1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright (C) 1996-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-unwind.h"
23 #include "frame-base.h"
34 #include "arch-utils.h"
36 #include "trad-frame.h"
38 #include "m32r-tdep.h"
41 /* The size of the argument registers (r0 - r3) in bytes. */
42 #define M32R_ARG_REGISTER_SIZE 4
47 m32r_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
49 /* Align to the size of an instruction (so that they can safely be
50 pushed onto the stack. */
57 The little endian mode of M32R is unique. In most of architectures,
58 two 16-bit instructions, A and B, are placed as the following:
66 In M32R, they are placed like this:
74 This is because M32R always fetches instructions in 32-bit.
76 The following functions take care of this behavior. */
79 m32r_memory_insert_breakpoint (struct gdbarch
*gdbarch
,
80 struct bp_target_info
*bp_tgt
)
82 CORE_ADDR addr
= bp_tgt
->placed_address
= bp_tgt
->reqstd_address
;
85 gdb_byte contents_cache
[4];
86 gdb_byte bp_entry
[] = { 0x10, 0xf1 }; /* dpt */
88 /* Save the memory contents. */
89 val
= target_read_memory (addr
& 0xfffffffc, contents_cache
, 4);
91 return val
; /* return error */
93 memcpy (bp_tgt
->shadow_contents
, contents_cache
, 4);
94 bp_tgt
->shadow_len
= 4;
96 /* Determine appropriate breakpoint contents and size for this address. */
97 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
101 buf
[0] = bp_entry
[0];
102 buf
[1] = bp_entry
[1];
103 buf
[2] = contents_cache
[2] & 0x7f;
104 buf
[3] = contents_cache
[3];
108 buf
[0] = contents_cache
[0];
109 buf
[1] = contents_cache
[1];
110 buf
[2] = bp_entry
[0];
111 buf
[3] = bp_entry
[1];
114 else /* little-endian */
118 buf
[0] = contents_cache
[0];
119 buf
[1] = contents_cache
[1] & 0x7f;
120 buf
[2] = bp_entry
[1];
121 buf
[3] = bp_entry
[0];
125 buf
[0] = bp_entry
[1];
126 buf
[1] = bp_entry
[0];
127 buf
[2] = contents_cache
[2];
128 buf
[3] = contents_cache
[3];
132 /* Write the breakpoint. */
133 val
= target_write_memory (addr
& 0xfffffffc, buf
, 4);
138 m32r_memory_remove_breakpoint (struct gdbarch
*gdbarch
,
139 struct bp_target_info
*bp_tgt
)
141 CORE_ADDR addr
= bp_tgt
->placed_address
;
144 gdb_byte
*contents_cache
= bp_tgt
->shadow_contents
;
146 buf
[0] = contents_cache
[0];
147 buf
[1] = contents_cache
[1];
148 buf
[2] = contents_cache
[2];
149 buf
[3] = contents_cache
[3];
151 /* Remove parallel bit. */
152 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
154 if ((buf
[0] & 0x80) == 0 && (buf
[2] & 0x80) != 0)
157 else /* little-endian */
159 if ((buf
[3] & 0x80) == 0 && (buf
[1] & 0x80) != 0)
163 /* Write contents. */
164 val
= target_write_raw_memory (addr
& 0xfffffffc, buf
, 4);
168 /* Implement the breakpoint_kind_from_pc gdbarch method. */
171 m32r_breakpoint_kind_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
)
173 if ((*pcptr
& 3) == 0)
179 /* Implement the sw_breakpoint_from_kind gdbarch method. */
181 static const gdb_byte
*
182 m32r_sw_breakpoint_from_kind (struct gdbarch
*gdbarch
, int kind
, int *size
)
184 static gdb_byte be_bp_entry
[] = {
185 0x10, 0xf1, 0x70, 0x00
187 static gdb_byte le_bp_entry
[] = {
188 0x00, 0x70, 0xf1, 0x10
193 /* Determine appropriate breakpoint. */
194 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
201 return le_bp_entry
+ 2;
205 static const char * const m32r_register_names
[] = {
206 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
207 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
208 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
213 m32r_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
217 if (reg_nr
>= M32R_NUM_REGS
)
219 return m32r_register_names
[reg_nr
];
223 /* Return the GDB type object for the "standard" data type
224 of data in register N. */
227 m32r_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
229 if (reg_nr
== M32R_PC_REGNUM
)
230 return builtin_type (gdbarch
)->builtin_func_ptr
;
231 else if (reg_nr
== M32R_SP_REGNUM
|| reg_nr
== M32R_FP_REGNUM
)
232 return builtin_type (gdbarch
)->builtin_data_ptr
;
234 return builtin_type (gdbarch
)->builtin_int32
;
238 /* Write into appropriate registers a function return value
239 of type TYPE, given in virtual format.
241 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
244 m32r_store_return_value (struct type
*type
, struct regcache
*regcache
,
245 const gdb_byte
*valbuf
)
247 struct gdbarch
*gdbarch
= regcache
->arch ();
248 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
250 int len
= TYPE_LENGTH (type
);
252 regval
= extract_unsigned_integer (valbuf
, len
> 4 ? 4 : len
, byte_order
);
253 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
, regval
);
257 regval
= extract_unsigned_integer (valbuf
+ 4,
258 len
- 4, byte_order
);
259 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
+ 1, regval
);
263 /* This is required by skip_prologue. The results of decoding a prologue
264 should be cached because this thrashing is getting nuts. */
267 decode_prologue (struct gdbarch
*gdbarch
,
268 CORE_ADDR start_pc
, CORE_ADDR scan_limit
,
269 CORE_ADDR
*pl_endptr
, unsigned long *framelength
)
271 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
272 unsigned long framesize
;
275 CORE_ADDR after_prologue
= 0;
276 CORE_ADDR after_push
= 0;
277 CORE_ADDR after_stack_adjust
= 0;
278 CORE_ADDR current_pc
;
279 LONGEST return_value
;
284 for (current_pc
= start_pc
; current_pc
< scan_limit
; current_pc
+= 2)
286 /* Check if current pc's location is readable. */
287 if (!safe_read_memory_integer (current_pc
, 2, byte_order
, &return_value
))
290 insn
= read_memory_unsigned_integer (current_pc
, 2, byte_order
);
295 /* If this is a 32 bit instruction, we dont want to examine its
296 immediate data as though it were an instruction. */
297 if (current_pc
& 0x02)
299 /* Decode this instruction further. */
306 if (current_pc
== scan_limit
)
307 scan_limit
+= 2; /* extend the search */
309 current_pc
+= 2; /* skip the immediate data */
311 /* Check if current pc's location is readable. */
312 if (!safe_read_memory_integer (current_pc
, 2, byte_order
,
316 if (insn
== 0x8faf) /* add3 sp, sp, xxxx */
317 /* add 16 bit sign-extended offset */
320 -((short) read_memory_unsigned_integer (current_pc
,
325 if (((insn
>> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
326 && safe_read_memory_integer (current_pc
+ 2,
329 && read_memory_unsigned_integer (current_pc
+ 2,
333 /* Subtract 24 bit sign-extended negative-offset. */
334 insn
= read_memory_unsigned_integer (current_pc
- 2,
336 if (insn
& 0x00800000) /* sign extend */
337 insn
|= 0xff000000; /* negative */
339 insn
&= 0x00ffffff; /* positive */
343 after_push
= current_pc
+ 2;
347 op1
= insn
& 0xf000; /* Isolate just the first nibble. */
349 if ((insn
& 0xf0ff) == 0x207f)
355 if ((insn
>> 8) == 0x4f) /* addi sp, xx */
356 /* Add 8 bit sign-extended offset. */
358 int stack_adjust
= (signed char) (insn
& 0xff);
360 /* there are probably two of these stack adjustments:
361 1) A negative one in the prologue, and
362 2) A positive one in the epilogue.
363 We are only interested in the first one. */
365 if (stack_adjust
< 0)
367 framesize
-= stack_adjust
;
369 /* A frameless function may have no "mv fp, sp".
370 In that case, this is the end of the prologue. */
371 after_stack_adjust
= current_pc
+ 2;
377 after_prologue
= current_pc
+ 2;
378 break; /* end of stack adjustments */
381 /* Nop looks like a branch, continue explicitly. */
384 after_prologue
= current_pc
+ 2;
385 continue; /* nop occurs between pushes. */
387 /* End of prolog if any of these are trap instructions. */
388 if ((insn
& 0xfff0) == 0x10f0)
390 after_prologue
= current_pc
;
393 /* End of prolog if any of these are branch instructions. */
394 if ((op1
== 0x7000) || (op1
== 0xb000) || (op1
== 0xf000))
396 after_prologue
= current_pc
;
399 /* Some of the branch instructions are mixed with other types. */
402 int subop
= insn
& 0x0ff0;
403 if ((subop
== 0x0ec0) || (subop
== 0x0fc0))
405 after_prologue
= current_pc
;
406 continue; /* jmp , jl */
412 *framelength
= framesize
;
414 if (current_pc
>= scan_limit
)
418 if (after_stack_adjust
!= 0)
419 /* We did not find a "mv fp,sp", but we DID find
420 a stack_adjust. Is it safe to use that as the
421 end of the prologue? I just don't know. */
423 *pl_endptr
= after_stack_adjust
;
425 else if (after_push
!= 0)
426 /* We did not find a "mv fp,sp", but we DID find
427 a push. Is it safe to use that as the
428 end of the prologue? I just don't know. */
430 *pl_endptr
= after_push
;
433 /* We reached the end of the loop without finding the end
434 of the prologue. No way to win -- we should report
435 failure. The way we do that is to return the original
436 start_pc. GDB will set a breakpoint at the start of
437 the function (etc.) */
438 *pl_endptr
= start_pc
;
443 if (after_prologue
== 0)
444 after_prologue
= current_pc
;
447 *pl_endptr
= after_prologue
;
450 } /* decode_prologue */
452 /* Function: skip_prologue
453 Find end of function prologue. */
455 #define DEFAULT_SEARCH_LIMIT 128
458 m32r_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
460 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
461 CORE_ADDR func_addr
, func_end
;
462 struct symtab_and_line sal
;
463 LONGEST return_value
;
465 /* See what the symbol table says. */
467 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
469 sal
= find_pc_line (func_addr
, 0);
471 if (sal
.line
!= 0 && sal
.end
<= func_end
)
476 /* Either there's no line info, or the line after the prologue is after
477 the end of the function. In this case, there probably isn't a
480 func_end
= std::min (func_end
, func_addr
+ DEFAULT_SEARCH_LIMIT
);
484 func_end
= pc
+ DEFAULT_SEARCH_LIMIT
;
486 /* If pc's location is not readable, just quit. */
487 if (!safe_read_memory_integer (pc
, 4, byte_order
, &return_value
))
490 /* Find the end of prologue. */
491 if (decode_prologue (gdbarch
, pc
, func_end
, &sal
.end
, NULL
) < 0)
497 struct m32r_unwind_cache
499 /* The previous frame's inner most stack address. Used as this
500 frame ID's stack_addr. */
502 /* The frame's base, optionally used by the high-level debug info. */
505 /* How far the SP and r13 (FP) have been offset from the start of
506 the stack frame (as defined by the previous frame's stack
511 /* Table indicating the location of each and every register. */
512 trad_frame_saved_reg
*saved_regs
;
515 /* Put here the code to store, into fi->saved_regs, the addresses of
516 the saved registers of frame described by FRAME_INFO. This
517 includes special registers such as pc and fp saved in special ways
518 in the stack frame. sp is even more special: the address we return
519 for it IS the sp for the next frame. */
521 static struct m32r_unwind_cache
*
522 m32r_frame_unwind_cache (struct frame_info
*this_frame
,
523 void **this_prologue_cache
)
525 CORE_ADDR pc
, scan_limit
;
530 struct m32r_unwind_cache
*info
;
533 if ((*this_prologue_cache
))
534 return (struct m32r_unwind_cache
*) (*this_prologue_cache
);
536 info
= FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache
);
537 (*this_prologue_cache
) = info
;
538 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
542 info
->uses_frame
= 0;
544 scan_limit
= get_frame_pc (this_frame
);
545 for (pc
= get_frame_func (this_frame
);
546 pc
> 0 && pc
< scan_limit
; pc
+= 2)
550 op
= get_frame_memory_unsigned (this_frame
, pc
, 4);
551 if ((op
& 0x80000000) == 0x80000000)
553 /* 32-bit instruction */
554 if ((op
& 0xffff0000) == 0x8faf0000)
556 /* add3 sp,sp,xxxx */
557 short n
= op
& 0xffff;
558 info
->sp_offset
+= n
;
560 else if (((op
>> 8) == 0xe4)
561 && get_frame_memory_unsigned (this_frame
, pc
+ 2,
564 /* ld24 r4, xxxxxx; sub sp, r4 */
565 unsigned long n
= op
& 0xffffff;
566 info
->sp_offset
+= n
;
567 pc
+= 2; /* skip sub instruction */
570 if (pc
== scan_limit
)
571 scan_limit
+= 2; /* extend the search */
572 pc
+= 2; /* skip the immediate data */
577 /* 16-bit instructions */
578 op
= get_frame_memory_unsigned (this_frame
, pc
, 2) & 0x7fff;
579 if ((op
& 0xf0ff) == 0x207f)
582 int regno
= ((op
>> 8) & 0xf);
583 info
->sp_offset
-= 4;
584 info
->saved_regs
[regno
].set_addr (info
->sp_offset
);
586 else if ((op
& 0xff00) == 0x4f00)
589 int n
= (signed char) (op
& 0xff);
590 info
->sp_offset
+= n
;
592 else if (op
== 0x1d8f)
595 info
->uses_frame
= 1;
596 info
->r13_offset
= info
->sp_offset
;
597 break; /* end of stack adjustments */
599 else if ((op
& 0xfff0) == 0x10f0)
601 /* End of prologue if this is a trap instruction. */
602 break; /* End of stack adjustments. */
606 info
->size
= -info
->sp_offset
;
608 /* Compute the previous frame's stack pointer (which is also the
609 frame's ID's stack address), and this frame's base pointer. */
610 if (info
->uses_frame
)
612 /* The SP was moved to the FP. This indicates that a new frame
613 was created. Get THIS frame's FP value by unwinding it from
615 this_base
= get_frame_register_unsigned (this_frame
, M32R_FP_REGNUM
);
616 /* The FP points at the last saved register. Adjust the FP back
617 to before the first saved register giving the SP. */
618 prev_sp
= this_base
+ info
->size
;
622 /* Assume that the FP is this frame's SP but with that pushed
623 stack space added back. */
624 this_base
= get_frame_register_unsigned (this_frame
, M32R_SP_REGNUM
);
625 prev_sp
= this_base
+ info
->size
;
628 /* Convert that SP/BASE into real addresses. */
629 info
->prev_sp
= prev_sp
;
630 info
->base
= this_base
;
632 /* Adjust all the saved registers so that they contain addresses and
634 for (i
= 0; i
< gdbarch_num_regs (get_frame_arch (this_frame
)) - 1; i
++)
635 if (info
->saved_regs
[i
].is_addr ())
636 info
->saved_regs
[i
].set_addr (info
->prev_sp
637 + info
->saved_regs
[i
].addr ());
639 /* The call instruction moves the caller's PC in the callee's LR.
640 Since this is an unwind, do the reverse. Copy the location of LR
641 into PC (the address / regnum) so that a request for PC will be
642 converted into a request for the LR. */
643 info
->saved_regs
[M32R_PC_REGNUM
] = info
->saved_regs
[LR_REGNUM
];
645 /* The previous frame's SP needed to be computed. Save the computed
647 info
->saved_regs
[M32R_SP_REGNUM
].set_value (prev_sp
);
653 m32r_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
654 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
655 struct value
**args
, CORE_ADDR sp
,
656 function_call_return_method return_method
,
657 CORE_ADDR struct_addr
)
659 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
660 int stack_offset
, stack_alloc
;
661 int argreg
= ARG1_REGNUM
;
664 enum type_code typecode
;
667 gdb_byte valbuf
[M32R_ARG_REGISTER_SIZE
];
670 /* First force sp to a 4-byte alignment. */
673 /* Set the return address. For the m32r, the return breakpoint is
674 always at BP_ADDR. */
675 regcache_cooked_write_unsigned (regcache
, LR_REGNUM
, bp_addr
);
677 /* If STRUCT_RETURN is true, then the struct return address (in
678 STRUCT_ADDR) will consume the first argument-passing register.
679 Both adjust the register count and store that value. */
680 if (return_method
== return_method_struct
)
682 regcache_cooked_write_unsigned (regcache
, argreg
, struct_addr
);
686 /* Now make sure there's space on the stack. */
687 for (argnum
= 0, stack_alloc
= 0; argnum
< nargs
; argnum
++)
688 stack_alloc
+= ((TYPE_LENGTH (value_type (args
[argnum
])) + 3) & ~3);
689 sp
-= stack_alloc
; /* Make room on stack for args. */
691 for (argnum
= 0, stack_offset
= 0; argnum
< nargs
; argnum
++)
693 type
= value_type (args
[argnum
]);
694 typecode
= type
->code ();
695 len
= TYPE_LENGTH (type
);
697 memset (valbuf
, 0, sizeof (valbuf
));
699 /* Passes structures that do not fit in 2 registers by reference. */
701 && (typecode
== TYPE_CODE_STRUCT
|| typecode
== TYPE_CODE_UNION
))
703 store_unsigned_integer (valbuf
, 4, byte_order
,
704 value_address (args
[argnum
]));
705 typecode
= TYPE_CODE_PTR
;
711 /* Value gets right-justified in the register or stack word. */
712 memcpy (valbuf
+ (register_size (gdbarch
, argreg
) - len
),
713 (gdb_byte
*) value_contents (args
[argnum
]).data (), len
);
717 val
= (gdb_byte
*) value_contents (args
[argnum
]).data ();
721 if (argreg
> ARGN_REGNUM
)
723 /* Must go on the stack. */
724 write_memory (sp
+ stack_offset
, val
, 4);
727 else if (argreg
<= ARGN_REGNUM
)
729 /* There's room in a register. */
731 extract_unsigned_integer (val
,
732 register_size (gdbarch
, argreg
),
734 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
737 /* Store the value 4 bytes at a time. This means that things
738 larger than 4 bytes may go partly in registers and partly
740 len
-= register_size (gdbarch
, argreg
);
741 val
+= register_size (gdbarch
, argreg
);
745 /* Finally, update the SP register. */
746 regcache_cooked_write_unsigned (regcache
, M32R_SP_REGNUM
, sp
);
752 /* Given a return value in `regbuf' with a type `valtype',
753 extract and copy its value into `valbuf'. */
756 m32r_extract_return_value (struct type
*type
, struct regcache
*regcache
,
759 struct gdbarch
*gdbarch
= regcache
->arch ();
760 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
761 int len
= TYPE_LENGTH (type
);
764 /* By using store_unsigned_integer we avoid having to do
765 anything special for small big-endian values. */
766 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
, &tmp
);
767 store_unsigned_integer (dst
, (len
> 4 ? len
- 4 : len
), byte_order
, tmp
);
769 /* Ignore return values more than 8 bytes in size because the m32r
770 returns anything more than 8 bytes in the stack. */
773 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
+ 1, &tmp
);
774 store_unsigned_integer (dst
+ len
- 4, 4, byte_order
, tmp
);
778 static enum return_value_convention
779 m32r_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
780 struct type
*valtype
, struct regcache
*regcache
,
781 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
783 if (TYPE_LENGTH (valtype
) > 8)
784 return RETURN_VALUE_STRUCT_CONVENTION
;
788 m32r_extract_return_value (valtype
, regcache
, readbuf
);
789 if (writebuf
!= NULL
)
790 m32r_store_return_value (valtype
, regcache
, writebuf
);
791 return RETURN_VALUE_REGISTER_CONVENTION
;
795 /* Given a GDB frame, determine the address of the calling function's
796 frame. This will be used to create a new GDB frame struct. */
799 m32r_frame_this_id (struct frame_info
*this_frame
,
800 void **this_prologue_cache
, struct frame_id
*this_id
)
802 struct m32r_unwind_cache
*info
803 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
806 struct bound_minimal_symbol msym_stack
;
809 /* The FUNC is easy. */
810 func
= get_frame_func (this_frame
);
812 /* Check if the stack is empty. */
813 msym_stack
= lookup_minimal_symbol ("_stack", NULL
, NULL
);
814 if (msym_stack
.minsym
&& info
->base
== msym_stack
.value_address ())
817 /* Hopefully the prologue analysis either correctly determined the
818 frame's base (which is the SP from the previous frame), or set
819 that base to "NULL". */
820 base
= info
->prev_sp
;
824 id
= frame_id_build (base
, func
);
828 static struct value
*
829 m32r_frame_prev_register (struct frame_info
*this_frame
,
830 void **this_prologue_cache
, int regnum
)
832 struct m32r_unwind_cache
*info
833 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
834 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
837 static const struct frame_unwind m32r_frame_unwind
= {
840 default_frame_unwind_stop_reason
,
842 m32r_frame_prev_register
,
844 default_frame_sniffer
848 m32r_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
850 struct m32r_unwind_cache
*info
851 = m32r_frame_unwind_cache (this_frame
, this_cache
);
855 static const struct frame_base m32r_frame_base
= {
857 m32r_frame_base_address
,
858 m32r_frame_base_address
,
859 m32r_frame_base_address
862 static gdbarch_init_ftype m32r_gdbarch_init
;
864 static struct gdbarch
*
865 m32r_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
867 struct gdbarch
*gdbarch
;
869 /* If there is already a candidate, use it. */
870 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
872 return arches
->gdbarch
;
874 /* Allocate space for the new architecture. */
875 m32r_gdbarch_tdep
*tdep
= new m32r_gdbarch_tdep
;
876 gdbarch
= gdbarch_alloc (&info
, tdep
);
878 set_gdbarch_wchar_bit (gdbarch
, 16);
879 set_gdbarch_wchar_signed (gdbarch
, 0);
881 set_gdbarch_num_regs (gdbarch
, M32R_NUM_REGS
);
882 set_gdbarch_pc_regnum (gdbarch
, M32R_PC_REGNUM
);
883 set_gdbarch_sp_regnum (gdbarch
, M32R_SP_REGNUM
);
884 set_gdbarch_register_name (gdbarch
, m32r_register_name
);
885 set_gdbarch_register_type (gdbarch
, m32r_register_type
);
887 set_gdbarch_push_dummy_call (gdbarch
, m32r_push_dummy_call
);
888 set_gdbarch_return_value (gdbarch
, m32r_return_value
);
890 set_gdbarch_skip_prologue (gdbarch
, m32r_skip_prologue
);
891 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
892 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, m32r_breakpoint_kind_from_pc
);
893 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, m32r_sw_breakpoint_from_kind
);
894 set_gdbarch_memory_insert_breakpoint (gdbarch
,
895 m32r_memory_insert_breakpoint
);
896 set_gdbarch_memory_remove_breakpoint (gdbarch
,
897 m32r_memory_remove_breakpoint
);
899 set_gdbarch_frame_align (gdbarch
, m32r_frame_align
);
901 frame_base_set_default (gdbarch
, &m32r_frame_base
);
903 /* Hook in ABI-specific overrides, if they have been registered. */
904 gdbarch_init_osabi (info
, gdbarch
);
906 /* Hook in the default unwinders. */
907 frame_unwind_append_unwinder (gdbarch
, &m32r_frame_unwind
);
909 /* Support simple overlay manager. */
910 set_gdbarch_overlay_update (gdbarch
, simple_overlay_update
);
915 void _initialize_m32r_tdep ();
917 _initialize_m32r_tdep ()
919 register_gdbarch_init (bfd_arch_m32r
, m32r_gdbarch_init
);