCS 3
518 unsigned long instruction
;
522 /* "uncond_value" is set to the value in place of the conditional field in
523 unconditional versions of the instruction, or -1 if nothing is
526 struct neon_type vectype
;
527 /* This does not indicate an actual NEON instruction, only that
528 the mnemonic accepts neon-style type suffixes. */
530 /* Set to the opcode if the instruction needs relaxation.
531 Zero if the instruction is not relaxed. */
535 bfd_reloc_code_real_type type
;
538 } relocs
[ARM_IT_MAX_RELOCS
];
540 enum pred_instruction_type pred_insn_type
;
546 struct neon_type_el vectype
;
547 unsigned present
: 1; /* Operand present. */
548 unsigned isreg
: 1; /* Operand was a register. */
549 unsigned immisreg
: 2; /* .imm field is a second register.
550 0: imm, 1: gpr, 2: MVE Q-register. */
551 unsigned isscalar
: 2; /* Operand is a (SIMD) scalar:
555 unsigned immisalign
: 1; /* Immediate is an alignment specifier. */
556 unsigned immisfloat
: 1; /* Immediate was parsed as a float. */
557 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
558 instructions. This allows us to disambiguate ARM <-> vector insns. */
559 unsigned regisimm
: 1; /* 64-bit immediate, reg forms high 32 bits. */
560 unsigned isvec
: 1; /* Is a single, double or quad VFP/Neon reg. */
561 unsigned isquad
: 1; /* Operand is SIMD quad register. */
562 unsigned issingle
: 1; /* Operand is VFP single-precision register. */
563 unsigned iszr
: 1; /* Operand is ZR register. */
564 unsigned hasreloc
: 1; /* Operand has relocation suffix. */
565 unsigned writeback
: 1; /* Operand has trailing ! */
566 unsigned preind
: 1; /* Preindexed address. */
567 unsigned postind
: 1; /* Postindexed address. */
568 unsigned negative
: 1; /* Index register was negated. */
569 unsigned shifted
: 1; /* Shift applied to operation. */
570 unsigned shift_kind
: 3; /* Shift operation (enum shift_kind). */
571 } operands
[ARM_IT_MAX_OPERANDS
];
574 static struct arm_it inst
;
576 #define NUM_FLOAT_VALS 8
578 const char * fp_const
[] =
580 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
583 LITTLENUM_TYPE fp_values
[NUM_FLOAT_VALS
][MAX_LITTLENUMS
];
593 #define CP_T_X 0x00008000
594 #define CP_T_Y 0x00400000
596 #define CONDS_BIT 0x00100000
597 #define LOAD_BIT 0x00100000
599 #define DOUBLE_LOAD_FLAG 0x00000001
603 const char * template_name
;
607 #define COND_ALWAYS 0xE
611 const char * template_name
;
615 struct asm_barrier_opt
617 const char * template_name
;
619 const arm_feature_set arch
;
622 /* The bit that distinguishes CPSR and SPSR. */
623 #define SPSR_BIT (1 << 22)
625 /* The individual PSR flag bits. */
626 #define PSR_c (1 << 16)
627 #define PSR_x (1 << 17)
628 #define PSR_s (1 << 18)
629 #define PSR_f (1 << 19)
634 bfd_reloc_code_real_type reloc
;
639 VFP_REG_Sd
, VFP_REG_Sm
, VFP_REG_Sn
,
640 VFP_REG_Dd
, VFP_REG_Dm
, VFP_REG_Dn
645 VFP_LDSTMIA
, VFP_LDSTMDB
, VFP_LDSTMIAX
, VFP_LDSTMDBX
648 /* Bits for DEFINED field in neon_typed_alias. */
649 #define NTA_HASTYPE 1
650 #define NTA_HASINDEX 2
652 struct neon_typed_alias
654 unsigned char defined
;
656 struct neon_type_el eltype
;
659 /* ARM register categories. This includes coprocessor numbers and various
660 architecture extensions' registers. Each entry should have an error message
661 in reg_expected_msgs below. */
691 /* Structure for a hash table entry for a register.
692 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
693 information which states whether a vector type or index is specified (for a
694 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
700 unsigned char builtin
;
701 struct neon_typed_alias
* neon
;
704 /* Diagnostics used when we don't get a register of the expected type. */
705 const char * const reg_expected_msgs
[] =
707 [REG_TYPE_RN
] = N_("ARM register expected"),
708 [REG_TYPE_CP
] = N_("bad or missing co-processor number"),
709 [REG_TYPE_CN
] = N_("co-processor register expected"),
710 [REG_TYPE_FN
] = N_("FPA register expected"),
711 [REG_TYPE_VFS
] = N_("VFP single precision register expected"),
712 [REG_TYPE_VFD
] = N_("VFP/Neon double precision register expected"),
713 [REG_TYPE_NQ
] = N_("Neon quad precision register expected"),
714 [REG_TYPE_VFSD
] = N_("VFP single or double precision register expected"),
715 [REG_TYPE_NDQ
] = N_("Neon double or quad precision register expected"),
716 [REG_TYPE_NSD
] = N_("Neon single or double precision register expected"),
717 [REG_TYPE_NSDQ
] = N_("VFP single, double or Neon quad precision register"
719 [REG_TYPE_VFC
] = N_("VFP system register expected"),
720 [REG_TYPE_MVF
] = N_("Maverick MVF register expected"),
721 [REG_TYPE_MVD
] = N_("Maverick MVD register expected"),
722 [REG_TYPE_MVFX
] = N_("Maverick MVFX register expected"),
723 [REG_TYPE_MVDX
] = N_("Maverick MVDX register expected"),
724 [REG_TYPE_MVAX
] = N_("Maverick MVAX register expected"),
725 [REG_TYPE_DSPSC
] = N_("Maverick DSPSC register expected"),
726 [REG_TYPE_MMXWR
] = N_("iWMMXt data register expected"),
727 [REG_TYPE_MMXWC
] = N_("iWMMXt control register expected"),
728 [REG_TYPE_MMXWCG
] = N_("iWMMXt scalar register expected"),
729 [REG_TYPE_XSCALE
] = N_("XScale accumulator register expected"),
730 [REG_TYPE_MQ
] = N_("MVE vector register expected"),
734 /* Some well known registers that we refer to directly elsewhere. */
740 /* ARM instructions take 4bytes in the object file, Thumb instructions
746 /* Basic string to match. */
747 const char * template_name
;
749 /* Parameters to instruction. */
750 unsigned int operands
[8];
752 /* Conditional tag - see opcode_lookup. */
753 unsigned int tag
: 4;
755 /* Basic instruction code. */
758 /* Thumb-format instruction code. */
761 /* Which architecture variant provides this instruction. */
762 const arm_feature_set
* avariant
;
763 const arm_feature_set
* tvariant
;
765 /* Function to call to encode instruction in ARM format. */
766 void (* aencode
) (void);
768 /* Function to call to encode instruction in Thumb format. */
769 void (* tencode
) (void);
771 /* Indicates whether this instruction may be vector predicated. */
772 unsigned int mayBeVecPred
: 1;
775 /* Defines for various bits that we will want to toggle. */
776 #define INST_IMMEDIATE 0x02000000
777 #define OFFSET_REG 0x02000000
778 #define HWOFFSET_IMM 0x00400000
779 #define SHIFT_BY_REG 0x00000010
780 #define PRE_INDEX 0x01000000
781 #define INDEX_UP 0x00800000
782 #define WRITE_BACK 0x00200000
783 #define LDM_TYPE_2_OR_3 0x00400000
784 #define CPSI_MMOD 0x00020000
786 #define LITERAL_MASK 0xf000f000
787 #define OPCODE_MASK 0xfe1fffff
788 #define V4_STR_BIT 0x00000020
789 #define VLDR_VMOV_SAME 0x0040f000
791 #define T2_SUBS_PC_LR 0xf3de8f00
793 #define DATA_OP_SHIFT 21
794 #define SBIT_SHIFT 20
796 #define T2_OPCODE_MASK 0xfe1fffff
797 #define T2_DATA_OP_SHIFT 21
798 #define T2_SBIT_SHIFT 20
800 #define A_COND_MASK 0xf0000000
801 #define A_PUSH_POP_OP_MASK 0x0fff0000
803 /* Opcodes for pushing/poping registers to/from the stack. */
804 #define A1_OPCODE_PUSH 0x092d0000
805 #define A2_OPCODE_PUSH 0x052d0004
806 #define A2_OPCODE_POP 0x049d0004
808 /* Codes to distinguish the arithmetic instructions. */
819 #define OPCODE_CMP 10
820 #define OPCODE_CMN 11
821 #define OPCODE_ORR 12
822 #define OPCODE_MOV 13
823 #define OPCODE_BIC 14
824 #define OPCODE_MVN 15
826 #define T2_OPCODE_AND 0
827 #define T2_OPCODE_BIC 1
828 #define T2_OPCODE_ORR 2
829 #define T2_OPCODE_ORN 3
830 #define T2_OPCODE_EOR 4
831 #define T2_OPCODE_ADD 8
832 #define T2_OPCODE_ADC 10
833 #define T2_OPCODE_SBC 11
834 #define T2_OPCODE_SUB 13
835 #define T2_OPCODE_RSB 14
837 #define T_OPCODE_MUL 0x4340
838 #define T_OPCODE_TST 0x4200
839 #define T_OPCODE_CMN 0x42c0
840 #define T_OPCODE_NEG 0x4240
841 #define T_OPCODE_MVN 0x43c0
843 #define T_OPCODE_ADD_R3 0x1800
844 #define T_OPCODE_SUB_R3 0x1a00
845 #define T_OPCODE_ADD_HI 0x4400
846 #define T_OPCODE_ADD_ST 0xb000
847 #define T_OPCODE_SUB_ST 0xb080
848 #define T_OPCODE_ADD_SP 0xa800
849 #define T_OPCODE_ADD_PC 0xa000
850 #define T_OPCODE_ADD_I8 0x3000
851 #define T_OPCODE_SUB_I8 0x3800
852 #define T_OPCODE_ADD_I3 0x1c00
853 #define T_OPCODE_SUB_I3 0x1e00
855 #define T_OPCODE_ASR_R 0x4100
856 #define T_OPCODE_LSL_R 0x4080
857 #define T_OPCODE_LSR_R 0x40c0
858 #define T_OPCODE_ROR_R 0x41c0
859 #define T_OPCODE_ASR_I 0x1000
860 #define T_OPCODE_LSL_I 0x0000
861 #define T_OPCODE_LSR_I 0x0800
863 #define T_OPCODE_MOV_I8 0x2000
864 #define T_OPCODE_CMP_I8 0x2800
865 #define T_OPCODE_CMP_LR 0x4280
866 #define T_OPCODE_MOV_HR 0x4600
867 #define T_OPCODE_CMP_HR 0x4500
869 #define T_OPCODE_LDR_PC 0x4800
870 #define T_OPCODE_LDR_SP 0x9800
871 #define T_OPCODE_STR_SP 0x9000
872 #define T_OPCODE_LDR_IW 0x6800
873 #define T_OPCODE_STR_IW 0x6000
874 #define T_OPCODE_LDR_IH 0x8800
875 #define T_OPCODE_STR_IH 0x8000
876 #define T_OPCODE_LDR_IB 0x7800
877 #define T_OPCODE_STR_IB 0x7000
878 #define T_OPCODE_LDR_RW 0x5800
879 #define T_OPCODE_STR_RW 0x5000
880 #define T_OPCODE_LDR_RH 0x5a00
881 #define T_OPCODE_STR_RH 0x5200
882 #define T_OPCODE_LDR_RB 0x5c00
883 #define T_OPCODE_STR_RB 0x5400
885 #define T_OPCODE_PUSH 0xb400
886 #define T_OPCODE_POP 0xbc00
888 #define T_OPCODE_BRANCH 0xe000
890 #define THUMB_SIZE 2 /* Size of thumb instruction. */
891 #define THUMB_PP_PC_LR 0x0100
892 #define THUMB_LOAD_BIT 0x0800
893 #define THUMB2_LOAD_BIT 0x00100000
895 #define BAD_SYNTAX _("syntax error")
896 #define BAD_ARGS _("bad arguments to instruction")
897 #define BAD_SP _("r13 not allowed here")
898 #define BAD_PC _("r15 not allowed here")
899 #define BAD_ODD _("Odd register not allowed here")
900 #define BAD_EVEN _("Even register not allowed here")
901 #define BAD_COND _("instruction cannot be conditional")
902 #define BAD_OVERLAP _("registers may not be the same")
903 #define BAD_HIREG _("lo register required")
904 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
905 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
906 #define BAD_BRANCH _("branch must be last instruction in IT block")
907 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
908 #define BAD_NO_VPT _("instruction not allowed in VPT block")
909 #define BAD_NOT_IT _("instruction not allowed in IT block")
910 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
911 #define BAD_FPU _("selected FPU does not support instruction")
912 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
913 #define BAD_OUT_VPT \
914 _("vector predicated instruction should be in VPT/VPST block")
915 #define BAD_IT_COND _("incorrect condition in IT block")
916 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
917 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
918 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
919 #define BAD_PC_ADDRESSING \
920 _("cannot use register index with PC-relative addressing")
921 #define BAD_PC_WRITEBACK \
922 _("cannot use writeback with PC-relative addressing")
923 #define BAD_RANGE _("branch out of range")
924 #define BAD_FP16 _("selected processor does not support fp16 instruction")
925 #define BAD_BF16 _("selected processor does not support bf16 instruction")
926 #define BAD_CDE _("selected processor does not support cde instruction")
927 #define BAD_CDE_COPROC _("coprocessor for insn is not enabled for cde")
928 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
929 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
930 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
932 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
934 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
936 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
938 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
939 #define BAD_MVE_AUTO \
940 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
941 " use a valid -march or -mcpu option.")
942 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
943 "and source operands makes instruction UNPREDICTABLE")
944 #define BAD_EL_TYPE _("bad element type for instruction")
945 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
947 static struct hash_control
* arm_ops_hsh
;
948 static struct hash_control
* arm_cond_hsh
;
949 static struct hash_control
* arm_vcond_hsh
;
950 static struct hash_control
* arm_shift_hsh
;
951 static struct hash_control
* arm_psr_hsh
;
952 static struct hash_control
* arm_v7m_psr_hsh
;
953 static struct hash_control
* arm_reg_hsh
;
954 static struct hash_control
* arm_reloc_hsh
;
955 static struct hash_control
* arm_barrier_opt_hsh
;
957 /* Stuff needed to resolve the label ambiguity
966 symbolS
* last_label_seen
;
967 static int label_is_thumb_function_name
= FALSE
;
969 /* Literal pool structure. Held on a per-section
970 and per-sub-section basis. */
972 #define MAX_LITERAL_POOL_SIZE 1024
973 typedef struct literal_pool
975 expressionS literals
[MAX_LITERAL_POOL_SIZE
];
976 unsigned int next_free_entry
;
982 struct dwarf2_line_info locs
[MAX_LITERAL_POOL_SIZE
];
984 struct literal_pool
* next
;
985 unsigned int alignment
;
988 /* Pointer to a linked list of literal pools. */
989 literal_pool
* list_of_pools
= NULL
;
991 typedef enum asmfunc_states
994 WAITING_ASMFUNC_NAME
,
998 static asmfunc_states asmfunc_state
= OUTSIDE_ASMFUNC
;
1001 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
1003 static struct current_pred now_pred
;
1007 now_pred_compatible (int cond
)
1009 return (cond
& ~1) == (now_pred
.cc
& ~1);
1013 conditional_insn (void)
1015 return inst
.cond
!= COND_ALWAYS
;
1018 static int in_pred_block (void);
1020 static int handle_pred_state (void);
1022 static void force_automatic_it_block_close (void);
1024 static void it_fsm_post_encode (void);
1026 #define set_pred_insn_type(type) \
1029 inst.pred_insn_type = type; \
1030 if (handle_pred_state () == FAIL) \
1035 #define set_pred_insn_type_nonvoid(type, failret) \
1038 inst.pred_insn_type = type; \
1039 if (handle_pred_state () == FAIL) \
1044 #define set_pred_insn_type_last() \
1047 if (inst.cond == COND_ALWAYS) \
1048 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1050 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1054 /* Toggle value[pos]. */
1055 #define TOGGLE_BIT(value, pos) (value ^ (1 << pos))
1059 /* This array holds the chars that always start a comment. If the
1060 pre-processor is disabled, these aren't very useful. */
1061 char arm_comment_chars
[] = "@";
1063 /* This array holds the chars that only start a comment at the beginning of
1064 a line. If the line seems to have the form '# 123 filename'
1065 .line and .file directives will appear in the pre-processed output. */
1066 /* Note that input_file.c hand checks for '#' at the beginning of the
1067 first line of the input file. This is because the compiler outputs
1068 #NO_APP at the beginning of its output. */
1069 /* Also note that comments like this one will always work. */
1070 const char line_comment_chars
[] = "#";
1072 char arm_line_separator_chars
[] = ";";
1074 /* Chars that can be used to separate mant
1075 from exp in floating point numbers. */
1076 const char EXP_CHARS
[] = "eE";
1078 /* Chars that mean this number is a floating point constant. */
1079 /* As in 0f12.456 */
1080 /* or 0d1.2345e12 */
1082 const char FLT_CHARS
[] = "rRsSfFdDxXeEpPHh";
1084 /* Prefix characters that indicate the start of an immediate
1086 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1088 /* Separator character handling. */
1090 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1092 enum fp_16bit_format
1094 ARM_FP16_FORMAT_IEEE
= 0x1,
1095 ARM_FP16_FORMAT_ALTERNATIVE
= 0x2,
1096 ARM_FP16_FORMAT_DEFAULT
= 0x3
1099 static enum fp_16bit_format fp16_format
= ARM_FP16_FORMAT_DEFAULT
;
1103 skip_past_char (char ** str
, char c
)
1105 /* PR gas/14987: Allow for whitespace before the expected character. */
1106 skip_whitespace (*str
);
1117 #define skip_past_comma(str) skip_past_char (str, ',')
1119 /* Arithmetic expressions (possibly involving symbols). */
1121 /* Return TRUE if anything in the expression is a bignum. */
1124 walk_no_bignums (symbolS
* sp
)
1126 if (symbol_get_value_expression (sp
)->X_op
== O_big
)
1129 if (symbol_get_value_expression (sp
)->X_add_symbol
)
1131 return (walk_no_bignums (symbol_get_value_expression (sp
)->X_add_symbol
)
1132 || (symbol_get_value_expression (sp
)->X_op_symbol
1133 && walk_no_bignums (symbol_get_value_expression (sp
)->X_op_symbol
)));
1139 static bfd_boolean in_my_get_expression
= FALSE
;
1141 /* Third argument to my_get_expression. */
1142 #define GE_NO_PREFIX 0
1143 #define GE_IMM_PREFIX 1
1144 #define GE_OPT_PREFIX 2
1145 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1146 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1147 #define GE_OPT_PREFIX_BIG 3
1150 my_get_expression (expressionS
* ep
, char ** str
, int prefix_mode
)
1154 /* In unified syntax, all prefixes are optional. */
1156 prefix_mode
= (prefix_mode
== GE_OPT_PREFIX_BIG
) ? prefix_mode
1159 switch (prefix_mode
)
1161 case GE_NO_PREFIX
: break;
1163 if (!is_immediate_prefix (**str
))
1165 inst
.error
= _("immediate expression requires a # prefix");
1171 case GE_OPT_PREFIX_BIG
:
1172 if (is_immediate_prefix (**str
))
1179 memset (ep
, 0, sizeof (expressionS
));
1181 save_in
= input_line_pointer
;
1182 input_line_pointer
= *str
;
1183 in_my_get_expression
= TRUE
;
1185 in_my_get_expression
= FALSE
;
1187 if (ep
->X_op
== O_illegal
|| ep
->X_op
== O_absent
)
1189 /* We found a bad or missing expression in md_operand(). */
1190 *str
= input_line_pointer
;
1191 input_line_pointer
= save_in
;
1192 if (inst
.error
== NULL
)
1193 inst
.error
= (ep
->X_op
== O_absent
1194 ? _("missing expression") :_("bad expression"));
1198 /* Get rid of any bignums now, so that we don't generate an error for which
1199 we can't establish a line number later on. Big numbers are never valid
1200 in instructions, which is where this routine is always called. */
1201 if (prefix_mode
!= GE_OPT_PREFIX_BIG
1202 && (ep
->X_op
== O_big
1203 || (ep
->X_add_symbol
1204 && (walk_no_bignums (ep
->X_add_symbol
)
1206 && walk_no_bignums (ep
->X_op_symbol
))))))
1208 inst
.error
= _("invalid constant");
1209 *str
= input_line_pointer
;
1210 input_line_pointer
= save_in
;
1214 *str
= input_line_pointer
;
1215 input_line_pointer
= save_in
;
1219 /* Turn a string in input_line_pointer into a floating point constant
1220 of type TYPE, and store the appropriate bytes in *LITP. The number
1221 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1222 returned, or NULL on OK.
1224 Note that fp constants aren't represent in the normal way on the ARM.
1225 In big endian mode, things are as expected. However, in little endian
1226 mode fp constants are big-endian word-wise, and little-endian byte-wise
1227 within the words. For example, (double) 1.1 in big endian mode is
1228 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1229 the byte sequence 99 99 f1 3f 9a 99 99 99.
1231 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1234 md_atof (int type
, char * litP
, int * sizeP
)
1237 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
1248 /* If this is a bfloat16, then parse it slightly differently, as it
1249 does not follow the IEEE specification for floating point numbers
1253 FLONUM_TYPE generic_float
;
1255 t
= atof_ieee_detail (input_line_pointer
, 1, 8, words
, &generic_float
);
1258 input_line_pointer
= t
;
1260 return _("invalid floating point number");
1262 switch (generic_float
.sign
)
1275 /* bfloat16 has two types of NaN - quiet and signalling.
1276 Quiet NaN has bit[6] == 1 && faction != 0, whereas
1277 signalling NaN's have bit[0] == 0 && fraction != 0.
1278 Chosen this specific encoding as it is the same form
1279 as used by other IEEE 754 encodings in GAS. */
1290 md_number_to_chars (litP
, (valueT
) words
[0], sizeof (LITTLENUM_TYPE
));
1320 return _("Unrecognized or unsupported floating point constant");
1323 t
= atof_ieee (input_line_pointer
, type
, words
);
1325 input_line_pointer
= t
;
1326 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
1328 if (target_big_endian
|| prec
== 1)
1329 for (i
= 0; i
< prec
; i
++)
1331 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1332 litP
+= sizeof (LITTLENUM_TYPE
);
1334 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
1335 for (i
= prec
- 1; i
>= 0; i
--)
1337 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1338 litP
+= sizeof (LITTLENUM_TYPE
);
1341 /* For a 4 byte float the order of elements in `words' is 1 0.
1342 For an 8 byte float the order is 1 0 3 2. */
1343 for (i
= 0; i
< prec
; i
+= 2)
1345 md_number_to_chars (litP
, (valueT
) words
[i
+ 1],
1346 sizeof (LITTLENUM_TYPE
));
1347 md_number_to_chars (litP
+ sizeof (LITTLENUM_TYPE
),
1348 (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1349 litP
+= 2 * sizeof (LITTLENUM_TYPE
);
1355 /* We handle all bad expressions here, so that we can report the faulty
1356 instruction in the error message. */
1359 md_operand (expressionS
* exp
)
1361 if (in_my_get_expression
)
1362 exp
->X_op
= O_illegal
;
1365 /* Immediate values. */
1368 /* Generic immediate-value read function for use in directives.
1369 Accepts anything that 'expression' can fold to a constant.
1370 *val receives the number. */
1373 immediate_for_directive (int *val
)
1376 exp
.X_op
= O_illegal
;
1378 if (is_immediate_prefix (*input_line_pointer
))
1380 input_line_pointer
++;
1384 if (exp
.X_op
!= O_constant
)
1386 as_bad (_("expected #constant"));
1387 ignore_rest_of_line ();
1390 *val
= exp
.X_add_number
;
1395 /* Register parsing. */
1397 /* Generic register parser. CCP points to what should be the
1398 beginning of a register name. If it is indeed a valid register
1399 name, advance CCP over it and return the reg_entry structure;
1400 otherwise return NULL. Does not issue diagnostics. */
1402 static struct reg_entry
*
1403 arm_reg_parse_multi (char **ccp
)
1407 struct reg_entry
*reg
;
1409 skip_whitespace (start
);
1411 #ifdef REGISTER_PREFIX
1412 if (*start
!= REGISTER_PREFIX
)
1416 #ifdef OPTIONAL_REGISTER_PREFIX
1417 if (*start
== OPTIONAL_REGISTER_PREFIX
)
1422 if (!ISALPHA (*p
) || !is_name_beginner (*p
))
1427 while (ISALPHA (*p
) || ISDIGIT (*p
) || *p
== '_');
1429 reg
= (struct reg_entry
*) hash_find_n (arm_reg_hsh
, start
, p
- start
);
1439 arm_reg_alt_syntax (char **ccp
, char *start
, struct reg_entry
*reg
,
1440 enum arm_reg_type type
)
1442 /* Alternative syntaxes are accepted for a few register classes. */
1449 /* Generic coprocessor register names are allowed for these. */
1450 if (reg
&& reg
->type
== REG_TYPE_CN
)
1455 /* For backward compatibility, a bare number is valid here. */
1457 unsigned long processor
= strtoul (start
, ccp
, 10);
1458 if (*ccp
!= start
&& processor
<= 15)
1463 case REG_TYPE_MMXWC
:
1464 /* WC includes WCG. ??? I'm not sure this is true for all
1465 instructions that take WC registers. */
1466 if (reg
&& reg
->type
== REG_TYPE_MMXWCG
)
1477 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1478 return value is the register number or FAIL. */
1481 arm_reg_parse (char **ccp
, enum arm_reg_type type
)
1484 struct reg_entry
*reg
= arm_reg_parse_multi (ccp
);
1487 /* Do not allow a scalar (reg+index) to parse as a register. */
1488 if (reg
&& reg
->neon
&& (reg
->neon
->defined
& NTA_HASINDEX
))
1491 if (reg
&& reg
->type
== type
)
1494 if ((ret
= arm_reg_alt_syntax (ccp
, start
, reg
, type
)) != FAIL
)
1501 /* Parse a Neon type specifier. *STR should point at the leading '.'
1502 character. Does no verification at this stage that the type fits the opcode
1509 Can all be legally parsed by this function.
1511 Fills in neon_type struct pointer with parsed information, and updates STR
1512 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1513 type, FAIL if not. */
1516 parse_neon_type (struct neon_type
*type
, char **str
)
1523 while (type
->elems
< NEON_MAX_TYPE_ELS
)
1525 enum neon_el_type thistype
= NT_untyped
;
1526 unsigned thissize
= -1u;
1533 /* Just a size without an explicit type. */
1537 switch (TOLOWER (*ptr
))
1539 case 'i': thistype
= NT_integer
; break;
1540 case 'f': thistype
= NT_float
; break;
1541 case 'p': thistype
= NT_poly
; break;
1542 case 's': thistype
= NT_signed
; break;
1543 case 'u': thistype
= NT_unsigned
; break;
1545 thistype
= NT_float
;
1550 thistype
= NT_bfloat
;
1551 switch (TOLOWER (*(++ptr
)))
1555 thissize
= strtoul (ptr
, &ptr
, 10);
1558 as_bad (_("bad size %d in type specifier"), thissize
);
1562 case '0': case '1': case '2': case '3': case '4':
1563 case '5': case '6': case '7': case '8': case '9':
1565 as_bad (_("unexpected type character `b' -- did you mean `bf'?"));
1572 as_bad (_("unexpected character `%c' in type specifier"), *ptr
);
1578 /* .f is an abbreviation for .f32. */
1579 if (thistype
== NT_float
&& !ISDIGIT (*ptr
))
1584 thissize
= strtoul (ptr
, &ptr
, 10);
1586 if (thissize
!= 8 && thissize
!= 16 && thissize
!= 32
1589 as_bad (_("bad size %d in type specifier"), thissize
);
1597 type
->el
[type
->elems
].type
= thistype
;
1598 type
->el
[type
->elems
].size
= thissize
;
1603 /* Empty/missing type is not a successful parse. */
1604 if (type
->elems
== 0)
1612 /* Errors may be set multiple times during parsing or bit encoding
1613 (particularly in the Neon bits), but usually the earliest error which is set
1614 will be the most meaningful. Avoid overwriting it with later (cascading)
1615 errors by calling this function. */
1618 first_error (const char *err
)
1624 /* Parse a single type, e.g. ".s32", leading period included. */
1626 parse_neon_operand_type (struct neon_type_el
*vectype
, char **ccp
)
1629 struct neon_type optype
;
1633 if (parse_neon_type (&optype
, &str
) == SUCCESS
)
1635 if (optype
.elems
== 1)
1636 *vectype
= optype
.el
[0];
1639 first_error (_("only one type should be specified for operand"));
1645 first_error (_("vector type expected"));
1657 /* Special meanings for indices (which have a range of 0-7), which will fit into
1660 #define NEON_ALL_LANES 15
1661 #define NEON_INTERLEAVE_LANES 14
1663 /* Record a use of the given feature. */
1665 record_feature_use (const arm_feature_set
*feature
)
1668 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
, *feature
);
1670 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, *feature
);
1673 /* If the given feature available in the selected CPU, mark it as used.
1674 Returns TRUE iff feature is available. */
1676 mark_feature_used (const arm_feature_set
*feature
)
1679 /* Do not support the use of MVE only instructions when in auto-detection or
1681 if (((feature
== &mve_ext
) || (feature
== &mve_fp_ext
))
1682 && ARM_CPU_IS_ANY (cpu_variant
))
1684 first_error (BAD_MVE_AUTO
);
1687 /* Ensure the option is valid on the current architecture. */
1688 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
1691 /* Add the appropriate architecture feature for the barrier option used.
1693 record_feature_use (feature
);
1698 /* Parse either a register or a scalar, with an optional type. Return the
1699 register number, and optionally fill in the actual type of the register
1700 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1701 type/index information in *TYPEINFO. */
1704 parse_typed_reg_or_scalar (char **ccp
, enum arm_reg_type type
,
1705 enum arm_reg_type
*rtype
,
1706 struct neon_typed_alias
*typeinfo
)
1709 struct reg_entry
*reg
= arm_reg_parse_multi (&str
);
1710 struct neon_typed_alias atype
;
1711 struct neon_type_el parsetype
;
1715 atype
.eltype
.type
= NT_invtype
;
1716 atype
.eltype
.size
= -1;
1718 /* Try alternate syntax for some types of register. Note these are mutually
1719 exclusive with the Neon syntax extensions. */
1722 int altreg
= arm_reg_alt_syntax (&str
, *ccp
, reg
, type
);
1730 /* Undo polymorphism when a set of register types may be accepted. */
1731 if ((type
== REG_TYPE_NDQ
1732 && (reg
->type
== REG_TYPE_NQ
|| reg
->type
== REG_TYPE_VFD
))
1733 || (type
== REG_TYPE_VFSD
1734 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1735 || (type
== REG_TYPE_NSDQ
1736 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
1737 || reg
->type
== REG_TYPE_NQ
))
1738 || (type
== REG_TYPE_NSD
1739 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1740 || (type
== REG_TYPE_MMXWC
1741 && (reg
->type
== REG_TYPE_MMXWCG
)))
1742 type
= (enum arm_reg_type
) reg
->type
;
1744 if (type
== REG_TYPE_MQ
)
1746 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
1749 if (!reg
|| reg
->type
!= REG_TYPE_NQ
)
1752 if (reg
->number
> 14 && !mark_feature_used (&fpu_vfp_ext_d32
))
1754 first_error (_("expected MVE register [q0..q7]"));
1759 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
1760 && (type
== REG_TYPE_NQ
))
1764 if (type
!= reg
->type
)
1770 if (parse_neon_operand_type (&parsetype
, &str
) == SUCCESS
)
1772 if ((atype
.defined
& NTA_HASTYPE
) != 0)
1774 first_error (_("can't redefine type for operand"));
1777 atype
.defined
|= NTA_HASTYPE
;
1778 atype
.eltype
= parsetype
;
1781 if (skip_past_char (&str
, '[') == SUCCESS
)
1783 if (type
!= REG_TYPE_VFD
1784 && !(type
== REG_TYPE_VFS
1785 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8_2
))
1786 && !(type
== REG_TYPE_NQ
1787 && ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)))
1789 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
1790 first_error (_("only D and Q registers may be indexed"));
1792 first_error (_("only D registers may be indexed"));
1796 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1798 first_error (_("can't change index for operand"));
1802 atype
.defined
|= NTA_HASINDEX
;
1804 if (skip_past_char (&str
, ']') == SUCCESS
)
1805 atype
.index
= NEON_ALL_LANES
;
1810 my_get_expression (&exp
, &str
, GE_NO_PREFIX
);
1812 if (exp
.X_op
!= O_constant
)
1814 first_error (_("constant expression required"));
1818 if (skip_past_char (&str
, ']') == FAIL
)
1821 atype
.index
= exp
.X_add_number
;
1836 /* Like arm_reg_parse, but also allow the following extra features:
1837 - If RTYPE is non-zero, return the (possibly restricted) type of the
1838 register (e.g. Neon double or quad reg when either has been requested).
1839 - If this is a Neon vector type with additional type information, fill
1840 in the struct pointed to by VECTYPE (if non-NULL).
1841 This function will fault on encountering a scalar. */
1844 arm_typed_reg_parse (char **ccp
, enum arm_reg_type type
,
1845 enum arm_reg_type
*rtype
, struct neon_type_el
*vectype
)
1847 struct neon_typed_alias atype
;
1849 int reg
= parse_typed_reg_or_scalar (&str
, type
, rtype
, &atype
);
1854 /* Do not allow regname(... to parse as a register. */
1858 /* Do not allow a scalar (reg+index) to parse as a register. */
1859 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1861 first_error (_("register operand expected, but got scalar"));
1866 *vectype
= atype
.eltype
;
1873 #define NEON_SCALAR_REG(X) ((X) >> 4)
1874 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1876 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1877 have enough information to be able to do a good job bounds-checking. So, we
1878 just do easy checks here, and do further checks later. */
1881 parse_scalar (char **ccp
, int elsize
, struct neon_type_el
*type
, enum
1882 arm_reg_type reg_type
)
1886 struct neon_typed_alias atype
;
1889 reg
= parse_typed_reg_or_scalar (&str
, reg_type
, NULL
, &atype
);
1907 if (reg
== FAIL
|| (atype
.defined
& NTA_HASINDEX
) == 0)
1910 if (reg_type
!= REG_TYPE_MQ
&& atype
.index
== NEON_ALL_LANES
)
1912 first_error (_("scalar must have an index"));
1915 else if (atype
.index
>= reg_size
/ elsize
)
1917 first_error (_("scalar index out of range"));
1922 *type
= atype
.eltype
;
1926 return reg
* 16 + atype
.index
;
1929 /* Types of registers in a list. */
1942 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1945 parse_reg_list (char ** strp
, enum reg_list_els etype
)
1951 gas_assert (etype
== REGLIST_RN
|| etype
== REGLIST_CLRM
);
1953 /* We come back here if we get ranges concatenated by '+' or '|'. */
1956 skip_whitespace (str
);
1969 const char apsr_str
[] = "apsr";
1970 int apsr_str_len
= strlen (apsr_str
);
1972 reg
= arm_reg_parse (&str
, REG_TYPE_RN
);
1973 if (etype
== REGLIST_CLRM
)
1975 if (reg
== REG_SP
|| reg
== REG_PC
)
1977 else if (reg
== FAIL
1978 && !strncasecmp (str
, apsr_str
, apsr_str_len
)
1979 && !ISALPHA (*(str
+ apsr_str_len
)))
1982 str
+= apsr_str_len
;
1987 first_error (_("r0-r12, lr or APSR expected"));
1991 else /* etype == REGLIST_RN. */
1995 first_error (_(reg_expected_msgs
[REGLIST_RN
]));
2006 first_error (_("bad range in register list"));
2010 for (i
= cur_reg
+ 1; i
< reg
; i
++)
2012 if (range
& (1 << i
))
2014 (_("Warning: duplicated register (r%d) in register list"),
2022 if (range
& (1 << reg
))
2023 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
2025 else if (reg
<= cur_reg
)
2026 as_tsktsk (_("Warning: register range not in ascending order"));
2031 while (skip_past_comma (&str
) != FAIL
2032 || (in_range
= 1, *str
++ == '-'));
2035 if (skip_past_char (&str
, '}') == FAIL
)
2037 first_error (_("missing `}'"));
2041 else if (etype
== REGLIST_RN
)
2045 if (my_get_expression (&exp
, &str
, GE_NO_PREFIX
))
2048 if (exp
.X_op
== O_constant
)
2050 if (exp
.X_add_number
2051 != (exp
.X_add_number
& 0x0000ffff))
2053 inst
.error
= _("invalid register mask");
2057 if ((range
& exp
.X_add_number
) != 0)
2059 int regno
= range
& exp
.X_add_number
;
2062 regno
= (1 << regno
) - 1;
2064 (_("Warning: duplicated register (r%d) in register list"),
2068 range
|= exp
.X_add_number
;
2072 if (inst
.relocs
[0].type
!= 0)
2074 inst
.error
= _("expression too complex");
2078 memcpy (&inst
.relocs
[0].exp
, &exp
, sizeof (expressionS
));
2079 inst
.relocs
[0].type
= BFD_RELOC_ARM_MULTI
;
2080 inst
.relocs
[0].pc_rel
= 0;
2084 if (*str
== '|' || *str
== '+')
2090 while (another_range
);
2096 /* Parse a VFP register list. If the string is invalid return FAIL.
2097 Otherwise return the number of registers, and set PBASE to the first
2098 register. Parses registers of type ETYPE.
2099 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
2100 - Q registers can be used to specify pairs of D registers
2101 - { } can be omitted from around a singleton register list
2102 FIXME: This is not implemented, as it would require backtracking in
2105 This could be done (the meaning isn't really ambiguous), but doesn't
2106 fit in well with the current parsing framework.
2107 - 32 D registers may be used (also true for VFPv3).
2108 FIXME: Types are ignored in these register lists, which is probably a
2112 parse_vfp_reg_list (char **ccp
, unsigned int *pbase
, enum reg_list_els etype
,
2113 bfd_boolean
*partial_match
)
2118 enum arm_reg_type regtype
= (enum arm_reg_type
) 0;
2122 unsigned long mask
= 0;
2124 bfd_boolean vpr_seen
= FALSE
;
2125 bfd_boolean expect_vpr
=
2126 (etype
== REGLIST_VFP_S_VPR
) || (etype
== REGLIST_VFP_D_VPR
);
2128 if (skip_past_char (&str
, '{') == FAIL
)
2130 inst
.error
= _("expecting {");
2137 case REGLIST_VFP_S_VPR
:
2138 regtype
= REG_TYPE_VFS
;
2143 case REGLIST_VFP_D_VPR
:
2144 regtype
= REG_TYPE_VFD
;
2147 case REGLIST_NEON_D
:
2148 regtype
= REG_TYPE_NDQ
;
2155 if (etype
!= REGLIST_VFP_S
&& etype
!= REGLIST_VFP_S_VPR
)
2157 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2158 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
2162 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
2165 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
2172 base_reg
= max_regs
;
2173 *partial_match
= FALSE
;
2177 int setmask
= 1, addregs
= 1;
2178 const char vpr_str
[] = "vpr";
2179 int vpr_str_len
= strlen (vpr_str
);
2181 new_base
= arm_typed_reg_parse (&str
, regtype
, ®type
, NULL
);
2185 if (new_base
== FAIL
2186 && !strncasecmp (str
, vpr_str
, vpr_str_len
)
2187 && !ISALPHA (*(str
+ vpr_str_len
))
2193 base_reg
= 0; /* Canonicalize VPR only on d0 with 0 regs. */
2197 first_error (_("VPR expected last"));
2200 else if (new_base
== FAIL
)
2202 if (regtype
== REG_TYPE_VFS
)
2203 first_error (_("VFP single precision register or VPR "
2205 else /* regtype == REG_TYPE_VFD. */
2206 first_error (_("VFP/Neon double precision register or VPR "
2211 else if (new_base
== FAIL
)
2213 first_error (_(reg_expected_msgs
[regtype
]));
2217 *partial_match
= TRUE
;
2221 if (new_base
>= max_regs
)
2223 first_error (_("register out of range in list"));
2227 /* Note: a value of 2 * n is returned for the register Q<n>. */
2228 if (regtype
== REG_TYPE_NQ
)
2234 if (new_base
< base_reg
)
2235 base_reg
= new_base
;
2237 if (mask
& (setmask
<< new_base
))
2239 first_error (_("invalid register list"));
2243 if ((mask
>> new_base
) != 0 && ! warned
&& !vpr_seen
)
2245 as_tsktsk (_("register list not in ascending order"));
2249 mask
|= setmask
<< new_base
;
2252 if (*str
== '-') /* We have the start of a range expression */
2258 if ((high_range
= arm_typed_reg_parse (&str
, regtype
, NULL
, NULL
))
2261 inst
.error
= gettext (reg_expected_msgs
[regtype
]);
2265 if (high_range
>= max_regs
)
2267 first_error (_("register out of range in list"));
2271 if (regtype
== REG_TYPE_NQ
)
2272 high_range
= high_range
+ 1;
2274 if (high_range
<= new_base
)
2276 inst
.error
= _("register range not in ascending order");
2280 for (new_base
+= addregs
; new_base
<= high_range
; new_base
+= addregs
)
2282 if (mask
& (setmask
<< new_base
))
2284 inst
.error
= _("invalid register list");
2288 mask
|= setmask
<< new_base
;
2293 while (skip_past_comma (&str
) != FAIL
);
2297 /* Sanity check -- should have raised a parse error above. */
2298 if ((!vpr_seen
&& count
== 0) || count
> max_regs
)
2303 if (expect_vpr
&& !vpr_seen
)
2305 first_error (_("VPR expected last"));
2309 /* Final test -- the registers must be consecutive. */
2311 for (i
= 0; i
< count
; i
++)
2313 if ((mask
& (1u << i
)) == 0)
2315 inst
.error
= _("non-contiguous register range");
2325 /* True if two alias types are the same. */
2328 neon_alias_types_same (struct neon_typed_alias
*a
, struct neon_typed_alias
*b
)
2336 if (a
->defined
!= b
->defined
)
2339 if ((a
->defined
& NTA_HASTYPE
) != 0
2340 && (a
->eltype
.type
!= b
->eltype
.type
2341 || a
->eltype
.size
!= b
->eltype
.size
))
2344 if ((a
->defined
& NTA_HASINDEX
) != 0
2345 && (a
->index
!= b
->index
))
2351 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2352 The base register is put in *PBASE.
2353 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2355 The register stride (minus one) is put in bit 4 of the return value.
2356 Bits [6:5] encode the list length (minus one).
2357 The type of the list elements is put in *ELTYPE, if non-NULL. */
2359 #define NEON_LANE(X) ((X) & 0xf)
2360 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2361 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2364 parse_neon_el_struct_list (char **str
, unsigned *pbase
,
2366 struct neon_type_el
*eltype
)
2373 int leading_brace
= 0;
2374 enum arm_reg_type rtype
= REG_TYPE_NDQ
;
2375 const char *const incr_error
= mve
? _("register stride must be 1") :
2376 _("register stride must be 1 or 2");
2377 const char *const type_error
= _("mismatched element/structure types in list");
2378 struct neon_typed_alias firsttype
;
2379 firsttype
.defined
= 0;
2380 firsttype
.eltype
.type
= NT_invtype
;
2381 firsttype
.eltype
.size
= -1;
2382 firsttype
.index
= -1;
2384 if (skip_past_char (&ptr
, '{') == SUCCESS
)
2389 struct neon_typed_alias atype
;
2391 rtype
= REG_TYPE_MQ
;
2392 int getreg
= parse_typed_reg_or_scalar (&ptr
, rtype
, &rtype
, &atype
);
2396 first_error (_(reg_expected_msgs
[rtype
]));
2403 if (rtype
== REG_TYPE_NQ
)
2409 else if (reg_incr
== -1)
2411 reg_incr
= getreg
- base_reg
;
2412 if (reg_incr
< 1 || reg_incr
> 2)
2414 first_error (_(incr_error
));
2418 else if (getreg
!= base_reg
+ reg_incr
* count
)
2420 first_error (_(incr_error
));
2424 if (! neon_alias_types_same (&atype
, &firsttype
))
2426 first_error (_(type_error
));
2430 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2434 struct neon_typed_alias htype
;
2435 int hireg
, dregs
= (rtype
== REG_TYPE_NQ
) ? 2 : 1;
2437 lane
= NEON_INTERLEAVE_LANES
;
2438 else if (lane
!= NEON_INTERLEAVE_LANES
)
2440 first_error (_(type_error
));
2445 else if (reg_incr
!= 1)
2447 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2451 hireg
= parse_typed_reg_or_scalar (&ptr
, rtype
, NULL
, &htype
);
2454 first_error (_(reg_expected_msgs
[rtype
]));
2457 if (! neon_alias_types_same (&htype
, &firsttype
))
2459 first_error (_(type_error
));
2462 count
+= hireg
+ dregs
- getreg
;
2466 /* If we're using Q registers, we can't use [] or [n] syntax. */
2467 if (rtype
== REG_TYPE_NQ
)
2473 if ((atype
.defined
& NTA_HASINDEX
) != 0)
2477 else if (lane
!= atype
.index
)
2479 first_error (_(type_error
));
2483 else if (lane
== -1)
2484 lane
= NEON_INTERLEAVE_LANES
;
2485 else if (lane
!= NEON_INTERLEAVE_LANES
)
2487 first_error (_(type_error
));
2492 while ((count
!= 1 || leading_brace
) && skip_past_comma (&ptr
) != FAIL
);
2494 /* No lane set by [x]. We must be interleaving structures. */
2496 lane
= NEON_INTERLEAVE_LANES
;
2499 if (lane
== -1 || base_reg
== -1 || count
< 1 || (!mve
&& count
> 4)
2500 || (count
> 1 && reg_incr
== -1))
2502 first_error (_("error parsing element/structure list"));
2506 if ((count
> 1 || leading_brace
) && skip_past_char (&ptr
, '}') == FAIL
)
2508 first_error (_("expected }"));
2516 *eltype
= firsttype
.eltype
;
2521 return lane
| ((reg_incr
- 1) << 4) | ((count
- 1) << 5);
2524 /* Parse an explicit relocation suffix on an expression. This is
2525 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2526 arm_reloc_hsh contains no entries, so this function can only
2527 succeed if there is no () after the word. Returns -1 on error,
2528 BFD_RELOC_UNUSED if there wasn't any suffix. */
2531 parse_reloc (char **str
)
2533 struct reloc_entry
*r
;
2537 return BFD_RELOC_UNUSED
;
2542 while (*q
&& *q
!= ')' && *q
!= ',')
2547 if ((r
= (struct reloc_entry
*)
2548 hash_find_n (arm_reloc_hsh
, p
, q
- p
)) == NULL
)
2555 /* Directives: register aliases. */
2557 static struct reg_entry
*
2558 insert_reg_alias (char *str
, unsigned number
, int type
)
2560 struct reg_entry
*new_reg
;
2563 if ((new_reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, str
)) != 0)
2565 if (new_reg
->builtin
)
2566 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str
);
2568 /* Only warn about a redefinition if it's not defined as the
2570 else if (new_reg
->number
!= number
|| new_reg
->type
!= type
)
2571 as_warn (_("ignoring redefinition of register alias '%s'"), str
);
2576 name
= xstrdup (str
);
2577 new_reg
= XNEW (struct reg_entry
);
2579 new_reg
->name
= name
;
2580 new_reg
->number
= number
;
2581 new_reg
->type
= type
;
2582 new_reg
->builtin
= FALSE
;
2583 new_reg
->neon
= NULL
;
2585 if (hash_insert (arm_reg_hsh
, name
, (void *) new_reg
))
2592 insert_neon_reg_alias (char *str
, int number
, int type
,
2593 struct neon_typed_alias
*atype
)
2595 struct reg_entry
*reg
= insert_reg_alias (str
, number
, type
);
2599 first_error (_("attempt to redefine typed alias"));
2605 reg
->neon
= XNEW (struct neon_typed_alias
);
2606 *reg
->neon
= *atype
;
2610 /* Look for the .req directive. This is of the form:
2612 new_register_name .req existing_register_name
2614 If we find one, or if it looks sufficiently like one that we want to
2615 handle any error here, return TRUE. Otherwise return FALSE. */
2618 create_register_alias (char * newname
, char *p
)
2620 struct reg_entry
*old
;
2621 char *oldname
, *nbuf
;
2624 /* The input scrubber ensures that whitespace after the mnemonic is
2625 collapsed to single spaces. */
2627 if (strncmp (oldname
, " .req ", 6) != 0)
2631 if (*oldname
== '\0')
2634 old
= (struct reg_entry
*) hash_find (arm_reg_hsh
, oldname
);
2637 as_warn (_("unknown register '%s' -- .req ignored"), oldname
);
2641 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2642 the desired alias name, and p points to its end. If not, then
2643 the desired alias name is in the global original_case_string. */
2644 #ifdef TC_CASE_SENSITIVE
2647 newname
= original_case_string
;
2648 nlen
= strlen (newname
);
2651 nbuf
= xmemdup0 (newname
, nlen
);
2653 /* Create aliases under the new name as stated; an all-lowercase
2654 version of the new name; and an all-uppercase version of the new
2656 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) != NULL
)
2658 for (p
= nbuf
; *p
; p
++)
2661 if (strncmp (nbuf
, newname
, nlen
))
2663 /* If this attempt to create an additional alias fails, do not bother
2664 trying to create the all-lower case alias. We will fail and issue
2665 a second, duplicate error message. This situation arises when the
2666 programmer does something like:
2669 The second .req creates the "Foo" alias but then fails to create
2670 the artificial FOO alias because it has already been created by the
2672 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) == NULL
)
2679 for (p
= nbuf
; *p
; p
++)
2682 if (strncmp (nbuf
, newname
, nlen
))
2683 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2690 /* Create a Neon typed/indexed register alias using directives, e.g.:
2695 These typed registers can be used instead of the types specified after the
2696 Neon mnemonic, so long as all operands given have types. Types can also be
2697 specified directly, e.g.:
2698 vadd d0.s32, d1.s32, d2.s32 */
2701 create_neon_reg_alias (char *newname
, char *p
)
2703 enum arm_reg_type basetype
;
2704 struct reg_entry
*basereg
;
2705 struct reg_entry mybasereg
;
2706 struct neon_type ntype
;
2707 struct neon_typed_alias typeinfo
;
2708 char *namebuf
, *nameend ATTRIBUTE_UNUSED
;
2711 typeinfo
.defined
= 0;
2712 typeinfo
.eltype
.type
= NT_invtype
;
2713 typeinfo
.eltype
.size
= -1;
2714 typeinfo
.index
= -1;
2718 if (strncmp (p
, " .dn ", 5) == 0)
2719 basetype
= REG_TYPE_VFD
;
2720 else if (strncmp (p
, " .qn ", 5) == 0)
2721 basetype
= REG_TYPE_NQ
;
2730 basereg
= arm_reg_parse_multi (&p
);
2732 if (basereg
&& basereg
->type
!= basetype
)
2734 as_bad (_("bad type for register"));
2738 if (basereg
== NULL
)
2741 /* Try parsing as an integer. */
2742 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2743 if (exp
.X_op
!= O_constant
)
2745 as_bad (_("expression must be constant"));
2748 basereg
= &mybasereg
;
2749 basereg
->number
= (basetype
== REG_TYPE_NQ
) ? exp
.X_add_number
* 2
2755 typeinfo
= *basereg
->neon
;
2757 if (parse_neon_type (&ntype
, &p
) == SUCCESS
)
2759 /* We got a type. */
2760 if (typeinfo
.defined
& NTA_HASTYPE
)
2762 as_bad (_("can't redefine the type of a register alias"));
2766 typeinfo
.defined
|= NTA_HASTYPE
;
2767 if (ntype
.elems
!= 1)
2769 as_bad (_("you must specify a single type only"));
2772 typeinfo
.eltype
= ntype
.el
[0];
2775 if (skip_past_char (&p
, '[') == SUCCESS
)
2778 /* We got a scalar index. */
2780 if (typeinfo
.defined
& NTA_HASINDEX
)
2782 as_bad (_("can't redefine the index of a scalar alias"));
2786 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2788 if (exp
.X_op
!= O_constant
)
2790 as_bad (_("scalar index must be constant"));
2794 typeinfo
.defined
|= NTA_HASINDEX
;
2795 typeinfo
.index
= exp
.X_add_number
;
2797 if (skip_past_char (&p
, ']') == FAIL
)
2799 as_bad (_("expecting ]"));
2804 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2805 the desired alias name, and p points to its end. If not, then
2806 the desired alias name is in the global original_case_string. */
2807 #ifdef TC_CASE_SENSITIVE
2808 namelen
= nameend
- newname
;
2810 newname
= original_case_string
;
2811 namelen
= strlen (newname
);
2814 namebuf
= xmemdup0 (newname
, namelen
);
2816 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2817 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2819 /* Insert name in all uppercase. */
2820 for (p
= namebuf
; *p
; p
++)
2823 if (strncmp (namebuf
, newname
, namelen
))
2824 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2825 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2827 /* Insert name in all lowercase. */
2828 for (p
= namebuf
; *p
; p
++)
2831 if (strncmp (namebuf
, newname
, namelen
))
2832 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2833 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2839 /* Should never be called, as .req goes between the alias and the
2840 register name, not at the beginning of the line. */
2843 s_req (int a ATTRIBUTE_UNUSED
)
2845 as_bad (_("invalid syntax for .req directive"));
2849 s_dn (int a ATTRIBUTE_UNUSED
)
2851 as_bad (_("invalid syntax for .dn directive"));
2855 s_qn (int a ATTRIBUTE_UNUSED
)
2857 as_bad (_("invalid syntax for .qn directive"));
2860 /* The .unreq directive deletes an alias which was previously defined
2861 by .req. For example:
2867 s_unreq (int a ATTRIBUTE_UNUSED
)
2872 name
= input_line_pointer
;
2874 while (*input_line_pointer
!= 0
2875 && *input_line_pointer
!= ' '
2876 && *input_line_pointer
!= '\n')
2877 ++input_line_pointer
;
2879 saved_char
= *input_line_pointer
;
2880 *input_line_pointer
= 0;
2883 as_bad (_("invalid syntax for .unreq directive"));
2886 struct reg_entry
*reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
,
2890 as_bad (_("unknown register alias '%s'"), name
);
2891 else if (reg
->builtin
)
2892 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2899 hash_delete (arm_reg_hsh
, name
, FALSE
);
2900 free ((char *) reg
->name
);
2905 /* Also locate the all upper case and all lower case versions.
2906 Do not complain if we cannot find one or the other as it
2907 was probably deleted above. */
2909 nbuf
= strdup (name
);
2910 for (p
= nbuf
; *p
; p
++)
2912 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2915 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2916 free ((char *) reg
->name
);
2922 for (p
= nbuf
; *p
; p
++)
2924 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2927 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2928 free ((char *) reg
->name
);
2938 *input_line_pointer
= saved_char
;
2939 demand_empty_rest_of_line ();
2942 /* Directives: Instruction set selection. */
2945 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2946 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2947 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2948 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2950 /* Create a new mapping symbol for the transition to STATE. */
2953 make_mapping_symbol (enum mstate state
, valueT value
, fragS
*frag
)
2956 const char * symname
;
2963 type
= BSF_NO_FLAGS
;
2967 type
= BSF_NO_FLAGS
;
2971 type
= BSF_NO_FLAGS
;
2977 symbolP
= symbol_new (symname
, now_seg
, value
, frag
);
2978 symbol_get_bfdsym (symbolP
)->flags
|= type
| BSF_LOCAL
;
2983 THUMB_SET_FUNC (symbolP
, 0);
2984 ARM_SET_THUMB (symbolP
, 0);
2985 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2989 THUMB_SET_FUNC (symbolP
, 1);
2990 ARM_SET_THUMB (symbolP
, 1);
2991 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2999 /* Save the mapping symbols for future reference. Also check that
3000 we do not place two mapping symbols at the same offset within a
3001 frag. We'll handle overlap between frags in
3002 check_mapping_symbols.
3004 If .fill or other data filling directive generates zero sized data,
3005 the mapping symbol for the following code will have the same value
3006 as the one generated for the data filling directive. In this case,
3007 we replace the old symbol with the new one at the same address. */
3010 if (frag
->tc_frag_data
.first_map
!= NULL
)
3012 know (S_GET_VALUE (frag
->tc_frag_data
.first_map
) == 0);
3013 symbol_remove (frag
->tc_frag_data
.first_map
, &symbol_rootP
, &symbol_lastP
);
3015 frag
->tc_frag_data
.first_map
= symbolP
;
3017 if (frag
->tc_frag_data
.last_map
!= NULL
)
3019 know (S_GET_VALUE (frag
->tc_frag_data
.last_map
) <= S_GET_VALUE (symbolP
));
3020 if (S_GET_VALUE (frag
->tc_frag_data
.last_map
) == S_GET_VALUE (symbolP
))
3021 symbol_remove (frag
->tc_frag_data
.last_map
, &symbol_rootP
, &symbol_lastP
);
3023 frag
->tc_frag_data
.last_map
= symbolP
;
3026 /* We must sometimes convert a region marked as code to data during
3027 code alignment, if an odd number of bytes have to be padded. The
3028 code mapping symbol is pushed to an aligned address. */
3031 insert_data_mapping_symbol (enum mstate state
,
3032 valueT value
, fragS
*frag
, offsetT bytes
)
3034 /* If there was already a mapping symbol, remove it. */
3035 if (frag
->tc_frag_data
.last_map
!= NULL
3036 && S_GET_VALUE (frag
->tc_frag_data
.last_map
) == frag
->fr_address
+ value
)
3038 symbolS
*symp
= frag
->tc_frag_data
.last_map
;
3042 know (frag
->tc_frag_data
.first_map
== symp
);
3043 frag
->tc_frag_data
.first_map
= NULL
;
3045 frag
->tc_frag_data
.last_map
= NULL
;
3046 symbol_remove (symp
, &symbol_rootP
, &symbol_lastP
);
3049 make_mapping_symbol (MAP_DATA
, value
, frag
);
3050 make_mapping_symbol (state
, value
+ bytes
, frag
);
3053 static void mapping_state_2 (enum mstate state
, int max_chars
);
3055 /* Set the mapping state to STATE. Only call this when about to
3056 emit some STATE bytes to the file. */
3058 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
3060 mapping_state (enum mstate state
)
3062 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
3064 if (mapstate
== state
)
3065 /* The mapping symbol has already been emitted.
3066 There is nothing else to do. */
3069 if (state
== MAP_ARM
|| state
== MAP_THUMB
)
3071 All ARM instructions require 4-byte alignment.
3072 (Almost) all Thumb instructions require 2-byte alignment.
3074 When emitting instructions into any section, mark the section
3077 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
3078 but themselves require 2-byte alignment; this applies to some
3079 PC- relative forms. However, these cases will involve implicit
3080 literal pool generation or an explicit .align >=2, both of
3081 which will cause the section to me marked with sufficient
3082 alignment. Thus, we don't handle those cases here. */
3083 record_alignment (now_seg
, state
== MAP_ARM
? 2 : 1);
3085 if (TRANSITION (MAP_UNDEFINED
, MAP_DATA
))
3086 /* This case will be evaluated later. */
3089 mapping_state_2 (state
, 0);
3092 /* Same as mapping_state, but MAX_CHARS bytes have already been
3093 allocated. Put the mapping symbol that far back. */
3096 mapping_state_2 (enum mstate state
, int max_chars
)
3098 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
3100 if (!SEG_NORMAL (now_seg
))
3103 if (mapstate
== state
)
3104 /* The mapping symbol has already been emitted.
3105 There is nothing else to do. */
3108 if (TRANSITION (MAP_UNDEFINED
, MAP_ARM
)
3109 || TRANSITION (MAP_UNDEFINED
, MAP_THUMB
))
3111 struct frag
* const frag_first
= seg_info (now_seg
)->frchainP
->frch_root
;
3112 const int add_symbol
= (frag_now
!= frag_first
) || (frag_now_fix () > 0);
3115 make_mapping_symbol (MAP_DATA
, (valueT
) 0, frag_first
);
3118 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= state
;
3119 make_mapping_symbol (state
, (valueT
) frag_now_fix () - max_chars
, frag_now
);
3123 #define mapping_state(x) ((void)0)
3124 #define mapping_state_2(x, y) ((void)0)
3127 /* Find the real, Thumb encoded start of a Thumb function. */
3131 find_real_start (symbolS
* symbolP
)
3134 const char * name
= S_GET_NAME (symbolP
);
3135 symbolS
* new_target
;
3137 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3138 #define STUB_NAME ".real_start_of"
3143 /* The compiler may generate BL instructions to local labels because
3144 it needs to perform a branch to a far away location. These labels
3145 do not have a corresponding ".real_start_of" label. We check
3146 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3147 the ".real_start_of" convention for nonlocal branches. */
3148 if (S_IS_LOCAL (symbolP
) || name
[0] == '.')
3151 real_start
= concat (STUB_NAME
, name
, NULL
);
3152 new_target
= symbol_find (real_start
);
3155 if (new_target
== NULL
)
3157 as_warn (_("Failed to find real start of function: %s\n"), name
);
3158 new_target
= symbolP
;
3166 opcode_select (int width
)
3173 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
3174 as_bad (_("selected processor does not support THUMB opcodes"));
3177 /* No need to force the alignment, since we will have been
3178 coming from ARM mode, which is word-aligned. */
3179 record_alignment (now_seg
, 1);
3186 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
3187 as_bad (_("selected processor does not support ARM opcodes"));
3192 frag_align (2, 0, 0);
3194 record_alignment (now_seg
, 1);
3199 as_bad (_("invalid instruction size selected (%d)"), width
);
3204 s_arm (int ignore ATTRIBUTE_UNUSED
)
3207 demand_empty_rest_of_line ();
3211 s_thumb (int ignore ATTRIBUTE_UNUSED
)
3214 demand_empty_rest_of_line ();
3218 s_code (int unused ATTRIBUTE_UNUSED
)
3222 temp
= get_absolute_expression ();
3227 opcode_select (temp
);
3231 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp
);
3236 s_force_thumb (int ignore ATTRIBUTE_UNUSED
)
3238 /* If we are not already in thumb mode go into it, EVEN if
3239 the target processor does not support thumb instructions.
3240 This is used by gcc/config/arm/lib1funcs.asm for example
3241 to compile interworking support functions even if the
3242 target processor should not support interworking. */
3246 record_alignment (now_seg
, 1);
3249 demand_empty_rest_of_line ();
3253 s_thumb_func (int ignore ATTRIBUTE_UNUSED
)
3257 /* The following label is the name/address of the start of a Thumb function.
3258 We need to know this for the interworking support. */
3259 label_is_thumb_function_name
= TRUE
;
3262 /* Perform a .set directive, but also mark the alias as
3263 being a thumb function. */
3266 s_thumb_set (int equiv
)
3268 /* XXX the following is a duplicate of the code for s_set() in read.c
3269 We cannot just call that code as we need to get at the symbol that
3276 /* Especial apologies for the random logic:
3277 This just grew, and could be parsed much more simply!
3279 delim
= get_symbol_name (& name
);
3280 end_name
= input_line_pointer
;
3281 (void) restore_line_pointer (delim
);
3283 if (*input_line_pointer
!= ',')
3286 as_bad (_("expected comma after name \"%s\""), name
);
3288 ignore_rest_of_line ();
3292 input_line_pointer
++;
3295 if (name
[0] == '.' && name
[1] == '\0')
3297 /* XXX - this should not happen to .thumb_set. */
3301 if ((symbolP
= symbol_find (name
)) == NULL
3302 && (symbolP
= md_undefined_symbol (name
)) == NULL
)
3305 /* When doing symbol listings, play games with dummy fragments living
3306 outside the normal fragment chain to record the file and line info
3308 if (listing
& LISTING_SYMBOLS
)
3310 extern struct list_info_struct
* listing_tail
;
3311 fragS
* dummy_frag
= (fragS
* ) xmalloc (sizeof (fragS
));
3313 memset (dummy_frag
, 0, sizeof (fragS
));
3314 dummy_frag
->fr_type
= rs_fill
;
3315 dummy_frag
->line
= listing_tail
;
3316 symbolP
= symbol_new (name
, undefined_section
, 0, dummy_frag
);
3317 dummy_frag
->fr_symbol
= symbolP
;
3321 symbolP
= symbol_new (name
, undefined_section
, 0, &zero_address_frag
);
3324 /* "set" symbols are local unless otherwise specified. */
3325 SF_SET_LOCAL (symbolP
);
3326 #endif /* OBJ_COFF */
3327 } /* Make a new symbol. */
3329 symbol_table_insert (symbolP
);
3334 && S_IS_DEFINED (symbolP
)
3335 && S_GET_SEGMENT (symbolP
) != reg_section
)
3336 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP
));
3338 pseudo_set (symbolP
);
3340 demand_empty_rest_of_line ();
3342 /* XXX Now we come to the Thumb specific bit of code. */
3344 THUMB_SET_FUNC (symbolP
, 1);
3345 ARM_SET_THUMB (symbolP
, 1);
3346 #if defined OBJ_ELF || defined OBJ_COFF
3347 ARM_SET_INTERWORK (symbolP
, support_interwork
);
3351 /* Directives: Mode selection. */
3353 /* .syntax [unified|divided] - choose the new unified syntax
3354 (same for Arm and Thumb encoding, modulo slight differences in what
3355 can be represented) or the old divergent syntax for each mode. */
3357 s_syntax (int unused ATTRIBUTE_UNUSED
)
3361 delim
= get_symbol_name (& name
);
3363 if (!strcasecmp (name
, "unified"))
3364 unified_syntax
= TRUE
;
3365 else if (!strcasecmp (name
, "divided"))
3366 unified_syntax
= FALSE
;
3369 as_bad (_("unrecognized syntax mode \"%s\""), name
);
3372 (void) restore_line_pointer (delim
);
3373 demand_empty_rest_of_line ();
3376 /* Directives: sectioning and alignment. */
3379 s_bss (int ignore ATTRIBUTE_UNUSED
)
3381 /* We don't support putting frags in the BSS segment, we fake it by
3382 marking in_bss, then looking at s_skip for clues. */
3383 subseg_set (bss_section
, 0);
3384 demand_empty_rest_of_line ();
3386 #ifdef md_elf_section_change_hook
3387 md_elf_section_change_hook ();
3392 s_even (int ignore ATTRIBUTE_UNUSED
)
3394 /* Never make frag if expect extra pass. */
3396 frag_align (1, 0, 0);
3398 record_alignment (now_seg
, 1);
3400 demand_empty_rest_of_line ();
3403 /* Directives: CodeComposer Studio. */
3405 /* .ref (for CodeComposer Studio syntax only). */
3407 s_ccs_ref (int unused ATTRIBUTE_UNUSED
)
3409 if (codecomposer_syntax
)
3410 ignore_rest_of_line ();
3412 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3415 /* If name is not NULL, then it is used for marking the beginning of a
3416 function, whereas if it is NULL then it means the function end. */
3418 asmfunc_debug (const char * name
)
3420 static const char * last_name
= NULL
;
3424 gas_assert (last_name
== NULL
);
3427 if (debug_type
== DEBUG_STABS
)
3428 stabs_generate_asm_func (name
, name
);
3432 gas_assert (last_name
!= NULL
);
3434 if (debug_type
== DEBUG_STABS
)
3435 stabs_generate_asm_endfunc (last_name
, last_name
);
3442 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED
)
3444 if (codecomposer_syntax
)
3446 switch (asmfunc_state
)
3448 case OUTSIDE_ASMFUNC
:
3449 asmfunc_state
= WAITING_ASMFUNC_NAME
;
3452 case WAITING_ASMFUNC_NAME
:
3453 as_bad (_(".asmfunc repeated."));
3456 case WAITING_ENDASMFUNC
:
3457 as_bad (_(".asmfunc without function."));
3460 demand_empty_rest_of_line ();
3463 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3467 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED
)
3469 if (codecomposer_syntax
)
3471 switch (asmfunc_state
)
3473 case OUTSIDE_ASMFUNC
:
3474 as_bad (_(".endasmfunc without a .asmfunc."));
3477 case WAITING_ASMFUNC_NAME
:
3478 as_bad (_(".endasmfunc without function."));
3481 case WAITING_ENDASMFUNC
:
3482 asmfunc_state
= OUTSIDE_ASMFUNC
;
3483 asmfunc_debug (NULL
);
3486 demand_empty_rest_of_line ();
3489 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3493 s_ccs_def (int name
)
3495 if (codecomposer_syntax
)
3498 as_bad (_(".def pseudo-op only available with -mccs flag."));
3501 /* Directives: Literal pools. */
3503 static literal_pool
*
3504 find_literal_pool (void)
3506 literal_pool
* pool
;
3508 for (pool
= list_of_pools
; pool
!= NULL
; pool
= pool
->next
)
3510 if (pool
->section
== now_seg
3511 && pool
->sub_section
== now_subseg
)
3518 static literal_pool
*
3519 find_or_make_literal_pool (void)
3521 /* Next literal pool ID number. */
3522 static unsigned int latest_pool_num
= 1;
3523 literal_pool
* pool
;
3525 pool
= find_literal_pool ();
3529 /* Create a new pool. */
3530 pool
= XNEW (literal_pool
);
3534 pool
->next_free_entry
= 0;
3535 pool
->section
= now_seg
;
3536 pool
->sub_section
= now_subseg
;
3537 pool
->next
= list_of_pools
;
3538 pool
->symbol
= NULL
;
3539 pool
->alignment
= 2;
3541 /* Add it to the list. */
3542 list_of_pools
= pool
;
3545 /* New pools, and emptied pools, will have a NULL symbol. */
3546 if (pool
->symbol
== NULL
)
3548 pool
->symbol
= symbol_create (FAKE_LABEL_NAME
, undefined_section
,
3549 (valueT
) 0, &zero_address_frag
);
3550 pool
->id
= latest_pool_num
++;
3557 /* Add the literal in the global 'inst'
3558 structure to the relevant literal pool. */
3561 add_to_lit_pool (unsigned int nbytes
)
3563 #define PADDING_SLOT 0x1
3564 #define LIT_ENTRY_SIZE_MASK 0xFF
3565 literal_pool
* pool
;
3566 unsigned int entry
, pool_size
= 0;
3567 bfd_boolean padding_slot_p
= FALSE
;
3573 imm1
= inst
.operands
[1].imm
;
3574 imm2
= (inst
.operands
[1].regisimm
? inst
.operands
[1].reg
3575 : inst
.relocs
[0].exp
.X_unsigned
? 0
3576 : ((bfd_int64_t
) inst
.operands
[1].imm
) >> 32);
3577 if (target_big_endian
)
3580 imm2
= inst
.operands
[1].imm
;
3584 pool
= find_or_make_literal_pool ();
3586 /* Check if this literal value is already in the pool. */
3587 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3591 if ((pool
->literals
[entry
].X_op
== inst
.relocs
[0].exp
.X_op
)
3592 && (inst
.relocs
[0].exp
.X_op
== O_constant
)
3593 && (pool
->literals
[entry
].X_add_number
3594 == inst
.relocs
[0].exp
.X_add_number
)
3595 && (pool
->literals
[entry
].X_md
== nbytes
)
3596 && (pool
->literals
[entry
].X_unsigned
3597 == inst
.relocs
[0].exp
.X_unsigned
))
3600 if ((pool
->literals
[entry
].X_op
== inst
.relocs
[0].exp
.X_op
)
3601 && (inst
.relocs
[0].exp
.X_op
== O_symbol
)
3602 && (pool
->literals
[entry
].X_add_number
3603 == inst
.relocs
[0].exp
.X_add_number
)
3604 && (pool
->literals
[entry
].X_add_symbol
3605 == inst
.relocs
[0].exp
.X_add_symbol
)
3606 && (pool
->literals
[entry
].X_op_symbol
3607 == inst
.relocs
[0].exp
.X_op_symbol
)
3608 && (pool
->literals
[entry
].X_md
== nbytes
))
3611 else if ((nbytes
== 8)
3612 && !(pool_size
& 0x7)
3613 && ((entry
+ 1) != pool
->next_free_entry
)
3614 && (pool
->literals
[entry
].X_op
== O_constant
)
3615 && (pool
->literals
[entry
].X_add_number
== (offsetT
) imm1
)
3616 && (pool
->literals
[entry
].X_unsigned
3617 == inst
.relocs
[0].exp
.X_unsigned
)
3618 && (pool
->literals
[entry
+ 1].X_op
== O_constant
)
3619 && (pool
->literals
[entry
+ 1].X_add_number
== (offsetT
) imm2
)
3620 && (pool
->literals
[entry
+ 1].X_unsigned
3621 == inst
.relocs
[0].exp
.X_unsigned
))
3624 padding_slot_p
= ((pool
->literals
[entry
].X_md
>> 8) == PADDING_SLOT
);
3625 if (padding_slot_p
&& (nbytes
== 4))
3631 /* Do we need to create a new entry? */
3632 if (entry
== pool
->next_free_entry
)
3634 if (entry
>= MAX_LITERAL_POOL_SIZE
)
3636 inst
.error
= _("literal pool overflow");
3642 /* For 8-byte entries, we align to an 8-byte boundary,
3643 and split it into two 4-byte entries, because on 32-bit
3644 host, 8-byte constants are treated as big num, thus
3645 saved in "generic_bignum" which will be overwritten
3646 by later assignments.
3648 We also need to make sure there is enough space for
3651 We also check to make sure the literal operand is a
3653 if (!(inst
.relocs
[0].exp
.X_op
== O_constant
3654 || inst
.relocs
[0].exp
.X_op
== O_big
))
3656 inst
.error
= _("invalid type for literal pool");
3659 else if (pool_size
& 0x7)
3661 if ((entry
+ 2) >= MAX_LITERAL_POOL_SIZE
)
3663 inst
.error
= _("literal pool overflow");
3667 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3668 pool
->literals
[entry
].X_op
= O_constant
;
3669 pool
->literals
[entry
].X_add_number
= 0;
3670 pool
->literals
[entry
++].X_md
= (PADDING_SLOT
<< 8) | 4;
3671 pool
->next_free_entry
+= 1;
3674 else if ((entry
+ 1) >= MAX_LITERAL_POOL_SIZE
)
3676 inst
.error
= _("literal pool overflow");
3680 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3681 pool
->literals
[entry
].X_op
= O_constant
;
3682 pool
->literals
[entry
].X_add_number
= imm1
;
3683 pool
->literals
[entry
].X_unsigned
= inst
.relocs
[0].exp
.X_unsigned
;
3684 pool
->literals
[entry
++].X_md
= 4;
3685 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3686 pool
->literals
[entry
].X_op
= O_constant
;
3687 pool
->literals
[entry
].X_add_number
= imm2
;
3688 pool
->literals
[entry
].X_unsigned
= inst
.relocs
[0].exp
.X_unsigned
;
3689 pool
->literals
[entry
].X_md
= 4;
3690 pool
->alignment
= 3;
3691 pool
->next_free_entry
+= 1;
3695 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3696 pool
->literals
[entry
].X_md
= 4;
3700 /* PR ld/12974: Record the location of the first source line to reference
3701 this entry in the literal pool. If it turns out during linking that the
3702 symbol does not exist we will be able to give an accurate line number for
3703 the (first use of the) missing reference. */
3704 if (debug_type
== DEBUG_DWARF2
)
3705 dwarf2_where (pool
->locs
+ entry
);
3707 pool
->next_free_entry
+= 1;
3709 else if (padding_slot_p
)
3711 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3712 pool
->literals
[entry
].X_md
= nbytes
;
3715 inst
.relocs
[0].exp
.X_op
= O_symbol
;
3716 inst
.relocs
[0].exp
.X_add_number
= pool_size
;
3717 inst
.relocs
[0].exp
.X_add_symbol
= pool
->symbol
;
3723 tc_start_label_without_colon (void)
3725 bfd_boolean ret
= TRUE
;
3727 if (codecomposer_syntax
&& asmfunc_state
== WAITING_ASMFUNC_NAME
)
3729 const char *label
= input_line_pointer
;
3731 while (!is_end_of_line
[(int) label
[-1]])
3736 as_bad (_("Invalid label '%s'"), label
);
3740 asmfunc_debug (label
);
3742 asmfunc_state
= WAITING_ENDASMFUNC
;
3748 /* Can't use symbol_new here, so have to create a symbol and then at
3749 a later date assign it a value. That's what these functions do. */
3752 symbol_locate (symbolS
* symbolP
,
3753 const char * name
, /* It is copied, the caller can modify. */
3754 segT segment
, /* Segment identifier (SEG_<something>). */
3755 valueT valu
, /* Symbol value. */
3756 fragS
* frag
) /* Associated fragment. */
3759 char * preserved_copy_of_name
;
3761 name_length
= strlen (name
) + 1; /* +1 for \0. */
3762 obstack_grow (¬es
, name
, name_length
);
3763 preserved_copy_of_name
= (char *) obstack_finish (¬es
);
3765 #ifdef tc_canonicalize_symbol_name
3766 preserved_copy_of_name
=
3767 tc_canonicalize_symbol_name (preserved_copy_of_name
);
3770 S_SET_NAME (symbolP
, preserved_copy_of_name
);
3772 S_SET_SEGMENT (symbolP
, segment
);
3773 S_SET_VALUE (symbolP
, valu
);
3774 symbol_clear_list_pointers (symbolP
);
3776 symbol_set_frag (symbolP
, frag
);
3778 /* Link to end of symbol chain. */
3780 extern int symbol_table_frozen
;
3782 if (symbol_table_frozen
)
3786 symbol_append (symbolP
, symbol_lastP
, & symbol_rootP
, & symbol_lastP
);
3788 obj_symbol_new_hook (symbolP
);
3790 #ifdef tc_symbol_new_hook
3791 tc_symbol_new_hook (symbolP
);
3795 verify_symbol_chain (symbol_rootP
, symbol_lastP
);
3796 #endif /* DEBUG_SYMS */
3800 s_ltorg (int ignored ATTRIBUTE_UNUSED
)
3803 literal_pool
* pool
;
3806 pool
= find_literal_pool ();
3808 || pool
->symbol
== NULL
3809 || pool
->next_free_entry
== 0)
3812 /* Align pool as you have word accesses.
3813 Only make a frag if we have to. */
3815 frag_align (pool
->alignment
, 0, 0);
3817 record_alignment (now_seg
, 2);
3820 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= MAP_DATA
;
3821 make_mapping_symbol (MAP_DATA
, (valueT
) frag_now_fix (), frag_now
);
3823 sprintf (sym_name
, "$$lit_\002%x", pool
->id
);
3825 symbol_locate (pool
->symbol
, sym_name
, now_seg
,
3826 (valueT
) frag_now_fix (), frag_now
);
3827 symbol_table_insert (pool
->symbol
);
3829 ARM_SET_THUMB (pool
->symbol
, thumb_mode
);
3831 #if defined OBJ_COFF || defined OBJ_ELF
3832 ARM_SET_INTERWORK (pool
->symbol
, support_interwork
);
3835 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3838 if (debug_type
== DEBUG_DWARF2
)
3839 dwarf2_gen_line_info (frag_now_fix (), pool
->locs
+ entry
);
3841 /* First output the expression in the instruction to the pool. */
3842 emit_expr (&(pool
->literals
[entry
]),
3843 pool
->literals
[entry
].X_md
& LIT_ENTRY_SIZE_MASK
);
3846 /* Mark the pool as empty. */
3847 pool
->next_free_entry
= 0;
3848 pool
->symbol
= NULL
;
3852 /* Forward declarations for functions below, in the MD interface
3854 static void fix_new_arm (fragS
*, int, short, expressionS
*, int, int);
3855 static valueT
create_unwind_entry (int);
3856 static void start_unwind_section (const segT
, int);
3857 static void add_unwind_opcode (valueT
, int);
3858 static void flush_pending_unwind (void);
3860 /* Directives: Data. */
3863 s_arm_elf_cons (int nbytes
)
3867 #ifdef md_flush_pending_output
3868 md_flush_pending_output ();
3871 if (is_it_end_of_statement ())
3873 demand_empty_rest_of_line ();
3877 #ifdef md_cons_align
3878 md_cons_align (nbytes
);
3881 mapping_state (MAP_DATA
);
3885 char *base
= input_line_pointer
;
3889 if (exp
.X_op
!= O_symbol
)
3890 emit_expr (&exp
, (unsigned int) nbytes
);
3893 char *before_reloc
= input_line_pointer
;
3894 reloc
= parse_reloc (&input_line_pointer
);
3897 as_bad (_("unrecognized relocation suffix"));
3898 ignore_rest_of_line ();
3901 else if (reloc
== BFD_RELOC_UNUSED
)
3902 emit_expr (&exp
, (unsigned int) nbytes
);
3905 reloc_howto_type
*howto
= (reloc_howto_type
*)
3906 bfd_reloc_type_lookup (stdoutput
,
3907 (bfd_reloc_code_real_type
) reloc
);
3908 int size
= bfd_get_reloc_size (howto
);
3910 if (reloc
== BFD_RELOC_ARM_PLT32
)
3912 as_bad (_("(plt) is only valid on branch targets"));
3913 reloc
= BFD_RELOC_UNUSED
;
3918 as_bad (ngettext ("%s relocations do not fit in %d byte",
3919 "%s relocations do not fit in %d bytes",
3921 howto
->name
, nbytes
);
3924 /* We've parsed an expression stopping at O_symbol.
3925 But there may be more expression left now that we
3926 have parsed the relocation marker. Parse it again.
3927 XXX Surely there is a cleaner way to do this. */
3928 char *p
= input_line_pointer
;
3930 char *save_buf
= XNEWVEC (char, input_line_pointer
- base
);
3932 memcpy (save_buf
, base
, input_line_pointer
- base
);
3933 memmove (base
+ (input_line_pointer
- before_reloc
),
3934 base
, before_reloc
- base
);
3936 input_line_pointer
= base
+ (input_line_pointer
-before_reloc
);
3938 memcpy (base
, save_buf
, p
- base
);
3940 offset
= nbytes
- size
;
3941 p
= frag_more (nbytes
);
3942 memset (p
, 0, nbytes
);
3943 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
+ offset
,
3944 size
, &exp
, 0, (enum bfd_reloc_code_real
) reloc
);
3950 while (*input_line_pointer
++ == ',');
3952 /* Put terminator back into stream. */
3953 input_line_pointer
--;
3954 demand_empty_rest_of_line ();
3957 /* Emit an expression containing a 32-bit thumb instruction.
3958 Implementation based on put_thumb32_insn. */
3961 emit_thumb32_expr (expressionS
* exp
)
3963 expressionS exp_high
= *exp
;
3965 exp_high
.X_add_number
= (unsigned long)exp_high
.X_add_number
>> 16;
3966 emit_expr (& exp_high
, (unsigned int) THUMB_SIZE
);
3967 exp
->X_add_number
&= 0xffff;
3968 emit_expr (exp
, (unsigned int) THUMB_SIZE
);
3971 /* Guess the instruction size based on the opcode. */
3974 thumb_insn_size (int opcode
)
3976 if ((unsigned int) opcode
< 0xe800u
)
3978 else if ((unsigned int) opcode
>= 0xe8000000u
)
3985 emit_insn (expressionS
*exp
, int nbytes
)
3989 if (exp
->X_op
== O_constant
)
3994 size
= thumb_insn_size (exp
->X_add_number
);
3998 if (size
== 2 && (unsigned int)exp
->X_add_number
> 0xffffu
)
4000 as_bad (_(".inst.n operand too big. "\
4001 "Use .inst.w instead"));
4006 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
)
4007 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN
, 0);
4009 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN
, 0);
4011 if (thumb_mode
&& (size
> THUMB_SIZE
) && !target_big_endian
)
4012 emit_thumb32_expr (exp
);
4014 emit_expr (exp
, (unsigned int) size
);
4016 it_fsm_post_encode ();
4020 as_bad (_("cannot determine Thumb instruction size. " \
4021 "Use .inst.n/.inst.w instead"));
4024 as_bad (_("constant expression required"));
4029 /* Like s_arm_elf_cons but do not use md_cons_align and
4030 set the mapping state to MAP_ARM/MAP_THUMB. */
4033 s_arm_elf_inst (int nbytes
)
4035 if (is_it_end_of_statement ())
4037 demand_empty_rest_of_line ();
4041 /* Calling mapping_state () here will not change ARM/THUMB,
4042 but will ensure not to be in DATA state. */
4045 mapping_state (MAP_THUMB
);
4050 as_bad (_("width suffixes are invalid in ARM mode"));
4051 ignore_rest_of_line ();
4057 mapping_state (MAP_ARM
);
4066 if (! emit_insn (& exp
, nbytes
))
4068 ignore_rest_of_line ();
4072 while (*input_line_pointer
++ == ',');
4074 /* Put terminator back into stream. */
4075 input_line_pointer
--;
4076 demand_empty_rest_of_line ();
4079 /* Parse a .rel31 directive. */
4082 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED
)
4089 if (*input_line_pointer
== '1')
4090 highbit
= 0x80000000;
4091 else if (*input_line_pointer
!= '0')
4092 as_bad (_("expected 0 or 1"));
4094 input_line_pointer
++;
4095 if (*input_line_pointer
!= ',')
4096 as_bad (_("missing comma"));
4097 input_line_pointer
++;
4099 #ifdef md_flush_pending_output
4100 md_flush_pending_output ();
4103 #ifdef md_cons_align
4107 mapping_state (MAP_DATA
);
4112 md_number_to_chars (p
, highbit
, 4);
4113 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 1,
4114 BFD_RELOC_ARM_PREL31
);
4116 demand_empty_rest_of_line ();
4119 /* Directives: AEABI stack-unwind tables. */
4121 /* Parse an unwind_fnstart directive. Simply records the current location. */
4124 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED
)
4126 demand_empty_rest_of_line ();
4127 if (unwind
.proc_start
)
4129 as_bad (_("duplicate .fnstart directive"));
4133 /* Mark the start of the function. */
4134 unwind
.proc_start
= expr_build_dot ();
4136 /* Reset the rest of the unwind info. */
4137 unwind
.opcode_count
= 0;
4138 unwind
.table_entry
= NULL
;
4139 unwind
.personality_routine
= NULL
;
4140 unwind
.personality_index
= -1;
4141 unwind
.frame_size
= 0;
4142 unwind
.fp_offset
= 0;
4143 unwind
.fp_reg
= REG_SP
;
4145 unwind
.sp_restored
= 0;
4149 /* Parse a handlerdata directive. Creates the exception handling table entry
4150 for the function. */
4153 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED
)
4155 demand_empty_rest_of_line ();
4156 if (!unwind
.proc_start
)
4157 as_bad (MISSING_FNSTART
);
4159 if (unwind
.table_entry
)
4160 as_bad (_("duplicate .handlerdata directive"));
4162 create_unwind_entry (1);
4165 /* Parse an unwind_fnend directive. Generates the index table entry. */
4168 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED
)
4173 unsigned int marked_pr_dependency
;
4175 demand_empty_rest_of_line ();
4177 if (!unwind
.proc_start
)
4179 as_bad (_(".fnend directive without .fnstart"));
4183 /* Add eh table entry. */
4184 if (unwind
.table_entry
== NULL
)
4185 val
= create_unwind_entry (0);
4189 /* Add index table entry. This is two words. */
4190 start_unwind_section (unwind
.saved_seg
, 1);
4191 frag_align (2, 0, 0);
4192 record_alignment (now_seg
, 2);
4194 ptr
= frag_more (8);
4196 where
= frag_now_fix () - 8;
4198 /* Self relative offset of the function start. */
4199 fix_new (frag_now
, where
, 4, unwind
.proc_start
, 0, 1,
4200 BFD_RELOC_ARM_PREL31
);
4202 /* Indicate dependency on EHABI-defined personality routines to the
4203 linker, if it hasn't been done already. */
4204 marked_pr_dependency
4205 = seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
;
4206 if (unwind
.personality_index
>= 0 && unwind
.personality_index
< 3
4207 && !(marked_pr_dependency
& (1 << unwind
.personality_index
)))
4209 static const char *const name
[] =
4211 "__aeabi_unwind_cpp_pr0",
4212 "__aeabi_unwind_cpp_pr1",
4213 "__aeabi_unwind_cpp_pr2"
4215 symbolS
*pr
= symbol_find_or_make (name
[unwind
.personality_index
]);
4216 fix_new (frag_now
, where
, 0, pr
, 0, 1, BFD_RELOC_NONE
);
4217 seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
4218 |= 1 << unwind
.personality_index
;
4222 /* Inline exception table entry. */
4223 md_number_to_chars (ptr
+ 4, val
, 4);
4225 /* Self relative offset of the table entry. */
4226 fix_new (frag_now
, where
+ 4, 4, unwind
.table_entry
, 0, 1,
4227 BFD_RELOC_ARM_PREL31
);
4229 /* Restore the original section. */
4230 subseg_set (unwind
.saved_seg
, unwind
.saved_subseg
);
4232 unwind
.proc_start
= NULL
;
4236 /* Parse an unwind_cantunwind directive. */
4239 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED
)
4241 demand_empty_rest_of_line ();
4242 if (!unwind
.proc_start
)
4243 as_bad (MISSING_FNSTART
);
4245 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4246 as_bad (_("personality routine specified for cantunwind frame"));
4248 unwind
.personality_index
= -2;
4252 /* Parse a personalityindex directive. */
4255 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED
)
4259 if (!unwind
.proc_start
)
4260 as_bad (MISSING_FNSTART
);
4262 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4263 as_bad (_("duplicate .personalityindex directive"));
4267 if (exp
.X_op
!= O_constant
4268 || exp
.X_add_number
< 0 || exp
.X_add_number
> 15)
4270 as_bad (_("bad personality routine number"));
4271 ignore_rest_of_line ();
4275 unwind
.personality_index
= exp
.X_add_number
;
4277 demand_empty_rest_of_line ();
4281 /* Parse a personality directive. */
4284 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED
)
4288 if (!unwind
.proc_start
)
4289 as_bad (MISSING_FNSTART
);
4291 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4292 as_bad (_("duplicate .personality directive"));
4294 c
= get_symbol_name (& name
);
4295 p
= input_line_pointer
;
4297 ++ input_line_pointer
;
4298 unwind
.personality_routine
= symbol_find_or_make (name
);
4300 demand_empty_rest_of_line ();
4304 /* Parse a directive saving core registers. */
4307 s_arm_unwind_save_core (void)
4313 range
= parse_reg_list (&input_line_pointer
, REGLIST_RN
);
4316 as_bad (_("expected register list"));
4317 ignore_rest_of_line ();
4321 demand_empty_rest_of_line ();
4323 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4324 into .unwind_save {..., sp...}. We aren't bothered about the value of
4325 ip because it is clobbered by calls. */
4326 if (unwind
.sp_restored
&& unwind
.fp_reg
== 12
4327 && (range
& 0x3000) == 0x1000)
4329 unwind
.opcode_count
--;
4330 unwind
.sp_restored
= 0;
4331 range
= (range
| 0x2000) & ~0x1000;
4332 unwind
.pending_offset
= 0;
4338 /* See if we can use the short opcodes. These pop a block of up to 8
4339 registers starting with r4, plus maybe r14. */
4340 for (n
= 0; n
< 8; n
++)
4342 /* Break at the first non-saved register. */
4343 if ((range
& (1 << (n
+ 4))) == 0)
4346 /* See if there are any other bits set. */
4347 if (n
== 0 || (range
& (0xfff0 << n
) & 0xbff0) != 0)
4349 /* Use the long form. */
4350 op
= 0x8000 | ((range
>> 4) & 0xfff);
4351 add_unwind_opcode (op
, 2);
4355 /* Use the short form. */
4357 op
= 0xa8; /* Pop r14. */
4359 op
= 0xa0; /* Do not pop r14. */
4361 add_unwind_opcode (op
, 1);
4368 op
= 0xb100 | (range
& 0xf);
4369 add_unwind_opcode (op
, 2);
4372 /* Record the number of bytes pushed. */
4373 for (n
= 0; n
< 16; n
++)
4375 if (range
& (1 << n
))
4376 unwind
.frame_size
+= 4;
4381 /* Parse a directive saving FPA registers. */
4384 s_arm_unwind_save_fpa (int reg
)
4390 /* Get Number of registers to transfer. */
4391 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4394 exp
.X_op
= O_illegal
;
4396 if (exp
.X_op
!= O_constant
)
4398 as_bad (_("expected , <constant>"));
4399 ignore_rest_of_line ();
4403 num_regs
= exp
.X_add_number
;
4405 if (num_regs
< 1 || num_regs
> 4)
4407 as_bad (_("number of registers must be in the range [1:4]"));
4408 ignore_rest_of_line ();
4412 demand_empty_rest_of_line ();
4417 op
= 0xb4 | (num_regs
- 1);
4418 add_unwind_opcode (op
, 1);
4423 op
= 0xc800 | (reg
<< 4) | (num_regs
- 1);
4424 add_unwind_opcode (op
, 2);
4426 unwind
.frame_size
+= num_regs
* 12;
4430 /* Parse a directive saving VFP registers for ARMv6 and above. */
4433 s_arm_unwind_save_vfp_armv6 (void)
4438 int num_vfpv3_regs
= 0;
4439 int num_regs_below_16
;
4440 bfd_boolean partial_match
;
4442 count
= parse_vfp_reg_list (&input_line_pointer
, &start
, REGLIST_VFP_D
,
4446 as_bad (_("expected register list"));
4447 ignore_rest_of_line ();
4451 demand_empty_rest_of_line ();
4453 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4454 than FSTMX/FLDMX-style ones). */
4456 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4458 num_vfpv3_regs
= count
;
4459 else if (start
+ count
> 16)
4460 num_vfpv3_regs
= start
+ count
- 16;
4462 if (num_vfpv3_regs
> 0)
4464 int start_offset
= start
> 16 ? start
- 16 : 0;
4465 op
= 0xc800 | (start_offset
<< 4) | (num_vfpv3_regs
- 1);
4466 add_unwind_opcode (op
, 2);
4469 /* Generate opcode for registers numbered in the range 0 .. 15. */
4470 num_regs_below_16
= num_vfpv3_regs
> 0 ? 16 - (int) start
: count
;
4471 gas_assert (num_regs_below_16
+ num_vfpv3_regs
== count
);
4472 if (num_regs_below_16
> 0)
4474 op
= 0xc900 | (start
<< 4) | (num_regs_below_16
- 1);
4475 add_unwind_opcode (op
, 2);
4478 unwind
.frame_size
+= count
* 8;
4482 /* Parse a directive saving VFP registers for pre-ARMv6. */
4485 s_arm_unwind_save_vfp (void)
4490 bfd_boolean partial_match
;
4492 count
= parse_vfp_reg_list (&input_line_pointer
, ®
, REGLIST_VFP_D
,
4496 as_bad (_("expected register list"));
4497 ignore_rest_of_line ();
4501 demand_empty_rest_of_line ();
4506 op
= 0xb8 | (count
- 1);
4507 add_unwind_opcode (op
, 1);
4512 op
= 0xb300 | (reg
<< 4) | (count
- 1);
4513 add_unwind_opcode (op
, 2);
4515 unwind
.frame_size
+= count
* 8 + 4;
4519 /* Parse a directive saving iWMMXt data registers. */
4522 s_arm_unwind_save_mmxwr (void)
4530 if (*input_line_pointer
== '{')
4531 input_line_pointer
++;
4535 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
4539 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
4544 as_tsktsk (_("register list not in ascending order"));
4547 if (*input_line_pointer
== '-')
4549 input_line_pointer
++;
4550 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
4553 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
4556 else if (reg
>= hi_reg
)
4558 as_bad (_("bad register range"));
4561 for (; reg
< hi_reg
; reg
++)
4565 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4567 skip_past_char (&input_line_pointer
, '}');
4569 demand_empty_rest_of_line ();
4571 /* Generate any deferred opcodes because we're going to be looking at
4573 flush_pending_unwind ();
4575 for (i
= 0; i
< 16; i
++)
4577 if (mask
& (1 << i
))
4578 unwind
.frame_size
+= 8;
4581 /* Attempt to combine with a previous opcode. We do this because gcc
4582 likes to output separate unwind directives for a single block of
4584 if (unwind
.opcode_count
> 0)
4586 i
= unwind
.opcodes
[unwind
.opcode_count
- 1];
4587 if ((i
& 0xf8) == 0xc0)
4590 /* Only merge if the blocks are contiguous. */
4593 if ((mask
& 0xfe00) == (1 << 9))
4595 mask
|= ((1 << (i
+ 11)) - 1) & 0xfc00;
4596 unwind
.opcode_count
--;
4599 else if (i
== 6 && unwind
.opcode_count
>= 2)
4601 i
= unwind
.opcodes
[unwind
.opcode_count
- 2];
4605 op
= 0xffff << (reg
- 1);
4607 && ((mask
& op
) == (1u << (reg
- 1))))
4609 op
= (1 << (reg
+ i
+ 1)) - 1;
4610 op
&= ~((1 << reg
) - 1);
4612 unwind
.opcode_count
-= 2;
4619 /* We want to generate opcodes in the order the registers have been
4620 saved, ie. descending order. */
4621 for (reg
= 15; reg
>= -1; reg
--)
4623 /* Save registers in blocks. */
4625 || !(mask
& (1 << reg
)))
4627 /* We found an unsaved reg. Generate opcodes to save the
4634 op
= 0xc0 | (hi_reg
- 10);
4635 add_unwind_opcode (op
, 1);
4640 op
= 0xc600 | ((reg
+ 1) << 4) | ((hi_reg
- reg
) - 1);
4641 add_unwind_opcode (op
, 2);
4650 ignore_rest_of_line ();
4654 s_arm_unwind_save_mmxwcg (void)
4661 if (*input_line_pointer
== '{')
4662 input_line_pointer
++;
4664 skip_whitespace (input_line_pointer
);
4668 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4672 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4678 as_tsktsk (_("register list not in ascending order"));
4681 if (*input_line_pointer
== '-')
4683 input_line_pointer
++;
4684 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4687 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4690 else if (reg
>= hi_reg
)
4692 as_bad (_("bad register range"));
4695 for (; reg
< hi_reg
; reg
++)
4699 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4701 skip_past_char (&input_line_pointer
, '}');
4703 demand_empty_rest_of_line ();
4705 /* Generate any deferred opcodes because we're going to be looking at
4707 flush_pending_unwind ();
4709 for (reg
= 0; reg
< 16; reg
++)
4711 if (mask
& (1 << reg
))
4712 unwind
.frame_size
+= 4;
4715 add_unwind_opcode (op
, 2);
4718 ignore_rest_of_line ();
4722 /* Parse an unwind_save directive.
4723 If the argument is non-zero, this is a .vsave directive. */
4726 s_arm_unwind_save (int arch_v6
)
4729 struct reg_entry
*reg
;
4730 bfd_boolean had_brace
= FALSE
;
4732 if (!unwind
.proc_start
)
4733 as_bad (MISSING_FNSTART
);
4735 /* Figure out what sort of save we have. */
4736 peek
= input_line_pointer
;
4744 reg
= arm_reg_parse_multi (&peek
);
4748 as_bad (_("register expected"));
4749 ignore_rest_of_line ();
4758 as_bad (_("FPA .unwind_save does not take a register list"));
4759 ignore_rest_of_line ();
4762 input_line_pointer
= peek
;
4763 s_arm_unwind_save_fpa (reg
->number
);
4767 s_arm_unwind_save_core ();
4772 s_arm_unwind_save_vfp_armv6 ();
4774 s_arm_unwind_save_vfp ();
4777 case REG_TYPE_MMXWR
:
4778 s_arm_unwind_save_mmxwr ();
4781 case REG_TYPE_MMXWCG
:
4782 s_arm_unwind_save_mmxwcg ();
4786 as_bad (_(".unwind_save does not support this kind of register"));
4787 ignore_rest_of_line ();
4792 /* Parse an unwind_movsp directive. */
4795 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED
)
4801 if (!unwind
.proc_start
)
4802 as_bad (MISSING_FNSTART
);
4804 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4807 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_RN
]));
4808 ignore_rest_of_line ();
4812 /* Optional constant. */
4813 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4815 if (immediate_for_directive (&offset
) == FAIL
)
4821 demand_empty_rest_of_line ();
4823 if (reg
== REG_SP
|| reg
== REG_PC
)
4825 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4829 if (unwind
.fp_reg
!= REG_SP
)
4830 as_bad (_("unexpected .unwind_movsp directive"));
4832 /* Generate opcode to restore the value. */
4834 add_unwind_opcode (op
, 1);
4836 /* Record the information for later. */
4837 unwind
.fp_reg
= reg
;
4838 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4839 unwind
.sp_restored
= 1;
4842 /* Parse an unwind_pad directive. */
4845 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED
)
4849 if (!unwind
.proc_start
)
4850 as_bad (MISSING_FNSTART
);
4852 if (immediate_for_directive (&offset
) == FAIL
)
4857 as_bad (_("stack increment must be multiple of 4"));
4858 ignore_rest_of_line ();
4862 /* Don't generate any opcodes, just record the details for later. */
4863 unwind
.frame_size
+= offset
;
4864 unwind
.pending_offset
+= offset
;
4866 demand_empty_rest_of_line ();
4869 /* Parse an unwind_setfp directive. */
4872 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED
)
4878 if (!unwind
.proc_start
)
4879 as_bad (MISSING_FNSTART
);
4881 fp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4882 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4885 sp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4887 if (fp_reg
== FAIL
|| sp_reg
== FAIL
)
4889 as_bad (_("expected <reg>, <reg>"));
4890 ignore_rest_of_line ();
4894 /* Optional constant. */
4895 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4897 if (immediate_for_directive (&offset
) == FAIL
)
4903 demand_empty_rest_of_line ();
4905 if (sp_reg
!= REG_SP
&& sp_reg
!= unwind
.fp_reg
)
4907 as_bad (_("register must be either sp or set by a previous"
4908 "unwind_movsp directive"));
4912 /* Don't generate any opcodes, just record the information for later. */
4913 unwind
.fp_reg
= fp_reg
;
4915 if (sp_reg
== REG_SP
)
4916 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4918 unwind
.fp_offset
-= offset
;
4921 /* Parse an unwind_raw directive. */
4924 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED
)
4927 /* This is an arbitrary limit. */
4928 unsigned char op
[16];
4931 if (!unwind
.proc_start
)
4932 as_bad (MISSING_FNSTART
);
4935 if (exp
.X_op
== O_constant
4936 && skip_past_comma (&input_line_pointer
) != FAIL
)
4938 unwind
.frame_size
+= exp
.X_add_number
;
4942 exp
.X_op
= O_illegal
;
4944 if (exp
.X_op
!= O_constant
)
4946 as_bad (_("expected <offset>, <opcode>"));
4947 ignore_rest_of_line ();
4953 /* Parse the opcode. */
4958 as_bad (_("unwind opcode too long"));
4959 ignore_rest_of_line ();
4961 if (exp
.X_op
!= O_constant
|| exp
.X_add_number
& ~0xff)
4963 as_bad (_("invalid unwind opcode"));
4964 ignore_rest_of_line ();
4967 op
[count
++] = exp
.X_add_number
;
4969 /* Parse the next byte. */
4970 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4976 /* Add the opcode bytes in reverse order. */
4978 add_unwind_opcode (op
[count
], 1);
4980 demand_empty_rest_of_line ();
4984 /* Parse a .eabi_attribute directive. */
4987 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED
)
4989 int tag
= obj_elf_vendor_attribute (OBJ_ATTR_PROC
);
4991 if (tag
>= 0 && tag
< NUM_KNOWN_OBJ_ATTRIBUTES
)
4992 attributes_set_explicitly
[tag
] = 1;
4995 /* Emit a tls fix for the symbol. */
4998 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED
)
5002 #ifdef md_flush_pending_output
5003 md_flush_pending_output ();
5006 #ifdef md_cons_align
5010 /* Since we're just labelling the code, there's no need to define a
5013 p
= obstack_next_free (&frchain_now
->frch_obstack
);
5014 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 0,
5015 thumb_mode
? BFD_RELOC_ARM_THM_TLS_DESCSEQ
5016 : BFD_RELOC_ARM_TLS_DESCSEQ
);
5018 #endif /* OBJ_ELF */
5020 static void s_arm_arch (int);
5021 static void s_arm_object_arch (int);
5022 static void s_arm_cpu (int);
5023 static void s_arm_fpu (int);
5024 static void s_arm_arch_extension (int);
5029 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
5036 if (exp
.X_op
== O_symbol
)
5037 exp
.X_op
= O_secrel
;
5039 emit_expr (&exp
, 4);
5041 while (*input_line_pointer
++ == ',');
5043 input_line_pointer
--;
5044 demand_empty_rest_of_line ();
5049 arm_is_largest_exponent_ok (int precision
)
5051 /* precision == 1 ensures that this will only return
5052 true for 16 bit floats. */
5053 return (precision
== 1) && (fp16_format
== ARM_FP16_FORMAT_ALTERNATIVE
);
5057 set_fp16_format (int dummy ATTRIBUTE_UNUSED
)
5061 enum fp_16bit_format new_format
;
5063 new_format
= ARM_FP16_FORMAT_DEFAULT
;
5065 name
= input_line_pointer
;
5066 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
5067 input_line_pointer
++;
5069 saved_char
= *input_line_pointer
;
5070 *input_line_pointer
= 0;
5072 if (strcasecmp (name
, "ieee") == 0)
5073 new_format
= ARM_FP16_FORMAT_IEEE
;
5074 else if (strcasecmp (name
, "alternative") == 0)
5075 new_format
= ARM_FP16_FORMAT_ALTERNATIVE
;
5078 as_bad (_("unrecognised float16 format \"%s\""), name
);
5082 /* Only set fp16_format if it is still the default (aka not already
5084 if (fp16_format
== ARM_FP16_FORMAT_DEFAULT
)
5085 fp16_format
= new_format
;
5088 if (new_format
!= fp16_format
)
5089 as_warn (_("float16 format cannot be set more than once, ignoring."));
5093 *input_line_pointer
= saved_char
;
5094 ignore_rest_of_line ();
5097 /* This table describes all the machine specific pseudo-ops the assembler
5098 has to support. The fields are:
5099 pseudo-op name without dot
5100 function to call to execute this pseudo-op
5101 Integer arg to pass to the function. */
5103 const pseudo_typeS md_pseudo_table
[] =
5105 /* Never called because '.req' does not start a line. */
5106 { "req", s_req
, 0 },
5107 /* Following two are likewise never called. */
5110 { "unreq", s_unreq
, 0 },
5111 { "bss", s_bss
, 0 },
5112 { "align", s_align_ptwo
, 2 },
5113 { "arm", s_arm
, 0 },
5114 { "thumb", s_thumb
, 0 },
5115 { "code", s_code
, 0 },
5116 { "force_thumb", s_force_thumb
, 0 },
5117 { "thumb_func", s_thumb_func
, 0 },
5118 { "thumb_set", s_thumb_set
, 0 },
5119 { "even", s_even
, 0 },
5120 { "ltorg", s_ltorg
, 0 },
5121 { "pool", s_ltorg
, 0 },
5122 { "syntax", s_syntax
, 0 },
5123 { "cpu", s_arm_cpu
, 0 },
5124 { "arch", s_arm_arch
, 0 },
5125 { "object_arch", s_arm_object_arch
, 0 },
5126 { "fpu", s_arm_fpu
, 0 },
5127 { "arch_extension", s_arm_arch_extension
, 0 },
5129 { "word", s_arm_elf_cons
, 4 },
5130 { "long", s_arm_elf_cons
, 4 },
5131 { "inst.n", s_arm_elf_inst
, 2 },
5132 { "inst.w", s_arm_elf_inst
, 4 },
5133 { "inst", s_arm_elf_inst
, 0 },
5134 { "rel31", s_arm_rel31
, 0 },
5135 { "fnstart", s_arm_unwind_fnstart
, 0 },
5136 { "fnend", s_arm_unwind_fnend
, 0 },
5137 { "cantunwind", s_arm_unwind_cantunwind
, 0 },
5138 { "personality", s_arm_unwind_personality
, 0 },
5139 { "personalityindex", s_arm_unwind_personalityindex
, 0 },
5140 { "handlerdata", s_arm_unwind_handlerdata
, 0 },
5141 { "save", s_arm_unwind_save
, 0 },
5142 { "vsave", s_arm_unwind_save
, 1 },
5143 { "movsp", s_arm_unwind_movsp
, 0 },
5144 { "pad", s_arm_unwind_pad
, 0 },
5145 { "setfp", s_arm_unwind_setfp
, 0 },
5146 { "unwind_raw", s_arm_unwind_raw
, 0 },
5147 { "eabi_attribute", s_arm_eabi_attribute
, 0 },
5148 { "tlsdescseq", s_arm_tls_descseq
, 0 },
5152 /* These are used for dwarf. */
5156 /* These are used for dwarf2. */
5157 { "file", dwarf2_directive_file
, 0 },
5158 { "loc", dwarf2_directive_loc
, 0 },
5159 { "loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0 },
5161 { "extend", float_cons
, 'x' },
5162 { "ldouble", float_cons
, 'x' },
5163 { "packed", float_cons
, 'p' },
5164 { "bfloat16", float_cons
, 'b' },
5166 {"secrel32", pe_directive_secrel
, 0},
5169 /* These are for compatibility with CodeComposer Studio. */
5170 {"ref", s_ccs_ref
, 0},
5171 {"def", s_ccs_def
, 0},
5172 {"asmfunc", s_ccs_asmfunc
, 0},
5173 {"endasmfunc", s_ccs_endasmfunc
, 0},
5175 {"float16", float_cons
, 'h' },
5176 {"float16_format", set_fp16_format
, 0 },
5181 /* Parser functions used exclusively in instruction operands. */
5183 /* Generic immediate-value read function for use in insn parsing.
5184 STR points to the beginning of the immediate (the leading #);
5185 VAL receives the value; if the value is outside [MIN, MAX]
5186 issue an error. PREFIX_OPT is true if the immediate prefix is
5190 parse_immediate (char **str
, int *val
, int min
, int max
,
5191 bfd_boolean prefix_opt
)
5195 my_get_expression (&exp
, str
, prefix_opt
? GE_OPT_PREFIX
: GE_IMM_PREFIX
);
5196 if (exp
.X_op
!= O_constant
)
5198 inst
.error
= _("constant expression required");
5202 if (exp
.X_add_number
< min
|| exp
.X_add_number
> max
)
5204 inst
.error
= _("immediate value out of range");
5208 *val
= exp
.X_add_number
;
5212 /* Less-generic immediate-value read function with the possibility of loading a
5213 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5214 instructions. Puts the result directly in inst.operands[i]. */
5217 parse_big_immediate (char **str
, int i
, expressionS
*in_exp
,
5218 bfd_boolean allow_symbol_p
)
5221 expressionS
*exp_p
= in_exp
? in_exp
: &exp
;
5224 my_get_expression (exp_p
, &ptr
, GE_OPT_PREFIX_BIG
);
5226 if (exp_p
->X_op
== O_constant
)
5228 inst
.operands
[i
].imm
= exp_p
->X_add_number
& 0xffffffff;
5229 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5230 O_constant. We have to be careful not to break compilation for
5231 32-bit X_add_number, though. */
5232 if ((exp_p
->X_add_number
& ~(offsetT
)(0xffffffffU
)) != 0)
5234 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5235 inst
.operands
[i
].reg
= (((exp_p
->X_add_number
>> 16) >> 16)
5237 inst
.operands
[i
].regisimm
= 1;
5240 else if (exp_p
->X_op
== O_big
5241 && LITTLENUM_NUMBER_OF_BITS
* exp_p
->X_add_number
> 32)
5243 unsigned parts
= 32 / LITTLENUM_NUMBER_OF_BITS
, j
, idx
= 0;
5245 /* Bignums have their least significant bits in
5246 generic_bignum[0]. Make sure we put 32 bits in imm and
5247 32 bits in reg, in a (hopefully) portable way. */
5248 gas_assert (parts
!= 0);
5250 /* Make sure that the number is not too big.
5251 PR 11972: Bignums can now be sign-extended to the
5252 size of a .octa so check that the out of range bits
5253 are all zero or all one. */
5254 if (LITTLENUM_NUMBER_OF_BITS
* exp_p
->X_add_number
> 64)
5256 LITTLENUM_TYPE m
= -1;
5258 if (generic_bignum
[parts
* 2] != 0
5259 && generic_bignum
[parts
* 2] != m
)
5262 for (j
= parts
* 2 + 1; j
< (unsigned) exp_p
->X_add_number
; j
++)
5263 if (generic_bignum
[j
] != generic_bignum
[j
-1])
5267 inst
.operands
[i
].imm
= 0;
5268 for (j
= 0; j
< parts
; j
++, idx
++)
5269 inst
.operands
[i
].imm
|= generic_bignum
[idx
]
5270 << (LITTLENUM_NUMBER_OF_BITS
* j
);
5271 inst
.operands
[i
].reg
= 0;
5272 for (j
= 0; j
< parts
; j
++, idx
++)
5273 inst
.operands
[i
].reg
|= generic_bignum
[idx
]
5274 << (LITTLENUM_NUMBER_OF_BITS
* j
);
5275 inst
.operands
[i
].regisimm
= 1;
5277 else if (!(exp_p
->X_op
== O_symbol
&& allow_symbol_p
))
5285 /* Returns the pseudo-register number of an FPA immediate constant,
5286 or FAIL if there isn't a valid constant here. */
5289 parse_fpa_immediate (char ** str
)
5291 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5297 /* First try and match exact strings, this is to guarantee
5298 that some formats will work even for cross assembly. */
5300 for (i
= 0; fp_const
[i
]; i
++)
5302 if (strncmp (*str
, fp_const
[i
], strlen (fp_const
[i
])) == 0)
5306 *str
+= strlen (fp_const
[i
]);
5307 if (is_end_of_line
[(unsigned char) **str
])
5313 /* Just because we didn't get a match doesn't mean that the constant
5314 isn't valid, just that it is in a format that we don't
5315 automatically recognize. Try parsing it with the standard
5316 expression routines. */
5318 memset (words
, 0, MAX_LITTLENUMS
* sizeof (LITTLENUM_TYPE
));
5320 /* Look for a raw floating point number. */
5321 if ((save_in
= atof_ieee (*str
, 'x', words
)) != NULL
5322 && is_end_of_line
[(unsigned char) *save_in
])
5324 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
5326 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
5328 if (words
[j
] != fp_values
[i
][j
])
5332 if (j
== MAX_LITTLENUMS
)
5340 /* Try and parse a more complex expression, this will probably fail
5341 unless the code uses a floating point prefix (eg "0f"). */
5342 save_in
= input_line_pointer
;
5343 input_line_pointer
= *str
;
5344 if (expression (&exp
) == absolute_section
5345 && exp
.X_op
== O_big
5346 && exp
.X_add_number
< 0)
5348 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5350 #define X_PRECISION 5
5351 #define E_PRECISION 15L
5352 if (gen_to_words (words
, X_PRECISION
, E_PRECISION
) == 0)
5354 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
5356 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
5358 if (words
[j
] != fp_values
[i
][j
])
5362 if (j
== MAX_LITTLENUMS
)
5364 *str
= input_line_pointer
;
5365 input_line_pointer
= save_in
;
5372 *str
= input_line_pointer
;
5373 input_line_pointer
= save_in
;
5374 inst
.error
= _("invalid FPA immediate expression");
5378 /* Returns 1 if a number has "quarter-precision" float format
5379 0baBbbbbbc defgh000 00000000 00000000. */
5382 is_quarter_float (unsigned imm
)
5384 int bs
= (imm
& 0x20000000) ? 0x3e000000 : 0x40000000;
5385 return (imm
& 0x7ffff) == 0 && ((imm
& 0x7e000000) ^ bs
) == 0;
5389 /* Detect the presence of a floating point or integer zero constant,
5393 parse_ifimm_zero (char **in
)
5397 if (!is_immediate_prefix (**in
))
5399 /* In unified syntax, all prefixes are optional. */
5400 if (!unified_syntax
)
5406 /* Accept #0x0 as a synonym for #0. */
5407 if (strncmp (*in
, "0x", 2) == 0)
5410 if (parse_immediate (in
, &val
, 0, 0, TRUE
) == FAIL
)
5415 error_code
= atof_generic (in
, ".", EXP_CHARS
,
5416 &generic_floating_point_number
);
5419 && generic_floating_point_number
.sign
== '+'
5420 && (generic_floating_point_number
.low
5421 > generic_floating_point_number
.leader
))
5427 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5428 0baBbbbbbc defgh000 00000000 00000000.
5429 The zero and minus-zero cases need special handling, since they can't be
5430 encoded in the "quarter-precision" float format, but can nonetheless be
5431 loaded as integer constants. */
5434 parse_qfloat_immediate (char **ccp
, int *immed
)
5438 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5439 int found_fpchar
= 0;
5441 skip_past_char (&str
, '#');
5443 /* We must not accidentally parse an integer as a floating-point number. Make
5444 sure that the value we parse is not an integer by checking for special
5445 characters '.' or 'e'.
5446 FIXME: This is a horrible hack, but doing better is tricky because type
5447 information isn't in a very usable state at parse time. */
5449 skip_whitespace (fpnum
);
5451 if (strncmp (fpnum
, "0x", 2) == 0)
5455 for (; *fpnum
!= '\0' && *fpnum
!= ' ' && *fpnum
!= '\n'; fpnum
++)
5456 if (*fpnum
== '.' || *fpnum
== 'e' || *fpnum
== 'E')
5466 if ((str
= atof_ieee (str
, 's', words
)) != NULL
)
5468 unsigned fpword
= 0;
5471 /* Our FP word must be 32 bits (single-precision FP). */
5472 for (i
= 0; i
< 32 / LITTLENUM_NUMBER_OF_BITS
; i
++)
5474 fpword
<<= LITTLENUM_NUMBER_OF_BITS
;
5478 if (is_quarter_float (fpword
) || (fpword
& 0x7fffffff) == 0)
5491 /* Shift operands. */
5494 SHIFT_LSL
, SHIFT_LSR
, SHIFT_ASR
, SHIFT_ROR
, SHIFT_RRX
, SHIFT_UXTW
5497 struct asm_shift_name
5500 enum shift_kind kind
;
5503 /* Third argument to parse_shift. */
5504 enum parse_shift_mode
5506 NO_SHIFT_RESTRICT
, /* Any kind of shift is accepted. */
5507 SHIFT_IMMEDIATE
, /* Shift operand must be an immediate. */
5508 SHIFT_LSL_OR_ASR_IMMEDIATE
, /* Shift must be LSL or ASR immediate. */
5509 SHIFT_ASR_IMMEDIATE
, /* Shift must be ASR immediate. */
5510 SHIFT_LSL_IMMEDIATE
, /* Shift must be LSL immediate. */
5511 SHIFT_UXTW_IMMEDIATE
/* Shift must be UXTW immediate. */
5514 /* Parse a <shift> specifier on an ARM data processing instruction.
5515 This has three forms:
5517 (LSL|LSR|ASL|ASR|ROR) Rs
5518 (LSL|LSR|ASL|ASR|ROR) #imm
5521 Note that ASL is assimilated to LSL in the instruction encoding, and
5522 RRX to ROR #0 (which cannot be written as such). */
5525 parse_shift (char **str
, int i
, enum parse_shift_mode mode
)
5527 const struct asm_shift_name
*shift_name
;
5528 enum shift_kind shift
;
5533 for (p
= *str
; ISALPHA (*p
); p
++)
5538 inst
.error
= _("shift expression expected");
5542 shift_name
= (const struct asm_shift_name
*) hash_find_n (arm_shift_hsh
, *str
,
5545 if (shift_name
== NULL
)
5547 inst
.error
= _("shift expression expected");
5551 shift
= shift_name
->kind
;
5555 case NO_SHIFT_RESTRICT
:
5556 case SHIFT_IMMEDIATE
:
5557 if (shift
== SHIFT_UXTW
)
5559 inst
.error
= _("'UXTW' not allowed here");
5564 case SHIFT_LSL_OR_ASR_IMMEDIATE
:
5565 if (shift
!= SHIFT_LSL
&& shift
!= SHIFT_ASR
)
5567 inst
.error
= _("'LSL' or 'ASR' required");
5572 case SHIFT_LSL_IMMEDIATE
:
5573 if (shift
!= SHIFT_LSL
)
5575 inst
.error
= _("'LSL' required");
5580 case SHIFT_ASR_IMMEDIATE
:
5581 if (shift
!= SHIFT_ASR
)
5583 inst
.error
= _("'ASR' required");
5587 case SHIFT_UXTW_IMMEDIATE
:
5588 if (shift
!= SHIFT_UXTW
)
5590 inst
.error
= _("'UXTW' required");
5598 if (shift
!= SHIFT_RRX
)
5600 /* Whitespace can appear here if the next thing is a bare digit. */
5601 skip_whitespace (p
);
5603 if (mode
== NO_SHIFT_RESTRICT
5604 && (reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5606 inst
.operands
[i
].imm
= reg
;
5607 inst
.operands
[i
].immisreg
= 1;
5609 else if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
5612 inst
.operands
[i
].shift_kind
= shift
;
5613 inst
.operands
[i
].shifted
= 1;
5618 /* Parse a <shifter_operand> for an ARM data processing instruction:
5621 #<immediate>, <rotate>
5625 where <shift> is defined by parse_shift above, and <rotate> is a
5626 multiple of 2 between 0 and 30. Validation of immediate operands
5627 is deferred to md_apply_fix. */
5630 parse_shifter_operand (char **str
, int i
)
5635 if ((value
= arm_reg_parse (str
, REG_TYPE_RN
)) != FAIL
)
5637 inst
.operands
[i
].reg
= value
;
5638 inst
.operands
[i
].isreg
= 1;
5640 /* parse_shift will override this if appropriate */
5641 inst
.relocs
[0].exp
.X_op
= O_constant
;
5642 inst
.relocs
[0].exp
.X_add_number
= 0;
5644 if (skip_past_comma (str
) == FAIL
)
5647 /* Shift operation on register. */
5648 return parse_shift (str
, i
, NO_SHIFT_RESTRICT
);
5651 if (my_get_expression (&inst
.relocs
[0].exp
, str
, GE_IMM_PREFIX
))
5654 if (skip_past_comma (str
) == SUCCESS
)
5656 /* #x, y -- ie explicit rotation by Y. */
5657 if (my_get_expression (&exp
, str
, GE_NO_PREFIX
))
5660 if (exp
.X_op
!= O_constant
|| inst
.relocs
[0].exp
.X_op
!= O_constant
)
5662 inst
.error
= _("constant expression expected");
5666 value
= exp
.X_add_number
;
5667 if (value
< 0 || value
> 30 || value
% 2 != 0)
5669 inst
.error
= _("invalid rotation");
5672 if (inst
.relocs
[0].exp
.X_add_number
< 0
5673 || inst
.relocs
[0].exp
.X_add_number
> 255)
5675 inst
.error
= _("invalid constant");
5679 /* Encode as specified. */
5680 inst
.operands
[i
].imm
= inst
.relocs
[0].exp
.X_add_number
| value
<< 7;
5684 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
5685 inst
.relocs
[0].pc_rel
= 0;
5689 /* Group relocation information. Each entry in the table contains the
5690 textual name of the relocation as may appear in assembler source
5691 and must end with a colon.
5692 Along with this textual name are the relocation codes to be used if
5693 the corresponding instruction is an ALU instruction (ADD or SUB only),
5694 an LDR, an LDRS, or an LDC. */
5696 struct group_reloc_table_entry
5707 /* Varieties of non-ALU group relocation. */
5715 static struct group_reloc_table_entry group_reloc_table
[] =
5716 { /* Program counter relative: */
5718 BFD_RELOC_ARM_ALU_PC_G0_NC
, /* ALU */
5723 BFD_RELOC_ARM_ALU_PC_G0
, /* ALU */
5724 BFD_RELOC_ARM_LDR_PC_G0
, /* LDR */
5725 BFD_RELOC_ARM_LDRS_PC_G0
, /* LDRS */
5726 BFD_RELOC_ARM_LDC_PC_G0
}, /* LDC */
5728 BFD_RELOC_ARM_ALU_PC_G1_NC
, /* ALU */
5733 BFD_RELOC_ARM_ALU_PC_G1
, /* ALU */
5734 BFD_RELOC_ARM_LDR_PC_G1
, /* LDR */
5735 BFD_RELOC_ARM_LDRS_PC_G1
, /* LDRS */
5736 BFD_RELOC_ARM_LDC_PC_G1
}, /* LDC */
5738 BFD_RELOC_ARM_ALU_PC_G2
, /* ALU */
5739 BFD_RELOC_ARM_LDR_PC_G2
, /* LDR */
5740 BFD_RELOC_ARM_LDRS_PC_G2
, /* LDRS */
5741 BFD_RELOC_ARM_LDC_PC_G2
}, /* LDC */
5742 /* Section base relative */
5744 BFD_RELOC_ARM_ALU_SB_G0_NC
, /* ALU */
5749 BFD_RELOC_ARM_ALU_SB_G0
, /* ALU */
5750 BFD_RELOC_ARM_LDR_SB_G0
, /* LDR */
5751 BFD_RELOC_ARM_LDRS_SB_G0
, /* LDRS */
5752 BFD_RELOC_ARM_LDC_SB_G0
}, /* LDC */
5754 BFD_RELOC_ARM_ALU_SB_G1_NC
, /* ALU */
5759 BFD_RELOC_ARM_ALU_SB_G1
, /* ALU */
5760 BFD_RELOC_ARM_LDR_SB_G1
, /* LDR */
5761 BFD_RELOC_ARM_LDRS_SB_G1
, /* LDRS */
5762 BFD_RELOC_ARM_LDC_SB_G1
}, /* LDC */
5764 BFD_RELOC_ARM_ALU_SB_G2
, /* ALU */
5765 BFD_RELOC_ARM_LDR_SB_G2
, /* LDR */
5766 BFD_RELOC_ARM_LDRS_SB_G2
, /* LDRS */
5767 BFD_RELOC_ARM_LDC_SB_G2
}, /* LDC */
5768 /* Absolute thumb alu relocations. */
5770 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
,/* ALU. */
5775 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
,/* ALU. */
5780 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
,/* ALU. */
5785 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,/* ALU. */
5790 /* Given the address of a pointer pointing to the textual name of a group
5791 relocation as may appear in assembler source, attempt to find its details
5792 in group_reloc_table. The pointer will be updated to the character after
5793 the trailing colon. On failure, FAIL will be returned; SUCCESS
5794 otherwise. On success, *entry will be updated to point at the relevant
5795 group_reloc_table entry. */
5798 find_group_reloc_table_entry (char **str
, struct group_reloc_table_entry
**out
)
5801 for (i
= 0; i
< ARRAY_SIZE (group_reloc_table
); i
++)
5803 int length
= strlen (group_reloc_table
[i
].name
);
5805 if (strncasecmp (group_reloc_table
[i
].name
, *str
, length
) == 0
5806 && (*str
)[length
] == ':')
5808 *out
= &group_reloc_table
[i
];
5809 *str
+= (length
+ 1);
5817 /* Parse a <shifter_operand> for an ARM data processing instruction
5818 (as for parse_shifter_operand) where group relocations are allowed:
5821 #<immediate>, <rotate>
5822 #:<group_reloc>:<expression>
5826 where <group_reloc> is one of the strings defined in group_reloc_table.
5827 The hashes are optional.
5829 Everything else is as for parse_shifter_operand. */
5831 static parse_operand_result
5832 parse_shifter_operand_group_reloc (char **str
, int i
)
5834 /* Determine if we have the sequence of characters #: or just :
5835 coming next. If we do, then we check for a group relocation.
5836 If we don't, punt the whole lot to parse_shifter_operand. */
5838 if (((*str
)[0] == '#' && (*str
)[1] == ':')
5839 || (*str
)[0] == ':')
5841 struct group_reloc_table_entry
*entry
;
5843 if ((*str
)[0] == '#')
5848 /* Try to parse a group relocation. Anything else is an error. */
5849 if (find_group_reloc_table_entry (str
, &entry
) == FAIL
)
5851 inst
.error
= _("unknown group relocation");
5852 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5855 /* We now have the group relocation table entry corresponding to
5856 the name in the assembler source. Next, we parse the expression. */
5857 if (my_get_expression (&inst
.relocs
[0].exp
, str
, GE_NO_PREFIX
))
5858 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5860 /* Record the relocation type (always the ALU variant here). */
5861 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) entry
->alu_code
;
5862 gas_assert (inst
.relocs
[0].type
!= 0);
5864 return PARSE_OPERAND_SUCCESS
;
5867 return parse_shifter_operand (str
, i
) == SUCCESS
5868 ? PARSE_OPERAND_SUCCESS
: PARSE_OPERAND_FAIL
;
5870 /* Never reached. */
5873 /* Parse a Neon alignment expression. Information is written to
5874 inst.operands[i]. We assume the initial ':' has been skipped.
5876 align .imm = align << 8, .immisalign=1, .preind=0 */
5877 static parse_operand_result
5878 parse_neon_alignment (char **str
, int i
)
5883 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
5885 if (exp
.X_op
!= O_constant
)
5887 inst
.error
= _("alignment must be constant");
5888 return PARSE_OPERAND_FAIL
;
5891 inst
.operands
[i
].imm
= exp
.X_add_number
<< 8;
5892 inst
.operands
[i
].immisalign
= 1;
5893 /* Alignments are not pre-indexes. */
5894 inst
.operands
[i
].preind
= 0;
5897 return PARSE_OPERAND_SUCCESS
;
5900 /* Parse all forms of an ARM address expression. Information is written
5901 to inst.operands[i] and/or inst.relocs[0].
5903 Preindexed addressing (.preind=1):
5905 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5906 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5907 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5908 .shift_kind=shift .relocs[0].exp=shift_imm
5910 These three may have a trailing ! which causes .writeback to be set also.
5912 Postindexed addressing (.postind=1, .writeback=1):
5914 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5915 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5916 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5917 .shift_kind=shift .relocs[0].exp=shift_imm
5919 Unindexed addressing (.preind=0, .postind=0):
5921 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5925 [Rn]{!} shorthand for [Rn,#0]{!}
5926 =immediate .isreg=0 .relocs[0].exp=immediate
5927 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5929 It is the caller's responsibility to check for addressing modes not
5930 supported by the instruction, and to set inst.relocs[0].type. */
5932 static parse_operand_result
5933 parse_address_main (char **str
, int i
, int group_relocations
,
5934 group_reloc_type group_type
)
5939 if (skip_past_char (&p
, '[') == FAIL
)
5941 if (skip_past_char (&p
, '=') == FAIL
)
5943 /* Bare address - translate to PC-relative offset. */
5944 inst
.relocs
[0].pc_rel
= 1;
5945 inst
.operands
[i
].reg
= REG_PC
;
5946 inst
.operands
[i
].isreg
= 1;
5947 inst
.operands
[i
].preind
= 1;
5949 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_OPT_PREFIX_BIG
))
5950 return PARSE_OPERAND_FAIL
;
5952 else if (parse_big_immediate (&p
, i
, &inst
.relocs
[0].exp
,
5953 /*allow_symbol_p=*/TRUE
))
5954 return PARSE_OPERAND_FAIL
;
5957 return PARSE_OPERAND_SUCCESS
;
5960 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5961 skip_whitespace (p
);
5963 if (group_type
== GROUP_MVE
)
5965 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5966 struct neon_type_el et
;
5967 if ((reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
5969 inst
.operands
[i
].isquad
= 1;
5971 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5973 inst
.error
= BAD_ADDR_MODE
;
5974 return PARSE_OPERAND_FAIL
;
5977 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5979 if (group_type
== GROUP_MVE
)
5980 inst
.error
= BAD_ADDR_MODE
;
5982 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5983 return PARSE_OPERAND_FAIL
;
5985 inst
.operands
[i
].reg
= reg
;
5986 inst
.operands
[i
].isreg
= 1;
5988 if (skip_past_comma (&p
) == SUCCESS
)
5990 inst
.operands
[i
].preind
= 1;
5993 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5995 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5996 struct neon_type_el et
;
5997 if (group_type
== GROUP_MVE
5998 && (reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
6000 inst
.operands
[i
].immisreg
= 2;
6001 inst
.operands
[i
].imm
= reg
;
6003 if (skip_past_comma (&p
) == SUCCESS
)
6005 if (parse_shift (&p
, i
, SHIFT_UXTW_IMMEDIATE
) == SUCCESS
)
6007 inst
.operands
[i
].imm
|= inst
.relocs
[0].exp
.X_add_number
<< 5;
6008 inst
.relocs
[0].exp
.X_add_number
= 0;
6011 return PARSE_OPERAND_FAIL
;
6014 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
6016 inst
.operands
[i
].imm
= reg
;
6017 inst
.operands
[i
].immisreg
= 1;
6019 if (skip_past_comma (&p
) == SUCCESS
)
6020 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
6021 return PARSE_OPERAND_FAIL
;
6023 else if (skip_past_char (&p
, ':') == SUCCESS
)
6025 /* FIXME: '@' should be used here, but it's filtered out by generic
6026 code before we get to see it here. This may be subject to
6028 parse_operand_result result
= parse_neon_alignment (&p
, i
);
6030 if (result
!= PARSE_OPERAND_SUCCESS
)
6035 if (inst
.operands
[i
].negative
)
6037 inst
.operands
[i
].negative
= 0;
6041 if (group_relocations
6042 && ((*p
== '#' && *(p
+ 1) == ':') || *p
== ':'))
6044 struct group_reloc_table_entry
*entry
;
6046 /* Skip over the #: or : sequence. */
6052 /* Try to parse a group relocation. Anything else is an
6054 if (find_group_reloc_table_entry (&p
, &entry
) == FAIL
)
6056 inst
.error
= _("unknown group relocation");
6057 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
6060 /* We now have the group relocation table entry corresponding to
6061 the name in the assembler source. Next, we parse the
6063 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_NO_PREFIX
))
6064 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
6066 /* Record the relocation type. */
6071 = (bfd_reloc_code_real_type
) entry
->ldr_code
;
6076 = (bfd_reloc_code_real_type
) entry
->ldrs_code
;
6081 = (bfd_reloc_code_real_type
) entry
->ldc_code
;
6088 if (inst
.relocs
[0].type
== 0)
6090 inst
.error
= _("this group relocation is not allowed on this instruction");
6091 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
6098 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
6099 return PARSE_OPERAND_FAIL
;
6100 /* If the offset is 0, find out if it's a +0 or -0. */
6101 if (inst
.relocs
[0].exp
.X_op
== O_constant
6102 && inst
.relocs
[0].exp
.X_add_number
== 0)
6104 skip_whitespace (q
);
6108 skip_whitespace (q
);
6111 inst
.operands
[i
].negative
= 1;
6116 else if (skip_past_char (&p
, ':') == SUCCESS
)
6118 /* FIXME: '@' should be used here, but it's filtered out by generic code
6119 before we get to see it here. This may be subject to change. */
6120 parse_operand_result result
= parse_neon_alignment (&p
, i
);
6122 if (result
!= PARSE_OPERAND_SUCCESS
)
6126 if (skip_past_char (&p
, ']') == FAIL
)
6128 inst
.error
= _("']' expected");
6129 return PARSE_OPERAND_FAIL
;
6132 if (skip_past_char (&p
, '!') == SUCCESS
)
6133 inst
.operands
[i
].writeback
= 1;
6135 else if (skip_past_comma (&p
) == SUCCESS
)
6137 if (skip_past_char (&p
, '{') == SUCCESS
)
6139 /* [Rn], {expr} - unindexed, with option */
6140 if (parse_immediate (&p
, &inst
.operands
[i
].imm
,
6141 0, 255, TRUE
) == FAIL
)
6142 return PARSE_OPERAND_FAIL
;
6144 if (skip_past_char (&p
, '}') == FAIL
)
6146 inst
.error
= _("'}' expected at end of 'option' field");
6147 return PARSE_OPERAND_FAIL
;
6149 if (inst
.operands
[i
].preind
)
6151 inst
.error
= _("cannot combine index with option");
6152 return PARSE_OPERAND_FAIL
;
6155 return PARSE_OPERAND_SUCCESS
;
6159 inst
.operands
[i
].postind
= 1;
6160 inst
.operands
[i
].writeback
= 1;
6162 if (inst
.operands
[i
].preind
)
6164 inst
.error
= _("cannot combine pre- and post-indexing");
6165 return PARSE_OPERAND_FAIL
;
6169 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
6171 enum arm_reg_type rtype
= REG_TYPE_MQ
;
6172 struct neon_type_el et
;
6173 if (group_type
== GROUP_MVE
6174 && (reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
6176 inst
.operands
[i
].immisreg
= 2;
6177 inst
.operands
[i
].imm
= reg
;
6179 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
6181 /* We might be using the immediate for alignment already. If we
6182 are, OR the register number into the low-order bits. */
6183 if (inst
.operands
[i
].immisalign
)
6184 inst
.operands
[i
].imm
|= reg
;
6186 inst
.operands
[i
].imm
= reg
;
6187 inst
.operands
[i
].immisreg
= 1;
6189 if (skip_past_comma (&p
) == SUCCESS
)
6190 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
6191 return PARSE_OPERAND_FAIL
;
6197 if (inst
.operands
[i
].negative
)
6199 inst
.operands
[i
].negative
= 0;
6202 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
6203 return PARSE_OPERAND_FAIL
;
6204 /* If the offset is 0, find out if it's a +0 or -0. */
6205 if (inst
.relocs
[0].exp
.X_op
== O_constant
6206 && inst
.relocs
[0].exp
.X_add_number
== 0)
6208 skip_whitespace (q
);
6212 skip_whitespace (q
);
6215 inst
.operands
[i
].negative
= 1;
6221 /* If at this point neither .preind nor .postind is set, we have a
6222 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6223 if (inst
.operands
[i
].preind
== 0 && inst
.operands
[i
].postind
== 0)
6225 inst
.operands
[i
].preind
= 1;
6226 inst
.relocs
[0].exp
.X_op
= O_constant
;
6227 inst
.relocs
[0].exp
.X_add_number
= 0;
6230 return PARSE_OPERAND_SUCCESS
;
6234 parse_address (char **str
, int i
)
6236 return parse_address_main (str
, i
, 0, GROUP_LDR
) == PARSE_OPERAND_SUCCESS
6240 static parse_operand_result
6241 parse_address_group_reloc (char **str
, int i
, group_reloc_type type
)
6243 return parse_address_main (str
, i
, 1, type
);
6246 /* Parse an operand for a MOVW or MOVT instruction. */
6248 parse_half (char **str
)
6253 skip_past_char (&p
, '#');
6254 if (strncasecmp (p
, ":lower16:", 9) == 0)
6255 inst
.relocs
[0].type
= BFD_RELOC_ARM_MOVW
;
6256 else if (strncasecmp (p
, ":upper16:", 9) == 0)
6257 inst
.relocs
[0].type
= BFD_RELOC_ARM_MOVT
;
6259 if (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
)
6262 skip_whitespace (p
);
6265 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_NO_PREFIX
))
6268 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
6270 if (inst
.relocs
[0].exp
.X_op
!= O_constant
)
6272 inst
.error
= _("constant expression expected");
6275 if (inst
.relocs
[0].exp
.X_add_number
< 0
6276 || inst
.relocs
[0].exp
.X_add_number
> 0xffff)
6278 inst
.error
= _("immediate value out of range");
6286 /* Miscellaneous. */
6288 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6289 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6291 parse_psr (char **str
, bfd_boolean lhs
)
6294 unsigned long psr_field
;
6295 const struct asm_psr
*psr
;
6297 bfd_boolean is_apsr
= FALSE
;
6298 bfd_boolean m_profile
= ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
);
6300 /* PR gas/12698: If the user has specified -march=all then m_profile will
6301 be TRUE, but we want to ignore it in this case as we are building for any
6302 CPU type, including non-m variants. */
6303 if (ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
))
6306 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6307 feature for ease of use and backwards compatibility. */
6309 if (strncasecmp (p
, "SPSR", 4) == 0)
6312 goto unsupported_psr
;
6314 psr_field
= SPSR_BIT
;
6316 else if (strncasecmp (p
, "CPSR", 4) == 0)
6319 goto unsupported_psr
;
6323 else if (strncasecmp (p
, "APSR", 4) == 0)
6325 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6326 and ARMv7-R architecture CPUs. */
6335 while (ISALNUM (*p
) || *p
== '_');
6337 if (strncasecmp (start
, "iapsr", 5) == 0
6338 || strncasecmp (start
, "eapsr", 5) == 0
6339 || strncasecmp (start
, "xpsr", 4) == 0
6340 || strncasecmp (start
, "psr", 3) == 0)
6341 p
= start
+ strcspn (start
, "rR") + 1;
6343 psr
= (const struct asm_psr
*) hash_find_n (arm_v7m_psr_hsh
, start
,
6349 /* If APSR is being written, a bitfield may be specified. Note that
6350 APSR itself is handled above. */
6351 if (psr
->field
<= 3)
6353 psr_field
= psr
->field
;
6359 /* M-profile MSR instructions have the mask field set to "10", except
6360 *PSR variants which modify APSR, which may use a different mask (and
6361 have been handled already). Do that by setting the PSR_f field
6363 return psr
->field
| (lhs
? PSR_f
: 0);
6366 goto unsupported_psr
;
6372 /* A suffix follows. */
6378 while (ISALNUM (*p
) || *p
== '_');
6382 /* APSR uses a notation for bits, rather than fields. */
6383 unsigned int nzcvq_bits
= 0;
6384 unsigned int g_bit
= 0;
6387 for (bit
= start
; bit
!= p
; bit
++)
6389 switch (TOLOWER (*bit
))
6392 nzcvq_bits
|= (nzcvq_bits
& 0x01) ? 0x20 : 0x01;
6396 nzcvq_bits
|= (nzcvq_bits
& 0x02) ? 0x20 : 0x02;
6400 nzcvq_bits
|= (nzcvq_bits
& 0x04) ? 0x20 : 0x04;
6404 nzcvq_bits
|= (nzcvq_bits
& 0x08) ? 0x20 : 0x08;
6408 nzcvq_bits
|= (nzcvq_bits
& 0x10) ? 0x20 : 0x10;
6412 g_bit
|= (g_bit
& 0x1) ? 0x2 : 0x1;
6416 inst
.error
= _("unexpected bit specified after APSR");
6421 if (nzcvq_bits
== 0x1f)
6426 if (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
))
6428 inst
.error
= _("selected processor does not "
6429 "support DSP extension");
6436 if ((nzcvq_bits
& 0x20) != 0
6437 || (nzcvq_bits
!= 0x1f && nzcvq_bits
!= 0)
6438 || (g_bit
& 0x2) != 0)
6440 inst
.error
= _("bad bitmask specified after APSR");
6446 psr
= (const struct asm_psr
*) hash_find_n (arm_psr_hsh
, start
,
6451 psr_field
|= psr
->field
;
6457 goto error
; /* Garbage after "[CS]PSR". */
6459 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6460 is deprecated, but allow it anyway. */
6464 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6467 else if (!m_profile
)
6468 /* These bits are never right for M-profile devices: don't set them
6469 (only code paths which read/write APSR reach here). */
6470 psr_field
|= (PSR_c
| PSR_f
);
6476 inst
.error
= _("selected processor does not support requested special "
6477 "purpose register");
6481 inst
.error
= _("flag for {c}psr instruction expected");
6486 parse_sys_vldr_vstr (char **str
)
6495 {"FPSCR", 0x1, 0x0},
6496 {"FPSCR_nzcvqc", 0x2, 0x0},
6499 {"FPCXTNS", 0x6, 0x1},
6500 {"FPCXTS", 0x7, 0x1}
6502 char *op_end
= strchr (*str
, ',');
6503 size_t op_strlen
= op_end
- *str
;
6505 for (i
= 0; i
< sizeof (sysregs
) / sizeof (sysregs
[0]); i
++)
6507 if (!strncmp (*str
, sysregs
[i
].name
, op_strlen
))
6509 val
= sysregs
[i
].regl
| (sysregs
[i
].regh
<< 3);
6518 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6519 value suitable for splatting into the AIF field of the instruction. */
6522 parse_cps_flags (char **str
)
6531 case '\0': case ',':
6534 case 'a': case 'A': saw_a_flag
= 1; val
|= 0x4; break;
6535 case 'i': case 'I': saw_a_flag
= 1; val
|= 0x2; break;
6536 case 'f': case 'F': saw_a_flag
= 1; val
|= 0x1; break;
6539 inst
.error
= _("unrecognized CPS flag");
6544 if (saw_a_flag
== 0)
6546 inst
.error
= _("missing CPS flags");
6554 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6555 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6558 parse_endian_specifier (char **str
)
6563 if (strncasecmp (s
, "BE", 2))
6565 else if (strncasecmp (s
, "LE", 2))
6569 inst
.error
= _("valid endian specifiers are be or le");
6573 if (ISALNUM (s
[2]) || s
[2] == '_')
6575 inst
.error
= _("valid endian specifiers are be or le");
6580 return little_endian
;
6583 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6584 value suitable for poking into the rotate field of an sxt or sxta
6585 instruction, or FAIL on error. */
6588 parse_ror (char **str
)
6593 if (strncasecmp (s
, "ROR", 3) == 0)
6597 inst
.error
= _("missing rotation field after comma");
6601 if (parse_immediate (&s
, &rot
, 0, 24, FALSE
) == FAIL
)
6606 case 0: *str
= s
; return 0x0;
6607 case 8: *str
= s
; return 0x1;
6608 case 16: *str
= s
; return 0x2;
6609 case 24: *str
= s
; return 0x3;
6612 inst
.error
= _("rotation can only be 0, 8, 16, or 24");
6617 /* Parse a conditional code (from conds[] below). The value returned is in the
6618 range 0 .. 14, or FAIL. */
6620 parse_cond (char **str
)
6623 const struct asm_cond
*c
;
6625 /* Condition codes are always 2 characters, so matching up to
6626 3 characters is sufficient. */
6631 while (ISALPHA (*q
) && n
< 3)
6633 cond
[n
] = TOLOWER (*q
);
6638 c
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, cond
, n
);
6641 inst
.error
= _("condition required");
6649 /* Parse an option for a barrier instruction. Returns the encoding for the
6652 parse_barrier (char **str
)
6655 const struct asm_barrier_opt
*o
;
6658 while (ISALPHA (*q
))
6661 o
= (const struct asm_barrier_opt
*) hash_find_n (arm_barrier_opt_hsh
, p
,
6666 if (!mark_feature_used (&o
->arch
))
6673 /* Parse the operands of a table branch instruction. Similar to a memory
6676 parse_tb (char **str
)
6681 if (skip_past_char (&p
, '[') == FAIL
)
6683 inst
.error
= _("'[' expected");
6687 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
6689 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
6692 inst
.operands
[0].reg
= reg
;
6694 if (skip_past_comma (&p
) == FAIL
)
6696 inst
.error
= _("',' expected");
6700 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
6702 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
6705 inst
.operands
[0].imm
= reg
;
6707 if (skip_past_comma (&p
) == SUCCESS
)
6709 if (parse_shift (&p
, 0, SHIFT_LSL_IMMEDIATE
) == FAIL
)
6711 if (inst
.relocs
[0].exp
.X_add_number
!= 1)
6713 inst
.error
= _("invalid shift");
6716 inst
.operands
[0].shifted
= 1;
6719 if (skip_past_char (&p
, ']') == FAIL
)
6721 inst
.error
= _("']' expected");
6728 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6729 information on the types the operands can take and how they are encoded.
6730 Up to four operands may be read; this function handles setting the
6731 ".present" field for each read operand itself.
6732 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6733 else returns FAIL. */
6736 parse_neon_mov (char **str
, int *which_operand
)
6738 int i
= *which_operand
, val
;
6739 enum arm_reg_type rtype
;
6741 struct neon_type_el optype
;
6743 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6745 /* Cases 17 or 19. */
6746 inst
.operands
[i
].reg
= val
;
6747 inst
.operands
[i
].isvec
= 1;
6748 inst
.operands
[i
].isscalar
= 2;
6749 inst
.operands
[i
].vectype
= optype
;
6750 inst
.operands
[i
++].present
= 1;
6752 if (skip_past_comma (&ptr
) == FAIL
)
6755 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6757 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6758 inst
.operands
[i
].reg
= val
;
6759 inst
.operands
[i
].isreg
= 1;
6760 inst
.operands
[i
].present
= 1;
6762 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6764 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6765 inst
.operands
[i
].reg
= val
;
6766 inst
.operands
[i
].isvec
= 1;
6767 inst
.operands
[i
].isscalar
= 2;
6768 inst
.operands
[i
].vectype
= optype
;
6769 inst
.operands
[i
++].present
= 1;
6771 if (skip_past_comma (&ptr
) == FAIL
)
6774 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6777 inst
.operands
[i
].reg
= val
;
6778 inst
.operands
[i
].isreg
= 1;
6779 inst
.operands
[i
++].present
= 1;
6781 if (skip_past_comma (&ptr
) == FAIL
)
6784 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6787 inst
.operands
[i
].reg
= val
;
6788 inst
.operands
[i
].isreg
= 1;
6789 inst
.operands
[i
].present
= 1;
6793 first_error (_("expected ARM or MVE vector register"));
6797 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_VFD
)) != FAIL
)
6799 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6800 inst
.operands
[i
].reg
= val
;
6801 inst
.operands
[i
].isscalar
= 1;
6802 inst
.operands
[i
].vectype
= optype
;
6803 inst
.operands
[i
++].present
= 1;
6805 if (skip_past_comma (&ptr
) == FAIL
)
6808 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6811 inst
.operands
[i
].reg
= val
;
6812 inst
.operands
[i
].isreg
= 1;
6813 inst
.operands
[i
].present
= 1;
6815 else if (((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
, &optype
))
6817 || ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_MQ
, &rtype
, &optype
))
6820 /* Cases 0, 1, 2, 3, 5 (D only). */
6821 if (skip_past_comma (&ptr
) == FAIL
)
6824 inst
.operands
[i
].reg
= val
;
6825 inst
.operands
[i
].isreg
= 1;
6826 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
6827 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6828 inst
.operands
[i
].isvec
= 1;
6829 inst
.operands
[i
].vectype
= optype
;
6830 inst
.operands
[i
++].present
= 1;
6832 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6834 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6835 Case 13: VMOV <Sd>, <Rm> */
6836 inst
.operands
[i
].reg
= val
;
6837 inst
.operands
[i
].isreg
= 1;
6838 inst
.operands
[i
].present
= 1;
6840 if (rtype
== REG_TYPE_NQ
)
6842 first_error (_("can't use Neon quad register here"));
6845 else if (rtype
!= REG_TYPE_VFS
)
6848 if (skip_past_comma (&ptr
) == FAIL
)
6850 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6852 inst
.operands
[i
].reg
= val
;
6853 inst
.operands
[i
].isreg
= 1;
6854 inst
.operands
[i
].present
= 1;
6857 else if (((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
,
6859 || ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_MQ
, &rtype
,
6862 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6863 Case 1: VMOV<c><q> <Dd>, <Dm>
6864 Case 8: VMOV.F32 <Sd>, <Sm>
6865 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6867 inst
.operands
[i
].reg
= val
;
6868 inst
.operands
[i
].isreg
= 1;
6869 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
6870 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6871 inst
.operands
[i
].isvec
= 1;
6872 inst
.operands
[i
].vectype
= optype
;
6873 inst
.operands
[i
].present
= 1;
6875 if (skip_past_comma (&ptr
) == SUCCESS
)
6880 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6883 inst
.operands
[i
].reg
= val
;
6884 inst
.operands
[i
].isreg
= 1;
6885 inst
.operands
[i
++].present
= 1;
6887 if (skip_past_comma (&ptr
) == FAIL
)
6890 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6893 inst
.operands
[i
].reg
= val
;
6894 inst
.operands
[i
].isreg
= 1;
6895 inst
.operands
[i
].present
= 1;
6898 else if (parse_qfloat_immediate (&ptr
, &inst
.operands
[i
].imm
) == SUCCESS
)
6899 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6900 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6901 Case 10: VMOV.F32 <Sd>, #<imm>
6902 Case 11: VMOV.F64 <Dd>, #<imm> */
6903 inst
.operands
[i
].immisfloat
= 1;
6904 else if (parse_big_immediate (&ptr
, i
, NULL
, /*allow_symbol_p=*/FALSE
)
6906 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6907 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6911 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6915 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6917 /* Cases 6, 7, 16, 18. */
6918 inst
.operands
[i
].reg
= val
;
6919 inst
.operands
[i
].isreg
= 1;
6920 inst
.operands
[i
++].present
= 1;
6922 if (skip_past_comma (&ptr
) == FAIL
)
6925 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6927 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6928 inst
.operands
[i
].reg
= val
;
6929 inst
.operands
[i
].isscalar
= 2;
6930 inst
.operands
[i
].present
= 1;
6931 inst
.operands
[i
].vectype
= optype
;
6933 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_VFD
)) != FAIL
)
6935 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6936 inst
.operands
[i
].reg
= val
;
6937 inst
.operands
[i
].isscalar
= 1;
6938 inst
.operands
[i
].present
= 1;
6939 inst
.operands
[i
].vectype
= optype
;
6941 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6943 inst
.operands
[i
].reg
= val
;
6944 inst
.operands
[i
].isreg
= 1;
6945 inst
.operands
[i
++].present
= 1;
6947 if (skip_past_comma (&ptr
) == FAIL
)
6950 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFSD
, &rtype
, &optype
))
6953 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6955 inst
.operands
[i
].reg
= val
;
6956 inst
.operands
[i
].isreg
= 1;
6957 inst
.operands
[i
].isvec
= 1;
6958 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6959 inst
.operands
[i
].vectype
= optype
;
6960 inst
.operands
[i
].present
= 1;
6962 if (rtype
== REG_TYPE_VFS
)
6966 if (skip_past_comma (&ptr
) == FAIL
)
6968 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
,
6971 first_error (_(reg_expected_msgs
[REG_TYPE_VFS
]));
6974 inst
.operands
[i
].reg
= val
;
6975 inst
.operands
[i
].isreg
= 1;
6976 inst
.operands
[i
].isvec
= 1;
6977 inst
.operands
[i
].issingle
= 1;
6978 inst
.operands
[i
].vectype
= optype
;
6979 inst
.operands
[i
].present
= 1;
6984 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
))
6987 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6988 inst
.operands
[i
].reg
= val
;
6989 inst
.operands
[i
].isvec
= 1;
6990 inst
.operands
[i
].isscalar
= 2;
6991 inst
.operands
[i
].vectype
= optype
;
6992 inst
.operands
[i
++].present
= 1;
6994 if (skip_past_comma (&ptr
) == FAIL
)
6997 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
))
7000 first_error (_(reg_expected_msgs
[REG_TYPE_MQ
]));
7003 inst
.operands
[i
].reg
= val
;
7004 inst
.operands
[i
].isvec
= 1;
7005 inst
.operands
[i
].isscalar
= 2;
7006 inst
.operands
[i
].vectype
= optype
;
7007 inst
.operands
[i
].present
= 1;
7011 first_error (_("VFP single, double or MVE vector register"
7017 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
, &optype
))
7021 inst
.operands
[i
].reg
= val
;
7022 inst
.operands
[i
].isreg
= 1;
7023 inst
.operands
[i
].isvec
= 1;
7024 inst
.operands
[i
].issingle
= 1;
7025 inst
.operands
[i
].vectype
= optype
;
7026 inst
.operands
[i
].present
= 1;
7031 first_error (_("parse error"));
7035 /* Successfully parsed the operands. Update args. */
7041 first_error (_("expected comma"));
7045 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
7049 /* Use this macro when the operand constraints are different
7050 for ARM and THUMB (e.g. ldrd). */
7051 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
7052 ((arm_operand) | ((thumb_operand) << 16))
7054 /* Matcher codes for parse_operands. */
7055 enum operand_parse_code
7057 OP_stop
, /* end of line */
7059 OP_RR
, /* ARM register */
7060 OP_RRnpc
, /* ARM register, not r15 */
7061 OP_RRnpcsp
, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
7062 OP_RRnpcb
, /* ARM register, not r15, in square brackets */
7063 OP_RRnpctw
, /* ARM register, not r15 in Thumb-state or with writeback,
7064 optional trailing ! */
7065 OP_RRw
, /* ARM register, not r15, optional trailing ! */
7066 OP_RCP
, /* Coprocessor number */
7067 OP_RCN
, /* Coprocessor register */
7068 OP_RF
, /* FPA register */
7069 OP_RVS
, /* VFP single precision register */
7070 OP_RVD
, /* VFP double precision register (0..15) */
7071 OP_RND
, /* Neon double precision register (0..31) */
7072 OP_RNDMQ
, /* Neon double precision (0..31) or MVE vector register. */
7073 OP_RNDMQR
, /* Neon double precision (0..31), MVE vector or ARM register.
7075 OP_RNSDMQR
, /* Neon single or double precision, MVE vector or ARM register.
7077 OP_RNQ
, /* Neon quad precision register */
7078 OP_RNQMQ
, /* Neon quad or MVE vector register. */
7079 OP_RVSD
, /* VFP single or double precision register */
7080 OP_RVSD_COND
, /* VFP single, double precision register or condition code. */
7081 OP_RVSDMQ
, /* VFP single, double precision or MVE vector register. */
7082 OP_RNSD
, /* Neon single or double precision register */
7083 OP_RNDQ
, /* Neon double or quad precision register */
7084 OP_RNDQMQ
, /* Neon double, quad or MVE vector register. */
7085 OP_RNDQMQR
, /* Neon double, quad, MVE vector or ARM register. */
7086 OP_RNSDQ
, /* Neon single, double or quad precision register */
7087 OP_RNSC
, /* Neon scalar D[X] */
7088 OP_RVC
, /* VFP control register */
7089 OP_RMF
, /* Maverick F register */
7090 OP_RMD
, /* Maverick D register */
7091 OP_RMFX
, /* Maverick FX register */
7092 OP_RMDX
, /* Maverick DX register */
7093 OP_RMAX
, /* Maverick AX register */
7094 OP_RMDS
, /* Maverick DSPSC register */
7095 OP_RIWR
, /* iWMMXt wR register */
7096 OP_RIWC
, /* iWMMXt wC register */
7097 OP_RIWG
, /* iWMMXt wCG register */
7098 OP_RXA
, /* XScale accumulator register */
7100 OP_RNSDMQ
, /* Neon single, double or MVE vector register */
7101 OP_RNSDQMQ
, /* Neon single, double or quad register or MVE vector register
7103 OP_RNSDQMQR
, /* Neon single, double or quad register, MVE vector register or
7105 OP_RMQ
, /* MVE vector register. */
7106 OP_RMQRZ
, /* MVE vector or ARM register including ZR. */
7107 OP_RMQRR
, /* MVE vector or ARM register. */
7109 /* New operands for Armv8.1-M Mainline. */
7110 OP_LR
, /* ARM LR register */
7111 OP_RRe
, /* ARM register, only even numbered. */
7112 OP_RRo
, /* ARM register, only odd numbered, not r13 or r15. */
7113 OP_RRnpcsp_I32
, /* ARM register (no BadReg) or literal 1 .. 32 */
7114 OP_RR_ZR
, /* ARM register or ZR but no PC */
7116 OP_REGLST
, /* ARM register list */
7117 OP_CLRMLST
, /* CLRM register list */
7118 OP_VRSLST
, /* VFP single-precision register list */
7119 OP_VRDLST
, /* VFP double-precision register list */
7120 OP_VRSDLST
, /* VFP single or double-precision register list (& quad) */
7121 OP_NRDLST
, /* Neon double-precision register list (d0-d31, qN aliases) */
7122 OP_NSTRLST
, /* Neon element/structure list */
7123 OP_VRSDVLST
, /* VFP single or double-precision register list and VPR */
7124 OP_MSTRLST2
, /* MVE vector list with two elements. */
7125 OP_MSTRLST4
, /* MVE vector list with four elements. */
7127 OP_RNDQ_I0
, /* Neon D or Q reg, or immediate zero. */
7128 OP_RVSD_I0
, /* VFP S or D reg, or immediate zero. */
7129 OP_RSVD_FI0
, /* VFP S or D reg, or floating point immediate zero. */
7130 OP_RSVDMQ_FI0
, /* VFP S, D, MVE vector register or floating point immediate
7132 OP_RR_RNSC
, /* ARM reg or Neon scalar. */
7133 OP_RNSD_RNSC
, /* Neon S or D reg, or Neon scalar. */
7134 OP_RNSDQ_RNSC
, /* Vector S, D or Q reg, or Neon scalar. */
7135 OP_RNSDQ_RNSC_MQ
, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
7137 OP_RNSDQ_RNSC_MQ_RR
, /* Vector S, D or Q reg, or MVE vector reg , or Neon
7138 scalar, or ARM register. */
7139 OP_RNDQ_RNSC
, /* Neon D or Q reg, or Neon scalar. */
7140 OP_RNDQ_RNSC_RR
, /* Neon D or Q reg, Neon scalar, or ARM register. */
7141 OP_RNDQMQ_RNSC_RR
, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
7143 OP_RNDQMQ_RNSC
, /* Neon D, Q or MVE vector reg, or Neon scalar. */
7144 OP_RND_RNSC
, /* Neon D reg, or Neon scalar. */
7145 OP_VMOV
, /* Neon VMOV operands. */
7146 OP_RNDQ_Ibig
, /* Neon D or Q reg, or big immediate for logic and VMVN. */
7147 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
7149 OP_RNDQ_I63b
, /* Neon D or Q reg, or immediate for shift. */
7150 OP_RNDQMQ_I63b_RR
, /* Neon D or Q reg, immediate for shift, MVE vector or
7152 OP_RIWR_I32z
, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
7153 OP_VLDR
, /* VLDR operand. */
7155 OP_I0
, /* immediate zero */
7156 OP_I7
, /* immediate value 0 .. 7 */
7157 OP_I15
, /* 0 .. 15 */
7158 OP_I16
, /* 1 .. 16 */
7159 OP_I16z
, /* 0 .. 16 */
7160 OP_I31
, /* 0 .. 31 */
7161 OP_I31w
, /* 0 .. 31, optional trailing ! */
7162 OP_I32
, /* 1 .. 32 */
7163 OP_I32z
, /* 0 .. 32 */
7164 OP_I48_I64
, /* 48 or 64 */
7165 OP_I63
, /* 0 .. 63 */
7166 OP_I63s
, /* -64 .. 63 */
7167 OP_I64
, /* 1 .. 64 */
7168 OP_I64z
, /* 0 .. 64 */
7169 OP_I127
, /* 0 .. 127 */
7170 OP_I255
, /* 0 .. 255 */
7171 OP_I511
, /* 0 .. 511 */
7172 OP_I4095
, /* 0 .. 4095 */
7173 OP_I8191
, /* 0 .. 8191 */
7174 OP_I4b
, /* immediate, prefix optional, 1 .. 4 */
7175 OP_I7b
, /* 0 .. 7 */
7176 OP_I15b
, /* 0 .. 15 */
7177 OP_I31b
, /* 0 .. 31 */
7179 OP_SH
, /* shifter operand */
7180 OP_SHG
, /* shifter operand with possible group relocation */
7181 OP_ADDR
, /* Memory address expression (any mode) */
7182 OP_ADDRMVE
, /* Memory address expression for MVE's VSTR/VLDR. */
7183 OP_ADDRGLDR
, /* Mem addr expr (any mode) with possible LDR group reloc */
7184 OP_ADDRGLDRS
, /* Mem addr expr (any mode) with possible LDRS group reloc */
7185 OP_ADDRGLDC
, /* Mem addr expr (any mode) with possible LDC group reloc */
7186 OP_EXP
, /* arbitrary expression */
7187 OP_EXPi
, /* same, with optional immediate prefix */
7188 OP_EXPr
, /* same, with optional relocation suffix */
7189 OP_EXPs
, /* same, with optional non-first operand relocation suffix */
7190 OP_HALF
, /* 0 .. 65535 or low/high reloc. */
7191 OP_IROT1
, /* VCADD rotate immediate: 90, 270. */
7192 OP_IROT2
, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7194 OP_CPSF
, /* CPS flags */
7195 OP_ENDI
, /* Endianness specifier */
7196 OP_wPSR
, /* CPSR/SPSR/APSR mask for msr (writing). */
7197 OP_rPSR
, /* CPSR/SPSR/APSR mask for msr (reading). */
7198 OP_COND
, /* conditional code */
7199 OP_TB
, /* Table branch. */
7201 OP_APSR_RR
, /* ARM register or "APSR_nzcv". */
7203 OP_RRnpc_I0
, /* ARM register or literal 0 */
7204 OP_RR_EXr
, /* ARM register or expression with opt. reloc stuff. */
7205 OP_RR_EXi
, /* ARM register or expression with imm prefix */
7206 OP_RF_IF
, /* FPA register or immediate */
7207 OP_RIWR_RIWC
, /* iWMMXt R or C reg */
7208 OP_RIWC_RIWG
, /* iWMMXt wC or wCG reg */
7210 /* Optional operands. */
7211 OP_oI7b
, /* immediate, prefix optional, 0 .. 7 */
7212 OP_oI31b
, /* 0 .. 31 */
7213 OP_oI32b
, /* 1 .. 32 */
7214 OP_oI32z
, /* 0 .. 32 */
7215 OP_oIffffb
, /* 0 .. 65535 */
7216 OP_oI255c
, /* curly-brace enclosed, 0 .. 255 */
7218 OP_oRR
, /* ARM register */
7219 OP_oLR
, /* ARM LR register */
7220 OP_oRRnpc
, /* ARM register, not the PC */
7221 OP_oRRnpcsp
, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7222 OP_oRRw
, /* ARM register, not r15, optional trailing ! */
7223 OP_oRND
, /* Optional Neon double precision register */
7224 OP_oRNQ
, /* Optional Neon quad precision register */
7225 OP_oRNDQMQ
, /* Optional Neon double, quad or MVE vector register. */
7226 OP_oRNDQ
, /* Optional Neon double or quad precision register */
7227 OP_oRNSDQ
, /* Optional single, double or quad precision vector register */
7228 OP_oRNSDQMQ
, /* Optional single, double or quad register or MVE vector
7230 OP_oRNSDMQ
, /* Optional single, double register or MVE vector
7232 OP_oSHll
, /* LSL immediate */
7233 OP_oSHar
, /* ASR immediate */
7234 OP_oSHllar
, /* LSL or ASR immediate */
7235 OP_oROR
, /* ROR 0/8/16/24 */
7236 OP_oBARRIER_I15
, /* Option argument for a barrier instruction. */
7238 OP_oRMQRZ
, /* optional MVE vector or ARM register including ZR. */
7240 /* Some pre-defined mixed (ARM/THUMB) operands. */
7241 OP_RR_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RR
, OP_RRnpcsp
),
7242 OP_RRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RRnpc
, OP_RRnpcsp
),
7243 OP_oRRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_oRRnpc
, OP_oRRnpcsp
),
7245 OP_FIRST_OPTIONAL
= OP_oI7b
7248 /* Generic instruction operand parser. This does no encoding and no
7249 semantic validation; it merely squirrels values away in the inst
7250 structure. Returns SUCCESS or FAIL depending on whether the
7251 specified grammar matched. */
7253 parse_operands (char *str
, const unsigned int *pattern
, bfd_boolean thumb
)
7255 unsigned const int *upat
= pattern
;
7256 char *backtrack_pos
= 0;
7257 const char *backtrack_error
= 0;
7258 int i
, val
= 0, backtrack_index
= 0;
7259 enum arm_reg_type rtype
;
7260 parse_operand_result result
;
7261 unsigned int op_parse_code
;
7262 bfd_boolean partial_match
;
7264 #define po_char_or_fail(chr) \
7267 if (skip_past_char (&str, chr) == FAIL) \
7272 #define po_reg_or_fail(regtype) \
7275 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7276 & inst.operands[i].vectype); \
7279 first_error (_(reg_expected_msgs[regtype])); \
7282 inst.operands[i].reg = val; \
7283 inst.operands[i].isreg = 1; \
7284 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7285 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7286 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7287 || rtype == REG_TYPE_VFD \
7288 || rtype == REG_TYPE_NQ); \
7289 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7293 #define po_reg_or_goto(regtype, label) \
7296 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7297 & inst.operands[i].vectype); \
7301 inst.operands[i].reg = val; \
7302 inst.operands[i].isreg = 1; \
7303 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7304 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7305 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7306 || rtype == REG_TYPE_VFD \
7307 || rtype == REG_TYPE_NQ); \
7308 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7312 #define po_imm_or_fail(min, max, popt) \
7315 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7317 inst.operands[i].imm = val; \
7321 #define po_imm1_or_imm2_or_fail(imm1, imm2, popt) \
7325 my_get_expression (&exp, &str, popt); \
7326 if (exp.X_op != O_constant) \
7328 inst.error = _("constant expression required"); \
7331 if (exp.X_add_number != imm1 && exp.X_add_number != imm2) \
7333 inst.error = _("immediate value 48 or 64 expected"); \
7336 inst.operands[i].imm = exp.X_add_number; \
7340 #define po_scalar_or_goto(elsz, label, reg_type) \
7343 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7347 inst.operands[i].reg = val; \
7348 inst.operands[i].isscalar = 1; \
7352 #define po_misc_or_fail(expr) \
7360 #define po_misc_or_fail_no_backtrack(expr) \
7364 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7365 backtrack_pos = 0; \
7366 if (result != PARSE_OPERAND_SUCCESS) \
7371 #define po_barrier_or_imm(str) \
7374 val = parse_barrier (&str); \
7375 if (val == FAIL && ! ISALPHA (*str)) \
7378 /* ISB can only take SY as an option. */ \
7379 || ((inst.instruction & 0xf0) == 0x60 \
7382 inst.error = _("invalid barrier type"); \
7383 backtrack_pos = 0; \
7389 skip_whitespace (str
);
7391 for (i
= 0; upat
[i
] != OP_stop
; i
++)
7393 op_parse_code
= upat
[i
];
7394 if (op_parse_code
>= 1<<16)
7395 op_parse_code
= thumb
? (op_parse_code
>> 16)
7396 : (op_parse_code
& ((1<<16)-1));
7398 if (op_parse_code
>= OP_FIRST_OPTIONAL
)
7400 /* Remember where we are in case we need to backtrack. */
7401 backtrack_pos
= str
;
7402 backtrack_error
= inst
.error
;
7403 backtrack_index
= i
;
7406 if (i
> 0 && (i
> 1 || inst
.operands
[0].present
))
7407 po_char_or_fail (',');
7409 switch (op_parse_code
)
7421 case OP_RR
: po_reg_or_fail (REG_TYPE_RN
); break;
7422 case OP_RCP
: po_reg_or_fail (REG_TYPE_CP
); break;
7423 case OP_RCN
: po_reg_or_fail (REG_TYPE_CN
); break;
7424 case OP_RF
: po_reg_or_fail (REG_TYPE_FN
); break;
7425 case OP_RVS
: po_reg_or_fail (REG_TYPE_VFS
); break;
7426 case OP_RVD
: po_reg_or_fail (REG_TYPE_VFD
); break;
7429 po_reg_or_goto (REG_TYPE_VFS
, try_rndmqr
);
7433 po_reg_or_goto (REG_TYPE_RN
, try_rndmq
);
7437 po_reg_or_goto (REG_TYPE_MQ
, try_rnd
);
7440 case OP_RND
: po_reg_or_fail (REG_TYPE_VFD
); break;
7442 po_reg_or_goto (REG_TYPE_VFC
, coproc_reg
);
7444 /* Also accept generic coprocessor regs for unknown registers. */
7446 po_reg_or_goto (REG_TYPE_CN
, vpr_po
);
7448 /* Also accept P0 or p0 for VPR.P0. Since P0 is already an
7449 existing register with a value of 0, this seems like the
7450 best way to parse P0. */
7452 if (strncasecmp (str
, "P0", 2) == 0)
7455 inst
.operands
[i
].isreg
= 1;
7456 inst
.operands
[i
].reg
= 13;
7461 case OP_RMF
: po_reg_or_fail (REG_TYPE_MVF
); break;
7462 case OP_RMD
: po_reg_or_fail (REG_TYPE_MVD
); break;
7463 case OP_RMFX
: po_reg_or_fail (REG_TYPE_MVFX
); break;
7464 case OP_RMDX
: po_reg_or_fail (REG_TYPE_MVDX
); break;
7465 case OP_RMAX
: po_reg_or_fail (REG_TYPE_MVAX
); break;
7466 case OP_RMDS
: po_reg_or_fail (REG_TYPE_DSPSC
); break;
7467 case OP_RIWR
: po_reg_or_fail (REG_TYPE_MMXWR
); break;
7468 case OP_RIWC
: po_reg_or_fail (REG_TYPE_MMXWC
); break;
7469 case OP_RIWG
: po_reg_or_fail (REG_TYPE_MMXWCG
); break;
7470 case OP_RXA
: po_reg_or_fail (REG_TYPE_XSCALE
); break;
7473 po_reg_or_goto (REG_TYPE_MQ
, try_nq
);
7476 case OP_RNQ
: po_reg_or_fail (REG_TYPE_NQ
); break;
7477 case OP_RNSD
: po_reg_or_fail (REG_TYPE_NSD
); break;
7479 po_reg_or_goto (REG_TYPE_RN
, try_rndqmq
);
7484 po_reg_or_goto (REG_TYPE_MQ
, try_rndq
);
7488 case OP_RNDQ
: po_reg_or_fail (REG_TYPE_NDQ
); break;
7490 po_reg_or_goto (REG_TYPE_MQ
, try_rvsd
);
7493 case OP_RVSD
: po_reg_or_fail (REG_TYPE_VFSD
); break;
7495 po_reg_or_goto (REG_TYPE_VFSD
, try_cond
);
7499 po_reg_or_goto (REG_TYPE_NSD
, try_mq2
);
7502 po_reg_or_fail (REG_TYPE_MQ
);
7505 case OP_RNSDQ
: po_reg_or_fail (REG_TYPE_NSDQ
); break;
7507 po_reg_or_goto (REG_TYPE_RN
, try_mq
);
7512 po_reg_or_goto (REG_TYPE_MQ
, try_nsdq2
);
7515 po_reg_or_fail (REG_TYPE_NSDQ
);
7519 po_reg_or_goto (REG_TYPE_RN
, try_rmq
);
7523 po_reg_or_fail (REG_TYPE_MQ
);
7525 /* Neon scalar. Using an element size of 8 means that some invalid
7526 scalars are accepted here, so deal with those in later code. */
7527 case OP_RNSC
: po_scalar_or_goto (8, failure
, REG_TYPE_VFD
); break;
7531 po_reg_or_goto (REG_TYPE_NDQ
, try_imm0
);
7534 po_imm_or_fail (0, 0, TRUE
);
7539 po_reg_or_goto (REG_TYPE_VFSD
, try_imm0
);
7543 po_reg_or_goto (REG_TYPE_MQ
, try_rsvd_fi0
);
7548 po_reg_or_goto (REG_TYPE_VFSD
, try_ifimm0
);
7551 if (parse_ifimm_zero (&str
))
7552 inst
.operands
[i
].imm
= 0;
7556 = _("only floating point zero is allowed as immediate value");
7564 po_scalar_or_goto (8, try_rr
, REG_TYPE_VFD
);
7567 po_reg_or_fail (REG_TYPE_RN
);
7571 case OP_RNSDQ_RNSC_MQ_RR
:
7572 po_reg_or_goto (REG_TYPE_RN
, try_rnsdq_rnsc_mq
);
7575 case OP_RNSDQ_RNSC_MQ
:
7576 po_reg_or_goto (REG_TYPE_MQ
, try_rnsdq_rnsc
);
7581 po_scalar_or_goto (8, try_nsdq
, REG_TYPE_VFD
);
7585 po_reg_or_fail (REG_TYPE_NSDQ
);
7592 po_scalar_or_goto (8, try_s_scalar
, REG_TYPE_VFD
);
7595 po_scalar_or_goto (4, try_nsd
, REG_TYPE_VFS
);
7598 po_reg_or_fail (REG_TYPE_NSD
);
7602 case OP_RNDQMQ_RNSC_RR
:
7603 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_rnsc_rr
);
7606 case OP_RNDQ_RNSC_RR
:
7607 po_reg_or_goto (REG_TYPE_RN
, try_rndq_rnsc
);
7609 case OP_RNDQMQ_RNSC
:
7610 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_rnsc
);
7615 po_scalar_or_goto (8, try_ndq
, REG_TYPE_VFD
);
7618 po_reg_or_fail (REG_TYPE_NDQ
);
7624 po_scalar_or_goto (8, try_vfd
, REG_TYPE_VFD
);
7627 po_reg_or_fail (REG_TYPE_VFD
);
7632 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7633 not careful then bad things might happen. */
7634 po_misc_or_fail (parse_neon_mov (&str
, &i
) == FAIL
);
7637 case OP_RNDQMQ_Ibig
:
7638 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_ibig
);
7643 po_reg_or_goto (REG_TYPE_NDQ
, try_immbig
);
7646 /* There's a possibility of getting a 64-bit immediate here, so
7647 we need special handling. */
7648 if (parse_big_immediate (&str
, i
, NULL
, /*allow_symbol_p=*/FALSE
)
7651 inst
.error
= _("immediate value is out of range");
7657 case OP_RNDQMQ_I63b_RR
:
7658 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_i63b_rr
);
7661 po_reg_or_goto (REG_TYPE_RN
, try_rndq_i63b
);
7666 po_reg_or_goto (REG_TYPE_NDQ
, try_shimm
);
7669 po_imm_or_fail (0, 63, TRUE
);
7674 po_char_or_fail ('[');
7675 po_reg_or_fail (REG_TYPE_RN
);
7676 po_char_or_fail (']');
7682 po_reg_or_fail (REG_TYPE_RN
);
7683 if (skip_past_char (&str
, '!') == SUCCESS
)
7684 inst
.operands
[i
].writeback
= 1;
7688 case OP_I7
: po_imm_or_fail ( 0, 7, FALSE
); break;
7689 case OP_I15
: po_imm_or_fail ( 0, 15, FALSE
); break;
7690 case OP_I16
: po_imm_or_fail ( 1, 16, FALSE
); break;
7691 case OP_I16z
: po_imm_or_fail ( 0, 16, FALSE
); break;
7692 case OP_I31
: po_imm_or_fail ( 0, 31, FALSE
); break;
7693 case OP_I32
: po_imm_or_fail ( 1, 32, FALSE
); break;
7694 case OP_I32z
: po_imm_or_fail ( 0, 32, FALSE
); break;
7695 case OP_I48_I64
: po_imm1_or_imm2_or_fail (48, 64, FALSE
); break;
7696 case OP_I63s
: po_imm_or_fail (-64, 63, FALSE
); break;
7697 case OP_I63
: po_imm_or_fail ( 0, 63, FALSE
); break;
7698 case OP_I64
: po_imm_or_fail ( 1, 64, FALSE
); break;
7699 case OP_I64z
: po_imm_or_fail ( 0, 64, FALSE
); break;
7700 case OP_I127
: po_imm_or_fail ( 0, 127, FALSE
); break;
7701 case OP_I255
: po_imm_or_fail ( 0, 255, FALSE
); break;
7702 case OP_I511
: po_imm_or_fail ( 0, 511, FALSE
); break;
7703 case OP_I4095
: po_imm_or_fail ( 0, 4095, FALSE
); break;
7704 case OP_I8191
: po_imm_or_fail ( 0, 8191, FALSE
); break;
7705 case OP_I4b
: po_imm_or_fail ( 1, 4, TRUE
); break;
7707 case OP_I7b
: po_imm_or_fail ( 0, 7, TRUE
); break;
7708 case OP_I15b
: po_imm_or_fail ( 0, 15, TRUE
); break;
7710 case OP_I31b
: po_imm_or_fail ( 0, 31, TRUE
); break;
7711 case OP_oI32b
: po_imm_or_fail ( 1, 32, TRUE
); break;
7712 case OP_oI32z
: po_imm_or_fail ( 0, 32, TRUE
); break;
7713 case OP_oIffffb
: po_imm_or_fail ( 0, 0xffff, TRUE
); break;
7715 /* Immediate variants */
7717 po_char_or_fail ('{');
7718 po_imm_or_fail (0, 255, TRUE
);
7719 po_char_or_fail ('}');
7723 /* The expression parser chokes on a trailing !, so we have
7724 to find it first and zap it. */
7727 while (*s
&& *s
!= ',')
7732 inst
.operands
[i
].writeback
= 1;
7734 po_imm_or_fail (0, 31, TRUE
);
7742 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7747 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7752 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7754 if (inst
.relocs
[0].exp
.X_op
== O_symbol
)
7756 val
= parse_reloc (&str
);
7759 inst
.error
= _("unrecognized relocation suffix");
7762 else if (val
!= BFD_RELOC_UNUSED
)
7764 inst
.operands
[i
].imm
= val
;
7765 inst
.operands
[i
].hasreloc
= 1;
7771 po_misc_or_fail (my_get_expression (&inst
.relocs
[i
].exp
, &str
,
7773 if (inst
.relocs
[i
].exp
.X_op
== O_symbol
)
7775 inst
.operands
[i
].hasreloc
= 1;
7777 else if (inst
.relocs
[i
].exp
.X_op
== O_constant
)
7779 inst
.operands
[i
].imm
= inst
.relocs
[i
].exp
.X_add_number
;
7780 inst
.operands
[i
].hasreloc
= 0;
7784 /* Operand for MOVW or MOVT. */
7786 po_misc_or_fail (parse_half (&str
));
7789 /* Register or expression. */
7790 case OP_RR_EXr
: po_reg_or_goto (REG_TYPE_RN
, EXPr
); break;
7791 case OP_RR_EXi
: po_reg_or_goto (REG_TYPE_RN
, EXPi
); break;
7793 /* Register or immediate. */
7794 case OP_RRnpc_I0
: po_reg_or_goto (REG_TYPE_RN
, I0
); break;
7795 I0
: po_imm_or_fail (0, 0, FALSE
); break;
7797 case OP_RRnpcsp_I32
: po_reg_or_goto (REG_TYPE_RN
, I32
); break;
7798 I32
: po_imm_or_fail (1, 32, FALSE
); break;
7800 case OP_RF_IF
: po_reg_or_goto (REG_TYPE_FN
, IF
); break;
7802 if (!is_immediate_prefix (*str
))
7805 val
= parse_fpa_immediate (&str
);
7808 /* FPA immediates are encoded as registers 8-15.
7809 parse_fpa_immediate has already applied the offset. */
7810 inst
.operands
[i
].reg
= val
;
7811 inst
.operands
[i
].isreg
= 1;
7814 case OP_RIWR_I32z
: po_reg_or_goto (REG_TYPE_MMXWR
, I32z
); break;
7815 I32z
: po_imm_or_fail (0, 32, FALSE
); break;
7817 /* Two kinds of register. */
7820 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
7822 || (rege
->type
!= REG_TYPE_MMXWR
7823 && rege
->type
!= REG_TYPE_MMXWC
7824 && rege
->type
!= REG_TYPE_MMXWCG
))
7826 inst
.error
= _("iWMMXt data or control register expected");
7829 inst
.operands
[i
].reg
= rege
->number
;
7830 inst
.operands
[i
].isreg
= (rege
->type
== REG_TYPE_MMXWR
);
7836 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
7838 || (rege
->type
!= REG_TYPE_MMXWC
7839 && rege
->type
!= REG_TYPE_MMXWCG
))
7841 inst
.error
= _("iWMMXt control register expected");
7844 inst
.operands
[i
].reg
= rege
->number
;
7845 inst
.operands
[i
].isreg
= 1;
7850 case OP_CPSF
: val
= parse_cps_flags (&str
); break;
7851 case OP_ENDI
: val
= parse_endian_specifier (&str
); break;
7852 case OP_oROR
: val
= parse_ror (&str
); break;
7854 case OP_COND
: val
= parse_cond (&str
); break;
7855 case OP_oBARRIER_I15
:
7856 po_barrier_or_imm (str
); break;
7858 if (parse_immediate (&str
, &val
, 0, 15, TRUE
) == FAIL
)
7864 po_reg_or_goto (REG_TYPE_RNB
, try_psr
);
7865 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_virt
))
7867 inst
.error
= _("Banked registers are not available with this "
7873 val
= parse_psr (&str
, op_parse_code
== OP_wPSR
);
7877 po_reg_or_goto (REG_TYPE_VFSD
, try_sysreg
);
7880 val
= parse_sys_vldr_vstr (&str
);
7884 po_reg_or_goto (REG_TYPE_RN
, try_apsr
);
7887 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7889 if (strncasecmp (str
, "APSR_", 5) == 0)
7896 case 'c': found
= (found
& 1) ? 16 : found
| 1; break;
7897 case 'n': found
= (found
& 2) ? 16 : found
| 2; break;
7898 case 'z': found
= (found
& 4) ? 16 : found
| 4; break;
7899 case 'v': found
= (found
& 8) ? 16 : found
| 8; break;
7900 default: found
= 16;
7904 inst
.operands
[i
].isvec
= 1;
7905 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7906 inst
.operands
[i
].reg
= REG_PC
;
7913 po_misc_or_fail (parse_tb (&str
));
7916 /* Register lists. */
7918 val
= parse_reg_list (&str
, REGLIST_RN
);
7921 inst
.operands
[i
].writeback
= 1;
7927 val
= parse_reg_list (&str
, REGLIST_CLRM
);
7931 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_S
,
7936 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_D
,
7941 /* Allow Q registers too. */
7942 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7943 REGLIST_NEON_D
, &partial_match
);
7947 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7948 REGLIST_VFP_S
, &partial_match
);
7949 inst
.operands
[i
].issingle
= 1;
7954 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7955 REGLIST_VFP_D_VPR
, &partial_match
);
7956 if (val
== FAIL
&& !partial_match
)
7959 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7960 REGLIST_VFP_S_VPR
, &partial_match
);
7961 inst
.operands
[i
].issingle
= 1;
7966 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7967 REGLIST_NEON_D
, &partial_match
);
7972 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
7973 1, &inst
.operands
[i
].vectype
);
7974 if (val
!= (((op_parse_code
== OP_MSTRLST2
) ? 3 : 7) << 5 | 0xe))
7978 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
7979 0, &inst
.operands
[i
].vectype
);
7982 /* Addressing modes */
7984 po_misc_or_fail (parse_address_group_reloc (&str
, i
, GROUP_MVE
));
7988 po_misc_or_fail (parse_address (&str
, i
));
7992 po_misc_or_fail_no_backtrack (
7993 parse_address_group_reloc (&str
, i
, GROUP_LDR
));
7997 po_misc_or_fail_no_backtrack (
7998 parse_address_group_reloc (&str
, i
, GROUP_LDRS
));
8002 po_misc_or_fail_no_backtrack (
8003 parse_address_group_reloc (&str
, i
, GROUP_LDC
));
8007 po_misc_or_fail (parse_shifter_operand (&str
, i
));
8011 po_misc_or_fail_no_backtrack (
8012 parse_shifter_operand_group_reloc (&str
, i
));
8016 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_IMMEDIATE
));
8020 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_ASR_IMMEDIATE
));
8024 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_OR_ASR_IMMEDIATE
));
8029 po_reg_or_goto (REG_TYPE_MQ
, try_rr_zr
);
8034 po_reg_or_goto (REG_TYPE_RN
, ZR
);
8037 po_reg_or_fail (REG_TYPE_ZR
);
8041 as_fatal (_("unhandled operand code %d"), op_parse_code
);
8044 /* Various value-based sanity checks and shared operations. We
8045 do not signal immediate failures for the register constraints;
8046 this allows a syntax error to take precedence. */
8047 switch (op_parse_code
)
8055 if (inst
.operands
[i
].isreg
&& inst
.operands
[i
].reg
== REG_PC
)
8056 inst
.error
= BAD_PC
;
8061 case OP_RRnpcsp_I32
:
8062 if (inst
.operands
[i
].isreg
)
8064 if (inst
.operands
[i
].reg
== REG_PC
)
8065 inst
.error
= BAD_PC
;
8066 else if (inst
.operands
[i
].reg
== REG_SP
8067 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
8068 relaxed since ARMv8-A. */
8069 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
8072 inst
.error
= BAD_SP
;
8078 if (inst
.operands
[i
].isreg
8079 && inst
.operands
[i
].reg
== REG_PC
8080 && (inst
.operands
[i
].writeback
|| thumb
))
8081 inst
.error
= BAD_PC
;
8086 if (inst
.operands
[i
].isreg
)
8096 case OP_oBARRIER_I15
:
8109 inst
.operands
[i
].imm
= val
;
8114 if (inst
.operands
[i
].reg
!= REG_LR
)
8115 inst
.error
= _("operand must be LR register");
8121 if (!inst
.operands
[i
].iszr
&& inst
.operands
[i
].reg
== REG_PC
)
8122 inst
.error
= BAD_PC
;
8126 if (inst
.operands
[i
].isreg
8127 && (inst
.operands
[i
].reg
& 0x00000001) != 0)
8128 inst
.error
= BAD_ODD
;
8132 if (inst
.operands
[i
].isreg
)
8134 if ((inst
.operands
[i
].reg
& 0x00000001) != 1)
8135 inst
.error
= BAD_EVEN
;
8136 else if (inst
.operands
[i
].reg
== REG_SP
)
8137 as_tsktsk (MVE_BAD_SP
);
8138 else if (inst
.operands
[i
].reg
== REG_PC
)
8139 inst
.error
= BAD_PC
;
8147 /* If we get here, this operand was successfully parsed. */
8148 inst
.operands
[i
].present
= 1;
8152 inst
.error
= BAD_ARGS
;
8157 /* The parse routine should already have set inst.error, but set a
8158 default here just in case. */
8160 inst
.error
= BAD_SYNTAX
;
8164 /* Do not backtrack over a trailing optional argument that
8165 absorbed some text. We will only fail again, with the
8166 'garbage following instruction' error message, which is
8167 probably less helpful than the current one. */
8168 if (backtrack_index
== i
&& backtrack_pos
!= str
8169 && upat
[i
+1] == OP_stop
)
8172 inst
.error
= BAD_SYNTAX
;
8176 /* Try again, skipping the optional argument at backtrack_pos. */
8177 str
= backtrack_pos
;
8178 inst
.error
= backtrack_error
;
8179 inst
.operands
[backtrack_index
].present
= 0;
8180 i
= backtrack_index
;
8184 /* Check that we have parsed all the arguments. */
8185 if (*str
!= '\0' && !inst
.error
)
8186 inst
.error
= _("garbage following instruction");
8188 return inst
.error
? FAIL
: SUCCESS
;
8191 #undef po_char_or_fail
8192 #undef po_reg_or_fail
8193 #undef po_reg_or_goto
8194 #undef po_imm_or_fail
8195 #undef po_scalar_or_fail
8196 #undef po_barrier_or_imm
8198 /* Shorthand macro for instruction encoding functions issuing errors. */
8199 #define constraint(expr, err) \
8210 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
8211 instructions are unpredictable if these registers are used. This
8212 is the BadReg predicate in ARM's Thumb-2 documentation.
8214 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
8215 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
8216 #define reject_bad_reg(reg) \
8218 if (reg == REG_PC) \
8220 inst.error = BAD_PC; \
8223 else if (reg == REG_SP \
8224 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
8226 inst.error = BAD_SP; \
8231 /* If REG is R13 (the stack pointer), warn that its use is
8233 #define warn_deprecated_sp(reg) \
8235 if (warn_on_deprecated && reg == REG_SP) \
8236 as_tsktsk (_("use of r13 is deprecated")); \
8239 /* Functions for operand encoding. ARM, then Thumb. */
8241 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
8243 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8245 The only binary encoding difference is the Coprocessor number. Coprocessor
8246 9 is used for half-precision calculations or conversions. The format of the
8247 instruction is the same as the equivalent Coprocessor 10 instruction that
8248 exists for Single-Precision operation. */
8251 do_scalar_fp16_v82_encode (void)
8253 if (inst
.cond
< COND_ALWAYS
)
8254 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8255 " the behaviour is UNPREDICTABLE"));
8256 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
),
8259 inst
.instruction
= (inst
.instruction
& 0xfffff0ff) | 0x900;
8260 mark_feature_used (&arm_ext_fp16
);
8263 /* If VAL can be encoded in the immediate field of an ARM instruction,
8264 return the encoded form. Otherwise, return FAIL. */
8267 encode_arm_immediate (unsigned int val
)
8274 for (i
= 2; i
< 32; i
+= 2)
8275 if ((a
= rotate_left (val
, i
)) <= 0xff)
8276 return a
| (i
<< 7); /* 12-bit pack: [shift-cnt,const]. */
8281 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8282 return the encoded form. Otherwise, return FAIL. */
8284 encode_thumb32_immediate (unsigned int val
)
8291 for (i
= 1; i
<= 24; i
++)
8294 if ((val
& ~(0xff << i
)) == 0)
8295 return ((val
>> i
) & 0x7f) | ((32 - i
) << 7);
8299 if (val
== ((a
<< 16) | a
))
8301 if (val
== ((a
<< 24) | (a
<< 16) | (a
<< 8) | a
))
8305 if (val
== ((a
<< 16) | a
))
8306 return 0x200 | (a
>> 8);
8310 /* Encode a VFP SP or DP register number into inst.instruction. */
8313 encode_arm_vfp_reg (int reg
, enum vfp_reg_pos pos
)
8315 if ((pos
== VFP_REG_Dd
|| pos
== VFP_REG_Dn
|| pos
== VFP_REG_Dm
)
8318 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
8321 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
8324 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
8329 first_error (_("D register out of range for selected VFP version"));
8337 inst
.instruction
|= ((reg
>> 1) << 12) | ((reg
& 1) << 22);
8341 inst
.instruction
|= ((reg
>> 1) << 16) | ((reg
& 1) << 7);
8345 inst
.instruction
|= ((reg
>> 1) << 0) | ((reg
& 1) << 5);
8349 inst
.instruction
|= ((reg
& 15) << 12) | ((reg
>> 4) << 22);
8353 inst
.instruction
|= ((reg
& 15) << 16) | ((reg
>> 4) << 7);
8357 inst
.instruction
|= (reg
& 15) | ((reg
>> 4) << 5);
8365 /* Encode a <shift> in an ARM-format instruction. The immediate,
8366 if any, is handled by md_apply_fix. */
8368 encode_arm_shift (int i
)
8370 /* register-shifted register. */
8371 if (inst
.operands
[i
].immisreg
)
8374 for (op_index
= 0; op_index
<= i
; ++op_index
)
8376 /* Check the operand only when it's presented. In pre-UAL syntax,
8377 if the destination register is the same as the first operand, two
8378 register form of the instruction can be used. */
8379 if (inst
.operands
[op_index
].present
&& inst
.operands
[op_index
].isreg
8380 && inst
.operands
[op_index
].reg
== REG_PC
)
8381 as_warn (UNPRED_REG ("r15"));
8384 if (inst
.operands
[i
].imm
== REG_PC
)
8385 as_warn (UNPRED_REG ("r15"));
8388 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
8389 inst
.instruction
|= SHIFT_ROR
<< 5;
8392 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
8393 if (inst
.operands
[i
].immisreg
)
8395 inst
.instruction
|= SHIFT_BY_REG
;
8396 inst
.instruction
|= inst
.operands
[i
].imm
<< 8;
8399 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
8404 encode_arm_shifter_operand (int i
)
8406 if (inst
.operands
[i
].isreg
)
8408 inst
.instruction
|= inst
.operands
[i
].reg
;
8409 encode_arm_shift (i
);
8413 inst
.instruction
|= INST_IMMEDIATE
;
8414 if (inst
.relocs
[0].type
!= BFD_RELOC_ARM_IMMEDIATE
)
8415 inst
.instruction
|= inst
.operands
[i
].imm
;
8419 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8421 encode_arm_addr_mode_common (int i
, bfd_boolean is_t
)
8424 Generate an error if the operand is not a register. */
8425 constraint (!inst
.operands
[i
].isreg
,
8426 _("Instruction does not support =N addresses"));
8428 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8430 if (inst
.operands
[i
].preind
)
8434 inst
.error
= _("instruction does not accept preindexed addressing");
8437 inst
.instruction
|= PRE_INDEX
;
8438 if (inst
.operands
[i
].writeback
)
8439 inst
.instruction
|= WRITE_BACK
;
8442 else if (inst
.operands
[i
].postind
)
8444 gas_assert (inst
.operands
[i
].writeback
);
8446 inst
.instruction
|= WRITE_BACK
;
8448 else /* unindexed - only for coprocessor */
8450 inst
.error
= _("instruction does not accept unindexed addressing");
8454 if (((inst
.instruction
& WRITE_BACK
) || !(inst
.instruction
& PRE_INDEX
))
8455 && (((inst
.instruction
& 0x000f0000) >> 16)
8456 == ((inst
.instruction
& 0x0000f000) >> 12)))
8457 as_warn ((inst
.instruction
& LOAD_BIT
)
8458 ? _("destination register same as write-back base")
8459 : _("source register same as write-back base"));
8462 /* inst.operands[i] was set up by parse_address. Encode it into an
8463 ARM-format mode 2 load or store instruction. If is_t is true,
8464 reject forms that cannot be used with a T instruction (i.e. not
8467 encode_arm_addr_mode_2 (int i
, bfd_boolean is_t
)
8469 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
8471 encode_arm_addr_mode_common (i
, is_t
);
8473 if (inst
.operands
[i
].immisreg
)
8475 constraint ((inst
.operands
[i
].imm
== REG_PC
8476 || (is_pc
&& inst
.operands
[i
].writeback
)),
8478 inst
.instruction
|= INST_IMMEDIATE
; /* yes, this is backwards */
8479 inst
.instruction
|= inst
.operands
[i
].imm
;
8480 if (!inst
.operands
[i
].negative
)
8481 inst
.instruction
|= INDEX_UP
;
8482 if (inst
.operands
[i
].shifted
)
8484 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
8485 inst
.instruction
|= SHIFT_ROR
<< 5;
8488 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
8489 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
8493 else /* immediate offset in inst.relocs[0] */
8495 if (is_pc
&& !inst
.relocs
[0].pc_rel
)
8497 const bfd_boolean is_load
= ((inst
.instruction
& LOAD_BIT
) != 0);
8499 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8500 cannot use PC in addressing.
8501 PC cannot be used in writeback addressing, either. */
8502 constraint ((is_t
|| inst
.operands
[i
].writeback
),
8505 /* Use of PC in str is deprecated for ARMv7. */
8506 if (warn_on_deprecated
8508 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
))
8509 as_tsktsk (_("use of PC in this instruction is deprecated"));
8512 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
8514 /* Prefer + for zero encoded value. */
8515 if (!inst
.operands
[i
].negative
)
8516 inst
.instruction
|= INDEX_UP
;
8517 inst
.relocs
[0].type
= BFD_RELOC_ARM_OFFSET_IMM
;
8522 /* inst.operands[i] was set up by parse_address. Encode it into an
8523 ARM-format mode 3 load or store instruction. Reject forms that
8524 cannot be used with such instructions. If is_t is true, reject
8525 forms that cannot be used with a T instruction (i.e. not
8528 encode_arm_addr_mode_3 (int i
, bfd_boolean is_t
)
8530 if (inst
.operands
[i
].immisreg
&& inst
.operands
[i
].shifted
)
8532 inst
.error
= _("instruction does not accept scaled register index");
8536 encode_arm_addr_mode_common (i
, is_t
);
8538 if (inst
.operands
[i
].immisreg
)
8540 constraint ((inst
.operands
[i
].imm
== REG_PC
8541 || (is_t
&& inst
.operands
[i
].reg
== REG_PC
)),
8543 constraint (inst
.operands
[i
].reg
== REG_PC
&& inst
.operands
[i
].writeback
,
8545 inst
.instruction
|= inst
.operands
[i
].imm
;
8546 if (!inst
.operands
[i
].negative
)
8547 inst
.instruction
|= INDEX_UP
;
8549 else /* immediate offset in inst.relocs[0] */
8551 constraint ((inst
.operands
[i
].reg
== REG_PC
&& !inst
.relocs
[0].pc_rel
8552 && inst
.operands
[i
].writeback
),
8554 inst
.instruction
|= HWOFFSET_IMM
;
8555 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
8557 /* Prefer + for zero encoded value. */
8558 if (!inst
.operands
[i
].negative
)
8559 inst
.instruction
|= INDEX_UP
;
8561 inst
.relocs
[0].type
= BFD_RELOC_ARM_OFFSET_IMM8
;
8566 /* Write immediate bits [7:0] to the following locations:
8568 |28/24|23 19|18 16|15 4|3 0|
8569 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8571 This function is used by VMOV/VMVN/VORR/VBIC. */
8574 neon_write_immbits (unsigned immbits
)
8576 inst
.instruction
|= immbits
& 0xf;
8577 inst
.instruction
|= ((immbits
>> 4) & 0x7) << 16;
8578 inst
.instruction
|= ((immbits
>> 7) & 0x1) << (thumb_mode
? 28 : 24);
8581 /* Invert low-order SIZE bits of XHI:XLO. */
8584 neon_invert_size (unsigned *xlo
, unsigned *xhi
, int size
)
8586 unsigned immlo
= xlo
? *xlo
: 0;
8587 unsigned immhi
= xhi
? *xhi
: 0;
8592 immlo
= (~immlo
) & 0xff;
8596 immlo
= (~immlo
) & 0xffff;
8600 immhi
= (~immhi
) & 0xffffffff;
8604 immlo
= (~immlo
) & 0xffffffff;
8618 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8622 neon_bits_same_in_bytes (unsigned imm
)
8624 return ((imm
& 0x000000ff) == 0 || (imm
& 0x000000ff) == 0x000000ff)
8625 && ((imm
& 0x0000ff00) == 0 || (imm
& 0x0000ff00) == 0x0000ff00)
8626 && ((imm
& 0x00ff0000) == 0 || (imm
& 0x00ff0000) == 0x00ff0000)
8627 && ((imm
& 0xff000000) == 0 || (imm
& 0xff000000) == 0xff000000);
8630 /* For immediate of above form, return 0bABCD. */
8633 neon_squash_bits (unsigned imm
)
8635 return (imm
& 0x01) | ((imm
& 0x0100) >> 7) | ((imm
& 0x010000) >> 14)
8636 | ((imm
& 0x01000000) >> 21);
8639 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8642 neon_qfloat_bits (unsigned imm
)
8644 return ((imm
>> 19) & 0x7f) | ((imm
>> 24) & 0x80);
8647 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8648 the instruction. *OP is passed as the initial value of the op field, and
8649 may be set to a different value depending on the constant (i.e.
8650 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8651 MVN). If the immediate looks like a repeated pattern then also
8652 try smaller element sizes. */
8655 neon_cmode_for_move_imm (unsigned immlo
, unsigned immhi
, int float_p
,
8656 unsigned *immbits
, int *op
, int size
,
8657 enum neon_el_type type
)
8659 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8661 if (type
== NT_float
&& !float_p
)
8664 if (type
== NT_float
&& is_quarter_float (immlo
) && immhi
== 0)
8666 if (size
!= 32 || *op
== 1)
8668 *immbits
= neon_qfloat_bits (immlo
);
8674 if (neon_bits_same_in_bytes (immhi
)
8675 && neon_bits_same_in_bytes (immlo
))
8679 *immbits
= (neon_squash_bits (immhi
) << 4)
8680 | neon_squash_bits (immlo
);
8691 if (immlo
== (immlo
& 0x000000ff))
8696 else if (immlo
== (immlo
& 0x0000ff00))
8698 *immbits
= immlo
>> 8;
8701 else if (immlo
== (immlo
& 0x00ff0000))
8703 *immbits
= immlo
>> 16;
8706 else if (immlo
== (immlo
& 0xff000000))
8708 *immbits
= immlo
>> 24;
8711 else if (immlo
== ((immlo
& 0x0000ff00) | 0x000000ff))
8713 *immbits
= (immlo
>> 8) & 0xff;
8716 else if (immlo
== ((immlo
& 0x00ff0000) | 0x0000ffff))
8718 *immbits
= (immlo
>> 16) & 0xff;
8722 if ((immlo
& 0xffff) != (immlo
>> 16))
8729 if (immlo
== (immlo
& 0x000000ff))
8734 else if (immlo
== (immlo
& 0x0000ff00))
8736 *immbits
= immlo
>> 8;
8740 if ((immlo
& 0xff) != (immlo
>> 8))
8745 if (immlo
== (immlo
& 0x000000ff))
8747 /* Don't allow MVN with 8-bit immediate. */
8757 #if defined BFD_HOST_64_BIT
8758 /* Returns TRUE if double precision value V may be cast
8759 to single precision without loss of accuracy. */
8762 is_double_a_single (bfd_int64_t v
)
8764 int exp
= (int)((v
>> 52) & 0x7FF);
8765 bfd_int64_t mantissa
= (v
& (bfd_int64_t
)0xFFFFFFFFFFFFFULL
);
8767 return (exp
== 0 || exp
== 0x7FF
8768 || (exp
>= 1023 - 126 && exp
<= 1023 + 127))
8769 && (mantissa
& 0x1FFFFFFFl
) == 0;
8772 /* Returns a double precision value casted to single precision
8773 (ignoring the least significant bits in exponent and mantissa). */
8776 double_to_single (bfd_int64_t v
)
8778 int sign
= (int) ((v
>> 63) & 1l);
8779 int exp
= (int) ((v
>> 52) & 0x7FF);
8780 bfd_int64_t mantissa
= (v
& (bfd_int64_t
)0xFFFFFFFFFFFFFULL
);
8786 exp
= exp
- 1023 + 127;
8795 /* No denormalized numbers. */
8801 return (sign
<< 31) | (exp
<< 23) | mantissa
;
8803 #endif /* BFD_HOST_64_BIT */
8812 static void do_vfp_nsyn_opcode (const char *);
8814 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8815 Determine whether it can be performed with a move instruction; if
8816 it can, convert inst.instruction to that move instruction and
8817 return TRUE; if it can't, convert inst.instruction to a literal-pool
8818 load and return FALSE. If this is not a valid thing to do in the
8819 current context, set inst.error and return TRUE.
8821 inst.operands[i] describes the destination register. */
8824 move_or_literal_pool (int i
, enum lit_type t
, bfd_boolean mode_3
)
8827 bfd_boolean thumb_p
= (t
== CONST_THUMB
);
8828 bfd_boolean arm_p
= (t
== CONST_ARM
);
8831 tbit
= (inst
.instruction
> 0xffff) ? THUMB2_LOAD_BIT
: THUMB_LOAD_BIT
;
8835 if ((inst
.instruction
& tbit
) == 0)
8837 inst
.error
= _("invalid pseudo operation");
8841 if (inst
.relocs
[0].exp
.X_op
!= O_constant
8842 && inst
.relocs
[0].exp
.X_op
!= O_symbol
8843 && inst
.relocs
[0].exp
.X_op
!= O_big
)
8845 inst
.error
= _("constant expression expected");
8849 if (inst
.relocs
[0].exp
.X_op
== O_constant
8850 || inst
.relocs
[0].exp
.X_op
== O_big
)
8852 #if defined BFD_HOST_64_BIT
8857 if (inst
.relocs
[0].exp
.X_op
== O_big
)
8859 LITTLENUM_TYPE w
[X_PRECISION
];
8862 if (inst
.relocs
[0].exp
.X_add_number
== -1)
8864 gen_to_words (w
, X_PRECISION
, E_PRECISION
);
8866 /* FIXME: Should we check words w[2..5] ? */
8871 #if defined BFD_HOST_64_BIT
8873 ((((((((bfd_int64_t
) l
[3] & LITTLENUM_MASK
)
8874 << LITTLENUM_NUMBER_OF_BITS
)
8875 | ((bfd_int64_t
) l
[2] & LITTLENUM_MASK
))
8876 << LITTLENUM_NUMBER_OF_BITS
)
8877 | ((bfd_int64_t
) l
[1] & LITTLENUM_MASK
))
8878 << LITTLENUM_NUMBER_OF_BITS
)
8879 | ((bfd_int64_t
) l
[0] & LITTLENUM_MASK
));
8881 v
= ((l
[1] & LITTLENUM_MASK
) << LITTLENUM_NUMBER_OF_BITS
)
8882 | (l
[0] & LITTLENUM_MASK
);
8886 v
= inst
.relocs
[0].exp
.X_add_number
;
8888 if (!inst
.operands
[i
].issingle
)
8892 /* LDR should not use lead in a flag-setting instruction being
8893 chosen so we do not check whether movs can be used. */
8895 if ((ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)
8896 || ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
))
8897 && inst
.operands
[i
].reg
!= 13
8898 && inst
.operands
[i
].reg
!= 15)
8900 /* Check if on thumb2 it can be done with a mov.w, mvn or
8901 movw instruction. */
8902 unsigned int newimm
;
8903 bfd_boolean isNegated
;
8905 newimm
= encode_thumb32_immediate (v
);
8906 if (newimm
!= (unsigned int) FAIL
)
8910 newimm
= encode_thumb32_immediate (~v
);
8911 if (newimm
!= (unsigned int) FAIL
)
8915 /* The number can be loaded with a mov.w or mvn
8917 if (newimm
!= (unsigned int) FAIL
8918 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
8920 inst
.instruction
= (0xf04f0000 /* MOV.W. */
8921 | (inst
.operands
[i
].reg
<< 8));
8922 /* Change to MOVN. */
8923 inst
.instruction
|= (isNegated
? 0x200000 : 0);
8924 inst
.instruction
|= (newimm
& 0x800) << 15;
8925 inst
.instruction
|= (newimm
& 0x700) << 4;
8926 inst
.instruction
|= (newimm
& 0x0ff);
8929 /* The number can be loaded with a movw instruction. */
8930 else if ((v
& ~0xFFFF) == 0
8931 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
))
8933 int imm
= v
& 0xFFFF;
8935 inst
.instruction
= 0xf2400000; /* MOVW. */
8936 inst
.instruction
|= (inst
.operands
[i
].reg
<< 8);
8937 inst
.instruction
|= (imm
& 0xf000) << 4;
8938 inst
.instruction
|= (imm
& 0x0800) << 15;
8939 inst
.instruction
|= (imm
& 0x0700) << 4;
8940 inst
.instruction
|= (imm
& 0x00ff);
8941 /* In case this replacement is being done on Armv8-M
8942 Baseline we need to make sure to disable the
8943 instruction size check, as otherwise GAS will reject
8944 the use of this T32 instruction. */
8952 int value
= encode_arm_immediate (v
);
8956 /* This can be done with a mov instruction. */
8957 inst
.instruction
&= LITERAL_MASK
;
8958 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MOV
<< DATA_OP_SHIFT
);
8959 inst
.instruction
|= value
& 0xfff;
8963 value
= encode_arm_immediate (~ v
);
8966 /* This can be done with a mvn instruction. */
8967 inst
.instruction
&= LITERAL_MASK
;
8968 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MVN
<< DATA_OP_SHIFT
);
8969 inst
.instruction
|= value
& 0xfff;
8973 else if (t
== CONST_VEC
&& ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
8976 unsigned immbits
= 0;
8977 unsigned immlo
= inst
.operands
[1].imm
;
8978 unsigned immhi
= inst
.operands
[1].regisimm
8979 ? inst
.operands
[1].reg
8980 : inst
.relocs
[0].exp
.X_unsigned
8982 : ((bfd_int64_t
)((int) immlo
)) >> 32;
8983 int cmode
= neon_cmode_for_move_imm (immlo
, immhi
, FALSE
, &immbits
,
8984 &op
, 64, NT_invtype
);
8988 neon_invert_size (&immlo
, &immhi
, 64);
8990 cmode
= neon_cmode_for_move_imm (immlo
, immhi
, FALSE
, &immbits
,
8991 &op
, 64, NT_invtype
);
8996 inst
.instruction
= (inst
.instruction
& VLDR_VMOV_SAME
)
9002 /* Fill other bits in vmov encoding for both thumb and arm. */
9004 inst
.instruction
|= (0x7U
<< 29) | (0xF << 24);
9006 inst
.instruction
|= (0xFU
<< 28) | (0x1 << 25);
9007 neon_write_immbits (immbits
);
9015 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
9016 if (inst
.operands
[i
].issingle
9017 && is_quarter_float (inst
.operands
[1].imm
)
9018 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3xd
))
9020 inst
.operands
[1].imm
=
9021 neon_qfloat_bits (v
);
9022 do_vfp_nsyn_opcode ("fconsts");
9026 /* If our host does not support a 64-bit type then we cannot perform
9027 the following optimization. This mean that there will be a
9028 discrepancy between the output produced by an assembler built for
9029 a 32-bit-only host and the output produced from a 64-bit host, but
9030 this cannot be helped. */
9031 #if defined BFD_HOST_64_BIT
9032 else if (!inst
.operands
[1].issingle
9033 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3
))
9035 if (is_double_a_single (v
)
9036 && is_quarter_float (double_to_single (v
)))
9038 inst
.operands
[1].imm
=
9039 neon_qfloat_bits (double_to_single (v
));
9040 do_vfp_nsyn_opcode ("fconstd");
9048 if (add_to_lit_pool ((!inst
.operands
[i
].isvec
9049 || inst
.operands
[i
].issingle
) ? 4 : 8) == FAIL
)
9052 inst
.operands
[1].reg
= REG_PC
;
9053 inst
.operands
[1].isreg
= 1;
9054 inst
.operands
[1].preind
= 1;
9055 inst
.relocs
[0].pc_rel
= 1;
9056 inst
.relocs
[0].type
= (thumb_p
9057 ? BFD_RELOC_ARM_THUMB_OFFSET
9059 ? BFD_RELOC_ARM_HWLITERAL
9060 : BFD_RELOC_ARM_LITERAL
));
9064 /* inst.operands[i] was set up by parse_address. Encode it into an
9065 ARM-format instruction. Reject all forms which cannot be encoded
9066 into a coprocessor load/store instruction. If wb_ok is false,
9067 reject use of writeback; if unind_ok is false, reject use of
9068 unindexed addressing. If reloc_override is not 0, use it instead
9069 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
9070 (in which case it is preserved). */
9073 encode_arm_cp_address (int i
, int wb_ok
, int unind_ok
, int reloc_override
)
9075 if (!inst
.operands
[i
].isreg
)
9078 if (! inst
.operands
[0].isvec
)
9080 inst
.error
= _("invalid co-processor operand");
9083 if (move_or_literal_pool (0, CONST_VEC
, /*mode_3=*/FALSE
))
9087 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
9089 gas_assert (!(inst
.operands
[i
].preind
&& inst
.operands
[i
].postind
));
9091 if (!inst
.operands
[i
].preind
&& !inst
.operands
[i
].postind
) /* unindexed */
9093 gas_assert (!inst
.operands
[i
].writeback
);
9096 inst
.error
= _("instruction does not support unindexed addressing");
9099 inst
.instruction
|= inst
.operands
[i
].imm
;
9100 inst
.instruction
|= INDEX_UP
;
9104 if (inst
.operands
[i
].preind
)
9105 inst
.instruction
|= PRE_INDEX
;
9107 if (inst
.operands
[i
].writeback
)
9109 if (inst
.operands
[i
].reg
== REG_PC
)
9111 inst
.error
= _("pc may not be used with write-back");
9116 inst
.error
= _("instruction does not support writeback");
9119 inst
.instruction
|= WRITE_BACK
;
9123 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) reloc_override
;
9124 else if ((inst
.relocs
[0].type
< BFD_RELOC_ARM_ALU_PC_G0_NC
9125 || inst
.relocs
[0].type
> BFD_RELOC_ARM_LDC_SB_G2
)
9126 && inst
.relocs
[0].type
!= BFD_RELOC_ARM_LDR_PC_G0
)
9129 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_CP_OFF_IMM
;
9131 inst
.relocs
[0].type
= BFD_RELOC_ARM_CP_OFF_IMM
;
9134 /* Prefer + for zero encoded value. */
9135 if (!inst
.operands
[i
].negative
)
9136 inst
.instruction
|= INDEX_UP
;
9141 /* Functions for instruction encoding, sorted by sub-architecture.
9142 First some generics; their names are taken from the conventional
9143 bit positions for register arguments in ARM format instructions. */
9153 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9159 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9165 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9166 inst
.instruction
|= inst
.operands
[1].reg
;
9172 inst
.instruction
|= inst
.operands
[0].reg
;
9173 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9179 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9180 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9186 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9187 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9193 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9194 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9198 check_obsolete (const arm_feature_set
*feature
, const char *msg
)
9200 if (ARM_CPU_IS_ANY (cpu_variant
))
9202 as_tsktsk ("%s", msg
);
9205 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
9217 unsigned Rn
= inst
.operands
[2].reg
;
9218 /* Enforce restrictions on SWP instruction. */
9219 if ((inst
.instruction
& 0x0fbfffff) == 0x01000090)
9221 constraint (Rn
== inst
.operands
[0].reg
|| Rn
== inst
.operands
[1].reg
,
9222 _("Rn must not overlap other operands"));
9224 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
9226 if (!check_obsolete (&arm_ext_v8
,
9227 _("swp{b} use is obsoleted for ARMv8 and later"))
9228 && warn_on_deprecated
9229 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
))
9230 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
9233 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9234 inst
.instruction
|= inst
.operands
[1].reg
;
9235 inst
.instruction
|= Rn
<< 16;
9241 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9242 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9243 inst
.instruction
|= inst
.operands
[2].reg
;
9249 constraint ((inst
.operands
[2].reg
== REG_PC
), BAD_PC
);
9250 constraint (((inst
.relocs
[0].exp
.X_op
!= O_constant
9251 && inst
.relocs
[0].exp
.X_op
!= O_illegal
)
9252 || inst
.relocs
[0].exp
.X_add_number
!= 0),
9254 inst
.instruction
|= inst
.operands
[0].reg
;
9255 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9256 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9262 inst
.instruction
|= inst
.operands
[0].imm
;
9268 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9269 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
9272 /* ARM instructions, in alphabetical order by function name (except
9273 that wrapper functions appear immediately after the function they
9276 /* This is a pseudo-op of the form "adr rd, label" to be converted
9277 into a relative address of the form "add rd, pc, #label-.-8". */
9282 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
9284 /* Frag hacking will turn this into a sub instruction if the offset turns
9285 out to be negative. */
9286 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
9287 inst
.relocs
[0].pc_rel
= 1;
9288 inst
.relocs
[0].exp
.X_add_number
-= 8;
9290 if (support_interwork
9291 && inst
.relocs
[0].exp
.X_op
== O_symbol
9292 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
9293 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
9294 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
9295 inst
.relocs
[0].exp
.X_add_number
|= 1;
9298 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9299 into a relative address of the form:
9300 add rd, pc, #low(label-.-8)"
9301 add rd, rd, #high(label-.-8)" */
9306 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
9308 /* Frag hacking will turn this into a sub instruction if the offset turns
9309 out to be negative. */
9310 inst
.relocs
[0].type
= BFD_RELOC_ARM_ADRL_IMMEDIATE
;
9311 inst
.relocs
[0].pc_rel
= 1;
9312 inst
.size
= INSN_SIZE
* 2;
9313 inst
.relocs
[0].exp
.X_add_number
-= 8;
9315 if (support_interwork
9316 && inst
.relocs
[0].exp
.X_op
== O_symbol
9317 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
9318 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
9319 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
9320 inst
.relocs
[0].exp
.X_add_number
|= 1;
9326 constraint (inst
.relocs
[0].type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9327 && inst
.relocs
[0].type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,
9329 if (!inst
.operands
[1].present
)
9330 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
9331 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9332 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9333 encode_arm_shifter_operand (2);
9339 if (inst
.operands
[0].present
)
9340 inst
.instruction
|= inst
.operands
[0].imm
;
9342 inst
.instruction
|= 0xf;
9348 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
9349 constraint (msb
> 32, _("bit-field extends past end of register"));
9350 /* The instruction encoding stores the LSB and MSB,
9351 not the LSB and width. */
9352 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9353 inst
.instruction
|= inst
.operands
[1].imm
<< 7;
9354 inst
.instruction
|= (msb
- 1) << 16;
9362 /* #0 in second position is alternative syntax for bfc, which is
9363 the same instruction but with REG_PC in the Rm field. */
9364 if (!inst
.operands
[1].isreg
)
9365 inst
.operands
[1].reg
= REG_PC
;
9367 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
9368 constraint (msb
> 32, _("bit-field extends past end of register"));
9369 /* The instruction encoding stores the LSB and MSB,
9370 not the LSB and width. */
9371 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9372 inst
.instruction
|= inst
.operands
[1].reg
;
9373 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
9374 inst
.instruction
|= (msb
- 1) << 16;
9380 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
9381 _("bit-field extends past end of register"));
9382 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9383 inst
.instruction
|= inst
.operands
[1].reg
;
9384 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
9385 inst
.instruction
|= (inst
.operands
[3].imm
- 1) << 16;
9388 /* ARM V5 breakpoint instruction (argument parse)
9389 BKPT <16 bit unsigned immediate>
9390 Instruction is not conditional.
9391 The bit pattern given in insns[] has the COND_ALWAYS condition,
9392 and it is an error if the caller tried to override that. */
9397 /* Top 12 of 16 bits to bits 19:8. */
9398 inst
.instruction
|= (inst
.operands
[0].imm
& 0xfff0) << 4;
9400 /* Bottom 4 of 16 bits to bits 3:0. */
9401 inst
.instruction
|= inst
.operands
[0].imm
& 0xf;
9405 encode_branch (int default_reloc
)
9407 if (inst
.operands
[0].hasreloc
)
9409 constraint (inst
.operands
[0].imm
!= BFD_RELOC_ARM_PLT32
9410 && inst
.operands
[0].imm
!= BFD_RELOC_ARM_TLS_CALL
,
9411 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9412 inst
.relocs
[0].type
= inst
.operands
[0].imm
== BFD_RELOC_ARM_PLT32
9413 ? BFD_RELOC_ARM_PLT32
9414 : thumb_mode
? BFD_RELOC_ARM_THM_TLS_CALL
: BFD_RELOC_ARM_TLS_CALL
;
9417 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) default_reloc
;
9418 inst
.relocs
[0].pc_rel
= 1;
9425 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
9426 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
9429 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
9436 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
9438 if (inst
.cond
== COND_ALWAYS
)
9439 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
9441 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
9445 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
9448 /* ARM V5 branch-link-exchange instruction (argument parse)
9449 BLX <target_addr> ie BLX(1)
9450 BLX{<condition>} <Rm> ie BLX(2)
9451 Unfortunately, there are two different opcodes for this mnemonic.
9452 So, the insns[].value is not used, and the code here zaps values
9453 into inst.instruction.
9454 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9459 if (inst
.operands
[0].isreg
)
9461 /* Arg is a register; the opcode provided by insns[] is correct.
9462 It is not illegal to do "blx pc", just useless. */
9463 if (inst
.operands
[0].reg
== REG_PC
)
9464 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9466 inst
.instruction
|= inst
.operands
[0].reg
;
9470 /* Arg is an address; this instruction cannot be executed
9471 conditionally, and the opcode must be adjusted.
9472 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9473 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9474 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
9475 inst
.instruction
= 0xfa000000;
9476 encode_branch (BFD_RELOC_ARM_PCREL_BLX
);
9483 bfd_boolean want_reloc
;
9485 if (inst
.operands
[0].reg
== REG_PC
)
9486 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9488 inst
.instruction
|= inst
.operands
[0].reg
;
9489 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9490 it is for ARMv4t or earlier. */
9491 want_reloc
= !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5
);
9492 if (!ARM_FEATURE_ZERO (selected_object_arch
)
9493 && !ARM_CPU_HAS_FEATURE (selected_object_arch
, arm_ext_v5
))
9497 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
9502 inst
.relocs
[0].type
= BFD_RELOC_ARM_V4BX
;
9506 /* ARM v5TEJ. Jump to Jazelle code. */
9511 if (inst
.operands
[0].reg
== REG_PC
)
9512 as_tsktsk (_("use of r15 in bxj is not really useful"));
9514 inst
.instruction
|= inst
.operands
[0].reg
;
9517 /* Co-processor data operation:
9518 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9519 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9523 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9524 inst
.instruction
|= inst
.operands
[1].imm
<< 20;
9525 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
9526 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9527 inst
.instruction
|= inst
.operands
[4].reg
;
9528 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
9534 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9535 encode_arm_shifter_operand (1);
9538 /* Transfer between coprocessor and ARM registers.
9539 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9544 No special properties. */
9546 struct deprecated_coproc_regs_s
9553 arm_feature_set deprecated
;
9554 arm_feature_set obsoleted
;
9555 const char *dep_msg
;
9556 const char *obs_msg
;
9559 #define DEPR_ACCESS_V8 \
9560 N_("This coprocessor register access is deprecated in ARMv8")
9562 /* Table of all deprecated coprocessor registers. */
9563 static struct deprecated_coproc_regs_s deprecated_coproc_regs
[] =
9565 {15, 0, 7, 10, 5, /* CP15DMB. */
9566 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9567 DEPR_ACCESS_V8
, NULL
},
9568 {15, 0, 7, 10, 4, /* CP15DSB. */
9569 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9570 DEPR_ACCESS_V8
, NULL
},
9571 {15, 0, 7, 5, 4, /* CP15ISB. */
9572 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9573 DEPR_ACCESS_V8
, NULL
},
9574 {14, 6, 1, 0, 0, /* TEEHBR. */
9575 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9576 DEPR_ACCESS_V8
, NULL
},
9577 {14, 6, 0, 0, 0, /* TEECR. */
9578 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9579 DEPR_ACCESS_V8
, NULL
},
9582 #undef DEPR_ACCESS_V8
9584 static const size_t deprecated_coproc_reg_count
=
9585 sizeof (deprecated_coproc_regs
) / sizeof (deprecated_coproc_regs
[0]);
9593 Rd
= inst
.operands
[2].reg
;
9596 if (inst
.instruction
== 0xee000010
9597 || inst
.instruction
== 0xfe000010)
9599 reject_bad_reg (Rd
);
9600 else if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
9602 constraint (Rd
== REG_SP
, BAD_SP
);
9607 if (inst
.instruction
== 0xe000010)
9608 constraint (Rd
== REG_PC
, BAD_PC
);
9611 for (i
= 0; i
< deprecated_coproc_reg_count
; ++i
)
9613 const struct deprecated_coproc_regs_s
*r
=
9614 deprecated_coproc_regs
+ i
;
9616 if (inst
.operands
[0].reg
== r
->cp
9617 && inst
.operands
[1].imm
== r
->opc1
9618 && inst
.operands
[3].reg
== r
->crn
9619 && inst
.operands
[4].reg
== r
->crm
9620 && inst
.operands
[5].imm
== r
->opc2
)
9622 if (! ARM_CPU_IS_ANY (cpu_variant
)
9623 && warn_on_deprecated
9624 && ARM_CPU_HAS_FEATURE (cpu_variant
, r
->deprecated
))
9625 as_tsktsk ("%s", r
->dep_msg
);
9629 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9630 inst
.instruction
|= inst
.operands
[1].imm
<< 21;
9631 inst
.instruction
|= Rd
<< 12;
9632 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9633 inst
.instruction
|= inst
.operands
[4].reg
;
9634 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
9637 /* Transfer between coprocessor register and pair of ARM registers.
9638 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9643 Two XScale instructions are special cases of these:
9645 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9646 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9648 Result unpredictable if Rd or Rn is R15. */
9655 Rd
= inst
.operands
[2].reg
;
9656 Rn
= inst
.operands
[3].reg
;
9660 reject_bad_reg (Rd
);
9661 reject_bad_reg (Rn
);
9665 constraint (Rd
== REG_PC
, BAD_PC
);
9666 constraint (Rn
== REG_PC
, BAD_PC
);
9669 /* Only check the MRRC{2} variants. */
9670 if ((inst
.instruction
& 0x0FF00000) == 0x0C500000)
9672 /* If Rd == Rn, error that the operation is
9673 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9674 constraint (Rd
== Rn
, BAD_OVERLAP
);
9677 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9678 inst
.instruction
|= inst
.operands
[1].imm
<< 4;
9679 inst
.instruction
|= Rd
<< 12;
9680 inst
.instruction
|= Rn
<< 16;
9681 inst
.instruction
|= inst
.operands
[4].reg
;
9687 inst
.instruction
|= inst
.operands
[0].imm
<< 6;
9688 if (inst
.operands
[1].present
)
9690 inst
.instruction
|= CPSI_MMOD
;
9691 inst
.instruction
|= inst
.operands
[1].imm
;
9698 inst
.instruction
|= inst
.operands
[0].imm
;
9704 unsigned Rd
, Rn
, Rm
;
9706 Rd
= inst
.operands
[0].reg
;
9707 Rn
= (inst
.operands
[1].present
9708 ? inst
.operands
[1].reg
: Rd
);
9709 Rm
= inst
.operands
[2].reg
;
9711 constraint ((Rd
== REG_PC
), BAD_PC
);
9712 constraint ((Rn
== REG_PC
), BAD_PC
);
9713 constraint ((Rm
== REG_PC
), BAD_PC
);
9715 inst
.instruction
|= Rd
<< 16;
9716 inst
.instruction
|= Rn
<< 0;
9717 inst
.instruction
|= Rm
<< 8;
9723 /* There is no IT instruction in ARM mode. We
9724 process it to do the validation as if in
9725 thumb mode, just in case the code gets
9726 assembled for thumb using the unified syntax. */
9731 set_pred_insn_type (IT_INSN
);
9732 now_pred
.mask
= (inst
.instruction
& 0xf) | 0x10;
9733 now_pred
.cc
= inst
.operands
[0].imm
;
9737 /* If there is only one register in the register list,
9738 then return its register number. Otherwise return -1. */
9740 only_one_reg_in_list (int range
)
9742 int i
= ffs (range
) - 1;
9743 return (i
> 15 || range
!= (1 << i
)) ? -1 : i
;
9747 encode_ldmstm(int from_push_pop_mnem
)
9749 int base_reg
= inst
.operands
[0].reg
;
9750 int range
= inst
.operands
[1].imm
;
9753 inst
.instruction
|= base_reg
<< 16;
9754 inst
.instruction
|= range
;
9756 if (inst
.operands
[1].writeback
)
9757 inst
.instruction
|= LDM_TYPE_2_OR_3
;
9759 if (inst
.operands
[0].writeback
)
9761 inst
.instruction
|= WRITE_BACK
;
9762 /* Check for unpredictable uses of writeback. */
9763 if (inst
.instruction
& LOAD_BIT
)
9765 /* Not allowed in LDM type 2. */
9766 if ((inst
.instruction
& LDM_TYPE_2_OR_3
)
9767 && ((range
& (1 << REG_PC
)) == 0))
9768 as_warn (_("writeback of base register is UNPREDICTABLE"));
9769 /* Only allowed if base reg not in list for other types. */
9770 else if (range
& (1 << base_reg
))
9771 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9775 /* Not allowed for type 2. */
9776 if (inst
.instruction
& LDM_TYPE_2_OR_3
)
9777 as_warn (_("writeback of base register is UNPREDICTABLE"));
9778 /* Only allowed if base reg not in list, or first in list. */
9779 else if ((range
& (1 << base_reg
))
9780 && (range
& ((1 << base_reg
) - 1)))
9781 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9785 /* If PUSH/POP has only one register, then use the A2 encoding. */
9786 one_reg
= only_one_reg_in_list (range
);
9787 if (from_push_pop_mnem
&& one_reg
>= 0)
9789 int is_push
= (inst
.instruction
& A_PUSH_POP_OP_MASK
) == A1_OPCODE_PUSH
;
9791 if (is_push
&& one_reg
== 13 /* SP */)
9792 /* PR 22483: The A2 encoding cannot be used when
9793 pushing the stack pointer as this is UNPREDICTABLE. */
9796 inst
.instruction
&= A_COND_MASK
;
9797 inst
.instruction
|= is_push
? A2_OPCODE_PUSH
: A2_OPCODE_POP
;
9798 inst
.instruction
|= one_reg
<< 12;
9805 encode_ldmstm (/*from_push_pop_mnem=*/FALSE
);
9808 /* ARMv5TE load-consecutive (argument parse)
9817 constraint (inst
.operands
[0].reg
% 2 != 0,
9818 _("first transfer register must be even"));
9819 constraint (inst
.operands
[1].present
9820 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
9821 _("can only transfer two consecutive registers"));
9822 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
9823 constraint (!inst
.operands
[2].isreg
, _("'[' expected"));
9825 if (!inst
.operands
[1].present
)
9826 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
9828 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9829 register and the first register written; we have to diagnose
9830 overlap between the base and the second register written here. */
9832 if (inst
.operands
[2].reg
== inst
.operands
[1].reg
9833 && (inst
.operands
[2].writeback
|| inst
.operands
[2].postind
))
9834 as_warn (_("base register written back, and overlaps "
9835 "second transfer register"));
9837 if (!(inst
.instruction
& V4_STR_BIT
))
9839 /* For an index-register load, the index register must not overlap the
9840 destination (even if not write-back). */
9841 if (inst
.operands
[2].immisreg
9842 && ((unsigned) inst
.operands
[2].imm
== inst
.operands
[0].reg
9843 || (unsigned) inst
.operands
[2].imm
== inst
.operands
[1].reg
))
9844 as_warn (_("index register overlaps transfer register"));
9846 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9847 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE
);
9853 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
9854 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
9855 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
9856 || inst
.operands
[1].negative
9857 /* This can arise if the programmer has written
9859 or if they have mistakenly used a register name as the last
9862 It is very difficult to distinguish between these two cases
9863 because "rX" might actually be a label. ie the register
9864 name has been occluded by a symbol of the same name. So we
9865 just generate a general 'bad addressing mode' type error
9866 message and leave it up to the programmer to discover the
9867 true cause and fix their mistake. */
9868 || (inst
.operands
[1].reg
== REG_PC
),
9871 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9872 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9873 _("offset must be zero in ARM encoding"));
9875 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
9877 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9878 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9879 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
9885 constraint (inst
.operands
[0].reg
% 2 != 0,
9886 _("even register required"));
9887 constraint (inst
.operands
[1].present
9888 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
9889 _("can only load two consecutive registers"));
9890 /* If op 1 were present and equal to PC, this function wouldn't
9891 have been called in the first place. */
9892 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
9894 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9895 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9898 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9899 which is not a multiple of four is UNPREDICTABLE. */
9901 check_ldr_r15_aligned (void)
9903 constraint (!(inst
.operands
[1].immisreg
)
9904 && (inst
.operands
[0].reg
== REG_PC
9905 && inst
.operands
[1].reg
== REG_PC
9906 && (inst
.relocs
[0].exp
.X_add_number
& 0x3)),
9907 _("ldr to register 15 must be 4-byte aligned"));
9913 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9914 if (!inst
.operands
[1].isreg
)
9915 if (move_or_literal_pool (0, CONST_ARM
, /*mode_3=*/FALSE
))
9917 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE
);
9918 check_ldr_r15_aligned ();
9924 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9926 if (inst
.operands
[1].preind
)
9928 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9929 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9930 _("this instruction requires a post-indexed address"));
9932 inst
.operands
[1].preind
= 0;
9933 inst
.operands
[1].postind
= 1;
9934 inst
.operands
[1].writeback
= 1;
9936 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9937 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE
);
9940 /* Halfword and signed-byte load/store operations. */
9945 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9946 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9947 if (!inst
.operands
[1].isreg
)
9948 if (move_or_literal_pool (0, CONST_ARM
, /*mode_3=*/TRUE
))
9950 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE
);
9956 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9958 if (inst
.operands
[1].preind
)
9960 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9961 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9962 _("this instruction requires a post-indexed address"));
9964 inst
.operands
[1].preind
= 0;
9965 inst
.operands
[1].postind
= 1;
9966 inst
.operands
[1].writeback
= 1;
9968 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9969 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE
);
9972 /* Co-processor register load/store.
9973 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9977 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9978 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9979 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
9985 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9986 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
9987 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
)
9988 && !(inst
.instruction
& 0x00400000))
9989 as_tsktsk (_("Rd and Rm should be different in mla"));
9991 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9992 inst
.instruction
|= inst
.operands
[1].reg
;
9993 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
9994 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
10000 constraint (inst
.relocs
[0].type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10001 && inst
.relocs
[0].type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,
10002 THUMB1_RELOC_ONLY
);
10003 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10004 encode_arm_shifter_operand (1);
10007 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
10014 top
= (inst
.instruction
& 0x00400000) != 0;
10015 constraint (top
&& inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVW
,
10016 _(":lower16: not allowed in this instruction"));
10017 constraint (!top
&& inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVT
,
10018 _(":upper16: not allowed in this instruction"));
10019 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10020 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
10022 imm
= inst
.relocs
[0].exp
.X_add_number
;
10023 /* The value is in two pieces: 0:11, 16:19. */
10024 inst
.instruction
|= (imm
& 0x00000fff);
10025 inst
.instruction
|= (imm
& 0x0000f000) << 4;
10030 do_vfp_nsyn_mrs (void)
10032 if (inst
.operands
[0].isvec
)
10034 if (inst
.operands
[1].reg
!= 1)
10035 first_error (_("operand 1 must be FPSCR"));
10036 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
10037 memset (&inst
.operands
[1], '\0', sizeof (inst
.operands
[1]));
10038 do_vfp_nsyn_opcode ("fmstat");
10040 else if (inst
.operands
[1].isvec
)
10041 do_vfp_nsyn_opcode ("fmrx");
10049 do_vfp_nsyn_msr (void)
10051 if (inst
.operands
[0].isvec
)
10052 do_vfp_nsyn_opcode ("fmxr");
10062 unsigned Rt
= inst
.operands
[0].reg
;
10064 if (thumb_mode
&& Rt
== REG_SP
)
10066 inst
.error
= BAD_SP
;
10070 switch (inst
.operands
[1].reg
)
10072 /* MVFR2 is only valid for Armv8-A. */
10074 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
10078 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10079 case 1: /* fpscr. */
10080 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
10081 || ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)),
10085 case 14: /* fpcxt_ns. */
10086 case 15: /* fpcxt_s. */
10087 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8_1m_main
),
10088 _("selected processor does not support instruction"));
10091 case 2: /* fpscr_nzcvqc. */
10092 case 12: /* vpr. */
10094 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8_1m_main
)
10095 || (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
10096 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)),
10097 _("selected processor does not support instruction"));
10098 if (inst
.operands
[0].reg
!= 2
10099 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
10100 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10107 /* APSR_ sets isvec. All other refs to PC are illegal. */
10108 if (!inst
.operands
[0].isvec
&& Rt
== REG_PC
)
10110 inst
.error
= BAD_PC
;
10114 /* If we get through parsing the register name, we just insert the number
10115 generated into the instruction without further validation. */
10116 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
10117 inst
.instruction
|= (Rt
<< 12);
10123 unsigned Rt
= inst
.operands
[1].reg
;
10126 reject_bad_reg (Rt
);
10127 else if (Rt
== REG_PC
)
10129 inst
.error
= BAD_PC
;
10133 switch (inst
.operands
[0].reg
)
10135 /* MVFR2 is only valid for Armv8-A. */
10137 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
10141 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10142 case 1: /* fpcr. */
10143 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
10144 || ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)),
10148 case 14: /* fpcxt_ns. */
10149 case 15: /* fpcxt_s. */
10150 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8_1m_main
),
10151 _("selected processor does not support instruction"));
10154 case 2: /* fpscr_nzcvqc. */
10155 case 12: /* vpr. */
10157 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8_1m_main
)
10158 || (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
10159 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)),
10160 _("selected processor does not support instruction"));
10161 if (inst
.operands
[0].reg
!= 2
10162 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
10163 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10170 /* If we get through parsing the register name, we just insert the number
10171 generated into the instruction without further validation. */
10172 inst
.instruction
|= (inst
.operands
[0].reg
<< 16);
10173 inst
.instruction
|= (Rt
<< 12);
10181 if (do_vfp_nsyn_mrs () == SUCCESS
)
10184 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
10185 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10187 if (inst
.operands
[1].isreg
)
10189 br
= inst
.operands
[1].reg
;
10190 if (((br
& 0x200) == 0) && ((br
& 0xf0000) != 0xf0000))
10191 as_bad (_("bad register for mrs"));
10195 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10196 constraint ((inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
))
10198 _("'APSR', 'CPSR' or 'SPSR' expected"));
10199 br
= (15<<16) | (inst
.operands
[1].imm
& SPSR_BIT
);
10202 inst
.instruction
|= br
;
10205 /* Two possible forms:
10206 "{C|S}PSR_<field>, Rm",
10207 "{C|S}PSR_f, #expression". */
10212 if (do_vfp_nsyn_msr () == SUCCESS
)
10215 inst
.instruction
|= inst
.operands
[0].imm
;
10216 if (inst
.operands
[1].isreg
)
10217 inst
.instruction
|= inst
.operands
[1].reg
;
10220 inst
.instruction
|= INST_IMMEDIATE
;
10221 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
10222 inst
.relocs
[0].pc_rel
= 0;
10229 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
10231 if (!inst
.operands
[2].present
)
10232 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
10233 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10234 inst
.instruction
|= inst
.operands
[1].reg
;
10235 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10237 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
10238 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
10239 as_tsktsk (_("Rd and Rm should be different in mul"));
10242 /* Long Multiply Parser
10243 UMULL RdLo, RdHi, Rm, Rs
10244 SMULL RdLo, RdHi, Rm, Rs
10245 UMLAL RdLo, RdHi, Rm, Rs
10246 SMLAL RdLo, RdHi, Rm, Rs. */
10251 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10252 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10253 inst
.instruction
|= inst
.operands
[2].reg
;
10254 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
10256 /* rdhi and rdlo must be different. */
10257 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
10258 as_tsktsk (_("rdhi and rdlo must be different"));
10260 /* rdhi, rdlo and rm must all be different before armv6. */
10261 if ((inst
.operands
[0].reg
== inst
.operands
[2].reg
10262 || inst
.operands
[1].reg
== inst
.operands
[2].reg
)
10263 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
10264 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
10270 if (inst
.operands
[0].present
10271 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
))
10273 /* Architectural NOP hints are CPSR sets with no bits selected. */
10274 inst
.instruction
&= 0xf0000000;
10275 inst
.instruction
|= 0x0320f000;
10276 if (inst
.operands
[0].present
)
10277 inst
.instruction
|= inst
.operands
[0].imm
;
10281 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
10282 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
10283 Condition defaults to COND_ALWAYS.
10284 Error if Rd, Rn or Rm are R15. */
10289 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10290 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10291 inst
.instruction
|= inst
.operands
[2].reg
;
10292 if (inst
.operands
[3].present
)
10293 encode_arm_shift (3);
10296 /* ARM V6 PKHTB (Argument Parse). */
10301 if (!inst
.operands
[3].present
)
10303 /* If the shift specifier is omitted, turn the instruction
10304 into pkhbt rd, rm, rn. */
10305 inst
.instruction
&= 0xfff00010;
10306 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10307 inst
.instruction
|= inst
.operands
[1].reg
;
10308 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10312 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10313 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10314 inst
.instruction
|= inst
.operands
[2].reg
;
10315 encode_arm_shift (3);
10319 /* ARMv5TE: Preload-Cache
10320 MP Extensions: Preload for write
10324 Syntactically, like LDR with B=1, W=0, L=1. */
10329 constraint (!inst
.operands
[0].isreg
,
10330 _("'[' expected after PLD mnemonic"));
10331 constraint (inst
.operands
[0].postind
,
10332 _("post-indexed expression used in preload instruction"));
10333 constraint (inst
.operands
[0].writeback
,
10334 _("writeback used in preload instruction"));
10335 constraint (!inst
.operands
[0].preind
,
10336 _("unindexed addressing used in preload instruction"));
10337 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
10340 /* ARMv7: PLI <addr_mode> */
10344 constraint (!inst
.operands
[0].isreg
,
10345 _("'[' expected after PLI mnemonic"));
10346 constraint (inst
.operands
[0].postind
,
10347 _("post-indexed expression used in preload instruction"));
10348 constraint (inst
.operands
[0].writeback
,
10349 _("writeback used in preload instruction"));
10350 constraint (!inst
.operands
[0].preind
,
10351 _("unindexed addressing used in preload instruction"));
10352 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
10353 inst
.instruction
&= ~PRE_INDEX
;
10359 constraint (inst
.operands
[0].writeback
,
10360 _("push/pop do not support {reglist}^"));
10361 inst
.operands
[1] = inst
.operands
[0];
10362 memset (&inst
.operands
[0], 0, sizeof inst
.operands
[0]);
10363 inst
.operands
[0].isreg
= 1;
10364 inst
.operands
[0].writeback
= 1;
10365 inst
.operands
[0].reg
= REG_SP
;
10366 encode_ldmstm (/*from_push_pop_mnem=*/TRUE
);
10369 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10370 word at the specified address and the following word
10372 Unconditionally executed.
10373 Error if Rn is R15. */
10378 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10379 if (inst
.operands
[0].writeback
)
10380 inst
.instruction
|= WRITE_BACK
;
10383 /* ARM V6 ssat (argument parse). */
10388 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10389 inst
.instruction
|= (inst
.operands
[1].imm
- 1) << 16;
10390 inst
.instruction
|= inst
.operands
[2].reg
;
10392 if (inst
.operands
[3].present
)
10393 encode_arm_shift (3);
10396 /* ARM V6 usat (argument parse). */
10401 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10402 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
10403 inst
.instruction
|= inst
.operands
[2].reg
;
10405 if (inst
.operands
[3].present
)
10406 encode_arm_shift (3);
10409 /* ARM V6 ssat16 (argument parse). */
10414 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10415 inst
.instruction
|= ((inst
.operands
[1].imm
- 1) << 16);
10416 inst
.instruction
|= inst
.operands
[2].reg
;
10422 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10423 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
10424 inst
.instruction
|= inst
.operands
[2].reg
;
10427 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10428 preserving the other bits.
10430 setend <endian_specifier>, where <endian_specifier> is either
10436 if (warn_on_deprecated
10437 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
10438 as_tsktsk (_("setend use is deprecated for ARMv8"));
10440 if (inst
.operands
[0].imm
)
10441 inst
.instruction
|= 0x200;
10447 unsigned int Rm
= (inst
.operands
[1].present
10448 ? inst
.operands
[1].reg
10449 : inst
.operands
[0].reg
);
10451 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10452 inst
.instruction
|= Rm
;
10453 if (inst
.operands
[2].isreg
) /* Rd, {Rm,} Rs */
10455 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10456 inst
.instruction
|= SHIFT_BY_REG
;
10457 /* PR 12854: Error on extraneous shifts. */
10458 constraint (inst
.operands
[2].shifted
,
10459 _("extraneous shift as part of operand to shift insn"));
10462 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
10468 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
10469 constraint (value
> 0xf, _("immediate too large (bigger than 0xF)"));
10471 inst
.relocs
[0].type
= BFD_RELOC_ARM_SMC
;
10472 inst
.relocs
[0].pc_rel
= 0;
10478 inst
.relocs
[0].type
= BFD_RELOC_ARM_HVC
;
10479 inst
.relocs
[0].pc_rel
= 0;
10485 inst
.relocs
[0].type
= BFD_RELOC_ARM_SWI
;
10486 inst
.relocs
[0].pc_rel
= 0;
10492 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_pan
),
10493 _("selected processor does not support SETPAN instruction"));
10495 inst
.instruction
|= ((inst
.operands
[0].imm
& 1) << 9);
10501 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_pan
),
10502 _("selected processor does not support SETPAN instruction"));
10504 inst
.instruction
|= (inst
.operands
[0].imm
<< 3);
10507 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10508 SMLAxy{cond} Rd,Rm,Rs,Rn
10509 SMLAWy{cond} Rd,Rm,Rs,Rn
10510 Error if any register is R15. */
10515 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10516 inst
.instruction
|= inst
.operands
[1].reg
;
10517 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10518 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
10521 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10522 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10523 Error if any register is R15.
10524 Warning if Rdlo == Rdhi. */
10529 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10530 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10531 inst
.instruction
|= inst
.operands
[2].reg
;
10532 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
10534 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
10535 as_tsktsk (_("rdhi and rdlo must be different"));
10538 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10539 SMULxy{cond} Rd,Rm,Rs
10540 Error if any register is R15. */
10545 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10546 inst
.instruction
|= inst
.operands
[1].reg
;
10547 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10550 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10551 the same for both ARM and Thumb-2. */
10558 if (inst
.operands
[0].present
)
10560 reg
= inst
.operands
[0].reg
;
10561 constraint (reg
!= REG_SP
, _("SRS base register must be r13"));
10566 inst
.instruction
|= reg
<< 16;
10567 inst
.instruction
|= inst
.operands
[1].imm
;
10568 if (inst
.operands
[0].writeback
|| inst
.operands
[1].writeback
)
10569 inst
.instruction
|= WRITE_BACK
;
10572 /* ARM V6 strex (argument parse). */
10577 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10578 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10579 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10580 || inst
.operands
[2].negative
10581 /* See comment in do_ldrex(). */
10582 || (inst
.operands
[2].reg
== REG_PC
),
10585 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10586 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10588 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
10589 || inst
.relocs
[0].exp
.X_add_number
!= 0,
10590 _("offset must be zero in ARM encoding"));
10592 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10593 inst
.instruction
|= inst
.operands
[1].reg
;
10594 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10595 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
10599 do_t_strexbh (void)
10601 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10602 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10603 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10604 || inst
.operands
[2].negative
,
10607 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10608 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10616 constraint (inst
.operands
[1].reg
% 2 != 0,
10617 _("even register required"));
10618 constraint (inst
.operands
[2].present
10619 && inst
.operands
[2].reg
!= inst
.operands
[1].reg
+ 1,
10620 _("can only store two consecutive registers"));
10621 /* If op 2 were present and equal to PC, this function wouldn't
10622 have been called in the first place. */
10623 constraint (inst
.operands
[1].reg
== REG_LR
, _("r14 not allowed here"));
10625 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10626 || inst
.operands
[0].reg
== inst
.operands
[1].reg
+ 1
10627 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
10630 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10631 inst
.instruction
|= inst
.operands
[1].reg
;
10632 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
10639 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10640 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10648 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10649 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10654 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10655 extends it to 32-bits, and adds the result to a value in another
10656 register. You can specify a rotation by 0, 8, 16, or 24 bits
10657 before extracting the 16-bit value.
10658 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10659 Condition defaults to COND_ALWAYS.
10660 Error if any register uses R15. */
10665 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10666 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10667 inst
.instruction
|= inst
.operands
[2].reg
;
10668 inst
.instruction
|= inst
.operands
[3].imm
<< 10;
10673 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10674 Condition defaults to COND_ALWAYS.
10675 Error if any register uses R15. */
10680 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10681 inst
.instruction
|= inst
.operands
[1].reg
;
10682 inst
.instruction
|= inst
.operands
[2].imm
<< 10;
10685 /* VFP instructions. In a logical order: SP variant first, monad
10686 before dyad, arithmetic then move then load/store. */
10689 do_vfp_sp_monadic (void)
10691 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10692 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10695 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10696 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
10700 do_vfp_sp_dyadic (void)
10702 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10703 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
10704 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
10708 do_vfp_sp_compare_z (void)
10710 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10714 do_vfp_dp_sp_cvt (void)
10716 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10717 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
10721 do_vfp_sp_dp_cvt (void)
10723 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10724 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
10728 do_vfp_reg_from_sp (void)
10730 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10731 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10734 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10735 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
10739 do_vfp_reg2_from_sp2 (void)
10741 constraint (inst
.operands
[2].imm
!= 2,
10742 _("only two consecutive VFP SP registers allowed here"));
10743 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10744 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10745 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
10749 do_vfp_sp_from_reg (void)
10751 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10752 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10755 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sn
);
10756 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10760 do_vfp_sp2_from_reg2 (void)
10762 constraint (inst
.operands
[0].imm
!= 2,
10763 _("only two consecutive VFP SP registers allowed here"));
10764 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sm
);
10765 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10766 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10770 do_vfp_sp_ldst (void)
10772 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10773 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
10777 do_vfp_dp_ldst (void)
10779 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10780 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
10785 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type
)
10787 if (inst
.operands
[0].writeback
)
10788 inst
.instruction
|= WRITE_BACK
;
10790 constraint (ldstm_type
!= VFP_LDSTMIA
,
10791 _("this addressing mode requires base-register writeback"));
10792 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10793 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sd
);
10794 inst
.instruction
|= inst
.operands
[1].imm
;
10798 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type
)
10802 if (inst
.operands
[0].writeback
)
10803 inst
.instruction
|= WRITE_BACK
;
10805 constraint (ldstm_type
!= VFP_LDSTMIA
&& ldstm_type
!= VFP_LDSTMIAX
,
10806 _("this addressing mode requires base-register writeback"));
10808 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10809 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10811 count
= inst
.operands
[1].imm
<< 1;
10812 if (ldstm_type
== VFP_LDSTMIAX
|| ldstm_type
== VFP_LDSTMDBX
)
10815 inst
.instruction
|= count
;
10819 do_vfp_sp_ldstmia (void)
10821 vfp_sp_ldstm (VFP_LDSTMIA
);
10825 do_vfp_sp_ldstmdb (void)
10827 vfp_sp_ldstm (VFP_LDSTMDB
);
10831 do_vfp_dp_ldstmia (void)
10833 vfp_dp_ldstm (VFP_LDSTMIA
);
10837 do_vfp_dp_ldstmdb (void)
10839 vfp_dp_ldstm (VFP_LDSTMDB
);
10843 do_vfp_xp_ldstmia (void)
10845 vfp_dp_ldstm (VFP_LDSTMIAX
);
10849 do_vfp_xp_ldstmdb (void)
10851 vfp_dp_ldstm (VFP_LDSTMDBX
);
10855 do_vfp_dp_rd_rm (void)
10857 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
10858 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10861 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10862 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
10866 do_vfp_dp_rn_rd (void)
10868 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dn
);
10869 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10873 do_vfp_dp_rd_rn (void)
10875 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10876 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
10880 do_vfp_dp_rd_rn_rm (void)
10882 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
10883 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10886 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10887 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
10888 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dm
);
10892 do_vfp_dp_rd (void)
10894 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10898 do_vfp_dp_rm_rd_rn (void)
10900 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
10901 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10904 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dm
);
10905 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10906 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dn
);
10909 /* VFPv3 instructions. */
10911 do_vfp_sp_const (void)
10913 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10914 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
10915 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
10919 do_vfp_dp_const (void)
10921 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10922 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
10923 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
10927 vfp_conv (int srcsize
)
10929 int immbits
= srcsize
- inst
.operands
[1].imm
;
10931 if (srcsize
== 16 && !(immbits
>= 0 && immbits
<= srcsize
))
10933 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10934 i.e. immbits must be in range 0 - 16. */
10935 inst
.error
= _("immediate value out of range, expected range [0, 16]");
10938 else if (srcsize
== 32 && !(immbits
>= 0 && immbits
< srcsize
))
10940 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10941 i.e. immbits must be in range 0 - 31. */
10942 inst
.error
= _("immediate value out of range, expected range [1, 32]");
10946 inst
.instruction
|= (immbits
& 1) << 5;
10947 inst
.instruction
|= (immbits
>> 1);
10951 do_vfp_sp_conv_16 (void)
10953 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10958 do_vfp_dp_conv_16 (void)
10960 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10965 do_vfp_sp_conv_32 (void)
10967 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10972 do_vfp_dp_conv_32 (void)
10974 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10978 /* FPA instructions. Also in a logical order. */
10983 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10984 inst
.instruction
|= inst
.operands
[1].reg
;
10988 do_fpa_ldmstm (void)
10990 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10991 switch (inst
.operands
[1].imm
)
10993 case 1: inst
.instruction
|= CP_T_X
; break;
10994 case 2: inst
.instruction
|= CP_T_Y
; break;
10995 case 3: inst
.instruction
|= CP_T_Y
| CP_T_X
; break;
11000 if (inst
.instruction
& (PRE_INDEX
| INDEX_UP
))
11002 /* The instruction specified "ea" or "fd", so we can only accept
11003 [Rn]{!}. The instruction does not really support stacking or
11004 unstacking, so we have to emulate these by setting appropriate
11005 bits and offsets. */
11006 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
11007 || inst
.relocs
[0].exp
.X_add_number
!= 0,
11008 _("this instruction does not support indexing"));
11010 if ((inst
.instruction
& PRE_INDEX
) || inst
.operands
[2].writeback
)
11011 inst
.relocs
[0].exp
.X_add_number
= 12 * inst
.operands
[1].imm
;
11013 if (!(inst
.instruction
& INDEX_UP
))
11014 inst
.relocs
[0].exp
.X_add_number
= -inst
.relocs
[0].exp
.X_add_number
;
11016 if (!(inst
.instruction
& PRE_INDEX
) && inst
.operands
[2].writeback
)
11018 inst
.operands
[2].preind
= 0;
11019 inst
.operands
[2].postind
= 1;
11023 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
11026 /* iWMMXt instructions: strictly in alphabetical order. */
11029 do_iwmmxt_tandorc (void)
11031 constraint (inst
.operands
[0].reg
!= REG_PC
, _("only r15 allowed here"));
11035 do_iwmmxt_textrc (void)
11037 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11038 inst
.instruction
|= inst
.operands
[1].imm
;
11042 do_iwmmxt_textrm (void)
11044 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11045 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11046 inst
.instruction
|= inst
.operands
[2].imm
;
11050 do_iwmmxt_tinsr (void)
11052 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
11053 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
11054 inst
.instruction
|= inst
.operands
[2].imm
;
11058 do_iwmmxt_tmia (void)
11060 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
11061 inst
.instruction
|= inst
.operands
[1].reg
;
11062 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
11066 do_iwmmxt_waligni (void)
11068 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11069 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11070 inst
.instruction
|= inst
.operands
[2].reg
;
11071 inst
.instruction
|= inst
.operands
[3].imm
<< 20;
11075 do_iwmmxt_wmerge (void)
11077 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11078 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11079 inst
.instruction
|= inst
.operands
[2].reg
;
11080 inst
.instruction
|= inst
.operands
[3].imm
<< 21;
11084 do_iwmmxt_wmov (void)
11086 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
11087 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11088 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11089 inst
.instruction
|= inst
.operands
[1].reg
;
11093 do_iwmmxt_wldstbh (void)
11096 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11098 reloc
= BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
;
11100 reloc
= BFD_RELOC_ARM_CP_OFF_IMM_S2
;
11101 encode_arm_cp_address (1, TRUE
, FALSE
, reloc
);
11105 do_iwmmxt_wldstw (void)
11107 /* RIWR_RIWC clears .isreg for a control register. */
11108 if (!inst
.operands
[0].isreg
)
11110 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
11111 inst
.instruction
|= 0xf0000000;
11114 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11115 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
11119 do_iwmmxt_wldstd (void)
11121 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11122 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
)
11123 && inst
.operands
[1].immisreg
)
11125 inst
.instruction
&= ~0x1a000ff;
11126 inst
.instruction
|= (0xfU
<< 28);
11127 if (inst
.operands
[1].preind
)
11128 inst
.instruction
|= PRE_INDEX
;
11129 if (!inst
.operands
[1].negative
)
11130 inst
.instruction
|= INDEX_UP
;
11131 if (inst
.operands
[1].writeback
)
11132 inst
.instruction
|= WRITE_BACK
;
11133 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11134 inst
.instruction
|= inst
.relocs
[0].exp
.X_add_number
<< 4;
11135 inst
.instruction
|= inst
.operands
[1].imm
;
11138 encode_arm_cp_address (1, TRUE
, FALSE
, 0);
11142 do_iwmmxt_wshufh (void)
11144 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11145 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11146 inst
.instruction
|= ((inst
.operands
[2].imm
& 0xf0) << 16);
11147 inst
.instruction
|= (inst
.operands
[2].imm
& 0x0f);
11151 do_iwmmxt_wzero (void)
11153 /* WZERO reg is an alias for WANDN reg, reg, reg. */
11154 inst
.instruction
|= inst
.operands
[0].reg
;
11155 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11156 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
11160 do_iwmmxt_wrwrwr_or_imm5 (void)
11162 if (inst
.operands
[2].isreg
)
11165 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
),
11166 _("immediate operand requires iWMMXt2"));
11168 if (inst
.operands
[2].imm
== 0)
11170 switch ((inst
.instruction
>> 20) & 0xf)
11176 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
11177 inst
.operands
[2].imm
= 16;
11178 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0x7 << 20);
11184 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
11185 inst
.operands
[2].imm
= 32;
11186 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0xb << 20);
11193 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
11195 wrn
= (inst
.instruction
>> 16) & 0xf;
11196 inst
.instruction
&= 0xff0fff0f;
11197 inst
.instruction
|= wrn
;
11198 /* Bail out here; the instruction is now assembled. */
11203 /* Map 32 -> 0, etc. */
11204 inst
.operands
[2].imm
&= 0x1f;
11205 inst
.instruction
|= (0xfU
<< 28) | ((inst
.operands
[2].imm
& 0x10) << 4) | (inst
.operands
[2].imm
& 0xf);
11209 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
11210 operations first, then control, shift, and load/store. */
11212 /* Insns like "foo X,Y,Z". */
11215 do_mav_triple (void)
11217 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
11218 inst
.instruction
|= inst
.operands
[1].reg
;
11219 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
11222 /* Insns like "foo W,X,Y,Z".
11223 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
11228 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
11229 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
11230 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
11231 inst
.instruction
|= inst
.operands
[3].reg
;
11234 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
11236 do_mav_dspsc (void)
11238 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
11241 /* Maverick shift immediate instructions.
11242 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
11243 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
11246 do_mav_shift (void)
11248 int imm
= inst
.operands
[2].imm
;
11250 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11251 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11253 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
11254 Bits 5-7 of the insn should have bits 4-6 of the immediate.
11255 Bit 4 should be 0. */
11256 imm
= (imm
& 0xf) | ((imm
& 0x70) << 1);
11258 inst
.instruction
|= imm
;
11261 /* XScale instructions. Also sorted arithmetic before move. */
11263 /* Xscale multiply-accumulate (argument parse)
11266 MIAxycc acc0,Rm,Rs. */
11271 inst
.instruction
|= inst
.operands
[1].reg
;
11272 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
11275 /* Xscale move-accumulator-register (argument parse)
11277 MARcc acc0,RdLo,RdHi. */
11282 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
11283 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
11286 /* Xscale move-register-accumulator (argument parse)
11288 MRAcc RdLo,RdHi,acc0. */
11293 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
11294 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
11295 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11298 /* Encoding functions relevant only to Thumb. */
11300 /* inst.operands[i] is a shifted-register operand; encode
11301 it into inst.instruction in the format used by Thumb32. */
11304 encode_thumb32_shifted_operand (int i
)
11306 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
11307 unsigned int shift
= inst
.operands
[i
].shift_kind
;
11309 constraint (inst
.operands
[i
].immisreg
,
11310 _("shift by register not allowed in thumb mode"));
11311 inst
.instruction
|= inst
.operands
[i
].reg
;
11312 if (shift
== SHIFT_RRX
)
11313 inst
.instruction
|= SHIFT_ROR
<< 4;
11316 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11317 _("expression too complex"));
11319 constraint (value
> 32
11320 || (value
== 32 && (shift
== SHIFT_LSL
11321 || shift
== SHIFT_ROR
)),
11322 _("shift expression is too large"));
11326 else if (value
== 32)
11329 inst
.instruction
|= shift
<< 4;
11330 inst
.instruction
|= (value
& 0x1c) << 10;
11331 inst
.instruction
|= (value
& 0x03) << 6;
11336 /* inst.operands[i] was set up by parse_address. Encode it into a
11337 Thumb32 format load or store instruction. Reject forms that cannot
11338 be used with such instructions. If is_t is true, reject forms that
11339 cannot be used with a T instruction; if is_d is true, reject forms
11340 that cannot be used with a D instruction. If it is a store insn,
11341 reject PC in Rn. */
11344 encode_thumb32_addr_mode (int i
, bfd_boolean is_t
, bfd_boolean is_d
)
11346 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
11348 constraint (!inst
.operands
[i
].isreg
,
11349 _("Instruction does not support =N addresses"));
11351 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
11352 if (inst
.operands
[i
].immisreg
)
11354 constraint (is_pc
, BAD_PC_ADDRESSING
);
11355 constraint (is_t
|| is_d
, _("cannot use register index with this instruction"));
11356 constraint (inst
.operands
[i
].negative
,
11357 _("Thumb does not support negative register indexing"));
11358 constraint (inst
.operands
[i
].postind
,
11359 _("Thumb does not support register post-indexing"));
11360 constraint (inst
.operands
[i
].writeback
,
11361 _("Thumb does not support register indexing with writeback"));
11362 constraint (inst
.operands
[i
].shifted
&& inst
.operands
[i
].shift_kind
!= SHIFT_LSL
,
11363 _("Thumb supports only LSL in shifted register indexing"));
11365 inst
.instruction
|= inst
.operands
[i
].imm
;
11366 if (inst
.operands
[i
].shifted
)
11368 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11369 _("expression too complex"));
11370 constraint (inst
.relocs
[0].exp
.X_add_number
< 0
11371 || inst
.relocs
[0].exp
.X_add_number
> 3,
11372 _("shift out of range"));
11373 inst
.instruction
|= inst
.relocs
[0].exp
.X_add_number
<< 4;
11375 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
11377 else if (inst
.operands
[i
].preind
)
11379 constraint (is_pc
&& inst
.operands
[i
].writeback
, BAD_PC_WRITEBACK
);
11380 constraint (is_t
&& inst
.operands
[i
].writeback
,
11381 _("cannot use writeback with this instruction"));
11382 constraint (is_pc
&& ((inst
.instruction
& THUMB2_LOAD_BIT
) == 0),
11383 BAD_PC_ADDRESSING
);
11387 inst
.instruction
|= 0x01000000;
11388 if (inst
.operands
[i
].writeback
)
11389 inst
.instruction
|= 0x00200000;
11393 inst
.instruction
|= 0x00000c00;
11394 if (inst
.operands
[i
].writeback
)
11395 inst
.instruction
|= 0x00000100;
11397 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
11399 else if (inst
.operands
[i
].postind
)
11401 gas_assert (inst
.operands
[i
].writeback
);
11402 constraint (is_pc
, _("cannot use post-indexing with PC-relative addressing"));
11403 constraint (is_t
, _("cannot use post-indexing with this instruction"));
11406 inst
.instruction
|= 0x00200000;
11408 inst
.instruction
|= 0x00000900;
11409 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
11411 else /* unindexed - only for coprocessor */
11412 inst
.error
= _("instruction does not accept unindexed addressing");
11415 /* Table of Thumb instructions which exist in 16- and/or 32-bit
11416 encodings (the latter only in post-V6T2 cores). The index is the
11417 value used in the insns table below. When there is more than one
11418 possible 16-bit encoding for the instruction, this table always
11420 Also contains several pseudo-instructions used during relaxation. */
11421 #define T16_32_TAB \
11422 X(_adc, 4140, eb400000), \
11423 X(_adcs, 4140, eb500000), \
11424 X(_add, 1c00, eb000000), \
11425 X(_adds, 1c00, eb100000), \
11426 X(_addi, 0000, f1000000), \
11427 X(_addis, 0000, f1100000), \
11428 X(_add_pc,000f, f20f0000), \
11429 X(_add_sp,000d, f10d0000), \
11430 X(_adr, 000f, f20f0000), \
11431 X(_and, 4000, ea000000), \
11432 X(_ands, 4000, ea100000), \
11433 X(_asr, 1000, fa40f000), \
11434 X(_asrs, 1000, fa50f000), \
11435 X(_b, e000, f000b000), \
11436 X(_bcond, d000, f0008000), \
11437 X(_bf, 0000, f040e001), \
11438 X(_bfcsel,0000, f000e001), \
11439 X(_bfx, 0000, f060e001), \
11440 X(_bfl, 0000, f000c001), \
11441 X(_bflx, 0000, f070e001), \
11442 X(_bic, 4380, ea200000), \
11443 X(_bics, 4380, ea300000), \
11444 X(_cinc, 0000, ea509000), \
11445 X(_cinv, 0000, ea50a000), \
11446 X(_cmn, 42c0, eb100f00), \
11447 X(_cmp, 2800, ebb00f00), \
11448 X(_cneg, 0000, ea50b000), \
11449 X(_cpsie, b660, f3af8400), \
11450 X(_cpsid, b670, f3af8600), \
11451 X(_cpy, 4600, ea4f0000), \
11452 X(_csel, 0000, ea508000), \
11453 X(_cset, 0000, ea5f900f), \
11454 X(_csetm, 0000, ea5fa00f), \
11455 X(_csinc, 0000, ea509000), \
11456 X(_csinv, 0000, ea50a000), \
11457 X(_csneg, 0000, ea50b000), \
11458 X(_dec_sp,80dd, f1ad0d00), \
11459 X(_dls, 0000, f040e001), \
11460 X(_dlstp, 0000, f000e001), \
11461 X(_eor, 4040, ea800000), \
11462 X(_eors, 4040, ea900000), \
11463 X(_inc_sp,00dd, f10d0d00), \
11464 X(_lctp, 0000, f00fe001), \
11465 X(_ldmia, c800, e8900000), \
11466 X(_ldr, 6800, f8500000), \
11467 X(_ldrb, 7800, f8100000), \
11468 X(_ldrh, 8800, f8300000), \
11469 X(_ldrsb, 5600, f9100000), \
11470 X(_ldrsh, 5e00, f9300000), \
11471 X(_ldr_pc,4800, f85f0000), \
11472 X(_ldr_pc2,4800, f85f0000), \
11473 X(_ldr_sp,9800, f85d0000), \
11474 X(_le, 0000, f00fc001), \
11475 X(_letp, 0000, f01fc001), \
11476 X(_lsl, 0000, fa00f000), \
11477 X(_lsls, 0000, fa10f000), \
11478 X(_lsr, 0800, fa20f000), \
11479 X(_lsrs, 0800, fa30f000), \
11480 X(_mov, 2000, ea4f0000), \
11481 X(_movs, 2000, ea5f0000), \
11482 X(_mul, 4340, fb00f000), \
11483 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11484 X(_mvn, 43c0, ea6f0000), \
11485 X(_mvns, 43c0, ea7f0000), \
11486 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11487 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11488 X(_orr, 4300, ea400000), \
11489 X(_orrs, 4300, ea500000), \
11490 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11491 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11492 X(_rev, ba00, fa90f080), \
11493 X(_rev16, ba40, fa90f090), \
11494 X(_revsh, bac0, fa90f0b0), \
11495 X(_ror, 41c0, fa60f000), \
11496 X(_rors, 41c0, fa70f000), \
11497 X(_sbc, 4180, eb600000), \
11498 X(_sbcs, 4180, eb700000), \
11499 X(_stmia, c000, e8800000), \
11500 X(_str, 6000, f8400000), \
11501 X(_strb, 7000, f8000000), \
11502 X(_strh, 8000, f8200000), \
11503 X(_str_sp,9000, f84d0000), \
11504 X(_sub, 1e00, eba00000), \
11505 X(_subs, 1e00, ebb00000), \
11506 X(_subi, 8000, f1a00000), \
11507 X(_subis, 8000, f1b00000), \
11508 X(_sxtb, b240, fa4ff080), \
11509 X(_sxth, b200, fa0ff080), \
11510 X(_tst, 4200, ea100f00), \
11511 X(_uxtb, b2c0, fa5ff080), \
11512 X(_uxth, b280, fa1ff080), \
11513 X(_nop, bf00, f3af8000), \
11514 X(_yield, bf10, f3af8001), \
11515 X(_wfe, bf20, f3af8002), \
11516 X(_wfi, bf30, f3af8003), \
11517 X(_wls, 0000, f040c001), \
11518 X(_wlstp, 0000, f000c001), \
11519 X(_sev, bf40, f3af8004), \
11520 X(_sevl, bf50, f3af8005), \
11521 X(_udf, de00, f7f0a000)
11523 /* To catch errors in encoding functions, the codes are all offset by
11524 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11525 as 16-bit instructions. */
11526 #define X(a,b,c) T_MNEM##a
11527 enum t16_32_codes
{ T16_32_OFFSET
= 0xF7FF, T16_32_TAB
};
11530 #define X(a,b,c) 0x##b
11531 static const unsigned short thumb_op16
[] = { T16_32_TAB
};
11532 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11535 #define X(a,b,c) 0x##c
11536 static const unsigned int thumb_op32
[] = { T16_32_TAB
};
11537 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11538 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11542 /* Thumb instruction encoders, in alphabetical order. */
11544 /* ADDW or SUBW. */
11547 do_t_add_sub_w (void)
11551 Rd
= inst
.operands
[0].reg
;
11552 Rn
= inst
.operands
[1].reg
;
11554 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11555 is the SP-{plus,minus}-immediate form of the instruction. */
11557 constraint (Rd
== REG_PC
, BAD_PC
);
11559 reject_bad_reg (Rd
);
11561 inst
.instruction
|= (Rn
<< 16) | (Rd
<< 8);
11562 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMM12
;
11565 /* Parse an add or subtract instruction. We get here with inst.instruction
11566 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11569 do_t_add_sub (void)
11573 Rd
= inst
.operands
[0].reg
;
11574 Rs
= (inst
.operands
[1].present
11575 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11576 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11579 set_pred_insn_type_last ();
11581 if (unified_syntax
)
11584 bfd_boolean narrow
;
11587 flags
= (inst
.instruction
== T_MNEM_adds
11588 || inst
.instruction
== T_MNEM_subs
);
11590 narrow
= !in_pred_block ();
11592 narrow
= in_pred_block ();
11593 if (!inst
.operands
[2].isreg
)
11597 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11598 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
11600 add
= (inst
.instruction
== T_MNEM_add
11601 || inst
.instruction
== T_MNEM_adds
);
11603 if (inst
.size_req
!= 4)
11605 /* Attempt to use a narrow opcode, with relaxation if
11607 if (Rd
== REG_SP
&& Rs
== REG_SP
&& !flags
)
11608 opcode
= add
? T_MNEM_inc_sp
: T_MNEM_dec_sp
;
11609 else if (Rd
<= 7 && Rs
== REG_SP
&& add
&& !flags
)
11610 opcode
= T_MNEM_add_sp
;
11611 else if (Rd
<= 7 && Rs
== REG_PC
&& add
&& !flags
)
11612 opcode
= T_MNEM_add_pc
;
11613 else if (Rd
<= 7 && Rs
<= 7 && narrow
)
11616 opcode
= add
? T_MNEM_addis
: T_MNEM_subis
;
11618 opcode
= add
? T_MNEM_addi
: T_MNEM_subi
;
11622 inst
.instruction
= THUMB_OP16(opcode
);
11623 inst
.instruction
|= (Rd
<< 4) | Rs
;
11624 if (inst
.relocs
[0].type
< BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11625 || (inst
.relocs
[0].type
11626 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
))
11628 if (inst
.size_req
== 2)
11629 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11631 inst
.relax
= opcode
;
11635 constraint (inst
.size_req
== 2, BAD_HIREG
);
11637 if (inst
.size_req
== 4
11638 || (inst
.size_req
!= 2 && !opcode
))
11640 constraint ((inst
.relocs
[0].type
11641 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
)
11642 && (inst
.relocs
[0].type
11643 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
) ,
11644 THUMB1_RELOC_ONLY
);
11647 constraint (add
, BAD_PC
);
11648 constraint (Rs
!= REG_LR
|| inst
.instruction
!= T_MNEM_subs
,
11649 _("only SUBS PC, LR, #const allowed"));
11650 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11651 _("expression too complex"));
11652 constraint (inst
.relocs
[0].exp
.X_add_number
< 0
11653 || inst
.relocs
[0].exp
.X_add_number
> 0xff,
11654 _("immediate value out of range"));
11655 inst
.instruction
= T2_SUBS_PC_LR
11656 | inst
.relocs
[0].exp
.X_add_number
;
11657 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
11660 else if (Rs
== REG_PC
)
11662 /* Always use addw/subw. */
11663 inst
.instruction
= add
? 0xf20f0000 : 0xf2af0000;
11664 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMM12
;
11668 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11669 inst
.instruction
= (inst
.instruction
& 0xe1ffffff)
11672 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11674 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_ADD_IMM
;
11676 inst
.instruction
|= Rd
<< 8;
11677 inst
.instruction
|= Rs
<< 16;
11682 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
11683 unsigned int shift
= inst
.operands
[2].shift_kind
;
11685 Rn
= inst
.operands
[2].reg
;
11686 /* See if we can do this with a 16-bit instruction. */
11687 if (!inst
.operands
[2].shifted
&& inst
.size_req
!= 4)
11689 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
11694 inst
.instruction
= ((inst
.instruction
== T_MNEM_adds
11695 || inst
.instruction
== T_MNEM_add
)
11697 : T_OPCODE_SUB_R3
);
11698 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
11702 if (inst
.instruction
== T_MNEM_add
&& (Rd
== Rs
|| Rd
== Rn
))
11704 /* Thumb-1 cores (except v6-M) require at least one high
11705 register in a narrow non flag setting add. */
11706 if (Rd
> 7 || Rn
> 7
11707 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
)
11708 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_msr
))
11715 inst
.instruction
= T_OPCODE_ADD_HI
;
11716 inst
.instruction
|= (Rd
& 8) << 4;
11717 inst
.instruction
|= (Rd
& 7);
11718 inst
.instruction
|= Rn
<< 3;
11724 constraint (Rd
== REG_PC
, BAD_PC
);
11725 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11726 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
11727 constraint (Rs
== REG_PC
, BAD_PC
);
11728 reject_bad_reg (Rn
);
11730 /* If we get here, it can't be done in 16 bits. */
11731 constraint (inst
.operands
[2].shifted
&& inst
.operands
[2].immisreg
,
11732 _("shift must be constant"));
11733 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11734 inst
.instruction
|= Rd
<< 8;
11735 inst
.instruction
|= Rs
<< 16;
11736 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& value
> 3,
11737 _("shift value over 3 not allowed in thumb mode"));
11738 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& shift
!= SHIFT_LSL
,
11739 _("only LSL shift allowed in thumb mode"));
11740 encode_thumb32_shifted_operand (2);
11745 constraint (inst
.instruction
== T_MNEM_adds
11746 || inst
.instruction
== T_MNEM_subs
,
11749 if (!inst
.operands
[2].isreg
) /* Rd, Rs, #imm */
11751 constraint ((Rd
> 7 && (Rd
!= REG_SP
|| Rs
!= REG_SP
))
11752 || (Rs
> 7 && Rs
!= REG_SP
&& Rs
!= REG_PC
),
11755 inst
.instruction
= (inst
.instruction
== T_MNEM_add
11756 ? 0x0000 : 0x8000);
11757 inst
.instruction
|= (Rd
<< 4) | Rs
;
11758 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11762 Rn
= inst
.operands
[2].reg
;
11763 constraint (inst
.operands
[2].shifted
, _("unshifted register required"));
11765 /* We now have Rd, Rs, and Rn set to registers. */
11766 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
11768 /* Can't do this for SUB. */
11769 constraint (inst
.instruction
== T_MNEM_sub
, BAD_HIREG
);
11770 inst
.instruction
= T_OPCODE_ADD_HI
;
11771 inst
.instruction
|= (Rd
& 8) << 4;
11772 inst
.instruction
|= (Rd
& 7);
11774 inst
.instruction
|= Rn
<< 3;
11776 inst
.instruction
|= Rs
<< 3;
11778 constraint (1, _("dest must overlap one source register"));
11782 inst
.instruction
= (inst
.instruction
== T_MNEM_add
11783 ? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3
);
11784 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
11794 Rd
= inst
.operands
[0].reg
;
11795 reject_bad_reg (Rd
);
11797 if (unified_syntax
&& inst
.size_req
== 0 && Rd
<= 7)
11799 /* Defer to section relaxation. */
11800 inst
.relax
= inst
.instruction
;
11801 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11802 inst
.instruction
|= Rd
<< 4;
11804 else if (unified_syntax
&& inst
.size_req
!= 2)
11806 /* Generate a 32-bit opcode. */
11807 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11808 inst
.instruction
|= Rd
<< 8;
11809 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_ADD_PC12
;
11810 inst
.relocs
[0].pc_rel
= 1;
11814 /* Generate a 16-bit opcode. */
11815 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11816 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11817 inst
.relocs
[0].exp
.X_add_number
-= 4; /* PC relative adjust. */
11818 inst
.relocs
[0].pc_rel
= 1;
11819 inst
.instruction
|= Rd
<< 4;
11822 if (inst
.relocs
[0].exp
.X_op
== O_symbol
11823 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
11824 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
11825 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
11826 inst
.relocs
[0].exp
.X_add_number
+= 1;
11829 /* Arithmetic instructions for which there is just one 16-bit
11830 instruction encoding, and it allows only two low registers.
11831 For maximal compatibility with ARM syntax, we allow three register
11832 operands even when Thumb-32 instructions are not available, as long
11833 as the first two are identical. For instance, both "sbc r0,r1" and
11834 "sbc r0,r0,r1" are allowed. */
11840 Rd
= inst
.operands
[0].reg
;
11841 Rs
= (inst
.operands
[1].present
11842 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11843 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11844 Rn
= inst
.operands
[2].reg
;
11846 reject_bad_reg (Rd
);
11847 reject_bad_reg (Rs
);
11848 if (inst
.operands
[2].isreg
)
11849 reject_bad_reg (Rn
);
11851 if (unified_syntax
)
11853 if (!inst
.operands
[2].isreg
)
11855 /* For an immediate, we always generate a 32-bit opcode;
11856 section relaxation will shrink it later if possible. */
11857 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11858 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11859 inst
.instruction
|= Rd
<< 8;
11860 inst
.instruction
|= Rs
<< 16;
11861 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11865 bfd_boolean narrow
;
11867 /* See if we can do this with a 16-bit instruction. */
11868 if (THUMB_SETS_FLAGS (inst
.instruction
))
11869 narrow
= !in_pred_block ();
11871 narrow
= in_pred_block ();
11873 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
11875 if (inst
.operands
[2].shifted
)
11877 if (inst
.size_req
== 4)
11883 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11884 inst
.instruction
|= Rd
;
11885 inst
.instruction
|= Rn
<< 3;
11889 /* If we get here, it can't be done in 16 bits. */
11890 constraint (inst
.operands
[2].shifted
11891 && inst
.operands
[2].immisreg
,
11892 _("shift must be constant"));
11893 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11894 inst
.instruction
|= Rd
<< 8;
11895 inst
.instruction
|= Rs
<< 16;
11896 encode_thumb32_shifted_operand (2);
11901 /* On its face this is a lie - the instruction does set the
11902 flags. However, the only supported mnemonic in this mode
11903 says it doesn't. */
11904 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11906 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
11907 _("unshifted register required"));
11908 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
11909 constraint (Rd
!= Rs
,
11910 _("dest and source1 must be the same register"));
11912 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11913 inst
.instruction
|= Rd
;
11914 inst
.instruction
|= Rn
<< 3;
11918 /* Similarly, but for instructions where the arithmetic operation is
11919 commutative, so we can allow either of them to be different from
11920 the destination operand in a 16-bit instruction. For instance, all
11921 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11928 Rd
= inst
.operands
[0].reg
;
11929 Rs
= (inst
.operands
[1].present
11930 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11931 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11932 Rn
= inst
.operands
[2].reg
;
11934 reject_bad_reg (Rd
);
11935 reject_bad_reg (Rs
);
11936 if (inst
.operands
[2].isreg
)
11937 reject_bad_reg (Rn
);
11939 if (unified_syntax
)
11941 if (!inst
.operands
[2].isreg
)
11943 /* For an immediate, we always generate a 32-bit opcode;
11944 section relaxation will shrink it later if possible. */
11945 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11946 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11947 inst
.instruction
|= Rd
<< 8;
11948 inst
.instruction
|= Rs
<< 16;
11949 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11953 bfd_boolean narrow
;
11955 /* See if we can do this with a 16-bit instruction. */
11956 if (THUMB_SETS_FLAGS (inst
.instruction
))
11957 narrow
= !in_pred_block ();
11959 narrow
= in_pred_block ();
11961 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
11963 if (inst
.operands
[2].shifted
)
11965 if (inst
.size_req
== 4)
11972 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11973 inst
.instruction
|= Rd
;
11974 inst
.instruction
|= Rn
<< 3;
11979 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11980 inst
.instruction
|= Rd
;
11981 inst
.instruction
|= Rs
<< 3;
11986 /* If we get here, it can't be done in 16 bits. */
11987 constraint (inst
.operands
[2].shifted
11988 && inst
.operands
[2].immisreg
,
11989 _("shift must be constant"));
11990 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11991 inst
.instruction
|= Rd
<< 8;
11992 inst
.instruction
|= Rs
<< 16;
11993 encode_thumb32_shifted_operand (2);
11998 /* On its face this is a lie - the instruction does set the
11999 flags. However, the only supported mnemonic in this mode
12000 says it doesn't. */
12001 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
12003 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
12004 _("unshifted register required"));
12005 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
12007 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12008 inst
.instruction
|= Rd
;
12011 inst
.instruction
|= Rn
<< 3;
12013 inst
.instruction
|= Rs
<< 3;
12015 constraint (1, _("dest must overlap one source register"));
12023 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
12024 constraint (msb
> 32, _("bit-field extends past end of register"));
12025 /* The instruction encoding stores the LSB and MSB,
12026 not the LSB and width. */
12027 Rd
= inst
.operands
[0].reg
;
12028 reject_bad_reg (Rd
);
12029 inst
.instruction
|= Rd
<< 8;
12030 inst
.instruction
|= (inst
.operands
[1].imm
& 0x1c) << 10;
12031 inst
.instruction
|= (inst
.operands
[1].imm
& 0x03) << 6;
12032 inst
.instruction
|= msb
- 1;
12041 Rd
= inst
.operands
[0].reg
;
12042 reject_bad_reg (Rd
);
12044 /* #0 in second position is alternative syntax for bfc, which is
12045 the same instruction but with REG_PC in the Rm field. */
12046 if (!inst
.operands
[1].isreg
)
12050 Rn
= inst
.operands
[1].reg
;
12051 reject_bad_reg (Rn
);
12054 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
12055 constraint (msb
> 32, _("bit-field extends past end of register"));
12056 /* The instruction encoding stores the LSB and MSB,
12057 not the LSB and width. */
12058 inst
.instruction
|= Rd
<< 8;
12059 inst
.instruction
|= Rn
<< 16;
12060 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
12061 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
12062 inst
.instruction
|= msb
- 1;
12070 Rd
= inst
.operands
[0].reg
;
12071 Rn
= inst
.operands
[1].reg
;
12073 reject_bad_reg (Rd
);
12074 reject_bad_reg (Rn
);
12076 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
12077 _("bit-field extends past end of register"));
12078 inst
.instruction
|= Rd
<< 8;
12079 inst
.instruction
|= Rn
<< 16;
12080 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
12081 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
12082 inst
.instruction
|= inst
.operands
[3].imm
- 1;
12085 /* ARM V5 Thumb BLX (argument parse)
12086 BLX <target_addr> which is BLX(1)
12087 BLX <Rm> which is BLX(2)
12088 Unfortunately, there are two different opcodes for this mnemonic.
12089 So, the insns[].value is not used, and the code here zaps values
12090 into inst.instruction.
12092 ??? How to take advantage of the additional two bits of displacement
12093 available in Thumb32 mode? Need new relocation? */
12098 set_pred_insn_type_last ();
12100 if (inst
.operands
[0].isreg
)
12102 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
12103 /* We have a register, so this is BLX(2). */
12104 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
12108 /* No register. This must be BLX(1). */
12109 inst
.instruction
= 0xf000e800;
12110 encode_branch (BFD_RELOC_THUMB_PCREL_BLX
);
12119 bfd_reloc_code_real_type reloc
;
12122 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN
);
12124 if (in_pred_block ())
12126 /* Conditional branches inside IT blocks are encoded as unconditional
12128 cond
= COND_ALWAYS
;
12133 if (cond
!= COND_ALWAYS
)
12134 opcode
= T_MNEM_bcond
;
12136 opcode
= inst
.instruction
;
12139 && (inst
.size_req
== 4
12140 || (inst
.size_req
!= 2
12141 && (inst
.operands
[0].hasreloc
12142 || inst
.relocs
[0].exp
.X_op
== O_constant
))))
12144 inst
.instruction
= THUMB_OP32(opcode
);
12145 if (cond
== COND_ALWAYS
)
12146 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
12149 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
),
12150 _("selected architecture does not support "
12151 "wide conditional branch instruction"));
12153 gas_assert (cond
!= 0xF);
12154 inst
.instruction
|= cond
<< 22;
12155 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
12160 inst
.instruction
= THUMB_OP16(opcode
);
12161 if (cond
== COND_ALWAYS
)
12162 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
12165 inst
.instruction
|= cond
<< 8;
12166 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
12168 /* Allow section relaxation. */
12169 if (unified_syntax
&& inst
.size_req
!= 2)
12170 inst
.relax
= opcode
;
12172 inst
.relocs
[0].type
= reloc
;
12173 inst
.relocs
[0].pc_rel
= 1;
12176 /* Actually do the work for Thumb state bkpt and hlt. The only difference
12177 between the two is the maximum immediate allowed - which is passed in
12180 do_t_bkpt_hlt1 (int range
)
12182 constraint (inst
.cond
!= COND_ALWAYS
,
12183 _("instruction is always unconditional"));
12184 if (inst
.operands
[0].present
)
12186 constraint (inst
.operands
[0].imm
> range
,
12187 _("immediate value out of range"));
12188 inst
.instruction
|= inst
.operands
[0].imm
;
12191 set_pred_insn_type (NEUTRAL_IT_INSN
);
12197 do_t_bkpt_hlt1 (63);
12203 do_t_bkpt_hlt1 (255);
12207 do_t_branch23 (void)
12209 set_pred_insn_type_last ();
12210 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23
);
12212 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
12213 this file. We used to simply ignore the PLT reloc type here --
12214 the branch encoding is now needed to deal with TLSCALL relocs.
12215 So if we see a PLT reloc now, put it back to how it used to be to
12216 keep the preexisting behaviour. */
12217 if (inst
.relocs
[0].type
== BFD_RELOC_ARM_PLT32
)
12218 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
12220 #if defined(OBJ_COFF)
12221 /* If the destination of the branch is a defined symbol which does not have
12222 the THUMB_FUNC attribute, then we must be calling a function which has
12223 the (interfacearm) attribute. We look for the Thumb entry point to that
12224 function and change the branch to refer to that function instead. */
12225 if ( inst
.relocs
[0].exp
.X_op
== O_symbol
12226 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
12227 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
12228 && ! THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
12229 inst
.relocs
[0].exp
.X_add_symbol
12230 = find_real_start (inst
.relocs
[0].exp
.X_add_symbol
);
12237 set_pred_insn_type_last ();
12238 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
12239 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
12240 should cause the alignment to be checked once it is known. This is
12241 because BX PC only works if the instruction is word aligned. */
12249 set_pred_insn_type_last ();
12250 Rm
= inst
.operands
[0].reg
;
12251 reject_bad_reg (Rm
);
12252 inst
.instruction
|= Rm
<< 16;
12261 Rd
= inst
.operands
[0].reg
;
12262 Rm
= inst
.operands
[1].reg
;
12264 reject_bad_reg (Rd
);
12265 reject_bad_reg (Rm
);
12267 inst
.instruction
|= Rd
<< 8;
12268 inst
.instruction
|= Rm
<< 16;
12269 inst
.instruction
|= Rm
;
12272 /* For the Armv8.1-M conditional instructions. */
12276 unsigned Rd
, Rn
, Rm
;
12279 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
12281 Rd
= inst
.operands
[0].reg
;
12282 switch (inst
.instruction
)
12288 Rn
= inst
.operands
[1].reg
;
12289 Rm
= inst
.operands
[2].reg
;
12290 cond
= inst
.operands
[3].imm
;
12291 constraint (Rn
== REG_SP
, BAD_SP
);
12292 constraint (Rm
== REG_SP
, BAD_SP
);
12298 Rn
= inst
.operands
[1].reg
;
12299 cond
= inst
.operands
[2].imm
;
12300 /* Invert the last bit to invert the cond. */
12301 cond
= TOGGLE_BIT (cond
, 0);
12302 constraint (Rn
== REG_SP
, BAD_SP
);
12308 cond
= inst
.operands
[1].imm
;
12309 /* Invert the last bit to invert the cond. */
12310 cond
= TOGGLE_BIT (cond
, 0);
12318 set_pred_insn_type (OUTSIDE_PRED_INSN
);
12319 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12320 inst
.instruction
|= Rd
<< 8;
12321 inst
.instruction
|= Rn
<< 16;
12322 inst
.instruction
|= Rm
;
12323 inst
.instruction
|= cond
<< 4;
12329 set_pred_insn_type (OUTSIDE_PRED_INSN
);
12335 set_pred_insn_type (OUTSIDE_PRED_INSN
);
12336 inst
.instruction
|= inst
.operands
[0].imm
;
12342 set_pred_insn_type (OUTSIDE_PRED_INSN
);
12344 && (inst
.operands
[1].present
|| inst
.size_req
== 4)
12345 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6_notm
))
12347 unsigned int imod
= (inst
.instruction
& 0x0030) >> 4;
12348 inst
.instruction
= 0xf3af8000;
12349 inst
.instruction
|= imod
<< 9;
12350 inst
.instruction
|= inst
.operands
[0].imm
<< 5;
12351 if (inst
.operands
[1].present
)
12352 inst
.instruction
|= 0x100 | inst
.operands
[1].imm
;
12356 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
)
12357 && (inst
.operands
[0].imm
& 4),
12358 _("selected processor does not support 'A' form "
12359 "of this instruction"));
12360 constraint (inst
.operands
[1].present
|| inst
.size_req
== 4,
12361 _("Thumb does not support the 2-argument "
12362 "form of this instruction"));
12363 inst
.instruction
|= inst
.operands
[0].imm
;
12367 /* THUMB CPY instruction (argument parse). */
12372 if (inst
.size_req
== 4)
12374 inst
.instruction
= THUMB_OP32 (T_MNEM_mov
);
12375 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12376 inst
.instruction
|= inst
.operands
[1].reg
;
12380 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
12381 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
12382 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12389 set_pred_insn_type (OUTSIDE_PRED_INSN
);
12390 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
12391 inst
.instruction
|= inst
.operands
[0].reg
;
12392 inst
.relocs
[0].pc_rel
= 1;
12393 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH7
;
12399 inst
.instruction
|= inst
.operands
[0].imm
;
12405 unsigned Rd
, Rn
, Rm
;
12407 Rd
= inst
.operands
[0].reg
;
12408 Rn
= (inst
.operands
[1].present
12409 ? inst
.operands
[1].reg
: Rd
);
12410 Rm
= inst
.operands
[2].reg
;
12412 reject_bad_reg (Rd
);
12413 reject_bad_reg (Rn
);
12414 reject_bad_reg (Rm
);
12416 inst
.instruction
|= Rd
<< 8;
12417 inst
.instruction
|= Rn
<< 16;
12418 inst
.instruction
|= Rm
;
12424 if (unified_syntax
&& inst
.size_req
== 4)
12425 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12427 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12433 unsigned int cond
= inst
.operands
[0].imm
;
12435 set_pred_insn_type (IT_INSN
);
12436 now_pred
.mask
= (inst
.instruction
& 0xf) | 0x10;
12437 now_pred
.cc
= cond
;
12438 now_pred
.warn_deprecated
= FALSE
;
12439 now_pred
.type
= SCALAR_PRED
;
12441 /* If the condition is a negative condition, invert the mask. */
12442 if ((cond
& 0x1) == 0x0)
12444 unsigned int mask
= inst
.instruction
& 0x000f;
12446 if ((mask
& 0x7) == 0)
12448 /* No conversion needed. */
12449 now_pred
.block_length
= 1;
12451 else if ((mask
& 0x3) == 0)
12454 now_pred
.block_length
= 2;
12456 else if ((mask
& 0x1) == 0)
12459 now_pred
.block_length
= 3;
12464 now_pred
.block_length
= 4;
12467 inst
.instruction
&= 0xfff0;
12468 inst
.instruction
|= mask
;
12471 inst
.instruction
|= cond
<< 4;
12474 /* Helper function used for both push/pop and ldm/stm. */
12476 encode_thumb2_multi (bfd_boolean do_io
, int base
, unsigned mask
,
12477 bfd_boolean writeback
)
12479 bfd_boolean load
, store
;
12481 gas_assert (base
!= -1 || !do_io
);
12482 load
= do_io
&& ((inst
.instruction
& (1 << 20)) != 0);
12483 store
= do_io
&& !load
;
12485 if (mask
& (1 << 13))
12486 inst
.error
= _("SP not allowed in register list");
12488 if (do_io
&& (mask
& (1 << base
)) != 0
12490 inst
.error
= _("having the base register in the register list when "
12491 "using write back is UNPREDICTABLE");
12495 if (mask
& (1 << 15))
12497 if (mask
& (1 << 14))
12498 inst
.error
= _("LR and PC should not both be in register list");
12500 set_pred_insn_type_last ();
12505 if (mask
& (1 << 15))
12506 inst
.error
= _("PC not allowed in register list");
12509 if (do_io
&& ((mask
& (mask
- 1)) == 0))
12511 /* Single register transfers implemented as str/ldr. */
12514 if (inst
.instruction
& (1 << 23))
12515 inst
.instruction
= 0x00000b04; /* ia! -> [base], #4 */
12517 inst
.instruction
= 0x00000d04; /* db! -> [base, #-4]! */
12521 if (inst
.instruction
& (1 << 23))
12522 inst
.instruction
= 0x00800000; /* ia -> [base] */
12524 inst
.instruction
= 0x00000c04; /* db -> [base, #-4] */
12527 inst
.instruction
|= 0xf8400000;
12529 inst
.instruction
|= 0x00100000;
12531 mask
= ffs (mask
) - 1;
12534 else if (writeback
)
12535 inst
.instruction
|= WRITE_BACK
;
12537 inst
.instruction
|= mask
;
12539 inst
.instruction
|= base
<< 16;
12545 /* This really doesn't seem worth it. */
12546 constraint (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
,
12547 _("expression too complex"));
12548 constraint (inst
.operands
[1].writeback
,
12549 _("Thumb load/store multiple does not support {reglist}^"));
12551 if (unified_syntax
)
12553 bfd_boolean narrow
;
12557 /* See if we can use a 16-bit instruction. */
12558 if (inst
.instruction
< 0xffff /* not ldmdb/stmdb */
12559 && inst
.size_req
!= 4
12560 && !(inst
.operands
[1].imm
& ~0xff))
12562 mask
= 1 << inst
.operands
[0].reg
;
12564 if (inst
.operands
[0].reg
<= 7)
12566 if (inst
.instruction
== T_MNEM_stmia
12567 ? inst
.operands
[0].writeback
12568 : (inst
.operands
[0].writeback
12569 == !(inst
.operands
[1].imm
& mask
)))
12571 if (inst
.instruction
== T_MNEM_stmia
12572 && (inst
.operands
[1].imm
& mask
)
12573 && (inst
.operands
[1].imm
& (mask
- 1)))
12574 as_warn (_("value stored for r%d is UNKNOWN"),
12575 inst
.operands
[0].reg
);
12577 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12578 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12579 inst
.instruction
|= inst
.operands
[1].imm
;
12582 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
12584 /* This means 1 register in reg list one of 3 situations:
12585 1. Instruction is stmia, but without writeback.
12586 2. lmdia without writeback, but with Rn not in
12588 3. ldmia with writeback, but with Rn in reglist.
12589 Case 3 is UNPREDICTABLE behaviour, so we handle
12590 case 1 and 2 which can be converted into a 16-bit
12591 str or ldr. The SP cases are handled below. */
12592 unsigned long opcode
;
12593 /* First, record an error for Case 3. */
12594 if (inst
.operands
[1].imm
& mask
12595 && inst
.operands
[0].writeback
)
12597 _("having the base register in the register list when "
12598 "using write back is UNPREDICTABLE");
12600 opcode
= (inst
.instruction
== T_MNEM_stmia
? T_MNEM_str
12602 inst
.instruction
= THUMB_OP16 (opcode
);
12603 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
12604 inst
.instruction
|= (ffs (inst
.operands
[1].imm
)-1);
12608 else if (inst
.operands
[0] .reg
== REG_SP
)
12610 if (inst
.operands
[0].writeback
)
12613 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
12614 ? T_MNEM_push
: T_MNEM_pop
);
12615 inst
.instruction
|= inst
.operands
[1].imm
;
12618 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
12621 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
12622 ? T_MNEM_str_sp
: T_MNEM_ldr_sp
);
12623 inst
.instruction
|= ((ffs (inst
.operands
[1].imm
)-1) << 8);
12631 if (inst
.instruction
< 0xffff)
12632 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12634 encode_thumb2_multi (TRUE
/* do_io */, inst
.operands
[0].reg
,
12635 inst
.operands
[1].imm
,
12636 inst
.operands
[0].writeback
);
12641 constraint (inst
.operands
[0].reg
> 7
12642 || (inst
.operands
[1].imm
& ~0xff), BAD_HIREG
);
12643 constraint (inst
.instruction
!= T_MNEM_ldmia
12644 && inst
.instruction
!= T_MNEM_stmia
,
12645 _("Thumb-2 instruction only valid in unified syntax"));
12646 if (inst
.instruction
== T_MNEM_stmia
)
12648 if (!inst
.operands
[0].writeback
)
12649 as_warn (_("this instruction will write back the base register"));
12650 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
12651 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
12652 as_warn (_("value stored for r%d is UNKNOWN"),
12653 inst
.operands
[0].reg
);
12657 if (!inst
.operands
[0].writeback
12658 && !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
12659 as_warn (_("this instruction will write back the base register"));
12660 else if (inst
.operands
[0].writeback
12661 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
12662 as_warn (_("this instruction will not write back the base register"));
12665 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12666 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12667 inst
.instruction
|= inst
.operands
[1].imm
;
12674 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
12675 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
12676 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
12677 || inst
.operands
[1].negative
,
12680 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
12682 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12683 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
12684 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
12690 if (!inst
.operands
[1].present
)
12692 constraint (inst
.operands
[0].reg
== REG_LR
,
12693 _("r14 not allowed as first register "
12694 "when second register is omitted"));
12695 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
12697 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
,
12700 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12701 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
12702 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
12708 unsigned long opcode
;
12711 if (inst
.operands
[0].isreg
12712 && !inst
.operands
[0].preind
12713 && inst
.operands
[0].reg
== REG_PC
)
12714 set_pred_insn_type_last ();
12716 opcode
= inst
.instruction
;
12717 if (unified_syntax
)
12719 if (!inst
.operands
[1].isreg
)
12721 if (opcode
<= 0xffff)
12722 inst
.instruction
= THUMB_OP32 (opcode
);
12723 if (move_or_literal_pool (0, CONST_THUMB
, /*mode_3=*/FALSE
))
12726 if (inst
.operands
[1].isreg
12727 && !inst
.operands
[1].writeback
12728 && !inst
.operands
[1].shifted
&& !inst
.operands
[1].postind
12729 && !inst
.operands
[1].negative
&& inst
.operands
[0].reg
<= 7
12730 && opcode
<= 0xffff
12731 && inst
.size_req
!= 4)
12733 /* Insn may have a 16-bit form. */
12734 Rn
= inst
.operands
[1].reg
;
12735 if (inst
.operands
[1].immisreg
)
12737 inst
.instruction
= THUMB_OP16 (opcode
);
12739 if (Rn
<= 7 && inst
.operands
[1].imm
<= 7)
12741 else if (opcode
!= T_MNEM_ldr
&& opcode
!= T_MNEM_str
)
12742 reject_bad_reg (inst
.operands
[1].imm
);
12744 else if ((Rn
<= 7 && opcode
!= T_MNEM_ldrsh
12745 && opcode
!= T_MNEM_ldrsb
)
12746 || ((Rn
== REG_PC
|| Rn
== REG_SP
) && opcode
== T_MNEM_ldr
)
12747 || (Rn
== REG_SP
&& opcode
== T_MNEM_str
))
12754 if (inst
.relocs
[0].pc_rel
)
12755 opcode
= T_MNEM_ldr_pc2
;
12757 opcode
= T_MNEM_ldr_pc
;
12761 if (opcode
== T_MNEM_ldr
)
12762 opcode
= T_MNEM_ldr_sp
;
12764 opcode
= T_MNEM_str_sp
;
12766 inst
.instruction
= inst
.operands
[0].reg
<< 8;
12770 inst
.instruction
= inst
.operands
[0].reg
;
12771 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12773 inst
.instruction
|= THUMB_OP16 (opcode
);
12774 if (inst
.size_req
== 2)
12775 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12777 inst
.relax
= opcode
;
12781 /* Definitely a 32-bit variant. */
12783 /* Warning for Erratum 752419. */
12784 if (opcode
== T_MNEM_ldr
12785 && inst
.operands
[0].reg
== REG_SP
12786 && inst
.operands
[1].writeback
== 1
12787 && !inst
.operands
[1].immisreg
)
12789 if (no_cpu_selected ()
12790 || (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7
)
12791 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
)
12792 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7r
)))
12793 as_warn (_("This instruction may be unpredictable "
12794 "if executed on M-profile cores "
12795 "with interrupts enabled."));
12798 /* Do some validations regarding addressing modes. */
12799 if (inst
.operands
[1].immisreg
)
12800 reject_bad_reg (inst
.operands
[1].imm
);
12802 constraint (inst
.operands
[1].writeback
== 1
12803 && inst
.operands
[0].reg
== inst
.operands
[1].reg
,
12806 inst
.instruction
= THUMB_OP32 (opcode
);
12807 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12808 encode_thumb32_addr_mode (1, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
12809 check_ldr_r15_aligned ();
12813 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
12815 if (inst
.instruction
== T_MNEM_ldrsh
|| inst
.instruction
== T_MNEM_ldrsb
)
12817 /* Only [Rn,Rm] is acceptable. */
12818 constraint (inst
.operands
[1].reg
> 7 || inst
.operands
[1].imm
> 7, BAD_HIREG
);
12819 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].immisreg
12820 || inst
.operands
[1].postind
|| inst
.operands
[1].shifted
12821 || inst
.operands
[1].negative
,
12822 _("Thumb does not support this addressing mode"));
12823 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12827 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12828 if (!inst
.operands
[1].isreg
)
12829 if (move_or_literal_pool (0, CONST_THUMB
, /*mode_3=*/FALSE
))
12832 constraint (!inst
.operands
[1].preind
12833 || inst
.operands
[1].shifted
12834 || inst
.operands
[1].writeback
,
12835 _("Thumb does not support this addressing mode"));
12836 if (inst
.operands
[1].reg
== REG_PC
|| inst
.operands
[1].reg
== REG_SP
)
12838 constraint (inst
.instruction
& 0x0600,
12839 _("byte or halfword not valid for base register"));
12840 constraint (inst
.operands
[1].reg
== REG_PC
12841 && !(inst
.instruction
& THUMB_LOAD_BIT
),
12842 _("r15 based store not allowed"));
12843 constraint (inst
.operands
[1].immisreg
,
12844 _("invalid base register for register offset"));
12846 if (inst
.operands
[1].reg
== REG_PC
)
12847 inst
.instruction
= T_OPCODE_LDR_PC
;
12848 else if (inst
.instruction
& THUMB_LOAD_BIT
)
12849 inst
.instruction
= T_OPCODE_LDR_SP
;
12851 inst
.instruction
= T_OPCODE_STR_SP
;
12853 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12854 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12858 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
12859 if (!inst
.operands
[1].immisreg
)
12861 /* Immediate offset. */
12862 inst
.instruction
|= inst
.operands
[0].reg
;
12863 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12864 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12868 /* Register offset. */
12869 constraint (inst
.operands
[1].imm
> 7, BAD_HIREG
);
12870 constraint (inst
.operands
[1].negative
,
12871 _("Thumb does not support this addressing mode"));
12874 switch (inst
.instruction
)
12876 case T_OPCODE_STR_IW
: inst
.instruction
= T_OPCODE_STR_RW
; break;
12877 case T_OPCODE_STR_IH
: inst
.instruction
= T_OPCODE_STR_RH
; break;
12878 case T_OPCODE_STR_IB
: inst
.instruction
= T_OPCODE_STR_RB
; break;
12879 case T_OPCODE_LDR_IW
: inst
.instruction
= T_OPCODE_LDR_RW
; break;
12880 case T_OPCODE_LDR_IH
: inst
.instruction
= T_OPCODE_LDR_RH
; break;
12881 case T_OPCODE_LDR_IB
: inst
.instruction
= T_OPCODE_LDR_RB
; break;
12882 case 0x5600 /* ldrsb */:
12883 case 0x5e00 /* ldrsh */: break;
12887 inst
.instruction
|= inst
.operands
[0].reg
;
12888 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12889 inst
.instruction
|= inst
.operands
[1].imm
<< 6;
12895 if (!inst
.operands
[1].present
)
12897 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
12898 constraint (inst
.operands
[0].reg
== REG_LR
,
12899 _("r14 not allowed here"));
12900 constraint (inst
.operands
[0].reg
== REG_R12
,
12901 _("r12 not allowed here"));
12904 if (inst
.operands
[2].writeback
12905 && (inst
.operands
[0].reg
== inst
.operands
[2].reg
12906 || inst
.operands
[1].reg
== inst
.operands
[2].reg
))
12907 as_warn (_("base register written back, and overlaps "
12908 "one of transfer registers"));
12910 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12911 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
12912 encode_thumb32_addr_mode (2, /*is_t=*/FALSE
, /*is_d=*/TRUE
);
12918 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12919 encode_thumb32_addr_mode (1, /*is_t=*/TRUE
, /*is_d=*/FALSE
);
12925 unsigned Rd
, Rn
, Rm
, Ra
;
12927 Rd
= inst
.operands
[0].reg
;
12928 Rn
= inst
.operands
[1].reg
;
12929 Rm
= inst
.operands
[2].reg
;
12930 Ra
= inst
.operands
[3].reg
;
12932 reject_bad_reg (Rd
);
12933 reject_bad_reg (Rn
);
12934 reject_bad_reg (Rm
);
12935 reject_bad_reg (Ra
);
12937 inst
.instruction
|= Rd
<< 8;
12938 inst
.instruction
|= Rn
<< 16;
12939 inst
.instruction
|= Rm
;
12940 inst
.instruction
|= Ra
<< 12;
12946 unsigned RdLo
, RdHi
, Rn
, Rm
;
12948 RdLo
= inst
.operands
[0].reg
;
12949 RdHi
= inst
.operands
[1].reg
;
12950 Rn
= inst
.operands
[2].reg
;
12951 Rm
= inst
.operands
[3].reg
;
12953 reject_bad_reg (RdLo
);
12954 reject_bad_reg (RdHi
);
12955 reject_bad_reg (Rn
);
12956 reject_bad_reg (Rm
);
12958 inst
.instruction
|= RdLo
<< 12;
12959 inst
.instruction
|= RdHi
<< 8;
12960 inst
.instruction
|= Rn
<< 16;
12961 inst
.instruction
|= Rm
;
12965 do_t_mov_cmp (void)
12969 Rn
= inst
.operands
[0].reg
;
12970 Rm
= inst
.operands
[1].reg
;
12973 set_pred_insn_type_last ();
12975 if (unified_syntax
)
12977 int r0off
= (inst
.instruction
== T_MNEM_mov
12978 || inst
.instruction
== T_MNEM_movs
) ? 8 : 16;
12979 unsigned long opcode
;
12980 bfd_boolean narrow
;
12981 bfd_boolean low_regs
;
12983 low_regs
= (Rn
<= 7 && Rm
<= 7);
12984 opcode
= inst
.instruction
;
12985 if (in_pred_block ())
12986 narrow
= opcode
!= T_MNEM_movs
;
12988 narrow
= opcode
!= T_MNEM_movs
|| low_regs
;
12989 if (inst
.size_req
== 4
12990 || inst
.operands
[1].shifted
)
12993 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12994 if (opcode
== T_MNEM_movs
&& inst
.operands
[1].isreg
12995 && !inst
.operands
[1].shifted
12999 inst
.instruction
= T2_SUBS_PC_LR
;
13003 if (opcode
== T_MNEM_cmp
)
13005 constraint (Rn
== REG_PC
, BAD_PC
);
13008 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
13010 warn_deprecated_sp (Rm
);
13011 /* R15 was documented as a valid choice for Rm in ARMv6,
13012 but as UNPREDICTABLE in ARMv7. ARM's proprietary
13013 tools reject R15, so we do too. */
13014 constraint (Rm
== REG_PC
, BAD_PC
);
13017 reject_bad_reg (Rm
);
13019 else if (opcode
== T_MNEM_mov
13020 || opcode
== T_MNEM_movs
)
13022 if (inst
.operands
[1].isreg
)
13024 if (opcode
== T_MNEM_movs
)
13026 reject_bad_reg (Rn
);
13027 reject_bad_reg (Rm
);
13031 /* This is mov.n. */
13032 if ((Rn
== REG_SP
|| Rn
== REG_PC
)
13033 && (Rm
== REG_SP
|| Rm
== REG_PC
))
13035 as_tsktsk (_("Use of r%u as a source register is "
13036 "deprecated when r%u is the destination "
13037 "register."), Rm
, Rn
);
13042 /* This is mov.w. */
13043 constraint (Rn
== REG_PC
, BAD_PC
);
13044 constraint (Rm
== REG_PC
, BAD_PC
);
13045 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
13046 constraint (Rn
== REG_SP
&& Rm
== REG_SP
, BAD_SP
);
13050 reject_bad_reg (Rn
);
13053 if (!inst
.operands
[1].isreg
)
13055 /* Immediate operand. */
13056 if (!in_pred_block () && opcode
== T_MNEM_mov
)
13058 if (low_regs
&& narrow
)
13060 inst
.instruction
= THUMB_OP16 (opcode
);
13061 inst
.instruction
|= Rn
<< 8;
13062 if (inst
.relocs
[0].type
< BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
13063 || inst
.relocs
[0].type
> BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
)
13065 if (inst
.size_req
== 2)
13066 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_IMM
;
13068 inst
.relax
= opcode
;
13073 constraint ((inst
.relocs
[0].type
13074 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
)
13075 && (inst
.relocs
[0].type
13076 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
) ,
13077 THUMB1_RELOC_ONLY
);
13079 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13080 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13081 inst
.instruction
|= Rn
<< r0off
;
13082 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13085 else if (inst
.operands
[1].shifted
&& inst
.operands
[1].immisreg
13086 && (inst
.instruction
== T_MNEM_mov
13087 || inst
.instruction
== T_MNEM_movs
))
13089 /* Register shifts are encoded as separate shift instructions. */
13090 bfd_boolean flags
= (inst
.instruction
== T_MNEM_movs
);
13092 if (in_pred_block ())
13097 if (inst
.size_req
== 4)
13100 if (!low_regs
|| inst
.operands
[1].imm
> 7)
13106 switch (inst
.operands
[1].shift_kind
)
13109 opcode
= narrow
? T_OPCODE_LSL_R
: THUMB_OP32 (T_MNEM_lsl
);
13112 opcode
= narrow
? T_OPCODE_ASR_R
: THUMB_OP32 (T_MNEM_asr
);
13115 opcode
= narrow
? T_OPCODE_LSR_R
: THUMB_OP32 (T_MNEM_lsr
);
13118 opcode
= narrow
? T_OPCODE_ROR_R
: THUMB_OP32 (T_MNEM_ror
);
13124 inst
.instruction
= opcode
;
13127 inst
.instruction
|= Rn
;
13128 inst
.instruction
|= inst
.operands
[1].imm
<< 3;
13133 inst
.instruction
|= CONDS_BIT
;
13135 inst
.instruction
|= Rn
<< 8;
13136 inst
.instruction
|= Rm
<< 16;
13137 inst
.instruction
|= inst
.operands
[1].imm
;
13142 /* Some mov with immediate shift have narrow variants.
13143 Register shifts are handled above. */
13144 if (low_regs
&& inst
.operands
[1].shifted
13145 && (inst
.instruction
== T_MNEM_mov
13146 || inst
.instruction
== T_MNEM_movs
))
13148 if (in_pred_block ())
13149 narrow
= (inst
.instruction
== T_MNEM_mov
);
13151 narrow
= (inst
.instruction
== T_MNEM_movs
);
13156 switch (inst
.operands
[1].shift_kind
)
13158 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
13159 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
13160 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
13161 default: narrow
= FALSE
; break;
13167 inst
.instruction
|= Rn
;
13168 inst
.instruction
|= Rm
<< 3;
13169 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
13173 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13174 inst
.instruction
|= Rn
<< r0off
;
13175 encode_thumb32_shifted_operand (1);
13179 switch (inst
.instruction
)
13182 /* In v4t or v5t a move of two lowregs produces unpredictable
13183 results. Don't allow this. */
13186 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
),
13187 "MOV Rd, Rs with two low registers is not "
13188 "permitted on this architecture");
13189 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
13193 inst
.instruction
= T_OPCODE_MOV_HR
;
13194 inst
.instruction
|= (Rn
& 0x8) << 4;
13195 inst
.instruction
|= (Rn
& 0x7);
13196 inst
.instruction
|= Rm
<< 3;
13200 /* We know we have low registers at this point.
13201 Generate LSLS Rd, Rs, #0. */
13202 inst
.instruction
= T_OPCODE_LSL_I
;
13203 inst
.instruction
|= Rn
;
13204 inst
.instruction
|= Rm
<< 3;
13210 inst
.instruction
= T_OPCODE_CMP_LR
;
13211 inst
.instruction
|= Rn
;
13212 inst
.instruction
|= Rm
<< 3;
13216 inst
.instruction
= T_OPCODE_CMP_HR
;
13217 inst
.instruction
|= (Rn
& 0x8) << 4;
13218 inst
.instruction
|= (Rn
& 0x7);
13219 inst
.instruction
|= Rm
<< 3;
13226 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13228 /* PR 10443: Do not silently ignore shifted operands. */
13229 constraint (inst
.operands
[1].shifted
,
13230 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
13232 if (inst
.operands
[1].isreg
)
13234 if (Rn
< 8 && Rm
< 8)
13236 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
13237 since a MOV instruction produces unpredictable results. */
13238 if (inst
.instruction
== T_OPCODE_MOV_I8
)
13239 inst
.instruction
= T_OPCODE_ADD_I3
;
13241 inst
.instruction
= T_OPCODE_CMP_LR
;
13243 inst
.instruction
|= Rn
;
13244 inst
.instruction
|= Rm
<< 3;
13248 if (inst
.instruction
== T_OPCODE_MOV_I8
)
13249 inst
.instruction
= T_OPCODE_MOV_HR
;
13251 inst
.instruction
= T_OPCODE_CMP_HR
;
13257 constraint (Rn
> 7,
13258 _("only lo regs allowed with immediate"));
13259 inst
.instruction
|= Rn
<< 8;
13260 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_IMM
;
13271 top
= (inst
.instruction
& 0x00800000) != 0;
13272 if (inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVW
)
13274 constraint (top
, _(":lower16: not allowed in this instruction"));
13275 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_MOVW
;
13277 else if (inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVT
)
13279 constraint (!top
, _(":upper16: not allowed in this instruction"));
13280 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_MOVT
;
13283 Rd
= inst
.operands
[0].reg
;
13284 reject_bad_reg (Rd
);
13286 inst
.instruction
|= Rd
<< 8;
13287 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
13289 imm
= inst
.relocs
[0].exp
.X_add_number
;
13290 inst
.instruction
|= (imm
& 0xf000) << 4;
13291 inst
.instruction
|= (imm
& 0x0800) << 15;
13292 inst
.instruction
|= (imm
& 0x0700) << 4;
13293 inst
.instruction
|= (imm
& 0x00ff);
13298 do_t_mvn_tst (void)
13302 Rn
= inst
.operands
[0].reg
;
13303 Rm
= inst
.operands
[1].reg
;
13305 if (inst
.instruction
== T_MNEM_cmp
13306 || inst
.instruction
== T_MNEM_cmn
)
13307 constraint (Rn
== REG_PC
, BAD_PC
);
13309 reject_bad_reg (Rn
);
13310 reject_bad_reg (Rm
);
13312 if (unified_syntax
)
13314 int r0off
= (inst
.instruction
== T_MNEM_mvn
13315 || inst
.instruction
== T_MNEM_mvns
) ? 8 : 16;
13316 bfd_boolean narrow
;
13318 if (inst
.size_req
== 4
13319 || inst
.instruction
> 0xffff
13320 || inst
.operands
[1].shifted
13321 || Rn
> 7 || Rm
> 7)
13323 else if (inst
.instruction
== T_MNEM_cmn
13324 || inst
.instruction
== T_MNEM_tst
)
13326 else if (THUMB_SETS_FLAGS (inst
.instruction
))
13327 narrow
= !in_pred_block ();
13329 narrow
= in_pred_block ();
13331 if (!inst
.operands
[1].isreg
)
13333 /* For an immediate, we always generate a 32-bit opcode;
13334 section relaxation will shrink it later if possible. */
13335 if (inst
.instruction
< 0xffff)
13336 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13337 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13338 inst
.instruction
|= Rn
<< r0off
;
13339 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13343 /* See if we can do this with a 16-bit instruction. */
13346 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13347 inst
.instruction
|= Rn
;
13348 inst
.instruction
|= Rm
<< 3;
13352 constraint (inst
.operands
[1].shifted
13353 && inst
.operands
[1].immisreg
,
13354 _("shift must be constant"));
13355 if (inst
.instruction
< 0xffff)
13356 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13357 inst
.instruction
|= Rn
<< r0off
;
13358 encode_thumb32_shifted_operand (1);
13364 constraint (inst
.instruction
> 0xffff
13365 || inst
.instruction
== T_MNEM_mvns
, BAD_THUMB32
);
13366 constraint (!inst
.operands
[1].isreg
|| inst
.operands
[1].shifted
,
13367 _("unshifted register required"));
13368 constraint (Rn
> 7 || Rm
> 7,
13371 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13372 inst
.instruction
|= Rn
;
13373 inst
.instruction
|= Rm
<< 3;
13382 if (do_vfp_nsyn_mrs () == SUCCESS
)
13385 Rd
= inst
.operands
[0].reg
;
13386 reject_bad_reg (Rd
);
13387 inst
.instruction
|= Rd
<< 8;
13389 if (inst
.operands
[1].isreg
)
13391 unsigned br
= inst
.operands
[1].reg
;
13392 if (((br
& 0x200) == 0) && ((br
& 0xf000) != 0xf000))
13393 as_bad (_("bad register for mrs"));
13395 inst
.instruction
|= br
& (0xf << 16);
13396 inst
.instruction
|= (br
& 0x300) >> 4;
13397 inst
.instruction
|= (br
& SPSR_BIT
) >> 2;
13401 int flags
= inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
13403 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
13405 /* PR gas/12698: The constraint is only applied for m_profile.
13406 If the user has specified -march=all, we want to ignore it as
13407 we are building for any CPU type, including non-m variants. */
13408 bfd_boolean m_profile
=
13409 !ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
);
13410 constraint ((flags
!= 0) && m_profile
, _("selected processor does "
13411 "not support requested special purpose register"));
13414 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13416 constraint ((flags
& ~SPSR_BIT
) != (PSR_c
|PSR_f
),
13417 _("'APSR', 'CPSR' or 'SPSR' expected"));
13419 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
13420 inst
.instruction
|= inst
.operands
[1].imm
& 0xff;
13421 inst
.instruction
|= 0xf0000;
13431 if (do_vfp_nsyn_msr () == SUCCESS
)
13434 constraint (!inst
.operands
[1].isreg
,
13435 _("Thumb encoding does not support an immediate here"));
13437 if (inst
.operands
[0].isreg
)
13438 flags
= (int)(inst
.operands
[0].reg
);
13440 flags
= inst
.operands
[0].imm
;
13442 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
13444 int bits
= inst
.operands
[0].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
13446 /* PR gas/12698: The constraint is only applied for m_profile.
13447 If the user has specified -march=all, we want to ignore it as
13448 we are building for any CPU type, including non-m variants. */
13449 bfd_boolean m_profile
=
13450 !ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
);
13451 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
13452 && (bits
& ~(PSR_s
| PSR_f
)) != 0)
13453 || (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
13454 && bits
!= PSR_f
)) && m_profile
,
13455 _("selected processor does not support requested special "
13456 "purpose register"));
13459 constraint ((flags
& 0xff) != 0, _("selected processor does not support "
13460 "requested special purpose register"));
13462 Rn
= inst
.operands
[1].reg
;
13463 reject_bad_reg (Rn
);
13465 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
13466 inst
.instruction
|= (flags
& 0xf0000) >> 8;
13467 inst
.instruction
|= (flags
& 0x300) >> 4;
13468 inst
.instruction
|= (flags
& 0xff);
13469 inst
.instruction
|= Rn
<< 16;
13475 bfd_boolean narrow
;
13476 unsigned Rd
, Rn
, Rm
;
13478 if (!inst
.operands
[2].present
)
13479 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
13481 Rd
= inst
.operands
[0].reg
;
13482 Rn
= inst
.operands
[1].reg
;
13483 Rm
= inst
.operands
[2].reg
;
13485 if (unified_syntax
)
13487 if (inst
.size_req
== 4
13493 else if (inst
.instruction
== T_MNEM_muls
)
13494 narrow
= !in_pred_block ();
13496 narrow
= in_pred_block ();
13500 constraint (inst
.instruction
== T_MNEM_muls
, BAD_THUMB32
);
13501 constraint (Rn
> 7 || Rm
> 7,
13508 /* 16-bit MULS/Conditional MUL. */
13509 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13510 inst
.instruction
|= Rd
;
13513 inst
.instruction
|= Rm
<< 3;
13515 inst
.instruction
|= Rn
<< 3;
13517 constraint (1, _("dest must overlap one source register"));
13521 constraint (inst
.instruction
!= T_MNEM_mul
,
13522 _("Thumb-2 MUL must not set flags"));
13524 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13525 inst
.instruction
|= Rd
<< 8;
13526 inst
.instruction
|= Rn
<< 16;
13527 inst
.instruction
|= Rm
<< 0;
13529 reject_bad_reg (Rd
);
13530 reject_bad_reg (Rn
);
13531 reject_bad_reg (Rm
);
13538 unsigned RdLo
, RdHi
, Rn
, Rm
;
13540 RdLo
= inst
.operands
[0].reg
;
13541 RdHi
= inst
.operands
[1].reg
;
13542 Rn
= inst
.operands
[2].reg
;
13543 Rm
= inst
.operands
[3].reg
;
13545 reject_bad_reg (RdLo
);
13546 reject_bad_reg (RdHi
);
13547 reject_bad_reg (Rn
);
13548 reject_bad_reg (Rm
);
13550 inst
.instruction
|= RdLo
<< 12;
13551 inst
.instruction
|= RdHi
<< 8;
13552 inst
.instruction
|= Rn
<< 16;
13553 inst
.instruction
|= Rm
;
13556 as_tsktsk (_("rdhi and rdlo must be different"));
13562 set_pred_insn_type (NEUTRAL_IT_INSN
);
13564 if (unified_syntax
)
13566 if (inst
.size_req
== 4 || inst
.operands
[0].imm
> 15)
13568 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13569 inst
.instruction
|= inst
.operands
[0].imm
;
13573 /* PR9722: Check for Thumb2 availability before
13574 generating a thumb2 nop instruction. */
13575 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
13577 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13578 inst
.instruction
|= inst
.operands
[0].imm
<< 4;
13581 inst
.instruction
= 0x46c0;
13586 constraint (inst
.operands
[0].present
,
13587 _("Thumb does not support NOP with hints"));
13588 inst
.instruction
= 0x46c0;
13595 if (unified_syntax
)
13597 bfd_boolean narrow
;
13599 if (THUMB_SETS_FLAGS (inst
.instruction
))
13600 narrow
= !in_pred_block ();
13602 narrow
= in_pred_block ();
13603 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
13605 if (inst
.size_req
== 4)
13610 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13611 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13612 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13616 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13617 inst
.instruction
|= inst
.operands
[0].reg
;
13618 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13623 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
13625 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
13627 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13628 inst
.instruction
|= inst
.operands
[0].reg
;
13629 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13638 Rd
= inst
.operands
[0].reg
;
13639 Rn
= inst
.operands
[1].present
? inst
.operands
[1].reg
: Rd
;
13641 reject_bad_reg (Rd
);
13642 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13643 reject_bad_reg (Rn
);
13645 inst
.instruction
|= Rd
<< 8;
13646 inst
.instruction
|= Rn
<< 16;
13648 if (!inst
.operands
[2].isreg
)
13650 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13651 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13657 Rm
= inst
.operands
[2].reg
;
13658 reject_bad_reg (Rm
);
13660 constraint (inst
.operands
[2].shifted
13661 && inst
.operands
[2].immisreg
,
13662 _("shift must be constant"));
13663 encode_thumb32_shifted_operand (2);
13670 unsigned Rd
, Rn
, Rm
;
13672 Rd
= inst
.operands
[0].reg
;
13673 Rn
= inst
.operands
[1].reg
;
13674 Rm
= inst
.operands
[2].reg
;
13676 reject_bad_reg (Rd
);
13677 reject_bad_reg (Rn
);
13678 reject_bad_reg (Rm
);
13680 inst
.instruction
|= Rd
<< 8;
13681 inst
.instruction
|= Rn
<< 16;
13682 inst
.instruction
|= Rm
;
13683 if (inst
.operands
[3].present
)
13685 unsigned int val
= inst
.relocs
[0].exp
.X_add_number
;
13686 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13687 _("expression too complex"));
13688 inst
.instruction
|= (val
& 0x1c) << 10;
13689 inst
.instruction
|= (val
& 0x03) << 6;
13696 if (!inst
.operands
[3].present
)
13700 inst
.instruction
&= ~0x00000020;
13702 /* PR 10168. Swap the Rm and Rn registers. */
13703 Rtmp
= inst
.operands
[1].reg
;
13704 inst
.operands
[1].reg
= inst
.operands
[2].reg
;
13705 inst
.operands
[2].reg
= Rtmp
;
13713 if (inst
.operands
[0].immisreg
)
13714 reject_bad_reg (inst
.operands
[0].imm
);
13716 encode_thumb32_addr_mode (0, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
13720 do_t_push_pop (void)
13724 constraint (inst
.operands
[0].writeback
,
13725 _("push/pop do not support {reglist}^"));
13726 constraint (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
,
13727 _("expression too complex"));
13729 mask
= inst
.operands
[0].imm
;
13730 if (inst
.size_req
!= 4 && (mask
& ~0xff) == 0)
13731 inst
.instruction
= THUMB_OP16 (inst
.instruction
) | mask
;
13732 else if (inst
.size_req
!= 4
13733 && (mask
& ~0xff) == (1U << (inst
.instruction
== T_MNEM_push
13734 ? REG_LR
: REG_PC
)))
13736 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13737 inst
.instruction
|= THUMB_PP_PC_LR
;
13738 inst
.instruction
|= mask
& 0xff;
13740 else if (unified_syntax
)
13742 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13743 encode_thumb2_multi (TRUE
/* do_io */, 13, mask
, TRUE
);
13747 inst
.error
= _("invalid register list to push/pop instruction");
13755 if (unified_syntax
)
13756 encode_thumb2_multi (FALSE
/* do_io */, -1, inst
.operands
[0].imm
, FALSE
);
13759 inst
.error
= _("invalid register list to push/pop instruction");
13765 do_t_vscclrm (void)
13767 if (inst
.operands
[0].issingle
)
13769 inst
.instruction
|= (inst
.operands
[0].reg
& 0x1) << 22;
13770 inst
.instruction
|= (inst
.operands
[0].reg
& 0x1e) << 11;
13771 inst
.instruction
|= inst
.operands
[0].imm
;
13775 inst
.instruction
|= (inst
.operands
[0].reg
& 0x10) << 18;
13776 inst
.instruction
|= (inst
.operands
[0].reg
& 0xf) << 12;
13777 inst
.instruction
|= 1 << 8;
13778 inst
.instruction
|= inst
.operands
[0].imm
<< 1;
13787 Rd
= inst
.operands
[0].reg
;
13788 Rm
= inst
.operands
[1].reg
;
13790 reject_bad_reg (Rd
);
13791 reject_bad_reg (Rm
);
13793 inst
.instruction
|= Rd
<< 8;
13794 inst
.instruction
|= Rm
<< 16;
13795 inst
.instruction
|= Rm
;
13803 Rd
= inst
.operands
[0].reg
;
13804 Rm
= inst
.operands
[1].reg
;
13806 reject_bad_reg (Rd
);
13807 reject_bad_reg (Rm
);
13809 if (Rd
<= 7 && Rm
<= 7
13810 && inst
.size_req
!= 4)
13812 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13813 inst
.instruction
|= Rd
;
13814 inst
.instruction
|= Rm
<< 3;
13816 else if (unified_syntax
)
13818 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13819 inst
.instruction
|= Rd
<< 8;
13820 inst
.instruction
|= Rm
<< 16;
13821 inst
.instruction
|= Rm
;
13824 inst
.error
= BAD_HIREG
;
13832 Rd
= inst
.operands
[0].reg
;
13833 Rm
= inst
.operands
[1].reg
;
13835 reject_bad_reg (Rd
);
13836 reject_bad_reg (Rm
);
13838 inst
.instruction
|= Rd
<< 8;
13839 inst
.instruction
|= Rm
;
13847 Rd
= inst
.operands
[0].reg
;
13848 Rs
= (inst
.operands
[1].present
13849 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
13850 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
13852 reject_bad_reg (Rd
);
13853 reject_bad_reg (Rs
);
13854 if (inst
.operands
[2].isreg
)
13855 reject_bad_reg (inst
.operands
[2].reg
);
13857 inst
.instruction
|= Rd
<< 8;
13858 inst
.instruction
|= Rs
<< 16;
13859 if (!inst
.operands
[2].isreg
)
13861 bfd_boolean narrow
;
13863 if ((inst
.instruction
& 0x00100000) != 0)
13864 narrow
= !in_pred_block ();
13866 narrow
= in_pred_block ();
13868 if (Rd
> 7 || Rs
> 7)
13871 if (inst
.size_req
== 4 || !unified_syntax
)
13874 if (inst
.relocs
[0].exp
.X_op
!= O_constant
13875 || inst
.relocs
[0].exp
.X_add_number
!= 0)
13878 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13879 relaxation, but it doesn't seem worth the hassle. */
13882 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13883 inst
.instruction
= THUMB_OP16 (T_MNEM_negs
);
13884 inst
.instruction
|= Rs
<< 3;
13885 inst
.instruction
|= Rd
;
13889 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13890 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13894 encode_thumb32_shifted_operand (2);
13900 if (warn_on_deprecated
13901 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
13902 as_tsktsk (_("setend use is deprecated for ARMv8"));
13904 set_pred_insn_type (OUTSIDE_PRED_INSN
);
13905 if (inst
.operands
[0].imm
)
13906 inst
.instruction
|= 0x8;
13912 if (!inst
.operands
[1].present
)
13913 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
13915 if (unified_syntax
)
13917 bfd_boolean narrow
;
13920 switch (inst
.instruction
)
13923 case T_MNEM_asrs
: shift_kind
= SHIFT_ASR
; break;
13925 case T_MNEM_lsls
: shift_kind
= SHIFT_LSL
; break;
13927 case T_MNEM_lsrs
: shift_kind
= SHIFT_LSR
; break;
13929 case T_MNEM_rors
: shift_kind
= SHIFT_ROR
; break;
13933 if (THUMB_SETS_FLAGS (inst
.instruction
))
13934 narrow
= !in_pred_block ();
13936 narrow
= in_pred_block ();
13937 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
13939 if (!inst
.operands
[2].isreg
&& shift_kind
== SHIFT_ROR
)
13941 if (inst
.operands
[2].isreg
13942 && (inst
.operands
[1].reg
!= inst
.operands
[0].reg
13943 || inst
.operands
[2].reg
> 7))
13945 if (inst
.size_req
== 4)
13948 reject_bad_reg (inst
.operands
[0].reg
);
13949 reject_bad_reg (inst
.operands
[1].reg
);
13953 if (inst
.operands
[2].isreg
)
13955 reject_bad_reg (inst
.operands
[2].reg
);
13956 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13957 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13958 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13959 inst
.instruction
|= inst
.operands
[2].reg
;
13961 /* PR 12854: Error on extraneous shifts. */
13962 constraint (inst
.operands
[2].shifted
,
13963 _("extraneous shift as part of operand to shift insn"));
13967 inst
.operands
[1].shifted
= 1;
13968 inst
.operands
[1].shift_kind
= shift_kind
;
13969 inst
.instruction
= THUMB_OP32 (THUMB_SETS_FLAGS (inst
.instruction
)
13970 ? T_MNEM_movs
: T_MNEM_mov
);
13971 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13972 encode_thumb32_shifted_operand (1);
13973 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13974 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13979 if (inst
.operands
[2].isreg
)
13981 switch (shift_kind
)
13983 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_R
; break;
13984 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_R
; break;
13985 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_R
; break;
13986 case SHIFT_ROR
: inst
.instruction
= T_OPCODE_ROR_R
; break;
13990 inst
.instruction
|= inst
.operands
[0].reg
;
13991 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
13993 /* PR 12854: Error on extraneous shifts. */
13994 constraint (inst
.operands
[2].shifted
,
13995 _("extraneous shift as part of operand to shift insn"));
13999 switch (shift_kind
)
14001 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
14002 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
14003 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
14006 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
14007 inst
.instruction
|= inst
.operands
[0].reg
;
14008 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
14014 constraint (inst
.operands
[0].reg
> 7
14015 || inst
.operands
[1].reg
> 7, BAD_HIREG
);
14016 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
14018 if (inst
.operands
[2].isreg
) /* Rd, {Rs,} Rn */
14020 constraint (inst
.operands
[2].reg
> 7, BAD_HIREG
);
14021 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
14022 _("source1 and dest must be same register"));
14024 switch (inst
.instruction
)
14026 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_R
; break;
14027 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_R
; break;
14028 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_R
; break;
14029 case T_MNEM_ror
: inst
.instruction
= T_OPCODE_ROR_R
; break;
14033 inst
.instruction
|= inst
.operands
[0].reg
;
14034 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
14036 /* PR 12854: Error on extraneous shifts. */
14037 constraint (inst
.operands
[2].shifted
,
14038 _("extraneous shift as part of operand to shift insn"));
14042 switch (inst
.instruction
)
14044 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_I
; break;
14045 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_I
; break;
14046 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_I
; break;
14047 case T_MNEM_ror
: inst
.error
= _("ror #imm not supported"); return;
14050 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
14051 inst
.instruction
|= inst
.operands
[0].reg
;
14052 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
14060 unsigned Rd
, Rn
, Rm
;
14062 Rd
= inst
.operands
[0].reg
;
14063 Rn
= inst
.operands
[1].reg
;
14064 Rm
= inst
.operands
[2].reg
;
14066 reject_bad_reg (Rd
);
14067 reject_bad_reg (Rn
);
14068 reject_bad_reg (Rm
);
14070 inst
.instruction
|= Rd
<< 8;
14071 inst
.instruction
|= Rn
<< 16;
14072 inst
.instruction
|= Rm
;
14078 unsigned Rd
, Rn
, Rm
;
14080 Rd
= inst
.operands
[0].reg
;
14081 Rm
= inst
.operands
[1].reg
;
14082 Rn
= inst
.operands
[2].reg
;
14084 reject_bad_reg (Rd
);
14085 reject_bad_reg (Rn
);
14086 reject_bad_reg (Rm
);
14088 inst
.instruction
|= Rd
<< 8;
14089 inst
.instruction
|= Rn
<< 16;
14090 inst
.instruction
|= Rm
;
14096 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
14097 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
),
14098 _("SMC is not permitted on this architecture"));
14099 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
14100 _("expression too complex"));
14101 constraint (value
> 0xf, _("immediate too large (bigger than 0xF)"));
14103 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
14104 inst
.instruction
|= (value
& 0x000f) << 16;
14106 /* PR gas/15623: SMC instructions must be last in an IT block. */
14107 set_pred_insn_type_last ();
14113 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
14115 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
14116 inst
.instruction
|= (value
& 0x0fff);
14117 inst
.instruction
|= (value
& 0xf000) << 4;
14121 do_t_ssat_usat (int bias
)
14125 Rd
= inst
.operands
[0].reg
;
14126 Rn
= inst
.operands
[2].reg
;
14128 reject_bad_reg (Rd
);
14129 reject_bad_reg (Rn
);
14131 inst
.instruction
|= Rd
<< 8;
14132 inst
.instruction
|= inst
.operands
[1].imm
- bias
;
14133 inst
.instruction
|= Rn
<< 16;
14135 if (inst
.operands
[3].present
)
14137 offsetT shift_amount
= inst
.relocs
[0].exp
.X_add_number
;
14139 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
14141 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
14142 _("expression too complex"));
14144 if (shift_amount
!= 0)
14146 constraint (shift_amount
> 31,
14147 _("shift expression is too large"));
14149 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
14150 inst
.instruction
|= 0x00200000; /* sh bit. */
14152 inst
.instruction
|= (shift_amount
& 0x1c) << 10;
14153 inst
.instruction
|= (shift_amount
& 0x03) << 6;
14161 do_t_ssat_usat (1);
14169 Rd
= inst
.operands
[0].reg
;
14170 Rn
= inst
.operands
[2].reg
;
14172 reject_bad_reg (Rd
);
14173 reject_bad_reg (Rn
);
14175 inst
.instruction
|= Rd
<< 8;
14176 inst
.instruction
|= inst
.operands
[1].imm
- 1;
14177 inst
.instruction
|= Rn
<< 16;
14183 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
14184 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
14185 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
14186 || inst
.operands
[2].negative
,
14189 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
14191 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
14192 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
14193 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
14194 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
14200 if (!inst
.operands
[2].present
)
14201 inst
.operands
[2].reg
= inst
.operands
[1].reg
+ 1;
14203 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
14204 || inst
.operands
[0].reg
== inst
.operands
[2].reg
14205 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
14208 inst
.instruction
|= inst
.operands
[0].reg
;
14209 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
14210 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
14211 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
14217 unsigned Rd
, Rn
, Rm
;
14219 Rd
= inst
.operands
[0].reg
;
14220 Rn
= inst
.operands
[1].reg
;
14221 Rm
= inst
.operands
[2].reg
;
14223 reject_bad_reg (Rd
);
14224 reject_bad_reg (Rn
);
14225 reject_bad_reg (Rm
);
14227 inst
.instruction
|= Rd
<< 8;
14228 inst
.instruction
|= Rn
<< 16;
14229 inst
.instruction
|= Rm
;
14230 inst
.instruction
|= inst
.operands
[3].imm
<< 4;
14238 Rd
= inst
.operands
[0].reg
;
14239 Rm
= inst
.operands
[1].reg
;
14241 reject_bad_reg (Rd
);
14242 reject_bad_reg (Rm
);
14244 if (inst
.instruction
<= 0xffff
14245 && inst
.size_req
!= 4
14246 && Rd
<= 7 && Rm
<= 7
14247 && (!inst
.operands
[2].present
|| inst
.operands
[2].imm
== 0))
14249 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
14250 inst
.instruction
|= Rd
;
14251 inst
.instruction
|= Rm
<< 3;
14253 else if (unified_syntax
)
14255 if (inst
.instruction
<= 0xffff)
14256 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
14257 inst
.instruction
|= Rd
<< 8;
14258 inst
.instruction
|= Rm
;
14259 inst
.instruction
|= inst
.operands
[2].imm
<< 4;
14263 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
!= 0,
14264 _("Thumb encoding does not support rotation"));
14265 constraint (1, BAD_HIREG
);
14272 inst
.relocs
[0].type
= BFD_RELOC_ARM_SWI
;
14281 half
= (inst
.instruction
& 0x10) != 0;
14282 set_pred_insn_type_last ();
14283 constraint (inst
.operands
[0].immisreg
,
14284 _("instruction requires register index"));
14286 Rn
= inst
.operands
[0].reg
;
14287 Rm
= inst
.operands
[0].imm
;
14289 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
14290 constraint (Rn
== REG_SP
, BAD_SP
);
14291 reject_bad_reg (Rm
);
14293 constraint (!half
&& inst
.operands
[0].shifted
,
14294 _("instruction does not allow shifted index"));
14295 inst
.instruction
|= (Rn
<< 16) | Rm
;
14301 if (!inst
.operands
[0].present
)
14302 inst
.operands
[0].imm
= 0;
14304 if ((unsigned int) inst
.operands
[0].imm
> 255 || inst
.size_req
== 4)
14306 constraint (inst
.size_req
== 2,
14307 _("immediate value out of range"));
14308 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
14309 inst
.instruction
|= (inst
.operands
[0].imm
& 0xf000u
) << 4;
14310 inst
.instruction
|= (inst
.operands
[0].imm
& 0x0fffu
) << 0;
14314 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
14315 inst
.instruction
|= inst
.operands
[0].imm
;
14318 set_pred_insn_type (NEUTRAL_IT_INSN
);
14325 do_t_ssat_usat (0);
14333 Rd
= inst
.operands
[0].reg
;
14334 Rn
= inst
.operands
[2].reg
;
14336 reject_bad_reg (Rd
);
14337 reject_bad_reg (Rn
);
14339 inst
.instruction
|= Rd
<< 8;
14340 inst
.instruction
|= inst
.operands
[1].imm
;
14341 inst
.instruction
|= Rn
<< 16;
14344 /* Checking the range of the branch offset (VAL) with NBITS bits
14345 and IS_SIGNED signedness. Also checks the LSB to be 0. */
14347 v8_1_branch_value_check (int val
, int nbits
, int is_signed
)
14349 gas_assert (nbits
> 0 && nbits
<= 32);
14352 int cmp
= (1 << (nbits
- 1));
14353 if ((val
< -cmp
) || (val
>= cmp
) || (val
& 0x01))
14358 if ((val
<= 0) || (val
>= (1 << nbits
)) || (val
& 0x1))
14364 /* For branches in Armv8.1-M Mainline. */
14366 do_t_branch_future (void)
14368 unsigned long insn
= inst
.instruction
;
14370 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
14371 if (inst
.operands
[0].hasreloc
== 0)
14373 if (v8_1_branch_value_check (inst
.operands
[0].imm
, 5, FALSE
) == FAIL
)
14374 as_bad (BAD_BRANCH_OFF
);
14376 inst
.instruction
|= ((inst
.operands
[0].imm
& 0x1f) >> 1) << 23;
14380 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH5
;
14381 inst
.relocs
[0].pc_rel
= 1;
14387 if (inst
.operands
[1].hasreloc
== 0)
14389 int val
= inst
.operands
[1].imm
;
14390 if (v8_1_branch_value_check (inst
.operands
[1].imm
, 17, TRUE
) == FAIL
)
14391 as_bad (BAD_BRANCH_OFF
);
14393 int immA
= (val
& 0x0001f000) >> 12;
14394 int immB
= (val
& 0x00000ffc) >> 2;
14395 int immC
= (val
& 0x00000002) >> 1;
14396 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14400 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF17
;
14401 inst
.relocs
[1].pc_rel
= 1;
14406 if (inst
.operands
[1].hasreloc
== 0)
14408 int val
= inst
.operands
[1].imm
;
14409 if (v8_1_branch_value_check (inst
.operands
[1].imm
, 19, TRUE
) == FAIL
)
14410 as_bad (BAD_BRANCH_OFF
);
14412 int immA
= (val
& 0x0007f000) >> 12;
14413 int immB
= (val
& 0x00000ffc) >> 2;
14414 int immC
= (val
& 0x00000002) >> 1;
14415 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14419 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF19
;
14420 inst
.relocs
[1].pc_rel
= 1;
14424 case T_MNEM_bfcsel
:
14426 if (inst
.operands
[1].hasreloc
== 0)
14428 int val
= inst
.operands
[1].imm
;
14429 int immA
= (val
& 0x00001000) >> 12;
14430 int immB
= (val
& 0x00000ffc) >> 2;
14431 int immC
= (val
& 0x00000002) >> 1;
14432 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14436 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF13
;
14437 inst
.relocs
[1].pc_rel
= 1;
14441 if (inst
.operands
[2].hasreloc
== 0)
14443 constraint ((inst
.operands
[0].hasreloc
!= 0), BAD_ARGS
);
14444 int val2
= inst
.operands
[2].imm
;
14445 int val0
= inst
.operands
[0].imm
& 0x1f;
14446 int diff
= val2
- val0
;
14448 inst
.instruction
|= 1 << 17; /* T bit. */
14449 else if (diff
!= 2)
14450 as_bad (_("out of range label-relative fixup value"));
14454 constraint ((inst
.operands
[0].hasreloc
== 0), BAD_ARGS
);
14455 inst
.relocs
[2].type
= BFD_RELOC_THUMB_PCREL_BFCSEL
;
14456 inst
.relocs
[2].pc_rel
= 1;
14460 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
14461 inst
.instruction
|= (inst
.operands
[3].imm
& 0xf) << 18;
14466 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
14473 /* Helper function for do_t_loloop to handle relocations. */
14475 v8_1_loop_reloc (int is_le
)
14477 if (inst
.relocs
[0].exp
.X_op
== O_constant
)
14479 int value
= inst
.relocs
[0].exp
.X_add_number
;
14480 value
= (is_le
) ? -value
: value
;
14482 if (v8_1_branch_value_check (value
, 12, FALSE
) == FAIL
)
14483 as_bad (BAD_BRANCH_OFF
);
14487 immh
= (value
& 0x00000ffc) >> 2;
14488 imml
= (value
& 0x00000002) >> 1;
14490 inst
.instruction
|= (imml
<< 11) | (immh
<< 1);
14494 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_LOOP12
;
14495 inst
.relocs
[0].pc_rel
= 1;
14499 /* For shifts with four operands in MVE. */
14501 do_mve_scalar_shift1 (void)
14503 unsigned int value
= inst
.operands
[2].imm
;
14505 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
14506 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
14508 /* Setting the bit for saturation. */
14509 inst
.instruction
|= ((value
== 64) ? 0: 1) << 7;
14511 /* Assuming Rm is already checked not to be 11x1. */
14512 constraint (inst
.operands
[3].reg
== inst
.operands
[0].reg
, BAD_OVERLAP
);
14513 constraint (inst
.operands
[3].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
14514 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
14517 /* For shifts in MVE. */
14519 do_mve_scalar_shift (void)
14521 if (!inst
.operands
[2].present
)
14523 inst
.operands
[2] = inst
.operands
[1];
14524 inst
.operands
[1].reg
= 0xf;
14527 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
14528 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
14530 if (inst
.operands
[2].isreg
)
14532 /* Assuming Rm is already checked not to be 11x1. */
14533 constraint (inst
.operands
[2].reg
== inst
.operands
[0].reg
, BAD_OVERLAP
);
14534 constraint (inst
.operands
[2].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
14535 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
14539 /* Assuming imm is already checked as [1,32]. */
14540 unsigned int value
= inst
.operands
[2].imm
;
14541 inst
.instruction
|= (value
& 0x1c) << 10;
14542 inst
.instruction
|= (value
& 0x03) << 6;
14543 /* Change last 4 bits from 0xd to 0xf. */
14544 inst
.instruction
|= 0x2;
14548 /* MVE instruction encoder helpers. */
14549 #define M_MNEM_vabav 0xee800f01
14550 #define M_MNEM_vmladav 0xeef00e00
14551 #define M_MNEM_vmladava 0xeef00e20
14552 #define M_MNEM_vmladavx 0xeef01e00
14553 #define M_MNEM_vmladavax 0xeef01e20
14554 #define M_MNEM_vmlsdav 0xeef00e01
14555 #define M_MNEM_vmlsdava 0xeef00e21
14556 #define M_MNEM_vmlsdavx 0xeef01e01
14557 #define M_MNEM_vmlsdavax 0xeef01e21
14558 #define M_MNEM_vmullt 0xee011e00
14559 #define M_MNEM_vmullb 0xee010e00
14560 #define M_MNEM_vctp 0xf000e801
14561 #define M_MNEM_vst20 0xfc801e00
14562 #define M_MNEM_vst21 0xfc801e20
14563 #define M_MNEM_vst40 0xfc801e01
14564 #define M_MNEM_vst41 0xfc801e21
14565 #define M_MNEM_vst42 0xfc801e41
14566 #define M_MNEM_vst43 0xfc801e61
14567 #define M_MNEM_vld20 0xfc901e00
14568 #define M_MNEM_vld21 0xfc901e20
14569 #define M_MNEM_vld40 0xfc901e01
14570 #define M_MNEM_vld41 0xfc901e21
14571 #define M_MNEM_vld42 0xfc901e41
14572 #define M_MNEM_vld43 0xfc901e61
14573 #define M_MNEM_vstrb 0xec000e00
14574 #define M_MNEM_vstrh 0xec000e10
14575 #define M_MNEM_vstrw 0xec000e40
14576 #define M_MNEM_vstrd 0xec000e50
14577 #define M_MNEM_vldrb 0xec100e00
14578 #define M_MNEM_vldrh 0xec100e10
14579 #define M_MNEM_vldrw 0xec100e40
14580 #define M_MNEM_vldrd 0xec100e50
14581 #define M_MNEM_vmovlt 0xeea01f40
14582 #define M_MNEM_vmovlb 0xeea00f40
14583 #define M_MNEM_vmovnt 0xfe311e81
14584 #define M_MNEM_vmovnb 0xfe310e81
14585 #define M_MNEM_vadc 0xee300f00
14586 #define M_MNEM_vadci 0xee301f00
14587 #define M_MNEM_vbrsr 0xfe011e60
14588 #define M_MNEM_vaddlv 0xee890f00
14589 #define M_MNEM_vaddlva 0xee890f20
14590 #define M_MNEM_vaddv 0xeef10f00
14591 #define M_MNEM_vaddva 0xeef10f20
14592 #define M_MNEM_vddup 0xee011f6e
14593 #define M_MNEM_vdwdup 0xee011f60
14594 #define M_MNEM_vidup 0xee010f6e
14595 #define M_MNEM_viwdup 0xee010f60
14596 #define M_MNEM_vmaxv 0xeee20f00
14597 #define M_MNEM_vmaxav 0xeee00f00
14598 #define M_MNEM_vminv 0xeee20f80
14599 #define M_MNEM_vminav 0xeee00f80
14600 #define M_MNEM_vmlaldav 0xee800e00
14601 #define M_MNEM_vmlaldava 0xee800e20
14602 #define M_MNEM_vmlaldavx 0xee801e00
14603 #define M_MNEM_vmlaldavax 0xee801e20
14604 #define M_MNEM_vmlsldav 0xee800e01
14605 #define M_MNEM_vmlsldava 0xee800e21
14606 #define M_MNEM_vmlsldavx 0xee801e01
14607 #define M_MNEM_vmlsldavax 0xee801e21
14608 #define M_MNEM_vrmlaldavhx 0xee801f00
14609 #define M_MNEM_vrmlaldavhax 0xee801f20
14610 #define M_MNEM_vrmlsldavh 0xfe800e01
14611 #define M_MNEM_vrmlsldavha 0xfe800e21
14612 #define M_MNEM_vrmlsldavhx 0xfe801e01
14613 #define M_MNEM_vrmlsldavhax 0xfe801e21
14614 #define M_MNEM_vqmovnt 0xee331e01
14615 #define M_MNEM_vqmovnb 0xee330e01
14616 #define M_MNEM_vqmovunt 0xee311e81
14617 #define M_MNEM_vqmovunb 0xee310e81
14618 #define M_MNEM_vshrnt 0xee801fc1
14619 #define M_MNEM_vshrnb 0xee800fc1
14620 #define M_MNEM_vrshrnt 0xfe801fc1
14621 #define M_MNEM_vqshrnt 0xee801f40
14622 #define M_MNEM_vqshrnb 0xee800f40
14623 #define M_MNEM_vqshrunt 0xee801fc0
14624 #define M_MNEM_vqshrunb 0xee800fc0
14625 #define M_MNEM_vrshrnb 0xfe800fc1
14626 #define M_MNEM_vqrshrnt 0xee801f41
14627 #define M_MNEM_vqrshrnb 0xee800f41
14628 #define M_MNEM_vqrshrunt 0xfe801fc0
14629 #define M_MNEM_vqrshrunb 0xfe800fc0
14631 /* Bfloat16 instruction encoder helpers. */
14632 #define B_MNEM_vfmat 0xfc300850
14633 #define B_MNEM_vfmab 0xfc300810
14635 /* Neon instruction encoder helpers. */
14637 /* Encodings for the different types for various Neon opcodes. */
14639 /* An "invalid" code for the following tables. */
14642 struct neon_tab_entry
14645 unsigned float_or_poly
;
14646 unsigned scalar_or_imm
;
14649 /* Map overloaded Neon opcodes to their respective encodings. */
14650 #define NEON_ENC_TAB \
14651 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14652 X(vabdl, 0x0800700, N_INV, N_INV), \
14653 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14654 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14655 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14656 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14657 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14658 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14659 X(vaddl, 0x0800000, N_INV, N_INV), \
14660 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14661 X(vsubl, 0x0800200, N_INV, N_INV), \
14662 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14663 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14664 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14665 /* Register variants of the following two instructions are encoded as
14666 vcge / vcgt with the operands reversed. */ \
14667 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14668 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14669 X(vfma, N_INV, 0x0000c10, N_INV), \
14670 X(vfms, N_INV, 0x0200c10, N_INV), \
14671 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14672 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14673 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14674 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14675 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14676 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14677 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14678 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14679 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14680 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14681 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14682 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14683 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14684 X(vshl, 0x0000400, N_INV, 0x0800510), \
14685 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14686 X(vand, 0x0000110, N_INV, 0x0800030), \
14687 X(vbic, 0x0100110, N_INV, 0x0800030), \
14688 X(veor, 0x1000110, N_INV, N_INV), \
14689 X(vorn, 0x0300110, N_INV, 0x0800010), \
14690 X(vorr, 0x0200110, N_INV, 0x0800010), \
14691 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14692 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14693 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14694 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14695 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14696 X(vst1, 0x0000000, 0x0800000, N_INV), \
14697 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14698 X(vst2, 0x0000100, 0x0800100, N_INV), \
14699 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14700 X(vst3, 0x0000200, 0x0800200, N_INV), \
14701 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14702 X(vst4, 0x0000300, 0x0800300, N_INV), \
14703 X(vmovn, 0x1b20200, N_INV, N_INV), \
14704 X(vtrn, 0x1b20080, N_INV, N_INV), \
14705 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14706 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14707 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14708 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14709 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14710 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14711 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14712 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14713 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14714 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14715 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14716 X(vseleq, 0xe000a00, N_INV, N_INV), \
14717 X(vselvs, 0xe100a00, N_INV, N_INV), \
14718 X(vselge, 0xe200a00, N_INV, N_INV), \
14719 X(vselgt, 0xe300a00, N_INV, N_INV), \
14720 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14721 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14722 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14723 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14724 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14725 X(aes, 0x3b00300, N_INV, N_INV), \
14726 X(sha3op, 0x2000c00, N_INV, N_INV), \
14727 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14728 X(sha2op, 0x3ba0380, N_INV, N_INV)
14732 #define X(OPC,I,F,S) N_MNEM_##OPC
14737 static const struct neon_tab_entry neon_enc_tab
[] =
14739 #define X(OPC,I,F,S) { (I), (F), (S) }
14744 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14745 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14746 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14747 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14748 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14749 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14750 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14751 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14752 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14753 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14754 #define NEON_ENC_SINGLE_(X) \
14755 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14756 #define NEON_ENC_DOUBLE_(X) \
14757 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14758 #define NEON_ENC_FPV8_(X) \
14759 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14761 #define NEON_ENCODE(type, inst) \
14764 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14765 inst.is_neon = 1; \
14769 #define check_neon_suffixes \
14772 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14774 as_bad (_("invalid neon suffix for non neon instruction")); \
14780 /* Define shapes for instruction operands. The following mnemonic characters
14781 are used in this table:
14783 F - VFP S<n> register
14784 D - Neon D<n> register
14785 Q - Neon Q<n> register
14789 L - D<n> register list
14791 This table is used to generate various data:
14792 - enumerations of the form NS_DDR to be used as arguments to
14794 - a table classifying shapes into single, double, quad, mixed.
14795 - a table used to drive neon_select_shape. */
14797 #define NEON_SHAPE_DEF \
14798 X(4, (R, R, Q, Q), QUAD), \
14799 X(4, (Q, R, R, I), QUAD), \
14800 X(4, (R, R, S, S), QUAD), \
14801 X(4, (S, S, R, R), QUAD), \
14802 X(3, (Q, R, I), QUAD), \
14803 X(3, (I, Q, Q), QUAD), \
14804 X(3, (I, Q, R), QUAD), \
14805 X(3, (R, Q, Q), QUAD), \
14806 X(3, (D, D, D), DOUBLE), \
14807 X(3, (Q, Q, Q), QUAD), \
14808 X(3, (D, D, I), DOUBLE), \
14809 X(3, (Q, Q, I), QUAD), \
14810 X(3, (D, D, S), DOUBLE), \
14811 X(3, (Q, Q, S), QUAD), \
14812 X(3, (Q, Q, R), QUAD), \
14813 X(3, (R, R, Q), QUAD), \
14814 X(2, (R, Q), QUAD), \
14815 X(2, (D, D), DOUBLE), \
14816 X(2, (Q, Q), QUAD), \
14817 X(2, (D, S), DOUBLE), \
14818 X(2, (Q, S), QUAD), \
14819 X(2, (D, R), DOUBLE), \
14820 X(2, (Q, R), QUAD), \
14821 X(2, (D, I), DOUBLE), \
14822 X(2, (Q, I), QUAD), \
14823 X(3, (P, F, I), SINGLE), \
14824 X(3, (P, D, I), DOUBLE), \
14825 X(3, (P, Q, I), QUAD), \
14826 X(4, (P, F, F, I), SINGLE), \
14827 X(4, (P, D, D, I), DOUBLE), \
14828 X(4, (P, Q, Q, I), QUAD), \
14829 X(5, (P, F, F, F, I), SINGLE), \
14830 X(5, (P, D, D, D, I), DOUBLE), \
14831 X(5, (P, Q, Q, Q, I), QUAD), \
14832 X(3, (D, L, D), DOUBLE), \
14833 X(2, (D, Q), MIXED), \
14834 X(2, (Q, D), MIXED), \
14835 X(3, (D, Q, I), MIXED), \
14836 X(3, (Q, D, I), MIXED), \
14837 X(3, (Q, D, D), MIXED), \
14838 X(3, (D, Q, Q), MIXED), \
14839 X(3, (Q, Q, D), MIXED), \
14840 X(3, (Q, D, S), MIXED), \
14841 X(3, (D, Q, S), MIXED), \
14842 X(4, (D, D, D, I), DOUBLE), \
14843 X(4, (Q, Q, Q, I), QUAD), \
14844 X(4, (D, D, S, I), DOUBLE), \
14845 X(4, (Q, Q, S, I), QUAD), \
14846 X(2, (F, F), SINGLE), \
14847 X(3, (F, F, F), SINGLE), \
14848 X(2, (F, I), SINGLE), \
14849 X(2, (F, D), MIXED), \
14850 X(2, (D, F), MIXED), \
14851 X(3, (F, F, I), MIXED), \
14852 X(4, (R, R, F, F), SINGLE), \
14853 X(4, (F, F, R, R), SINGLE), \
14854 X(3, (D, R, R), DOUBLE), \
14855 X(3, (R, R, D), DOUBLE), \
14856 X(2, (S, R), SINGLE), \
14857 X(2, (R, S), SINGLE), \
14858 X(2, (F, R), SINGLE), \
14859 X(2, (R, F), SINGLE), \
14860 /* Used for MVE tail predicated loop instructions. */\
14861 X(2, (R, R), QUAD), \
14862 /* Half float shape supported so far. */\
14863 X (2, (H, D), MIXED), \
14864 X (2, (D, H), MIXED), \
14865 X (2, (H, F), MIXED), \
14866 X (2, (F, H), MIXED), \
14867 X (2, (H, H), HALF), \
14868 X (2, (H, R), HALF), \
14869 X (2, (R, H), HALF), \
14870 X (2, (H, I), HALF), \
14871 X (3, (H, H, H), HALF), \
14872 X (3, (H, F, I), MIXED), \
14873 X (3, (F, H, I), MIXED), \
14874 X (3, (D, H, H), MIXED), \
14875 X (3, (D, H, S), MIXED)
14877 #define S2(A,B) NS_##A##B
14878 #define S3(A,B,C) NS_##A##B##C
14879 #define S4(A,B,C,D) NS_##A##B##C##D
14880 #define S5(A,B,C,D,E) NS_##A##B##C##D##E
14882 #define X(N, L, C) S##N L
14896 enum neon_shape_class
14905 #define X(N, L, C) SC_##C
14907 static enum neon_shape_class neon_shape_class
[] =
14927 /* Register widths of above. */
14928 static unsigned neon_shape_el_size
[] =
14941 struct neon_shape_info
14944 enum neon_shape_el el
[NEON_MAX_TYPE_ELS
];
14947 #define S2(A,B) { SE_##A, SE_##B }
14948 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14949 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14950 #define S5(A,B,C,D,E) { SE_##A, SE_##B, SE_##C, SE_##D, SE_##E }
14952 #define X(N, L, C) { N, S##N L }
14954 static struct neon_shape_info neon_shape_tab
[] =
14965 /* Bit masks used in type checking given instructions.
14966 'N_EQK' means the type must be the same as (or based on in some way) the key
14967 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14968 set, various other bits can be set as well in order to modify the meaning of
14969 the type constraint. */
14971 enum neon_type_mask
14995 N_BF16
= 0x0400000,
14996 N_KEY
= 0x1000000, /* Key element (main type specifier). */
14997 N_EQK
= 0x2000000, /* Given operand has the same type & size as the key. */
14998 N_VFP
= 0x4000000, /* VFP mode: operand size must match register width. */
14999 N_UNT
= 0x8000000, /* Must be explicitly untyped. */
15000 N_DBL
= 0x0000001, /* If N_EQK, this operand is twice the size. */
15001 N_HLF
= 0x0000002, /* If N_EQK, this operand is half the size. */
15002 N_SGN
= 0x0000004, /* If N_EQK, this operand is forced to be signed. */
15003 N_UNS
= 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
15004 N_INT
= 0x0000010, /* If N_EQK, this operand is forced to be integer. */
15005 N_FLT
= 0x0000020, /* If N_EQK, this operand is forced to be float. */
15006 N_SIZ
= 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
15008 N_MAX_NONSPECIAL
= N_P64
15011 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
15013 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
15014 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
15015 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
15016 #define N_S_32 (N_S8 | N_S16 | N_S32)
15017 #define N_F_16_32 (N_F16 | N_F32)
15018 #define N_SUF_32 (N_SU_32 | N_F_16_32)
15019 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
15020 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
15021 #define N_F_ALL (N_F16 | N_F32 | N_F64)
15022 #define N_I_MVE (N_I8 | N_I16 | N_I32)
15023 #define N_F_MVE (N_F16 | N_F32)
15024 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
15026 /* Pass this as the first type argument to neon_check_type to ignore types
15028 #define N_IGNORE_TYPE (N_KEY | N_EQK)
15030 /* Select a "shape" for the current instruction (describing register types or
15031 sizes) from a list of alternatives. Return NS_NULL if the current instruction
15032 doesn't fit. For non-polymorphic shapes, checking is usually done as a
15033 function of operand parsing, so this function doesn't need to be called.
15034 Shapes should be listed in order of decreasing length. */
15036 static enum neon_shape
15037 neon_select_shape (enum neon_shape shape
, ...)
15040 enum neon_shape first_shape
= shape
;
15042 /* Fix missing optional operands. FIXME: we don't know at this point how
15043 many arguments we should have, so this makes the assumption that we have
15044 > 1. This is true of all current Neon opcodes, I think, but may not be
15045 true in the future. */
15046 if (!inst
.operands
[1].present
)
15047 inst
.operands
[1] = inst
.operands
[0];
15049 va_start (ap
, shape
);
15051 for (; shape
!= NS_NULL
; shape
= (enum neon_shape
) va_arg (ap
, int))
15056 for (j
= 0; j
< neon_shape_tab
[shape
].els
; j
++)
15058 if (!inst
.operands
[j
].present
)
15064 switch (neon_shape_tab
[shape
].el
[j
])
15066 /* If a .f16, .16, .u16, .s16 type specifier is given over
15067 a VFP single precision register operand, it's essentially
15068 means only half of the register is used.
15070 If the type specifier is given after the mnemonics, the
15071 information is stored in inst.vectype. If the type specifier
15072 is given after register operand, the information is stored
15073 in inst.operands[].vectype.
15075 When there is only one type specifier, and all the register
15076 operands are the same type of hardware register, the type
15077 specifier applies to all register operands.
15079 If no type specifier is given, the shape is inferred from
15080 operand information.
15083 vadd.f16 s0, s1, s2: NS_HHH
15084 vabs.f16 s0, s1: NS_HH
15085 vmov.f16 s0, r1: NS_HR
15086 vmov.f16 r0, s1: NS_RH
15087 vcvt.f16 r0, s1: NS_RH
15088 vcvt.f16.s32 s2, s2, #29: NS_HFI
15089 vcvt.f16.s32 s2, s2: NS_HF
15092 if (!(inst
.operands
[j
].isreg
15093 && inst
.operands
[j
].isvec
15094 && inst
.operands
[j
].issingle
15095 && !inst
.operands
[j
].isquad
15096 && ((inst
.vectype
.elems
== 1
15097 && inst
.vectype
.el
[0].size
== 16)
15098 || (inst
.vectype
.elems
> 1
15099 && inst
.vectype
.el
[j
].size
== 16)
15100 || (inst
.vectype
.elems
== 0
15101 && inst
.operands
[j
].vectype
.type
!= NT_invtype
15102 && inst
.operands
[j
].vectype
.size
== 16))))
15107 if (!(inst
.operands
[j
].isreg
15108 && inst
.operands
[j
].isvec
15109 && inst
.operands
[j
].issingle
15110 && !inst
.operands
[j
].isquad
15111 && ((inst
.vectype
.elems
== 1 && inst
.vectype
.el
[0].size
== 32)
15112 || (inst
.vectype
.elems
> 1 && inst
.vectype
.el
[j
].size
== 32)
15113 || (inst
.vectype
.elems
== 0
15114 && (inst
.operands
[j
].vectype
.size
== 32
15115 || inst
.operands
[j
].vectype
.type
== NT_invtype
)))))
15120 if (!(inst
.operands
[j
].isreg
15121 && inst
.operands
[j
].isvec
15122 && !inst
.operands
[j
].isquad
15123 && !inst
.operands
[j
].issingle
))
15128 if (!(inst
.operands
[j
].isreg
15129 && !inst
.operands
[j
].isvec
))
15134 if (!(inst
.operands
[j
].isreg
15135 && inst
.operands
[j
].isvec
15136 && inst
.operands
[j
].isquad
15137 && !inst
.operands
[j
].issingle
))
15142 if (!(!inst
.operands
[j
].isreg
15143 && !inst
.operands
[j
].isscalar
))
15148 if (!(!inst
.operands
[j
].isreg
15149 && inst
.operands
[j
].isscalar
))
15160 if (matches
&& (j
>= ARM_IT_MAX_OPERANDS
|| !inst
.operands
[j
].present
))
15161 /* We've matched all the entries in the shape table, and we don't
15162 have any left over operands which have not been matched. */
15168 if (shape
== NS_NULL
&& first_shape
!= NS_NULL
)
15169 first_error (_("invalid instruction shape"));
15174 /* True if SHAPE is predominantly a quadword operation (most of the time, this
15175 means the Q bit should be set). */
15178 neon_quad (enum neon_shape shape
)
15180 return neon_shape_class
[shape
] == SC_QUAD
;
15184 neon_modify_type_size (unsigned typebits
, enum neon_el_type
*g_type
,
15187 /* Allow modification to be made to types which are constrained to be
15188 based on the key element, based on bits set alongside N_EQK. */
15189 if ((typebits
& N_EQK
) != 0)
15191 if ((typebits
& N_HLF
) != 0)
15193 else if ((typebits
& N_DBL
) != 0)
15195 if ((typebits
& N_SGN
) != 0)
15196 *g_type
= NT_signed
;
15197 else if ((typebits
& N_UNS
) != 0)
15198 *g_type
= NT_unsigned
;
15199 else if ((typebits
& N_INT
) != 0)
15200 *g_type
= NT_integer
;
15201 else if ((typebits
& N_FLT
) != 0)
15202 *g_type
= NT_float
;
15203 else if ((typebits
& N_SIZ
) != 0)
15204 *g_type
= NT_untyped
;
15208 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
15209 operand type, i.e. the single type specified in a Neon instruction when it
15210 is the only one given. */
15212 static struct neon_type_el
15213 neon_type_promote (struct neon_type_el
*key
, unsigned thisarg
)
15215 struct neon_type_el dest
= *key
;
15217 gas_assert ((thisarg
& N_EQK
) != 0);
15219 neon_modify_type_size (thisarg
, &dest
.type
, &dest
.size
);
15224 /* Convert Neon type and size into compact bitmask representation. */
15226 static enum neon_type_mask
15227 type_chk_of_el_type (enum neon_el_type type
, unsigned size
)
15234 case 8: return N_8
;
15235 case 16: return N_16
;
15236 case 32: return N_32
;
15237 case 64: return N_64
;
15245 case 8: return N_I8
;
15246 case 16: return N_I16
;
15247 case 32: return N_I32
;
15248 case 64: return N_I64
;
15256 case 16: return N_F16
;
15257 case 32: return N_F32
;
15258 case 64: return N_F64
;
15266 case 8: return N_P8
;
15267 case 16: return N_P16
;
15268 case 64: return N_P64
;
15276 case 8: return N_S8
;
15277 case 16: return N_S16
;
15278 case 32: return N_S32
;
15279 case 64: return N_S64
;
15287 case 8: return N_U8
;
15288 case 16: return N_U16
;
15289 case 32: return N_U32
;
15290 case 64: return N_U64
;
15296 if (size
== 16) return N_BF16
;
15305 /* Convert compact Neon bitmask type representation to a type and size. Only
15306 handles the case where a single bit is set in the mask. */
15309 el_type_of_type_chk (enum neon_el_type
*type
, unsigned *size
,
15310 enum neon_type_mask mask
)
15312 if ((mask
& N_EQK
) != 0)
15315 if ((mask
& (N_S8
| N_U8
| N_I8
| N_8
| N_P8
)) != 0)
15317 else if ((mask
& (N_S16
| N_U16
| N_I16
| N_16
| N_F16
| N_P16
| N_BF16
))
15320 else if ((mask
& (N_S32
| N_U32
| N_I32
| N_32
| N_F32
)) != 0)
15322 else if ((mask
& (N_S64
| N_U64
| N_I64
| N_64
| N_F64
| N_P64
)) != 0)
15327 if ((mask
& (N_S8
| N_S16
| N_S32
| N_S64
)) != 0)
15329 else if ((mask
& (N_U8
| N_U16
| N_U32
| N_U64
)) != 0)
15330 *type
= NT_unsigned
;
15331 else if ((mask
& (N_I8
| N_I16
| N_I32
| N_I64
)) != 0)
15332 *type
= NT_integer
;
15333 else if ((mask
& (N_8
| N_16
| N_32
| N_64
)) != 0)
15334 *type
= NT_untyped
;
15335 else if ((mask
& (N_P8
| N_P16
| N_P64
)) != 0)
15337 else if ((mask
& (N_F_ALL
)) != 0)
15339 else if ((mask
& (N_BF16
)) != 0)
15347 /* Modify a bitmask of allowed types. This is only needed for type
15351 modify_types_allowed (unsigned allowed
, unsigned mods
)
15354 enum neon_el_type type
;
15360 for (i
= 1; i
<= N_MAX_NONSPECIAL
; i
<<= 1)
15362 if (el_type_of_type_chk (&type
, &size
,
15363 (enum neon_type_mask
) (allowed
& i
)) == SUCCESS
)
15365 neon_modify_type_size (mods
, &type
, &size
);
15366 destmask
|= type_chk_of_el_type (type
, size
);
15373 /* Check type and return type classification.
15374 The manual states (paraphrase): If one datatype is given, it indicates the
15376 - the second operand, if there is one
15377 - the operand, if there is no second operand
15378 - the result, if there are no operands.
15379 This isn't quite good enough though, so we use a concept of a "key" datatype
15380 which is set on a per-instruction basis, which is the one which matters when
15381 only one data type is written.
15382 Note: this function has side-effects (e.g. filling in missing operands). All
15383 Neon instructions should call it before performing bit encoding. */
15385 static struct neon_type_el
15386 neon_check_type (unsigned els
, enum neon_shape ns
, ...)
15389 unsigned i
, pass
, key_el
= 0;
15390 unsigned types
[NEON_MAX_TYPE_ELS
];
15391 enum neon_el_type k_type
= NT_invtype
;
15392 unsigned k_size
= -1u;
15393 struct neon_type_el badtype
= {NT_invtype
, -1};
15394 unsigned key_allowed
= 0;
15396 /* Optional registers in Neon instructions are always (not) in operand 1.
15397 Fill in the missing operand here, if it was omitted. */
15398 if (els
> 1 && !inst
.operands
[1].present
)
15399 inst
.operands
[1] = inst
.operands
[0];
15401 /* Suck up all the varargs. */
15403 for (i
= 0; i
< els
; i
++)
15405 unsigned thisarg
= va_arg (ap
, unsigned);
15406 if (thisarg
== N_IGNORE_TYPE
)
15411 types
[i
] = thisarg
;
15412 if ((thisarg
& N_KEY
) != 0)
15417 if (inst
.vectype
.elems
> 0)
15418 for (i
= 0; i
< els
; i
++)
15419 if (inst
.operands
[i
].vectype
.type
!= NT_invtype
)
15421 first_error (_("types specified in both the mnemonic and operands"));
15425 /* Duplicate inst.vectype elements here as necessary.
15426 FIXME: No idea if this is exactly the same as the ARM assembler,
15427 particularly when an insn takes one register and one non-register
15429 if (inst
.vectype
.elems
== 1 && els
> 1)
15432 inst
.vectype
.elems
= els
;
15433 inst
.vectype
.el
[key_el
] = inst
.vectype
.el
[0];
15434 for (j
= 0; j
< els
; j
++)
15436 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
15439 else if (inst
.vectype
.elems
== 0 && els
> 0)
15442 /* No types were given after the mnemonic, so look for types specified
15443 after each operand. We allow some flexibility here; as long as the
15444 "key" operand has a type, we can infer the others. */
15445 for (j
= 0; j
< els
; j
++)
15446 if (inst
.operands
[j
].vectype
.type
!= NT_invtype
)
15447 inst
.vectype
.el
[j
] = inst
.operands
[j
].vectype
;
15449 if (inst
.operands
[key_el
].vectype
.type
!= NT_invtype
)
15451 for (j
= 0; j
< els
; j
++)
15452 if (inst
.operands
[j
].vectype
.type
== NT_invtype
)
15453 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
15458 first_error (_("operand types can't be inferred"));
15462 else if (inst
.vectype
.elems
!= els
)
15464 first_error (_("type specifier has the wrong number of parts"));
15468 for (pass
= 0; pass
< 2; pass
++)
15470 for (i
= 0; i
< els
; i
++)
15472 unsigned thisarg
= types
[i
];
15473 unsigned types_allowed
= ((thisarg
& N_EQK
) != 0 && pass
!= 0)
15474 ? modify_types_allowed (key_allowed
, thisarg
) : thisarg
;
15475 enum neon_el_type g_type
= inst
.vectype
.el
[i
].type
;
15476 unsigned g_size
= inst
.vectype
.el
[i
].size
;
15478 /* Decay more-specific signed & unsigned types to sign-insensitive
15479 integer types if sign-specific variants are unavailable. */
15480 if ((g_type
== NT_signed
|| g_type
== NT_unsigned
)
15481 && (types_allowed
& N_SU_ALL
) == 0)
15482 g_type
= NT_integer
;
15484 /* If only untyped args are allowed, decay any more specific types to
15485 them. Some instructions only care about signs for some element
15486 sizes, so handle that properly. */
15487 if (((types_allowed
& N_UNT
) == 0)
15488 && ((g_size
== 8 && (types_allowed
& N_8
) != 0)
15489 || (g_size
== 16 && (types_allowed
& N_16
) != 0)
15490 || (g_size
== 32 && (types_allowed
& N_32
) != 0)
15491 || (g_size
== 64 && (types_allowed
& N_64
) != 0)))
15492 g_type
= NT_untyped
;
15496 if ((thisarg
& N_KEY
) != 0)
15500 key_allowed
= thisarg
& ~N_KEY
;
15502 /* Check architecture constraint on FP16 extension. */
15504 && k_type
== NT_float
15505 && ! ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
))
15507 inst
.error
= _(BAD_FP16
);
15514 if ((thisarg
& N_VFP
) != 0)
15516 enum neon_shape_el regshape
;
15517 unsigned regwidth
, match
;
15519 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15522 first_error (_("invalid instruction shape"));
15525 regshape
= neon_shape_tab
[ns
].el
[i
];
15526 regwidth
= neon_shape_el_size
[regshape
];
15528 /* In VFP mode, operands must match register widths. If we
15529 have a key operand, use its width, else use the width of
15530 the current operand. */
15536 /* FP16 will use a single precision register. */
15537 if (regwidth
== 32 && match
== 16)
15539 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
))
15543 inst
.error
= _(BAD_FP16
);
15548 if (regwidth
!= match
)
15550 first_error (_("operand size must match register width"));
15555 if ((thisarg
& N_EQK
) == 0)
15557 unsigned given_type
= type_chk_of_el_type (g_type
, g_size
);
15559 if ((given_type
& types_allowed
) == 0)
15561 first_error (BAD_SIMD_TYPE
);
15567 enum neon_el_type mod_k_type
= k_type
;
15568 unsigned mod_k_size
= k_size
;
15569 neon_modify_type_size (thisarg
, &mod_k_type
, &mod_k_size
);
15570 if (g_type
!= mod_k_type
|| g_size
!= mod_k_size
)
15572 first_error (_("inconsistent types in Neon instruction"));
15580 return inst
.vectype
.el
[key_el
];
15583 /* Neon-style VFP instruction forwarding. */
15585 /* Thumb VFP instructions have 0xE in the condition field. */
15588 do_vfp_cond_or_thumb (void)
15593 inst
.instruction
|= 0xe0000000;
15595 inst
.instruction
|= inst
.cond
<< 28;
15598 /* Look up and encode a simple mnemonic, for use as a helper function for the
15599 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15600 etc. It is assumed that operand parsing has already been done, and that the
15601 operands are in the form expected by the given opcode (this isn't necessarily
15602 the same as the form in which they were parsed, hence some massaging must
15603 take place before this function is called).
15604 Checks current arch version against that in the looked-up opcode. */
15607 do_vfp_nsyn_opcode (const char *opname
)
15609 const struct asm_opcode
*opcode
;
15611 opcode
= (const struct asm_opcode
*) hash_find (arm_ops_hsh
, opname
);
15616 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
,
15617 thumb_mode
? *opcode
->tvariant
: *opcode
->avariant
),
15624 inst
.instruction
= opcode
->tvalue
;
15625 opcode
->tencode ();
15629 inst
.instruction
= (inst
.cond
<< 28) | opcode
->avalue
;
15630 opcode
->aencode ();
15635 do_vfp_nsyn_add_sub (enum neon_shape rs
)
15637 int is_add
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vadd
;
15639 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15642 do_vfp_nsyn_opcode ("fadds");
15644 do_vfp_nsyn_opcode ("fsubs");
15646 /* ARMv8.2 fp16 instruction. */
15648 do_scalar_fp16_v82_encode ();
15653 do_vfp_nsyn_opcode ("faddd");
15655 do_vfp_nsyn_opcode ("fsubd");
15659 /* Check operand types to see if this is a VFP instruction, and if so call
15663 try_vfp_nsyn (int args
, void (*pfn
) (enum neon_shape
))
15665 enum neon_shape rs
;
15666 struct neon_type_el et
;
15671 rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15672 et
= neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15676 rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15677 et
= neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15678 N_F_ALL
| N_KEY
| N_VFP
);
15685 if (et
.type
!= NT_invtype
)
15696 do_vfp_nsyn_mla_mls (enum neon_shape rs
)
15698 int is_mla
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vmla
;
15700 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15703 do_vfp_nsyn_opcode ("fmacs");
15705 do_vfp_nsyn_opcode ("fnmacs");
15707 /* ARMv8.2 fp16 instruction. */
15709 do_scalar_fp16_v82_encode ();
15714 do_vfp_nsyn_opcode ("fmacd");
15716 do_vfp_nsyn_opcode ("fnmacd");
15721 do_vfp_nsyn_fma_fms (enum neon_shape rs
)
15723 int is_fma
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vfma
;
15725 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15728 do_vfp_nsyn_opcode ("ffmas");
15730 do_vfp_nsyn_opcode ("ffnmas");
15732 /* ARMv8.2 fp16 instruction. */
15734 do_scalar_fp16_v82_encode ();
15739 do_vfp_nsyn_opcode ("ffmad");
15741 do_vfp_nsyn_opcode ("ffnmad");
15746 do_vfp_nsyn_mul (enum neon_shape rs
)
15748 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15750 do_vfp_nsyn_opcode ("fmuls");
15752 /* ARMv8.2 fp16 instruction. */
15754 do_scalar_fp16_v82_encode ();
15757 do_vfp_nsyn_opcode ("fmuld");
15761 do_vfp_nsyn_abs_neg (enum neon_shape rs
)
15763 int is_neg
= (inst
.instruction
& 0x80) != 0;
15764 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_VFP
| N_KEY
);
15766 if (rs
== NS_FF
|| rs
== NS_HH
)
15769 do_vfp_nsyn_opcode ("fnegs");
15771 do_vfp_nsyn_opcode ("fabss");
15773 /* ARMv8.2 fp16 instruction. */
15775 do_scalar_fp16_v82_encode ();
15780 do_vfp_nsyn_opcode ("fnegd");
15782 do_vfp_nsyn_opcode ("fabsd");
15786 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15787 insns belong to Neon, and are handled elsewhere. */
15790 do_vfp_nsyn_ldm_stm (int is_dbmode
)
15792 int is_ldm
= (inst
.instruction
& (1 << 20)) != 0;
15796 do_vfp_nsyn_opcode ("fldmdbs");
15798 do_vfp_nsyn_opcode ("fldmias");
15803 do_vfp_nsyn_opcode ("fstmdbs");
15805 do_vfp_nsyn_opcode ("fstmias");
15810 do_vfp_nsyn_sqrt (void)
15812 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15813 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15815 if (rs
== NS_FF
|| rs
== NS_HH
)
15817 do_vfp_nsyn_opcode ("fsqrts");
15819 /* ARMv8.2 fp16 instruction. */
15821 do_scalar_fp16_v82_encode ();
15824 do_vfp_nsyn_opcode ("fsqrtd");
15828 do_vfp_nsyn_div (void)
15830 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15831 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15832 N_F_ALL
| N_KEY
| N_VFP
);
15834 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15836 do_vfp_nsyn_opcode ("fdivs");
15838 /* ARMv8.2 fp16 instruction. */
15840 do_scalar_fp16_v82_encode ();
15843 do_vfp_nsyn_opcode ("fdivd");
15847 do_vfp_nsyn_nmul (void)
15849 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15850 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15851 N_F_ALL
| N_KEY
| N_VFP
);
15853 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15855 NEON_ENCODE (SINGLE
, inst
);
15856 do_vfp_sp_dyadic ();
15858 /* ARMv8.2 fp16 instruction. */
15860 do_scalar_fp16_v82_encode ();
15864 NEON_ENCODE (DOUBLE
, inst
);
15865 do_vfp_dp_rd_rn_rm ();
15867 do_vfp_cond_or_thumb ();
15871 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15875 neon_logbits (unsigned x
)
15877 return ffs (x
) - 4;
15880 #define LOW4(R) ((R) & 0xf)
15881 #define HI1(R) (((R) >> 4) & 1)
15882 #define LOW1(R) ((R) & 0x1)
15883 #define HI4(R) (((R) >> 1) & 0xf)
15886 mve_get_vcmp_vpt_cond (struct neon_type_el et
)
15891 first_error (BAD_EL_TYPE
);
15894 switch (inst
.operands
[0].imm
)
15897 first_error (_("invalid condition"));
15919 /* only accept eq and ne. */
15920 if (inst
.operands
[0].imm
> 1)
15922 first_error (_("invalid condition"));
15925 return inst
.operands
[0].imm
;
15927 if (inst
.operands
[0].imm
== 0x2)
15929 else if (inst
.operands
[0].imm
== 0x8)
15933 first_error (_("invalid condition"));
15937 switch (inst
.operands
[0].imm
)
15940 first_error (_("invalid condition"));
15956 /* Should be unreachable. */
15960 /* For VCTP (create vector tail predicate) in MVE. */
15965 unsigned size
= 0x0;
15967 if (inst
.cond
> COND_ALWAYS
)
15968 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15970 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15972 /* This is a typical MVE instruction which has no type but have size 8, 16,
15973 32 and 64. For instructions with no type, inst.vectype.el[j].type is set
15974 to NT_untyped and size is updated in inst.vectype.el[j].size. */
15975 if ((inst
.operands
[0].present
) && (inst
.vectype
.el
[0].type
== NT_untyped
))
15976 dt
= inst
.vectype
.el
[0].size
;
15978 /* Setting this does not indicate an actual NEON instruction, but only
15979 indicates that the mnemonic accepts neon-style type suffixes. */
15993 first_error (_("Type is not allowed for this instruction"));
15995 inst
.instruction
|= size
<< 20;
15996 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
16002 /* We are dealing with a vector predicated block. */
16003 if (inst
.operands
[0].present
)
16005 enum neon_shape rs
= neon_select_shape (NS_IQQ
, NS_IQR
, NS_NULL
);
16006 struct neon_type_el et
16007 = neon_check_type (3, rs
, N_EQK
, N_KEY
| N_F_MVE
| N_I_MVE
| N_SU_32
,
16010 unsigned fcond
= mve_get_vcmp_vpt_cond (et
);
16012 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
16014 if (et
.type
== NT_invtype
)
16017 if (et
.type
== NT_float
)
16019 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
16021 constraint (et
.size
!= 16 && et
.size
!= 32, BAD_EL_TYPE
);
16022 inst
.instruction
|= (et
.size
== 16) << 28;
16023 inst
.instruction
|= 0x3 << 20;
16027 constraint (et
.size
!= 8 && et
.size
!= 16 && et
.size
!= 32,
16029 inst
.instruction
|= 1 << 28;
16030 inst
.instruction
|= neon_logbits (et
.size
) << 20;
16033 if (inst
.operands
[2].isquad
)
16035 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16036 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16037 inst
.instruction
|= (fcond
& 0x2) >> 1;
16041 if (inst
.operands
[2].reg
== REG_SP
)
16042 as_tsktsk (MVE_BAD_SP
);
16043 inst
.instruction
|= 1 << 6;
16044 inst
.instruction
|= (fcond
& 0x2) << 4;
16045 inst
.instruction
|= inst
.operands
[2].reg
;
16047 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16048 inst
.instruction
|= (fcond
& 0x4) << 10;
16049 inst
.instruction
|= (fcond
& 0x1) << 7;
16052 set_pred_insn_type (VPT_INSN
);
16054 now_pred
.mask
= ((inst
.instruction
& 0x00400000) >> 19)
16055 | ((inst
.instruction
& 0xe000) >> 13);
16056 now_pred
.warn_deprecated
= FALSE
;
16057 now_pred
.type
= VECTOR_PRED
;
16064 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
16065 if (!inst
.operands
[1].isreg
|| !inst
.operands
[1].isquad
)
16066 first_error (_(reg_expected_msgs
[REG_TYPE_MQ
]));
16067 if (!inst
.operands
[2].present
)
16068 first_error (_("MVE vector or ARM register expected"));
16069 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
16071 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
16072 if ((inst
.instruction
& 0xffffffff) == N_MNEM_vcmpe
16073 && inst
.operands
[1].isquad
)
16075 inst
.instruction
= N_MNEM_vcmp
;
16079 if (inst
.cond
> COND_ALWAYS
)
16080 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16082 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16084 enum neon_shape rs
= neon_select_shape (NS_IQQ
, NS_IQR
, NS_NULL
);
16085 struct neon_type_el et
16086 = neon_check_type (3, rs
, N_EQK
, N_KEY
| N_F_MVE
| N_I_MVE
| N_SU_32
,
16089 constraint (rs
== NS_IQR
&& inst
.operands
[2].reg
== REG_PC
16090 && !inst
.operands
[2].iszr
, BAD_PC
);
16092 unsigned fcond
= mve_get_vcmp_vpt_cond (et
);
16094 inst
.instruction
= 0xee010f00;
16095 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16096 inst
.instruction
|= (fcond
& 0x4) << 10;
16097 inst
.instruction
|= (fcond
& 0x1) << 7;
16098 if (et
.type
== NT_float
)
16100 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
16102 inst
.instruction
|= (et
.size
== 16) << 28;
16103 inst
.instruction
|= 0x3 << 20;
16107 inst
.instruction
|= 1 << 28;
16108 inst
.instruction
|= neon_logbits (et
.size
) << 20;
16110 if (inst
.operands
[2].isquad
)
16112 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16113 inst
.instruction
|= (fcond
& 0x2) >> 1;
16114 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16118 if (inst
.operands
[2].reg
== REG_SP
)
16119 as_tsktsk (MVE_BAD_SP
);
16120 inst
.instruction
|= 1 << 6;
16121 inst
.instruction
|= (fcond
& 0x2) << 4;
16122 inst
.instruction
|= inst
.operands
[2].reg
;
16130 do_mve_vmaxa_vmina (void)
16132 if (inst
.cond
> COND_ALWAYS
)
16133 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16135 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16137 enum neon_shape rs
= neon_select_shape (NS_QQ
, NS_NULL
);
16138 struct neon_type_el et
16139 = neon_check_type (2, rs
, N_EQK
, N_KEY
| N_S8
| N_S16
| N_S32
);
16141 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16142 inst
.instruction
|= neon_logbits (et
.size
) << 18;
16143 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16144 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16145 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16150 do_mve_vfmas (void)
16152 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
16153 struct neon_type_el et
16154 = neon_check_type (3, rs
, N_F_MVE
| N_KEY
, N_EQK
, N_EQK
);
16156 if (inst
.cond
> COND_ALWAYS
)
16157 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16159 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16161 if (inst
.operands
[2].reg
== REG_SP
)
16162 as_tsktsk (MVE_BAD_SP
);
16163 else if (inst
.operands
[2].reg
== REG_PC
)
16164 as_tsktsk (MVE_BAD_PC
);
16166 inst
.instruction
|= (et
.size
== 16) << 28;
16167 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16168 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16169 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16170 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16171 inst
.instruction
|= inst
.operands
[2].reg
;
16176 do_mve_viddup (void)
16178 if (inst
.cond
> COND_ALWAYS
)
16179 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16181 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16183 unsigned imm
= inst
.relocs
[0].exp
.X_add_number
;
16184 constraint (imm
!= 1 && imm
!= 2 && imm
!= 4 && imm
!= 8,
16185 _("immediate must be either 1, 2, 4 or 8"));
16187 enum neon_shape rs
;
16188 struct neon_type_el et
;
16190 if (inst
.instruction
== M_MNEM_vddup
|| inst
.instruction
== M_MNEM_vidup
)
16192 rs
= neon_select_shape (NS_QRI
, NS_NULL
);
16193 et
= neon_check_type (2, rs
, N_KEY
| N_U8
| N_U16
| N_U32
, N_EQK
);
16198 constraint ((inst
.operands
[2].reg
% 2) != 1, BAD_EVEN
);
16199 if (inst
.operands
[2].reg
== REG_SP
)
16200 as_tsktsk (MVE_BAD_SP
);
16201 else if (inst
.operands
[2].reg
== REG_PC
)
16202 first_error (BAD_PC
);
16204 rs
= neon_select_shape (NS_QRRI
, NS_NULL
);
16205 et
= neon_check_type (3, rs
, N_KEY
| N_U8
| N_U16
| N_U32
, N_EQK
, N_EQK
);
16206 Rm
= inst
.operands
[2].reg
>> 1;
16208 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16209 inst
.instruction
|= neon_logbits (et
.size
) << 20;
16210 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16211 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16212 inst
.instruction
|= (imm
> 2) << 7;
16213 inst
.instruction
|= Rm
<< 1;
16214 inst
.instruction
|= (imm
== 2 || imm
== 8);
16219 do_mve_vmlas (void)
16221 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
16222 struct neon_type_el et
16223 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
16225 if (inst
.operands
[2].reg
== REG_PC
)
16226 as_tsktsk (MVE_BAD_PC
);
16227 else if (inst
.operands
[2].reg
== REG_SP
)
16228 as_tsktsk (MVE_BAD_SP
);
16230 if (inst
.cond
> COND_ALWAYS
)
16231 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16233 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16235 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
16236 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16237 inst
.instruction
|= neon_logbits (et
.size
) << 20;
16238 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16239 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16240 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16241 inst
.instruction
|= inst
.operands
[2].reg
;
16246 do_mve_vshll (void)
16248 struct neon_type_el et
16249 = neon_check_type (2, NS_QQI
, N_EQK
, N_S8
| N_U8
| N_S16
| N_U16
| N_KEY
);
16251 if (inst
.cond
> COND_ALWAYS
)
16252 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16254 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16256 int imm
= inst
.operands
[2].imm
;
16257 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
16258 _("immediate value out of range"));
16260 if ((unsigned)imm
== et
.size
)
16262 inst
.instruction
|= neon_logbits (et
.size
) << 18;
16263 inst
.instruction
|= 0x110001;
16267 inst
.instruction
|= (et
.size
+ imm
) << 16;
16268 inst
.instruction
|= 0x800140;
16271 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
16272 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16273 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16274 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16275 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16280 do_mve_vshlc (void)
16282 if (inst
.cond
> COND_ALWAYS
)
16283 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16285 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16287 if (inst
.operands
[1].reg
== REG_PC
)
16288 as_tsktsk (MVE_BAD_PC
);
16289 else if (inst
.operands
[1].reg
== REG_SP
)
16290 as_tsktsk (MVE_BAD_SP
);
16292 int imm
= inst
.operands
[2].imm
;
16293 constraint (imm
< 1 || imm
> 32, _("immediate value out of range"));
16295 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16296 inst
.instruction
|= (imm
& 0x1f) << 16;
16297 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16298 inst
.instruction
|= inst
.operands
[1].reg
;
16303 do_mve_vshrn (void)
16306 switch (inst
.instruction
)
16308 case M_MNEM_vshrnt
:
16309 case M_MNEM_vshrnb
:
16310 case M_MNEM_vrshrnt
:
16311 case M_MNEM_vrshrnb
:
16312 types
= N_I16
| N_I32
;
16314 case M_MNEM_vqshrnt
:
16315 case M_MNEM_vqshrnb
:
16316 case M_MNEM_vqrshrnt
:
16317 case M_MNEM_vqrshrnb
:
16318 types
= N_U16
| N_U32
| N_S16
| N_S32
;
16320 case M_MNEM_vqshrunt
:
16321 case M_MNEM_vqshrunb
:
16322 case M_MNEM_vqrshrunt
:
16323 case M_MNEM_vqrshrunb
:
16324 types
= N_S16
| N_S32
;
16330 struct neon_type_el et
= neon_check_type (2, NS_QQI
, N_EQK
, types
| N_KEY
);
16332 if (inst
.cond
> COND_ALWAYS
)
16333 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16335 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16337 unsigned Qd
= inst
.operands
[0].reg
;
16338 unsigned Qm
= inst
.operands
[1].reg
;
16339 unsigned imm
= inst
.operands
[2].imm
;
16340 constraint (imm
< 1 || ((unsigned) imm
) > (et
.size
/ 2),
16342 ? _("immediate operand expected in the range [1,8]")
16343 : _("immediate operand expected in the range [1,16]"));
16345 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
16346 inst
.instruction
|= HI1 (Qd
) << 22;
16347 inst
.instruction
|= (et
.size
- imm
) << 16;
16348 inst
.instruction
|= LOW4 (Qd
) << 12;
16349 inst
.instruction
|= HI1 (Qm
) << 5;
16350 inst
.instruction
|= LOW4 (Qm
);
16355 do_mve_vqmovn (void)
16357 struct neon_type_el et
;
16358 if (inst
.instruction
== M_MNEM_vqmovnt
16359 || inst
.instruction
== M_MNEM_vqmovnb
)
16360 et
= neon_check_type (2, NS_QQ
, N_EQK
,
16361 N_U16
| N_U32
| N_S16
| N_S32
| N_KEY
);
16363 et
= neon_check_type (2, NS_QQ
, N_EQK
, N_S16
| N_S32
| N_KEY
);
16365 if (inst
.cond
> COND_ALWAYS
)
16366 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16368 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16370 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
16371 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16372 inst
.instruction
|= (et
.size
== 32) << 18;
16373 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16374 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16375 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16380 do_mve_vpsel (void)
16382 neon_select_shape (NS_QQQ
, NS_NULL
);
16384 if (inst
.cond
> COND_ALWAYS
)
16385 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16387 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16389 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16390 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16391 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16392 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16393 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16394 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16399 do_mve_vpnot (void)
16401 if (inst
.cond
> COND_ALWAYS
)
16402 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16404 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16408 do_mve_vmaxnma_vminnma (void)
16410 enum neon_shape rs
= neon_select_shape (NS_QQ
, NS_NULL
);
16411 struct neon_type_el et
16412 = neon_check_type (2, rs
, N_EQK
, N_F_MVE
| N_KEY
);
16414 if (inst
.cond
> COND_ALWAYS
)
16415 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16417 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16419 inst
.instruction
|= (et
.size
== 16) << 28;
16420 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16421 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16422 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16423 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16428 do_mve_vcmul (void)
16430 enum neon_shape rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
16431 struct neon_type_el et
16432 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F_MVE
| N_KEY
);
16434 if (inst
.cond
> COND_ALWAYS
)
16435 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16437 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16439 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
16440 constraint (rot
!= 0 && rot
!= 90 && rot
!= 180 && rot
!= 270,
16441 _("immediate out of range"));
16443 if (et
.size
== 32 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
16444 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
16445 as_tsktsk (BAD_MVE_SRCDEST
);
16447 inst
.instruction
|= (et
.size
== 32) << 28;
16448 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16449 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16450 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16451 inst
.instruction
|= (rot
> 90) << 12;
16452 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16453 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16454 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16455 inst
.instruction
|= (rot
== 90 || rot
== 270);
16459 /* To handle the Low Overhead Loop instructions
16460 in Armv8.1-M Mainline and MVE. */
16464 unsigned long insn
= inst
.instruction
;
16466 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
16468 if (insn
== T_MNEM_lctp
)
16471 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN
);
16473 if (insn
== T_MNEM_wlstp
|| insn
== T_MNEM_dlstp
)
16475 struct neon_type_el et
16476 = neon_check_type (2, NS_RR
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
16477 inst
.instruction
|= neon_logbits (et
.size
) << 20;
16484 constraint (!inst
.operands
[0].present
,
16486 /* fall through. */
16489 if (!inst
.operands
[0].present
)
16490 inst
.instruction
|= 1 << 21;
16492 v8_1_loop_reloc (TRUE
);
16497 v8_1_loop_reloc (FALSE
);
16498 /* fall through. */
16501 constraint (inst
.operands
[1].isreg
!= 1, BAD_ARGS
);
16503 if (insn
== T_MNEM_wlstp
|| insn
== T_MNEM_dlstp
)
16504 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
16505 else if (inst
.operands
[1].reg
== REG_PC
)
16506 as_tsktsk (MVE_BAD_PC
);
16507 if (inst
.operands
[1].reg
== REG_SP
)
16508 as_tsktsk (MVE_BAD_SP
);
16510 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
16520 do_vfp_nsyn_cmp (void)
16522 enum neon_shape rs
;
16523 if (!inst
.operands
[0].isreg
)
16530 constraint (inst
.operands
[2].present
, BAD_SYNTAX
);
16531 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
),
16535 if (inst
.operands
[1].isreg
)
16537 rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
16538 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
16540 if (rs
== NS_FF
|| rs
== NS_HH
)
16542 NEON_ENCODE (SINGLE
, inst
);
16543 do_vfp_sp_monadic ();
16547 NEON_ENCODE (DOUBLE
, inst
);
16548 do_vfp_dp_rd_rm ();
16553 rs
= neon_select_shape (NS_HI
, NS_FI
, NS_DI
, NS_NULL
);
16554 neon_check_type (2, rs
, N_F_ALL
| N_KEY
| N_VFP
, N_EQK
);
16556 switch (inst
.instruction
& 0x0fffffff)
16559 inst
.instruction
+= N_MNEM_vcmpz
- N_MNEM_vcmp
;
16562 inst
.instruction
+= N_MNEM_vcmpez
- N_MNEM_vcmpe
;
16568 if (rs
== NS_FI
|| rs
== NS_HI
)
16570 NEON_ENCODE (SINGLE
, inst
);
16571 do_vfp_sp_compare_z ();
16575 NEON_ENCODE (DOUBLE
, inst
);
16579 do_vfp_cond_or_thumb ();
16581 /* ARMv8.2 fp16 instruction. */
16582 if (rs
== NS_HI
|| rs
== NS_HH
)
16583 do_scalar_fp16_v82_encode ();
16587 nsyn_insert_sp (void)
16589 inst
.operands
[1] = inst
.operands
[0];
16590 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
16591 inst
.operands
[0].reg
= REG_SP
;
16592 inst
.operands
[0].isreg
= 1;
16593 inst
.operands
[0].writeback
= 1;
16594 inst
.operands
[0].present
= 1;
16597 /* Fix up Neon data-processing instructions, ORing in the correct bits for
16598 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16601 neon_dp_fixup (struct arm_it
* insn
)
16603 unsigned int i
= insn
->instruction
;
16608 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16619 insn
->instruction
= i
;
16623 mve_encode_qqr (int size
, int U
, int fp
)
16625 if (inst
.operands
[2].reg
== REG_SP
)
16626 as_tsktsk (MVE_BAD_SP
);
16627 else if (inst
.operands
[2].reg
== REG_PC
)
16628 as_tsktsk (MVE_BAD_PC
);
16633 if (((unsigned)inst
.instruction
) == 0xd00)
16634 inst
.instruction
= 0xee300f40;
16636 else if (((unsigned)inst
.instruction
) == 0x200d00)
16637 inst
.instruction
= 0xee301f40;
16639 else if (((unsigned)inst
.instruction
) == 0x1000d10)
16640 inst
.instruction
= 0xee310e60;
16642 /* Setting size which is 1 for F16 and 0 for F32. */
16643 inst
.instruction
|= (size
== 16) << 28;
16648 if (((unsigned)inst
.instruction
) == 0x800)
16649 inst
.instruction
= 0xee010f40;
16651 else if (((unsigned)inst
.instruction
) == 0x1000800)
16652 inst
.instruction
= 0xee011f40;
16654 else if (((unsigned)inst
.instruction
) == 0)
16655 inst
.instruction
= 0xee000f40;
16657 else if (((unsigned)inst
.instruction
) == 0x200)
16658 inst
.instruction
= 0xee001f40;
16660 else if (((unsigned)inst
.instruction
) == 0x900)
16661 inst
.instruction
= 0xee010e40;
16663 else if (((unsigned)inst
.instruction
) == 0x910)
16664 inst
.instruction
= 0xee011e60;
16666 else if (((unsigned)inst
.instruction
) == 0x10)
16667 inst
.instruction
= 0xee000f60;
16669 else if (((unsigned)inst
.instruction
) == 0x210)
16670 inst
.instruction
= 0xee001f60;
16672 else if (((unsigned)inst
.instruction
) == 0x3000b10)
16673 inst
.instruction
= 0xee000e40;
16675 else if (((unsigned)inst
.instruction
) == 0x0000b00)
16676 inst
.instruction
= 0xee010e60;
16678 else if (((unsigned)inst
.instruction
) == 0x1000b00)
16679 inst
.instruction
= 0xfe010e60;
16682 inst
.instruction
|= U
<< 28;
16684 /* Setting bits for size. */
16685 inst
.instruction
|= neon_logbits (size
) << 20;
16687 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16688 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16689 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16690 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16691 inst
.instruction
|= inst
.operands
[2].reg
;
16696 mve_encode_rqq (unsigned bit28
, unsigned size
)
16698 inst
.instruction
|= bit28
<< 28;
16699 inst
.instruction
|= neon_logbits (size
) << 20;
16700 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16701 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16702 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16703 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16704 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16709 mve_encode_qqq (int ubit
, int size
)
16712 inst
.instruction
|= (ubit
!= 0) << 28;
16713 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16714 inst
.instruction
|= neon_logbits (size
) << 20;
16715 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16716 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16717 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16718 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16719 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16725 mve_encode_rq (unsigned bit28
, unsigned size
)
16727 inst
.instruction
|= bit28
<< 28;
16728 inst
.instruction
|= neon_logbits (size
) << 18;
16729 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16730 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16735 mve_encode_rrqq (unsigned U
, unsigned size
)
16737 constraint (inst
.operands
[3].reg
> 14, MVE_BAD_QREG
);
16739 inst
.instruction
|= U
<< 28;
16740 inst
.instruction
|= (inst
.operands
[1].reg
>> 1) << 20;
16741 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
) << 16;
16742 inst
.instruction
|= (size
== 32) << 16;
16743 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16744 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 7;
16745 inst
.instruction
|= inst
.operands
[3].reg
;
16749 /* Helper function for neon_three_same handling the operands. */
16751 neon_three_args (int isquad
)
16753 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16754 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16755 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16756 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16757 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16758 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16759 inst
.instruction
|= (isquad
!= 0) << 6;
16763 /* Encode insns with bit pattern:
16765 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16766 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16768 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16769 different meaning for some instruction. */
16772 neon_three_same (int isquad
, int ubit
, int size
)
16774 neon_three_args (isquad
);
16775 inst
.instruction
|= (ubit
!= 0) << 24;
16777 inst
.instruction
|= neon_logbits (size
) << 20;
16779 neon_dp_fixup (&inst
);
16782 /* Encode instructions of the form:
16784 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16785 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16787 Don't write size if SIZE == -1. */
16790 neon_two_same (int qbit
, int ubit
, int size
)
16792 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16793 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16794 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16795 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16796 inst
.instruction
|= (qbit
!= 0) << 6;
16797 inst
.instruction
|= (ubit
!= 0) << 24;
16800 inst
.instruction
|= neon_logbits (size
) << 18;
16802 neon_dp_fixup (&inst
);
16805 enum vfp_or_neon_is_neon_bits
16808 NEON_CHECK_ARCH
= 2,
16809 NEON_CHECK_ARCH8
= 4
16812 /* Call this function if an instruction which may have belonged to the VFP or
16813 Neon instruction sets, but turned out to be a Neon instruction (due to the
16814 operand types involved, etc.). We have to check and/or fix-up a couple of
16817 - Make sure the user hasn't attempted to make a Neon instruction
16819 - Alter the value in the condition code field if necessary.
16820 - Make sure that the arch supports Neon instructions.
16822 Which of these operations take place depends on bits from enum
16823 vfp_or_neon_is_neon_bits.
16825 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16826 current instruction's condition is COND_ALWAYS, the condition field is
16827 changed to inst.uncond_value. This is necessary because instructions shared
16828 between VFP and Neon may be conditional for the VFP variants only, and the
16829 unconditional Neon version must have, e.g., 0xF in the condition field. */
16832 vfp_or_neon_is_neon (unsigned check
)
16834 /* Conditions are always legal in Thumb mode (IT blocks). */
16835 if (!thumb_mode
&& (check
& NEON_CHECK_CC
))
16837 if (inst
.cond
!= COND_ALWAYS
)
16839 first_error (_(BAD_COND
));
16842 if (inst
.uncond_value
!= -1)
16843 inst
.instruction
|= inst
.uncond_value
<< 28;
16847 if (((check
& NEON_CHECK_ARCH
) && !mark_feature_used (&fpu_neon_ext_v1
))
16848 || ((check
& NEON_CHECK_ARCH8
)
16849 && !mark_feature_used (&fpu_neon_ext_armv8
)))
16851 first_error (_(BAD_FPU
));
16859 /* Return TRUE if the SIMD instruction is available for the current
16860 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16861 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16862 vfp_or_neon_is_neon for the NEON specific checks. */
16865 check_simd_pred_availability (int fp
, unsigned check
)
16867 if (inst
.cond
> COND_ALWAYS
)
16869 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16871 inst
.error
= BAD_FPU
;
16874 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16876 else if (inst
.cond
< COND_ALWAYS
)
16878 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16879 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16880 else if (vfp_or_neon_is_neon (check
) == FAIL
)
16885 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fp
? mve_fp_ext
: mve_ext
)
16886 && vfp_or_neon_is_neon (check
) == FAIL
)
16889 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16890 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16895 /* Neon instruction encoders, in approximate order of appearance. */
16898 do_neon_dyadic_i_su (void)
16900 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16903 enum neon_shape rs
;
16904 struct neon_type_el et
;
16905 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16906 rs
= neon_select_shape (NS_QQQ
, NS_QQR
, NS_NULL
);
16908 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16910 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_32
| N_KEY
);
16914 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16916 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
16920 do_neon_dyadic_i64_su (void)
16922 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
16924 enum neon_shape rs
;
16925 struct neon_type_el et
;
16926 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16928 rs
= neon_select_shape (NS_QQR
, NS_QQQ
, NS_NULL
);
16929 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
16933 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16934 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
16937 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
16939 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16943 neon_imm_shift (int write_ubit
, int uval
, int isquad
, struct neon_type_el et
,
16946 unsigned size
= et
.size
>> 3;
16947 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16948 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16949 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16950 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16951 inst
.instruction
|= (isquad
!= 0) << 6;
16952 inst
.instruction
|= immbits
<< 16;
16953 inst
.instruction
|= (size
>> 3) << 7;
16954 inst
.instruction
|= (size
& 0x7) << 19;
16956 inst
.instruction
|= (uval
!= 0) << 24;
16958 neon_dp_fixup (&inst
);
16964 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16967 if (!inst
.operands
[2].isreg
)
16969 enum neon_shape rs
;
16970 struct neon_type_el et
;
16971 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16973 rs
= neon_select_shape (NS_QQI
, NS_NULL
);
16974 et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_MVE
);
16978 rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
16979 et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_ALL
);
16981 int imm
= inst
.operands
[2].imm
;
16983 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
16984 _("immediate out of range for shift"));
16985 NEON_ENCODE (IMMED
, inst
);
16986 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
16990 enum neon_shape rs
;
16991 struct neon_type_el et
;
16992 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16994 rs
= neon_select_shape (NS_QQQ
, NS_QQR
, NS_NULL
);
16995 et
= neon_check_type (3, rs
, N_EQK
, N_SU_MVE
| N_KEY
, N_EQK
| N_EQK
);
16999 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17000 et
= neon_check_type (3, rs
, N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
17006 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
17007 _("invalid instruction shape"));
17008 if (inst
.operands
[2].reg
== REG_SP
)
17009 as_tsktsk (MVE_BAD_SP
);
17010 else if (inst
.operands
[2].reg
== REG_PC
)
17011 as_tsktsk (MVE_BAD_PC
);
17013 inst
.instruction
= 0xee311e60;
17014 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
17015 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17016 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17017 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17018 inst
.instruction
|= inst
.operands
[2].reg
;
17025 /* VSHL/VQSHL 3-register variants have syntax such as:
17027 whereas other 3-register operations encoded by neon_three_same have
17030 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
17031 operands[2].reg here. */
17032 tmp
= inst
.operands
[2].reg
;
17033 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
17034 inst
.operands
[1].reg
= tmp
;
17035 NEON_ENCODE (INTEGER
, inst
);
17036 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
17042 do_neon_qshl (void)
17044 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17047 if (!inst
.operands
[2].isreg
)
17049 enum neon_shape rs
;
17050 struct neon_type_el et
;
17051 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17053 rs
= neon_select_shape (NS_QQI
, NS_NULL
);
17054 et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_SU_MVE
);
17058 rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17059 et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
17061 int imm
= inst
.operands
[2].imm
;
17063 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
17064 _("immediate out of range for shift"));
17065 NEON_ENCODE (IMMED
, inst
);
17066 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
, imm
);
17070 enum neon_shape rs
;
17071 struct neon_type_el et
;
17073 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17075 rs
= neon_select_shape (NS_QQQ
, NS_QQR
, NS_NULL
);
17076 et
= neon_check_type (3, rs
, N_EQK
, N_SU_MVE
| N_KEY
, N_EQK
| N_EQK
);
17080 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17081 et
= neon_check_type (3, rs
, N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
17086 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
17087 _("invalid instruction shape"));
17088 if (inst
.operands
[2].reg
== REG_SP
)
17089 as_tsktsk (MVE_BAD_SP
);
17090 else if (inst
.operands
[2].reg
== REG_PC
)
17091 as_tsktsk (MVE_BAD_PC
);
17093 inst
.instruction
= 0xee311ee0;
17094 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
17095 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17096 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17097 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17098 inst
.instruction
|= inst
.operands
[2].reg
;
17105 /* See note in do_neon_shl. */
17106 tmp
= inst
.operands
[2].reg
;
17107 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
17108 inst
.operands
[1].reg
= tmp
;
17109 NEON_ENCODE (INTEGER
, inst
);
17110 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
17116 do_neon_rshl (void)
17118 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17121 enum neon_shape rs
;
17122 struct neon_type_el et
;
17123 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17125 rs
= neon_select_shape (NS_QQR
, NS_QQQ
, NS_NULL
);
17126 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17130 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17131 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
17138 if (inst
.operands
[2].reg
== REG_PC
)
17139 as_tsktsk (MVE_BAD_PC
);
17140 else if (inst
.operands
[2].reg
== REG_SP
)
17141 as_tsktsk (MVE_BAD_SP
);
17143 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
17144 _("invalid instruction shape"));
17146 if (inst
.instruction
== 0x0000510)
17147 /* We are dealing with vqrshl. */
17148 inst
.instruction
= 0xee331ee0;
17150 /* We are dealing with vrshl. */
17151 inst
.instruction
= 0xee331e60;
17153 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
17154 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17155 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17156 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17157 inst
.instruction
|= inst
.operands
[2].reg
;
17162 tmp
= inst
.operands
[2].reg
;
17163 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
17164 inst
.operands
[1].reg
= tmp
;
17165 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
17170 neon_cmode_for_logic_imm (unsigned immediate
, unsigned *immbits
, int size
)
17172 /* Handle .I8 pseudo-instructions. */
17175 /* Unfortunately, this will make everything apart from zero out-of-range.
17176 FIXME is this the intended semantics? There doesn't seem much point in
17177 accepting .I8 if so. */
17178 immediate
|= immediate
<< 8;
17184 if (immediate
== (immediate
& 0x000000ff))
17186 *immbits
= immediate
;
17189 else if (immediate
== (immediate
& 0x0000ff00))
17191 *immbits
= immediate
>> 8;
17194 else if (immediate
== (immediate
& 0x00ff0000))
17196 *immbits
= immediate
>> 16;
17199 else if (immediate
== (immediate
& 0xff000000))
17201 *immbits
= immediate
>> 24;
17204 if ((immediate
& 0xffff) != (immediate
>> 16))
17205 goto bad_immediate
;
17206 immediate
&= 0xffff;
17209 if (immediate
== (immediate
& 0x000000ff))
17211 *immbits
= immediate
;
17214 else if (immediate
== (immediate
& 0x0000ff00))
17216 *immbits
= immediate
>> 8;
17221 first_error (_("immediate value out of range"));
17226 do_neon_logic (void)
17228 if (inst
.operands
[2].present
&& inst
.operands
[2].isreg
)
17230 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17232 && !check_simd_pred_availability (FALSE
,
17233 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17235 else if (rs
!= NS_QQQ
17236 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
17237 first_error (BAD_FPU
);
17239 neon_check_type (3, rs
, N_IGNORE_TYPE
);
17240 /* U bit and size field were set as part of the bitmask. */
17241 NEON_ENCODE (INTEGER
, inst
);
17242 neon_three_same (neon_quad (rs
), 0, -1);
17246 const int three_ops_form
= (inst
.operands
[2].present
17247 && !inst
.operands
[2].isreg
);
17248 const int immoperand
= (three_ops_form
? 2 : 1);
17249 enum neon_shape rs
= (three_ops_form
17250 ? neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
)
17251 : neon_select_shape (NS_DI
, NS_QI
, NS_NULL
));
17252 /* Because neon_select_shape makes the second operand a copy of the first
17253 if the second operand is not present. */
17255 && !check_simd_pred_availability (FALSE
,
17256 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17258 else if (rs
!= NS_QQI
17259 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
17260 first_error (BAD_FPU
);
17262 struct neon_type_el et
;
17263 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17264 et
= neon_check_type (2, rs
, N_I32
| N_I16
| N_KEY
, N_EQK
);
17266 et
= neon_check_type (2, rs
, N_I8
| N_I16
| N_I32
| N_I64
| N_F32
17269 if (et
.type
== NT_invtype
)
17271 enum neon_opc opcode
= (enum neon_opc
) inst
.instruction
& 0x0fffffff;
17276 if (three_ops_form
)
17277 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
17278 _("first and second operands shall be the same register"));
17280 NEON_ENCODE (IMMED
, inst
);
17282 immbits
= inst
.operands
[immoperand
].imm
;
17285 /* .i64 is a pseudo-op, so the immediate must be a repeating
17287 if (immbits
!= (inst
.operands
[immoperand
].regisimm
?
17288 inst
.operands
[immoperand
].reg
: 0))
17290 /* Set immbits to an invalid constant. */
17291 immbits
= 0xdeadbeef;
17298 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
17302 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
17306 /* Pseudo-instruction for VBIC. */
17307 neon_invert_size (&immbits
, 0, et
.size
);
17308 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
17312 /* Pseudo-instruction for VORR. */
17313 neon_invert_size (&immbits
, 0, et
.size
);
17314 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
17324 inst
.instruction
|= neon_quad (rs
) << 6;
17325 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17326 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17327 inst
.instruction
|= cmode
<< 8;
17328 neon_write_immbits (immbits
);
17330 neon_dp_fixup (&inst
);
17335 do_neon_bitfield (void)
17337 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17338 neon_check_type (3, rs
, N_IGNORE_TYPE
);
17339 neon_three_same (neon_quad (rs
), 0, -1);
17343 neon_dyadic_misc (enum neon_el_type ubit_meaning
, unsigned types
,
17346 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
17347 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
| destbits
, N_EQK
,
17349 if (et
.type
== NT_float
)
17351 NEON_ENCODE (FLOAT
, inst
);
17353 mve_encode_qqr (et
.size
, 0, 1);
17355 neon_three_same (neon_quad (rs
), 0, et
.size
== 16 ? (int) et
.size
: -1);
17359 NEON_ENCODE (INTEGER
, inst
);
17361 mve_encode_qqr (et
.size
, et
.type
== ubit_meaning
, 0);
17363 neon_three_same (neon_quad (rs
), et
.type
== ubit_meaning
, et
.size
);
17369 do_neon_dyadic_if_su_d (void)
17371 /* This version only allow D registers, but that constraint is enforced during
17372 operand parsing so we don't need to do anything extra here. */
17373 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
17377 do_neon_dyadic_if_i_d (void)
17379 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17380 affected if we specify unsigned args. */
17381 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
17385 do_mve_vstr_vldr_QI (int size
, int elsize
, int load
)
17387 constraint (size
< 32, BAD_ADDR_MODE
);
17388 constraint (size
!= elsize
, BAD_EL_TYPE
);
17389 constraint (inst
.operands
[1].immisreg
, BAD_ADDR_MODE
);
17390 constraint (!inst
.operands
[1].preind
, BAD_ADDR_MODE
);
17391 constraint (load
&& inst
.operands
[0].reg
== inst
.operands
[1].reg
,
17392 _("destination register and offset register may not be the"
17395 int imm
= inst
.relocs
[0].exp
.X_add_number
;
17402 constraint ((imm
% (size
/ 8) != 0)
17403 || imm
> (0x7f << neon_logbits (size
)),
17404 (size
== 32) ? _("immediate must be a multiple of 4 in the"
17405 " range of +/-[0,508]")
17406 : _("immediate must be a multiple of 8 in the"
17407 " range of +/-[0,1016]"));
17408 inst
.instruction
|= 0x11 << 24;
17409 inst
.instruction
|= add
<< 23;
17410 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17411 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
17412 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
17413 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17414 inst
.instruction
|= 1 << 12;
17415 inst
.instruction
|= (size
== 64) << 8;
17416 inst
.instruction
&= 0xffffff00;
17417 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
17418 inst
.instruction
|= imm
>> neon_logbits (size
);
17422 do_mve_vstr_vldr_RQ (int size
, int elsize
, int load
)
17424 unsigned os
= inst
.operands
[1].imm
>> 5;
17425 unsigned type
= inst
.vectype
.el
[0].type
;
17426 constraint (os
!= 0 && size
== 8,
17427 _("can not shift offsets when accessing less than half-word"));
17428 constraint (os
&& os
!= neon_logbits (size
),
17429 _("shift immediate must be 1, 2 or 3 for half-word, word"
17430 " or double-word accesses respectively"));
17431 if (inst
.operands
[1].reg
== REG_PC
)
17432 as_tsktsk (MVE_BAD_PC
);
17437 constraint (elsize
>= 64, BAD_EL_TYPE
);
17440 constraint (elsize
< 16 || elsize
>= 64, BAD_EL_TYPE
);
17444 constraint (elsize
!= size
, BAD_EL_TYPE
);
17449 constraint (inst
.operands
[1].writeback
|| !inst
.operands
[1].preind
,
17453 constraint (inst
.operands
[0].reg
== (inst
.operands
[1].imm
& 0x1f),
17454 _("destination register and offset register may not be"
17456 constraint (size
== elsize
&& type
== NT_signed
, BAD_EL_TYPE
);
17457 constraint (size
!= elsize
&& type
!= NT_unsigned
&& type
!= NT_signed
,
17459 inst
.instruction
|= ((size
== elsize
) || (type
== NT_unsigned
)) << 28;
17463 constraint (type
!= NT_untyped
, BAD_EL_TYPE
);
17466 inst
.instruction
|= 1 << 23;
17467 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17468 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
17469 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17470 inst
.instruction
|= neon_logbits (elsize
) << 7;
17471 inst
.instruction
|= HI1 (inst
.operands
[1].imm
) << 5;
17472 inst
.instruction
|= LOW4 (inst
.operands
[1].imm
);
17473 inst
.instruction
|= !!os
;
17477 do_mve_vstr_vldr_RI (int size
, int elsize
, int load
)
17479 enum neon_el_type type
= inst
.vectype
.el
[0].type
;
17481 constraint (size
>= 64, BAD_ADDR_MODE
);
17485 constraint (elsize
< 16 || elsize
>= 64, BAD_EL_TYPE
);
17488 constraint (elsize
!= size
, BAD_EL_TYPE
);
17495 constraint (elsize
!= size
&& type
!= NT_unsigned
17496 && type
!= NT_signed
, BAD_EL_TYPE
);
17500 constraint (elsize
!= size
&& type
!= NT_untyped
, BAD_EL_TYPE
);
17503 int imm
= inst
.relocs
[0].exp
.X_add_number
;
17511 if ((imm
% (size
/ 8) != 0) || imm
> (0x7f << neon_logbits (size
)))
17516 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17519 constraint (1, _("immediate must be a multiple of 2 in the"
17520 " range of +/-[0,254]"));
17523 constraint (1, _("immediate must be a multiple of 4 in the"
17524 " range of +/-[0,508]"));
17529 if (size
!= elsize
)
17531 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
17532 constraint (inst
.operands
[0].reg
> 14,
17533 _("MVE vector register in the range [Q0..Q7] expected"));
17534 inst
.instruction
|= (load
&& type
== NT_unsigned
) << 28;
17535 inst
.instruction
|= (size
== 16) << 19;
17536 inst
.instruction
|= neon_logbits (elsize
) << 7;
17540 if (inst
.operands
[1].reg
== REG_PC
)
17541 as_tsktsk (MVE_BAD_PC
);
17542 else if (inst
.operands
[1].reg
== REG_SP
&& inst
.operands
[1].writeback
)
17543 as_tsktsk (MVE_BAD_SP
);
17544 inst
.instruction
|= 1 << 12;
17545 inst
.instruction
|= neon_logbits (size
) << 7;
17547 inst
.instruction
|= inst
.operands
[1].preind
<< 24;
17548 inst
.instruction
|= add
<< 23;
17549 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17550 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
17551 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
17552 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17553 inst
.instruction
&= 0xffffff80;
17554 inst
.instruction
|= imm
>> neon_logbits (size
);
17559 do_mve_vstr_vldr (void)
17564 if (inst
.cond
> COND_ALWAYS
)
17565 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17567 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17569 switch (inst
.instruction
)
17576 /* fall through. */
17582 /* fall through. */
17588 /* fall through. */
17594 /* fall through. */
17599 unsigned elsize
= inst
.vectype
.el
[0].size
;
17601 if (inst
.operands
[1].isquad
)
17603 /* We are dealing with [Q, imm]{!} cases. */
17604 do_mve_vstr_vldr_QI (size
, elsize
, load
);
17608 if (inst
.operands
[1].immisreg
== 2)
17610 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17611 do_mve_vstr_vldr_RQ (size
, elsize
, load
);
17613 else if (!inst
.operands
[1].immisreg
)
17615 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17616 do_mve_vstr_vldr_RI (size
, elsize
, load
);
17619 constraint (1, BAD_ADDR_MODE
);
17626 do_mve_vst_vld (void)
17628 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17631 constraint (!inst
.operands
[1].preind
|| inst
.relocs
[0].exp
.X_add_symbol
!= 0
17632 || inst
.relocs
[0].exp
.X_add_number
!= 0
17633 || inst
.operands
[1].immisreg
!= 0,
17635 constraint (inst
.vectype
.el
[0].size
> 32, BAD_EL_TYPE
);
17636 if (inst
.operands
[1].reg
== REG_PC
)
17637 as_tsktsk (MVE_BAD_PC
);
17638 else if (inst
.operands
[1].reg
== REG_SP
&& inst
.operands
[1].writeback
)
17639 as_tsktsk (MVE_BAD_SP
);
17642 /* These instructions are one of the "exceptions" mentioned in
17643 handle_pred_state. They are MVE instructions that are not VPT compatible
17644 and do not accept a VPT code, thus appending such a code is a syntax
17646 if (inst
.cond
> COND_ALWAYS
)
17647 first_error (BAD_SYNTAX
);
17648 /* If we append a scalar condition code we can set this to
17649 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17650 else if (inst
.cond
< COND_ALWAYS
)
17651 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17653 inst
.pred_insn_type
= MVE_UNPREDICABLE_INSN
;
17655 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17656 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
17657 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
17658 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17659 inst
.instruction
|= neon_logbits (inst
.vectype
.el
[0].size
) << 7;
17664 do_mve_vaddlv (void)
17666 enum neon_shape rs
= neon_select_shape (NS_RRQ
, NS_NULL
);
17667 struct neon_type_el et
17668 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S32
| N_U32
| N_KEY
);
17670 if (et
.type
== NT_invtype
)
17671 first_error (BAD_EL_TYPE
);
17673 if (inst
.cond
> COND_ALWAYS
)
17674 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17676 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17678 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
17680 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
17681 inst
.instruction
|= inst
.operands
[1].reg
<< 19;
17682 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
17683 inst
.instruction
|= inst
.operands
[2].reg
;
17688 do_neon_dyadic_if_su (void)
17690 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
17691 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17694 constraint ((inst
.instruction
== ((unsigned) N_MNEM_vmax
)
17695 || inst
.instruction
== ((unsigned) N_MNEM_vmin
))
17696 && et
.type
== NT_float
17697 && !ARM_CPU_HAS_FEATURE (cpu_variant
,fpu_neon_ext_v1
), BAD_FPU
);
17699 if (!check_simd_pred_availability (et
.type
== NT_float
,
17700 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17703 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
17707 do_neon_addsub_if_i (void)
17709 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
17710 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub
) == SUCCESS
)
17713 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
17714 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
,
17715 N_EQK
, N_IF_32
| N_I64
| N_KEY
);
17717 constraint (rs
== NS_QQR
&& et
.size
== 64, BAD_FPU
);
17718 /* If we are parsing Q registers and the element types match MVE, which NEON
17719 also supports, then we must check whether this is an instruction that can
17720 be used by both MVE/NEON. This distinction can be made based on whether
17721 they are predicated or not. */
17722 if ((rs
== NS_QQQ
|| rs
== NS_QQR
) && et
.size
!= 64)
17724 if (!check_simd_pred_availability (et
.type
== NT_float
,
17725 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17730 /* If they are either in a D register or are using an unsupported. */
17732 && vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
17736 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17737 affected if we specify unsigned args. */
17738 neon_dyadic_misc (NT_untyped
, N_IF_32
| N_I64
, 0);
17741 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17743 V<op> A,B (A is operand 0, B is operand 2)
17748 so handle that case specially. */
17751 neon_exchange_operands (void)
17753 if (inst
.operands
[1].present
)
17755 void *scratch
= xmalloc (sizeof (inst
.operands
[0]));
17757 /* Swap operands[1] and operands[2]. */
17758 memcpy (scratch
, &inst
.operands
[1], sizeof (inst
.operands
[0]));
17759 inst
.operands
[1] = inst
.operands
[2];
17760 memcpy (&inst
.operands
[2], scratch
, sizeof (inst
.operands
[0]));
17765 inst
.operands
[1] = inst
.operands
[2];
17766 inst
.operands
[2] = inst
.operands
[0];
17771 neon_compare (unsigned regtypes
, unsigned immtypes
, int invert
)
17773 if (inst
.operands
[2].isreg
)
17776 neon_exchange_operands ();
17777 neon_dyadic_misc (NT_unsigned
, regtypes
, N_SIZ
);
17781 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17782 struct neon_type_el et
= neon_check_type (2, rs
,
17783 N_EQK
| N_SIZ
, immtypes
| N_KEY
);
17785 NEON_ENCODE (IMMED
, inst
);
17786 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17787 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17788 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17789 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17790 inst
.instruction
|= neon_quad (rs
) << 6;
17791 inst
.instruction
|= (et
.type
== NT_float
) << 10;
17792 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17794 neon_dp_fixup (&inst
);
17801 neon_compare (N_SUF_32
, N_S_32
| N_F_16_32
, FALSE
);
17805 do_neon_cmp_inv (void)
17807 neon_compare (N_SUF_32
, N_S_32
| N_F_16_32
, TRUE
);
17813 neon_compare (N_IF_32
, N_IF_32
, FALSE
);
17816 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17817 scalars, which are encoded in 5 bits, M : Rm.
17818 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17819 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17822 Dot Product instructions are similar to multiply instructions except elsize
17823 should always be 32.
17825 This function translates SCALAR, which is GAS's internal encoding of indexed
17826 scalar register, to raw encoding. There is also register and index range
17827 check based on ELSIZE. */
17830 neon_scalar_for_mul (unsigned scalar
, unsigned elsize
)
17832 unsigned regno
= NEON_SCALAR_REG (scalar
);
17833 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
17838 if (regno
> 7 || elno
> 3)
17840 return regno
| (elno
<< 3);
17843 if (regno
> 15 || elno
> 1)
17845 return regno
| (elno
<< 4);
17849 first_error (_("scalar out of range for multiply instruction"));
17855 /* Encode multiply / multiply-accumulate scalar instructions. */
17858 neon_mul_mac (struct neon_type_el et
, int ubit
)
17862 /* Give a more helpful error message if we have an invalid type. */
17863 if (et
.type
== NT_invtype
)
17866 scalar
= neon_scalar_for_mul (inst
.operands
[2].reg
, et
.size
);
17867 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17868 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17869 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
17870 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
17871 inst
.instruction
|= LOW4 (scalar
);
17872 inst
.instruction
|= HI1 (scalar
) << 5;
17873 inst
.instruction
|= (et
.type
== NT_float
) << 8;
17874 inst
.instruction
|= neon_logbits (et
.size
) << 20;
17875 inst
.instruction
|= (ubit
!= 0) << 24;
17877 neon_dp_fixup (&inst
);
17881 do_neon_mac_maybe_scalar (void)
17883 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls
) == SUCCESS
)
17886 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17889 if (inst
.operands
[2].isscalar
)
17891 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17892 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
17893 struct neon_type_el et
= neon_check_type (3, rs
,
17894 N_EQK
, N_EQK
, N_I16
| N_I32
| N_F_16_32
| N_KEY
);
17895 NEON_ENCODE (SCALAR
, inst
);
17896 neon_mul_mac (et
, neon_quad (rs
));
17898 else if (!inst
.operands
[2].isvec
)
17900 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17902 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
17903 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17905 neon_dyadic_misc (NT_unsigned
, N_SU_MVE
, 0);
17909 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17910 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17911 affected if we specify unsigned args. */
17912 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
17917 do_bfloat_vfma (void)
17919 constraint (!mark_feature_used (&fpu_neon_ext_armv8
), _(BAD_FPU
));
17920 constraint (!mark_feature_used (&arm_ext_bf16
), _(BAD_BF16
));
17921 enum neon_shape rs
;
17924 if (inst
.instruction
!= B_MNEM_vfmab
)
17927 inst
.instruction
= B_MNEM_vfmat
;
17930 if (inst
.operands
[2].isscalar
)
17932 rs
= neon_select_shape (NS_QQS
, NS_NULL
);
17933 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_BF16
| N_KEY
);
17935 inst
.instruction
|= (1 << 25);
17936 int index
= inst
.operands
[2].reg
& 0xf;
17937 constraint (!(index
< 4), _("index must be in the range 0 to 3"));
17938 inst
.operands
[2].reg
>>= 4;
17939 constraint (!(inst
.operands
[2].reg
< 8),
17940 _("indexed register must be less than 8"));
17941 neon_three_args (t_bit
);
17942 inst
.instruction
|= ((index
& 1) << 3);
17943 inst
.instruction
|= ((index
& 2) << 4);
17947 rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
17948 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_BF16
| N_KEY
);
17949 neon_three_args (t_bit
);
17955 do_neon_fmac (void)
17957 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_fma
)
17958 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms
) == SUCCESS
)
17961 if (!check_simd_pred_availability (TRUE
, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17964 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
17966 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_QQR
, NS_NULL
);
17967 struct neon_type_el et
= neon_check_type (3, rs
, N_F_MVE
| N_KEY
, N_EQK
,
17973 if (inst
.operands
[2].reg
== REG_SP
)
17974 as_tsktsk (MVE_BAD_SP
);
17975 else if (inst
.operands
[2].reg
== REG_PC
)
17976 as_tsktsk (MVE_BAD_PC
);
17978 inst
.instruction
= 0xee310e40;
17979 inst
.instruction
|= (et
.size
== 16) << 28;
17980 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17981 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
17982 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17983 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 6;
17984 inst
.instruction
|= inst
.operands
[2].reg
;
17991 constraint (!inst
.operands
[2].isvec
, BAD_FPU
);
17994 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
18000 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_bf16
) &&
18001 inst
.cond
== COND_ALWAYS
)
18003 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
18004 inst
.instruction
= N_MNEM_vfma
;
18005 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18007 return do_neon_fmac();
18018 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
18019 struct neon_type_el et
= neon_check_type (3, rs
,
18020 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18021 neon_three_same (neon_quad (rs
), 0, et
.size
);
18024 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
18025 same types as the MAC equivalents. The polynomial type for this instruction
18026 is encoded the same as the integer type. */
18031 if (try_vfp_nsyn (3, do_vfp_nsyn_mul
) == SUCCESS
)
18034 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18037 if (inst
.operands
[2].isscalar
)
18039 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
18040 do_neon_mac_maybe_scalar ();
18044 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18046 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_QQQ
, NS_NULL
);
18047 struct neon_type_el et
18048 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_I_MVE
| N_F_MVE
| N_KEY
);
18049 if (et
.type
== NT_float
)
18050 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
18053 neon_dyadic_misc (NT_float
, N_I_MVE
| N_F_MVE
, 0);
18057 constraint (!inst
.operands
[2].isvec
, BAD_FPU
);
18058 neon_dyadic_misc (NT_poly
,
18059 N_I8
| N_I16
| N_I32
| N_F16
| N_F32
| N_P8
, 0);
18065 do_neon_qdmulh (void)
18067 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
18070 if (inst
.operands
[2].isscalar
)
18072 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
18073 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
18074 struct neon_type_el et
= neon_check_type (3, rs
,
18075 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
18076 NEON_ENCODE (SCALAR
, inst
);
18077 neon_mul_mac (et
, neon_quad (rs
));
18081 enum neon_shape rs
;
18082 struct neon_type_el et
;
18083 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18085 rs
= neon_select_shape (NS_QQR
, NS_QQQ
, NS_NULL
);
18086 et
= neon_check_type (3, rs
,
18087 N_EQK
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
18091 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
18092 et
= neon_check_type (3, rs
,
18093 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
18096 NEON_ENCODE (INTEGER
, inst
);
18098 mve_encode_qqr (et
.size
, 0, 0);
18100 /* The U bit (rounding) comes from bit mask. */
18101 neon_three_same (neon_quad (rs
), 0, et
.size
);
18106 do_mve_vaddv (void)
18108 enum neon_shape rs
= neon_select_shape (NS_RQ
, NS_NULL
);
18109 struct neon_type_el et
18110 = neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
18112 if (et
.type
== NT_invtype
)
18113 first_error (BAD_EL_TYPE
);
18115 if (inst
.cond
> COND_ALWAYS
)
18116 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18118 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18120 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
18122 mve_encode_rq (et
.type
== NT_unsigned
, et
.size
);
18126 do_mve_vhcadd (void)
18128 enum neon_shape rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
18129 struct neon_type_el et
18130 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
18132 if (inst
.cond
> COND_ALWAYS
)
18133 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18135 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18137 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
18138 constraint (rot
!= 90 && rot
!= 270, _("immediate out of range"));
18140 if (et
.size
== 32 && inst
.operands
[0].reg
== inst
.operands
[2].reg
)
18141 as_tsktsk (_("Warning: 32-bit element size and same first and third "
18142 "operand makes instruction UNPREDICTABLE"));
18144 mve_encode_qqq (0, et
.size
);
18145 inst
.instruction
|= (rot
== 270) << 12;
18150 do_mve_vqdmull (void)
18152 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_QQR
, NS_NULL
);
18153 struct neon_type_el et
18154 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
18157 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
18158 || (rs
== NS_QQQ
&& inst
.operands
[0].reg
== inst
.operands
[2].reg
)))
18159 as_tsktsk (BAD_MVE_SRCDEST
);
18161 if (inst
.cond
> COND_ALWAYS
)
18162 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18164 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18168 mve_encode_qqq (et
.size
== 32, 64);
18169 inst
.instruction
|= 1;
18173 mve_encode_qqr (64, et
.size
== 32, 0);
18174 inst
.instruction
|= 0x3 << 5;
18181 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
18182 struct neon_type_el et
18183 = neon_check_type (3, rs
, N_KEY
| N_I32
, N_EQK
, N_EQK
);
18185 if (et
.type
== NT_invtype
)
18186 first_error (BAD_EL_TYPE
);
18188 if (inst
.cond
> COND_ALWAYS
)
18189 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18191 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18193 mve_encode_qqq (0, 64);
18197 do_mve_vbrsr (void)
18199 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
18200 struct neon_type_el et
18201 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18203 if (inst
.cond
> COND_ALWAYS
)
18204 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18206 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18208 mve_encode_qqr (et
.size
, 0, 0);
18214 neon_check_type (3, NS_QQQ
, N_EQK
, N_EQK
, N_I32
| N_KEY
);
18216 if (inst
.cond
> COND_ALWAYS
)
18217 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18219 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18221 mve_encode_qqq (1, 64);
18225 do_mve_vmulh (void)
18227 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
18228 struct neon_type_el et
18229 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
18231 if (inst
.cond
> COND_ALWAYS
)
18232 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18234 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18236 mve_encode_qqq (et
.type
== NT_unsigned
, et
.size
);
18240 do_mve_vqdmlah (void)
18242 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
18243 struct neon_type_el et
18244 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S_32
| N_KEY
);
18246 if (inst
.cond
> COND_ALWAYS
)
18247 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18249 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18251 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
18255 do_mve_vqdmladh (void)
18257 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
18258 struct neon_type_el et
18259 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
18261 if (inst
.cond
> COND_ALWAYS
)
18262 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18264 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18266 mve_encode_qqq (0, et
.size
);
18271 do_mve_vmull (void)
18274 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_DDS
,
18275 NS_QQS
, NS_QQQ
, NS_QQR
, NS_NULL
);
18276 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
18277 && inst
.cond
== COND_ALWAYS
18278 && ((unsigned)inst
.instruction
) == M_MNEM_vmullt
)
18283 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
18284 N_SUF_32
| N_F64
| N_P8
18285 | N_P16
| N_I_MVE
| N_KEY
);
18286 if (((et
.type
== NT_poly
) && et
.size
== 8
18287 && ARM_CPU_IS_ANY (cpu_variant
))
18288 || (et
.type
== NT_integer
) || (et
.type
== NT_float
))
18295 constraint (rs
!= NS_QQQ
, BAD_FPU
);
18296 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
18297 N_SU_32
| N_P8
| N_P16
| N_KEY
);
18299 /* We are dealing with MVE's vmullt. */
18301 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
18302 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
18303 as_tsktsk (BAD_MVE_SRCDEST
);
18305 if (inst
.cond
> COND_ALWAYS
)
18306 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18308 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18310 if (et
.type
== NT_poly
)
18311 mve_encode_qqq (neon_logbits (et
.size
), 64);
18313 mve_encode_qqq (et
.type
== NT_unsigned
, et
.size
);
18318 inst
.instruction
= N_MNEM_vmul
;
18321 inst
.pred_insn_type
= INSIDE_IT_INSN
;
18326 do_mve_vabav (void)
18328 enum neon_shape rs
= neon_select_shape (NS_RQQ
, NS_NULL
);
18333 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18336 struct neon_type_el et
= neon_check_type (2, NS_NULL
, N_EQK
, N_KEY
| N_S8
18337 | N_S16
| N_S32
| N_U8
| N_U16
18340 if (inst
.cond
> COND_ALWAYS
)
18341 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18343 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18345 mve_encode_rqq (et
.type
== NT_unsigned
, et
.size
);
18349 do_mve_vmladav (void)
18351 enum neon_shape rs
= neon_select_shape (NS_RQQ
, NS_NULL
);
18352 struct neon_type_el et
= neon_check_type (3, rs
,
18353 N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
18355 if (et
.type
== NT_unsigned
18356 && (inst
.instruction
== M_MNEM_vmladavx
18357 || inst
.instruction
== M_MNEM_vmladavax
18358 || inst
.instruction
== M_MNEM_vmlsdav
18359 || inst
.instruction
== M_MNEM_vmlsdava
18360 || inst
.instruction
== M_MNEM_vmlsdavx
18361 || inst
.instruction
== M_MNEM_vmlsdavax
))
18362 first_error (BAD_SIMD_TYPE
);
18364 constraint (inst
.operands
[2].reg
> 14,
18365 _("MVE vector register in the range [Q0..Q7] expected"));
18367 if (inst
.cond
> COND_ALWAYS
)
18368 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18370 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18372 if (inst
.instruction
== M_MNEM_vmlsdav
18373 || inst
.instruction
== M_MNEM_vmlsdava
18374 || inst
.instruction
== M_MNEM_vmlsdavx
18375 || inst
.instruction
== M_MNEM_vmlsdavax
)
18376 inst
.instruction
|= (et
.size
== 8) << 28;
18378 inst
.instruction
|= (et
.size
== 8) << 8;
18380 mve_encode_rqq (et
.type
== NT_unsigned
, 64);
18381 inst
.instruction
|= (et
.size
== 32) << 16;
18385 do_mve_vmlaldav (void)
18387 enum neon_shape rs
= neon_select_shape (NS_RRQQ
, NS_NULL
);
18388 struct neon_type_el et
18389 = neon_check_type (4, rs
, N_EQK
, N_EQK
, N_EQK
,
18390 N_S16
| N_S32
| N_U16
| N_U32
| N_KEY
);
18392 if (et
.type
== NT_unsigned
18393 && (inst
.instruction
== M_MNEM_vmlsldav
18394 || inst
.instruction
== M_MNEM_vmlsldava
18395 || inst
.instruction
== M_MNEM_vmlsldavx
18396 || inst
.instruction
== M_MNEM_vmlsldavax
))
18397 first_error (BAD_SIMD_TYPE
);
18399 if (inst
.cond
> COND_ALWAYS
)
18400 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18402 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18404 mve_encode_rrqq (et
.type
== NT_unsigned
, et
.size
);
18408 do_mve_vrmlaldavh (void)
18410 struct neon_type_el et
;
18411 if (inst
.instruction
== M_MNEM_vrmlsldavh
18412 || inst
.instruction
== M_MNEM_vrmlsldavha
18413 || inst
.instruction
== M_MNEM_vrmlsldavhx
18414 || inst
.instruction
== M_MNEM_vrmlsldavhax
)
18416 et
= neon_check_type (4, NS_RRQQ
, N_EQK
, N_EQK
, N_EQK
, N_S32
| N_KEY
);
18417 if (inst
.operands
[1].reg
== REG_SP
)
18418 as_tsktsk (MVE_BAD_SP
);
18422 if (inst
.instruction
== M_MNEM_vrmlaldavhx
18423 || inst
.instruction
== M_MNEM_vrmlaldavhax
)
18424 et
= neon_check_type (4, NS_RRQQ
, N_EQK
, N_EQK
, N_EQK
, N_S32
| N_KEY
);
18426 et
= neon_check_type (4, NS_RRQQ
, N_EQK
, N_EQK
, N_EQK
,
18427 N_U32
| N_S32
| N_KEY
);
18428 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
18429 with vmax/min instructions, making the use of SP in assembly really
18430 nonsensical, so instead of issuing a warning like we do for other uses
18431 of SP for the odd register operand we error out. */
18432 constraint (inst
.operands
[1].reg
== REG_SP
, BAD_SP
);
18435 /* Make sure we still check the second operand is an odd one and that PC is
18436 disallowed. This because we are parsing for any GPR operand, to be able
18437 to distinguish between giving a warning or an error for SP as described
18439 constraint ((inst
.operands
[1].reg
% 2) != 1, BAD_EVEN
);
18440 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
18442 if (inst
.cond
> COND_ALWAYS
)
18443 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18445 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18447 mve_encode_rrqq (et
.type
== NT_unsigned
, 0);
18452 do_mve_vmaxnmv (void)
18454 enum neon_shape rs
= neon_select_shape (NS_RQ
, NS_NULL
);
18455 struct neon_type_el et
18456 = neon_check_type (2, rs
, N_EQK
, N_F_MVE
| N_KEY
);
18458 if (inst
.cond
> COND_ALWAYS
)
18459 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18461 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18463 if (inst
.operands
[0].reg
== REG_SP
)
18464 as_tsktsk (MVE_BAD_SP
);
18465 else if (inst
.operands
[0].reg
== REG_PC
)
18466 as_tsktsk (MVE_BAD_PC
);
18468 mve_encode_rq (et
.size
== 16, 64);
18472 do_mve_vmaxv (void)
18474 enum neon_shape rs
= neon_select_shape (NS_RQ
, NS_NULL
);
18475 struct neon_type_el et
;
18477 if (inst
.instruction
== M_MNEM_vmaxv
|| inst
.instruction
== M_MNEM_vminv
)
18478 et
= neon_check_type (2, rs
, N_EQK
, N_SU_MVE
| N_KEY
);
18480 et
= neon_check_type (2, rs
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
18482 if (inst
.cond
> COND_ALWAYS
)
18483 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18485 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18487 if (inst
.operands
[0].reg
== REG_SP
)
18488 as_tsktsk (MVE_BAD_SP
);
18489 else if (inst
.operands
[0].reg
== REG_PC
)
18490 as_tsktsk (MVE_BAD_PC
);
18492 mve_encode_rq (et
.type
== NT_unsigned
, et
.size
);
18497 do_neon_qrdmlah (void)
18499 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
18501 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18503 /* Check we're on the correct architecture. */
18504 if (!mark_feature_used (&fpu_neon_ext_armv8
))
18506 = _("instruction form not available on this architecture.");
18507 else if (!mark_feature_used (&fpu_neon_ext_v8_1
))
18509 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
18510 record_feature_use (&fpu_neon_ext_v8_1
);
18512 if (inst
.operands
[2].isscalar
)
18514 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
18515 struct neon_type_el et
= neon_check_type (3, rs
,
18516 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
18517 NEON_ENCODE (SCALAR
, inst
);
18518 neon_mul_mac (et
, neon_quad (rs
));
18522 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
18523 struct neon_type_el et
= neon_check_type (3, rs
,
18524 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
18525 NEON_ENCODE (INTEGER
, inst
);
18526 /* The U bit (rounding) comes from bit mask. */
18527 neon_three_same (neon_quad (rs
), 0, et
.size
);
18532 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
18533 struct neon_type_el et
18534 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S_32
| N_KEY
);
18536 NEON_ENCODE (INTEGER
, inst
);
18537 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
18542 do_neon_fcmp_absolute (void)
18544 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
18545 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
18546 N_F_16_32
| N_KEY
);
18547 /* Size field comes from bit mask. */
18548 neon_three_same (neon_quad (rs
), 1, et
.size
== 16 ? (int) et
.size
: -1);
18552 do_neon_fcmp_absolute_inv (void)
18554 neon_exchange_operands ();
18555 do_neon_fcmp_absolute ();
18559 do_neon_step (void)
18561 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
18562 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
18563 N_F_16_32
| N_KEY
);
18564 neon_three_same (neon_quad (rs
), 0, et
.size
== 16 ? (int) et
.size
: -1);
18568 do_neon_abs_neg (void)
18570 enum neon_shape rs
;
18571 struct neon_type_el et
;
18573 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg
) == SUCCESS
)
18576 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18577 et
= neon_check_type (2, rs
, N_EQK
, N_S_32
| N_F_16_32
| N_KEY
);
18579 if (!check_simd_pred_availability (et
.type
== NT_float
,
18580 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
18583 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18584 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18585 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18586 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18587 inst
.instruction
|= neon_quad (rs
) << 6;
18588 inst
.instruction
|= (et
.type
== NT_float
) << 10;
18589 inst
.instruction
|= neon_logbits (et
.size
) << 18;
18591 neon_dp_fixup (&inst
);
18597 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
18600 enum neon_shape rs
;
18601 struct neon_type_el et
;
18602 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18604 rs
= neon_select_shape (NS_QQI
, NS_NULL
);
18605 et
= neon_check_type (2, rs
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18609 rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
18610 et
= neon_check_type (2, rs
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
18614 int imm
= inst
.operands
[2].imm
;
18615 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
18616 _("immediate out of range for insert"));
18617 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
18623 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
18626 enum neon_shape rs
;
18627 struct neon_type_el et
;
18628 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18630 rs
= neon_select_shape (NS_QQI
, NS_NULL
);
18631 et
= neon_check_type (2, rs
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18635 rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
18636 et
= neon_check_type (2, rs
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
18639 int imm
= inst
.operands
[2].imm
;
18640 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
18641 _("immediate out of range for insert"));
18642 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, et
.size
- imm
);
18646 do_neon_qshlu_imm (void)
18648 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
18651 enum neon_shape rs
;
18652 struct neon_type_el et
;
18653 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18655 rs
= neon_select_shape (NS_QQI
, NS_NULL
);
18656 et
= neon_check_type (2, rs
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
18660 rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
18661 et
= neon_check_type (2, rs
, N_EQK
| N_UNS
,
18662 N_S8
| N_S16
| N_S32
| N_S64
| N_KEY
);
18665 int imm
= inst
.operands
[2].imm
;
18666 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
18667 _("immediate out of range for shift"));
18668 /* Only encodes the 'U present' variant of the instruction.
18669 In this case, signed types have OP (bit 8) set to 0.
18670 Unsigned types have OP set to 1. */
18671 inst
.instruction
|= (et
.type
== NT_unsigned
) << 8;
18672 /* The rest of the bits are the same as other immediate shifts. */
18673 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
18677 do_neon_qmovn (void)
18679 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
18680 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
18681 /* Saturating move where operands can be signed or unsigned, and the
18682 destination has the same signedness. */
18683 NEON_ENCODE (INTEGER
, inst
);
18684 if (et
.type
== NT_unsigned
)
18685 inst
.instruction
|= 0xc0;
18687 inst
.instruction
|= 0x80;
18688 neon_two_same (0, 1, et
.size
/ 2);
18692 do_neon_qmovun (void)
18694 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
18695 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
18696 /* Saturating move with unsigned results. Operands must be signed. */
18697 NEON_ENCODE (INTEGER
, inst
);
18698 neon_two_same (0, 1, et
.size
/ 2);
18702 do_neon_rshift_sat_narrow (void)
18704 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18705 or unsigned. If operands are unsigned, results must also be unsigned. */
18706 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
18707 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
18708 int imm
= inst
.operands
[2].imm
;
18709 /* This gets the bounds check, size encoding and immediate bits calculation
18713 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18714 VQMOVN.I<size> <Dd>, <Qm>. */
18717 inst
.operands
[2].present
= 0;
18718 inst
.instruction
= N_MNEM_vqmovn
;
18723 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
18724 _("immediate out of range"));
18725 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, et
.size
- imm
);
18729 do_neon_rshift_sat_narrow_u (void)
18731 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18732 or unsigned. If operands are unsigned, results must also be unsigned. */
18733 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
18734 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
18735 int imm
= inst
.operands
[2].imm
;
18736 /* This gets the bounds check, size encoding and immediate bits calculation
18740 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18741 VQMOVUN.I<size> <Dd>, <Qm>. */
18744 inst
.operands
[2].present
= 0;
18745 inst
.instruction
= N_MNEM_vqmovun
;
18750 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
18751 _("immediate out of range"));
18752 /* FIXME: The manual is kind of unclear about what value U should have in
18753 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18755 neon_imm_shift (TRUE
, 1, 0, et
, et
.size
- imm
);
18759 do_neon_movn (void)
18761 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
18762 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
18763 NEON_ENCODE (INTEGER
, inst
);
18764 neon_two_same (0, 1, et
.size
/ 2);
18768 do_neon_rshift_narrow (void)
18770 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
18771 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
18772 int imm
= inst
.operands
[2].imm
;
18773 /* This gets the bounds check, size encoding and immediate bits calculation
18777 /* If immediate is zero then we are a pseudo-instruction for
18778 VMOVN.I<size> <Dd>, <Qm> */
18781 inst
.operands
[2].present
= 0;
18782 inst
.instruction
= N_MNEM_vmovn
;
18787 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
18788 _("immediate out of range for narrowing operation"));
18789 neon_imm_shift (FALSE
, 0, 0, et
, et
.size
- imm
);
18793 do_neon_shll (void)
18795 /* FIXME: Type checking when lengthening. */
18796 struct neon_type_el et
= neon_check_type (2, NS_QDI
,
18797 N_EQK
| N_DBL
, N_I8
| N_I16
| N_I32
| N_KEY
);
18798 unsigned imm
= inst
.operands
[2].imm
;
18800 if (imm
== et
.size
)
18802 /* Maximum shift variant. */
18803 NEON_ENCODE (INTEGER
, inst
);
18804 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18805 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18806 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18807 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18808 inst
.instruction
|= neon_logbits (et
.size
) << 18;
18810 neon_dp_fixup (&inst
);
18814 /* A more-specific type check for non-max versions. */
18815 et
= neon_check_type (2, NS_QDI
,
18816 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
18817 NEON_ENCODE (IMMED
, inst
);
18818 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, imm
);
18822 /* Check the various types for the VCVT instruction, and return which version
18823 the current instruction is. */
18825 #define CVT_FLAVOUR_VAR \
18826 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18827 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18828 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18829 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18830 /* Half-precision conversions. */ \
18831 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18832 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18833 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18834 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18835 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18836 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18837 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18838 Compared with single/double precision variants, only the co-processor \
18839 field is different, so the encoding flow is reused here. */ \
18840 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18841 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18842 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18843 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18844 CVT_VAR (bf16_f32, N_BF16, N_F32, whole_reg, NULL, NULL, NULL) \
18845 /* VFP instructions. */ \
18846 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18847 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18848 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18849 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18850 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18851 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18852 /* VFP instructions with bitshift. */ \
18853 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18854 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18855 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18856 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18857 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18858 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18859 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18860 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18862 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18863 neon_cvt_flavour_##C,
18865 /* The different types of conversions we can do. */
18866 enum neon_cvt_flavour
18869 neon_cvt_flavour_invalid
,
18870 neon_cvt_flavour_first_fp
= neon_cvt_flavour_f32_f64
18875 static enum neon_cvt_flavour
18876 get_neon_cvt_flavour (enum neon_shape rs
)
18878 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18879 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18880 if (et.type != NT_invtype) \
18882 inst.error = NULL; \
18883 return (neon_cvt_flavour_##C); \
18886 struct neon_type_el et
;
18887 unsigned whole_reg
= (rs
== NS_FFI
|| rs
== NS_FD
|| rs
== NS_DF
18888 || rs
== NS_FF
) ? N_VFP
: 0;
18889 /* The instruction versions which take an immediate take one register
18890 argument, which is extended to the width of the full register. Thus the
18891 "source" and "destination" registers must have the same width. Hack that
18892 here by making the size equal to the key (wider, in this case) operand. */
18893 unsigned key
= (rs
== NS_QQI
|| rs
== NS_DDI
|| rs
== NS_FFI
) ? N_KEY
: 0;
18897 return neon_cvt_flavour_invalid
;
18912 /* Neon-syntax VFP conversions. */
18915 do_vfp_nsyn_cvt (enum neon_shape rs
, enum neon_cvt_flavour flavour
)
18917 const char *opname
= 0;
18919 if (rs
== NS_DDI
|| rs
== NS_QQI
|| rs
== NS_FFI
18920 || rs
== NS_FHI
|| rs
== NS_HFI
)
18922 /* Conversions with immediate bitshift. */
18923 const char *enc
[] =
18925 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18931 if (flavour
< (int) ARRAY_SIZE (enc
))
18933 opname
= enc
[flavour
];
18934 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
18935 _("operands 0 and 1 must be the same register"));
18936 inst
.operands
[1] = inst
.operands
[2];
18937 memset (&inst
.operands
[2], '\0', sizeof (inst
.operands
[2]));
18942 /* Conversions without bitshift. */
18943 const char *enc
[] =
18945 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18951 if (flavour
< (int) ARRAY_SIZE (enc
))
18952 opname
= enc
[flavour
];
18956 do_vfp_nsyn_opcode (opname
);
18958 /* ARMv8.2 fp16 VCVT instruction. */
18959 if (flavour
== neon_cvt_flavour_s32_f16
18960 || flavour
== neon_cvt_flavour_u32_f16
18961 || flavour
== neon_cvt_flavour_f16_u32
18962 || flavour
== neon_cvt_flavour_f16_s32
)
18963 do_scalar_fp16_v82_encode ();
18967 do_vfp_nsyn_cvtz (void)
18969 enum neon_shape rs
= neon_select_shape (NS_FH
, NS_FF
, NS_FD
, NS_NULL
);
18970 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
18971 const char *enc
[] =
18973 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18979 if (flavour
< (int) ARRAY_SIZE (enc
) && enc
[flavour
])
18980 do_vfp_nsyn_opcode (enc
[flavour
]);
18984 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour
,
18985 enum neon_cvt_mode mode
)
18990 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18991 D register operands. */
18992 if (flavour
== neon_cvt_flavour_s32_f64
18993 || flavour
== neon_cvt_flavour_u32_f64
)
18994 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
18997 if (flavour
== neon_cvt_flavour_s32_f16
18998 || flavour
== neon_cvt_flavour_u32_f16
)
18999 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
),
19002 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19006 case neon_cvt_flavour_s32_f64
:
19010 case neon_cvt_flavour_s32_f32
:
19014 case neon_cvt_flavour_s32_f16
:
19018 case neon_cvt_flavour_u32_f64
:
19022 case neon_cvt_flavour_u32_f32
:
19026 case neon_cvt_flavour_u32_f16
:
19031 first_error (_("invalid instruction shape"));
19037 case neon_cvt_mode_a
: rm
= 0; break;
19038 case neon_cvt_mode_n
: rm
= 1; break;
19039 case neon_cvt_mode_p
: rm
= 2; break;
19040 case neon_cvt_mode_m
: rm
= 3; break;
19041 default: first_error (_("invalid rounding mode")); return;
19044 NEON_ENCODE (FPV8
, inst
);
19045 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
19046 encode_arm_vfp_reg (inst
.operands
[1].reg
, sz
== 1 ? VFP_REG_Dm
: VFP_REG_Sm
);
19047 inst
.instruction
|= sz
<< 8;
19049 /* ARMv8.2 fp16 VCVT instruction. */
19050 if (flavour
== neon_cvt_flavour_s32_f16
19051 ||flavour
== neon_cvt_flavour_u32_f16
)
19052 do_scalar_fp16_v82_encode ();
19053 inst
.instruction
|= op
<< 7;
19054 inst
.instruction
|= rm
<< 16;
19055 inst
.instruction
|= 0xf0000000;
19056 inst
.is_neon
= TRUE
;
19060 do_neon_cvt_1 (enum neon_cvt_mode mode
)
19062 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_FFI
, NS_DD
, NS_QQ
,
19063 NS_FD
, NS_DF
, NS_FF
, NS_QD
, NS_DQ
,
19064 NS_FH
, NS_HF
, NS_FHI
, NS_HFI
,
19066 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
19068 if (flavour
== neon_cvt_flavour_invalid
)
19071 /* PR11109: Handle round-to-zero for VCVT conversions. */
19072 if (mode
== neon_cvt_mode_z
19073 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_vfp_v2
)
19074 && (flavour
== neon_cvt_flavour_s16_f16
19075 || flavour
== neon_cvt_flavour_u16_f16
19076 || flavour
== neon_cvt_flavour_s32_f32
19077 || flavour
== neon_cvt_flavour_u32_f32
19078 || flavour
== neon_cvt_flavour_s32_f64
19079 || flavour
== neon_cvt_flavour_u32_f64
)
19080 && (rs
== NS_FD
|| rs
== NS_FF
))
19082 do_vfp_nsyn_cvtz ();
19086 /* ARMv8.2 fp16 VCVT conversions. */
19087 if (mode
== neon_cvt_mode_z
19088 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
)
19089 && (flavour
== neon_cvt_flavour_s32_f16
19090 || flavour
== neon_cvt_flavour_u32_f16
)
19093 do_vfp_nsyn_cvtz ();
19094 do_scalar_fp16_v82_encode ();
19098 /* VFP rather than Neon conversions. */
19099 if (flavour
>= neon_cvt_flavour_first_fp
)
19101 if (mode
== neon_cvt_mode_x
|| mode
== neon_cvt_mode_z
)
19102 do_vfp_nsyn_cvt (rs
, flavour
);
19104 do_vfp_nsyn_cvt_fpv8 (flavour
, mode
);
19112 if (mode
== neon_cvt_mode_z
19113 && (flavour
== neon_cvt_flavour_f16_s16
19114 || flavour
== neon_cvt_flavour_f16_u16
19115 || flavour
== neon_cvt_flavour_s16_f16
19116 || flavour
== neon_cvt_flavour_u16_f16
19117 || flavour
== neon_cvt_flavour_f32_u32
19118 || flavour
== neon_cvt_flavour_f32_s32
19119 || flavour
== neon_cvt_flavour_s32_f32
19120 || flavour
== neon_cvt_flavour_u32_f32
))
19122 if (!check_simd_pred_availability (TRUE
,
19123 NEON_CHECK_CC
| NEON_CHECK_ARCH
))
19126 else if (mode
== neon_cvt_mode_n
)
19128 /* We are dealing with vcvt with the 'ne' condition. */
19130 inst
.instruction
= N_MNEM_vcvt
;
19131 do_neon_cvt_1 (neon_cvt_mode_z
);
19134 /* fall through. */
19138 unsigned enctab
[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
19139 0x0000100, 0x1000100, 0x0, 0x1000000};
19141 if ((rs
!= NS_QQI
|| !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
19142 && vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
19145 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
19147 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0,
19148 _("immediate value out of range"));
19151 case neon_cvt_flavour_f16_s16
:
19152 case neon_cvt_flavour_f16_u16
:
19153 case neon_cvt_flavour_s16_f16
:
19154 case neon_cvt_flavour_u16_f16
:
19155 constraint (inst
.operands
[2].imm
> 16,
19156 _("immediate value out of range"));
19158 case neon_cvt_flavour_f32_u32
:
19159 case neon_cvt_flavour_f32_s32
:
19160 case neon_cvt_flavour_s32_f32
:
19161 case neon_cvt_flavour_u32_f32
:
19162 constraint (inst
.operands
[2].imm
> 32,
19163 _("immediate value out of range"));
19166 inst
.error
= BAD_FPU
;
19171 /* Fixed-point conversion with #0 immediate is encoded as an
19172 integer conversion. */
19173 if (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0)
19175 NEON_ENCODE (IMMED
, inst
);
19176 if (flavour
!= neon_cvt_flavour_invalid
)
19177 inst
.instruction
|= enctab
[flavour
];
19178 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19179 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19180 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19181 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19182 inst
.instruction
|= neon_quad (rs
) << 6;
19183 inst
.instruction
|= 1 << 21;
19184 if (flavour
< neon_cvt_flavour_s16_f16
)
19186 inst
.instruction
|= 1 << 21;
19187 immbits
= 32 - inst
.operands
[2].imm
;
19188 inst
.instruction
|= immbits
<< 16;
19192 inst
.instruction
|= 3 << 20;
19193 immbits
= 16 - inst
.operands
[2].imm
;
19194 inst
.instruction
|= immbits
<< 16;
19195 inst
.instruction
&= ~(1 << 9);
19198 neon_dp_fixup (&inst
);
19203 if ((mode
== neon_cvt_mode_a
|| mode
== neon_cvt_mode_n
19204 || mode
== neon_cvt_mode_m
|| mode
== neon_cvt_mode_p
)
19205 && (flavour
== neon_cvt_flavour_s16_f16
19206 || flavour
== neon_cvt_flavour_u16_f16
19207 || flavour
== neon_cvt_flavour_s32_f32
19208 || flavour
== neon_cvt_flavour_u32_f32
))
19210 if (!check_simd_pred_availability (TRUE
,
19211 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
19214 else if (mode
== neon_cvt_mode_z
19215 && (flavour
== neon_cvt_flavour_f16_s16
19216 || flavour
== neon_cvt_flavour_f16_u16
19217 || flavour
== neon_cvt_flavour_s16_f16
19218 || flavour
== neon_cvt_flavour_u16_f16
19219 || flavour
== neon_cvt_flavour_f32_u32
19220 || flavour
== neon_cvt_flavour_f32_s32
19221 || flavour
== neon_cvt_flavour_s32_f32
19222 || flavour
== neon_cvt_flavour_u32_f32
))
19224 if (!check_simd_pred_availability (TRUE
,
19225 NEON_CHECK_CC
| NEON_CHECK_ARCH
))
19228 /* fall through. */
19230 if (mode
!= neon_cvt_mode_x
&& mode
!= neon_cvt_mode_z
)
19233 NEON_ENCODE (FLOAT
, inst
);
19234 if (!check_simd_pred_availability (TRUE
,
19235 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
19238 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19239 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19240 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19241 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19242 inst
.instruction
|= neon_quad (rs
) << 6;
19243 inst
.instruction
|= (flavour
== neon_cvt_flavour_u16_f16
19244 || flavour
== neon_cvt_flavour_u32_f32
) << 7;
19245 inst
.instruction
|= mode
<< 8;
19246 if (flavour
== neon_cvt_flavour_u16_f16
19247 || flavour
== neon_cvt_flavour_s16_f16
)
19248 /* Mask off the original size bits and reencode them. */
19249 inst
.instruction
= ((inst
.instruction
& 0xfff3ffff) | (1 << 18));
19252 inst
.instruction
|= 0xfc000000;
19254 inst
.instruction
|= 0xf0000000;
19260 unsigned enctab
[] = { 0x100, 0x180, 0x0, 0x080,
19261 0x100, 0x180, 0x0, 0x080};
19263 NEON_ENCODE (INTEGER
, inst
);
19265 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
19267 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
19271 if (flavour
!= neon_cvt_flavour_invalid
)
19272 inst
.instruction
|= enctab
[flavour
];
19274 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19275 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19276 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19277 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19278 inst
.instruction
|= neon_quad (rs
) << 6;
19279 if (flavour
>= neon_cvt_flavour_s16_f16
19280 && flavour
<= neon_cvt_flavour_f16_u16
)
19281 /* Half precision. */
19282 inst
.instruction
|= 1 << 18;
19284 inst
.instruction
|= 2 << 18;
19286 neon_dp_fixup (&inst
);
19291 /* Half-precision conversions for Advanced SIMD -- neon. */
19294 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
19298 && (inst
.vectype
.el
[0].size
!= 16 || inst
.vectype
.el
[1].size
!= 32))
19300 as_bad (_("operand size must match register width"));
19305 && ((inst
.vectype
.el
[0].size
!= 32 || inst
.vectype
.el
[1].size
!= 16)))
19307 as_bad (_("operand size must match register width"));
19313 if (flavour
== neon_cvt_flavour_bf16_f32
)
19315 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH8
) == FAIL
)
19317 constraint (!mark_feature_used (&arm_ext_bf16
), _(BAD_BF16
));
19318 /* VCVT.bf16.f32. */
19319 inst
.instruction
= 0x11b60640;
19322 /* VCVT.f16.f32. */
19323 inst
.instruction
= 0x3b60600;
19326 /* VCVT.f32.f16. */
19327 inst
.instruction
= 0x3b60700;
19329 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19330 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19331 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19332 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19333 neon_dp_fixup (&inst
);
19337 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
19338 if (mode
== neon_cvt_mode_x
|| mode
== neon_cvt_mode_z
)
19339 do_vfp_nsyn_cvt (rs
, flavour
);
19341 do_vfp_nsyn_cvt_fpv8 (flavour
, mode
);
19346 do_neon_cvtr (void)
19348 do_neon_cvt_1 (neon_cvt_mode_x
);
19354 do_neon_cvt_1 (neon_cvt_mode_z
);
19358 do_neon_cvta (void)
19360 do_neon_cvt_1 (neon_cvt_mode_a
);
19364 do_neon_cvtn (void)
19366 do_neon_cvt_1 (neon_cvt_mode_n
);
19370 do_neon_cvtp (void)
19372 do_neon_cvt_1 (neon_cvt_mode_p
);
19376 do_neon_cvtm (void)
19378 do_neon_cvt_1 (neon_cvt_mode_m
);
19382 do_neon_cvttb_2 (bfd_boolean t
, bfd_boolean to
, bfd_boolean is_double
)
19385 mark_feature_used (&fpu_vfp_ext_armv8
);
19387 encode_arm_vfp_reg (inst
.operands
[0].reg
,
19388 (is_double
&& !to
) ? VFP_REG_Dd
: VFP_REG_Sd
);
19389 encode_arm_vfp_reg (inst
.operands
[1].reg
,
19390 (is_double
&& to
) ? VFP_REG_Dm
: VFP_REG_Sm
);
19391 inst
.instruction
|= to
? 0x10000 : 0;
19392 inst
.instruction
|= t
? 0x80 : 0;
19393 inst
.instruction
|= is_double
? 0x100 : 0;
19394 do_vfp_cond_or_thumb ();
19398 do_neon_cvttb_1 (bfd_boolean t
)
19400 enum neon_shape rs
= neon_select_shape (NS_HF
, NS_HD
, NS_FH
, NS_FF
, NS_FD
,
19401 NS_DF
, NS_DH
, NS_QQ
, NS_QQI
, NS_NULL
);
19405 else if (rs
== NS_QQ
|| rs
== NS_QQI
)
19407 int single_to_half
= 0;
19408 if (!check_simd_pred_availability (TRUE
, NEON_CHECK_ARCH
))
19411 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
19413 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
19414 && (flavour
== neon_cvt_flavour_u16_f16
19415 || flavour
== neon_cvt_flavour_s16_f16
19416 || flavour
== neon_cvt_flavour_f16_s16
19417 || flavour
== neon_cvt_flavour_f16_u16
19418 || flavour
== neon_cvt_flavour_u32_f32
19419 || flavour
== neon_cvt_flavour_s32_f32
19420 || flavour
== neon_cvt_flavour_f32_s32
19421 || flavour
== neon_cvt_flavour_f32_u32
))
19424 inst
.instruction
= N_MNEM_vcvt
;
19425 set_pred_insn_type (INSIDE_VPT_INSN
);
19426 do_neon_cvt_1 (neon_cvt_mode_z
);
19429 else if (rs
== NS_QQ
&& flavour
== neon_cvt_flavour_f32_f16
)
19430 single_to_half
= 1;
19431 else if (rs
== NS_QQ
&& flavour
!= neon_cvt_flavour_f16_f32
)
19433 first_error (BAD_FPU
);
19437 inst
.instruction
= 0xee3f0e01;
19438 inst
.instruction
|= single_to_half
<< 28;
19439 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19440 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 13;
19441 inst
.instruction
|= t
<< 12;
19442 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19443 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 1;
19446 else if (neon_check_type (2, rs
, N_F16
, N_F32
| N_VFP
).type
!= NT_invtype
)
19449 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/FALSE
);
19451 else if (neon_check_type (2, rs
, N_F32
| N_VFP
, N_F16
).type
!= NT_invtype
)
19454 do_neon_cvttb_2 (t
, /*to=*/FALSE
, /*is_double=*/FALSE
);
19456 else if (neon_check_type (2, rs
, N_F16
, N_F64
| N_VFP
).type
!= NT_invtype
)
19458 /* The VCVTB and VCVTT instructions with D-register operands
19459 don't work for SP only targets. */
19460 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
19464 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/TRUE
);
19466 else if (neon_check_type (2, rs
, N_F64
| N_VFP
, N_F16
).type
!= NT_invtype
)
19468 /* The VCVTB and VCVTT instructions with D-register operands
19469 don't work for SP only targets. */
19470 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
19474 do_neon_cvttb_2 (t
, /*to=*/FALSE
, /*is_double=*/TRUE
);
19476 else if (neon_check_type (2, rs
, N_BF16
| N_VFP
, N_F32
).type
!= NT_invtype
)
19478 constraint (!mark_feature_used (&arm_ext_bf16
), _(BAD_BF16
));
19480 inst
.instruction
|= (1 << 8);
19481 inst
.instruction
&= ~(1 << 9);
19482 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/FALSE
);
19489 do_neon_cvtb (void)
19491 do_neon_cvttb_1 (FALSE
);
19496 do_neon_cvtt (void)
19498 do_neon_cvttb_1 (TRUE
);
19502 neon_move_immediate (void)
19504 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
19505 struct neon_type_el et
= neon_check_type (2, rs
,
19506 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
19507 unsigned immlo
, immhi
= 0, immbits
;
19508 int op
, cmode
, float_p
;
19510 constraint (et
.type
== NT_invtype
,
19511 _("operand size must be specified for immediate VMOV"));
19513 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
19514 op
= (inst
.instruction
& (1 << 5)) != 0;
19516 immlo
= inst
.operands
[1].imm
;
19517 if (inst
.operands
[1].regisimm
)
19518 immhi
= inst
.operands
[1].reg
;
19520 constraint (et
.size
< 32 && (immlo
& ~((1 << et
.size
) - 1)) != 0,
19521 _("immediate has bits set outside the operand size"));
19523 float_p
= inst
.operands
[1].immisfloat
;
19525 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
, &op
,
19526 et
.size
, et
.type
)) == FAIL
)
19528 /* Invert relevant bits only. */
19529 neon_invert_size (&immlo
, &immhi
, et
.size
);
19530 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
19531 with one or the other; those cases are caught by
19532 neon_cmode_for_move_imm. */
19534 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
,
19535 &op
, et
.size
, et
.type
)) == FAIL
)
19537 first_error (_("immediate out of range"));
19542 inst
.instruction
&= ~(1 << 5);
19543 inst
.instruction
|= op
<< 5;
19545 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19546 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19547 inst
.instruction
|= neon_quad (rs
) << 6;
19548 inst
.instruction
|= cmode
<< 8;
19550 neon_write_immbits (immbits
);
19556 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
19559 if (inst
.operands
[1].isreg
)
19561 enum neon_shape rs
;
19562 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19563 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
19565 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19567 NEON_ENCODE (INTEGER
, inst
);
19568 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19569 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19570 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19571 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19572 inst
.instruction
|= neon_quad (rs
) << 6;
19576 NEON_ENCODE (IMMED
, inst
);
19577 neon_move_immediate ();
19580 neon_dp_fixup (&inst
);
19582 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19584 constraint (!inst
.operands
[1].isreg
&& !inst
.operands
[0].isquad
, BAD_FPU
);
19588 /* Encode instructions of form:
19590 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
19591 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
19594 neon_mixed_length (struct neon_type_el et
, unsigned size
)
19596 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19597 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19598 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
19599 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
19600 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
19601 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
19602 inst
.instruction
|= (et
.type
== NT_unsigned
) << 24;
19603 inst
.instruction
|= neon_logbits (size
) << 20;
19605 neon_dp_fixup (&inst
);
19609 do_neon_dyadic_long (void)
19611 enum neon_shape rs
= neon_select_shape (NS_QDD
, NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
19614 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH
| NEON_CHECK_CC
) == FAIL
)
19617 NEON_ENCODE (INTEGER
, inst
);
19618 /* FIXME: Type checking for lengthening op. */
19619 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
19620 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
19621 neon_mixed_length (et
, et
.size
);
19623 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
19624 && (inst
.cond
== 0xf || inst
.cond
== 0x10))
19626 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19627 in an IT block with le/lt conditions. */
19629 if (inst
.cond
== 0xf)
19631 else if (inst
.cond
== 0x10)
19634 inst
.pred_insn_type
= INSIDE_IT_INSN
;
19636 if (inst
.instruction
== N_MNEM_vaddl
)
19638 inst
.instruction
= N_MNEM_vadd
;
19639 do_neon_addsub_if_i ();
19641 else if (inst
.instruction
== N_MNEM_vsubl
)
19643 inst
.instruction
= N_MNEM_vsub
;
19644 do_neon_addsub_if_i ();
19646 else if (inst
.instruction
== N_MNEM_vabdl
)
19648 inst
.instruction
= N_MNEM_vabd
;
19649 do_neon_dyadic_if_su ();
19653 first_error (BAD_FPU
);
19657 do_neon_abal (void)
19659 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
19660 N_EQK
| N_INT
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
19661 neon_mixed_length (et
, et
.size
);
19665 neon_mac_reg_scalar_long (unsigned regtypes
, unsigned scalartypes
)
19667 if (inst
.operands
[2].isscalar
)
19669 struct neon_type_el et
= neon_check_type (3, NS_QDS
,
19670 N_EQK
| N_DBL
, N_EQK
, regtypes
| N_KEY
);
19671 NEON_ENCODE (SCALAR
, inst
);
19672 neon_mul_mac (et
, et
.type
== NT_unsigned
);
19676 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
19677 N_EQK
| N_DBL
, N_EQK
, scalartypes
| N_KEY
);
19678 NEON_ENCODE (INTEGER
, inst
);
19679 neon_mixed_length (et
, et
.size
);
19684 do_neon_mac_maybe_scalar_long (void)
19686 neon_mac_reg_scalar_long (N_S16
| N_S32
| N_U16
| N_U32
, N_SU_32
);
19689 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19690 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19693 neon_scalar_for_fmac_fp16_long (unsigned scalar
, unsigned quad_p
)
19695 unsigned regno
= NEON_SCALAR_REG (scalar
);
19696 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
19700 if (regno
> 7 || elno
> 3)
19703 return ((regno
& 0x7)
19704 | ((elno
& 0x1) << 3)
19705 | (((elno
>> 1) & 0x1) << 5));
19709 if (regno
> 15 || elno
> 1)
19712 return (((regno
& 0x1) << 5)
19713 | ((regno
>> 1) & 0x7)
19714 | ((elno
& 0x1) << 3));
19718 first_error (_("scalar out of range for multiply instruction"));
19723 do_neon_fmac_maybe_scalar_long (int subtype
)
19725 enum neon_shape rs
;
19727 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19728 field (bits[21:20]) has different meaning. For scalar index variant, it's
19729 used to differentiate add and subtract, otherwise it's with fixed value
19733 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19734 be a scalar index register. */
19735 if (inst
.operands
[2].isscalar
)
19737 high8
= 0xfe000000;
19740 rs
= neon_select_shape (NS_DHS
, NS_QDS
, NS_NULL
);
19744 high8
= 0xfc000000;
19747 inst
.instruction
|= (0x1 << 23);
19748 rs
= neon_select_shape (NS_DHH
, NS_QDD
, NS_NULL
);
19752 if (inst
.cond
!= COND_ALWAYS
)
19753 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19754 "behaviour is UNPREDICTABLE"));
19756 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16_fml
),
19759 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
19762 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19763 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19764 so we simply pass -1 as size. */
19765 unsigned quad_p
= (rs
== NS_QDD
|| rs
== NS_QDS
);
19766 neon_three_same (quad_p
, 0, size
);
19768 /* Undo neon_dp_fixup. Redo the high eight bits. */
19769 inst
.instruction
&= 0x00ffffff;
19770 inst
.instruction
|= high8
;
19772 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19773 whether the instruction is in Q form and whether Vm is a scalar indexed
19775 if (inst
.operands
[2].isscalar
)
19778 = neon_scalar_for_fmac_fp16_long (inst
.operands
[2].reg
, quad_p
);
19779 inst
.instruction
&= 0xffffffd0;
19780 inst
.instruction
|= rm
;
19784 /* Redo Rn as well. */
19785 inst
.instruction
&= 0xfff0ff7f;
19786 inst
.instruction
|= HI4 (inst
.operands
[1].reg
) << 16;
19787 inst
.instruction
|= LOW1 (inst
.operands
[1].reg
) << 7;
19792 /* Redo Rn and Rm. */
19793 inst
.instruction
&= 0xfff0ff50;
19794 inst
.instruction
|= HI4 (inst
.operands
[1].reg
) << 16;
19795 inst
.instruction
|= LOW1 (inst
.operands
[1].reg
) << 7;
19796 inst
.instruction
|= HI4 (inst
.operands
[2].reg
);
19797 inst
.instruction
|= LOW1 (inst
.operands
[2].reg
) << 5;
19802 do_neon_vfmal (void)
19804 return do_neon_fmac_maybe_scalar_long (0);
19808 do_neon_vfmsl (void)
19810 return do_neon_fmac_maybe_scalar_long (1);
19814 do_neon_dyadic_wide (void)
19816 struct neon_type_el et
= neon_check_type (3, NS_QQD
,
19817 N_EQK
| N_DBL
, N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
19818 neon_mixed_length (et
, et
.size
);
19822 do_neon_dyadic_narrow (void)
19824 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
19825 N_EQK
| N_DBL
, N_EQK
, N_I16
| N_I32
| N_I64
| N_KEY
);
19826 /* Operand sign is unimportant, and the U bit is part of the opcode,
19827 so force the operand type to integer. */
19828 et
.type
= NT_integer
;
19829 neon_mixed_length (et
, et
.size
/ 2);
19833 do_neon_mul_sat_scalar_long (void)
19835 neon_mac_reg_scalar_long (N_S16
| N_S32
, N_S16
| N_S32
);
19839 do_neon_vmull (void)
19841 if (inst
.operands
[2].isscalar
)
19842 do_neon_mac_maybe_scalar_long ();
19845 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
19846 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_P8
| N_P64
| N_KEY
);
19848 if (et
.type
== NT_poly
)
19849 NEON_ENCODE (POLY
, inst
);
19851 NEON_ENCODE (INTEGER
, inst
);
19853 /* For polynomial encoding the U bit must be zero, and the size must
19854 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19855 obviously, as 0b10). */
19858 /* Check we're on the correct architecture. */
19859 if (!mark_feature_used (&fpu_crypto_ext_armv8
))
19861 _("Instruction form not available on this architecture.");
19866 neon_mixed_length (et
, et
.size
);
19873 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
19874 struct neon_type_el et
= neon_check_type (3, rs
,
19875 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
19876 unsigned imm
= (inst
.operands
[3].imm
* et
.size
) / 8;
19878 constraint (imm
>= (unsigned) (neon_quad (rs
) ? 16 : 8),
19879 _("shift out of range"));
19880 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19881 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19882 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
19883 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
19884 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
19885 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
19886 inst
.instruction
|= neon_quad (rs
) << 6;
19887 inst
.instruction
|= imm
<< 8;
19889 neon_dp_fixup (&inst
);
19895 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
19898 enum neon_shape rs
;
19899 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19900 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
19902 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19904 struct neon_type_el et
= neon_check_type (2, rs
,
19905 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
19907 unsigned op
= (inst
.instruction
>> 7) & 3;
19908 /* N (width of reversed regions) is encoded as part of the bitmask. We
19909 extract it here to check the elements to be reversed are smaller.
19910 Otherwise we'd get a reserved instruction. */
19911 unsigned elsize
= (op
== 2) ? 16 : (op
== 1) ? 32 : (op
== 0) ? 64 : 0;
19913 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
) && elsize
== 64
19914 && inst
.operands
[0].reg
== inst
.operands
[1].reg
)
19915 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19916 " operands makes instruction UNPREDICTABLE"));
19918 gas_assert (elsize
!= 0);
19919 constraint (et
.size
>= elsize
,
19920 _("elements must be smaller than reversal region"));
19921 neon_two_same (neon_quad (rs
), 1, et
.size
);
19927 if (inst
.operands
[1].isscalar
)
19929 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
),
19931 enum neon_shape rs
= neon_select_shape (NS_DS
, NS_QS
, NS_NULL
);
19932 struct neon_type_el et
= neon_check_type (2, rs
,
19933 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
19934 unsigned sizebits
= et
.size
>> 3;
19935 unsigned dm
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
19936 int logsize
= neon_logbits (et
.size
);
19937 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
) << logsize
;
19939 if (vfp_or_neon_is_neon (NEON_CHECK_CC
) == FAIL
)
19942 NEON_ENCODE (SCALAR
, inst
);
19943 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19944 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19945 inst
.instruction
|= LOW4 (dm
);
19946 inst
.instruction
|= HI1 (dm
) << 5;
19947 inst
.instruction
|= neon_quad (rs
) << 6;
19948 inst
.instruction
|= x
<< 17;
19949 inst
.instruction
|= sizebits
<< 16;
19951 neon_dp_fixup (&inst
);
19955 enum neon_shape rs
= neon_select_shape (NS_DR
, NS_QR
, NS_NULL
);
19956 struct neon_type_el et
= neon_check_type (2, rs
,
19957 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
19960 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
))
19964 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
),
19967 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19969 if (inst
.operands
[1].reg
== REG_SP
)
19970 as_tsktsk (MVE_BAD_SP
);
19971 else if (inst
.operands
[1].reg
== REG_PC
)
19972 as_tsktsk (MVE_BAD_PC
);
19975 /* Duplicate ARM register to lanes of vector. */
19976 NEON_ENCODE (ARMREG
, inst
);
19979 case 8: inst
.instruction
|= 0x400000; break;
19980 case 16: inst
.instruction
|= 0x000020; break;
19981 case 32: inst
.instruction
|= 0x000000; break;
19984 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
19985 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 16;
19986 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 7;
19987 inst
.instruction
|= neon_quad (rs
) << 21;
19988 /* The encoding for this instruction is identical for the ARM and Thumb
19989 variants, except for the condition field. */
19990 do_vfp_cond_or_thumb ();
19995 do_mve_mov (int toQ
)
19997 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19999 if (inst
.cond
> COND_ALWAYS
)
20000 inst
.pred_insn_type
= MVE_UNPREDICABLE_INSN
;
20002 unsigned Rt
= 0, Rt2
= 1, Q0
= 2, Q1
= 3;
20011 constraint (inst
.operands
[Q0
].reg
!= inst
.operands
[Q1
].reg
+ 2,
20012 _("Index one must be [2,3] and index two must be two less than"
20014 constraint (inst
.operands
[Rt
].reg
== inst
.operands
[Rt2
].reg
,
20015 _("General purpose registers may not be the same"));
20016 constraint (inst
.operands
[Rt
].reg
== REG_SP
20017 || inst
.operands
[Rt2
].reg
== REG_SP
,
20019 constraint (inst
.operands
[Rt
].reg
== REG_PC
20020 || inst
.operands
[Rt2
].reg
== REG_PC
,
20023 inst
.instruction
= 0xec000f00;
20024 inst
.instruction
|= HI1 (inst
.operands
[Q1
].reg
/ 32) << 23;
20025 inst
.instruction
|= !!toQ
<< 20;
20026 inst
.instruction
|= inst
.operands
[Rt2
].reg
<< 16;
20027 inst
.instruction
|= LOW4 (inst
.operands
[Q1
].reg
/ 32) << 13;
20028 inst
.instruction
|= (inst
.operands
[Q1
].reg
% 4) << 4;
20029 inst
.instruction
|= inst
.operands
[Rt
].reg
;
20035 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20038 if (inst
.cond
> COND_ALWAYS
)
20039 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
20041 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
20043 struct neon_type_el et
= neon_check_type (2, NS_QQ
, N_EQK
, N_I16
| N_I32
20046 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20047 inst
.instruction
|= (neon_logbits (et
.size
) - 1) << 18;
20048 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20049 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
20050 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
20055 /* VMOV has particularly many variations. It can be one of:
20056 0. VMOV<c><q> <Qd>, <Qm>
20057 1. VMOV<c><q> <Dd>, <Dm>
20058 (Register operations, which are VORR with Rm = Rn.)
20059 2. VMOV<c><q>.<dt> <Qd>, #<imm>
20060 3. VMOV<c><q>.<dt> <Dd>, #<imm>
20062 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
20063 (ARM register to scalar.)
20064 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
20065 (Two ARM registers to vector.)
20066 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
20067 (Scalar to ARM register.)
20068 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
20069 (Vector to two ARM registers.)
20070 8. VMOV.F32 <Sd>, <Sm>
20071 9. VMOV.F64 <Dd>, <Dm>
20072 (VFP register moves.)
20073 10. VMOV.F32 <Sd>, #imm
20074 11. VMOV.F64 <Dd>, #imm
20075 (VFP float immediate load.)
20076 12. VMOV <Rd>, <Sm>
20077 (VFP single to ARM reg.)
20078 13. VMOV <Sd>, <Rm>
20079 (ARM reg to VFP single.)
20080 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
20081 (Two ARM regs to two VFP singles.)
20082 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
20083 (Two VFP singles to two ARM regs.)
20084 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
20085 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
20086 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
20087 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
20089 These cases can be disambiguated using neon_select_shape, except cases 1/9
20090 and 3/11 which depend on the operand type too.
20092 All the encoded bits are hardcoded by this function.
20094 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
20095 Cases 5, 7 may be used with VFPv2 and above.
20097 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
20098 can specify a type where it doesn't make sense to, and is ignored). */
20103 enum neon_shape rs
= neon_select_shape (NS_RRSS
, NS_SSRR
, NS_RRFF
, NS_FFRR
,
20104 NS_DRR
, NS_RRD
, NS_QQ
, NS_DD
, NS_QI
,
20105 NS_DI
, NS_SR
, NS_RS
, NS_FF
, NS_FI
,
20106 NS_RF
, NS_FR
, NS_HR
, NS_RH
, NS_HI
,
20108 struct neon_type_el et
;
20109 const char *ldconst
= 0;
20113 case NS_DD
: /* case 1/9. */
20114 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
20115 /* It is not an error here if no type is given. */
20118 /* In MVE we interpret the following instructions as same, so ignoring
20119 the following type (float) and size (64) checks.
20120 a: VMOV<c><q> <Dd>, <Dm>
20121 b: VMOV<c><q>.F64 <Dd>, <Dm>. */
20122 if ((et
.type
== NT_float
&& et
.size
== 64)
20123 || (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)))
20125 do_vfp_nsyn_opcode ("fcpyd");
20128 /* fall through. */
20130 case NS_QQ
: /* case 0/1. */
20132 if (!check_simd_pred_availability (FALSE
,
20133 NEON_CHECK_CC
| NEON_CHECK_ARCH
))
20135 /* The architecture manual I have doesn't explicitly state which
20136 value the U bit should have for register->register moves, but
20137 the equivalent VORR instruction has U = 0, so do that. */
20138 inst
.instruction
= 0x0200110;
20139 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20140 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20141 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
20142 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
20143 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
20144 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
20145 inst
.instruction
|= neon_quad (rs
) << 6;
20147 neon_dp_fixup (&inst
);
20151 case NS_DI
: /* case 3/11. */
20152 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
20154 if (et
.type
== NT_float
&& et
.size
== 64)
20156 /* case 11 (fconstd). */
20157 ldconst
= "fconstd";
20158 goto encode_fconstd
;
20160 /* fall through. */
20162 case NS_QI
: /* case 2/3. */
20163 if (!check_simd_pred_availability (FALSE
,
20164 NEON_CHECK_CC
| NEON_CHECK_ARCH
))
20166 inst
.instruction
= 0x0800010;
20167 neon_move_immediate ();
20168 neon_dp_fixup (&inst
);
20171 case NS_SR
: /* case 4. */
20173 unsigned bcdebits
= 0;
20175 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[0].reg
);
20176 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[0].reg
);
20178 /* .<size> is optional here, defaulting to .32. */
20179 if (inst
.vectype
.elems
== 0
20180 && inst
.operands
[0].vectype
.type
== NT_invtype
20181 && inst
.operands
[1].vectype
.type
== NT_invtype
)
20183 inst
.vectype
.el
[0].type
= NT_untyped
;
20184 inst
.vectype
.el
[0].size
= 32;
20185 inst
.vectype
.elems
= 1;
20188 et
= neon_check_type (2, NS_NULL
, N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
20189 logsize
= neon_logbits (et
.size
);
20193 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
20194 && vfp_or_neon_is_neon (NEON_CHECK_ARCH
) == FAIL
)
20199 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
20200 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
20204 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20206 if (inst
.operands
[1].reg
== REG_SP
)
20207 as_tsktsk (MVE_BAD_SP
);
20208 else if (inst
.operands
[1].reg
== REG_PC
)
20209 as_tsktsk (MVE_BAD_PC
);
20211 unsigned size
= inst
.operands
[0].isscalar
== 1 ? 64 : 128;
20213 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
20214 constraint (x
>= size
/ et
.size
, _("scalar index out of range"));
20219 case 8: bcdebits
= 0x8; break;
20220 case 16: bcdebits
= 0x1; break;
20221 case 32: bcdebits
= 0x0; break;
20225 bcdebits
|= (x
& ((1 << (3-logsize
)) - 1)) << logsize
;
20227 inst
.instruction
= 0xe000b10;
20228 do_vfp_cond_or_thumb ();
20229 inst
.instruction
|= LOW4 (dn
) << 16;
20230 inst
.instruction
|= HI1 (dn
) << 7;
20231 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
20232 inst
.instruction
|= (bcdebits
& 3) << 5;
20233 inst
.instruction
|= ((bcdebits
>> 2) & 3) << 21;
20234 inst
.instruction
|= (x
>> (3-logsize
)) << 16;
20238 case NS_DRR
: /* case 5 (fmdrr). */
20239 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
20240 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
20243 inst
.instruction
= 0xc400b10;
20244 do_vfp_cond_or_thumb ();
20245 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
);
20246 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 5;
20247 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
20248 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
20251 case NS_RS
: /* case 6. */
20254 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
20255 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
);
20256 unsigned abcdebits
= 0;
20258 /* .<dt> is optional here, defaulting to .32. */
20259 if (inst
.vectype
.elems
== 0
20260 && inst
.operands
[0].vectype
.type
== NT_invtype
20261 && inst
.operands
[1].vectype
.type
== NT_invtype
)
20263 inst
.vectype
.el
[0].type
= NT_untyped
;
20264 inst
.vectype
.el
[0].size
= 32;
20265 inst
.vectype
.elems
= 1;
20268 et
= neon_check_type (2, NS_NULL
,
20269 N_EQK
, N_S8
| N_S16
| N_U8
| N_U16
| N_32
| N_KEY
);
20270 logsize
= neon_logbits (et
.size
);
20274 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
20275 && vfp_or_neon_is_neon (NEON_CHECK_CC
20276 | NEON_CHECK_ARCH
) == FAIL
)
20281 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
20282 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
20286 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20288 if (inst
.operands
[0].reg
== REG_SP
)
20289 as_tsktsk (MVE_BAD_SP
);
20290 else if (inst
.operands
[0].reg
== REG_PC
)
20291 as_tsktsk (MVE_BAD_PC
);
20294 unsigned size
= inst
.operands
[1].isscalar
== 1 ? 64 : 128;
20296 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
20297 constraint (x
>= size
/ et
.size
, _("scalar index out of range"));
20301 case 8: abcdebits
= (et
.type
== NT_signed
) ? 0x08 : 0x18; break;
20302 case 16: abcdebits
= (et
.type
== NT_signed
) ? 0x01 : 0x11; break;
20303 case 32: abcdebits
= 0x00; break;
20307 abcdebits
|= (x
& ((1 << (3-logsize
)) - 1)) << logsize
;
20308 inst
.instruction
= 0xe100b10;
20309 do_vfp_cond_or_thumb ();
20310 inst
.instruction
|= LOW4 (dn
) << 16;
20311 inst
.instruction
|= HI1 (dn
) << 7;
20312 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
20313 inst
.instruction
|= (abcdebits
& 3) << 5;
20314 inst
.instruction
|= (abcdebits
>> 2) << 21;
20315 inst
.instruction
|= (x
>> (3-logsize
)) << 16;
20319 case NS_RRD
: /* case 7 (fmrrd). */
20320 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
20321 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
20324 inst
.instruction
= 0xc500b10;
20325 do_vfp_cond_or_thumb ();
20326 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
20327 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
20328 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
20329 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
20332 case NS_FF
: /* case 8 (fcpys). */
20333 do_vfp_nsyn_opcode ("fcpys");
20337 case NS_FI
: /* case 10 (fconsts). */
20338 ldconst
= "fconsts";
20340 if (!inst
.operands
[1].immisfloat
)
20343 /* Immediate has to fit in 8 bits so float is enough. */
20344 float imm
= (float) inst
.operands
[1].imm
;
20345 memcpy (&new_imm
, &imm
, sizeof (float));
20346 /* But the assembly may have been written to provide an integer
20347 bit pattern that equates to a float, so check that the
20348 conversion has worked. */
20349 if (is_quarter_float (new_imm
))
20351 if (is_quarter_float (inst
.operands
[1].imm
))
20352 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
20354 inst
.operands
[1].imm
= new_imm
;
20355 inst
.operands
[1].immisfloat
= 1;
20359 if (is_quarter_float (inst
.operands
[1].imm
))
20361 inst
.operands
[1].imm
= neon_qfloat_bits (inst
.operands
[1].imm
);
20362 do_vfp_nsyn_opcode (ldconst
);
20364 /* ARMv8.2 fp16 vmov.f16 instruction. */
20366 do_scalar_fp16_v82_encode ();
20369 first_error (_("immediate out of range"));
20373 case NS_RF
: /* case 12 (fmrs). */
20374 do_vfp_nsyn_opcode ("fmrs");
20375 /* ARMv8.2 fp16 vmov.f16 instruction. */
20377 do_scalar_fp16_v82_encode ();
20381 case NS_FR
: /* case 13 (fmsr). */
20382 do_vfp_nsyn_opcode ("fmsr");
20383 /* ARMv8.2 fp16 vmov.f16 instruction. */
20385 do_scalar_fp16_v82_encode ();
20395 /* The encoders for the fmrrs and fmsrr instructions expect three operands
20396 (one of which is a list), but we have parsed four. Do some fiddling to
20397 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
20399 case NS_RRFF
: /* case 14 (fmrrs). */
20400 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
20401 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
20403 constraint (inst
.operands
[3].reg
!= inst
.operands
[2].reg
+ 1,
20404 _("VFP registers must be adjacent"));
20405 inst
.operands
[2].imm
= 2;
20406 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
20407 do_vfp_nsyn_opcode ("fmrrs");
20410 case NS_FFRR
: /* case 15 (fmsrr). */
20411 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
20412 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
20414 constraint (inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
20415 _("VFP registers must be adjacent"));
20416 inst
.operands
[1] = inst
.operands
[2];
20417 inst
.operands
[2] = inst
.operands
[3];
20418 inst
.operands
[0].imm
= 2;
20419 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
20420 do_vfp_nsyn_opcode ("fmsrr");
20424 /* neon_select_shape has determined that the instruction
20425 shape is wrong and has already set the error message. */
20436 if (!(inst
.operands
[0].present
&& inst
.operands
[0].isquad
20437 && inst
.operands
[1].present
&& inst
.operands
[1].isquad
20438 && !inst
.operands
[2].present
))
20440 inst
.instruction
= 0;
20443 set_pred_insn_type (INSIDE_IT_INSN
);
20448 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20451 if (inst
.cond
!= COND_ALWAYS
)
20452 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
20454 struct neon_type_el et
= neon_check_type (2, NS_QQ
, N_EQK
, N_S8
| N_U8
20455 | N_S16
| N_U16
| N_KEY
);
20457 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
20458 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20459 inst
.instruction
|= (neon_logbits (et
.size
) + 1) << 19;
20460 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20461 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
20462 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
20467 do_neon_rshift_round_imm (void)
20469 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
20472 enum neon_shape rs
;
20473 struct neon_type_el et
;
20475 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20477 rs
= neon_select_shape (NS_QQI
, NS_NULL
);
20478 et
= neon_check_type (2, rs
, N_EQK
, N_SU_MVE
| N_KEY
);
20482 rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
20483 et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
20485 int imm
= inst
.operands
[2].imm
;
20487 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
20490 inst
.operands
[2].present
= 0;
20495 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
20496 _("immediate out of range for shift"));
20497 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
20502 do_neon_movhf (void)
20504 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_NULL
);
20505 constraint (rs
!= NS_HH
, _("invalid suffix"));
20507 if (inst
.cond
!= COND_ALWAYS
)
20511 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
20512 " the behaviour is UNPREDICTABLE"));
20516 inst
.error
= BAD_COND
;
20521 do_vfp_sp_monadic ();
20524 inst
.instruction
|= 0xf0000000;
20528 do_neon_movl (void)
20530 struct neon_type_el et
= neon_check_type (2, NS_QD
,
20531 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
20532 unsigned sizebits
= et
.size
>> 3;
20533 inst
.instruction
|= sizebits
<< 19;
20534 neon_two_same (0, et
.type
== NT_unsigned
, -1);
20540 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
20541 struct neon_type_el et
= neon_check_type (2, rs
,
20542 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
20543 NEON_ENCODE (INTEGER
, inst
);
20544 neon_two_same (neon_quad (rs
), 1, et
.size
);
20548 do_neon_zip_uzp (void)
20550 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
20551 struct neon_type_el et
= neon_check_type (2, rs
,
20552 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
20553 if (rs
== NS_DD
&& et
.size
== 32)
20555 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20556 inst
.instruction
= N_MNEM_vtrn
;
20560 neon_two_same (neon_quad (rs
), 1, et
.size
);
20564 do_neon_sat_abs_neg (void)
20566 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
20569 enum neon_shape rs
;
20570 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20571 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
20573 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
20574 struct neon_type_el et
= neon_check_type (2, rs
,
20575 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
20576 neon_two_same (neon_quad (rs
), 1, et
.size
);
20580 do_neon_pair_long (void)
20582 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
20583 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
20584 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20585 inst
.instruction
|= (et
.type
== NT_unsigned
) << 7;
20586 neon_two_same (neon_quad (rs
), 1, et
.size
);
20590 do_neon_recip_est (void)
20592 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
20593 struct neon_type_el et
= neon_check_type (2, rs
,
20594 N_EQK
| N_FLT
, N_F_16_32
| N_U32
| N_KEY
);
20595 inst
.instruction
|= (et
.type
== NT_float
) << 8;
20596 neon_two_same (neon_quad (rs
), 1, et
.size
);
20602 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
20605 enum neon_shape rs
;
20606 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20607 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
20609 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
20611 struct neon_type_el et
= neon_check_type (2, rs
,
20612 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
20613 neon_two_same (neon_quad (rs
), 1, et
.size
);
20619 if (!check_simd_pred_availability (FALSE
, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
20622 enum neon_shape rs
;
20623 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20624 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
20626 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
20628 struct neon_type_el et
= neon_check_type (2, rs
,
20629 N_EQK
, N_I8
| N_I16
| N_I32
| N_KEY
);
20630 neon_two_same (neon_quad (rs
), 1, et
.size
);
20636 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
20637 struct neon_type_el et
= neon_check_type (2, rs
,
20638 N_EQK
| N_INT
, N_8
| N_KEY
);
20639 neon_two_same (neon_quad (rs
), 1, et
.size
);
20645 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
20646 neon_two_same (neon_quad (rs
), 1, -1);
20650 do_neon_tbl_tbx (void)
20652 unsigned listlenbits
;
20653 neon_check_type (3, NS_DLD
, N_EQK
, N_EQK
, N_8
| N_KEY
);
20655 if (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 4)
20657 first_error (_("bad list length for table lookup"));
20661 listlenbits
= inst
.operands
[1].imm
- 1;
20662 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20663 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20664 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
20665 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
20666 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
20667 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
20668 inst
.instruction
|= listlenbits
<< 8;
20670 neon_dp_fixup (&inst
);
20674 do_neon_ldm_stm (void)
20676 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
20677 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
20679 /* P, U and L bits are part of bitmask. */
20680 int is_dbmode
= (inst
.instruction
& (1 << 24)) != 0;
20681 unsigned offsetbits
= inst
.operands
[1].imm
* 2;
20683 if (inst
.operands
[1].issingle
)
20685 do_vfp_nsyn_ldm_stm (is_dbmode
);
20689 constraint (is_dbmode
&& !inst
.operands
[0].writeback
,
20690 _("writeback (!) must be used for VLDMDB and VSTMDB"));
20692 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
20693 _("register list must contain at least 1 and at most 16 "
20696 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
20697 inst
.instruction
|= inst
.operands
[0].writeback
<< 21;
20698 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
20699 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 22;
20701 inst
.instruction
|= offsetbits
;
20703 do_vfp_cond_or_thumb ();
20707 do_vfp_nsyn_pop (void)
20710 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)) {
20711 return do_vfp_nsyn_opcode ("vldm");
20714 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
),
20717 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
20718 _("register list must contain at least 1 and at most 16 "
20721 if (inst
.operands
[1].issingle
)
20722 do_vfp_nsyn_opcode ("fldmias");
20724 do_vfp_nsyn_opcode ("fldmiad");
20728 do_vfp_nsyn_push (void)
20731 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)) {
20732 return do_vfp_nsyn_opcode ("vstmdb");
20735 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
),
20738 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
20739 _("register list must contain at least 1 and at most 16 "
20742 if (inst
.operands
[1].issingle
)
20743 do_vfp_nsyn_opcode ("fstmdbs");
20745 do_vfp_nsyn_opcode ("fstmdbd");
20750 do_neon_ldr_str (void)
20752 int is_ldr
= (inst
.instruction
& (1 << 20)) != 0;
20754 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20755 And is UNPREDICTABLE in thumb mode. */
20757 && inst
.operands
[1].reg
== REG_PC
20758 && (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
) || thumb_mode
))
20761 inst
.error
= _("Use of PC here is UNPREDICTABLE");
20762 else if (warn_on_deprecated
)
20763 as_tsktsk (_("Use of PC here is deprecated"));
20766 if (inst
.operands
[0].issingle
)
20769 do_vfp_nsyn_opcode ("flds");
20771 do_vfp_nsyn_opcode ("fsts");
20773 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20774 if (inst
.vectype
.el
[0].size
== 16)
20775 do_scalar_fp16_v82_encode ();
20780 do_vfp_nsyn_opcode ("fldd");
20782 do_vfp_nsyn_opcode ("fstd");
20787 do_t_vldr_vstr_sysreg (void)
20789 int fp_vldr_bitno
= 20, sysreg_vldr_bitno
= 20;
20790 bfd_boolean is_vldr
= ((inst
.instruction
& (1 << fp_vldr_bitno
)) != 0);
20792 /* Use of PC is UNPREDICTABLE. */
20793 if (inst
.operands
[1].reg
== REG_PC
)
20794 inst
.error
= _("Use of PC here is UNPREDICTABLE");
20796 if (inst
.operands
[1].immisreg
)
20797 inst
.error
= _("instruction does not accept register index");
20799 if (!inst
.operands
[1].isreg
)
20800 inst
.error
= _("instruction does not accept PC-relative addressing");
20802 if (abs (inst
.operands
[1].imm
) >= (1 << 7))
20803 inst
.error
= _("immediate value out of range");
20805 inst
.instruction
= 0xec000f80;
20807 inst
.instruction
|= 1 << sysreg_vldr_bitno
;
20808 encode_arm_cp_address (1, TRUE
, FALSE
, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
);
20809 inst
.instruction
|= (inst
.operands
[0].imm
& 0x7) << 13;
20810 inst
.instruction
|= (inst
.operands
[0].imm
& 0x8) << 19;
20814 do_vldr_vstr (void)
20816 bfd_boolean sysreg_op
= !inst
.operands
[0].isreg
;
20818 /* VLDR/VSTR (System Register). */
20821 if (!mark_feature_used (&arm_ext_v8_1m_main
))
20822 as_bad (_("Instruction not permitted on this architecture"));
20824 do_t_vldr_vstr_sysreg ();
20829 if (!mark_feature_used (&fpu_vfp_ext_v1xd
)
20830 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20831 as_bad (_("Instruction not permitted on this architecture"));
20832 do_neon_ldr_str ();
20836 /* "interleave" version also handles non-interleaving register VLD1/VST1
20840 do_neon_ld_st_interleave (void)
20842 struct neon_type_el et
= neon_check_type (1, NS_NULL
,
20843 N_8
| N_16
| N_32
| N_64
);
20844 unsigned alignbits
= 0;
20846 /* The bits in this table go:
20847 0: register stride of one (0) or two (1)
20848 1,2: register list length, minus one (1, 2, 3, 4).
20849 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20850 We use -1 for invalid entries. */
20851 const int typetable
[] =
20853 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20854 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20855 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20856 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20860 if (et
.type
== NT_invtype
)
20863 if (inst
.operands
[1].immisalign
)
20864 switch (inst
.operands
[1].imm
>> 8)
20866 case 64: alignbits
= 1; break;
20868 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2
20869 && NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
20870 goto bad_alignment
;
20874 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
20875 goto bad_alignment
;
20880 first_error (_("bad alignment"));
20884 inst
.instruction
|= alignbits
<< 4;
20885 inst
.instruction
|= neon_logbits (et
.size
) << 6;
20887 /* Bits [4:6] of the immediate in a list specifier encode register stride
20888 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20889 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20890 up the right value for "type" in a table based on this value and the given
20891 list style, then stick it back. */
20892 idx
= ((inst
.operands
[0].imm
>> 4) & 7)
20893 | (((inst
.instruction
>> 8) & 3) << 3);
20895 typebits
= typetable
[idx
];
20897 constraint (typebits
== -1, _("bad list type for instruction"));
20898 constraint (((inst
.instruction
>> 8) & 3) && et
.size
== 64,
20901 inst
.instruction
&= ~0xf00;
20902 inst
.instruction
|= typebits
<< 8;
20905 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20906 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20907 otherwise. The variable arguments are a list of pairs of legal (size, align)
20908 values, terminated with -1. */
20911 neon_alignment_bit (int size
, int align
, int *do_alignment
, ...)
20914 int result
= FAIL
, thissize
, thisalign
;
20916 if (!inst
.operands
[1].immisalign
)
20922 va_start (ap
, do_alignment
);
20926 thissize
= va_arg (ap
, int);
20927 if (thissize
== -1)
20929 thisalign
= va_arg (ap
, int);
20931 if (size
== thissize
&& align
== thisalign
)
20934 while (result
!= SUCCESS
);
20938 if (result
== SUCCESS
)
20941 first_error (_("unsupported alignment for instruction"));
20947 do_neon_ld_st_lane (void)
20949 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
20950 int align_good
, do_alignment
= 0;
20951 int logsize
= neon_logbits (et
.size
);
20952 int align
= inst
.operands
[1].imm
>> 8;
20953 int n
= (inst
.instruction
>> 8) & 3;
20954 int max_el
= 64 / et
.size
;
20956 if (et
.type
== NT_invtype
)
20959 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != n
+ 1,
20960 _("bad list length"));
20961 constraint (NEON_LANE (inst
.operands
[0].imm
) >= max_el
,
20962 _("scalar index out of range"));
20963 constraint (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2
20965 _("stride of 2 unavailable when element size is 8"));
20969 case 0: /* VLD1 / VST1. */
20970 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 16, 16,
20972 if (align_good
== FAIL
)
20976 unsigned alignbits
= 0;
20979 case 16: alignbits
= 0x1; break;
20980 case 32: alignbits
= 0x3; break;
20983 inst
.instruction
|= alignbits
<< 4;
20987 case 1: /* VLD2 / VST2. */
20988 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 16,
20989 16, 32, 32, 64, -1);
20990 if (align_good
== FAIL
)
20993 inst
.instruction
|= 1 << 4;
20996 case 2: /* VLD3 / VST3. */
20997 constraint (inst
.operands
[1].immisalign
,
20998 _("can't use alignment with this instruction"));
21001 case 3: /* VLD4 / VST4. */
21002 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 32,
21003 16, 64, 32, 64, 32, 128, -1);
21004 if (align_good
== FAIL
)
21008 unsigned alignbits
= 0;
21011 case 8: alignbits
= 0x1; break;
21012 case 16: alignbits
= 0x1; break;
21013 case 32: alignbits
= (align
== 64) ? 0x1 : 0x2; break;
21016 inst
.instruction
|= alignbits
<< 4;
21023 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
21024 if (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
21025 inst
.instruction
|= 1 << (4 + logsize
);
21027 inst
.instruction
|= NEON_LANE (inst
.operands
[0].imm
) << (logsize
+ 5);
21028 inst
.instruction
|= logsize
<< 10;
21031 /* Encode single n-element structure to all lanes VLD<n> instructions. */
21034 do_neon_ld_dup (void)
21036 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
21037 int align_good
, do_alignment
= 0;
21039 if (et
.type
== NT_invtype
)
21042 switch ((inst
.instruction
>> 8) & 3)
21044 case 0: /* VLD1. */
21045 gas_assert (NEON_REG_STRIDE (inst
.operands
[0].imm
) != 2);
21046 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
21047 &do_alignment
, 16, 16, 32, 32, -1);
21048 if (align_good
== FAIL
)
21050 switch (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
))
21053 case 2: inst
.instruction
|= 1 << 5; break;
21054 default: first_error (_("bad list length")); return;
21056 inst
.instruction
|= neon_logbits (et
.size
) << 6;
21059 case 1: /* VLD2. */
21060 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
21061 &do_alignment
, 8, 16, 16, 32, 32, 64,
21063 if (align_good
== FAIL
)
21065 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2,
21066 _("bad list length"));
21067 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
21068 inst
.instruction
|= 1 << 5;
21069 inst
.instruction
|= neon_logbits (et
.size
) << 6;
21072 case 2: /* VLD3. */
21073 constraint (inst
.operands
[1].immisalign
,
21074 _("can't use alignment with this instruction"));
21075 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 3,
21076 _("bad list length"));
21077 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
21078 inst
.instruction
|= 1 << 5;
21079 inst
.instruction
|= neon_logbits (et
.size
) << 6;
21082 case 3: /* VLD4. */
21084 int align
= inst
.operands
[1].imm
>> 8;
21085 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 32,
21086 16, 64, 32, 64, 32, 128, -1);
21087 if (align_good
== FAIL
)
21089 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4,
21090 _("bad list length"));
21091 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
21092 inst
.instruction
|= 1 << 5;
21093 if (et
.size
== 32 && align
== 128)
21094 inst
.instruction
|= 0x3 << 6;
21096 inst
.instruction
|= neon_logbits (et
.size
) << 6;
21103 inst
.instruction
|= do_alignment
<< 4;
21106 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
21107 apart from bits [11:4]. */
21110 do_neon_ldx_stx (void)
21112 if (inst
.operands
[1].isreg
)
21113 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
21115 switch (NEON_LANE (inst
.operands
[0].imm
))
21117 case NEON_INTERLEAVE_LANES
:
21118 NEON_ENCODE (INTERLV
, inst
);
21119 do_neon_ld_st_interleave ();
21122 case NEON_ALL_LANES
:
21123 NEON_ENCODE (DUP
, inst
);
21124 if (inst
.instruction
== N_INV
)
21126 first_error ("only loads support such operands");
21133 NEON_ENCODE (LANE
, inst
);
21134 do_neon_ld_st_lane ();
21137 /* L bit comes from bit mask. */
21138 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
21139 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
21140 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
21142 if (inst
.operands
[1].postind
)
21144 int postreg
= inst
.operands
[1].imm
& 0xf;
21145 constraint (!inst
.operands
[1].immisreg
,
21146 _("post-index must be a register"));
21147 constraint (postreg
== 0xd || postreg
== 0xf,
21148 _("bad register for post-index"));
21149 inst
.instruction
|= postreg
;
21153 constraint (inst
.operands
[1].immisreg
, BAD_ADDR_MODE
);
21154 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
21155 || inst
.relocs
[0].exp
.X_add_number
!= 0,
21158 if (inst
.operands
[1].writeback
)
21160 inst
.instruction
|= 0xd;
21163 inst
.instruction
|= 0xf;
21167 inst
.instruction
|= 0xf9000000;
21169 inst
.instruction
|= 0xf4000000;
21174 do_vfp_nsyn_fpv8 (enum neon_shape rs
)
21176 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21177 D register operands. */
21178 if (neon_shape_class
[rs
] == SC_DOUBLE
)
21179 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
21182 NEON_ENCODE (FPV8
, inst
);
21184 if (rs
== NS_FFF
|| rs
== NS_HHH
)
21186 do_vfp_sp_dyadic ();
21188 /* ARMv8.2 fp16 instruction. */
21190 do_scalar_fp16_v82_encode ();
21193 do_vfp_dp_rd_rn_rm ();
21196 inst
.instruction
|= 0x100;
21198 inst
.instruction
|= 0xf0000000;
21204 set_pred_insn_type (OUTSIDE_PRED_INSN
);
21206 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8
) != SUCCESS
)
21207 first_error (_("invalid instruction shape"));
21213 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
21214 set_pred_insn_type (OUTSIDE_PRED_INSN
);
21216 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8
) == SUCCESS
)
21219 if (!check_simd_pred_availability (TRUE
, NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
21222 neon_dyadic_misc (NT_untyped
, N_F_16_32
, 0);
21226 do_vrint_1 (enum neon_cvt_mode mode
)
21228 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_QQ
, NS_NULL
);
21229 struct neon_type_el et
;
21234 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21235 D register operands. */
21236 if (neon_shape_class
[rs
] == SC_DOUBLE
)
21237 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
21240 et
= neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
21242 if (et
.type
!= NT_invtype
)
21244 /* VFP encodings. */
21245 if (mode
== neon_cvt_mode_a
|| mode
== neon_cvt_mode_n
21246 || mode
== neon_cvt_mode_p
|| mode
== neon_cvt_mode_m
)
21247 set_pred_insn_type (OUTSIDE_PRED_INSN
);
21249 NEON_ENCODE (FPV8
, inst
);
21250 if (rs
== NS_FF
|| rs
== NS_HH
)
21251 do_vfp_sp_monadic ();
21253 do_vfp_dp_rd_rm ();
21257 case neon_cvt_mode_r
: inst
.instruction
|= 0x00000000; break;
21258 case neon_cvt_mode_z
: inst
.instruction
|= 0x00000080; break;
21259 case neon_cvt_mode_x
: inst
.instruction
|= 0x00010000; break;
21260 case neon_cvt_mode_a
: inst
.instruction
|= 0xf0000000; break;
21261 case neon_cvt_mode_n
: inst
.instruction
|= 0xf0010000; break;
21262 case neon_cvt_mode_p
: inst
.instruction
|= 0xf0020000; break;
21263 case neon_cvt_mode_m
: inst
.instruction
|= 0xf0030000; break;
21267 inst
.instruction
|= (rs
== NS_DD
) << 8;
21268 do_vfp_cond_or_thumb ();
21270 /* ARMv8.2 fp16 vrint instruction. */
21272 do_scalar_fp16_v82_encode ();
21276 /* Neon encodings (or something broken...). */
21278 et
= neon_check_type (2, rs
, N_EQK
, N_F_16_32
| N_KEY
);
21280 if (et
.type
== NT_invtype
)
21283 if (!check_simd_pred_availability (TRUE
,
21284 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
21287 NEON_ENCODE (FLOAT
, inst
);
21289 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
21290 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
21291 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
21292 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
21293 inst
.instruction
|= neon_quad (rs
) << 6;
21294 /* Mask off the original size bits and reencode them. */
21295 inst
.instruction
= ((inst
.instruction
& 0xfff3ffff)
21296 | neon_logbits (et
.size
) << 18);
21300 case neon_cvt_mode_z
: inst
.instruction
|= 3 << 7; break;
21301 case neon_cvt_mode_x
: inst
.instruction
|= 1 << 7; break;
21302 case neon_cvt_mode_a
: inst
.instruction
|= 2 << 7; break;
21303 case neon_cvt_mode_n
: inst
.instruction
|= 0 << 7; break;
21304 case neon_cvt_mode_p
: inst
.instruction
|= 7 << 7; break;
21305 case neon_cvt_mode_m
: inst
.instruction
|= 5 << 7; break;
21306 case neon_cvt_mode_r
: inst
.error
= _("invalid rounding mode"); break;
21311 inst
.instruction
|= 0xfc000000;
21313 inst
.instruction
|= 0xf0000000;
21320 do_vrint_1 (neon_cvt_mode_x
);
21326 do_vrint_1 (neon_cvt_mode_z
);
21332 do_vrint_1 (neon_cvt_mode_r
);
21338 do_vrint_1 (neon_cvt_mode_a
);
21344 do_vrint_1 (neon_cvt_mode_n
);
21350 do_vrint_1 (neon_cvt_mode_p
);
21356 do_vrint_1 (neon_cvt_mode_m
);
21360 neon_scalar_for_vcmla (unsigned opnd
, unsigned elsize
)
21362 unsigned regno
= NEON_SCALAR_REG (opnd
);
21363 unsigned elno
= NEON_SCALAR_INDEX (opnd
);
21365 if (elsize
== 16 && elno
< 2 && regno
< 16)
21366 return regno
| (elno
<< 4);
21367 else if (elsize
== 32 && elno
== 0)
21370 first_error (_("scalar out of range"));
21377 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
)
21378 && (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
)
21379 || !mark_feature_used (&arm_ext_v8_3
)), (BAD_FPU
));
21380 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
21381 _("expression too complex"));
21382 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
21383 constraint (rot
!= 0 && rot
!= 90 && rot
!= 180 && rot
!= 270,
21384 _("immediate out of range"));
21387 if (!check_simd_pred_availability (TRUE
,
21388 NEON_CHECK_ARCH8
| NEON_CHECK_CC
))
21391 if (inst
.operands
[2].isscalar
)
21393 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
21394 first_error (_("invalid instruction shape"));
21395 enum neon_shape rs
= neon_select_shape (NS_DDSI
, NS_QQSI
, NS_NULL
);
21396 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
21397 N_KEY
| N_F16
| N_F32
).size
;
21398 unsigned m
= neon_scalar_for_vcmla (inst
.operands
[2].reg
, size
);
21400 inst
.instruction
= 0xfe000800;
21401 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
21402 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
21403 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
21404 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
21405 inst
.instruction
|= LOW4 (m
);
21406 inst
.instruction
|= HI1 (m
) << 5;
21407 inst
.instruction
|= neon_quad (rs
) << 6;
21408 inst
.instruction
|= rot
<< 20;
21409 inst
.instruction
|= (size
== 32) << 23;
21413 enum neon_shape rs
;
21414 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
21415 rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
21417 rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
21419 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
21420 N_KEY
| N_F16
| N_F32
).size
;
21421 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
) && size
== 32
21422 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
21423 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
21424 as_tsktsk (BAD_MVE_SRCDEST
);
21426 neon_three_same (neon_quad (rs
), 0, -1);
21427 inst
.instruction
&= 0x00ffffff; /* Undo neon_dp_fixup. */
21428 inst
.instruction
|= 0xfc200800;
21429 inst
.instruction
|= rot
<< 23;
21430 inst
.instruction
|= (size
== 32) << 20;
21437 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
21438 && (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
)
21439 || !mark_feature_used (&arm_ext_v8_3
)), (BAD_FPU
));
21440 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
21441 _("expression too complex"));
21443 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
21444 constraint (rot
!= 90 && rot
!= 270, _("immediate out of range"));
21445 enum neon_shape rs
;
21446 struct neon_type_el et
;
21447 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
21449 rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
21450 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_F16
| N_F32
);
21454 rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
21455 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_F16
| N_F32
| N_I8
21457 if (et
.size
== 32 && inst
.operands
[0].reg
== inst
.operands
[2].reg
)
21458 as_tsktsk (_("Warning: 32-bit element size and same first and third "
21459 "operand makes instruction UNPREDICTABLE"));
21462 if (et
.type
== NT_invtype
)
21465 if (!check_simd_pred_availability (et
.type
== NT_float
,
21466 NEON_CHECK_ARCH8
| NEON_CHECK_CC
))
21469 if (et
.type
== NT_float
)
21471 neon_three_same (neon_quad (rs
), 0, -1);
21472 inst
.instruction
&= 0x00ffffff; /* Undo neon_dp_fixup. */
21473 inst
.instruction
|= 0xfc800800;
21474 inst
.instruction
|= (rot
== 270) << 24;
21475 inst
.instruction
|= (et
.size
== 32) << 20;
21479 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
21480 inst
.instruction
= 0xfe000f00;
21481 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
21482 inst
.instruction
|= neon_logbits (et
.size
) << 20;
21483 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
21484 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
21485 inst
.instruction
|= (rot
== 270) << 12;
21486 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
21487 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
21488 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
21493 /* Dot Product instructions encoding support. */
21496 do_neon_dotproduct (int unsigned_p
)
21498 enum neon_shape rs
;
21499 unsigned scalar_oprd2
= 0;
21502 if (inst
.cond
!= COND_ALWAYS
)
21503 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
21504 "is UNPREDICTABLE"));
21506 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
21509 /* Dot Product instructions are in three-same D/Q register format or the third
21510 operand can be a scalar index register. */
21511 if (inst
.operands
[2].isscalar
)
21513 scalar_oprd2
= neon_scalar_for_mul (inst
.operands
[2].reg
, 32);
21514 high8
= 0xfe000000;
21515 rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
21519 high8
= 0xfc000000;
21520 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
21524 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_U8
);
21526 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_S8
);
21528 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
21529 Product instruction, so we pass 0 as the "ubit" parameter. And the
21530 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
21531 neon_three_same (neon_quad (rs
), 0, 32);
21533 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
21534 different NEON three-same encoding. */
21535 inst
.instruction
&= 0x00ffffff;
21536 inst
.instruction
|= high8
;
21537 /* Encode 'U' bit which indicates signedness. */
21538 inst
.instruction
|= (unsigned_p
? 1 : 0) << 4;
21539 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
21540 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
21541 the instruction encoding. */
21542 if (inst
.operands
[2].isscalar
)
21544 inst
.instruction
&= 0xffffffd0;
21545 inst
.instruction
|= LOW4 (scalar_oprd2
);
21546 inst
.instruction
|= HI1 (scalar_oprd2
) << 5;
21550 /* Dot Product instructions for signed integer. */
21553 do_neon_dotproduct_s (void)
21555 return do_neon_dotproduct (0);
21558 /* Dot Product instructions for unsigned integer. */
21561 do_neon_dotproduct_u (void)
21563 return do_neon_dotproduct (1);
21569 enum neon_shape rs
;
21570 set_pred_insn_type (OUTSIDE_PRED_INSN
);
21571 if (inst
.operands
[2].isscalar
)
21573 rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
21574 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S8
| N_KEY
);
21576 inst
.instruction
|= (1 << 25);
21577 int index
= inst
.operands
[2].reg
& 0xf;
21578 constraint ((index
!= 1 && index
!= 0), _("index must be 0 or 1"));
21579 inst
.operands
[2].reg
>>= 4;
21580 constraint (!(inst
.operands
[2].reg
< 16),
21581 _("indexed register must be less than 16"));
21582 neon_three_args (rs
== NS_QQS
);
21583 inst
.instruction
|= (index
<< 5);
21587 inst
.instruction
|= (1 << 21);
21588 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
21589 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S8
| N_KEY
);
21590 neon_three_args (rs
== NS_QQQ
);
21597 enum neon_shape rs
;
21598 set_pred_insn_type (OUTSIDE_PRED_INSN
);
21599 if (inst
.operands
[2].isscalar
)
21601 rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
21602 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_U8
| N_KEY
);
21604 inst
.instruction
|= (1 << 25);
21605 int index
= inst
.operands
[2].reg
& 0xf;
21606 constraint ((index
!= 1 && index
!= 0), _("index must be 0 or 1"));
21607 inst
.operands
[2].reg
>>= 4;
21608 constraint (!(inst
.operands
[2].reg
< 16),
21609 _("indexed register must be less than 16"));
21610 neon_three_args (rs
== NS_QQS
);
21611 inst
.instruction
|= (index
<< 5);
21618 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
21619 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S8
| N_KEY
);
21621 set_pred_insn_type (OUTSIDE_PRED_INSN
);
21623 neon_three_args (1);
21630 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
21631 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_U8
| N_KEY
);
21633 set_pred_insn_type (OUTSIDE_PRED_INSN
);
21635 neon_three_args (1);
21640 check_cde_operand (size_t index
, int is_dual
)
21642 unsigned Rx
= inst
.operands
[index
].reg
;
21643 bfd_boolean isvec
= inst
.operands
[index
].isvec
;
21644 if (is_dual
== 0 && thumb_mode
)
21646 !((Rx
<= 14 && Rx
!= 13) || (Rx
== REG_PC
&& isvec
)),
21647 _("Register must be r0-r14 except r13, or APSR_nzcv."));
21649 constraint ( !((Rx
<= 10 && Rx
% 2 == 0 )),
21650 _("Register must be an even register between r0-r10."));
21654 cde_coproc_enabled (unsigned coproc
)
21658 case 0: return mark_feature_used (&arm_ext_cde0
);
21659 case 1: return mark_feature_used (&arm_ext_cde1
);
21660 case 2: return mark_feature_used (&arm_ext_cde2
);
21661 case 3: return mark_feature_used (&arm_ext_cde3
);
21662 case 4: return mark_feature_used (&arm_ext_cde4
);
21663 case 5: return mark_feature_used (&arm_ext_cde5
);
21664 case 6: return mark_feature_used (&arm_ext_cde6
);
21665 case 7: return mark_feature_used (&arm_ext_cde7
);
21666 default: return FALSE
;
21670 #define cde_coproc_pos 8
21672 cde_handle_coproc (void)
21674 unsigned coproc
= inst
.operands
[0].reg
;
21675 constraint (coproc
> 7, _("CDE Coprocessor must be in range 0-7"));
21676 constraint (!(cde_coproc_enabled (coproc
)), BAD_CDE_COPROC
);
21677 inst
.instruction
|= coproc
<< cde_coproc_pos
;
21679 #undef cde_coproc_pos
21682 cxn_handle_predication (bfd_boolean is_accum
)
21684 if (is_accum
&& conditional_insn ())
21685 set_pred_insn_type (INSIDE_IT_INSN
);
21686 else if (conditional_insn ())
21687 /* conditional_insn essentially checks for a suffix, not whether the
21688 instruction is inside an IT block or not.
21689 The non-accumulator versions should not have suffixes. */
21690 inst
.error
= BAD_SYNTAX
;
21692 set_pred_insn_type (OUTSIDE_PRED_INSN
);
21696 do_custom_instruction_1 (int is_dual
, bfd_boolean is_accum
)
21699 constraint (!mark_feature_used (&arm_ext_cde
), _(BAD_CDE
));
21703 Rd
= inst
.operands
[1].reg
;
21704 check_cde_operand (1, is_dual
);
21708 constraint (inst
.operands
[2].reg
!= Rd
+ 1,
21709 _("cx1d requires consecutive destination registers."));
21710 imm
= inst
.operands
[3].imm
;
21712 else if (is_dual
== 0)
21713 imm
= inst
.operands
[2].imm
;
21717 inst
.instruction
|= Rd
<< 12;
21718 inst
.instruction
|= (imm
& 0x1F80) << 9;
21719 inst
.instruction
|= (imm
& 0x0040) << 1;
21720 inst
.instruction
|= (imm
& 0x003f);
21722 cde_handle_coproc ();
21723 cxn_handle_predication (is_accum
);
21727 do_custom_instruction_2 (int is_dual
, bfd_boolean is_accum
)
21730 constraint (!mark_feature_used (&arm_ext_cde
), _(BAD_CDE
));
21732 unsigned imm
, Rd
, Rn
;
21734 Rd
= inst
.operands
[1].reg
;
21738 constraint (inst
.operands
[2].reg
!= Rd
+ 1,
21739 _("cx2d requires consecutive destination registers."));
21740 imm
= inst
.operands
[4].imm
;
21741 Rn
= inst
.operands
[3].reg
;
21743 else if (is_dual
== 0)
21745 imm
= inst
.operands
[3].imm
;
21746 Rn
= inst
.operands
[2].reg
;
21751 check_cde_operand (2 + is_dual
, /* is_dual = */0);
21752 check_cde_operand (1, is_dual
);
21754 inst
.instruction
|= Rd
<< 12;
21755 inst
.instruction
|= Rn
<< 16;
21757 inst
.instruction
|= (imm
& 0x0380) << 13;
21758 inst
.instruction
|= (imm
& 0x0040) << 1;
21759 inst
.instruction
|= (imm
& 0x003f);
21761 cde_handle_coproc ();
21762 cxn_handle_predication (is_accum
);
21766 do_custom_instruction_3 (int is_dual
, bfd_boolean is_accum
)
21769 constraint (!mark_feature_used (&arm_ext_cde
), _(BAD_CDE
));
21771 unsigned imm
, Rd
, Rn
, Rm
;
21773 Rd
= inst
.operands
[1].reg
;
21777 constraint (inst
.operands
[2].reg
!= Rd
+ 1,
21778 _("cx3d requires consecutive destination registers."));
21779 imm
= inst
.operands
[5].imm
;
21780 Rn
= inst
.operands
[3].reg
;
21781 Rm
= inst
.operands
[4].reg
;
21783 else if (is_dual
== 0)
21785 imm
= inst
.operands
[4].imm
;
21786 Rn
= inst
.operands
[2].reg
;
21787 Rm
= inst
.operands
[3].reg
;
21792 check_cde_operand (1, is_dual
);
21793 check_cde_operand (2 + is_dual
, /* is_dual = */0);
21794 check_cde_operand (3 + is_dual
, /* is_dual = */0);
21796 inst
.instruction
|= Rd
;
21797 inst
.instruction
|= Rn
<< 16;
21798 inst
.instruction
|= Rm
<< 12;
21800 inst
.instruction
|= (imm
& 0x0038) << 17;
21801 inst
.instruction
|= (imm
& 0x0004) << 5;
21802 inst
.instruction
|= (imm
& 0x0003) << 4;
21804 cde_handle_coproc ();
21805 cxn_handle_predication (is_accum
);
21811 return do_custom_instruction_1 (0, 0);
21817 return do_custom_instruction_1 (0, 1);
21823 return do_custom_instruction_1 (1, 0);
21829 return do_custom_instruction_1 (1, 1);
21835 return do_custom_instruction_2 (0, 0);
21841 return do_custom_instruction_2 (0, 1);
21847 return do_custom_instruction_2 (1, 0);
21853 return do_custom_instruction_2 (1, 1);
21859 return do_custom_instruction_3 (0, 0);
21865 return do_custom_instruction_3 (0, 1);
21871 return do_custom_instruction_3 (1, 0);
21877 return do_custom_instruction_3 (1, 1);
21881 vcx_assign_vec_d (unsigned regnum
)
21883 inst
.instruction
|= HI4 (regnum
) << 12;
21884 inst
.instruction
|= LOW1 (regnum
) << 22;
21888 vcx_assign_vec_m (unsigned regnum
)
21890 inst
.instruction
|= HI4 (regnum
);
21891 inst
.instruction
|= LOW1 (regnum
) << 5;
21895 vcx_assign_vec_n (unsigned regnum
)
21897 inst
.instruction
|= HI4 (regnum
) << 16;
21898 inst
.instruction
|= LOW1 (regnum
) << 7;
21901 enum vcx_reg_type
{
21907 static enum vcx_reg_type
21908 vcx_get_reg_type (enum neon_shape ns
)
21910 gas_assert (ns
== NS_PQI
21918 || ns
== NS_PFFFI
);
21919 if (ns
== NS_PQI
|| ns
== NS_PQQI
|| ns
== NS_PQQQI
)
21921 if (ns
== NS_PDI
|| ns
== NS_PDDI
|| ns
== NS_PDDDI
)
21926 #define vcx_size_pos 24
21927 #define vcx_vec_pos 6
21929 vcx_handle_shape (enum vcx_reg_type reg_type
)
21932 if (reg_type
== q_reg
)
21933 inst
.instruction
|= 1 << vcx_vec_pos
;
21934 else if (reg_type
== d_reg
)
21935 inst
.instruction
|= 1 << vcx_size_pos
;
21939 The documentation says that the Q registers are encoded as 2*N in the D:Vd
21940 bits (or equivalent for N and M registers).
21941 Similarly the D registers are encoded as N in D:Vd bits.
21942 While the S registers are encoded as N in the Vd:D bits.
21944 Taking into account the maximum values of these registers we can see a
21945 nicer pattern for calculation:
21946 Q -> 7, D -> 15, S -> 31
21948 If we say that everything is encoded in the Vd:D bits, then we can say
21949 that Q is encoded as 4*N, and D is encoded as 2*N.
21950 This way the bits will end up the same, and calculation is simpler.
21951 (calculation is now:
21952 1. Multiply by a number determined by the register letter.
21953 2. Encode resulting number in Vd:D bits.)
21955 This is made a little more complicated by automatic handling of 'Q'
21956 registers elsewhere, which means the register number is already 2*N where
21957 N is the number the user wrote after the register letter.
21962 #undef vcx_size_pos
21965 vcx_ensure_register_in_range (unsigned R
, enum vcx_reg_type reg_type
)
21967 if (reg_type
== q_reg
)
21969 gas_assert (R
% 2 == 0);
21970 constraint (R
>= 16, _("'q' register must be in range 0-7"));
21972 else if (reg_type
== d_reg
)
21973 constraint (R
>= 16, _("'d' register must be in range 0-15"));
21975 constraint (R
>= 32, _("'s' register must be in range 0-31"));
21978 static void (*vcx_assign_vec
[3]) (unsigned) = {
21985 vcx_handle_register_arguments (unsigned num_registers
,
21986 enum vcx_reg_type reg_type
)
21989 unsigned reg_mult
= vcx_handle_shape (reg_type
);
21990 for (i
= 0; i
< num_registers
; i
++)
21992 R
= inst
.operands
[i
+1].reg
;
21993 vcx_ensure_register_in_range (R
, reg_type
);
21994 if (num_registers
== 3 && i
> 0)
21997 vcx_assign_vec
[1] (R
* reg_mult
);
21999 vcx_assign_vec
[2] (R
* reg_mult
);
22002 vcx_assign_vec
[i
](R
* reg_mult
);
22007 vcx_handle_insn_block (enum vcx_reg_type reg_type
)
22009 if (reg_type
== q_reg
)
22010 if (inst
.cond
> COND_ALWAYS
)
22011 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
22013 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
22014 else if (inst
.cond
== COND_ALWAYS
)
22015 inst
.pred_insn_type
= OUTSIDE_PRED_INSN
;
22017 inst
.error
= BAD_NOT_IT
;
22021 vcx_handle_common_checks (unsigned num_args
, enum neon_shape rs
)
22023 constraint (!mark_feature_used (&arm_ext_cde
), _(BAD_CDE
));
22024 cde_handle_coproc ();
22025 enum vcx_reg_type reg_type
= vcx_get_reg_type (rs
);
22026 vcx_handle_register_arguments (num_args
, reg_type
);
22027 vcx_handle_insn_block (reg_type
);
22028 if (reg_type
== q_reg
)
22029 constraint (!mark_feature_used (&mve_ext
),
22030 _("vcx instructions with Q registers require MVE"));
22032 constraint (!(ARM_FSET_CPU_SUBSET (armv8m_fp
, cpu_variant
)
22033 && mark_feature_used (&armv8m_fp
))
22034 && !mark_feature_used (&mve_ext
),
22035 _("vcx instructions with S or D registers require either MVE"
22036 " or Armv8-M floating point etension."));
22042 enum neon_shape rs
= neon_select_shape (NS_PQI
, NS_PDI
, NS_PFI
, NS_NULL
);
22043 vcx_handle_common_checks (1, rs
);
22045 unsigned imm
= inst
.operands
[2].imm
;
22046 inst
.instruction
|= (imm
& 0x03f);
22047 inst
.instruction
|= (imm
& 0x040) << 1;
22048 inst
.instruction
|= (imm
& 0x780) << 9;
22050 constraint (imm
>= 2048,
22051 _("vcx1 with S or D registers takes immediate within 0-2047"));
22052 inst
.instruction
|= (imm
& 0x800) << 13;
22058 enum neon_shape rs
= neon_select_shape (NS_PQQI
, NS_PDDI
, NS_PFFI
, NS_NULL
);
22059 vcx_handle_common_checks (2, rs
);
22061 unsigned imm
= inst
.operands
[3].imm
;
22062 inst
.instruction
|= (imm
& 0x01) << 4;
22063 inst
.instruction
|= (imm
& 0x02) << 6;
22064 inst
.instruction
|= (imm
& 0x3c) << 14;
22066 constraint (imm
>= 64,
22067 _("vcx2 with S or D registers takes immediate within 0-63"));
22068 inst
.instruction
|= (imm
& 0x40) << 18;
22074 enum neon_shape rs
= neon_select_shape (NS_PQQQI
, NS_PDDDI
, NS_PFFFI
, NS_NULL
);
22075 vcx_handle_common_checks (3, rs
);
22077 unsigned imm
= inst
.operands
[4].imm
;
22078 inst
.instruction
|= (imm
& 0x1) << 4;
22079 inst
.instruction
|= (imm
& 0x6) << 19;
22080 if (rs
!= NS_PQQQI
)
22081 constraint (imm
>= 8,
22082 _("vcx2 with S or D registers takes immediate within 0-7"));
22083 inst
.instruction
|= (imm
& 0x8) << 21;
22086 /* Crypto v1 instructions. */
22088 do_crypto_2op_1 (unsigned elttype
, int op
)
22090 set_pred_insn_type (OUTSIDE_PRED_INSN
);
22092 if (neon_check_type (2, NS_QQ
, N_EQK
| N_UNT
, elttype
| N_UNT
| N_KEY
).type
22098 NEON_ENCODE (INTEGER
, inst
);
22099 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
22100 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
22101 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
22102 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
22104 inst
.instruction
|= op
<< 6;
22107 inst
.instruction
|= 0xfc000000;
22109 inst
.instruction
|= 0xf0000000;
22113 do_crypto_3op_1 (int u
, int op
)
22115 set_pred_insn_type (OUTSIDE_PRED_INSN
);
22117 if (neon_check_type (3, NS_QQQ
, N_EQK
| N_UNT
, N_EQK
| N_UNT
,
22118 N_32
| N_UNT
| N_KEY
).type
== NT_invtype
)
22123 NEON_ENCODE (INTEGER
, inst
);
22124 neon_three_same (1, u
, 8 << op
);
22130 do_crypto_2op_1 (N_8
, 0);
22136 do_crypto_2op_1 (N_8
, 1);
22142 do_crypto_2op_1 (N_8
, 2);
22148 do_crypto_2op_1 (N_8
, 3);
22154 do_crypto_3op_1 (0, 0);
22160 do_crypto_3op_1 (0, 1);
22166 do_crypto_3op_1 (0, 2);
22172 do_crypto_3op_1 (0, 3);
22178 do_crypto_3op_1 (1, 0);
22184 do_crypto_3op_1 (1, 1);
22188 do_sha256su1 (void)
22190 do_crypto_3op_1 (1, 2);
22196 do_crypto_2op_1 (N_32
, -1);
22202 do_crypto_2op_1 (N_32
, 0);
22206 do_sha256su0 (void)
22208 do_crypto_2op_1 (N_32
, 1);
22212 do_crc32_1 (unsigned int poly
, unsigned int sz
)
22214 unsigned int Rd
= inst
.operands
[0].reg
;
22215 unsigned int Rn
= inst
.operands
[1].reg
;
22216 unsigned int Rm
= inst
.operands
[2].reg
;
22218 set_pred_insn_type (OUTSIDE_PRED_INSN
);
22219 inst
.instruction
|= LOW4 (Rd
) << (thumb_mode
? 8 : 12);
22220 inst
.instruction
|= LOW4 (Rn
) << 16;
22221 inst
.instruction
|= LOW4 (Rm
);
22222 inst
.instruction
|= sz
<< (thumb_mode
? 4 : 21);
22223 inst
.instruction
|= poly
<< (thumb_mode
? 20 : 9);
22225 if (Rd
== REG_PC
|| Rn
== REG_PC
|| Rm
== REG_PC
)
22226 as_warn (UNPRED_REG ("r15"));
22268 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
22270 neon_check_type (2, NS_FD
, N_S32
, N_F64
);
22271 do_vfp_sp_dp_cvt ();
22272 do_vfp_cond_or_thumb ();
22278 enum neon_shape rs
;
22279 constraint (!mark_feature_used (&fpu_neon_ext_armv8
), _(BAD_FPU
));
22280 set_pred_insn_type (OUTSIDE_PRED_INSN
);
22281 if (inst
.operands
[2].isscalar
)
22283 rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
22284 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_BF16
| N_KEY
);
22286 inst
.instruction
|= (1 << 25);
22287 int index
= inst
.operands
[2].reg
& 0xf;
22288 constraint ((index
!= 1 && index
!= 0), _("index must be 0 or 1"));
22289 inst
.operands
[2].reg
>>= 4;
22290 constraint (!(inst
.operands
[2].reg
< 16),
22291 _("indexed register must be less than 16"));
22292 neon_three_args (rs
== NS_QQS
);
22293 inst
.instruction
|= (index
<< 5);
22297 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
22298 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_BF16
| N_KEY
);
22299 neon_three_args (rs
== NS_QQQ
);
22306 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
22307 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_BF16
| N_KEY
);
22309 constraint (!mark_feature_used (&fpu_neon_ext_armv8
), _(BAD_FPU
));
22310 set_pred_insn_type (OUTSIDE_PRED_INSN
);
22312 neon_three_args (1);
22316 /* Overall per-instruction processing. */
22318 /* We need to be able to fix up arbitrary expressions in some statements.
22319 This is so that we can handle symbols that are an arbitrary distance from
22320 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
22321 which returns part of an address in a form which will be valid for
22322 a data instruction. We do this by pushing the expression into a symbol
22323 in the expr_section, and creating a fix for that. */
22326 fix_new_arm (fragS
* frag
,
22340 /* Create an absolute valued symbol, so we have something to
22341 refer to in the object file. Unfortunately for us, gas's
22342 generic expression parsing will already have folded out
22343 any use of .set foo/.type foo %function that may have
22344 been used to set type information of the target location,
22345 that's being specified symbolically. We have to presume
22346 the user knows what they are doing. */
22350 sprintf (name
, "*ABS*0x%lx", (unsigned long)exp
->X_add_number
);
22352 symbol
= symbol_find_or_make (name
);
22353 S_SET_SEGMENT (symbol
, absolute_section
);
22354 symbol_set_frag (symbol
, &zero_address_frag
);
22355 S_SET_VALUE (symbol
, exp
->X_add_number
);
22356 exp
->X_op
= O_symbol
;
22357 exp
->X_add_symbol
= symbol
;
22358 exp
->X_add_number
= 0;
22364 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pc_rel
,
22365 (enum bfd_reloc_code_real
) reloc
);
22369 new_fix
= (fixS
*) fix_new (frag
, where
, size
, make_expr_symbol (exp
), 0,
22370 pc_rel
, (enum bfd_reloc_code_real
) reloc
);
22374 /* Mark whether the fix is to a THUMB instruction, or an ARM
22376 new_fix
->tc_fix_data
= thumb_mode
;
22379 /* Create a frg for an instruction requiring relaxation. */
22381 output_relax_insn (void)
22387 /* The size of the instruction is unknown, so tie the debug info to the
22388 start of the instruction. */
22389 dwarf2_emit_insn (0);
22391 switch (inst
.relocs
[0].exp
.X_op
)
22394 sym
= inst
.relocs
[0].exp
.X_add_symbol
;
22395 offset
= inst
.relocs
[0].exp
.X_add_number
;
22399 offset
= inst
.relocs
[0].exp
.X_add_number
;
22402 sym
= make_expr_symbol (&inst
.relocs
[0].exp
);
22406 to
= frag_var (rs_machine_dependent
, INSN_SIZE
, THUMB_SIZE
,
22407 inst
.relax
, sym
, offset
, NULL
/*offset, opcode*/);
22408 md_number_to_chars (to
, inst
.instruction
, THUMB_SIZE
);
22411 /* Write a 32-bit thumb instruction to buf. */
22413 put_thumb32_insn (char * buf
, unsigned long insn
)
22415 md_number_to_chars (buf
, insn
>> 16, THUMB_SIZE
);
22416 md_number_to_chars (buf
+ THUMB_SIZE
, insn
, THUMB_SIZE
);
22420 output_inst (const char * str
)
22426 as_bad ("%s -- `%s'", inst
.error
, str
);
22431 output_relax_insn ();
22434 if (inst
.size
== 0)
22437 to
= frag_more (inst
.size
);
22438 /* PR 9814: Record the thumb mode into the current frag so that we know
22439 what type of NOP padding to use, if necessary. We override any previous
22440 setting so that if the mode has changed then the NOPS that we use will
22441 match the encoding of the last instruction in the frag. */
22442 frag_now
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
22444 if (thumb_mode
&& (inst
.size
> THUMB_SIZE
))
22446 gas_assert (inst
.size
== (2 * THUMB_SIZE
));
22447 put_thumb32_insn (to
, inst
.instruction
);
22449 else if (inst
.size
> INSN_SIZE
)
22451 gas_assert (inst
.size
== (2 * INSN_SIZE
));
22452 md_number_to_chars (to
, inst
.instruction
, INSN_SIZE
);
22453 md_number_to_chars (to
+ INSN_SIZE
, inst
.instruction
, INSN_SIZE
);
22456 md_number_to_chars (to
, inst
.instruction
, inst
.size
);
22459 for (r
= 0; r
< ARM_IT_MAX_RELOCS
; r
++)
22461 if (inst
.relocs
[r
].type
!= BFD_RELOC_UNUSED
)
22462 fix_new_arm (frag_now
, to
- frag_now
->fr_literal
,
22463 inst
.size
, & inst
.relocs
[r
].exp
, inst
.relocs
[r
].pc_rel
,
22464 inst
.relocs
[r
].type
);
22467 dwarf2_emit_insn (inst
.size
);
22471 output_it_inst (int cond
, int mask
, char * to
)
22473 unsigned long instruction
= 0xbf00;
22476 instruction
|= mask
;
22477 instruction
|= cond
<< 4;
22481 to
= frag_more (2);
22483 dwarf2_emit_insn (2);
22487 md_number_to_chars (to
, instruction
, 2);
22492 /* Tag values used in struct asm_opcode's tag field. */
22495 OT_unconditional
, /* Instruction cannot be conditionalized.
22496 The ARM condition field is still 0xE. */
22497 OT_unconditionalF
, /* Instruction cannot be conditionalized
22498 and carries 0xF in its ARM condition field. */
22499 OT_csuffix
, /* Instruction takes a conditional suffix. */
22500 OT_csuffixF
, /* Some forms of the instruction take a scalar
22501 conditional suffix, others place 0xF where the
22502 condition field would be, others take a vector
22503 conditional suffix. */
22504 OT_cinfix3
, /* Instruction takes a conditional infix,
22505 beginning at character index 3. (In
22506 unified mode, it becomes a suffix.) */
22507 OT_cinfix3_deprecated
, /* The same as OT_cinfix3. This is used for
22508 tsts, cmps, cmns, and teqs. */
22509 OT_cinfix3_legacy
, /* Legacy instruction takes a conditional infix at
22510 character index 3, even in unified mode. Used for
22511 legacy instructions where suffix and infix forms
22512 may be ambiguous. */
22513 OT_csuf_or_in3
, /* Instruction takes either a conditional
22514 suffix or an infix at character index 3. */
22515 OT_odd_infix_unc
, /* This is the unconditional variant of an
22516 instruction that takes a conditional infix
22517 at an unusual position. In unified mode,
22518 this variant will accept a suffix. */
22519 OT_odd_infix_0
/* Values greater than or equal to OT_odd_infix_0
22520 are the conditional variants of instructions that
22521 take conditional infixes in unusual positions.
22522 The infix appears at character index
22523 (tag - OT_odd_infix_0). These are not accepted
22524 in unified mode. */
22527 /* Subroutine of md_assemble, responsible for looking up the primary
22528 opcode from the mnemonic the user wrote. STR points to the
22529 beginning of the mnemonic.
22531 This is not simply a hash table lookup, because of conditional
22532 variants. Most instructions have conditional variants, which are
22533 expressed with a _conditional affix_ to the mnemonic. If we were
22534 to encode each conditional variant as a literal string in the opcode
22535 table, it would have approximately 20,000 entries.
22537 Most mnemonics take this affix as a suffix, and in unified syntax,
22538 'most' is upgraded to 'all'. However, in the divided syntax, some
22539 instructions take the affix as an infix, notably the s-variants of
22540 the arithmetic instructions. Of those instructions, all but six
22541 have the infix appear after the third character of the mnemonic.
22543 Accordingly, the algorithm for looking up primary opcodes given
22546 1. Look up the identifier in the opcode table.
22547 If we find a match, go to step U.
22549 2. Look up the last two characters of the identifier in the
22550 conditions table. If we find a match, look up the first N-2
22551 characters of the identifier in the opcode table. If we
22552 find a match, go to step CE.
22554 3. Look up the fourth and fifth characters of the identifier in
22555 the conditions table. If we find a match, extract those
22556 characters from the identifier, and look up the remaining
22557 characters in the opcode table. If we find a match, go
22562 U. Examine the tag field of the opcode structure, in case this is
22563 one of the six instructions with its conditional infix in an
22564 unusual place. If it is, the tag tells us where to find the
22565 infix; look it up in the conditions table and set inst.cond
22566 accordingly. Otherwise, this is an unconditional instruction.
22567 Again set inst.cond accordingly. Return the opcode structure.
22569 CE. Examine the tag field to make sure this is an instruction that
22570 should receive a conditional suffix. If it is not, fail.
22571 Otherwise, set inst.cond from the suffix we already looked up,
22572 and return the opcode structure.
22574 CM. Examine the tag field to make sure this is an instruction that
22575 should receive a conditional infix after the third character.
22576 If it is not, fail. Otherwise, undo the edits to the current
22577 line of input and proceed as for case CE. */
22579 static const struct asm_opcode
*
22580 opcode_lookup (char **str
)
22584 const struct asm_opcode
*opcode
;
22585 const struct asm_cond
*cond
;
22588 /* Scan up to the end of the mnemonic, which must end in white space,
22589 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
22590 for (base
= end
= *str
; *end
!= '\0'; end
++)
22591 if (*end
== ' ' || *end
== '.')
22597 /* Handle a possible width suffix and/or Neon type suffix. */
22602 /* The .w and .n suffixes are only valid if the unified syntax is in
22604 if (unified_syntax
&& end
[1] == 'w')
22606 else if (unified_syntax
&& end
[1] == 'n')
22611 inst
.vectype
.elems
= 0;
22613 *str
= end
+ offset
;
22615 if (end
[offset
] == '.')
22617 /* See if we have a Neon type suffix (possible in either unified or
22618 non-unified ARM syntax mode). */
22619 if (parse_neon_type (&inst
.vectype
, str
) == FAIL
)
22622 else if (end
[offset
] != '\0' && end
[offset
] != ' ')
22628 /* Look for unaffixed or special-case affixed mnemonic. */
22629 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
22634 if (opcode
->tag
< OT_odd_infix_0
)
22636 inst
.cond
= COND_ALWAYS
;
22640 if (warn_on_deprecated
&& unified_syntax
)
22641 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
22642 affix
= base
+ (opcode
->tag
- OT_odd_infix_0
);
22643 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
22646 inst
.cond
= cond
->value
;
22649 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
22651 /* Cannot have a conditional suffix on a mnemonic of less than a character.
22653 if (end
- base
< 2)
22656 cond
= (const struct asm_cond
*) hash_find_n (arm_vcond_hsh
, affix
, 1);
22657 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
22659 /* If this opcode can not be vector predicated then don't accept it with a
22660 vector predication code. */
22661 if (opcode
&& !opcode
->mayBeVecPred
)
22664 if (!opcode
|| !cond
)
22666 /* Cannot have a conditional suffix on a mnemonic of less than two
22668 if (end
- base
< 3)
22671 /* Look for suffixed mnemonic. */
22673 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
22674 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
22678 if (opcode
&& cond
)
22681 switch (opcode
->tag
)
22683 case OT_cinfix3_legacy
:
22684 /* Ignore conditional suffixes matched on infix only mnemonics. */
22688 case OT_cinfix3_deprecated
:
22689 case OT_odd_infix_unc
:
22690 if (!unified_syntax
)
22692 /* Fall through. */
22696 case OT_csuf_or_in3
:
22697 inst
.cond
= cond
->value
;
22700 case OT_unconditional
:
22701 case OT_unconditionalF
:
22703 inst
.cond
= cond
->value
;
22706 /* Delayed diagnostic. */
22707 inst
.error
= BAD_COND
;
22708 inst
.cond
= COND_ALWAYS
;
22717 /* Cannot have a usual-position infix on a mnemonic of less than
22718 six characters (five would be a suffix). */
22719 if (end
- base
< 6)
22722 /* Look for infixed mnemonic in the usual position. */
22724 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
22728 memcpy (save
, affix
, 2);
22729 memmove (affix
, affix
+ 2, (end
- affix
) - 2);
22730 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
22732 memmove (affix
+ 2, affix
, (end
- affix
) - 2);
22733 memcpy (affix
, save
, 2);
22736 && (opcode
->tag
== OT_cinfix3
22737 || opcode
->tag
== OT_cinfix3_deprecated
22738 || opcode
->tag
== OT_csuf_or_in3
22739 || opcode
->tag
== OT_cinfix3_legacy
))
22742 if (warn_on_deprecated
&& unified_syntax
22743 && (opcode
->tag
== OT_cinfix3
22744 || opcode
->tag
== OT_cinfix3_deprecated
))
22745 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
22747 inst
.cond
= cond
->value
;
22754 /* This function generates an initial IT instruction, leaving its block
22755 virtually open for the new instructions. Eventually,
22756 the mask will be updated by now_pred_add_mask () each time
22757 a new instruction needs to be included in the IT block.
22758 Finally, the block is closed with close_automatic_it_block ().
22759 The block closure can be requested either from md_assemble (),
22760 a tencode (), or due to a label hook. */
22763 new_automatic_it_block (int cond
)
22765 now_pred
.state
= AUTOMATIC_PRED_BLOCK
;
22766 now_pred
.mask
= 0x18;
22767 now_pred
.cc
= cond
;
22768 now_pred
.block_length
= 1;
22769 mapping_state (MAP_THUMB
);
22770 now_pred
.insn
= output_it_inst (cond
, now_pred
.mask
, NULL
);
22771 now_pred
.warn_deprecated
= FALSE
;
22772 now_pred
.insn_cond
= TRUE
;
22775 /* Close an automatic IT block.
22776 See comments in new_automatic_it_block (). */
22779 close_automatic_it_block (void)
22781 now_pred
.mask
= 0x10;
22782 now_pred
.block_length
= 0;
22785 /* Update the mask of the current automatically-generated IT
22786 instruction. See comments in new_automatic_it_block (). */
22789 now_pred_add_mask (int cond
)
22791 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
22792 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
22793 | ((bitvalue) << (nbit)))
22794 const int resulting_bit
= (cond
& 1);
22796 now_pred
.mask
&= 0xf;
22797 now_pred
.mask
= SET_BIT_VALUE (now_pred
.mask
,
22799 (5 - now_pred
.block_length
));
22800 now_pred
.mask
= SET_BIT_VALUE (now_pred
.mask
,
22802 ((5 - now_pred
.block_length
) - 1));
22803 output_it_inst (now_pred
.cc
, now_pred
.mask
, now_pred
.insn
);
22806 #undef SET_BIT_VALUE
22809 /* The IT blocks handling machinery is accessed through the these functions:
22810 it_fsm_pre_encode () from md_assemble ()
22811 set_pred_insn_type () optional, from the tencode functions
22812 set_pred_insn_type_last () ditto
22813 in_pred_block () ditto
22814 it_fsm_post_encode () from md_assemble ()
22815 force_automatic_it_block_close () from label handling functions
22818 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
22819 initializing the IT insn type with a generic initial value depending
22820 on the inst.condition.
22821 2) During the tencode function, two things may happen:
22822 a) The tencode function overrides the IT insn type by
22823 calling either set_pred_insn_type (type) or
22824 set_pred_insn_type_last ().
22825 b) The tencode function queries the IT block state by
22826 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
22828 Both set_pred_insn_type and in_pred_block run the internal FSM state
22829 handling function (handle_pred_state), because: a) setting the IT insn
22830 type may incur in an invalid state (exiting the function),
22831 and b) querying the state requires the FSM to be updated.
22832 Specifically we want to avoid creating an IT block for conditional
22833 branches, so it_fsm_pre_encode is actually a guess and we can't
22834 determine whether an IT block is required until the tencode () routine
22835 has decided what type of instruction this actually it.
22836 Because of this, if set_pred_insn_type and in_pred_block have to be
22837 used, set_pred_insn_type has to be called first.
22839 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
22840 that determines the insn IT type depending on the inst.cond code.
22841 When a tencode () routine encodes an instruction that can be
22842 either outside an IT block, or, in the case of being inside, has to be
22843 the last one, set_pred_insn_type_last () will determine the proper
22844 IT instruction type based on the inst.cond code. Otherwise,
22845 set_pred_insn_type can be called for overriding that logic or
22846 for covering other cases.
22848 Calling handle_pred_state () may not transition the IT block state to
22849 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
22850 still queried. Instead, if the FSM determines that the state should
22851 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
22852 after the tencode () function: that's what it_fsm_post_encode () does.
22854 Since in_pred_block () calls the state handling function to get an
22855 updated state, an error may occur (due to invalid insns combination).
22856 In that case, inst.error is set.
22857 Therefore, inst.error has to be checked after the execution of
22858 the tencode () routine.
22860 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
22861 any pending state change (if any) that didn't take place in
22862 handle_pred_state () as explained above. */
22865 it_fsm_pre_encode (void)
22867 if (inst
.cond
!= COND_ALWAYS
)
22868 inst
.pred_insn_type
= INSIDE_IT_INSN
;
22870 inst
.pred_insn_type
= OUTSIDE_PRED_INSN
;
22872 now_pred
.state_handled
= 0;
22875 /* IT state FSM handling function. */
22876 /* MVE instructions and non-MVE instructions are handled differently because of
22877 the introduction of VPT blocks.
22878 Specifications say that any non-MVE instruction inside a VPT block is
22879 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
22880 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
22881 few exceptions we have MVE_UNPREDICABLE_INSN.
22882 The error messages provided depending on the different combinations possible
22883 are described in the cases below:
22884 For 'most' MVE instructions:
22885 1) In an IT block, with an IT code: syntax error
22886 2) In an IT block, with a VPT code: error: must be in a VPT block
22887 3) In an IT block, with no code: warning: UNPREDICTABLE
22888 4) In a VPT block, with an IT code: syntax error
22889 5) In a VPT block, with a VPT code: OK!
22890 6) In a VPT block, with no code: error: missing code
22891 7) Outside a pred block, with an IT code: error: syntax error
22892 8) Outside a pred block, with a VPT code: error: should be in a VPT block
22893 9) Outside a pred block, with no code: OK!
22894 For non-MVE instructions:
22895 10) In an IT block, with an IT code: OK!
22896 11) In an IT block, with a VPT code: syntax error
22897 12) In an IT block, with no code: error: missing code
22898 13) In a VPT block, with an IT code: error: should be in an IT block
22899 14) In a VPT block, with a VPT code: syntax error
22900 15) In a VPT block, with no code: UNPREDICTABLE
22901 16) Outside a pred block, with an IT code: error: should be in an IT block
22902 17) Outside a pred block, with a VPT code: syntax error
22903 18) Outside a pred block, with no code: OK!
22908 handle_pred_state (void)
22910 now_pred
.state_handled
= 1;
22911 now_pred
.insn_cond
= FALSE
;
22913 switch (now_pred
.state
)
22915 case OUTSIDE_PRED_BLOCK
:
22916 switch (inst
.pred_insn_type
)
22918 case MVE_UNPREDICABLE_INSN
:
22919 case MVE_OUTSIDE_PRED_INSN
:
22920 if (inst
.cond
< COND_ALWAYS
)
22922 /* Case 7: Outside a pred block, with an IT code: error: syntax
22924 inst
.error
= BAD_SYNTAX
;
22927 /* Case 9: Outside a pred block, with no code: OK! */
22929 case OUTSIDE_PRED_INSN
:
22930 if (inst
.cond
> COND_ALWAYS
)
22932 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22934 inst
.error
= BAD_SYNTAX
;
22937 /* Case 18: Outside a pred block, with no code: OK! */
22940 case INSIDE_VPT_INSN
:
22941 /* Case 8: Outside a pred block, with a VPT code: error: should be in
22943 inst
.error
= BAD_OUT_VPT
;
22946 case INSIDE_IT_INSN
:
22947 case INSIDE_IT_LAST_INSN
:
22948 if (inst
.cond
< COND_ALWAYS
)
22950 /* Case 16: Outside a pred block, with an IT code: error: should
22951 be in an IT block. */
22952 if (thumb_mode
== 0)
22955 && !(implicit_it_mode
& IMPLICIT_IT_MODE_ARM
))
22956 as_tsktsk (_("Warning: conditional outside an IT block"\
22961 if ((implicit_it_mode
& IMPLICIT_IT_MODE_THUMB
)
22962 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
22964 /* Automatically generate the IT instruction. */
22965 new_automatic_it_block (inst
.cond
);
22966 if (inst
.pred_insn_type
== INSIDE_IT_LAST_INSN
)
22967 close_automatic_it_block ();
22971 inst
.error
= BAD_OUT_IT
;
22977 else if (inst
.cond
> COND_ALWAYS
)
22979 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22981 inst
.error
= BAD_SYNTAX
;
22986 case IF_INSIDE_IT_LAST_INSN
:
22987 case NEUTRAL_IT_INSN
:
22991 if (inst
.cond
!= COND_ALWAYS
)
22992 first_error (BAD_SYNTAX
);
22993 now_pred
.state
= MANUAL_PRED_BLOCK
;
22994 now_pred
.block_length
= 0;
22995 now_pred
.type
= VECTOR_PRED
;
22999 now_pred
.state
= MANUAL_PRED_BLOCK
;
23000 now_pred
.block_length
= 0;
23001 now_pred
.type
= SCALAR_PRED
;
23006 case AUTOMATIC_PRED_BLOCK
:
23007 /* Three things may happen now:
23008 a) We should increment current it block size;
23009 b) We should close current it block (closing insn or 4 insns);
23010 c) We should close current it block and start a new one (due
23011 to incompatible conditions or
23012 4 insns-length block reached). */
23014 switch (inst
.pred_insn_type
)
23016 case INSIDE_VPT_INSN
:
23018 case MVE_UNPREDICABLE_INSN
:
23019 case MVE_OUTSIDE_PRED_INSN
:
23021 case OUTSIDE_PRED_INSN
:
23022 /* The closure of the block shall happen immediately,
23023 so any in_pred_block () call reports the block as closed. */
23024 force_automatic_it_block_close ();
23027 case INSIDE_IT_INSN
:
23028 case INSIDE_IT_LAST_INSN
:
23029 case IF_INSIDE_IT_LAST_INSN
:
23030 now_pred
.block_length
++;
23032 if (now_pred
.block_length
> 4
23033 || !now_pred_compatible (inst
.cond
))
23035 force_automatic_it_block_close ();
23036 if (inst
.pred_insn_type
!= IF_INSIDE_IT_LAST_INSN
)
23037 new_automatic_it_block (inst
.cond
);
23041 now_pred
.insn_cond
= TRUE
;
23042 now_pred_add_mask (inst
.cond
);
23045 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
23046 && (inst
.pred_insn_type
== INSIDE_IT_LAST_INSN
23047 || inst
.pred_insn_type
== IF_INSIDE_IT_LAST_INSN
))
23048 close_automatic_it_block ();
23052 case NEUTRAL_IT_INSN
:
23053 now_pred
.block_length
++;
23054 now_pred
.insn_cond
= TRUE
;
23056 if (now_pred
.block_length
> 4)
23057 force_automatic_it_block_close ();
23059 now_pred_add_mask (now_pred
.cc
& 1);
23063 close_automatic_it_block ();
23064 now_pred
.state
= MANUAL_PRED_BLOCK
;
23069 case MANUAL_PRED_BLOCK
:
23072 if (now_pred
.type
== SCALAR_PRED
)
23074 /* Check conditional suffixes. */
23075 cond
= now_pred
.cc
^ ((now_pred
.mask
>> 4) & 1) ^ 1;
23076 now_pred
.mask
<<= 1;
23077 now_pred
.mask
&= 0x1f;
23078 is_last
= (now_pred
.mask
== 0x10);
23082 now_pred
.cc
^= (now_pred
.mask
>> 4);
23083 cond
= now_pred
.cc
+ 0xf;
23084 now_pred
.mask
<<= 1;
23085 now_pred
.mask
&= 0x1f;
23086 is_last
= now_pred
.mask
== 0x10;
23088 now_pred
.insn_cond
= TRUE
;
23090 switch (inst
.pred_insn_type
)
23092 case OUTSIDE_PRED_INSN
:
23093 if (now_pred
.type
== SCALAR_PRED
)
23095 if (inst
.cond
== COND_ALWAYS
)
23097 /* Case 12: In an IT block, with no code: error: missing
23099 inst
.error
= BAD_NOT_IT
;
23102 else if (inst
.cond
> COND_ALWAYS
)
23104 /* Case 11: In an IT block, with a VPT code: syntax error.
23106 inst
.error
= BAD_SYNTAX
;
23109 else if (thumb_mode
)
23111 /* This is for some special cases where a non-MVE
23112 instruction is not allowed in an IT block, such as cbz,
23113 but are put into one with a condition code.
23114 You could argue this should be a syntax error, but we
23115 gave the 'not allowed in IT block' diagnostic in the
23116 past so we will keep doing so. */
23117 inst
.error
= BAD_NOT_IT
;
23124 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
23125 as_tsktsk (MVE_NOT_VPT
);
23128 case MVE_OUTSIDE_PRED_INSN
:
23129 if (now_pred
.type
== SCALAR_PRED
)
23131 if (inst
.cond
== COND_ALWAYS
)
23133 /* Case 3: In an IT block, with no code: warning:
23135 as_tsktsk (MVE_NOT_IT
);
23138 else if (inst
.cond
< COND_ALWAYS
)
23140 /* Case 1: In an IT block, with an IT code: syntax error.
23142 inst
.error
= BAD_SYNTAX
;
23150 if (inst
.cond
< COND_ALWAYS
)
23152 /* Case 4: In a VPT block, with an IT code: syntax error.
23154 inst
.error
= BAD_SYNTAX
;
23157 else if (inst
.cond
== COND_ALWAYS
)
23159 /* Case 6: In a VPT block, with no code: error: missing
23161 inst
.error
= BAD_NOT_VPT
;
23169 case MVE_UNPREDICABLE_INSN
:
23170 as_tsktsk (now_pred
.type
== SCALAR_PRED
? MVE_NOT_IT
: MVE_NOT_VPT
);
23172 case INSIDE_IT_INSN
:
23173 if (inst
.cond
> COND_ALWAYS
)
23175 /* Case 11: In an IT block, with a VPT code: syntax error. */
23176 /* Case 14: In a VPT block, with a VPT code: syntax error. */
23177 inst
.error
= BAD_SYNTAX
;
23180 else if (now_pred
.type
== SCALAR_PRED
)
23182 /* Case 10: In an IT block, with an IT code: OK! */
23183 if (cond
!= inst
.cond
)
23185 inst
.error
= now_pred
.type
== SCALAR_PRED
? BAD_IT_COND
:
23192 /* Case 13: In a VPT block, with an IT code: error: should be
23194 inst
.error
= BAD_OUT_IT
;
23199 case INSIDE_VPT_INSN
:
23200 if (now_pred
.type
== SCALAR_PRED
)
23202 /* Case 2: In an IT block, with a VPT code: error: must be in a
23204 inst
.error
= BAD_OUT_VPT
;
23207 /* Case 5: In a VPT block, with a VPT code: OK! */
23208 else if (cond
!= inst
.cond
)
23210 inst
.error
= BAD_VPT_COND
;
23214 case INSIDE_IT_LAST_INSN
:
23215 case IF_INSIDE_IT_LAST_INSN
:
23216 if (now_pred
.type
== VECTOR_PRED
|| inst
.cond
> COND_ALWAYS
)
23218 /* Case 4: In a VPT block, with an IT code: syntax error. */
23219 /* Case 11: In an IT block, with a VPT code: syntax error. */
23220 inst
.error
= BAD_SYNTAX
;
23223 else if (cond
!= inst
.cond
)
23225 inst
.error
= BAD_IT_COND
;
23230 inst
.error
= BAD_BRANCH
;
23235 case NEUTRAL_IT_INSN
:
23236 /* The BKPT instruction is unconditional even in a IT or VPT
23241 if (now_pred
.type
== SCALAR_PRED
)
23243 inst
.error
= BAD_IT_IT
;
23246 /* fall through. */
23248 if (inst
.cond
== COND_ALWAYS
)
23250 /* Executing a VPT/VPST instruction inside an IT block or a
23251 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
23253 if (now_pred
.type
== SCALAR_PRED
)
23254 as_tsktsk (MVE_NOT_IT
);
23256 as_tsktsk (MVE_NOT_VPT
);
23261 /* VPT/VPST do not accept condition codes. */
23262 inst
.error
= BAD_SYNTAX
;
23273 struct depr_insn_mask
23275 unsigned long pattern
;
23276 unsigned long mask
;
23277 const char* description
;
23280 /* List of 16-bit instruction patterns deprecated in an IT block in
23282 static const struct depr_insn_mask depr_it_insns
[] = {
23283 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
23284 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
23285 { 0xa000, 0xb800, N_("ADR") },
23286 { 0x4800, 0xf800, N_("Literal loads") },
23287 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
23288 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
23289 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
23290 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
23291 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
23296 it_fsm_post_encode (void)
23300 if (!now_pred
.state_handled
)
23301 handle_pred_state ();
23303 if (now_pred
.insn_cond
23304 && warn_on_restrict_it
23305 && !now_pred
.warn_deprecated
23306 && warn_on_deprecated
23307 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
)
23308 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_m
))
23310 if (inst
.instruction
>= 0x10000)
23312 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
23313 "performance deprecated in ARMv8-A and ARMv8-R"));
23314 now_pred
.warn_deprecated
= TRUE
;
23318 const struct depr_insn_mask
*p
= depr_it_insns
;
23320 while (p
->mask
!= 0)
23322 if ((inst
.instruction
& p
->mask
) == p
->pattern
)
23324 as_tsktsk (_("IT blocks containing 16-bit Thumb "
23325 "instructions of the following class are "
23326 "performance deprecated in ARMv8-A and "
23327 "ARMv8-R: %s"), p
->description
);
23328 now_pred
.warn_deprecated
= TRUE
;
23336 if (now_pred
.block_length
> 1)
23338 as_tsktsk (_("IT blocks containing more than one conditional "
23339 "instruction are performance deprecated in ARMv8-A and "
23341 now_pred
.warn_deprecated
= TRUE
;
23345 is_last
= (now_pred
.mask
== 0x10);
23348 now_pred
.state
= OUTSIDE_PRED_BLOCK
;
23354 force_automatic_it_block_close (void)
23356 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
)
23358 close_automatic_it_block ();
23359 now_pred
.state
= OUTSIDE_PRED_BLOCK
;
23365 in_pred_block (void)
23367 if (!now_pred
.state_handled
)
23368 handle_pred_state ();
23370 return now_pred
.state
!= OUTSIDE_PRED_BLOCK
;
23373 /* Whether OPCODE only has T32 encoding. Since this function is only used by
23374 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
23375 here, hence the "known" in the function name. */
23378 known_t32_only_insn (const struct asm_opcode
*opcode
)
23380 /* Original Thumb-1 wide instruction. */
23381 if (opcode
->tencode
== do_t_blx
23382 || opcode
->tencode
== do_t_branch23
23383 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_msr
)
23384 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_barrier
))
23387 /* Wide-only instruction added to ARMv8-M Baseline. */
23388 if (ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_v8m_m_only
)
23389 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_atomics
)
23390 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_v6t2_v8m
)
23391 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_div
))
23397 /* Whether wide instruction variant can be used if available for a valid OPCODE
23401 t32_insn_ok (arm_feature_set arch
, const struct asm_opcode
*opcode
)
23403 if (known_t32_only_insn (opcode
))
23406 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
23407 of variant T3 of B.W is checked in do_t_branch. */
23408 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v8m
)
23409 && opcode
->tencode
== do_t_branch
)
23412 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
23413 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v8m
)
23414 && opcode
->tencode
== do_t_mov_cmp
23415 /* Make sure CMP instruction is not affected. */
23416 && opcode
->aencode
== do_mov
)
23419 /* Wide instruction variants of all instructions with narrow *and* wide
23420 variants become available with ARMv6t2. Other opcodes are either
23421 narrow-only or wide-only and are thus available if OPCODE is valid. */
23422 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v6t2
))
23425 /* OPCODE with narrow only instruction variant or wide variant not
23431 md_assemble (char *str
)
23434 const struct asm_opcode
* opcode
;
23436 /* Align the previous label if needed. */
23437 if (last_label_seen
!= NULL
)
23439 symbol_set_frag (last_label_seen
, frag_now
);
23440 S_SET_VALUE (last_label_seen
, (valueT
) frag_now_fix ());
23441 S_SET_SEGMENT (last_label_seen
, now_seg
);
23444 memset (&inst
, '\0', sizeof (inst
));
23446 for (r
= 0; r
< ARM_IT_MAX_RELOCS
; r
++)
23447 inst
.relocs
[r
].type
= BFD_RELOC_UNUSED
;
23449 opcode
= opcode_lookup (&p
);
23452 /* It wasn't an instruction, but it might be a register alias of
23453 the form alias .req reg, or a Neon .dn/.qn directive. */
23454 if (! create_register_alias (str
, p
)
23455 && ! create_neon_reg_alias (str
, p
))
23456 as_bad (_("bad instruction `%s'"), str
);
23461 if (warn_on_deprecated
&& opcode
->tag
== OT_cinfix3_deprecated
)
23462 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
23464 /* The value which unconditional instructions should have in place of the
23465 condition field. */
23466 inst
.uncond_value
= (opcode
->tag
== OT_csuffixF
) ? 0xf : -1;
23470 arm_feature_set variant
;
23472 variant
= cpu_variant
;
23473 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
23474 if (!ARM_CPU_HAS_FEATURE (variant
, arm_arch_t2
))
23475 ARM_CLEAR_FEATURE (variant
, variant
, fpu_any_hard
);
23476 /* Check that this instruction is supported for this CPU. */
23477 if (!opcode
->tvariant
23478 || (thumb_mode
== 1
23479 && !ARM_CPU_HAS_FEATURE (variant
, *opcode
->tvariant
)))
23481 if (opcode
->tencode
== do_t_swi
)
23482 as_bad (_("SVC is not permitted on this architecture"));
23484 as_bad (_("selected processor does not support `%s' in Thumb mode"), str
);
23487 if (inst
.cond
!= COND_ALWAYS
&& !unified_syntax
23488 && opcode
->tencode
!= do_t_branch
)
23490 as_bad (_("Thumb does not support conditional execution"));
23494 /* Two things are addressed here:
23495 1) Implicit require narrow instructions on Thumb-1.
23496 This avoids relaxation accidentally introducing Thumb-2
23498 2) Reject wide instructions in non Thumb-2 cores.
23500 Only instructions with narrow and wide variants need to be handled
23501 but selecting all non wide-only instructions is easier. */
23502 if (!ARM_CPU_HAS_FEATURE (variant
, arm_ext_v6t2
)
23503 && !t32_insn_ok (variant
, opcode
))
23505 if (inst
.size_req
== 0)
23507 else if (inst
.size_req
== 4)
23509 if (ARM_CPU_HAS_FEATURE (variant
, arm_ext_v8m
))
23510 as_bad (_("selected processor does not support 32bit wide "
23511 "variant of instruction `%s'"), str
);
23513 as_bad (_("selected processor does not support `%s' in "
23514 "Thumb-2 mode"), str
);
23519 inst
.instruction
= opcode
->tvalue
;
23521 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/TRUE
))
23523 /* Prepare the pred_insn_type for those encodings that don't set
23525 it_fsm_pre_encode ();
23527 opcode
->tencode ();
23529 it_fsm_post_encode ();
23532 if (!(inst
.error
|| inst
.relax
))
23534 gas_assert (inst
.instruction
< 0xe800 || inst
.instruction
> 0xffff);
23535 inst
.size
= (inst
.instruction
> 0xffff ? 4 : 2);
23536 if (inst
.size_req
&& inst
.size_req
!= inst
.size
)
23538 as_bad (_("cannot honor width suffix -- `%s'"), str
);
23543 /* Something has gone badly wrong if we try to relax a fixed size
23545 gas_assert (inst
.size_req
== 0 || !inst
.relax
);
23547 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
23548 *opcode
->tvariant
);
23549 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
23550 set those bits when Thumb-2 32-bit instructions are seen. The impact
23551 of relaxable instructions will be considered later after we finish all
23553 if (ARM_FEATURE_CORE_EQUAL (cpu_variant
, arm_arch_any
))
23554 variant
= arm_arch_none
;
23556 variant
= cpu_variant
;
23557 if (inst
.size
== 4 && !t32_insn_ok (variant
, opcode
))
23558 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
23561 check_neon_suffixes
;
23565 mapping_state (MAP_THUMB
);
23568 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
23572 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
23573 is_bx
= (opcode
->aencode
== do_bx
);
23575 /* Check that this instruction is supported for this CPU. */
23576 if (!(is_bx
&& fix_v4bx
)
23577 && !(opcode
->avariant
&&
23578 ARM_CPU_HAS_FEATURE (cpu_variant
, *opcode
->avariant
)))
23580 as_bad (_("selected processor does not support `%s' in ARM mode"), str
);
23585 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str
);
23589 inst
.instruction
= opcode
->avalue
;
23590 if (opcode
->tag
== OT_unconditionalF
)
23591 inst
.instruction
|= 0xFU
<< 28;
23593 inst
.instruction
|= inst
.cond
<< 28;
23594 inst
.size
= INSN_SIZE
;
23595 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/FALSE
))
23597 it_fsm_pre_encode ();
23598 opcode
->aencode ();
23599 it_fsm_post_encode ();
23601 /* Arm mode bx is marked as both v4T and v5 because it's still required
23602 on a hypothetical non-thumb v5 core. */
23604 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, arm_ext_v4t
);
23606 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
23607 *opcode
->avariant
);
23609 check_neon_suffixes
;
23613 mapping_state (MAP_ARM
);
23618 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
23626 check_pred_blocks_finished (void)
23631 for (sect
= stdoutput
->sections
; sect
!= NULL
; sect
= sect
->next
)
23632 if (seg_info (sect
)->tc_segment_info_data
.current_pred
.state
23633 == MANUAL_PRED_BLOCK
)
23635 if (now_pred
.type
== SCALAR_PRED
)
23636 as_warn (_("section '%s' finished with an open IT block."),
23639 as_warn (_("section '%s' finished with an open VPT/VPST block."),
23643 if (now_pred
.state
== MANUAL_PRED_BLOCK
)
23645 if (now_pred
.type
== SCALAR_PRED
)
23646 as_warn (_("file finished with an open IT block."));
23648 as_warn (_("file finished with an open VPT/VPST block."));
23653 /* Various frobbings of labels and their addresses. */
23656 arm_start_line_hook (void)
23658 last_label_seen
= NULL
;
23662 arm_frob_label (symbolS
* sym
)
23664 last_label_seen
= sym
;
23666 ARM_SET_THUMB (sym
, thumb_mode
);
23668 #if defined OBJ_COFF || defined OBJ_ELF
23669 ARM_SET_INTERWORK (sym
, support_interwork
);
23672 force_automatic_it_block_close ();
23674 /* Note - do not allow local symbols (.Lxxx) to be labelled
23675 as Thumb functions. This is because these labels, whilst
23676 they exist inside Thumb code, are not the entry points for
23677 possible ARM->Thumb calls. Also, these labels can be used
23678 as part of a computed goto or switch statement. eg gcc
23679 can generate code that looks like this:
23681 ldr r2, [pc, .Laaa]
23691 The first instruction loads the address of the jump table.
23692 The second instruction converts a table index into a byte offset.
23693 The third instruction gets the jump address out of the table.
23694 The fourth instruction performs the jump.
23696 If the address stored at .Laaa is that of a symbol which has the
23697 Thumb_Func bit set, then the linker will arrange for this address
23698 to have the bottom bit set, which in turn would mean that the
23699 address computation performed by the third instruction would end
23700 up with the bottom bit set. Since the ARM is capable of unaligned
23701 word loads, the instruction would then load the incorrect address
23702 out of the jump table, and chaos would ensue. */
23703 if (label_is_thumb_function_name
23704 && (S_GET_NAME (sym
)[0] != '.' || S_GET_NAME (sym
)[1] != 'L')
23705 && (bfd_section_flags (now_seg
) & SEC_CODE
) != 0)
23707 /* When the address of a Thumb function is taken the bottom
23708 bit of that address should be set. This will allow
23709 interworking between Arm and Thumb functions to work
23712 THUMB_SET_FUNC (sym
, 1);
23714 label_is_thumb_function_name
= FALSE
;
23717 dwarf2_emit_label (sym
);
23721 arm_data_in_code (void)
23723 if (thumb_mode
&& ! strncmp (input_line_pointer
+ 1, "data:", 5))
23725 *input_line_pointer
= '/';
23726 input_line_pointer
+= 5;
23727 *input_line_pointer
= 0;
23735 arm_canonicalize_symbol_name (char * name
)
23739 if (thumb_mode
&& (len
= strlen (name
)) > 5
23740 && streq (name
+ len
- 5, "/data"))
23741 *(name
+ len
- 5) = 0;
23746 /* Table of all register names defined by default. The user can
23747 define additional names with .req. Note that all register names
23748 should appear in both upper and lowercase variants. Some registers
23749 also have mixed-case names. */
23751 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
23752 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
23753 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
23754 #define REGSET(p,t) \
23755 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
23756 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
23757 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
23758 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
23759 #define REGSETH(p,t) \
23760 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
23761 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
23762 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
23763 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
23764 #define REGSET2(p,t) \
23765 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
23766 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
23767 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
23768 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
23769 #define SPLRBANK(base,bank,t) \
23770 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
23771 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
23772 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
23773 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
23774 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
23775 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
23777 static const struct reg_entry reg_names
[] =
23779 /* ARM integer registers. */
23780 REGSET(r
, RN
), REGSET(R
, RN
),
23782 /* ATPCS synonyms. */
23783 REGDEF(a1
,0,RN
), REGDEF(a2
,1,RN
), REGDEF(a3
, 2,RN
), REGDEF(a4
, 3,RN
),
23784 REGDEF(v1
,4,RN
), REGDEF(v2
,5,RN
), REGDEF(v3
, 6,RN
), REGDEF(v4
, 7,RN
),
23785 REGDEF(v5
,8,RN
), REGDEF(v6
,9,RN
), REGDEF(v7
,10,RN
), REGDEF(v8
,11,RN
),
23787 REGDEF(A1
,0,RN
), REGDEF(A2
,1,RN
), REGDEF(A3
, 2,RN
), REGDEF(A4
, 3,RN
),
23788 REGDEF(V1
,4,RN
), REGDEF(V2
,5,RN
), REGDEF(V3
, 6,RN
), REGDEF(V4
, 7,RN
),
23789 REGDEF(V5
,8,RN
), REGDEF(V6
,9,RN
), REGDEF(V7
,10,RN
), REGDEF(V8
,11,RN
),
23791 /* Well-known aliases. */
23792 REGDEF(wr
, 7,RN
), REGDEF(sb
, 9,RN
), REGDEF(sl
,10,RN
), REGDEF(fp
,11,RN
),
23793 REGDEF(ip
,12,RN
), REGDEF(sp
,13,RN
), REGDEF(lr
,14,RN
), REGDEF(pc
,15,RN
),
23795 REGDEF(WR
, 7,RN
), REGDEF(SB
, 9,RN
), REGDEF(SL
,10,RN
), REGDEF(FP
,11,RN
),
23796 REGDEF(IP
,12,RN
), REGDEF(SP
,13,RN
), REGDEF(LR
,14,RN
), REGDEF(PC
,15,RN
),
23798 /* Defining the new Zero register from ARMv8.1-M. */
23802 /* Coprocessor numbers. */
23803 REGSET(p
, CP
), REGSET(P
, CP
),
23805 /* Coprocessor register numbers. The "cr" variants are for backward
23807 REGSET(c
, CN
), REGSET(C
, CN
),
23808 REGSET(cr
, CN
), REGSET(CR
, CN
),
23810 /* ARM banked registers. */
23811 REGDEF(R8_usr
,512|(0<<16),RNB
), REGDEF(r8_usr
,512|(0<<16),RNB
),
23812 REGDEF(R9_usr
,512|(1<<16),RNB
), REGDEF(r9_usr
,512|(1<<16),RNB
),
23813 REGDEF(R10_usr
,512|(2<<16),RNB
), REGDEF(r10_usr
,512|(2<<16),RNB
),
23814 REGDEF(R11_usr
,512|(3<<16),RNB
), REGDEF(r11_usr
,512|(3<<16),RNB
),
23815 REGDEF(R12_usr
,512|(4<<16),RNB
), REGDEF(r12_usr
,512|(4<<16),RNB
),
23816 REGDEF(SP_usr
,512|(5<<16),RNB
), REGDEF(sp_usr
,512|(5<<16),RNB
),
23817 REGDEF(LR_usr
,512|(6<<16),RNB
), REGDEF(lr_usr
,512|(6<<16),RNB
),
23819 REGDEF(R8_fiq
,512|(8<<16),RNB
), REGDEF(r8_fiq
,512|(8<<16),RNB
),
23820 REGDEF(R9_fiq
,512|(9<<16),RNB
), REGDEF(r9_fiq
,512|(9<<16),RNB
),
23821 REGDEF(R10_fiq
,512|(10<<16),RNB
), REGDEF(r10_fiq
,512|(10<<16),RNB
),
23822 REGDEF(R11_fiq
,512|(11<<16),RNB
), REGDEF(r11_fiq
,512|(11<<16),RNB
),
23823 REGDEF(R12_fiq
,512|(12<<16),RNB
), REGDEF(r12_fiq
,512|(12<<16),RNB
),
23824 REGDEF(SP_fiq
,512|(13<<16),RNB
), REGDEF(sp_fiq
,512|(13<<16),RNB
),
23825 REGDEF(LR_fiq
,512|(14<<16),RNB
), REGDEF(lr_fiq
,512|(14<<16),RNB
),
23826 REGDEF(SPSR_fiq
,512|(14<<16)|SPSR_BIT
,RNB
), REGDEF(spsr_fiq
,512|(14<<16)|SPSR_BIT
,RNB
),
23828 SPLRBANK(0,IRQ
,RNB
), SPLRBANK(0,irq
,RNB
),
23829 SPLRBANK(2,SVC
,RNB
), SPLRBANK(2,svc
,RNB
),
23830 SPLRBANK(4,ABT
,RNB
), SPLRBANK(4,abt
,RNB
),
23831 SPLRBANK(6,UND
,RNB
), SPLRBANK(6,und
,RNB
),
23832 SPLRBANK(12,MON
,RNB
), SPLRBANK(12,mon
,RNB
),
23833 REGDEF(elr_hyp
,768|(14<<16),RNB
), REGDEF(ELR_hyp
,768|(14<<16),RNB
),
23834 REGDEF(sp_hyp
,768|(15<<16),RNB
), REGDEF(SP_hyp
,768|(15<<16),RNB
),
23835 REGDEF(spsr_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
23836 REGDEF(SPSR_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
23838 /* FPA registers. */
23839 REGNUM(f
,0,FN
), REGNUM(f
,1,FN
), REGNUM(f
,2,FN
), REGNUM(f
,3,FN
),
23840 REGNUM(f
,4,FN
), REGNUM(f
,5,FN
), REGNUM(f
,6,FN
), REGNUM(f
,7, FN
),
23842 REGNUM(F
,0,FN
), REGNUM(F
,1,FN
), REGNUM(F
,2,FN
), REGNUM(F
,3,FN
),
23843 REGNUM(F
,4,FN
), REGNUM(F
,5,FN
), REGNUM(F
,6,FN
), REGNUM(F
,7, FN
),
23845 /* VFP SP registers. */
23846 REGSET(s
,VFS
), REGSET(S
,VFS
),
23847 REGSETH(s
,VFS
), REGSETH(S
,VFS
),
23849 /* VFP DP Registers. */
23850 REGSET(d
,VFD
), REGSET(D
,VFD
),
23851 /* Extra Neon DP registers. */
23852 REGSETH(d
,VFD
), REGSETH(D
,VFD
),
23854 /* Neon QP registers. */
23855 REGSET2(q
,NQ
), REGSET2(Q
,NQ
),
23857 /* VFP control registers. */
23858 REGDEF(fpsid
,0,VFC
), REGDEF(fpscr
,1,VFC
), REGDEF(fpexc
,8,VFC
),
23859 REGDEF(FPSID
,0,VFC
), REGDEF(FPSCR
,1,VFC
), REGDEF(FPEXC
,8,VFC
),
23860 REGDEF(fpinst
,9,VFC
), REGDEF(fpinst2
,10,VFC
),
23861 REGDEF(FPINST
,9,VFC
), REGDEF(FPINST2
,10,VFC
),
23862 REGDEF(mvfr0
,7,VFC
), REGDEF(mvfr1
,6,VFC
),
23863 REGDEF(MVFR0
,7,VFC
), REGDEF(MVFR1
,6,VFC
),
23864 REGDEF(mvfr2
,5,VFC
), REGDEF(MVFR2
,5,VFC
),
23865 REGDEF(fpscr_nzcvqc
,2,VFC
), REGDEF(FPSCR_nzcvqc
,2,VFC
),
23866 REGDEF(vpr
,12,VFC
), REGDEF(VPR
,12,VFC
),
23867 REGDEF(fpcxt_ns
,14,VFC
), REGDEF(FPCXT_NS
,14,VFC
),
23868 REGDEF(fpcxt_s
,15,VFC
), REGDEF(FPCXT_S
,15,VFC
),
23870 /* Maverick DSP coprocessor registers. */
23871 REGSET(mvf
,MVF
), REGSET(mvd
,MVD
), REGSET(mvfx
,MVFX
), REGSET(mvdx
,MVDX
),
23872 REGSET(MVF
,MVF
), REGSET(MVD
,MVD
), REGSET(MVFX
,MVFX
), REGSET(MVDX
,MVDX
),
23874 REGNUM(mvax
,0,MVAX
), REGNUM(mvax
,1,MVAX
),
23875 REGNUM(mvax
,2,MVAX
), REGNUM(mvax
,3,MVAX
),
23876 REGDEF(dspsc
,0,DSPSC
),
23878 REGNUM(MVAX
,0,MVAX
), REGNUM(MVAX
,1,MVAX
),
23879 REGNUM(MVAX
,2,MVAX
), REGNUM(MVAX
,3,MVAX
),
23880 REGDEF(DSPSC
,0,DSPSC
),
23882 /* iWMMXt data registers - p0, c0-15. */
23883 REGSET(wr
,MMXWR
), REGSET(wR
,MMXWR
), REGSET(WR
, MMXWR
),
23885 /* iWMMXt control registers - p1, c0-3. */
23886 REGDEF(wcid
, 0,MMXWC
), REGDEF(wCID
, 0,MMXWC
), REGDEF(WCID
, 0,MMXWC
),
23887 REGDEF(wcon
, 1,MMXWC
), REGDEF(wCon
, 1,MMXWC
), REGDEF(WCON
, 1,MMXWC
),
23888 REGDEF(wcssf
, 2,MMXWC
), REGDEF(wCSSF
, 2,MMXWC
), REGDEF(WCSSF
, 2,MMXWC
),
23889 REGDEF(wcasf
, 3,MMXWC
), REGDEF(wCASF
, 3,MMXWC
), REGDEF(WCASF
, 3,MMXWC
),
23891 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
23892 REGDEF(wcgr0
, 8,MMXWCG
), REGDEF(wCGR0
, 8,MMXWCG
), REGDEF(WCGR0
, 8,MMXWCG
),
23893 REGDEF(wcgr1
, 9,MMXWCG
), REGDEF(wCGR1
, 9,MMXWCG
), REGDEF(WCGR1
, 9,MMXWCG
),
23894 REGDEF(wcgr2
,10,MMXWCG
), REGDEF(wCGR2
,10,MMXWCG
), REGDEF(WCGR2
,10,MMXWCG
),
23895 REGDEF(wcgr3
,11,MMXWCG
), REGDEF(wCGR3
,11,MMXWCG
), REGDEF(WCGR3
,11,MMXWCG
),
23897 /* XScale accumulator registers. */
23898 REGNUM(acc
,0,XSCALE
), REGNUM(ACC
,0,XSCALE
),
23904 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
23905 within psr_required_here. */
23906 static const struct asm_psr psrs
[] =
23908 /* Backward compatibility notation. Note that "all" is no longer
23909 truly all possible PSR bits. */
23910 {"all", PSR_c
| PSR_f
},
23914 /* Individual flags. */
23920 /* Combinations of flags. */
23921 {"fs", PSR_f
| PSR_s
},
23922 {"fx", PSR_f
| PSR_x
},
23923 {"fc", PSR_f
| PSR_c
},
23924 {"sf", PSR_s
| PSR_f
},
23925 {"sx", PSR_s
| PSR_x
},
23926 {"sc", PSR_s
| PSR_c
},
23927 {"xf", PSR_x
| PSR_f
},
23928 {"xs", PSR_x
| PSR_s
},
23929 {"xc", PSR_x
| PSR_c
},
23930 {"cf", PSR_c
| PSR_f
},
23931 {"cs", PSR_c
| PSR_s
},
23932 {"cx", PSR_c
| PSR_x
},
23933 {"fsx", PSR_f
| PSR_s
| PSR_x
},
23934 {"fsc", PSR_f
| PSR_s
| PSR_c
},
23935 {"fxs", PSR_f
| PSR_x
| PSR_s
},
23936 {"fxc", PSR_f
| PSR_x
| PSR_c
},
23937 {"fcs", PSR_f
| PSR_c
| PSR_s
},
23938 {"fcx", PSR_f
| PSR_c
| PSR_x
},
23939 {"sfx", PSR_s
| PSR_f
| PSR_x
},
23940 {"sfc", PSR_s
| PSR_f
| PSR_c
},
23941 {"sxf", PSR_s
| PSR_x
| PSR_f
},
23942 {"sxc", PSR_s
| PSR_x
| PSR_c
},
23943 {"scf", PSR_s
| PSR_c
| PSR_f
},
23944 {"scx", PSR_s
| PSR_c
| PSR_x
},
23945 {"xfs", PSR_x
| PSR_f
| PSR_s
},
23946 {"xfc", PSR_x
| PSR_f
| PSR_c
},
23947 {"xsf", PSR_x
| PSR_s
| PSR_f
},
23948 {"xsc", PSR_x
| PSR_s
| PSR_c
},
23949 {"xcf", PSR_x
| PSR_c
| PSR_f
},
23950 {"xcs", PSR_x
| PSR_c
| PSR_s
},
23951 {"cfs", PSR_c
| PSR_f
| PSR_s
},
23952 {"cfx", PSR_c
| PSR_f
| PSR_x
},
23953 {"csf", PSR_c
| PSR_s
| PSR_f
},
23954 {"csx", PSR_c
| PSR_s
| PSR_x
},
23955 {"cxf", PSR_c
| PSR_x
| PSR_f
},
23956 {"cxs", PSR_c
| PSR_x
| PSR_s
},
23957 {"fsxc", PSR_f
| PSR_s
| PSR_x
| PSR_c
},
23958 {"fscx", PSR_f
| PSR_s
| PSR_c
| PSR_x
},
23959 {"fxsc", PSR_f
| PSR_x
| PSR_s
| PSR_c
},
23960 {"fxcs", PSR_f
| PSR_x
| PSR_c
| PSR_s
},
23961 {"fcsx", PSR_f
| PSR_c
| PSR_s
| PSR_x
},
23962 {"fcxs", PSR_f
| PSR_c
| PSR_x
| PSR_s
},
23963 {"sfxc", PSR_s
| PSR_f
| PSR_x
| PSR_c
},
23964 {"sfcx", PSR_s
| PSR_f
| PSR_c
| PSR_x
},
23965 {"sxfc", PSR_s
| PSR_x
| PSR_f
| PSR_c
},
23966 {"sxcf", PSR_s
| PSR_x
| PSR_c
| PSR_f
},
23967 {"scfx", PSR_s
| PSR_c
| PSR_f
| PSR_x
},
23968 {"scxf", PSR_s
| PSR_c
| PSR_x
| PSR_f
},
23969 {"xfsc", PSR_x
| PSR_f
| PSR_s
| PSR_c
},
23970 {"xfcs", PSR_x
| PSR_f
| PSR_c
| PSR_s
},
23971 {"xsfc", PSR_x
| PSR_s
| PSR_f
| PSR_c
},
23972 {"xscf", PSR_x
| PSR_s
| PSR_c
| PSR_f
},
23973 {"xcfs", PSR_x
| PSR_c
| PSR_f
| PSR_s
},
23974 {"xcsf", PSR_x
| PSR_c
| PSR_s
| PSR_f
},
23975 {"cfsx", PSR_c
| PSR_f
| PSR_s
| PSR_x
},
23976 {"cfxs", PSR_c
| PSR_f
| PSR_x
| PSR_s
},
23977 {"csfx", PSR_c
| PSR_s
| PSR_f
| PSR_x
},
23978 {"csxf", PSR_c
| PSR_s
| PSR_x
| PSR_f
},
23979 {"cxfs", PSR_c
| PSR_x
| PSR_f
| PSR_s
},
23980 {"cxsf", PSR_c
| PSR_x
| PSR_s
| PSR_f
},
23983 /* Table of V7M psr names. */
23984 static const struct asm_psr v7m_psrs
[] =
23986 {"apsr", 0x0 }, {"APSR", 0x0 },
23987 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
23988 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
23989 {"psr", 0x3 }, {"PSR", 0x3 },
23990 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
23991 {"ipsr", 0x5 }, {"IPSR", 0x5 },
23992 {"epsr", 0x6 }, {"EPSR", 0x6 },
23993 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
23994 {"msp", 0x8 }, {"MSP", 0x8 },
23995 {"psp", 0x9 }, {"PSP", 0x9 },
23996 {"msplim", 0xa }, {"MSPLIM", 0xa },
23997 {"psplim", 0xb }, {"PSPLIM", 0xb },
23998 {"primask", 0x10}, {"PRIMASK", 0x10},
23999 {"basepri", 0x11}, {"BASEPRI", 0x11},
24000 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
24001 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
24002 {"control", 0x14}, {"CONTROL", 0x14},
24003 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
24004 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
24005 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
24006 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
24007 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
24008 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
24009 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
24010 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
24011 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
24014 /* Table of all shift-in-operand names. */
24015 static const struct asm_shift_name shift_names
[] =
24017 { "asl", SHIFT_LSL
}, { "ASL", SHIFT_LSL
},
24018 { "lsl", SHIFT_LSL
}, { "LSL", SHIFT_LSL
},
24019 { "lsr", SHIFT_LSR
}, { "LSR", SHIFT_LSR
},
24020 { "asr", SHIFT_ASR
}, { "ASR", SHIFT_ASR
},
24021 { "ror", SHIFT_ROR
}, { "ROR", SHIFT_ROR
},
24022 { "rrx", SHIFT_RRX
}, { "RRX", SHIFT_RRX
},
24023 { "uxtw", SHIFT_UXTW
}, { "UXTW", SHIFT_UXTW
}
24026 /* Table of all explicit relocation names. */
24028 static struct reloc_entry reloc_names
[] =
24030 { "got", BFD_RELOC_ARM_GOT32
}, { "GOT", BFD_RELOC_ARM_GOT32
},
24031 { "gotoff", BFD_RELOC_ARM_GOTOFF
}, { "GOTOFF", BFD_RELOC_ARM_GOTOFF
},
24032 { "plt", BFD_RELOC_ARM_PLT32
}, { "PLT", BFD_RELOC_ARM_PLT32
},
24033 { "target1", BFD_RELOC_ARM_TARGET1
}, { "TARGET1", BFD_RELOC_ARM_TARGET1
},
24034 { "target2", BFD_RELOC_ARM_TARGET2
}, { "TARGET2", BFD_RELOC_ARM_TARGET2
},
24035 { "sbrel", BFD_RELOC_ARM_SBREL32
}, { "SBREL", BFD_RELOC_ARM_SBREL32
},
24036 { "tlsgd", BFD_RELOC_ARM_TLS_GD32
}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32
},
24037 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32
}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32
},
24038 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32
}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32
},
24039 { "gottpoff",BFD_RELOC_ARM_TLS_IE32
}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32
},
24040 { "tpoff", BFD_RELOC_ARM_TLS_LE32
}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32
},
24041 { "got_prel", BFD_RELOC_ARM_GOT_PREL
}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL
},
24042 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC
},
24043 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC
},
24044 { "tlscall", BFD_RELOC_ARM_TLS_CALL
},
24045 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL
},
24046 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ
},
24047 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ
},
24048 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC
},
24049 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC
},
24050 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC
},
24051 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC
},
24052 { "funcdesc", BFD_RELOC_ARM_FUNCDESC
},
24053 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC
},
24054 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC
}, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC
},
24055 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC
}, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC
},
24056 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC
}, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC
},
24060 /* Table of all conditional affixes. */
24061 static const struct asm_cond conds
[] =
24065 {"cs", 0x2}, {"hs", 0x2},
24066 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
24079 static const struct asm_cond vconds
[] =
24085 #define UL_BARRIER(L,U,CODE,FEAT) \
24086 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
24087 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
24089 static struct asm_barrier_opt barrier_opt_names
[] =
24091 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER
),
24092 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER
),
24093 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8
),
24094 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER
),
24095 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER
),
24096 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER
),
24097 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER
),
24098 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8
),
24099 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER
),
24100 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER
),
24101 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER
),
24102 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER
),
24103 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8
),
24104 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER
),
24105 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER
),
24106 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8
)
24111 /* Table of ARM-format instructions. */
24113 /* Macros for gluing together operand strings. N.B. In all cases
24114 other than OPS0, the trailing OP_stop comes from default
24115 zero-initialization of the unspecified elements of the array. */
24116 #define OPS0() { OP_stop, }
24117 #define OPS1(a) { OP_##a, }
24118 #define OPS2(a,b) { OP_##a,OP_##b, }
24119 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
24120 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
24121 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
24122 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
24124 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
24125 This is useful when mixing operands for ARM and THUMB, i.e. using the
24126 MIX_ARM_THUMB_OPERANDS macro.
24127 In order to use these macros, prefix the number of operands with _
24129 #define OPS_1(a) { a, }
24130 #define OPS_2(a,b) { a,b, }
24131 #define OPS_3(a,b,c) { a,b,c, }
24132 #define OPS_4(a,b,c,d) { a,b,c,d, }
24133 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
24134 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
24136 /* These macros abstract out the exact format of the mnemonic table and
24137 save some repeated characters. */
24139 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
24140 #define TxCE(mnem, op, top, nops, ops, ae, te) \
24141 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
24142 THUMB_VARIANT, do_##ae, do_##te, 0 }
24144 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
24145 a T_MNEM_xyz enumerator. */
24146 #define TCE(mnem, aop, top, nops, ops, ae, te) \
24147 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
24148 #define tCE(mnem, aop, top, nops, ops, ae, te) \
24149 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
24151 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
24152 infix after the third character. */
24153 #define TxC3(mnem, op, top, nops, ops, ae, te) \
24154 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
24155 THUMB_VARIANT, do_##ae, do_##te, 0 }
24156 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
24157 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
24158 THUMB_VARIANT, do_##ae, do_##te, 0 }
24159 #define TC3(mnem, aop, top, nops, ops, ae, te) \
24160 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
24161 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
24162 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
24163 #define tC3(mnem, aop, top, nops, ops, ae, te) \
24164 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
24165 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
24166 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
24168 /* Mnemonic that cannot be conditionalized. The ARM condition-code
24169 field is still 0xE. Many of the Thumb variants can be executed
24170 conditionally, so this is checked separately. */
24171 #define TUE(mnem, op, top, nops, ops, ae, te) \
24172 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
24173 THUMB_VARIANT, do_##ae, do_##te, 0 }
24175 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
24176 Used by mnemonics that have very minimal differences in the encoding for
24177 ARM and Thumb variants and can be handled in a common function. */
24178 #define TUEc(mnem, op, top, nops, ops, en) \
24179 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
24180 THUMB_VARIANT, do_##en, do_##en, 0 }
24182 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
24183 condition code field. */
24184 #define TUF(mnem, op, top, nops, ops, ae, te) \
24185 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
24186 THUMB_VARIANT, do_##ae, do_##te, 0 }
24188 /* ARM-only variants of all the above. */
24189 #define CE(mnem, op, nops, ops, ae) \
24190 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24192 #define C3(mnem, op, nops, ops, ae) \
24193 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24195 /* Thumb-only variants of TCE and TUE. */
24196 #define ToC(mnem, top, nops, ops, te) \
24197 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
24200 #define ToU(mnem, top, nops, ops, te) \
24201 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
24204 /* T_MNEM_xyz enumerator variants of ToC. */
24205 #define toC(mnem, top, nops, ops, te) \
24206 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
24209 /* T_MNEM_xyz enumerator variants of ToU. */
24210 #define toU(mnem, top, nops, ops, te) \
24211 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
24214 /* Legacy mnemonics that always have conditional infix after the third
24216 #define CL(mnem, op, nops, ops, ae) \
24217 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
24218 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24220 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
24221 #define cCE(mnem, op, nops, ops, ae) \
24222 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
24224 /* mov instructions that are shared between coprocessor and MVE. */
24225 #define mcCE(mnem, op, nops, ops, ae) \
24226 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
24228 /* Legacy coprocessor instructions where conditional infix and conditional
24229 suffix are ambiguous. For consistency this includes all FPA instructions,
24230 not just the potentially ambiguous ones. */
24231 #define cCL(mnem, op, nops, ops, ae) \
24232 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
24233 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
24235 /* Coprocessor, takes either a suffix or a position-3 infix
24236 (for an FPA corner case). */
24237 #define C3E(mnem, op, nops, ops, ae) \
24238 { mnem, OPS##nops ops, OT_csuf_or_in3, \
24239 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
24241 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
24242 { m1 #m2 m3, OPS##nops ops, \
24243 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
24244 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24246 #define CM(m1, m2, op, nops, ops, ae) \
24247 xCM_ (m1, , m2, op, nops, ops, ae), \
24248 xCM_ (m1, eq, m2, op, nops, ops, ae), \
24249 xCM_ (m1, ne, m2, op, nops, ops, ae), \
24250 xCM_ (m1, cs, m2, op, nops, ops, ae), \
24251 xCM_ (m1, hs, m2, op, nops, ops, ae), \
24252 xCM_ (m1, cc, m2, op, nops, ops, ae), \
24253 xCM_ (m1, ul, m2, op, nops, ops, ae), \
24254 xCM_ (m1, lo, m2, op, nops, ops, ae), \
24255 xCM_ (m1, mi, m2, op, nops, ops, ae), \
24256 xCM_ (m1, pl, m2, op, nops, ops, ae), \
24257 xCM_ (m1, vs, m2, op, nops, ops, ae), \
24258 xCM_ (m1, vc, m2, op, nops, ops, ae), \
24259 xCM_ (m1, hi, m2, op, nops, ops, ae), \
24260 xCM_ (m1, ls, m2, op, nops, ops, ae), \
24261 xCM_ (m1, ge, m2, op, nops, ops, ae), \
24262 xCM_ (m1, lt, m2, op, nops, ops, ae), \
24263 xCM_ (m1, gt, m2, op, nops, ops, ae), \
24264 xCM_ (m1, le, m2, op, nops, ops, ae), \
24265 xCM_ (m1, al, m2, op, nops, ops, ae)
24267 #define UE(mnem, op, nops, ops, ae) \
24268 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24270 #define UF(mnem, op, nops, ops, ae) \
24271 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24273 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
24274 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
24275 use the same encoding function for each. */
24276 #define NUF(mnem, op, nops, ops, enc) \
24277 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
24278 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
24280 /* Neon data processing, version which indirects through neon_enc_tab for
24281 the various overloaded versions of opcodes. */
24282 #define nUF(mnem, op, nops, ops, enc) \
24283 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
24284 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
24286 /* Neon insn with conditional suffix for the ARM version, non-overloaded
24288 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
24289 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
24290 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
24292 #define NCE(mnem, op, nops, ops, enc) \
24293 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
24295 #define NCEF(mnem, op, nops, ops, enc) \
24296 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
24298 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
24299 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
24300 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
24301 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
24303 #define nCE(mnem, op, nops, ops, enc) \
24304 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
24306 #define nCEF(mnem, op, nops, ops, enc) \
24307 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
24310 #define mCEF(mnem, op, nops, ops, enc) \
24311 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
24312 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
24315 /* nCEF but for MVE predicated instructions. */
24316 #define mnCEF(mnem, op, nops, ops, enc) \
24317 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
24319 /* nCE but for MVE predicated instructions. */
24320 #define mnCE(mnem, op, nops, ops, enc) \
24321 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
24323 /* NUF but for potentially MVE predicated instructions. */
24324 #define MNUF(mnem, op, nops, ops, enc) \
24325 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
24326 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
24328 /* nUF but for potentially MVE predicated instructions. */
24329 #define mnUF(mnem, op, nops, ops, enc) \
24330 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
24331 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
24333 /* ToC but for potentially MVE predicated instructions. */
24334 #define mToC(mnem, top, nops, ops, te) \
24335 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
24338 /* NCE but for MVE predicated instructions. */
24339 #define MNCE(mnem, op, nops, ops, enc) \
24340 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
24342 /* NCEF but for MVE predicated instructions. */
24343 #define MNCEF(mnem, op, nops, ops, enc) \
24344 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
24347 static const struct asm_opcode insns
[] =
24349 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
24350 #define THUMB_VARIANT & arm_ext_v4t
24351 tCE("and", 0000000, _and
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
24352 tC3("ands", 0100000, _ands
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
24353 tCE("eor", 0200000, _eor
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
24354 tC3("eors", 0300000, _eors
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
24355 tCE("sub", 0400000, _sub
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
24356 tC3("subs", 0500000, _subs
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
24357 tCE("add", 0800000, _add
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
24358 tC3("adds", 0900000, _adds
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
24359 tCE("adc", 0a00000
, _adc
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
24360 tC3("adcs", 0b00000, _adcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
24361 tCE("sbc", 0c00000
, _sbc
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
24362 tC3("sbcs", 0d00000
, _sbcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
24363 tCE("orr", 1800000, _orr
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
24364 tC3("orrs", 1900000, _orrs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
24365 tCE("bic", 1c00000
, _bic
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
24366 tC3("bics", 1d00000
, _bics
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
24368 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
24369 for setting PSR flag bits. They are obsolete in V6 and do not
24370 have Thumb equivalents. */
24371 tCE("tst", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
24372 tC3w("tsts", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
24373 CL("tstp", 110f000
, 2, (RR
, SH
), cmp
),
24374 tCE("cmp", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
24375 tC3w("cmps", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
24376 CL("cmpp", 150f000
, 2, (RR
, SH
), cmp
),
24377 tCE("cmn", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
24378 tC3w("cmns", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
24379 CL("cmnp", 170f000
, 2, (RR
, SH
), cmp
),
24381 tCE("mov", 1a00000
, _mov
, 2, (RR
, SH
), mov
, t_mov_cmp
),
24382 tC3("movs", 1b00000
, _movs
, 2, (RR
, SHG
), mov
, t_mov_cmp
),
24383 tCE("mvn", 1e00000
, _mvn
, 2, (RR
, SH
), mov
, t_mvn_tst
),
24384 tC3("mvns", 1f00000
, _mvns
, 2, (RR
, SH
), mov
, t_mvn_tst
),
24386 tCE("ldr", 4100000, _ldr
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
24387 tC3("ldrb", 4500000, _ldrb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
24388 tCE("str", 4000000, _str
, _2
, (MIX_ARM_THUMB_OPERANDS (OP_RR
,
24390 OP_ADDRGLDR
),ldst
, t_ldst
),
24391 tC3("strb", 4400000, _strb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
24393 tCE("stm", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
24394 tC3("stmia", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
24395 tC3("stmea", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
24396 tCE("ldm", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
24397 tC3("ldmia", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
24398 tC3("ldmfd", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
24400 tCE("b", a000000
, _b
, 1, (EXPr
), branch
, t_branch
),
24401 TCE("bl", b000000
, f000f800
, 1, (EXPr
), bl
, t_branch23
),
24404 tCE("adr", 28f0000
, _adr
, 2, (RR
, EXP
), adr
, t_adr
),
24405 C3(adrl
, 28f0000
, 2, (RR
, EXP
), adrl
),
24406 tCE("nop", 1a00000
, _nop
, 1, (oI255c
), nop
, t_nop
),
24407 tCE("udf", 7f000f0
, _udf
, 1, (oIffffb
), bkpt
, t_udf
),
24409 /* Thumb-compatibility pseudo ops. */
24410 tCE("lsl", 1a00000
, _lsl
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
24411 tC3("lsls", 1b00000
, _lsls
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
24412 tCE("lsr", 1a00020
, _lsr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
24413 tC3("lsrs", 1b00020
, _lsrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
24414 tCE("asr", 1a00040
, _asr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
24415 tC3("asrs", 1b00040
, _asrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
24416 tCE("ror", 1a00060
, _ror
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
24417 tC3("rors", 1b00060
, _rors
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
24418 tCE("neg", 2600000, _neg
, 2, (RR
, RR
), rd_rn
, t_neg
),
24419 tC3("negs", 2700000, _negs
, 2, (RR
, RR
), rd_rn
, t_neg
),
24420 tCE("push", 92d0000
, _push
, 1, (REGLST
), push_pop
, t_push_pop
),
24421 tCE("pop", 8bd0000
, _pop
, 1, (REGLST
), push_pop
, t_push_pop
),
24423 /* These may simplify to neg. */
24424 TCE("rsb", 0600000, ebc00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
24425 TC3("rsbs", 0700000, ebd00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
24427 #undef THUMB_VARIANT
24428 #define THUMB_VARIANT & arm_ext_os
24430 TCE("swi", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
24431 TCE("svc", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
24433 #undef THUMB_VARIANT
24434 #define THUMB_VARIANT & arm_ext_v6
24436 TCE("cpy", 1a00000
, 4600, 2, (RR
, RR
), rd_rm
, t_cpy
),
24438 /* V1 instructions with no Thumb analogue prior to V6T2. */
24439 #undef THUMB_VARIANT
24440 #define THUMB_VARIANT & arm_ext_v6t2
24442 TCE("teq", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
24443 TC3w("teqs", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
24444 CL("teqp", 130f000
, 2, (RR
, SH
), cmp
),
24446 TC3("ldrt", 4300000, f8500e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
24447 TC3("ldrbt", 4700000, f8100e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
24448 TC3("strt", 4200000, f8400e00
, 2, (RR_npcsp
, ADDR
), ldstt
, t_ldstt
),
24449 TC3("strbt", 4600000, f8000e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
24451 TC3("stmdb", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
24452 TC3("stmfd", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
24454 TC3("ldmdb", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
24455 TC3("ldmea", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
24457 /* V1 instructions with no Thumb analogue at all. */
24458 CE("rsc", 0e00000
, 3, (RR
, oRR
, SH
), arit
),
24459 C3(rscs
, 0f00000
, 3, (RR
, oRR
, SH
), arit
),
24461 C3(stmib
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
24462 C3(stmfa
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
24463 C3(stmda
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
24464 C3(stmed
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
24465 C3(ldmib
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
24466 C3(ldmed
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
24467 C3(ldmda
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
24468 C3(ldmfa
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
24471 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
24472 #undef THUMB_VARIANT
24473 #define THUMB_VARIANT & arm_ext_v4t
24475 tCE("mul", 0000090, _mul
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
24476 tC3("muls", 0100090, _muls
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
24478 #undef THUMB_VARIANT
24479 #define THUMB_VARIANT & arm_ext_v6t2
24481 TCE("mla", 0200090, fb000000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
24482 C3(mlas
, 0300090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
),
24484 /* Generic coprocessor instructions. */
24485 TCE("cdp", e000000
, ee000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
24486 TCE("ldc", c100000
, ec100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
24487 TC3("ldcl", c500000
, ec500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
24488 TCE("stc", c000000
, ec000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
24489 TC3("stcl", c400000
, ec400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
24490 TCE("mcr", e000010
, ee000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
24491 TCE("mrc", e100010
, ee100010
, 6, (RCP
, I7b
, APSR_RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
24494 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
24496 CE("swp", 1000090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
24497 C3(swpb
, 1400090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
24500 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
24501 #undef THUMB_VARIANT
24502 #define THUMB_VARIANT & arm_ext_msr
24504 TCE("mrs", 1000000, f3e08000
, 2, (RRnpc
, rPSR
), mrs
, t_mrs
),
24505 TCE("msr", 120f000
, f3808000
, 2, (wPSR
, RR_EXi
), msr
, t_msr
),
24508 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
24509 #undef THUMB_VARIANT
24510 #define THUMB_VARIANT & arm_ext_v6t2
24512 TCE("smull", 0c00090
, fb800000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
24513 CM("smull","s", 0d00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
24514 TCE("umull", 0800090, fba00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
24515 CM("umull","s", 0900090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
24516 TCE("smlal", 0e00090
, fbc00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
24517 CM("smlal","s", 0f00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
24518 TCE("umlal", 0a00090
, fbe00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
24519 CM("umlal","s", 0b00090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
24522 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
24523 #undef THUMB_VARIANT
24524 #define THUMB_VARIANT & arm_ext_v4t
24526 tC3("ldrh", 01000b0
, _ldrh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
24527 tC3("strh", 00000b0
, _strh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
24528 tC3("ldrsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
24529 tC3("ldrsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
24530 tC3("ldsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
24531 tC3("ldsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
24534 #define ARM_VARIANT & arm_ext_v4t_5
24536 /* ARM Architecture 4T. */
24537 /* Note: bx (and blx) are required on V5, even if the processor does
24538 not support Thumb. */
24539 TCE("bx", 12fff10
, 4700, 1, (RR
), bx
, t_bx
),
24542 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
24543 #undef THUMB_VARIANT
24544 #define THUMB_VARIANT & arm_ext_v5t
24546 /* Note: blx has 2 variants; the .value coded here is for
24547 BLX(2). Only this variant has conditional execution. */
24548 TCE("blx", 12fff30
, 4780, 1, (RR_EXr
), blx
, t_blx
),
24549 TUE("bkpt", 1200070, be00
, 1, (oIffffb
), bkpt
, t_bkpt
),
24551 #undef THUMB_VARIANT
24552 #define THUMB_VARIANT & arm_ext_v6t2
24554 TCE("clz", 16f0f10
, fab0f080
, 2, (RRnpc
, RRnpc
), rd_rm
, t_clz
),
24555 TUF("ldc2", c100000
, fc100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
24556 TUF("ldc2l", c500000
, fc500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
24557 TUF("stc2", c000000
, fc000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
24558 TUF("stc2l", c400000
, fc400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
24559 TUF("cdp2", e000000
, fe000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
24560 TUF("mcr2", e000010
, fe000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
24561 TUF("mrc2", e100010
, fe100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
24564 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
24565 #undef THUMB_VARIANT
24566 #define THUMB_VARIANT & arm_ext_v5exp
24568 TCE("smlabb", 1000080, fb100000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
24569 TCE("smlatb", 10000a0
, fb100020
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
24570 TCE("smlabt", 10000c0
, fb100010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
24571 TCE("smlatt", 10000e0
, fb100030
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
24573 TCE("smlawb", 1200080, fb300000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
24574 TCE("smlawt", 12000c0
, fb300010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
24576 TCE("smlalbb", 1400080, fbc00080
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
24577 TCE("smlaltb", 14000a0
, fbc000a0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
24578 TCE("smlalbt", 14000c0
, fbc00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
24579 TCE("smlaltt", 14000e0
, fbc000b0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
24581 TCE("smulbb", 1600080, fb10f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24582 TCE("smultb", 16000a0
, fb10f020
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24583 TCE("smulbt", 16000c0
, fb10f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24584 TCE("smultt", 16000e0
, fb10f030
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24586 TCE("smulwb", 12000a0
, fb30f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24587 TCE("smulwt", 12000e0
, fb30f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24589 TCE("qadd", 1000050, fa80f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
24590 TCE("qdadd", 1400050, fa80f090
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
24591 TCE("qsub", 1200050, fa80f0a0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
24592 TCE("qdsub", 1600050, fa80f0b0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
24595 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
24596 #undef THUMB_VARIANT
24597 #define THUMB_VARIANT & arm_ext_v6t2
24599 TUF("pld", 450f000
, f810f000
, 1, (ADDR
), pld
, t_pld
),
24600 TC3("ldrd", 00000d0
, e8500000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, ADDRGLDRS
),
24602 TC3("strd", 00000f0
, e8400000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
,
24603 ADDRGLDRS
), ldrd
, t_ldstd
),
24605 TCE("mcrr", c400000
, ec400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
24606 TCE("mrrc", c500000
, ec500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
24609 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
24611 TCE("bxj", 12fff20
, f3c08f00
, 1, (RR
), bxj
, t_bxj
),
24614 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
24615 #undef THUMB_VARIANT
24616 #define THUMB_VARIANT & arm_ext_v6
24618 TUF("cpsie", 1080000, b660
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
24619 TUF("cpsid", 10c0000
, b670
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
24620 tCE("rev", 6bf0f30
, _rev
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
24621 tCE("rev16", 6bf0fb0
, _rev16
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
24622 tCE("revsh", 6ff0fb0
, _revsh
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
24623 tCE("sxth", 6bf0070
, _sxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
24624 tCE("uxth", 6ff0070
, _uxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
24625 tCE("sxtb", 6af0070
, _sxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
24626 tCE("uxtb", 6ef0070
, _uxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
24627 TUF("setend", 1010000, b650
, 1, (ENDI
), setend
, t_setend
),
24629 #undef THUMB_VARIANT
24630 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24632 TCE("ldrex", 1900f9f
, e8500f00
, 2, (RRnpc_npcsp
, ADDR
), ldrex
, t_ldrex
),
24633 TCE("strex", 1800f90
, e8400000
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
24635 #undef THUMB_VARIANT
24636 #define THUMB_VARIANT & arm_ext_v6t2
24638 TUF("mcrr2", c400000
, fc400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
24639 TUF("mrrc2", c500000
, fc500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
24641 TCE("ssat", 6a00010
, f3000000
, 4, (RRnpc
, I32
, RRnpc
, oSHllar
),ssat
, t_ssat
),
24642 TCE("usat", 6e00010
, f3800000
, 4, (RRnpc
, I31
, RRnpc
, oSHllar
),usat
, t_usat
),
24644 /* ARM V6 not included in V7M. */
24645 #undef THUMB_VARIANT
24646 #define THUMB_VARIANT & arm_ext_v6_notm
24647 TUF("rfeia", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
24648 TUF("rfe", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
24649 UF(rfeib
, 9900a00
, 1, (RRw
), rfe
),
24650 UF(rfeda
, 8100a00
, 1, (RRw
), rfe
),
24651 TUF("rfedb", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
24652 TUF("rfefd", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
24653 UF(rfefa
, 8100a00
, 1, (RRw
), rfe
),
24654 TUF("rfeea", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
24655 UF(rfeed
, 9900a00
, 1, (RRw
), rfe
),
24656 TUF("srsia", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
24657 TUF("srs", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
24658 TUF("srsea", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
24659 UF(srsib
, 9c00500
, 2, (oRRw
, I31w
), srs
),
24660 UF(srsfa
, 9c00500
, 2, (oRRw
, I31w
), srs
),
24661 UF(srsda
, 8400500, 2, (oRRw
, I31w
), srs
),
24662 UF(srsed
, 8400500, 2, (oRRw
, I31w
), srs
),
24663 TUF("srsdb", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
24664 TUF("srsfd", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
24665 TUF("cps", 1020000, f3af8100
, 1, (I31b
), imm0
, t_cps
),
24667 /* ARM V6 not included in V7M (eg. integer SIMD). */
24668 #undef THUMB_VARIANT
24669 #define THUMB_VARIANT & arm_ext_v6_dsp
24670 TCE("pkhbt", 6800010, eac00000
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHll
), pkhbt
, t_pkhbt
),
24671 TCE("pkhtb", 6800050, eac00020
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHar
), pkhtb
, t_pkhtb
),
24672 TCE("qadd16", 6200f10
, fa90f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24673 TCE("qadd8", 6200f90
, fa80f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24674 TCE("qasx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24675 /* Old name for QASX. */
24676 TCE("qaddsubx",6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24677 TCE("qsax", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24678 /* Old name for QSAX. */
24679 TCE("qsubaddx",6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24680 TCE("qsub16", 6200f70
, fad0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24681 TCE("qsub8", 6200ff0
, fac0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24682 TCE("sadd16", 6100f10
, fa90f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24683 TCE("sadd8", 6100f90
, fa80f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24684 TCE("sasx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24685 /* Old name for SASX. */
24686 TCE("saddsubx",6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24687 TCE("shadd16", 6300f10
, fa90f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24688 TCE("shadd8", 6300f90
, fa80f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24689 TCE("shasx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24690 /* Old name for SHASX. */
24691 TCE("shaddsubx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24692 TCE("shsax", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24693 /* Old name for SHSAX. */
24694 TCE("shsubaddx", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24695 TCE("shsub16", 6300f70
, fad0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24696 TCE("shsub8", 6300ff0
, fac0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24697 TCE("ssax", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24698 /* Old name for SSAX. */
24699 TCE("ssubaddx",6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24700 TCE("ssub16", 6100f70
, fad0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24701 TCE("ssub8", 6100ff0
, fac0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24702 TCE("uadd16", 6500f10
, fa90f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24703 TCE("uadd8", 6500f90
, fa80f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24704 TCE("uasx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24705 /* Old name for UASX. */
24706 TCE("uaddsubx",6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24707 TCE("uhadd16", 6700f10
, fa90f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24708 TCE("uhadd8", 6700f90
, fa80f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24709 TCE("uhasx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24710 /* Old name for UHASX. */
24711 TCE("uhaddsubx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24712 TCE("uhsax", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24713 /* Old name for UHSAX. */
24714 TCE("uhsubaddx", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24715 TCE("uhsub16", 6700f70
, fad0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24716 TCE("uhsub8", 6700ff0
, fac0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24717 TCE("uqadd16", 6600f10
, fa90f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24718 TCE("uqadd8", 6600f90
, fa80f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24719 TCE("uqasx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24720 /* Old name for UQASX. */
24721 TCE("uqaddsubx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24722 TCE("uqsax", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24723 /* Old name for UQSAX. */
24724 TCE("uqsubaddx", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24725 TCE("uqsub16", 6600f70
, fad0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24726 TCE("uqsub8", 6600ff0
, fac0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24727 TCE("usub16", 6500f70
, fad0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24728 TCE("usax", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24729 /* Old name for USAX. */
24730 TCE("usubaddx",6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24731 TCE("usub8", 6500ff0
, fac0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24732 TCE("sxtah", 6b00070
, fa00f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
24733 TCE("sxtab16", 6800070, fa20f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
24734 TCE("sxtab", 6a00070
, fa40f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
24735 TCE("sxtb16", 68f0070
, fa2ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
24736 TCE("uxtah", 6f00070
, fa10f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
24737 TCE("uxtab16", 6c00070
, fa30f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
24738 TCE("uxtab", 6e00070
, fa50f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
24739 TCE("uxtb16", 6cf0070
, fa3ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
24740 TCE("sel", 6800fb0
, faa0f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
24741 TCE("smlad", 7000010, fb200000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
24742 TCE("smladx", 7000030, fb200010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
24743 TCE("smlald", 7400010, fbc000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
24744 TCE("smlaldx", 7400030, fbc000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
24745 TCE("smlsd", 7000050, fb400000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
24746 TCE("smlsdx", 7000070, fb400010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
24747 TCE("smlsld", 7400050, fbd000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
24748 TCE("smlsldx", 7400070, fbd000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
24749 TCE("smmla", 7500010, fb500000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
24750 TCE("smmlar", 7500030, fb500010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
24751 TCE("smmls", 75000d0
, fb600000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
24752 TCE("smmlsr", 75000f0
, fb600010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
24753 TCE("smmul", 750f010
, fb50f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24754 TCE("smmulr", 750f030
, fb50f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24755 TCE("smuad", 700f010
, fb20f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24756 TCE("smuadx", 700f030
, fb20f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24757 TCE("smusd", 700f050
, fb40f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24758 TCE("smusdx", 700f070
, fb40f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24759 TCE("ssat16", 6a00f30
, f3200000
, 3, (RRnpc
, I16
, RRnpc
), ssat16
, t_ssat16
),
24760 TCE("umaal", 0400090, fbe00060
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
, t_mlal
),
24761 TCE("usad8", 780f010
, fb70f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
24762 TCE("usada8", 7800010, fb700000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
24763 TCE("usat16", 6e00f30
, f3a00000
, 3, (RRnpc
, I15
, RRnpc
), usat16
, t_usat16
),
24766 #define ARM_VARIANT & arm_ext_v6k_v6t2
24767 #undef THUMB_VARIANT
24768 #define THUMB_VARIANT & arm_ext_v6k_v6t2
24770 tCE("yield", 320f001
, _yield
, 0, (), noargs
, t_hint
),
24771 tCE("wfe", 320f002
, _wfe
, 0, (), noargs
, t_hint
),
24772 tCE("wfi", 320f003
, _wfi
, 0, (), noargs
, t_hint
),
24773 tCE("sev", 320f004
, _sev
, 0, (), noargs
, t_hint
),
24775 #undef THUMB_VARIANT
24776 #define THUMB_VARIANT & arm_ext_v6_notm
24777 TCE("ldrexd", 1b00f9f
, e8d0007f
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, RRnpcb
),
24779 TCE("strexd", 1a00f90
, e8c00070
, 4, (RRnpc_npcsp
, RRnpc_npcsp
, oRRnpc_npcsp
,
24780 RRnpcb
), strexd
, t_strexd
),
24782 #undef THUMB_VARIANT
24783 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24784 TCE("ldrexb", 1d00f9f
, e8d00f4f
, 2, (RRnpc_npcsp
,RRnpcb
),
24786 TCE("ldrexh", 1f00f9f
, e8d00f5f
, 2, (RRnpc_npcsp
, RRnpcb
),
24788 TCE("strexb", 1c00f90
, e8c00f40
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
24790 TCE("strexh", 1e00f90
, e8c00f50
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
24792 TUF("clrex", 57ff01f
, f3bf8f2f
, 0, (), noargs
, noargs
),
24795 #define ARM_VARIANT & arm_ext_sec
24796 #undef THUMB_VARIANT
24797 #define THUMB_VARIANT & arm_ext_sec
24799 TCE("smc", 1600070, f7f08000
, 1, (EXPi
), smc
, t_smc
),
24802 #define ARM_VARIANT & arm_ext_virt
24803 #undef THUMB_VARIANT
24804 #define THUMB_VARIANT & arm_ext_virt
24806 TCE("hvc", 1400070, f7e08000
, 1, (EXPi
), hvc
, t_hvc
),
24807 TCE("eret", 160006e
, f3de8f00
, 0, (), noargs
, noargs
),
24810 #define ARM_VARIANT & arm_ext_pan
24811 #undef THUMB_VARIANT
24812 #define THUMB_VARIANT & arm_ext_pan
24814 TUF("setpan", 1100000, b610
, 1, (I7
), setpan
, t_setpan
),
24817 #define ARM_VARIANT & arm_ext_v6t2
24818 #undef THUMB_VARIANT
24819 #define THUMB_VARIANT & arm_ext_v6t2
24821 TCE("bfc", 7c0001f
, f36f0000
, 3, (RRnpc
, I31
, I32
), bfc
, t_bfc
),
24822 TCE("bfi", 7c00010
, f3600000
, 4, (RRnpc
, RRnpc_I0
, I31
, I32
), bfi
, t_bfi
),
24823 TCE("sbfx", 7a00050
, f3400000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
24824 TCE("ubfx", 7e00050
, f3c00000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
24826 TCE("mls", 0600090, fb000010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
24827 TCE("rbit", 6ff0f30
, fa90f0a0
, 2, (RR
, RR
), rd_rm
, t_rbit
),
24829 TC3("ldrht", 03000b0
, f8300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
24830 TC3("ldrsht", 03000f0
, f9300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
24831 TC3("ldrsbt", 03000d0
, f9100e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
24832 TC3("strht", 02000b0
, f8200e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
24835 #define ARM_VARIANT & arm_ext_v3
24836 #undef THUMB_VARIANT
24837 #define THUMB_VARIANT & arm_ext_v6t2
24839 TUE("csdb", 320f014
, f3af8014
, 0, (), noargs
, t_csdb
),
24840 TUF("ssbb", 57ff040
, f3bf8f40
, 0, (), noargs
, t_csdb
),
24841 TUF("pssbb", 57ff044
, f3bf8f44
, 0, (), noargs
, t_csdb
),
24844 #define ARM_VARIANT & arm_ext_v6t2
24845 #undef THUMB_VARIANT
24846 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24847 TCE("movw", 3000000, f2400000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
24848 TCE("movt", 3400000, f2c00000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
24850 /* Thumb-only instructions. */
24852 #define ARM_VARIANT NULL
24853 TUE("cbnz", 0, b900
, 2, (RR
, EXP
), 0, t_cbz
),
24854 TUE("cbz", 0, b100
, 2, (RR
, EXP
), 0, t_cbz
),
24856 /* ARM does not really have an IT instruction, so always allow it.
24857 The opcode is copied from Thumb in order to allow warnings in
24858 -mimplicit-it=[never | arm] modes. */
24860 #define ARM_VARIANT & arm_ext_v1
24861 #undef THUMB_VARIANT
24862 #define THUMB_VARIANT & arm_ext_v6t2
24864 TUE("it", bf08
, bf08
, 1, (COND
), it
, t_it
),
24865 TUE("itt", bf0c
, bf0c
, 1, (COND
), it
, t_it
),
24866 TUE("ite", bf04
, bf04
, 1, (COND
), it
, t_it
),
24867 TUE("ittt", bf0e
, bf0e
, 1, (COND
), it
, t_it
),
24868 TUE("itet", bf06
, bf06
, 1, (COND
), it
, t_it
),
24869 TUE("itte", bf0a
, bf0a
, 1, (COND
), it
, t_it
),
24870 TUE("itee", bf02
, bf02
, 1, (COND
), it
, t_it
),
24871 TUE("itttt", bf0f
, bf0f
, 1, (COND
), it
, t_it
),
24872 TUE("itett", bf07
, bf07
, 1, (COND
), it
, t_it
),
24873 TUE("ittet", bf0b
, bf0b
, 1, (COND
), it
, t_it
),
24874 TUE("iteet", bf03
, bf03
, 1, (COND
), it
, t_it
),
24875 TUE("ittte", bf0d
, bf0d
, 1, (COND
), it
, t_it
),
24876 TUE("itete", bf05
, bf05
, 1, (COND
), it
, t_it
),
24877 TUE("ittee", bf09
, bf09
, 1, (COND
), it
, t_it
),
24878 TUE("iteee", bf01
, bf01
, 1, (COND
), it
, t_it
),
24879 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
24880 TC3("rrx", 01a00060
, ea4f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
24881 TC3("rrxs", 01b00060
, ea5f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
24883 /* Thumb2 only instructions. */
24885 #define ARM_VARIANT NULL
24887 TCE("addw", 0, f2000000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
24888 TCE("subw", 0, f2a00000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
24889 TCE("orn", 0, ea600000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
24890 TCE("orns", 0, ea700000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
24891 TCE("tbb", 0, e8d0f000
, 1, (TB
), 0, t_tb
),
24892 TCE("tbh", 0, e8d0f010
, 1, (TB
), 0, t_tb
),
24894 /* Hardware division instructions. */
24896 #define ARM_VARIANT & arm_ext_adiv
24897 #undef THUMB_VARIANT
24898 #define THUMB_VARIANT & arm_ext_div
24900 TCE("sdiv", 710f010
, fb90f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
24901 TCE("udiv", 730f010
, fbb0f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
24903 /* ARM V6M/V7 instructions. */
24905 #define ARM_VARIANT & arm_ext_barrier
24906 #undef THUMB_VARIANT
24907 #define THUMB_VARIANT & arm_ext_barrier
24909 TUF("dmb", 57ff050
, f3bf8f50
, 1, (oBARRIER_I15
), barrier
, barrier
),
24910 TUF("dsb", 57ff040
, f3bf8f40
, 1, (oBARRIER_I15
), barrier
, barrier
),
24911 TUF("isb", 57ff060
, f3bf8f60
, 1, (oBARRIER_I15
), barrier
, barrier
),
24913 /* ARM V7 instructions. */
24915 #define ARM_VARIANT & arm_ext_v7
24916 #undef THUMB_VARIANT
24917 #define THUMB_VARIANT & arm_ext_v7
24919 TUF("pli", 450f000
, f910f000
, 1, (ADDR
), pli
, t_pld
),
24920 TCE("dbg", 320f0f0
, f3af80f0
, 1, (I15
), dbg
, t_dbg
),
24923 #define ARM_VARIANT & arm_ext_mp
24924 #undef THUMB_VARIANT
24925 #define THUMB_VARIANT & arm_ext_mp
24927 TUF("pldw", 410f000
, f830f000
, 1, (ADDR
), pld
, t_pld
),
24929 /* AArchv8 instructions. */
24931 #define ARM_VARIANT & arm_ext_v8
24933 /* Instructions shared between armv8-a and armv8-m. */
24934 #undef THUMB_VARIANT
24935 #define THUMB_VARIANT & arm_ext_atomics
24937 TCE("lda", 1900c9f
, e8d00faf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
24938 TCE("ldab", 1d00c9f
, e8d00f8f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
24939 TCE("ldah", 1f00c9f
, e8d00f9f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
24940 TCE("stl", 180fc90
, e8c00faf
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
24941 TCE("stlb", 1c0fc90
, e8c00f8f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
24942 TCE("stlh", 1e0fc90
, e8c00f9f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
24943 TCE("ldaex", 1900e9f
, e8d00fef
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
24944 TCE("ldaexb", 1d00e9f
, e8d00fcf
, 2, (RRnpc
,RRnpcb
), rd_rn
, rd_rn
),
24945 TCE("ldaexh", 1f00e9f
, e8d00fdf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
24946 TCE("stlex", 1800e90
, e8c00fe0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
24948 TCE("stlexb", 1c00e90
, e8c00fc0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
24950 TCE("stlexh", 1e00e90
, e8c00fd0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
24952 #undef THUMB_VARIANT
24953 #define THUMB_VARIANT & arm_ext_v8
24955 tCE("sevl", 320f005
, _sevl
, 0, (), noargs
, t_hint
),
24956 TCE("ldaexd", 1b00e9f
, e8d000ff
, 3, (RRnpc
, oRRnpc
, RRnpcb
),
24958 TCE("stlexd", 1a00e90
, e8c000f0
, 4, (RRnpc
, RRnpc
, oRRnpc
, RRnpcb
),
24961 /* Defined in V8 but is in undefined encoding space for earlier
24962 architectures. However earlier architectures are required to treat
24963 this instuction as a semihosting trap as well. Hence while not explicitly
24964 defined as such, it is in fact correct to define the instruction for all
24966 #undef THUMB_VARIANT
24967 #define THUMB_VARIANT & arm_ext_v1
24969 #define ARM_VARIANT & arm_ext_v1
24970 TUE("hlt", 1000070, ba80
, 1, (oIffffb
), bkpt
, t_hlt
),
24972 /* ARMv8 T32 only. */
24974 #define ARM_VARIANT NULL
24975 TUF("dcps1", 0, f78f8001
, 0, (), noargs
, noargs
),
24976 TUF("dcps2", 0, f78f8002
, 0, (), noargs
, noargs
),
24977 TUF("dcps3", 0, f78f8003
, 0, (), noargs
, noargs
),
24979 /* FP for ARMv8. */
24981 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24982 #undef THUMB_VARIANT
24983 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
24985 nUF(vseleq
, _vseleq
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
24986 nUF(vselvs
, _vselvs
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
24987 nUF(vselge
, _vselge
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
24988 nUF(vselgt
, _vselgt
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
24989 nCE(vrintr
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintr
),
24990 mnCE(vrintz
, _vrintr
, 2, (RNSDQMQ
, oRNSDQMQ
), vrintz
),
24991 mnCE(vrintx
, _vrintr
, 2, (RNSDQMQ
, oRNSDQMQ
), vrintx
),
24992 mnUF(vrinta
, _vrinta
, 2, (RNSDQMQ
, oRNSDQMQ
), vrinta
),
24993 mnUF(vrintn
, _vrinta
, 2, (RNSDQMQ
, oRNSDQMQ
), vrintn
),
24994 mnUF(vrintp
, _vrinta
, 2, (RNSDQMQ
, oRNSDQMQ
), vrintp
),
24995 mnUF(vrintm
, _vrinta
, 2, (RNSDQMQ
, oRNSDQMQ
), vrintm
),
24997 /* Crypto v1 extensions. */
24999 #define ARM_VARIANT & fpu_crypto_ext_armv8
25000 #undef THUMB_VARIANT
25001 #define THUMB_VARIANT & fpu_crypto_ext_armv8
25003 nUF(aese
, _aes
, 2, (RNQ
, RNQ
), aese
),
25004 nUF(aesd
, _aes
, 2, (RNQ
, RNQ
), aesd
),
25005 nUF(aesmc
, _aes
, 2, (RNQ
, RNQ
), aesmc
),
25006 nUF(aesimc
, _aes
, 2, (RNQ
, RNQ
), aesimc
),
25007 nUF(sha1c
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1c
),
25008 nUF(sha1p
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1p
),
25009 nUF(sha1m
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1m
),
25010 nUF(sha1su0
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1su0
),
25011 nUF(sha256h
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256h
),
25012 nUF(sha256h2
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256h2
),
25013 nUF(sha256su1
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256su1
),
25014 nUF(sha1h
, _sha1h
, 2, (RNQ
, RNQ
), sha1h
),
25015 nUF(sha1su1
, _sha2op
, 2, (RNQ
, RNQ
), sha1su1
),
25016 nUF(sha256su0
, _sha2op
, 2, (RNQ
, RNQ
), sha256su0
),
25019 #define ARM_VARIANT & arm_ext_crc
25020 #undef THUMB_VARIANT
25021 #define THUMB_VARIANT & arm_ext_crc
25022 TUEc("crc32b", 1000040, fac0f080
, 3, (RR
, oRR
, RR
), crc32b
),
25023 TUEc("crc32h", 1200040, fac0f090
, 3, (RR
, oRR
, RR
), crc32h
),
25024 TUEc("crc32w", 1400040, fac0f0a0
, 3, (RR
, oRR
, RR
), crc32w
),
25025 TUEc("crc32cb",1000240, fad0f080
, 3, (RR
, oRR
, RR
), crc32cb
),
25026 TUEc("crc32ch",1200240, fad0f090
, 3, (RR
, oRR
, RR
), crc32ch
),
25027 TUEc("crc32cw",1400240, fad0f0a0
, 3, (RR
, oRR
, RR
), crc32cw
),
25029 /* ARMv8.2 RAS extension. */
25031 #define ARM_VARIANT & arm_ext_ras
25032 #undef THUMB_VARIANT
25033 #define THUMB_VARIANT & arm_ext_ras
25034 TUE ("esb", 320f010
, f3af8010
, 0, (), noargs
, noargs
),
25037 #define ARM_VARIANT & arm_ext_v8_3
25038 #undef THUMB_VARIANT
25039 #define THUMB_VARIANT & arm_ext_v8_3
25040 NCE (vjcvt
, eb90bc0
, 2, (RVS
, RVD
), vjcvt
),
25043 #define ARM_VARIANT & fpu_neon_ext_dotprod
25044 #undef THUMB_VARIANT
25045 #define THUMB_VARIANT & fpu_neon_ext_dotprod
25046 NUF (vsdot
, d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), neon_dotproduct_s
),
25047 NUF (vudot
, d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), neon_dotproduct_u
),
25050 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
25051 #undef THUMB_VARIANT
25052 #define THUMB_VARIANT NULL
25054 cCE("wfs", e200110
, 1, (RR
), rd
),
25055 cCE("rfs", e300110
, 1, (RR
), rd
),
25056 cCE("wfc", e400110
, 1, (RR
), rd
),
25057 cCE("rfc", e500110
, 1, (RR
), rd
),
25059 cCL("ldfs", c100100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
25060 cCL("ldfd", c108100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
25061 cCL("ldfe", c500100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
25062 cCL("ldfp", c508100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
25064 cCL("stfs", c000100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
25065 cCL("stfd", c008100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
25066 cCL("stfe", c400100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
25067 cCL("stfp", c408100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
25069 cCL("mvfs", e008100
, 2, (RF
, RF_IF
), rd_rm
),
25070 cCL("mvfsp", e008120
, 2, (RF
, RF_IF
), rd_rm
),
25071 cCL("mvfsm", e008140
, 2, (RF
, RF_IF
), rd_rm
),
25072 cCL("mvfsz", e008160
, 2, (RF
, RF_IF
), rd_rm
),
25073 cCL("mvfd", e008180
, 2, (RF
, RF_IF
), rd_rm
),
25074 cCL("mvfdp", e0081a0
, 2, (RF
, RF_IF
), rd_rm
),
25075 cCL("mvfdm", e0081c0
, 2, (RF
, RF_IF
), rd_rm
),
25076 cCL("mvfdz", e0081e0
, 2, (RF
, RF_IF
), rd_rm
),
25077 cCL("mvfe", e088100
, 2, (RF
, RF_IF
), rd_rm
),
25078 cCL("mvfep", e088120
, 2, (RF
, RF_IF
), rd_rm
),
25079 cCL("mvfem", e088140
, 2, (RF
, RF_IF
), rd_rm
),
25080 cCL("mvfez", e088160
, 2, (RF
, RF_IF
), rd_rm
),
25082 cCL("mnfs", e108100
, 2, (RF
, RF_IF
), rd_rm
),
25083 cCL("mnfsp", e108120
, 2, (RF
, RF_IF
), rd_rm
),
25084 cCL("mnfsm", e108140
, 2, (RF
, RF_IF
), rd_rm
),
25085 cCL("mnfsz", e108160
, 2, (RF
, RF_IF
), rd_rm
),
25086 cCL("mnfd", e108180
, 2, (RF
, RF_IF
), rd_rm
),
25087 cCL("mnfdp", e1081a0
, 2, (RF
, RF_IF
), rd_rm
),
25088 cCL("mnfdm", e1081c0
, 2, (RF
, RF_IF
), rd_rm
),
25089 cCL("mnfdz", e1081e0
, 2, (RF
, RF_IF
), rd_rm
),
25090 cCL("mnfe", e188100
, 2, (RF
, RF_IF
), rd_rm
),
25091 cCL("mnfep", e188120
, 2, (RF
, RF_IF
), rd_rm
),
25092 cCL("mnfem", e188140
, 2, (RF
, RF_IF
), rd_rm
),
25093 cCL("mnfez", e188160
, 2, (RF
, RF_IF
), rd_rm
),
25095 cCL("abss", e208100
, 2, (RF
, RF_IF
), rd_rm
),
25096 cCL("abssp", e208120
, 2, (RF
, RF_IF
), rd_rm
),
25097 cCL("abssm", e208140
, 2, (RF
, RF_IF
), rd_rm
),
25098 cCL("abssz", e208160
, 2, (RF
, RF_IF
), rd_rm
),
25099 cCL("absd", e208180
, 2, (RF
, RF_IF
), rd_rm
),
25100 cCL("absdp", e2081a0
, 2, (RF
, RF_IF
), rd_rm
),
25101 cCL("absdm", e2081c0
, 2, (RF
, RF_IF
), rd_rm
),
25102 cCL("absdz", e2081e0
, 2, (RF
, RF_IF
), rd_rm
),
25103 cCL("abse", e288100
, 2, (RF
, RF_IF
), rd_rm
),
25104 cCL("absep", e288120
, 2, (RF
, RF_IF
), rd_rm
),
25105 cCL("absem", e288140
, 2, (RF
, RF_IF
), rd_rm
),
25106 cCL("absez", e288160
, 2, (RF
, RF_IF
), rd_rm
),
25108 cCL("rnds", e308100
, 2, (RF
, RF_IF
), rd_rm
),
25109 cCL("rndsp", e308120
, 2, (RF
, RF_IF
), rd_rm
),
25110 cCL("rndsm", e308140
, 2, (RF
, RF_IF
), rd_rm
),
25111 cCL("rndsz", e308160
, 2, (RF
, RF_IF
), rd_rm
),
25112 cCL("rndd", e308180
, 2, (RF
, RF_IF
), rd_rm
),
25113 cCL("rnddp", e3081a0
, 2, (RF
, RF_IF
), rd_rm
),
25114 cCL("rnddm", e3081c0
, 2, (RF
, RF_IF
), rd_rm
),
25115 cCL("rnddz", e3081e0
, 2, (RF
, RF_IF
), rd_rm
),
25116 cCL("rnde", e388100
, 2, (RF
, RF_IF
), rd_rm
),
25117 cCL("rndep", e388120
, 2, (RF
, RF_IF
), rd_rm
),
25118 cCL("rndem", e388140
, 2, (RF
, RF_IF
), rd_rm
),
25119 cCL("rndez", e388160
, 2, (RF
, RF_IF
), rd_rm
),
25121 cCL("sqts", e408100
, 2, (RF
, RF_IF
), rd_rm
),
25122 cCL("sqtsp", e408120
, 2, (RF
, RF_IF
), rd_rm
),
25123 cCL("sqtsm", e408140
, 2, (RF
, RF_IF
), rd_rm
),
25124 cCL("sqtsz", e408160
, 2, (RF
, RF_IF
), rd_rm
),
25125 cCL("sqtd", e408180
, 2, (RF
, RF_IF
), rd_rm
),
25126 cCL("sqtdp", e4081a0
, 2, (RF
, RF_IF
), rd_rm
),
25127 cCL("sqtdm", e4081c0
, 2, (RF
, RF_IF
), rd_rm
),
25128 cCL("sqtdz", e4081e0
, 2, (RF
, RF_IF
), rd_rm
),
25129 cCL("sqte", e488100
, 2, (RF
, RF_IF
), rd_rm
),
25130 cCL("sqtep", e488120
, 2, (RF
, RF_IF
), rd_rm
),
25131 cCL("sqtem", e488140
, 2, (RF
, RF_IF
), rd_rm
),
25132 cCL("sqtez", e488160
, 2, (RF
, RF_IF
), rd_rm
),
25134 cCL("logs", e508100
, 2, (RF
, RF_IF
), rd_rm
),
25135 cCL("logsp", e508120
, 2, (RF
, RF_IF
), rd_rm
),
25136 cCL("logsm", e508140
, 2, (RF
, RF_IF
), rd_rm
),
25137 cCL("logsz", e508160
, 2, (RF
, RF_IF
), rd_rm
),
25138 cCL("logd", e508180
, 2, (RF
, RF_IF
), rd_rm
),
25139 cCL("logdp", e5081a0
, 2, (RF
, RF_IF
), rd_rm
),
25140 cCL("logdm", e5081c0
, 2, (RF
, RF_IF
), rd_rm
),
25141 cCL("logdz", e5081e0
, 2, (RF
, RF_IF
), rd_rm
),
25142 cCL("loge", e588100
, 2, (RF
, RF_IF
), rd_rm
),
25143 cCL("logep", e588120
, 2, (RF
, RF_IF
), rd_rm
),
25144 cCL("logem", e588140
, 2, (RF
, RF_IF
), rd_rm
),
25145 cCL("logez", e588160
, 2, (RF
, RF_IF
), rd_rm
),
25147 cCL("lgns", e608100
, 2, (RF
, RF_IF
), rd_rm
),
25148 cCL("lgnsp", e608120
, 2, (RF
, RF_IF
), rd_rm
),
25149 cCL("lgnsm", e608140
, 2, (RF
, RF_IF
), rd_rm
),
25150 cCL("lgnsz", e608160
, 2, (RF
, RF_IF
), rd_rm
),
25151 cCL("lgnd", e608180
, 2, (RF
, RF_IF
), rd_rm
),
25152 cCL("lgndp", e6081a0
, 2, (RF
, RF_IF
), rd_rm
),
25153 cCL("lgndm", e6081c0
, 2, (RF
, RF_IF
), rd_rm
),
25154 cCL("lgndz", e6081e0
, 2, (RF
, RF_IF
), rd_rm
),
25155 cCL("lgne", e688100
, 2, (RF
, RF_IF
), rd_rm
),
25156 cCL("lgnep", e688120
, 2, (RF
, RF_IF
), rd_rm
),
25157 cCL("lgnem", e688140
, 2, (RF
, RF_IF
), rd_rm
),
25158 cCL("lgnez", e688160
, 2, (RF
, RF_IF
), rd_rm
),
25160 cCL("exps", e708100
, 2, (RF
, RF_IF
), rd_rm
),
25161 cCL("expsp", e708120
, 2, (RF
, RF_IF
), rd_rm
),
25162 cCL("expsm", e708140
, 2, (RF
, RF_IF
), rd_rm
),
25163 cCL("expsz", e708160
, 2, (RF
, RF_IF
), rd_rm
),
25164 cCL("expd", e708180
, 2, (RF
, RF_IF
), rd_rm
),
25165 cCL("expdp", e7081a0
, 2, (RF
, RF_IF
), rd_rm
),
25166 cCL("expdm", e7081c0
, 2, (RF
, RF_IF
), rd_rm
),
25167 cCL("expdz", e7081e0
, 2, (RF
, RF_IF
), rd_rm
),
25168 cCL("expe", e788100
, 2, (RF
, RF_IF
), rd_rm
),
25169 cCL("expep", e788120
, 2, (RF
, RF_IF
), rd_rm
),
25170 cCL("expem", e788140
, 2, (RF
, RF_IF
), rd_rm
),
25171 cCL("expdz", e788160
, 2, (RF
, RF_IF
), rd_rm
),
25173 cCL("sins", e808100
, 2, (RF
, RF_IF
), rd_rm
),
25174 cCL("sinsp", e808120
, 2, (RF
, RF_IF
), rd_rm
),
25175 cCL("sinsm", e808140
, 2, (RF
, RF_IF
), rd_rm
),
25176 cCL("sinsz", e808160
, 2, (RF
, RF_IF
), rd_rm
),
25177 cCL("sind", e808180
, 2, (RF
, RF_IF
), rd_rm
),
25178 cCL("sindp", e8081a0
, 2, (RF
, RF_IF
), rd_rm
),
25179 cCL("sindm", e8081c0
, 2, (RF
, RF_IF
), rd_rm
),
25180 cCL("sindz", e8081e0
, 2, (RF
, RF_IF
), rd_rm
),
25181 cCL("sine", e888100
, 2, (RF
, RF_IF
), rd_rm
),
25182 cCL("sinep", e888120
, 2, (RF
, RF_IF
), rd_rm
),
25183 cCL("sinem", e888140
, 2, (RF
, RF_IF
), rd_rm
),
25184 cCL("sinez", e888160
, 2, (RF
, RF_IF
), rd_rm
),
25186 cCL("coss", e908100
, 2, (RF
, RF_IF
), rd_rm
),
25187 cCL("cossp", e908120
, 2, (RF
, RF_IF
), rd_rm
),
25188 cCL("cossm", e908140
, 2, (RF
, RF_IF
), rd_rm
),
25189 cCL("cossz", e908160
, 2, (RF
, RF_IF
), rd_rm
),
25190 cCL("cosd", e908180
, 2, (RF
, RF_IF
), rd_rm
),
25191 cCL("cosdp", e9081a0
, 2, (RF
, RF_IF
), rd_rm
),
25192 cCL("cosdm", e9081c0
, 2, (RF
, RF_IF
), rd_rm
),
25193 cCL("cosdz", e9081e0
, 2, (RF
, RF_IF
), rd_rm
),
25194 cCL("cose", e988100
, 2, (RF
, RF_IF
), rd_rm
),
25195 cCL("cosep", e988120
, 2, (RF
, RF_IF
), rd_rm
),
25196 cCL("cosem", e988140
, 2, (RF
, RF_IF
), rd_rm
),
25197 cCL("cosez", e988160
, 2, (RF
, RF_IF
), rd_rm
),
25199 cCL("tans", ea08100
, 2, (RF
, RF_IF
), rd_rm
),
25200 cCL("tansp", ea08120
, 2, (RF
, RF_IF
), rd_rm
),
25201 cCL("tansm", ea08140
, 2, (RF
, RF_IF
), rd_rm
),
25202 cCL("tansz", ea08160
, 2, (RF
, RF_IF
), rd_rm
),
25203 cCL("tand", ea08180
, 2, (RF
, RF_IF
), rd_rm
),
25204 cCL("tandp", ea081a0
, 2, (RF
, RF_IF
), rd_rm
),
25205 cCL("tandm", ea081c0
, 2, (RF
, RF_IF
), rd_rm
),
25206 cCL("tandz", ea081e0
, 2, (RF
, RF_IF
), rd_rm
),
25207 cCL("tane", ea88100
, 2, (RF
, RF_IF
), rd_rm
),
25208 cCL("tanep", ea88120
, 2, (RF
, RF_IF
), rd_rm
),
25209 cCL("tanem", ea88140
, 2, (RF
, RF_IF
), rd_rm
),
25210 cCL("tanez", ea88160
, 2, (RF
, RF_IF
), rd_rm
),
25212 cCL("asns", eb08100
, 2, (RF
, RF_IF
), rd_rm
),
25213 cCL("asnsp", eb08120
, 2, (RF
, RF_IF
), rd_rm
),
25214 cCL("asnsm", eb08140
, 2, (RF
, RF_IF
), rd_rm
),
25215 cCL("asnsz", eb08160
, 2, (RF
, RF_IF
), rd_rm
),
25216 cCL("asnd", eb08180
, 2, (RF
, RF_IF
), rd_rm
),
25217 cCL("asndp", eb081a0
, 2, (RF
, RF_IF
), rd_rm
),
25218 cCL("asndm", eb081c0
, 2, (RF
, RF_IF
), rd_rm
),
25219 cCL("asndz", eb081e0
, 2, (RF
, RF_IF
), rd_rm
),
25220 cCL("asne", eb88100
, 2, (RF
, RF_IF
), rd_rm
),
25221 cCL("asnep", eb88120
, 2, (RF
, RF_IF
), rd_rm
),
25222 cCL("asnem", eb88140
, 2, (RF
, RF_IF
), rd_rm
),
25223 cCL("asnez", eb88160
, 2, (RF
, RF_IF
), rd_rm
),
25225 cCL("acss", ec08100
, 2, (RF
, RF_IF
), rd_rm
),
25226 cCL("acssp", ec08120
, 2, (RF
, RF_IF
), rd_rm
),
25227 cCL("acssm", ec08140
, 2, (RF
, RF_IF
), rd_rm
),
25228 cCL("acssz", ec08160
, 2, (RF
, RF_IF
), rd_rm
),
25229 cCL("acsd", ec08180
, 2, (RF
, RF_IF
), rd_rm
),
25230 cCL("acsdp", ec081a0
, 2, (RF
, RF_IF
), rd_rm
),
25231 cCL("acsdm", ec081c0
, 2, (RF
, RF_IF
), rd_rm
),
25232 cCL("acsdz", ec081e0
, 2, (RF
, RF_IF
), rd_rm
),
25233 cCL("acse", ec88100
, 2, (RF
, RF_IF
), rd_rm
),
25234 cCL("acsep", ec88120
, 2, (RF
, RF_IF
), rd_rm
),
25235 cCL("acsem", ec88140
, 2, (RF
, RF_IF
), rd_rm
),
25236 cCL("acsez", ec88160
, 2, (RF
, RF_IF
), rd_rm
),
25238 cCL("atns", ed08100
, 2, (RF
, RF_IF
), rd_rm
),
25239 cCL("atnsp", ed08120
, 2, (RF
, RF_IF
), rd_rm
),
25240 cCL("atnsm", ed08140
, 2, (RF
, RF_IF
), rd_rm
),
25241 cCL("atnsz", ed08160
, 2, (RF
, RF_IF
), rd_rm
),
25242 cCL("atnd", ed08180
, 2, (RF
, RF_IF
), rd_rm
),
25243 cCL("atndp", ed081a0
, 2, (RF
, RF_IF
), rd_rm
),
25244 cCL("atndm", ed081c0
, 2, (RF
, RF_IF
), rd_rm
),
25245 cCL("atndz", ed081e0
, 2, (RF
, RF_IF
), rd_rm
),
25246 cCL("atne", ed88100
, 2, (RF
, RF_IF
), rd_rm
),
25247 cCL("atnep", ed88120
, 2, (RF
, RF_IF
), rd_rm
),
25248 cCL("atnem", ed88140
, 2, (RF
, RF_IF
), rd_rm
),
25249 cCL("atnez", ed88160
, 2, (RF
, RF_IF
), rd_rm
),
25251 cCL("urds", ee08100
, 2, (RF
, RF_IF
), rd_rm
),
25252 cCL("urdsp", ee08120
, 2, (RF
, RF_IF
), rd_rm
),
25253 cCL("urdsm", ee08140
, 2, (RF
, RF_IF
), rd_rm
),
25254 cCL("urdsz", ee08160
, 2, (RF
, RF_IF
), rd_rm
),
25255 cCL("urdd", ee08180
, 2, (RF
, RF_IF
), rd_rm
),
25256 cCL("urddp", ee081a0
, 2, (RF
, RF_IF
), rd_rm
),
25257 cCL("urddm", ee081c0
, 2, (RF
, RF_IF
), rd_rm
),
25258 cCL("urddz", ee081e0
, 2, (RF
, RF_IF
), rd_rm
),
25259 cCL("urde", ee88100
, 2, (RF
, RF_IF
), rd_rm
),
25260 cCL("urdep", ee88120
, 2, (RF
, RF_IF
), rd_rm
),
25261 cCL("urdem", ee88140
, 2, (RF
, RF_IF
), rd_rm
),
25262 cCL("urdez", ee88160
, 2, (RF
, RF_IF
), rd_rm
),
25264 cCL("nrms", ef08100
, 2, (RF
, RF_IF
), rd_rm
),
25265 cCL("nrmsp", ef08120
, 2, (RF
, RF_IF
), rd_rm
),
25266 cCL("nrmsm", ef08140
, 2, (RF
, RF_IF
), rd_rm
),
25267 cCL("nrmsz", ef08160
, 2, (RF
, RF_IF
), rd_rm
),
25268 cCL("nrmd", ef08180
, 2, (RF
, RF_IF
), rd_rm
),
25269 cCL("nrmdp", ef081a0
, 2, (RF
, RF_IF
), rd_rm
),
25270 cCL("nrmdm", ef081c0
, 2, (RF
, RF_IF
), rd_rm
),
25271 cCL("nrmdz", ef081e0
, 2, (RF
, RF_IF
), rd_rm
),
25272 cCL("nrme", ef88100
, 2, (RF
, RF_IF
), rd_rm
),
25273 cCL("nrmep", ef88120
, 2, (RF
, RF_IF
), rd_rm
),
25274 cCL("nrmem", ef88140
, 2, (RF
, RF_IF
), rd_rm
),
25275 cCL("nrmez", ef88160
, 2, (RF
, RF_IF
), rd_rm
),
25277 cCL("adfs", e000100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25278 cCL("adfsp", e000120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25279 cCL("adfsm", e000140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25280 cCL("adfsz", e000160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25281 cCL("adfd", e000180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25282 cCL("adfdp", e0001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25283 cCL("adfdm", e0001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25284 cCL("adfdz", e0001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25285 cCL("adfe", e080100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25286 cCL("adfep", e080120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25287 cCL("adfem", e080140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25288 cCL("adfez", e080160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25290 cCL("sufs", e200100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25291 cCL("sufsp", e200120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25292 cCL("sufsm", e200140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25293 cCL("sufsz", e200160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25294 cCL("sufd", e200180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25295 cCL("sufdp", e2001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25296 cCL("sufdm", e2001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25297 cCL("sufdz", e2001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25298 cCL("sufe", e280100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25299 cCL("sufep", e280120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25300 cCL("sufem", e280140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25301 cCL("sufez", e280160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25303 cCL("rsfs", e300100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25304 cCL("rsfsp", e300120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25305 cCL("rsfsm", e300140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25306 cCL("rsfsz", e300160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25307 cCL("rsfd", e300180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25308 cCL("rsfdp", e3001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25309 cCL("rsfdm", e3001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25310 cCL("rsfdz", e3001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25311 cCL("rsfe", e380100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25312 cCL("rsfep", e380120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25313 cCL("rsfem", e380140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25314 cCL("rsfez", e380160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25316 cCL("mufs", e100100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25317 cCL("mufsp", e100120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25318 cCL("mufsm", e100140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25319 cCL("mufsz", e100160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25320 cCL("mufd", e100180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25321 cCL("mufdp", e1001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25322 cCL("mufdm", e1001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25323 cCL("mufdz", e1001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25324 cCL("mufe", e180100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25325 cCL("mufep", e180120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25326 cCL("mufem", e180140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25327 cCL("mufez", e180160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25329 cCL("dvfs", e400100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25330 cCL("dvfsp", e400120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25331 cCL("dvfsm", e400140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25332 cCL("dvfsz", e400160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25333 cCL("dvfd", e400180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25334 cCL("dvfdp", e4001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25335 cCL("dvfdm", e4001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25336 cCL("dvfdz", e4001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25337 cCL("dvfe", e480100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25338 cCL("dvfep", e480120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25339 cCL("dvfem", e480140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25340 cCL("dvfez", e480160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25342 cCL("rdfs", e500100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25343 cCL("rdfsp", e500120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25344 cCL("rdfsm", e500140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25345 cCL("rdfsz", e500160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25346 cCL("rdfd", e500180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25347 cCL("rdfdp", e5001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25348 cCL("rdfdm", e5001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25349 cCL("rdfdz", e5001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25350 cCL("rdfe", e580100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25351 cCL("rdfep", e580120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25352 cCL("rdfem", e580140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25353 cCL("rdfez", e580160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25355 cCL("pows", e600100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25356 cCL("powsp", e600120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25357 cCL("powsm", e600140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25358 cCL("powsz", e600160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25359 cCL("powd", e600180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25360 cCL("powdp", e6001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25361 cCL("powdm", e6001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25362 cCL("powdz", e6001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25363 cCL("powe", e680100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25364 cCL("powep", e680120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25365 cCL("powem", e680140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25366 cCL("powez", e680160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25368 cCL("rpws", e700100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25369 cCL("rpwsp", e700120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25370 cCL("rpwsm", e700140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25371 cCL("rpwsz", e700160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25372 cCL("rpwd", e700180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25373 cCL("rpwdp", e7001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25374 cCL("rpwdm", e7001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25375 cCL("rpwdz", e7001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25376 cCL("rpwe", e780100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25377 cCL("rpwep", e780120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25378 cCL("rpwem", e780140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25379 cCL("rpwez", e780160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25381 cCL("rmfs", e800100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25382 cCL("rmfsp", e800120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25383 cCL("rmfsm", e800140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25384 cCL("rmfsz", e800160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25385 cCL("rmfd", e800180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25386 cCL("rmfdp", e8001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25387 cCL("rmfdm", e8001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25388 cCL("rmfdz", e8001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25389 cCL("rmfe", e880100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25390 cCL("rmfep", e880120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25391 cCL("rmfem", e880140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25392 cCL("rmfez", e880160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25394 cCL("fmls", e900100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25395 cCL("fmlsp", e900120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25396 cCL("fmlsm", e900140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25397 cCL("fmlsz", e900160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25398 cCL("fmld", e900180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25399 cCL("fmldp", e9001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25400 cCL("fmldm", e9001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25401 cCL("fmldz", e9001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25402 cCL("fmle", e980100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25403 cCL("fmlep", e980120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25404 cCL("fmlem", e980140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25405 cCL("fmlez", e980160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25407 cCL("fdvs", ea00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25408 cCL("fdvsp", ea00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25409 cCL("fdvsm", ea00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25410 cCL("fdvsz", ea00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25411 cCL("fdvd", ea00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25412 cCL("fdvdp", ea001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25413 cCL("fdvdm", ea001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25414 cCL("fdvdz", ea001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25415 cCL("fdve", ea80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25416 cCL("fdvep", ea80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25417 cCL("fdvem", ea80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25418 cCL("fdvez", ea80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25420 cCL("frds", eb00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25421 cCL("frdsp", eb00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25422 cCL("frdsm", eb00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25423 cCL("frdsz", eb00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25424 cCL("frdd", eb00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25425 cCL("frddp", eb001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25426 cCL("frddm", eb001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25427 cCL("frddz", eb001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25428 cCL("frde", eb80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25429 cCL("frdep", eb80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25430 cCL("frdem", eb80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25431 cCL("frdez", eb80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25433 cCL("pols", ec00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25434 cCL("polsp", ec00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25435 cCL("polsm", ec00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25436 cCL("polsz", ec00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25437 cCL("pold", ec00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25438 cCL("poldp", ec001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25439 cCL("poldm", ec001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25440 cCL("poldz", ec001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25441 cCL("pole", ec80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25442 cCL("polep", ec80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25443 cCL("polem", ec80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25444 cCL("polez", ec80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
25446 cCE("cmf", e90f110
, 2, (RF
, RF_IF
), fpa_cmp
),
25447 C3E("cmfe", ed0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
25448 cCE("cnf", eb0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
25449 C3E("cnfe", ef0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
25451 cCL("flts", e000110
, 2, (RF
, RR
), rn_rd
),
25452 cCL("fltsp", e000130
, 2, (RF
, RR
), rn_rd
),
25453 cCL("fltsm", e000150
, 2, (RF
, RR
), rn_rd
),
25454 cCL("fltsz", e000170
, 2, (RF
, RR
), rn_rd
),
25455 cCL("fltd", e000190
, 2, (RF
, RR
), rn_rd
),
25456 cCL("fltdp", e0001b0
, 2, (RF
, RR
), rn_rd
),
25457 cCL("fltdm", e0001d0
, 2, (RF
, RR
), rn_rd
),
25458 cCL("fltdz", e0001f0
, 2, (RF
, RR
), rn_rd
),
25459 cCL("flte", e080110
, 2, (RF
, RR
), rn_rd
),
25460 cCL("fltep", e080130
, 2, (RF
, RR
), rn_rd
),
25461 cCL("fltem", e080150
, 2, (RF
, RR
), rn_rd
),
25462 cCL("fltez", e080170
, 2, (RF
, RR
), rn_rd
),
25464 /* The implementation of the FIX instruction is broken on some
25465 assemblers, in that it accepts a precision specifier as well as a
25466 rounding specifier, despite the fact that this is meaningless.
25467 To be more compatible, we accept it as well, though of course it
25468 does not set any bits. */
25469 cCE("fix", e100110
, 2, (RR
, RF
), rd_rm
),
25470 cCL("fixp", e100130
, 2, (RR
, RF
), rd_rm
),
25471 cCL("fixm", e100150
, 2, (RR
, RF
), rd_rm
),
25472 cCL("fixz", e100170
, 2, (RR
, RF
), rd_rm
),
25473 cCL("fixsp", e100130
, 2, (RR
, RF
), rd_rm
),
25474 cCL("fixsm", e100150
, 2, (RR
, RF
), rd_rm
),
25475 cCL("fixsz", e100170
, 2, (RR
, RF
), rd_rm
),
25476 cCL("fixdp", e100130
, 2, (RR
, RF
), rd_rm
),
25477 cCL("fixdm", e100150
, 2, (RR
, RF
), rd_rm
),
25478 cCL("fixdz", e100170
, 2, (RR
, RF
), rd_rm
),
25479 cCL("fixep", e100130
, 2, (RR
, RF
), rd_rm
),
25480 cCL("fixem", e100150
, 2, (RR
, RF
), rd_rm
),
25481 cCL("fixez", e100170
, 2, (RR
, RF
), rd_rm
),
25483 /* Instructions that were new with the real FPA, call them V2. */
25485 #define ARM_VARIANT & fpu_fpa_ext_v2
25487 cCE("lfm", c100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
25488 cCL("lfmfd", c900200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
25489 cCL("lfmea", d100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
25490 cCE("sfm", c000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
25491 cCL("sfmfd", d000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
25492 cCL("sfmea", c800200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
25495 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
25496 #undef THUMB_VARIANT
25497 #define THUMB_VARIANT & arm_ext_v6t2
25498 mcCE(vmrs
, ef00a10
, 2, (APSR_RR
, RVC
), vmrs
),
25499 mcCE(vmsr
, ee00a10
, 2, (RVC
, RR
), vmsr
),
25500 mcCE(fldd
, d100b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
25501 mcCE(fstd
, d000b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
25502 mcCE(flds
, d100a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
25503 mcCE(fsts
, d000a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
25505 /* Memory operations. */
25506 mcCE(fldmias
, c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
25507 mcCE(fldmdbs
, d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
25508 mcCE(fstmias
, c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
25509 mcCE(fstmdbs
, d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
25510 #undef THUMB_VARIANT
25512 /* Moves and type conversions. */
25513 cCE("fmstat", ef1fa10
, 0, (), noargs
),
25514 cCE("fsitos", eb80ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25515 cCE("fuitos", eb80a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25516 cCE("ftosis", ebd0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25517 cCE("ftosizs", ebd0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25518 cCE("ftouis", ebc0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25519 cCE("ftouizs", ebc0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25520 cCE("fmrx", ef00a10
, 2, (RR
, RVC
), rd_rn
),
25521 cCE("fmxr", ee00a10
, 2, (RVC
, RR
), rn_rd
),
25523 /* Memory operations. */
25524 cCE("fldmfds", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
25525 cCE("fldmeas", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
25526 cCE("fldmiax", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
25527 cCE("fldmfdx", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
25528 cCE("fldmdbx", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
25529 cCE("fldmeax", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
25530 cCE("fstmeas", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
25531 cCE("fstmfds", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
25532 cCE("fstmiax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
25533 cCE("fstmeax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
25534 cCE("fstmdbx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
25535 cCE("fstmfdx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
25537 /* Monadic operations. */
25538 cCE("fabss", eb00ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25539 cCE("fnegs", eb10a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25540 cCE("fsqrts", eb10ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25542 /* Dyadic operations. */
25543 cCE("fadds", e300a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25544 cCE("fsubs", e300a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25545 cCE("fmuls", e200a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25546 cCE("fdivs", e800a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25547 cCE("fmacs", e000a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25548 cCE("fmscs", e100a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25549 cCE("fnmuls", e200a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25550 cCE("fnmacs", e000a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25551 cCE("fnmscs", e100a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25554 cCE("fcmps", eb40a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25555 cCE("fcmpzs", eb50a40
, 1, (RVS
), vfp_sp_compare_z
),
25556 cCE("fcmpes", eb40ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
25557 cCE("fcmpezs", eb50ac0
, 1, (RVS
), vfp_sp_compare_z
),
25559 /* Double precision load/store are still present on single precision
25560 implementations. */
25561 cCE("fldmiad", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
25562 cCE("fldmfdd", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
25563 cCE("fldmdbd", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
25564 cCE("fldmead", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
25565 cCE("fstmiad", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
25566 cCE("fstmead", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
25567 cCE("fstmdbd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
25568 cCE("fstmfdd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
25571 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
25573 /* Moves and type conversions. */
25574 cCE("fcvtds", eb70ac0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
25575 cCE("fcvtsd", eb70bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
25576 cCE("fmdhr", e200b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
25577 cCE("fmdlr", e000b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
25578 cCE("fmrdh", e300b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
25579 cCE("fmrdl", e100b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
25580 cCE("fsitod", eb80bc0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
25581 cCE("fuitod", eb80b40
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
25582 cCE("ftosid", ebd0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
25583 cCE("ftosizd", ebd0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
25584 cCE("ftouid", ebc0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
25585 cCE("ftouizd", ebc0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
25587 /* Monadic operations. */
25588 cCE("fabsd", eb00bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
25589 cCE("fnegd", eb10b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
25590 cCE("fsqrtd", eb10bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
25592 /* Dyadic operations. */
25593 cCE("faddd", e300b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25594 cCE("fsubd", e300b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25595 cCE("fmuld", e200b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25596 cCE("fdivd", e800b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25597 cCE("fmacd", e000b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25598 cCE("fmscd", e100b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25599 cCE("fnmuld", e200b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25600 cCE("fnmacd", e000b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25601 cCE("fnmscd", e100b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25604 cCE("fcmpd", eb40b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
25605 cCE("fcmpzd", eb50b40
, 1, (RVD
), vfp_dp_rd
),
25606 cCE("fcmped", eb40bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
25607 cCE("fcmpezd", eb50bc0
, 1, (RVD
), vfp_dp_rd
),
25609 /* Instructions which may belong to either the Neon or VFP instruction sets.
25610 Individual encoder functions perform additional architecture checks. */
25612 #define ARM_VARIANT & fpu_vfp_ext_v1xd
25613 #undef THUMB_VARIANT
25614 #define THUMB_VARIANT & arm_ext_v6t2
25616 NCE(vldm
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
25617 NCE(vldmia
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
25618 NCE(vldmdb
, d100b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
25619 NCE(vstm
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
25620 NCE(vstmia
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
25621 NCE(vstmdb
, d000b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
25623 NCE(vpop
, 0, 1, (VRSDLST
), vfp_nsyn_pop
),
25624 NCE(vpush
, 0, 1, (VRSDLST
), vfp_nsyn_push
),
25626 #undef THUMB_VARIANT
25627 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
25629 /* These mnemonics are unique to VFP. */
25630 NCE(vsqrt
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_sqrt
),
25631 NCE(vdiv
, 0, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_div
),
25632 nCE(vnmul
, _vnmul
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
25633 nCE(vnmla
, _vnmla
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
25634 nCE(vnmls
, _vnmls
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
25635 NCE(vcvtz
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_cvtz
),
25637 /* Mnemonics shared by Neon and VFP. */
25638 nCEF(vmls
, _vmls
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
25640 mnCEF(vcvt
, _vcvt
, 3, (RNSDQMQ
, RNSDQMQ
, oI32z
), neon_cvt
),
25641 nCEF(vcvtr
, _vcvt
, 2, (RNSDQ
, RNSDQ
), neon_cvtr
),
25642 MNCEF(vcvtb
, eb20a40
, 3, (RVSDMQ
, RVSDMQ
, oI32b
), neon_cvtb
),
25643 MNCEF(vcvtt
, eb20a40
, 3, (RVSDMQ
, RVSDMQ
, oI32b
), neon_cvtt
),
25646 /* NOTE: All VMOV encoding is special-cased! */
25647 NCE(vmovq
, 0, 1, (VMOV
), neon_mov
),
25649 #undef THUMB_VARIANT
25650 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
25651 by different feature bits. Since we are setting the Thumb guard, we can
25652 require Thumb-1 which makes it a nop guard and set the right feature bit in
25653 do_vldr_vstr (). */
25654 #define THUMB_VARIANT & arm_ext_v4t
25655 NCE(vldr
, d100b00
, 2, (VLDR
, ADDRGLDC
), vldr_vstr
),
25656 NCE(vstr
, d000b00
, 2, (VLDR
, ADDRGLDC
), vldr_vstr
),
25659 #define ARM_VARIANT & arm_ext_fp16
25660 #undef THUMB_VARIANT
25661 #define THUMB_VARIANT & arm_ext_fp16
25662 /* New instructions added from v8.2, allowing the extraction and insertion of
25663 the upper 16 bits of a 32-bit vector register. */
25664 NCE (vmovx
, eb00a40
, 2, (RVS
, RVS
), neon_movhf
),
25665 NCE (vins
, eb00ac0
, 2, (RVS
, RVS
), neon_movhf
),
25667 /* New backported fma/fms instructions optional in v8.2. */
25668 NUF (vfmsl
, 810, 3, (RNDQ
, RNSD
, RNSD_RNSC
), neon_vfmsl
),
25669 NUF (vfmal
, 810, 3, (RNDQ
, RNSD
, RNSD_RNSC
), neon_vfmal
),
25671 #undef THUMB_VARIANT
25672 #define THUMB_VARIANT & fpu_neon_ext_v1
25674 #define ARM_VARIANT & fpu_neon_ext_v1
25676 /* Data processing with three registers of the same length. */
25677 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
25678 NUF(vaba
, 0000710, 3, (RNDQ
, RNDQ
, RNDQ
), neon_dyadic_i_su
),
25679 NUF(vabaq
, 0000710, 3, (RNQ
, RNQ
, RNQ
), neon_dyadic_i_su
),
25680 NUF(vhaddq
, 0000000, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
25681 NUF(vrhaddq
, 0000100, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
25682 NUF(vhsubq
, 0000200, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
25683 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
25684 NUF(vqaddq
, 0000010, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
25685 NUF(vqsubq
, 0000210, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
25686 NUF(vrshlq
, 0000500, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
25687 NUF(vqrshlq
, 0000510, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
25688 /* If not immediate, fall back to neon_dyadic_i64_su.
25689 shl should accept I8 I16 I32 I64,
25690 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
25691 nUF(vshlq
, _vshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_shl
),
25692 nUF(vqshlq
, _vqshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_qshl
),
25693 /* Logic ops, types optional & ignored. */
25694 nUF(vandq
, _vand
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
25695 nUF(vbicq
, _vbic
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
25696 nUF(vorrq
, _vorr
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
25697 nUF(vornq
, _vorn
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
25698 nUF(veorq
, _veor
, 3, (RNQ
, oRNQ
, RNQ
), neon_logic
),
25699 /* Bitfield ops, untyped. */
25700 NUF(vbsl
, 1100110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
25701 NUF(vbslq
, 1100110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
25702 NUF(vbit
, 1200110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
25703 NUF(vbitq
, 1200110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
25704 NUF(vbif
, 1300110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
25705 NUF(vbifq
, 1300110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
25706 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
25707 nUF(vabdq
, _vabd
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
25708 nUF(vmaxq
, _vmax
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
25709 nUF(vminq
, _vmin
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
25710 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
25711 back to neon_dyadic_if_su. */
25712 nUF(vcge
, _vcge
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
25713 nUF(vcgeq
, _vcge
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
25714 nUF(vcgt
, _vcgt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
25715 nUF(vcgtq
, _vcgt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
25716 nUF(vclt
, _vclt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
25717 nUF(vcltq
, _vclt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
25718 nUF(vcle
, _vcle
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
25719 nUF(vcleq
, _vcle
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
25720 /* Comparison. Type I8 I16 I32 F32. */
25721 nUF(vceq
, _vceq
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_ceq
),
25722 nUF(vceqq
, _vceq
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_ceq
),
25723 /* As above, D registers only. */
25724 nUF(vpmax
, _vpmax
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
25725 nUF(vpmin
, _vpmin
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
25726 /* Int and float variants, signedness unimportant. */
25727 nUF(vmlaq
, _vmla
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
25728 nUF(vmlsq
, _vmls
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
25729 nUF(vpadd
, _vpadd
, 3, (RND
, oRND
, RND
), neon_dyadic_if_i_d
),
25730 /* Add/sub take types I8 I16 I32 I64 F32. */
25731 nUF(vaddq
, _vadd
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
25732 nUF(vsubq
, _vsub
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
25733 /* vtst takes sizes 8, 16, 32. */
25734 NUF(vtst
, 0000810, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_tst
),
25735 NUF(vtstq
, 0000810, 3, (RNQ
, oRNQ
, RNQ
), neon_tst
),
25736 /* VMUL takes I8 I16 I32 F32 P8. */
25737 nUF(vmulq
, _vmul
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mul
),
25738 /* VQD{R}MULH takes S16 S32. */
25739 nUF(vqdmulhq
, _vqdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
25740 nUF(vqrdmulhq
, _vqrdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
25741 NUF(vacge
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
25742 NUF(vacgeq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
25743 NUF(vacgt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
25744 NUF(vacgtq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
25745 NUF(vaclt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
25746 NUF(vacltq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
25747 NUF(vacle
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
25748 NUF(vacleq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
25749 NUF(vrecps
, 0000f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
25750 NUF(vrecpsq
, 0000f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
25751 NUF(vrsqrts
, 0200f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
25752 NUF(vrsqrtsq
, 0200f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
25753 /* ARM v8.1 extension. */
25754 nUF (vqrdmlahq
, _vqrdmlah
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qrdmlah
),
25755 nUF (vqrdmlsh
, _vqrdmlsh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qrdmlah
),
25756 nUF (vqrdmlshq
, _vqrdmlsh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qrdmlah
),
25758 /* Two address, int/float. Types S8 S16 S32 F32. */
25759 NUF(vabsq
, 1b10300
, 2, (RNQ
, RNQ
), neon_abs_neg
),
25760 NUF(vnegq
, 1b10380
, 2, (RNQ
, RNQ
), neon_abs_neg
),
25762 /* Data processing with two registers and a shift amount. */
25763 /* Right shifts, and variants with rounding.
25764 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
25765 NUF(vshrq
, 0800010, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
25766 NUF(vrshrq
, 0800210, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
25767 NUF(vsra
, 0800110, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
25768 NUF(vsraq
, 0800110, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
25769 NUF(vrsra
, 0800310, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
25770 NUF(vrsraq
, 0800310, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
25771 /* Shift and insert. Sizes accepted 8 16 32 64. */
25772 NUF(vsliq
, 1800510, 3, (RNQ
, oRNQ
, I63
), neon_sli
),
25773 NUF(vsriq
, 1800410, 3, (RNQ
, oRNQ
, I64
), neon_sri
),
25774 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
25775 NUF(vqshluq
, 1800610, 3, (RNQ
, oRNQ
, I63
), neon_qshlu_imm
),
25776 /* Right shift immediate, saturating & narrowing, with rounding variants.
25777 Types accepted S16 S32 S64 U16 U32 U64. */
25778 NUF(vqshrn
, 0800910, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
25779 NUF(vqrshrn
, 0800950, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
25780 /* As above, unsigned. Types accepted S16 S32 S64. */
25781 NUF(vqshrun
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
25782 NUF(vqrshrun
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
25783 /* Right shift narrowing. Types accepted I16 I32 I64. */
25784 NUF(vshrn
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
25785 NUF(vrshrn
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
25786 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
25787 nUF(vshll
, _vshll
, 3, (RNQ
, RND
, I32
), neon_shll
),
25788 /* CVT with optional immediate for fixed-point variant. */
25789 nUF(vcvtq
, _vcvt
, 3, (RNQ
, RNQ
, oI32b
), neon_cvt
),
25791 nUF(vmvnq
, _vmvn
, 2, (RNQ
, RNDQ_Ibig
), neon_mvn
),
25793 /* Data processing, three registers of different lengths. */
25794 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
25795 NUF(vabal
, 0800500, 3, (RNQ
, RND
, RND
), neon_abal
),
25796 /* If not scalar, fall back to neon_dyadic_long.
25797 Vector types as above, scalar types S16 S32 U16 U32. */
25798 nUF(vmlal
, _vmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
25799 nUF(vmlsl
, _vmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
25800 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
25801 NUF(vaddw
, 0800100, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
25802 NUF(vsubw
, 0800300, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
25803 /* Dyadic, narrowing insns. Types I16 I32 I64. */
25804 NUF(vaddhn
, 0800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
25805 NUF(vraddhn
, 1800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
25806 NUF(vsubhn
, 0800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
25807 NUF(vrsubhn
, 1800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
25808 /* Saturating doubling multiplies. Types S16 S32. */
25809 nUF(vqdmlal
, _vqdmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
25810 nUF(vqdmlsl
, _vqdmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
25811 nUF(vqdmull
, _vqdmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
25812 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
25813 S16 S32 U16 U32. */
25814 nUF(vmull
, _vmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_vmull
),
25816 /* Extract. Size 8. */
25817 NUF(vext
, 0b00000, 4, (RNDQ
, oRNDQ
, RNDQ
, I15
), neon_ext
),
25818 NUF(vextq
, 0b00000, 4, (RNQ
, oRNQ
, RNQ
, I15
), neon_ext
),
25820 /* Two registers, miscellaneous. */
25821 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
25822 NUF(vrev64q
, 1b00000
, 2, (RNQ
, RNQ
), neon_rev
),
25823 NUF(vrev32q
, 1b00080
, 2, (RNQ
, RNQ
), neon_rev
),
25824 NUF(vrev16q
, 1b00100
, 2, (RNQ
, RNQ
), neon_rev
),
25825 /* Vector replicate. Sizes 8 16 32. */
25826 nCE(vdupq
, _vdup
, 2, (RNQ
, RR_RNSC
), neon_dup
),
25827 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
25828 NUF(vmovl
, 0800a10
, 2, (RNQ
, RND
), neon_movl
),
25829 /* VMOVN. Types I16 I32 I64. */
25830 nUF(vmovn
, _vmovn
, 2, (RND
, RNQ
), neon_movn
),
25831 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
25832 nUF(vqmovn
, _vqmovn
, 2, (RND
, RNQ
), neon_qmovn
),
25833 /* VQMOVUN. Types S16 S32 S64. */
25834 nUF(vqmovun
, _vqmovun
, 2, (RND
, RNQ
), neon_qmovun
),
25835 /* VZIP / VUZP. Sizes 8 16 32. */
25836 NUF(vzip
, 1b20180
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
25837 NUF(vzipq
, 1b20180
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
25838 NUF(vuzp
, 1b20100
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
25839 NUF(vuzpq
, 1b20100
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
25840 /* VQABS / VQNEG. Types S8 S16 S32. */
25841 NUF(vqabsq
, 1b00700
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
25842 NUF(vqnegq
, 1b00780
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
25843 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
25844 NUF(vpadal
, 1b00600
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
25845 NUF(vpadalq
, 1b00600
, 2, (RNQ
, RNQ
), neon_pair_long
),
25846 NUF(vpaddl
, 1b00200
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
25847 NUF(vpaddlq
, 1b00200
, 2, (RNQ
, RNQ
), neon_pair_long
),
25848 /* Reciprocal estimates. Types U32 F16 F32. */
25849 NUF(vrecpe
, 1b30400
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
25850 NUF(vrecpeq
, 1b30400
, 2, (RNQ
, RNQ
), neon_recip_est
),
25851 NUF(vrsqrte
, 1b30480
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
25852 NUF(vrsqrteq
, 1b30480
, 2, (RNQ
, RNQ
), neon_recip_est
),
25853 /* VCLS. Types S8 S16 S32. */
25854 NUF(vclsq
, 1b00400
, 2, (RNQ
, RNQ
), neon_cls
),
25855 /* VCLZ. Types I8 I16 I32. */
25856 NUF(vclzq
, 1b00480
, 2, (RNQ
, RNQ
), neon_clz
),
25857 /* VCNT. Size 8. */
25858 NUF(vcnt
, 1b00500
, 2, (RNDQ
, RNDQ
), neon_cnt
),
25859 NUF(vcntq
, 1b00500
, 2, (RNQ
, RNQ
), neon_cnt
),
25860 /* Two address, untyped. */
25861 NUF(vswp
, 1b20000
, 2, (RNDQ
, RNDQ
), neon_swp
),
25862 NUF(vswpq
, 1b20000
, 2, (RNQ
, RNQ
), neon_swp
),
25863 /* VTRN. Sizes 8 16 32. */
25864 nUF(vtrn
, _vtrn
, 2, (RNDQ
, RNDQ
), neon_trn
),
25865 nUF(vtrnq
, _vtrn
, 2, (RNQ
, RNQ
), neon_trn
),
25867 /* Table lookup. Size 8. */
25868 NUF(vtbl
, 1b00800
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
25869 NUF(vtbx
, 1b00840
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
25871 #undef THUMB_VARIANT
25872 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
25874 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
25876 /* Neon element/structure load/store. */
25877 nUF(vld1
, _vld1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
25878 nUF(vst1
, _vst1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
25879 nUF(vld2
, _vld2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
25880 nUF(vst2
, _vst2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
25881 nUF(vld3
, _vld3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
25882 nUF(vst3
, _vst3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
25883 nUF(vld4
, _vld4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
25884 nUF(vst4
, _vst4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
25886 #undef THUMB_VARIANT
25887 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
25889 #define ARM_VARIANT & fpu_vfp_ext_v3xd
25890 cCE("fconsts", eb00a00
, 2, (RVS
, I255
), vfp_sp_const
),
25891 cCE("fshtos", eba0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
25892 cCE("fsltos", eba0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
25893 cCE("fuhtos", ebb0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
25894 cCE("fultos", ebb0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
25895 cCE("ftoshs", ebe0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
25896 cCE("ftosls", ebe0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
25897 cCE("ftouhs", ebf0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
25898 cCE("ftouls", ebf0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
25900 #undef THUMB_VARIANT
25901 #define THUMB_VARIANT & fpu_vfp_ext_v3
25903 #define ARM_VARIANT & fpu_vfp_ext_v3
25905 cCE("fconstd", eb00b00
, 2, (RVD
, I255
), vfp_dp_const
),
25906 cCE("fshtod", eba0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
25907 cCE("fsltod", eba0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
25908 cCE("fuhtod", ebb0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
25909 cCE("fultod", ebb0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
25910 cCE("ftoshd", ebe0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
25911 cCE("ftosld", ebe0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
25912 cCE("ftouhd", ebf0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
25913 cCE("ftould", ebf0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
25916 #define ARM_VARIANT & fpu_vfp_ext_fma
25917 #undef THUMB_VARIANT
25918 #define THUMB_VARIANT & fpu_vfp_ext_fma
25919 /* Mnemonics shared by Neon, VFP, MVE and BF16. These are included in the
25920 VFP FMA variant; NEON and VFP FMA always includes the NEON
25921 FMA instructions. */
25922 mnCEF(vfma
, _vfma
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_fmac
),
25923 TUF ("vfmat", c300850
, fc300850
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ_RR
), mve_vfma
, mve_vfma
),
25924 mnCEF(vfms
, _vfms
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQ
), neon_fmac
),
25926 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
25927 the v form should always be used. */
25928 cCE("ffmas", ea00a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25929 cCE("ffnmas", ea00a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
25930 cCE("ffmad", ea00b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25931 cCE("ffnmad", ea00b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
25932 nCE(vfnma
, _vfnma
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
25933 nCE(vfnms
, _vfnms
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
25935 #undef THUMB_VARIANT
25937 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
25939 cCE("mia", e200010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
25940 cCE("miaph", e280010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
25941 cCE("miabb", e2c0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
25942 cCE("miabt", e2d0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
25943 cCE("miatb", e2e0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
25944 cCE("miatt", e2f0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
25945 cCE("mar", c400000
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mar
),
25946 cCE("mra", c500000
, 3, (RRnpc
, RRnpc
, RXA
), xsc_mra
),
25949 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
25951 cCE("tandcb", e13f130
, 1, (RR
), iwmmxt_tandorc
),
25952 cCE("tandch", e53f130
, 1, (RR
), iwmmxt_tandorc
),
25953 cCE("tandcw", e93f130
, 1, (RR
), iwmmxt_tandorc
),
25954 cCE("tbcstb", e400010
, 2, (RIWR
, RR
), rn_rd
),
25955 cCE("tbcsth", e400050
, 2, (RIWR
, RR
), rn_rd
),
25956 cCE("tbcstw", e400090
, 2, (RIWR
, RR
), rn_rd
),
25957 cCE("textrcb", e130170
, 2, (RR
, I7
), iwmmxt_textrc
),
25958 cCE("textrch", e530170
, 2, (RR
, I7
), iwmmxt_textrc
),
25959 cCE("textrcw", e930170
, 2, (RR
, I7
), iwmmxt_textrc
),
25960 cCE("textrmub",e100070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
25961 cCE("textrmuh",e500070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
25962 cCE("textrmuw",e900070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
25963 cCE("textrmsb",e100078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
25964 cCE("textrmsh",e500078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
25965 cCE("textrmsw",e900078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
25966 cCE("tinsrb", e600010
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
25967 cCE("tinsrh", e600050
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
25968 cCE("tinsrw", e600090
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
25969 cCE("tmcr", e000110
, 2, (RIWC_RIWG
, RR
), rn_rd
),
25970 cCE("tmcrr", c400000
, 3, (RIWR
, RR
, RR
), rm_rd_rn
),
25971 cCE("tmia", e200010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
25972 cCE("tmiaph", e280010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
25973 cCE("tmiabb", e2c0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
25974 cCE("tmiabt", e2d0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
25975 cCE("tmiatb", e2e0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
25976 cCE("tmiatt", e2f0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
25977 cCE("tmovmskb",e100030
, 2, (RR
, RIWR
), rd_rn
),
25978 cCE("tmovmskh",e500030
, 2, (RR
, RIWR
), rd_rn
),
25979 cCE("tmovmskw",e900030
, 2, (RR
, RIWR
), rd_rn
),
25980 cCE("tmrc", e100110
, 2, (RR
, RIWC_RIWG
), rd_rn
),
25981 cCE("tmrrc", c500000
, 3, (RR
, RR
, RIWR
), rd_rn_rm
),
25982 cCE("torcb", e13f150
, 1, (RR
), iwmmxt_tandorc
),
25983 cCE("torch", e53f150
, 1, (RR
), iwmmxt_tandorc
),
25984 cCE("torcw", e93f150
, 1, (RR
), iwmmxt_tandorc
),
25985 cCE("waccb", e0001c0
, 2, (RIWR
, RIWR
), rd_rn
),
25986 cCE("wacch", e4001c0
, 2, (RIWR
, RIWR
), rd_rn
),
25987 cCE("waccw", e8001c0
, 2, (RIWR
, RIWR
), rd_rn
),
25988 cCE("waddbss", e300180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
25989 cCE("waddb", e000180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
25990 cCE("waddbus", e100180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
25991 cCE("waddhss", e700180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
25992 cCE("waddh", e400180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
25993 cCE("waddhus", e500180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
25994 cCE("waddwss", eb00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
25995 cCE("waddw", e800180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
25996 cCE("waddwus", e900180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
25997 cCE("waligni", e000020
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_waligni
),
25998 cCE("walignr0",e800020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
25999 cCE("walignr1",e900020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26000 cCE("walignr2",ea00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26001 cCE("walignr3",eb00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26002 cCE("wand", e200000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26003 cCE("wandn", e300000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26004 cCE("wavg2b", e800000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26005 cCE("wavg2br", e900000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26006 cCE("wavg2h", ec00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26007 cCE("wavg2hr", ed00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26008 cCE("wcmpeqb", e000060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26009 cCE("wcmpeqh", e400060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26010 cCE("wcmpeqw", e800060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26011 cCE("wcmpgtub",e100060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26012 cCE("wcmpgtuh",e500060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26013 cCE("wcmpgtuw",e900060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26014 cCE("wcmpgtsb",e300060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26015 cCE("wcmpgtsh",e700060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26016 cCE("wcmpgtsw",eb00060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26017 cCE("wldrb", c100000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
26018 cCE("wldrh", c500000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
26019 cCE("wldrw", c100100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
26020 cCE("wldrd", c500100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
26021 cCE("wmacs", e600100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26022 cCE("wmacsz", e700100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26023 cCE("wmacu", e400100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26024 cCE("wmacuz", e500100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26025 cCE("wmadds", ea00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26026 cCE("wmaddu", e800100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26027 cCE("wmaxsb", e200160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26028 cCE("wmaxsh", e600160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26029 cCE("wmaxsw", ea00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26030 cCE("wmaxub", e000160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26031 cCE("wmaxuh", e400160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26032 cCE("wmaxuw", e800160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26033 cCE("wminsb", e300160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26034 cCE("wminsh", e700160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26035 cCE("wminsw", eb00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26036 cCE("wminub", e100160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26037 cCE("wminuh", e500160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26038 cCE("wminuw", e900160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26039 cCE("wmov", e000000
, 2, (RIWR
, RIWR
), iwmmxt_wmov
),
26040 cCE("wmulsm", e300100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26041 cCE("wmulsl", e200100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26042 cCE("wmulum", e100100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26043 cCE("wmulul", e000100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26044 cCE("wor", e000000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26045 cCE("wpackhss",e700080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26046 cCE("wpackhus",e500080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26047 cCE("wpackwss",eb00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26048 cCE("wpackwus",e900080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26049 cCE("wpackdss",ef00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26050 cCE("wpackdus",ed00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26051 cCE("wrorh", e700040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26052 cCE("wrorhg", e700148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26053 cCE("wrorw", eb00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26054 cCE("wrorwg", eb00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26055 cCE("wrord", ef00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26056 cCE("wrordg", ef00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26057 cCE("wsadb", e000120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26058 cCE("wsadbz", e100120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26059 cCE("wsadh", e400120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26060 cCE("wsadhz", e500120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26061 cCE("wshufh", e0001e0
, 3, (RIWR
, RIWR
, I255
), iwmmxt_wshufh
),
26062 cCE("wsllh", e500040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26063 cCE("wsllhg", e500148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26064 cCE("wsllw", e900040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26065 cCE("wsllwg", e900148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26066 cCE("wslld", ed00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26067 cCE("wslldg", ed00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26068 cCE("wsrah", e400040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26069 cCE("wsrahg", e400148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26070 cCE("wsraw", e800040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26071 cCE("wsrawg", e800148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26072 cCE("wsrad", ec00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26073 cCE("wsradg", ec00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26074 cCE("wsrlh", e600040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26075 cCE("wsrlhg", e600148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26076 cCE("wsrlw", ea00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26077 cCE("wsrlwg", ea00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26078 cCE("wsrld", ee00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
26079 cCE("wsrldg", ee00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
26080 cCE("wstrb", c000000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
26081 cCE("wstrh", c400000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
26082 cCE("wstrw", c000100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
26083 cCE("wstrd", c400100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
26084 cCE("wsubbss", e3001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26085 cCE("wsubb", e0001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26086 cCE("wsubbus", e1001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26087 cCE("wsubhss", e7001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26088 cCE("wsubh", e4001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26089 cCE("wsubhus", e5001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26090 cCE("wsubwss", eb001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26091 cCE("wsubw", e8001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26092 cCE("wsubwus", e9001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26093 cCE("wunpckehub",e0000c0
, 2, (RIWR
, RIWR
), rd_rn
),
26094 cCE("wunpckehuh",e4000c0
, 2, (RIWR
, RIWR
), rd_rn
),
26095 cCE("wunpckehuw",e8000c0
, 2, (RIWR
, RIWR
), rd_rn
),
26096 cCE("wunpckehsb",e2000c0
, 2, (RIWR
, RIWR
), rd_rn
),
26097 cCE("wunpckehsh",e6000c0
, 2, (RIWR
, RIWR
), rd_rn
),
26098 cCE("wunpckehsw",ea000c0
, 2, (RIWR
, RIWR
), rd_rn
),
26099 cCE("wunpckihb", e1000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26100 cCE("wunpckihh", e5000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26101 cCE("wunpckihw", e9000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26102 cCE("wunpckelub",e0000e0
, 2, (RIWR
, RIWR
), rd_rn
),
26103 cCE("wunpckeluh",e4000e0
, 2, (RIWR
, RIWR
), rd_rn
),
26104 cCE("wunpckeluw",e8000e0
, 2, (RIWR
, RIWR
), rd_rn
),
26105 cCE("wunpckelsb",e2000e0
, 2, (RIWR
, RIWR
), rd_rn
),
26106 cCE("wunpckelsh",e6000e0
, 2, (RIWR
, RIWR
), rd_rn
),
26107 cCE("wunpckelsw",ea000e0
, 2, (RIWR
, RIWR
), rd_rn
),
26108 cCE("wunpckilb", e1000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26109 cCE("wunpckilh", e5000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26110 cCE("wunpckilw", e9000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26111 cCE("wxor", e100000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26112 cCE("wzero", e300000
, 1, (RIWR
), iwmmxt_wzero
),
26115 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
26117 cCE("torvscb", e12f190
, 1, (RR
), iwmmxt_tandorc
),
26118 cCE("torvsch", e52f190
, 1, (RR
), iwmmxt_tandorc
),
26119 cCE("torvscw", e92f190
, 1, (RR
), iwmmxt_tandorc
),
26120 cCE("wabsb", e2001c0
, 2, (RIWR
, RIWR
), rd_rn
),
26121 cCE("wabsh", e6001c0
, 2, (RIWR
, RIWR
), rd_rn
),
26122 cCE("wabsw", ea001c0
, 2, (RIWR
, RIWR
), rd_rn
),
26123 cCE("wabsdiffb", e1001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26124 cCE("wabsdiffh", e5001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26125 cCE("wabsdiffw", e9001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26126 cCE("waddbhusl", e2001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26127 cCE("waddbhusm", e6001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26128 cCE("waddhc", e600180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26129 cCE("waddwc", ea00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26130 cCE("waddsubhx", ea001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26131 cCE("wavg4", e400000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26132 cCE("wavg4r", e500000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26133 cCE("wmaddsn", ee00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26134 cCE("wmaddsx", eb00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26135 cCE("wmaddun", ec00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26136 cCE("wmaddux", e900100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26137 cCE("wmerge", e000080
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_wmerge
),
26138 cCE("wmiabb", e0000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26139 cCE("wmiabt", e1000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26140 cCE("wmiatb", e2000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26141 cCE("wmiatt", e3000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26142 cCE("wmiabbn", e4000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26143 cCE("wmiabtn", e5000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26144 cCE("wmiatbn", e6000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26145 cCE("wmiattn", e7000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26146 cCE("wmiawbb", e800120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26147 cCE("wmiawbt", e900120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26148 cCE("wmiawtb", ea00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26149 cCE("wmiawtt", eb00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26150 cCE("wmiawbbn", ec00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26151 cCE("wmiawbtn", ed00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26152 cCE("wmiawtbn", ee00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26153 cCE("wmiawttn", ef00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26154 cCE("wmulsmr", ef00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26155 cCE("wmulumr", ed00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26156 cCE("wmulwumr", ec000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26157 cCE("wmulwsmr", ee000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26158 cCE("wmulwum", ed000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26159 cCE("wmulwsm", ef000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26160 cCE("wmulwl", eb000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26161 cCE("wqmiabb", e8000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26162 cCE("wqmiabt", e9000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26163 cCE("wqmiatb", ea000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26164 cCE("wqmiatt", eb000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26165 cCE("wqmiabbn", ec000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26166 cCE("wqmiabtn", ed000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26167 cCE("wqmiatbn", ee000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26168 cCE("wqmiattn", ef000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26169 cCE("wqmulm", e100080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26170 cCE("wqmulmr", e300080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26171 cCE("wqmulwm", ec000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26172 cCE("wqmulwmr", ee000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26173 cCE("wsubaddhx", ed001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
26176 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
26178 cCE("cfldrs", c100400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
26179 cCE("cfldrd", c500400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
26180 cCE("cfldr32", c100500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
26181 cCE("cfldr64", c500500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
26182 cCE("cfstrs", c000400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
26183 cCE("cfstrd", c400400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
26184 cCE("cfstr32", c000500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
26185 cCE("cfstr64", c400500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
26186 cCE("cfmvsr", e000450
, 2, (RMF
, RR
), rn_rd
),
26187 cCE("cfmvrs", e100450
, 2, (RR
, RMF
), rd_rn
),
26188 cCE("cfmvdlr", e000410
, 2, (RMD
, RR
), rn_rd
),
26189 cCE("cfmvrdl", e100410
, 2, (RR
, RMD
), rd_rn
),
26190 cCE("cfmvdhr", e000430
, 2, (RMD
, RR
), rn_rd
),
26191 cCE("cfmvrdh", e100430
, 2, (RR
, RMD
), rd_rn
),
26192 cCE("cfmv64lr",e000510
, 2, (RMDX
, RR
), rn_rd
),
26193 cCE("cfmvr64l",e100510
, 2, (RR
, RMDX
), rd_rn
),
26194 cCE("cfmv64hr",e000530
, 2, (RMDX
, RR
), rn_rd
),
26195 cCE("cfmvr64h",e100530
, 2, (RR
, RMDX
), rd_rn
),
26196 cCE("cfmval32",e200440
, 2, (RMAX
, RMFX
), rd_rn
),
26197 cCE("cfmv32al",e100440
, 2, (RMFX
, RMAX
), rd_rn
),
26198 cCE("cfmvam32",e200460
, 2, (RMAX
, RMFX
), rd_rn
),
26199 cCE("cfmv32am",e100460
, 2, (RMFX
, RMAX
), rd_rn
),
26200 cCE("cfmvah32",e200480
, 2, (RMAX
, RMFX
), rd_rn
),
26201 cCE("cfmv32ah",e100480
, 2, (RMFX
, RMAX
), rd_rn
),
26202 cCE("cfmva32", e2004a0
, 2, (RMAX
, RMFX
), rd_rn
),
26203 cCE("cfmv32a", e1004a0
, 2, (RMFX
, RMAX
), rd_rn
),
26204 cCE("cfmva64", e2004c0
, 2, (RMAX
, RMDX
), rd_rn
),
26205 cCE("cfmv64a", e1004c0
, 2, (RMDX
, RMAX
), rd_rn
),
26206 cCE("cfmvsc32",e2004e0
, 2, (RMDS
, RMDX
), mav_dspsc
),
26207 cCE("cfmv32sc",e1004e0
, 2, (RMDX
, RMDS
), rd
),
26208 cCE("cfcpys", e000400
, 2, (RMF
, RMF
), rd_rn
),
26209 cCE("cfcpyd", e000420
, 2, (RMD
, RMD
), rd_rn
),
26210 cCE("cfcvtsd", e000460
, 2, (RMD
, RMF
), rd_rn
),
26211 cCE("cfcvtds", e000440
, 2, (RMF
, RMD
), rd_rn
),
26212 cCE("cfcvt32s",e000480
, 2, (RMF
, RMFX
), rd_rn
),
26213 cCE("cfcvt32d",e0004a0
, 2, (RMD
, RMFX
), rd_rn
),
26214 cCE("cfcvt64s",e0004c0
, 2, (RMF
, RMDX
), rd_rn
),
26215 cCE("cfcvt64d",e0004e0
, 2, (RMD
, RMDX
), rd_rn
),
26216 cCE("cfcvts32",e100580
, 2, (RMFX
, RMF
), rd_rn
),
26217 cCE("cfcvtd32",e1005a0
, 2, (RMFX
, RMD
), rd_rn
),
26218 cCE("cftruncs32",e1005c0
, 2, (RMFX
, RMF
), rd_rn
),
26219 cCE("cftruncd32",e1005e0
, 2, (RMFX
, RMD
), rd_rn
),
26220 cCE("cfrshl32",e000550
, 3, (RMFX
, RMFX
, RR
), mav_triple
),
26221 cCE("cfrshl64",e000570
, 3, (RMDX
, RMDX
, RR
), mav_triple
),
26222 cCE("cfsh32", e000500
, 3, (RMFX
, RMFX
, I63s
), mav_shift
),
26223 cCE("cfsh64", e200500
, 3, (RMDX
, RMDX
, I63s
), mav_shift
),
26224 cCE("cfcmps", e100490
, 3, (RR
, RMF
, RMF
), rd_rn_rm
),
26225 cCE("cfcmpd", e1004b0
, 3, (RR
, RMD
, RMD
), rd_rn_rm
),
26226 cCE("cfcmp32", e100590
, 3, (RR
, RMFX
, RMFX
), rd_rn_rm
),
26227 cCE("cfcmp64", e1005b0
, 3, (RR
, RMDX
, RMDX
), rd_rn_rm
),
26228 cCE("cfabss", e300400
, 2, (RMF
, RMF
), rd_rn
),
26229 cCE("cfabsd", e300420
, 2, (RMD
, RMD
), rd_rn
),
26230 cCE("cfnegs", e300440
, 2, (RMF
, RMF
), rd_rn
),
26231 cCE("cfnegd", e300460
, 2, (RMD
, RMD
), rd_rn
),
26232 cCE("cfadds", e300480
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
26233 cCE("cfaddd", e3004a0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
26234 cCE("cfsubs", e3004c0
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
26235 cCE("cfsubd", e3004e0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
26236 cCE("cfmuls", e100400
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
26237 cCE("cfmuld", e100420
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
26238 cCE("cfabs32", e300500
, 2, (RMFX
, RMFX
), rd_rn
),
26239 cCE("cfabs64", e300520
, 2, (RMDX
, RMDX
), rd_rn
),
26240 cCE("cfneg32", e300540
, 2, (RMFX
, RMFX
), rd_rn
),
26241 cCE("cfneg64", e300560
, 2, (RMDX
, RMDX
), rd_rn
),
26242 cCE("cfadd32", e300580
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
26243 cCE("cfadd64", e3005a0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
26244 cCE("cfsub32", e3005c0
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
26245 cCE("cfsub64", e3005e0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
26246 cCE("cfmul32", e100500
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
26247 cCE("cfmul64", e100520
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
26248 cCE("cfmac32", e100540
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
26249 cCE("cfmsc32", e100560
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
26250 cCE("cfmadd32",e000600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
26251 cCE("cfmsub32",e100600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
26252 cCE("cfmadda32", e200600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
26253 cCE("cfmsuba32", e300600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
26255 /* ARMv8.5-A instructions. */
26257 #define ARM_VARIANT & arm_ext_sb
26258 #undef THUMB_VARIANT
26259 #define THUMB_VARIANT & arm_ext_sb
26260 TUF("sb", 57ff070
, f3bf8f70
, 0, (), noargs
, noargs
),
26263 #define ARM_VARIANT & arm_ext_predres
26264 #undef THUMB_VARIANT
26265 #define THUMB_VARIANT & arm_ext_predres
26266 CE("cfprctx", e070f93
, 1, (RRnpc
), rd
),
26267 CE("dvprctx", e070fb3
, 1, (RRnpc
), rd
),
26268 CE("cpprctx", e070ff3
, 1, (RRnpc
), rd
),
26270 /* ARMv8-M instructions. */
26272 #define ARM_VARIANT NULL
26273 #undef THUMB_VARIANT
26274 #define THUMB_VARIANT & arm_ext_v8m
26275 ToU("sg", e97fe97f
, 0, (), noargs
),
26276 ToC("blxns", 4784, 1, (RRnpc
), t_blx
),
26277 ToC("bxns", 4704, 1, (RRnpc
), t_bx
),
26278 ToC("tt", e840f000
, 2, (RRnpc
, RRnpc
), tt
),
26279 ToC("ttt", e840f040
, 2, (RRnpc
, RRnpc
), tt
),
26280 ToC("tta", e840f080
, 2, (RRnpc
, RRnpc
), tt
),
26281 ToC("ttat", e840f0c0
, 2, (RRnpc
, RRnpc
), tt
),
26283 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
26284 instructions behave as nop if no VFP is present. */
26285 #undef THUMB_VARIANT
26286 #define THUMB_VARIANT & arm_ext_v8m_main
26287 ToC("vlldm", ec300a00
, 1, (RRnpc
), rn
),
26288 ToC("vlstm", ec200a00
, 1, (RRnpc
), rn
),
26290 /* Armv8.1-M Mainline instructions. */
26291 #undef THUMB_VARIANT
26292 #define THUMB_VARIANT & arm_ext_v8_1m_main
26293 toU("cinc", _cinc
, 3, (RRnpcsp
, RR_ZR
, COND
), t_cond
),
26294 toU("cinv", _cinv
, 3, (RRnpcsp
, RR_ZR
, COND
), t_cond
),
26295 toU("cneg", _cneg
, 3, (RRnpcsp
, RR_ZR
, COND
), t_cond
),
26296 toU("csel", _csel
, 4, (RRnpcsp
, RR_ZR
, RR_ZR
, COND
), t_cond
),
26297 toU("csetm", _csetm
, 2, (RRnpcsp
, COND
), t_cond
),
26298 toU("cset", _cset
, 2, (RRnpcsp
, COND
), t_cond
),
26299 toU("csinc", _csinc
, 4, (RRnpcsp
, RR_ZR
, RR_ZR
, COND
), t_cond
),
26300 toU("csinv", _csinv
, 4, (RRnpcsp
, RR_ZR
, RR_ZR
, COND
), t_cond
),
26301 toU("csneg", _csneg
, 4, (RRnpcsp
, RR_ZR
, RR_ZR
, COND
), t_cond
),
26303 toC("bf", _bf
, 2, (EXPs
, EXPs
), t_branch_future
),
26304 toU("bfcsel", _bfcsel
, 4, (EXPs
, EXPs
, EXPs
, COND
), t_branch_future
),
26305 toC("bfx", _bfx
, 2, (EXPs
, RRnpcsp
), t_branch_future
),
26306 toC("bfl", _bfl
, 2, (EXPs
, EXPs
), t_branch_future
),
26307 toC("bflx", _bflx
, 2, (EXPs
, RRnpcsp
), t_branch_future
),
26309 toU("dls", _dls
, 2, (LR
, RRnpcsp
), t_loloop
),
26310 toU("wls", _wls
, 3, (LR
, RRnpcsp
, EXP
), t_loloop
),
26311 toU("le", _le
, 2, (oLR
, EXP
), t_loloop
),
26313 ToC("clrm", e89f0000
, 1, (CLRMLST
), t_clrm
),
26314 ToC("vscclrm", ec9f0a00
, 1, (VRSDVLST
), t_vscclrm
),
26316 #undef THUMB_VARIANT
26317 #define THUMB_VARIANT & mve_ext
26318 ToC("lsll", ea50010d
, 3, (RRe
, RRo
, RRnpcsp_I32
), mve_scalar_shift
),
26319 ToC("lsrl", ea50011f
, 3, (RRe
, RRo
, I32
), mve_scalar_shift
),
26320 ToC("asrl", ea50012d
, 3, (RRe
, RRo
, RRnpcsp_I32
), mve_scalar_shift
),
26321 ToC("uqrshll", ea51010d
, 4, (RRe
, RRo
, I48_I64
, RRnpcsp
), mve_scalar_shift1
),
26322 ToC("sqrshrl", ea51012d
, 4, (RRe
, RRo
, I48_I64
, RRnpcsp
), mve_scalar_shift1
),
26323 ToC("uqshll", ea51010f
, 3, (RRe
, RRo
, I32
), mve_scalar_shift
),
26324 ToC("urshrl", ea51011f
, 3, (RRe
, RRo
, I32
), mve_scalar_shift
),
26325 ToC("srshrl", ea51012f
, 3, (RRe
, RRo
, I32
), mve_scalar_shift
),
26326 ToC("sqshll", ea51013f
, 3, (RRe
, RRo
, I32
), mve_scalar_shift
),
26327 ToC("uqrshl", ea500f0d
, 2, (RRnpcsp
, RRnpcsp
), mve_scalar_shift
),
26328 ToC("sqrshr", ea500f2d
, 2, (RRnpcsp
, RRnpcsp
), mve_scalar_shift
),
26329 ToC("uqshl", ea500f0f
, 2, (RRnpcsp
, I32
), mve_scalar_shift
),
26330 ToC("urshr", ea500f1f
, 2, (RRnpcsp
, I32
), mve_scalar_shift
),
26331 ToC("srshr", ea500f2f
, 2, (RRnpcsp
, I32
), mve_scalar_shift
),
26332 ToC("sqshl", ea500f3f
, 2, (RRnpcsp
, I32
), mve_scalar_shift
),
26334 ToC("vpt", ee410f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26335 ToC("vptt", ee018f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26336 ToC("vpte", ee418f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26337 ToC("vpttt", ee014f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26338 ToC("vptte", ee01cf00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26339 ToC("vptet", ee41cf00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26340 ToC("vptee", ee414f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26341 ToC("vptttt", ee012f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26342 ToC("vpttte", ee016f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26343 ToC("vpttet", ee01ef00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26344 ToC("vpttee", ee01af00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26345 ToC("vptett", ee41af00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26346 ToC("vptete", ee41ef00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26347 ToC("vpteet", ee416f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26348 ToC("vpteee", ee412f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
26350 ToC("vpst", fe710f4d
, 0, (), mve_vpt
),
26351 ToC("vpstt", fe318f4d
, 0, (), mve_vpt
),
26352 ToC("vpste", fe718f4d
, 0, (), mve_vpt
),
26353 ToC("vpsttt", fe314f4d
, 0, (), mve_vpt
),
26354 ToC("vpstte", fe31cf4d
, 0, (), mve_vpt
),
26355 ToC("vpstet", fe71cf4d
, 0, (), mve_vpt
),
26356 ToC("vpstee", fe714f4d
, 0, (), mve_vpt
),
26357 ToC("vpstttt", fe312f4d
, 0, (), mve_vpt
),
26358 ToC("vpsttte", fe316f4d
, 0, (), mve_vpt
),
26359 ToC("vpsttet", fe31ef4d
, 0, (), mve_vpt
),
26360 ToC("vpsttee", fe31af4d
, 0, (), mve_vpt
),
26361 ToC("vpstett", fe71af4d
, 0, (), mve_vpt
),
26362 ToC("vpstete", fe71ef4d
, 0, (), mve_vpt
),
26363 ToC("vpsteet", fe716f4d
, 0, (), mve_vpt
),
26364 ToC("vpsteee", fe712f4d
, 0, (), mve_vpt
),
26366 /* MVE and MVE FP only. */
26367 mToC("vhcadd", ee000f00
, 4, (RMQ
, RMQ
, RMQ
, EXPi
), mve_vhcadd
),
26368 mCEF(vctp
, _vctp
, 1, (RRnpc
), mve_vctp
),
26369 mCEF(vadc
, _vadc
, 3, (RMQ
, RMQ
, RMQ
), mve_vadc
),
26370 mCEF(vadci
, _vadci
, 3, (RMQ
, RMQ
, RMQ
), mve_vadc
),
26371 mToC("vsbc", fe300f00
, 3, (RMQ
, RMQ
, RMQ
), mve_vsbc
),
26372 mToC("vsbci", fe301f00
, 3, (RMQ
, RMQ
, RMQ
), mve_vsbc
),
26373 mCEF(vmullb
, _vmullb
, 3, (RMQ
, RMQ
, RMQ
), mve_vmull
),
26374 mCEF(vabav
, _vabav
, 3, (RRnpcsp
, RMQ
, RMQ
), mve_vabav
),
26375 mCEF(vmladav
, _vmladav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
26376 mCEF(vmladava
, _vmladava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
26377 mCEF(vmladavx
, _vmladavx
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
26378 mCEF(vmladavax
, _vmladavax
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
26379 mCEF(vmlav
, _vmladav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
26380 mCEF(vmlava
, _vmladava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
26381 mCEF(vmlsdav
, _vmlsdav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
26382 mCEF(vmlsdava
, _vmlsdava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
26383 mCEF(vmlsdavx
, _vmlsdavx
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
26384 mCEF(vmlsdavax
, _vmlsdavax
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
26386 mCEF(vst20
, _vst20
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
26387 mCEF(vst21
, _vst21
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
26388 mCEF(vst40
, _vst40
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
26389 mCEF(vst41
, _vst41
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
26390 mCEF(vst42
, _vst42
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
26391 mCEF(vst43
, _vst43
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
26392 mCEF(vld20
, _vld20
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
26393 mCEF(vld21
, _vld21
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
26394 mCEF(vld40
, _vld40
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
26395 mCEF(vld41
, _vld41
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
26396 mCEF(vld42
, _vld42
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
26397 mCEF(vld43
, _vld43
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
26398 mCEF(vstrb
, _vstrb
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
26399 mCEF(vstrh
, _vstrh
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
26400 mCEF(vstrw
, _vstrw
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
26401 mCEF(vstrd
, _vstrd
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
26402 mCEF(vldrb
, _vldrb
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
26403 mCEF(vldrh
, _vldrh
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
26404 mCEF(vldrw
, _vldrw
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
26405 mCEF(vldrd
, _vldrd
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
26407 mCEF(vmovnt
, _vmovnt
, 2, (RMQ
, RMQ
), mve_movn
),
26408 mCEF(vmovnb
, _vmovnb
, 2, (RMQ
, RMQ
), mve_movn
),
26409 mCEF(vbrsr
, _vbrsr
, 3, (RMQ
, RMQ
, RR
), mve_vbrsr
),
26410 mCEF(vaddlv
, _vaddlv
, 3, (RRe
, RRo
, RMQ
), mve_vaddlv
),
26411 mCEF(vaddlva
, _vaddlva
, 3, (RRe
, RRo
, RMQ
), mve_vaddlv
),
26412 mCEF(vaddv
, _vaddv
, 2, (RRe
, RMQ
), mve_vaddv
),
26413 mCEF(vaddva
, _vaddva
, 2, (RRe
, RMQ
), mve_vaddv
),
26414 mCEF(vddup
, _vddup
, 3, (RMQ
, RRe
, EXPi
), mve_viddup
),
26415 mCEF(vdwdup
, _vdwdup
, 4, (RMQ
, RRe
, RR
, EXPi
), mve_viddup
),
26416 mCEF(vidup
, _vidup
, 3, (RMQ
, RRe
, EXPi
), mve_viddup
),
26417 mCEF(viwdup
, _viwdup
, 4, (RMQ
, RRe
, RR
, EXPi
), mve_viddup
),
26418 mToC("vmaxa", ee330e81
, 2, (RMQ
, RMQ
), mve_vmaxa_vmina
),
26419 mToC("vmina", ee331e81
, 2, (RMQ
, RMQ
), mve_vmaxa_vmina
),
26420 mCEF(vmaxv
, _vmaxv
, 2, (RR
, RMQ
), mve_vmaxv
),
26421 mCEF(vmaxav
, _vmaxav
, 2, (RR
, RMQ
), mve_vmaxv
),
26422 mCEF(vminv
, _vminv
, 2, (RR
, RMQ
), mve_vmaxv
),
26423 mCEF(vminav
, _vminav
, 2, (RR
, RMQ
), mve_vmaxv
),
26425 mCEF(vmlaldav
, _vmlaldav
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
26426 mCEF(vmlaldava
, _vmlaldava
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
26427 mCEF(vmlaldavx
, _vmlaldavx
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
26428 mCEF(vmlaldavax
, _vmlaldavax
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
26429 mCEF(vmlalv
, _vmlaldav
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
26430 mCEF(vmlalva
, _vmlaldava
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
26431 mCEF(vmlsldav
, _vmlsldav
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
26432 mCEF(vmlsldava
, _vmlsldava
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
26433 mCEF(vmlsldavx
, _vmlsldavx
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
26434 mCEF(vmlsldavax
, _vmlsldavax
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
26435 mToC("vrmlaldavh", ee800f00
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
26436 mToC("vrmlaldavha",ee800f20
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
26437 mCEF(vrmlaldavhx
, _vrmlaldavhx
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
26438 mCEF(vrmlaldavhax
, _vrmlaldavhax
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
26439 mToC("vrmlalvh", ee800f00
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
26440 mToC("vrmlalvha", ee800f20
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
26441 mCEF(vrmlsldavh
, _vrmlsldavh
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
26442 mCEF(vrmlsldavha
, _vrmlsldavha
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
26443 mCEF(vrmlsldavhx
, _vrmlsldavhx
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
26444 mCEF(vrmlsldavhax
, _vrmlsldavhax
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
26446 mToC("vmlas", ee011e40
, 3, (RMQ
, RMQ
, RR
), mve_vmlas
),
26447 mToC("vmulh", ee010e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vmulh
),
26448 mToC("vrmulh", ee011e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vmulh
),
26449 mToC("vpnot", fe310f4d
, 0, (), mve_vpnot
),
26450 mToC("vpsel", fe310f01
, 3, (RMQ
, RMQ
, RMQ
), mve_vpsel
),
26452 mToC("vqdmladh", ee000e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
26453 mToC("vqdmladhx", ee001e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
26454 mToC("vqrdmladh", ee000e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
26455 mToC("vqrdmladhx",ee001e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
26456 mToC("vqdmlsdh", fe000e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
26457 mToC("vqdmlsdhx", fe001e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
26458 mToC("vqrdmlsdh", fe000e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
26459 mToC("vqrdmlsdhx",fe001e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
26460 mToC("vqdmlah", ee000e60
, 3, (RMQ
, RMQ
, RR
), mve_vqdmlah
),
26461 mToC("vqdmlash", ee001e60
, 3, (RMQ
, RMQ
, RR
), mve_vqdmlah
),
26462 mToC("vqrdmlash", ee001e40
, 3, (RMQ
, RMQ
, RR
), mve_vqdmlah
),
26463 mToC("vqdmullt", ee301f00
, 3, (RMQ
, RMQ
, RMQRR
), mve_vqdmull
),
26464 mToC("vqdmullb", ee300f00
, 3, (RMQ
, RMQ
, RMQRR
), mve_vqdmull
),
26465 mCEF(vqmovnt
, _vqmovnt
, 2, (RMQ
, RMQ
), mve_vqmovn
),
26466 mCEF(vqmovnb
, _vqmovnb
, 2, (RMQ
, RMQ
), mve_vqmovn
),
26467 mCEF(vqmovunt
, _vqmovunt
, 2, (RMQ
, RMQ
), mve_vqmovn
),
26468 mCEF(vqmovunb
, _vqmovunb
, 2, (RMQ
, RMQ
), mve_vqmovn
),
26470 mCEF(vshrnt
, _vshrnt
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26471 mCEF(vshrnb
, _vshrnb
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26472 mCEF(vrshrnt
, _vrshrnt
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26473 mCEF(vrshrnb
, _vrshrnb
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26474 mCEF(vqshrnt
, _vqrshrnt
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26475 mCEF(vqshrnb
, _vqrshrnb
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26476 mCEF(vqshrunt
, _vqrshrunt
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26477 mCEF(vqshrunb
, _vqrshrunb
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26478 mCEF(vqrshrnt
, _vqrshrnt
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26479 mCEF(vqrshrnb
, _vqrshrnb
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26480 mCEF(vqrshrunt
, _vqrshrunt
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26481 mCEF(vqrshrunb
, _vqrshrunb
, 3, (RMQ
, RMQ
, I32z
), mve_vshrn
),
26483 mToC("vshlc", eea00fc0
, 3, (RMQ
, RR
, I32z
), mve_vshlc
),
26484 mToC("vshllt", ee201e00
, 3, (RMQ
, RMQ
, I32
), mve_vshll
),
26485 mToC("vshllb", ee200e00
, 3, (RMQ
, RMQ
, I32
), mve_vshll
),
26487 toU("dlstp", _dlstp
, 2, (LR
, RR
), t_loloop
),
26488 toU("wlstp", _wlstp
, 3, (LR
, RR
, EXP
), t_loloop
),
26489 toU("letp", _letp
, 2, (LR
, EXP
), t_loloop
),
26490 toU("lctp", _lctp
, 0, (), t_loloop
),
26492 #undef THUMB_VARIANT
26493 #define THUMB_VARIANT & mve_fp_ext
26494 mToC("vcmul", ee300e00
, 4, (RMQ
, RMQ
, RMQ
, EXPi
), mve_vcmul
),
26495 mToC("vfmas", ee311e40
, 3, (RMQ
, RMQ
, RR
), mve_vfmas
),
26496 mToC("vmaxnma", ee3f0e81
, 2, (RMQ
, RMQ
), mve_vmaxnma_vminnma
),
26497 mToC("vminnma", ee3f1e81
, 2, (RMQ
, RMQ
), mve_vmaxnma_vminnma
),
26498 mToC("vmaxnmv", eeee0f00
, 2, (RR
, RMQ
), mve_vmaxnmv
),
26499 mToC("vmaxnmav",eeec0f00
, 2, (RR
, RMQ
), mve_vmaxnmv
),
26500 mToC("vminnmv", eeee0f80
, 2, (RR
, RMQ
), mve_vmaxnmv
),
26501 mToC("vminnmav",eeec0f80
, 2, (RR
, RMQ
), mve_vmaxnmv
),
26504 #define ARM_VARIANT & fpu_vfp_ext_v1
26505 #undef THUMB_VARIANT
26506 #define THUMB_VARIANT & arm_ext_v6t2
26507 mnCEF(vmla
, _vmla
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ_RR
), neon_mac_maybe_scalar
),
26508 mnCEF(vmul
, _vmul
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ_RR
), neon_mul
),
26510 mcCE(fcpyd
, eb00b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
26513 #define ARM_VARIANT & fpu_vfp_ext_v1xd
26515 MNCE(vmov
, 0, 1, (VMOV
), neon_mov
),
26516 mcCE(fmrs
, e100a10
, 2, (RR
, RVS
), vfp_reg_from_sp
),
26517 mcCE(fmsr
, e000a10
, 2, (RVS
, RR
), vfp_sp_from_reg
),
26518 mcCE(fcpys
, eb00a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
26520 mCEF(vmullt
, _vmullt
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ
), mve_vmull
),
26521 mnCEF(vadd
, _vadd
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_addsub_if_i
),
26522 mnCEF(vsub
, _vsub
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_addsub_if_i
),
26524 MNCEF(vabs
, 1b10300
, 2, (RNSDQMQ
, RNSDQMQ
), neon_abs_neg
),
26525 MNCEF(vneg
, 1b10380
, 2, (RNSDQMQ
, RNSDQMQ
), neon_abs_neg
),
26527 mCEF(vmovlt
, _vmovlt
, 1, (VMOV
), mve_movl
),
26528 mCEF(vmovlb
, _vmovlb
, 1, (VMOV
), mve_movl
),
26530 mnCE(vcmp
, _vcmp
, 3, (RVSD_COND
, RSVDMQ_FI0
, oRMQRZ
), vfp_nsyn_cmp
),
26531 mnCE(vcmpe
, _vcmpe
, 3, (RVSD_COND
, RSVDMQ_FI0
, oRMQRZ
), vfp_nsyn_cmp
),
26534 #define ARM_VARIANT & fpu_vfp_ext_v2
26536 mcCE(fmsrr
, c400a10
, 3, (VRSLST
, RR
, RR
), vfp_sp2_from_reg2
),
26537 mcCE(fmrrs
, c500a10
, 3, (RR
, RR
, VRSLST
), vfp_reg2_from_sp2
),
26538 mcCE(fmdrr
, c400b10
, 3, (RVD
, RR
, RR
), vfp_dp_rm_rd_rn
),
26539 mcCE(fmrrd
, c500b10
, 3, (RR
, RR
, RVD
), vfp_dp_rd_rn_rm
),
26542 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
26543 mnUF(vcvta
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvta
),
26544 mnUF(vcvtp
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvtp
),
26545 mnUF(vcvtn
, _vcvta
, 3, (RNSDQMQ
, oRNSDQMQ
, oI32z
), neon_cvtn
),
26546 mnUF(vcvtm
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvtm
),
26547 mnUF(vmaxnm
, _vmaxnm
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQ
), vmaxnm
),
26548 mnUF(vminnm
, _vminnm
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQ
), vmaxnm
),
26551 #define ARM_VARIANT & fpu_neon_ext_v1
26552 mnUF(vabd
, _vabd
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
26553 mnUF(vabdl
, _vabdl
, 3, (RNQMQ
, RNDMQ
, RNDMQ
), neon_dyadic_long
),
26554 mnUF(vaddl
, _vaddl
, 3, (RNSDQMQ
, oRNSDMQ
, RNSDMQR
), neon_dyadic_long
),
26555 mnUF(vsubl
, _vsubl
, 3, (RNSDQMQ
, oRNSDMQ
, RNSDMQR
), neon_dyadic_long
),
26556 mnUF(vand
, _vand
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
26557 mnUF(vbic
, _vbic
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
26558 mnUF(vorr
, _vorr
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
26559 mnUF(vorn
, _vorn
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
26560 mnUF(veor
, _veor
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_logic
),
26561 MNUF(vcls
, 1b00400
, 2, (RNDQMQ
, RNDQMQ
), neon_cls
),
26562 MNUF(vclz
, 1b00480
, 2, (RNDQMQ
, RNDQMQ
), neon_clz
),
26563 mnCE(vdup
, _vdup
, 2, (RNDQMQ
, RR_RNSC
), neon_dup
),
26564 MNUF(vhadd
, 00000000, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i_su
),
26565 MNUF(vrhadd
, 00000100, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_i_su
),
26566 MNUF(vhsub
, 00000200, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i_su
),
26567 mnUF(vmin
, _vmin
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
26568 mnUF(vmax
, _vmax
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
26569 MNUF(vqadd
, 0000010, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i64_su
),
26570 MNUF(vqsub
, 0000210, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i64_su
),
26571 mnUF(vmvn
, _vmvn
, 2, (RNDQMQ
, RNDQMQ_Ibig
), neon_mvn
),
26572 MNUF(vqabs
, 1b00700
, 2, (RNDQMQ
, RNDQMQ
), neon_sat_abs_neg
),
26573 MNUF(vqneg
, 1b00780
, 2, (RNDQMQ
, RNDQMQ
), neon_sat_abs_neg
),
26574 mnUF(vqrdmlah
, _vqrdmlah
,3, (RNDQMQ
, oRNDQMQ
, RNDQ_RNSC_RR
), neon_qrdmlah
),
26575 mnUF(vqdmulh
, _vqdmulh
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_RNSC_RR
), neon_qdmulh
),
26576 mnUF(vqrdmulh
, _vqrdmulh
,3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_RNSC_RR
), neon_qdmulh
),
26577 MNUF(vqrshl
, 0000510, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_rshl
),
26578 MNUF(vrshl
, 0000500, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_rshl
),
26579 MNUF(vshr
, 0800010, 3, (RNDQMQ
, oRNDQMQ
, I64z
), neon_rshift_round_imm
),
26580 MNUF(vrshr
, 0800210, 3, (RNDQMQ
, oRNDQMQ
, I64z
), neon_rshift_round_imm
),
26581 MNUF(vsli
, 1800510, 3, (RNDQMQ
, oRNDQMQ
, I63
), neon_sli
),
26582 MNUF(vsri
, 1800410, 3, (RNDQMQ
, oRNDQMQ
, I64z
), neon_sri
),
26583 MNUF(vrev64
, 1b00000
, 2, (RNDQMQ
, RNDQMQ
), neon_rev
),
26584 MNUF(vrev32
, 1b00080
, 2, (RNDQMQ
, RNDQMQ
), neon_rev
),
26585 MNUF(vrev16
, 1b00100
, 2, (RNDQMQ
, RNDQMQ
), neon_rev
),
26586 mnUF(vshl
, _vshl
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_I63b_RR
), neon_shl
),
26587 mnUF(vqshl
, _vqshl
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_I63b_RR
), neon_qshl
),
26588 MNUF(vqshlu
, 1800610, 3, (RNDQMQ
, oRNDQMQ
, I63
), neon_qshlu_imm
),
26591 #define ARM_VARIANT & arm_ext_v8_3
26592 #undef THUMB_VARIANT
26593 #define THUMB_VARIANT & arm_ext_v6t2_v8m
26594 MNUF (vcadd
, 0, 4, (RNDQMQ
, RNDQMQ
, RNDQMQ
, EXPi
), vcadd
),
26595 MNUF (vcmla
, 0, 4, (RNDQMQ
, RNDQMQ
, RNDQMQ_RNSC
, EXPi
), vcmla
),
26598 #define ARM_VARIANT &arm_ext_bf16
26599 #undef THUMB_VARIANT
26600 #define THUMB_VARIANT &arm_ext_bf16
26601 TUF ("vdot", c000d00
, fc000d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), vdot
, vdot
),
26602 TUF ("vmmla", c000c40
, fc000c40
, 3, (RNQ
, RNQ
, RNQ
), vmmla
, vmmla
),
26603 TUF ("vfmab", c300810
, fc300810
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), bfloat_vfma
, bfloat_vfma
),
26606 #define ARM_VARIANT &arm_ext_i8mm
26607 #undef THUMB_VARIANT
26608 #define THUMB_VARIANT &arm_ext_i8mm
26609 TUF ("vsmmla", c200c40
, fc200c40
, 3, (RNQ
, RNQ
, RNQ
), vsmmla
, vsmmla
),
26610 TUF ("vummla", c200c50
, fc200c50
, 3, (RNQ
, RNQ
, RNQ
), vummla
, vummla
),
26611 TUF ("vusmmla", ca00c40
, fca00c40
, 3, (RNQ
, RNQ
, RNQ
), vsmmla
, vsmmla
),
26612 TUF ("vusdot", c800d00
, fc800d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), vusdot
, vusdot
),
26613 TUF ("vsudot", c800d10
, fc800d10
, 3, (RNDQ
, RNDQ
, RNSC
), vsudot
, vsudot
),
26616 #undef THUMB_VARIANT
26617 #define THUMB_VARIANT &arm_ext_cde
26618 ToC ("cx1", ee000000
, 3, (RCP
, APSR_RR
, I8191
), cx1
),
26619 ToC ("cx1a", fe000000
, 3, (RCP
, APSR_RR
, I8191
), cx1a
),
26620 ToC ("cx1d", ee000040
, 4, (RCP
, RR
, APSR_RR
, I8191
), cx1d
),
26621 ToC ("cx1da", fe000040
, 4, (RCP
, RR
, APSR_RR
, I8191
), cx1da
),
26623 ToC ("cx2", ee400000
, 4, (RCP
, APSR_RR
, APSR_RR
, I511
), cx2
),
26624 ToC ("cx2a", fe400000
, 4, (RCP
, APSR_RR
, APSR_RR
, I511
), cx2a
),
26625 ToC ("cx2d", ee400040
, 5, (RCP
, RR
, APSR_RR
, APSR_RR
, I511
), cx2d
),
26626 ToC ("cx2da", fe400040
, 5, (RCP
, RR
, APSR_RR
, APSR_RR
, I511
), cx2da
),
26628 ToC ("cx3", ee800000
, 5, (RCP
, APSR_RR
, APSR_RR
, APSR_RR
, I63
), cx3
),
26629 ToC ("cx3a", fe800000
, 5, (RCP
, APSR_RR
, APSR_RR
, APSR_RR
, I63
), cx3a
),
26630 ToC ("cx3d", ee800040
, 6, (RCP
, RR
, APSR_RR
, APSR_RR
, APSR_RR
, I63
), cx3d
),
26631 ToC ("cx3da", fe800040
, 6, (RCP
, RR
, APSR_RR
, APSR_RR
, APSR_RR
, I63
), cx3da
),
26633 mToC ("vcx1", ec200000
, 3, (RCP
, RNSDMQ
, I4095
), vcx1
),
26634 mToC ("vcx1a", fc200000
, 3, (RCP
, RNSDMQ
, I4095
), vcx1
),
26636 mToC ("vcx2", ec300000
, 4, (RCP
, RNSDMQ
, RNSDMQ
, I127
), vcx2
),
26637 mToC ("vcx2a", fc300000
, 4, (RCP
, RNSDMQ
, RNSDMQ
, I127
), vcx2
),
26639 mToC ("vcx3", ec800000
, 5, (RCP
, RNSDMQ
, RNSDMQ
, RNSDMQ
, I15
), vcx3
),
26640 mToC ("vcx3a", fc800000
, 5, (RCP
, RNSDMQ
, RNSDMQ
, RNSDMQ
, I15
), vcx3
),
26644 #undef THUMB_VARIANT
26676 /* MD interface: bits in the object file. */
26678 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
26679 for use in the a.out file, and stores them in the array pointed to by buf.
26680 This knows about the endian-ness of the target machine and does
26681 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
26682 2 (short) and 4 (long) Floating numbers are put out as a series of
26683 LITTLENUMS (shorts, here at least). */
26686 md_number_to_chars (char * buf
, valueT val
, int n
)
26688 if (target_big_endian
)
26689 number_to_chars_bigendian (buf
, val
, n
);
26691 number_to_chars_littleendian (buf
, val
, n
);
26695 md_chars_to_number (char * buf
, int n
)
26698 unsigned char * where
= (unsigned char *) buf
;
26700 if (target_big_endian
)
26705 result
|= (*where
++ & 255);
26713 result
|= (where
[n
] & 255);
26720 /* MD interface: Sections. */
26722 /* Calculate the maximum variable size (i.e., excluding fr_fix)
26723 that an rs_machine_dependent frag may reach. */
26726 arm_frag_max_var (fragS
*fragp
)
26728 /* We only use rs_machine_dependent for variable-size Thumb instructions,
26729 which are either THUMB_SIZE (2) or INSN_SIZE (4).
26731 Note that we generate relaxable instructions even for cases that don't
26732 really need it, like an immediate that's a trivial constant. So we're
26733 overestimating the instruction size for some of those cases. Rather
26734 than putting more intelligence here, it would probably be better to
26735 avoid generating a relaxation frag in the first place when it can be
26736 determined up front that a short instruction will suffice. */
26738 gas_assert (fragp
->fr_type
== rs_machine_dependent
);
26742 /* Estimate the size of a frag before relaxing. Assume everything fits in
26746 md_estimate_size_before_relax (fragS
* fragp
,
26747 segT segtype ATTRIBUTE_UNUSED
)
26753 /* Convert a machine dependent frag. */
26756 md_convert_frag (bfd
*abfd
, segT asec ATTRIBUTE_UNUSED
, fragS
*fragp
)
26758 unsigned long insn
;
26759 unsigned long old_op
;
26767 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
26769 old_op
= bfd_get_16(abfd
, buf
);
26770 if (fragp
->fr_symbol
)
26772 exp
.X_op
= O_symbol
;
26773 exp
.X_add_symbol
= fragp
->fr_symbol
;
26777 exp
.X_op
= O_constant
;
26779 exp
.X_add_number
= fragp
->fr_offset
;
26780 opcode
= fragp
->fr_subtype
;
26783 case T_MNEM_ldr_pc
:
26784 case T_MNEM_ldr_pc2
:
26785 case T_MNEM_ldr_sp
:
26786 case T_MNEM_str_sp
:
26793 if (fragp
->fr_var
== 4)
26795 insn
= THUMB_OP32 (opcode
);
26796 if ((old_op
>> 12) == 4 || (old_op
>> 12) == 9)
26798 insn
|= (old_op
& 0x700) << 4;
26802 insn
|= (old_op
& 7) << 12;
26803 insn
|= (old_op
& 0x38) << 13;
26805 insn
|= 0x00000c00;
26806 put_thumb32_insn (buf
, insn
);
26807 reloc_type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
26811 reloc_type
= BFD_RELOC_ARM_THUMB_OFFSET
;
26813 pc_rel
= (opcode
== T_MNEM_ldr_pc2
);
26816 if (fragp
->fr_var
== 4)
26818 insn
= THUMB_OP32 (opcode
);
26819 insn
|= (old_op
& 0xf0) << 4;
26820 put_thumb32_insn (buf
, insn
);
26821 reloc_type
= BFD_RELOC_ARM_T32_ADD_PC12
;
26825 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
26826 exp
.X_add_number
-= 4;
26834 if (fragp
->fr_var
== 4)
26836 int r0off
= (opcode
== T_MNEM_mov
26837 || opcode
== T_MNEM_movs
) ? 0 : 8;
26838 insn
= THUMB_OP32 (opcode
);
26839 insn
= (insn
& 0xe1ffffff) | 0x10000000;
26840 insn
|= (old_op
& 0x700) << r0off
;
26841 put_thumb32_insn (buf
, insn
);
26842 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
26846 reloc_type
= BFD_RELOC_ARM_THUMB_IMM
;
26851 if (fragp
->fr_var
== 4)
26853 insn
= THUMB_OP32(opcode
);
26854 put_thumb32_insn (buf
, insn
);
26855 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
26858 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
26862 if (fragp
->fr_var
== 4)
26864 insn
= THUMB_OP32(opcode
);
26865 insn
|= (old_op
& 0xf00) << 14;
26866 put_thumb32_insn (buf
, insn
);
26867 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
26870 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
26873 case T_MNEM_add_sp
:
26874 case T_MNEM_add_pc
:
26875 case T_MNEM_inc_sp
:
26876 case T_MNEM_dec_sp
:
26877 if (fragp
->fr_var
== 4)
26879 /* ??? Choose between add and addw. */
26880 insn
= THUMB_OP32 (opcode
);
26881 insn
|= (old_op
& 0xf0) << 4;
26882 put_thumb32_insn (buf
, insn
);
26883 if (opcode
== T_MNEM_add_pc
)
26884 reloc_type
= BFD_RELOC_ARM_T32_IMM12
;
26886 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
26889 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
26897 if (fragp
->fr_var
== 4)
26899 insn
= THUMB_OP32 (opcode
);
26900 insn
|= (old_op
& 0xf0) << 4;
26901 insn
|= (old_op
& 0xf) << 16;
26902 put_thumb32_insn (buf
, insn
);
26903 if (insn
& (1 << 20))
26904 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
26906 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
26909 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
26915 fixp
= fix_new_exp (fragp
, fragp
->fr_fix
, fragp
->fr_var
, &exp
, pc_rel
,
26916 (enum bfd_reloc_code_real
) reloc_type
);
26917 fixp
->fx_file
= fragp
->fr_file
;
26918 fixp
->fx_line
= fragp
->fr_line
;
26919 fragp
->fr_fix
+= fragp
->fr_var
;
26921 /* Set whether we use thumb-2 ISA based on final relaxation results. */
26922 if (thumb_mode
&& fragp
->fr_var
== 4 && no_cpu_selected ()
26923 && !ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_t2
))
26924 ARM_MERGE_FEATURE_SETS (arm_arch_used
, thumb_arch_used
, arm_ext_v6t2
);
26927 /* Return the size of a relaxable immediate operand instruction.
26928 SHIFT and SIZE specify the form of the allowable immediate. */
26930 relax_immediate (fragS
*fragp
, int size
, int shift
)
26936 /* ??? Should be able to do better than this. */
26937 if (fragp
->fr_symbol
)
26940 low
= (1 << shift
) - 1;
26941 mask
= (1 << (shift
+ size
)) - (1 << shift
);
26942 offset
= fragp
->fr_offset
;
26943 /* Force misaligned offsets to 32-bit variant. */
26946 if (offset
& ~mask
)
26951 /* Get the address of a symbol during relaxation. */
26953 relaxed_symbol_addr (fragS
*fragp
, long stretch
)
26959 sym
= fragp
->fr_symbol
;
26960 sym_frag
= symbol_get_frag (sym
);
26961 know (S_GET_SEGMENT (sym
) != absolute_section
26962 || sym_frag
== &zero_address_frag
);
26963 addr
= S_GET_VALUE (sym
) + fragp
->fr_offset
;
26965 /* If frag has yet to be reached on this pass, assume it will
26966 move by STRETCH just as we did. If this is not so, it will
26967 be because some frag between grows, and that will force
26971 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
26975 /* Adjust stretch for any alignment frag. Note that if have
26976 been expanding the earlier code, the symbol may be
26977 defined in what appears to be an earlier frag. FIXME:
26978 This doesn't handle the fr_subtype field, which specifies
26979 a maximum number of bytes to skip when doing an
26981 for (f
= fragp
; f
!= NULL
&& f
!= sym_frag
; f
= f
->fr_next
)
26983 if (f
->fr_type
== rs_align
|| f
->fr_type
== rs_align_code
)
26986 stretch
= - ((- stretch
)
26987 & ~ ((1 << (int) f
->fr_offset
) - 1));
26989 stretch
&= ~ ((1 << (int) f
->fr_offset
) - 1);
27001 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
27004 relax_adr (fragS
*fragp
, asection
*sec
, long stretch
)
27009 /* Assume worst case for symbols not known to be in the same section. */
27010 if (fragp
->fr_symbol
== NULL
27011 || !S_IS_DEFINED (fragp
->fr_symbol
)
27012 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
27013 || S_IS_WEAK (fragp
->fr_symbol
))
27016 val
= relaxed_symbol_addr (fragp
, stretch
);
27017 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
27018 addr
= (addr
+ 4) & ~3;
27019 /* Force misaligned targets to 32-bit variant. */
27023 if (val
< 0 || val
> 1020)
27028 /* Return the size of a relaxable add/sub immediate instruction. */
27030 relax_addsub (fragS
*fragp
, asection
*sec
)
27035 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
27036 op
= bfd_get_16(sec
->owner
, buf
);
27037 if ((op
& 0xf) == ((op
>> 4) & 0xf))
27038 return relax_immediate (fragp
, 8, 0);
27040 return relax_immediate (fragp
, 3, 0);
27043 /* Return TRUE iff the definition of symbol S could be pre-empted
27044 (overridden) at link or load time. */
27046 symbol_preemptible (symbolS
*s
)
27048 /* Weak symbols can always be pre-empted. */
27052 /* Non-global symbols cannot be pre-empted. */
27053 if (! S_IS_EXTERNAL (s
))
27057 /* In ELF, a global symbol can be marked protected, or private. In that
27058 case it can't be pre-empted (other definitions in the same link unit
27059 would violate the ODR). */
27060 if (ELF_ST_VISIBILITY (S_GET_OTHER (s
)) > STV_DEFAULT
)
27064 /* Other global symbols might be pre-empted. */
27068 /* Return the size of a relaxable branch instruction. BITS is the
27069 size of the offset field in the narrow instruction. */
27072 relax_branch (fragS
*fragp
, asection
*sec
, int bits
, long stretch
)
27078 /* Assume worst case for symbols not known to be in the same section. */
27079 if (!S_IS_DEFINED (fragp
->fr_symbol
)
27080 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
27081 || S_IS_WEAK (fragp
->fr_symbol
))
27085 /* A branch to a function in ARM state will require interworking. */
27086 if (S_IS_DEFINED (fragp
->fr_symbol
)
27087 && ARM_IS_FUNC (fragp
->fr_symbol
))
27091 if (symbol_preemptible (fragp
->fr_symbol
))
27094 val
= relaxed_symbol_addr (fragp
, stretch
);
27095 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
27098 /* Offset is a signed value *2 */
27100 if (val
>= limit
|| val
< -limit
)
27106 /* Relax a machine dependent frag. This returns the amount by which
27107 the current size of the frag should change. */
27110 arm_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
27115 oldsize
= fragp
->fr_var
;
27116 switch (fragp
->fr_subtype
)
27118 case T_MNEM_ldr_pc2
:
27119 newsize
= relax_adr (fragp
, sec
, stretch
);
27121 case T_MNEM_ldr_pc
:
27122 case T_MNEM_ldr_sp
:
27123 case T_MNEM_str_sp
:
27124 newsize
= relax_immediate (fragp
, 8, 2);
27128 newsize
= relax_immediate (fragp
, 5, 2);
27132 newsize
= relax_immediate (fragp
, 5, 1);
27136 newsize
= relax_immediate (fragp
, 5, 0);
27139 newsize
= relax_adr (fragp
, sec
, stretch
);
27145 newsize
= relax_immediate (fragp
, 8, 0);
27148 newsize
= relax_branch (fragp
, sec
, 11, stretch
);
27151 newsize
= relax_branch (fragp
, sec
, 8, stretch
);
27153 case T_MNEM_add_sp
:
27154 case T_MNEM_add_pc
:
27155 newsize
= relax_immediate (fragp
, 8, 2);
27157 case T_MNEM_inc_sp
:
27158 case T_MNEM_dec_sp
:
27159 newsize
= relax_immediate (fragp
, 7, 2);
27165 newsize
= relax_addsub (fragp
, sec
);
27171 fragp
->fr_var
= newsize
;
27172 /* Freeze wide instructions that are at or before the same location as
27173 in the previous pass. This avoids infinite loops.
27174 Don't freeze them unconditionally because targets may be artificially
27175 misaligned by the expansion of preceding frags. */
27176 if (stretch
<= 0 && newsize
> 2)
27178 md_convert_frag (sec
->owner
, sec
, fragp
);
27182 return newsize
- oldsize
;
27185 /* Round up a section size to the appropriate boundary. */
27188 md_section_align (segT segment ATTRIBUTE_UNUSED
,
27194 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
27195 of an rs_align_code fragment. */
27198 arm_handle_align (fragS
* fragP
)
27200 static unsigned char const arm_noop
[2][2][4] =
27203 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
27204 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
27207 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
27208 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
27211 static unsigned char const thumb_noop
[2][2][2] =
27214 {0xc0, 0x46}, /* LE */
27215 {0x46, 0xc0}, /* BE */
27218 {0x00, 0xbf}, /* LE */
27219 {0xbf, 0x00} /* BE */
27222 static unsigned char const wide_thumb_noop
[2][4] =
27223 { /* Wide Thumb-2 */
27224 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
27225 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
27228 unsigned bytes
, fix
, noop_size
;
27230 const unsigned char * noop
;
27231 const unsigned char *narrow_noop
= NULL
;
27236 if (fragP
->fr_type
!= rs_align_code
)
27239 bytes
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
27240 p
= fragP
->fr_literal
+ fragP
->fr_fix
;
27243 if (bytes
> MAX_MEM_FOR_RS_ALIGN_CODE
)
27244 bytes
&= MAX_MEM_FOR_RS_ALIGN_CODE
;
27246 gas_assert ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) != 0);
27248 if (fragP
->tc_frag_data
.thumb_mode
& (~ MODE_RECORDED
))
27250 if (ARM_CPU_HAS_FEATURE (selected_cpu_name
[0]
27251 ? selected_cpu
: arm_arch_none
, arm_ext_v6t2
))
27253 narrow_noop
= thumb_noop
[1][target_big_endian
];
27254 noop
= wide_thumb_noop
[target_big_endian
];
27257 noop
= thumb_noop
[0][target_big_endian
];
27265 noop
= arm_noop
[ARM_CPU_HAS_FEATURE (selected_cpu_name
[0]
27266 ? selected_cpu
: arm_arch_none
,
27268 [target_big_endian
];
27275 fragP
->fr_var
= noop_size
;
27277 if (bytes
& (noop_size
- 1))
27279 fix
= bytes
& (noop_size
- 1);
27281 insert_data_mapping_symbol (state
, fragP
->fr_fix
, fragP
, fix
);
27283 memset (p
, 0, fix
);
27290 if (bytes
& noop_size
)
27292 /* Insert a narrow noop. */
27293 memcpy (p
, narrow_noop
, noop_size
);
27295 bytes
-= noop_size
;
27299 /* Use wide noops for the remainder */
27303 while (bytes
>= noop_size
)
27305 memcpy (p
, noop
, noop_size
);
27307 bytes
-= noop_size
;
27311 fragP
->fr_fix
+= fix
;
27314 /* Called from md_do_align. Used to create an alignment
27315 frag in a code section. */
27318 arm_frag_align_code (int n
, int max
)
27322 /* We assume that there will never be a requirement
27323 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
27324 if (max
> MAX_MEM_FOR_RS_ALIGN_CODE
)
27329 _("alignments greater than %d bytes not supported in .text sections."),
27330 MAX_MEM_FOR_RS_ALIGN_CODE
+ 1);
27331 as_fatal ("%s", err_msg
);
27334 p
= frag_var (rs_align_code
,
27335 MAX_MEM_FOR_RS_ALIGN_CODE
,
27337 (relax_substateT
) max
,
27344 /* Perform target specific initialisation of a frag.
27345 Note - despite the name this initialisation is not done when the frag
27346 is created, but only when its type is assigned. A frag can be created
27347 and used a long time before its type is set, so beware of assuming that
27348 this initialisation is performed first. */
27352 arm_init_frag (fragS
* fragP
, int max_chars ATTRIBUTE_UNUSED
)
27354 /* Record whether this frag is in an ARM or a THUMB area. */
27355 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
27358 #else /* OBJ_ELF is defined. */
27360 arm_init_frag (fragS
* fragP
, int max_chars
)
27362 bfd_boolean frag_thumb_mode
;
27364 /* If the current ARM vs THUMB mode has not already
27365 been recorded into this frag then do so now. */
27366 if ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) == 0)
27367 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
27369 /* PR 21809: Do not set a mapping state for debug sections
27370 - it just confuses other tools. */
27371 if (bfd_section_flags (now_seg
) & SEC_DEBUGGING
)
27374 frag_thumb_mode
= fragP
->tc_frag_data
.thumb_mode
^ MODE_RECORDED
;
27376 /* Record a mapping symbol for alignment frags. We will delete this
27377 later if the alignment ends up empty. */
27378 switch (fragP
->fr_type
)
27381 case rs_align_test
:
27383 mapping_state_2 (MAP_DATA
, max_chars
);
27385 case rs_align_code
:
27386 mapping_state_2 (frag_thumb_mode
? MAP_THUMB
: MAP_ARM
, max_chars
);
27393 /* When we change sections we need to issue a new mapping symbol. */
27396 arm_elf_change_section (void)
27398 /* Link an unlinked unwind index table section to the .text section. */
27399 if (elf_section_type (now_seg
) == SHT_ARM_EXIDX
27400 && elf_linked_to_section (now_seg
) == NULL
)
27401 elf_linked_to_section (now_seg
) = text_section
;
27405 arm_elf_section_type (const char * str
, size_t len
)
27407 if (len
== 5 && strncmp (str
, "exidx", 5) == 0)
27408 return SHT_ARM_EXIDX
;
27413 /* Code to deal with unwinding tables. */
27415 static void add_unwind_adjustsp (offsetT
);
27417 /* Generate any deferred unwind frame offset. */
27420 flush_pending_unwind (void)
27424 offset
= unwind
.pending_offset
;
27425 unwind
.pending_offset
= 0;
27427 add_unwind_adjustsp (offset
);
27430 /* Add an opcode to this list for this function. Two-byte opcodes should
27431 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
27435 add_unwind_opcode (valueT op
, int length
)
27437 /* Add any deferred stack adjustment. */
27438 if (unwind
.pending_offset
)
27439 flush_pending_unwind ();
27441 unwind
.sp_restored
= 0;
27443 if (unwind
.opcode_count
+ length
> unwind
.opcode_alloc
)
27445 unwind
.opcode_alloc
+= ARM_OPCODE_CHUNK_SIZE
;
27446 if (unwind
.opcodes
)
27447 unwind
.opcodes
= XRESIZEVEC (unsigned char, unwind
.opcodes
,
27448 unwind
.opcode_alloc
);
27450 unwind
.opcodes
= XNEWVEC (unsigned char, unwind
.opcode_alloc
);
27455 unwind
.opcodes
[unwind
.opcode_count
] = op
& 0xff;
27457 unwind
.opcode_count
++;
27461 /* Add unwind opcodes to adjust the stack pointer. */
27464 add_unwind_adjustsp (offsetT offset
)
27468 if (offset
> 0x200)
27470 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
27475 /* Long form: 0xb2, uleb128. */
27476 /* This might not fit in a word so add the individual bytes,
27477 remembering the list is built in reverse order. */
27478 o
= (valueT
) ((offset
- 0x204) >> 2);
27480 add_unwind_opcode (0, 1);
27482 /* Calculate the uleb128 encoding of the offset. */
27486 bytes
[n
] = o
& 0x7f;
27492 /* Add the insn. */
27494 add_unwind_opcode (bytes
[n
- 1], 1);
27495 add_unwind_opcode (0xb2, 1);
27497 else if (offset
> 0x100)
27499 /* Two short opcodes. */
27500 add_unwind_opcode (0x3f, 1);
27501 op
= (offset
- 0x104) >> 2;
27502 add_unwind_opcode (op
, 1);
27504 else if (offset
> 0)
27506 /* Short opcode. */
27507 op
= (offset
- 4) >> 2;
27508 add_unwind_opcode (op
, 1);
27510 else if (offset
< 0)
27513 while (offset
> 0x100)
27515 add_unwind_opcode (0x7f, 1);
27518 op
= ((offset
- 4) >> 2) | 0x40;
27519 add_unwind_opcode (op
, 1);
27523 /* Finish the list of unwind opcodes for this function. */
27526 finish_unwind_opcodes (void)
27530 if (unwind
.fp_used
)
27532 /* Adjust sp as necessary. */
27533 unwind
.pending_offset
+= unwind
.fp_offset
- unwind
.frame_size
;
27534 flush_pending_unwind ();
27536 /* After restoring sp from the frame pointer. */
27537 op
= 0x90 | unwind
.fp_reg
;
27538 add_unwind_opcode (op
, 1);
27541 flush_pending_unwind ();
27545 /* Start an exception table entry. If idx is nonzero this is an index table
27549 start_unwind_section (const segT text_seg
, int idx
)
27551 const char * text_name
;
27552 const char * prefix
;
27553 const char * prefix_once
;
27554 struct elf_section_match match
;
27562 prefix
= ELF_STRING_ARM_unwind
;
27563 prefix_once
= ELF_STRING_ARM_unwind_once
;
27564 type
= SHT_ARM_EXIDX
;
27568 prefix
= ELF_STRING_ARM_unwind_info
;
27569 prefix_once
= ELF_STRING_ARM_unwind_info_once
;
27570 type
= SHT_PROGBITS
;
27573 text_name
= segment_name (text_seg
);
27574 if (streq (text_name
, ".text"))
27577 if (strncmp (text_name
, ".gnu.linkonce.t.",
27578 strlen (".gnu.linkonce.t.")) == 0)
27580 prefix
= prefix_once
;
27581 text_name
+= strlen (".gnu.linkonce.t.");
27584 sec_name
= concat (prefix
, text_name
, (char *) NULL
);
27588 memset (&match
, 0, sizeof (match
));
27590 /* Handle COMDAT group. */
27591 if (prefix
!= prefix_once
&& (text_seg
->flags
& SEC_LINK_ONCE
) != 0)
27593 match
.group_name
= elf_group_name (text_seg
);
27594 if (match
.group_name
== NULL
)
27596 as_bad (_("Group section `%s' has no group signature"),
27597 segment_name (text_seg
));
27598 ignore_rest_of_line ();
27601 flags
|= SHF_GROUP
;
27605 obj_elf_change_section (sec_name
, type
, flags
, 0, &match
,
27608 /* Set the section link for index tables. */
27610 elf_linked_to_section (now_seg
) = text_seg
;
27614 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
27615 personality routine data. Returns zero, or the index table value for
27616 an inline entry. */
27619 create_unwind_entry (int have_data
)
27624 /* The current word of data. */
27626 /* The number of bytes left in this word. */
27629 finish_unwind_opcodes ();
27631 /* Remember the current text section. */
27632 unwind
.saved_seg
= now_seg
;
27633 unwind
.saved_subseg
= now_subseg
;
27635 start_unwind_section (now_seg
, 0);
27637 if (unwind
.personality_routine
== NULL
)
27639 if (unwind
.personality_index
== -2)
27642 as_bad (_("handlerdata in cantunwind frame"));
27643 return 1; /* EXIDX_CANTUNWIND. */
27646 /* Use a default personality routine if none is specified. */
27647 if (unwind
.personality_index
== -1)
27649 if (unwind
.opcode_count
> 3)
27650 unwind
.personality_index
= 1;
27652 unwind
.personality_index
= 0;
27655 /* Space for the personality routine entry. */
27656 if (unwind
.personality_index
== 0)
27658 if (unwind
.opcode_count
> 3)
27659 as_bad (_("too many unwind opcodes for personality routine 0"));
27663 /* All the data is inline in the index table. */
27666 while (unwind
.opcode_count
> 0)
27668 unwind
.opcode_count
--;
27669 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
27673 /* Pad with "finish" opcodes. */
27675 data
= (data
<< 8) | 0xb0;
27682 /* We get two opcodes "free" in the first word. */
27683 size
= unwind
.opcode_count
- 2;
27687 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
27688 if (unwind
.personality_index
!= -1)
27690 as_bad (_("attempt to recreate an unwind entry"));
27694 /* An extra byte is required for the opcode count. */
27695 size
= unwind
.opcode_count
+ 1;
27698 size
= (size
+ 3) >> 2;
27700 as_bad (_("too many unwind opcodes"));
27702 frag_align (2, 0, 0);
27703 record_alignment (now_seg
, 2);
27704 unwind
.table_entry
= expr_build_dot ();
27706 /* Allocate the table entry. */
27707 ptr
= frag_more ((size
<< 2) + 4);
27708 /* PR 13449: Zero the table entries in case some of them are not used. */
27709 memset (ptr
, 0, (size
<< 2) + 4);
27710 where
= frag_now_fix () - ((size
<< 2) + 4);
27712 switch (unwind
.personality_index
)
27715 /* ??? Should this be a PLT generating relocation? */
27716 /* Custom personality routine. */
27717 fix_new (frag_now
, where
, 4, unwind
.personality_routine
, 0, 1,
27718 BFD_RELOC_ARM_PREL31
);
27723 /* Set the first byte to the number of additional words. */
27724 data
= size
> 0 ? size
- 1 : 0;
27728 /* ABI defined personality routines. */
27730 /* Three opcodes bytes are packed into the first word. */
27737 /* The size and first two opcode bytes go in the first word. */
27738 data
= ((0x80 + unwind
.personality_index
) << 8) | size
;
27743 /* Should never happen. */
27747 /* Pack the opcodes into words (MSB first), reversing the list at the same
27749 while (unwind
.opcode_count
> 0)
27753 md_number_to_chars (ptr
, data
, 4);
27758 unwind
.opcode_count
--;
27760 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
27763 /* Finish off the last word. */
27766 /* Pad with "finish" opcodes. */
27768 data
= (data
<< 8) | 0xb0;
27770 md_number_to_chars (ptr
, data
, 4);
27775 /* Add an empty descriptor if there is no user-specified data. */
27776 ptr
= frag_more (4);
27777 md_number_to_chars (ptr
, 0, 4);
27784 /* Initialize the DWARF-2 unwind information for this procedure. */
27787 tc_arm_frame_initial_instructions (void)
27789 cfi_add_CFA_def_cfa (REG_SP
, 0);
27791 #endif /* OBJ_ELF */
27793 /* Convert REGNAME to a DWARF-2 register number. */
27796 tc_arm_regname_to_dw2regnum (char *regname
)
27798 int reg
= arm_reg_parse (®name
, REG_TYPE_RN
);
27802 /* PR 16694: Allow VFP registers as well. */
27803 reg
= arm_reg_parse (®name
, REG_TYPE_VFS
);
27807 reg
= arm_reg_parse (®name
, REG_TYPE_VFD
);
27816 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
27820 exp
.X_op
= O_secrel
;
27821 exp
.X_add_symbol
= symbol
;
27822 exp
.X_add_number
= 0;
27823 emit_expr (&exp
, size
);
27827 /* MD interface: Symbol and relocation handling. */
27829 /* Return the address within the segment that a PC-relative fixup is
27830 relative to. For ARM, PC-relative fixups applied to instructions
27831 are generally relative to the location of the fixup plus 8 bytes.
27832 Thumb branches are offset by 4, and Thumb loads relative to PC
27833 require special handling. */
27836 md_pcrel_from_section (fixS
* fixP
, segT seg
)
27838 offsetT base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
27840 /* If this is pc-relative and we are going to emit a relocation
27841 then we just want to put out any pipeline compensation that the linker
27842 will need. Otherwise we want to use the calculated base.
27843 For WinCE we skip the bias for externals as well, since this
27844 is how the MS ARM-CE assembler behaves and we want to be compatible. */
27846 && ((fixP
->fx_addsy
&& S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
27847 || (arm_force_relocation (fixP
)
27849 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
27855 switch (fixP
->fx_r_type
)
27857 /* PC relative addressing on the Thumb is slightly odd as the
27858 bottom two bits of the PC are forced to zero for the
27859 calculation. This happens *after* application of the
27860 pipeline offset. However, Thumb adrl already adjusts for
27861 this, so we need not do it again. */
27862 case BFD_RELOC_ARM_THUMB_ADD
:
27865 case BFD_RELOC_ARM_THUMB_OFFSET
:
27866 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
27867 case BFD_RELOC_ARM_T32_ADD_PC12
:
27868 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
27869 return (base
+ 4) & ~3;
27871 /* Thumb branches are simply offset by +4. */
27872 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
27873 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
27874 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
27875 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
27876 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
27877 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
27878 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
27879 case BFD_RELOC_ARM_THUMB_BF17
:
27880 case BFD_RELOC_ARM_THUMB_BF19
:
27881 case BFD_RELOC_ARM_THUMB_BF13
:
27882 case BFD_RELOC_ARM_THUMB_LOOP12
:
27885 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
27887 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27888 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27889 && ARM_IS_FUNC (fixP
->fx_addsy
)
27890 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
27891 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
27894 /* BLX is like branches above, but forces the low two bits of PC to
27896 case BFD_RELOC_THUMB_PCREL_BLX
:
27898 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27899 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27900 && THUMB_IS_FUNC (fixP
->fx_addsy
)
27901 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
27902 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
27903 return (base
+ 4) & ~3;
27905 /* ARM mode branches are offset by +8. However, the Windows CE
27906 loader expects the relocation not to take this into account. */
27907 case BFD_RELOC_ARM_PCREL_BLX
:
27909 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27910 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27911 && ARM_IS_FUNC (fixP
->fx_addsy
)
27912 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
27913 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
27916 case BFD_RELOC_ARM_PCREL_CALL
:
27918 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27919 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27920 && THUMB_IS_FUNC (fixP
->fx_addsy
)
27921 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
27922 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
27925 case BFD_RELOC_ARM_PCREL_BRANCH
:
27926 case BFD_RELOC_ARM_PCREL_JUMP
:
27927 case BFD_RELOC_ARM_PLT32
:
27929 /* When handling fixups immediately, because we have already
27930 discovered the value of a symbol, or the address of the frag involved
27931 we must account for the offset by +8, as the OS loader will never see the reloc.
27932 see fixup_segment() in write.c
27933 The S_IS_EXTERNAL test handles the case of global symbols.
27934 Those need the calculated base, not just the pipe compensation the linker will need. */
27936 && fixP
->fx_addsy
!= NULL
27937 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27938 && (S_IS_EXTERNAL (fixP
->fx_addsy
) || !arm_force_relocation (fixP
)))
27946 /* ARM mode loads relative to PC are also offset by +8. Unlike
27947 branches, the Windows CE loader *does* expect the relocation
27948 to take this into account. */
27949 case BFD_RELOC_ARM_OFFSET_IMM
:
27950 case BFD_RELOC_ARM_OFFSET_IMM8
:
27951 case BFD_RELOC_ARM_HWLITERAL
:
27952 case BFD_RELOC_ARM_LITERAL
:
27953 case BFD_RELOC_ARM_CP_OFF_IMM
:
27957 /* Other PC-relative relocations are un-offset. */
27963 static bfd_boolean flag_warn_syms
= TRUE
;
27966 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED
, char * name
)
27968 /* PR 18347 - Warn if the user attempts to create a symbol with the same
27969 name as an ARM instruction. Whilst strictly speaking it is allowed, it
27970 does mean that the resulting code might be very confusing to the reader.
27971 Also this warning can be triggered if the user omits an operand before
27972 an immediate address, eg:
27976 GAS treats this as an assignment of the value of the symbol foo to a
27977 symbol LDR, and so (without this code) it will not issue any kind of
27978 warning or error message.
27980 Note - ARM instructions are case-insensitive but the strings in the hash
27981 table are all stored in lower case, so we must first ensure that name is
27983 if (flag_warn_syms
&& arm_ops_hsh
)
27985 char * nbuf
= strdup (name
);
27988 for (p
= nbuf
; *p
; p
++)
27990 if (hash_find (arm_ops_hsh
, nbuf
) != NULL
)
27992 static struct hash_control
* already_warned
= NULL
;
27994 if (already_warned
== NULL
)
27995 already_warned
= hash_new ();
27996 /* Only warn about the symbol once. To keep the code
27997 simple we let hash_insert do the lookup for us. */
27998 if (hash_insert (already_warned
, nbuf
, NULL
) == NULL
)
27999 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name
);
28008 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
28009 Otherwise we have no need to default values of symbols. */
28012 md_undefined_symbol (char * name ATTRIBUTE_UNUSED
)
28015 if (name
[0] == '_' && name
[1] == 'G'
28016 && streq (name
, GLOBAL_OFFSET_TABLE_NAME
))
28020 if (symbol_find (name
))
28021 as_bad (_("GOT already in the symbol table"));
28023 GOT_symbol
= symbol_new (name
, undefined_section
,
28024 (valueT
) 0, & zero_address_frag
);
28034 /* Subroutine of md_apply_fix. Check to see if an immediate can be
28035 computed as two separate immediate values, added together. We
28036 already know that this value cannot be computed by just one ARM
28039 static unsigned int
28040 validate_immediate_twopart (unsigned int val
,
28041 unsigned int * highpart
)
28046 for (i
= 0; i
< 32; i
+= 2)
28047 if (((a
= rotate_left (val
, i
)) & 0xff) != 0)
28053 * highpart
= (a
>> 8) | ((i
+ 24) << 7);
28055 else if (a
& 0xff0000)
28057 if (a
& 0xff000000)
28059 * highpart
= (a
>> 16) | ((i
+ 16) << 7);
28063 gas_assert (a
& 0xff000000);
28064 * highpart
= (a
>> 24) | ((i
+ 8) << 7);
28067 return (a
& 0xff) | (i
<< 7);
28074 validate_offset_imm (unsigned int val
, int hwse
)
28076 if ((hwse
&& val
> 255) || val
> 4095)
28081 /* Subroutine of md_apply_fix. Do those data_ops which can take a
28082 negative immediate constant by altering the instruction. A bit of
28087 by inverting the second operand, and
28090 by negating the second operand. */
28093 negate_data_op (unsigned long * instruction
,
28094 unsigned long value
)
28097 unsigned long negated
, inverted
;
28099 negated
= encode_arm_immediate (-value
);
28100 inverted
= encode_arm_immediate (~value
);
28102 op
= (*instruction
>> DATA_OP_SHIFT
) & 0xf;
28105 /* First negates. */
28106 case OPCODE_SUB
: /* ADD <-> SUB */
28107 new_inst
= OPCODE_ADD
;
28112 new_inst
= OPCODE_SUB
;
28116 case OPCODE_CMP
: /* CMP <-> CMN */
28117 new_inst
= OPCODE_CMN
;
28122 new_inst
= OPCODE_CMP
;
28126 /* Now Inverted ops. */
28127 case OPCODE_MOV
: /* MOV <-> MVN */
28128 new_inst
= OPCODE_MVN
;
28133 new_inst
= OPCODE_MOV
;
28137 case OPCODE_AND
: /* AND <-> BIC */
28138 new_inst
= OPCODE_BIC
;
28143 new_inst
= OPCODE_AND
;
28147 case OPCODE_ADC
: /* ADC <-> SBC */
28148 new_inst
= OPCODE_SBC
;
28153 new_inst
= OPCODE_ADC
;
28157 /* We cannot do anything. */
28162 if (value
== (unsigned) FAIL
)
28165 *instruction
&= OPCODE_MASK
;
28166 *instruction
|= new_inst
<< DATA_OP_SHIFT
;
28170 /* Like negate_data_op, but for Thumb-2. */
28172 static unsigned int
28173 thumb32_negate_data_op (offsetT
*instruction
, unsigned int value
)
28177 unsigned int negated
, inverted
;
28179 negated
= encode_thumb32_immediate (-value
);
28180 inverted
= encode_thumb32_immediate (~value
);
28182 rd
= (*instruction
>> 8) & 0xf;
28183 op
= (*instruction
>> T2_DATA_OP_SHIFT
) & 0xf;
28186 /* ADD <-> SUB. Includes CMP <-> CMN. */
28187 case T2_OPCODE_SUB
:
28188 new_inst
= T2_OPCODE_ADD
;
28192 case T2_OPCODE_ADD
:
28193 new_inst
= T2_OPCODE_SUB
;
28197 /* ORR <-> ORN. Includes MOV <-> MVN. */
28198 case T2_OPCODE_ORR
:
28199 new_inst
= T2_OPCODE_ORN
;
28203 case T2_OPCODE_ORN
:
28204 new_inst
= T2_OPCODE_ORR
;
28208 /* AND <-> BIC. TST has no inverted equivalent. */
28209 case T2_OPCODE_AND
:
28210 new_inst
= T2_OPCODE_BIC
;
28217 case T2_OPCODE_BIC
:
28218 new_inst
= T2_OPCODE_AND
;
28223 case T2_OPCODE_ADC
:
28224 new_inst
= T2_OPCODE_SBC
;
28228 case T2_OPCODE_SBC
:
28229 new_inst
= T2_OPCODE_ADC
;
28233 /* We cannot do anything. */
28238 if (value
== (unsigned int)FAIL
)
28241 *instruction
&= T2_OPCODE_MASK
;
28242 *instruction
|= new_inst
<< T2_DATA_OP_SHIFT
;
28246 /* Read a 32-bit thumb instruction from buf. */
28248 static unsigned long
28249 get_thumb32_insn (char * buf
)
28251 unsigned long insn
;
28252 insn
= md_chars_to_number (buf
, THUMB_SIZE
) << 16;
28253 insn
|= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
28258 /* We usually want to set the low bit on the address of thumb function
28259 symbols. In particular .word foo - . should have the low bit set.
28260 Generic code tries to fold the difference of two symbols to
28261 a constant. Prevent this and force a relocation when the first symbols
28262 is a thumb function. */
28265 arm_optimize_expr (expressionS
*l
, operatorT op
, expressionS
*r
)
28267 if (op
== O_subtract
28268 && l
->X_op
== O_symbol
28269 && r
->X_op
== O_symbol
28270 && THUMB_IS_FUNC (l
->X_add_symbol
))
28272 l
->X_op
= O_subtract
;
28273 l
->X_op_symbol
= r
->X_add_symbol
;
28274 l
->X_add_number
-= r
->X_add_number
;
28278 /* Process as normal. */
28282 /* Encode Thumb2 unconditional branches and calls. The encoding
28283 for the 2 are identical for the immediate values. */
28286 encode_thumb2_b_bl_offset (char * buf
, offsetT value
)
28288 #define T2I1I2MASK ((1 << 13) | (1 << 11))
28291 addressT S
, I1
, I2
, lo
, hi
;
28293 S
= (value
>> 24) & 0x01;
28294 I1
= (value
>> 23) & 0x01;
28295 I2
= (value
>> 22) & 0x01;
28296 hi
= (value
>> 12) & 0x3ff;
28297 lo
= (value
>> 1) & 0x7ff;
28298 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28299 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
28300 newval
|= (S
<< 10) | hi
;
28301 newval2
&= ~T2I1I2MASK
;
28302 newval2
|= (((I1
^ S
) << 13) | ((I2
^ S
) << 11) | lo
) ^ T2I1I2MASK
;
28303 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28304 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
28308 md_apply_fix (fixS
* fixP
,
28312 offsetT value
= * valP
;
28314 unsigned int newimm
;
28315 unsigned long temp
;
28317 char * buf
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
28319 gas_assert (fixP
->fx_r_type
<= BFD_RELOC_UNUSED
);
28321 /* Note whether this will delete the relocation. */
28323 if (fixP
->fx_addsy
== 0 && !fixP
->fx_pcrel
)
28326 /* On a 64-bit host, silently truncate 'value' to 32 bits for
28327 consistency with the behaviour on 32-bit hosts. Remember value
28329 value
&= 0xffffffff;
28330 value
^= 0x80000000;
28331 value
-= 0x80000000;
28334 fixP
->fx_addnumber
= value
;
28336 /* Same treatment for fixP->fx_offset. */
28337 fixP
->fx_offset
&= 0xffffffff;
28338 fixP
->fx_offset
^= 0x80000000;
28339 fixP
->fx_offset
-= 0x80000000;
28341 switch (fixP
->fx_r_type
)
28343 case BFD_RELOC_NONE
:
28344 /* This will need to go in the object file. */
28348 case BFD_RELOC_ARM_IMMEDIATE
:
28349 /* We claim that this fixup has been processed here,
28350 even if in fact we generate an error because we do
28351 not have a reloc for it, so tc_gen_reloc will reject it. */
28354 if (fixP
->fx_addsy
)
28356 const char *msg
= 0;
28358 if (! S_IS_DEFINED (fixP
->fx_addsy
))
28359 msg
= _("undefined symbol %s used as an immediate value");
28360 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
28361 msg
= _("symbol %s is in a different section");
28362 else if (S_IS_WEAK (fixP
->fx_addsy
))
28363 msg
= _("symbol %s is weak and may be overridden later");
28367 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28368 msg
, S_GET_NAME (fixP
->fx_addsy
));
28373 temp
= md_chars_to_number (buf
, INSN_SIZE
);
28375 /* If the offset is negative, we should use encoding A2 for ADR. */
28376 if ((temp
& 0xfff0000) == 0x28f0000 && value
< 0)
28377 newimm
= negate_data_op (&temp
, value
);
28380 newimm
= encode_arm_immediate (value
);
28382 /* If the instruction will fail, see if we can fix things up by
28383 changing the opcode. */
28384 if (newimm
== (unsigned int) FAIL
)
28385 newimm
= negate_data_op (&temp
, value
);
28386 /* MOV accepts both ARM modified immediate (A1 encoding) and
28387 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
28388 When disassembling, MOV is preferred when there is no encoding
28390 if (newimm
== (unsigned int) FAIL
28391 && ((temp
>> DATA_OP_SHIFT
) & 0xf) == OPCODE_MOV
28392 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)
28393 && !((temp
>> SBIT_SHIFT
) & 0x1)
28394 && value
>= 0 && value
<= 0xffff)
28396 /* Clear bits[23:20] to change encoding from A1 to A2. */
28397 temp
&= 0xff0fffff;
28398 /* Encoding high 4bits imm. Code below will encode the remaining
28400 temp
|= (value
& 0x0000f000) << 4;
28401 newimm
= value
& 0x00000fff;
28405 if (newimm
== (unsigned int) FAIL
)
28407 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28408 _("invalid constant (%lx) after fixup"),
28409 (unsigned long) value
);
28413 newimm
|= (temp
& 0xfffff000);
28414 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
28417 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
28419 unsigned int highpart
= 0;
28420 unsigned int newinsn
= 0xe1a00000; /* nop. */
28422 if (fixP
->fx_addsy
)
28424 const char *msg
= 0;
28426 if (! S_IS_DEFINED (fixP
->fx_addsy
))
28427 msg
= _("undefined symbol %s used as an immediate value");
28428 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
28429 msg
= _("symbol %s is in a different section");
28430 else if (S_IS_WEAK (fixP
->fx_addsy
))
28431 msg
= _("symbol %s is weak and may be overridden later");
28435 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28436 msg
, S_GET_NAME (fixP
->fx_addsy
));
28441 newimm
= encode_arm_immediate (value
);
28442 temp
= md_chars_to_number (buf
, INSN_SIZE
);
28444 /* If the instruction will fail, see if we can fix things up by
28445 changing the opcode. */
28446 if (newimm
== (unsigned int) FAIL
28447 && (newimm
= negate_data_op (& temp
, value
)) == (unsigned int) FAIL
)
28449 /* No ? OK - try using two ADD instructions to generate
28451 newimm
= validate_immediate_twopart (value
, & highpart
);
28453 /* Yes - then make sure that the second instruction is
28455 if (newimm
!= (unsigned int) FAIL
)
28457 /* Still No ? Try using a negated value. */
28458 else if ((newimm
= validate_immediate_twopart (- value
, & highpart
)) != (unsigned int) FAIL
)
28459 temp
= newinsn
= (temp
& OPCODE_MASK
) | OPCODE_SUB
<< DATA_OP_SHIFT
;
28460 /* Otherwise - give up. */
28463 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28464 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
28469 /* Replace the first operand in the 2nd instruction (which
28470 is the PC) with the destination register. We have
28471 already added in the PC in the first instruction and we
28472 do not want to do it again. */
28473 newinsn
&= ~ 0xf0000;
28474 newinsn
|= ((newinsn
& 0x0f000) << 4);
28477 newimm
|= (temp
& 0xfffff000);
28478 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
28480 highpart
|= (newinsn
& 0xfffff000);
28481 md_number_to_chars (buf
+ INSN_SIZE
, (valueT
) highpart
, INSN_SIZE
);
28485 case BFD_RELOC_ARM_OFFSET_IMM
:
28486 if (!fixP
->fx_done
&& seg
->use_rela_p
)
28488 /* Fall through. */
28490 case BFD_RELOC_ARM_LITERAL
:
28496 if (validate_offset_imm (value
, 0) == FAIL
)
28498 if (fixP
->fx_r_type
== BFD_RELOC_ARM_LITERAL
)
28499 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28500 _("invalid literal constant: pool needs to be closer"));
28502 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28503 _("bad immediate value for offset (%ld)"),
28508 newval
= md_chars_to_number (buf
, INSN_SIZE
);
28510 newval
&= 0xfffff000;
28513 newval
&= 0xff7ff000;
28514 newval
|= value
| (sign
? INDEX_UP
: 0);
28516 md_number_to_chars (buf
, newval
, INSN_SIZE
);
28519 case BFD_RELOC_ARM_OFFSET_IMM8
:
28520 case BFD_RELOC_ARM_HWLITERAL
:
28526 if (validate_offset_imm (value
, 1) == FAIL
)
28528 if (fixP
->fx_r_type
== BFD_RELOC_ARM_HWLITERAL
)
28529 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28530 _("invalid literal constant: pool needs to be closer"));
28532 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28533 _("bad immediate value for 8-bit offset (%ld)"),
28538 newval
= md_chars_to_number (buf
, INSN_SIZE
);
28540 newval
&= 0xfffff0f0;
28543 newval
&= 0xff7ff0f0;
28544 newval
|= ((value
>> 4) << 8) | (value
& 0xf) | (sign
? INDEX_UP
: 0);
28546 md_number_to_chars (buf
, newval
, INSN_SIZE
);
28549 case BFD_RELOC_ARM_T32_OFFSET_U8
:
28550 if (value
< 0 || value
> 1020 || value
% 4 != 0)
28551 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28552 _("bad immediate value for offset (%ld)"), (long) value
);
28555 newval
= md_chars_to_number (buf
+2, THUMB_SIZE
);
28557 md_number_to_chars (buf
+2, newval
, THUMB_SIZE
);
28560 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
28561 /* This is a complicated relocation used for all varieties of Thumb32
28562 load/store instruction with immediate offset:
28564 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
28565 *4, optional writeback(W)
28566 (doubleword load/store)
28568 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
28569 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
28570 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
28571 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
28572 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
28574 Uppercase letters indicate bits that are already encoded at
28575 this point. Lowercase letters are our problem. For the
28576 second block of instructions, the secondary opcode nybble
28577 (bits 8..11) is present, and bit 23 is zero, even if this is
28578 a PC-relative operation. */
28579 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28581 newval
|= md_chars_to_number (buf
+THUMB_SIZE
, THUMB_SIZE
);
28583 if ((newval
& 0xf0000000) == 0xe0000000)
28585 /* Doubleword load/store: 8-bit offset, scaled by 4. */
28587 newval
|= (1 << 23);
28590 if (value
% 4 != 0)
28592 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28593 _("offset not a multiple of 4"));
28599 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28600 _("offset out of range"));
28605 else if ((newval
& 0x000f0000) == 0x000f0000)
28607 /* PC-relative, 12-bit offset. */
28609 newval
|= (1 << 23);
28614 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28615 _("offset out of range"));
28620 else if ((newval
& 0x00000100) == 0x00000100)
28622 /* Writeback: 8-bit, +/- offset. */
28624 newval
|= (1 << 9);
28629 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28630 _("offset out of range"));
28635 else if ((newval
& 0x00000f00) == 0x00000e00)
28637 /* T-instruction: positive 8-bit offset. */
28638 if (value
< 0 || value
> 0xff)
28640 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28641 _("offset out of range"));
28649 /* Positive 12-bit or negative 8-bit offset. */
28653 newval
|= (1 << 23);
28663 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28664 _("offset out of range"));
28671 md_number_to_chars (buf
, (newval
>> 16) & 0xffff, THUMB_SIZE
);
28672 md_number_to_chars (buf
+ THUMB_SIZE
, newval
& 0xffff, THUMB_SIZE
);
28675 case BFD_RELOC_ARM_SHIFT_IMM
:
28676 newval
= md_chars_to_number (buf
, INSN_SIZE
);
28677 if (((unsigned long) value
) > 32
28679 && (((newval
& 0x60) == 0) || (newval
& 0x60) == 0x60)))
28681 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28682 _("shift expression is too large"));
28687 /* Shifts of zero must be done as lsl. */
28689 else if (value
== 32)
28691 newval
&= 0xfffff07f;
28692 newval
|= (value
& 0x1f) << 7;
28693 md_number_to_chars (buf
, newval
, INSN_SIZE
);
28696 case BFD_RELOC_ARM_T32_IMMEDIATE
:
28697 case BFD_RELOC_ARM_T32_ADD_IMM
:
28698 case BFD_RELOC_ARM_T32_IMM12
:
28699 case BFD_RELOC_ARM_T32_ADD_PC12
:
28700 /* We claim that this fixup has been processed here,
28701 even if in fact we generate an error because we do
28702 not have a reloc for it, so tc_gen_reloc will reject it. */
28706 && ! S_IS_DEFINED (fixP
->fx_addsy
))
28708 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28709 _("undefined symbol %s used as an immediate value"),
28710 S_GET_NAME (fixP
->fx_addsy
));
28714 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28716 newval
|= md_chars_to_number (buf
+2, THUMB_SIZE
);
28719 if ((fixP
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
28720 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
28721 Thumb2 modified immediate encoding (T2). */
28722 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
28723 || fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
28725 newimm
= encode_thumb32_immediate (value
);
28726 if (newimm
== (unsigned int) FAIL
)
28727 newimm
= thumb32_negate_data_op (&newval
, value
);
28729 if (newimm
== (unsigned int) FAIL
)
28731 if (fixP
->fx_r_type
!= BFD_RELOC_ARM_T32_IMMEDIATE
)
28733 /* Turn add/sum into addw/subw. */
28734 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
28735 newval
= (newval
& 0xfeffffff) | 0x02000000;
28736 /* No flat 12-bit imm encoding for addsw/subsw. */
28737 if ((newval
& 0x00100000) == 0)
28739 /* 12 bit immediate for addw/subw. */
28743 newval
^= 0x00a00000;
28746 newimm
= (unsigned int) FAIL
;
28753 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
28754 UINT16 (T3 encoding), MOVW only accepts UINT16. When
28755 disassembling, MOV is preferred when there is no encoding
28757 if (((newval
>> T2_DATA_OP_SHIFT
) & 0xf) == T2_OPCODE_ORR
28758 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
28759 but with the Rn field [19:16] set to 1111. */
28760 && (((newval
>> 16) & 0xf) == 0xf)
28761 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
)
28762 && !((newval
>> T2_SBIT_SHIFT
) & 0x1)
28763 && value
>= 0 && value
<= 0xffff)
28765 /* Toggle bit[25] to change encoding from T2 to T3. */
28767 /* Clear bits[19:16]. */
28768 newval
&= 0xfff0ffff;
28769 /* Encoding high 4bits imm. Code below will encode the
28770 remaining low 12bits. */
28771 newval
|= (value
& 0x0000f000) << 4;
28772 newimm
= value
& 0x00000fff;
28777 if (newimm
== (unsigned int)FAIL
)
28779 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28780 _("invalid constant (%lx) after fixup"),
28781 (unsigned long) value
);
28785 newval
|= (newimm
& 0x800) << 15;
28786 newval
|= (newimm
& 0x700) << 4;
28787 newval
|= (newimm
& 0x0ff);
28789 md_number_to_chars (buf
, (valueT
) ((newval
>> 16) & 0xffff), THUMB_SIZE
);
28790 md_number_to_chars (buf
+2, (valueT
) (newval
& 0xffff), THUMB_SIZE
);
28793 case BFD_RELOC_ARM_SMC
:
28794 if (((unsigned long) value
) > 0xf)
28795 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28796 _("invalid smc expression"));
28798 newval
= md_chars_to_number (buf
, INSN_SIZE
);
28799 newval
|= (value
& 0xf);
28800 md_number_to_chars (buf
, newval
, INSN_SIZE
);
28803 case BFD_RELOC_ARM_HVC
:
28804 if (((unsigned long) value
) > 0xffff)
28805 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28806 _("invalid hvc expression"));
28807 newval
= md_chars_to_number (buf
, INSN_SIZE
);
28808 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
28809 md_number_to_chars (buf
, newval
, INSN_SIZE
);
28812 case BFD_RELOC_ARM_SWI
:
28813 if (fixP
->tc_fix_data
!= 0)
28815 if (((unsigned long) value
) > 0xff)
28816 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28817 _("invalid swi expression"));
28818 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28820 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28824 if (((unsigned long) value
) > 0x00ffffff)
28825 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28826 _("invalid swi expression"));
28827 newval
= md_chars_to_number (buf
, INSN_SIZE
);
28829 md_number_to_chars (buf
, newval
, INSN_SIZE
);
28833 case BFD_RELOC_ARM_MULTI
:
28834 if (((unsigned long) value
) > 0xffff)
28835 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28836 _("invalid expression in load/store multiple"));
28837 newval
= value
| md_chars_to_number (buf
, INSN_SIZE
);
28838 md_number_to_chars (buf
, newval
, INSN_SIZE
);
28842 case BFD_RELOC_ARM_PCREL_CALL
:
28844 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
28846 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28847 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28848 && THUMB_IS_FUNC (fixP
->fx_addsy
))
28849 /* Flip the bl to blx. This is a simple flip
28850 bit here because we generate PCREL_CALL for
28851 unconditional bls. */
28853 newval
= md_chars_to_number (buf
, INSN_SIZE
);
28854 newval
= newval
| 0x10000000;
28855 md_number_to_chars (buf
, newval
, INSN_SIZE
);
28861 goto arm_branch_common
;
28863 case BFD_RELOC_ARM_PCREL_JUMP
:
28864 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
28866 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28867 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28868 && THUMB_IS_FUNC (fixP
->fx_addsy
))
28870 /* This would map to a bl<cond>, b<cond>,
28871 b<always> to a Thumb function. We
28872 need to force a relocation for this particular
28874 newval
= md_chars_to_number (buf
, INSN_SIZE
);
28877 /* Fall through. */
28879 case BFD_RELOC_ARM_PLT32
:
28881 case BFD_RELOC_ARM_PCREL_BRANCH
:
28883 goto arm_branch_common
;
28885 case BFD_RELOC_ARM_PCREL_BLX
:
28888 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
28890 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28891 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28892 && ARM_IS_FUNC (fixP
->fx_addsy
))
28894 /* Flip the blx to a bl and warn. */
28895 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
28896 newval
= 0xeb000000;
28897 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
28898 _("blx to '%s' an ARM ISA state function changed to bl"),
28900 md_number_to_chars (buf
, newval
, INSN_SIZE
);
28906 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
28907 fixP
->fx_r_type
= BFD_RELOC_ARM_PCREL_CALL
;
28911 /* We are going to store value (shifted right by two) in the
28912 instruction, in a 24 bit, signed field. Bits 26 through 32 either
28913 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
28916 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28917 _("misaligned branch destination"));
28918 if ((value
& (offsetT
)0xfe000000) != (offsetT
)0
28919 && (value
& (offsetT
)0xfe000000) != (offsetT
)0xfe000000)
28920 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
28922 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28924 newval
= md_chars_to_number (buf
, INSN_SIZE
);
28925 newval
|= (value
>> 2) & 0x00ffffff;
28926 /* Set the H bit on BLX instructions. */
28930 newval
|= 0x01000000;
28932 newval
&= ~0x01000000;
28934 md_number_to_chars (buf
, newval
, INSN_SIZE
);
28938 case BFD_RELOC_THUMB_PCREL_BRANCH7
: /* CBZ */
28939 /* CBZ can only branch forward. */
28941 /* Attempts to use CBZ to branch to the next instruction
28942 (which, strictly speaking, are prohibited) will be turned into
28945 FIXME: It may be better to remove the instruction completely and
28946 perform relaxation. */
28949 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28950 newval
= 0xbf00; /* NOP encoding T1 */
28951 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28956 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
28958 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28960 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28961 newval
|= ((value
& 0x3e) << 2) | ((value
& 0x40) << 3);
28962 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28967 case BFD_RELOC_THUMB_PCREL_BRANCH9
: /* Conditional branch. */
28968 if (out_of_range_p (value
, 8))
28969 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
28971 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28973 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28974 newval
|= (value
& 0x1ff) >> 1;
28975 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28979 case BFD_RELOC_THUMB_PCREL_BRANCH12
: /* Unconditional branch. */
28980 if (out_of_range_p (value
, 11))
28981 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
28983 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28985 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28986 newval
|= (value
& 0xfff) >> 1;
28987 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28991 /* This relocation is misnamed, it should be BRANCH21. */
28992 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
28994 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28995 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28996 && ARM_IS_FUNC (fixP
->fx_addsy
)
28997 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
28999 /* Force a relocation for a branch 20 bits wide. */
29002 if (out_of_range_p (value
, 20))
29003 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29004 _("conditional branch out of range"));
29006 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29009 addressT S
, J1
, J2
, lo
, hi
;
29011 S
= (value
& 0x00100000) >> 20;
29012 J2
= (value
& 0x00080000) >> 19;
29013 J1
= (value
& 0x00040000) >> 18;
29014 hi
= (value
& 0x0003f000) >> 12;
29015 lo
= (value
& 0x00000ffe) >> 1;
29017 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
29018 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
29019 newval
|= (S
<< 10) | hi
;
29020 newval2
|= (J1
<< 13) | (J2
<< 11) | lo
;
29021 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
29022 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
29026 case BFD_RELOC_THUMB_PCREL_BLX
:
29027 /* If there is a blx from a thumb state function to
29028 another thumb function flip this to a bl and warn
29032 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
29033 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
29034 && THUMB_IS_FUNC (fixP
->fx_addsy
))
29036 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
29037 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
29038 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
29040 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
29041 newval
= newval
| 0x1000;
29042 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
29043 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
29048 goto thumb_bl_common
;
29050 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
29051 /* A bl from Thumb state ISA to an internal ARM state function
29052 is converted to a blx. */
29054 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
29055 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
29056 && ARM_IS_FUNC (fixP
->fx_addsy
)
29057 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
29059 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
29060 newval
= newval
& ~0x1000;
29061 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
29062 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BLX
;
29068 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
29069 /* For a BLX instruction, make sure that the relocation is rounded up
29070 to a word boundary. This follows the semantics of the instruction
29071 which specifies that bit 1 of the target address will come from bit
29072 1 of the base address. */
29073 value
= (value
+ 3) & ~ 3;
29076 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
29077 && fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
29078 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
29081 if (out_of_range_p (value
, 22))
29083 if (!(ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)))
29084 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
29085 else if (out_of_range_p (value
, 24))
29086 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29087 _("Thumb2 branch out of range"));
29090 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29091 encode_thumb2_b_bl_offset (buf
, value
);
29095 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
29096 if (out_of_range_p (value
, 24))
29097 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
29099 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29100 encode_thumb2_b_bl_offset (buf
, value
);
29105 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29110 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29111 md_number_to_chars (buf
, value
, 2);
29115 case BFD_RELOC_ARM_TLS_CALL
:
29116 case BFD_RELOC_ARM_THM_TLS_CALL
:
29117 case BFD_RELOC_ARM_TLS_DESCSEQ
:
29118 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
29119 case BFD_RELOC_ARM_TLS_GOTDESC
:
29120 case BFD_RELOC_ARM_TLS_GD32
:
29121 case BFD_RELOC_ARM_TLS_LE32
:
29122 case BFD_RELOC_ARM_TLS_IE32
:
29123 case BFD_RELOC_ARM_TLS_LDM32
:
29124 case BFD_RELOC_ARM_TLS_LDO32
:
29125 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
29128 /* Same handling as above, but with the arm_fdpic guard. */
29129 case BFD_RELOC_ARM_TLS_GD32_FDPIC
:
29130 case BFD_RELOC_ARM_TLS_IE32_FDPIC
:
29131 case BFD_RELOC_ARM_TLS_LDM32_FDPIC
:
29134 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
29138 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29139 _("Relocation supported only in FDPIC mode"));
29143 case BFD_RELOC_ARM_GOT32
:
29144 case BFD_RELOC_ARM_GOTOFF
:
29147 case BFD_RELOC_ARM_GOT_PREL
:
29148 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29149 md_number_to_chars (buf
, value
, 4);
29152 case BFD_RELOC_ARM_TARGET2
:
29153 /* TARGET2 is not partial-inplace, so we need to write the
29154 addend here for REL targets, because it won't be written out
29155 during reloc processing later. */
29156 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29157 md_number_to_chars (buf
, fixP
->fx_offset
, 4);
29160 /* Relocations for FDPIC. */
29161 case BFD_RELOC_ARM_GOTFUNCDESC
:
29162 case BFD_RELOC_ARM_GOTOFFFUNCDESC
:
29163 case BFD_RELOC_ARM_FUNCDESC
:
29166 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29167 md_number_to_chars (buf
, 0, 4);
29171 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29172 _("Relocation supported only in FDPIC mode"));
29177 case BFD_RELOC_RVA
:
29179 case BFD_RELOC_ARM_TARGET1
:
29180 case BFD_RELOC_ARM_ROSEGREL32
:
29181 case BFD_RELOC_ARM_SBREL32
:
29182 case BFD_RELOC_32_PCREL
:
29184 case BFD_RELOC_32_SECREL
:
29186 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29188 /* For WinCE we only do this for pcrel fixups. */
29189 if (fixP
->fx_done
|| fixP
->fx_pcrel
)
29191 md_number_to_chars (buf
, value
, 4);
29195 case BFD_RELOC_ARM_PREL31
:
29196 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29198 newval
= md_chars_to_number (buf
, 4) & 0x80000000;
29199 if ((value
^ (value
>> 1)) & 0x40000000)
29201 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29202 _("rel31 relocation overflow"));
29204 newval
|= value
& 0x7fffffff;
29205 md_number_to_chars (buf
, newval
, 4);
29210 case BFD_RELOC_ARM_CP_OFF_IMM
:
29211 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
29212 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
:
29213 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
)
29214 newval
= md_chars_to_number (buf
, INSN_SIZE
);
29216 newval
= get_thumb32_insn (buf
);
29217 if ((newval
& 0x0f200f00) == 0x0d000900)
29219 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
29220 has permitted values that are multiples of 2, in the range 0
29222 if (value
< -510 || value
> 510 || (value
& 1))
29223 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29224 _("co-processor offset out of range"));
29226 else if ((newval
& 0xfe001f80) == 0xec000f80)
29228 if (value
< -511 || value
> 512 || (value
& 3))
29229 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29230 _("co-processor offset out of range"));
29232 else if (value
< -1023 || value
> 1023 || (value
& 3))
29233 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29234 _("co-processor offset out of range"));
29239 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
29240 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
29241 newval
= md_chars_to_number (buf
, INSN_SIZE
);
29243 newval
= get_thumb32_insn (buf
);
29246 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
)
29247 newval
&= 0xffffff80;
29249 newval
&= 0xffffff00;
29253 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
)
29254 newval
&= 0xff7fff80;
29256 newval
&= 0xff7fff00;
29257 if ((newval
& 0x0f200f00) == 0x0d000900)
29259 /* This is a fp16 vstr/vldr.
29261 It requires the immediate offset in the instruction is shifted
29262 left by 1 to be a half-word offset.
29264 Here, left shift by 1 first, and later right shift by 2
29265 should get the right offset. */
29268 newval
|= (value
>> 2) | (sign
? INDEX_UP
: 0);
29270 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
29271 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
29272 md_number_to_chars (buf
, newval
, INSN_SIZE
);
29274 put_thumb32_insn (buf
, newval
);
29277 case BFD_RELOC_ARM_CP_OFF_IMM_S2
:
29278 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
:
29279 if (value
< -255 || value
> 255)
29280 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29281 _("co-processor offset out of range"));
29283 goto cp_off_common
;
29285 case BFD_RELOC_ARM_THUMB_OFFSET
:
29286 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
29287 /* Exactly what ranges, and where the offset is inserted depends
29288 on the type of instruction, we can establish this from the
29290 switch (newval
>> 12)
29292 case 4: /* PC load. */
29293 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
29294 forced to zero for these loads; md_pcrel_from has already
29295 compensated for this. */
29297 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29298 _("invalid offset, target not word aligned (0x%08lX)"),
29299 (((unsigned long) fixP
->fx_frag
->fr_address
29300 + (unsigned long) fixP
->fx_where
) & ~3)
29301 + (unsigned long) value
);
29302 else if (get_recorded_alignment (seg
) < 2)
29303 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
29304 _("section does not have enough alignment to ensure safe PC-relative loads"));
29306 if (value
& ~0x3fc)
29307 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29308 _("invalid offset, value too big (0x%08lX)"),
29311 newval
|= value
>> 2;
29314 case 9: /* SP load/store. */
29315 if (value
& ~0x3fc)
29316 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29317 _("invalid offset, value too big (0x%08lX)"),
29319 newval
|= value
>> 2;
29322 case 6: /* Word load/store. */
29324 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29325 _("invalid offset, value too big (0x%08lX)"),
29327 newval
|= value
<< 4; /* 6 - 2. */
29330 case 7: /* Byte load/store. */
29332 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29333 _("invalid offset, value too big (0x%08lX)"),
29335 newval
|= value
<< 6;
29338 case 8: /* Halfword load/store. */
29340 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29341 _("invalid offset, value too big (0x%08lX)"),
29343 newval
|= value
<< 5; /* 6 - 1. */
29347 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29348 "Unable to process relocation for thumb opcode: %lx",
29349 (unsigned long) newval
);
29352 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
29355 case BFD_RELOC_ARM_THUMB_ADD
:
29356 /* This is a complicated relocation, since we use it for all of
29357 the following immediate relocations:
29361 9bit ADD/SUB SP word-aligned
29362 10bit ADD PC/SP word-aligned
29364 The type of instruction being processed is encoded in the
29371 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
29373 int rd
= (newval
>> 4) & 0xf;
29374 int rs
= newval
& 0xf;
29375 int subtract
= !!(newval
& 0x8000);
29377 /* Check for HI regs, only very restricted cases allowed:
29378 Adjusting SP, and using PC or SP to get an address. */
29379 if ((rd
> 7 && (rd
!= REG_SP
|| rs
!= REG_SP
))
29380 || (rs
> 7 && rs
!= REG_SP
&& rs
!= REG_PC
))
29381 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29382 _("invalid Hi register with immediate"));
29384 /* If value is negative, choose the opposite instruction. */
29388 subtract
= !subtract
;
29390 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29391 _("immediate value out of range"));
29396 if (value
& ~0x1fc)
29397 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29398 _("invalid immediate for stack address calculation"));
29399 newval
= subtract
? T_OPCODE_SUB_ST
: T_OPCODE_ADD_ST
;
29400 newval
|= value
>> 2;
29402 else if (rs
== REG_PC
|| rs
== REG_SP
)
29404 /* PR gas/18541. If the addition is for a defined symbol
29405 within range of an ADR instruction then accept it. */
29408 && fixP
->fx_addsy
!= NULL
)
29412 if (! S_IS_DEFINED (fixP
->fx_addsy
)
29413 || S_GET_SEGMENT (fixP
->fx_addsy
) != seg
29414 || S_IS_WEAK (fixP
->fx_addsy
))
29416 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29417 _("address calculation needs a strongly defined nearby symbol"));
29421 offsetT v
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
29423 /* Round up to the next 4-byte boundary. */
29428 v
= S_GET_VALUE (fixP
->fx_addsy
) - v
;
29432 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29433 _("symbol too far away"));
29443 if (subtract
|| value
& ~0x3fc)
29444 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29445 _("invalid immediate for address calculation (value = 0x%08lX)"),
29446 (unsigned long) (subtract
? - value
: value
));
29447 newval
= (rs
== REG_PC
? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP
);
29449 newval
|= value
>> 2;
29454 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29455 _("immediate value out of range"));
29456 newval
= subtract
? T_OPCODE_SUB_I8
: T_OPCODE_ADD_I8
;
29457 newval
|= (rd
<< 8) | value
;
29462 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29463 _("immediate value out of range"));
29464 newval
= subtract
? T_OPCODE_SUB_I3
: T_OPCODE_ADD_I3
;
29465 newval
|= rd
| (rs
<< 3) | (value
<< 6);
29468 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
29471 case BFD_RELOC_ARM_THUMB_IMM
:
29472 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
29473 if (value
< 0 || value
> 255)
29474 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29475 _("invalid immediate: %ld is out of range"),
29478 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
29481 case BFD_RELOC_ARM_THUMB_SHIFT
:
29482 /* 5bit shift value (0..32). LSL cannot take 32. */
29483 newval
= md_chars_to_number (buf
, THUMB_SIZE
) & 0xf83f;
29484 temp
= newval
& 0xf800;
29485 if (value
< 0 || value
> 32 || (value
== 32 && temp
== T_OPCODE_LSL_I
))
29486 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29487 _("invalid shift value: %ld"), (long) value
);
29488 /* Shifts of zero must be encoded as LSL. */
29490 newval
= (newval
& 0x003f) | T_OPCODE_LSL_I
;
29491 /* Shifts of 32 are encoded as zero. */
29492 else if (value
== 32)
29494 newval
|= value
<< 6;
29495 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
29498 case BFD_RELOC_VTABLE_INHERIT
:
29499 case BFD_RELOC_VTABLE_ENTRY
:
29503 case BFD_RELOC_ARM_MOVW
:
29504 case BFD_RELOC_ARM_MOVT
:
29505 case BFD_RELOC_ARM_THUMB_MOVW
:
29506 case BFD_RELOC_ARM_THUMB_MOVT
:
29507 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29509 /* REL format relocations are limited to a 16-bit addend. */
29510 if (!fixP
->fx_done
)
29512 if (value
< -0x8000 || value
> 0x7fff)
29513 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29514 _("offset out of range"));
29516 else if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
29517 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
29522 if (fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
29523 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
29525 newval
= get_thumb32_insn (buf
);
29526 newval
&= 0xfbf08f00;
29527 newval
|= (value
& 0xf000) << 4;
29528 newval
|= (value
& 0x0800) << 15;
29529 newval
|= (value
& 0x0700) << 4;
29530 newval
|= (value
& 0x00ff);
29531 put_thumb32_insn (buf
, newval
);
29535 newval
= md_chars_to_number (buf
, 4);
29536 newval
&= 0xfff0f000;
29537 newval
|= value
& 0x0fff;
29538 newval
|= (value
& 0xf000) << 4;
29539 md_number_to_chars (buf
, newval
, 4);
29544 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
:
29545 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
:
29546 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
:
29547 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
:
29548 gas_assert (!fixP
->fx_done
);
29551 bfd_boolean is_mov
;
29552 bfd_vma encoded_addend
= value
;
29554 /* Check that addend can be encoded in instruction. */
29555 if (!seg
->use_rela_p
&& (value
< 0 || value
> 255))
29556 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29557 _("the offset 0x%08lX is not representable"),
29558 (unsigned long) encoded_addend
);
29560 /* Extract the instruction. */
29561 insn
= md_chars_to_number (buf
, THUMB_SIZE
);
29562 is_mov
= (insn
& 0xf800) == 0x2000;
29567 if (!seg
->use_rela_p
)
29568 insn
|= encoded_addend
;
29574 /* Extract the instruction. */
29575 /* Encoding is the following
29580 /* The following conditions must be true :
29585 rd
= (insn
>> 4) & 0xf;
29587 if ((insn
& 0x8000) || (rd
!= rs
) || rd
> 7)
29588 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29589 _("Unable to process relocation for thumb opcode: %lx"),
29590 (unsigned long) insn
);
29592 /* Encode as ADD immediate8 thumb 1 code. */
29593 insn
= 0x3000 | (rd
<< 8);
29595 /* Place the encoded addend into the first 8 bits of the
29597 if (!seg
->use_rela_p
)
29598 insn
|= encoded_addend
;
29601 /* Update the instruction. */
29602 md_number_to_chars (buf
, insn
, THUMB_SIZE
);
29606 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
29607 case BFD_RELOC_ARM_ALU_PC_G0
:
29608 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
29609 case BFD_RELOC_ARM_ALU_PC_G1
:
29610 case BFD_RELOC_ARM_ALU_PC_G2
:
29611 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
29612 case BFD_RELOC_ARM_ALU_SB_G0
:
29613 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
29614 case BFD_RELOC_ARM_ALU_SB_G1
:
29615 case BFD_RELOC_ARM_ALU_SB_G2
:
29616 gas_assert (!fixP
->fx_done
);
29617 if (!seg
->use_rela_p
)
29620 bfd_vma encoded_addend
;
29621 bfd_vma addend_abs
= llabs (value
);
29623 /* Check that the absolute value of the addend can be
29624 expressed as an 8-bit constant plus a rotation. */
29625 encoded_addend
= encode_arm_immediate (addend_abs
);
29626 if (encoded_addend
== (unsigned int) FAIL
)
29627 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29628 _("the offset 0x%08lX is not representable"),
29629 (unsigned long) addend_abs
);
29631 /* Extract the instruction. */
29632 insn
= md_chars_to_number (buf
, INSN_SIZE
);
29634 /* If the addend is positive, use an ADD instruction.
29635 Otherwise use a SUB. Take care not to destroy the S bit. */
29636 insn
&= 0xff1fffff;
29642 /* Place the encoded addend into the first 12 bits of the
29644 insn
&= 0xfffff000;
29645 insn
|= encoded_addend
;
29647 /* Update the instruction. */
29648 md_number_to_chars (buf
, insn
, INSN_SIZE
);
29652 case BFD_RELOC_ARM_LDR_PC_G0
:
29653 case BFD_RELOC_ARM_LDR_PC_G1
:
29654 case BFD_RELOC_ARM_LDR_PC_G2
:
29655 case BFD_RELOC_ARM_LDR_SB_G0
:
29656 case BFD_RELOC_ARM_LDR_SB_G1
:
29657 case BFD_RELOC_ARM_LDR_SB_G2
:
29658 gas_assert (!fixP
->fx_done
);
29659 if (!seg
->use_rela_p
)
29662 bfd_vma addend_abs
= llabs (value
);
29664 /* Check that the absolute value of the addend can be
29665 encoded in 12 bits. */
29666 if (addend_abs
>= 0x1000)
29667 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29668 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
29669 (unsigned long) addend_abs
);
29671 /* Extract the instruction. */
29672 insn
= md_chars_to_number (buf
, INSN_SIZE
);
29674 /* If the addend is negative, clear bit 23 of the instruction.
29675 Otherwise set it. */
29677 insn
&= ~(1 << 23);
29681 /* Place the absolute value of the addend into the first 12 bits
29682 of the instruction. */
29683 insn
&= 0xfffff000;
29684 insn
|= addend_abs
;
29686 /* Update the instruction. */
29687 md_number_to_chars (buf
, insn
, INSN_SIZE
);
29691 case BFD_RELOC_ARM_LDRS_PC_G0
:
29692 case BFD_RELOC_ARM_LDRS_PC_G1
:
29693 case BFD_RELOC_ARM_LDRS_PC_G2
:
29694 case BFD_RELOC_ARM_LDRS_SB_G0
:
29695 case BFD_RELOC_ARM_LDRS_SB_G1
:
29696 case BFD_RELOC_ARM_LDRS_SB_G2
:
29697 gas_assert (!fixP
->fx_done
);
29698 if (!seg
->use_rela_p
)
29701 bfd_vma addend_abs
= llabs (value
);
29703 /* Check that the absolute value of the addend can be
29704 encoded in 8 bits. */
29705 if (addend_abs
>= 0x100)
29706 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29707 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
29708 (unsigned long) addend_abs
);
29710 /* Extract the instruction. */
29711 insn
= md_chars_to_number (buf
, INSN_SIZE
);
29713 /* If the addend is negative, clear bit 23 of the instruction.
29714 Otherwise set it. */
29716 insn
&= ~(1 << 23);
29720 /* Place the first four bits of the absolute value of the addend
29721 into the first 4 bits of the instruction, and the remaining
29722 four into bits 8 .. 11. */
29723 insn
&= 0xfffff0f0;
29724 insn
|= (addend_abs
& 0xf) | ((addend_abs
& 0xf0) << 4);
29726 /* Update the instruction. */
29727 md_number_to_chars (buf
, insn
, INSN_SIZE
);
29731 case BFD_RELOC_ARM_LDC_PC_G0
:
29732 case BFD_RELOC_ARM_LDC_PC_G1
:
29733 case BFD_RELOC_ARM_LDC_PC_G2
:
29734 case BFD_RELOC_ARM_LDC_SB_G0
:
29735 case BFD_RELOC_ARM_LDC_SB_G1
:
29736 case BFD_RELOC_ARM_LDC_SB_G2
:
29737 gas_assert (!fixP
->fx_done
);
29738 if (!seg
->use_rela_p
)
29741 bfd_vma addend_abs
= llabs (value
);
29743 /* Check that the absolute value of the addend is a multiple of
29744 four and, when divided by four, fits in 8 bits. */
29745 if (addend_abs
& 0x3)
29746 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29747 _("bad offset 0x%08lX (must be word-aligned)"),
29748 (unsigned long) addend_abs
);
29750 if ((addend_abs
>> 2) > 0xff)
29751 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29752 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
29753 (unsigned long) addend_abs
);
29755 /* Extract the instruction. */
29756 insn
= md_chars_to_number (buf
, INSN_SIZE
);
29758 /* If the addend is negative, clear bit 23 of the instruction.
29759 Otherwise set it. */
29761 insn
&= ~(1 << 23);
29765 /* Place the addend (divided by four) into the first eight
29766 bits of the instruction. */
29767 insn
&= 0xfffffff0;
29768 insn
|= addend_abs
>> 2;
29770 /* Update the instruction. */
29771 md_number_to_chars (buf
, insn
, INSN_SIZE
);
29775 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
29777 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
29778 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
29779 && ARM_IS_FUNC (fixP
->fx_addsy
)
29780 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
29782 /* Force a relocation for a branch 5 bits wide. */
29785 if (v8_1_branch_value_check (value
, 5, FALSE
) == FAIL
)
29786 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29789 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29791 addressT boff
= value
>> 1;
29793 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
29794 newval
|= (boff
<< 7);
29795 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
29799 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
29801 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
29802 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
29803 && ARM_IS_FUNC (fixP
->fx_addsy
)
29804 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
29808 if ((value
& ~0x7f) && ((value
& ~0x3f) != ~0x3f))
29809 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29810 _("branch out of range"));
29812 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29814 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
29816 addressT boff
= ((newval
& 0x0780) >> 7) << 1;
29817 addressT diff
= value
- boff
;
29821 newval
|= 1 << 1; /* T bit. */
29823 else if (diff
!= 2)
29825 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29826 _("out of range label-relative fixup value"));
29828 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
29832 case BFD_RELOC_ARM_THUMB_BF17
:
29834 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
29835 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
29836 && ARM_IS_FUNC (fixP
->fx_addsy
)
29837 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
29839 /* Force a relocation for a branch 17 bits wide. */
29843 if (v8_1_branch_value_check (value
, 17, TRUE
) == FAIL
)
29844 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29847 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29850 addressT immA
, immB
, immC
;
29852 immA
= (value
& 0x0001f000) >> 12;
29853 immB
= (value
& 0x00000ffc) >> 2;
29854 immC
= (value
& 0x00000002) >> 1;
29856 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
29857 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
29859 newval2
|= (immC
<< 11) | (immB
<< 1);
29860 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
29861 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
29865 case BFD_RELOC_ARM_THUMB_BF19
:
29867 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
29868 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
29869 && ARM_IS_FUNC (fixP
->fx_addsy
)
29870 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
29872 /* Force a relocation for a branch 19 bits wide. */
29876 if (v8_1_branch_value_check (value
, 19, TRUE
) == FAIL
)
29877 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29880 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29883 addressT immA
, immB
, immC
;
29885 immA
= (value
& 0x0007f000) >> 12;
29886 immB
= (value
& 0x00000ffc) >> 2;
29887 immC
= (value
& 0x00000002) >> 1;
29889 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
29890 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
29892 newval2
|= (immC
<< 11) | (immB
<< 1);
29893 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
29894 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
29898 case BFD_RELOC_ARM_THUMB_BF13
:
29900 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
29901 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
29902 && ARM_IS_FUNC (fixP
->fx_addsy
)
29903 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
29905 /* Force a relocation for a branch 13 bits wide. */
29909 if (v8_1_branch_value_check (value
, 13, TRUE
) == FAIL
)
29910 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29913 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29916 addressT immA
, immB
, immC
;
29918 immA
= (value
& 0x00001000) >> 12;
29919 immB
= (value
& 0x00000ffc) >> 2;
29920 immC
= (value
& 0x00000002) >> 1;
29922 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
29923 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
29925 newval2
|= (immC
<< 11) | (immB
<< 1);
29926 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
29927 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
29931 case BFD_RELOC_ARM_THUMB_LOOP12
:
29933 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
29934 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
29935 && ARM_IS_FUNC (fixP
->fx_addsy
)
29936 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
29938 /* Force a relocation for a branch 12 bits wide. */
29942 bfd_vma insn
= get_thumb32_insn (buf
);
29943 /* le lr, <label>, le <label> or letp lr, <label> */
29944 if (((insn
& 0xffffffff) == 0xf00fc001)
29945 || ((insn
& 0xffffffff) == 0xf02fc001)
29946 || ((insn
& 0xffffffff) == 0xf01fc001))
29949 if (v8_1_branch_value_check (value
, 12, FALSE
) == FAIL
)
29950 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29952 if (fixP
->fx_done
|| !seg
->use_rela_p
)
29954 addressT imml
, immh
;
29956 immh
= (value
& 0x00000ffc) >> 2;
29957 imml
= (value
& 0x00000002) >> 1;
29959 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
29960 newval
|= (imml
<< 11) | (immh
<< 1);
29961 md_number_to_chars (buf
+ THUMB_SIZE
, newval
, THUMB_SIZE
);
29965 case BFD_RELOC_ARM_V4BX
:
29966 /* This will need to go in the object file. */
29970 case BFD_RELOC_UNUSED
:
29972 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
29973 _("bad relocation fixup type (%d)"), fixP
->fx_r_type
);
29977 /* Translate internal representation of relocation info to BFD target
29981 tc_gen_reloc (asection
*section
, fixS
*fixp
)
29984 bfd_reloc_code_real_type code
;
29986 reloc
= XNEW (arelent
);
29988 reloc
->sym_ptr_ptr
= XNEW (asymbol
*);
29989 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
29990 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
29992 if (fixp
->fx_pcrel
)
29994 if (section
->use_rela_p
)
29995 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, section
);
29997 fixp
->fx_offset
= reloc
->address
;
29999 reloc
->addend
= fixp
->fx_offset
;
30001 switch (fixp
->fx_r_type
)
30004 if (fixp
->fx_pcrel
)
30006 code
= BFD_RELOC_8_PCREL
;
30009 /* Fall through. */
30012 if (fixp
->fx_pcrel
)
30014 code
= BFD_RELOC_16_PCREL
;
30017 /* Fall through. */
30020 if (fixp
->fx_pcrel
)
30022 code
= BFD_RELOC_32_PCREL
;
30025 /* Fall through. */
30027 case BFD_RELOC_ARM_MOVW
:
30028 if (fixp
->fx_pcrel
)
30030 code
= BFD_RELOC_ARM_MOVW_PCREL
;
30033 /* Fall through. */
30035 case BFD_RELOC_ARM_MOVT
:
30036 if (fixp
->fx_pcrel
)
30038 code
= BFD_RELOC_ARM_MOVT_PCREL
;
30041 /* Fall through. */
30043 case BFD_RELOC_ARM_THUMB_MOVW
:
30044 if (fixp
->fx_pcrel
)
30046 code
= BFD_RELOC_ARM_THUMB_MOVW_PCREL
;
30049 /* Fall through. */
30051 case BFD_RELOC_ARM_THUMB_MOVT
:
30052 if (fixp
->fx_pcrel
)
30054 code
= BFD_RELOC_ARM_THUMB_MOVT_PCREL
;
30057 /* Fall through. */
30059 case BFD_RELOC_NONE
:
30060 case BFD_RELOC_ARM_PCREL_BRANCH
:
30061 case BFD_RELOC_ARM_PCREL_BLX
:
30062 case BFD_RELOC_RVA
:
30063 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
30064 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
30065 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
30066 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
30067 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
30068 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
30069 case BFD_RELOC_VTABLE_ENTRY
:
30070 case BFD_RELOC_VTABLE_INHERIT
:
30072 case BFD_RELOC_32_SECREL
:
30074 code
= fixp
->fx_r_type
;
30077 case BFD_RELOC_THUMB_PCREL_BLX
:
30079 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
30080 code
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
30083 code
= BFD_RELOC_THUMB_PCREL_BLX
;
30086 case BFD_RELOC_ARM_LITERAL
:
30087 case BFD_RELOC_ARM_HWLITERAL
:
30088 /* If this is called then the a literal has
30089 been referenced across a section boundary. */
30090 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
30091 _("literal referenced across section boundary"));
30095 case BFD_RELOC_ARM_TLS_CALL
:
30096 case BFD_RELOC_ARM_THM_TLS_CALL
:
30097 case BFD_RELOC_ARM_TLS_DESCSEQ
:
30098 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
30099 case BFD_RELOC_ARM_GOT32
:
30100 case BFD_RELOC_ARM_GOTOFF
:
30101 case BFD_RELOC_ARM_GOT_PREL
:
30102 case BFD_RELOC_ARM_PLT32
:
30103 case BFD_RELOC_ARM_TARGET1
:
30104 case BFD_RELOC_ARM_ROSEGREL32
:
30105 case BFD_RELOC_ARM_SBREL32
:
30106 case BFD_RELOC_ARM_PREL31
:
30107 case BFD_RELOC_ARM_TARGET2
:
30108 case BFD_RELOC_ARM_TLS_LDO32
:
30109 case BFD_RELOC_ARM_PCREL_CALL
:
30110 case BFD_RELOC_ARM_PCREL_JUMP
:
30111 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
30112 case BFD_RELOC_ARM_ALU_PC_G0
:
30113 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
30114 case BFD_RELOC_ARM_ALU_PC_G1
:
30115 case BFD_RELOC_ARM_ALU_PC_G2
:
30116 case BFD_RELOC_ARM_LDR_PC_G0
:
30117 case BFD_RELOC_ARM_LDR_PC_G1
:
30118 case BFD_RELOC_ARM_LDR_PC_G2
:
30119 case BFD_RELOC_ARM_LDRS_PC_G0
:
30120 case BFD_RELOC_ARM_LDRS_PC_G1
:
30121 case BFD_RELOC_ARM_LDRS_PC_G2
:
30122 case BFD_RELOC_ARM_LDC_PC_G0
:
30123 case BFD_RELOC_ARM_LDC_PC_G1
:
30124 case BFD_RELOC_ARM_LDC_PC_G2
:
30125 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
30126 case BFD_RELOC_ARM_ALU_SB_G0
:
30127 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
30128 case BFD_RELOC_ARM_ALU_SB_G1
:
30129 case BFD_RELOC_ARM_ALU_SB_G2
:
30130 case BFD_RELOC_ARM_LDR_SB_G0
:
30131 case BFD_RELOC_ARM_LDR_SB_G1
:
30132 case BFD_RELOC_ARM_LDR_SB_G2
:
30133 case BFD_RELOC_ARM_LDRS_SB_G0
:
30134 case BFD_RELOC_ARM_LDRS_SB_G1
:
30135 case BFD_RELOC_ARM_LDRS_SB_G2
:
30136 case BFD_RELOC_ARM_LDC_SB_G0
:
30137 case BFD_RELOC_ARM_LDC_SB_G1
:
30138 case BFD_RELOC_ARM_LDC_SB_G2
:
30139 case BFD_RELOC_ARM_V4BX
:
30140 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
:
30141 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
:
30142 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
:
30143 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
:
30144 case BFD_RELOC_ARM_GOTFUNCDESC
:
30145 case BFD_RELOC_ARM_GOTOFFFUNCDESC
:
30146 case BFD_RELOC_ARM_FUNCDESC
:
30147 case BFD_RELOC_ARM_THUMB_BF17
:
30148 case BFD_RELOC_ARM_THUMB_BF19
:
30149 case BFD_RELOC_ARM_THUMB_BF13
:
30150 code
= fixp
->fx_r_type
;
30153 case BFD_RELOC_ARM_TLS_GOTDESC
:
30154 case BFD_RELOC_ARM_TLS_GD32
:
30155 case BFD_RELOC_ARM_TLS_GD32_FDPIC
:
30156 case BFD_RELOC_ARM_TLS_LE32
:
30157 case BFD_RELOC_ARM_TLS_IE32
:
30158 case BFD_RELOC_ARM_TLS_IE32_FDPIC
:
30159 case BFD_RELOC_ARM_TLS_LDM32
:
30160 case BFD_RELOC_ARM_TLS_LDM32_FDPIC
:
30161 /* BFD will include the symbol's address in the addend.
30162 But we don't want that, so subtract it out again here. */
30163 if (!S_IS_COMMON (fixp
->fx_addsy
))
30164 reloc
->addend
-= (*reloc
->sym_ptr_ptr
)->value
;
30165 code
= fixp
->fx_r_type
;
30169 case BFD_RELOC_ARM_IMMEDIATE
:
30170 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
30171 _("internal relocation (type: IMMEDIATE) not fixed up"));
30174 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
30175 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
30176 _("ADRL used for a symbol not defined in the same file"));
30179 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
30180 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
30181 case BFD_RELOC_ARM_THUMB_LOOP12
:
30182 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
30183 _("%s used for a symbol not defined in the same file"),
30184 bfd_get_reloc_code_name (fixp
->fx_r_type
));
30187 case BFD_RELOC_ARM_OFFSET_IMM
:
30188 if (section
->use_rela_p
)
30190 code
= fixp
->fx_r_type
;
30194 if (fixp
->fx_addsy
!= NULL
30195 && !S_IS_DEFINED (fixp
->fx_addsy
)
30196 && S_IS_LOCAL (fixp
->fx_addsy
))
30198 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
30199 _("undefined local label `%s'"),
30200 S_GET_NAME (fixp
->fx_addsy
));
30204 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
30205 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
30212 switch (fixp
->fx_r_type
)
30214 case BFD_RELOC_NONE
: type
= "NONE"; break;
30215 case BFD_RELOC_ARM_OFFSET_IMM8
: type
= "OFFSET_IMM8"; break;
30216 case BFD_RELOC_ARM_SHIFT_IMM
: type
= "SHIFT_IMM"; break;
30217 case BFD_RELOC_ARM_SMC
: type
= "SMC"; break;
30218 case BFD_RELOC_ARM_SWI
: type
= "SWI"; break;
30219 case BFD_RELOC_ARM_MULTI
: type
= "MULTI"; break;
30220 case BFD_RELOC_ARM_CP_OFF_IMM
: type
= "CP_OFF_IMM"; break;
30221 case BFD_RELOC_ARM_T32_OFFSET_IMM
: type
= "T32_OFFSET_IMM"; break;
30222 case BFD_RELOC_ARM_T32_CP_OFF_IMM
: type
= "T32_CP_OFF_IMM"; break;
30223 case BFD_RELOC_ARM_THUMB_ADD
: type
= "THUMB_ADD"; break;
30224 case BFD_RELOC_ARM_THUMB_SHIFT
: type
= "THUMB_SHIFT"; break;
30225 case BFD_RELOC_ARM_THUMB_IMM
: type
= "THUMB_IMM"; break;
30226 case BFD_RELOC_ARM_THUMB_OFFSET
: type
= "THUMB_OFFSET"; break;
30227 default: type
= _("<unknown>"); break;
30229 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
30230 _("cannot represent %s relocation in this object file format"),
30237 if ((code
== BFD_RELOC_32_PCREL
|| code
== BFD_RELOC_32
)
30239 && fixp
->fx_addsy
== GOT_symbol
)
30241 code
= BFD_RELOC_ARM_GOTPC
;
30242 reloc
->addend
= fixp
->fx_offset
= reloc
->address
;
30246 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
30248 if (reloc
->howto
== NULL
)
30250 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
30251 _("cannot represent %s relocation in this object file format"),
30252 bfd_get_reloc_code_name (code
));
30256 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
30257 vtable entry to be used in the relocation's section offset. */
30258 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
30259 reloc
->address
= fixp
->fx_offset
;
30264 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
30267 cons_fix_new_arm (fragS
* frag
,
30271 bfd_reloc_code_real_type reloc
)
30276 FIXME: @@ Should look at CPU word size. */
30280 reloc
= BFD_RELOC_8
;
30283 reloc
= BFD_RELOC_16
;
30287 reloc
= BFD_RELOC_32
;
30290 reloc
= BFD_RELOC_64
;
30295 if (exp
->X_op
== O_secrel
)
30297 exp
->X_op
= O_symbol
;
30298 reloc
= BFD_RELOC_32_SECREL
;
30302 fix_new_exp (frag
, where
, size
, exp
, pcrel
, reloc
);
30305 #if defined (OBJ_COFF)
30307 arm_validate_fix (fixS
* fixP
)
30309 /* If the destination of the branch is a defined symbol which does not have
30310 the THUMB_FUNC attribute, then we must be calling a function which has
30311 the (interfacearm) attribute. We look for the Thumb entry point to that
30312 function and change the branch to refer to that function instead. */
30313 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BRANCH23
30314 && fixP
->fx_addsy
!= NULL
30315 && S_IS_DEFINED (fixP
->fx_addsy
)
30316 && ! THUMB_IS_FUNC (fixP
->fx_addsy
))
30318 fixP
->fx_addsy
= find_real_start (fixP
->fx_addsy
);
30325 arm_force_relocation (struct fix
* fixp
)
30327 #if defined (OBJ_COFF) && defined (TE_PE)
30328 if (fixp
->fx_r_type
== BFD_RELOC_RVA
)
30332 /* In case we have a call or a branch to a function in ARM ISA mode from
30333 a thumb function or vice-versa force the relocation. These relocations
30334 are cleared off for some cores that might have blx and simple transformations
30338 switch (fixp
->fx_r_type
)
30340 case BFD_RELOC_ARM_PCREL_JUMP
:
30341 case BFD_RELOC_ARM_PCREL_CALL
:
30342 case BFD_RELOC_THUMB_PCREL_BLX
:
30343 if (THUMB_IS_FUNC (fixp
->fx_addsy
))
30347 case BFD_RELOC_ARM_PCREL_BLX
:
30348 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
30349 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
30350 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
30351 if (ARM_IS_FUNC (fixp
->fx_addsy
))
30360 /* Resolve these relocations even if the symbol is extern or weak.
30361 Technically this is probably wrong due to symbol preemption.
30362 In practice these relocations do not have enough range to be useful
30363 at dynamic link time, and some code (e.g. in the Linux kernel)
30364 expects these references to be resolved. */
30365 if (fixp
->fx_r_type
== BFD_RELOC_ARM_IMMEDIATE
30366 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM
30367 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM8
30368 || fixp
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
30369 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
30370 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
30371 || fixp
->fx_r_type
== BFD_RELOC_ARM_THUMB_OFFSET
30372 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
30373 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
30374 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMM12
30375 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_OFFSET_IMM
30376 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_PC12
30377 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM
30378 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
)
30381 /* Always leave these relocations for the linker. */
30382 if ((fixp
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
30383 && fixp
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
30384 || fixp
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
30387 /* Always generate relocations against function symbols. */
30388 if (fixp
->fx_r_type
== BFD_RELOC_32
30390 && (symbol_get_bfdsym (fixp
->fx_addsy
)->flags
& BSF_FUNCTION
))
30393 return generic_force_reloc (fixp
);
30396 #if defined (OBJ_ELF) || defined (OBJ_COFF)
30397 /* Relocations against function names must be left unadjusted,
30398 so that the linker can use this information to generate interworking
30399 stubs. The MIPS version of this function
30400 also prevents relocations that are mips-16 specific, but I do not
30401 know why it does this.
30404 There is one other problem that ought to be addressed here, but
30405 which currently is not: Taking the address of a label (rather
30406 than a function) and then later jumping to that address. Such
30407 addresses also ought to have their bottom bit set (assuming that
30408 they reside in Thumb code), but at the moment they will not. */
30411 arm_fix_adjustable (fixS
* fixP
)
30413 if (fixP
->fx_addsy
== NULL
)
30416 /* Preserve relocations against symbols with function type. */
30417 if (symbol_get_bfdsym (fixP
->fx_addsy
)->flags
& BSF_FUNCTION
)
30420 if (THUMB_IS_FUNC (fixP
->fx_addsy
)
30421 && fixP
->fx_subsy
== NULL
)
30424 /* We need the symbol name for the VTABLE entries. */
30425 if ( fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
30426 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
30429 /* Don't allow symbols to be discarded on GOT related relocs. */
30430 if (fixP
->fx_r_type
== BFD_RELOC_ARM_PLT32
30431 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOT32
30432 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOTOFF
30433 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32
30434 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32_FDPIC
30435 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LE32
30436 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32
30437 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32_FDPIC
30438 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32
30439 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32_FDPIC
30440 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDO32
30441 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GOTDESC
30442 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_CALL
30443 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_CALL
30444 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_DESCSEQ
30445 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_DESCSEQ
30446 || fixP
->fx_r_type
== BFD_RELOC_ARM_TARGET2
)
30449 /* Similarly for group relocations. */
30450 if ((fixP
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
30451 && fixP
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
30452 || fixP
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
30455 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
30456 if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW
30457 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
30458 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW_PCREL
30459 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT_PCREL
30460 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
30461 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
30462 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW_PCREL
30463 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT_PCREL
)
30466 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
30467 offsets, so keep these symbols. */
30468 if (fixP
->fx_r_type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
30469 && fixP
->fx_r_type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
)
30474 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
30478 elf32_arm_target_format (void)
30481 return (target_big_endian
30482 ? "elf32-bigarm-symbian"
30483 : "elf32-littlearm-symbian");
30484 #elif defined (TE_VXWORKS)
30485 return (target_big_endian
30486 ? "elf32-bigarm-vxworks"
30487 : "elf32-littlearm-vxworks");
30488 #elif defined (TE_NACL)
30489 return (target_big_endian
30490 ? "elf32-bigarm-nacl"
30491 : "elf32-littlearm-nacl");
30495 if (target_big_endian
)
30496 return "elf32-bigarm-fdpic";
30498 return "elf32-littlearm-fdpic";
30502 if (target_big_endian
)
30503 return "elf32-bigarm";
30505 return "elf32-littlearm";
30511 armelf_frob_symbol (symbolS
* symp
,
30514 elf_frob_symbol (symp
, puntp
);
30518 /* MD interface: Finalization. */
30523 literal_pool
* pool
;
30525 /* Ensure that all the predication blocks are properly closed. */
30526 check_pred_blocks_finished ();
30528 for (pool
= list_of_pools
; pool
; pool
= pool
->next
)
30530 /* Put it at the end of the relevant section. */
30531 subseg_set (pool
->section
, pool
->sub_section
);
30533 arm_elf_change_section ();
30540 /* Remove any excess mapping symbols generated for alignment frags in
30541 SEC. We may have created a mapping symbol before a zero byte
30542 alignment; remove it if there's a mapping symbol after the
30545 check_mapping_symbols (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
,
30546 void *dummy ATTRIBUTE_UNUSED
)
30548 segment_info_type
*seginfo
= seg_info (sec
);
30551 if (seginfo
== NULL
|| seginfo
->frchainP
== NULL
)
30554 for (fragp
= seginfo
->frchainP
->frch_root
;
30556 fragp
= fragp
->fr_next
)
30558 symbolS
*sym
= fragp
->tc_frag_data
.last_map
;
30559 fragS
*next
= fragp
->fr_next
;
30561 /* Variable-sized frags have been converted to fixed size by
30562 this point. But if this was variable-sized to start with,
30563 there will be a fixed-size frag after it. So don't handle
30565 if (sym
== NULL
|| next
== NULL
)
30568 if (S_GET_VALUE (sym
) < next
->fr_address
)
30569 /* Not at the end of this frag. */
30571 know (S_GET_VALUE (sym
) == next
->fr_address
);
30575 if (next
->tc_frag_data
.first_map
!= NULL
)
30577 /* Next frag starts with a mapping symbol. Discard this
30579 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
30583 if (next
->fr_next
== NULL
)
30585 /* This mapping symbol is at the end of the section. Discard
30587 know (next
->fr_fix
== 0 && next
->fr_var
== 0);
30588 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
30592 /* As long as we have empty frags without any mapping symbols,
30594 /* If the next frag is non-empty and does not start with a
30595 mapping symbol, then this mapping symbol is required. */
30596 if (next
->fr_address
!= next
->fr_next
->fr_address
)
30599 next
= next
->fr_next
;
30601 while (next
!= NULL
);
30606 /* Adjust the symbol table. This marks Thumb symbols as distinct from
30610 arm_adjust_symtab (void)
30615 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
30617 if (ARM_IS_THUMB (sym
))
30619 if (THUMB_IS_FUNC (sym
))
30621 /* Mark the symbol as a Thumb function. */
30622 if ( S_GET_STORAGE_CLASS (sym
) == C_STAT
30623 || S_GET_STORAGE_CLASS (sym
) == C_LABEL
) /* This can happen! */
30624 S_SET_STORAGE_CLASS (sym
, C_THUMBSTATFUNC
);
30626 else if (S_GET_STORAGE_CLASS (sym
) == C_EXT
)
30627 S_SET_STORAGE_CLASS (sym
, C_THUMBEXTFUNC
);
30629 as_bad (_("%s: unexpected function type: %d"),
30630 S_GET_NAME (sym
), S_GET_STORAGE_CLASS (sym
));
30632 else switch (S_GET_STORAGE_CLASS (sym
))
30635 S_SET_STORAGE_CLASS (sym
, C_THUMBEXT
);
30638 S_SET_STORAGE_CLASS (sym
, C_THUMBSTAT
);
30641 S_SET_STORAGE_CLASS (sym
, C_THUMBLABEL
);
30649 if (ARM_IS_INTERWORK (sym
))
30650 coffsymbol (symbol_get_bfdsym (sym
))->native
->u
.syment
.n_flags
= 0xFF;
30657 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
30659 if (ARM_IS_THUMB (sym
))
30661 elf_symbol_type
* elf_sym
;
30663 elf_sym
= elf_symbol (symbol_get_bfdsym (sym
));
30664 bind
= ELF_ST_BIND (elf_sym
->internal_elf_sym
.st_info
);
30666 if (! bfd_is_arm_special_symbol_name (elf_sym
->symbol
.name
,
30667 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
30669 /* If it's a .thumb_func, declare it as so,
30670 otherwise tag label as .code 16. */
30671 if (THUMB_IS_FUNC (sym
))
30672 ARM_SET_SYM_BRANCH_TYPE (elf_sym
->internal_elf_sym
.st_target_internal
,
30673 ST_BRANCH_TO_THUMB
);
30674 else if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
30675 elf_sym
->internal_elf_sym
.st_info
=
30676 ELF_ST_INFO (bind
, STT_ARM_16BIT
);
30681 /* Remove any overlapping mapping symbols generated by alignment frags. */
30682 bfd_map_over_sections (stdoutput
, check_mapping_symbols
, (char *) 0);
30683 /* Now do generic ELF adjustments. */
30684 elf_adjust_symtab ();
30688 /* MD interface: Initialization. */
30691 set_constant_flonums (void)
30695 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
30696 if (atof_ieee ((char *) fp_const
[i
], 'x', fp_values
[i
]) == NULL
)
30700 /* Auto-select Thumb mode if it's the only available instruction set for the
30701 given architecture. */
30704 autoselect_thumb_from_cpu_variant (void)
30706 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
30707 opcode_select (16);
30716 if ( (arm_ops_hsh
= hash_new ()) == NULL
30717 || (arm_cond_hsh
= hash_new ()) == NULL
30718 || (arm_vcond_hsh
= hash_new ()) == NULL
30719 || (arm_shift_hsh
= hash_new ()) == NULL
30720 || (arm_psr_hsh
= hash_new ()) == NULL
30721 || (arm_v7m_psr_hsh
= hash_new ()) == NULL
30722 || (arm_reg_hsh
= hash_new ()) == NULL
30723 || (arm_reloc_hsh
= hash_new ()) == NULL
30724 || (arm_barrier_opt_hsh
= hash_new ()) == NULL
)
30725 as_fatal (_("virtual memory exhausted"));
30727 for (i
= 0; i
< sizeof (insns
) / sizeof (struct asm_opcode
); i
++)
30728 hash_insert (arm_ops_hsh
, insns
[i
].template_name
, (void *) (insns
+ i
));
30729 for (i
= 0; i
< sizeof (conds
) / sizeof (struct asm_cond
); i
++)
30730 hash_insert (arm_cond_hsh
, conds
[i
].template_name
, (void *) (conds
+ i
));
30731 for (i
= 0; i
< sizeof (vconds
) / sizeof (struct asm_cond
); i
++)
30732 hash_insert (arm_vcond_hsh
, vconds
[i
].template_name
, (void *) (vconds
+ i
));
30733 for (i
= 0; i
< sizeof (shift_names
) / sizeof (struct asm_shift_name
); i
++)
30734 hash_insert (arm_shift_hsh
, shift_names
[i
].name
, (void *) (shift_names
+ i
));
30735 for (i
= 0; i
< sizeof (psrs
) / sizeof (struct asm_psr
); i
++)
30736 hash_insert (arm_psr_hsh
, psrs
[i
].template_name
, (void *) (psrs
+ i
));
30737 for (i
= 0; i
< sizeof (v7m_psrs
) / sizeof (struct asm_psr
); i
++)
30738 hash_insert (arm_v7m_psr_hsh
, v7m_psrs
[i
].template_name
,
30739 (void *) (v7m_psrs
+ i
));
30740 for (i
= 0; i
< sizeof (reg_names
) / sizeof (struct reg_entry
); i
++)
30741 hash_insert (arm_reg_hsh
, reg_names
[i
].name
, (void *) (reg_names
+ i
));
30743 i
< sizeof (barrier_opt_names
) / sizeof (struct asm_barrier_opt
);
30745 hash_insert (arm_barrier_opt_hsh
, barrier_opt_names
[i
].template_name
,
30746 (void *) (barrier_opt_names
+ i
));
30748 for (i
= 0; i
< ARRAY_SIZE (reloc_names
); i
++)
30750 struct reloc_entry
* entry
= reloc_names
+ i
;
30752 if (arm_is_eabi() && entry
->reloc
== BFD_RELOC_ARM_PLT32
)
30753 /* This makes encode_branch() use the EABI versions of this relocation. */
30754 entry
->reloc
= BFD_RELOC_UNUSED
;
30756 hash_insert (arm_reloc_hsh
, entry
->name
, (void *) entry
);
30760 set_constant_flonums ();
30762 /* Set the cpu variant based on the command-line options. We prefer
30763 -mcpu= over -march= if both are set (as for GCC); and we prefer
30764 -mfpu= over any other way of setting the floating point unit.
30765 Use of legacy options with new options are faulted. */
30768 if (mcpu_cpu_opt
|| march_cpu_opt
)
30769 as_bad (_("use of old and new-style options to set CPU type"));
30771 selected_arch
= *legacy_cpu
;
30773 else if (mcpu_cpu_opt
)
30775 selected_arch
= *mcpu_cpu_opt
;
30776 selected_ext
= *mcpu_ext_opt
;
30778 else if (march_cpu_opt
)
30780 selected_arch
= *march_cpu_opt
;
30781 selected_ext
= *march_ext_opt
;
30783 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
30788 as_bad (_("use of old and new-style options to set FPU type"));
30790 selected_fpu
= *legacy_fpu
;
30793 selected_fpu
= *mfpu_opt
;
30796 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
30797 || defined (TE_NetBSD) || defined (TE_VXWORKS))
30798 /* Some environments specify a default FPU. If they don't, infer it
30799 from the processor. */
30801 selected_fpu
= *mcpu_fpu_opt
;
30802 else if (march_fpu_opt
)
30803 selected_fpu
= *march_fpu_opt
;
30805 selected_fpu
= fpu_default
;
30809 if (ARM_FEATURE_ZERO (selected_fpu
))
30811 if (!no_cpu_selected ())
30812 selected_fpu
= fpu_default
;
30814 selected_fpu
= fpu_arch_fpa
;
30818 if (ARM_FEATURE_ZERO (selected_arch
))
30820 selected_arch
= cpu_default
;
30821 selected_cpu
= selected_arch
;
30823 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
30825 /* Autodection of feature mode: allow all features in cpu_variant but leave
30826 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
30827 after all instruction have been processed and we can decide what CPU
30828 should be selected. */
30829 if (ARM_FEATURE_ZERO (selected_arch
))
30830 ARM_MERGE_FEATURE_SETS (cpu_variant
, arm_arch_any
, selected_fpu
);
30832 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
30835 autoselect_thumb_from_cpu_variant ();
30837 arm_arch_used
= thumb_arch_used
= arm_arch_none
;
30839 #if defined OBJ_COFF || defined OBJ_ELF
30841 unsigned int flags
= 0;
30843 #if defined OBJ_ELF
30844 flags
= meabi_flags
;
30846 switch (meabi_flags
)
30848 case EF_ARM_EABI_UNKNOWN
:
30850 /* Set the flags in the private structure. */
30851 if (uses_apcs_26
) flags
|= F_APCS26
;
30852 if (support_interwork
) flags
|= F_INTERWORK
;
30853 if (uses_apcs_float
) flags
|= F_APCS_FLOAT
;
30854 if (pic_code
) flags
|= F_PIC
;
30855 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_any_hard
))
30856 flags
|= F_SOFT_FLOAT
;
30858 switch (mfloat_abi_opt
)
30860 case ARM_FLOAT_ABI_SOFT
:
30861 case ARM_FLOAT_ABI_SOFTFP
:
30862 flags
|= F_SOFT_FLOAT
;
30865 case ARM_FLOAT_ABI_HARD
:
30866 if (flags
& F_SOFT_FLOAT
)
30867 as_bad (_("hard-float conflicts with specified fpu"));
30871 /* Using pure-endian doubles (even if soft-float). */
30872 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
30873 flags
|= F_VFP_FLOAT
;
30875 #if defined OBJ_ELF
30876 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_maverick
))
30877 flags
|= EF_ARM_MAVERICK_FLOAT
;
30880 case EF_ARM_EABI_VER4
:
30881 case EF_ARM_EABI_VER5
:
30882 /* No additional flags to set. */
30889 bfd_set_private_flags (stdoutput
, flags
);
30891 /* We have run out flags in the COFF header to encode the
30892 status of ATPCS support, so instead we create a dummy,
30893 empty, debug section called .arm.atpcs. */
30898 sec
= bfd_make_section (stdoutput
, ".arm.atpcs");
30902 bfd_set_section_flags (sec
, SEC_READONLY
| SEC_DEBUGGING
);
30903 bfd_set_section_size (sec
, 0);
30904 bfd_set_section_contents (stdoutput
, sec
, NULL
, 0, 0);
30910 /* Record the CPU type as well. */
30911 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
))
30912 mach
= bfd_mach_arm_iWMMXt2
;
30913 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt
))
30914 mach
= bfd_mach_arm_iWMMXt
;
30915 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_xscale
))
30916 mach
= bfd_mach_arm_XScale
;
30917 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_maverick
))
30918 mach
= bfd_mach_arm_ep9312
;
30919 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5e
))
30920 mach
= bfd_mach_arm_5TE
;
30921 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5
))
30923 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
30924 mach
= bfd_mach_arm_5T
;
30926 mach
= bfd_mach_arm_5
;
30928 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4
))
30930 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
30931 mach
= bfd_mach_arm_4T
;
30933 mach
= bfd_mach_arm_4
;
30935 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3m
))
30936 mach
= bfd_mach_arm_3M
;
30937 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3
))
30938 mach
= bfd_mach_arm_3
;
30939 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2s
))
30940 mach
= bfd_mach_arm_2a
;
30941 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2
))
30942 mach
= bfd_mach_arm_2
;
30944 mach
= bfd_mach_arm_unknown
;
30946 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, mach
);
30949 /* Command line processing. */
30952 Invocation line includes a switch not recognized by the base assembler.
30953 See if it's a processor-specific option.
30955 This routine is somewhat complicated by the need for backwards
30956 compatibility (since older releases of gcc can't be changed).
30957 The new options try to make the interface as compatible as
30960 New options (supported) are:
30962 -mcpu=<cpu name> Assemble for selected processor
30963 -march=<architecture name> Assemble for selected architecture
30964 -mfpu=<fpu architecture> Assemble for selected FPU.
30965 -EB/-mbig-endian Big-endian
30966 -EL/-mlittle-endian Little-endian
30967 -k Generate PIC code
30968 -mthumb Start in Thumb mode
30969 -mthumb-interwork Code supports ARM/Thumb interworking
30971 -m[no-]warn-deprecated Warn about deprecated features
30972 -m[no-]warn-syms Warn when symbols match instructions
30974 For now we will also provide support for:
30976 -mapcs-32 32-bit Program counter
30977 -mapcs-26 26-bit Program counter
30978 -macps-float Floats passed in FP registers
30979 -mapcs-reentrant Reentrant code
30981 (sometime these will probably be replaced with -mapcs=<list of options>
30982 and -matpcs=<list of options>)
30984 The remaining options are only supported for back-wards compatibility.
30985 Cpu variants, the arm part is optional:
30986 -m[arm]1 Currently not supported.
30987 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
30988 -m[arm]3 Arm 3 processor
30989 -m[arm]6[xx], Arm 6 processors
30990 -m[arm]7[xx][t][[d]m] Arm 7 processors
30991 -m[arm]8[10] Arm 8 processors
30992 -m[arm]9[20][tdmi] Arm 9 processors
30993 -mstrongarm[110[0]] StrongARM processors
30994 -mxscale XScale processors
30995 -m[arm]v[2345[t[e]]] Arm architectures
30996 -mall All (except the ARM1)
30998 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
30999 -mfpe-old (No float load/store multiples)
31000 -mvfpxd VFP Single precision
31002 -mno-fpu Disable all floating point instructions
31004 The following CPU names are recognized:
31005 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
31006 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
31007 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
31008 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
31009 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
31010 arm10t arm10e, arm1020t, arm1020e, arm10200e,
31011 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
31015 const char * md_shortopts
= "m:k";
31017 #ifdef ARM_BI_ENDIAN
31018 #define OPTION_EB (OPTION_MD_BASE + 0)
31019 #define OPTION_EL (OPTION_MD_BASE + 1)
31021 #if TARGET_BYTES_BIG_ENDIAN
31022 #define OPTION_EB (OPTION_MD_BASE + 0)
31024 #define OPTION_EL (OPTION_MD_BASE + 1)
31027 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
31028 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
31030 struct option md_longopts
[] =
31033 {"EB", no_argument
, NULL
, OPTION_EB
},
31036 {"EL", no_argument
, NULL
, OPTION_EL
},
31038 {"fix-v4bx", no_argument
, NULL
, OPTION_FIX_V4BX
},
31040 {"fdpic", no_argument
, NULL
, OPTION_FDPIC
},
31042 {NULL
, no_argument
, NULL
, 0}
31045 size_t md_longopts_size
= sizeof (md_longopts
);
31047 struct arm_option_table
31049 const char * option
; /* Option name to match. */
31050 const char * help
; /* Help information. */
31051 int * var
; /* Variable to change. */
31052 int value
; /* What to change it to. */
31053 const char * deprecated
; /* If non-null, print this message. */
31056 struct arm_option_table arm_opts
[] =
31058 {"k", N_("generate PIC code"), &pic_code
, 1, NULL
},
31059 {"mthumb", N_("assemble Thumb code"), &thumb_mode
, 1, NULL
},
31060 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
31061 &support_interwork
, 1, NULL
},
31062 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26
, 0, NULL
},
31063 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26
, 1, NULL
},
31064 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float
,
31066 {"mapcs-reentrant", N_("re-entrant code"), &pic_code
, 1, NULL
},
31067 {"matpcs", N_("code is ATPCS conformant"), &atpcs
, 1, NULL
},
31068 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian
, 1, NULL
},
31069 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian
, 0,
31072 /* These are recognized by the assembler, but have no affect on code. */
31073 {"mapcs-frame", N_("use frame pointer"), NULL
, 0, NULL
},
31074 {"mapcs-stack-check", N_("use stack size checking"), NULL
, 0, NULL
},
31076 {"mwarn-deprecated", NULL
, &warn_on_deprecated
, 1, NULL
},
31077 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
31078 &warn_on_deprecated
, 0, NULL
},
31080 {"mwarn-restrict-it", N_("warn about performance deprecated IT instructions"
31081 " in ARMv8-A and ARMv8-R"), &warn_on_restrict_it
, 1, NULL
},
31082 {"mno-warn-restrict-it", NULL
, &warn_on_restrict_it
, 0, NULL
},
31084 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms
), TRUE
, NULL
},
31085 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms
), FALSE
, NULL
},
31086 {NULL
, NULL
, NULL
, 0, NULL
}
31089 struct arm_legacy_option_table
31091 const char * option
; /* Option name to match. */
31092 const arm_feature_set
** var
; /* Variable to change. */
31093 const arm_feature_set value
; /* What to change it to. */
31094 const char * deprecated
; /* If non-null, print this message. */
31097 const struct arm_legacy_option_table arm_legacy_opts
[] =
31099 /* DON'T add any new processors to this list -- we want the whole list
31100 to go away... Add them to the processors table instead. */
31101 {"marm1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
31102 {"m1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
31103 {"marm2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
31104 {"m2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
31105 {"marm250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
31106 {"m250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
31107 {"marm3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
31108 {"m3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
31109 {"marm6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
31110 {"m6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
31111 {"marm600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
31112 {"m600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
31113 {"marm610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
31114 {"m610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
31115 {"marm620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
31116 {"m620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
31117 {"marm7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
31118 {"m7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
31119 {"marm70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
31120 {"m70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
31121 {"marm700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
31122 {"m700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
31123 {"marm700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
31124 {"m700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
31125 {"marm710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
31126 {"m710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
31127 {"marm710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
31128 {"m710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
31129 {"marm720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
31130 {"m720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
31131 {"marm7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
31132 {"m7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
31133 {"marm7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
31134 {"m7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
31135 {"marm7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
31136 {"m7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
31137 {"marm7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
31138 {"m7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
31139 {"marm7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
31140 {"m7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
31141 {"marm7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
31142 {"m7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
31143 {"marm7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
31144 {"m7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
31145 {"marm7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
31146 {"m7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
31147 {"marm7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
31148 {"m7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
31149 {"marm7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
31150 {"m7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
31151 {"marm710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
31152 {"m710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
31153 {"marm720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
31154 {"m720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
31155 {"marm740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
31156 {"m740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
31157 {"marm8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
31158 {"m8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
31159 {"marm810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
31160 {"m810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
31161 {"marm9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
31162 {"m9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
31163 {"marm9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
31164 {"m9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
31165 {"marm920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
31166 {"m920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
31167 {"marm940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
31168 {"m940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
31169 {"mstrongarm", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=strongarm")},
31170 {"mstrongarm110", &legacy_cpu
, ARM_ARCH_V4
,
31171 N_("use -mcpu=strongarm110")},
31172 {"mstrongarm1100", &legacy_cpu
, ARM_ARCH_V4
,
31173 N_("use -mcpu=strongarm1100")},
31174 {"mstrongarm1110", &legacy_cpu
, ARM_ARCH_V4
,
31175 N_("use -mcpu=strongarm1110")},
31176 {"mxscale", &legacy_cpu
, ARM_ARCH_XSCALE
, N_("use -mcpu=xscale")},
31177 {"miwmmxt", &legacy_cpu
, ARM_ARCH_IWMMXT
, N_("use -mcpu=iwmmxt")},
31178 {"mall", &legacy_cpu
, ARM_ANY
, N_("use -mcpu=all")},
31180 /* Architecture variants -- don't add any more to this list either. */
31181 {"mv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
31182 {"marmv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
31183 {"mv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
31184 {"marmv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
31185 {"mv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
31186 {"marmv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
31187 {"mv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
31188 {"marmv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
31189 {"mv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
31190 {"marmv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
31191 {"mv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
31192 {"marmv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
31193 {"mv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
31194 {"marmv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
31195 {"mv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
31196 {"marmv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
31197 {"mv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
31198 {"marmv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
31200 /* Floating point variants -- don't add any more to this list either. */
31201 {"mfpe-old", &legacy_fpu
, FPU_ARCH_FPE
, N_("use -mfpu=fpe")},
31202 {"mfpa10", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa10")},
31203 {"mfpa11", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa11")},
31204 {"mno-fpu", &legacy_fpu
, ARM_ARCH_NONE
,
31205 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
31207 {NULL
, NULL
, ARM_ARCH_NONE
, NULL
}
31210 struct arm_cpu_option_table
31214 const arm_feature_set value
;
31215 const arm_feature_set ext
;
31216 /* For some CPUs we assume an FPU unless the user explicitly sets
31218 const arm_feature_set default_fpu
;
31219 /* The canonical name of the CPU, or NULL to use NAME converted to upper
31221 const char * canonical_name
;
31224 /* This list should, at a minimum, contain all the cpu names
31225 recognized by GCC. */
31226 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
31228 static const struct arm_cpu_option_table arm_cpus
[] =
31230 ARM_CPU_OPT ("all", NULL
, ARM_ANY
,
31233 ARM_CPU_OPT ("arm1", NULL
, ARM_ARCH_V1
,
31236 ARM_CPU_OPT ("arm2", NULL
, ARM_ARCH_V2
,
31239 ARM_CPU_OPT ("arm250", NULL
, ARM_ARCH_V2S
,
31242 ARM_CPU_OPT ("arm3", NULL
, ARM_ARCH_V2S
,
31245 ARM_CPU_OPT ("arm6", NULL
, ARM_ARCH_V3
,
31248 ARM_CPU_OPT ("arm60", NULL
, ARM_ARCH_V3
,
31251 ARM_CPU_OPT ("arm600", NULL
, ARM_ARCH_V3
,
31254 ARM_CPU_OPT ("arm610", NULL
, ARM_ARCH_V3
,
31257 ARM_CPU_OPT ("arm620", NULL
, ARM_ARCH_V3
,
31260 ARM_CPU_OPT ("arm7", NULL
, ARM_ARCH_V3
,
31263 ARM_CPU_OPT ("arm7m", NULL
, ARM_ARCH_V3M
,
31266 ARM_CPU_OPT ("arm7d", NULL
, ARM_ARCH_V3
,
31269 ARM_CPU_OPT ("arm7dm", NULL
, ARM_ARCH_V3M
,
31272 ARM_CPU_OPT ("arm7di", NULL
, ARM_ARCH_V3
,
31275 ARM_CPU_OPT ("arm7dmi", NULL
, ARM_ARCH_V3M
,
31278 ARM_CPU_OPT ("arm70", NULL
, ARM_ARCH_V3
,
31281 ARM_CPU_OPT ("arm700", NULL
, ARM_ARCH_V3
,
31284 ARM_CPU_OPT ("arm700i", NULL
, ARM_ARCH_V3
,
31287 ARM_CPU_OPT ("arm710", NULL
, ARM_ARCH_V3
,
31290 ARM_CPU_OPT ("arm710t", NULL
, ARM_ARCH_V4T
,
31293 ARM_CPU_OPT ("arm720", NULL
, ARM_ARCH_V3
,
31296 ARM_CPU_OPT ("arm720t", NULL
, ARM_ARCH_V4T
,
31299 ARM_CPU_OPT ("arm740t", NULL
, ARM_ARCH_V4T
,
31302 ARM_CPU_OPT ("arm710c", NULL
, ARM_ARCH_V3
,
31305 ARM_CPU_OPT ("arm7100", NULL
, ARM_ARCH_V3
,
31308 ARM_CPU_OPT ("arm7500", NULL
, ARM_ARCH_V3
,
31311 ARM_CPU_OPT ("arm7500fe", NULL
, ARM_ARCH_V3
,
31314 ARM_CPU_OPT ("arm7t", NULL
, ARM_ARCH_V4T
,
31317 ARM_CPU_OPT ("arm7tdmi", NULL
, ARM_ARCH_V4T
,
31320 ARM_CPU_OPT ("arm7tdmi-s", NULL
, ARM_ARCH_V4T
,
31323 ARM_CPU_OPT ("arm8", NULL
, ARM_ARCH_V4
,
31326 ARM_CPU_OPT ("arm810", NULL
, ARM_ARCH_V4
,
31329 ARM_CPU_OPT ("strongarm", NULL
, ARM_ARCH_V4
,
31332 ARM_CPU_OPT ("strongarm1", NULL
, ARM_ARCH_V4
,
31335 ARM_CPU_OPT ("strongarm110", NULL
, ARM_ARCH_V4
,
31338 ARM_CPU_OPT ("strongarm1100", NULL
, ARM_ARCH_V4
,
31341 ARM_CPU_OPT ("strongarm1110", NULL
, ARM_ARCH_V4
,
31344 ARM_CPU_OPT ("arm9", NULL
, ARM_ARCH_V4T
,
31347 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T
,
31350 ARM_CPU_OPT ("arm920t", NULL
, ARM_ARCH_V4T
,
31353 ARM_CPU_OPT ("arm922t", NULL
, ARM_ARCH_V4T
,
31356 ARM_CPU_OPT ("arm940t", NULL
, ARM_ARCH_V4T
,
31359 ARM_CPU_OPT ("arm9tdmi", NULL
, ARM_ARCH_V4T
,
31362 ARM_CPU_OPT ("fa526", NULL
, ARM_ARCH_V4
,
31365 ARM_CPU_OPT ("fa626", NULL
, ARM_ARCH_V4
,
31369 /* For V5 or later processors we default to using VFP; but the user
31370 should really set the FPU type explicitly. */
31371 ARM_CPU_OPT ("arm9e-r0", NULL
, ARM_ARCH_V5TExP
,
31374 ARM_CPU_OPT ("arm9e", NULL
, ARM_ARCH_V5TE
,
31377 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ
,
31380 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ
,
31383 ARM_CPU_OPT ("arm926ej-s", NULL
, ARM_ARCH_V5TEJ
,
31386 ARM_CPU_OPT ("arm946e-r0", NULL
, ARM_ARCH_V5TExP
,
31389 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE
,
31392 ARM_CPU_OPT ("arm946e-s", NULL
, ARM_ARCH_V5TE
,
31395 ARM_CPU_OPT ("arm966e-r0", NULL
, ARM_ARCH_V5TExP
,
31398 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE
,
31401 ARM_CPU_OPT ("arm966e-s", NULL
, ARM_ARCH_V5TE
,
31404 ARM_CPU_OPT ("arm968e-s", NULL
, ARM_ARCH_V5TE
,
31407 ARM_CPU_OPT ("arm10t", NULL
, ARM_ARCH_V5T
,
31410 ARM_CPU_OPT ("arm10tdmi", NULL
, ARM_ARCH_V5T
,
31413 ARM_CPU_OPT ("arm10e", NULL
, ARM_ARCH_V5TE
,
31416 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE
,
31419 ARM_CPU_OPT ("arm1020t", NULL
, ARM_ARCH_V5T
,
31422 ARM_CPU_OPT ("arm1020e", NULL
, ARM_ARCH_V5TE
,
31425 ARM_CPU_OPT ("arm1022e", NULL
, ARM_ARCH_V5TE
,
31428 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ
,
31431 ARM_CPU_OPT ("arm1026ej-s", NULL
, ARM_ARCH_V5TEJ
,
31434 ARM_CPU_OPT ("fa606te", NULL
, ARM_ARCH_V5TE
,
31437 ARM_CPU_OPT ("fa616te", NULL
, ARM_ARCH_V5TE
,
31440 ARM_CPU_OPT ("fa626te", NULL
, ARM_ARCH_V5TE
,
31443 ARM_CPU_OPT ("fmp626", NULL
, ARM_ARCH_V5TE
,
31446 ARM_CPU_OPT ("fa726te", NULL
, ARM_ARCH_V5TE
,
31449 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6
,
31452 ARM_CPU_OPT ("arm1136j-s", NULL
, ARM_ARCH_V6
,
31455 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6
,
31458 ARM_CPU_OPT ("arm1136jf-s", NULL
, ARM_ARCH_V6
,
31461 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K
,
31464 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K
,
31467 ARM_CPU_OPT ("arm1156t2-s", NULL
, ARM_ARCH_V6T2
,
31470 ARM_CPU_OPT ("arm1156t2f-s", NULL
, ARM_ARCH_V6T2
,
31473 ARM_CPU_OPT ("arm1176jz-s", NULL
, ARM_ARCH_V6KZ
,
31476 ARM_CPU_OPT ("arm1176jzf-s", NULL
, ARM_ARCH_V6KZ
,
31479 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A
,
31480 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
31482 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE
,
31484 FPU_ARCH_NEON_VFP_V4
),
31485 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A
,
31486 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
31487 ARM_FEATURE_COPROC (FPU_VFP_V3
| FPU_NEON_EXT_V1
)),
31488 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A
,
31489 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
31490 ARM_FEATURE_COPROC (FPU_VFP_V3
| FPU_NEON_EXT_V1
)),
31491 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE
,
31493 FPU_ARCH_NEON_VFP_V4
),
31494 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE
,
31496 FPU_ARCH_NEON_VFP_V4
),
31497 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE
,
31499 FPU_ARCH_NEON_VFP_V4
),
31500 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A
,
31501 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
),
31502 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
31503 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A
,
31504 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
),
31505 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
31506 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A
,
31507 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
),
31508 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
31509 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A
,
31510 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
31511 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
31512 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A
,
31513 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
),
31514 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
31515 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A
,
31516 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
),
31517 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
31518 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A
,
31519 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
),
31520 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
31521 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A
,
31522 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
31523 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
31524 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A
,
31525 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
31526 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
31527 ARM_CPU_OPT ("cortex-a76ae", "Cortex-A76AE", ARM_ARCH_V8_2A
,
31528 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
31529 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
31530 ARM_CPU_OPT ("cortex-a77", "Cortex-A77", ARM_ARCH_V8_2A
,
31531 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
31532 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
31533 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A
,
31534 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
31535 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
31536 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R
,
31539 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R
,
31541 FPU_ARCH_VFP_V3D16
),
31542 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R
,
31543 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
31545 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R
,
31546 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
31547 FPU_ARCH_VFP_V3D16
),
31548 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R
,
31549 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
31550 FPU_ARCH_VFP_V3D16
),
31551 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R
,
31552 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
),
31553 FPU_ARCH_NEON_VFP_ARMV8
),
31554 ARM_CPU_OPT ("cortex-m35p", "Cortex-M35P", ARM_ARCH_V8M_MAIN
,
31555 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
31557 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN
,
31558 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
31560 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE
,
31563 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM
,
31566 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM
,
31569 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M
,
31572 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM
,
31575 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM
,
31578 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM
,
31581 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A
,
31582 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
),
31583 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
31584 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A
,
31585 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
31586 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
31587 /* ??? XSCALE is really an architecture. */
31588 ARM_CPU_OPT ("xscale", NULL
, ARM_ARCH_XSCALE
,
31592 /* ??? iwmmxt is not a processor. */
31593 ARM_CPU_OPT ("iwmmxt", NULL
, ARM_ARCH_IWMMXT
,
31596 ARM_CPU_OPT ("iwmmxt2", NULL
, ARM_ARCH_IWMMXT2
,
31599 ARM_CPU_OPT ("i80200", NULL
, ARM_ARCH_XSCALE
,
31604 ARM_CPU_OPT ("ep9312", "ARM920T",
31605 ARM_FEATURE_LOW (ARM_AEXT_V4T
, ARM_CEXT_MAVERICK
),
31606 ARM_ARCH_NONE
, FPU_ARCH_MAVERICK
),
31608 /* Marvell processors. */
31609 ARM_CPU_OPT ("marvell-pj4", NULL
, ARM_ARCH_V7A
,
31610 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
31611 FPU_ARCH_VFP_V3D16
),
31612 ARM_CPU_OPT ("marvell-whitney", NULL
, ARM_ARCH_V7A
,
31613 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
31614 FPU_ARCH_NEON_VFP_V4
),
31616 /* APM X-Gene family. */
31617 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A
,
31619 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
31620 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A
,
31621 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
),
31622 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
31624 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
31628 struct arm_ext_table
31632 const arm_feature_set merge
;
31633 const arm_feature_set clear
;
31636 struct arm_arch_option_table
31640 const arm_feature_set value
;
31641 const arm_feature_set default_fpu
;
31642 const struct arm_ext_table
* ext_table
;
31645 /* Used to add support for +E and +noE extension. */
31646 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
31647 /* Used to add support for a +E extension. */
31648 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
31649 /* Used to add support for a +noE extension. */
31650 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
31652 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
31653 ~0 & ~FPU_ENDIAN_PURE)
31655 static const struct arm_ext_table armv5te_ext_table
[] =
31657 ARM_EXT ("fp", FPU_ARCH_VFP_V2
, ALL_FP
),
31658 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31661 static const struct arm_ext_table armv7_ext_table
[] =
31663 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
31664 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31667 static const struct arm_ext_table armv7ve_ext_table
[] =
31669 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16
, ALL_FP
),
31670 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
),
31671 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3
),
31672 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
31673 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
),
31674 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16
), /* Alias for +fp. */
31675 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4
),
31677 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4
,
31678 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_NEON_EXT_FMA
)),
31680 /* Aliases for +simd. */
31681 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4
),
31683 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
31684 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
31685 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16
),
31687 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31690 static const struct arm_ext_table armv7a_ext_table
[] =
31692 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
31693 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
), /* Alias for +fp. */
31694 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3
),
31695 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
31696 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
),
31697 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16
),
31698 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4
),
31700 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1
,
31701 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_NEON_EXT_FMA
)),
31703 /* Aliases for +simd. */
31704 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
31705 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
31707 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16
),
31708 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4
),
31710 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP
)),
31711 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
)),
31712 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31715 static const struct arm_ext_table armv7r_ext_table
[] =
31717 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD
),
31718 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD
), /* Alias for +fp.sp. */
31719 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
31720 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
), /* Alias for +fp. */
31721 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
),
31722 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
31723 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
31724 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
)),
31725 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31728 static const struct arm_ext_table armv7em_ext_table
[] =
31730 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16
, ALL_FP
),
31731 /* Alias for +fp, used to be known as fpv4-sp-d16. */
31732 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
),
31733 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16
),
31734 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16
),
31735 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16
),
31736 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31739 static const struct arm_ext_table armv8a_ext_table
[] =
31741 ARM_ADD ("crc", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
)),
31742 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8
),
31743 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
31744 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
31746 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31747 should use the +simd option to turn on FP. */
31748 ARM_REMOVE ("fp", ALL_FP
),
31749 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
31750 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
31751 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31755 static const struct arm_ext_table armv81a_ext_table
[] =
31757 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1
),
31758 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
,
31759 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
31761 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31762 should use the +simd option to turn on FP. */
31763 ARM_REMOVE ("fp", ALL_FP
),
31764 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
31765 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
31766 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31769 static const struct arm_ext_table armv82a_ext_table
[] =
31771 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1
),
31772 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16
),
31773 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML
),
31774 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16
)),
31775 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM
)),
31776 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
,
31777 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
31778 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
31780 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31781 should use the +simd option to turn on FP. */
31782 ARM_REMOVE ("fp", ALL_FP
),
31783 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
31784 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
31785 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31788 static const struct arm_ext_table armv84a_ext_table
[] =
31790 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
31791 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML
),
31792 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16
)),
31793 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM
)),
31794 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4
,
31795 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
31797 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31798 should use the +simd option to turn on FP. */
31799 ARM_REMOVE ("fp", ALL_FP
),
31800 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
31801 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
31802 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31805 static const struct arm_ext_table armv85a_ext_table
[] =
31807 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
31808 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML
),
31809 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16
)),
31810 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM
)),
31811 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4
,
31812 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
31814 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31815 should use the +simd option to turn on FP. */
31816 ARM_REMOVE ("fp", ALL_FP
),
31817 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31820 static const struct arm_ext_table armv86a_ext_table
[] =
31822 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM
)),
31823 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31826 #define CDE_EXTENSIONS \
31827 ARM_ADD ("cdecp0", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE0)), \
31828 ARM_ADD ("cdecp1", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE1)), \
31829 ARM_ADD ("cdecp2", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE2)), \
31830 ARM_ADD ("cdecp3", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE3)), \
31831 ARM_ADD ("cdecp4", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE4)), \
31832 ARM_ADD ("cdecp5", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE5)), \
31833 ARM_ADD ("cdecp6", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE6)), \
31834 ARM_ADD ("cdecp7", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE7))
31836 static const struct arm_ext_table armv8m_main_ext_table
[] =
31838 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP
),
31839 ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP
)),
31840 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16
, ALL_FP
),
31841 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16
),
31843 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31847 static const struct arm_ext_table armv8_1m_main_ext_table
[] =
31849 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP
),
31850 ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP
)),
31852 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
31853 FPU_VFP_V5_SP_D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
),
31856 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
31857 FPU_VFP_V5D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
)),
31858 ARM_EXT ("mve", ARM_FEATURE (ARM_AEXT_V8M_MAIN_DSP
, ARM_EXT2_MVE
, 0),
31859 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE
| ARM_EXT2_MVE_FP
)),
31861 ARM_FEATURE (ARM_AEXT_V8M_MAIN_DSP
,
31862 ARM_EXT2_FP16_INST
| ARM_EXT2_MVE
| ARM_EXT2_MVE_FP
,
31863 FPU_VFP_V5_SP_D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
)),
31865 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31868 #undef CDE_EXTENSIONS
31870 static const struct arm_ext_table armv8r_ext_table
[] =
31872 ARM_ADD ("crc", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC
)),
31873 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8
),
31874 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
31875 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
31876 ARM_REMOVE ("fp", ALL_FP
),
31877 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16
),
31878 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
31881 /* This list should, at a minimum, contain all the architecture names
31882 recognized by GCC. */
31883 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
31884 #define ARM_ARCH_OPT2(N, V, DF, ext) \
31885 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
31887 static const struct arm_arch_option_table arm_archs
[] =
31889 ARM_ARCH_OPT ("all", ARM_ANY
, FPU_ARCH_FPA
),
31890 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1
, FPU_ARCH_FPA
),
31891 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2
, FPU_ARCH_FPA
),
31892 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
31893 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
31894 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3
, FPU_ARCH_FPA
),
31895 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M
, FPU_ARCH_FPA
),
31896 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4
, FPU_ARCH_FPA
),
31897 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM
, FPU_ARCH_FPA
),
31898 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T
, FPU_ARCH_FPA
),
31899 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM
, FPU_ARCH_FPA
),
31900 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5
, FPU_ARCH_VFP
),
31901 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T
, FPU_ARCH_VFP
),
31902 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM
, FPU_ARCH_VFP
),
31903 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE
, FPU_ARCH_VFP
, armv5te
),
31904 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP
, FPU_ARCH_VFP
, armv5te
),
31905 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP
, armv5te
),
31906 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6
, FPU_ARCH_VFP
, armv5te
),
31907 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6
, FPU_ARCH_VFP
, armv5te
),
31908 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K
, FPU_ARCH_VFP
, armv5te
),
31909 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z
, FPU_ARCH_VFP
, armv5te
),
31910 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
31911 kept to preserve existing behaviour. */
31912 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ
, FPU_ARCH_VFP
, armv5te
),
31913 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ
, FPU_ARCH_VFP
, armv5te
),
31914 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2
, FPU_ARCH_VFP
, armv5te
),
31915 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2
, FPU_ARCH_VFP
, armv5te
),
31916 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2
, FPU_ARCH_VFP
, armv5te
),
31917 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
31918 kept to preserve existing behaviour. */
31919 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2
, FPU_ARCH_VFP
, armv5te
),
31920 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2
, FPU_ARCH_VFP
, armv5te
),
31921 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M
, FPU_ARCH_VFP
),
31922 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM
, FPU_ARCH_VFP
),
31923 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7
, FPU_ARCH_VFP
, armv7
),
31924 /* The official spelling of the ARMv7 profile variants is the dashed form.
31925 Accept the non-dashed form for compatibility with old toolchains. */
31926 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A
, FPU_ARCH_VFP
, armv7a
),
31927 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE
, FPU_ARCH_VFP
, armv7ve
),
31928 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R
, FPU_ARCH_VFP
, armv7r
),
31929 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
31930 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A
, FPU_ARCH_VFP
, armv7a
),
31931 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R
, FPU_ARCH_VFP
, armv7r
),
31932 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
31933 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM
, FPU_ARCH_VFP
, armv7em
),
31934 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE
, FPU_ARCH_VFP
),
31935 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN
, FPU_ARCH_VFP
,
31937 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN
, FPU_ARCH_VFP
,
31939 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A
, FPU_ARCH_VFP
, armv8a
),
31940 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A
, FPU_ARCH_VFP
, armv81a
),
31941 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A
, FPU_ARCH_VFP
, armv82a
),
31942 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A
, FPU_ARCH_VFP
, armv82a
),
31943 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R
, FPU_ARCH_VFP
, armv8r
),
31944 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A
, FPU_ARCH_VFP
, armv84a
),
31945 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A
, FPU_ARCH_VFP
, armv85a
),
31946 ARM_ARCH_OPT2 ("armv8.6-a", ARM_ARCH_V8_6A
, FPU_ARCH_VFP
, armv86a
),
31947 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP
),
31948 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP
),
31949 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2
, FPU_ARCH_VFP
),
31950 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
31952 #undef ARM_ARCH_OPT
31954 /* ISA extensions in the co-processor and main instruction set space. */
31956 struct arm_option_extension_value_table
31960 const arm_feature_set merge_value
;
31961 const arm_feature_set clear_value
;
31962 /* List of architectures for which an extension is available. ARM_ARCH_NONE
31963 indicates that an extension is available for all architectures while
31964 ARM_ANY marks an empty entry. */
31965 const arm_feature_set allowed_archs
[2];
31968 /* The following table must be in alphabetical order with a NULL last entry. */
31970 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
31971 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
31973 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
31974 use the context sensitive approach using arm_ext_table's. */
31975 static const struct arm_option_extension_value_table arm_extensions
[] =
31977 ARM_EXT_OPT ("crc", ARM_FEATURE_CORE_HIGH(ARM_EXT2_CRC
),
31978 ARM_FEATURE_CORE_HIGH(ARM_EXT2_CRC
),
31979 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
31980 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
31981 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
),
31982 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
31983 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
,
31984 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD
),
31986 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
31987 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
31988 ARM_FEATURE_CORE (ARM_EXT_V7M
, ARM_EXT2_V8M
)),
31989 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8
, ARM_FEATURE_COPROC (FPU_VFP_ARMV8
),
31990 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
31991 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
31992 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
31994 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31995 | ARM_EXT2_FP16_FML
),
31996 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31997 | ARM_EXT2_FP16_FML
),
31999 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
32000 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
32001 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
),
32002 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
)),
32003 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
32004 Thumb divide instruction. Due to this having the same name as the
32005 previous entry, this will be ignored when doing command-line parsing and
32006 only considered by build attribute selection code. */
32007 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
),
32008 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
),
32009 ARM_FEATURE_CORE_LOW (ARM_EXT_V7
)),
32010 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
),
32011 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
), ARM_ARCH_NONE
),
32012 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
),
32013 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
), ARM_ARCH_NONE
),
32014 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
),
32015 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
), ARM_ARCH_NONE
),
32016 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP
),
32017 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
),
32018 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
),
32019 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
)),
32020 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS
),
32021 ARM_FEATURE_CORE_LOW (ARM_EXT_OS
),
32022 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M
)),
32023 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN
),
32024 ARM_FEATURE (ARM_EXT_V8
, ARM_EXT2_PAN
, 0),
32025 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
32026 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
),
32027 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
),
32029 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS
),
32030 ARM_FEATURE (ARM_EXT_V8
, ARM_EXT2_RAS
, 0),
32031 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
32032 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1
,
32033 ARM_FEATURE_COPROC (FPU_NEON_ARMV8
| FPU_NEON_EXT_RDMA
),
32034 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
32035 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
),
32036 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
),
32038 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
32039 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
32040 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
),
32041 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
)),
32042 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8
,
32043 ARM_FEATURE_COPROC (FPU_NEON_ARMV8
),
32044 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
32045 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
| ARM_EXT_ADIV
32047 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
),
32048 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
)),
32049 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
),
32050 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
), ARM_ARCH_NONE
),
32051 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, { ARM_ARCH_NONE
, ARM_ARCH_NONE
} }
32055 /* ISA floating-point and Advanced SIMD extensions. */
32056 struct arm_option_fpu_value_table
32059 const arm_feature_set value
;
32062 /* This list should, at a minimum, contain all the fpu names
32063 recognized by GCC. */
32064 static const struct arm_option_fpu_value_table arm_fpus
[] =
32066 {"softfpa", FPU_NONE
},
32067 {"fpe", FPU_ARCH_FPE
},
32068 {"fpe2", FPU_ARCH_FPE
},
32069 {"fpe3", FPU_ARCH_FPA
}, /* Third release supports LFM/SFM. */
32070 {"fpa", FPU_ARCH_FPA
},
32071 {"fpa10", FPU_ARCH_FPA
},
32072 {"fpa11", FPU_ARCH_FPA
},
32073 {"arm7500fe", FPU_ARCH_FPA
},
32074 {"softvfp", FPU_ARCH_VFP
},
32075 {"softvfp+vfp", FPU_ARCH_VFP_V2
},
32076 {"vfp", FPU_ARCH_VFP_V2
},
32077 {"vfp9", FPU_ARCH_VFP_V2
},
32078 {"vfp3", FPU_ARCH_VFP_V3
}, /* Undocumented, use vfpv3. */
32079 {"vfp10", FPU_ARCH_VFP_V2
},
32080 {"vfp10-r0", FPU_ARCH_VFP_V1
},
32081 {"vfpxd", FPU_ARCH_VFP_V1xD
},
32082 {"vfpv2", FPU_ARCH_VFP_V2
},
32083 {"vfpv3", FPU_ARCH_VFP_V3
},
32084 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
},
32085 {"vfpv3-d16", FPU_ARCH_VFP_V3D16
},
32086 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
},
32087 {"vfpv3xd", FPU_ARCH_VFP_V3xD
},
32088 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
},
32089 {"arm1020t", FPU_ARCH_VFP_V1
},
32090 {"arm1020e", FPU_ARCH_VFP_V2
},
32091 {"arm1136jfs", FPU_ARCH_VFP_V2
}, /* Undocumented, use arm1136jf-s. */
32092 {"arm1136jf-s", FPU_ARCH_VFP_V2
},
32093 {"maverick", FPU_ARCH_MAVERICK
},
32094 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
32095 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
32096 {"neon-fp16", FPU_ARCH_NEON_FP16
},
32097 {"vfpv4", FPU_ARCH_VFP_V4
},
32098 {"vfpv4-d16", FPU_ARCH_VFP_V4D16
},
32099 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
},
32100 {"fpv5-d16", FPU_ARCH_VFP_V5D16
},
32101 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16
},
32102 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4
},
32103 {"fp-armv8", FPU_ARCH_VFP_ARMV8
},
32104 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8
},
32105 {"crypto-neon-fp-armv8",
32106 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
},
32107 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1
},
32108 {"crypto-neon-fp-armv8.1",
32109 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
},
32110 {NULL
, ARM_ARCH_NONE
}
32113 struct arm_option_value_table
32119 static const struct arm_option_value_table arm_float_abis
[] =
32121 {"hard", ARM_FLOAT_ABI_HARD
},
32122 {"softfp", ARM_FLOAT_ABI_SOFTFP
},
32123 {"soft", ARM_FLOAT_ABI_SOFT
},
32128 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
32129 static const struct arm_option_value_table arm_eabis
[] =
32131 {"gnu", EF_ARM_EABI_UNKNOWN
},
32132 {"4", EF_ARM_EABI_VER4
},
32133 {"5", EF_ARM_EABI_VER5
},
32138 struct arm_long_option_table
32140 const char * option
; /* Substring to match. */
32141 const char * help
; /* Help information. */
32142 int (* func
) (const char * subopt
); /* Function to decode sub-option. */
32143 const char * deprecated
; /* If non-null, print this message. */
32147 arm_parse_extension (const char *str
, const arm_feature_set
*opt_set
,
32148 arm_feature_set
*ext_set
,
32149 const struct arm_ext_table
*ext_table
)
32151 /* We insist on extensions being specified in alphabetical order, and with
32152 extensions being added before being removed. We achieve this by having
32153 the global ARM_EXTENSIONS table in alphabetical order, and using the
32154 ADDING_VALUE variable to indicate whether we are adding an extension (1)
32155 or removing it (0) and only allowing it to change in the order
32157 const struct arm_option_extension_value_table
* opt
= NULL
;
32158 const arm_feature_set arm_any
= ARM_ANY
;
32159 int adding_value
= -1;
32161 while (str
!= NULL
&& *str
!= 0)
32168 as_bad (_("invalid architectural extension"));
32173 ext
= strchr (str
, '+');
32178 len
= strlen (str
);
32180 if (len
>= 2 && strncmp (str
, "no", 2) == 0)
32182 if (adding_value
!= 0)
32185 opt
= arm_extensions
;
32193 if (adding_value
== -1)
32196 opt
= arm_extensions
;
32198 else if (adding_value
!= 1)
32200 as_bad (_("must specify extensions to add before specifying "
32201 "those to remove"));
32208 as_bad (_("missing architectural extension"));
32212 gas_assert (adding_value
!= -1);
32213 gas_assert (opt
!= NULL
);
32215 if (ext_table
!= NULL
)
32217 const struct arm_ext_table
* ext_opt
= ext_table
;
32218 bfd_boolean found
= FALSE
;
32219 for (; ext_opt
->name
!= NULL
; ext_opt
++)
32220 if (ext_opt
->name_len
== len
32221 && strncmp (ext_opt
->name
, str
, len
) == 0)
32225 if (ARM_FEATURE_ZERO (ext_opt
->merge
))
32226 /* TODO: Option not supported. When we remove the
32227 legacy table this case should error out. */
32230 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, ext_opt
->merge
);
32234 if (ARM_FEATURE_ZERO (ext_opt
->clear
))
32235 /* TODO: Option not supported. When we remove the
32236 legacy table this case should error out. */
32238 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, ext_opt
->clear
);
32250 /* Scan over the options table trying to find an exact match. */
32251 for (; opt
->name
!= NULL
; opt
++)
32252 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
32254 int i
, nb_allowed_archs
=
32255 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[0]);
32256 /* Check we can apply the extension to this architecture. */
32257 for (i
= 0; i
< nb_allowed_archs
; i
++)
32260 if (ARM_FEATURE_EQUAL (opt
->allowed_archs
[i
], arm_any
))
32262 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], *opt_set
))
32265 if (i
== nb_allowed_archs
)
32267 as_bad (_("extension does not apply to the base architecture"));
32271 /* Add or remove the extension. */
32273 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, opt
->merge_value
);
32275 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, opt
->clear_value
);
32277 /* Allowing Thumb division instructions for ARMv7 in autodetection
32278 rely on this break so that duplicate extensions (extensions
32279 with the same name as a previous extension in the list) are not
32280 considered for command-line parsing. */
32284 if (opt
->name
== NULL
)
32286 /* Did we fail to find an extension because it wasn't specified in
32287 alphabetical order, or because it does not exist? */
32289 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
32290 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
32293 if (opt
->name
== NULL
)
32294 as_bad (_("unknown architectural extension `%s'"), str
);
32296 as_bad (_("architectural extensions must be specified in "
32297 "alphabetical order"));
32303 /* We should skip the extension we've just matched the next time
32315 arm_parse_fp16_opt (const char *str
)
32317 if (strcasecmp (str
, "ieee") == 0)
32318 fp16_format
= ARM_FP16_FORMAT_IEEE
;
32319 else if (strcasecmp (str
, "alternative") == 0)
32320 fp16_format
= ARM_FP16_FORMAT_ALTERNATIVE
;
32323 as_bad (_("unrecognised float16 format \"%s\""), str
);
32331 arm_parse_cpu (const char *str
)
32333 const struct arm_cpu_option_table
*opt
;
32334 const char *ext
= strchr (str
, '+');
32340 len
= strlen (str
);
32344 as_bad (_("missing cpu name `%s'"), str
);
32348 for (opt
= arm_cpus
; opt
->name
!= NULL
; opt
++)
32349 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
32351 mcpu_cpu_opt
= &opt
->value
;
32352 if (mcpu_ext_opt
== NULL
)
32353 mcpu_ext_opt
= XNEW (arm_feature_set
);
32354 *mcpu_ext_opt
= opt
->ext
;
32355 mcpu_fpu_opt
= &opt
->default_fpu
;
32356 if (opt
->canonical_name
)
32358 gas_assert (sizeof selected_cpu_name
> strlen (opt
->canonical_name
));
32359 strcpy (selected_cpu_name
, opt
->canonical_name
);
32365 if (len
>= sizeof selected_cpu_name
)
32366 len
= (sizeof selected_cpu_name
) - 1;
32368 for (i
= 0; i
< len
; i
++)
32369 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
32370 selected_cpu_name
[i
] = 0;
32374 return arm_parse_extension (ext
, mcpu_cpu_opt
, mcpu_ext_opt
, NULL
);
32379 as_bad (_("unknown cpu `%s'"), str
);
32384 arm_parse_arch (const char *str
)
32386 const struct arm_arch_option_table
*opt
;
32387 const char *ext
= strchr (str
, '+');
32393 len
= strlen (str
);
32397 as_bad (_("missing architecture name `%s'"), str
);
32401 for (opt
= arm_archs
; opt
->name
!= NULL
; opt
++)
32402 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
32404 march_cpu_opt
= &opt
->value
;
32405 if (march_ext_opt
== NULL
)
32406 march_ext_opt
= XNEW (arm_feature_set
);
32407 *march_ext_opt
= arm_arch_none
;
32408 march_fpu_opt
= &opt
->default_fpu
;
32409 selected_ctx_ext_table
= opt
->ext_table
;
32410 strcpy (selected_cpu_name
, opt
->name
);
32413 return arm_parse_extension (ext
, march_cpu_opt
, march_ext_opt
,
32419 as_bad (_("unknown architecture `%s'\n"), str
);
32424 arm_parse_fpu (const char * str
)
32426 const struct arm_option_fpu_value_table
* opt
;
32428 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
32429 if (streq (opt
->name
, str
))
32431 mfpu_opt
= &opt
->value
;
32435 as_bad (_("unknown floating point format `%s'\n"), str
);
32440 arm_parse_float_abi (const char * str
)
32442 const struct arm_option_value_table
* opt
;
32444 for (opt
= arm_float_abis
; opt
->name
!= NULL
; opt
++)
32445 if (streq (opt
->name
, str
))
32447 mfloat_abi_opt
= opt
->value
;
32451 as_bad (_("unknown floating point abi `%s'\n"), str
);
32457 arm_parse_eabi (const char * str
)
32459 const struct arm_option_value_table
*opt
;
32461 for (opt
= arm_eabis
; opt
->name
!= NULL
; opt
++)
32462 if (streq (opt
->name
, str
))
32464 meabi_flags
= opt
->value
;
32467 as_bad (_("unknown EABI `%s'\n"), str
);
32473 arm_parse_it_mode (const char * str
)
32475 bfd_boolean ret
= TRUE
;
32477 if (streq ("arm", str
))
32478 implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
32479 else if (streq ("thumb", str
))
32480 implicit_it_mode
= IMPLICIT_IT_MODE_THUMB
;
32481 else if (streq ("always", str
))
32482 implicit_it_mode
= IMPLICIT_IT_MODE_ALWAYS
;
32483 else if (streq ("never", str
))
32484 implicit_it_mode
= IMPLICIT_IT_MODE_NEVER
;
32487 as_bad (_("unknown implicit IT mode `%s', should be "\
32488 "arm, thumb, always, or never."), str
);
32496 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED
)
32498 codecomposer_syntax
= TRUE
;
32499 arm_comment_chars
[0] = ';';
32500 arm_line_separator_chars
[0] = 0;
32504 struct arm_long_option_table arm_long_opts
[] =
32506 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
32507 arm_parse_cpu
, NULL
},
32508 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
32509 arm_parse_arch
, NULL
},
32510 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
32511 arm_parse_fpu
, NULL
},
32512 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
32513 arm_parse_float_abi
, NULL
},
32515 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
32516 arm_parse_eabi
, NULL
},
32518 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
32519 arm_parse_it_mode
, NULL
},
32520 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
32521 arm_ccs_mode
, NULL
},
32523 N_("[ieee|alternative]\n\
32524 set the encoding for half precision floating point "
32525 "numbers to IEEE\n\
32526 or Arm alternative format."),
32527 arm_parse_fp16_opt
, NULL
},
32528 {NULL
, NULL
, 0, NULL
}
32532 md_parse_option (int c
, const char * arg
)
32534 struct arm_option_table
*opt
;
32535 const struct arm_legacy_option_table
*fopt
;
32536 struct arm_long_option_table
*lopt
;
32542 target_big_endian
= 1;
32548 target_big_endian
= 0;
32552 case OPTION_FIX_V4BX
:
32560 #endif /* OBJ_ELF */
32563 /* Listing option. Just ignore these, we don't support additional
32568 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
32570 if (c
== opt
->option
[0]
32571 && ((arg
== NULL
&& opt
->option
[1] == 0)
32572 || streq (arg
, opt
->option
+ 1)))
32574 /* If the option is deprecated, tell the user. */
32575 if (warn_on_deprecated
&& opt
->deprecated
!= NULL
)
32576 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
32577 arg
? arg
: "", _(opt
->deprecated
));
32579 if (opt
->var
!= NULL
)
32580 *opt
->var
= opt
->value
;
32586 for (fopt
= arm_legacy_opts
; fopt
->option
!= NULL
; fopt
++)
32588 if (c
== fopt
->option
[0]
32589 && ((arg
== NULL
&& fopt
->option
[1] == 0)
32590 || streq (arg
, fopt
->option
+ 1)))
32592 /* If the option is deprecated, tell the user. */
32593 if (warn_on_deprecated
&& fopt
->deprecated
!= NULL
)
32594 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
32595 arg
? arg
: "", _(fopt
->deprecated
));
32597 if (fopt
->var
!= NULL
)
32598 *fopt
->var
= &fopt
->value
;
32604 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
32606 /* These options are expected to have an argument. */
32607 if (c
== lopt
->option
[0]
32609 && strncmp (arg
, lopt
->option
+ 1,
32610 strlen (lopt
->option
+ 1)) == 0)
32612 /* If the option is deprecated, tell the user. */
32613 if (warn_on_deprecated
&& lopt
->deprecated
!= NULL
)
32614 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
, arg
,
32615 _(lopt
->deprecated
));
32617 /* Call the sup-option parser. */
32618 return lopt
->func (arg
+ strlen (lopt
->option
) - 1);
32629 md_show_usage (FILE * fp
)
32631 struct arm_option_table
*opt
;
32632 struct arm_long_option_table
*lopt
;
32634 fprintf (fp
, _(" ARM-specific assembler options:\n"));
32636 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
32637 if (opt
->help
!= NULL
)
32638 fprintf (fp
, " -%-23s%s\n", opt
->option
, _(opt
->help
));
32640 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
32641 if (lopt
->help
!= NULL
)
32642 fprintf (fp
, " -%s%s\n", lopt
->option
, _(lopt
->help
));
32646 -EB assemble code for a big-endian cpu\n"));
32651 -EL assemble code for a little-endian cpu\n"));
32655 --fix-v4bx Allow BX in ARMv4 code\n"));
32659 --fdpic generate an FDPIC object file\n"));
32660 #endif /* OBJ_ELF */
32668 arm_feature_set flags
;
32669 } cpu_arch_ver_table
;
32671 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
32672 chronologically for architectures, with an exception for ARMv6-M and
32673 ARMv6S-M due to legacy reasons. No new architecture should have a
32674 special case. This allows for build attribute selection results to be
32675 stable when new architectures are added. */
32676 static const cpu_arch_ver_table cpu_arch_ver
[] =
32678 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V1
},
32679 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V2
},
32680 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V2S
},
32681 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V3
},
32682 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V3M
},
32683 {TAG_CPU_ARCH_V4
, ARM_ARCH_V4xM
},
32684 {TAG_CPU_ARCH_V4
, ARM_ARCH_V4
},
32685 {TAG_CPU_ARCH_V4T
, ARM_ARCH_V4TxM
},
32686 {TAG_CPU_ARCH_V4T
, ARM_ARCH_V4T
},
32687 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5xM
},
32688 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5
},
32689 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5TxM
},
32690 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5T
},
32691 {TAG_CPU_ARCH_V5TE
, ARM_ARCH_V5TExP
},
32692 {TAG_CPU_ARCH_V5TE
, ARM_ARCH_V5TE
},
32693 {TAG_CPU_ARCH_V5TEJ
, ARM_ARCH_V5TEJ
},
32694 {TAG_CPU_ARCH_V6
, ARM_ARCH_V6
},
32695 {TAG_CPU_ARCH_V6KZ
, ARM_ARCH_V6Z
},
32696 {TAG_CPU_ARCH_V6KZ
, ARM_ARCH_V6KZ
},
32697 {TAG_CPU_ARCH_V6K
, ARM_ARCH_V6K
},
32698 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6T2
},
32699 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6KT2
},
32700 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6ZT2
},
32701 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6KZT2
},
32703 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
32704 always selected build attributes to match those of ARMv6-M
32705 (resp. ARMv6S-M). However, due to these architectures being a strict
32706 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
32707 would be selected when fully respecting chronology of architectures.
32708 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
32709 move them before ARMv7 architectures. */
32710 {TAG_CPU_ARCH_V6_M
, ARM_ARCH_V6M
},
32711 {TAG_CPU_ARCH_V6S_M
, ARM_ARCH_V6SM
},
32713 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7
},
32714 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7A
},
32715 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7R
},
32716 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7M
},
32717 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7VE
},
32718 {TAG_CPU_ARCH_V7E_M
, ARM_ARCH_V7EM
},
32719 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8A
},
32720 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_1A
},
32721 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_2A
},
32722 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_3A
},
32723 {TAG_CPU_ARCH_V8M_BASE
, ARM_ARCH_V8M_BASE
},
32724 {TAG_CPU_ARCH_V8M_MAIN
, ARM_ARCH_V8M_MAIN
},
32725 {TAG_CPU_ARCH_V8R
, ARM_ARCH_V8R
},
32726 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_4A
},
32727 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_5A
},
32728 {TAG_CPU_ARCH_V8_1M_MAIN
, ARM_ARCH_V8_1M_MAIN
},
32729 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_6A
},
32730 {-1, ARM_ARCH_NONE
}
32733 /* Set an attribute if it has not already been set by the user. */
32736 aeabi_set_attribute_int (int tag
, int value
)
32739 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
32740 || !attributes_set_explicitly
[tag
])
32741 bfd_elf_add_proc_attr_int (stdoutput
, tag
, value
);
32745 aeabi_set_attribute_string (int tag
, const char *value
)
32748 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
32749 || !attributes_set_explicitly
[tag
])
32750 bfd_elf_add_proc_attr_string (stdoutput
, tag
, value
);
32753 /* Return whether features in the *NEEDED feature set are available via
32754 extensions for the architecture whose feature set is *ARCH_FSET. */
32757 have_ext_for_needed_feat_p (const arm_feature_set
*arch_fset
,
32758 const arm_feature_set
*needed
)
32760 int i
, nb_allowed_archs
;
32761 arm_feature_set ext_fset
;
32762 const struct arm_option_extension_value_table
*opt
;
32764 ext_fset
= arm_arch_none
;
32765 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
32767 /* Extension does not provide any feature we need. */
32768 if (!ARM_CPU_HAS_FEATURE (*needed
, opt
->merge_value
))
32772 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[0]);
32773 for (i
= 0; i
< nb_allowed_archs
; i
++)
32776 if (ARM_FEATURE_EQUAL (opt
->allowed_archs
[i
], arm_arch_any
))
32779 /* Extension is available, add it. */
32780 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], *arch_fset
))
32781 ARM_MERGE_FEATURE_SETS (ext_fset
, ext_fset
, opt
->merge_value
);
32785 /* Can we enable all features in *needed? */
32786 return ARM_FSET_CPU_SUBSET (*needed
, ext_fset
);
32789 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
32790 a given architecture feature set *ARCH_EXT_FSET including extension feature
32791 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
32792 - if true, check for an exact match of the architecture modulo extensions;
32793 - otherwise, select build attribute value of the first superset
32794 architecture released so that results remains stable when new architectures
32796 For -march/-mcpu=all the build attribute value of the most featureful
32797 architecture is returned. Tag_CPU_arch_profile result is returned in
32801 get_aeabi_cpu_arch_from_fset (const arm_feature_set
*arch_ext_fset
,
32802 const arm_feature_set
*ext_fset
,
32803 char *profile
, int exact_match
)
32805 arm_feature_set arch_fset
;
32806 const cpu_arch_ver_table
*p_ver
, *p_ver_ret
= NULL
;
32808 /* Select most featureful architecture with all its extensions if building
32809 for -march=all as the feature sets used to set build attributes. */
32810 if (ARM_FEATURE_EQUAL (*arch_ext_fset
, arm_arch_any
))
32812 /* Force revisiting of decision for each new architecture. */
32813 gas_assert (MAX_TAG_CPU_ARCH
<= TAG_CPU_ARCH_V8_1M_MAIN
);
32815 return TAG_CPU_ARCH_V8
;
32818 ARM_CLEAR_FEATURE (arch_fset
, *arch_ext_fset
, *ext_fset
);
32820 for (p_ver
= cpu_arch_ver
; p_ver
->val
!= -1; p_ver
++)
32822 arm_feature_set known_arch_fset
;
32824 ARM_CLEAR_FEATURE (known_arch_fset
, p_ver
->flags
, fpu_any
);
32827 /* Base architecture match user-specified architecture and
32828 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
32829 if (ARM_FEATURE_EQUAL (*arch_ext_fset
, known_arch_fset
))
32834 /* Base architecture match user-specified architecture only
32835 (eg. ARMv6-M in the same case as above). Record it in case we
32836 find a match with above condition. */
32837 else if (p_ver_ret
== NULL
32838 && ARM_FEATURE_EQUAL (arch_fset
, known_arch_fset
))
32844 /* Architecture has all features wanted. */
32845 if (ARM_FSET_CPU_SUBSET (arch_fset
, known_arch_fset
))
32847 arm_feature_set added_fset
;
32849 /* Compute features added by this architecture over the one
32850 recorded in p_ver_ret. */
32851 if (p_ver_ret
!= NULL
)
32852 ARM_CLEAR_FEATURE (added_fset
, known_arch_fset
,
32854 /* First architecture that match incl. with extensions, or the
32855 only difference in features over the recorded match is
32856 features that were optional and are now mandatory. */
32857 if (p_ver_ret
== NULL
32858 || ARM_FSET_CPU_SUBSET (added_fset
, arch_fset
))
32864 else if (p_ver_ret
== NULL
)
32866 arm_feature_set needed_ext_fset
;
32868 ARM_CLEAR_FEATURE (needed_ext_fset
, arch_fset
, known_arch_fset
);
32870 /* Architecture has all features needed when using some
32871 extensions. Record it and continue searching in case there
32872 exist an architecture providing all needed features without
32873 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
32875 if (have_ext_for_needed_feat_p (&known_arch_fset
,
32882 if (p_ver_ret
== NULL
)
32886 /* Tag_CPU_arch_profile. */
32887 if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v7a
)
32888 || ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v8
)
32889 || (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_atomics
)
32890 && !ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v8m_m_only
)))
32892 else if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v7r
))
32894 else if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_m
))
32898 return p_ver_ret
->val
;
32901 /* Set the public EABI object attributes. */
32904 aeabi_set_public_attributes (void)
32906 char profile
= '\0';
32909 int fp16_optional
= 0;
32910 int skip_exact_match
= 0;
32911 arm_feature_set flags
, flags_arch
, flags_ext
;
32913 /* Autodetection mode, choose the architecture based the instructions
32915 if (no_cpu_selected ())
32917 ARM_MERGE_FEATURE_SETS (flags
, arm_arch_used
, thumb_arch_used
);
32919 if (ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
))
32920 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v1
);
32922 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_any
))
32923 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v4t
);
32925 /* Code run during relaxation relies on selected_cpu being set. */
32926 ARM_CLEAR_FEATURE (flags_arch
, flags
, fpu_any
);
32927 flags_ext
= arm_arch_none
;
32928 ARM_CLEAR_FEATURE (selected_arch
, flags_arch
, flags_ext
);
32929 selected_ext
= flags_ext
;
32930 selected_cpu
= flags
;
32932 /* Otherwise, choose the architecture based on the capabilities of the
32936 ARM_MERGE_FEATURE_SETS (flags_arch
, selected_arch
, selected_ext
);
32937 ARM_CLEAR_FEATURE (flags_arch
, flags_arch
, fpu_any
);
32938 flags_ext
= selected_ext
;
32939 flags
= selected_cpu
;
32941 ARM_MERGE_FEATURE_SETS (flags
, flags
, selected_fpu
);
32943 /* Allow the user to override the reported architecture. */
32944 if (!ARM_FEATURE_ZERO (selected_object_arch
))
32946 ARM_CLEAR_FEATURE (flags_arch
, selected_object_arch
, fpu_any
);
32947 flags_ext
= arm_arch_none
;
32950 skip_exact_match
= ARM_FEATURE_EQUAL (selected_cpu
, arm_arch_any
);
32952 /* When this function is run again after relaxation has happened there is no
32953 way to determine whether an architecture or CPU was specified by the user:
32954 - selected_cpu is set above for relaxation to work;
32955 - march_cpu_opt is not set if only -mcpu or .cpu is used;
32956 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
32957 Therefore, if not in -march=all case we first try an exact match and fall
32958 back to autodetection. */
32959 if (!skip_exact_match
)
32960 arch
= get_aeabi_cpu_arch_from_fset (&flags_arch
, &flags_ext
, &profile
, 1);
32962 arch
= get_aeabi_cpu_arch_from_fset (&flags_arch
, &flags_ext
, &profile
, 0);
32964 as_bad (_("no architecture contains all the instructions used\n"));
32966 /* Tag_CPU_name. */
32967 if (selected_cpu_name
[0])
32971 q
= selected_cpu_name
;
32972 if (strncmp (q
, "armv", 4) == 0)
32977 for (i
= 0; q
[i
]; i
++)
32978 q
[i
] = TOUPPER (q
[i
]);
32980 aeabi_set_attribute_string (Tag_CPU_name
, q
);
32983 /* Tag_CPU_arch. */
32984 aeabi_set_attribute_int (Tag_CPU_arch
, arch
);
32986 /* Tag_CPU_arch_profile. */
32987 if (profile
!= '\0')
32988 aeabi_set_attribute_int (Tag_CPU_arch_profile
, profile
);
32990 /* Tag_DSP_extension. */
32991 if (ARM_CPU_HAS_FEATURE (selected_ext
, arm_ext_dsp
))
32992 aeabi_set_attribute_int (Tag_DSP_extension
, 1);
32994 ARM_CLEAR_FEATURE (flags_arch
, flags
, fpu_any
);
32995 /* Tag_ARM_ISA_use. */
32996 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v1
)
32997 || ARM_FEATURE_ZERO (flags_arch
))
32998 aeabi_set_attribute_int (Tag_ARM_ISA_use
, 1);
33000 /* Tag_THUMB_ISA_use. */
33001 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v4t
)
33002 || ARM_FEATURE_ZERO (flags_arch
))
33006 if (!ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
)
33007 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8m_m_only
))
33009 else if (ARM_CPU_HAS_FEATURE (flags
, arm_arch_t2
))
33013 aeabi_set_attribute_int (Tag_THUMB_ISA_use
, thumb_isa_use
);
33016 /* Tag_VFP_arch. */
33017 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_armv8xd
))
33018 aeabi_set_attribute_int (Tag_VFP_arch
,
33019 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
33021 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_fma
))
33022 aeabi_set_attribute_int (Tag_VFP_arch
,
33023 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
33025 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
))
33028 aeabi_set_attribute_int (Tag_VFP_arch
, 3);
33030 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v3xd
))
33032 aeabi_set_attribute_int (Tag_VFP_arch
, 4);
33035 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v2
))
33036 aeabi_set_attribute_int (Tag_VFP_arch
, 2);
33037 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
)
33038 || ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
))
33039 aeabi_set_attribute_int (Tag_VFP_arch
, 1);
33041 /* Tag_ABI_HardFP_use. */
33042 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
)
33043 && !ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
))
33044 aeabi_set_attribute_int (Tag_ABI_HardFP_use
, 1);
33046 /* Tag_WMMX_arch. */
33047 if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt2
))
33048 aeabi_set_attribute_int (Tag_WMMX_arch
, 2);
33049 else if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt
))
33050 aeabi_set_attribute_int (Tag_WMMX_arch
, 1);
33052 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
33053 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v8_1
))
33054 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 4);
33055 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_armv8
))
33056 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 3);
33057 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v1
))
33059 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_fma
))
33061 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 2);
33065 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 1);
33070 if (ARM_CPU_HAS_FEATURE (flags
, mve_fp_ext
))
33071 aeabi_set_attribute_int (Tag_MVE_arch
, 2);
33072 else if (ARM_CPU_HAS_FEATURE (flags
, mve_ext
))
33073 aeabi_set_attribute_int (Tag_MVE_arch
, 1);
33075 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
33076 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_fp16
) && fp16_optional
)
33077 aeabi_set_attribute_int (Tag_VFP_HP_extension
, 1);
33081 We set Tag_DIV_use to two when integer divide instructions have been used
33082 in ARM state, or when Thumb integer divide instructions have been used,
33083 but we have no architecture profile set, nor have we any ARM instructions.
33085 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
33086 by the base architecture.
33088 For new architectures we will have to check these tests. */
33089 gas_assert (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
33090 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
)
33091 || ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8m
))
33092 aeabi_set_attribute_int (Tag_DIV_use
, 0);
33093 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_adiv
)
33094 || (profile
== '\0'
33095 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_div
)
33096 && !ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
)))
33097 aeabi_set_attribute_int (Tag_DIV_use
, 2);
33099 /* Tag_MP_extension_use. */
33100 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_mp
))
33101 aeabi_set_attribute_int (Tag_MPextension_use
, 1);
33103 /* Tag Virtualization_use. */
33104 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_sec
))
33106 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_virt
))
33109 aeabi_set_attribute_int (Tag_Virtualization_use
, virt_sec
);
33111 if (fp16_format
!= ARM_FP16_FORMAT_DEFAULT
)
33112 aeabi_set_attribute_int (Tag_ABI_FP_16bit_format
, fp16_format
);
33115 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
33116 finished and free extension feature bits which will not be used anymore. */
33119 arm_md_post_relax (void)
33121 aeabi_set_public_attributes ();
33122 XDELETE (mcpu_ext_opt
);
33123 mcpu_ext_opt
= NULL
;
33124 XDELETE (march_ext_opt
);
33125 march_ext_opt
= NULL
;
33128 /* Add the default contents for the .ARM.attributes section. */
33133 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
33136 aeabi_set_public_attributes ();
33138 #endif /* OBJ_ELF */
33140 /* Parse a .cpu directive. */
33143 s_arm_cpu (int ignored ATTRIBUTE_UNUSED
)
33145 const struct arm_cpu_option_table
*opt
;
33149 name
= input_line_pointer
;
33150 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
33151 input_line_pointer
++;
33152 saved_char
= *input_line_pointer
;
33153 *input_line_pointer
= 0;
33155 /* Skip the first "all" entry. */
33156 for (opt
= arm_cpus
+ 1; opt
->name
!= NULL
; opt
++)
33157 if (streq (opt
->name
, name
))
33159 selected_arch
= opt
->value
;
33160 selected_ext
= opt
->ext
;
33161 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
33162 if (opt
->canonical_name
)
33163 strcpy (selected_cpu_name
, opt
->canonical_name
);
33167 for (i
= 0; opt
->name
[i
]; i
++)
33168 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
33170 selected_cpu_name
[i
] = 0;
33172 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
33174 *input_line_pointer
= saved_char
;
33175 demand_empty_rest_of_line ();
33178 as_bad (_("unknown cpu `%s'"), name
);
33179 *input_line_pointer
= saved_char
;
33180 ignore_rest_of_line ();
33183 /* Parse a .arch directive. */
33186 s_arm_arch (int ignored ATTRIBUTE_UNUSED
)
33188 const struct arm_arch_option_table
*opt
;
33192 name
= input_line_pointer
;
33193 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
33194 input_line_pointer
++;
33195 saved_char
= *input_line_pointer
;
33196 *input_line_pointer
= 0;
33198 /* Skip the first "all" entry. */
33199 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
33200 if (streq (opt
->name
, name
))
33202 selected_arch
= opt
->value
;
33203 selected_ctx_ext_table
= opt
->ext_table
;
33204 selected_ext
= arm_arch_none
;
33205 selected_cpu
= selected_arch
;
33206 strcpy (selected_cpu_name
, opt
->name
);
33207 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
33208 *input_line_pointer
= saved_char
;
33209 demand_empty_rest_of_line ();
33213 as_bad (_("unknown architecture `%s'\n"), name
);
33214 *input_line_pointer
= saved_char
;
33215 ignore_rest_of_line ();
33218 /* Parse a .object_arch directive. */
33221 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED
)
33223 const struct arm_arch_option_table
*opt
;
33227 name
= input_line_pointer
;
33228 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
33229 input_line_pointer
++;
33230 saved_char
= *input_line_pointer
;
33231 *input_line_pointer
= 0;
33233 /* Skip the first "all" entry. */
33234 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
33235 if (streq (opt
->name
, name
))
33237 selected_object_arch
= opt
->value
;
33238 *input_line_pointer
= saved_char
;
33239 demand_empty_rest_of_line ();
33243 as_bad (_("unknown architecture `%s'\n"), name
);
33244 *input_line_pointer
= saved_char
;
33245 ignore_rest_of_line ();
33248 /* Parse a .arch_extension directive. */
33251 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED
)
33253 const struct arm_option_extension_value_table
*opt
;
33256 int adding_value
= 1;
33258 name
= input_line_pointer
;
33259 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
33260 input_line_pointer
++;
33261 saved_char
= *input_line_pointer
;
33262 *input_line_pointer
= 0;
33264 if (strlen (name
) >= 2
33265 && strncmp (name
, "no", 2) == 0)
33271 /* Check the context specific extension table */
33272 if (selected_ctx_ext_table
)
33274 const struct arm_ext_table
* ext_opt
;
33275 for (ext_opt
= selected_ctx_ext_table
; ext_opt
->name
!= NULL
; ext_opt
++)
33277 if (streq (ext_opt
->name
, name
))
33281 if (ARM_FEATURE_ZERO (ext_opt
->merge
))
33282 /* TODO: Option not supported. When we remove the
33283 legacy table this case should error out. */
33285 ARM_MERGE_FEATURE_SETS (selected_ext
, selected_ext
,
33289 ARM_CLEAR_FEATURE (selected_ext
, selected_ext
, ext_opt
->clear
);
33291 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
33292 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
33293 *input_line_pointer
= saved_char
;
33294 demand_empty_rest_of_line ();
33300 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
33301 if (streq (opt
->name
, name
))
33303 int i
, nb_allowed_archs
=
33304 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[i
]);
33305 for (i
= 0; i
< nb_allowed_archs
; i
++)
33308 if (ARM_CPU_IS_ANY (opt
->allowed_archs
[i
]))
33310 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], selected_arch
))
33314 if (i
== nb_allowed_archs
)
33316 as_bad (_("architectural extension `%s' is not allowed for the "
33317 "current base architecture"), name
);
33322 ARM_MERGE_FEATURE_SETS (selected_ext
, selected_ext
,
33325 ARM_CLEAR_FEATURE (selected_ext
, selected_ext
, opt
->clear_value
);
33327 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
33328 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
33329 *input_line_pointer
= saved_char
;
33330 demand_empty_rest_of_line ();
33331 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
33332 on this return so that duplicate extensions (extensions with the
33333 same name as a previous extension in the list) are not considered
33334 for command-line parsing. */
33338 if (opt
->name
== NULL
)
33339 as_bad (_("unknown architecture extension `%s'\n"), name
);
33341 *input_line_pointer
= saved_char
;
33342 ignore_rest_of_line ();
33345 /* Parse a .fpu directive. */
33348 s_arm_fpu (int ignored ATTRIBUTE_UNUSED
)
33350 const struct arm_option_fpu_value_table
*opt
;
33354 name
= input_line_pointer
;
33355 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
33356 input_line_pointer
++;
33357 saved_char
= *input_line_pointer
;
33358 *input_line_pointer
= 0;
33360 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
33361 if (streq (opt
->name
, name
))
33363 selected_fpu
= opt
->value
;
33364 ARM_CLEAR_FEATURE (selected_cpu
, selected_cpu
, fpu_any
);
33365 #ifndef CPU_DEFAULT
33366 if (no_cpu_selected ())
33367 ARM_MERGE_FEATURE_SETS (cpu_variant
, arm_arch_any
, selected_fpu
);
33370 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
33371 *input_line_pointer
= saved_char
;
33372 demand_empty_rest_of_line ();
33376 as_bad (_("unknown floating point format `%s'\n"), name
);
33377 *input_line_pointer
= saved_char
;
33378 ignore_rest_of_line ();
33381 /* Copy symbol information. */
33384 arm_copy_symbol_attributes (symbolS
*dest
, symbolS
*src
)
33386 ARM_GET_FLAG (dest
) = ARM_GET_FLAG (src
);
33390 /* Given a symbolic attribute NAME, return the proper integer value.
33391 Returns -1 if the attribute is not known. */
33394 arm_convert_symbolic_attribute (const char *name
)
33396 static const struct
33401 attribute_table
[] =
33403 /* When you modify this table you should
33404 also modify the list in doc/c-arm.texi. */
33405 #define T(tag) {#tag, tag}
33406 T (Tag_CPU_raw_name
),
33409 T (Tag_CPU_arch_profile
),
33410 T (Tag_ARM_ISA_use
),
33411 T (Tag_THUMB_ISA_use
),
33415 T (Tag_Advanced_SIMD_arch
),
33416 T (Tag_PCS_config
),
33417 T (Tag_ABI_PCS_R9_use
),
33418 T (Tag_ABI_PCS_RW_data
),
33419 T (Tag_ABI_PCS_RO_data
),
33420 T (Tag_ABI_PCS_GOT_use
),
33421 T (Tag_ABI_PCS_wchar_t
),
33422 T (Tag_ABI_FP_rounding
),
33423 T (Tag_ABI_FP_denormal
),
33424 T (Tag_ABI_FP_exceptions
),
33425 T (Tag_ABI_FP_user_exceptions
),
33426 T (Tag_ABI_FP_number_model
),
33427 T (Tag_ABI_align_needed
),
33428 T (Tag_ABI_align8_needed
),
33429 T (Tag_ABI_align_preserved
),
33430 T (Tag_ABI_align8_preserved
),
33431 T (Tag_ABI_enum_size
),
33432 T (Tag_ABI_HardFP_use
),
33433 T (Tag_ABI_VFP_args
),
33434 T (Tag_ABI_WMMX_args
),
33435 T (Tag_ABI_optimization_goals
),
33436 T (Tag_ABI_FP_optimization_goals
),
33437 T (Tag_compatibility
),
33438 T (Tag_CPU_unaligned_access
),
33439 T (Tag_FP_HP_extension
),
33440 T (Tag_VFP_HP_extension
),
33441 T (Tag_ABI_FP_16bit_format
),
33442 T (Tag_MPextension_use
),
33444 T (Tag_nodefaults
),
33445 T (Tag_also_compatible_with
),
33446 T (Tag_conformance
),
33448 T (Tag_Virtualization_use
),
33449 T (Tag_DSP_extension
),
33451 /* We deliberately do not include Tag_MPextension_use_legacy. */
33459 for (i
= 0; i
< ARRAY_SIZE (attribute_table
); i
++)
33460 if (streq (name
, attribute_table
[i
].name
))
33461 return attribute_table
[i
].tag
;
33466 /* Apply sym value for relocations only in the case that they are for
33467 local symbols in the same segment as the fixup and you have the
33468 respective architectural feature for blx and simple switches. */
33471 arm_apply_sym_value (struct fix
* fixP
, segT this_seg
)
33474 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
33475 /* PR 17444: If the local symbol is in a different section then a reloc
33476 will always be generated for it, so applying the symbol value now
33477 will result in a double offset being stored in the relocation. */
33478 && (S_GET_SEGMENT (fixP
->fx_addsy
) == this_seg
)
33479 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
))
33481 switch (fixP
->fx_r_type
)
33483 case BFD_RELOC_ARM_PCREL_BLX
:
33484 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
33485 if (ARM_IS_FUNC (fixP
->fx_addsy
))
33489 case BFD_RELOC_ARM_PCREL_CALL
:
33490 case BFD_RELOC_THUMB_PCREL_BLX
:
33491 if (THUMB_IS_FUNC (fixP
->fx_addsy
))
33502 #endif /* OBJ_ELF */