1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
4 Copyright (C) 2001-2022 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "cp-support.h"
30 #include "typeprint.h"
32 #include "cli/cli-style.h"
33 #include "dwarf2/loc.h"
36 static struct cp_abi_ops gnu_v3_abi_ops
;
38 /* A gdbarch key for std::type_info, in the event that it can't be
39 found in the debug info. */
41 static struct gdbarch_data
*std_type_info_gdbarch_data
;
45 gnuv3_is_vtable_name (const char *name
)
47 return startswith (name
, "_ZTV");
51 gnuv3_is_operator_name (const char *name
)
53 return startswith (name
, CP_OPERATOR_STR
);
57 /* To help us find the components of a vtable, we build ourselves a
58 GDB type object representing the vtable structure. Following the
59 V3 ABI, it goes something like this:
61 struct gdb_gnu_v3_abi_vtable {
63 / * An array of virtual call and virtual base offsets. The real
64 length of this array depends on the class hierarchy; we use
65 negative subscripts to access the elements. Yucky, but
66 better than the alternatives. * /
67 ptrdiff_t vcall_and_vbase_offsets[0];
69 / * The offset from a virtual pointer referring to this table
70 to the top of the complete object. * /
71 ptrdiff_t offset_to_top;
73 / * The type_info pointer for this class. This is really a
74 std::type_info *, but GDB doesn't really look at the
75 type_info object itself, so we don't bother to get the type
79 / * Virtual table pointers in objects point here. * /
81 / * Virtual function pointers. Like the vcall/vbase array, the
82 real length of this table depends on the class hierarchy. * /
83 void (*virtual_functions[0]) ();
87 The catch, of course, is that the exact layout of this table
88 depends on the ABI --- word size, endianness, alignment, etc. So
89 the GDB type object is actually a per-architecture kind of thing.
91 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
92 which refers to the struct type * for this structure, laid out
93 appropriately for the architecture. */
94 static struct gdbarch_data
*vtable_type_gdbarch_data
;
97 /* Human-readable names for the numbers of the fields above. */
99 vtable_field_vcall_and_vbase_offsets
,
100 vtable_field_offset_to_top
,
101 vtable_field_type_info
,
102 vtable_field_virtual_functions
106 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
107 described above, laid out appropriately for ARCH.
109 We use this function as the gdbarch per-architecture data
110 initialization function. */
112 build_gdb_vtable_type (struct gdbarch
*arch
)
115 struct field
*field_list
, *field
;
118 struct type
*void_ptr_type
119 = builtin_type (arch
)->builtin_data_ptr
;
120 struct type
*ptr_to_void_fn_type
121 = builtin_type (arch
)->builtin_func_ptr
;
123 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
124 struct type
*ptrdiff_type
125 = arch_integer_type (arch
, gdbarch_ptr_bit (arch
), 0, "ptrdiff_t");
127 /* We assume no padding is necessary, since GDB doesn't know
128 anything about alignment at the moment. If this assumption bites
129 us, we should add a gdbarch method which, given a type, returns
130 the alignment that type requires, and then use that here. */
132 /* Build the field list. */
133 field_list
= XCNEWVEC (struct field
, 4);
134 field
= &field_list
[0];
137 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
138 field
->set_name ("vcall_and_vbase_offsets");
139 field
->set_type (lookup_array_range_type (ptrdiff_type
, 0, -1));
140 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
141 offset
+= TYPE_LENGTH (field
->type ());
144 /* ptrdiff_t offset_to_top; */
145 field
->set_name ("offset_to_top");
146 field
->set_type (ptrdiff_type
);
147 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
148 offset
+= TYPE_LENGTH (field
->type ());
151 /* void *type_info; */
152 field
->set_name ("type_info");
153 field
->set_type (void_ptr_type
);
154 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
155 offset
+= TYPE_LENGTH (field
->type ());
158 /* void (*virtual_functions[0]) (); */
159 field
->set_name ("virtual_functions");
160 field
->set_type (lookup_array_range_type (ptr_to_void_fn_type
, 0, -1));
161 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
162 offset
+= TYPE_LENGTH (field
->type ());
165 /* We assumed in the allocation above that there were four fields. */
166 gdb_assert (field
== (field_list
+ 4));
168 t
= arch_type (arch
, TYPE_CODE_STRUCT
, offset
* TARGET_CHAR_BIT
, NULL
);
169 t
->set_num_fields (field
- field_list
);
170 t
->set_fields (field_list
);
171 t
->set_name ("gdb_gnu_v3_abi_vtable");
172 INIT_CPLUS_SPECIFIC (t
);
174 return make_type_with_address_space (t
, TYPE_INSTANCE_FLAG_CODE_SPACE
);
178 /* Return the ptrdiff_t type used in the vtable type. */
180 vtable_ptrdiff_type (struct gdbarch
*gdbarch
)
182 struct type
*vtable_type
183 = (struct type
*) gdbarch_data (gdbarch
, vtable_type_gdbarch_data
);
185 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
186 return vtable_type
->field (vtable_field_offset_to_top
).type ();
189 /* Return the offset from the start of the imaginary `struct
190 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
191 (i.e., where objects' virtual table pointers point). */
193 vtable_address_point_offset (struct gdbarch
*gdbarch
)
195 struct type
*vtable_type
196 = (struct type
*) gdbarch_data (gdbarch
, vtable_type_gdbarch_data
);
198 return (vtable_type
->field (vtable_field_virtual_functions
).loc_bitpos ()
203 /* Determine whether structure TYPE is a dynamic class. Cache the
207 gnuv3_dynamic_class (struct type
*type
)
209 int fieldnum
, fieldelem
;
211 type
= check_typedef (type
);
212 gdb_assert (type
->code () == TYPE_CODE_STRUCT
213 || type
->code () == TYPE_CODE_UNION
);
215 if (type
->code () == TYPE_CODE_UNION
)
218 if (TYPE_CPLUS_DYNAMIC (type
))
219 return TYPE_CPLUS_DYNAMIC (type
) == 1;
221 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
223 for (fieldnum
= 0; fieldnum
< TYPE_N_BASECLASSES (type
); fieldnum
++)
224 if (BASETYPE_VIA_VIRTUAL (type
, fieldnum
)
225 || gnuv3_dynamic_class (type
->field (fieldnum
).type ()))
227 TYPE_CPLUS_DYNAMIC (type
) = 1;
231 for (fieldnum
= 0; fieldnum
< TYPE_NFN_FIELDS (type
); fieldnum
++)
232 for (fieldelem
= 0; fieldelem
< TYPE_FN_FIELDLIST_LENGTH (type
, fieldnum
);
235 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, fieldnum
);
237 if (TYPE_FN_FIELD_VIRTUAL_P (f
, fieldelem
))
239 TYPE_CPLUS_DYNAMIC (type
) = 1;
244 TYPE_CPLUS_DYNAMIC (type
) = -1;
248 /* Find the vtable for a value of CONTAINER_TYPE located at
249 CONTAINER_ADDR. Return a value of the correct vtable type for this
250 architecture, or NULL if CONTAINER does not have a vtable. */
252 static struct value
*
253 gnuv3_get_vtable (struct gdbarch
*gdbarch
,
254 struct type
*container_type
, CORE_ADDR container_addr
)
256 struct type
*vtable_type
257 = (struct type
*) gdbarch_data (gdbarch
, vtable_type_gdbarch_data
);
258 struct type
*vtable_pointer_type
;
259 struct value
*vtable_pointer
;
260 CORE_ADDR vtable_address
;
262 container_type
= check_typedef (container_type
);
263 gdb_assert (container_type
->code () == TYPE_CODE_STRUCT
);
265 /* If this type does not have a virtual table, don't read the first
267 if (!gnuv3_dynamic_class (container_type
))
270 /* We do not consult the debug information to find the virtual table.
271 The ABI specifies that it is always at offset zero in any class,
272 and debug information may not represent it.
274 We avoid using value_contents on principle, because the object might
277 /* Find the type "pointer to virtual table". */
278 vtable_pointer_type
= lookup_pointer_type (vtable_type
);
280 /* Load it from the start of the class. */
281 vtable_pointer
= value_at (vtable_pointer_type
, container_addr
);
282 vtable_address
= value_as_address (vtable_pointer
);
284 /* Correct it to point at the start of the virtual table, rather
285 than the address point. */
286 return value_at_lazy (vtable_type
,
288 - vtable_address_point_offset (gdbarch
));
293 gnuv3_rtti_type (struct value
*value
,
294 int *full_p
, LONGEST
*top_p
, int *using_enc_p
)
296 struct gdbarch
*gdbarch
;
297 struct type
*values_type
= check_typedef (value_type (value
));
298 struct value
*vtable
;
299 struct minimal_symbol
*vtable_symbol
;
300 const char *vtable_symbol_name
;
301 const char *class_name
;
302 struct type
*run_time_type
;
303 LONGEST offset_to_top
;
306 /* We only have RTTI for dynamic class objects. */
307 if (values_type
->code () != TYPE_CODE_STRUCT
308 || !gnuv3_dynamic_class (values_type
))
311 /* Determine architecture. */
312 gdbarch
= values_type
->arch ();
317 vtable
= gnuv3_get_vtable (gdbarch
, values_type
,
318 value_as_address (value_addr (value
)));
322 /* Find the linker symbol for this vtable. */
324 = lookup_minimal_symbol_by_pc (value_address (vtable
)
325 + value_embedded_offset (vtable
)).minsym
;
329 /* The symbol's demangled name should be something like "vtable for
330 CLASS", where CLASS is the name of the run-time type of VALUE.
331 If we didn't like this approach, we could instead look in the
332 type_info object itself to get the class name. But this way
333 should work just as well, and doesn't read target memory. */
334 vtable_symbol_name
= vtable_symbol
->demangled_name ();
335 if (vtable_symbol_name
== NULL
336 || !startswith (vtable_symbol_name
, "vtable for "))
338 warning (_("can't find linker symbol for virtual table for `%s' value"),
339 TYPE_SAFE_NAME (values_type
));
340 if (vtable_symbol_name
)
341 warning (_(" found `%s' instead"), vtable_symbol_name
);
344 class_name
= vtable_symbol_name
+ 11;
346 /* Strip off @plt and version suffixes. */
347 atsign
= strchr (class_name
, '@');
352 copy
= (char *) alloca (atsign
- class_name
+ 1);
353 memcpy (copy
, class_name
, atsign
- class_name
);
354 copy
[atsign
- class_name
] = '\0';
358 /* Try to look up the class name as a type name. */
359 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
360 run_time_type
= cp_lookup_rtti_type (class_name
, NULL
);
361 if (run_time_type
== NULL
)
364 /* Get the offset from VALUE to the top of the complete object.
365 NOTE: this is the reverse of the meaning of *TOP_P. */
367 = value_as_long (value_field (vtable
, vtable_field_offset_to_top
));
370 *full_p
= (- offset_to_top
== value_embedded_offset (value
)
371 && (TYPE_LENGTH (value_enclosing_type (value
))
372 >= TYPE_LENGTH (run_time_type
)));
374 *top_p
= - offset_to_top
;
375 return run_time_type
;
378 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
379 function, of type FNTYPE. */
381 static struct value
*
382 gnuv3_get_virtual_fn (struct gdbarch
*gdbarch
, struct value
*container
,
383 struct type
*fntype
, int vtable_index
)
385 struct value
*vtable
, *vfn
;
387 /* Every class with virtual functions must have a vtable. */
388 vtable
= gnuv3_get_vtable (gdbarch
, value_type (container
),
389 value_as_address (value_addr (container
)));
390 gdb_assert (vtable
!= NULL
);
392 /* Fetch the appropriate function pointer from the vtable. */
393 vfn
= value_subscript (value_field (vtable
, vtable_field_virtual_functions
),
396 /* If this architecture uses function descriptors directly in the vtable,
397 then the address of the vtable entry is actually a "function pointer"
398 (i.e. points to the descriptor). We don't need to scale the index
399 by the size of a function descriptor; GCC does that before outputting
400 debug information. */
401 if (gdbarch_vtable_function_descriptors (gdbarch
))
402 vfn
= value_addr (vfn
);
404 /* Cast the function pointer to the appropriate type. */
405 vfn
= value_cast (lookup_pointer_type (fntype
), vfn
);
410 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
411 for a description of the arguments. */
413 static struct value
*
414 gnuv3_virtual_fn_field (struct value
**value_p
,
415 struct fn_field
*f
, int j
,
416 struct type
*vfn_base
, int offset
)
418 struct type
*values_type
= check_typedef (value_type (*value_p
));
419 struct gdbarch
*gdbarch
;
421 /* Some simple sanity checks. */
422 if (values_type
->code () != TYPE_CODE_STRUCT
)
423 error (_("Only classes can have virtual functions."));
425 /* Determine architecture. */
426 gdbarch
= values_type
->arch ();
428 /* Cast our value to the base class which defines this virtual
429 function. This takes care of any necessary `this'
431 if (vfn_base
!= values_type
)
432 *value_p
= value_cast (vfn_base
, *value_p
);
434 return gnuv3_get_virtual_fn (gdbarch
, *value_p
, TYPE_FN_FIELD_TYPE (f
, j
),
435 TYPE_FN_FIELD_VOFFSET (f
, j
));
438 /* Compute the offset of the baseclass which is
439 the INDEXth baseclass of class TYPE,
440 for value at VALADDR (in host) at ADDRESS (in target).
441 The result is the offset of the baseclass value relative
442 to (the address of)(ARG) + OFFSET.
444 -1 is returned on error. */
447 gnuv3_baseclass_offset (struct type
*type
, int index
,
448 const bfd_byte
*valaddr
, LONGEST embedded_offset
,
449 CORE_ADDR address
, const struct value
*val
)
451 struct gdbarch
*gdbarch
;
452 struct type
*ptr_type
;
453 struct value
*vtable
;
454 struct value
*vbase_array
;
455 long int cur_base_offset
, base_offset
;
457 /* Determine architecture. */
458 gdbarch
= type
->arch ();
459 ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
461 /* If it isn't a virtual base, this is easy. The offset is in the
463 if (!BASETYPE_VIA_VIRTUAL (type
, index
))
464 return TYPE_BASECLASS_BITPOS (type
, index
) / 8;
466 /* If we have a DWARF expression for the offset, evaluate it. */
467 if (type
->field (index
).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK
)
469 struct dwarf2_property_baton baton
;
471 = lookup_pointer_type (type
->field (index
).type ());
472 baton
.locexpr
= *type
->field (index
).loc_dwarf_block ();
474 struct dynamic_prop prop
;
475 prop
.set_locexpr (&baton
);
477 struct property_addr_info addr_stack
;
478 addr_stack
.type
= type
;
479 /* Note that we don't set "valaddr" here. Doing so causes
480 regressions. FIXME. */
481 addr_stack
.addr
= address
+ embedded_offset
;
482 addr_stack
.next
= nullptr;
485 if (dwarf2_evaluate_property (&prop
, nullptr, &addr_stack
, &result
,
487 return (int) (result
- addr_stack
.addr
);
490 /* To access a virtual base, we need to use the vbase offset stored in
491 our vtable. Recent GCC versions provide this information. If it isn't
492 available, we could get what we needed from RTTI, or from drawing the
493 complete inheritance graph based on the debug info. Neither is
495 cur_base_offset
= TYPE_BASECLASS_BITPOS (type
, index
) / 8;
496 if (cur_base_offset
>= - vtable_address_point_offset (gdbarch
))
497 error (_("Expected a negative vbase offset (old compiler?)"));
499 cur_base_offset
= cur_base_offset
+ vtable_address_point_offset (gdbarch
);
500 if ((- cur_base_offset
) % TYPE_LENGTH (ptr_type
) != 0)
501 error (_("Misaligned vbase offset."));
502 cur_base_offset
= cur_base_offset
/ ((int) TYPE_LENGTH (ptr_type
));
504 vtable
= gnuv3_get_vtable (gdbarch
, type
, address
+ embedded_offset
);
505 gdb_assert (vtable
!= NULL
);
506 vbase_array
= value_field (vtable
, vtable_field_vcall_and_vbase_offsets
);
507 base_offset
= value_as_long (value_subscript (vbase_array
, cur_base_offset
));
511 /* Locate a virtual method in DOMAIN or its non-virtual base classes
512 which has virtual table index VOFFSET. The method has an associated
513 "this" adjustment of ADJUSTMENT bytes. */
516 gnuv3_find_method_in (struct type
*domain
, CORE_ADDR voffset
,
521 /* Search this class first. */
526 len
= TYPE_NFN_FIELDS (domain
);
527 for (i
= 0; i
< len
; i
++)
532 f
= TYPE_FN_FIELDLIST1 (domain
, i
);
533 len2
= TYPE_FN_FIELDLIST_LENGTH (domain
, i
);
535 check_stub_method_group (domain
, i
);
536 for (j
= 0; j
< len2
; j
++)
537 if (TYPE_FN_FIELD_VOFFSET (f
, j
) == voffset
)
538 return TYPE_FN_FIELD_PHYSNAME (f
, j
);
542 /* Next search non-virtual bases. If it's in a virtual base,
543 we're out of luck. */
544 for (i
= 0; i
< TYPE_N_BASECLASSES (domain
); i
++)
547 struct type
*basetype
;
549 if (BASETYPE_VIA_VIRTUAL (domain
, i
))
552 pos
= TYPE_BASECLASS_BITPOS (domain
, i
) / 8;
553 basetype
= domain
->field (i
).type ();
554 /* Recurse with a modified adjustment. We don't need to adjust
556 if (adjustment
>= pos
&& adjustment
< pos
+ TYPE_LENGTH (basetype
))
557 return gnuv3_find_method_in (basetype
, voffset
, adjustment
- pos
);
563 /* Decode GNU v3 method pointer. */
566 gnuv3_decode_method_ptr (struct gdbarch
*gdbarch
,
567 const gdb_byte
*contents
,
569 LONGEST
*adjustment_p
)
571 struct type
*funcptr_type
= builtin_type (gdbarch
)->builtin_func_ptr
;
572 struct type
*offset_type
= vtable_ptrdiff_type (gdbarch
);
573 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
575 LONGEST voffset
, adjustment
;
578 /* Extract the pointer to member. The first element is either a pointer
579 or a vtable offset. For pointers, we need to use extract_typed_address
580 to allow the back-end to convert the pointer to a GDB address -- but
581 vtable offsets we must handle as integers. At this point, we do not
582 yet know which case we have, so we extract the value under both
583 interpretations and choose the right one later on. */
584 ptr_value
= extract_typed_address (contents
, funcptr_type
);
585 voffset
= extract_signed_integer (contents
,
586 TYPE_LENGTH (funcptr_type
), byte_order
);
587 contents
+= TYPE_LENGTH (funcptr_type
);
588 adjustment
= extract_signed_integer (contents
,
589 TYPE_LENGTH (offset_type
), byte_order
);
591 if (!gdbarch_vbit_in_delta (gdbarch
))
594 voffset
= voffset
^ vbit
;
598 vbit
= adjustment
& 1;
599 adjustment
= adjustment
>> 1;
602 *value_p
= vbit
? voffset
: ptr_value
;
603 *adjustment_p
= adjustment
;
607 /* GNU v3 implementation of cplus_print_method_ptr. */
610 gnuv3_print_method_ptr (const gdb_byte
*contents
,
612 struct ui_file
*stream
)
614 struct type
*self_type
= TYPE_SELF_TYPE (type
);
615 struct gdbarch
*gdbarch
= self_type
->arch ();
620 /* Extract the pointer to member. */
621 vbit
= gnuv3_decode_method_ptr (gdbarch
, contents
, &ptr_value
, &adjustment
);
623 /* Check for NULL. */
624 if (ptr_value
== 0 && vbit
== 0)
626 fprintf_filtered (stream
, "NULL");
630 /* Search for a virtual method. */
634 const char *physname
;
636 /* It's a virtual table offset, maybe in this class. Search
637 for a field with the correct vtable offset. First convert it
638 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
639 voffset
= ptr_value
/ TYPE_LENGTH (vtable_ptrdiff_type (gdbarch
));
641 physname
= gnuv3_find_method_in (self_type
, voffset
, adjustment
);
643 /* If we found a method, print that. We don't bother to disambiguate
644 possible paths to the method based on the adjustment. */
647 gdb::unique_xmalloc_ptr
<char> demangled_name
648 = gdb_demangle (physname
, DMGL_ANSI
| DMGL_PARAMS
);
650 fprintf_filtered (stream
, "&virtual ");
651 if (demangled_name
== NULL
)
652 fputs_filtered (physname
, stream
);
654 fputs_filtered (demangled_name
.get (), stream
);
658 else if (ptr_value
!= 0)
660 /* Found a non-virtual function: print out the type. */
661 fputs_filtered ("(", stream
);
662 c_print_type (type
, "", stream
, -1, 0, &type_print_raw_options
);
663 fputs_filtered (") ", stream
);
666 /* We didn't find it; print the raw data. */
669 fprintf_filtered (stream
, "&virtual table offset ");
670 print_longest (stream
, 'd', 1, ptr_value
);
674 struct value_print_options opts
;
676 get_user_print_options (&opts
);
677 print_address_demangle (&opts
, gdbarch
, ptr_value
, stream
, demangle
);
682 fprintf_filtered (stream
, ", this adjustment ");
683 print_longest (stream
, 'd', 1, adjustment
);
687 /* GNU v3 implementation of cplus_method_ptr_size. */
690 gnuv3_method_ptr_size (struct type
*type
)
692 return 2 * TYPE_LENGTH (builtin_type (type
->arch ())->builtin_data_ptr
);
695 /* GNU v3 implementation of cplus_make_method_ptr. */
698 gnuv3_make_method_ptr (struct type
*type
, gdb_byte
*contents
,
699 CORE_ADDR value
, int is_virtual
)
701 struct gdbarch
*gdbarch
= type
->arch ();
702 int size
= TYPE_LENGTH (builtin_type (gdbarch
)->builtin_data_ptr
);
703 enum bfd_endian byte_order
= type_byte_order (type
);
705 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
706 always zero, since the method pointer is of the correct type.
707 But if the method pointer came from a base class, this is
708 incorrect - it should be the offset to the base. The best
709 fix might be to create the pointer to member pointing at the
710 base class and cast it to the derived class, but that requires
711 support for adjusting pointers to members when casting them -
712 not currently supported by GDB. */
714 if (!gdbarch_vbit_in_delta (gdbarch
))
716 store_unsigned_integer (contents
, size
, byte_order
, value
| is_virtual
);
717 store_unsigned_integer (contents
+ size
, size
, byte_order
, 0);
721 store_unsigned_integer (contents
, size
, byte_order
, value
);
722 store_unsigned_integer (contents
+ size
, size
, byte_order
, is_virtual
);
726 /* GNU v3 implementation of cplus_method_ptr_to_value. */
728 static struct value
*
729 gnuv3_method_ptr_to_value (struct value
**this_p
, struct value
*method_ptr
)
731 struct gdbarch
*gdbarch
;
732 const gdb_byte
*contents
= value_contents (method_ptr
).data ();
734 struct type
*self_type
, *final_type
, *method_type
;
738 self_type
= TYPE_SELF_TYPE (check_typedef (value_type (method_ptr
)));
739 final_type
= lookup_pointer_type (self_type
);
741 method_type
= TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr
)));
743 /* Extract the pointer to member. */
744 gdbarch
= self_type
->arch ();
745 vbit
= gnuv3_decode_method_ptr (gdbarch
, contents
, &ptr_value
, &adjustment
);
747 /* First convert THIS to match the containing type of the pointer to
748 member. This cast may adjust the value of THIS. */
749 *this_p
= value_cast (final_type
, *this_p
);
751 /* Then apply whatever adjustment is necessary. This creates a somewhat
752 strange pointer: it claims to have type FINAL_TYPE, but in fact it
753 might not be a valid FINAL_TYPE. For instance, it might be a
754 base class of FINAL_TYPE. And if it's not the primary base class,
755 then printing it out as a FINAL_TYPE object would produce some pretty
758 But we don't really know the type of the first argument in
759 METHOD_TYPE either, which is why this happens. We can't
760 dereference this later as a FINAL_TYPE, but once we arrive in the
761 called method we'll have debugging information for the type of
762 "this" - and that'll match the value we produce here.
764 You can provoke this case by casting a Base::* to a Derived::*, for
766 *this_p
= value_cast (builtin_type (gdbarch
)->builtin_data_ptr
, *this_p
);
767 *this_p
= value_ptradd (*this_p
, adjustment
);
768 *this_p
= value_cast (final_type
, *this_p
);
774 voffset
= ptr_value
/ TYPE_LENGTH (vtable_ptrdiff_type (gdbarch
));
775 return gnuv3_get_virtual_fn (gdbarch
, value_ind (*this_p
),
776 method_type
, voffset
);
779 return value_from_pointer (lookup_pointer_type (method_type
), ptr_value
);
782 /* Objects of this type are stored in a hash table and a vector when
783 printing the vtables for a class. */
785 struct value_and_voffset
787 /* The value representing the object. */
790 /* The maximum vtable offset we've found for any object at this
791 offset in the outermost object. */
795 /* Hash function for value_and_voffset. */
798 hash_value_and_voffset (const void *p
)
800 const struct value_and_voffset
*o
= (const struct value_and_voffset
*) p
;
802 return value_address (o
->value
) + value_embedded_offset (o
->value
);
805 /* Equality function for value_and_voffset. */
808 eq_value_and_voffset (const void *a
, const void *b
)
810 const struct value_and_voffset
*ova
= (const struct value_and_voffset
*) a
;
811 const struct value_and_voffset
*ovb
= (const struct value_and_voffset
*) b
;
813 return (value_address (ova
->value
) + value_embedded_offset (ova
->value
)
814 == value_address (ovb
->value
) + value_embedded_offset (ovb
->value
));
817 /* Comparison function for value_and_voffset. */
820 compare_value_and_voffset (const struct value_and_voffset
*va
,
821 const struct value_and_voffset
*vb
)
823 CORE_ADDR addra
= (value_address (va
->value
)
824 + value_embedded_offset (va
->value
));
825 CORE_ADDR addrb
= (value_address (vb
->value
)
826 + value_embedded_offset (vb
->value
));
828 return addra
< addrb
;
831 /* A helper function used when printing vtables. This determines the
832 key (most derived) sub-object at each address and also computes the
833 maximum vtable offset seen for the corresponding vtable. Updates
834 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
835 needed. VALUE is the object to examine. */
838 compute_vtable_size (htab_t offset_hash
,
839 std::vector
<value_and_voffset
*> *offset_vec
,
843 struct type
*type
= check_typedef (value_type (value
));
845 struct value_and_voffset search_vo
, *current_vo
;
847 gdb_assert (type
->code () == TYPE_CODE_STRUCT
);
849 /* If the object is not dynamic, then we are done; as it cannot have
850 dynamic base types either. */
851 if (!gnuv3_dynamic_class (type
))
854 /* Update the hash and the vec, if needed. */
855 search_vo
.value
= value
;
856 slot
= htab_find_slot (offset_hash
, &search_vo
, INSERT
);
858 current_vo
= (struct value_and_voffset
*) *slot
;
861 current_vo
= XNEW (struct value_and_voffset
);
862 current_vo
->value
= value
;
863 current_vo
->max_voffset
= -1;
865 offset_vec
->push_back (current_vo
);
868 /* Update the value_and_voffset object with the highest vtable
869 offset from this class. */
870 for (i
= 0; i
< TYPE_NFN_FIELDS (type
); ++i
)
873 struct fn_field
*fn
= TYPE_FN_FIELDLIST1 (type
, i
);
875 for (j
= 0; j
< TYPE_FN_FIELDLIST_LENGTH (type
, i
); ++j
)
877 if (TYPE_FN_FIELD_VIRTUAL_P (fn
, j
))
879 int voffset
= TYPE_FN_FIELD_VOFFSET (fn
, j
);
881 if (voffset
> current_vo
->max_voffset
)
882 current_vo
->max_voffset
= voffset
;
887 /* Recurse into base classes. */
888 for (i
= 0; i
< TYPE_N_BASECLASSES (type
); ++i
)
889 compute_vtable_size (offset_hash
, offset_vec
, value_field (value
, i
));
892 /* Helper for gnuv3_print_vtable that prints a single vtable. */
895 print_one_vtable (struct gdbarch
*gdbarch
, struct value
*value
,
897 struct value_print_options
*opts
)
900 struct type
*type
= check_typedef (value_type (value
));
901 struct value
*vtable
;
904 vtable
= gnuv3_get_vtable (gdbarch
, type
,
905 value_address (value
)
906 + value_embedded_offset (value
));
907 vt_addr
= value_address (value_field (vtable
,
908 vtable_field_virtual_functions
));
910 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
911 TYPE_SAFE_NAME (type
),
912 paddress (gdbarch
, vt_addr
),
913 paddress (gdbarch
, (value_address (value
)
914 + value_embedded_offset (value
))));
916 for (i
= 0; i
<= max_voffset
; ++i
)
918 /* Initialize it just to avoid a GCC false warning. */
923 printf_filtered ("[%d]: ", i
);
925 vfn
= value_subscript (value_field (vtable
,
926 vtable_field_virtual_functions
),
929 if (gdbarch_vtable_function_descriptors (gdbarch
))
930 vfn
= value_addr (vfn
);
934 addr
= value_as_address (vfn
);
936 catch (const gdb_exception_error
&ex
)
938 fprintf_styled (gdb_stdout
, metadata_style
.style (),
939 _("<error: %s>"), ex
.what ());
944 print_function_pointer_address (opts
, gdbarch
, addr
, gdb_stdout
);
945 printf_filtered ("\n");
949 /* Implementation of the print_vtable method. */
952 gnuv3_print_vtable (struct value
*value
)
954 struct gdbarch
*gdbarch
;
956 struct value
*vtable
;
957 struct value_print_options opts
;
960 value
= coerce_ref (value
);
961 type
= check_typedef (value_type (value
));
962 if (type
->code () == TYPE_CODE_PTR
)
964 value
= value_ind (value
);
965 type
= check_typedef (value_type (value
));
968 get_user_print_options (&opts
);
970 /* Respect 'set print object'. */
971 if (opts
.objectprint
)
973 value
= value_full_object (value
, NULL
, 0, 0, 0);
974 type
= check_typedef (value_type (value
));
977 gdbarch
= type
->arch ();
980 if (type
->code () == TYPE_CODE_STRUCT
)
981 vtable
= gnuv3_get_vtable (gdbarch
, type
,
982 value_as_address (value_addr (value
)));
986 printf_filtered (_("This object does not have a virtual function table\n"));
990 htab_up
offset_hash (htab_create_alloc (1, hash_value_and_voffset
,
991 eq_value_and_voffset
,
992 xfree
, xcalloc
, xfree
));
993 std::vector
<value_and_voffset
*> result_vec
;
995 compute_vtable_size (offset_hash
.get (), &result_vec
, value
);
996 std::sort (result_vec
.begin (), result_vec
.end (),
997 compare_value_and_voffset
);
1000 for (value_and_voffset
*iter
: result_vec
)
1002 if (iter
->max_voffset
>= 0)
1005 printf_filtered ("\n");
1006 print_one_vtable (gdbarch
, iter
->value
, iter
->max_voffset
, &opts
);
1012 /* Return a GDB type representing `struct std::type_info', laid out
1013 appropriately for ARCH.
1015 We use this function as the gdbarch per-architecture data
1016 initialization function. */
1019 build_std_type_info_type (struct gdbarch
*arch
)
1022 struct field
*field_list
, *field
;
1024 struct type
*void_ptr_type
1025 = builtin_type (arch
)->builtin_data_ptr
;
1026 struct type
*char_type
1027 = builtin_type (arch
)->builtin_char
;
1028 struct type
*char_ptr_type
1029 = make_pointer_type (make_cv_type (1, 0, char_type
, NULL
), NULL
);
1031 field_list
= XCNEWVEC (struct field
, 2);
1032 field
= &field_list
[0];
1036 field
->set_name ("_vptr.type_info");
1037 field
->set_type (void_ptr_type
);
1038 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
1039 offset
+= TYPE_LENGTH (field
->type ());
1043 field
->set_name ("__name");
1044 field
->set_type (char_ptr_type
);
1045 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
1046 offset
+= TYPE_LENGTH (field
->type ());
1049 gdb_assert (field
== (field_list
+ 2));
1051 t
= arch_type (arch
, TYPE_CODE_STRUCT
, offset
* TARGET_CHAR_BIT
, NULL
);
1052 t
->set_num_fields (field
- field_list
);
1053 t
->set_fields (field_list
);
1054 t
->set_name ("gdb_gnu_v3_type_info");
1055 INIT_CPLUS_SPECIFIC (t
);
1060 /* Implement the 'get_typeid_type' method. */
1062 static struct type
*
1063 gnuv3_get_typeid_type (struct gdbarch
*gdbarch
)
1065 struct symbol
*typeinfo
;
1066 struct type
*typeinfo_type
;
1068 typeinfo
= lookup_symbol ("std::type_info", NULL
, STRUCT_DOMAIN
,
1070 if (typeinfo
== NULL
)
1072 = (struct type
*) gdbarch_data (gdbarch
, std_type_info_gdbarch_data
);
1074 typeinfo_type
= SYMBOL_TYPE (typeinfo
);
1076 return typeinfo_type
;
1079 /* Implement the 'get_typeid' method. */
1081 static struct value
*
1082 gnuv3_get_typeid (struct value
*value
)
1084 struct type
*typeinfo_type
;
1086 struct gdbarch
*gdbarch
;
1087 struct value
*result
;
1088 std::string type_name
;
1089 gdb::unique_xmalloc_ptr
<char> canonical
;
1091 /* We have to handle values a bit trickily here, to allow this code
1092 to work properly with non_lvalue values that are really just
1094 if (value_lval_const (value
) == lval_memory
)
1095 value
= coerce_ref (value
);
1097 type
= check_typedef (value_type (value
));
1099 /* In the non_lvalue case, a reference might have slipped through
1101 if (type
->code () == TYPE_CODE_REF
)
1102 type
= check_typedef (TYPE_TARGET_TYPE (type
));
1104 /* Ignore top-level cv-qualifiers. */
1105 type
= make_cv_type (0, 0, type
, NULL
);
1106 gdbarch
= type
->arch ();
1108 type_name
= type_to_string (type
);
1109 if (type_name
.empty ())
1110 error (_("cannot find typeinfo for unnamed type"));
1112 /* We need to canonicalize the type name here, because we do lookups
1113 using the demangled name, and so we must match the format it
1114 uses. E.g., GDB tends to use "const char *" as a type name, but
1115 the demangler uses "char const *". */
1116 canonical
= cp_canonicalize_string (type_name
.c_str ());
1117 const char *name
= (canonical
== nullptr
1118 ? type_name
.c_str ()
1119 : canonical
.get ());
1121 typeinfo_type
= gnuv3_get_typeid_type (gdbarch
);
1123 /* We check for lval_memory because in the "typeid (type-id)" case,
1124 the type is passed via a not_lval value object. */
1125 if (type
->code () == TYPE_CODE_STRUCT
1126 && value_lval_const (value
) == lval_memory
1127 && gnuv3_dynamic_class (type
))
1129 struct value
*vtable
, *typeinfo_value
;
1130 CORE_ADDR address
= value_address (value
) + value_embedded_offset (value
);
1132 vtable
= gnuv3_get_vtable (gdbarch
, type
, address
);
1134 error (_("cannot find typeinfo for object of type '%s'"),
1136 typeinfo_value
= value_field (vtable
, vtable_field_type_info
);
1137 result
= value_ind (value_cast (make_pointer_type (typeinfo_type
, NULL
),
1142 std::string sym_name
= std::string ("typeinfo for ") + name
;
1143 bound_minimal_symbol minsym
1144 = lookup_minimal_symbol (sym_name
.c_str (), NULL
, NULL
);
1146 if (minsym
.minsym
== NULL
)
1147 error (_("could not find typeinfo symbol for '%s'"), name
);
1149 result
= value_at_lazy (typeinfo_type
, BMSYMBOL_VALUE_ADDRESS (minsym
));
1155 /* Implement the 'get_typename_from_type_info' method. */
1158 gnuv3_get_typename_from_type_info (struct value
*type_info_ptr
)
1160 struct gdbarch
*gdbarch
= value_type (type_info_ptr
)->arch ();
1161 struct bound_minimal_symbol typeinfo_sym
;
1163 const char *symname
;
1164 const char *class_name
;
1167 addr
= value_as_address (type_info_ptr
);
1168 typeinfo_sym
= lookup_minimal_symbol_by_pc (addr
);
1169 if (typeinfo_sym
.minsym
== NULL
)
1170 error (_("could not find minimal symbol for typeinfo address %s"),
1171 paddress (gdbarch
, addr
));
1173 #define TYPEINFO_PREFIX "typeinfo for "
1174 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1175 symname
= typeinfo_sym
.minsym
->demangled_name ();
1176 if (symname
== NULL
|| strncmp (symname
, TYPEINFO_PREFIX
,
1177 TYPEINFO_PREFIX_LEN
))
1178 error (_("typeinfo symbol '%s' has unexpected name"),
1179 typeinfo_sym
.minsym
->linkage_name ());
1180 class_name
= symname
+ TYPEINFO_PREFIX_LEN
;
1182 /* Strip off @plt and version suffixes. */
1183 atsign
= strchr (class_name
, '@');
1185 return std::string (class_name
, atsign
- class_name
);
1189 /* Implement the 'get_type_from_type_info' method. */
1191 static struct type
*
1192 gnuv3_get_type_from_type_info (struct value
*type_info_ptr
)
1194 /* We have to parse the type name, since in general there is not a
1195 symbol for a type. This is somewhat bogus since there may be a
1196 mis-parse. Another approach might be to re-use the demangler's
1197 internal form to reconstruct the type somehow. */
1198 std::string type_name
= gnuv3_get_typename_from_type_info (type_info_ptr
);
1199 expression_up
expr (parse_expression (type_name
.c_str ()));
1200 struct value
*type_val
= evaluate_type (expr
.get ());
1201 return value_type (type_val
);
1204 /* Determine if we are currently in a C++ thunk. If so, get the address
1205 of the routine we are thunking to and continue to there instead. */
1208 gnuv3_skip_trampoline (struct frame_info
*frame
, CORE_ADDR stop_pc
)
1210 CORE_ADDR real_stop_pc
, method_stop_pc
, func_addr
;
1211 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1212 struct bound_minimal_symbol thunk_sym
, fn_sym
;
1213 struct obj_section
*section
;
1214 const char *thunk_name
, *fn_name
;
1216 real_stop_pc
= gdbarch_skip_trampoline_code (gdbarch
, frame
, stop_pc
);
1217 if (real_stop_pc
== 0)
1218 real_stop_pc
= stop_pc
;
1220 /* Find the linker symbol for this potential thunk. */
1221 thunk_sym
= lookup_minimal_symbol_by_pc (real_stop_pc
);
1222 section
= find_pc_section (real_stop_pc
);
1223 if (thunk_sym
.minsym
== NULL
|| section
== NULL
)
1226 /* The symbol's demangled name should be something like "virtual
1227 thunk to FUNCTION", where FUNCTION is the name of the function
1228 being thunked to. */
1229 thunk_name
= thunk_sym
.minsym
->demangled_name ();
1230 if (thunk_name
== NULL
|| strstr (thunk_name
, " thunk to ") == NULL
)
1233 fn_name
= strstr (thunk_name
, " thunk to ") + strlen (" thunk to ");
1234 fn_sym
= lookup_minimal_symbol (fn_name
, NULL
, section
->objfile
);
1235 if (fn_sym
.minsym
== NULL
)
1238 method_stop_pc
= BMSYMBOL_VALUE_ADDRESS (fn_sym
);
1240 /* Some targets have minimal symbols pointing to function descriptors
1241 (powerpc 64 for example). Make sure to retrieve the address
1242 of the real function from the function descriptor before passing on
1243 the address to other layers of GDB. */
1244 func_addr
= gdbarch_convert_from_func_ptr_addr
1245 (gdbarch
, method_stop_pc
, current_inferior ()->top_target ());
1247 method_stop_pc
= func_addr
;
1249 real_stop_pc
= gdbarch_skip_trampoline_code
1250 (gdbarch
, frame
, method_stop_pc
);
1251 if (real_stop_pc
== 0)
1252 real_stop_pc
= method_stop_pc
;
1254 return real_stop_pc
;
1257 /* A member function is in one these states. */
1259 enum definition_style
1261 DOES_NOT_EXIST_IN_SOURCE
,
1268 /* Return how the given field is defined. */
1270 static definition_style
1271 get_def_style (struct fn_field
*fn
, int fieldelem
)
1273 if (TYPE_FN_FIELD_DELETED (fn
, fieldelem
))
1276 if (TYPE_FN_FIELD_ARTIFICIAL (fn
, fieldelem
))
1277 return DOES_NOT_EXIST_IN_SOURCE
;
1279 switch (TYPE_FN_FIELD_DEFAULTED (fn
, fieldelem
))
1281 case DW_DEFAULTED_no
:
1283 case DW_DEFAULTED_in_class
:
1284 return DEFAULTED_INSIDE
;
1285 case DW_DEFAULTED_out_of_class
:
1286 return DEFAULTED_OUTSIDE
;
1294 /* Helper functions to determine whether the given definition style
1295 denotes that the definition is user-provided or implicit.
1296 Being defaulted outside the class decl counts as an explicit
1297 user-definition, while being defaulted inside is implicit. */
1300 is_user_provided_def (definition_style def
)
1302 return def
== EXPLICIT
|| def
== DEFAULTED_OUTSIDE
;
1306 is_implicit_def (definition_style def
)
1308 return def
== DOES_NOT_EXIST_IN_SOURCE
|| def
== DEFAULTED_INSIDE
;
1311 /* Helper function to decide if METHOD_TYPE is a copy/move
1312 constructor type for CLASS_TYPE. EXPECTED is the expected
1313 type code for the "right-hand-side" argument.
1314 This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
1315 and IS_MOVE_CONSTRUCTOR_TYPE functions below. Normally, you should
1316 not need to call this directly. */
1319 is_copy_or_move_constructor_type (struct type
*class_type
,
1320 struct type
*method_type
,
1323 /* The method should take at least two arguments... */
1324 if (method_type
->num_fields () < 2)
1327 /* ...and the second argument should be the same as the class
1328 type, with the expected type code... */
1329 struct type
*arg_type
= method_type
->field (1).type ();
1331 if (arg_type
->code () != expected
)
1334 struct type
*target
= check_typedef (TYPE_TARGET_TYPE (arg_type
));
1335 if (!(class_types_same_p (target
, class_type
)))
1338 /* ...and if any of the remaining arguments don't have a default value
1339 then this is not a copy or move constructor, but just a
1341 for (int i
= 2; i
< method_type
->num_fields (); i
++)
1343 arg_type
= method_type
->field (i
).type ();
1344 /* FIXME aktemur/2019-10-31: As of this date, neither
1345 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
1346 attribute. GDB is also not set to read this attribute, yet.
1347 Hence, we immediately return false if there are more than
1350 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
1358 /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE. */
1361 is_copy_constructor_type (struct type
*class_type
,
1362 struct type
*method_type
)
1364 return is_copy_or_move_constructor_type (class_type
, method_type
,
1368 /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE. */
1371 is_move_constructor_type (struct type
*class_type
,
1372 struct type
*method_type
)
1374 return is_copy_or_move_constructor_type (class_type
, method_type
,
1375 TYPE_CODE_RVALUE_REF
);
1378 /* Return pass-by-reference information for the given TYPE.
1380 The rule in the v3 ABI document comes from section 3.1.1. If the
1381 type has a non-trivial copy constructor or destructor, then the
1382 caller must make a copy (by calling the copy constructor if there
1383 is one or perform the copy itself otherwise), pass the address of
1384 the copy, and then destroy the temporary (if necessary).
1386 For return values with non-trivial copy/move constructors or
1387 destructors, space will be allocated in the caller, and a pointer
1388 will be passed as the first argument (preceding "this").
1390 We don't have a bulletproof mechanism for determining whether a
1391 constructor or destructor is trivial. For GCC and DWARF5 debug
1392 information, we can check the calling_convention attribute,
1393 the 'artificial' flag, the 'defaulted' attribute, and the
1394 'deleted' attribute. */
1396 static struct language_pass_by_ref_info
1397 gnuv3_pass_by_reference (struct type
*type
)
1399 int fieldnum
, fieldelem
;
1401 type
= check_typedef (type
);
1403 /* Start with the default values. */
1404 struct language_pass_by_ref_info info
;
1406 bool has_cc_attr
= false;
1407 bool is_pass_by_value
= false;
1408 bool is_dynamic
= false;
1409 definition_style cctor_def
= DOES_NOT_EXIST_IN_SOURCE
;
1410 definition_style dtor_def
= DOES_NOT_EXIST_IN_SOURCE
;
1411 definition_style mctor_def
= DOES_NOT_EXIST_IN_SOURCE
;
1413 /* We're only interested in things that can have methods. */
1414 if (type
->code () != TYPE_CODE_STRUCT
1415 && type
->code () != TYPE_CODE_UNION
)
1418 /* The compiler may have emitted the calling convention attribute.
1419 Note: GCC does not produce this attribute as of version 9.2.1.
1420 Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418 */
1421 if (TYPE_CPLUS_CALLING_CONVENTION (type
) == DW_CC_pass_by_value
)
1424 is_pass_by_value
= true;
1425 /* Do not return immediately. We have to find out if this type
1426 is copy_constructible and destructible. */
1429 if (TYPE_CPLUS_CALLING_CONVENTION (type
) == DW_CC_pass_by_reference
)
1432 is_pass_by_value
= false;
1435 /* A dynamic class has a non-trivial copy constructor.
1436 See c++98 section 12.8 Copying class objects [class.copy]. */
1437 if (gnuv3_dynamic_class (type
))
1440 for (fieldnum
= 0; fieldnum
< TYPE_NFN_FIELDS (type
); fieldnum
++)
1441 for (fieldelem
= 0; fieldelem
< TYPE_FN_FIELDLIST_LENGTH (type
, fieldnum
);
1444 struct fn_field
*fn
= TYPE_FN_FIELDLIST1 (type
, fieldnum
);
1445 const char *name
= TYPE_FN_FIELDLIST_NAME (type
, fieldnum
);
1446 struct type
*fieldtype
= TYPE_FN_FIELD_TYPE (fn
, fieldelem
);
1450 /* We've found a destructor.
1451 There should be at most one dtor definition. */
1452 gdb_assert (dtor_def
== DOES_NOT_EXIST_IN_SOURCE
);
1453 dtor_def
= get_def_style (fn
, fieldelem
);
1455 else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn
, fieldelem
))
1456 || TYPE_FN_FIELD_CONSTRUCTOR (fn
, fieldelem
))
1458 /* FIXME drow/2007-09-23: We could do this using the name of
1459 the method and the name of the class instead of dealing
1460 with the mangled name. We don't have a convenient function
1461 to strip off both leading scope qualifiers and trailing
1462 template arguments yet. */
1463 if (is_copy_constructor_type (type
, fieldtype
))
1465 /* There may be more than one cctors. E.g.: one that
1466 take a const parameter and another that takes a
1467 non-const parameter. Such as:
1474 It is sufficient for the type to be non-trivial
1475 even only one of the cctors is explicit.
1476 Therefore, update the cctor_def value in the
1477 implicit -> explicit direction, not backwards. */
1479 if (is_implicit_def (cctor_def
))
1480 cctor_def
= get_def_style (fn
, fieldelem
);
1482 else if (is_move_constructor_type (type
, fieldtype
))
1484 /* Again, there may be multiple move ctors. Update the
1485 mctor_def value if we found an explicit def and the
1486 existing one is not explicit. Otherwise retain the
1488 if (is_implicit_def (mctor_def
))
1489 mctor_def
= get_def_style (fn
, fieldelem
);
1494 bool cctor_implicitly_deleted
1495 = (mctor_def
!= DOES_NOT_EXIST_IN_SOURCE
1496 && cctor_def
== DOES_NOT_EXIST_IN_SOURCE
);
1498 bool cctor_explicitly_deleted
= (cctor_def
== DELETED
);
1500 if (cctor_implicitly_deleted
|| cctor_explicitly_deleted
)
1501 info
.copy_constructible
= false;
1503 if (dtor_def
== DELETED
)
1504 info
.destructible
= false;
1506 info
.trivially_destructible
= is_implicit_def (dtor_def
);
1508 info
.trivially_copy_constructible
1509 = (is_implicit_def (cctor_def
)
1512 info
.trivially_copyable
1513 = (info
.trivially_copy_constructible
1514 && info
.trivially_destructible
1515 && !is_user_provided_def (mctor_def
));
1517 /* Even if all the constructors and destructors were artificial, one
1518 of them may have invoked a non-artificial constructor or
1519 destructor in a base class. If any base class needs to be passed
1520 by reference, so does this class. Similarly for members, which
1521 are constructed whenever this class is. We do not need to worry
1522 about recursive loops here, since we are only looking at members
1523 of complete class type. Also ignore any static members. */
1524 for (fieldnum
= 0; fieldnum
< type
->num_fields (); fieldnum
++)
1525 if (!field_is_static (&type
->field (fieldnum
)))
1527 struct type
*field_type
= type
->field (fieldnum
).type ();
1529 /* For arrays, make the decision based on the element type. */
1530 if (field_type
->code () == TYPE_CODE_ARRAY
)
1531 field_type
= check_typedef (TYPE_TARGET_TYPE (field_type
));
1533 struct language_pass_by_ref_info field_info
1534 = gnuv3_pass_by_reference (field_type
);
1536 if (!field_info
.copy_constructible
)
1537 info
.copy_constructible
= false;
1538 if (!field_info
.destructible
)
1539 info
.destructible
= false;
1540 if (!field_info
.trivially_copyable
)
1541 info
.trivially_copyable
= false;
1542 if (!field_info
.trivially_copy_constructible
)
1543 info
.trivially_copy_constructible
= false;
1544 if (!field_info
.trivially_destructible
)
1545 info
.trivially_destructible
= false;
1548 /* Consistency check. */
1549 if (has_cc_attr
&& info
.trivially_copyable
!= is_pass_by_value
)
1551 /* DWARF CC attribute is not the same as the inferred value;
1552 use the DWARF attribute. */
1553 info
.trivially_copyable
= is_pass_by_value
;
1560 init_gnuv3_ops (void)
1562 vtable_type_gdbarch_data
1563 = gdbarch_data_register_post_init (build_gdb_vtable_type
);
1564 std_type_info_gdbarch_data
1565 = gdbarch_data_register_post_init (build_std_type_info_type
);
1567 gnu_v3_abi_ops
.shortname
= "gnu-v3";
1568 gnu_v3_abi_ops
.longname
= "GNU G++ Version 3 ABI";
1569 gnu_v3_abi_ops
.doc
= "G++ Version 3 ABI";
1570 gnu_v3_abi_ops
.is_destructor_name
=
1571 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor
;
1572 gnu_v3_abi_ops
.is_constructor_name
=
1573 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor
;
1574 gnu_v3_abi_ops
.is_vtable_name
= gnuv3_is_vtable_name
;
1575 gnu_v3_abi_ops
.is_operator_name
= gnuv3_is_operator_name
;
1576 gnu_v3_abi_ops
.rtti_type
= gnuv3_rtti_type
;
1577 gnu_v3_abi_ops
.virtual_fn_field
= gnuv3_virtual_fn_field
;
1578 gnu_v3_abi_ops
.baseclass_offset
= gnuv3_baseclass_offset
;
1579 gnu_v3_abi_ops
.print_method_ptr
= gnuv3_print_method_ptr
;
1580 gnu_v3_abi_ops
.method_ptr_size
= gnuv3_method_ptr_size
;
1581 gnu_v3_abi_ops
.make_method_ptr
= gnuv3_make_method_ptr
;
1582 gnu_v3_abi_ops
.method_ptr_to_value
= gnuv3_method_ptr_to_value
;
1583 gnu_v3_abi_ops
.print_vtable
= gnuv3_print_vtable
;
1584 gnu_v3_abi_ops
.get_typeid
= gnuv3_get_typeid
;
1585 gnu_v3_abi_ops
.get_typeid_type
= gnuv3_get_typeid_type
;
1586 gnu_v3_abi_ops
.get_type_from_type_info
= gnuv3_get_type_from_type_info
;
1587 gnu_v3_abi_ops
.get_typename_from_type_info
1588 = gnuv3_get_typename_from_type_info
;
1589 gnu_v3_abi_ops
.skip_trampoline
= gnuv3_skip_trampoline
;
1590 gnu_v3_abi_ops
.pass_by_reference
= gnuv3_pass_by_reference
;
1593 void _initialize_gnu_v3_abi ();
1595 _initialize_gnu_v3_abi ()
1599 register_cp_abi (&gnu_v3_abi_ops
);
1600 set_cp_abi_as_auto_default (gnu_v3_abi_ops
.shortname
);