1 /* GNU/Linux/PowerPC specific low level interface, for the remote server for
3 Copyright (C) 1995-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "linux-low.h"
22 #include "elf/common.h"
25 #include <asm/ptrace.h>
27 #include "arch/ppc-linux-common.h"
28 #include "arch/ppc-linux-tdesc.h"
29 #include "nat/ppc-linux.h"
30 #include "nat/linux-ptrace.h"
31 #include "linux-ppc-tdesc-init.h"
33 #include "tracepoint.h"
35 #define PPC_FIELD(value, from, len) \
36 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
37 #define PPC_SEXT(v, bs) \
38 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
39 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
40 - ((CORE_ADDR) 1 << ((bs) - 1)))
41 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
42 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
43 #define PPC_LI(insn) (PPC_SEXT (PPC_FIELD (insn, 6, 24), 24) << 2)
44 #define PPC_BD(insn) (PPC_SEXT (PPC_FIELD (insn, 16, 14), 14) << 2)
46 /* Linux target op definitions for the PowerPC architecture. */
48 class ppc_target
: public linux_process_target
52 const regs_info
*get_regs_info () override
;
54 const gdb_byte
*sw_breakpoint_from_kind (int kind
, int *size
) override
;
56 bool supports_z_point_type (char z_type
) override
;
59 void low_collect_ptrace_register (regcache
*regcache
, int regno
,
62 void low_supply_ptrace_register (regcache
*regcache
, int regno
,
63 const char *buf
) override
;
65 bool supports_tracepoints () override
;
67 bool supports_fast_tracepoints () override
;
69 int install_fast_tracepoint_jump_pad
70 (CORE_ADDR tpoint
, CORE_ADDR tpaddr
, CORE_ADDR collector
,
71 CORE_ADDR lockaddr
, ULONGEST orig_size
, CORE_ADDR
*jump_entry
,
72 CORE_ADDR
*trampoline
, ULONGEST
*trampoline_size
,
73 unsigned char *jjump_pad_insn
, ULONGEST
*jjump_pad_insn_size
,
74 CORE_ADDR
*adjusted_insn_addr
, CORE_ADDR
*adjusted_insn_addr_end
,
77 int get_min_fast_tracepoint_insn_len () override
;
79 struct emit_ops
*emit_ops () override
;
81 int get_ipa_tdesc_idx () override
;
85 void low_arch_setup () override
;
87 bool low_cannot_fetch_register (int regno
) override
;
89 bool low_cannot_store_register (int regno
) override
;
91 bool low_supports_breakpoints () override
;
93 CORE_ADDR
low_get_pc (regcache
*regcache
) override
;
95 void low_set_pc (regcache
*regcache
, CORE_ADDR newpc
) override
;
97 bool low_breakpoint_at (CORE_ADDR pc
) override
;
99 int low_insert_point (raw_bkpt_type type
, CORE_ADDR addr
,
100 int size
, raw_breakpoint
*bp
) override
;
102 int low_remove_point (raw_bkpt_type type
, CORE_ADDR addr
,
103 int size
, raw_breakpoint
*bp
) override
;
105 int low_get_thread_area (int lwpid
, CORE_ADDR
*addrp
) override
;
108 /* The singleton target ops object. */
110 static ppc_target the_ppc_target
;
112 /* Holds the AT_HWCAP auxv entry. */
114 static unsigned long ppc_hwcap
;
116 /* Holds the AT_HWCAP2 auxv entry. */
118 static unsigned long ppc_hwcap2
;
121 #define ppc_num_regs 73
124 /* We use a constant for FPSCR instead of PT_FPSCR, because
125 many shipped PPC64 kernels had the wrong value in ptrace.h. */
126 static int ppc_regmap
[] =
127 {PT_R0
* 8, PT_R1
* 8, PT_R2
* 8, PT_R3
* 8,
128 PT_R4
* 8, PT_R5
* 8, PT_R6
* 8, PT_R7
* 8,
129 PT_R8
* 8, PT_R9
* 8, PT_R10
* 8, PT_R11
* 8,
130 PT_R12
* 8, PT_R13
* 8, PT_R14
* 8, PT_R15
* 8,
131 PT_R16
* 8, PT_R17
* 8, PT_R18
* 8, PT_R19
* 8,
132 PT_R20
* 8, PT_R21
* 8, PT_R22
* 8, PT_R23
* 8,
133 PT_R24
* 8, PT_R25
* 8, PT_R26
* 8, PT_R27
* 8,
134 PT_R28
* 8, PT_R29
* 8, PT_R30
* 8, PT_R31
* 8,
135 PT_FPR0
*8, PT_FPR0
*8 + 8, PT_FPR0
*8+16, PT_FPR0
*8+24,
136 PT_FPR0
*8+32, PT_FPR0
*8+40, PT_FPR0
*8+48, PT_FPR0
*8+56,
137 PT_FPR0
*8+64, PT_FPR0
*8+72, PT_FPR0
*8+80, PT_FPR0
*8+88,
138 PT_FPR0
*8+96, PT_FPR0
*8+104, PT_FPR0
*8+112, PT_FPR0
*8+120,
139 PT_FPR0
*8+128, PT_FPR0
*8+136, PT_FPR0
*8+144, PT_FPR0
*8+152,
140 PT_FPR0
*8+160, PT_FPR0
*8+168, PT_FPR0
*8+176, PT_FPR0
*8+184,
141 PT_FPR0
*8+192, PT_FPR0
*8+200, PT_FPR0
*8+208, PT_FPR0
*8+216,
142 PT_FPR0
*8+224, PT_FPR0
*8+232, PT_FPR0
*8+240, PT_FPR0
*8+248,
143 PT_NIP
* 8, PT_MSR
* 8, PT_CCR
* 8, PT_LNK
* 8,
144 PT_CTR
* 8, PT_XER
* 8, PT_FPR0
*8 + 256,
145 PT_ORIG_R3
* 8, PT_TRAP
* 8 };
147 /* Currently, don't check/send MQ. */
148 static int ppc_regmap
[] =
149 {PT_R0
* 4, PT_R1
* 4, PT_R2
* 4, PT_R3
* 4,
150 PT_R4
* 4, PT_R5
* 4, PT_R6
* 4, PT_R7
* 4,
151 PT_R8
* 4, PT_R9
* 4, PT_R10
* 4, PT_R11
* 4,
152 PT_R12
* 4, PT_R13
* 4, PT_R14
* 4, PT_R15
* 4,
153 PT_R16
* 4, PT_R17
* 4, PT_R18
* 4, PT_R19
* 4,
154 PT_R20
* 4, PT_R21
* 4, PT_R22
* 4, PT_R23
* 4,
155 PT_R24
* 4, PT_R25
* 4, PT_R26
* 4, PT_R27
* 4,
156 PT_R28
* 4, PT_R29
* 4, PT_R30
* 4, PT_R31
* 4,
157 PT_FPR0
*4, PT_FPR0
*4 + 8, PT_FPR0
*4+16, PT_FPR0
*4+24,
158 PT_FPR0
*4+32, PT_FPR0
*4+40, PT_FPR0
*4+48, PT_FPR0
*4+56,
159 PT_FPR0
*4+64, PT_FPR0
*4+72, PT_FPR0
*4+80, PT_FPR0
*4+88,
160 PT_FPR0
*4+96, PT_FPR0
*4+104, PT_FPR0
*4+112, PT_FPR0
*4+120,
161 PT_FPR0
*4+128, PT_FPR0
*4+136, PT_FPR0
*4+144, PT_FPR0
*4+152,
162 PT_FPR0
*4+160, PT_FPR0
*4+168, PT_FPR0
*4+176, PT_FPR0
*4+184,
163 PT_FPR0
*4+192, PT_FPR0
*4+200, PT_FPR0
*4+208, PT_FPR0
*4+216,
164 PT_FPR0
*4+224, PT_FPR0
*4+232, PT_FPR0
*4+240, PT_FPR0
*4+248,
165 PT_NIP
* 4, PT_MSR
* 4, PT_CCR
* 4, PT_LNK
* 4,
166 PT_CTR
* 4, PT_XER
* 4, PT_FPSCR
* 4,
167 PT_ORIG_R3
* 4, PT_TRAP
* 4
170 static int ppc_regmap_e500
[] =
171 {PT_R0
* 4, PT_R1
* 4, PT_R2
* 4, PT_R3
* 4,
172 PT_R4
* 4, PT_R5
* 4, PT_R6
* 4, PT_R7
* 4,
173 PT_R8
* 4, PT_R9
* 4, PT_R10
* 4, PT_R11
* 4,
174 PT_R12
* 4, PT_R13
* 4, PT_R14
* 4, PT_R15
* 4,
175 PT_R16
* 4, PT_R17
* 4, PT_R18
* 4, PT_R19
* 4,
176 PT_R20
* 4, PT_R21
* 4, PT_R22
* 4, PT_R23
* 4,
177 PT_R24
* 4, PT_R25
* 4, PT_R26
* 4, PT_R27
* 4,
178 PT_R28
* 4, PT_R29
* 4, PT_R30
* 4, PT_R31
* 4,
187 PT_NIP
* 4, PT_MSR
* 4, PT_CCR
* 4, PT_LNK
* 4,
188 PT_CTR
* 4, PT_XER
* 4, -1,
189 PT_ORIG_R3
* 4, PT_TRAP
* 4
193 /* Check whether the kernel provides a register set with number
194 REGSET_ID of size REGSETSIZE for process/thread TID. */
197 ppc_check_regset (int tid
, int regset_id
, int regsetsize
)
199 void *buf
= alloca (regsetsize
);
203 iov
.iov_len
= regsetsize
;
205 if (ptrace (PTRACE_GETREGSET
, tid
, regset_id
, &iov
) >= 0
212 ppc_target::low_cannot_store_register (int regno
)
214 const struct target_desc
*tdesc
= current_process ()->tdesc
;
216 #ifndef __powerpc64__
217 /* Some kernels do not allow us to store fpscr. */
218 if (!(ppc_hwcap
& PPC_FEATURE_HAS_SPE
)
219 && regno
== find_regno (tdesc
, "fpscr"))
223 /* Some kernels do not allow us to store orig_r3 or trap. */
224 if (regno
== find_regno (tdesc
, "orig_r3")
225 || regno
== find_regno (tdesc
, "trap"))
232 ppc_target::low_cannot_fetch_register (int regno
)
238 ppc_target::low_collect_ptrace_register (regcache
*regcache
, int regno
,
241 memset (buf
, 0, sizeof (long));
243 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
245 /* Little-endian values always sit at the left end of the buffer. */
246 collect_register (regcache
, regno
, buf
);
248 else if (__BYTE_ORDER
== __BIG_ENDIAN
)
250 /* Big-endian values sit at the right end of the buffer. In case of
251 registers whose sizes are smaller than sizeof (long), we must use a
252 padding to access them correctly. */
253 int size
= register_size (regcache
->tdesc
, regno
);
255 if (size
< sizeof (long))
256 collect_register (regcache
, regno
, buf
+ sizeof (long) - size
);
258 collect_register (regcache
, regno
, buf
);
261 perror_with_name ("Unexpected byte order");
265 ppc_target::low_supply_ptrace_register (regcache
*regcache
, int regno
,
268 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
270 /* Little-endian values always sit at the left end of the buffer. */
271 supply_register (regcache
, regno
, buf
);
273 else if (__BYTE_ORDER
== __BIG_ENDIAN
)
275 /* Big-endian values sit at the right end of the buffer. In case of
276 registers whose sizes are smaller than sizeof (long), we must use a
277 padding to access them correctly. */
278 int size
= register_size (regcache
->tdesc
, regno
);
280 if (size
< sizeof (long))
281 supply_register (regcache
, regno
, buf
+ sizeof (long) - size
);
283 supply_register (regcache
, regno
, buf
);
286 perror_with_name ("Unexpected byte order");
290 ppc_target::low_supports_breakpoints ()
296 ppc_target::low_get_pc (regcache
*regcache
)
298 if (register_size (regcache
->tdesc
, 0) == 4)
301 collect_register_by_name (regcache
, "pc", &pc
);
302 return (CORE_ADDR
) pc
;
307 collect_register_by_name (regcache
, "pc", &pc
);
308 return (CORE_ADDR
) pc
;
313 ppc_target::low_set_pc (regcache
*regcache
, CORE_ADDR pc
)
315 if (register_size (regcache
->tdesc
, 0) == 4)
317 unsigned int newpc
= pc
;
318 supply_register_by_name (regcache
, "pc", &newpc
);
322 unsigned long newpc
= pc
;
323 supply_register_by_name (regcache
, "pc", &newpc
);
327 #ifndef __powerpc64__
328 static int ppc_regmap_adjusted
;
332 /* Correct in either endianness.
333 This instruction is "twge r2, r2", which GDB uses as a software
335 static const unsigned int ppc_breakpoint
= 0x7d821008;
336 #define ppc_breakpoint_len 4
338 /* Implementation of target ops method "sw_breakpoint_from_kind". */
341 ppc_target::sw_breakpoint_from_kind (int kind
, int *size
)
343 *size
= ppc_breakpoint_len
;
344 return (const gdb_byte
*) &ppc_breakpoint
;
348 ppc_target::low_breakpoint_at (CORE_ADDR where
)
352 read_memory (where
, (unsigned char *) &insn
, 4);
353 if (insn
== ppc_breakpoint
)
355 /* If necessary, recognize more trap instructions here. GDB only uses
361 /* Implement supports_z_point_type target-ops.
362 Returns true if type Z_TYPE breakpoint is supported.
364 Handling software breakpoint at server side, so tracepoints
365 and breakpoints can be inserted at the same location. */
368 ppc_target::supports_z_point_type (char z_type
)
375 case Z_PACKET_WRITE_WP
:
376 case Z_PACKET_ACCESS_WP
:
382 /* Implement the low_insert_point linux target op.
383 Returns 0 on success, -1 on failure and 1 on unsupported. */
386 ppc_target::low_insert_point (raw_bkpt_type type
, CORE_ADDR addr
,
387 int size
, raw_breakpoint
*bp
)
391 case raw_bkpt_type_sw
:
392 return insert_memory_breakpoint (bp
);
394 case raw_bkpt_type_hw
:
395 case raw_bkpt_type_write_wp
:
396 case raw_bkpt_type_access_wp
:
403 /* Implement the low_remove_point linux target op.
404 Returns 0 on success, -1 on failure and 1 on unsupported. */
407 ppc_target::low_remove_point (raw_bkpt_type type
, CORE_ADDR addr
,
408 int size
, raw_breakpoint
*bp
)
412 case raw_bkpt_type_sw
:
413 return remove_memory_breakpoint (bp
);
415 case raw_bkpt_type_hw
:
416 case raw_bkpt_type_write_wp
:
417 case raw_bkpt_type_access_wp
:
424 /* Provide only a fill function for the general register set. ps_lgetregs
425 will use this for NPTL support. */
427 static void ppc_fill_gregset (struct regcache
*regcache
, void *buf
)
431 ppc_target
*my_ppc_target
= (ppc_target
*) the_linux_target
;
433 for (i
= 0; i
< 32; i
++)
434 my_ppc_target
->low_collect_ptrace_register (regcache
, i
,
435 (char *) buf
+ ppc_regmap
[i
]);
437 for (i
= 64; i
< 70; i
++)
438 my_ppc_target
->low_collect_ptrace_register (regcache
, i
,
439 (char *) buf
+ ppc_regmap
[i
]);
441 for (i
= 71; i
< 73; i
++)
442 my_ppc_target
->low_collect_ptrace_register (regcache
, i
,
443 (char *) buf
+ ppc_regmap
[i
]);
446 /* Program Priority Register regset fill function. */
449 ppc_fill_pprregset (struct regcache
*regcache
, void *buf
)
451 char *ppr
= (char *) buf
;
453 collect_register_by_name (regcache
, "ppr", ppr
);
456 /* Program Priority Register regset store function. */
459 ppc_store_pprregset (struct regcache
*regcache
, const void *buf
)
461 const char *ppr
= (const char *) buf
;
463 supply_register_by_name (regcache
, "ppr", ppr
);
466 /* Data Stream Control Register regset fill function. */
469 ppc_fill_dscrregset (struct regcache
*regcache
, void *buf
)
471 char *dscr
= (char *) buf
;
473 collect_register_by_name (regcache
, "dscr", dscr
);
476 /* Data Stream Control Register regset store function. */
479 ppc_store_dscrregset (struct regcache
*regcache
, const void *buf
)
481 const char *dscr
= (const char *) buf
;
483 supply_register_by_name (regcache
, "dscr", dscr
);
486 /* Target Address Register regset fill function. */
489 ppc_fill_tarregset (struct regcache
*regcache
, void *buf
)
491 char *tar
= (char *) buf
;
493 collect_register_by_name (regcache
, "tar", tar
);
496 /* Target Address Register regset store function. */
499 ppc_store_tarregset (struct regcache
*regcache
, const void *buf
)
501 const char *tar
= (const char *) buf
;
503 supply_register_by_name (regcache
, "tar", tar
);
506 /* Event-Based Branching regset store function. Unless the inferior
507 has a perf event open, ptrace can return in error when reading and
508 writing to the regset, with ENODATA. For reading, the registers
509 will correctly show as unavailable. For writing, gdbserver
510 currently only caches any register writes from P and G packets and
511 the stub always tries to write all the regsets when resuming the
512 inferior, which would result in frequent warnings. For this
513 reason, we don't define a fill function. This also means that the
514 client-side regcache will be dirty if the user tries to write to
515 the EBB registers. G packets that the client sends to write to
516 unrelated registers will also include data for EBB registers, even
517 if they are unavailable. */
520 ppc_store_ebbregset (struct regcache
*regcache
, const void *buf
)
522 const char *regset
= (const char *) buf
;
524 /* The order in the kernel regset is: EBBRR, EBBHR, BESCR. In the
525 .dat file is BESCR, EBBHR, EBBRR. */
526 supply_register_by_name (regcache
, "ebbrr", ®set
[0]);
527 supply_register_by_name (regcache
, "ebbhr", ®set
[8]);
528 supply_register_by_name (regcache
, "bescr", ®set
[16]);
531 /* Performance Monitoring Unit regset fill function. */
534 ppc_fill_pmuregset (struct regcache
*regcache
, void *buf
)
536 char *regset
= (char *) buf
;
538 /* The order in the kernel regset is SIAR, SDAR, SIER, MMCR2, MMCR0.
539 In the .dat file is MMCR0, MMCR2, SIAR, SDAR, SIER. */
540 collect_register_by_name (regcache
, "siar", ®set
[0]);
541 collect_register_by_name (regcache
, "sdar", ®set
[8]);
542 collect_register_by_name (regcache
, "sier", ®set
[16]);
543 collect_register_by_name (regcache
, "mmcr2", ®set
[24]);
544 collect_register_by_name (regcache
, "mmcr0", ®set
[32]);
547 /* Performance Monitoring Unit regset store function. */
550 ppc_store_pmuregset (struct regcache
*regcache
, const void *buf
)
552 const char *regset
= (const char *) buf
;
554 supply_register_by_name (regcache
, "siar", ®set
[0]);
555 supply_register_by_name (regcache
, "sdar", ®set
[8]);
556 supply_register_by_name (regcache
, "sier", ®set
[16]);
557 supply_register_by_name (regcache
, "mmcr2", ®set
[24]);
558 supply_register_by_name (regcache
, "mmcr0", ®set
[32]);
561 /* Hardware Transactional Memory special-purpose register regset fill
565 ppc_fill_tm_sprregset (struct regcache
*regcache
, void *buf
)
568 char *regset
= (char *) buf
;
570 base
= find_regno (regcache
->tdesc
, "tfhar");
571 for (i
= 0; i
< 3; i
++)
572 collect_register (regcache
, base
+ i
, ®set
[i
* 8]);
575 /* Hardware Transactional Memory special-purpose register regset store
579 ppc_store_tm_sprregset (struct regcache
*regcache
, const void *buf
)
582 const char *regset
= (const char *) buf
;
584 base
= find_regno (regcache
->tdesc
, "tfhar");
585 for (i
= 0; i
< 3; i
++)
586 supply_register (regcache
, base
+ i
, ®set
[i
* 8]);
589 /* For the same reasons as the EBB regset, none of the HTM
590 checkpointed regsets have a fill function. These registers are
591 only available if the inferior is in a transaction. */
593 /* Hardware Transactional Memory checkpointed general-purpose regset
597 ppc_store_tm_cgprregset (struct regcache
*regcache
, const void *buf
)
599 int i
, base
, size
, endian_offset
;
600 const char *regset
= (const char *) buf
;
602 base
= find_regno (regcache
->tdesc
, "cr0");
603 size
= register_size (regcache
->tdesc
, base
);
605 gdb_assert (size
== 4 || size
== 8);
607 for (i
= 0; i
< 32; i
++)
608 supply_register (regcache
, base
+ i
, ®set
[i
* size
]);
612 if ((size
== 8) && (__BYTE_ORDER
== __BIG_ENDIAN
))
615 supply_register_by_name (regcache
, "ccr",
616 ®set
[PT_CCR
* size
+ endian_offset
]);
618 supply_register_by_name (regcache
, "cxer",
619 ®set
[PT_XER
* size
+ endian_offset
]);
621 supply_register_by_name (regcache
, "clr", ®set
[PT_LNK
* size
]);
622 supply_register_by_name (regcache
, "cctr", ®set
[PT_CTR
* size
]);
625 /* Hardware Transactional Memory checkpointed floating-point regset
629 ppc_store_tm_cfprregset (struct regcache
*regcache
, const void *buf
)
632 const char *regset
= (const char *) buf
;
634 base
= find_regno (regcache
->tdesc
, "cf0");
636 for (i
= 0; i
< 32; i
++)
637 supply_register (regcache
, base
+ i
, ®set
[i
* 8]);
639 supply_register_by_name (regcache
, "cfpscr", ®set
[32 * 8]);
642 /* Hardware Transactional Memory checkpointed vector regset store
646 ppc_store_tm_cvrregset (struct regcache
*regcache
, const void *buf
)
649 const char *regset
= (const char *) buf
;
652 base
= find_regno (regcache
->tdesc
, "cvr0");
654 for (i
= 0; i
< 32; i
++)
655 supply_register (regcache
, base
+ i
, ®set
[i
* 16]);
657 if (__BYTE_ORDER
== __BIG_ENDIAN
)
660 supply_register_by_name (regcache
, "cvscr",
661 ®set
[32 * 16 + vscr_offset
]);
663 supply_register_by_name (regcache
, "cvrsave", ®set
[33 * 16]);
666 /* Hardware Transactional Memory checkpointed vector-scalar regset
670 ppc_store_tm_cvsxregset (struct regcache
*regcache
, const void *buf
)
673 const char *regset
= (const char *) buf
;
675 base
= find_regno (regcache
->tdesc
, "cvs0h");
676 for (i
= 0; i
< 32; i
++)
677 supply_register (regcache
, base
+ i
, ®set
[i
* 8]);
680 /* Hardware Transactional Memory checkpointed Program Priority
681 Register regset store function. */
684 ppc_store_tm_cpprregset (struct regcache
*regcache
, const void *buf
)
686 const char *cppr
= (const char *) buf
;
688 supply_register_by_name (regcache
, "cppr", cppr
);
691 /* Hardware Transactional Memory checkpointed Data Stream Control
692 Register regset store function. */
695 ppc_store_tm_cdscrregset (struct regcache
*regcache
, const void *buf
)
697 const char *cdscr
= (const char *) buf
;
699 supply_register_by_name (regcache
, "cdscr", cdscr
);
702 /* Hardware Transactional Memory checkpointed Target Address Register
703 regset store function. */
706 ppc_store_tm_ctarregset (struct regcache
*regcache
, const void *buf
)
708 const char *ctar
= (const char *) buf
;
710 supply_register_by_name (regcache
, "ctar", ctar
);
714 ppc_fill_vsxregset (struct regcache
*regcache
, void *buf
)
717 char *regset
= (char *) buf
;
719 base
= find_regno (regcache
->tdesc
, "vs0h");
720 for (i
= 0; i
< 32; i
++)
721 collect_register (regcache
, base
+ i
, ®set
[i
* 8]);
725 ppc_store_vsxregset (struct regcache
*regcache
, const void *buf
)
728 const char *regset
= (const char *) buf
;
730 base
= find_regno (regcache
->tdesc
, "vs0h");
731 for (i
= 0; i
< 32; i
++)
732 supply_register (regcache
, base
+ i
, ®set
[i
* 8]);
736 ppc_fill_vrregset (struct regcache
*regcache
, void *buf
)
739 char *regset
= (char *) buf
;
742 base
= find_regno (regcache
->tdesc
, "vr0");
743 for (i
= 0; i
< 32; i
++)
744 collect_register (regcache
, base
+ i
, ®set
[i
* 16]);
746 if (__BYTE_ORDER
== __BIG_ENDIAN
)
749 collect_register_by_name (regcache
, "vscr",
750 ®set
[32 * 16 + vscr_offset
]);
752 collect_register_by_name (regcache
, "vrsave", ®set
[33 * 16]);
756 ppc_store_vrregset (struct regcache
*regcache
, const void *buf
)
759 const char *regset
= (const char *) buf
;
762 base
= find_regno (regcache
->tdesc
, "vr0");
763 for (i
= 0; i
< 32; i
++)
764 supply_register (regcache
, base
+ i
, ®set
[i
* 16]);
766 if (__BYTE_ORDER
== __BIG_ENDIAN
)
769 supply_register_by_name (regcache
, "vscr",
770 ®set
[32 * 16 + vscr_offset
]);
771 supply_register_by_name (regcache
, "vrsave", ®set
[33 * 16]);
774 struct gdb_evrregset_t
776 unsigned long evr
[32];
777 unsigned long long acc
;
778 unsigned long spefscr
;
782 ppc_fill_evrregset (struct regcache
*regcache
, void *buf
)
785 struct gdb_evrregset_t
*regset
= (struct gdb_evrregset_t
*) buf
;
787 ev0
= find_regno (regcache
->tdesc
, "ev0h");
788 for (i
= 0; i
< 32; i
++)
789 collect_register (regcache
, ev0
+ i
, ®set
->evr
[i
]);
791 collect_register_by_name (regcache
, "acc", ®set
->acc
);
792 collect_register_by_name (regcache
, "spefscr", ®set
->spefscr
);
796 ppc_store_evrregset (struct regcache
*regcache
, const void *buf
)
799 const struct gdb_evrregset_t
*regset
= (const struct gdb_evrregset_t
*) buf
;
801 ev0
= find_regno (regcache
->tdesc
, "ev0h");
802 for (i
= 0; i
< 32; i
++)
803 supply_register (regcache
, ev0
+ i
, ®set
->evr
[i
]);
805 supply_register_by_name (regcache
, "acc", ®set
->acc
);
806 supply_register_by_name (regcache
, "spefscr", ®set
->spefscr
);
809 static struct regset_info ppc_regsets
[] = {
810 /* List the extra register sets before GENERAL_REGS. That way we will
811 fetch them every time, but still fall back to PTRACE_PEEKUSER for the
812 general registers. Some kernels support these, but not the newer
813 PPC_PTRACE_GETREGS. */
814 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_TM_CTAR
, 0, EXTENDED_REGS
,
815 NULL
, ppc_store_tm_ctarregset
},
816 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_TM_CDSCR
, 0, EXTENDED_REGS
,
817 NULL
, ppc_store_tm_cdscrregset
},
818 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_TM_CPPR
, 0, EXTENDED_REGS
,
819 NULL
, ppc_store_tm_cpprregset
},
820 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_TM_CVSX
, 0, EXTENDED_REGS
,
821 NULL
, ppc_store_tm_cvsxregset
},
822 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_TM_CVMX
, 0, EXTENDED_REGS
,
823 NULL
, ppc_store_tm_cvrregset
},
824 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_TM_CFPR
, 0, EXTENDED_REGS
,
825 NULL
, ppc_store_tm_cfprregset
},
826 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_TM_CGPR
, 0, EXTENDED_REGS
,
827 NULL
, ppc_store_tm_cgprregset
},
828 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_TM_SPR
, 0, EXTENDED_REGS
,
829 ppc_fill_tm_sprregset
, ppc_store_tm_sprregset
},
830 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_EBB
, 0, EXTENDED_REGS
,
831 NULL
, ppc_store_ebbregset
},
832 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_PMU
, 0, EXTENDED_REGS
,
833 ppc_fill_pmuregset
, ppc_store_pmuregset
},
834 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_TAR
, 0, EXTENDED_REGS
,
835 ppc_fill_tarregset
, ppc_store_tarregset
},
836 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_PPR
, 0, EXTENDED_REGS
,
837 ppc_fill_pprregset
, ppc_store_pprregset
},
838 { PTRACE_GETREGSET
, PTRACE_SETREGSET
, NT_PPC_DSCR
, 0, EXTENDED_REGS
,
839 ppc_fill_dscrregset
, ppc_store_dscrregset
},
840 { PTRACE_GETVSXREGS
, PTRACE_SETVSXREGS
, 0, 0, EXTENDED_REGS
,
841 ppc_fill_vsxregset
, ppc_store_vsxregset
},
842 { PTRACE_GETVRREGS
, PTRACE_SETVRREGS
, 0, 0, EXTENDED_REGS
,
843 ppc_fill_vrregset
, ppc_store_vrregset
},
844 { PTRACE_GETEVRREGS
, PTRACE_SETEVRREGS
, 0, 0, EXTENDED_REGS
,
845 ppc_fill_evrregset
, ppc_store_evrregset
},
846 { 0, 0, 0, 0, GENERAL_REGS
, ppc_fill_gregset
, NULL
},
850 static struct usrregs_info ppc_usrregs_info
=
856 static struct regsets_info ppc_regsets_info
=
858 ppc_regsets
, /* regsets */
860 NULL
, /* disabled_regsets */
863 static struct regs_info myregs_info
=
865 NULL
, /* regset_bitmap */
871 ppc_target::get_regs_info ()
877 ppc_target::low_arch_setup ()
879 const struct target_desc
*tdesc
;
880 struct regset_info
*regset
;
881 struct ppc_linux_features features
= ppc_linux_no_features
;
883 int tid
= lwpid_of (current_thread
);
885 features
.wordsize
= ppc_linux_target_wordsize (tid
);
887 if (features
.wordsize
== 4)
888 tdesc
= tdesc_powerpc_32l
;
890 tdesc
= tdesc_powerpc_64l
;
892 current_process ()->tdesc
= tdesc
;
894 /* The value of current_process ()->tdesc needs to be set for this
896 ppc_hwcap
= linux_get_hwcap (current_thread
->id
.pid (), features
.wordsize
);
897 ppc_hwcap2
= linux_get_hwcap2 (current_thread
->id
.pid (), features
.wordsize
);
899 features
.isa205
= ppc_linux_has_isa205 (ppc_hwcap
);
901 if (ppc_hwcap
& PPC_FEATURE_HAS_VSX
)
904 if (ppc_hwcap
& PPC_FEATURE_HAS_ALTIVEC
)
905 features
.altivec
= true;
907 if ((ppc_hwcap2
& PPC_FEATURE2_DSCR
)
908 && ppc_check_regset (tid
, NT_PPC_DSCR
, PPC_LINUX_SIZEOF_DSCRREGSET
)
909 && ppc_check_regset (tid
, NT_PPC_PPR
, PPC_LINUX_SIZEOF_PPRREGSET
))
911 features
.ppr_dscr
= true;
912 if ((ppc_hwcap2
& PPC_FEATURE2_ARCH_2_07
)
913 && (ppc_hwcap2
& PPC_FEATURE2_TAR
)
914 && (ppc_hwcap2
& PPC_FEATURE2_EBB
)
915 && ppc_check_regset (tid
, NT_PPC_TAR
,
916 PPC_LINUX_SIZEOF_TARREGSET
)
917 && ppc_check_regset (tid
, NT_PPC_EBB
,
918 PPC_LINUX_SIZEOF_EBBREGSET
)
919 && ppc_check_regset (tid
, NT_PPC_PMU
,
920 PPC_LINUX_SIZEOF_PMUREGSET
))
922 features
.isa207
= true;
923 if ((ppc_hwcap2
& PPC_FEATURE2_HTM
)
924 && ppc_check_regset (tid
, NT_PPC_TM_SPR
,
925 PPC_LINUX_SIZEOF_TM_SPRREGSET
))
930 tdesc
= ppc_linux_match_description (features
);
932 /* On 32-bit machines, check for SPE registers.
933 Set the low target's regmap field as appropriately. */
934 #ifndef __powerpc64__
935 if (ppc_hwcap
& PPC_FEATURE_HAS_SPE
)
936 tdesc
= tdesc_powerpc_e500l
;
938 if (!ppc_regmap_adjusted
)
940 if (ppc_hwcap
& PPC_FEATURE_HAS_SPE
)
941 ppc_usrregs_info
.regmap
= ppc_regmap_e500
;
943 /* If the FPSCR is 64-bit wide, we need to fetch the whole
944 64-bit slot and not just its second word. The PT_FPSCR
945 supplied in a 32-bit GDB compilation doesn't reflect
947 if (register_size (tdesc
, 70) == 8)
948 ppc_regmap
[70] = (48 + 2*32) * sizeof (long);
950 ppc_regmap_adjusted
= 1;
954 current_process ()->tdesc
= tdesc
;
956 for (regset
= ppc_regsets
; regset
->size
>= 0; regset
++)
957 switch (regset
->get_request
)
959 case PTRACE_GETVRREGS
:
960 regset
->size
= features
.altivec
? PPC_LINUX_SIZEOF_VRREGSET
: 0;
962 case PTRACE_GETVSXREGS
:
963 regset
->size
= features
.vsx
? PPC_LINUX_SIZEOF_VSXREGSET
: 0;
965 case PTRACE_GETEVRREGS
:
966 if (ppc_hwcap
& PPC_FEATURE_HAS_SPE
)
967 regset
->size
= 32 * 4 + 8 + 4;
971 case PTRACE_GETREGSET
:
972 switch (regset
->nt_type
)
975 regset
->size
= (features
.ppr_dscr
?
976 PPC_LINUX_SIZEOF_PPRREGSET
: 0);
979 regset
->size
= (features
.ppr_dscr
?
980 PPC_LINUX_SIZEOF_DSCRREGSET
: 0);
983 regset
->size
= (features
.isa207
?
984 PPC_LINUX_SIZEOF_TARREGSET
: 0);
987 regset
->size
= (features
.isa207
?
988 PPC_LINUX_SIZEOF_EBBREGSET
: 0);
991 regset
->size
= (features
.isa207
?
992 PPC_LINUX_SIZEOF_PMUREGSET
: 0);
995 regset
->size
= (features
.htm
?
996 PPC_LINUX_SIZEOF_TM_SPRREGSET
: 0);
999 if (features
.wordsize
== 4)
1000 regset
->size
= (features
.htm
?
1001 PPC32_LINUX_SIZEOF_CGPRREGSET
: 0);
1003 regset
->size
= (features
.htm
?
1004 PPC64_LINUX_SIZEOF_CGPRREGSET
: 0);
1006 case NT_PPC_TM_CFPR
:
1007 regset
->size
= (features
.htm
?
1008 PPC_LINUX_SIZEOF_CFPRREGSET
: 0);
1010 case NT_PPC_TM_CVMX
:
1011 regset
->size
= (features
.htm
?
1012 PPC_LINUX_SIZEOF_CVMXREGSET
: 0);
1014 case NT_PPC_TM_CVSX
:
1015 regset
->size
= (features
.htm
?
1016 PPC_LINUX_SIZEOF_CVSXREGSET
: 0);
1018 case NT_PPC_TM_CPPR
:
1019 regset
->size
= (features
.htm
?
1020 PPC_LINUX_SIZEOF_CPPRREGSET
: 0);
1022 case NT_PPC_TM_CDSCR
:
1023 regset
->size
= (features
.htm
?
1024 PPC_LINUX_SIZEOF_CDSCRREGSET
: 0);
1026 case NT_PPC_TM_CTAR
:
1027 regset
->size
= (features
.htm
?
1028 PPC_LINUX_SIZEOF_CTARREGSET
: 0);
1039 /* Implementation of target ops method "supports_tracepoints". */
1042 ppc_target::supports_tracepoints ()
1047 /* Get the thread area address. This is used to recognize which
1048 thread is which when tracing with the in-process agent library. We
1049 don't read anything from the address, and treat it as opaque; it's
1050 the address itself that we assume is unique per-thread. */
1053 ppc_target::low_get_thread_area (int lwpid
, CORE_ADDR
*addr
)
1055 struct lwp_info
*lwp
= find_lwp_pid (ptid_t (lwpid
));
1056 struct thread_info
*thr
= get_lwp_thread (lwp
);
1057 struct regcache
*regcache
= get_thread_regcache (thr
, 1);
1060 #ifdef __powerpc64__
1061 if (register_size (regcache
->tdesc
, 0) == 8)
1062 collect_register_by_name (regcache
, "r13", &tp
);
1065 collect_register_by_name (regcache
, "r2", &tp
);
1072 #ifdef __powerpc64__
1074 /* Older glibc doesn't provide this. */
1076 #ifndef EF_PPC64_ABI
1077 #define EF_PPC64_ABI 3
1080 /* Returns 1 if inferior is using ELFv2 ABI. Undefined for 32-bit
1084 is_elfv2_inferior (void)
1086 /* To be used as fallback if we're unable to determine the right result -
1087 assume inferior uses the same ABI as gdbserver. */
1089 const int def_res
= 1;
1091 const int def_res
= 0;
1096 const struct target_desc
*tdesc
= current_process ()->tdesc
;
1097 int wordsize
= register_size (tdesc
, 0);
1099 if (!linux_get_auxv (current_thread
->id
.pid (), wordsize
, AT_PHDR
, &phdr
))
1102 /* Assume ELF header is at the beginning of the page where program headers
1103 are located. If it doesn't look like one, bail. */
1105 read_inferior_memory (phdr
& ~0xfff, (unsigned char *) &ehdr
, sizeof ehdr
);
1106 if (memcmp(ehdr
.e_ident
, ELFMAG
, SELFMAG
))
1109 return (ehdr
.e_flags
& EF_PPC64_ABI
) == 2;
1114 /* Generate a ds-form instruction in BUF and return the number of bytes written
1117 | OPCD | RST | RA | DS |XO| */
1119 __attribute__((unused
)) /* Maybe unused due to conditional compilation. */
1121 gen_ds_form (uint32_t *buf
, int opcd
, int rst
, int ra
, int ds
, int xo
)
1125 gdb_assert ((opcd
& ~0x3f) == 0);
1126 gdb_assert ((rst
& ~0x1f) == 0);
1127 gdb_assert ((ra
& ~0x1f) == 0);
1128 gdb_assert ((xo
& ~0x3) == 0);
1130 insn
= (rst
<< 21) | (ra
<< 16) | (ds
& 0xfffc) | (xo
& 0x3);
1131 *buf
= (opcd
<< 26) | insn
;
1135 /* Followings are frequently used ds-form instructions. */
1137 #define GEN_STD(buf, rs, ra, offset) gen_ds_form (buf, 62, rs, ra, offset, 0)
1138 #define GEN_STDU(buf, rs, ra, offset) gen_ds_form (buf, 62, rs, ra, offset, 1)
1139 #define GEN_LD(buf, rt, ra, offset) gen_ds_form (buf, 58, rt, ra, offset, 0)
1140 #define GEN_LDU(buf, rt, ra, offset) gen_ds_form (buf, 58, rt, ra, offset, 1)
1142 /* Generate a d-form instruction in BUF.
1145 | OPCD | RST | RA | D | */
1148 gen_d_form (uint32_t *buf
, int opcd
, int rst
, int ra
, int si
)
1152 gdb_assert ((opcd
& ~0x3f) == 0);
1153 gdb_assert ((rst
& ~0x1f) == 0);
1154 gdb_assert ((ra
& ~0x1f) == 0);
1156 insn
= (rst
<< 21) | (ra
<< 16) | (si
& 0xffff);
1157 *buf
= (opcd
<< 26) | insn
;
1161 /* Followings are frequently used d-form instructions. */
1163 #define GEN_ADDI(buf, rt, ra, si) gen_d_form (buf, 14, rt, ra, si)
1164 #define GEN_ADDIS(buf, rt, ra, si) gen_d_form (buf, 15, rt, ra, si)
1165 #define GEN_LI(buf, rt, si) GEN_ADDI (buf, rt, 0, si)
1166 #define GEN_LIS(buf, rt, si) GEN_ADDIS (buf, rt, 0, si)
1167 #define GEN_ORI(buf, rt, ra, si) gen_d_form (buf, 24, rt, ra, si)
1168 #define GEN_ORIS(buf, rt, ra, si) gen_d_form (buf, 25, rt, ra, si)
1169 #define GEN_LWZ(buf, rt, ra, si) gen_d_form (buf, 32, rt, ra, si)
1170 #define GEN_STW(buf, rt, ra, si) gen_d_form (buf, 36, rt, ra, si)
1171 #define GEN_STWU(buf, rt, ra, si) gen_d_form (buf, 37, rt, ra, si)
1173 /* Generate a xfx-form instruction in BUF and return the number of bytes
1177 | OPCD | RST | RI | XO |/| */
1180 gen_xfx_form (uint32_t *buf
, int opcd
, int rst
, int ri
, int xo
)
1183 unsigned int n
= ((ri
& 0x1f) << 5) | ((ri
>> 5) & 0x1f);
1185 gdb_assert ((opcd
& ~0x3f) == 0);
1186 gdb_assert ((rst
& ~0x1f) == 0);
1187 gdb_assert ((xo
& ~0x3ff) == 0);
1189 insn
= (rst
<< 21) | (n
<< 11) | (xo
<< 1);
1190 *buf
= (opcd
<< 26) | insn
;
1194 /* Followings are frequently used xfx-form instructions. */
1196 #define GEN_MFSPR(buf, rt, spr) gen_xfx_form (buf, 31, rt, spr, 339)
1197 #define GEN_MTSPR(buf, rt, spr) gen_xfx_form (buf, 31, rt, spr, 467)
1198 #define GEN_MFCR(buf, rt) gen_xfx_form (buf, 31, rt, 0, 19)
1199 #define GEN_MTCR(buf, rt) gen_xfx_form (buf, 31, rt, 0x3cf, 144)
1200 #define GEN_SYNC(buf, L, E) gen_xfx_form (buf, 31, L & 0x3, \
1202 #define GEN_LWSYNC(buf) GEN_SYNC (buf, 1, 0)
1205 /* Generate a x-form instruction in BUF and return the number of bytes written.
1208 | OPCD | RST | RA | RB | XO |RC| */
1211 gen_x_form (uint32_t *buf
, int opcd
, int rst
, int ra
, int rb
, int xo
, int rc
)
1215 gdb_assert ((opcd
& ~0x3f) == 0);
1216 gdb_assert ((rst
& ~0x1f) == 0);
1217 gdb_assert ((ra
& ~0x1f) == 0);
1218 gdb_assert ((rb
& ~0x1f) == 0);
1219 gdb_assert ((xo
& ~0x3ff) == 0);
1220 gdb_assert ((rc
& ~1) == 0);
1222 insn
= (rst
<< 21) | (ra
<< 16) | (rb
<< 11) | (xo
<< 1) | rc
;
1223 *buf
= (opcd
<< 26) | insn
;
1227 /* Followings are frequently used x-form instructions. */
1229 #define GEN_OR(buf, ra, rs, rb) gen_x_form (buf, 31, rs, ra, rb, 444, 0)
1230 #define GEN_MR(buf, ra, rs) GEN_OR (buf, ra, rs, rs)
1231 #define GEN_LWARX(buf, rt, ra, rb) gen_x_form (buf, 31, rt, ra, rb, 20, 0)
1232 #define GEN_STWCX(buf, rs, ra, rb) gen_x_form (buf, 31, rs, ra, rb, 150, 1)
1233 /* Assume bf = cr7. */
1234 #define GEN_CMPW(buf, ra, rb) gen_x_form (buf, 31, 28, ra, rb, 0, 0)
1237 /* Generate a md-form instruction in BUF and return the number of bytes written.
1239 0 6 11 16 21 27 30 31 32
1240 | OPCD | RS | RA | sh | mb | XO |sh|Rc| */
1243 gen_md_form (uint32_t *buf
, int opcd
, int rs
, int ra
, int sh
, int mb
,
1247 unsigned int n
= ((mb
& 0x1f) << 1) | ((mb
>> 5) & 0x1);
1248 unsigned int sh0_4
= sh
& 0x1f;
1249 unsigned int sh5
= (sh
>> 5) & 1;
1251 gdb_assert ((opcd
& ~0x3f) == 0);
1252 gdb_assert ((rs
& ~0x1f) == 0);
1253 gdb_assert ((ra
& ~0x1f) == 0);
1254 gdb_assert ((sh
& ~0x3f) == 0);
1255 gdb_assert ((mb
& ~0x3f) == 0);
1256 gdb_assert ((xo
& ~0x7) == 0);
1257 gdb_assert ((rc
& ~0x1) == 0);
1259 insn
= (rs
<< 21) | (ra
<< 16) | (sh0_4
<< 11) | (n
<< 5)
1260 | (sh5
<< 1) | (xo
<< 2) | (rc
& 1);
1261 *buf
= (opcd
<< 26) | insn
;
1265 /* The following are frequently used md-form instructions. */
1267 #define GEN_RLDICL(buf, ra, rs ,sh, mb) \
1268 gen_md_form (buf, 30, rs, ra, sh, mb, 0, 0)
1269 #define GEN_RLDICR(buf, ra, rs ,sh, mb) \
1270 gen_md_form (buf, 30, rs, ra, sh, mb, 1, 0)
1272 /* Generate a i-form instruction in BUF and return the number of bytes written.
1275 | OPCD | LI |AA|LK| */
1278 gen_i_form (uint32_t *buf
, int opcd
, int li
, int aa
, int lk
)
1282 gdb_assert ((opcd
& ~0x3f) == 0);
1284 insn
= (li
& 0x3fffffc) | (aa
& 1) | (lk
& 1);
1285 *buf
= (opcd
<< 26) | insn
;
1289 /* The following are frequently used i-form instructions. */
1291 #define GEN_B(buf, li) gen_i_form (buf, 18, li, 0, 0)
1292 #define GEN_BL(buf, li) gen_i_form (buf, 18, li, 0, 1)
1294 /* Generate a b-form instruction in BUF and return the number of bytes written.
1297 | OPCD | BO | BI | BD |AA|LK| */
1300 gen_b_form (uint32_t *buf
, int opcd
, int bo
, int bi
, int bd
,
1305 gdb_assert ((opcd
& ~0x3f) == 0);
1306 gdb_assert ((bo
& ~0x1f) == 0);
1307 gdb_assert ((bi
& ~0x1f) == 0);
1309 insn
= (bo
<< 21) | (bi
<< 16) | (bd
& 0xfffc) | (aa
& 1) | (lk
& 1);
1310 *buf
= (opcd
<< 26) | insn
;
1314 /* The following are frequently used b-form instructions. */
1315 /* Assume bi = cr7. */
1316 #define GEN_BNE(buf, bd) gen_b_form (buf, 16, 0x4, (7 << 2) | 2, bd, 0 ,0)
1318 /* GEN_LOAD and GEN_STORE generate 64- or 32-bit load/store for ppc64 or ppc32
1319 respectively. They are primary used for save/restore GPRs in jump-pad,
1320 not used for bytecode compiling. */
1322 #ifdef __powerpc64__
1323 #define GEN_LOAD(buf, rt, ra, si, is_64) (is_64 ? \
1324 GEN_LD (buf, rt, ra, si) : \
1325 GEN_LWZ (buf, rt, ra, si))
1326 #define GEN_STORE(buf, rt, ra, si, is_64) (is_64 ? \
1327 GEN_STD (buf, rt, ra, si) : \
1328 GEN_STW (buf, rt, ra, si))
1330 #define GEN_LOAD(buf, rt, ra, si, is_64) GEN_LWZ (buf, rt, ra, si)
1331 #define GEN_STORE(buf, rt, ra, si, is_64) GEN_STW (buf, rt, ra, si)
1334 /* Generate a sequence of instructions to load IMM in the register REG.
1335 Write the instructions in BUF and return the number of bytes written. */
1338 gen_limm (uint32_t *buf
, int reg
, uint64_t imm
, int is_64
)
1342 if ((imm
+ 32768) < 65536)
1344 /* li reg, imm[15:0] */
1345 p
+= GEN_LI (p
, reg
, imm
);
1347 else if ((imm
>> 32) == 0)
1349 /* lis reg, imm[31:16]
1350 ori reg, reg, imm[15:0]
1351 rldicl reg, reg, 0, 32 */
1352 p
+= GEN_LIS (p
, reg
, (imm
>> 16) & 0xffff);
1353 if ((imm
& 0xffff) != 0)
1354 p
+= GEN_ORI (p
, reg
, reg
, imm
& 0xffff);
1355 /* Clear upper 32-bit if sign-bit is set. */
1356 if (imm
& (1u << 31) && is_64
)
1357 p
+= GEN_RLDICL (p
, reg
, reg
, 0, 32);
1362 /* lis reg, <imm[63:48]>
1363 ori reg, reg, <imm[48:32]>
1364 rldicr reg, reg, 32, 31
1365 oris reg, reg, <imm[31:16]>
1366 ori reg, reg, <imm[15:0]> */
1367 p
+= GEN_LIS (p
, reg
, ((imm
>> 48) & 0xffff));
1368 if (((imm
>> 32) & 0xffff) != 0)
1369 p
+= GEN_ORI (p
, reg
, reg
, ((imm
>> 32) & 0xffff));
1370 p
+= GEN_RLDICR (p
, reg
, reg
, 32, 31);
1371 if (((imm
>> 16) & 0xffff) != 0)
1372 p
+= GEN_ORIS (p
, reg
, reg
, ((imm
>> 16) & 0xffff));
1373 if ((imm
& 0xffff) != 0)
1374 p
+= GEN_ORI (p
, reg
, reg
, (imm
& 0xffff));
1380 /* Generate a sequence for atomically exchange at location LOCK.
1381 This code sequence clobbers r6, r7, r8. LOCK is the location for
1382 the atomic-xchg, OLD_VALUE is expected old value stored in the
1383 location, and R_NEW is a register for the new value. */
1386 gen_atomic_xchg (uint32_t *buf
, CORE_ADDR lock
, int old_value
, int r_new
,
1389 const int r_lock
= 6;
1390 const int r_old
= 7;
1391 const int r_tmp
= 8;
1395 1: lwarx TMP, 0, LOCK
1401 p
+= gen_limm (p
, r_lock
, lock
, is_64
);
1402 p
+= gen_limm (p
, r_old
, old_value
, is_64
);
1404 p
+= GEN_LWARX (p
, r_tmp
, 0, r_lock
);
1405 p
+= GEN_CMPW (p
, r_tmp
, r_old
);
1406 p
+= GEN_BNE (p
, -8);
1407 p
+= GEN_STWCX (p
, r_new
, 0, r_lock
);
1408 p
+= GEN_BNE (p
, -16);
1413 /* Generate a sequence of instructions for calling a function
1414 at address of FN. Return the number of bytes are written in BUF. */
1417 gen_call (uint32_t *buf
, CORE_ADDR fn
, int is_64
, int is_opd
)
1421 /* Must be called by r12 for caller to calculate TOC address. */
1422 p
+= gen_limm (p
, 12, fn
, is_64
);
1425 p
+= GEN_LOAD (p
, 11, 12, 16, is_64
);
1426 p
+= GEN_LOAD (p
, 2, 12, 8, is_64
);
1427 p
+= GEN_LOAD (p
, 12, 12, 0, is_64
);
1429 p
+= GEN_MTSPR (p
, 12, 9); /* mtctr r12 */
1430 *p
++ = 0x4e800421; /* bctrl */
1435 /* Copy the instruction from OLDLOC to *TO, and update *TO to *TO + size
1436 of instruction. This function is used to adjust pc-relative instructions
1440 ppc_relocate_instruction (CORE_ADDR
*to
, CORE_ADDR oldloc
)
1445 read_inferior_memory (oldloc
, (unsigned char *) &insn
, 4);
1446 op6
= PPC_OP6 (insn
);
1448 if (op6
== 18 && (insn
& 2) == 0)
1450 /* branch && AA = 0 */
1451 rel
= PPC_LI (insn
);
1452 newrel
= (oldloc
- *to
) + rel
;
1454 /* Out of range. Cannot relocate instruction. */
1455 if (newrel
>= (1 << 25) || newrel
< -(1 << 25))
1458 insn
= (insn
& ~0x3fffffc) | (newrel
& 0x3fffffc);
1460 else if (op6
== 16 && (insn
& 2) == 0)
1462 /* conditional branch && AA = 0 */
1464 /* If the new relocation is too big for even a 26-bit unconditional
1465 branch, there is nothing we can do. Just abort.
1467 Otherwise, if it can be fit in 16-bit conditional branch, just
1468 copy the instruction and relocate the address.
1470 If the it's big for conditional-branch (16-bit), try to invert the
1471 condition and jump with 26-bit branch. For example,
1482 After this transform, we are actually jump from *TO+4 instead of *TO,
1483 so check the relocation again because it will be 1-insn farther then
1484 before if *TO is after OLDLOC.
1487 For BDNZT (or so) is transformed from
1499 See also "BO field encodings". */
1501 rel
= PPC_BD (insn
);
1502 newrel
= (oldloc
- *to
) + rel
;
1504 if (newrel
< (1 << 15) && newrel
>= -(1 << 15))
1505 insn
= (insn
& ~0xfffc) | (newrel
& 0xfffc);
1506 else if ((PPC_BO (insn
) & 0x14) == 0x4 || (PPC_BO (insn
) & 0x14) == 0x10)
1510 /* Out of range. Cannot relocate instruction. */
1511 if (newrel
>= (1 << 25) || newrel
< -(1 << 25))
1514 if ((PPC_BO (insn
) & 0x14) == 0x4)
1516 else if ((PPC_BO (insn
) & 0x14) == 0x10)
1519 /* Jump over the unconditional branch. */
1520 insn
= (insn
& ~0xfffc) | 0x8;
1521 target_write_memory (*to
, (unsigned char *) &insn
, 4);
1524 /* Build a unconditional branch and copy LK bit. */
1525 insn
= (18 << 26) | (0x3fffffc & newrel
) | (insn
& 0x3);
1526 target_write_memory (*to
, (unsigned char *) &insn
, 4);
1531 else if ((PPC_BO (insn
) & 0x14) == 0)
1533 uint32_t bdnz_insn
= (16 << 26) | (0x10 << 21) | 12;
1534 uint32_t bf_insn
= (16 << 26) | (0x4 << 21) | 8;
1538 /* Out of range. Cannot relocate instruction. */
1539 if (newrel
>= (1 << 25) || newrel
< -(1 << 25))
1542 /* Copy BI field. */
1543 bf_insn
|= (insn
& 0x1f0000);
1545 /* Invert condition. */
1546 bdnz_insn
|= (insn
^ (1 << 22)) & (1 << 22);
1547 bf_insn
|= (insn
^ (1 << 24)) & (1 << 24);
1549 target_write_memory (*to
, (unsigned char *) &bdnz_insn
, 4);
1551 target_write_memory (*to
, (unsigned char *) &bf_insn
, 4);
1554 /* Build a unconditional branch and copy LK bit. */
1555 insn
= (18 << 26) | (0x3fffffc & newrel
) | (insn
& 0x3);
1556 target_write_memory (*to
, (unsigned char *) &insn
, 4);
1561 else /* (BO & 0x14) == 0x14, branch always. */
1563 /* Out of range. Cannot relocate instruction. */
1564 if (newrel
>= (1 << 25) || newrel
< -(1 << 25))
1567 /* Build a unconditional branch and copy LK bit. */
1568 insn
= (18 << 26) | (0x3fffffc & newrel
) | (insn
& 0x3);
1569 target_write_memory (*to
, (unsigned char *) &insn
, 4);
1576 target_write_memory (*to
, (unsigned char *) &insn
, 4);
1581 ppc_target::supports_fast_tracepoints ()
1586 /* Implement install_fast_tracepoint_jump_pad of target_ops.
1587 See target.h for details. */
1590 ppc_target::install_fast_tracepoint_jump_pad (CORE_ADDR tpoint
,
1592 CORE_ADDR collector
,
1595 CORE_ADDR
*jump_entry
,
1596 CORE_ADDR
*trampoline
,
1597 ULONGEST
*trampoline_size
,
1598 unsigned char *jjump_pad_insn
,
1599 ULONGEST
*jjump_pad_insn_size
,
1600 CORE_ADDR
*adjusted_insn_addr
,
1601 CORE_ADDR
*adjusted_insn_addr_end
,
1607 CORE_ADDR buildaddr
= *jump_entry
;
1608 const CORE_ADDR entryaddr
= *jump_entry
;
1609 int rsz
, min_frame
, frame_size
, tp_reg
;
1610 #ifdef __powerpc64__
1611 struct regcache
*regcache
= get_thread_regcache (current_thread
, 0);
1612 int is_64
= register_size (regcache
->tdesc
, 0) == 8;
1613 int is_opd
= is_64
&& !is_elfv2_inferior ();
1615 int is_64
= 0, is_opd
= 0;
1618 #ifdef __powerpc64__
1621 /* Minimum frame size is 32 bytes for ELFv2, and 112 bytes for ELFv1. */
1624 frame_size
= (40 * rsz
) + min_frame
;
1632 frame_size
= (40 * rsz
) + min_frame
;
1634 #ifdef __powerpc64__
1638 /* Stack frame layout for this jump pad,
1640 High thread_area (r13/r2) |
1641 tpoint - collecting_t obj
1651 R0 - collected registers
1657 The code flow of this jump pad,
1662 4. Call gdb_collector
1663 5. Restore GPR and SPR
1665 7. Build a jump for back to the program
1666 8. Copy/relocate original instruction
1667 9. Build a jump for replacing original instruction. */
1669 /* Adjust stack pointer. */
1671 p
+= GEN_STDU (p
, 1, 1, -frame_size
); /* stdu r1,-frame_size(r1) */
1673 p
+= GEN_STWU (p
, 1, 1, -frame_size
); /* stwu r1,-frame_size(r1) */
1675 /* Store GPRs. Save R1 later, because it had just been modified, but
1676 we want the original value. */
1677 for (j
= 2; j
< 32; j
++)
1678 p
+= GEN_STORE (p
, j
, 1, min_frame
+ j
* rsz
, is_64
);
1679 p
+= GEN_STORE (p
, 0, 1, min_frame
+ 0 * rsz
, is_64
);
1680 /* Set r0 to the original value of r1 before adjusting stack frame,
1681 and then save it. */
1682 p
+= GEN_ADDI (p
, 0, 1, frame_size
);
1683 p
+= GEN_STORE (p
, 0, 1, min_frame
+ 1 * rsz
, is_64
);
1685 /* Save CR, XER, LR, and CTR. */
1686 p
+= GEN_MFCR (p
, 3); /* mfcr r3 */
1687 p
+= GEN_MFSPR (p
, 4, 1); /* mfxer r4 */
1688 p
+= GEN_MFSPR (p
, 5, 8); /* mflr r5 */
1689 p
+= GEN_MFSPR (p
, 6, 9); /* mfctr r6 */
1690 p
+= GEN_STORE (p
, 3, 1, min_frame
+ 32 * rsz
, is_64
);/* std r3, 32(r1) */
1691 p
+= GEN_STORE (p
, 4, 1, min_frame
+ 33 * rsz
, is_64
);/* std r4, 33(r1) */
1692 p
+= GEN_STORE (p
, 5, 1, min_frame
+ 34 * rsz
, is_64
);/* std r5, 34(r1) */
1693 p
+= GEN_STORE (p
, 6, 1, min_frame
+ 35 * rsz
, is_64
);/* std r6, 35(r1) */
1695 /* Save PC<tpaddr> */
1696 p
+= gen_limm (p
, 3, tpaddr
, is_64
);
1697 p
+= GEN_STORE (p
, 3, 1, min_frame
+ 36 * rsz
, is_64
);
1700 /* Setup arguments to collector. */
1701 /* Set r4 to collected registers. */
1702 p
+= GEN_ADDI (p
, 4, 1, min_frame
);
1703 /* Set r3 to TPOINT. */
1704 p
+= gen_limm (p
, 3, tpoint
, is_64
);
1706 /* Prepare collecting_t object for lock. */
1707 p
+= GEN_STORE (p
, 3, 1, min_frame
+ 37 * rsz
, is_64
);
1708 p
+= GEN_STORE (p
, tp_reg
, 1, min_frame
+ 38 * rsz
, is_64
);
1709 /* Set R5 to collecting object. */
1710 p
+= GEN_ADDI (p
, 5, 1, 37 * rsz
);
1712 p
+= GEN_LWSYNC (p
);
1713 p
+= gen_atomic_xchg (p
, lockaddr
, 0, 5, is_64
);
1714 p
+= GEN_LWSYNC (p
);
1716 /* Call to collector. */
1717 p
+= gen_call (p
, collector
, is_64
, is_opd
);
1719 /* Simply write 0 to release the lock. */
1720 p
+= gen_limm (p
, 3, lockaddr
, is_64
);
1721 p
+= gen_limm (p
, 4, 0, is_64
);
1722 p
+= GEN_LWSYNC (p
);
1723 p
+= GEN_STORE (p
, 4, 3, 0, is_64
);
1725 /* Restore stack and registers. */
1726 p
+= GEN_LOAD (p
, 3, 1, min_frame
+ 32 * rsz
, is_64
); /* ld r3, 32(r1) */
1727 p
+= GEN_LOAD (p
, 4, 1, min_frame
+ 33 * rsz
, is_64
); /* ld r4, 33(r1) */
1728 p
+= GEN_LOAD (p
, 5, 1, min_frame
+ 34 * rsz
, is_64
); /* ld r5, 34(r1) */
1729 p
+= GEN_LOAD (p
, 6, 1, min_frame
+ 35 * rsz
, is_64
); /* ld r6, 35(r1) */
1730 p
+= GEN_MTCR (p
, 3); /* mtcr r3 */
1731 p
+= GEN_MTSPR (p
, 4, 1); /* mtxer r4 */
1732 p
+= GEN_MTSPR (p
, 5, 8); /* mtlr r5 */
1733 p
+= GEN_MTSPR (p
, 6, 9); /* mtctr r6 */
1736 for (j
= 2; j
< 32; j
++)
1737 p
+= GEN_LOAD (p
, j
, 1, min_frame
+ j
* rsz
, is_64
);
1738 p
+= GEN_LOAD (p
, 0, 1, min_frame
+ 0 * rsz
, is_64
);
1740 p
+= GEN_ADDI (p
, 1, 1, frame_size
);
1742 /* Flush instructions to inferior memory. */
1743 target_write_memory (buildaddr
, (unsigned char *) buf
, (p
- buf
) * 4);
1745 /* Now, insert the original instruction to execute in the jump pad. */
1746 *adjusted_insn_addr
= buildaddr
+ (p
- buf
) * 4;
1747 *adjusted_insn_addr_end
= *adjusted_insn_addr
;
1748 ppc_relocate_instruction (adjusted_insn_addr_end
, tpaddr
);
1750 /* Verify the relocation size. If should be 4 for normal copy,
1751 8 or 12 for some conditional branch. */
1752 if ((*adjusted_insn_addr_end
- *adjusted_insn_addr
== 0)
1753 || (*adjusted_insn_addr_end
- *adjusted_insn_addr
> 12))
1755 sprintf (err
, "E.Unexpected instruction length = %d"
1756 "when relocate instruction.",
1757 (int) (*adjusted_insn_addr_end
- *adjusted_insn_addr
));
1761 buildaddr
= *adjusted_insn_addr_end
;
1763 /* Finally, write a jump back to the program. */
1764 offset
= (tpaddr
+ 4) - buildaddr
;
1765 if (offset
>= (1 << 25) || offset
< -(1 << 25))
1767 sprintf (err
, "E.Jump back from jump pad too far from tracepoint "
1768 "(offset 0x%x > 26-bit).", offset
);
1772 p
+= GEN_B (p
, offset
);
1773 target_write_memory (buildaddr
, (unsigned char *) buf
, (p
- buf
) * 4);
1774 *jump_entry
= buildaddr
+ (p
- buf
) * 4;
1776 /* The jump pad is now built. Wire in a jump to our jump pad. This
1777 is always done last (by our caller actually), so that we can
1778 install fast tracepoints with threads running. This relies on
1779 the agent's atomic write support. */
1780 offset
= entryaddr
- tpaddr
;
1781 if (offset
>= (1 << 25) || offset
< -(1 << 25))
1783 sprintf (err
, "E.Jump back from jump pad too far from tracepoint "
1784 "(offset 0x%x > 26-bit).", offset
);
1788 GEN_B ((uint32_t *) jjump_pad_insn
, offset
);
1789 *jjump_pad_insn_size
= 4;
1794 /* Returns the minimum instruction length for installing a tracepoint. */
1797 ppc_target::get_min_fast_tracepoint_insn_len ()
1802 /* Emits a given buffer into the target at current_insn_ptr. Length
1803 is in units of 32-bit words. */
1806 emit_insns (uint32_t *buf
, int n
)
1808 n
= n
* sizeof (uint32_t);
1809 target_write_memory (current_insn_ptr
, (unsigned char *) buf
, n
);
1810 current_insn_ptr
+= n
;
1813 #define __EMIT_ASM(NAME, INSNS) \
1816 extern uint32_t start_bcax_ ## NAME []; \
1817 extern uint32_t end_bcax_ ## NAME []; \
1818 emit_insns (start_bcax_ ## NAME, \
1819 end_bcax_ ## NAME - start_bcax_ ## NAME); \
1820 __asm__ (".section .text.__ppcbcax\n\t" \
1821 "start_bcax_" #NAME ":\n\t" \
1823 "end_bcax_" #NAME ":\n\t" \
1827 #define _EMIT_ASM(NAME, INSNS) __EMIT_ASM (NAME, INSNS)
1828 #define EMIT_ASM(INSNS) _EMIT_ASM (__LINE__, INSNS)
1832 Bytecode execution stack frame - 32-bit
1834 | LR save area (SP + 4)
1835 SP' -> +- Back chain (SP + 0)
1836 | Save r31 for access saved arguments
1837 | Save r30 for bytecode stack pointer
1838 | Save r4 for incoming argument *value
1839 | Save r3 for incoming argument regs
1840 r30 -> +- Bytecode execution stack
1842 | 64-byte (8 doublewords) at initial.
1843 | Expand stack as needed.
1846 | Some padding for minimum stack frame and 16-byte alignment.
1848 SP +- Back-chain (SP')
1854 r30 is the stack-pointer for bytecode machine.
1855 It should point to next-empty, so we can use LDU for pop.
1856 r3 is used for cache of the high part of TOP value.
1857 It was the first argument, pointer to regs.
1858 r4 is used for cache of the low part of TOP value.
1859 It was the second argument, pointer to the result.
1860 We should set *result = TOP after leaving this function.
1863 * To restore stack at epilogue
1865 * To check stack is big enough for bytecode execution.
1867 * To return execution result.
1872 /* Regardless of endian, register 3 is always high part, 4 is low part.
1873 These defines are used when the register pair is stored/loaded.
1874 Likewise, to simplify code, have a similar define for 5:6. */
1876 #if __BYTE_ORDER == __LITTLE_ENDIAN
1877 #define TOP_FIRST "4"
1878 #define TOP_SECOND "3"
1879 #define TMP_FIRST "6"
1880 #define TMP_SECOND "5"
1882 #define TOP_FIRST "3"
1883 #define TOP_SECOND "4"
1884 #define TMP_FIRST "5"
1885 #define TMP_SECOND "6"
1888 /* Emit prologue in inferior memory. See above comments. */
1891 ppc_emit_prologue (void)
1893 EMIT_ASM (/* Save return address. */
1896 /* Adjust SP. 96 is the initial frame size. */
1898 /* Save r30 and incoming arguments. */
1899 "stw 31, 96-4(1) \n"
1900 "stw 30, 96-8(1) \n"
1901 "stw 4, 96-12(1) \n"
1902 "stw 3, 96-16(1) \n"
1903 /* Point r31 to original r1 for access arguments. */
1905 /* Set r30 to pointing stack-top. */
1907 /* Initial r3/TOP to 0. */
1912 /* Emit epilogue in inferior memory. See above comments. */
1915 ppc_emit_epilogue (void)
1917 EMIT_ASM (/* *result = TOP */
1919 "stw " TOP_FIRST
", 0(5) \n"
1920 "stw " TOP_SECOND
", 4(5) \n"
1921 /* Restore registers. */
1928 /* Return 0 for no-error. */
1934 /* TOP = stack[--sp] + TOP */
1939 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
1940 "lwz " TMP_SECOND
", 4(30)\n"
1945 /* TOP = stack[--sp] - TOP */
1950 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
1951 "lwz " TMP_SECOND
", 4(30) \n"
1953 "subfe 3, 3, 5 \n");
1956 /* TOP = stack[--sp] * TOP */
1961 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
1962 "lwz " TMP_SECOND
", 4(30) \n"
1971 /* TOP = stack[--sp] << TOP */
1976 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
1977 "lwz " TMP_SECOND
", 4(30) \n"
1978 "subfic 3, 4, 32\n" /* r3 = 32 - TOP */
1979 "addi 7, 4, -32\n" /* r7 = TOP - 32 */
1980 "slw 5, 5, 4\n" /* Shift high part left */
1981 "slw 4, 6, 4\n" /* Shift low part left */
1982 "srw 3, 6, 3\n" /* Shift low to high if shift < 32 */
1983 "slw 7, 6, 7\n" /* Shift low to high if shift >= 32 */
1985 "or 3, 7, 3\n"); /* Assemble high part */
1988 /* Top = stack[--sp] >> TOP
1989 (Arithmetic shift right) */
1992 ppc_emit_rsh_signed (void)
1994 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
1995 "lwz " TMP_SECOND
", 4(30) \n"
1996 "addi 7, 4, -32\n" /* r7 = TOP - 32 */
1997 "sraw 3, 5, 4\n" /* Shift high part right */
1999 "blt 0, 1f\n" /* If shift <= 32, goto 1: */
2000 "sraw 4, 5, 7\n" /* Shift high to low */
2003 "subfic 7, 4, 32\n" /* r7 = 32 - TOP */
2004 "srw 4, 6, 4\n" /* Shift low part right */
2005 "slw 5, 5, 7\n" /* Shift high to low */
2006 "or 4, 4, 5\n" /* Assemble low part */
2010 /* Top = stack[--sp] >> TOP
2011 (Logical shift right) */
2014 ppc_emit_rsh_unsigned (void)
2016 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2017 "lwz " TMP_SECOND
", 4(30) \n"
2018 "subfic 3, 4, 32\n" /* r3 = 32 - TOP */
2019 "addi 7, 4, -32\n" /* r7 = TOP - 32 */
2020 "srw 6, 6, 4\n" /* Shift low part right */
2021 "slw 3, 5, 3\n" /* Shift high to low if shift < 32 */
2022 "srw 7, 5, 7\n" /* Shift high to low if shift >= 32 */
2024 "srw 3, 5, 4\n" /* Shift high part right */
2025 "or 4, 6, 7\n"); /* Assemble low part */
2028 /* Emit code for signed-extension specified by ARG. */
2031 ppc_emit_ext (int arg
)
2036 EMIT_ASM ("extsb 4, 4\n"
2040 EMIT_ASM ("extsh 4, 4\n"
2044 EMIT_ASM ("srawi 3, 4, 31");
2051 /* Emit code for zero-extension specified by ARG. */
2054 ppc_emit_zero_ext (int arg
)
2059 EMIT_ASM ("clrlwi 4,4,24\n"
2063 EMIT_ASM ("clrlwi 4,4,16\n"
2067 EMIT_ASM ("li 3, 0");
2075 i.e., TOP = (TOP == 0) ? 1 : 0; */
2078 ppc_emit_log_not (void)
2080 EMIT_ASM ("or 4, 3, 4 \n"
2086 /* TOP = stack[--sp] & TOP */
2089 ppc_emit_bit_and (void)
2091 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2092 "lwz " TMP_SECOND
", 4(30) \n"
2097 /* TOP = stack[--sp] | TOP */
2100 ppc_emit_bit_or (void)
2102 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2103 "lwz " TMP_SECOND
", 4(30) \n"
2108 /* TOP = stack[--sp] ^ TOP */
2111 ppc_emit_bit_xor (void)
2113 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2114 "lwz " TMP_SECOND
", 4(30) \n"
2120 i.e., TOP = ~(TOP | TOP) */
2123 ppc_emit_bit_not (void)
2125 EMIT_ASM ("nor 3, 3, 3 \n"
2129 /* TOP = stack[--sp] == TOP */
2132 ppc_emit_equal (void)
2134 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2135 "lwz " TMP_SECOND
", 4(30) \n"
2144 /* TOP = stack[--sp] < TOP
2145 (Signed comparison) */
2148 ppc_emit_less_signed (void)
2150 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2151 "lwz " TMP_SECOND
", 4(30) \n"
2154 /* CR6 bit 0 = low less and high equal */
2155 "crand 6*4+0, 6*4+0, 7*4+2\n"
2156 /* CR7 bit 0 = (low less and high equal) or high less */
2157 "cror 7*4+0, 7*4+0, 6*4+0\n"
2159 "rlwinm 4, 4, 29, 31, 31 \n"
2163 /* TOP = stack[--sp] < TOP
2164 (Unsigned comparison) */
2167 ppc_emit_less_unsigned (void)
2169 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2170 "lwz " TMP_SECOND
", 4(30) \n"
2173 /* CR6 bit 0 = low less and high equal */
2174 "crand 6*4+0, 6*4+0, 7*4+2\n"
2175 /* CR7 bit 0 = (low less and high equal) or high less */
2176 "cror 7*4+0, 7*4+0, 6*4+0\n"
2178 "rlwinm 4, 4, 29, 31, 31 \n"
2182 /* Access the memory address in TOP in size of SIZE.
2183 Zero-extend the read value. */
2186 ppc_emit_ref (int size
)
2191 EMIT_ASM ("lbz 4, 0(4)\n"
2195 EMIT_ASM ("lhz 4, 0(4)\n"
2199 EMIT_ASM ("lwz 4, 0(4)\n"
2203 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
2204 EMIT_ASM ("lwz 3, 4(4)\n"
2207 EMIT_ASM ("lwz 3, 0(4)\n"
2216 ppc_emit_const (LONGEST num
)
2221 p
+= gen_limm (p
, 3, num
>> 32 & 0xffffffff, 0);
2222 p
+= gen_limm (p
, 4, num
& 0xffffffff, 0);
2224 emit_insns (buf
, p
- buf
);
2225 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
2228 /* Set TOP to the value of register REG by calling get_raw_reg function
2229 with two argument, collected buffer and register number. */
2232 ppc_emit_reg (int reg
)
2237 /* fctx->regs is passed in r3 and then saved in -16(31). */
2238 p
+= GEN_LWZ (p
, 3, 31, -16);
2239 p
+= GEN_LI (p
, 4, reg
); /* li r4, reg */
2240 p
+= gen_call (p
, get_raw_reg_func_addr (), 0, 0);
2242 emit_insns (buf
, p
- buf
);
2243 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
2245 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
2247 EMIT_ASM ("mr 5, 4\n"
2253 /* TOP = stack[--sp] */
2258 EMIT_ASM ("lwzu " TOP_FIRST
", 8(30) \n"
2259 "lwz " TOP_SECOND
", 4(30) \n");
2262 /* stack[sp++] = TOP
2264 Because we may use up bytecode stack, expand 8 doublewords more
2268 ppc_emit_stack_flush (void)
2270 /* Make sure bytecode stack is big enough before push.
2271 Otherwise, expand 64-byte more. */
2273 EMIT_ASM (" stw " TOP_FIRST
", 0(30) \n"
2274 " stw " TOP_SECOND
", 4(30)\n"
2275 " addi 5, 30, -(8 + 8) \n"
2278 " stwu 31, -64(1) \n"
2279 "1:addi 30, 30, -8 \n");
2282 /* Swap TOP and stack[sp-1] */
2285 ppc_emit_swap (void)
2287 EMIT_ASM ("lwz " TMP_FIRST
", 8(30) \n"
2288 "lwz " TMP_SECOND
", 12(30) \n"
2289 "stw " TOP_FIRST
", 8(30) \n"
2290 "stw " TOP_SECOND
", 12(30) \n"
2295 /* Discard N elements in the stack. Also used for ppc64. */
2298 ppc_emit_stack_adjust (int n
)
2310 p
+= GEN_ADDI (p
, 30, 30, n
);
2312 emit_insns (buf
, p
- buf
);
2313 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
2316 /* Call function FN. */
2319 ppc_emit_call (CORE_ADDR fn
)
2324 p
+= gen_call (p
, fn
, 0, 0);
2326 emit_insns (buf
, p
- buf
);
2327 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
2330 /* FN's prototype is `LONGEST(*fn)(int)'.
2335 ppc_emit_int_call_1 (CORE_ADDR fn
, int arg1
)
2340 /* Setup argument. arg1 is a 16-bit value. */
2341 p
+= gen_limm (p
, 3, (uint32_t) arg1
, 0);
2342 p
+= gen_call (p
, fn
, 0, 0);
2344 emit_insns (buf
, p
- buf
);
2345 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
2347 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
2349 EMIT_ASM ("mr 5, 4\n"
2355 /* FN's prototype is `void(*fn)(int,LONGEST)'.
2358 TOP should be preserved/restored before/after the call. */
2361 ppc_emit_void_call_2 (CORE_ADDR fn
, int arg1
)
2366 /* Save TOP. 0(30) is next-empty. */
2367 p
+= GEN_STW (p
, 3, 30, 0);
2368 p
+= GEN_STW (p
, 4, 30, 4);
2370 /* Setup argument. arg1 is a 16-bit value. */
2371 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
2373 p
+= GEN_MR (p
, 5, 4);
2374 p
+= GEN_MR (p
, 6, 3);
2378 p
+= GEN_MR (p
, 5, 3);
2379 p
+= GEN_MR (p
, 6, 4);
2381 p
+= gen_limm (p
, 3, (uint32_t) arg1
, 0);
2382 p
+= gen_call (p
, fn
, 0, 0);
2385 p
+= GEN_LWZ (p
, 3, 30, 0);
2386 p
+= GEN_LWZ (p
, 4, 30, 4);
2388 emit_insns (buf
, p
- buf
);
2389 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
2392 /* Note in the following goto ops:
2394 When emitting goto, the target address is later relocated by
2395 write_goto_address. OFFSET_P is the offset of the branch instruction
2396 in the code sequence, and SIZE_P is how to relocate the instruction,
2397 recognized by ppc_write_goto_address. In current implementation,
2398 SIZE can be either 24 or 14 for branch of conditional-branch instruction.
2401 /* If TOP is true, goto somewhere. Otherwise, just fall-through. */
2404 ppc_emit_if_goto (int *offset_p
, int *size_p
)
2406 EMIT_ASM ("or. 3, 3, 4 \n"
2407 "lwzu " TOP_FIRST
", 8(30) \n"
2408 "lwz " TOP_SECOND
", 4(30) \n"
2417 /* Unconditional goto. Also used for ppc64. */
2420 ppc_emit_goto (int *offset_p
, int *size_p
)
2422 EMIT_ASM ("1:b 1b");
2430 /* Goto if stack[--sp] == TOP */
2433 ppc_emit_eq_goto (int *offset_p
, int *size_p
)
2435 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2436 "lwz " TMP_SECOND
", 4(30) \n"
2440 "lwzu " TOP_FIRST
", 8(30) \n"
2441 "lwz " TOP_SECOND
", 4(30) \n"
2450 /* Goto if stack[--sp] != TOP */
2453 ppc_emit_ne_goto (int *offset_p
, int *size_p
)
2455 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2456 "lwz " TMP_SECOND
", 4(30) \n"
2460 "lwzu " TOP_FIRST
", 8(30) \n"
2461 "lwz " TOP_SECOND
", 4(30) \n"
2470 /* Goto if stack[--sp] < TOP */
2473 ppc_emit_lt_goto (int *offset_p
, int *size_p
)
2475 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2476 "lwz " TMP_SECOND
", 4(30) \n"
2479 /* CR6 bit 0 = low less and high equal */
2480 "crand 6*4+0, 6*4+0, 7*4+2\n"
2481 /* CR7 bit 0 = (low less and high equal) or high less */
2482 "cror 7*4+0, 7*4+0, 6*4+0\n"
2483 "lwzu " TOP_FIRST
", 8(30) \n"
2484 "lwz " TOP_SECOND
", 4(30)\n"
2493 /* Goto if stack[--sp] <= TOP */
2496 ppc_emit_le_goto (int *offset_p
, int *size_p
)
2498 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2499 "lwz " TMP_SECOND
", 4(30) \n"
2502 /* CR6 bit 0 = low less/equal and high equal */
2503 "crandc 6*4+0, 7*4+2, 6*4+1\n"
2504 /* CR7 bit 0 = (low less/eq and high equal) or high less */
2505 "cror 7*4+0, 7*4+0, 6*4+0\n"
2506 "lwzu " TOP_FIRST
", 8(30) \n"
2507 "lwz " TOP_SECOND
", 4(30)\n"
2516 /* Goto if stack[--sp] > TOP */
2519 ppc_emit_gt_goto (int *offset_p
, int *size_p
)
2521 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2522 "lwz " TMP_SECOND
", 4(30) \n"
2525 /* CR6 bit 0 = low greater and high equal */
2526 "crand 6*4+0, 6*4+1, 7*4+2\n"
2527 /* CR7 bit 0 = (low greater and high equal) or high greater */
2528 "cror 7*4+0, 7*4+1, 6*4+0\n"
2529 "lwzu " TOP_FIRST
", 8(30) \n"
2530 "lwz " TOP_SECOND
", 4(30)\n"
2539 /* Goto if stack[--sp] >= TOP */
2542 ppc_emit_ge_goto (int *offset_p
, int *size_p
)
2544 EMIT_ASM ("lwzu " TMP_FIRST
", 8(30) \n"
2545 "lwz " TMP_SECOND
", 4(30) \n"
2548 /* CR6 bit 0 = low ge and high equal */
2549 "crandc 6*4+0, 7*4+2, 6*4+0\n"
2550 /* CR7 bit 0 = (low ge and high equal) or high greater */
2551 "cror 7*4+0, 7*4+1, 6*4+0\n"
2552 "lwzu " TOP_FIRST
", 8(30)\n"
2553 "lwz " TOP_SECOND
", 4(30)\n"
2562 /* Relocate previous emitted branch instruction. FROM is the address
2563 of the branch instruction, TO is the goto target address, and SIZE
2564 if the value we set by *SIZE_P before. Currently, it is either
2565 24 or 14 of branch and conditional-branch instruction.
2566 Also used for ppc64. */
2569 ppc_write_goto_address (CORE_ADDR from
, CORE_ADDR to
, int size
)
2571 long rel
= to
- from
;
2575 read_inferior_memory (from
, (unsigned char *) &insn
, 4);
2576 opcd
= (insn
>> 26) & 0x3f;
2582 || (rel
>= (1 << 15) || rel
< -(1 << 15)))
2584 insn
= (insn
& ~0xfffc) | (rel
& 0xfffc);
2588 || (rel
>= (1 << 25) || rel
< -(1 << 25)))
2590 insn
= (insn
& ~0x3fffffc) | (rel
& 0x3fffffc);
2597 target_write_memory (from
, (unsigned char *) &insn
, 4);
2600 /* Table of emit ops for 32-bit. */
2602 static struct emit_ops ppc_emit_ops_impl
=
2610 ppc_emit_rsh_signed
,
2611 ppc_emit_rsh_unsigned
,
2619 ppc_emit_less_signed
,
2620 ppc_emit_less_unsigned
,
2624 ppc_write_goto_address
,
2629 ppc_emit_stack_flush
,
2632 ppc_emit_stack_adjust
,
2633 ppc_emit_int_call_1
,
2634 ppc_emit_void_call_2
,
2643 #ifdef __powerpc64__
2647 Bytecode execution stack frame - 64-bit
2649 | LR save area (SP + 16)
2650 | CR save area (SP + 8)
2651 SP' -> +- Back chain (SP + 0)
2652 | Save r31 for access saved arguments
2653 | Save r30 for bytecode stack pointer
2654 | Save r4 for incoming argument *value
2655 | Save r3 for incoming argument regs
2656 r30 -> +- Bytecode execution stack
2658 | 64-byte (8 doublewords) at initial.
2659 | Expand stack as needed.
2662 | Some padding for minimum stack frame.
2664 SP +- Back-chain (SP')
2667 = 112 + (4 * 8) + 64
2670 r30 is the stack-pointer for bytecode machine.
2671 It should point to next-empty, so we can use LDU for pop.
2672 r3 is used for cache of TOP value.
2673 It was the first argument, pointer to regs.
2674 r4 is the second argument, pointer to the result.
2675 We should set *result = TOP after leaving this function.
2678 * To restore stack at epilogue
2680 * To check stack is big enough for bytecode execution.
2681 => r30 - 8 > SP + 112
2682 * To return execution result.
2687 /* Emit prologue in inferior memory. See above comments. */
2690 ppc64v1_emit_prologue (void)
2692 /* On ELFv1, function pointers really point to function descriptor,
2693 so emit one here. We don't care about contents of words 1 and 2,
2694 so let them just overlap out code. */
2695 uint64_t opd
= current_insn_ptr
+ 8;
2698 /* Mind the strict aliasing rules. */
2699 memcpy (buf
, &opd
, sizeof buf
);
2701 EMIT_ASM (/* Save return address. */
2704 /* Save r30 and incoming arguments. */
2709 /* Point r31 to current r1 for access arguments. */
2711 /* Adjust SP. 208 is the initial frame size. */
2712 "stdu 1, -208(1) \n"
2713 /* Set r30 to pointing stack-top. */
2714 "addi 30, 1, 168 \n"
2715 /* Initial r3/TOP to 0. */
2719 /* Emit prologue in inferior memory. See above comments. */
2722 ppc64v2_emit_prologue (void)
2724 EMIT_ASM (/* Save return address. */
2727 /* Save r30 and incoming arguments. */
2732 /* Point r31 to current r1 for access arguments. */
2734 /* Adjust SP. 208 is the initial frame size. */
2735 "stdu 1, -208(1) \n"
2736 /* Set r30 to pointing stack-top. */
2737 "addi 30, 1, 168 \n"
2738 /* Initial r3/TOP to 0. */
2742 /* Emit epilogue in inferior memory. See above comments. */
2745 ppc64_emit_epilogue (void)
2747 EMIT_ASM (/* Restore SP. */
2752 /* Restore registers. */
2757 /* Return 0 for no-error. */
2763 /* TOP = stack[--sp] + TOP */
2766 ppc64_emit_add (void)
2768 EMIT_ASM ("ldu 4, 8(30) \n"
2772 /* TOP = stack[--sp] - TOP */
2775 ppc64_emit_sub (void)
2777 EMIT_ASM ("ldu 4, 8(30) \n"
2781 /* TOP = stack[--sp] * TOP */
2784 ppc64_emit_mul (void)
2786 EMIT_ASM ("ldu 4, 8(30) \n"
2787 "mulld 3, 4, 3 \n");
2790 /* TOP = stack[--sp] << TOP */
2793 ppc64_emit_lsh (void)
2795 EMIT_ASM ("ldu 4, 8(30) \n"
2799 /* Top = stack[--sp] >> TOP
2800 (Arithmetic shift right) */
2803 ppc64_emit_rsh_signed (void)
2805 EMIT_ASM ("ldu 4, 8(30) \n"
2809 /* Top = stack[--sp] >> TOP
2810 (Logical shift right) */
2813 ppc64_emit_rsh_unsigned (void)
2815 EMIT_ASM ("ldu 4, 8(30) \n"
2819 /* Emit code for signed-extension specified by ARG. */
2822 ppc64_emit_ext (int arg
)
2827 EMIT_ASM ("extsb 3, 3");
2830 EMIT_ASM ("extsh 3, 3");
2833 EMIT_ASM ("extsw 3, 3");
2840 /* Emit code for zero-extension specified by ARG. */
2843 ppc64_emit_zero_ext (int arg
)
2848 EMIT_ASM ("rldicl 3,3,0,56");
2851 EMIT_ASM ("rldicl 3,3,0,48");
2854 EMIT_ASM ("rldicl 3,3,0,32");
2862 i.e., TOP = (TOP == 0) ? 1 : 0; */
2865 ppc64_emit_log_not (void)
2867 EMIT_ASM ("cntlzd 3, 3 \n"
2871 /* TOP = stack[--sp] & TOP */
2874 ppc64_emit_bit_and (void)
2876 EMIT_ASM ("ldu 4, 8(30) \n"
2880 /* TOP = stack[--sp] | TOP */
2883 ppc64_emit_bit_or (void)
2885 EMIT_ASM ("ldu 4, 8(30) \n"
2889 /* TOP = stack[--sp] ^ TOP */
2892 ppc64_emit_bit_xor (void)
2894 EMIT_ASM ("ldu 4, 8(30) \n"
2899 i.e., TOP = ~(TOP | TOP) */
2902 ppc64_emit_bit_not (void)
2904 EMIT_ASM ("nor 3, 3, 3 \n");
2907 /* TOP = stack[--sp] == TOP */
2910 ppc64_emit_equal (void)
2912 EMIT_ASM ("ldu 4, 8(30) \n"
2918 /* TOP = stack[--sp] < TOP
2919 (Signed comparison) */
2922 ppc64_emit_less_signed (void)
2924 EMIT_ASM ("ldu 4, 8(30) \n"
2927 "rlwinm 3, 3, 29, 31, 31 \n");
2930 /* TOP = stack[--sp] < TOP
2931 (Unsigned comparison) */
2934 ppc64_emit_less_unsigned (void)
2936 EMIT_ASM ("ldu 4, 8(30) \n"
2939 "rlwinm 3, 3, 29, 31, 31 \n");
2942 /* Access the memory address in TOP in size of SIZE.
2943 Zero-extend the read value. */
2946 ppc64_emit_ref (int size
)
2951 EMIT_ASM ("lbz 3, 0(3)");
2954 EMIT_ASM ("lhz 3, 0(3)");
2957 EMIT_ASM ("lwz 3, 0(3)");
2960 EMIT_ASM ("ld 3, 0(3)");
2968 ppc64_emit_const (LONGEST num
)
2973 p
+= gen_limm (p
, 3, num
, 1);
2975 emit_insns (buf
, p
- buf
);
2976 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
2979 /* Set TOP to the value of register REG by calling get_raw_reg function
2980 with two argument, collected buffer and register number. */
2983 ppc64v1_emit_reg (int reg
)
2988 /* fctx->regs is passed in r3 and then saved in 176(1). */
2989 p
+= GEN_LD (p
, 3, 31, -32);
2990 p
+= GEN_LI (p
, 4, reg
);
2991 p
+= GEN_STD (p
, 2, 1, 40); /* Save TOC. */
2992 p
+= gen_call (p
, get_raw_reg_func_addr (), 1, 1);
2993 p
+= GEN_LD (p
, 2, 1, 40); /* Restore TOC. */
2995 emit_insns (buf
, p
- buf
);
2996 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
2999 /* Likewise, for ELFv2. */
3002 ppc64v2_emit_reg (int reg
)
3007 /* fctx->regs is passed in r3 and then saved in 176(1). */
3008 p
+= GEN_LD (p
, 3, 31, -32);
3009 p
+= GEN_LI (p
, 4, reg
);
3010 p
+= GEN_STD (p
, 2, 1, 24); /* Save TOC. */
3011 p
+= gen_call (p
, get_raw_reg_func_addr (), 1, 0);
3012 p
+= GEN_LD (p
, 2, 1, 24); /* Restore TOC. */
3014 emit_insns (buf
, p
- buf
);
3015 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
3018 /* TOP = stack[--sp] */
3021 ppc64_emit_pop (void)
3023 EMIT_ASM ("ldu 3, 8(30)");
3026 /* stack[sp++] = TOP
3028 Because we may use up bytecode stack, expand 8 doublewords more
3032 ppc64_emit_stack_flush (void)
3034 /* Make sure bytecode stack is big enough before push.
3035 Otherwise, expand 64-byte more. */
3037 EMIT_ASM (" std 3, 0(30) \n"
3038 " addi 4, 30, -(112 + 8) \n"
3041 " stdu 31, -64(1) \n"
3042 "1:addi 30, 30, -8 \n");
3045 /* Swap TOP and stack[sp-1] */
3048 ppc64_emit_swap (void)
3050 EMIT_ASM ("ld 4, 8(30) \n"
3055 /* Call function FN - ELFv1. */
3058 ppc64v1_emit_call (CORE_ADDR fn
)
3063 p
+= GEN_STD (p
, 2, 1, 40); /* Save TOC. */
3064 p
+= gen_call (p
, fn
, 1, 1);
3065 p
+= GEN_LD (p
, 2, 1, 40); /* Restore TOC. */
3067 emit_insns (buf
, p
- buf
);
3068 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
3071 /* Call function FN - ELFv2. */
3074 ppc64v2_emit_call (CORE_ADDR fn
)
3079 p
+= GEN_STD (p
, 2, 1, 24); /* Save TOC. */
3080 p
+= gen_call (p
, fn
, 1, 0);
3081 p
+= GEN_LD (p
, 2, 1, 24); /* Restore TOC. */
3083 emit_insns (buf
, p
- buf
);
3084 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
3087 /* FN's prototype is `LONGEST(*fn)(int)'.
3092 ppc64v1_emit_int_call_1 (CORE_ADDR fn
, int arg1
)
3097 /* Setup argument. arg1 is a 16-bit value. */
3098 p
+= gen_limm (p
, 3, arg1
, 1);
3099 p
+= GEN_STD (p
, 2, 1, 40); /* Save TOC. */
3100 p
+= gen_call (p
, fn
, 1, 1);
3101 p
+= GEN_LD (p
, 2, 1, 40); /* Restore TOC. */
3103 emit_insns (buf
, p
- buf
);
3104 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
3107 /* Likewise for ELFv2. */
3110 ppc64v2_emit_int_call_1 (CORE_ADDR fn
, int arg1
)
3115 /* Setup argument. arg1 is a 16-bit value. */
3116 p
+= gen_limm (p
, 3, arg1
, 1);
3117 p
+= GEN_STD (p
, 2, 1, 24); /* Save TOC. */
3118 p
+= gen_call (p
, fn
, 1, 0);
3119 p
+= GEN_LD (p
, 2, 1, 24); /* Restore TOC. */
3121 emit_insns (buf
, p
- buf
);
3122 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
3125 /* FN's prototype is `void(*fn)(int,LONGEST)'.
3128 TOP should be preserved/restored before/after the call. */
3131 ppc64v1_emit_void_call_2 (CORE_ADDR fn
, int arg1
)
3136 /* Save TOP. 0(30) is next-empty. */
3137 p
+= GEN_STD (p
, 3, 30, 0);
3139 /* Setup argument. arg1 is a 16-bit value. */
3140 p
+= GEN_MR (p
, 4, 3); /* mr r4, r3 */
3141 p
+= gen_limm (p
, 3, arg1
, 1);
3142 p
+= GEN_STD (p
, 2, 1, 40); /* Save TOC. */
3143 p
+= gen_call (p
, fn
, 1, 1);
3144 p
+= GEN_LD (p
, 2, 1, 40); /* Restore TOC. */
3147 p
+= GEN_LD (p
, 3, 30, 0);
3149 emit_insns (buf
, p
- buf
);
3150 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
3153 /* Likewise for ELFv2. */
3156 ppc64v2_emit_void_call_2 (CORE_ADDR fn
, int arg1
)
3161 /* Save TOP. 0(30) is next-empty. */
3162 p
+= GEN_STD (p
, 3, 30, 0);
3164 /* Setup argument. arg1 is a 16-bit value. */
3165 p
+= GEN_MR (p
, 4, 3); /* mr r4, r3 */
3166 p
+= gen_limm (p
, 3, arg1
, 1);
3167 p
+= GEN_STD (p
, 2, 1, 24); /* Save TOC. */
3168 p
+= gen_call (p
, fn
, 1, 0);
3169 p
+= GEN_LD (p
, 2, 1, 24); /* Restore TOC. */
3172 p
+= GEN_LD (p
, 3, 30, 0);
3174 emit_insns (buf
, p
- buf
);
3175 gdb_assert ((p
- buf
) <= (sizeof (buf
) / sizeof (*buf
)));
3178 /* If TOP is true, goto somewhere. Otherwise, just fall-through. */
3181 ppc64_emit_if_goto (int *offset_p
, int *size_p
)
3183 EMIT_ASM ("cmpdi 7, 3, 0 \n"
3193 /* Goto if stack[--sp] == TOP */
3196 ppc64_emit_eq_goto (int *offset_p
, int *size_p
)
3198 EMIT_ASM ("ldu 4, 8(30) \n"
3209 /* Goto if stack[--sp] != TOP */
3212 ppc64_emit_ne_goto (int *offset_p
, int *size_p
)
3214 EMIT_ASM ("ldu 4, 8(30) \n"
3225 /* Goto if stack[--sp] < TOP */
3228 ppc64_emit_lt_goto (int *offset_p
, int *size_p
)
3230 EMIT_ASM ("ldu 4, 8(30) \n"
3241 /* Goto if stack[--sp] <= TOP */
3244 ppc64_emit_le_goto (int *offset_p
, int *size_p
)
3246 EMIT_ASM ("ldu 4, 8(30) \n"
3257 /* Goto if stack[--sp] > TOP */
3260 ppc64_emit_gt_goto (int *offset_p
, int *size_p
)
3262 EMIT_ASM ("ldu 4, 8(30) \n"
3273 /* Goto if stack[--sp] >= TOP */
3276 ppc64_emit_ge_goto (int *offset_p
, int *size_p
)
3278 EMIT_ASM ("ldu 4, 8(30) \n"
3289 /* Table of emit ops for 64-bit ELFv1. */
3291 static struct emit_ops ppc64v1_emit_ops_impl
=
3293 ppc64v1_emit_prologue
,
3294 ppc64_emit_epilogue
,
3299 ppc64_emit_rsh_signed
,
3300 ppc64_emit_rsh_unsigned
,
3308 ppc64_emit_less_signed
,
3309 ppc64_emit_less_unsigned
,
3313 ppc_write_goto_address
,
3318 ppc64_emit_stack_flush
,
3319 ppc64_emit_zero_ext
,
3321 ppc_emit_stack_adjust
,
3322 ppc64v1_emit_int_call_1
,
3323 ppc64v1_emit_void_call_2
,
3332 /* Table of emit ops for 64-bit ELFv2. */
3334 static struct emit_ops ppc64v2_emit_ops_impl
=
3336 ppc64v2_emit_prologue
,
3337 ppc64_emit_epilogue
,
3342 ppc64_emit_rsh_signed
,
3343 ppc64_emit_rsh_unsigned
,
3351 ppc64_emit_less_signed
,
3352 ppc64_emit_less_unsigned
,
3356 ppc_write_goto_address
,
3361 ppc64_emit_stack_flush
,
3362 ppc64_emit_zero_ext
,
3364 ppc_emit_stack_adjust
,
3365 ppc64v2_emit_int_call_1
,
3366 ppc64v2_emit_void_call_2
,
3377 /* Implementation of target ops method "emit_ops". */
3380 ppc_target::emit_ops ()
3382 #ifdef __powerpc64__
3383 struct regcache
*regcache
= get_thread_regcache (current_thread
, 0);
3385 if (register_size (regcache
->tdesc
, 0) == 8)
3387 if (is_elfv2_inferior ())
3388 return &ppc64v2_emit_ops_impl
;
3390 return &ppc64v1_emit_ops_impl
;
3393 return &ppc_emit_ops_impl
;
3396 /* Implementation of target ops method "get_ipa_tdesc_idx". */
3399 ppc_target::get_ipa_tdesc_idx ()
3401 struct regcache
*regcache
= get_thread_regcache (current_thread
, 0);
3402 const struct target_desc
*tdesc
= regcache
->tdesc
;
3404 #ifdef __powerpc64__
3405 if (tdesc
== tdesc_powerpc_64l
)
3406 return PPC_TDESC_BASE
;
3407 if (tdesc
== tdesc_powerpc_altivec64l
)
3408 return PPC_TDESC_ALTIVEC
;
3409 if (tdesc
== tdesc_powerpc_vsx64l
)
3410 return PPC_TDESC_VSX
;
3411 if (tdesc
== tdesc_powerpc_isa205_64l
)
3412 return PPC_TDESC_ISA205
;
3413 if (tdesc
== tdesc_powerpc_isa205_altivec64l
)
3414 return PPC_TDESC_ISA205_ALTIVEC
;
3415 if (tdesc
== tdesc_powerpc_isa205_vsx64l
)
3416 return PPC_TDESC_ISA205_VSX
;
3417 if (tdesc
== tdesc_powerpc_isa205_ppr_dscr_vsx64l
)
3418 return PPC_TDESC_ISA205_PPR_DSCR_VSX
;
3419 if (tdesc
== tdesc_powerpc_isa207_vsx64l
)
3420 return PPC_TDESC_ISA207_VSX
;
3421 if (tdesc
== tdesc_powerpc_isa207_htm_vsx64l
)
3422 return PPC_TDESC_ISA207_HTM_VSX
;
3425 if (tdesc
== tdesc_powerpc_32l
)
3426 return PPC_TDESC_BASE
;
3427 if (tdesc
== tdesc_powerpc_altivec32l
)
3428 return PPC_TDESC_ALTIVEC
;
3429 if (tdesc
== tdesc_powerpc_vsx32l
)
3430 return PPC_TDESC_VSX
;
3431 if (tdesc
== tdesc_powerpc_isa205_32l
)
3432 return PPC_TDESC_ISA205
;
3433 if (tdesc
== tdesc_powerpc_isa205_altivec32l
)
3434 return PPC_TDESC_ISA205_ALTIVEC
;
3435 if (tdesc
== tdesc_powerpc_isa205_vsx32l
)
3436 return PPC_TDESC_ISA205_VSX
;
3437 if (tdesc
== tdesc_powerpc_isa205_ppr_dscr_vsx32l
)
3438 return PPC_TDESC_ISA205_PPR_DSCR_VSX
;
3439 if (tdesc
== tdesc_powerpc_isa207_vsx32l
)
3440 return PPC_TDESC_ISA207_VSX
;
3441 if (tdesc
== tdesc_powerpc_isa207_htm_vsx32l
)
3442 return PPC_TDESC_ISA207_HTM_VSX
;
3443 if (tdesc
== tdesc_powerpc_e500l
)
3444 return PPC_TDESC_E500
;
3449 /* The linux target ops object. */
3451 linux_process_target
*the_linux_target
= &the_ppc_target
;
3454 initialize_low_arch (void)
3456 /* Initialize the Linux target descriptions. */
3458 init_registers_powerpc_32l ();
3459 init_registers_powerpc_altivec32l ();
3460 init_registers_powerpc_vsx32l ();
3461 init_registers_powerpc_isa205_32l ();
3462 init_registers_powerpc_isa205_altivec32l ();
3463 init_registers_powerpc_isa205_vsx32l ();
3464 init_registers_powerpc_isa205_ppr_dscr_vsx32l ();
3465 init_registers_powerpc_isa207_vsx32l ();
3466 init_registers_powerpc_isa207_htm_vsx32l ();
3467 init_registers_powerpc_e500l ();
3469 init_registers_powerpc_64l ();
3470 init_registers_powerpc_altivec64l ();
3471 init_registers_powerpc_vsx64l ();
3472 init_registers_powerpc_isa205_64l ();
3473 init_registers_powerpc_isa205_altivec64l ();
3474 init_registers_powerpc_isa205_vsx64l ();
3475 init_registers_powerpc_isa205_ppr_dscr_vsx64l ();
3476 init_registers_powerpc_isa207_vsx64l ();
3477 init_registers_powerpc_isa207_htm_vsx64l ();
3480 initialize_regsets_info (&ppc_regsets_info
);