Updated Malay translation for the bfd sub-directory
[binutils-gdb.git] / gdb / m68hc11-tdep.c
blob12cd0efbbe73711536a4cc1cf31a4af8a66c615f
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
3 Copyright (C) 1999-2024 Free Software Foundation, Inc.
5 Contributed by Stephane Carrez, stcarrez@nerim.fr
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "extract-store-integer.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2/frame.h"
28 #include "trad-frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "cli/cli-cmds.h"
32 #include "gdbcore.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "gdbarch.h"
43 #include "target.h"
44 #include "opcode/m68hc11.h"
45 #include "elf/m68hc11.h"
46 #include "elf-bfd.h"
48 /* Macros for setting and testing a bit in a minimal symbol.
49 For 68HC11/68HC12 we have two flags that tell which return
50 type the function is using. This is used for prologue and frame
51 analysis to compute correct stack frame layout.
53 The MSB of the minimal symbol's "info" field is used for this purpose.
55 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
56 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
57 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
58 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
60 #define MSYMBOL_SET_RTC(msym) \
61 (msym)->set_target_flag_1 (true)
63 #define MSYMBOL_SET_RTI(msym) \
64 (msym)->set_target_flag_2 (true)
66 #define MSYMBOL_IS_RTC(msym) \
67 (msym)->target_flag_1 ()
69 #define MSYMBOL_IS_RTI(msym) \
70 (msym)->target_flag_2 ()
72 enum insn_return_kind {
73 RETURN_RTS,
74 RETURN_RTC,
75 RETURN_RTI
79 /* Register numbers of various important registers. */
81 #define HARD_X_REGNUM 0
82 #define HARD_D_REGNUM 1
83 #define HARD_Y_REGNUM 2
84 #define HARD_SP_REGNUM 3
85 #define HARD_PC_REGNUM 4
87 #define HARD_A_REGNUM 5
88 #define HARD_B_REGNUM 6
89 #define HARD_CCR_REGNUM 7
91 /* 68HC12 page number register.
92 Note: to keep a compatibility with gcc register naming, we must
93 not have to rename FP and other soft registers. The page register
94 is a real hard register and must therefore be counted by gdbarch_num_regs.
95 For this it has the same number as Z register (which is not used). */
96 #define HARD_PAGE_REGNUM 8
97 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
99 /* Z is replaced by X or Y by gcc during machine reorg.
100 ??? There is no way to get it and even know whether
101 it's in X or Y or in ZS. */
102 #define SOFT_Z_REGNUM 8
104 /* Soft registers. These registers are special. There are treated
105 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
106 They are physically located in memory. */
107 #define SOFT_FP_REGNUM 9
108 #define SOFT_TMP_REGNUM 10
109 #define SOFT_ZS_REGNUM 11
110 #define SOFT_XY_REGNUM 12
111 #define SOFT_UNUSED_REGNUM 13
112 #define SOFT_D1_REGNUM 14
113 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
114 #define M68HC11_MAX_SOFT_REGS 32
116 #define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1)
117 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
118 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
120 #define M68HC11_REG_SIZE (2)
122 #define M68HC12_NUM_REGS (9)
123 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
124 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
126 struct insn_sequence;
127 struct m68gc11_gdbarch_tdep : gdbarch_tdep_base
129 /* Stack pointer correction value. For 68hc11, the stack pointer points
130 to the next push location. An offset of 1 must be applied to obtain
131 the address where the last value is saved. For 68hc12, the stack
132 pointer points to the last value pushed. No offset is necessary. */
133 int stack_correction = 0;
135 /* Description of instructions in the prologue. */
136 struct insn_sequence *prologue = nullptr;
138 /* True if the page memory bank register is available
139 and must be used. */
140 int use_page_register = 0;
142 /* ELF flags for ABI. */
143 int elf_flags = 0;
146 static int
147 stack_correction (gdbarch *arch)
149 m68gc11_gdbarch_tdep *tdep = gdbarch_tdep<m68gc11_gdbarch_tdep> (arch);
150 return tdep->stack_correction;
153 static int
154 use_page_register (gdbarch *arch)
156 m68gc11_gdbarch_tdep *tdep = gdbarch_tdep<m68gc11_gdbarch_tdep> (arch);
157 return tdep->stack_correction;
160 struct m68hc11_unwind_cache
162 /* The previous frame's inner most stack address. Used as this
163 frame ID's stack_addr. */
164 CORE_ADDR prev_sp;
165 /* The frame's base, optionally used by the high-level debug info. */
166 CORE_ADDR base;
167 CORE_ADDR pc;
168 int size;
169 int prologue_type;
170 CORE_ADDR return_pc;
171 CORE_ADDR sp_offset;
172 int frameless;
173 enum insn_return_kind return_kind;
175 /* Table indicating the location of each and every register. */
176 trad_frame_saved_reg *saved_regs;
179 /* Table of registers for 68HC11. This includes the hard registers
180 and the soft registers used by GCC. */
181 static const char *
182 m68hc11_register_names[] =
184 "x", "d", "y", "sp", "pc", "a", "b",
185 "ccr", "page", "frame","tmp", "zs", "xy", 0,
186 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
187 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
188 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
189 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
190 "d29", "d30", "d31", "d32"
193 struct m68hc11_soft_reg
195 const char *name;
196 CORE_ADDR addr;
199 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
201 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
203 static int soft_min_addr;
204 static int soft_max_addr;
205 static int soft_reg_initialized = 0;
207 /* Look in the symbol table for the address of a pseudo register
208 in memory. If we don't find it, pretend the register is not used
209 and not available. */
210 static void
211 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
213 bound_minimal_symbol msymbol
214 = lookup_minimal_symbol (current_program_space, name);
215 if (msymbol.minsym)
217 reg->addr = msymbol.value_address ();
218 reg->name = xstrdup (name);
220 /* Keep track of the address range for soft registers. */
221 if (reg->addr < (CORE_ADDR) soft_min_addr)
222 soft_min_addr = reg->addr;
223 if (reg->addr > (CORE_ADDR) soft_max_addr)
224 soft_max_addr = reg->addr;
226 else
228 reg->name = 0;
229 reg->addr = 0;
233 /* Initialize the table of soft register addresses according
234 to the symbol table. */
235 static void
236 m68hc11_initialize_register_info (void)
238 int i;
240 if (soft_reg_initialized)
241 return;
243 soft_min_addr = INT_MAX;
244 soft_max_addr = 0;
245 for (i = 0; i < M68HC11_ALL_REGS; i++)
247 soft_regs[i].name = 0;
250 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
251 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
252 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
253 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
254 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
256 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
258 char buf[10];
260 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
261 m68hc11_get_register_info (&soft_regs[i], buf);
264 if (soft_regs[SOFT_FP_REGNUM].name == 0)
265 warning (_("No frame soft register found in the symbol table.\n"
266 "Stack backtrace will not work."));
267 soft_reg_initialized = 1;
270 /* Given an address in memory, return the soft register number if
271 that address corresponds to a soft register. Returns -1 if not. */
272 static int
273 m68hc11_which_soft_register (CORE_ADDR addr)
275 int i;
277 if (addr < soft_min_addr || addr > soft_max_addr)
278 return -1;
280 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
282 if (soft_regs[i].name && soft_regs[i].addr == addr)
283 return i;
285 return -1;
288 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
289 pseudo registers. They are located in memory. Translate the register
290 fetch into a memory read. */
291 static enum register_status
292 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
293 readable_regcache *regcache,
294 int regno, gdb_byte *buf)
296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
298 /* The PC is a pseudo reg only for 68HC12 with the memory bank
299 addressing mode. */
300 if (regno == M68HC12_HARD_PC_REGNUM)
302 ULONGEST pc;
303 const int regsize = 4;
304 enum register_status status;
306 status = regcache->cooked_read (HARD_PC_REGNUM, &pc);
307 if (status != REG_VALID)
308 return status;
309 if (pc >= 0x8000 && pc < 0xc000)
311 ULONGEST page;
313 regcache->cooked_read (HARD_PAGE_REGNUM, &page);
314 pc -= 0x8000;
315 pc += (page << 14);
316 pc += 0x1000000;
318 store_unsigned_integer (buf, regsize, byte_order, pc);
319 return REG_VALID;
322 m68hc11_initialize_register_info ();
324 /* Fetch a soft register: translate into a memory read. */
325 if (soft_regs[regno].name)
327 target_read_memory (soft_regs[regno].addr, buf, 2);
329 else
331 memset (buf, 0, 2);
334 return REG_VALID;
337 /* Store a pseudo register. Translate the register store
338 into a memory write. */
339 static void
340 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
341 struct regcache *regcache,
342 int regno, const gdb_byte *buf)
344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
346 /* The PC is a pseudo reg only for 68HC12 with the memory bank
347 addressing mode. */
348 if (regno == M68HC12_HARD_PC_REGNUM)
350 const int regsize = 4;
351 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
352 CORE_ADDR pc;
354 memcpy (tmp, buf, regsize);
355 pc = extract_unsigned_integer (tmp, regsize, byte_order);
356 if (pc >= 0x1000000)
358 pc -= 0x1000000;
359 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
360 (pc >> 14) & 0x0ff);
361 pc &= 0x03fff;
362 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
363 pc + 0x8000);
365 else
366 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
367 return;
370 m68hc11_initialize_register_info ();
372 /* Store a soft register: translate into a memory write. */
373 if (soft_regs[regno].name)
375 const int regsize = 2;
376 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
377 memcpy (tmp, buf, regsize);
378 target_write_memory (soft_regs[regno].addr, tmp, regsize);
382 static const char *
383 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
385 if (reg_nr == M68HC12_HARD_PC_REGNUM && use_page_register (gdbarch))
386 return "pc";
388 if (reg_nr == HARD_PC_REGNUM && use_page_register (gdbarch))
389 return "ppc";
391 if (reg_nr >= M68HC11_ALL_REGS)
392 return "";
394 m68hc11_initialize_register_info ();
396 /* If we don't know the address of a soft register, pretend it
397 does not exist. */
398 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
399 return "";
401 return m68hc11_register_names[reg_nr];
404 constexpr gdb_byte m68hc11_break_insn[] = {0x0};
406 typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
408 /* 68HC11 & 68HC12 prologue analysis. */
410 #define MAX_CODES 12
412 /* 68HC11 opcodes. */
413 #undef M6811_OP_PAGE2
414 #define M6811_OP_PAGE2 (0x18)
415 #define M6811_OP_LDX (0xde)
416 #define M6811_OP_LDX_EXT (0xfe)
417 #define M6811_OP_PSHX (0x3c)
418 #define M6811_OP_STS (0x9f)
419 #define M6811_OP_STS_EXT (0xbf)
420 #define M6811_OP_TSX (0x30)
421 #define M6811_OP_XGDX (0x8f)
422 #define M6811_OP_ADDD (0xc3)
423 #define M6811_OP_TXS (0x35)
424 #define M6811_OP_DES (0x34)
426 /* 68HC12 opcodes. */
427 #define M6812_OP_PAGE2 (0x18)
428 #define M6812_OP_MOVW (0x01)
429 #define M6812_PB_PSHW (0xae)
430 #define M6812_OP_STS (0x5f)
431 #define M6812_OP_STS_EXT (0x7f)
432 #define M6812_OP_LEAS (0x1b)
433 #define M6812_OP_PSHX (0x34)
434 #define M6812_OP_PSHY (0x35)
436 /* Operand extraction. */
437 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
438 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
439 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
440 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
442 /* Identification of the sequence. */
443 enum m6811_seq_type
445 P_LAST = 0,
446 P_SAVE_REG, /* Save a register on the stack. */
447 P_SET_FRAME, /* Setup the frame pointer. */
448 P_LOCAL_1, /* Allocate 1 byte for locals. */
449 P_LOCAL_2, /* Allocate 2 bytes for locals. */
450 P_LOCAL_N /* Allocate N bytes for locals. */
453 struct insn_sequence {
454 enum m6811_seq_type type;
455 unsigned length;
456 unsigned short code[MAX_CODES];
459 /* Sequence of instructions in the 68HC11 function prologue. */
460 static struct insn_sequence m6811_prologue[] = {
461 /* Sequences to save a soft-register. */
462 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
463 M6811_OP_PSHX } },
464 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
465 M6811_OP_PAGE2, M6811_OP_PSHX } },
466 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_PSHX } },
468 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_PSHX } },
471 /* Sequences to allocate local variables. */
472 { P_LOCAL_N, 7, { M6811_OP_TSX,
473 M6811_OP_XGDX,
474 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
475 M6811_OP_XGDX,
476 M6811_OP_TXS } },
477 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
478 M6811_OP_PAGE2, M6811_OP_XGDX,
479 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
480 M6811_OP_PAGE2, M6811_OP_XGDX,
481 M6811_OP_PAGE2, M6811_OP_TXS } },
482 { P_LOCAL_1, 1, { M6811_OP_DES } },
483 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
484 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
486 /* Initialize the frame pointer. */
487 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
488 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
489 { P_LAST, 0, { 0 } }
493 /* Sequence of instructions in the 68HC12 function prologue. */
494 static struct insn_sequence m6812_prologue[] = {
495 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
496 OP_IMM_HIGH, OP_IMM_LOW } },
497 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
498 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
499 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
500 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
501 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
502 { P_LAST, 0 }
506 /* Analyze the sequence of instructions starting at the given address.
507 Returns a pointer to the sequence when it is recognized and
508 the optional value (constant/address) associated with it. */
509 static struct insn_sequence *
510 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
511 struct insn_sequence *seq, CORE_ADDR pc,
512 CORE_ADDR *val)
514 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
515 unsigned char buffer[MAX_CODES];
516 unsigned bufsize;
517 unsigned j;
518 CORE_ADDR cur_val;
519 short v = 0;
521 bufsize = 0;
522 for (; seq->type != P_LAST; seq++)
524 cur_val = 0;
525 for (j = 0; j < seq->length; j++)
527 if (bufsize < j + 1)
529 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
530 1, byte_order);
531 bufsize++;
533 /* Continue while we match the opcode. */
534 if (seq->code[j] == buffer[j])
535 continue;
537 if ((seq->code[j] & 0xf00) == 0)
538 break;
540 /* Extract a sequence parameter (address or constant). */
541 switch (seq->code[j])
543 case OP_DIRECT:
544 cur_val = (CORE_ADDR) buffer[j];
545 break;
547 case OP_IMM_HIGH:
548 cur_val = cur_val & 0x0ff;
549 cur_val |= (buffer[j] << 8);
550 break;
552 case OP_IMM_LOW:
553 cur_val &= 0x0ff00;
554 cur_val |= buffer[j];
555 break;
557 case OP_PBYTE:
558 if ((buffer[j] & 0xE0) == 0x80)
560 v = buffer[j] & 0x1f;
561 if (v & 0x10)
562 v |= 0xfff0;
564 else if ((buffer[j] & 0xfe) == 0xf0)
566 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
567 if (buffer[j] & 1)
568 v |= 0xff00;
570 else if (buffer[j] == 0xf2)
572 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
574 cur_val = v;
575 break;
579 /* We have a full match. */
580 if (j == seq->length)
582 *val = cur_val;
583 return seq;
586 return 0;
589 /* Return the instruction that the function at the PC is using. */
590 static enum insn_return_kind
591 m68hc11_get_return_insn (CORE_ADDR pc)
593 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
594 function is stored by elfread.c in the high bit of the info field.
595 Use this to decide which instruction the function uses to return. */
596 bound_minimal_symbol sym = lookup_minimal_symbol_by_pc (pc);
597 if (sym.minsym == 0)
598 return RETURN_RTS;
600 if (MSYMBOL_IS_RTC (sym.minsym))
601 return RETURN_RTC;
602 else if (MSYMBOL_IS_RTI (sym.minsym))
603 return RETURN_RTI;
604 else
605 return RETURN_RTS;
608 /* Analyze the function prologue to find some information
609 about the function:
610 - the PC of the first line (for m68hc11_skip_prologue)
611 - the offset of the previous frame saved address (from current frame)
612 - the soft registers which are pushed. */
613 static CORE_ADDR
614 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
615 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
617 LONGEST save_addr;
618 CORE_ADDR func_end;
619 int size;
620 int found_frame_point;
621 int saved_reg;
622 int done = 0;
623 struct insn_sequence *seq_table;
625 info->size = 0;
626 info->sp_offset = 0;
627 if (pc >= current_pc)
628 return current_pc;
630 size = 0;
632 m68hc11_initialize_register_info ();
633 if (pc == 0)
635 info->size = 0;
636 return pc;
639 m68gc11_gdbarch_tdep *tdep = gdbarch_tdep<m68gc11_gdbarch_tdep> (gdbarch);
640 seq_table = tdep->prologue;
642 /* The 68hc11 stack is as follows:
646 +-----------+
648 | args |
650 +-----------+
651 | PC-return |
652 +-----------+
653 | Old frame |
654 +-----------+
656 | Locals |
658 +-----------+ <--- current frame
661 With most processors (like 68K) the previous frame can be computed
662 easily because it is always at a fixed offset (see link/unlink).
663 That is, locals are accessed with negative offsets, arguments are
664 accessed with positive ones. Since 68hc11 only supports offsets
665 in the range [0..255], the frame is defined at the bottom of
666 locals (see picture).
668 The purpose of the analysis made here is to find out the size
669 of locals in this function. An alternative to this is to use
670 DWARF2 info. This would be better but I don't know how to
671 access dwarf2 debug from this function.
673 Walk from the function entry point to the point where we save
674 the frame. While walking instructions, compute the size of bytes
675 which are pushed. This gives us the index to access the previous
676 frame.
678 We limit the search to 128 bytes so that the algorithm is bounded
679 in case of random and wrong code. We also stop and abort if
680 we find an instruction which is not supposed to appear in the
681 prologue (as generated by gcc 2.95, 2.96). */
683 func_end = pc + 128;
684 found_frame_point = 0;
685 info->size = 0;
686 save_addr = 0;
687 while (!done && pc + 2 < func_end)
689 struct insn_sequence *seq;
690 CORE_ADDR val;
692 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
693 if (seq == 0)
694 break;
696 /* If we are within the instruction group, we can't advance the
697 pc nor the stack offset. Otherwise the caller's stack computed
698 from the current stack can be wrong. */
699 if (pc + seq->length > current_pc)
700 break;
702 pc = pc + seq->length;
703 if (seq->type == P_SAVE_REG)
705 if (found_frame_point)
707 saved_reg = m68hc11_which_soft_register (val);
708 if (saved_reg < 0)
709 break;
711 save_addr -= 2;
712 if (info->saved_regs)
713 info->saved_regs[saved_reg].set_addr (save_addr);
715 else
717 size += 2;
720 else if (seq->type == P_SET_FRAME)
722 found_frame_point = 1;
723 info->size = size;
725 else if (seq->type == P_LOCAL_1)
727 size += 1;
729 else if (seq->type == P_LOCAL_2)
731 size += 2;
733 else if (seq->type == P_LOCAL_N)
735 /* Stack pointer is decremented for the allocation. */
736 if (val & 0x8000)
737 size -= (int) (val) | 0xffff0000;
738 else
739 size -= val;
742 if (found_frame_point == 0)
743 info->sp_offset = size;
744 else
745 info->sp_offset = -1;
746 return pc;
749 static CORE_ADDR
750 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
752 CORE_ADDR func_addr, func_end;
753 struct symtab_and_line sal;
754 struct m68hc11_unwind_cache tmp_cache = { 0 };
756 /* If we have line debugging information, then the end of the
757 prologue should be the first assembly instruction of the
758 first source line. */
759 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
761 sal = find_pc_line (func_addr, 0);
762 if (sal.end && sal.end < func_end)
763 return sal.end;
766 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
767 return pc;
770 /* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
774 for it IS the sp for the next frame. */
776 static struct m68hc11_unwind_cache *
777 m68hc11_frame_unwind_cache (const frame_info_ptr &this_frame,
778 void **this_prologue_cache)
780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
781 ULONGEST prev_sp;
782 ULONGEST this_base;
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
785 int i;
787 if ((*this_prologue_cache))
788 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
792 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
794 info->pc = get_frame_func (this_frame);
796 info->size = 0;
797 info->return_kind = m68hc11_get_return_insn (info->pc);
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
801 the next frame. */
802 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
803 if (this_base == 0)
805 info->base = 0;
806 return info;
809 current_pc = get_frame_pc (this_frame);
810 if (info->pc != 0)
811 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
813 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size);
815 if (info->sp_offset != (CORE_ADDR) -1)
817 info->saved_regs[HARD_PC_REGNUM].set_addr (info->sp_offset);
818 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
819 prev_sp = this_base + info->sp_offset + 2;
820 this_base += stack_correction (gdbarch);
822 else
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
828 this_base += stack_correction (gdbarch);
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].set_addr (info->size - 2);
833 if (info->return_kind == RETURN_RTC)
835 prev_sp += 1;
836 info->saved_regs[HARD_PAGE_REGNUM].set_addr (info->size);
837 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size + 1);
839 else if (info->return_kind == RETURN_RTI)
841 prev_sp += 7;
842 info->saved_regs[HARD_CCR_REGNUM].set_addr (info->size);
843 info->saved_regs[HARD_D_REGNUM].set_addr (info->size + 1);
844 info->saved_regs[HARD_X_REGNUM].set_addr (info->size + 3);
845 info->saved_regs[HARD_Y_REGNUM].set_addr (info->size + 5);
846 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size + 7);
849 /* Add 1 here to adjust for the post-decrement nature of the push
850 instruction. */
851 info->prev_sp = prev_sp;
853 info->base = this_base;
855 /* Adjust all the saved registers so that they contain addresses and not
856 offsets. */
857 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
858 if (info->saved_regs[i].is_addr ())
860 info->saved_regs[i].set_addr (info->saved_regs[i].addr () + this_base);
863 /* The previous frame's SP needed to be computed. Save the computed
864 value. */
865 info->saved_regs[HARD_SP_REGNUM].set_value (info->prev_sp);
867 return info;
870 /* Given a GDB frame, determine the address of the calling function's
871 frame. This will be used to create a new GDB frame struct. */
873 static void
874 m68hc11_frame_this_id (const frame_info_ptr &this_frame,
875 void **this_prologue_cache,
876 struct frame_id *this_id)
878 struct m68hc11_unwind_cache *info
879 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
880 CORE_ADDR base;
881 CORE_ADDR func;
882 struct frame_id id;
884 /* The FUNC is easy. */
885 func = get_frame_func (this_frame);
887 /* Hopefully the prologue analysis either correctly determined the
888 frame's base (which is the SP from the previous frame), or set
889 that base to "NULL". */
890 base = info->prev_sp;
891 if (base == 0)
892 return;
894 id = frame_id_build (base, func);
895 (*this_id) = id;
898 static struct value *
899 m68hc11_frame_prev_register (const frame_info_ptr &this_frame,
900 void **this_prologue_cache, int regnum)
902 struct value *value;
903 struct m68hc11_unwind_cache *info
904 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
906 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
908 /* Take into account the 68HC12 specific call (PC + page). */
909 if (regnum == HARD_PC_REGNUM
910 && info->return_kind == RETURN_RTC
911 && use_page_register (get_frame_arch (this_frame)))
913 CORE_ADDR pc = value_as_long (value);
914 if (pc >= 0x08000 && pc < 0x0c000)
916 CORE_ADDR page;
918 release_value (value);
920 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
921 HARD_PAGE_REGNUM);
922 page = value_as_long (value);
923 release_value (value);
925 pc -= 0x08000;
926 pc += ((page & 0x0ff) << 14);
927 pc += 0x1000000;
929 return frame_unwind_got_constant (this_frame, regnum, pc);
933 return value;
936 static const struct frame_unwind m68hc11_frame_unwind = {
937 "m68hc11 prologue",
938 NORMAL_FRAME,
939 default_frame_unwind_stop_reason,
940 m68hc11_frame_this_id,
941 m68hc11_frame_prev_register,
942 NULL,
943 default_frame_sniffer
946 static CORE_ADDR
947 m68hc11_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
949 struct m68hc11_unwind_cache *info
950 = m68hc11_frame_unwind_cache (this_frame, this_cache);
952 return info->base;
955 static CORE_ADDR
956 m68hc11_frame_args_address (const frame_info_ptr &this_frame, void **this_cache)
958 CORE_ADDR addr;
959 struct m68hc11_unwind_cache *info
960 = m68hc11_frame_unwind_cache (this_frame, this_cache);
962 addr = info->base + info->size;
963 if (info->return_kind == RETURN_RTC)
964 addr += 1;
965 else if (info->return_kind == RETURN_RTI)
966 addr += 7;
968 return addr;
971 static const struct frame_base m68hc11_frame_base = {
972 &m68hc11_frame_unwind,
973 m68hc11_frame_base_address,
974 m68hc11_frame_base_address,
975 m68hc11_frame_args_address
978 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
979 frame. The frame ID's base needs to match the TOS value saved by
980 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
982 static struct frame_id
983 m68hc11_dummy_id (struct gdbarch *gdbarch, const frame_info_ptr &this_frame)
985 ULONGEST tos;
986 CORE_ADDR pc = get_frame_pc (this_frame);
988 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
989 tos += 2;
990 return frame_id_build (tos, pc);
994 /* Get and print the register from the given frame. */
995 static void
996 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
997 const frame_info_ptr &frame, int regno)
999 LONGEST rval;
1001 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1002 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1003 rval = get_frame_register_unsigned (frame, regno);
1004 else
1005 rval = get_frame_register_signed (frame, regno);
1007 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1008 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1010 gdb_printf (file, "0x%02x ", (unsigned char) rval);
1011 if (regno != HARD_CCR_REGNUM)
1012 print_longest (file, 'd', 1, rval);
1014 else
1016 m68gc11_gdbarch_tdep *tdep
1017 = gdbarch_tdep<m68gc11_gdbarch_tdep> (gdbarch);
1019 if (regno == HARD_PC_REGNUM && tdep->use_page_register)
1021 ULONGEST page;
1023 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1024 gdb_printf (file, "0x%02x:%04x ", (unsigned) page,
1025 (unsigned) rval);
1027 else
1029 gdb_printf (file, "0x%04x ", (unsigned) rval);
1030 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1031 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1032 print_longest (file, 'd', 1, rval);
1036 if (regno == HARD_CCR_REGNUM)
1038 /* CCR register */
1039 int C, Z, N, V;
1040 unsigned char l = rval & 0xff;
1042 gdb_printf (file, "%c%c%c%c%c%c%c%c ",
1043 l & M6811_S_BIT ? 'S' : '-',
1044 l & M6811_X_BIT ? 'X' : '-',
1045 l & M6811_H_BIT ? 'H' : '-',
1046 l & M6811_I_BIT ? 'I' : '-',
1047 l & M6811_N_BIT ? 'N' : '-',
1048 l & M6811_Z_BIT ? 'Z' : '-',
1049 l & M6811_V_BIT ? 'V' : '-',
1050 l & M6811_C_BIT ? 'C' : '-');
1051 N = (l & M6811_N_BIT) != 0;
1052 Z = (l & M6811_Z_BIT) != 0;
1053 V = (l & M6811_V_BIT) != 0;
1054 C = (l & M6811_C_BIT) != 0;
1056 /* Print flags following the h8300. */
1057 if ((C | Z) == 0)
1058 gdb_printf (file, "u> ");
1059 else if ((C | Z) == 1)
1060 gdb_printf (file, "u<= ");
1061 else if (C == 0)
1062 gdb_printf (file, "u< ");
1064 if (Z == 0)
1065 gdb_printf (file, "!= ");
1066 else
1067 gdb_printf (file, "== ");
1069 if ((N ^ V) == 0)
1070 gdb_printf (file, ">= ");
1071 else
1072 gdb_printf (file, "< ");
1074 if ((Z | (N ^ V)) == 0)
1075 gdb_printf (file, "> ");
1076 else
1077 gdb_printf (file, "<= ");
1081 /* Same as 'info reg' but prints the registers in a different way. */
1082 static void
1083 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1084 const frame_info_ptr &frame, int regno, int cpregs)
1086 if (regno >= 0)
1088 const char *name = gdbarch_register_name (gdbarch, regno);
1090 if (*name == '\0')
1091 return;
1093 gdb_printf (file, "%-10s ", name);
1094 m68hc11_print_register (gdbarch, file, frame, regno);
1095 gdb_printf (file, "\n");
1097 else
1099 int i, nr;
1101 gdb_printf (file, "PC=");
1102 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1104 gdb_printf (file, " SP=");
1105 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1107 gdb_printf (file, " FP=");
1108 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1110 gdb_printf (file, "\nCCR=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1113 gdb_printf (file, "\nD=");
1114 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1116 gdb_printf (file, " X=");
1117 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1119 gdb_printf (file, " Y=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1122 m68gc11_gdbarch_tdep *tdep = gdbarch_tdep<m68gc11_gdbarch_tdep> (gdbarch);
1124 if (tdep->use_page_register)
1126 gdb_printf (file, "\nPage=");
1127 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1129 gdb_printf (file, "\n");
1131 nr = 0;
1132 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1134 /* Skip registers which are not defined in the symbol table. */
1135 if (soft_regs[i].name == 0)
1136 continue;
1138 gdb_printf (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1139 m68hc11_print_register (gdbarch, file, frame, i);
1140 nr++;
1141 if ((nr % 8) == 7)
1142 gdb_printf (file, "\n");
1143 else
1144 gdb_printf (file, " ");
1146 if (nr && (nr % 8) != 7)
1147 gdb_printf (file, "\n");
1151 static CORE_ADDR
1152 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1153 struct regcache *regcache, CORE_ADDR bp_addr,
1154 int nargs, struct value **args, CORE_ADDR sp,
1155 function_call_return_method return_method,
1156 CORE_ADDR struct_addr)
1158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1159 int argnum;
1160 int first_stack_argnum;
1161 struct type *type;
1162 const gdb_byte *val;
1163 gdb_byte buf[2];
1165 first_stack_argnum = 0;
1166 if (return_method == return_method_struct)
1167 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1168 else if (nargs > 0)
1170 type = args[0]->type ();
1172 /* First argument is passed in D and X registers. */
1173 if (type->length () <= 4)
1175 ULONGEST v;
1177 v = extract_unsigned_integer (args[0]->contents ().data (),
1178 type->length (), byte_order);
1179 first_stack_argnum = 1;
1181 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1182 if (type->length () > 2)
1184 v >>= 16;
1185 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1190 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1192 type = args[argnum]->type ();
1194 if (type->length () & 1)
1196 static gdb_byte zero = 0;
1198 sp--;
1199 write_memory (sp, &zero, 1);
1201 val = args[argnum]->contents ().data ();
1202 sp -= type->length ();
1203 write_memory (sp, val, type->length ());
1206 /* Store return address. */
1207 sp -= 2;
1208 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1209 write_memory (sp, buf, 2);
1211 /* Finally, update the stack pointer... */
1212 sp -= stack_correction (gdbarch);
1213 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1215 /* ...and fake a frame pointer. */
1216 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1218 /* DWARF2/GCC uses the stack address *before* the function call as a
1219 frame's CFA. */
1220 return sp + 2;
1224 /* Return the GDB type object for the "standard" data type
1225 of data in register N. */
1227 static struct type *
1228 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1230 switch (reg_nr)
1232 case HARD_PAGE_REGNUM:
1233 case HARD_A_REGNUM:
1234 case HARD_B_REGNUM:
1235 case HARD_CCR_REGNUM:
1236 return builtin_type (gdbarch)->builtin_uint8;
1238 case M68HC12_HARD_PC_REGNUM:
1239 return builtin_type (gdbarch)->builtin_uint32;
1241 default:
1242 return builtin_type (gdbarch)->builtin_uint16;
1246 static void
1247 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1248 const gdb_byte *valbuf)
1250 int len;
1252 len = type->length ();
1254 /* First argument is passed in D and X registers. */
1255 if (len <= 2)
1256 regcache->raw_write_part (HARD_D_REGNUM, 2 - len, len, valbuf);
1257 else if (len <= 4)
1259 regcache->raw_write_part (HARD_X_REGNUM, 4 - len, len - 2, valbuf);
1260 regcache->raw_write (HARD_D_REGNUM, valbuf + (len - 2));
1262 else
1263 error (_("return of value > 4 is not supported."));
1267 /* Given a return value in `regcache' with a type `type',
1268 extract and copy its value into `valbuf'. */
1270 static void
1271 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1272 void *valbuf)
1274 gdb_byte buf[M68HC11_REG_SIZE];
1276 regcache->raw_read (HARD_D_REGNUM, buf);
1277 switch (type->length ())
1279 case 1:
1280 memcpy (valbuf, buf + 1, 1);
1281 break;
1283 case 2:
1284 memcpy (valbuf, buf, 2);
1285 break;
1287 case 3:
1288 memcpy ((char*) valbuf + 1, buf, 2);
1289 regcache->raw_read (HARD_X_REGNUM, buf);
1290 memcpy (valbuf, buf + 1, 1);
1291 break;
1293 case 4:
1294 memcpy ((char*) valbuf + 2, buf, 2);
1295 regcache->raw_read (HARD_X_REGNUM, buf);
1296 memcpy (valbuf, buf, 2);
1297 break;
1299 default:
1300 error (_("bad size for return value"));
1304 static enum return_value_convention
1305 m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
1306 struct type *valtype, struct regcache *regcache,
1307 gdb_byte *readbuf, const gdb_byte *writebuf)
1309 if (valtype->code () == TYPE_CODE_STRUCT
1310 || valtype->code () == TYPE_CODE_UNION
1311 || valtype->code () == TYPE_CODE_ARRAY
1312 || valtype->length () > 4)
1313 return RETURN_VALUE_STRUCT_CONVENTION;
1314 else
1316 if (readbuf != NULL)
1317 m68hc11_extract_return_value (valtype, regcache, readbuf);
1318 if (writebuf != NULL)
1319 m68hc11_store_return_value (valtype, regcache, writebuf);
1320 return RETURN_VALUE_REGISTER_CONVENTION;
1324 /* Test whether the ELF symbol corresponds to a function using rtc or
1325 rti to return. */
1327 static void
1328 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1330 unsigned char flags;
1332 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1333 if (flags & STO_M68HC12_FAR)
1334 MSYMBOL_SET_RTC (msym);
1335 if (flags & STO_M68HC12_INTERRUPT)
1336 MSYMBOL_SET_RTI (msym);
1340 /* 68HC11/68HC12 register groups.
1341 Identify real hard registers and soft registers used by gcc. */
1343 static const reggroup *m68hc11_soft_reggroup;
1344 static const reggroup *m68hc11_hard_reggroup;
1346 static void
1347 m68hc11_init_reggroups (void)
1349 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1350 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1353 static void
1354 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1356 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1357 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1360 static int
1361 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1362 const struct reggroup *group)
1364 /* We must save the real hard register as well as gcc
1365 soft registers including the frame pointer. */
1366 if (group == save_reggroup || group == restore_reggroup)
1368 return (regnum <= gdbarch_num_regs (gdbarch)
1369 || ((regnum == SOFT_FP_REGNUM
1370 || regnum == SOFT_TMP_REGNUM
1371 || regnum == SOFT_ZS_REGNUM
1372 || regnum == SOFT_XY_REGNUM)
1373 && m68hc11_register_name (gdbarch, regnum)));
1376 /* Group to identify gcc soft registers (d1..dN). */
1377 if (group == m68hc11_soft_reggroup)
1379 return regnum >= SOFT_D1_REGNUM
1380 && m68hc11_register_name (gdbarch, regnum);
1383 if (group == m68hc11_hard_reggroup)
1385 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1386 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1387 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1389 return default_register_reggroup_p (gdbarch, regnum, group);
1392 static struct gdbarch *
1393 m68hc11_gdbarch_init (struct gdbarch_info info,
1394 struct gdbarch_list *arches)
1396 int elf_flags;
1398 soft_reg_initialized = 0;
1400 /* Extract the elf_flags if available. */
1401 if (info.abfd != NULL
1402 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1403 elf_flags = elf_elfheader (info.abfd)->e_flags;
1404 else
1405 elf_flags = 0;
1407 /* Try to find a pre-existing architecture. */
1408 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1409 arches != NULL;
1410 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1412 m68gc11_gdbarch_tdep *tdep
1413 = gdbarch_tdep<m68gc11_gdbarch_tdep> (arches->gdbarch);
1415 if (tdep->elf_flags != elf_flags)
1416 continue;
1418 return arches->gdbarch;
1421 /* Need a new architecture. Fill in a target specific vector. */
1422 gdbarch *gdbarch
1423 = gdbarch_alloc (&info, gdbarch_tdep_up (new m68gc11_gdbarch_tdep));
1424 m68gc11_gdbarch_tdep *tdep = gdbarch_tdep<m68gc11_gdbarch_tdep> (gdbarch);
1426 tdep->elf_flags = elf_flags;
1428 switch (info.bfd_arch_info->arch)
1430 case bfd_arch_m68hc11:
1431 tdep->stack_correction = 1;
1432 tdep->use_page_register = 0;
1433 tdep->prologue = m6811_prologue;
1434 set_gdbarch_addr_bit (gdbarch, 16);
1435 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1436 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1437 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1438 break;
1440 case bfd_arch_m68hc12:
1441 tdep->stack_correction = 0;
1442 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1443 tdep->prologue = m6812_prologue;
1444 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1445 set_gdbarch_num_pseudo_regs (gdbarch,
1446 elf_flags & E_M68HC12_BANKS
1447 ? M68HC12_NUM_PSEUDO_REGS
1448 : M68HC11_NUM_PSEUDO_REGS);
1449 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1450 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1451 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1452 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1453 break;
1455 default:
1456 break;
1459 /* Initially set everything according to the ABI.
1460 Use 16-bit integers since it will be the case for most
1461 programs. The size of these types should normally be set
1462 according to the dwarf2 debug information. */
1463 set_gdbarch_short_bit (gdbarch, 16);
1464 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1465 set_gdbarch_float_bit (gdbarch, 32);
1466 if (elf_flags & E_M68HC11_F64)
1468 set_gdbarch_double_bit (gdbarch, 64);
1469 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1471 else
1473 set_gdbarch_double_bit (gdbarch, 32);
1474 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1476 set_gdbarch_long_double_bit (gdbarch, 64);
1477 set_gdbarch_long_bit (gdbarch, 32);
1478 set_gdbarch_ptr_bit (gdbarch, 16);
1479 set_gdbarch_long_long_bit (gdbarch, 64);
1481 /* Characters are unsigned. */
1482 set_gdbarch_char_signed (gdbarch, 0);
1484 /* Set register info. */
1485 set_gdbarch_fp0_regnum (gdbarch, -1);
1487 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1488 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1489 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1490 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1491 set_gdbarch_deprecated_pseudo_register_write (gdbarch,
1492 m68hc11_pseudo_register_write);
1494 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1496 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1497 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1498 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1499 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1500 m68hc11_breakpoint::kind_from_pc);
1501 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1502 m68hc11_breakpoint::bp_from_kind);
1504 m68hc11_add_reggroups (gdbarch);
1505 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1506 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1508 /* Hook in the DWARF CFI frame unwinder. */
1509 dwarf2_append_unwinders (gdbarch);
1511 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1512 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1514 /* Methods for saving / extracting a dummy frame's ID. The ID's
1515 stack address must match the SP value returned by
1516 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1517 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1519 /* Minsymbol frobbing. */
1520 set_gdbarch_elf_make_msymbol_special (gdbarch,
1521 m68hc11_elf_make_msymbol_special);
1523 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1525 return gdbarch;
1528 void _initialize_m68hc11_tdep ();
1529 void
1530 _initialize_m68hc11_tdep ()
1532 gdbarch_register (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1533 gdbarch_register (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1534 m68hc11_init_reggroups ();