Document the GDB 10.2 release in gdb/ChangeLog
[binutils-gdb.git] / gdb / ada-lang.c
blob28f14c9ae53cf4c5edc2a3a3196a7a57512813cb
1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60 #include "ada-exp.h"
62 /* Define whether or not the C operator '/' truncates towards zero for
63 differently signed operands (truncation direction is undefined in C).
64 Copied from valarith.c. */
66 #ifndef TRUNCATION_TOWARDS_ZERO
67 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
68 #endif
70 static struct type *desc_base_type (struct type *);
72 static struct type *desc_bounds_type (struct type *);
74 static struct value *desc_bounds (struct value *);
76 static int fat_pntr_bounds_bitpos (struct type *);
78 static int fat_pntr_bounds_bitsize (struct type *);
80 static struct type *desc_data_target_type (struct type *);
82 static struct value *desc_data (struct value *);
84 static int fat_pntr_data_bitpos (struct type *);
86 static int fat_pntr_data_bitsize (struct type *);
88 static struct value *desc_one_bound (struct value *, int, int);
90 static int desc_bound_bitpos (struct type *, int, int);
92 static int desc_bound_bitsize (struct type *, int, int);
94 static struct type *desc_index_type (struct type *, int);
96 static int desc_arity (struct type *);
98 static int ada_type_match (struct type *, struct type *, int);
100 static int ada_args_match (struct symbol *, struct value **, int);
102 static struct value *make_array_descriptor (struct type *, struct value *);
104 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
109 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
114 static int is_nonfunction (const std::vector<struct block_symbol> &);
116 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 struct symbol *,
118 const struct block *);
120 static int possible_user_operator_p (enum exp_opcode, struct value **);
122 static const char *ada_decoded_op_name (enum exp_opcode);
124 static int numeric_type_p (struct type *);
126 static int integer_type_p (struct type *);
128 static int scalar_type_p (struct type *);
130 static int discrete_type_p (struct type *);
132 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
133 int, int);
135 static struct type *ada_find_parallel_type_with_name (struct type *,
136 const char *);
138 static int is_dynamic_field (struct type *, int);
140 static struct type *to_fixed_variant_branch_type (struct type *,
141 const gdb_byte *,
142 CORE_ADDR, struct value *);
144 static struct type *to_fixed_array_type (struct type *, struct value *, int);
146 static struct type *to_fixed_range_type (struct type *, struct value *);
148 static struct type *to_static_fixed_type (struct type *);
149 static struct type *static_unwrap_type (struct type *type);
151 static struct value *unwrap_value (struct value *);
153 static struct type *constrained_packed_array_type (struct type *, long *);
155 static struct type *decode_constrained_packed_array_type (struct type *);
157 static long decode_packed_array_bitsize (struct type *);
159 static struct value *decode_constrained_packed_array (struct value *);
161 static int ada_is_unconstrained_packed_array_type (struct type *);
163 static struct value *value_subscript_packed (struct value *, int,
164 struct value **);
166 static struct value *coerce_unspec_val_to_type (struct value *,
167 struct type *);
169 static int lesseq_defined_than (struct symbol *, struct symbol *);
171 static int equiv_types (struct type *, struct type *);
173 static int is_name_suffix (const char *);
175 static int advance_wild_match (const char **, const char *, char);
177 static bool wild_match (const char *name, const char *patn);
179 static struct value *ada_coerce_ref (struct value *);
181 static LONGEST pos_atr (struct value *);
183 static struct value *val_atr (struct type *, LONGEST);
185 static struct symbol *standard_lookup (const char *, const struct block *,
186 domain_enum);
188 static struct value *ada_search_struct_field (const char *, struct value *, int,
189 struct type *);
191 static int find_struct_field (const char *, struct type *, int,
192 struct type **, int *, int *, int *, int *);
194 static int ada_resolve_function (std::vector<struct block_symbol> &,
195 struct value **, int, const char *,
196 struct type *, bool);
198 static int ada_is_direct_array_type (struct type *);
200 static struct value *ada_index_struct_field (int, struct value *, int,
201 struct type *);
203 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
206 static struct type *ada_find_any_type (const char *name);
208 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
213 /* The result of a symbol lookup to be stored in our symbol cache. */
215 struct cache_entry
217 /* The name used to perform the lookup. */
218 const char *name;
219 /* The namespace used during the lookup. */
220 domain_enum domain;
221 /* The symbol returned by the lookup, or NULL if no matching symbol
222 was found. */
223 struct symbol *sym;
224 /* The block where the symbol was found, or NULL if no matching
225 symbol was found. */
226 const struct block *block;
227 /* A pointer to the next entry with the same hash. */
228 struct cache_entry *next;
231 /* The Ada symbol cache, used to store the result of Ada-mode symbol
232 lookups in the course of executing the user's commands.
234 The cache is implemented using a simple, fixed-sized hash.
235 The size is fixed on the grounds that there are not likely to be
236 all that many symbols looked up during any given session, regardless
237 of the size of the symbol table. If we decide to go to a resizable
238 table, let's just use the stuff from libiberty instead. */
240 #define HASH_SIZE 1009
242 struct ada_symbol_cache
244 /* An obstack used to store the entries in our cache. */
245 struct auto_obstack cache_space;
247 /* The root of the hash table used to implement our symbol cache. */
248 struct cache_entry *root[HASH_SIZE] {};
251 /* Maximum-sized dynamic type. */
252 static unsigned int varsize_limit;
254 static const char ada_completer_word_break_characters[] =
255 #ifdef VMS
256 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
257 #else
258 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
259 #endif
261 /* The name of the symbol to use to get the name of the main subprogram. */
262 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
263 = "__gnat_ada_main_program_name";
265 /* Limit on the number of warnings to raise per expression evaluation. */
266 static int warning_limit = 2;
268 /* Number of warning messages issued; reset to 0 by cleanups after
269 expression evaluation. */
270 static int warnings_issued = 0;
272 static const char * const known_runtime_file_name_patterns[] = {
273 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
276 static const char * const known_auxiliary_function_name_patterns[] = {
277 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
280 /* Maintenance-related settings for this module. */
282 static struct cmd_list_element *maint_set_ada_cmdlist;
283 static struct cmd_list_element *maint_show_ada_cmdlist;
285 /* The "maintenance ada set/show ignore-descriptive-type" value. */
287 static bool ada_ignore_descriptive_types_p = false;
289 /* Inferior-specific data. */
291 /* Per-inferior data for this module. */
293 struct ada_inferior_data
295 /* The ada__tags__type_specific_data type, which is used when decoding
296 tagged types. With older versions of GNAT, this type was directly
297 accessible through a component ("tsd") in the object tag. But this
298 is no longer the case, so we cache it for each inferior. */
299 struct type *tsd_type = nullptr;
301 /* The exception_support_info data. This data is used to determine
302 how to implement support for Ada exception catchpoints in a given
303 inferior. */
304 const struct exception_support_info *exception_info = nullptr;
307 /* Our key to this module's inferior data. */
308 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
310 /* Return our inferior data for the given inferior (INF).
312 This function always returns a valid pointer to an allocated
313 ada_inferior_data structure. If INF's inferior data has not
314 been previously set, this functions creates a new one with all
315 fields set to zero, sets INF's inferior to it, and then returns
316 a pointer to that newly allocated ada_inferior_data. */
318 static struct ada_inferior_data *
319 get_ada_inferior_data (struct inferior *inf)
321 struct ada_inferior_data *data;
323 data = ada_inferior_data.get (inf);
324 if (data == NULL)
325 data = ada_inferior_data.emplace (inf);
327 return data;
330 /* Perform all necessary cleanups regarding our module's inferior data
331 that is required after the inferior INF just exited. */
333 static void
334 ada_inferior_exit (struct inferior *inf)
336 ada_inferior_data.clear (inf);
340 /* program-space-specific data. */
342 /* This module's per-program-space data. */
343 struct ada_pspace_data
345 /* The Ada symbol cache. */
346 std::unique_ptr<ada_symbol_cache> sym_cache;
349 /* Key to our per-program-space data. */
350 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
352 /* Return this module's data for the given program space (PSPACE).
353 If not is found, add a zero'ed one now.
355 This function always returns a valid object. */
357 static struct ada_pspace_data *
358 get_ada_pspace_data (struct program_space *pspace)
360 struct ada_pspace_data *data;
362 data = ada_pspace_data_handle.get (pspace);
363 if (data == NULL)
364 data = ada_pspace_data_handle.emplace (pspace);
366 return data;
369 /* Utilities */
371 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
372 all typedef layers have been peeled. Otherwise, return TYPE.
374 Normally, we really expect a typedef type to only have 1 typedef layer.
375 In other words, we really expect the target type of a typedef type to be
376 a non-typedef type. This is particularly true for Ada units, because
377 the language does not have a typedef vs not-typedef distinction.
378 In that respect, the Ada compiler has been trying to eliminate as many
379 typedef definitions in the debugging information, since they generally
380 do not bring any extra information (we still use typedef under certain
381 circumstances related mostly to the GNAT encoding).
383 Unfortunately, we have seen situations where the debugging information
384 generated by the compiler leads to such multiple typedef layers. For
385 instance, consider the following example with stabs:
387 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
388 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
390 This is an error in the debugging information which causes type
391 pck__float_array___XUP to be defined twice, and the second time,
392 it is defined as a typedef of a typedef.
394 This is on the fringe of legality as far as debugging information is
395 concerned, and certainly unexpected. But it is easy to handle these
396 situations correctly, so we can afford to be lenient in this case. */
398 static struct type *
399 ada_typedef_target_type (struct type *type)
401 while (type->code () == TYPE_CODE_TYPEDEF)
402 type = TYPE_TARGET_TYPE (type);
403 return type;
406 /* Given DECODED_NAME a string holding a symbol name in its
407 decoded form (ie using the Ada dotted notation), returns
408 its unqualified name. */
410 static const char *
411 ada_unqualified_name (const char *decoded_name)
413 const char *result;
415 /* If the decoded name starts with '<', it means that the encoded
416 name does not follow standard naming conventions, and thus that
417 it is not your typical Ada symbol name. Trying to unqualify it
418 is therefore pointless and possibly erroneous. */
419 if (decoded_name[0] == '<')
420 return decoded_name;
422 result = strrchr (decoded_name, '.');
423 if (result != NULL)
424 result++; /* Skip the dot... */
425 else
426 result = decoded_name;
428 return result;
431 /* Return a string starting with '<', followed by STR, and '>'. */
433 static std::string
434 add_angle_brackets (const char *str)
436 return string_printf ("<%s>", str);
439 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
440 suffix of FIELD_NAME beginning "___". */
442 static int
443 field_name_match (const char *field_name, const char *target)
445 int len = strlen (target);
447 return
448 (strncmp (field_name, target, len) == 0
449 && (field_name[len] == '\0'
450 || (startswith (field_name + len, "___")
451 && strcmp (field_name + strlen (field_name) - 6,
452 "___XVN") != 0)));
456 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
457 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
458 and return its index. This function also handles fields whose name
459 have ___ suffixes because the compiler sometimes alters their name
460 by adding such a suffix to represent fields with certain constraints.
461 If the field could not be found, return a negative number if
462 MAYBE_MISSING is set. Otherwise raise an error. */
465 ada_get_field_index (const struct type *type, const char *field_name,
466 int maybe_missing)
468 int fieldno;
469 struct type *struct_type = check_typedef ((struct type *) type);
471 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
472 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
473 return fieldno;
475 if (!maybe_missing)
476 error (_("Unable to find field %s in struct %s. Aborting"),
477 field_name, struct_type->name ());
479 return -1;
482 /* The length of the prefix of NAME prior to any "___" suffix. */
485 ada_name_prefix_len (const char *name)
487 if (name == NULL)
488 return 0;
489 else
491 const char *p = strstr (name, "___");
493 if (p == NULL)
494 return strlen (name);
495 else
496 return p - name;
500 /* Return non-zero if SUFFIX is a suffix of STR.
501 Return zero if STR is null. */
503 static int
504 is_suffix (const char *str, const char *suffix)
506 int len1, len2;
508 if (str == NULL)
509 return 0;
510 len1 = strlen (str);
511 len2 = strlen (suffix);
512 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
515 /* The contents of value VAL, treated as a value of type TYPE. The
516 result is an lval in memory if VAL is. */
518 static struct value *
519 coerce_unspec_val_to_type (struct value *val, struct type *type)
521 type = ada_check_typedef (type);
522 if (value_type (val) == type)
523 return val;
524 else
526 struct value *result;
528 /* Make sure that the object size is not unreasonable before
529 trying to allocate some memory for it. */
530 ada_ensure_varsize_limit (type);
532 if (value_optimized_out (val))
533 result = allocate_optimized_out_value (type);
534 else if (value_lazy (val)
535 /* Be careful not to make a lazy not_lval value. */
536 || (VALUE_LVAL (val) != not_lval
537 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
538 result = allocate_value_lazy (type);
539 else
541 result = allocate_value (type);
542 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
544 set_value_component_location (result, val);
545 set_value_bitsize (result, value_bitsize (val));
546 set_value_bitpos (result, value_bitpos (val));
547 if (VALUE_LVAL (result) == lval_memory)
548 set_value_address (result, value_address (val));
549 return result;
553 static const gdb_byte *
554 cond_offset_host (const gdb_byte *valaddr, long offset)
556 if (valaddr == NULL)
557 return NULL;
558 else
559 return valaddr + offset;
562 static CORE_ADDR
563 cond_offset_target (CORE_ADDR address, long offset)
565 if (address == 0)
566 return 0;
567 else
568 return address + offset;
571 /* Issue a warning (as for the definition of warning in utils.c, but
572 with exactly one argument rather than ...), unless the limit on the
573 number of warnings has passed during the evaluation of the current
574 expression. */
576 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
577 provided by "complaint". */
578 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
580 static void
581 lim_warning (const char *format, ...)
583 va_list args;
585 va_start (args, format);
586 warnings_issued += 1;
587 if (warnings_issued <= warning_limit)
588 vwarning (format, args);
590 va_end (args);
593 /* Issue an error if the size of an object of type T is unreasonable,
594 i.e. if it would be a bad idea to allocate a value of this type in
595 GDB. */
597 void
598 ada_ensure_varsize_limit (const struct type *type)
600 if (TYPE_LENGTH (type) > varsize_limit)
601 error (_("object size is larger than varsize-limit"));
604 /* Maximum value of a SIZE-byte signed integer type. */
605 static LONGEST
606 max_of_size (int size)
608 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
610 return top_bit | (top_bit - 1);
613 /* Minimum value of a SIZE-byte signed integer type. */
614 static LONGEST
615 min_of_size (int size)
617 return -max_of_size (size) - 1;
620 /* Maximum value of a SIZE-byte unsigned integer type. */
621 static ULONGEST
622 umax_of_size (int size)
624 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
626 return top_bit | (top_bit - 1);
629 /* Maximum value of integral type T, as a signed quantity. */
630 static LONGEST
631 max_of_type (struct type *t)
633 if (t->is_unsigned ())
634 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
635 else
636 return max_of_size (TYPE_LENGTH (t));
639 /* Minimum value of integral type T, as a signed quantity. */
640 static LONGEST
641 min_of_type (struct type *t)
643 if (t->is_unsigned ())
644 return 0;
645 else
646 return min_of_size (TYPE_LENGTH (t));
649 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
650 LONGEST
651 ada_discrete_type_high_bound (struct type *type)
653 type = resolve_dynamic_type (type, {}, 0);
654 switch (type->code ())
656 case TYPE_CODE_RANGE:
658 const dynamic_prop &high = type->bounds ()->high;
660 if (high.kind () == PROP_CONST)
661 return high.const_val ();
662 else
664 gdb_assert (high.kind () == PROP_UNDEFINED);
666 /* This happens when trying to evaluate a type's dynamic bound
667 without a live target. There is nothing relevant for us to
668 return here, so return 0. */
669 return 0;
672 case TYPE_CODE_ENUM:
673 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
674 case TYPE_CODE_BOOL:
675 return 1;
676 case TYPE_CODE_CHAR:
677 case TYPE_CODE_INT:
678 return max_of_type (type);
679 default:
680 error (_("Unexpected type in ada_discrete_type_high_bound."));
684 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_low_bound (struct type *type)
688 type = resolve_dynamic_type (type, {}, 0);
689 switch (type->code ())
691 case TYPE_CODE_RANGE:
693 const dynamic_prop &low = type->bounds ()->low;
695 if (low.kind () == PROP_CONST)
696 return low.const_val ();
697 else
699 gdb_assert (low.kind () == PROP_UNDEFINED);
701 /* This happens when trying to evaluate a type's dynamic bound
702 without a live target. There is nothing relevant for us to
703 return here, so return 0. */
704 return 0;
707 case TYPE_CODE_ENUM:
708 return TYPE_FIELD_ENUMVAL (type, 0);
709 case TYPE_CODE_BOOL:
710 return 0;
711 case TYPE_CODE_CHAR:
712 case TYPE_CODE_INT:
713 return min_of_type (type);
714 default:
715 error (_("Unexpected type in ada_discrete_type_low_bound."));
719 /* The identity on non-range types. For range types, the underlying
720 non-range scalar type. */
722 static struct type *
723 get_base_type (struct type *type)
725 while (type != NULL && type->code () == TYPE_CODE_RANGE)
727 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
728 return type;
729 type = TYPE_TARGET_TYPE (type);
731 return type;
734 /* Return a decoded version of the given VALUE. This means returning
735 a value whose type is obtained by applying all the GNAT-specific
736 encodings, making the resulting type a static but standard description
737 of the initial type. */
739 struct value *
740 ada_get_decoded_value (struct value *value)
742 struct type *type = ada_check_typedef (value_type (value));
744 if (ada_is_array_descriptor_type (type)
745 || (ada_is_constrained_packed_array_type (type)
746 && type->code () != TYPE_CODE_PTR))
748 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
749 value = ada_coerce_to_simple_array_ptr (value);
750 else
751 value = ada_coerce_to_simple_array (value);
753 else
754 value = ada_to_fixed_value (value);
756 return value;
759 /* Same as ada_get_decoded_value, but with the given TYPE.
760 Because there is no associated actual value for this type,
761 the resulting type might be a best-effort approximation in
762 the case of dynamic types. */
764 struct type *
765 ada_get_decoded_type (struct type *type)
767 type = to_static_fixed_type (type);
768 if (ada_is_constrained_packed_array_type (type))
769 type = ada_coerce_to_simple_array_type (type);
770 return type;
775 /* Language Selection */
777 /* If the main program is in Ada, return language_ada, otherwise return LANG
778 (the main program is in Ada iif the adainit symbol is found). */
780 static enum language
781 ada_update_initial_language (enum language lang)
783 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
784 return language_ada;
786 return lang;
789 /* If the main procedure is written in Ada, then return its name.
790 The result is good until the next call. Return NULL if the main
791 procedure doesn't appear to be in Ada. */
793 char *
794 ada_main_name (void)
796 struct bound_minimal_symbol msym;
797 static gdb::unique_xmalloc_ptr<char> main_program_name;
799 /* For Ada, the name of the main procedure is stored in a specific
800 string constant, generated by the binder. Look for that symbol,
801 extract its address, and then read that string. If we didn't find
802 that string, then most probably the main procedure is not written
803 in Ada. */
804 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
806 if (msym.minsym != NULL)
808 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
809 if (main_program_name_addr == 0)
810 error (_("Invalid address for Ada main program name."));
812 main_program_name = target_read_string (main_program_name_addr, 1024);
813 return main_program_name.get ();
816 /* The main procedure doesn't seem to be in Ada. */
817 return NULL;
820 /* Symbols */
822 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
823 of NULLs. */
825 const struct ada_opname_map ada_opname_table[] = {
826 {"Oadd", "\"+\"", BINOP_ADD},
827 {"Osubtract", "\"-\"", BINOP_SUB},
828 {"Omultiply", "\"*\"", BINOP_MUL},
829 {"Odivide", "\"/\"", BINOP_DIV},
830 {"Omod", "\"mod\"", BINOP_MOD},
831 {"Orem", "\"rem\"", BINOP_REM},
832 {"Oexpon", "\"**\"", BINOP_EXP},
833 {"Olt", "\"<\"", BINOP_LESS},
834 {"Ole", "\"<=\"", BINOP_LEQ},
835 {"Ogt", "\">\"", BINOP_GTR},
836 {"Oge", "\">=\"", BINOP_GEQ},
837 {"Oeq", "\"=\"", BINOP_EQUAL},
838 {"One", "\"/=\"", BINOP_NOTEQUAL},
839 {"Oand", "\"and\"", BINOP_BITWISE_AND},
840 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
841 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
842 {"Oconcat", "\"&\"", BINOP_CONCAT},
843 {"Oabs", "\"abs\"", UNOP_ABS},
844 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
845 {"Oadd", "\"+\"", UNOP_PLUS},
846 {"Osubtract", "\"-\"", UNOP_NEG},
847 {NULL, NULL}
850 /* The "encoded" form of DECODED, according to GNAT conventions. If
851 THROW_ERRORS, throw an error if invalid operator name is found.
852 Otherwise, return the empty string in that case. */
854 static std::string
855 ada_encode_1 (const char *decoded, bool throw_errors)
857 if (decoded == NULL)
858 return {};
860 std::string encoding_buffer;
861 for (const char *p = decoded; *p != '\0'; p += 1)
863 if (*p == '.')
864 encoding_buffer.append ("__");
865 else if (*p == '"')
867 const struct ada_opname_map *mapping;
869 for (mapping = ada_opname_table;
870 mapping->encoded != NULL
871 && !startswith (p, mapping->decoded); mapping += 1)
873 if (mapping->encoded == NULL)
875 if (throw_errors)
876 error (_("invalid Ada operator name: %s"), p);
877 else
878 return {};
880 encoding_buffer.append (mapping->encoded);
881 break;
883 else
884 encoding_buffer.push_back (*p);
887 return encoding_buffer;
890 /* The "encoded" form of DECODED, according to GNAT conventions. */
892 std::string
893 ada_encode (const char *decoded)
895 return ada_encode_1 (decoded, true);
898 /* Return NAME folded to lower case, or, if surrounded by single
899 quotes, unfolded, but with the quotes stripped away. Result good
900 to next call. */
902 static const char *
903 ada_fold_name (gdb::string_view name)
905 static std::string fold_storage;
907 if (!name.empty () && name[0] == '\'')
908 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
909 else
911 fold_storage = gdb::to_string (name);
912 for (int i = 0; i < name.size (); i += 1)
913 fold_storage[i] = tolower (fold_storage[i]);
916 return fold_storage.c_str ();
919 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
921 static int
922 is_lower_alphanum (const char c)
924 return (isdigit (c) || (isalpha (c) && islower (c)));
927 /* ENCODED is the linkage name of a symbol and LEN contains its length.
928 This function saves in LEN the length of that same symbol name but
929 without either of these suffixes:
930 . .{DIGIT}+
931 . ${DIGIT}+
932 . ___{DIGIT}+
933 . __{DIGIT}+.
935 These are suffixes introduced by the compiler for entities such as
936 nested subprogram for instance, in order to avoid name clashes.
937 They do not serve any purpose for the debugger. */
939 static void
940 ada_remove_trailing_digits (const char *encoded, int *len)
942 if (*len > 1 && isdigit (encoded[*len - 1]))
944 int i = *len - 2;
946 while (i > 0 && isdigit (encoded[i]))
947 i--;
948 if (i >= 0 && encoded[i] == '.')
949 *len = i;
950 else if (i >= 0 && encoded[i] == '$')
951 *len = i;
952 else if (i >= 2 && startswith (encoded + i - 2, "___"))
953 *len = i - 2;
954 else if (i >= 1 && startswith (encoded + i - 1, "__"))
955 *len = i - 1;
959 /* Remove the suffix introduced by the compiler for protected object
960 subprograms. */
962 static void
963 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
965 /* Remove trailing N. */
967 /* Protected entry subprograms are broken into two
968 separate subprograms: The first one is unprotected, and has
969 a 'N' suffix; the second is the protected version, and has
970 the 'P' suffix. The second calls the first one after handling
971 the protection. Since the P subprograms are internally generated,
972 we leave these names undecoded, giving the user a clue that this
973 entity is internal. */
975 if (*len > 1
976 && encoded[*len - 1] == 'N'
977 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
978 *len = *len - 1;
981 /* If ENCODED follows the GNAT entity encoding conventions, then return
982 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
983 replaced by ENCODED. */
985 std::string
986 ada_decode (const char *encoded)
988 int i, j;
989 int len0;
990 const char *p;
991 int at_start_name;
992 std::string decoded;
994 /* With function descriptors on PPC64, the value of a symbol named
995 ".FN", if it exists, is the entry point of the function "FN". */
996 if (encoded[0] == '.')
997 encoded += 1;
999 /* The name of the Ada main procedure starts with "_ada_".
1000 This prefix is not part of the decoded name, so skip this part
1001 if we see this prefix. */
1002 if (startswith (encoded, "_ada_"))
1003 encoded += 5;
1005 /* If the name starts with '_', then it is not a properly encoded
1006 name, so do not attempt to decode it. Similarly, if the name
1007 starts with '<', the name should not be decoded. */
1008 if (encoded[0] == '_' || encoded[0] == '<')
1009 goto Suppress;
1011 len0 = strlen (encoded);
1013 ada_remove_trailing_digits (encoded, &len0);
1014 ada_remove_po_subprogram_suffix (encoded, &len0);
1016 /* Remove the ___X.* suffix if present. Do not forget to verify that
1017 the suffix is located before the current "end" of ENCODED. We want
1018 to avoid re-matching parts of ENCODED that have previously been
1019 marked as discarded (by decrementing LEN0). */
1020 p = strstr (encoded, "___");
1021 if (p != NULL && p - encoded < len0 - 3)
1023 if (p[3] == 'X')
1024 len0 = p - encoded;
1025 else
1026 goto Suppress;
1029 /* Remove any trailing TKB suffix. It tells us that this symbol
1030 is for the body of a task, but that information does not actually
1031 appear in the decoded name. */
1033 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1034 len0 -= 3;
1036 /* Remove any trailing TB suffix. The TB suffix is slightly different
1037 from the TKB suffix because it is used for non-anonymous task
1038 bodies. */
1040 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1041 len0 -= 2;
1043 /* Remove trailing "B" suffixes. */
1044 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1046 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1047 len0 -= 1;
1049 /* Make decoded big enough for possible expansion by operator name. */
1051 decoded.resize (2 * len0 + 1, 'X');
1053 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1055 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1057 i = len0 - 2;
1058 while ((i >= 0 && isdigit (encoded[i]))
1059 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1060 i -= 1;
1061 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1062 len0 = i - 1;
1063 else if (encoded[i] == '$')
1064 len0 = i;
1067 /* The first few characters that are not alphabetic are not part
1068 of any encoding we use, so we can copy them over verbatim. */
1070 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1071 decoded[j] = encoded[i];
1073 at_start_name = 1;
1074 while (i < len0)
1076 /* Is this a symbol function? */
1077 if (at_start_name && encoded[i] == 'O')
1079 int k;
1081 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1083 int op_len = strlen (ada_opname_table[k].encoded);
1084 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1085 op_len - 1) == 0)
1086 && !isalnum (encoded[i + op_len]))
1088 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1089 at_start_name = 0;
1090 i += op_len;
1091 j += strlen (ada_opname_table[k].decoded);
1092 break;
1095 if (ada_opname_table[k].encoded != NULL)
1096 continue;
1098 at_start_name = 0;
1100 /* Replace "TK__" with "__", which will eventually be translated
1101 into "." (just below). */
1103 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1104 i += 2;
1106 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1107 be translated into "." (just below). These are internal names
1108 generated for anonymous blocks inside which our symbol is nested. */
1110 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1111 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1112 && isdigit (encoded [i+4]))
1114 int k = i + 5;
1116 while (k < len0 && isdigit (encoded[k]))
1117 k++; /* Skip any extra digit. */
1119 /* Double-check that the "__B_{DIGITS}+" sequence we found
1120 is indeed followed by "__". */
1121 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1122 i = k;
1125 /* Remove _E{DIGITS}+[sb] */
1127 /* Just as for protected object subprograms, there are 2 categories
1128 of subprograms created by the compiler for each entry. The first
1129 one implements the actual entry code, and has a suffix following
1130 the convention above; the second one implements the barrier and
1131 uses the same convention as above, except that the 'E' is replaced
1132 by a 'B'.
1134 Just as above, we do not decode the name of barrier functions
1135 to give the user a clue that the code he is debugging has been
1136 internally generated. */
1138 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1139 && isdigit (encoded[i+2]))
1141 int k = i + 3;
1143 while (k < len0 && isdigit (encoded[k]))
1144 k++;
1146 if (k < len0
1147 && (encoded[k] == 'b' || encoded[k] == 's'))
1149 k++;
1150 /* Just as an extra precaution, make sure that if this
1151 suffix is followed by anything else, it is a '_'.
1152 Otherwise, we matched this sequence by accident. */
1153 if (k == len0
1154 || (k < len0 && encoded[k] == '_'))
1155 i = k;
1159 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1160 the GNAT front-end in protected object subprograms. */
1162 if (i < len0 + 3
1163 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1165 /* Backtrack a bit up until we reach either the begining of
1166 the encoded name, or "__". Make sure that we only find
1167 digits or lowercase characters. */
1168 const char *ptr = encoded + i - 1;
1170 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1171 ptr--;
1172 if (ptr < encoded
1173 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1174 i++;
1177 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1179 /* This is a X[bn]* sequence not separated from the previous
1180 part of the name with a non-alpha-numeric character (in other
1181 words, immediately following an alpha-numeric character), then
1182 verify that it is placed at the end of the encoded name. If
1183 not, then the encoding is not valid and we should abort the
1184 decoding. Otherwise, just skip it, it is used in body-nested
1185 package names. */
1187 i += 1;
1188 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1189 if (i < len0)
1190 goto Suppress;
1192 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1194 /* Replace '__' by '.'. */
1195 decoded[j] = '.';
1196 at_start_name = 1;
1197 i += 2;
1198 j += 1;
1200 else
1202 /* It's a character part of the decoded name, so just copy it
1203 over. */
1204 decoded[j] = encoded[i];
1205 i += 1;
1206 j += 1;
1209 decoded.resize (j);
1211 /* Decoded names should never contain any uppercase character.
1212 Double-check this, and abort the decoding if we find one. */
1214 for (i = 0; i < decoded.length(); ++i)
1215 if (isupper (decoded[i]) || decoded[i] == ' ')
1216 goto Suppress;
1218 return decoded;
1220 Suppress:
1221 if (encoded[0] == '<')
1222 decoded = encoded;
1223 else
1224 decoded = '<' + std::string(encoded) + '>';
1225 return decoded;
1229 /* Table for keeping permanent unique copies of decoded names. Once
1230 allocated, names in this table are never released. While this is a
1231 storage leak, it should not be significant unless there are massive
1232 changes in the set of decoded names in successive versions of a
1233 symbol table loaded during a single session. */
1234 static struct htab *decoded_names_store;
1236 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1237 in the language-specific part of GSYMBOL, if it has not been
1238 previously computed. Tries to save the decoded name in the same
1239 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1240 in any case, the decoded symbol has a lifetime at least that of
1241 GSYMBOL).
1242 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1243 const, but nevertheless modified to a semantically equivalent form
1244 when a decoded name is cached in it. */
1246 const char *
1247 ada_decode_symbol (const struct general_symbol_info *arg)
1249 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1250 const char **resultp =
1251 &gsymbol->language_specific.demangled_name;
1253 if (!gsymbol->ada_mangled)
1255 std::string decoded = ada_decode (gsymbol->linkage_name ());
1256 struct obstack *obstack = gsymbol->language_specific.obstack;
1258 gsymbol->ada_mangled = 1;
1260 if (obstack != NULL)
1261 *resultp = obstack_strdup (obstack, decoded.c_str ());
1262 else
1264 /* Sometimes, we can't find a corresponding objfile, in
1265 which case, we put the result on the heap. Since we only
1266 decode when needed, we hope this usually does not cause a
1267 significant memory leak (FIXME). */
1269 char **slot = (char **) htab_find_slot (decoded_names_store,
1270 decoded.c_str (), INSERT);
1272 if (*slot == NULL)
1273 *slot = xstrdup (decoded.c_str ());
1274 *resultp = *slot;
1278 return *resultp;
1281 static char *
1282 ada_la_decode (const char *encoded, int options)
1284 return xstrdup (ada_decode (encoded).c_str ());
1289 /* Arrays */
1291 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1292 generated by the GNAT compiler to describe the index type used
1293 for each dimension of an array, check whether it follows the latest
1294 known encoding. If not, fix it up to conform to the latest encoding.
1295 Otherwise, do nothing. This function also does nothing if
1296 INDEX_DESC_TYPE is NULL.
1298 The GNAT encoding used to describe the array index type evolved a bit.
1299 Initially, the information would be provided through the name of each
1300 field of the structure type only, while the type of these fields was
1301 described as unspecified and irrelevant. The debugger was then expected
1302 to perform a global type lookup using the name of that field in order
1303 to get access to the full index type description. Because these global
1304 lookups can be very expensive, the encoding was later enhanced to make
1305 the global lookup unnecessary by defining the field type as being
1306 the full index type description.
1308 The purpose of this routine is to allow us to support older versions
1309 of the compiler by detecting the use of the older encoding, and by
1310 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1311 we essentially replace each field's meaningless type by the associated
1312 index subtype). */
1314 void
1315 ada_fixup_array_indexes_type (struct type *index_desc_type)
1317 int i;
1319 if (index_desc_type == NULL)
1320 return;
1321 gdb_assert (index_desc_type->num_fields () > 0);
1323 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1324 to check one field only, no need to check them all). If not, return
1325 now.
1327 If our INDEX_DESC_TYPE was generated using the older encoding,
1328 the field type should be a meaningless integer type whose name
1329 is not equal to the field name. */
1330 if (index_desc_type->field (0).type ()->name () != NULL
1331 && strcmp (index_desc_type->field (0).type ()->name (),
1332 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1333 return;
1335 /* Fixup each field of INDEX_DESC_TYPE. */
1336 for (i = 0; i < index_desc_type->num_fields (); i++)
1338 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1339 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1341 if (raw_type)
1342 index_desc_type->field (i).set_type (raw_type);
1346 /* The desc_* routines return primitive portions of array descriptors
1347 (fat pointers). */
1349 /* The descriptor or array type, if any, indicated by TYPE; removes
1350 level of indirection, if needed. */
1352 static struct type *
1353 desc_base_type (struct type *type)
1355 if (type == NULL)
1356 return NULL;
1357 type = ada_check_typedef (type);
1358 if (type->code () == TYPE_CODE_TYPEDEF)
1359 type = ada_typedef_target_type (type);
1361 if (type != NULL
1362 && (type->code () == TYPE_CODE_PTR
1363 || type->code () == TYPE_CODE_REF))
1364 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1365 else
1366 return type;
1369 /* True iff TYPE indicates a "thin" array pointer type. */
1371 static int
1372 is_thin_pntr (struct type *type)
1374 return
1375 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1376 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1379 /* The descriptor type for thin pointer type TYPE. */
1381 static struct type *
1382 thin_descriptor_type (struct type *type)
1384 struct type *base_type = desc_base_type (type);
1386 if (base_type == NULL)
1387 return NULL;
1388 if (is_suffix (ada_type_name (base_type), "___XVE"))
1389 return base_type;
1390 else
1392 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1394 if (alt_type == NULL)
1395 return base_type;
1396 else
1397 return alt_type;
1401 /* A pointer to the array data for thin-pointer value VAL. */
1403 static struct value *
1404 thin_data_pntr (struct value *val)
1406 struct type *type = ada_check_typedef (value_type (val));
1407 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1409 data_type = lookup_pointer_type (data_type);
1411 if (type->code () == TYPE_CODE_PTR)
1412 return value_cast (data_type, value_copy (val));
1413 else
1414 return value_from_longest (data_type, value_address (val));
1417 /* True iff TYPE indicates a "thick" array pointer type. */
1419 static int
1420 is_thick_pntr (struct type *type)
1422 type = desc_base_type (type);
1423 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1424 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1427 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1428 pointer to one, the type of its bounds data; otherwise, NULL. */
1430 static struct type *
1431 desc_bounds_type (struct type *type)
1433 struct type *r;
1435 type = desc_base_type (type);
1437 if (type == NULL)
1438 return NULL;
1439 else if (is_thin_pntr (type))
1441 type = thin_descriptor_type (type);
1442 if (type == NULL)
1443 return NULL;
1444 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1445 if (r != NULL)
1446 return ada_check_typedef (r);
1448 else if (type->code () == TYPE_CODE_STRUCT)
1450 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1451 if (r != NULL)
1452 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1454 return NULL;
1457 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1458 one, a pointer to its bounds data. Otherwise NULL. */
1460 static struct value *
1461 desc_bounds (struct value *arr)
1463 struct type *type = ada_check_typedef (value_type (arr));
1465 if (is_thin_pntr (type))
1467 struct type *bounds_type =
1468 desc_bounds_type (thin_descriptor_type (type));
1469 LONGEST addr;
1471 if (bounds_type == NULL)
1472 error (_("Bad GNAT array descriptor"));
1474 /* NOTE: The following calculation is not really kosher, but
1475 since desc_type is an XVE-encoded type (and shouldn't be),
1476 the correct calculation is a real pain. FIXME (and fix GCC). */
1477 if (type->code () == TYPE_CODE_PTR)
1478 addr = value_as_long (arr);
1479 else
1480 addr = value_address (arr);
1482 return
1483 value_from_longest (lookup_pointer_type (bounds_type),
1484 addr - TYPE_LENGTH (bounds_type));
1487 else if (is_thick_pntr (type))
1489 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1490 _("Bad GNAT array descriptor"));
1491 struct type *p_bounds_type = value_type (p_bounds);
1493 if (p_bounds_type
1494 && p_bounds_type->code () == TYPE_CODE_PTR)
1496 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1498 if (target_type->is_stub ())
1499 p_bounds = value_cast (lookup_pointer_type
1500 (ada_check_typedef (target_type)),
1501 p_bounds);
1503 else
1504 error (_("Bad GNAT array descriptor"));
1506 return p_bounds;
1508 else
1509 return NULL;
1512 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1513 position of the field containing the address of the bounds data. */
1515 static int
1516 fat_pntr_bounds_bitpos (struct type *type)
1518 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1521 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1522 size of the field containing the address of the bounds data. */
1524 static int
1525 fat_pntr_bounds_bitsize (struct type *type)
1527 type = desc_base_type (type);
1529 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1530 return TYPE_FIELD_BITSIZE (type, 1);
1531 else
1532 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1535 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1536 pointer to one, the type of its array data (a array-with-no-bounds type);
1537 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1538 data. */
1540 static struct type *
1541 desc_data_target_type (struct type *type)
1543 type = desc_base_type (type);
1545 /* NOTE: The following is bogus; see comment in desc_bounds. */
1546 if (is_thin_pntr (type))
1547 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1548 else if (is_thick_pntr (type))
1550 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1552 if (data_type
1553 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1554 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1557 return NULL;
1560 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1561 its array data. */
1563 static struct value *
1564 desc_data (struct value *arr)
1566 struct type *type = value_type (arr);
1568 if (is_thin_pntr (type))
1569 return thin_data_pntr (arr);
1570 else if (is_thick_pntr (type))
1571 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1572 _("Bad GNAT array descriptor"));
1573 else
1574 return NULL;
1578 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1579 position of the field containing the address of the data. */
1581 static int
1582 fat_pntr_data_bitpos (struct type *type)
1584 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1587 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1588 size of the field containing the address of the data. */
1590 static int
1591 fat_pntr_data_bitsize (struct type *type)
1593 type = desc_base_type (type);
1595 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1596 return TYPE_FIELD_BITSIZE (type, 0);
1597 else
1598 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1601 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1602 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1603 bound, if WHICH is 1. The first bound is I=1. */
1605 static struct value *
1606 desc_one_bound (struct value *bounds, int i, int which)
1608 char bound_name[20];
1609 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1610 which ? 'U' : 'L', i - 1);
1611 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1612 _("Bad GNAT array descriptor bounds"));
1615 /* If BOUNDS is an array-bounds structure type, return the bit position
1616 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1617 bound, if WHICH is 1. The first bound is I=1. */
1619 static int
1620 desc_bound_bitpos (struct type *type, int i, int which)
1622 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1625 /* If BOUNDS is an array-bounds structure type, return the bit field size
1626 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1627 bound, if WHICH is 1. The first bound is I=1. */
1629 static int
1630 desc_bound_bitsize (struct type *type, int i, int which)
1632 type = desc_base_type (type);
1634 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1635 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1636 else
1637 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1640 /* If TYPE is the type of an array-bounds structure, the type of its
1641 Ith bound (numbering from 1). Otherwise, NULL. */
1643 static struct type *
1644 desc_index_type (struct type *type, int i)
1646 type = desc_base_type (type);
1648 if (type->code () == TYPE_CODE_STRUCT)
1650 char bound_name[20];
1651 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1652 return lookup_struct_elt_type (type, bound_name, 1);
1654 else
1655 return NULL;
1658 /* The number of index positions in the array-bounds type TYPE.
1659 Return 0 if TYPE is NULL. */
1661 static int
1662 desc_arity (struct type *type)
1664 type = desc_base_type (type);
1666 if (type != NULL)
1667 return type->num_fields () / 2;
1668 return 0;
1671 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1672 an array descriptor type (representing an unconstrained array
1673 type). */
1675 static int
1676 ada_is_direct_array_type (struct type *type)
1678 if (type == NULL)
1679 return 0;
1680 type = ada_check_typedef (type);
1681 return (type->code () == TYPE_CODE_ARRAY
1682 || ada_is_array_descriptor_type (type));
1685 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1686 * to one. */
1688 static int
1689 ada_is_array_type (struct type *type)
1691 while (type != NULL
1692 && (type->code () == TYPE_CODE_PTR
1693 || type->code () == TYPE_CODE_REF))
1694 type = TYPE_TARGET_TYPE (type);
1695 return ada_is_direct_array_type (type);
1698 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1701 ada_is_simple_array_type (struct type *type)
1703 if (type == NULL)
1704 return 0;
1705 type = ada_check_typedef (type);
1706 return (type->code () == TYPE_CODE_ARRAY
1707 || (type->code () == TYPE_CODE_PTR
1708 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1709 == TYPE_CODE_ARRAY)));
1712 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1715 ada_is_array_descriptor_type (struct type *type)
1717 struct type *data_type = desc_data_target_type (type);
1719 if (type == NULL)
1720 return 0;
1721 type = ada_check_typedef (type);
1722 return (data_type != NULL
1723 && data_type->code () == TYPE_CODE_ARRAY
1724 && desc_arity (desc_bounds_type (type)) > 0);
1727 /* Non-zero iff type is a partially mal-formed GNAT array
1728 descriptor. FIXME: This is to compensate for some problems with
1729 debugging output from GNAT. Re-examine periodically to see if it
1730 is still needed. */
1733 ada_is_bogus_array_descriptor (struct type *type)
1735 return
1736 type != NULL
1737 && type->code () == TYPE_CODE_STRUCT
1738 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1739 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1740 && !ada_is_array_descriptor_type (type);
1744 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1745 (fat pointer) returns the type of the array data described---specifically,
1746 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1747 in from the descriptor; otherwise, they are left unspecified. If
1748 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1749 returns NULL. The result is simply the type of ARR if ARR is not
1750 a descriptor. */
1752 static struct type *
1753 ada_type_of_array (struct value *arr, int bounds)
1755 if (ada_is_constrained_packed_array_type (value_type (arr)))
1756 return decode_constrained_packed_array_type (value_type (arr));
1758 if (!ada_is_array_descriptor_type (value_type (arr)))
1759 return value_type (arr);
1761 if (!bounds)
1763 struct type *array_type =
1764 ada_check_typedef (desc_data_target_type (value_type (arr)));
1766 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1767 TYPE_FIELD_BITSIZE (array_type, 0) =
1768 decode_packed_array_bitsize (value_type (arr));
1770 return array_type;
1772 else
1774 struct type *elt_type;
1775 int arity;
1776 struct value *descriptor;
1778 elt_type = ada_array_element_type (value_type (arr), -1);
1779 arity = ada_array_arity (value_type (arr));
1781 if (elt_type == NULL || arity == 0)
1782 return ada_check_typedef (value_type (arr));
1784 descriptor = desc_bounds (arr);
1785 if (value_as_long (descriptor) == 0)
1786 return NULL;
1787 while (arity > 0)
1789 struct type *range_type = alloc_type_copy (value_type (arr));
1790 struct type *array_type = alloc_type_copy (value_type (arr));
1791 struct value *low = desc_one_bound (descriptor, arity, 0);
1792 struct value *high = desc_one_bound (descriptor, arity, 1);
1794 arity -= 1;
1795 create_static_range_type (range_type, value_type (low),
1796 longest_to_int (value_as_long (low)),
1797 longest_to_int (value_as_long (high)));
1798 elt_type = create_array_type (array_type, elt_type, range_type);
1800 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1802 /* We need to store the element packed bitsize, as well as
1803 recompute the array size, because it was previously
1804 computed based on the unpacked element size. */
1805 LONGEST lo = value_as_long (low);
1806 LONGEST hi = value_as_long (high);
1808 TYPE_FIELD_BITSIZE (elt_type, 0) =
1809 decode_packed_array_bitsize (value_type (arr));
1810 /* If the array has no element, then the size is already
1811 zero, and does not need to be recomputed. */
1812 if (lo < hi)
1814 int array_bitsize =
1815 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1817 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1822 return lookup_pointer_type (elt_type);
1826 /* If ARR does not represent an array, returns ARR unchanged.
1827 Otherwise, returns either a standard GDB array with bounds set
1828 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1829 GDB array. Returns NULL if ARR is a null fat pointer. */
1831 struct value *
1832 ada_coerce_to_simple_array_ptr (struct value *arr)
1834 if (ada_is_array_descriptor_type (value_type (arr)))
1836 struct type *arrType = ada_type_of_array (arr, 1);
1838 if (arrType == NULL)
1839 return NULL;
1840 return value_cast (arrType, value_copy (desc_data (arr)));
1842 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1843 return decode_constrained_packed_array (arr);
1844 else
1845 return arr;
1848 /* If ARR does not represent an array, returns ARR unchanged.
1849 Otherwise, returns a standard GDB array describing ARR (which may
1850 be ARR itself if it already is in the proper form). */
1852 struct value *
1853 ada_coerce_to_simple_array (struct value *arr)
1855 if (ada_is_array_descriptor_type (value_type (arr)))
1857 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1859 if (arrVal == NULL)
1860 error (_("Bounds unavailable for null array pointer."));
1861 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1862 return value_ind (arrVal);
1864 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1865 return decode_constrained_packed_array (arr);
1866 else
1867 return arr;
1870 /* If TYPE represents a GNAT array type, return it translated to an
1871 ordinary GDB array type (possibly with BITSIZE fields indicating
1872 packing). For other types, is the identity. */
1874 struct type *
1875 ada_coerce_to_simple_array_type (struct type *type)
1877 if (ada_is_constrained_packed_array_type (type))
1878 return decode_constrained_packed_array_type (type);
1880 if (ada_is_array_descriptor_type (type))
1881 return ada_check_typedef (desc_data_target_type (type));
1883 return type;
1886 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1888 static int
1889 ada_is_gnat_encoded_packed_array_type (struct type *type)
1891 if (type == NULL)
1892 return 0;
1893 type = desc_base_type (type);
1894 type = ada_check_typedef (type);
1895 return
1896 ada_type_name (type) != NULL
1897 && strstr (ada_type_name (type), "___XP") != NULL;
1900 /* Non-zero iff TYPE represents a standard GNAT constrained
1901 packed-array type. */
1904 ada_is_constrained_packed_array_type (struct type *type)
1906 return ada_is_gnat_encoded_packed_array_type (type)
1907 && !ada_is_array_descriptor_type (type);
1910 /* Non-zero iff TYPE represents an array descriptor for a
1911 unconstrained packed-array type. */
1913 static int
1914 ada_is_unconstrained_packed_array_type (struct type *type)
1916 if (!ada_is_array_descriptor_type (type))
1917 return 0;
1919 if (ada_is_gnat_encoded_packed_array_type (type))
1920 return 1;
1922 /* If we saw GNAT encodings, then the above code is sufficient.
1923 However, with minimal encodings, we will just have a thick
1924 pointer instead. */
1925 if (is_thick_pntr (type))
1927 type = desc_base_type (type);
1928 /* The structure's first field is a pointer to an array, so this
1929 fetches the array type. */
1930 type = TYPE_TARGET_TYPE (type->field (0).type ());
1931 /* Now we can see if the array elements are packed. */
1932 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1935 return 0;
1938 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1939 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1941 static bool
1942 ada_is_any_packed_array_type (struct type *type)
1944 return (ada_is_constrained_packed_array_type (type)
1945 || (type->code () == TYPE_CODE_ARRAY
1946 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1949 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1950 return the size of its elements in bits. */
1952 static long
1953 decode_packed_array_bitsize (struct type *type)
1955 const char *raw_name;
1956 const char *tail;
1957 long bits;
1959 /* Access to arrays implemented as fat pointers are encoded as a typedef
1960 of the fat pointer type. We need the name of the fat pointer type
1961 to do the decoding, so strip the typedef layer. */
1962 if (type->code () == TYPE_CODE_TYPEDEF)
1963 type = ada_typedef_target_type (type);
1965 raw_name = ada_type_name (ada_check_typedef (type));
1966 if (!raw_name)
1967 raw_name = ada_type_name (desc_base_type (type));
1969 if (!raw_name)
1970 return 0;
1972 tail = strstr (raw_name, "___XP");
1973 if (tail == nullptr)
1975 gdb_assert (is_thick_pntr (type));
1976 /* The structure's first field is a pointer to an array, so this
1977 fetches the array type. */
1978 type = TYPE_TARGET_TYPE (type->field (0).type ());
1979 /* Now we can see if the array elements are packed. */
1980 return TYPE_FIELD_BITSIZE (type, 0);
1983 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1985 lim_warning
1986 (_("could not understand bit size information on packed array"));
1987 return 0;
1990 return bits;
1993 /* Given that TYPE is a standard GDB array type with all bounds filled
1994 in, and that the element size of its ultimate scalar constituents
1995 (that is, either its elements, or, if it is an array of arrays, its
1996 elements' elements, etc.) is *ELT_BITS, return an identical type,
1997 but with the bit sizes of its elements (and those of any
1998 constituent arrays) recorded in the BITSIZE components of its
1999 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2000 in bits.
2002 Note that, for arrays whose index type has an XA encoding where
2003 a bound references a record discriminant, getting that discriminant,
2004 and therefore the actual value of that bound, is not possible
2005 because none of the given parameters gives us access to the record.
2006 This function assumes that it is OK in the context where it is being
2007 used to return an array whose bounds are still dynamic and where
2008 the length is arbitrary. */
2010 static struct type *
2011 constrained_packed_array_type (struct type *type, long *elt_bits)
2013 struct type *new_elt_type;
2014 struct type *new_type;
2015 struct type *index_type_desc;
2016 struct type *index_type;
2017 LONGEST low_bound, high_bound;
2019 type = ada_check_typedef (type);
2020 if (type->code () != TYPE_CODE_ARRAY)
2021 return type;
2023 index_type_desc = ada_find_parallel_type (type, "___XA");
2024 if (index_type_desc)
2025 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2026 NULL);
2027 else
2028 index_type = type->index_type ();
2030 new_type = alloc_type_copy (type);
2031 new_elt_type =
2032 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2033 elt_bits);
2034 create_array_type (new_type, new_elt_type, index_type);
2035 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2036 new_type->set_name (ada_type_name (type));
2038 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2039 && is_dynamic_type (check_typedef (index_type)))
2040 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2041 low_bound = high_bound = 0;
2042 if (high_bound < low_bound)
2043 *elt_bits = TYPE_LENGTH (new_type) = 0;
2044 else
2046 *elt_bits *= (high_bound - low_bound + 1);
2047 TYPE_LENGTH (new_type) =
2048 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2051 new_type->set_is_fixed_instance (true);
2052 return new_type;
2055 /* The array type encoded by TYPE, where
2056 ada_is_constrained_packed_array_type (TYPE). */
2058 static struct type *
2059 decode_constrained_packed_array_type (struct type *type)
2061 const char *raw_name = ada_type_name (ada_check_typedef (type));
2062 char *name;
2063 const char *tail;
2064 struct type *shadow_type;
2065 long bits;
2067 if (!raw_name)
2068 raw_name = ada_type_name (desc_base_type (type));
2070 if (!raw_name)
2071 return NULL;
2073 name = (char *) alloca (strlen (raw_name) + 1);
2074 tail = strstr (raw_name, "___XP");
2075 type = desc_base_type (type);
2077 memcpy (name, raw_name, tail - raw_name);
2078 name[tail - raw_name] = '\000';
2080 shadow_type = ada_find_parallel_type_with_name (type, name);
2082 if (shadow_type == NULL)
2084 lim_warning (_("could not find bounds information on packed array"));
2085 return NULL;
2087 shadow_type = check_typedef (shadow_type);
2089 if (shadow_type->code () != TYPE_CODE_ARRAY)
2091 lim_warning (_("could not understand bounds "
2092 "information on packed array"));
2093 return NULL;
2096 bits = decode_packed_array_bitsize (type);
2097 return constrained_packed_array_type (shadow_type, &bits);
2100 /* Helper function for decode_constrained_packed_array. Set the field
2101 bitsize on a series of packed arrays. Returns the number of
2102 elements in TYPE. */
2104 static LONGEST
2105 recursively_update_array_bitsize (struct type *type)
2107 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2109 LONGEST low, high;
2110 if (!get_discrete_bounds (type->index_type (), &low, &high)
2111 || low > high)
2112 return 0;
2113 LONGEST our_len = high - low + 1;
2115 struct type *elt_type = TYPE_TARGET_TYPE (type);
2116 if (elt_type->code () == TYPE_CODE_ARRAY)
2118 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2119 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2120 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2122 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2123 / HOST_CHAR_BIT);
2126 return our_len;
2129 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2130 array, returns a simple array that denotes that array. Its type is a
2131 standard GDB array type except that the BITSIZEs of the array
2132 target types are set to the number of bits in each element, and the
2133 type length is set appropriately. */
2135 static struct value *
2136 decode_constrained_packed_array (struct value *arr)
2138 struct type *type;
2140 /* If our value is a pointer, then dereference it. Likewise if
2141 the value is a reference. Make sure that this operation does not
2142 cause the target type to be fixed, as this would indirectly cause
2143 this array to be decoded. The rest of the routine assumes that
2144 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2145 and "value_ind" routines to perform the dereferencing, as opposed
2146 to using "ada_coerce_ref" or "ada_value_ind". */
2147 arr = coerce_ref (arr);
2148 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2149 arr = value_ind (arr);
2151 type = decode_constrained_packed_array_type (value_type (arr));
2152 if (type == NULL)
2154 error (_("can't unpack array"));
2155 return NULL;
2158 /* Decoding the packed array type could not correctly set the field
2159 bitsizes for any dimension except the innermost, because the
2160 bounds may be variable and were not passed to that function. So,
2161 we further resolve the array bounds here and then update the
2162 sizes. */
2163 const gdb_byte *valaddr = value_contents_for_printing (arr);
2164 CORE_ADDR address = value_address (arr);
2165 gdb::array_view<const gdb_byte> view
2166 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2167 type = resolve_dynamic_type (type, view, address);
2168 recursively_update_array_bitsize (type);
2170 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2171 && ada_is_modular_type (value_type (arr)))
2173 /* This is a (right-justified) modular type representing a packed
2174 array with no wrapper. In order to interpret the value through
2175 the (left-justified) packed array type we just built, we must
2176 first left-justify it. */
2177 int bit_size, bit_pos;
2178 ULONGEST mod;
2180 mod = ada_modulus (value_type (arr)) - 1;
2181 bit_size = 0;
2182 while (mod > 0)
2184 bit_size += 1;
2185 mod >>= 1;
2187 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2188 arr = ada_value_primitive_packed_val (arr, NULL,
2189 bit_pos / HOST_CHAR_BIT,
2190 bit_pos % HOST_CHAR_BIT,
2191 bit_size,
2192 type);
2195 return coerce_unspec_val_to_type (arr, type);
2199 /* The value of the element of packed array ARR at the ARITY indices
2200 given in IND. ARR must be a simple array. */
2202 static struct value *
2203 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2205 int i;
2206 int bits, elt_off, bit_off;
2207 long elt_total_bit_offset;
2208 struct type *elt_type;
2209 struct value *v;
2211 bits = 0;
2212 elt_total_bit_offset = 0;
2213 elt_type = ada_check_typedef (value_type (arr));
2214 for (i = 0; i < arity; i += 1)
2216 if (elt_type->code () != TYPE_CODE_ARRAY
2217 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2218 error
2219 (_("attempt to do packed indexing of "
2220 "something other than a packed array"));
2221 else
2223 struct type *range_type = elt_type->index_type ();
2224 LONGEST lowerbound, upperbound;
2225 LONGEST idx;
2227 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2229 lim_warning (_("don't know bounds of array"));
2230 lowerbound = upperbound = 0;
2233 idx = pos_atr (ind[i]);
2234 if (idx < lowerbound || idx > upperbound)
2235 lim_warning (_("packed array index %ld out of bounds"),
2236 (long) idx);
2237 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2238 elt_total_bit_offset += (idx - lowerbound) * bits;
2239 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2242 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2243 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2245 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2246 bits, elt_type);
2247 return v;
2250 /* Non-zero iff TYPE includes negative integer values. */
2252 static int
2253 has_negatives (struct type *type)
2255 switch (type->code ())
2257 default:
2258 return 0;
2259 case TYPE_CODE_INT:
2260 return !type->is_unsigned ();
2261 case TYPE_CODE_RANGE:
2262 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2266 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2267 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2268 the unpacked buffer.
2270 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2271 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2273 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2274 zero otherwise.
2276 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2278 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2280 static void
2281 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2282 gdb_byte *unpacked, int unpacked_len,
2283 int is_big_endian, int is_signed_type,
2284 int is_scalar)
2286 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 int src_idx; /* Index into the source area */
2288 int src_bytes_left; /* Number of source bytes left to process. */
2289 int srcBitsLeft; /* Number of source bits left to move */
2290 int unusedLS; /* Number of bits in next significant
2291 byte of source that are unused */
2293 int unpacked_idx; /* Index into the unpacked buffer */
2294 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2296 unsigned long accum; /* Staging area for bits being transferred */
2297 int accumSize; /* Number of meaningful bits in accum */
2298 unsigned char sign;
2300 /* Transmit bytes from least to most significant; delta is the direction
2301 the indices move. */
2302 int delta = is_big_endian ? -1 : 1;
2304 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2305 bits from SRC. .*/
2306 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2307 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2308 bit_size, unpacked_len);
2310 srcBitsLeft = bit_size;
2311 src_bytes_left = src_len;
2312 unpacked_bytes_left = unpacked_len;
2313 sign = 0;
2315 if (is_big_endian)
2317 src_idx = src_len - 1;
2318 if (is_signed_type
2319 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2320 sign = ~0;
2322 unusedLS =
2323 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2324 % HOST_CHAR_BIT;
2326 if (is_scalar)
2328 accumSize = 0;
2329 unpacked_idx = unpacked_len - 1;
2331 else
2333 /* Non-scalar values must be aligned at a byte boundary... */
2334 accumSize =
2335 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2336 /* ... And are placed at the beginning (most-significant) bytes
2337 of the target. */
2338 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2339 unpacked_bytes_left = unpacked_idx + 1;
2342 else
2344 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2346 src_idx = unpacked_idx = 0;
2347 unusedLS = bit_offset;
2348 accumSize = 0;
2350 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2351 sign = ~0;
2354 accum = 0;
2355 while (src_bytes_left > 0)
2357 /* Mask for removing bits of the next source byte that are not
2358 part of the value. */
2359 unsigned int unusedMSMask =
2360 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2362 /* Sign-extend bits for this byte. */
2363 unsigned int signMask = sign & ~unusedMSMask;
2365 accum |=
2366 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2367 accumSize += HOST_CHAR_BIT - unusedLS;
2368 if (accumSize >= HOST_CHAR_BIT)
2370 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2371 accumSize -= HOST_CHAR_BIT;
2372 accum >>= HOST_CHAR_BIT;
2373 unpacked_bytes_left -= 1;
2374 unpacked_idx += delta;
2376 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2377 unusedLS = 0;
2378 src_bytes_left -= 1;
2379 src_idx += delta;
2381 while (unpacked_bytes_left > 0)
2383 accum |= sign << accumSize;
2384 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2385 accumSize -= HOST_CHAR_BIT;
2386 if (accumSize < 0)
2387 accumSize = 0;
2388 accum >>= HOST_CHAR_BIT;
2389 unpacked_bytes_left -= 1;
2390 unpacked_idx += delta;
2394 /* Create a new value of type TYPE from the contents of OBJ starting
2395 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2396 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2397 assigning through the result will set the field fetched from.
2398 VALADDR is ignored unless OBJ is NULL, in which case,
2399 VALADDR+OFFSET must address the start of storage containing the
2400 packed value. The value returned in this case is never an lval.
2401 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2403 struct value *
2404 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2405 long offset, int bit_offset, int bit_size,
2406 struct type *type)
2408 struct value *v;
2409 const gdb_byte *src; /* First byte containing data to unpack */
2410 gdb_byte *unpacked;
2411 const int is_scalar = is_scalar_type (type);
2412 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2413 gdb::byte_vector staging;
2415 type = ada_check_typedef (type);
2417 if (obj == NULL)
2418 src = valaddr + offset;
2419 else
2420 src = value_contents (obj) + offset;
2422 if (is_dynamic_type (type))
2424 /* The length of TYPE might by dynamic, so we need to resolve
2425 TYPE in order to know its actual size, which we then use
2426 to create the contents buffer of the value we return.
2427 The difficulty is that the data containing our object is
2428 packed, and therefore maybe not at a byte boundary. So, what
2429 we do, is unpack the data into a byte-aligned buffer, and then
2430 use that buffer as our object's value for resolving the type. */
2431 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2432 staging.resize (staging_len);
2434 ada_unpack_from_contents (src, bit_offset, bit_size,
2435 staging.data (), staging.size (),
2436 is_big_endian, has_negatives (type),
2437 is_scalar);
2438 type = resolve_dynamic_type (type, staging, 0);
2439 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2441 /* This happens when the length of the object is dynamic,
2442 and is actually smaller than the space reserved for it.
2443 For instance, in an array of variant records, the bit_size
2444 we're given is the array stride, which is constant and
2445 normally equal to the maximum size of its element.
2446 But, in reality, each element only actually spans a portion
2447 of that stride. */
2448 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2452 if (obj == NULL)
2454 v = allocate_value (type);
2455 src = valaddr + offset;
2457 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2459 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2460 gdb_byte *buf;
2462 v = value_at (type, value_address (obj) + offset);
2463 buf = (gdb_byte *) alloca (src_len);
2464 read_memory (value_address (v), buf, src_len);
2465 src = buf;
2467 else
2469 v = allocate_value (type);
2470 src = value_contents (obj) + offset;
2473 if (obj != NULL)
2475 long new_offset = offset;
2477 set_value_component_location (v, obj);
2478 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2479 set_value_bitsize (v, bit_size);
2480 if (value_bitpos (v) >= HOST_CHAR_BIT)
2482 ++new_offset;
2483 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2485 set_value_offset (v, new_offset);
2487 /* Also set the parent value. This is needed when trying to
2488 assign a new value (in inferior memory). */
2489 set_value_parent (v, obj);
2491 else
2492 set_value_bitsize (v, bit_size);
2493 unpacked = value_contents_writeable (v);
2495 if (bit_size == 0)
2497 memset (unpacked, 0, TYPE_LENGTH (type));
2498 return v;
2501 if (staging.size () == TYPE_LENGTH (type))
2503 /* Small short-cut: If we've unpacked the data into a buffer
2504 of the same size as TYPE's length, then we can reuse that,
2505 instead of doing the unpacking again. */
2506 memcpy (unpacked, staging.data (), staging.size ());
2508 else
2509 ada_unpack_from_contents (src, bit_offset, bit_size,
2510 unpacked, TYPE_LENGTH (type),
2511 is_big_endian, has_negatives (type), is_scalar);
2513 return v;
2516 /* Store the contents of FROMVAL into the location of TOVAL.
2517 Return a new value with the location of TOVAL and contents of
2518 FROMVAL. Handles assignment into packed fields that have
2519 floating-point or non-scalar types. */
2521 static struct value *
2522 ada_value_assign (struct value *toval, struct value *fromval)
2524 struct type *type = value_type (toval);
2525 int bits = value_bitsize (toval);
2527 toval = ada_coerce_ref (toval);
2528 fromval = ada_coerce_ref (fromval);
2530 if (ada_is_direct_array_type (value_type (toval)))
2531 toval = ada_coerce_to_simple_array (toval);
2532 if (ada_is_direct_array_type (value_type (fromval)))
2533 fromval = ada_coerce_to_simple_array (fromval);
2535 if (!deprecated_value_modifiable (toval))
2536 error (_("Left operand of assignment is not a modifiable lvalue."));
2538 if (VALUE_LVAL (toval) == lval_memory
2539 && bits > 0
2540 && (type->code () == TYPE_CODE_FLT
2541 || type->code () == TYPE_CODE_STRUCT))
2543 int len = (value_bitpos (toval)
2544 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2545 int from_size;
2546 gdb_byte *buffer = (gdb_byte *) alloca (len);
2547 struct value *val;
2548 CORE_ADDR to_addr = value_address (toval);
2550 if (type->code () == TYPE_CODE_FLT)
2551 fromval = value_cast (type, fromval);
2553 read_memory (to_addr, buffer, len);
2554 from_size = value_bitsize (fromval);
2555 if (from_size == 0)
2556 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2558 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2559 ULONGEST from_offset = 0;
2560 if (is_big_endian && is_scalar_type (value_type (fromval)))
2561 from_offset = from_size - bits;
2562 copy_bitwise (buffer, value_bitpos (toval),
2563 value_contents (fromval), from_offset,
2564 bits, is_big_endian);
2565 write_memory_with_notification (to_addr, buffer, len);
2567 val = value_copy (toval);
2568 memcpy (value_contents_raw (val), value_contents (fromval),
2569 TYPE_LENGTH (type));
2570 deprecated_set_value_type (val, type);
2572 return val;
2575 return value_assign (toval, fromval);
2579 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2580 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2581 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2582 COMPONENT, and not the inferior's memory. The current contents
2583 of COMPONENT are ignored.
2585 Although not part of the initial design, this function also works
2586 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2587 had a null address, and COMPONENT had an address which is equal to
2588 its offset inside CONTAINER. */
2590 static void
2591 value_assign_to_component (struct value *container, struct value *component,
2592 struct value *val)
2594 LONGEST offset_in_container =
2595 (LONGEST) (value_address (component) - value_address (container));
2596 int bit_offset_in_container =
2597 value_bitpos (component) - value_bitpos (container);
2598 int bits;
2600 val = value_cast (value_type (component), val);
2602 if (value_bitsize (component) == 0)
2603 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2604 else
2605 bits = value_bitsize (component);
2607 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2609 int src_offset;
2611 if (is_scalar_type (check_typedef (value_type (component))))
2612 src_offset
2613 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2614 else
2615 src_offset = 0;
2616 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2617 value_bitpos (container) + bit_offset_in_container,
2618 value_contents (val), src_offset, bits, 1);
2620 else
2621 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2622 value_bitpos (container) + bit_offset_in_container,
2623 value_contents (val), 0, bits, 0);
2626 /* Determine if TYPE is an access to an unconstrained array. */
2628 bool
2629 ada_is_access_to_unconstrained_array (struct type *type)
2631 return (type->code () == TYPE_CODE_TYPEDEF
2632 && is_thick_pntr (ada_typedef_target_type (type)));
2635 /* The value of the element of array ARR at the ARITY indices given in IND.
2636 ARR may be either a simple array, GNAT array descriptor, or pointer
2637 thereto. */
2639 struct value *
2640 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2642 int k;
2643 struct value *elt;
2644 struct type *elt_type;
2646 elt = ada_coerce_to_simple_array (arr);
2648 elt_type = ada_check_typedef (value_type (elt));
2649 if (elt_type->code () == TYPE_CODE_ARRAY
2650 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2651 return value_subscript_packed (elt, arity, ind);
2653 for (k = 0; k < arity; k += 1)
2655 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2657 if (elt_type->code () != TYPE_CODE_ARRAY)
2658 error (_("too many subscripts (%d expected)"), k);
2660 elt = value_subscript (elt, pos_atr (ind[k]));
2662 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2663 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2665 /* The element is a typedef to an unconstrained array,
2666 except that the value_subscript call stripped the
2667 typedef layer. The typedef layer is GNAT's way to
2668 specify that the element is, at the source level, an
2669 access to the unconstrained array, rather than the
2670 unconstrained array. So, we need to restore that
2671 typedef layer, which we can do by forcing the element's
2672 type back to its original type. Otherwise, the returned
2673 value is going to be printed as the array, rather
2674 than as an access. Another symptom of the same issue
2675 would be that an expression trying to dereference the
2676 element would also be improperly rejected. */
2677 deprecated_set_value_type (elt, saved_elt_type);
2680 elt_type = ada_check_typedef (value_type (elt));
2683 return elt;
2686 /* Assuming ARR is a pointer to a GDB array, the value of the element
2687 of *ARR at the ARITY indices given in IND.
2688 Does not read the entire array into memory.
2690 Note: Unlike what one would expect, this function is used instead of
2691 ada_value_subscript for basically all non-packed array types. The reason
2692 for this is that a side effect of doing our own pointer arithmetics instead
2693 of relying on value_subscript is that there is no implicit typedef peeling.
2694 This is important for arrays of array accesses, where it allows us to
2695 preserve the fact that the array's element is an array access, where the
2696 access part os encoded in a typedef layer. */
2698 static struct value *
2699 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2701 int k;
2702 struct value *array_ind = ada_value_ind (arr);
2703 struct type *type
2704 = check_typedef (value_enclosing_type (array_ind));
2706 if (type->code () == TYPE_CODE_ARRAY
2707 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2708 return value_subscript_packed (array_ind, arity, ind);
2710 for (k = 0; k < arity; k += 1)
2712 LONGEST lwb, upb;
2714 if (type->code () != TYPE_CODE_ARRAY)
2715 error (_("too many subscripts (%d expected)"), k);
2716 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2717 value_copy (arr));
2718 get_discrete_bounds (type->index_type (), &lwb, &upb);
2719 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2720 type = TYPE_TARGET_TYPE (type);
2723 return value_ind (arr);
2726 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2727 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2728 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2729 this array is LOW, as per Ada rules. */
2730 static struct value *
2731 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2732 int low, int high)
2734 struct type *type0 = ada_check_typedef (type);
2735 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2736 struct type *index_type
2737 = create_static_range_type (NULL, base_index_type, low, high);
2738 struct type *slice_type = create_array_type_with_stride
2739 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2740 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2741 TYPE_FIELD_BITSIZE (type0, 0));
2742 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2743 gdb::optional<LONGEST> base_low_pos, low_pos;
2744 CORE_ADDR base;
2746 low_pos = discrete_position (base_index_type, low);
2747 base_low_pos = discrete_position (base_index_type, base_low);
2749 if (!low_pos.has_value () || !base_low_pos.has_value ())
2751 warning (_("unable to get positions in slice, use bounds instead"));
2752 low_pos = low;
2753 base_low_pos = base_low;
2756 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2757 if (stride == 0)
2758 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2760 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2761 return value_at_lazy (slice_type, base);
2765 static struct value *
2766 ada_value_slice (struct value *array, int low, int high)
2768 struct type *type = ada_check_typedef (value_type (array));
2769 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2770 struct type *index_type
2771 = create_static_range_type (NULL, type->index_type (), low, high);
2772 struct type *slice_type = create_array_type_with_stride
2773 (NULL, TYPE_TARGET_TYPE (type), index_type,
2774 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2775 TYPE_FIELD_BITSIZE (type, 0));
2776 gdb::optional<LONGEST> low_pos, high_pos;
2779 low_pos = discrete_position (base_index_type, low);
2780 high_pos = discrete_position (base_index_type, high);
2782 if (!low_pos.has_value () || !high_pos.has_value ())
2784 warning (_("unable to get positions in slice, use bounds instead"));
2785 low_pos = low;
2786 high_pos = high;
2789 return value_cast (slice_type,
2790 value_slice (array, low, *high_pos - *low_pos + 1));
2793 /* If type is a record type in the form of a standard GNAT array
2794 descriptor, returns the number of dimensions for type. If arr is a
2795 simple array, returns the number of "array of"s that prefix its
2796 type designation. Otherwise, returns 0. */
2799 ada_array_arity (struct type *type)
2801 int arity;
2803 if (type == NULL)
2804 return 0;
2806 type = desc_base_type (type);
2808 arity = 0;
2809 if (type->code () == TYPE_CODE_STRUCT)
2810 return desc_arity (desc_bounds_type (type));
2811 else
2812 while (type->code () == TYPE_CODE_ARRAY)
2814 arity += 1;
2815 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2818 return arity;
2821 /* If TYPE is a record type in the form of a standard GNAT array
2822 descriptor or a simple array type, returns the element type for
2823 TYPE after indexing by NINDICES indices, or by all indices if
2824 NINDICES is -1. Otherwise, returns NULL. */
2826 struct type *
2827 ada_array_element_type (struct type *type, int nindices)
2829 type = desc_base_type (type);
2831 if (type->code () == TYPE_CODE_STRUCT)
2833 int k;
2834 struct type *p_array_type;
2836 p_array_type = desc_data_target_type (type);
2838 k = ada_array_arity (type);
2839 if (k == 0)
2840 return NULL;
2842 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2843 if (nindices >= 0 && k > nindices)
2844 k = nindices;
2845 while (k > 0 && p_array_type != NULL)
2847 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2848 k -= 1;
2850 return p_array_type;
2852 else if (type->code () == TYPE_CODE_ARRAY)
2854 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2856 type = TYPE_TARGET_TYPE (type);
2857 nindices -= 1;
2859 return type;
2862 return NULL;
2865 /* See ada-lang.h. */
2867 struct type *
2868 ada_index_type (struct type *type, int n, const char *name)
2870 struct type *result_type;
2872 type = desc_base_type (type);
2874 if (n < 0 || n > ada_array_arity (type))
2875 error (_("invalid dimension number to '%s"), name);
2877 if (ada_is_simple_array_type (type))
2879 int i;
2881 for (i = 1; i < n; i += 1)
2882 type = TYPE_TARGET_TYPE (type);
2883 result_type = TYPE_TARGET_TYPE (type->index_type ());
2884 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2885 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2886 perhaps stabsread.c would make more sense. */
2887 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2888 result_type = NULL;
2890 else
2892 result_type = desc_index_type (desc_bounds_type (type), n);
2893 if (result_type == NULL)
2894 error (_("attempt to take bound of something that is not an array"));
2897 return result_type;
2900 /* Given that arr is an array type, returns the lower bound of the
2901 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2902 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2903 array-descriptor type. It works for other arrays with bounds supplied
2904 by run-time quantities other than discriminants. */
2906 static LONGEST
2907 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2909 struct type *type, *index_type_desc, *index_type;
2910 int i;
2912 gdb_assert (which == 0 || which == 1);
2914 if (ada_is_constrained_packed_array_type (arr_type))
2915 arr_type = decode_constrained_packed_array_type (arr_type);
2917 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2918 return (LONGEST) - which;
2920 if (arr_type->code () == TYPE_CODE_PTR)
2921 type = TYPE_TARGET_TYPE (arr_type);
2922 else
2923 type = arr_type;
2925 if (type->is_fixed_instance ())
2927 /* The array has already been fixed, so we do not need to
2928 check the parallel ___XA type again. That encoding has
2929 already been applied, so ignore it now. */
2930 index_type_desc = NULL;
2932 else
2934 index_type_desc = ada_find_parallel_type (type, "___XA");
2935 ada_fixup_array_indexes_type (index_type_desc);
2938 if (index_type_desc != NULL)
2939 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2940 NULL);
2941 else
2943 struct type *elt_type = check_typedef (type);
2945 for (i = 1; i < n; i++)
2946 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2948 index_type = elt_type->index_type ();
2951 return
2952 (LONGEST) (which == 0
2953 ? ada_discrete_type_low_bound (index_type)
2954 : ada_discrete_type_high_bound (index_type));
2957 /* Given that arr is an array value, returns the lower bound of the
2958 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2959 WHICH is 1. This routine will also work for arrays with bounds
2960 supplied by run-time quantities other than discriminants. */
2962 static LONGEST
2963 ada_array_bound (struct value *arr, int n, int which)
2965 struct type *arr_type;
2967 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2968 arr = value_ind (arr);
2969 arr_type = value_enclosing_type (arr);
2971 if (ada_is_constrained_packed_array_type (arr_type))
2972 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2973 else if (ada_is_simple_array_type (arr_type))
2974 return ada_array_bound_from_type (arr_type, n, which);
2975 else
2976 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2979 /* Given that arr is an array value, returns the length of the
2980 nth index. This routine will also work for arrays with bounds
2981 supplied by run-time quantities other than discriminants.
2982 Does not work for arrays indexed by enumeration types with representation
2983 clauses at the moment. */
2985 static LONGEST
2986 ada_array_length (struct value *arr, int n)
2988 struct type *arr_type, *index_type;
2989 int low, high;
2991 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2992 arr = value_ind (arr);
2993 arr_type = value_enclosing_type (arr);
2995 if (ada_is_constrained_packed_array_type (arr_type))
2996 return ada_array_length (decode_constrained_packed_array (arr), n);
2998 if (ada_is_simple_array_type (arr_type))
3000 low = ada_array_bound_from_type (arr_type, n, 0);
3001 high = ada_array_bound_from_type (arr_type, n, 1);
3003 else
3005 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3006 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3009 arr_type = check_typedef (arr_type);
3010 index_type = ada_index_type (arr_type, n, "length");
3011 if (index_type != NULL)
3013 struct type *base_type;
3014 if (index_type->code () == TYPE_CODE_RANGE)
3015 base_type = TYPE_TARGET_TYPE (index_type);
3016 else
3017 base_type = index_type;
3019 low = pos_atr (value_from_longest (base_type, low));
3020 high = pos_atr (value_from_longest (base_type, high));
3022 return high - low + 1;
3025 /* An array whose type is that of ARR_TYPE (an array type), with
3026 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3027 less than LOW, then LOW-1 is used. */
3029 static struct value *
3030 empty_array (struct type *arr_type, int low, int high)
3032 struct type *arr_type0 = ada_check_typedef (arr_type);
3033 struct type *index_type
3034 = create_static_range_type
3035 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3036 high < low ? low - 1 : high);
3037 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3039 return allocate_value (create_array_type (NULL, elt_type, index_type));
3043 /* Name resolution */
3045 /* The "decoded" name for the user-definable Ada operator corresponding
3046 to OP. */
3048 static const char *
3049 ada_decoded_op_name (enum exp_opcode op)
3051 int i;
3053 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3055 if (ada_opname_table[i].op == op)
3056 return ada_opname_table[i].decoded;
3058 error (_("Could not find operator name for opcode"));
3061 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3062 in a listing of choices during disambiguation (see sort_choices, below).
3063 The idea is that overloadings of a subprogram name from the
3064 same package should sort in their source order. We settle for ordering
3065 such symbols by their trailing number (__N or $N). */
3067 static int
3068 encoded_ordered_before (const char *N0, const char *N1)
3070 if (N1 == NULL)
3071 return 0;
3072 else if (N0 == NULL)
3073 return 1;
3074 else
3076 int k0, k1;
3078 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3080 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3082 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3083 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3085 int n0, n1;
3087 n0 = k0;
3088 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3089 n0 -= 1;
3090 n1 = k1;
3091 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3092 n1 -= 1;
3093 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3094 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3096 return (strcmp (N0, N1) < 0);
3100 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3101 encoded names. */
3103 static void
3104 sort_choices (struct block_symbol syms[], int nsyms)
3106 int i;
3108 for (i = 1; i < nsyms; i += 1)
3110 struct block_symbol sym = syms[i];
3111 int j;
3113 for (j = i - 1; j >= 0; j -= 1)
3115 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3116 sym.symbol->linkage_name ()))
3117 break;
3118 syms[j + 1] = syms[j];
3120 syms[j + 1] = sym;
3124 /* Whether GDB should display formals and return types for functions in the
3125 overloads selection menu. */
3126 static bool print_signatures = true;
3128 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3129 all but functions, the signature is just the name of the symbol. For
3130 functions, this is the name of the function, the list of types for formals
3131 and the return type (if any). */
3133 static void
3134 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3135 const struct type_print_options *flags)
3137 struct type *type = SYMBOL_TYPE (sym);
3139 fprintf_filtered (stream, "%s", sym->print_name ());
3140 if (!print_signatures
3141 || type == NULL
3142 || type->code () != TYPE_CODE_FUNC)
3143 return;
3145 if (type->num_fields () > 0)
3147 int i;
3149 fprintf_filtered (stream, " (");
3150 for (i = 0; i < type->num_fields (); ++i)
3152 if (i > 0)
3153 fprintf_filtered (stream, "; ");
3154 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3155 flags);
3157 fprintf_filtered (stream, ")");
3159 if (TYPE_TARGET_TYPE (type) != NULL
3160 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3162 fprintf_filtered (stream, " return ");
3163 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3167 /* Read and validate a set of numeric choices from the user in the
3168 range 0 .. N_CHOICES-1. Place the results in increasing
3169 order in CHOICES[0 .. N-1], and return N.
3171 The user types choices as a sequence of numbers on one line
3172 separated by blanks, encoding them as follows:
3174 + A choice of 0 means to cancel the selection, throwing an error.
3175 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3176 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3178 The user is not allowed to choose more than MAX_RESULTS values.
3180 ANNOTATION_SUFFIX, if present, is used to annotate the input
3181 prompts (for use with the -f switch). */
3183 static int
3184 get_selections (int *choices, int n_choices, int max_results,
3185 int is_all_choice, const char *annotation_suffix)
3187 const char *args;
3188 const char *prompt;
3189 int n_chosen;
3190 int first_choice = is_all_choice ? 2 : 1;
3192 prompt = getenv ("PS2");
3193 if (prompt == NULL)
3194 prompt = "> ";
3196 args = command_line_input (prompt, annotation_suffix);
3198 if (args == NULL)
3199 error_no_arg (_("one or more choice numbers"));
3201 n_chosen = 0;
3203 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3204 order, as given in args. Choices are validated. */
3205 while (1)
3207 char *args2;
3208 int choice, j;
3210 args = skip_spaces (args);
3211 if (*args == '\0' && n_chosen == 0)
3212 error_no_arg (_("one or more choice numbers"));
3213 else if (*args == '\0')
3214 break;
3216 choice = strtol (args, &args2, 10);
3217 if (args == args2 || choice < 0
3218 || choice > n_choices + first_choice - 1)
3219 error (_("Argument must be choice number"));
3220 args = args2;
3222 if (choice == 0)
3223 error (_("cancelled"));
3225 if (choice < first_choice)
3227 n_chosen = n_choices;
3228 for (j = 0; j < n_choices; j += 1)
3229 choices[j] = j;
3230 break;
3232 choice -= first_choice;
3234 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3238 if (j < 0 || choice != choices[j])
3240 int k;
3242 for (k = n_chosen - 1; k > j; k -= 1)
3243 choices[k + 1] = choices[k];
3244 choices[j + 1] = choice;
3245 n_chosen += 1;
3249 if (n_chosen > max_results)
3250 error (_("Select no more than %d of the above"), max_results);
3252 return n_chosen;
3255 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3256 by asking the user (if necessary), returning the number selected,
3257 and setting the first elements of SYMS items. Error if no symbols
3258 selected. */
3260 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3261 to be re-integrated one of these days. */
3263 static int
3264 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3266 int i;
3267 int *chosen = XALLOCAVEC (int , nsyms);
3268 int n_chosen;
3269 int first_choice = (max_results == 1) ? 1 : 2;
3270 const char *select_mode = multiple_symbols_select_mode ();
3272 if (max_results < 1)
3273 error (_("Request to select 0 symbols!"));
3274 if (nsyms <= 1)
3275 return nsyms;
3277 if (select_mode == multiple_symbols_cancel)
3278 error (_("\
3279 canceled because the command is ambiguous\n\
3280 See set/show multiple-symbol."));
3282 /* If select_mode is "all", then return all possible symbols.
3283 Only do that if more than one symbol can be selected, of course.
3284 Otherwise, display the menu as usual. */
3285 if (select_mode == multiple_symbols_all && max_results > 1)
3286 return nsyms;
3288 printf_filtered (_("[0] cancel\n"));
3289 if (max_results > 1)
3290 printf_filtered (_("[1] all\n"));
3292 sort_choices (syms, nsyms);
3294 for (i = 0; i < nsyms; i += 1)
3296 if (syms[i].symbol == NULL)
3297 continue;
3299 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3301 struct symtab_and_line sal =
3302 find_function_start_sal (syms[i].symbol, 1);
3304 printf_filtered ("[%d] ", i + first_choice);
3305 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3306 &type_print_raw_options);
3307 if (sal.symtab == NULL)
3308 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3309 metadata_style.style ().ptr (), nullptr, sal.line);
3310 else
3311 printf_filtered
3312 (_(" at %ps:%d\n"),
3313 styled_string (file_name_style.style (),
3314 symtab_to_filename_for_display (sal.symtab)),
3315 sal.line);
3316 continue;
3318 else
3320 int is_enumeral =
3321 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3322 && SYMBOL_TYPE (syms[i].symbol) != NULL
3323 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3324 struct symtab *symtab = NULL;
3326 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3327 symtab = symbol_symtab (syms[i].symbol);
3329 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3331 printf_filtered ("[%d] ", i + first_choice);
3332 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3333 &type_print_raw_options);
3334 printf_filtered (_(" at %s:%d\n"),
3335 symtab_to_filename_for_display (symtab),
3336 SYMBOL_LINE (syms[i].symbol));
3338 else if (is_enumeral
3339 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3341 printf_filtered (("[%d] "), i + first_choice);
3342 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3343 gdb_stdout, -1, 0, &type_print_raw_options);
3344 printf_filtered (_("'(%s) (enumeral)\n"),
3345 syms[i].symbol->print_name ());
3347 else
3349 printf_filtered ("[%d] ", i + first_choice);
3350 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3351 &type_print_raw_options);
3353 if (symtab != NULL)
3354 printf_filtered (is_enumeral
3355 ? _(" in %s (enumeral)\n")
3356 : _(" at %s:?\n"),
3357 symtab_to_filename_for_display (symtab));
3358 else
3359 printf_filtered (is_enumeral
3360 ? _(" (enumeral)\n")
3361 : _(" at ?\n"));
3366 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3367 "overload-choice");
3369 for (i = 0; i < n_chosen; i += 1)
3370 syms[i] = syms[chosen[i]];
3372 return n_chosen;
3375 /* See ada-lang.h. */
3377 block_symbol
3378 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3379 int nargs, value *argvec[])
3381 if (possible_user_operator_p (op, argvec))
3383 std::vector<struct block_symbol> candidates
3384 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3385 NULL, VAR_DOMAIN);
3387 int i = ada_resolve_function (candidates, argvec,
3388 nargs, ada_decoded_op_name (op), NULL,
3389 parse_completion);
3390 if (i >= 0)
3391 return candidates[i];
3393 return {};
3396 /* See ada-lang.h. */
3398 block_symbol
3399 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3400 struct type *context_type,
3401 bool parse_completion,
3402 int nargs, value *argvec[],
3403 innermost_block_tracker *tracker)
3405 std::vector<struct block_symbol> candidates
3406 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3408 int i;
3409 if (candidates.size () == 1)
3410 i = 0;
3411 else
3413 i = ada_resolve_function
3414 (candidates,
3415 argvec, nargs,
3416 sym->linkage_name (),
3417 context_type, parse_completion);
3418 if (i < 0)
3419 error (_("Could not find a match for %s"), sym->print_name ());
3422 tracker->update (candidates[i]);
3423 return candidates[i];
3426 /* See ada-lang.h. */
3428 block_symbol
3429 ada_resolve_variable (struct symbol *sym, const struct block *block,
3430 struct type *context_type,
3431 bool parse_completion,
3432 int deprocedure_p,
3433 innermost_block_tracker *tracker)
3435 std::vector<struct block_symbol> candidates
3436 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3438 if (std::any_of (candidates.begin (),
3439 candidates.end (),
3440 [] (block_symbol &bsym)
3442 switch (SYMBOL_CLASS (bsym.symbol))
3444 case LOC_REGISTER:
3445 case LOC_ARG:
3446 case LOC_REF_ARG:
3447 case LOC_REGPARM_ADDR:
3448 case LOC_LOCAL:
3449 case LOC_COMPUTED:
3450 return true;
3451 default:
3452 return false;
3456 /* Types tend to get re-introduced locally, so if there
3457 are any local symbols that are not types, first filter
3458 out all types. */
3459 candidates.erase
3460 (std::remove_if
3461 (candidates.begin (),
3462 candidates.end (),
3463 [] (block_symbol &bsym)
3465 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3467 candidates.end ());
3470 int i;
3471 if (candidates.empty ())
3472 error (_("No definition found for %s"), sym->print_name ());
3473 else if (candidates.size () == 1)
3474 i = 0;
3475 else if (deprocedure_p && !is_nonfunction (candidates))
3477 i = ada_resolve_function
3478 (candidates, NULL, 0,
3479 sym->linkage_name (),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"), sym->print_name ());
3484 else
3486 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3487 user_select_syms (candidates.data (), candidates.size (), 1);
3488 i = 0;
3491 tracker->update (candidates[i]);
3492 return candidates[i];
3495 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3496 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3497 a non-pointer. */
3498 /* The term "match" here is rather loose. The match is heuristic and
3499 liberal. */
3501 static int
3502 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3504 ftype = ada_check_typedef (ftype);
3505 atype = ada_check_typedef (atype);
3507 if (ftype->code () == TYPE_CODE_REF)
3508 ftype = TYPE_TARGET_TYPE (ftype);
3509 if (atype->code () == TYPE_CODE_REF)
3510 atype = TYPE_TARGET_TYPE (atype);
3512 switch (ftype->code ())
3514 default:
3515 return ftype->code () == atype->code ();
3516 case TYPE_CODE_PTR:
3517 if (atype->code () == TYPE_CODE_PTR)
3518 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3519 TYPE_TARGET_TYPE (atype), 0);
3520 else
3521 return (may_deref
3522 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3523 case TYPE_CODE_INT:
3524 case TYPE_CODE_ENUM:
3525 case TYPE_CODE_RANGE:
3526 switch (atype->code ())
3528 case TYPE_CODE_INT:
3529 case TYPE_CODE_ENUM:
3530 case TYPE_CODE_RANGE:
3531 return 1;
3532 default:
3533 return 0;
3536 case TYPE_CODE_ARRAY:
3537 return (atype->code () == TYPE_CODE_ARRAY
3538 || ada_is_array_descriptor_type (atype));
3540 case TYPE_CODE_STRUCT:
3541 if (ada_is_array_descriptor_type (ftype))
3542 return (atype->code () == TYPE_CODE_ARRAY
3543 || ada_is_array_descriptor_type (atype));
3544 else
3545 return (atype->code () == TYPE_CODE_STRUCT
3546 && !ada_is_array_descriptor_type (atype));
3548 case TYPE_CODE_UNION:
3549 case TYPE_CODE_FLT:
3550 return (atype->code () == ftype->code ());
3554 /* Return non-zero if the formals of FUNC "sufficiently match" the
3555 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3556 may also be an enumeral, in which case it is treated as a 0-
3557 argument function. */
3559 static int
3560 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3562 int i;
3563 struct type *func_type = SYMBOL_TYPE (func);
3565 if (SYMBOL_CLASS (func) == LOC_CONST
3566 && func_type->code () == TYPE_CODE_ENUM)
3567 return (n_actuals == 0);
3568 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3569 return 0;
3571 if (func_type->num_fields () != n_actuals)
3572 return 0;
3574 for (i = 0; i < n_actuals; i += 1)
3576 if (actuals[i] == NULL)
3577 return 0;
3578 else
3580 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3581 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3583 if (!ada_type_match (ftype, atype, 1))
3584 return 0;
3587 return 1;
3590 /* False iff function type FUNC_TYPE definitely does not produce a value
3591 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3592 FUNC_TYPE is not a valid function type with a non-null return type
3593 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3595 static int
3596 return_match (struct type *func_type, struct type *context_type)
3598 struct type *return_type;
3600 if (func_type == NULL)
3601 return 1;
3603 if (func_type->code () == TYPE_CODE_FUNC)
3604 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3605 else
3606 return_type = get_base_type (func_type);
3607 if (return_type == NULL)
3608 return 1;
3610 context_type = get_base_type (context_type);
3612 if (return_type->code () == TYPE_CODE_ENUM)
3613 return context_type == NULL || return_type == context_type;
3614 else if (context_type == NULL)
3615 return return_type->code () != TYPE_CODE_VOID;
3616 else
3617 return return_type->code () == context_type->code ();
3621 /* Returns the index in SYMS that contains the symbol for the
3622 function (if any) that matches the types of the NARGS arguments in
3623 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3624 that returns that type, then eliminate matches that don't. If
3625 CONTEXT_TYPE is void and there is at least one match that does not
3626 return void, eliminate all matches that do.
3628 Asks the user if there is more than one match remaining. Returns -1
3629 if there is no such symbol or none is selected. NAME is used
3630 solely for messages. May re-arrange and modify SYMS in
3631 the process; the index returned is for the modified vector. */
3633 static int
3634 ada_resolve_function (std::vector<struct block_symbol> &syms,
3635 struct value **args, int nargs,
3636 const char *name, struct type *context_type,
3637 bool parse_completion)
3639 int fallback;
3640 int k;
3641 int m; /* Number of hits */
3643 m = 0;
3644 /* In the first pass of the loop, we only accept functions matching
3645 context_type. If none are found, we add a second pass of the loop
3646 where every function is accepted. */
3647 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3649 for (k = 0; k < syms.size (); k += 1)
3651 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3653 if (ada_args_match (syms[k].symbol, args, nargs)
3654 && (fallback || return_match (type, context_type)))
3656 syms[m] = syms[k];
3657 m += 1;
3662 /* If we got multiple matches, ask the user which one to use. Don't do this
3663 interactive thing during completion, though, as the purpose of the
3664 completion is providing a list of all possible matches. Prompting the
3665 user to filter it down would be completely unexpected in this case. */
3666 if (m == 0)
3667 return -1;
3668 else if (m > 1 && !parse_completion)
3670 printf_filtered (_("Multiple matches for %s\n"), name);
3671 user_select_syms (syms.data (), m, 1);
3672 return 0;
3674 return 0;
3677 /* Type-class predicates */
3679 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3680 or FLOAT). */
3682 static int
3683 numeric_type_p (struct type *type)
3685 if (type == NULL)
3686 return 0;
3687 else
3689 switch (type->code ())
3691 case TYPE_CODE_INT:
3692 case TYPE_CODE_FLT:
3693 case TYPE_CODE_FIXED_POINT:
3694 return 1;
3695 case TYPE_CODE_RANGE:
3696 return (type == TYPE_TARGET_TYPE (type)
3697 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3698 default:
3699 return 0;
3704 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3706 static int
3707 integer_type_p (struct type *type)
3709 if (type == NULL)
3710 return 0;
3711 else
3713 switch (type->code ())
3715 case TYPE_CODE_INT:
3716 return 1;
3717 case TYPE_CODE_RANGE:
3718 return (type == TYPE_TARGET_TYPE (type)
3719 || integer_type_p (TYPE_TARGET_TYPE (type)));
3720 default:
3721 return 0;
3726 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3728 static int
3729 scalar_type_p (struct type *type)
3731 if (type == NULL)
3732 return 0;
3733 else
3735 switch (type->code ())
3737 case TYPE_CODE_INT:
3738 case TYPE_CODE_RANGE:
3739 case TYPE_CODE_ENUM:
3740 case TYPE_CODE_FLT:
3741 case TYPE_CODE_FIXED_POINT:
3742 return 1;
3743 default:
3744 return 0;
3749 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3751 static int
3752 discrete_type_p (struct type *type)
3754 if (type == NULL)
3755 return 0;
3756 else
3758 switch (type->code ())
3760 case TYPE_CODE_INT:
3761 case TYPE_CODE_RANGE:
3762 case TYPE_CODE_ENUM:
3763 case TYPE_CODE_BOOL:
3764 return 1;
3765 default:
3766 return 0;
3771 /* Returns non-zero if OP with operands in the vector ARGS could be
3772 a user-defined function. Errs on the side of pre-defined operators
3773 (i.e., result 0). */
3775 static int
3776 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3778 struct type *type0 =
3779 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3780 struct type *type1 =
3781 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3783 if (type0 == NULL)
3784 return 0;
3786 switch (op)
3788 default:
3789 return 0;
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3797 case BINOP_REM:
3798 case BINOP_MOD:
3799 case BINOP_BITWISE_AND:
3800 case BINOP_BITWISE_IOR:
3801 case BINOP_BITWISE_XOR:
3802 return (!(integer_type_p (type0) && integer_type_p (type1)));
3804 case BINOP_EQUAL:
3805 case BINOP_NOTEQUAL:
3806 case BINOP_LESS:
3807 case BINOP_GTR:
3808 case BINOP_LEQ:
3809 case BINOP_GEQ:
3810 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3812 case BINOP_CONCAT:
3813 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3815 case BINOP_EXP:
3816 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3818 case UNOP_NEG:
3819 case UNOP_PLUS:
3820 case UNOP_LOGICAL_NOT:
3821 case UNOP_ABS:
3822 return (!numeric_type_p (type0));
3827 /* Renaming */
3829 /* NOTES:
3831 1. In the following, we assume that a renaming type's name may
3832 have an ___XD suffix. It would be nice if this went away at some
3833 point.
3834 2. We handle both the (old) purely type-based representation of
3835 renamings and the (new) variable-based encoding. At some point,
3836 it is devoutly to be hoped that the former goes away
3837 (FIXME: hilfinger-2007-07-09).
3838 3. Subprogram renamings are not implemented, although the XRS
3839 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3841 /* If SYM encodes a renaming,
3843 <renaming> renames <renamed entity>,
3845 sets *LEN to the length of the renamed entity's name,
3846 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3847 the string describing the subcomponent selected from the renamed
3848 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3849 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3850 are undefined). Otherwise, returns a value indicating the category
3851 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3852 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3853 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3854 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3855 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3856 may be NULL, in which case they are not assigned.
3858 [Currently, however, GCC does not generate subprogram renamings.] */
3860 enum ada_renaming_category
3861 ada_parse_renaming (struct symbol *sym,
3862 const char **renamed_entity, int *len,
3863 const char **renaming_expr)
3865 enum ada_renaming_category kind;
3866 const char *info;
3867 const char *suffix;
3869 if (sym == NULL)
3870 return ADA_NOT_RENAMING;
3871 switch (SYMBOL_CLASS (sym))
3873 default:
3874 return ADA_NOT_RENAMING;
3875 case LOC_LOCAL:
3876 case LOC_STATIC:
3877 case LOC_COMPUTED:
3878 case LOC_OPTIMIZED_OUT:
3879 info = strstr (sym->linkage_name (), "___XR");
3880 if (info == NULL)
3881 return ADA_NOT_RENAMING;
3882 switch (info[5])
3884 case '_':
3885 kind = ADA_OBJECT_RENAMING;
3886 info += 6;
3887 break;
3888 case 'E':
3889 kind = ADA_EXCEPTION_RENAMING;
3890 info += 7;
3891 break;
3892 case 'P':
3893 kind = ADA_PACKAGE_RENAMING;
3894 info += 7;
3895 break;
3896 case 'S':
3897 kind = ADA_SUBPROGRAM_RENAMING;
3898 info += 7;
3899 break;
3900 default:
3901 return ADA_NOT_RENAMING;
3905 if (renamed_entity != NULL)
3906 *renamed_entity = info;
3907 suffix = strstr (info, "___XE");
3908 if (suffix == NULL || suffix == info)
3909 return ADA_NOT_RENAMING;
3910 if (len != NULL)
3911 *len = strlen (info) - strlen (suffix);
3912 suffix += 5;
3913 if (renaming_expr != NULL)
3914 *renaming_expr = suffix;
3915 return kind;
3918 /* Compute the value of the given RENAMING_SYM, which is expected to
3919 be a symbol encoding a renaming expression. BLOCK is the block
3920 used to evaluate the renaming. */
3922 static struct value *
3923 ada_read_renaming_var_value (struct symbol *renaming_sym,
3924 const struct block *block)
3926 const char *sym_name;
3928 sym_name = renaming_sym->linkage_name ();
3929 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3930 return evaluate_expression (expr.get ());
3934 /* Evaluation: Function Calls */
3936 /* Return an lvalue containing the value VAL. This is the identity on
3937 lvalues, and otherwise has the side-effect of allocating memory
3938 in the inferior where a copy of the value contents is copied. */
3940 static struct value *
3941 ensure_lval (struct value *val)
3943 if (VALUE_LVAL (val) == not_lval
3944 || VALUE_LVAL (val) == lval_internalvar)
3946 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3947 const CORE_ADDR addr =
3948 value_as_long (value_allocate_space_in_inferior (len));
3950 VALUE_LVAL (val) = lval_memory;
3951 set_value_address (val, addr);
3952 write_memory (addr, value_contents (val), len);
3955 return val;
3958 /* Given ARG, a value of type (pointer or reference to a)*
3959 structure/union, extract the component named NAME from the ultimate
3960 target structure/union and return it as a value with its
3961 appropriate type.
3963 The routine searches for NAME among all members of the structure itself
3964 and (recursively) among all members of any wrapper members
3965 (e.g., '_parent').
3967 If NO_ERR, then simply return NULL in case of error, rather than
3968 calling error. */
3970 static struct value *
3971 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
3973 struct type *t, *t1;
3974 struct value *v;
3975 int check_tag;
3977 v = NULL;
3978 t1 = t = ada_check_typedef (value_type (arg));
3979 if (t->code () == TYPE_CODE_REF)
3981 t1 = TYPE_TARGET_TYPE (t);
3982 if (t1 == NULL)
3983 goto BadValue;
3984 t1 = ada_check_typedef (t1);
3985 if (t1->code () == TYPE_CODE_PTR)
3987 arg = coerce_ref (arg);
3988 t = t1;
3992 while (t->code () == TYPE_CODE_PTR)
3994 t1 = TYPE_TARGET_TYPE (t);
3995 if (t1 == NULL)
3996 goto BadValue;
3997 t1 = ada_check_typedef (t1);
3998 if (t1->code () == TYPE_CODE_PTR)
4000 arg = value_ind (arg);
4001 t = t1;
4003 else
4004 break;
4007 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4008 goto BadValue;
4010 if (t1 == t)
4011 v = ada_search_struct_field (name, arg, 0, t);
4012 else
4014 int bit_offset, bit_size, byte_offset;
4015 struct type *field_type;
4016 CORE_ADDR address;
4018 if (t->code () == TYPE_CODE_PTR)
4019 address = value_address (ada_value_ind (arg));
4020 else
4021 address = value_address (ada_coerce_ref (arg));
4023 /* Check to see if this is a tagged type. We also need to handle
4024 the case where the type is a reference to a tagged type, but
4025 we have to be careful to exclude pointers to tagged types.
4026 The latter should be shown as usual (as a pointer), whereas
4027 a reference should mostly be transparent to the user. */
4029 if (ada_is_tagged_type (t1, 0)
4030 || (t1->code () == TYPE_CODE_REF
4031 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4033 /* We first try to find the searched field in the current type.
4034 If not found then let's look in the fixed type. */
4036 if (!find_struct_field (name, t1, 0,
4037 &field_type, &byte_offset, &bit_offset,
4038 &bit_size, NULL))
4039 check_tag = 1;
4040 else
4041 check_tag = 0;
4043 else
4044 check_tag = 0;
4046 /* Convert to fixed type in all cases, so that we have proper
4047 offsets to each field in unconstrained record types. */
4048 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4049 address, NULL, check_tag);
4051 /* Resolve the dynamic type as well. */
4052 arg = value_from_contents_and_address (t1, nullptr, address);
4053 t1 = value_type (arg);
4055 if (find_struct_field (name, t1, 0,
4056 &field_type, &byte_offset, &bit_offset,
4057 &bit_size, NULL))
4059 if (bit_size != 0)
4061 if (t->code () == TYPE_CODE_REF)
4062 arg = ada_coerce_ref (arg);
4063 else
4064 arg = ada_value_ind (arg);
4065 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4066 bit_offset, bit_size,
4067 field_type);
4069 else
4070 v = value_at_lazy (field_type, address + byte_offset);
4074 if (v != NULL || no_err)
4075 return v;
4076 else
4077 error (_("There is no member named %s."), name);
4079 BadValue:
4080 if (no_err)
4081 return NULL;
4082 else
4083 error (_("Attempt to extract a component of "
4084 "a value that is not a record."));
4087 /* Return the value ACTUAL, converted to be an appropriate value for a
4088 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4089 allocating any necessary descriptors (fat pointers), or copies of
4090 values not residing in memory, updating it as needed. */
4092 struct value *
4093 ada_convert_actual (struct value *actual, struct type *formal_type0)
4095 struct type *actual_type = ada_check_typedef (value_type (actual));
4096 struct type *formal_type = ada_check_typedef (formal_type0);
4097 struct type *formal_target =
4098 formal_type->code () == TYPE_CODE_PTR
4099 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4100 struct type *actual_target =
4101 actual_type->code () == TYPE_CODE_PTR
4102 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4104 if (ada_is_array_descriptor_type (formal_target)
4105 && actual_target->code () == TYPE_CODE_ARRAY)
4106 return make_array_descriptor (formal_type, actual);
4107 else if (formal_type->code () == TYPE_CODE_PTR
4108 || formal_type->code () == TYPE_CODE_REF)
4110 struct value *result;
4112 if (formal_target->code () == TYPE_CODE_ARRAY
4113 && ada_is_array_descriptor_type (actual_target))
4114 result = desc_data (actual);
4115 else if (formal_type->code () != TYPE_CODE_PTR)
4117 if (VALUE_LVAL (actual) != lval_memory)
4119 struct value *val;
4121 actual_type = ada_check_typedef (value_type (actual));
4122 val = allocate_value (actual_type);
4123 memcpy ((char *) value_contents_raw (val),
4124 (char *) value_contents (actual),
4125 TYPE_LENGTH (actual_type));
4126 actual = ensure_lval (val);
4128 result = value_addr (actual);
4130 else
4131 return actual;
4132 return value_cast_pointers (formal_type, result, 0);
4134 else if (actual_type->code () == TYPE_CODE_PTR)
4135 return ada_value_ind (actual);
4136 else if (ada_is_aligner_type (formal_type))
4138 /* We need to turn this parameter into an aligner type
4139 as well. */
4140 struct value *aligner = allocate_value (formal_type);
4141 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4143 value_assign_to_component (aligner, component, actual);
4144 return aligner;
4147 return actual;
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4158 unsigned len = TYPE_LENGTH (type);
4159 gdb_byte *buf = (gdb_byte *) alloca (len);
4160 CORE_ADDR addr;
4162 addr = value_address (value);
4163 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4164 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4165 return addr;
4169 /* Push a descriptor of type TYPE for array value ARR on the stack at
4170 *SP, updating *SP to reflect the new descriptor. Return either
4171 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4172 to-descriptor type rather than a descriptor type), a struct value *
4173 representing a pointer to this descriptor. */
4175 static struct value *
4176 make_array_descriptor (struct type *type, struct value *arr)
4178 struct type *bounds_type = desc_bounds_type (type);
4179 struct type *desc_type = desc_base_type (type);
4180 struct value *descriptor = allocate_value (desc_type);
4181 struct value *bounds = allocate_value (bounds_type);
4182 int i;
4184 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4185 i > 0; i -= 1)
4187 modify_field (value_type (bounds), value_contents_writeable (bounds),
4188 ada_array_bound (arr, i, 0),
4189 desc_bound_bitpos (bounds_type, i, 0),
4190 desc_bound_bitsize (bounds_type, i, 0));
4191 modify_field (value_type (bounds), value_contents_writeable (bounds),
4192 ada_array_bound (arr, i, 1),
4193 desc_bound_bitpos (bounds_type, i, 1),
4194 desc_bound_bitsize (bounds_type, i, 1));
4197 bounds = ensure_lval (bounds);
4199 modify_field (value_type (descriptor),
4200 value_contents_writeable (descriptor),
4201 value_pointer (ensure_lval (arr),
4202 desc_type->field (0).type ()),
4203 fat_pntr_data_bitpos (desc_type),
4204 fat_pntr_data_bitsize (desc_type));
4206 modify_field (value_type (descriptor),
4207 value_contents_writeable (descriptor),
4208 value_pointer (bounds,
4209 desc_type->field (1).type ()),
4210 fat_pntr_bounds_bitpos (desc_type),
4211 fat_pntr_bounds_bitsize (desc_type));
4213 descriptor = ensure_lval (descriptor);
4215 if (type->code () == TYPE_CODE_PTR)
4216 return value_addr (descriptor);
4217 else
4218 return descriptor;
4221 /* Symbol Cache Module */
4223 /* Performance measurements made as of 2010-01-15 indicate that
4224 this cache does bring some noticeable improvements. Depending
4225 on the type of entity being printed, the cache can make it as much
4226 as an order of magnitude faster than without it.
4228 The descriptive type DWARF extension has significantly reduced
4229 the need for this cache, at least when DWARF is being used. However,
4230 even in this case, some expensive name-based symbol searches are still
4231 sometimes necessary - to find an XVZ variable, mostly. */
4233 /* Return the symbol cache associated to the given program space PSPACE.
4234 If not allocated for this PSPACE yet, allocate and initialize one. */
4236 static struct ada_symbol_cache *
4237 ada_get_symbol_cache (struct program_space *pspace)
4239 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4241 if (pspace_data->sym_cache == nullptr)
4242 pspace_data->sym_cache.reset (new ada_symbol_cache);
4244 return pspace_data->sym_cache.get ();
4247 /* Clear all entries from the symbol cache. */
4249 static void
4250 ada_clear_symbol_cache ()
4252 struct ada_pspace_data *pspace_data
4253 = get_ada_pspace_data (current_program_space);
4255 if (pspace_data->sym_cache != nullptr)
4256 pspace_data->sym_cache.reset ();
4259 /* Search our cache for an entry matching NAME and DOMAIN.
4260 Return it if found, or NULL otherwise. */
4262 static struct cache_entry **
4263 find_entry (const char *name, domain_enum domain)
4265 struct ada_symbol_cache *sym_cache
4266 = ada_get_symbol_cache (current_program_space);
4267 int h = msymbol_hash (name) % HASH_SIZE;
4268 struct cache_entry **e;
4270 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4272 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4273 return e;
4275 return NULL;
4278 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4279 Return 1 if found, 0 otherwise.
4281 If an entry was found and SYM is not NULL, set *SYM to the entry's
4282 SYM. Same principle for BLOCK if not NULL. */
4284 static int
4285 lookup_cached_symbol (const char *name, domain_enum domain,
4286 struct symbol **sym, const struct block **block)
4288 struct cache_entry **e = find_entry (name, domain);
4290 if (e == NULL)
4291 return 0;
4292 if (sym != NULL)
4293 *sym = (*e)->sym;
4294 if (block != NULL)
4295 *block = (*e)->block;
4296 return 1;
4299 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4300 in domain DOMAIN, save this result in our symbol cache. */
4302 static void
4303 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4304 const struct block *block)
4306 struct ada_symbol_cache *sym_cache
4307 = ada_get_symbol_cache (current_program_space);
4308 int h;
4309 struct cache_entry *e;
4311 /* Symbols for builtin types don't have a block.
4312 For now don't cache such symbols. */
4313 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4314 return;
4316 /* If the symbol is a local symbol, then do not cache it, as a search
4317 for that symbol depends on the context. To determine whether
4318 the symbol is local or not, we check the block where we found it
4319 against the global and static blocks of its associated symtab. */
4320 if (sym
4321 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4322 GLOBAL_BLOCK) != block
4323 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4324 STATIC_BLOCK) != block)
4325 return;
4327 h = msymbol_hash (name) % HASH_SIZE;
4328 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4329 e->next = sym_cache->root[h];
4330 sym_cache->root[h] = e;
4331 e->name = obstack_strdup (&sym_cache->cache_space, name);
4332 e->sym = sym;
4333 e->domain = domain;
4334 e->block = block;
4337 /* Symbol Lookup */
4339 /* Return the symbol name match type that should be used used when
4340 searching for all symbols matching LOOKUP_NAME.
4342 LOOKUP_NAME is expected to be a symbol name after transformation
4343 for Ada lookups. */
4345 static symbol_name_match_type
4346 name_match_type_from_name (const char *lookup_name)
4348 return (strstr (lookup_name, "__") == NULL
4349 ? symbol_name_match_type::WILD
4350 : symbol_name_match_type::FULL);
4353 /* Return the result of a standard (literal, C-like) lookup of NAME in
4354 given DOMAIN, visible from lexical block BLOCK. */
4356 static struct symbol *
4357 standard_lookup (const char *name, const struct block *block,
4358 domain_enum domain)
4360 /* Initialize it just to avoid a GCC false warning. */
4361 struct block_symbol sym = {};
4363 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4364 return sym.symbol;
4365 ada_lookup_encoded_symbol (name, block, domain, &sym);
4366 cache_symbol (name, domain, sym.symbol, sym.block);
4367 return sym.symbol;
4371 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4372 in the symbol fields of SYMS. We treat enumerals as functions,
4373 since they contend in overloading in the same way. */
4374 static int
4375 is_nonfunction (const std::vector<struct block_symbol> &syms)
4377 for (const block_symbol &sym : syms)
4378 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4379 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4380 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4381 return 1;
4383 return 0;
4386 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4387 struct types. Otherwise, they may not. */
4389 static int
4390 equiv_types (struct type *type0, struct type *type1)
4392 if (type0 == type1)
4393 return 1;
4394 if (type0 == NULL || type1 == NULL
4395 || type0->code () != type1->code ())
4396 return 0;
4397 if ((type0->code () == TYPE_CODE_STRUCT
4398 || type0->code () == TYPE_CODE_ENUM)
4399 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4400 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4401 return 1;
4403 return 0;
4406 /* True iff SYM0 represents the same entity as SYM1, or one that is
4407 no more defined than that of SYM1. */
4409 static int
4410 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4412 if (sym0 == sym1)
4413 return 1;
4414 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4415 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4416 return 0;
4418 switch (SYMBOL_CLASS (sym0))
4420 case LOC_UNDEF:
4421 return 1;
4422 case LOC_TYPEDEF:
4424 struct type *type0 = SYMBOL_TYPE (sym0);
4425 struct type *type1 = SYMBOL_TYPE (sym1);
4426 const char *name0 = sym0->linkage_name ();
4427 const char *name1 = sym1->linkage_name ();
4428 int len0 = strlen (name0);
4430 return
4431 type0->code () == type1->code ()
4432 && (equiv_types (type0, type1)
4433 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4434 && startswith (name1 + len0, "___XV")));
4436 case LOC_CONST:
4437 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4438 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4440 case LOC_STATIC:
4442 const char *name0 = sym0->linkage_name ();
4443 const char *name1 = sym1->linkage_name ();
4444 return (strcmp (name0, name1) == 0
4445 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4448 default:
4449 return 0;
4453 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4454 records in RESULT. Do nothing if SYM is a duplicate. */
4456 static void
4457 add_defn_to_vec (std::vector<struct block_symbol> &result,
4458 struct symbol *sym,
4459 const struct block *block)
4461 /* Do not try to complete stub types, as the debugger is probably
4462 already scanning all symbols matching a certain name at the
4463 time when this function is called. Trying to replace the stub
4464 type by its associated full type will cause us to restart a scan
4465 which may lead to an infinite recursion. Instead, the client
4466 collecting the matching symbols will end up collecting several
4467 matches, with at least one of them complete. It can then filter
4468 out the stub ones if needed. */
4470 for (int i = result.size () - 1; i >= 0; i -= 1)
4472 if (lesseq_defined_than (sym, result[i].symbol))
4473 return;
4474 else if (lesseq_defined_than (result[i].symbol, sym))
4476 result[i].symbol = sym;
4477 result[i].block = block;
4478 return;
4482 struct block_symbol info;
4483 info.symbol = sym;
4484 info.block = block;
4485 result.push_back (info);
4488 /* Return a bound minimal symbol matching NAME according to Ada
4489 decoding rules. Returns an invalid symbol if there is no such
4490 minimal symbol. Names prefixed with "standard__" are handled
4491 specially: "standard__" is first stripped off, and only static and
4492 global symbols are searched. */
4494 struct bound_minimal_symbol
4495 ada_lookup_simple_minsym (const char *name)
4497 struct bound_minimal_symbol result;
4499 memset (&result, 0, sizeof (result));
4501 symbol_name_match_type match_type = name_match_type_from_name (name);
4502 lookup_name_info lookup_name (name, match_type);
4504 symbol_name_matcher_ftype *match_name
4505 = ada_get_symbol_name_matcher (lookup_name);
4507 for (objfile *objfile : current_program_space->objfiles ())
4509 for (minimal_symbol *msymbol : objfile->msymbols ())
4511 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4512 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4514 result.minsym = msymbol;
4515 result.objfile = objfile;
4516 break;
4521 return result;
4524 /* For all subprograms that statically enclose the subprogram of the
4525 selected frame, add symbols matching identifier NAME in DOMAIN
4526 and their blocks to the list of data in RESULT, as for
4527 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4528 with a wildcard prefix. */
4530 static void
4531 add_symbols_from_enclosing_procs (std::vector<struct block_symbol> &result,
4532 const lookup_name_info &lookup_name,
4533 domain_enum domain)
4537 /* True if TYPE is definitely an artificial type supplied to a symbol
4538 for which no debugging information was given in the symbol file. */
4540 static int
4541 is_nondebugging_type (struct type *type)
4543 const char *name = ada_type_name (type);
4545 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4548 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4549 that are deemed "identical" for practical purposes.
4551 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4552 types and that their number of enumerals is identical (in other
4553 words, type1->num_fields () == type2->num_fields ()). */
4555 static int
4556 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4558 int i;
4560 /* The heuristic we use here is fairly conservative. We consider
4561 that 2 enumerate types are identical if they have the same
4562 number of enumerals and that all enumerals have the same
4563 underlying value and name. */
4565 /* All enums in the type should have an identical underlying value. */
4566 for (i = 0; i < type1->num_fields (); i++)
4567 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4568 return 0;
4570 /* All enumerals should also have the same name (modulo any numerical
4571 suffix). */
4572 for (i = 0; i < type1->num_fields (); i++)
4574 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4575 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4576 int len_1 = strlen (name_1);
4577 int len_2 = strlen (name_2);
4579 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4580 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4581 if (len_1 != len_2
4582 || strncmp (TYPE_FIELD_NAME (type1, i),
4583 TYPE_FIELD_NAME (type2, i),
4584 len_1) != 0)
4585 return 0;
4588 return 1;
4591 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4592 that are deemed "identical" for practical purposes. Sometimes,
4593 enumerals are not strictly identical, but their types are so similar
4594 that they can be considered identical.
4596 For instance, consider the following code:
4598 type Color is (Black, Red, Green, Blue, White);
4599 type RGB_Color is new Color range Red .. Blue;
4601 Type RGB_Color is a subrange of an implicit type which is a copy
4602 of type Color. If we call that implicit type RGB_ColorB ("B" is
4603 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4604 As a result, when an expression references any of the enumeral
4605 by name (Eg. "print green"), the expression is technically
4606 ambiguous and the user should be asked to disambiguate. But
4607 doing so would only hinder the user, since it wouldn't matter
4608 what choice he makes, the outcome would always be the same.
4609 So, for practical purposes, we consider them as the same. */
4611 static int
4612 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4614 int i;
4616 /* Before performing a thorough comparison check of each type,
4617 we perform a series of inexpensive checks. We expect that these
4618 checks will quickly fail in the vast majority of cases, and thus
4619 help prevent the unnecessary use of a more expensive comparison.
4620 Said comparison also expects us to make some of these checks
4621 (see ada_identical_enum_types_p). */
4623 /* Quick check: All symbols should have an enum type. */
4624 for (i = 0; i < syms.size (); i++)
4625 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4626 return 0;
4628 /* Quick check: They should all have the same value. */
4629 for (i = 1; i < syms.size (); i++)
4630 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4631 return 0;
4633 /* Quick check: They should all have the same number of enumerals. */
4634 for (i = 1; i < syms.size (); i++)
4635 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4636 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4637 return 0;
4639 /* All the sanity checks passed, so we might have a set of
4640 identical enumeration types. Perform a more complete
4641 comparison of the type of each symbol. */
4642 for (i = 1; i < syms.size (); i++)
4643 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4644 SYMBOL_TYPE (syms[0].symbol)))
4645 return 0;
4647 return 1;
4650 /* Remove any non-debugging symbols in SYMS that definitely
4651 duplicate other symbols in the list (The only case I know of where
4652 this happens is when object files containing stabs-in-ecoff are
4653 linked with files containing ordinary ecoff debugging symbols (or no
4654 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4656 static void
4657 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4659 int i, j;
4661 /* We should never be called with less than 2 symbols, as there
4662 cannot be any extra symbol in that case. But it's easy to
4663 handle, since we have nothing to do in that case. */
4664 if (syms->size () < 2)
4665 return;
4667 i = 0;
4668 while (i < syms->size ())
4670 int remove_p = 0;
4672 /* If two symbols have the same name and one of them is a stub type,
4673 the get rid of the stub. */
4675 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4676 && (*syms)[i].symbol->linkage_name () != NULL)
4678 for (j = 0; j < syms->size (); j++)
4680 if (j != i
4681 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4682 && (*syms)[j].symbol->linkage_name () != NULL
4683 && strcmp ((*syms)[i].symbol->linkage_name (),
4684 (*syms)[j].symbol->linkage_name ()) == 0)
4685 remove_p = 1;
4689 /* Two symbols with the same name, same class and same address
4690 should be identical. */
4692 else if ((*syms)[i].symbol->linkage_name () != NULL
4693 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4694 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4696 for (j = 0; j < syms->size (); j += 1)
4698 if (i != j
4699 && (*syms)[j].symbol->linkage_name () != NULL
4700 && strcmp ((*syms)[i].symbol->linkage_name (),
4701 (*syms)[j].symbol->linkage_name ()) == 0
4702 && SYMBOL_CLASS ((*syms)[i].symbol)
4703 == SYMBOL_CLASS ((*syms)[j].symbol)
4704 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4705 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4706 remove_p = 1;
4710 if (remove_p)
4711 syms->erase (syms->begin () + i);
4712 else
4713 i += 1;
4716 /* If all the remaining symbols are identical enumerals, then
4717 just keep the first one and discard the rest.
4719 Unlike what we did previously, we do not discard any entry
4720 unless they are ALL identical. This is because the symbol
4721 comparison is not a strict comparison, but rather a practical
4722 comparison. If all symbols are considered identical, then
4723 we can just go ahead and use the first one and discard the rest.
4724 But if we cannot reduce the list to a single element, we have
4725 to ask the user to disambiguate anyways. And if we have to
4726 present a multiple-choice menu, it's less confusing if the list
4727 isn't missing some choices that were identical and yet distinct. */
4728 if (symbols_are_identical_enums (*syms))
4729 syms->resize (1);
4732 /* Given a type that corresponds to a renaming entity, use the type name
4733 to extract the scope (package name or function name, fully qualified,
4734 and following the GNAT encoding convention) where this renaming has been
4735 defined. */
4737 static std::string
4738 xget_renaming_scope (struct type *renaming_type)
4740 /* The renaming types adhere to the following convention:
4741 <scope>__<rename>___<XR extension>.
4742 So, to extract the scope, we search for the "___XR" extension,
4743 and then backtrack until we find the first "__". */
4745 const char *name = renaming_type->name ();
4746 const char *suffix = strstr (name, "___XR");
4747 const char *last;
4749 /* Now, backtrack a bit until we find the first "__". Start looking
4750 at suffix - 3, as the <rename> part is at least one character long. */
4752 for (last = suffix - 3; last > name; last--)
4753 if (last[0] == '_' && last[1] == '_')
4754 break;
4756 /* Make a copy of scope and return it. */
4757 return std::string (name, last);
4760 /* Return nonzero if NAME corresponds to a package name. */
4762 static int
4763 is_package_name (const char *name)
4765 /* Here, We take advantage of the fact that no symbols are generated
4766 for packages, while symbols are generated for each function.
4767 So the condition for NAME represent a package becomes equivalent
4768 to NAME not existing in our list of symbols. There is only one
4769 small complication with library-level functions (see below). */
4771 /* If it is a function that has not been defined at library level,
4772 then we should be able to look it up in the symbols. */
4773 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4774 return 0;
4776 /* Library-level function names start with "_ada_". See if function
4777 "_ada_" followed by NAME can be found. */
4779 /* Do a quick check that NAME does not contain "__", since library-level
4780 functions names cannot contain "__" in them. */
4781 if (strstr (name, "__") != NULL)
4782 return 0;
4784 std::string fun_name = string_printf ("_ada_%s", name);
4786 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4789 /* Return nonzero if SYM corresponds to a renaming entity that is
4790 not visible from FUNCTION_NAME. */
4792 static int
4793 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4795 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4796 return 0;
4798 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4800 /* If the rename has been defined in a package, then it is visible. */
4801 if (is_package_name (scope.c_str ()))
4802 return 0;
4804 /* Check that the rename is in the current function scope by checking
4805 that its name starts with SCOPE. */
4807 /* If the function name starts with "_ada_", it means that it is
4808 a library-level function. Strip this prefix before doing the
4809 comparison, as the encoding for the renaming does not contain
4810 this prefix. */
4811 if (startswith (function_name, "_ada_"))
4812 function_name += 5;
4814 return !startswith (function_name, scope.c_str ());
4817 /* Remove entries from SYMS that corresponds to a renaming entity that
4818 is not visible from the function associated with CURRENT_BLOCK or
4819 that is superfluous due to the presence of more specific renaming
4820 information. Places surviving symbols in the initial entries of
4821 SYMS.
4823 Rationale:
4824 First, in cases where an object renaming is implemented as a
4825 reference variable, GNAT may produce both the actual reference
4826 variable and the renaming encoding. In this case, we discard the
4827 latter.
4829 Second, GNAT emits a type following a specified encoding for each renaming
4830 entity. Unfortunately, STABS currently does not support the definition
4831 of types that are local to a given lexical block, so all renamings types
4832 are emitted at library level. As a consequence, if an application
4833 contains two renaming entities using the same name, and a user tries to
4834 print the value of one of these entities, the result of the ada symbol
4835 lookup will also contain the wrong renaming type.
4837 This function partially covers for this limitation by attempting to
4838 remove from the SYMS list renaming symbols that should be visible
4839 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4840 method with the current information available. The implementation
4841 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4843 - When the user tries to print a rename in a function while there
4844 is another rename entity defined in a package: Normally, the
4845 rename in the function has precedence over the rename in the
4846 package, so the latter should be removed from the list. This is
4847 currently not the case.
4849 - This function will incorrectly remove valid renames if
4850 the CURRENT_BLOCK corresponds to a function which symbol name
4851 has been changed by an "Export" pragma. As a consequence,
4852 the user will be unable to print such rename entities. */
4854 static void
4855 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4856 const struct block *current_block)
4858 struct symbol *current_function;
4859 const char *current_function_name;
4860 int i;
4861 int is_new_style_renaming;
4863 /* If there is both a renaming foo___XR... encoded as a variable and
4864 a simple variable foo in the same block, discard the latter.
4865 First, zero out such symbols, then compress. */
4866 is_new_style_renaming = 0;
4867 for (i = 0; i < syms->size (); i += 1)
4869 struct symbol *sym = (*syms)[i].symbol;
4870 const struct block *block = (*syms)[i].block;
4871 const char *name;
4872 const char *suffix;
4874 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4875 continue;
4876 name = sym->linkage_name ();
4877 suffix = strstr (name, "___XR");
4879 if (suffix != NULL)
4881 int name_len = suffix - name;
4882 int j;
4884 is_new_style_renaming = 1;
4885 for (j = 0; j < syms->size (); j += 1)
4886 if (i != j && (*syms)[j].symbol != NULL
4887 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4888 name_len) == 0
4889 && block == (*syms)[j].block)
4890 (*syms)[j].symbol = NULL;
4893 if (is_new_style_renaming)
4895 int j, k;
4897 for (j = k = 0; j < syms->size (); j += 1)
4898 if ((*syms)[j].symbol != NULL)
4900 (*syms)[k] = (*syms)[j];
4901 k += 1;
4903 syms->resize (k);
4904 return;
4907 /* Extract the function name associated to CURRENT_BLOCK.
4908 Abort if unable to do so. */
4910 if (current_block == NULL)
4911 return;
4913 current_function = block_linkage_function (current_block);
4914 if (current_function == NULL)
4915 return;
4917 current_function_name = current_function->linkage_name ();
4918 if (current_function_name == NULL)
4919 return;
4921 /* Check each of the symbols, and remove it from the list if it is
4922 a type corresponding to a renaming that is out of the scope of
4923 the current block. */
4925 i = 0;
4926 while (i < syms->size ())
4928 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4929 == ADA_OBJECT_RENAMING
4930 && old_renaming_is_invisible ((*syms)[i].symbol,
4931 current_function_name))
4932 syms->erase (syms->begin () + i);
4933 else
4934 i += 1;
4938 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4939 whose name and domain match NAME and DOMAIN respectively.
4940 If no match was found, then extend the search to "enclosing"
4941 routines (in other words, if we're inside a nested function,
4942 search the symbols defined inside the enclosing functions).
4943 If WILD_MATCH_P is nonzero, perform the naming matching in
4944 "wild" mode (see function "wild_match" for more info).
4946 Note: This function assumes that RESULT has 0 (zero) element in it. */
4948 static void
4949 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4950 const lookup_name_info &lookup_name,
4951 const struct block *block, domain_enum domain)
4953 int block_depth = 0;
4955 while (block != NULL)
4957 block_depth += 1;
4958 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4960 /* If we found a non-function match, assume that's the one. */
4961 if (is_nonfunction (result))
4962 return;
4964 block = BLOCK_SUPERBLOCK (block);
4967 /* If no luck so far, try to find NAME as a local symbol in some lexically
4968 enclosing subprogram. */
4969 if (result.empty () && block_depth > 2)
4970 add_symbols_from_enclosing_procs (result, lookup_name, domain);
4973 /* An object of this type is used as the callback argument when
4974 calling the map_matching_symbols method. */
4976 struct match_data
4978 explicit match_data (std::vector<struct block_symbol> *rp)
4979 : resultp (rp)
4982 DISABLE_COPY_AND_ASSIGN (match_data);
4984 bool operator() (struct block_symbol *bsym);
4986 struct objfile *objfile = nullptr;
4987 std::vector<struct block_symbol> *resultp;
4988 struct symbol *arg_sym = nullptr;
4989 bool found_sym = false;
4992 /* A callback for add_nonlocal_symbols that adds symbol, found in
4993 BSYM, to a list of symbols. */
4995 bool
4996 match_data::operator() (struct block_symbol *bsym)
4998 const struct block *block = bsym->block;
4999 struct symbol *sym = bsym->symbol;
5001 if (sym == NULL)
5003 if (!found_sym && arg_sym != NULL)
5004 add_defn_to_vec (*resultp,
5005 fixup_symbol_section (arg_sym, objfile),
5006 block);
5007 found_sym = false;
5008 arg_sym = NULL;
5010 else
5012 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5013 return true;
5014 else if (SYMBOL_IS_ARGUMENT (sym))
5015 arg_sym = sym;
5016 else
5018 found_sym = true;
5019 add_defn_to_vec (*resultp,
5020 fixup_symbol_section (sym, objfile),
5021 block);
5024 return true;
5027 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5028 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5029 symbols to RESULT. Return whether we found such symbols. */
5031 static int
5032 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5033 const struct block *block,
5034 const lookup_name_info &lookup_name,
5035 domain_enum domain)
5037 struct using_direct *renaming;
5038 int defns_mark = result.size ();
5040 symbol_name_matcher_ftype *name_match
5041 = ada_get_symbol_name_matcher (lookup_name);
5043 for (renaming = block_using (block);
5044 renaming != NULL;
5045 renaming = renaming->next)
5047 const char *r_name;
5049 /* Avoid infinite recursions: skip this renaming if we are actually
5050 already traversing it.
5052 Currently, symbol lookup in Ada don't use the namespace machinery from
5053 C++/Fortran support: skip namespace imports that use them. */
5054 if (renaming->searched
5055 || (renaming->import_src != NULL
5056 && renaming->import_src[0] != '\0')
5057 || (renaming->import_dest != NULL
5058 && renaming->import_dest[0] != '\0'))
5059 continue;
5060 renaming->searched = 1;
5062 /* TODO: here, we perform another name-based symbol lookup, which can
5063 pull its own multiple overloads. In theory, we should be able to do
5064 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5065 not a simple name. But in order to do this, we would need to enhance
5066 the DWARF reader to associate a symbol to this renaming, instead of a
5067 name. So, for now, we do something simpler: re-use the C++/Fortran
5068 namespace machinery. */
5069 r_name = (renaming->alias != NULL
5070 ? renaming->alias
5071 : renaming->declaration);
5072 if (name_match (r_name, lookup_name, NULL))
5074 lookup_name_info decl_lookup_name (renaming->declaration,
5075 lookup_name.match_type ());
5076 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5077 1, NULL);
5079 renaming->searched = 0;
5081 return result.size () != defns_mark;
5084 /* Implements compare_names, but only applying the comparision using
5085 the given CASING. */
5087 static int
5088 compare_names_with_case (const char *string1, const char *string2,
5089 enum case_sensitivity casing)
5091 while (*string1 != '\0' && *string2 != '\0')
5093 char c1, c2;
5095 if (isspace (*string1) || isspace (*string2))
5096 return strcmp_iw_ordered (string1, string2);
5098 if (casing == case_sensitive_off)
5100 c1 = tolower (*string1);
5101 c2 = tolower (*string2);
5103 else
5105 c1 = *string1;
5106 c2 = *string2;
5108 if (c1 != c2)
5109 break;
5111 string1 += 1;
5112 string2 += 1;
5115 switch (*string1)
5117 case '(':
5118 return strcmp_iw_ordered (string1, string2);
5119 case '_':
5120 if (*string2 == '\0')
5122 if (is_name_suffix (string1))
5123 return 0;
5124 else
5125 return 1;
5127 /* FALLTHROUGH */
5128 default:
5129 if (*string2 == '(')
5130 return strcmp_iw_ordered (string1, string2);
5131 else
5133 if (casing == case_sensitive_off)
5134 return tolower (*string1) - tolower (*string2);
5135 else
5136 return *string1 - *string2;
5141 /* Compare STRING1 to STRING2, with results as for strcmp.
5142 Compatible with strcmp_iw_ordered in that...
5144 strcmp_iw_ordered (STRING1, STRING2) <= 0
5146 ... implies...
5148 compare_names (STRING1, STRING2) <= 0
5150 (they may differ as to what symbols compare equal). */
5152 static int
5153 compare_names (const char *string1, const char *string2)
5155 int result;
5157 /* Similar to what strcmp_iw_ordered does, we need to perform
5158 a case-insensitive comparison first, and only resort to
5159 a second, case-sensitive, comparison if the first one was
5160 not sufficient to differentiate the two strings. */
5162 result = compare_names_with_case (string1, string2, case_sensitive_off);
5163 if (result == 0)
5164 result = compare_names_with_case (string1, string2, case_sensitive_on);
5166 return result;
5169 /* Convenience function to get at the Ada encoded lookup name for
5170 LOOKUP_NAME, as a C string. */
5172 static const char *
5173 ada_lookup_name (const lookup_name_info &lookup_name)
5175 return lookup_name.ada ().lookup_name ().c_str ();
5178 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5179 for OBJFILE, then walk the objfile's symtabs and update the
5180 results. */
5182 static void
5183 map_matching_symbols (struct objfile *objfile,
5184 const lookup_name_info &lookup_name,
5185 bool is_wild_match,
5186 domain_enum domain,
5187 int global,
5188 match_data &data)
5190 data.objfile = objfile;
5191 objfile->expand_matching_symbols (lookup_name, domain, global,
5192 is_wild_match ? nullptr : compare_names);
5194 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5195 for (compunit_symtab *symtab : objfile->compunits ())
5197 const struct block *block
5198 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5199 if (!iterate_over_symbols_terminated (block, lookup_name,
5200 domain, data))
5201 break;
5205 /* Add to RESULT all non-local symbols whose name and domain match
5206 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5207 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5208 symbols otherwise. */
5210 static void
5211 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5212 const lookup_name_info &lookup_name,
5213 domain_enum domain, int global)
5215 struct match_data data (&result);
5217 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5219 for (objfile *objfile : current_program_space->objfiles ())
5221 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5222 global, data);
5224 for (compunit_symtab *cu : objfile->compunits ())
5226 const struct block *global_block
5227 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5229 if (ada_add_block_renamings (result, global_block, lookup_name,
5230 domain))
5231 data.found_sym = true;
5235 if (result.empty () && global && !is_wild_match)
5237 const char *name = ada_lookup_name (lookup_name);
5238 std::string bracket_name = std::string ("<_ada_") + name + '>';
5239 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5241 for (objfile *objfile : current_program_space->objfiles ())
5242 map_matching_symbols (objfile, name1, false, domain, global, data);
5246 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5247 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5248 returning the number of matches. Add these to RESULT.
5250 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5251 symbol match within the nest of blocks whose innermost member is BLOCK,
5252 is the one match returned (no other matches in that or
5253 enclosing blocks is returned). If there are any matches in or
5254 surrounding BLOCK, then these alone are returned.
5256 Names prefixed with "standard__" are handled specially:
5257 "standard__" is first stripped off (by the lookup_name
5258 constructor), and only static and global symbols are searched.
5260 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5261 to lookup global symbols. */
5263 static void
5264 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5265 const struct block *block,
5266 const lookup_name_info &lookup_name,
5267 domain_enum domain,
5268 int full_search,
5269 int *made_global_lookup_p)
5271 struct symbol *sym;
5273 if (made_global_lookup_p)
5274 *made_global_lookup_p = 0;
5276 /* Special case: If the user specifies a symbol name inside package
5277 Standard, do a non-wild matching of the symbol name without
5278 the "standard__" prefix. This was primarily introduced in order
5279 to allow the user to specifically access the standard exceptions
5280 using, for instance, Standard.Constraint_Error when Constraint_Error
5281 is ambiguous (due to the user defining its own Constraint_Error
5282 entity inside its program). */
5283 if (lookup_name.ada ().standard_p ())
5284 block = NULL;
5286 /* Check the non-global symbols. If we have ANY match, then we're done. */
5288 if (block != NULL)
5290 if (full_search)
5291 ada_add_local_symbols (result, lookup_name, block, domain);
5292 else
5294 /* In the !full_search case we're are being called by
5295 iterate_over_symbols, and we don't want to search
5296 superblocks. */
5297 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5299 if (!result.empty () || !full_search)
5300 return;
5303 /* No non-global symbols found. Check our cache to see if we have
5304 already performed this search before. If we have, then return
5305 the same result. */
5307 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5308 domain, &sym, &block))
5310 if (sym != NULL)
5311 add_defn_to_vec (result, sym, block);
5312 return;
5315 if (made_global_lookup_p)
5316 *made_global_lookup_p = 1;
5318 /* Search symbols from all global blocks. */
5320 add_nonlocal_symbols (result, lookup_name, domain, 1);
5322 /* Now add symbols from all per-file blocks if we've gotten no hits
5323 (not strictly correct, but perhaps better than an error). */
5325 if (result.empty ())
5326 add_nonlocal_symbols (result, lookup_name, domain, 0);
5329 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5330 is non-zero, enclosing scope and in global scopes.
5332 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5333 blocks and symbol tables (if any) in which they were found.
5335 When full_search is non-zero, any non-function/non-enumeral
5336 symbol match within the nest of blocks whose innermost member is BLOCK,
5337 is the one match returned (no other matches in that or
5338 enclosing blocks is returned). If there are any matches in or
5339 surrounding BLOCK, then these alone are returned.
5341 Names prefixed with "standard__" are handled specially: "standard__"
5342 is first stripped off, and only static and global symbols are searched. */
5344 static std::vector<struct block_symbol>
5345 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5346 const struct block *block,
5347 domain_enum domain,
5348 int full_search)
5350 int syms_from_global_search;
5351 std::vector<struct block_symbol> results;
5353 ada_add_all_symbols (results, block, lookup_name,
5354 domain, full_search, &syms_from_global_search);
5356 remove_extra_symbols (&results);
5358 if (results.empty () && full_search && syms_from_global_search)
5359 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5361 if (results.size () == 1 && full_search && syms_from_global_search)
5362 cache_symbol (ada_lookup_name (lookup_name), domain,
5363 results[0].symbol, results[0].block);
5365 remove_irrelevant_renamings (&results, block);
5366 return results;
5369 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5370 in global scopes, returning (SYM,BLOCK) tuples.
5372 See ada_lookup_symbol_list_worker for further details. */
5374 std::vector<struct block_symbol>
5375 ada_lookup_symbol_list (const char *name, const struct block *block,
5376 domain_enum domain)
5378 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5379 lookup_name_info lookup_name (name, name_match_type);
5381 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5384 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5385 to 1, but choosing the first symbol found if there are multiple
5386 choices.
5388 The result is stored in *INFO, which must be non-NULL.
5389 If no match is found, INFO->SYM is set to NULL. */
5391 void
5392 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5393 domain_enum domain,
5394 struct block_symbol *info)
5396 /* Since we already have an encoded name, wrap it in '<>' to force a
5397 verbatim match. Otherwise, if the name happens to not look like
5398 an encoded name (because it doesn't include a "__"),
5399 ada_lookup_name_info would re-encode/fold it again, and that
5400 would e.g., incorrectly lowercase object renaming names like
5401 "R28b" -> "r28b". */
5402 std::string verbatim = add_angle_brackets (name);
5404 gdb_assert (info != NULL);
5405 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5408 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5409 scope and in global scopes, or NULL if none. NAME is folded and
5410 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5411 choosing the first symbol if there are multiple choices. */
5413 struct block_symbol
5414 ada_lookup_symbol (const char *name, const struct block *block0,
5415 domain_enum domain)
5417 std::vector<struct block_symbol> candidates
5418 = ada_lookup_symbol_list (name, block0, domain);
5420 if (candidates.empty ())
5421 return {};
5423 block_symbol info = candidates[0];
5424 info.symbol = fixup_symbol_section (info.symbol, NULL);
5425 return info;
5429 /* True iff STR is a possible encoded suffix of a normal Ada name
5430 that is to be ignored for matching purposes. Suffixes of parallel
5431 names (e.g., XVE) are not included here. Currently, the possible suffixes
5432 are given by any of the regular expressions:
5434 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5435 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5436 TKB [subprogram suffix for task bodies]
5437 _E[0-9]+[bs]$ [protected object entry suffixes]
5438 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5440 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5441 match is performed. This sequence is used to differentiate homonyms,
5442 is an optional part of a valid name suffix. */
5444 static int
5445 is_name_suffix (const char *str)
5447 int k;
5448 const char *matching;
5449 const int len = strlen (str);
5451 /* Skip optional leading __[0-9]+. */
5453 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5455 str += 3;
5456 while (isdigit (str[0]))
5457 str += 1;
5460 /* [.$][0-9]+ */
5462 if (str[0] == '.' || str[0] == '$')
5464 matching = str + 1;
5465 while (isdigit (matching[0]))
5466 matching += 1;
5467 if (matching[0] == '\0')
5468 return 1;
5471 /* ___[0-9]+ */
5473 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5475 matching = str + 3;
5476 while (isdigit (matching[0]))
5477 matching += 1;
5478 if (matching[0] == '\0')
5479 return 1;
5482 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5484 if (strcmp (str, "TKB") == 0)
5485 return 1;
5487 #if 0
5488 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5489 with a N at the end. Unfortunately, the compiler uses the same
5490 convention for other internal types it creates. So treating
5491 all entity names that end with an "N" as a name suffix causes
5492 some regressions. For instance, consider the case of an enumerated
5493 type. To support the 'Image attribute, it creates an array whose
5494 name ends with N.
5495 Having a single character like this as a suffix carrying some
5496 information is a bit risky. Perhaps we should change the encoding
5497 to be something like "_N" instead. In the meantime, do not do
5498 the following check. */
5499 /* Protected Object Subprograms */
5500 if (len == 1 && str [0] == 'N')
5501 return 1;
5502 #endif
5504 /* _E[0-9]+[bs]$ */
5505 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5507 matching = str + 3;
5508 while (isdigit (matching[0]))
5509 matching += 1;
5510 if ((matching[0] == 'b' || matching[0] == 's')
5511 && matching [1] == '\0')
5512 return 1;
5515 /* ??? We should not modify STR directly, as we are doing below. This
5516 is fine in this case, but may become problematic later if we find
5517 that this alternative did not work, and want to try matching
5518 another one from the begining of STR. Since we modified it, we
5519 won't be able to find the begining of the string anymore! */
5520 if (str[0] == 'X')
5522 str += 1;
5523 while (str[0] != '_' && str[0] != '\0')
5525 if (str[0] != 'n' && str[0] != 'b')
5526 return 0;
5527 str += 1;
5531 if (str[0] == '\000')
5532 return 1;
5534 if (str[0] == '_')
5536 if (str[1] != '_' || str[2] == '\000')
5537 return 0;
5538 if (str[2] == '_')
5540 if (strcmp (str + 3, "JM") == 0)
5541 return 1;
5542 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5543 the LJM suffix in favor of the JM one. But we will
5544 still accept LJM as a valid suffix for a reasonable
5545 amount of time, just to allow ourselves to debug programs
5546 compiled using an older version of GNAT. */
5547 if (strcmp (str + 3, "LJM") == 0)
5548 return 1;
5549 if (str[3] != 'X')
5550 return 0;
5551 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5552 || str[4] == 'U' || str[4] == 'P')
5553 return 1;
5554 if (str[4] == 'R' && str[5] != 'T')
5555 return 1;
5556 return 0;
5558 if (!isdigit (str[2]))
5559 return 0;
5560 for (k = 3; str[k] != '\0'; k += 1)
5561 if (!isdigit (str[k]) && str[k] != '_')
5562 return 0;
5563 return 1;
5565 if (str[0] == '$' && isdigit (str[1]))
5567 for (k = 2; str[k] != '\0'; k += 1)
5568 if (!isdigit (str[k]) && str[k] != '_')
5569 return 0;
5570 return 1;
5572 return 0;
5575 /* Return non-zero if the string starting at NAME and ending before
5576 NAME_END contains no capital letters. */
5578 static int
5579 is_valid_name_for_wild_match (const char *name0)
5581 std::string decoded_name = ada_decode (name0);
5582 int i;
5584 /* If the decoded name starts with an angle bracket, it means that
5585 NAME0 does not follow the GNAT encoding format. It should then
5586 not be allowed as a possible wild match. */
5587 if (decoded_name[0] == '<')
5588 return 0;
5590 for (i=0; decoded_name[i] != '\0'; i++)
5591 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5592 return 0;
5594 return 1;
5597 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5598 character which could start a simple name. Assumes that *NAMEP points
5599 somewhere inside the string beginning at NAME0. */
5601 static int
5602 advance_wild_match (const char **namep, const char *name0, char target0)
5604 const char *name = *namep;
5606 while (1)
5608 char t0, t1;
5610 t0 = *name;
5611 if (t0 == '_')
5613 t1 = name[1];
5614 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5616 name += 1;
5617 if (name == name0 + 5 && startswith (name0, "_ada"))
5618 break;
5619 else
5620 name += 1;
5622 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5623 || name[2] == target0))
5625 name += 2;
5626 break;
5628 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5630 /* Names like "pkg__B_N__name", where N is a number, are
5631 block-local. We can handle these by simply skipping
5632 the "B_" here. */
5633 name += 4;
5635 else
5636 return 0;
5638 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5639 name += 1;
5640 else
5641 return 0;
5644 *namep = name;
5645 return 1;
5648 /* Return true iff NAME encodes a name of the form prefix.PATN.
5649 Ignores any informational suffixes of NAME (i.e., for which
5650 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5651 simple name. */
5653 static bool
5654 wild_match (const char *name, const char *patn)
5656 const char *p;
5657 const char *name0 = name;
5659 while (1)
5661 const char *match = name;
5663 if (*name == *patn)
5665 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5666 if (*p != *name)
5667 break;
5668 if (*p == '\0' && is_name_suffix (name))
5669 return match == name0 || is_valid_name_for_wild_match (name0);
5671 if (name[-1] == '_')
5672 name -= 1;
5674 if (!advance_wild_match (&name, name0, *patn))
5675 return false;
5679 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5680 necessary). OBJFILE is the section containing BLOCK. */
5682 static void
5683 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5684 const struct block *block,
5685 const lookup_name_info &lookup_name,
5686 domain_enum domain, struct objfile *objfile)
5688 struct block_iterator iter;
5689 /* A matching argument symbol, if any. */
5690 struct symbol *arg_sym;
5691 /* Set true when we find a matching non-argument symbol. */
5692 bool found_sym;
5693 struct symbol *sym;
5695 arg_sym = NULL;
5696 found_sym = false;
5697 for (sym = block_iter_match_first (block, lookup_name, &iter);
5698 sym != NULL;
5699 sym = block_iter_match_next (lookup_name, &iter))
5701 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5703 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5705 if (SYMBOL_IS_ARGUMENT (sym))
5706 arg_sym = sym;
5707 else
5709 found_sym = true;
5710 add_defn_to_vec (result,
5711 fixup_symbol_section (sym, objfile),
5712 block);
5718 /* Handle renamings. */
5720 if (ada_add_block_renamings (result, block, lookup_name, domain))
5721 found_sym = true;
5723 if (!found_sym && arg_sym != NULL)
5725 add_defn_to_vec (result,
5726 fixup_symbol_section (arg_sym, objfile),
5727 block);
5730 if (!lookup_name.ada ().wild_match_p ())
5732 arg_sym = NULL;
5733 found_sym = false;
5734 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5735 const char *name = ada_lookup_name.c_str ();
5736 size_t name_len = ada_lookup_name.size ();
5738 ALL_BLOCK_SYMBOLS (block, iter, sym)
5740 if (symbol_matches_domain (sym->language (),
5741 SYMBOL_DOMAIN (sym), domain))
5743 int cmp;
5745 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5746 if (cmp == 0)
5748 cmp = !startswith (sym->linkage_name (), "_ada_");
5749 if (cmp == 0)
5750 cmp = strncmp (name, sym->linkage_name () + 5,
5751 name_len);
5754 if (cmp == 0
5755 && is_name_suffix (sym->linkage_name () + name_len + 5))
5757 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5759 if (SYMBOL_IS_ARGUMENT (sym))
5760 arg_sym = sym;
5761 else
5763 found_sym = true;
5764 add_defn_to_vec (result,
5765 fixup_symbol_section (sym, objfile),
5766 block);
5773 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5774 They aren't parameters, right? */
5775 if (!found_sym && arg_sym != NULL)
5777 add_defn_to_vec (result,
5778 fixup_symbol_section (arg_sym, objfile),
5779 block);
5785 /* Symbol Completion */
5787 /* See symtab.h. */
5789 bool
5790 ada_lookup_name_info::matches
5791 (const char *sym_name,
5792 symbol_name_match_type match_type,
5793 completion_match_result *comp_match_res) const
5795 bool match = false;
5796 const char *text = m_encoded_name.c_str ();
5797 size_t text_len = m_encoded_name.size ();
5799 /* First, test against the fully qualified name of the symbol. */
5801 if (strncmp (sym_name, text, text_len) == 0)
5802 match = true;
5804 std::string decoded_name = ada_decode (sym_name);
5805 if (match && !m_encoded_p)
5807 /* One needed check before declaring a positive match is to verify
5808 that iff we are doing a verbatim match, the decoded version
5809 of the symbol name starts with '<'. Otherwise, this symbol name
5810 is not a suitable completion. */
5812 bool has_angle_bracket = (decoded_name[0] == '<');
5813 match = (has_angle_bracket == m_verbatim_p);
5816 if (match && !m_verbatim_p)
5818 /* When doing non-verbatim match, another check that needs to
5819 be done is to verify that the potentially matching symbol name
5820 does not include capital letters, because the ada-mode would
5821 not be able to understand these symbol names without the
5822 angle bracket notation. */
5823 const char *tmp;
5825 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5826 if (*tmp != '\0')
5827 match = false;
5830 /* Second: Try wild matching... */
5832 if (!match && m_wild_match_p)
5834 /* Since we are doing wild matching, this means that TEXT
5835 may represent an unqualified symbol name. We therefore must
5836 also compare TEXT against the unqualified name of the symbol. */
5837 sym_name = ada_unqualified_name (decoded_name.c_str ());
5839 if (strncmp (sym_name, text, text_len) == 0)
5840 match = true;
5843 /* Finally: If we found a match, prepare the result to return. */
5845 if (!match)
5846 return false;
5848 if (comp_match_res != NULL)
5850 std::string &match_str = comp_match_res->match.storage ();
5852 if (!m_encoded_p)
5853 match_str = ada_decode (sym_name);
5854 else
5856 if (m_verbatim_p)
5857 match_str = add_angle_brackets (sym_name);
5858 else
5859 match_str = sym_name;
5863 comp_match_res->set_match (match_str.c_str ());
5866 return true;
5869 /* Field Access */
5871 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5872 for tagged types. */
5874 static int
5875 ada_is_dispatch_table_ptr_type (struct type *type)
5877 const char *name;
5879 if (type->code () != TYPE_CODE_PTR)
5880 return 0;
5882 name = TYPE_TARGET_TYPE (type)->name ();
5883 if (name == NULL)
5884 return 0;
5886 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5889 /* Return non-zero if TYPE is an interface tag. */
5891 static int
5892 ada_is_interface_tag (struct type *type)
5894 const char *name = type->name ();
5896 if (name == NULL)
5897 return 0;
5899 return (strcmp (name, "ada__tags__interface_tag") == 0);
5902 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5903 to be invisible to users. */
5906 ada_is_ignored_field (struct type *type, int field_num)
5908 if (field_num < 0 || field_num > type->num_fields ())
5909 return 1;
5911 /* Check the name of that field. */
5913 const char *name = TYPE_FIELD_NAME (type, field_num);
5915 /* Anonymous field names should not be printed.
5916 brobecker/2007-02-20: I don't think this can actually happen
5917 but we don't want to print the value of anonymous fields anyway. */
5918 if (name == NULL)
5919 return 1;
5921 /* Normally, fields whose name start with an underscore ("_")
5922 are fields that have been internally generated by the compiler,
5923 and thus should not be printed. The "_parent" field is special,
5924 however: This is a field internally generated by the compiler
5925 for tagged types, and it contains the components inherited from
5926 the parent type. This field should not be printed as is, but
5927 should not be ignored either. */
5928 if (name[0] == '_' && !startswith (name, "_parent"))
5929 return 1;
5932 /* If this is the dispatch table of a tagged type or an interface tag,
5933 then ignore. */
5934 if (ada_is_tagged_type (type, 1)
5935 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5936 || ada_is_interface_tag (type->field (field_num).type ())))
5937 return 1;
5939 /* Not a special field, so it should not be ignored. */
5940 return 0;
5943 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5944 pointer or reference type whose ultimate target has a tag field. */
5947 ada_is_tagged_type (struct type *type, int refok)
5949 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5952 /* True iff TYPE represents the type of X'Tag */
5955 ada_is_tag_type (struct type *type)
5957 type = ada_check_typedef (type);
5959 if (type == NULL || type->code () != TYPE_CODE_PTR)
5960 return 0;
5961 else
5963 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5965 return (name != NULL
5966 && strcmp (name, "ada__tags__dispatch_table") == 0);
5970 /* The type of the tag on VAL. */
5972 static struct type *
5973 ada_tag_type (struct value *val)
5975 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
5978 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5979 retired at Ada 05). */
5981 static int
5982 is_ada95_tag (struct value *tag)
5984 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5987 /* The value of the tag on VAL. */
5989 static struct value *
5990 ada_value_tag (struct value *val)
5992 return ada_value_struct_elt (val, "_tag", 0);
5995 /* The value of the tag on the object of type TYPE whose contents are
5996 saved at VALADDR, if it is non-null, or is at memory address
5997 ADDRESS. */
5999 static struct value *
6000 value_tag_from_contents_and_address (struct type *type,
6001 const gdb_byte *valaddr,
6002 CORE_ADDR address)
6004 int tag_byte_offset;
6005 struct type *tag_type;
6007 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6008 NULL, NULL, NULL))
6010 const gdb_byte *valaddr1 = ((valaddr == NULL)
6011 ? NULL
6012 : valaddr + tag_byte_offset);
6013 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6015 return value_from_contents_and_address (tag_type, valaddr1, address1);
6017 return NULL;
6020 static struct type *
6021 type_from_tag (struct value *tag)
6023 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6025 if (type_name != NULL)
6026 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6027 return NULL;
6030 /* Given a value OBJ of a tagged type, return a value of this
6031 type at the base address of the object. The base address, as
6032 defined in Ada.Tags, it is the address of the primary tag of
6033 the object, and therefore where the field values of its full
6034 view can be fetched. */
6036 struct value *
6037 ada_tag_value_at_base_address (struct value *obj)
6039 struct value *val;
6040 LONGEST offset_to_top = 0;
6041 struct type *ptr_type, *obj_type;
6042 struct value *tag;
6043 CORE_ADDR base_address;
6045 obj_type = value_type (obj);
6047 /* It is the responsability of the caller to deref pointers. */
6049 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6050 return obj;
6052 tag = ada_value_tag (obj);
6053 if (!tag)
6054 return obj;
6056 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6058 if (is_ada95_tag (tag))
6059 return obj;
6061 ptr_type = language_lookup_primitive_type
6062 (language_def (language_ada), target_gdbarch(), "storage_offset");
6063 ptr_type = lookup_pointer_type (ptr_type);
6064 val = value_cast (ptr_type, tag);
6065 if (!val)
6066 return obj;
6068 /* It is perfectly possible that an exception be raised while
6069 trying to determine the base address, just like for the tag;
6070 see ada_tag_name for more details. We do not print the error
6071 message for the same reason. */
6075 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6078 catch (const gdb_exception_error &e)
6080 return obj;
6083 /* If offset is null, nothing to do. */
6085 if (offset_to_top == 0)
6086 return obj;
6088 /* -1 is a special case in Ada.Tags; however, what should be done
6089 is not quite clear from the documentation. So do nothing for
6090 now. */
6092 if (offset_to_top == -1)
6093 return obj;
6095 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6096 from the base address. This was however incompatible with
6097 C++ dispatch table: C++ uses a *negative* value to *add*
6098 to the base address. Ada's convention has therefore been
6099 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6100 use the same convention. Here, we support both cases by
6101 checking the sign of OFFSET_TO_TOP. */
6103 if (offset_to_top > 0)
6104 offset_to_top = -offset_to_top;
6106 base_address = value_address (obj) + offset_to_top;
6107 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6109 /* Make sure that we have a proper tag at the new address.
6110 Otherwise, offset_to_top is bogus (which can happen when
6111 the object is not initialized yet). */
6113 if (!tag)
6114 return obj;
6116 obj_type = type_from_tag (tag);
6118 if (!obj_type)
6119 return obj;
6121 return value_from_contents_and_address (obj_type, NULL, base_address);
6124 /* Return the "ada__tags__type_specific_data" type. */
6126 static struct type *
6127 ada_get_tsd_type (struct inferior *inf)
6129 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6131 if (data->tsd_type == 0)
6132 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6133 return data->tsd_type;
6136 /* Return the TSD (type-specific data) associated to the given TAG.
6137 TAG is assumed to be the tag of a tagged-type entity.
6139 May return NULL if we are unable to get the TSD. */
6141 static struct value *
6142 ada_get_tsd_from_tag (struct value *tag)
6144 struct value *val;
6145 struct type *type;
6147 /* First option: The TSD is simply stored as a field of our TAG.
6148 Only older versions of GNAT would use this format, but we have
6149 to test it first, because there are no visible markers for
6150 the current approach except the absence of that field. */
6152 val = ada_value_struct_elt (tag, "tsd", 1);
6153 if (val)
6154 return val;
6156 /* Try the second representation for the dispatch table (in which
6157 there is no explicit 'tsd' field in the referent of the tag pointer,
6158 and instead the tsd pointer is stored just before the dispatch
6159 table. */
6161 type = ada_get_tsd_type (current_inferior());
6162 if (type == NULL)
6163 return NULL;
6164 type = lookup_pointer_type (lookup_pointer_type (type));
6165 val = value_cast (type, tag);
6166 if (val == NULL)
6167 return NULL;
6168 return value_ind (value_ptradd (val, -1));
6171 /* Given the TSD of a tag (type-specific data), return a string
6172 containing the name of the associated type.
6174 May return NULL if we are unable to determine the tag name. */
6176 static gdb::unique_xmalloc_ptr<char>
6177 ada_tag_name_from_tsd (struct value *tsd)
6179 char *p;
6180 struct value *val;
6182 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6183 if (val == NULL)
6184 return NULL;
6185 gdb::unique_xmalloc_ptr<char> buffer
6186 = target_read_string (value_as_address (val), INT_MAX);
6187 if (buffer == nullptr)
6188 return nullptr;
6190 for (p = buffer.get (); *p != '\0'; ++p)
6192 if (isalpha (*p))
6193 *p = tolower (*p);
6196 return buffer;
6199 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6200 a C string.
6202 Return NULL if the TAG is not an Ada tag, or if we were unable to
6203 determine the name of that tag. */
6205 gdb::unique_xmalloc_ptr<char>
6206 ada_tag_name (struct value *tag)
6208 gdb::unique_xmalloc_ptr<char> name;
6210 if (!ada_is_tag_type (value_type (tag)))
6211 return NULL;
6213 /* It is perfectly possible that an exception be raised while trying
6214 to determine the TAG's name, even under normal circumstances:
6215 The associated variable may be uninitialized or corrupted, for
6216 instance. We do not let any exception propagate past this point.
6217 instead we return NULL.
6219 We also do not print the error message either (which often is very
6220 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6221 the caller print a more meaningful message if necessary. */
6224 struct value *tsd = ada_get_tsd_from_tag (tag);
6226 if (tsd != NULL)
6227 name = ada_tag_name_from_tsd (tsd);
6229 catch (const gdb_exception_error &e)
6233 return name;
6236 /* The parent type of TYPE, or NULL if none. */
6238 struct type *
6239 ada_parent_type (struct type *type)
6241 int i;
6243 type = ada_check_typedef (type);
6245 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6246 return NULL;
6248 for (i = 0; i < type->num_fields (); i += 1)
6249 if (ada_is_parent_field (type, i))
6251 struct type *parent_type = type->field (i).type ();
6253 /* If the _parent field is a pointer, then dereference it. */
6254 if (parent_type->code () == TYPE_CODE_PTR)
6255 parent_type = TYPE_TARGET_TYPE (parent_type);
6256 /* If there is a parallel XVS type, get the actual base type. */
6257 parent_type = ada_get_base_type (parent_type);
6259 return ada_check_typedef (parent_type);
6262 return NULL;
6265 /* True iff field number FIELD_NUM of structure type TYPE contains the
6266 parent-type (inherited) fields of a derived type. Assumes TYPE is
6267 a structure type with at least FIELD_NUM+1 fields. */
6270 ada_is_parent_field (struct type *type, int field_num)
6272 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6274 return (name != NULL
6275 && (startswith (name, "PARENT")
6276 || startswith (name, "_parent")));
6279 /* True iff field number FIELD_NUM of structure type TYPE is a
6280 transparent wrapper field (which should be silently traversed when doing
6281 field selection and flattened when printing). Assumes TYPE is a
6282 structure type with at least FIELD_NUM+1 fields. Such fields are always
6283 structures. */
6286 ada_is_wrapper_field (struct type *type, int field_num)
6288 const char *name = TYPE_FIELD_NAME (type, field_num);
6290 if (name != NULL && strcmp (name, "RETVAL") == 0)
6292 /* This happens in functions with "out" or "in out" parameters
6293 which are passed by copy. For such functions, GNAT describes
6294 the function's return type as being a struct where the return
6295 value is in a field called RETVAL, and where the other "out"
6296 or "in out" parameters are fields of that struct. This is not
6297 a wrapper. */
6298 return 0;
6301 return (name != NULL
6302 && (startswith (name, "PARENT")
6303 || strcmp (name, "REP") == 0
6304 || startswith (name, "_parent")
6305 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6308 /* True iff field number FIELD_NUM of structure or union type TYPE
6309 is a variant wrapper. Assumes TYPE is a structure type with at least
6310 FIELD_NUM+1 fields. */
6313 ada_is_variant_part (struct type *type, int field_num)
6315 /* Only Ada types are eligible. */
6316 if (!ADA_TYPE_P (type))
6317 return 0;
6319 struct type *field_type = type->field (field_num).type ();
6321 return (field_type->code () == TYPE_CODE_UNION
6322 || (is_dynamic_field (type, field_num)
6323 && (TYPE_TARGET_TYPE (field_type)->code ()
6324 == TYPE_CODE_UNION)));
6327 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6328 whose discriminants are contained in the record type OUTER_TYPE,
6329 returns the type of the controlling discriminant for the variant.
6330 May return NULL if the type could not be found. */
6332 struct type *
6333 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6335 const char *name = ada_variant_discrim_name (var_type);
6337 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6340 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6341 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6342 represents a 'when others' clause; otherwise 0. */
6344 static int
6345 ada_is_others_clause (struct type *type, int field_num)
6347 const char *name = TYPE_FIELD_NAME (type, field_num);
6349 return (name != NULL && name[0] == 'O');
6352 /* Assuming that TYPE0 is the type of the variant part of a record,
6353 returns the name of the discriminant controlling the variant.
6354 The value is valid until the next call to ada_variant_discrim_name. */
6356 const char *
6357 ada_variant_discrim_name (struct type *type0)
6359 static std::string result;
6360 struct type *type;
6361 const char *name;
6362 const char *discrim_end;
6363 const char *discrim_start;
6365 if (type0->code () == TYPE_CODE_PTR)
6366 type = TYPE_TARGET_TYPE (type0);
6367 else
6368 type = type0;
6370 name = ada_type_name (type);
6372 if (name == NULL || name[0] == '\000')
6373 return "";
6375 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6376 discrim_end -= 1)
6378 if (startswith (discrim_end, "___XVN"))
6379 break;
6381 if (discrim_end == name)
6382 return "";
6384 for (discrim_start = discrim_end; discrim_start != name + 3;
6385 discrim_start -= 1)
6387 if (discrim_start == name + 1)
6388 return "";
6389 if ((discrim_start > name + 3
6390 && startswith (discrim_start - 3, "___"))
6391 || discrim_start[-1] == '.')
6392 break;
6395 result = std::string (discrim_start, discrim_end - discrim_start);
6396 return result.c_str ();
6399 /* Scan STR for a subtype-encoded number, beginning at position K.
6400 Put the position of the character just past the number scanned in
6401 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6402 Return 1 if there was a valid number at the given position, and 0
6403 otherwise. A "subtype-encoded" number consists of the absolute value
6404 in decimal, followed by the letter 'm' to indicate a negative number.
6405 Assumes 0m does not occur. */
6408 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6410 ULONGEST RU;
6412 if (!isdigit (str[k]))
6413 return 0;
6415 /* Do it the hard way so as not to make any assumption about
6416 the relationship of unsigned long (%lu scan format code) and
6417 LONGEST. */
6418 RU = 0;
6419 while (isdigit (str[k]))
6421 RU = RU * 10 + (str[k] - '0');
6422 k += 1;
6425 if (str[k] == 'm')
6427 if (R != NULL)
6428 *R = (-(LONGEST) (RU - 1)) - 1;
6429 k += 1;
6431 else if (R != NULL)
6432 *R = (LONGEST) RU;
6434 /* NOTE on the above: Technically, C does not say what the results of
6435 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6436 number representable as a LONGEST (although either would probably work
6437 in most implementations). When RU>0, the locution in the then branch
6438 above is always equivalent to the negative of RU. */
6440 if (new_k != NULL)
6441 *new_k = k;
6442 return 1;
6445 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6446 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6447 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6449 static int
6450 ada_in_variant (LONGEST val, struct type *type, int field_num)
6452 const char *name = TYPE_FIELD_NAME (type, field_num);
6453 int p;
6455 p = 0;
6456 while (1)
6458 switch (name[p])
6460 case '\0':
6461 return 0;
6462 case 'S':
6464 LONGEST W;
6466 if (!ada_scan_number (name, p + 1, &W, &p))
6467 return 0;
6468 if (val == W)
6469 return 1;
6470 break;
6472 case 'R':
6474 LONGEST L, U;
6476 if (!ada_scan_number (name, p + 1, &L, &p)
6477 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6478 return 0;
6479 if (val >= L && val <= U)
6480 return 1;
6481 break;
6483 case 'O':
6484 return 1;
6485 default:
6486 return 0;
6491 /* FIXME: Lots of redundancy below. Try to consolidate. */
6493 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6494 ARG_TYPE, extract and return the value of one of its (non-static)
6495 fields. FIELDNO says which field. Differs from value_primitive_field
6496 only in that it can handle packed values of arbitrary type. */
6498 struct value *
6499 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6500 struct type *arg_type)
6502 struct type *type;
6504 arg_type = ada_check_typedef (arg_type);
6505 type = arg_type->field (fieldno).type ();
6507 /* Handle packed fields. It might be that the field is not packed
6508 relative to its containing structure, but the structure itself is
6509 packed; in this case we must take the bit-field path. */
6510 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6512 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6513 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6515 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6516 offset + bit_pos / 8,
6517 bit_pos % 8, bit_size, type);
6519 else
6520 return value_primitive_field (arg1, offset, fieldno, arg_type);
6523 /* Find field with name NAME in object of type TYPE. If found,
6524 set the following for each argument that is non-null:
6525 - *FIELD_TYPE_P to the field's type;
6526 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6527 an object of that type;
6528 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6529 - *BIT_SIZE_P to its size in bits if the field is packed, and
6530 0 otherwise;
6531 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6532 fields up to but not including the desired field, or by the total
6533 number of fields if not found. A NULL value of NAME never
6534 matches; the function just counts visible fields in this case.
6536 Notice that we need to handle when a tagged record hierarchy
6537 has some components with the same name, like in this scenario:
6539 type Top_T is tagged record
6540 N : Integer := 1;
6541 U : Integer := 974;
6542 A : Integer := 48;
6543 end record;
6545 type Middle_T is new Top.Top_T with record
6546 N : Character := 'a';
6547 C : Integer := 3;
6548 end record;
6550 type Bottom_T is new Middle.Middle_T with record
6551 N : Float := 4.0;
6552 C : Character := '5';
6553 X : Integer := 6;
6554 A : Character := 'J';
6555 end record;
6557 Let's say we now have a variable declared and initialized as follow:
6559 TC : Top_A := new Bottom_T;
6561 And then we use this variable to call this function
6563 procedure Assign (Obj: in out Top_T; TV : Integer);
6565 as follow:
6567 Assign (Top_T (B), 12);
6569 Now, we're in the debugger, and we're inside that procedure
6570 then and we want to print the value of obj.c:
6572 Usually, the tagged record or one of the parent type owns the
6573 component to print and there's no issue but in this particular
6574 case, what does it mean to ask for Obj.C? Since the actual
6575 type for object is type Bottom_T, it could mean two things: type
6576 component C from the Middle_T view, but also component C from
6577 Bottom_T. So in that "undefined" case, when the component is
6578 not found in the non-resolved type (which includes all the
6579 components of the parent type), then resolve it and see if we
6580 get better luck once expanded.
6582 In the case of homonyms in the derived tagged type, we don't
6583 guaranty anything, and pick the one that's easiest for us
6584 to program.
6586 Returns 1 if found, 0 otherwise. */
6588 static int
6589 find_struct_field (const char *name, struct type *type, int offset,
6590 struct type **field_type_p,
6591 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6592 int *index_p)
6594 int i;
6595 int parent_offset = -1;
6597 type = ada_check_typedef (type);
6599 if (field_type_p != NULL)
6600 *field_type_p = NULL;
6601 if (byte_offset_p != NULL)
6602 *byte_offset_p = 0;
6603 if (bit_offset_p != NULL)
6604 *bit_offset_p = 0;
6605 if (bit_size_p != NULL)
6606 *bit_size_p = 0;
6608 for (i = 0; i < type->num_fields (); i += 1)
6610 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6611 int fld_offset = offset + bit_pos / 8;
6612 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6614 if (t_field_name == NULL)
6615 continue;
6617 else if (ada_is_parent_field (type, i))
6619 /* This is a field pointing us to the parent type of a tagged
6620 type. As hinted in this function's documentation, we give
6621 preference to fields in the current record first, so what
6622 we do here is just record the index of this field before
6623 we skip it. If it turns out we couldn't find our field
6624 in the current record, then we'll get back to it and search
6625 inside it whether the field might exist in the parent. */
6627 parent_offset = i;
6628 continue;
6631 else if (name != NULL && field_name_match (t_field_name, name))
6633 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6635 if (field_type_p != NULL)
6636 *field_type_p = type->field (i).type ();
6637 if (byte_offset_p != NULL)
6638 *byte_offset_p = fld_offset;
6639 if (bit_offset_p != NULL)
6640 *bit_offset_p = bit_pos % 8;
6641 if (bit_size_p != NULL)
6642 *bit_size_p = bit_size;
6643 return 1;
6645 else if (ada_is_wrapper_field (type, i))
6647 if (find_struct_field (name, type->field (i).type (), fld_offset,
6648 field_type_p, byte_offset_p, bit_offset_p,
6649 bit_size_p, index_p))
6650 return 1;
6652 else if (ada_is_variant_part (type, i))
6654 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6655 fixed type?? */
6656 int j;
6657 struct type *field_type
6658 = ada_check_typedef (type->field (i).type ());
6660 for (j = 0; j < field_type->num_fields (); j += 1)
6662 if (find_struct_field (name, field_type->field (j).type (),
6663 fld_offset
6664 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6665 field_type_p, byte_offset_p,
6666 bit_offset_p, bit_size_p, index_p))
6667 return 1;
6670 else if (index_p != NULL)
6671 *index_p += 1;
6674 /* Field not found so far. If this is a tagged type which
6675 has a parent, try finding that field in the parent now. */
6677 if (parent_offset != -1)
6679 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6680 int fld_offset = offset + bit_pos / 8;
6682 if (find_struct_field (name, type->field (parent_offset).type (),
6683 fld_offset, field_type_p, byte_offset_p,
6684 bit_offset_p, bit_size_p, index_p))
6685 return 1;
6688 return 0;
6691 /* Number of user-visible fields in record type TYPE. */
6693 static int
6694 num_visible_fields (struct type *type)
6696 int n;
6698 n = 0;
6699 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6700 return n;
6703 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6704 and search in it assuming it has (class) type TYPE.
6705 If found, return value, else return NULL.
6707 Searches recursively through wrapper fields (e.g., '_parent').
6709 In the case of homonyms in the tagged types, please refer to the
6710 long explanation in find_struct_field's function documentation. */
6712 static struct value *
6713 ada_search_struct_field (const char *name, struct value *arg, int offset,
6714 struct type *type)
6716 int i;
6717 int parent_offset = -1;
6719 type = ada_check_typedef (type);
6720 for (i = 0; i < type->num_fields (); i += 1)
6722 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6724 if (t_field_name == NULL)
6725 continue;
6727 else if (ada_is_parent_field (type, i))
6729 /* This is a field pointing us to the parent type of a tagged
6730 type. As hinted in this function's documentation, we give
6731 preference to fields in the current record first, so what
6732 we do here is just record the index of this field before
6733 we skip it. If it turns out we couldn't find our field
6734 in the current record, then we'll get back to it and search
6735 inside it whether the field might exist in the parent. */
6737 parent_offset = i;
6738 continue;
6741 else if (field_name_match (t_field_name, name))
6742 return ada_value_primitive_field (arg, offset, i, type);
6744 else if (ada_is_wrapper_field (type, i))
6746 struct value *v = /* Do not let indent join lines here. */
6747 ada_search_struct_field (name, arg,
6748 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6749 type->field (i).type ());
6751 if (v != NULL)
6752 return v;
6755 else if (ada_is_variant_part (type, i))
6757 /* PNH: Do we ever get here? See find_struct_field. */
6758 int j;
6759 struct type *field_type = ada_check_typedef (type->field (i).type ());
6760 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6762 for (j = 0; j < field_type->num_fields (); j += 1)
6764 struct value *v = ada_search_struct_field /* Force line
6765 break. */
6766 (name, arg,
6767 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6768 field_type->field (j).type ());
6770 if (v != NULL)
6771 return v;
6776 /* Field not found so far. If this is a tagged type which
6777 has a parent, try finding that field in the parent now. */
6779 if (parent_offset != -1)
6781 struct value *v = ada_search_struct_field (
6782 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6783 type->field (parent_offset).type ());
6785 if (v != NULL)
6786 return v;
6789 return NULL;
6792 static struct value *ada_index_struct_field_1 (int *, struct value *,
6793 int, struct type *);
6796 /* Return field #INDEX in ARG, where the index is that returned by
6797 * find_struct_field through its INDEX_P argument. Adjust the address
6798 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6799 * If found, return value, else return NULL. */
6801 static struct value *
6802 ada_index_struct_field (int index, struct value *arg, int offset,
6803 struct type *type)
6805 return ada_index_struct_field_1 (&index, arg, offset, type);
6809 /* Auxiliary function for ada_index_struct_field. Like
6810 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6811 * *INDEX_P. */
6813 static struct value *
6814 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6815 struct type *type)
6817 int i;
6818 type = ada_check_typedef (type);
6820 for (i = 0; i < type->num_fields (); i += 1)
6822 if (TYPE_FIELD_NAME (type, i) == NULL)
6823 continue;
6824 else if (ada_is_wrapper_field (type, i))
6826 struct value *v = /* Do not let indent join lines here. */
6827 ada_index_struct_field_1 (index_p, arg,
6828 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6829 type->field (i).type ());
6831 if (v != NULL)
6832 return v;
6835 else if (ada_is_variant_part (type, i))
6837 /* PNH: Do we ever get here? See ada_search_struct_field,
6838 find_struct_field. */
6839 error (_("Cannot assign this kind of variant record"));
6841 else if (*index_p == 0)
6842 return ada_value_primitive_field (arg, offset, i, type);
6843 else
6844 *index_p -= 1;
6846 return NULL;
6849 /* Return a string representation of type TYPE. */
6851 static std::string
6852 type_as_string (struct type *type)
6854 string_file tmp_stream;
6856 type_print (type, "", &tmp_stream, -1);
6858 return std::move (tmp_stream.string ());
6861 /* Given a type TYPE, look up the type of the component of type named NAME.
6862 If DISPP is non-null, add its byte displacement from the beginning of a
6863 structure (pointed to by a value) of type TYPE to *DISPP (does not
6864 work for packed fields).
6866 Matches any field whose name has NAME as a prefix, possibly
6867 followed by "___".
6869 TYPE can be either a struct or union. If REFOK, TYPE may also
6870 be a (pointer or reference)+ to a struct or union, and the
6871 ultimate target type will be searched.
6873 Looks recursively into variant clauses and parent types.
6875 In the case of homonyms in the tagged types, please refer to the
6876 long explanation in find_struct_field's function documentation.
6878 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6879 TYPE is not a type of the right kind. */
6881 static struct type *
6882 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6883 int noerr)
6885 int i;
6886 int parent_offset = -1;
6888 if (name == NULL)
6889 goto BadName;
6891 if (refok && type != NULL)
6892 while (1)
6894 type = ada_check_typedef (type);
6895 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6896 break;
6897 type = TYPE_TARGET_TYPE (type);
6900 if (type == NULL
6901 || (type->code () != TYPE_CODE_STRUCT
6902 && type->code () != TYPE_CODE_UNION))
6904 if (noerr)
6905 return NULL;
6907 error (_("Type %s is not a structure or union type"),
6908 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6911 type = to_static_fixed_type (type);
6913 for (i = 0; i < type->num_fields (); i += 1)
6915 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6916 struct type *t;
6918 if (t_field_name == NULL)
6919 continue;
6921 else if (ada_is_parent_field (type, i))
6923 /* This is a field pointing us to the parent type of a tagged
6924 type. As hinted in this function's documentation, we give
6925 preference to fields in the current record first, so what
6926 we do here is just record the index of this field before
6927 we skip it. If it turns out we couldn't find our field
6928 in the current record, then we'll get back to it and search
6929 inside it whether the field might exist in the parent. */
6931 parent_offset = i;
6932 continue;
6935 else if (field_name_match (t_field_name, name))
6936 return type->field (i).type ();
6938 else if (ada_is_wrapper_field (type, i))
6940 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6941 0, 1);
6942 if (t != NULL)
6943 return t;
6946 else if (ada_is_variant_part (type, i))
6948 int j;
6949 struct type *field_type = ada_check_typedef (type->field (i).type ());
6951 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6953 /* FIXME pnh 2008/01/26: We check for a field that is
6954 NOT wrapped in a struct, since the compiler sometimes
6955 generates these for unchecked variant types. Revisit
6956 if the compiler changes this practice. */
6957 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6959 if (v_field_name != NULL
6960 && field_name_match (v_field_name, name))
6961 t = field_type->field (j).type ();
6962 else
6963 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
6964 name, 0, 1);
6966 if (t != NULL)
6967 return t;
6973 /* Field not found so far. If this is a tagged type which
6974 has a parent, try finding that field in the parent now. */
6976 if (parent_offset != -1)
6978 struct type *t;
6980 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6981 name, 0, 1);
6982 if (t != NULL)
6983 return t;
6986 BadName:
6987 if (!noerr)
6989 const char *name_str = name != NULL ? name : _("<null>");
6991 error (_("Type %s has no component named %s"),
6992 type_as_string (type).c_str (), name_str);
6995 return NULL;
6998 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6999 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7000 represents an unchecked union (that is, the variant part of a
7001 record that is named in an Unchecked_Union pragma). */
7003 static int
7004 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7006 const char *discrim_name = ada_variant_discrim_name (var_type);
7008 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7012 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7013 within OUTER, determine which variant clause (field number in VAR_TYPE,
7014 numbering from 0) is applicable. Returns -1 if none are. */
7017 ada_which_variant_applies (struct type *var_type, struct value *outer)
7019 int others_clause;
7020 int i;
7021 const char *discrim_name = ada_variant_discrim_name (var_type);
7022 struct value *discrim;
7023 LONGEST discrim_val;
7025 /* Using plain value_from_contents_and_address here causes problems
7026 because we will end up trying to resolve a type that is currently
7027 being constructed. */
7028 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7029 if (discrim == NULL)
7030 return -1;
7031 discrim_val = value_as_long (discrim);
7033 others_clause = -1;
7034 for (i = 0; i < var_type->num_fields (); i += 1)
7036 if (ada_is_others_clause (var_type, i))
7037 others_clause = i;
7038 else if (ada_in_variant (discrim_val, var_type, i))
7039 return i;
7042 return others_clause;
7047 /* Dynamic-Sized Records */
7049 /* Strategy: The type ostensibly attached to a value with dynamic size
7050 (i.e., a size that is not statically recorded in the debugging
7051 data) does not accurately reflect the size or layout of the value.
7052 Our strategy is to convert these values to values with accurate,
7053 conventional types that are constructed on the fly. */
7055 /* There is a subtle and tricky problem here. In general, we cannot
7056 determine the size of dynamic records without its data. However,
7057 the 'struct value' data structure, which GDB uses to represent
7058 quantities in the inferior process (the target), requires the size
7059 of the type at the time of its allocation in order to reserve space
7060 for GDB's internal copy of the data. That's why the
7061 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7062 rather than struct value*s.
7064 However, GDB's internal history variables ($1, $2, etc.) are
7065 struct value*s containing internal copies of the data that are not, in
7066 general, the same as the data at their corresponding addresses in
7067 the target. Fortunately, the types we give to these values are all
7068 conventional, fixed-size types (as per the strategy described
7069 above), so that we don't usually have to perform the
7070 'to_fixed_xxx_type' conversions to look at their values.
7071 Unfortunately, there is one exception: if one of the internal
7072 history variables is an array whose elements are unconstrained
7073 records, then we will need to create distinct fixed types for each
7074 element selected. */
7076 /* The upshot of all of this is that many routines take a (type, host
7077 address, target address) triple as arguments to represent a value.
7078 The host address, if non-null, is supposed to contain an internal
7079 copy of the relevant data; otherwise, the program is to consult the
7080 target at the target address. */
7082 /* Assuming that VAL0 represents a pointer value, the result of
7083 dereferencing it. Differs from value_ind in its treatment of
7084 dynamic-sized types. */
7086 struct value *
7087 ada_value_ind (struct value *val0)
7089 struct value *val = value_ind (val0);
7091 if (ada_is_tagged_type (value_type (val), 0))
7092 val = ada_tag_value_at_base_address (val);
7094 return ada_to_fixed_value (val);
7097 /* The value resulting from dereferencing any "reference to"
7098 qualifiers on VAL0. */
7100 static struct value *
7101 ada_coerce_ref (struct value *val0)
7103 if (value_type (val0)->code () == TYPE_CODE_REF)
7105 struct value *val = val0;
7107 val = coerce_ref (val);
7109 if (ada_is_tagged_type (value_type (val), 0))
7110 val = ada_tag_value_at_base_address (val);
7112 return ada_to_fixed_value (val);
7114 else
7115 return val0;
7118 /* Return the bit alignment required for field #F of template type TYPE. */
7120 static unsigned int
7121 field_alignment (struct type *type, int f)
7123 const char *name = TYPE_FIELD_NAME (type, f);
7124 int len;
7125 int align_offset;
7127 /* The field name should never be null, unless the debugging information
7128 is somehow malformed. In this case, we assume the field does not
7129 require any alignment. */
7130 if (name == NULL)
7131 return 1;
7133 len = strlen (name);
7135 if (!isdigit (name[len - 1]))
7136 return 1;
7138 if (isdigit (name[len - 2]))
7139 align_offset = len - 2;
7140 else
7141 align_offset = len - 1;
7143 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7144 return TARGET_CHAR_BIT;
7146 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7149 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7151 static struct symbol *
7152 ada_find_any_type_symbol (const char *name)
7154 struct symbol *sym;
7156 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7157 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7158 return sym;
7160 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7161 return sym;
7164 /* Find a type named NAME. Ignores ambiguity. This routine will look
7165 solely for types defined by debug info, it will not search the GDB
7166 primitive types. */
7168 static struct type *
7169 ada_find_any_type (const char *name)
7171 struct symbol *sym = ada_find_any_type_symbol (name);
7173 if (sym != NULL)
7174 return SYMBOL_TYPE (sym);
7176 return NULL;
7179 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7180 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7181 symbol, in which case it is returned. Otherwise, this looks for
7182 symbols whose name is that of NAME_SYM suffixed with "___XR".
7183 Return symbol if found, and NULL otherwise. */
7185 static bool
7186 ada_is_renaming_symbol (struct symbol *name_sym)
7188 const char *name = name_sym->linkage_name ();
7189 return strstr (name, "___XR") != NULL;
7192 /* Because of GNAT encoding conventions, several GDB symbols may match a
7193 given type name. If the type denoted by TYPE0 is to be preferred to
7194 that of TYPE1 for purposes of type printing, return non-zero;
7195 otherwise return 0. */
7198 ada_prefer_type (struct type *type0, struct type *type1)
7200 if (type1 == NULL)
7201 return 1;
7202 else if (type0 == NULL)
7203 return 0;
7204 else if (type1->code () == TYPE_CODE_VOID)
7205 return 1;
7206 else if (type0->code () == TYPE_CODE_VOID)
7207 return 0;
7208 else if (type1->name () == NULL && type0->name () != NULL)
7209 return 1;
7210 else if (ada_is_constrained_packed_array_type (type0))
7211 return 1;
7212 else if (ada_is_array_descriptor_type (type0)
7213 && !ada_is_array_descriptor_type (type1))
7214 return 1;
7215 else
7217 const char *type0_name = type0->name ();
7218 const char *type1_name = type1->name ();
7220 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7221 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7222 return 1;
7224 return 0;
7227 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7228 null. */
7230 const char *
7231 ada_type_name (struct type *type)
7233 if (type == NULL)
7234 return NULL;
7235 return type->name ();
7238 /* Search the list of "descriptive" types associated to TYPE for a type
7239 whose name is NAME. */
7241 static struct type *
7242 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7244 struct type *result, *tmp;
7246 if (ada_ignore_descriptive_types_p)
7247 return NULL;
7249 /* If there no descriptive-type info, then there is no parallel type
7250 to be found. */
7251 if (!HAVE_GNAT_AUX_INFO (type))
7252 return NULL;
7254 result = TYPE_DESCRIPTIVE_TYPE (type);
7255 while (result != NULL)
7257 const char *result_name = ada_type_name (result);
7259 if (result_name == NULL)
7261 warning (_("unexpected null name on descriptive type"));
7262 return NULL;
7265 /* If the names match, stop. */
7266 if (strcmp (result_name, name) == 0)
7267 break;
7269 /* Otherwise, look at the next item on the list, if any. */
7270 if (HAVE_GNAT_AUX_INFO (result))
7271 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7272 else
7273 tmp = NULL;
7275 /* If not found either, try after having resolved the typedef. */
7276 if (tmp != NULL)
7277 result = tmp;
7278 else
7280 result = check_typedef (result);
7281 if (HAVE_GNAT_AUX_INFO (result))
7282 result = TYPE_DESCRIPTIVE_TYPE (result);
7283 else
7284 result = NULL;
7288 /* If we didn't find a match, see whether this is a packed array. With
7289 older compilers, the descriptive type information is either absent or
7290 irrelevant when it comes to packed arrays so the above lookup fails.
7291 Fall back to using a parallel lookup by name in this case. */
7292 if (result == NULL && ada_is_constrained_packed_array_type (type))
7293 return ada_find_any_type (name);
7295 return result;
7298 /* Find a parallel type to TYPE with the specified NAME, using the
7299 descriptive type taken from the debugging information, if available,
7300 and otherwise using the (slower) name-based method. */
7302 static struct type *
7303 ada_find_parallel_type_with_name (struct type *type, const char *name)
7305 struct type *result = NULL;
7307 if (HAVE_GNAT_AUX_INFO (type))
7308 result = find_parallel_type_by_descriptive_type (type, name);
7309 else
7310 result = ada_find_any_type (name);
7312 return result;
7315 /* Same as above, but specify the name of the parallel type by appending
7316 SUFFIX to the name of TYPE. */
7318 struct type *
7319 ada_find_parallel_type (struct type *type, const char *suffix)
7321 char *name;
7322 const char *type_name = ada_type_name (type);
7323 int len;
7325 if (type_name == NULL)
7326 return NULL;
7328 len = strlen (type_name);
7330 name = (char *) alloca (len + strlen (suffix) + 1);
7332 strcpy (name, type_name);
7333 strcpy (name + len, suffix);
7335 return ada_find_parallel_type_with_name (type, name);
7338 /* If TYPE is a variable-size record type, return the corresponding template
7339 type describing its fields. Otherwise, return NULL. */
7341 static struct type *
7342 dynamic_template_type (struct type *type)
7344 type = ada_check_typedef (type);
7346 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7347 || ada_type_name (type) == NULL)
7348 return NULL;
7349 else
7351 int len = strlen (ada_type_name (type));
7353 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7354 return type;
7355 else
7356 return ada_find_parallel_type (type, "___XVE");
7360 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7361 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7363 static int
7364 is_dynamic_field (struct type *templ_type, int field_num)
7366 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7368 return name != NULL
7369 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7370 && strstr (name, "___XVL") != NULL;
7373 /* The index of the variant field of TYPE, or -1 if TYPE does not
7374 represent a variant record type. */
7376 static int
7377 variant_field_index (struct type *type)
7379 int f;
7381 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7382 return -1;
7384 for (f = 0; f < type->num_fields (); f += 1)
7386 if (ada_is_variant_part (type, f))
7387 return f;
7389 return -1;
7392 /* A record type with no fields. */
7394 static struct type *
7395 empty_record (struct type *templ)
7397 struct type *type = alloc_type_copy (templ);
7399 type->set_code (TYPE_CODE_STRUCT);
7400 INIT_NONE_SPECIFIC (type);
7401 type->set_name ("<empty>");
7402 TYPE_LENGTH (type) = 0;
7403 return type;
7406 /* An ordinary record type (with fixed-length fields) that describes
7407 the value of type TYPE at VALADDR or ADDRESS (see comments at
7408 the beginning of this section) VAL according to GNAT conventions.
7409 DVAL0 should describe the (portion of a) record that contains any
7410 necessary discriminants. It should be NULL if value_type (VAL) is
7411 an outer-level type (i.e., as opposed to a branch of a variant.) A
7412 variant field (unless unchecked) is replaced by a particular branch
7413 of the variant.
7415 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7416 length are not statically known are discarded. As a consequence,
7417 VALADDR, ADDRESS and DVAL0 are ignored.
7419 NOTE: Limitations: For now, we assume that dynamic fields and
7420 variants occupy whole numbers of bytes. However, they need not be
7421 byte-aligned. */
7423 struct type *
7424 ada_template_to_fixed_record_type_1 (struct type *type,
7425 const gdb_byte *valaddr,
7426 CORE_ADDR address, struct value *dval0,
7427 int keep_dynamic_fields)
7429 struct value *mark = value_mark ();
7430 struct value *dval;
7431 struct type *rtype;
7432 int nfields, bit_len;
7433 int variant_field;
7434 long off;
7435 int fld_bit_len;
7436 int f;
7438 /* Compute the number of fields in this record type that are going
7439 to be processed: unless keep_dynamic_fields, this includes only
7440 fields whose position and length are static will be processed. */
7441 if (keep_dynamic_fields)
7442 nfields = type->num_fields ();
7443 else
7445 nfields = 0;
7446 while (nfields < type->num_fields ()
7447 && !ada_is_variant_part (type, nfields)
7448 && !is_dynamic_field (type, nfields))
7449 nfields++;
7452 rtype = alloc_type_copy (type);
7453 rtype->set_code (TYPE_CODE_STRUCT);
7454 INIT_NONE_SPECIFIC (rtype);
7455 rtype->set_num_fields (nfields);
7456 rtype->set_fields
7457 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7458 rtype->set_name (ada_type_name (type));
7459 rtype->set_is_fixed_instance (true);
7461 off = 0;
7462 bit_len = 0;
7463 variant_field = -1;
7465 for (f = 0; f < nfields; f += 1)
7467 off = align_up (off, field_alignment (type, f))
7468 + TYPE_FIELD_BITPOS (type, f);
7469 SET_FIELD_BITPOS (rtype->field (f), off);
7470 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7472 if (ada_is_variant_part (type, f))
7474 variant_field = f;
7475 fld_bit_len = 0;
7477 else if (is_dynamic_field (type, f))
7479 const gdb_byte *field_valaddr = valaddr;
7480 CORE_ADDR field_address = address;
7481 struct type *field_type =
7482 TYPE_TARGET_TYPE (type->field (f).type ());
7484 if (dval0 == NULL)
7486 /* rtype's length is computed based on the run-time
7487 value of discriminants. If the discriminants are not
7488 initialized, the type size may be completely bogus and
7489 GDB may fail to allocate a value for it. So check the
7490 size first before creating the value. */
7491 ada_ensure_varsize_limit (rtype);
7492 /* Using plain value_from_contents_and_address here
7493 causes problems because we will end up trying to
7494 resolve a type that is currently being
7495 constructed. */
7496 dval = value_from_contents_and_address_unresolved (rtype,
7497 valaddr,
7498 address);
7499 rtype = value_type (dval);
7501 else
7502 dval = dval0;
7504 /* If the type referenced by this field is an aligner type, we need
7505 to unwrap that aligner type, because its size might not be set.
7506 Keeping the aligner type would cause us to compute the wrong
7507 size for this field, impacting the offset of the all the fields
7508 that follow this one. */
7509 if (ada_is_aligner_type (field_type))
7511 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7513 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7514 field_address = cond_offset_target (field_address, field_offset);
7515 field_type = ada_aligned_type (field_type);
7518 field_valaddr = cond_offset_host (field_valaddr,
7519 off / TARGET_CHAR_BIT);
7520 field_address = cond_offset_target (field_address,
7521 off / TARGET_CHAR_BIT);
7523 /* Get the fixed type of the field. Note that, in this case,
7524 we do not want to get the real type out of the tag: if
7525 the current field is the parent part of a tagged record,
7526 we will get the tag of the object. Clearly wrong: the real
7527 type of the parent is not the real type of the child. We
7528 would end up in an infinite loop. */
7529 field_type = ada_get_base_type (field_type);
7530 field_type = ada_to_fixed_type (field_type, field_valaddr,
7531 field_address, dval, 0);
7532 /* If the field size is already larger than the maximum
7533 object size, then the record itself will necessarily
7534 be larger than the maximum object size. We need to make
7535 this check now, because the size might be so ridiculously
7536 large (due to an uninitialized variable in the inferior)
7537 that it would cause an overflow when adding it to the
7538 record size. */
7539 ada_ensure_varsize_limit (field_type);
7541 rtype->field (f).set_type (field_type);
7542 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7543 /* The multiplication can potentially overflow. But because
7544 the field length has been size-checked just above, and
7545 assuming that the maximum size is a reasonable value,
7546 an overflow should not happen in practice. So rather than
7547 adding overflow recovery code to this already complex code,
7548 we just assume that it's not going to happen. */
7549 fld_bit_len =
7550 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7552 else
7554 /* Note: If this field's type is a typedef, it is important
7555 to preserve the typedef layer.
7557 Otherwise, we might be transforming a typedef to a fat
7558 pointer (encoding a pointer to an unconstrained array),
7559 into a basic fat pointer (encoding an unconstrained
7560 array). As both types are implemented using the same
7561 structure, the typedef is the only clue which allows us
7562 to distinguish between the two options. Stripping it
7563 would prevent us from printing this field appropriately. */
7564 rtype->field (f).set_type (type->field (f).type ());
7565 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7566 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7567 fld_bit_len =
7568 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7569 else
7571 struct type *field_type = type->field (f).type ();
7573 /* We need to be careful of typedefs when computing
7574 the length of our field. If this is a typedef,
7575 get the length of the target type, not the length
7576 of the typedef. */
7577 if (field_type->code () == TYPE_CODE_TYPEDEF)
7578 field_type = ada_typedef_target_type (field_type);
7580 fld_bit_len =
7581 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7584 if (off + fld_bit_len > bit_len)
7585 bit_len = off + fld_bit_len;
7586 off += fld_bit_len;
7587 TYPE_LENGTH (rtype) =
7588 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7591 /* We handle the variant part, if any, at the end because of certain
7592 odd cases in which it is re-ordered so as NOT to be the last field of
7593 the record. This can happen in the presence of representation
7594 clauses. */
7595 if (variant_field >= 0)
7597 struct type *branch_type;
7599 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7601 if (dval0 == NULL)
7603 /* Using plain value_from_contents_and_address here causes
7604 problems because we will end up trying to resolve a type
7605 that is currently being constructed. */
7606 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7607 address);
7608 rtype = value_type (dval);
7610 else
7611 dval = dval0;
7613 branch_type =
7614 to_fixed_variant_branch_type
7615 (type->field (variant_field).type (),
7616 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7617 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7618 if (branch_type == NULL)
7620 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7621 rtype->field (f - 1) = rtype->field (f);
7622 rtype->set_num_fields (rtype->num_fields () - 1);
7624 else
7626 rtype->field (variant_field).set_type (branch_type);
7627 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7628 fld_bit_len =
7629 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7630 TARGET_CHAR_BIT;
7631 if (off + fld_bit_len > bit_len)
7632 bit_len = off + fld_bit_len;
7633 TYPE_LENGTH (rtype) =
7634 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7638 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7639 should contain the alignment of that record, which should be a strictly
7640 positive value. If null or negative, then something is wrong, most
7641 probably in the debug info. In that case, we don't round up the size
7642 of the resulting type. If this record is not part of another structure,
7643 the current RTYPE length might be good enough for our purposes. */
7644 if (TYPE_LENGTH (type) <= 0)
7646 if (rtype->name ())
7647 warning (_("Invalid type size for `%s' detected: %s."),
7648 rtype->name (), pulongest (TYPE_LENGTH (type)));
7649 else
7650 warning (_("Invalid type size for <unnamed> detected: %s."),
7651 pulongest (TYPE_LENGTH (type)));
7653 else
7655 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7656 TYPE_LENGTH (type));
7659 value_free_to_mark (mark);
7660 if (TYPE_LENGTH (rtype) > varsize_limit)
7661 error (_("record type with dynamic size is larger than varsize-limit"));
7662 return rtype;
7665 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7666 of 1. */
7668 static struct type *
7669 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7670 CORE_ADDR address, struct value *dval0)
7672 return ada_template_to_fixed_record_type_1 (type, valaddr,
7673 address, dval0, 1);
7676 /* An ordinary record type in which ___XVL-convention fields and
7677 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7678 static approximations, containing all possible fields. Uses
7679 no runtime values. Useless for use in values, but that's OK,
7680 since the results are used only for type determinations. Works on both
7681 structs and unions. Representation note: to save space, we memorize
7682 the result of this function in the TYPE_TARGET_TYPE of the
7683 template type. */
7685 static struct type *
7686 template_to_static_fixed_type (struct type *type0)
7688 struct type *type;
7689 int nfields;
7690 int f;
7692 /* No need no do anything if the input type is already fixed. */
7693 if (type0->is_fixed_instance ())
7694 return type0;
7696 /* Likewise if we already have computed the static approximation. */
7697 if (TYPE_TARGET_TYPE (type0) != NULL)
7698 return TYPE_TARGET_TYPE (type0);
7700 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7701 type = type0;
7702 nfields = type0->num_fields ();
7704 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7705 recompute all over next time. */
7706 TYPE_TARGET_TYPE (type0) = type;
7708 for (f = 0; f < nfields; f += 1)
7710 struct type *field_type = type0->field (f).type ();
7711 struct type *new_type;
7713 if (is_dynamic_field (type0, f))
7715 field_type = ada_check_typedef (field_type);
7716 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7718 else
7719 new_type = static_unwrap_type (field_type);
7721 if (new_type != field_type)
7723 /* Clone TYPE0 only the first time we get a new field type. */
7724 if (type == type0)
7726 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7727 type->set_code (type0->code ());
7728 INIT_NONE_SPECIFIC (type);
7729 type->set_num_fields (nfields);
7731 field *fields =
7732 ((struct field *)
7733 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7734 memcpy (fields, type0->fields (),
7735 sizeof (struct field) * nfields);
7736 type->set_fields (fields);
7738 type->set_name (ada_type_name (type0));
7739 type->set_is_fixed_instance (true);
7740 TYPE_LENGTH (type) = 0;
7742 type->field (f).set_type (new_type);
7743 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7747 return type;
7750 /* Given an object of type TYPE whose contents are at VALADDR and
7751 whose address in memory is ADDRESS, returns a revision of TYPE,
7752 which should be a non-dynamic-sized record, in which the variant
7753 part, if any, is replaced with the appropriate branch. Looks
7754 for discriminant values in DVAL0, which can be NULL if the record
7755 contains the necessary discriminant values. */
7757 static struct type *
7758 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7759 CORE_ADDR address, struct value *dval0)
7761 struct value *mark = value_mark ();
7762 struct value *dval;
7763 struct type *rtype;
7764 struct type *branch_type;
7765 int nfields = type->num_fields ();
7766 int variant_field = variant_field_index (type);
7768 if (variant_field == -1)
7769 return type;
7771 if (dval0 == NULL)
7773 dval = value_from_contents_and_address (type, valaddr, address);
7774 type = value_type (dval);
7776 else
7777 dval = dval0;
7779 rtype = alloc_type_copy (type);
7780 rtype->set_code (TYPE_CODE_STRUCT);
7781 INIT_NONE_SPECIFIC (rtype);
7782 rtype->set_num_fields (nfields);
7784 field *fields =
7785 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7786 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7787 rtype->set_fields (fields);
7789 rtype->set_name (ada_type_name (type));
7790 rtype->set_is_fixed_instance (true);
7791 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7793 branch_type = to_fixed_variant_branch_type
7794 (type->field (variant_field).type (),
7795 cond_offset_host (valaddr,
7796 TYPE_FIELD_BITPOS (type, variant_field)
7797 / TARGET_CHAR_BIT),
7798 cond_offset_target (address,
7799 TYPE_FIELD_BITPOS (type, variant_field)
7800 / TARGET_CHAR_BIT), dval);
7801 if (branch_type == NULL)
7803 int f;
7805 for (f = variant_field + 1; f < nfields; f += 1)
7806 rtype->field (f - 1) = rtype->field (f);
7807 rtype->set_num_fields (rtype->num_fields () - 1);
7809 else
7811 rtype->field (variant_field).set_type (branch_type);
7812 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7813 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7814 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7816 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7818 value_free_to_mark (mark);
7819 return rtype;
7822 /* An ordinary record type (with fixed-length fields) that describes
7823 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7824 beginning of this section]. Any necessary discriminants' values
7825 should be in DVAL, a record value; it may be NULL if the object
7826 at ADDR itself contains any necessary discriminant values.
7827 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7828 values from the record are needed. Except in the case that DVAL,
7829 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7830 unchecked) is replaced by a particular branch of the variant.
7832 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7833 is questionable and may be removed. It can arise during the
7834 processing of an unconstrained-array-of-record type where all the
7835 variant branches have exactly the same size. This is because in
7836 such cases, the compiler does not bother to use the XVS convention
7837 when encoding the record. I am currently dubious of this
7838 shortcut and suspect the compiler should be altered. FIXME. */
7840 static struct type *
7841 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7842 CORE_ADDR address, struct value *dval)
7844 struct type *templ_type;
7846 if (type0->is_fixed_instance ())
7847 return type0;
7849 templ_type = dynamic_template_type (type0);
7851 if (templ_type != NULL)
7852 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7853 else if (variant_field_index (type0) >= 0)
7855 if (dval == NULL && valaddr == NULL && address == 0)
7856 return type0;
7857 return to_record_with_fixed_variant_part (type0, valaddr, address,
7858 dval);
7860 else
7862 type0->set_is_fixed_instance (true);
7863 return type0;
7868 /* An ordinary record type (with fixed-length fields) that describes
7869 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7870 union type. Any necessary discriminants' values should be in DVAL,
7871 a record value. That is, this routine selects the appropriate
7872 branch of the union at ADDR according to the discriminant value
7873 indicated in the union's type name. Returns VAR_TYPE0 itself if
7874 it represents a variant subject to a pragma Unchecked_Union. */
7876 static struct type *
7877 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7878 CORE_ADDR address, struct value *dval)
7880 int which;
7881 struct type *templ_type;
7882 struct type *var_type;
7884 if (var_type0->code () == TYPE_CODE_PTR)
7885 var_type = TYPE_TARGET_TYPE (var_type0);
7886 else
7887 var_type = var_type0;
7889 templ_type = ada_find_parallel_type (var_type, "___XVU");
7891 if (templ_type != NULL)
7892 var_type = templ_type;
7894 if (is_unchecked_variant (var_type, value_type (dval)))
7895 return var_type0;
7896 which = ada_which_variant_applies (var_type, dval);
7898 if (which < 0)
7899 return empty_record (var_type);
7900 else if (is_dynamic_field (var_type, which))
7901 return to_fixed_record_type
7902 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7903 valaddr, address, dval);
7904 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7905 return
7906 to_fixed_record_type
7907 (var_type->field (which).type (), valaddr, address, dval);
7908 else
7909 return var_type->field (which).type ();
7912 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7913 ENCODING_TYPE, a type following the GNAT conventions for discrete
7914 type encodings, only carries redundant information. */
7916 static int
7917 ada_is_redundant_range_encoding (struct type *range_type,
7918 struct type *encoding_type)
7920 const char *bounds_str;
7921 int n;
7922 LONGEST lo, hi;
7924 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7926 if (get_base_type (range_type)->code ()
7927 != get_base_type (encoding_type)->code ())
7929 /* The compiler probably used a simple base type to describe
7930 the range type instead of the range's actual base type,
7931 expecting us to get the real base type from the encoding
7932 anyway. In this situation, the encoding cannot be ignored
7933 as redundant. */
7934 return 0;
7937 if (is_dynamic_type (range_type))
7938 return 0;
7940 if (encoding_type->name () == NULL)
7941 return 0;
7943 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7944 if (bounds_str == NULL)
7945 return 0;
7947 n = 8; /* Skip "___XDLU_". */
7948 if (!ada_scan_number (bounds_str, n, &lo, &n))
7949 return 0;
7950 if (range_type->bounds ()->low.const_val () != lo)
7951 return 0;
7953 n += 2; /* Skip the "__" separator between the two bounds. */
7954 if (!ada_scan_number (bounds_str, n, &hi, &n))
7955 return 0;
7956 if (range_type->bounds ()->high.const_val () != hi)
7957 return 0;
7959 return 1;
7962 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7963 a type following the GNAT encoding for describing array type
7964 indices, only carries redundant information. */
7966 static int
7967 ada_is_redundant_index_type_desc (struct type *array_type,
7968 struct type *desc_type)
7970 struct type *this_layer = check_typedef (array_type);
7971 int i;
7973 for (i = 0; i < desc_type->num_fields (); i++)
7975 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
7976 desc_type->field (i).type ()))
7977 return 0;
7978 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7981 return 1;
7984 /* Assuming that TYPE0 is an array type describing the type of a value
7985 at ADDR, and that DVAL describes a record containing any
7986 discriminants used in TYPE0, returns a type for the value that
7987 contains no dynamic components (that is, no components whose sizes
7988 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7989 true, gives an error message if the resulting type's size is over
7990 varsize_limit. */
7992 static struct type *
7993 to_fixed_array_type (struct type *type0, struct value *dval,
7994 int ignore_too_big)
7996 struct type *index_type_desc;
7997 struct type *result;
7998 int constrained_packed_array_p;
7999 static const char *xa_suffix = "___XA";
8001 type0 = ada_check_typedef (type0);
8002 if (type0->is_fixed_instance ())
8003 return type0;
8005 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8006 if (constrained_packed_array_p)
8008 type0 = decode_constrained_packed_array_type (type0);
8009 if (type0 == nullptr)
8010 error (_("could not decode constrained packed array type"));
8013 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8015 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8016 encoding suffixed with 'P' may still be generated. If so,
8017 it should be used to find the XA type. */
8019 if (index_type_desc == NULL)
8021 const char *type_name = ada_type_name (type0);
8023 if (type_name != NULL)
8025 const int len = strlen (type_name);
8026 char *name = (char *) alloca (len + strlen (xa_suffix));
8028 if (type_name[len - 1] == 'P')
8030 strcpy (name, type_name);
8031 strcpy (name + len - 1, xa_suffix);
8032 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8037 ada_fixup_array_indexes_type (index_type_desc);
8038 if (index_type_desc != NULL
8039 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8041 /* Ignore this ___XA parallel type, as it does not bring any
8042 useful information. This allows us to avoid creating fixed
8043 versions of the array's index types, which would be identical
8044 to the original ones. This, in turn, can also help avoid
8045 the creation of fixed versions of the array itself. */
8046 index_type_desc = NULL;
8049 if (index_type_desc == NULL)
8051 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8053 /* NOTE: elt_type---the fixed version of elt_type0---should never
8054 depend on the contents of the array in properly constructed
8055 debugging data. */
8056 /* Create a fixed version of the array element type.
8057 We're not providing the address of an element here,
8058 and thus the actual object value cannot be inspected to do
8059 the conversion. This should not be a problem, since arrays of
8060 unconstrained objects are not allowed. In particular, all
8061 the elements of an array of a tagged type should all be of
8062 the same type specified in the debugging info. No need to
8063 consult the object tag. */
8064 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8066 /* Make sure we always create a new array type when dealing with
8067 packed array types, since we're going to fix-up the array
8068 type length and element bitsize a little further down. */
8069 if (elt_type0 == elt_type && !constrained_packed_array_p)
8070 result = type0;
8071 else
8072 result = create_array_type (alloc_type_copy (type0),
8073 elt_type, type0->index_type ());
8075 else
8077 int i;
8078 struct type *elt_type0;
8080 elt_type0 = type0;
8081 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8082 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8084 /* NOTE: result---the fixed version of elt_type0---should never
8085 depend on the contents of the array in properly constructed
8086 debugging data. */
8087 /* Create a fixed version of the array element type.
8088 We're not providing the address of an element here,
8089 and thus the actual object value cannot be inspected to do
8090 the conversion. This should not be a problem, since arrays of
8091 unconstrained objects are not allowed. In particular, all
8092 the elements of an array of a tagged type should all be of
8093 the same type specified in the debugging info. No need to
8094 consult the object tag. */
8095 result =
8096 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8098 elt_type0 = type0;
8099 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8101 struct type *range_type =
8102 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8104 result = create_array_type (alloc_type_copy (elt_type0),
8105 result, range_type);
8106 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8108 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8109 error (_("array type with dynamic size is larger than varsize-limit"));
8112 /* We want to preserve the type name. This can be useful when
8113 trying to get the type name of a value that has already been
8114 printed (for instance, if the user did "print VAR; whatis $". */
8115 result->set_name (type0->name ());
8117 if (constrained_packed_array_p)
8119 /* So far, the resulting type has been created as if the original
8120 type was a regular (non-packed) array type. As a result, the
8121 bitsize of the array elements needs to be set again, and the array
8122 length needs to be recomputed based on that bitsize. */
8123 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8124 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8126 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8127 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8128 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8129 TYPE_LENGTH (result)++;
8132 result->set_is_fixed_instance (true);
8133 return result;
8137 /* A standard type (containing no dynamically sized components)
8138 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8139 DVAL describes a record containing any discriminants used in TYPE0,
8140 and may be NULL if there are none, or if the object of type TYPE at
8141 ADDRESS or in VALADDR contains these discriminants.
8143 If CHECK_TAG is not null, in the case of tagged types, this function
8144 attempts to locate the object's tag and use it to compute the actual
8145 type. However, when ADDRESS is null, we cannot use it to determine the
8146 location of the tag, and therefore compute the tagged type's actual type.
8147 So we return the tagged type without consulting the tag. */
8149 static struct type *
8150 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8151 CORE_ADDR address, struct value *dval, int check_tag)
8153 type = ada_check_typedef (type);
8155 /* Only un-fixed types need to be handled here. */
8156 if (!HAVE_GNAT_AUX_INFO (type))
8157 return type;
8159 switch (type->code ())
8161 default:
8162 return type;
8163 case TYPE_CODE_STRUCT:
8165 struct type *static_type = to_static_fixed_type (type);
8166 struct type *fixed_record_type =
8167 to_fixed_record_type (type, valaddr, address, NULL);
8169 /* If STATIC_TYPE is a tagged type and we know the object's address,
8170 then we can determine its tag, and compute the object's actual
8171 type from there. Note that we have to use the fixed record
8172 type (the parent part of the record may have dynamic fields
8173 and the way the location of _tag is expressed may depend on
8174 them). */
8176 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8178 struct value *tag =
8179 value_tag_from_contents_and_address
8180 (fixed_record_type,
8181 valaddr,
8182 address);
8183 struct type *real_type = type_from_tag (tag);
8184 struct value *obj =
8185 value_from_contents_and_address (fixed_record_type,
8186 valaddr,
8187 address);
8188 fixed_record_type = value_type (obj);
8189 if (real_type != NULL)
8190 return to_fixed_record_type
8191 (real_type, NULL,
8192 value_address (ada_tag_value_at_base_address (obj)), NULL);
8195 /* Check to see if there is a parallel ___XVZ variable.
8196 If there is, then it provides the actual size of our type. */
8197 else if (ada_type_name (fixed_record_type) != NULL)
8199 const char *name = ada_type_name (fixed_record_type);
8200 char *xvz_name
8201 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8202 bool xvz_found = false;
8203 LONGEST size;
8205 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8208 xvz_found = get_int_var_value (xvz_name, size);
8210 catch (const gdb_exception_error &except)
8212 /* We found the variable, but somehow failed to read
8213 its value. Rethrow the same error, but with a little
8214 bit more information, to help the user understand
8215 what went wrong (Eg: the variable might have been
8216 optimized out). */
8217 throw_error (except.error,
8218 _("unable to read value of %s (%s)"),
8219 xvz_name, except.what ());
8222 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8224 fixed_record_type = copy_type (fixed_record_type);
8225 TYPE_LENGTH (fixed_record_type) = size;
8227 /* The FIXED_RECORD_TYPE may have be a stub. We have
8228 observed this when the debugging info is STABS, and
8229 apparently it is something that is hard to fix.
8231 In practice, we don't need the actual type definition
8232 at all, because the presence of the XVZ variable allows us
8233 to assume that there must be a XVS type as well, which we
8234 should be able to use later, when we need the actual type
8235 definition.
8237 In the meantime, pretend that the "fixed" type we are
8238 returning is NOT a stub, because this can cause trouble
8239 when using this type to create new types targeting it.
8240 Indeed, the associated creation routines often check
8241 whether the target type is a stub and will try to replace
8242 it, thus using a type with the wrong size. This, in turn,
8243 might cause the new type to have the wrong size too.
8244 Consider the case of an array, for instance, where the size
8245 of the array is computed from the number of elements in
8246 our array multiplied by the size of its element. */
8247 fixed_record_type->set_is_stub (false);
8250 return fixed_record_type;
8252 case TYPE_CODE_ARRAY:
8253 return to_fixed_array_type (type, dval, 1);
8254 case TYPE_CODE_UNION:
8255 if (dval == NULL)
8256 return type;
8257 else
8258 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8262 /* The same as ada_to_fixed_type_1, except that it preserves the type
8263 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8265 The typedef layer needs be preserved in order to differentiate between
8266 arrays and array pointers when both types are implemented using the same
8267 fat pointer. In the array pointer case, the pointer is encoded as
8268 a typedef of the pointer type. For instance, considering:
8270 type String_Access is access String;
8271 S1 : String_Access := null;
8273 To the debugger, S1 is defined as a typedef of type String. But
8274 to the user, it is a pointer. So if the user tries to print S1,
8275 we should not dereference the array, but print the array address
8276 instead.
8278 If we didn't preserve the typedef layer, we would lose the fact that
8279 the type is to be presented as a pointer (needs de-reference before
8280 being printed). And we would also use the source-level type name. */
8282 struct type *
8283 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8284 CORE_ADDR address, struct value *dval, int check_tag)
8287 struct type *fixed_type =
8288 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8290 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8291 then preserve the typedef layer.
8293 Implementation note: We can only check the main-type portion of
8294 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8295 from TYPE now returns a type that has the same instance flags
8296 as TYPE. For instance, if TYPE is a "typedef const", and its
8297 target type is a "struct", then the typedef elimination will return
8298 a "const" version of the target type. See check_typedef for more
8299 details about how the typedef layer elimination is done.
8301 brobecker/2010-11-19: It seems to me that the only case where it is
8302 useful to preserve the typedef layer is when dealing with fat pointers.
8303 Perhaps, we could add a check for that and preserve the typedef layer
8304 only in that situation. But this seems unnecessary so far, probably
8305 because we call check_typedef/ada_check_typedef pretty much everywhere.
8307 if (type->code () == TYPE_CODE_TYPEDEF
8308 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8309 == TYPE_MAIN_TYPE (fixed_type)))
8310 return type;
8312 return fixed_type;
8315 /* A standard (static-sized) type corresponding as well as possible to
8316 TYPE0, but based on no runtime data. */
8318 static struct type *
8319 to_static_fixed_type (struct type *type0)
8321 struct type *type;
8323 if (type0 == NULL)
8324 return NULL;
8326 if (type0->is_fixed_instance ())
8327 return type0;
8329 type0 = ada_check_typedef (type0);
8331 switch (type0->code ())
8333 default:
8334 return type0;
8335 case TYPE_CODE_STRUCT:
8336 type = dynamic_template_type (type0);
8337 if (type != NULL)
8338 return template_to_static_fixed_type (type);
8339 else
8340 return template_to_static_fixed_type (type0);
8341 case TYPE_CODE_UNION:
8342 type = ada_find_parallel_type (type0, "___XVU");
8343 if (type != NULL)
8344 return template_to_static_fixed_type (type);
8345 else
8346 return template_to_static_fixed_type (type0);
8350 /* A static approximation of TYPE with all type wrappers removed. */
8352 static struct type *
8353 static_unwrap_type (struct type *type)
8355 if (ada_is_aligner_type (type))
8357 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8358 if (ada_type_name (type1) == NULL)
8359 type1->set_name (ada_type_name (type));
8361 return static_unwrap_type (type1);
8363 else
8365 struct type *raw_real_type = ada_get_base_type (type);
8367 if (raw_real_type == type)
8368 return type;
8369 else
8370 return to_static_fixed_type (raw_real_type);
8374 /* In some cases, incomplete and private types require
8375 cross-references that are not resolved as records (for example,
8376 type Foo;
8377 type FooP is access Foo;
8378 V: FooP;
8379 type Foo is array ...;
8380 ). In these cases, since there is no mechanism for producing
8381 cross-references to such types, we instead substitute for FooP a
8382 stub enumeration type that is nowhere resolved, and whose tag is
8383 the name of the actual type. Call these types "non-record stubs". */
8385 /* A type equivalent to TYPE that is not a non-record stub, if one
8386 exists, otherwise TYPE. */
8388 struct type *
8389 ada_check_typedef (struct type *type)
8391 if (type == NULL)
8392 return NULL;
8394 /* If our type is an access to an unconstrained array, which is encoded
8395 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8396 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8397 what allows us to distinguish between fat pointers that represent
8398 array types, and fat pointers that represent array access types
8399 (in both cases, the compiler implements them as fat pointers). */
8400 if (ada_is_access_to_unconstrained_array (type))
8401 return type;
8403 type = check_typedef (type);
8404 if (type == NULL || type->code () != TYPE_CODE_ENUM
8405 || !type->is_stub ()
8406 || type->name () == NULL)
8407 return type;
8408 else
8410 const char *name = type->name ();
8411 struct type *type1 = ada_find_any_type (name);
8413 if (type1 == NULL)
8414 return type;
8416 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8417 stubs pointing to arrays, as we don't create symbols for array
8418 types, only for the typedef-to-array types). If that's the case,
8419 strip the typedef layer. */
8420 if (type1->code () == TYPE_CODE_TYPEDEF)
8421 type1 = ada_check_typedef (type1);
8423 return type1;
8427 /* A value representing the data at VALADDR/ADDRESS as described by
8428 type TYPE0, but with a standard (static-sized) type that correctly
8429 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8430 type, then return VAL0 [this feature is simply to avoid redundant
8431 creation of struct values]. */
8433 static struct value *
8434 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8435 struct value *val0)
8437 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8439 if (type == type0 && val0 != NULL)
8440 return val0;
8442 if (VALUE_LVAL (val0) != lval_memory)
8444 /* Our value does not live in memory; it could be a convenience
8445 variable, for instance. Create a not_lval value using val0's
8446 contents. */
8447 return value_from_contents (type, value_contents (val0));
8450 return value_from_contents_and_address (type, 0, address);
8453 /* A value representing VAL, but with a standard (static-sized) type
8454 that correctly describes it. Does not necessarily create a new
8455 value. */
8457 struct value *
8458 ada_to_fixed_value (struct value *val)
8460 val = unwrap_value (val);
8461 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8462 return val;
8466 /* Attributes */
8468 /* Table mapping attribute numbers to names.
8469 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8471 static const char * const attribute_names[] = {
8472 "<?>",
8474 "first",
8475 "last",
8476 "length",
8477 "image",
8478 "max",
8479 "min",
8480 "modulus",
8481 "pos",
8482 "size",
8483 "tag",
8484 "val",
8488 static const char *
8489 ada_attribute_name (enum exp_opcode n)
8491 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8492 return attribute_names[n - OP_ATR_FIRST + 1];
8493 else
8494 return attribute_names[0];
8497 /* Evaluate the 'POS attribute applied to ARG. */
8499 static LONGEST
8500 pos_atr (struct value *arg)
8502 struct value *val = coerce_ref (arg);
8503 struct type *type = value_type (val);
8505 if (!discrete_type_p (type))
8506 error (_("'POS only defined on discrete types"));
8508 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8509 if (!result.has_value ())
8510 error (_("enumeration value is invalid: can't find 'POS"));
8512 return *result;
8515 struct value *
8516 ada_pos_atr (struct type *expect_type,
8517 struct expression *exp,
8518 enum noside noside, enum exp_opcode op,
8519 struct value *arg)
8521 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8522 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8523 return value_zero (type, not_lval);
8524 return value_from_longest (type, pos_atr (arg));
8527 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8529 static struct value *
8530 val_atr (struct type *type, LONGEST val)
8532 gdb_assert (discrete_type_p (type));
8533 if (type->code () == TYPE_CODE_RANGE)
8534 type = TYPE_TARGET_TYPE (type);
8535 if (type->code () == TYPE_CODE_ENUM)
8537 if (val < 0 || val >= type->num_fields ())
8538 error (_("argument to 'VAL out of range"));
8539 val = TYPE_FIELD_ENUMVAL (type, val);
8541 return value_from_longest (type, val);
8544 struct value *
8545 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8547 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8548 return value_zero (type, not_lval);
8550 if (!discrete_type_p (type))
8551 error (_("'VAL only defined on discrete types"));
8552 if (!integer_type_p (value_type (arg)))
8553 error (_("'VAL requires integral argument"));
8555 return val_atr (type, value_as_long (arg));
8559 /* Evaluation */
8561 /* True if TYPE appears to be an Ada character type.
8562 [At the moment, this is true only for Character and Wide_Character;
8563 It is a heuristic test that could stand improvement]. */
8565 bool
8566 ada_is_character_type (struct type *type)
8568 const char *name;
8570 /* If the type code says it's a character, then assume it really is,
8571 and don't check any further. */
8572 if (type->code () == TYPE_CODE_CHAR)
8573 return true;
8575 /* Otherwise, assume it's a character type iff it is a discrete type
8576 with a known character type name. */
8577 name = ada_type_name (type);
8578 return (name != NULL
8579 && (type->code () == TYPE_CODE_INT
8580 || type->code () == TYPE_CODE_RANGE)
8581 && (strcmp (name, "character") == 0
8582 || strcmp (name, "wide_character") == 0
8583 || strcmp (name, "wide_wide_character") == 0
8584 || strcmp (name, "unsigned char") == 0));
8587 /* True if TYPE appears to be an Ada string type. */
8589 bool
8590 ada_is_string_type (struct type *type)
8592 type = ada_check_typedef (type);
8593 if (type != NULL
8594 && type->code () != TYPE_CODE_PTR
8595 && (ada_is_simple_array_type (type)
8596 || ada_is_array_descriptor_type (type))
8597 && ada_array_arity (type) == 1)
8599 struct type *elttype = ada_array_element_type (type, 1);
8601 return ada_is_character_type (elttype);
8603 else
8604 return false;
8607 /* The compiler sometimes provides a parallel XVS type for a given
8608 PAD type. Normally, it is safe to follow the PAD type directly,
8609 but older versions of the compiler have a bug that causes the offset
8610 of its "F" field to be wrong. Following that field in that case
8611 would lead to incorrect results, but this can be worked around
8612 by ignoring the PAD type and using the associated XVS type instead.
8614 Set to True if the debugger should trust the contents of PAD types.
8615 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8616 static bool trust_pad_over_xvs = true;
8618 /* True if TYPE is a struct type introduced by the compiler to force the
8619 alignment of a value. Such types have a single field with a
8620 distinctive name. */
8623 ada_is_aligner_type (struct type *type)
8625 type = ada_check_typedef (type);
8627 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8628 return 0;
8630 return (type->code () == TYPE_CODE_STRUCT
8631 && type->num_fields () == 1
8632 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8635 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8636 the parallel type. */
8638 struct type *
8639 ada_get_base_type (struct type *raw_type)
8641 struct type *real_type_namer;
8642 struct type *raw_real_type;
8644 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8645 return raw_type;
8647 if (ada_is_aligner_type (raw_type))
8648 /* The encoding specifies that we should always use the aligner type.
8649 So, even if this aligner type has an associated XVS type, we should
8650 simply ignore it.
8652 According to the compiler gurus, an XVS type parallel to an aligner
8653 type may exist because of a stabs limitation. In stabs, aligner
8654 types are empty because the field has a variable-sized type, and
8655 thus cannot actually be used as an aligner type. As a result,
8656 we need the associated parallel XVS type to decode the type.
8657 Since the policy in the compiler is to not change the internal
8658 representation based on the debugging info format, we sometimes
8659 end up having a redundant XVS type parallel to the aligner type. */
8660 return raw_type;
8662 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8663 if (real_type_namer == NULL
8664 || real_type_namer->code () != TYPE_CODE_STRUCT
8665 || real_type_namer->num_fields () != 1)
8666 return raw_type;
8668 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8670 /* This is an older encoding form where the base type needs to be
8671 looked up by name. We prefer the newer encoding because it is
8672 more efficient. */
8673 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8674 if (raw_real_type == NULL)
8675 return raw_type;
8676 else
8677 return raw_real_type;
8680 /* The field in our XVS type is a reference to the base type. */
8681 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8684 /* The type of value designated by TYPE, with all aligners removed. */
8686 struct type *
8687 ada_aligned_type (struct type *type)
8689 if (ada_is_aligner_type (type))
8690 return ada_aligned_type (type->field (0).type ());
8691 else
8692 return ada_get_base_type (type);
8696 /* The address of the aligned value in an object at address VALADDR
8697 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8699 const gdb_byte *
8700 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8702 if (ada_is_aligner_type (type))
8703 return ada_aligned_value_addr (type->field (0).type (),
8704 valaddr +
8705 TYPE_FIELD_BITPOS (type,
8706 0) / TARGET_CHAR_BIT);
8707 else
8708 return valaddr;
8713 /* The printed representation of an enumeration literal with encoded
8714 name NAME. The value is good to the next call of ada_enum_name. */
8715 const char *
8716 ada_enum_name (const char *name)
8718 static std::string storage;
8719 const char *tmp;
8721 /* First, unqualify the enumeration name:
8722 1. Search for the last '.' character. If we find one, then skip
8723 all the preceding characters, the unqualified name starts
8724 right after that dot.
8725 2. Otherwise, we may be debugging on a target where the compiler
8726 translates dots into "__". Search forward for double underscores,
8727 but stop searching when we hit an overloading suffix, which is
8728 of the form "__" followed by digits. */
8730 tmp = strrchr (name, '.');
8731 if (tmp != NULL)
8732 name = tmp + 1;
8733 else
8735 while ((tmp = strstr (name, "__")) != NULL)
8737 if (isdigit (tmp[2]))
8738 break;
8739 else
8740 name = tmp + 2;
8744 if (name[0] == 'Q')
8746 int v;
8748 if (name[1] == 'U' || name[1] == 'W')
8750 if (sscanf (name + 2, "%x", &v) != 1)
8751 return name;
8753 else if (((name[1] >= '0' && name[1] <= '9')
8754 || (name[1] >= 'a' && name[1] <= 'z'))
8755 && name[2] == '\0')
8757 storage = string_printf ("'%c'", name[1]);
8758 return storage.c_str ();
8760 else
8761 return name;
8763 if (isascii (v) && isprint (v))
8764 storage = string_printf ("'%c'", v);
8765 else if (name[1] == 'U')
8766 storage = string_printf ("[\"%02x\"]", v);
8767 else
8768 storage = string_printf ("[\"%04x\"]", v);
8770 return storage.c_str ();
8772 else
8774 tmp = strstr (name, "__");
8775 if (tmp == NULL)
8776 tmp = strstr (name, "$");
8777 if (tmp != NULL)
8779 storage = std::string (name, tmp - name);
8780 return storage.c_str ();
8783 return name;
8787 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8788 value it wraps. */
8790 static struct value *
8791 unwrap_value (struct value *val)
8793 struct type *type = ada_check_typedef (value_type (val));
8795 if (ada_is_aligner_type (type))
8797 struct value *v = ada_value_struct_elt (val, "F", 0);
8798 struct type *val_type = ada_check_typedef (value_type (v));
8800 if (ada_type_name (val_type) == NULL)
8801 val_type->set_name (ada_type_name (type));
8803 return unwrap_value (v);
8805 else
8807 struct type *raw_real_type =
8808 ada_check_typedef (ada_get_base_type (type));
8810 /* If there is no parallel XVS or XVE type, then the value is
8811 already unwrapped. Return it without further modification. */
8812 if ((type == raw_real_type)
8813 && ada_find_parallel_type (type, "___XVE") == NULL)
8814 return val;
8816 return
8817 coerce_unspec_val_to_type
8818 (val, ada_to_fixed_type (raw_real_type, 0,
8819 value_address (val),
8820 NULL, 1));
8824 /* Given two array types T1 and T2, return nonzero iff both arrays
8825 contain the same number of elements. */
8827 static int
8828 ada_same_array_size_p (struct type *t1, struct type *t2)
8830 LONGEST lo1, hi1, lo2, hi2;
8832 /* Get the array bounds in order to verify that the size of
8833 the two arrays match. */
8834 if (!get_array_bounds (t1, &lo1, &hi1)
8835 || !get_array_bounds (t2, &lo2, &hi2))
8836 error (_("unable to determine array bounds"));
8838 /* To make things easier for size comparison, normalize a bit
8839 the case of empty arrays by making sure that the difference
8840 between upper bound and lower bound is always -1. */
8841 if (lo1 > hi1)
8842 hi1 = lo1 - 1;
8843 if (lo2 > hi2)
8844 hi2 = lo2 - 1;
8846 return (hi1 - lo1 == hi2 - lo2);
8849 /* Assuming that VAL is an array of integrals, and TYPE represents
8850 an array with the same number of elements, but with wider integral
8851 elements, return an array "casted" to TYPE. In practice, this
8852 means that the returned array is built by casting each element
8853 of the original array into TYPE's (wider) element type. */
8855 static struct value *
8856 ada_promote_array_of_integrals (struct type *type, struct value *val)
8858 struct type *elt_type = TYPE_TARGET_TYPE (type);
8859 LONGEST lo, hi;
8860 struct value *res;
8861 LONGEST i;
8863 /* Verify that both val and type are arrays of scalars, and
8864 that the size of val's elements is smaller than the size
8865 of type's element. */
8866 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8867 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8868 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8869 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8870 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8871 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8873 if (!get_array_bounds (type, &lo, &hi))
8874 error (_("unable to determine array bounds"));
8876 res = allocate_value (type);
8878 /* Promote each array element. */
8879 for (i = 0; i < hi - lo + 1; i++)
8881 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8883 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8884 value_contents_all (elt), TYPE_LENGTH (elt_type));
8887 return res;
8890 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8891 return the converted value. */
8893 static struct value *
8894 coerce_for_assign (struct type *type, struct value *val)
8896 struct type *type2 = value_type (val);
8898 if (type == type2)
8899 return val;
8901 type2 = ada_check_typedef (type2);
8902 type = ada_check_typedef (type);
8904 if (type2->code () == TYPE_CODE_PTR
8905 && type->code () == TYPE_CODE_ARRAY)
8907 val = ada_value_ind (val);
8908 type2 = value_type (val);
8911 if (type2->code () == TYPE_CODE_ARRAY
8912 && type->code () == TYPE_CODE_ARRAY)
8914 if (!ada_same_array_size_p (type, type2))
8915 error (_("cannot assign arrays of different length"));
8917 if (is_integral_type (TYPE_TARGET_TYPE (type))
8918 && is_integral_type (TYPE_TARGET_TYPE (type2))
8919 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8920 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8922 /* Allow implicit promotion of the array elements to
8923 a wider type. */
8924 return ada_promote_array_of_integrals (type, val);
8927 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8928 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8929 error (_("Incompatible types in assignment"));
8930 deprecated_set_value_type (val, type);
8932 return val;
8935 static struct value *
8936 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8938 struct value *val;
8939 struct type *type1, *type2;
8940 LONGEST v, v1, v2;
8942 arg1 = coerce_ref (arg1);
8943 arg2 = coerce_ref (arg2);
8944 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8945 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8947 if (type1->code () != TYPE_CODE_INT
8948 || type2->code () != TYPE_CODE_INT)
8949 return value_binop (arg1, arg2, op);
8951 switch (op)
8953 case BINOP_MOD:
8954 case BINOP_DIV:
8955 case BINOP_REM:
8956 break;
8957 default:
8958 return value_binop (arg1, arg2, op);
8961 v2 = value_as_long (arg2);
8962 if (v2 == 0)
8964 const char *name;
8965 if (op == BINOP_MOD)
8966 name = "mod";
8967 else if (op == BINOP_DIV)
8968 name = "/";
8969 else
8971 gdb_assert (op == BINOP_REM);
8972 name = "rem";
8975 error (_("second operand of %s must not be zero."), name);
8978 if (type1->is_unsigned () || op == BINOP_MOD)
8979 return value_binop (arg1, arg2, op);
8981 v1 = value_as_long (arg1);
8982 switch (op)
8984 case BINOP_DIV:
8985 v = v1 / v2;
8986 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8987 v += v > 0 ? -1 : 1;
8988 break;
8989 case BINOP_REM:
8990 v = v1 % v2;
8991 if (v * v1 < 0)
8992 v -= v2;
8993 break;
8994 default:
8995 /* Should not reach this point. */
8996 v = 0;
8999 val = allocate_value (type1);
9000 store_unsigned_integer (value_contents_raw (val),
9001 TYPE_LENGTH (value_type (val)),
9002 type_byte_order (type1), v);
9003 return val;
9006 static int
9007 ada_value_equal (struct value *arg1, struct value *arg2)
9009 if (ada_is_direct_array_type (value_type (arg1))
9010 || ada_is_direct_array_type (value_type (arg2)))
9012 struct type *arg1_type, *arg2_type;
9014 /* Automatically dereference any array reference before
9015 we attempt to perform the comparison. */
9016 arg1 = ada_coerce_ref (arg1);
9017 arg2 = ada_coerce_ref (arg2);
9019 arg1 = ada_coerce_to_simple_array (arg1);
9020 arg2 = ada_coerce_to_simple_array (arg2);
9022 arg1_type = ada_check_typedef (value_type (arg1));
9023 arg2_type = ada_check_typedef (value_type (arg2));
9025 if (arg1_type->code () != TYPE_CODE_ARRAY
9026 || arg2_type->code () != TYPE_CODE_ARRAY)
9027 error (_("Attempt to compare array with non-array"));
9028 /* FIXME: The following works only for types whose
9029 representations use all bits (no padding or undefined bits)
9030 and do not have user-defined equality. */
9031 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9032 && memcmp (value_contents (arg1), value_contents (arg2),
9033 TYPE_LENGTH (arg1_type)) == 0);
9035 return value_equal (arg1, arg2);
9038 namespace expr
9041 bool
9042 check_objfile (const std::unique_ptr<ada_component> &comp,
9043 struct objfile *objfile)
9045 return comp->uses_objfile (objfile);
9048 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9049 component of LHS (a simple array or a record). Does not modify the
9050 inferior's memory, nor does it modify LHS (unless LHS ==
9051 CONTAINER). */
9053 static void
9054 assign_component (struct value *container, struct value *lhs, LONGEST index,
9055 struct expression *exp, operation_up &arg)
9057 scoped_value_mark mark;
9059 struct value *elt;
9060 struct type *lhs_type = check_typedef (value_type (lhs));
9062 if (lhs_type->code () == TYPE_CODE_ARRAY)
9064 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9065 struct value *index_val = value_from_longest (index_type, index);
9067 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9069 else
9071 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9072 elt = ada_to_fixed_value (elt);
9075 ada_aggregate_operation *ag_op
9076 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9077 if (ag_op != nullptr)
9078 ag_op->assign_aggregate (container, elt, exp);
9079 else
9080 value_assign_to_component (container, elt,
9081 arg->evaluate (nullptr, exp,
9082 EVAL_NORMAL));
9085 bool
9086 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9088 for (const auto &item : m_components)
9089 if (item->uses_objfile (objfile))
9090 return true;
9091 return false;
9094 void
9095 ada_aggregate_component::dump (ui_file *stream, int depth)
9097 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9098 for (const auto &item : m_components)
9099 item->dump (stream, depth + 1);
9102 void
9103 ada_aggregate_component::assign (struct value *container,
9104 struct value *lhs, struct expression *exp,
9105 std::vector<LONGEST> &indices,
9106 LONGEST low, LONGEST high)
9108 for (auto &item : m_components)
9109 item->assign (container, lhs, exp, indices, low, high);
9112 /* See ada-exp.h. */
9114 value *
9115 ada_aggregate_operation::assign_aggregate (struct value *container,
9116 struct value *lhs,
9117 struct expression *exp)
9119 struct type *lhs_type;
9120 LONGEST low_index, high_index;
9122 container = ada_coerce_ref (container);
9123 if (ada_is_direct_array_type (value_type (container)))
9124 container = ada_coerce_to_simple_array (container);
9125 lhs = ada_coerce_ref (lhs);
9126 if (!deprecated_value_modifiable (lhs))
9127 error (_("Left operand of assignment is not a modifiable lvalue."));
9129 lhs_type = check_typedef (value_type (lhs));
9130 if (ada_is_direct_array_type (lhs_type))
9132 lhs = ada_coerce_to_simple_array (lhs);
9133 lhs_type = check_typedef (value_type (lhs));
9134 low_index = lhs_type->bounds ()->low.const_val ();
9135 high_index = lhs_type->bounds ()->high.const_val ();
9137 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9139 low_index = 0;
9140 high_index = num_visible_fields (lhs_type) - 1;
9142 else
9143 error (_("Left-hand side must be array or record."));
9145 std::vector<LONGEST> indices (4);
9146 indices[0] = indices[1] = low_index - 1;
9147 indices[2] = indices[3] = high_index + 1;
9149 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9150 low_index, high_index);
9152 return container;
9155 bool
9156 ada_positional_component::uses_objfile (struct objfile *objfile)
9158 return m_op->uses_objfile (objfile);
9161 void
9162 ada_positional_component::dump (ui_file *stream, int depth)
9164 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9165 depth, "", m_index);
9166 m_op->dump (stream, depth + 1);
9169 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9170 construct, given that the positions are relative to lower bound
9171 LOW, where HIGH is the upper bound. Record the position in
9172 INDICES. CONTAINER is as for assign_aggregate. */
9173 void
9174 ada_positional_component::assign (struct value *container,
9175 struct value *lhs, struct expression *exp,
9176 std::vector<LONGEST> &indices,
9177 LONGEST low, LONGEST high)
9179 LONGEST ind = m_index + low;
9181 if (ind - 1 == high)
9182 warning (_("Extra components in aggregate ignored."));
9183 if (ind <= high)
9185 add_component_interval (ind, ind, indices);
9186 assign_component (container, lhs, ind, exp, m_op);
9190 bool
9191 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9193 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9196 void
9197 ada_discrete_range_association::dump (ui_file *stream, int depth)
9199 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9200 m_low->dump (stream, depth + 1);
9201 m_high->dump (stream, depth + 1);
9204 void
9205 ada_discrete_range_association::assign (struct value *container,
9206 struct value *lhs,
9207 struct expression *exp,
9208 std::vector<LONGEST> &indices,
9209 LONGEST low, LONGEST high,
9210 operation_up &op)
9212 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9213 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9215 if (lower <= upper && (lower < low || upper > high))
9216 error (_("Index in component association out of bounds."));
9218 add_component_interval (lower, upper, indices);
9219 while (lower <= upper)
9221 assign_component (container, lhs, lower, exp, op);
9222 lower += 1;
9226 bool
9227 ada_name_association::uses_objfile (struct objfile *objfile)
9229 return m_val->uses_objfile (objfile);
9232 void
9233 ada_name_association::dump (ui_file *stream, int depth)
9235 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9236 m_val->dump (stream, depth + 1);
9239 void
9240 ada_name_association::assign (struct value *container,
9241 struct value *lhs,
9242 struct expression *exp,
9243 std::vector<LONGEST> &indices,
9244 LONGEST low, LONGEST high,
9245 operation_up &op)
9247 int index;
9249 if (ada_is_direct_array_type (value_type (lhs)))
9250 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9251 EVAL_NORMAL)));
9252 else
9254 ada_string_operation *strop
9255 = dynamic_cast<ada_string_operation *> (m_val.get ());
9257 const char *name;
9258 if (strop != nullptr)
9259 name = strop->get_name ();
9260 else
9262 ada_var_value_operation *vvo
9263 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9264 if (vvo != nullptr)
9265 error (_("Invalid record component association."));
9266 name = vvo->get_symbol ()->natural_name ();
9269 index = 0;
9270 if (! find_struct_field (name, value_type (lhs), 0,
9271 NULL, NULL, NULL, NULL, &index))
9272 error (_("Unknown component name: %s."), name);
9275 add_component_interval (index, index, indices);
9276 assign_component (container, lhs, index, exp, op);
9279 bool
9280 ada_choices_component::uses_objfile (struct objfile *objfile)
9282 if (m_op->uses_objfile (objfile))
9283 return true;
9284 for (const auto &item : m_assocs)
9285 if (item->uses_objfile (objfile))
9286 return true;
9287 return false;
9290 void
9291 ada_choices_component::dump (ui_file *stream, int depth)
9293 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9294 m_op->dump (stream, depth + 1);
9295 for (const auto &item : m_assocs)
9296 item->dump (stream, depth + 1);
9299 /* Assign into the components of LHS indexed by the OP_CHOICES
9300 construct at *POS, updating *POS past the construct, given that
9301 the allowable indices are LOW..HIGH. Record the indices assigned
9302 to in INDICES. CONTAINER is as for assign_aggregate. */
9303 void
9304 ada_choices_component::assign (struct value *container,
9305 struct value *lhs, struct expression *exp,
9306 std::vector<LONGEST> &indices,
9307 LONGEST low, LONGEST high)
9309 for (auto &item : m_assocs)
9310 item->assign (container, lhs, exp, indices, low, high, m_op);
9313 bool
9314 ada_others_component::uses_objfile (struct objfile *objfile)
9316 return m_op->uses_objfile (objfile);
9319 void
9320 ada_others_component::dump (ui_file *stream, int depth)
9322 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9323 m_op->dump (stream, depth + 1);
9326 /* Assign the value of the expression in the OP_OTHERS construct in
9327 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9328 have not been previously assigned. The index intervals already assigned
9329 are in INDICES. CONTAINER is as for assign_aggregate. */
9330 void
9331 ada_others_component::assign (struct value *container,
9332 struct value *lhs, struct expression *exp,
9333 std::vector<LONGEST> &indices,
9334 LONGEST low, LONGEST high)
9336 int num_indices = indices.size ();
9337 for (int i = 0; i < num_indices - 2; i += 2)
9339 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9340 assign_component (container, lhs, ind, exp, m_op);
9344 struct value *
9345 ada_assign_operation::evaluate (struct type *expect_type,
9346 struct expression *exp,
9347 enum noside noside)
9349 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9351 ada_aggregate_operation *ag_op
9352 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9353 if (ag_op != nullptr)
9355 if (noside != EVAL_NORMAL)
9356 return arg1;
9358 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9359 return ada_value_assign (arg1, arg1);
9361 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9362 except if the lhs of our assignment is a convenience variable.
9363 In the case of assigning to a convenience variable, the lhs
9364 should be exactly the result of the evaluation of the rhs. */
9365 struct type *type = value_type (arg1);
9366 if (VALUE_LVAL (arg1) == lval_internalvar)
9367 type = NULL;
9368 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9369 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9370 return arg1;
9371 if (VALUE_LVAL (arg1) == lval_internalvar)
9373 /* Nothing. */
9375 else
9376 arg2 = coerce_for_assign (value_type (arg1), arg2);
9377 return ada_value_assign (arg1, arg2);
9380 } /* namespace expr */
9382 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9383 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9384 overlap. */
9385 static void
9386 add_component_interval (LONGEST low, LONGEST high,
9387 std::vector<LONGEST> &indices)
9389 int i, j;
9391 int size = indices.size ();
9392 for (i = 0; i < size; i += 2) {
9393 if (high >= indices[i] && low <= indices[i + 1])
9395 int kh;
9397 for (kh = i + 2; kh < size; kh += 2)
9398 if (high < indices[kh])
9399 break;
9400 if (low < indices[i])
9401 indices[i] = low;
9402 indices[i + 1] = indices[kh - 1];
9403 if (high > indices[i + 1])
9404 indices[i + 1] = high;
9405 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9406 indices.resize (kh - i - 2);
9407 return;
9409 else if (high < indices[i])
9410 break;
9413 indices.resize (indices.size () + 2);
9414 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9415 indices[j] = indices[j - 2];
9416 indices[i] = low;
9417 indices[i + 1] = high;
9420 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9421 is different. */
9423 static struct value *
9424 ada_value_cast (struct type *type, struct value *arg2)
9426 if (type == ada_check_typedef (value_type (arg2)))
9427 return arg2;
9429 return value_cast (type, arg2);
9432 /* Evaluating Ada expressions, and printing their result.
9433 ------------------------------------------------------
9435 1. Introduction:
9436 ----------------
9438 We usually evaluate an Ada expression in order to print its value.
9439 We also evaluate an expression in order to print its type, which
9440 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9441 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9442 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9443 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9444 similar.
9446 Evaluating expressions is a little more complicated for Ada entities
9447 than it is for entities in languages such as C. The main reason for
9448 this is that Ada provides types whose definition might be dynamic.
9449 One example of such types is variant records. Or another example
9450 would be an array whose bounds can only be known at run time.
9452 The following description is a general guide as to what should be
9453 done (and what should NOT be done) in order to evaluate an expression
9454 involving such types, and when. This does not cover how the semantic
9455 information is encoded by GNAT as this is covered separatly. For the
9456 document used as the reference for the GNAT encoding, see exp_dbug.ads
9457 in the GNAT sources.
9459 Ideally, we should embed each part of this description next to its
9460 associated code. Unfortunately, the amount of code is so vast right
9461 now that it's hard to see whether the code handling a particular
9462 situation might be duplicated or not. One day, when the code is
9463 cleaned up, this guide might become redundant with the comments
9464 inserted in the code, and we might want to remove it.
9466 2. ``Fixing'' an Entity, the Simple Case:
9467 -----------------------------------------
9469 When evaluating Ada expressions, the tricky issue is that they may
9470 reference entities whose type contents and size are not statically
9471 known. Consider for instance a variant record:
9473 type Rec (Empty : Boolean := True) is record
9474 case Empty is
9475 when True => null;
9476 when False => Value : Integer;
9477 end case;
9478 end record;
9479 Yes : Rec := (Empty => False, Value => 1);
9480 No : Rec := (empty => True);
9482 The size and contents of that record depends on the value of the
9483 descriminant (Rec.Empty). At this point, neither the debugging
9484 information nor the associated type structure in GDB are able to
9485 express such dynamic types. So what the debugger does is to create
9486 "fixed" versions of the type that applies to the specific object.
9487 We also informally refer to this operation as "fixing" an object,
9488 which means creating its associated fixed type.
9490 Example: when printing the value of variable "Yes" above, its fixed
9491 type would look like this:
9493 type Rec is record
9494 Empty : Boolean;
9495 Value : Integer;
9496 end record;
9498 On the other hand, if we printed the value of "No", its fixed type
9499 would become:
9501 type Rec is record
9502 Empty : Boolean;
9503 end record;
9505 Things become a little more complicated when trying to fix an entity
9506 with a dynamic type that directly contains another dynamic type,
9507 such as an array of variant records, for instance. There are
9508 two possible cases: Arrays, and records.
9510 3. ``Fixing'' Arrays:
9511 ---------------------
9513 The type structure in GDB describes an array in terms of its bounds,
9514 and the type of its elements. By design, all elements in the array
9515 have the same type and we cannot represent an array of variant elements
9516 using the current type structure in GDB. When fixing an array,
9517 we cannot fix the array element, as we would potentially need one
9518 fixed type per element of the array. As a result, the best we can do
9519 when fixing an array is to produce an array whose bounds and size
9520 are correct (allowing us to read it from memory), but without having
9521 touched its element type. Fixing each element will be done later,
9522 when (if) necessary.
9524 Arrays are a little simpler to handle than records, because the same
9525 amount of memory is allocated for each element of the array, even if
9526 the amount of space actually used by each element differs from element
9527 to element. Consider for instance the following array of type Rec:
9529 type Rec_Array is array (1 .. 2) of Rec;
9531 The actual amount of memory occupied by each element might be different
9532 from element to element, depending on the value of their discriminant.
9533 But the amount of space reserved for each element in the array remains
9534 fixed regardless. So we simply need to compute that size using
9535 the debugging information available, from which we can then determine
9536 the array size (we multiply the number of elements of the array by
9537 the size of each element).
9539 The simplest case is when we have an array of a constrained element
9540 type. For instance, consider the following type declarations:
9542 type Bounded_String (Max_Size : Integer) is
9543 Length : Integer;
9544 Buffer : String (1 .. Max_Size);
9545 end record;
9546 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9548 In this case, the compiler describes the array as an array of
9549 variable-size elements (identified by its XVS suffix) for which
9550 the size can be read in the parallel XVZ variable.
9552 In the case of an array of an unconstrained element type, the compiler
9553 wraps the array element inside a private PAD type. This type should not
9554 be shown to the user, and must be "unwrap"'ed before printing. Note
9555 that we also use the adjective "aligner" in our code to designate
9556 these wrapper types.
9558 In some cases, the size allocated for each element is statically
9559 known. In that case, the PAD type already has the correct size,
9560 and the array element should remain unfixed.
9562 But there are cases when this size is not statically known.
9563 For instance, assuming that "Five" is an integer variable:
9565 type Dynamic is array (1 .. Five) of Integer;
9566 type Wrapper (Has_Length : Boolean := False) is record
9567 Data : Dynamic;
9568 case Has_Length is
9569 when True => Length : Integer;
9570 when False => null;
9571 end case;
9572 end record;
9573 type Wrapper_Array is array (1 .. 2) of Wrapper;
9575 Hello : Wrapper_Array := (others => (Has_Length => True,
9576 Data => (others => 17),
9577 Length => 1));
9580 The debugging info would describe variable Hello as being an
9581 array of a PAD type. The size of that PAD type is not statically
9582 known, but can be determined using a parallel XVZ variable.
9583 In that case, a copy of the PAD type with the correct size should
9584 be used for the fixed array.
9586 3. ``Fixing'' record type objects:
9587 ----------------------------------
9589 Things are slightly different from arrays in the case of dynamic
9590 record types. In this case, in order to compute the associated
9591 fixed type, we need to determine the size and offset of each of
9592 its components. This, in turn, requires us to compute the fixed
9593 type of each of these components.
9595 Consider for instance the example:
9597 type Bounded_String (Max_Size : Natural) is record
9598 Str : String (1 .. Max_Size);
9599 Length : Natural;
9600 end record;
9601 My_String : Bounded_String (Max_Size => 10);
9603 In that case, the position of field "Length" depends on the size
9604 of field Str, which itself depends on the value of the Max_Size
9605 discriminant. In order to fix the type of variable My_String,
9606 we need to fix the type of field Str. Therefore, fixing a variant
9607 record requires us to fix each of its components.
9609 However, if a component does not have a dynamic size, the component
9610 should not be fixed. In particular, fields that use a PAD type
9611 should not fixed. Here is an example where this might happen
9612 (assuming type Rec above):
9614 type Container (Big : Boolean) is record
9615 First : Rec;
9616 After : Integer;
9617 case Big is
9618 when True => Another : Integer;
9619 when False => null;
9620 end case;
9621 end record;
9622 My_Container : Container := (Big => False,
9623 First => (Empty => True),
9624 After => 42);
9626 In that example, the compiler creates a PAD type for component First,
9627 whose size is constant, and then positions the component After just
9628 right after it. The offset of component After is therefore constant
9629 in this case.
9631 The debugger computes the position of each field based on an algorithm
9632 that uses, among other things, the actual position and size of the field
9633 preceding it. Let's now imagine that the user is trying to print
9634 the value of My_Container. If the type fixing was recursive, we would
9635 end up computing the offset of field After based on the size of the
9636 fixed version of field First. And since in our example First has
9637 only one actual field, the size of the fixed type is actually smaller
9638 than the amount of space allocated to that field, and thus we would
9639 compute the wrong offset of field After.
9641 To make things more complicated, we need to watch out for dynamic
9642 components of variant records (identified by the ___XVL suffix in
9643 the component name). Even if the target type is a PAD type, the size
9644 of that type might not be statically known. So the PAD type needs
9645 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9646 we might end up with the wrong size for our component. This can be
9647 observed with the following type declarations:
9649 type Octal is new Integer range 0 .. 7;
9650 type Octal_Array is array (Positive range <>) of Octal;
9651 pragma Pack (Octal_Array);
9653 type Octal_Buffer (Size : Positive) is record
9654 Buffer : Octal_Array (1 .. Size);
9655 Length : Integer;
9656 end record;
9658 In that case, Buffer is a PAD type whose size is unset and needs
9659 to be computed by fixing the unwrapped type.
9661 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9662 ----------------------------------------------------------
9664 Lastly, when should the sub-elements of an entity that remained unfixed
9665 thus far, be actually fixed?
9667 The answer is: Only when referencing that element. For instance
9668 when selecting one component of a record, this specific component
9669 should be fixed at that point in time. Or when printing the value
9670 of a record, each component should be fixed before its value gets
9671 printed. Similarly for arrays, the element of the array should be
9672 fixed when printing each element of the array, or when extracting
9673 one element out of that array. On the other hand, fixing should
9674 not be performed on the elements when taking a slice of an array!
9676 Note that one of the side effects of miscomputing the offset and
9677 size of each field is that we end up also miscomputing the size
9678 of the containing type. This can have adverse results when computing
9679 the value of an entity. GDB fetches the value of an entity based
9680 on the size of its type, and thus a wrong size causes GDB to fetch
9681 the wrong amount of memory. In the case where the computed size is
9682 too small, GDB fetches too little data to print the value of our
9683 entity. Results in this case are unpredictable, as we usually read
9684 past the buffer containing the data =:-o. */
9686 /* A helper function for TERNOP_IN_RANGE. */
9688 static value *
9689 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9690 enum noside noside,
9691 value *arg1, value *arg2, value *arg3)
9693 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9694 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9695 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9696 return
9697 value_from_longest (type,
9698 (value_less (arg1, arg3)
9699 || value_equal (arg1, arg3))
9700 && (value_less (arg2, arg1)
9701 || value_equal (arg2, arg1)));
9704 /* A helper function for UNOP_NEG. */
9706 value *
9707 ada_unop_neg (struct type *expect_type,
9708 struct expression *exp,
9709 enum noside noside, enum exp_opcode op,
9710 struct value *arg1)
9712 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9713 return value_neg (arg1);
9716 /* A helper function for UNOP_IN_RANGE. */
9718 value *
9719 ada_unop_in_range (struct type *expect_type,
9720 struct expression *exp,
9721 enum noside noside, enum exp_opcode op,
9722 struct value *arg1, struct type *type)
9724 struct value *arg2, *arg3;
9725 switch (type->code ())
9727 default:
9728 lim_warning (_("Membership test incompletely implemented; "
9729 "always returns true"));
9730 type = language_bool_type (exp->language_defn, exp->gdbarch);
9731 return value_from_longest (type, (LONGEST) 1);
9733 case TYPE_CODE_RANGE:
9734 arg2 = value_from_longest (type,
9735 type->bounds ()->low.const_val ());
9736 arg3 = value_from_longest (type,
9737 type->bounds ()->high.const_val ());
9738 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9739 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9740 type = language_bool_type (exp->language_defn, exp->gdbarch);
9741 return
9742 value_from_longest (type,
9743 (value_less (arg1, arg3)
9744 || value_equal (arg1, arg3))
9745 && (value_less (arg2, arg1)
9746 || value_equal (arg2, arg1)));
9750 /* A helper function for OP_ATR_TAG. */
9752 value *
9753 ada_atr_tag (struct type *expect_type,
9754 struct expression *exp,
9755 enum noside noside, enum exp_opcode op,
9756 struct value *arg1)
9758 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9759 return value_zero (ada_tag_type (arg1), not_lval);
9761 return ada_value_tag (arg1);
9764 /* A helper function for OP_ATR_SIZE. */
9766 value *
9767 ada_atr_size (struct type *expect_type,
9768 struct expression *exp,
9769 enum noside noside, enum exp_opcode op,
9770 struct value *arg1)
9772 struct type *type = value_type (arg1);
9774 /* If the argument is a reference, then dereference its type, since
9775 the user is really asking for the size of the actual object,
9776 not the size of the pointer. */
9777 if (type->code () == TYPE_CODE_REF)
9778 type = TYPE_TARGET_TYPE (type);
9780 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9781 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9782 else
9783 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9784 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9787 /* A helper function for UNOP_ABS. */
9789 value *
9790 ada_abs (struct type *expect_type,
9791 struct expression *exp,
9792 enum noside noside, enum exp_opcode op,
9793 struct value *arg1)
9795 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9796 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9797 return value_neg (arg1);
9798 else
9799 return arg1;
9802 /* A helper function for BINOP_MUL. */
9804 value *
9805 ada_mult_binop (struct type *expect_type,
9806 struct expression *exp,
9807 enum noside noside, enum exp_opcode op,
9808 struct value *arg1, struct value *arg2)
9810 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9812 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9813 return value_zero (value_type (arg1), not_lval);
9815 else
9817 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9818 return ada_value_binop (arg1, arg2, op);
9822 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9824 value *
9825 ada_equal_binop (struct type *expect_type,
9826 struct expression *exp,
9827 enum noside noside, enum exp_opcode op,
9828 struct value *arg1, struct value *arg2)
9830 int tem;
9831 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9832 tem = 0;
9833 else
9835 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9836 tem = ada_value_equal (arg1, arg2);
9838 if (op == BINOP_NOTEQUAL)
9839 tem = !tem;
9840 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9841 return value_from_longest (type, (LONGEST) tem);
9844 /* A helper function for TERNOP_SLICE. */
9846 value *
9847 ada_ternop_slice (struct expression *exp,
9848 enum noside noside,
9849 struct value *array, struct value *low_bound_val,
9850 struct value *high_bound_val)
9852 LONGEST low_bound;
9853 LONGEST high_bound;
9855 low_bound_val = coerce_ref (low_bound_val);
9856 high_bound_val = coerce_ref (high_bound_val);
9857 low_bound = value_as_long (low_bound_val);
9858 high_bound = value_as_long (high_bound_val);
9860 /* If this is a reference to an aligner type, then remove all
9861 the aligners. */
9862 if (value_type (array)->code () == TYPE_CODE_REF
9863 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9864 TYPE_TARGET_TYPE (value_type (array)) =
9865 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9867 if (ada_is_any_packed_array_type (value_type (array)))
9868 error (_("cannot slice a packed array"));
9870 /* If this is a reference to an array or an array lvalue,
9871 convert to a pointer. */
9872 if (value_type (array)->code () == TYPE_CODE_REF
9873 || (value_type (array)->code () == TYPE_CODE_ARRAY
9874 && VALUE_LVAL (array) == lval_memory))
9875 array = value_addr (array);
9877 if (noside == EVAL_AVOID_SIDE_EFFECTS
9878 && ada_is_array_descriptor_type (ada_check_typedef
9879 (value_type (array))))
9880 return empty_array (ada_type_of_array (array, 0), low_bound,
9881 high_bound);
9883 array = ada_coerce_to_simple_array_ptr (array);
9885 /* If we have more than one level of pointer indirection,
9886 dereference the value until we get only one level. */
9887 while (value_type (array)->code () == TYPE_CODE_PTR
9888 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9889 == TYPE_CODE_PTR))
9890 array = value_ind (array);
9892 /* Make sure we really do have an array type before going further,
9893 to avoid a SEGV when trying to get the index type or the target
9894 type later down the road if the debug info generated by
9895 the compiler is incorrect or incomplete. */
9896 if (!ada_is_simple_array_type (value_type (array)))
9897 error (_("cannot take slice of non-array"));
9899 if (ada_check_typedef (value_type (array))->code ()
9900 == TYPE_CODE_PTR)
9902 struct type *type0 = ada_check_typedef (value_type (array));
9904 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9905 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9906 else
9908 struct type *arr_type0 =
9909 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9911 return ada_value_slice_from_ptr (array, arr_type0,
9912 longest_to_int (low_bound),
9913 longest_to_int (high_bound));
9916 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9917 return array;
9918 else if (high_bound < low_bound)
9919 return empty_array (value_type (array), low_bound, high_bound);
9920 else
9921 return ada_value_slice (array, longest_to_int (low_bound),
9922 longest_to_int (high_bound));
9925 /* A helper function for BINOP_IN_BOUNDS. */
9927 value *
9928 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9929 struct value *arg1, struct value *arg2, int n)
9931 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9933 struct type *type = language_bool_type (exp->language_defn,
9934 exp->gdbarch);
9935 return value_zero (type, not_lval);
9938 struct type *type = ada_index_type (value_type (arg2), n, "range");
9939 if (!type)
9940 type = value_type (arg1);
9942 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9943 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9945 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9946 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9947 type = language_bool_type (exp->language_defn, exp->gdbarch);
9948 return value_from_longest (type,
9949 (value_less (arg1, arg3)
9950 || value_equal (arg1, arg3))
9951 && (value_less (arg2, arg1)
9952 || value_equal (arg2, arg1)));
9955 /* A helper function for some attribute operations. */
9957 static value *
9958 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9959 struct value *arg1, struct type *type_arg, int tem)
9961 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9963 if (type_arg == NULL)
9964 type_arg = value_type (arg1);
9966 if (ada_is_constrained_packed_array_type (type_arg))
9967 type_arg = decode_constrained_packed_array_type (type_arg);
9969 if (!discrete_type_p (type_arg))
9971 switch (op)
9973 default: /* Should never happen. */
9974 error (_("unexpected attribute encountered"));
9975 case OP_ATR_FIRST:
9976 case OP_ATR_LAST:
9977 type_arg = ada_index_type (type_arg, tem,
9978 ada_attribute_name (op));
9979 break;
9980 case OP_ATR_LENGTH:
9981 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9982 break;
9986 return value_zero (type_arg, not_lval);
9988 else if (type_arg == NULL)
9990 arg1 = ada_coerce_ref (arg1);
9992 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9993 arg1 = ada_coerce_to_simple_array (arg1);
9995 struct type *type;
9996 if (op == OP_ATR_LENGTH)
9997 type = builtin_type (exp->gdbarch)->builtin_int;
9998 else
10000 type = ada_index_type (value_type (arg1), tem,
10001 ada_attribute_name (op));
10002 if (type == NULL)
10003 type = builtin_type (exp->gdbarch)->builtin_int;
10006 switch (op)
10008 default: /* Should never happen. */
10009 error (_("unexpected attribute encountered"));
10010 case OP_ATR_FIRST:
10011 return value_from_longest
10012 (type, ada_array_bound (arg1, tem, 0));
10013 case OP_ATR_LAST:
10014 return value_from_longest
10015 (type, ada_array_bound (arg1, tem, 1));
10016 case OP_ATR_LENGTH:
10017 return value_from_longest
10018 (type, ada_array_length (arg1, tem));
10021 else if (discrete_type_p (type_arg))
10023 struct type *range_type;
10024 const char *name = ada_type_name (type_arg);
10026 range_type = NULL;
10027 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10028 range_type = to_fixed_range_type (type_arg, NULL);
10029 if (range_type == NULL)
10030 range_type = type_arg;
10031 switch (op)
10033 default:
10034 error (_("unexpected attribute encountered"));
10035 case OP_ATR_FIRST:
10036 return value_from_longest
10037 (range_type, ada_discrete_type_low_bound (range_type));
10038 case OP_ATR_LAST:
10039 return value_from_longest
10040 (range_type, ada_discrete_type_high_bound (range_type));
10041 case OP_ATR_LENGTH:
10042 error (_("the 'length attribute applies only to array types"));
10045 else if (type_arg->code () == TYPE_CODE_FLT)
10046 error (_("unimplemented type attribute"));
10047 else
10049 LONGEST low, high;
10051 if (ada_is_constrained_packed_array_type (type_arg))
10052 type_arg = decode_constrained_packed_array_type (type_arg);
10054 struct type *type;
10055 if (op == OP_ATR_LENGTH)
10056 type = builtin_type (exp->gdbarch)->builtin_int;
10057 else
10059 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10060 if (type == NULL)
10061 type = builtin_type (exp->gdbarch)->builtin_int;
10064 switch (op)
10066 default:
10067 error (_("unexpected attribute encountered"));
10068 case OP_ATR_FIRST:
10069 low = ada_array_bound_from_type (type_arg, tem, 0);
10070 return value_from_longest (type, low);
10071 case OP_ATR_LAST:
10072 high = ada_array_bound_from_type (type_arg, tem, 1);
10073 return value_from_longest (type, high);
10074 case OP_ATR_LENGTH:
10075 low = ada_array_bound_from_type (type_arg, tem, 0);
10076 high = ada_array_bound_from_type (type_arg, tem, 1);
10077 return value_from_longest (type, high - low + 1);
10082 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10084 struct value *
10085 ada_binop_minmax (struct type *expect_type,
10086 struct expression *exp,
10087 enum noside noside, enum exp_opcode op,
10088 struct value *arg1, struct value *arg2)
10090 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10091 return value_zero (value_type (arg1), not_lval);
10092 else
10094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10095 return value_binop (arg1, arg2, op);
10099 /* A helper function for BINOP_EXP. */
10101 struct value *
10102 ada_binop_exp (struct type *expect_type,
10103 struct expression *exp,
10104 enum noside noside, enum exp_opcode op,
10105 struct value *arg1, struct value *arg2)
10107 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10108 return value_zero (value_type (arg1), not_lval);
10109 else
10111 /* For integer exponentiation operations,
10112 only promote the first argument. */
10113 if (is_integral_type (value_type (arg2)))
10114 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10115 else
10116 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10118 return value_binop (arg1, arg2, op);
10122 namespace expr
10125 value *
10126 ada_wrapped_operation::evaluate (struct type *expect_type,
10127 struct expression *exp,
10128 enum noside noside)
10130 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10131 if (noside == EVAL_NORMAL)
10132 result = unwrap_value (result);
10134 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10135 then we need to perform the conversion manually, because
10136 evaluate_subexp_standard doesn't do it. This conversion is
10137 necessary in Ada because the different kinds of float/fixed
10138 types in Ada have different representations.
10140 Similarly, we need to perform the conversion from OP_LONG
10141 ourselves. */
10142 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10143 result = ada_value_cast (expect_type, result);
10145 return result;
10148 value *
10149 ada_string_operation::evaluate (struct type *expect_type,
10150 struct expression *exp,
10151 enum noside noside)
10153 value *result = string_operation::evaluate (expect_type, exp, noside);
10154 /* The result type will have code OP_STRING, bashed there from
10155 OP_ARRAY. Bash it back. */
10156 if (value_type (result)->code () == TYPE_CODE_STRING)
10157 value_type (result)->set_code (TYPE_CODE_ARRAY);
10158 return result;
10161 value *
10162 ada_qual_operation::evaluate (struct type *expect_type,
10163 struct expression *exp,
10164 enum noside noside)
10166 struct type *type = std::get<1> (m_storage);
10167 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10170 value *
10171 ada_ternop_range_operation::evaluate (struct type *expect_type,
10172 struct expression *exp,
10173 enum noside noside)
10175 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10176 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10177 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10178 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10181 value *
10182 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10183 struct expression *exp,
10184 enum noside noside)
10186 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10187 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10189 auto do_op = [=] (LONGEST x, LONGEST y)
10191 if (std::get<0> (m_storage) == BINOP_ADD)
10192 return x + y;
10193 return x - y;
10196 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10197 return (value_from_longest
10198 (value_type (arg1),
10199 do_op (value_as_long (arg1), value_as_long (arg2))));
10200 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10201 return (value_from_longest
10202 (value_type (arg2),
10203 do_op (value_as_long (arg1), value_as_long (arg2))));
10204 /* Preserve the original type for use by the range case below.
10205 We cannot cast the result to a reference type, so if ARG1 is
10206 a reference type, find its underlying type. */
10207 struct type *type = value_type (arg1);
10208 while (type->code () == TYPE_CODE_REF)
10209 type = TYPE_TARGET_TYPE (type);
10210 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10211 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10212 /* We need to special-case the result with a range.
10213 This is done for the benefit of "ptype". gdb's Ada support
10214 historically used the LHS to set the result type here, so
10215 preserve this behavior. */
10216 if (type->code () == TYPE_CODE_RANGE)
10217 arg1 = value_cast (type, arg1);
10218 return arg1;
10221 value *
10222 ada_unop_atr_operation::evaluate (struct type *expect_type,
10223 struct expression *exp,
10224 enum noside noside)
10226 struct type *type_arg = nullptr;
10227 value *val = nullptr;
10229 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10231 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10232 EVAL_AVOID_SIDE_EFFECTS);
10233 type_arg = value_type (tem);
10235 else
10236 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10238 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10239 val, type_arg, std::get<2> (m_storage));
10242 value *
10243 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10244 struct expression *exp,
10245 enum noside noside)
10247 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10248 return value_zero (expect_type, not_lval);
10250 const bound_minimal_symbol &b = std::get<0> (m_storage);
10251 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10253 val = ada_value_cast (expect_type, val);
10255 /* Follow the Ada language semantics that do not allow taking
10256 an address of the result of a cast (view conversion in Ada). */
10257 if (VALUE_LVAL (val) == lval_memory)
10259 if (value_lazy (val))
10260 value_fetch_lazy (val);
10261 VALUE_LVAL (val) = not_lval;
10263 return val;
10266 value *
10267 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10268 struct expression *exp,
10269 enum noside noside)
10271 value *val = evaluate_var_value (noside,
10272 std::get<0> (m_storage).block,
10273 std::get<0> (m_storage).symbol);
10275 val = ada_value_cast (expect_type, val);
10277 /* Follow the Ada language semantics that do not allow taking
10278 an address of the result of a cast (view conversion in Ada). */
10279 if (VALUE_LVAL (val) == lval_memory)
10281 if (value_lazy (val))
10282 value_fetch_lazy (val);
10283 VALUE_LVAL (val) = not_lval;
10285 return val;
10288 value *
10289 ada_var_value_operation::evaluate (struct type *expect_type,
10290 struct expression *exp,
10291 enum noside noside)
10293 symbol *sym = std::get<0> (m_storage).symbol;
10295 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10296 /* Only encountered when an unresolved symbol occurs in a
10297 context other than a function call, in which case, it is
10298 invalid. */
10299 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10300 sym->print_name ());
10302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10304 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10305 /* Check to see if this is a tagged type. We also need to handle
10306 the case where the type is a reference to a tagged type, but
10307 we have to be careful to exclude pointers to tagged types.
10308 The latter should be shown as usual (as a pointer), whereas
10309 a reference should mostly be transparent to the user. */
10310 if (ada_is_tagged_type (type, 0)
10311 || (type->code () == TYPE_CODE_REF
10312 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10314 /* Tagged types are a little special in the fact that the real
10315 type is dynamic and can only be determined by inspecting the
10316 object's tag. This means that we need to get the object's
10317 value first (EVAL_NORMAL) and then extract the actual object
10318 type from its tag.
10320 Note that we cannot skip the final step where we extract
10321 the object type from its tag, because the EVAL_NORMAL phase
10322 results in dynamic components being resolved into fixed ones.
10323 This can cause problems when trying to print the type
10324 description of tagged types whose parent has a dynamic size:
10325 We use the type name of the "_parent" component in order
10326 to print the name of the ancestor type in the type description.
10327 If that component had a dynamic size, the resolution into
10328 a fixed type would result in the loss of that type name,
10329 thus preventing us from printing the name of the ancestor
10330 type in the type description. */
10331 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10333 if (type->code () != TYPE_CODE_REF)
10335 struct type *actual_type;
10337 actual_type = type_from_tag (ada_value_tag (arg1));
10338 if (actual_type == NULL)
10339 /* If, for some reason, we were unable to determine
10340 the actual type from the tag, then use the static
10341 approximation that we just computed as a fallback.
10342 This can happen if the debugging information is
10343 incomplete, for instance. */
10344 actual_type = type;
10345 return value_zero (actual_type, not_lval);
10347 else
10349 /* In the case of a ref, ada_coerce_ref takes care
10350 of determining the actual type. But the evaluation
10351 should return a ref as it should be valid to ask
10352 for its address; so rebuild a ref after coerce. */
10353 arg1 = ada_coerce_ref (arg1);
10354 return value_ref (arg1, TYPE_CODE_REF);
10358 /* Records and unions for which GNAT encodings have been
10359 generated need to be statically fixed as well.
10360 Otherwise, non-static fixing produces a type where
10361 all dynamic properties are removed, which prevents "ptype"
10362 from being able to completely describe the type.
10363 For instance, a case statement in a variant record would be
10364 replaced by the relevant components based on the actual
10365 value of the discriminants. */
10366 if ((type->code () == TYPE_CODE_STRUCT
10367 && dynamic_template_type (type) != NULL)
10368 || (type->code () == TYPE_CODE_UNION
10369 && ada_find_parallel_type (type, "___XVU") != NULL))
10370 return value_zero (to_static_fixed_type (type), not_lval);
10373 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10374 return ada_to_fixed_value (arg1);
10377 bool
10378 ada_var_value_operation::resolve (struct expression *exp,
10379 bool deprocedure_p,
10380 bool parse_completion,
10381 innermost_block_tracker *tracker,
10382 struct type *context_type)
10384 symbol *sym = std::get<0> (m_storage).symbol;
10385 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10387 block_symbol resolved
10388 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10389 context_type, parse_completion,
10390 deprocedure_p, tracker);
10391 std::get<0> (m_storage) = resolved;
10394 if (deprocedure_p
10395 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10396 == TYPE_CODE_FUNC))
10397 return true;
10399 return false;
10402 value *
10403 ada_atr_val_operation::evaluate (struct type *expect_type,
10404 struct expression *exp,
10405 enum noside noside)
10407 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10408 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10411 value *
10412 ada_unop_ind_operation::evaluate (struct type *expect_type,
10413 struct expression *exp,
10414 enum noside noside)
10416 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10418 struct type *type = ada_check_typedef (value_type (arg1));
10419 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10421 if (ada_is_array_descriptor_type (type))
10422 /* GDB allows dereferencing GNAT array descriptors. */
10424 struct type *arrType = ada_type_of_array (arg1, 0);
10426 if (arrType == NULL)
10427 error (_("Attempt to dereference null array pointer."));
10428 return value_at_lazy (arrType, 0);
10430 else if (type->code () == TYPE_CODE_PTR
10431 || type->code () == TYPE_CODE_REF
10432 /* In C you can dereference an array to get the 1st elt. */
10433 || type->code () == TYPE_CODE_ARRAY)
10435 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10436 only be determined by inspecting the object's tag.
10437 This means that we need to evaluate completely the
10438 expression in order to get its type. */
10440 if ((type->code () == TYPE_CODE_REF
10441 || type->code () == TYPE_CODE_PTR)
10442 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10444 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10445 EVAL_NORMAL);
10446 type = value_type (ada_value_ind (arg1));
10448 else
10450 type = to_static_fixed_type
10451 (ada_aligned_type
10452 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10454 ada_ensure_varsize_limit (type);
10455 return value_zero (type, lval_memory);
10457 else if (type->code () == TYPE_CODE_INT)
10459 /* GDB allows dereferencing an int. */
10460 if (expect_type == NULL)
10461 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10462 lval_memory);
10463 else
10465 expect_type =
10466 to_static_fixed_type (ada_aligned_type (expect_type));
10467 return value_zero (expect_type, lval_memory);
10470 else
10471 error (_("Attempt to take contents of a non-pointer value."));
10473 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10474 type = ada_check_typedef (value_type (arg1));
10476 if (type->code () == TYPE_CODE_INT)
10477 /* GDB allows dereferencing an int. If we were given
10478 the expect_type, then use that as the target type.
10479 Otherwise, assume that the target type is an int. */
10481 if (expect_type != NULL)
10482 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10483 arg1));
10484 else
10485 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10486 (CORE_ADDR) value_as_address (arg1));
10489 struct type *target_type = (to_static_fixed_type
10490 (ada_aligned_type
10491 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10492 ada_ensure_varsize_limit (target_type);
10494 if (ada_is_array_descriptor_type (type))
10495 /* GDB allows dereferencing GNAT array descriptors. */
10496 return ada_coerce_to_simple_array (arg1);
10497 else
10498 return ada_value_ind (arg1);
10501 value *
10502 ada_structop_operation::evaluate (struct type *expect_type,
10503 struct expression *exp,
10504 enum noside noside)
10506 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10507 const char *str = std::get<1> (m_storage).c_str ();
10508 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10510 struct type *type;
10511 struct type *type1 = value_type (arg1);
10513 if (ada_is_tagged_type (type1, 1))
10515 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10517 /* If the field is not found, check if it exists in the
10518 extension of this object's type. This means that we
10519 need to evaluate completely the expression. */
10521 if (type == NULL)
10523 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10524 EVAL_NORMAL);
10525 arg1 = ada_value_struct_elt (arg1, str, 0);
10526 arg1 = unwrap_value (arg1);
10527 type = value_type (ada_to_fixed_value (arg1));
10530 else
10531 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10533 return value_zero (ada_aligned_type (type), lval_memory);
10535 else
10537 arg1 = ada_value_struct_elt (arg1, str, 0);
10538 arg1 = unwrap_value (arg1);
10539 return ada_to_fixed_value (arg1);
10543 value *
10544 ada_funcall_operation::evaluate (struct type *expect_type,
10545 struct expression *exp,
10546 enum noside noside)
10548 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10549 int nargs = args_up.size ();
10550 std::vector<value *> argvec (nargs);
10551 operation_up &callee_op = std::get<0> (m_storage);
10553 ada_var_value_operation *avv
10554 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10555 if (avv != nullptr
10556 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10557 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10558 avv->get_symbol ()->print_name ());
10560 value *callee = callee_op->evaluate (nullptr, exp, noside);
10561 for (int i = 0; i < args_up.size (); ++i)
10562 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10564 if (ada_is_constrained_packed_array_type
10565 (desc_base_type (value_type (callee))))
10566 callee = ada_coerce_to_simple_array (callee);
10567 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10568 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10569 /* This is a packed array that has already been fixed, and
10570 therefore already coerced to a simple array. Nothing further
10571 to do. */
10573 else if (value_type (callee)->code () == TYPE_CODE_REF)
10575 /* Make sure we dereference references so that all the code below
10576 feels like it's really handling the referenced value. Wrapping
10577 types (for alignment) may be there, so make sure we strip them as
10578 well. */
10579 callee = ada_to_fixed_value (coerce_ref (callee));
10581 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10582 && VALUE_LVAL (callee) == lval_memory)
10583 callee = value_addr (callee);
10585 struct type *type = ada_check_typedef (value_type (callee));
10587 /* Ada allows us to implicitly dereference arrays when subscripting
10588 them. So, if this is an array typedef (encoding use for array
10589 access types encoded as fat pointers), strip it now. */
10590 if (type->code () == TYPE_CODE_TYPEDEF)
10591 type = ada_typedef_target_type (type);
10593 if (type->code () == TYPE_CODE_PTR)
10595 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10597 case TYPE_CODE_FUNC:
10598 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10599 break;
10600 case TYPE_CODE_ARRAY:
10601 break;
10602 case TYPE_CODE_STRUCT:
10603 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10604 callee = ada_value_ind (callee);
10605 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10606 break;
10607 default:
10608 error (_("cannot subscript or call something of type `%s'"),
10609 ada_type_name (value_type (callee)));
10610 break;
10614 switch (type->code ())
10616 case TYPE_CODE_FUNC:
10617 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10619 if (TYPE_TARGET_TYPE (type) == NULL)
10620 error_call_unknown_return_type (NULL);
10621 return allocate_value (TYPE_TARGET_TYPE (type));
10623 return call_function_by_hand (callee, NULL, argvec);
10624 case TYPE_CODE_INTERNAL_FUNCTION:
10625 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10626 /* We don't know anything about what the internal
10627 function might return, but we have to return
10628 something. */
10629 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10630 not_lval);
10631 else
10632 return call_internal_function (exp->gdbarch, exp->language_defn,
10633 callee, nargs,
10634 argvec.data ());
10636 case TYPE_CODE_STRUCT:
10638 int arity;
10640 arity = ada_array_arity (type);
10641 type = ada_array_element_type (type, nargs);
10642 if (type == NULL)
10643 error (_("cannot subscript or call a record"));
10644 if (arity != nargs)
10645 error (_("wrong number of subscripts; expecting %d"), arity);
10646 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10647 return value_zero (ada_aligned_type (type), lval_memory);
10648 return
10649 unwrap_value (ada_value_subscript
10650 (callee, nargs, argvec.data ()));
10652 case TYPE_CODE_ARRAY:
10653 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10655 type = ada_array_element_type (type, nargs);
10656 if (type == NULL)
10657 error (_("element type of array unknown"));
10658 else
10659 return value_zero (ada_aligned_type (type), lval_memory);
10661 return
10662 unwrap_value (ada_value_subscript
10663 (ada_coerce_to_simple_array (callee),
10664 nargs, argvec.data ()));
10665 case TYPE_CODE_PTR: /* Pointer to array */
10666 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10668 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10669 type = ada_array_element_type (type, nargs);
10670 if (type == NULL)
10671 error (_("element type of array unknown"));
10672 else
10673 return value_zero (ada_aligned_type (type), lval_memory);
10675 return
10676 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10677 argvec.data ()));
10679 default:
10680 error (_("Attempt to index or call something other than an "
10681 "array or function"));
10685 bool
10686 ada_funcall_operation::resolve (struct expression *exp,
10687 bool deprocedure_p,
10688 bool parse_completion,
10689 innermost_block_tracker *tracker,
10690 struct type *context_type)
10692 operation_up &callee_op = std::get<0> (m_storage);
10694 ada_var_value_operation *avv
10695 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10696 if (avv == nullptr)
10697 return false;
10699 symbol *sym = avv->get_symbol ();
10700 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10701 return false;
10703 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10704 int nargs = args_up.size ();
10705 std::vector<value *> argvec (nargs);
10707 for (int i = 0; i < args_up.size (); ++i)
10708 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10710 const block *block = avv->get_block ();
10711 block_symbol resolved
10712 = ada_resolve_funcall (sym, block,
10713 context_type, parse_completion,
10714 nargs, argvec.data (),
10715 tracker);
10717 std::get<0> (m_storage)
10718 = make_operation<ada_var_value_operation> (resolved);
10719 return false;
10722 bool
10723 ada_ternop_slice_operation::resolve (struct expression *exp,
10724 bool deprocedure_p,
10725 bool parse_completion,
10726 innermost_block_tracker *tracker,
10727 struct type *context_type)
10729 /* Historically this check was done during resolution, so we
10730 continue that here. */
10731 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10732 EVAL_AVOID_SIDE_EFFECTS);
10733 if (ada_is_any_packed_array_type (value_type (v)))
10734 error (_("cannot slice a packed array"));
10735 return false;
10742 /* Return non-zero iff TYPE represents a System.Address type. */
10745 ada_is_system_address_type (struct type *type)
10747 return (type->name () && strcmp (type->name (), "system__address") == 0);
10752 /* Range types */
10754 /* Scan STR beginning at position K for a discriminant name, and
10755 return the value of that discriminant field of DVAL in *PX. If
10756 PNEW_K is not null, put the position of the character beyond the
10757 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10758 not alter *PX and *PNEW_K if unsuccessful. */
10760 static int
10761 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10762 int *pnew_k)
10764 static std::string storage;
10765 const char *pstart, *pend, *bound;
10766 struct value *bound_val;
10768 if (dval == NULL || str == NULL || str[k] == '\0')
10769 return 0;
10771 pstart = str + k;
10772 pend = strstr (pstart, "__");
10773 if (pend == NULL)
10775 bound = pstart;
10776 k += strlen (bound);
10778 else
10780 int len = pend - pstart;
10782 /* Strip __ and beyond. */
10783 storage = std::string (pstart, len);
10784 bound = storage.c_str ();
10785 k = pend - str;
10788 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10789 if (bound_val == NULL)
10790 return 0;
10792 *px = value_as_long (bound_val);
10793 if (pnew_k != NULL)
10794 *pnew_k = k;
10795 return 1;
10798 /* Value of variable named NAME. Only exact matches are considered.
10799 If no such variable found, then if ERR_MSG is null, returns 0, and
10800 otherwise causes an error with message ERR_MSG. */
10802 static struct value *
10803 get_var_value (const char *name, const char *err_msg)
10805 std::string quoted_name = add_angle_brackets (name);
10807 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10809 std::vector<struct block_symbol> syms
10810 = ada_lookup_symbol_list_worker (lookup_name,
10811 get_selected_block (0),
10812 VAR_DOMAIN, 1);
10814 if (syms.size () != 1)
10816 if (err_msg == NULL)
10817 return 0;
10818 else
10819 error (("%s"), err_msg);
10822 return value_of_variable (syms[0].symbol, syms[0].block);
10825 /* Value of integer variable named NAME in the current environment.
10826 If no such variable is found, returns false. Otherwise, sets VALUE
10827 to the variable's value and returns true. */
10829 bool
10830 get_int_var_value (const char *name, LONGEST &value)
10832 struct value *var_val = get_var_value (name, 0);
10834 if (var_val == 0)
10835 return false;
10837 value = value_as_long (var_val);
10838 return true;
10842 /* Return a range type whose base type is that of the range type named
10843 NAME in the current environment, and whose bounds are calculated
10844 from NAME according to the GNAT range encoding conventions.
10845 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10846 corresponding range type from debug information; fall back to using it
10847 if symbol lookup fails. If a new type must be created, allocate it
10848 like ORIG_TYPE was. The bounds information, in general, is encoded
10849 in NAME, the base type given in the named range type. */
10851 static struct type *
10852 to_fixed_range_type (struct type *raw_type, struct value *dval)
10854 const char *name;
10855 struct type *base_type;
10856 const char *subtype_info;
10858 gdb_assert (raw_type != NULL);
10859 gdb_assert (raw_type->name () != NULL);
10861 if (raw_type->code () == TYPE_CODE_RANGE)
10862 base_type = TYPE_TARGET_TYPE (raw_type);
10863 else
10864 base_type = raw_type;
10866 name = raw_type->name ();
10867 subtype_info = strstr (name, "___XD");
10868 if (subtype_info == NULL)
10870 LONGEST L = ada_discrete_type_low_bound (raw_type);
10871 LONGEST U = ada_discrete_type_high_bound (raw_type);
10873 if (L < INT_MIN || U > INT_MAX)
10874 return raw_type;
10875 else
10876 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10877 L, U);
10879 else
10881 int prefix_len = subtype_info - name;
10882 LONGEST L, U;
10883 struct type *type;
10884 const char *bounds_str;
10885 int n;
10887 subtype_info += 5;
10888 bounds_str = strchr (subtype_info, '_');
10889 n = 1;
10891 if (*subtype_info == 'L')
10893 if (!ada_scan_number (bounds_str, n, &L, &n)
10894 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10895 return raw_type;
10896 if (bounds_str[n] == '_')
10897 n += 2;
10898 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10899 n += 1;
10900 subtype_info += 1;
10902 else
10904 std::string name_buf = std::string (name, prefix_len) + "___L";
10905 if (!get_int_var_value (name_buf.c_str (), L))
10907 lim_warning (_("Unknown lower bound, using 1."));
10908 L = 1;
10912 if (*subtype_info == 'U')
10914 if (!ada_scan_number (bounds_str, n, &U, &n)
10915 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10916 return raw_type;
10918 else
10920 std::string name_buf = std::string (name, prefix_len) + "___U";
10921 if (!get_int_var_value (name_buf.c_str (), U))
10923 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10924 U = L;
10928 type = create_static_range_type (alloc_type_copy (raw_type),
10929 base_type, L, U);
10930 /* create_static_range_type alters the resulting type's length
10931 to match the size of the base_type, which is not what we want.
10932 Set it back to the original range type's length. */
10933 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
10934 type->set_name (name);
10935 return type;
10939 /* True iff NAME is the name of a range type. */
10942 ada_is_range_type_name (const char *name)
10944 return (name != NULL && strstr (name, "___XD"));
10948 /* Modular types */
10950 /* True iff TYPE is an Ada modular type. */
10953 ada_is_modular_type (struct type *type)
10955 struct type *subranged_type = get_base_type (type);
10957 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
10958 && subranged_type->code () == TYPE_CODE_INT
10959 && subranged_type->is_unsigned ());
10962 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10964 ULONGEST
10965 ada_modulus (struct type *type)
10967 const dynamic_prop &high = type->bounds ()->high;
10969 if (high.kind () == PROP_CONST)
10970 return (ULONGEST) high.const_val () + 1;
10972 /* If TYPE is unresolved, the high bound might be a location list. Return
10973 0, for lack of a better value to return. */
10974 return 0;
10978 /* Ada exception catchpoint support:
10979 ---------------------------------
10981 We support 3 kinds of exception catchpoints:
10982 . catchpoints on Ada exceptions
10983 . catchpoints on unhandled Ada exceptions
10984 . catchpoints on failed assertions
10986 Exceptions raised during failed assertions, or unhandled exceptions
10987 could perfectly be caught with the general catchpoint on Ada exceptions.
10988 However, we can easily differentiate these two special cases, and having
10989 the option to distinguish these two cases from the rest can be useful
10990 to zero-in on certain situations.
10992 Exception catchpoints are a specialized form of breakpoint,
10993 since they rely on inserting breakpoints inside known routines
10994 of the GNAT runtime. The implementation therefore uses a standard
10995 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10996 of breakpoint_ops.
10998 Support in the runtime for exception catchpoints have been changed
10999 a few times already, and these changes affect the implementation
11000 of these catchpoints. In order to be able to support several
11001 variants of the runtime, we use a sniffer that will determine
11002 the runtime variant used by the program being debugged. */
11004 /* Ada's standard exceptions.
11006 The Ada 83 standard also defined Numeric_Error. But there so many
11007 situations where it was unclear from the Ada 83 Reference Manual
11008 (RM) whether Constraint_Error or Numeric_Error should be raised,
11009 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11010 Interpretation saying that anytime the RM says that Numeric_Error
11011 should be raised, the implementation may raise Constraint_Error.
11012 Ada 95 went one step further and pretty much removed Numeric_Error
11013 from the list of standard exceptions (it made it a renaming of
11014 Constraint_Error, to help preserve compatibility when compiling
11015 an Ada83 compiler). As such, we do not include Numeric_Error from
11016 this list of standard exceptions. */
11018 static const char * const standard_exc[] = {
11019 "constraint_error",
11020 "program_error",
11021 "storage_error",
11022 "tasking_error"
11025 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11027 /* A structure that describes how to support exception catchpoints
11028 for a given executable. */
11030 struct exception_support_info
11032 /* The name of the symbol to break on in order to insert
11033 a catchpoint on exceptions. */
11034 const char *catch_exception_sym;
11036 /* The name of the symbol to break on in order to insert
11037 a catchpoint on unhandled exceptions. */
11038 const char *catch_exception_unhandled_sym;
11040 /* The name of the symbol to break on in order to insert
11041 a catchpoint on failed assertions. */
11042 const char *catch_assert_sym;
11044 /* The name of the symbol to break on in order to insert
11045 a catchpoint on exception handling. */
11046 const char *catch_handlers_sym;
11048 /* Assuming that the inferior just triggered an unhandled exception
11049 catchpoint, this function is responsible for returning the address
11050 in inferior memory where the name of that exception is stored.
11051 Return zero if the address could not be computed. */
11052 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11055 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11056 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11058 /* The following exception support info structure describes how to
11059 implement exception catchpoints with the latest version of the
11060 Ada runtime (as of 2019-08-??). */
11062 static const struct exception_support_info default_exception_support_info =
11064 "__gnat_debug_raise_exception", /* catch_exception_sym */
11065 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11066 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11067 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11068 ada_unhandled_exception_name_addr
11071 /* The following exception support info structure describes how to
11072 implement exception catchpoints with an earlier version of the
11073 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11075 static const struct exception_support_info exception_support_info_v0 =
11077 "__gnat_debug_raise_exception", /* catch_exception_sym */
11078 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11079 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11080 "__gnat_begin_handler", /* catch_handlers_sym */
11081 ada_unhandled_exception_name_addr
11084 /* The following exception support info structure describes how to
11085 implement exception catchpoints with a slightly older version
11086 of the Ada runtime. */
11088 static const struct exception_support_info exception_support_info_fallback =
11090 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11091 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11092 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11093 "__gnat_begin_handler", /* catch_handlers_sym */
11094 ada_unhandled_exception_name_addr_from_raise
11097 /* Return nonzero if we can detect the exception support routines
11098 described in EINFO.
11100 This function errors out if an abnormal situation is detected
11101 (for instance, if we find the exception support routines, but
11102 that support is found to be incomplete). */
11104 static int
11105 ada_has_this_exception_support (const struct exception_support_info *einfo)
11107 struct symbol *sym;
11109 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11110 that should be compiled with debugging information. As a result, we
11111 expect to find that symbol in the symtabs. */
11113 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11114 if (sym == NULL)
11116 /* Perhaps we did not find our symbol because the Ada runtime was
11117 compiled without debugging info, or simply stripped of it.
11118 It happens on some GNU/Linux distributions for instance, where
11119 users have to install a separate debug package in order to get
11120 the runtime's debugging info. In that situation, let the user
11121 know why we cannot insert an Ada exception catchpoint.
11123 Note: Just for the purpose of inserting our Ada exception
11124 catchpoint, we could rely purely on the associated minimal symbol.
11125 But we would be operating in degraded mode anyway, since we are
11126 still lacking the debugging info needed later on to extract
11127 the name of the exception being raised (this name is printed in
11128 the catchpoint message, and is also used when trying to catch
11129 a specific exception). We do not handle this case for now. */
11130 struct bound_minimal_symbol msym
11131 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11133 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11134 error (_("Your Ada runtime appears to be missing some debugging "
11135 "information.\nCannot insert Ada exception catchpoint "
11136 "in this configuration."));
11138 return 0;
11141 /* Make sure that the symbol we found corresponds to a function. */
11143 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11145 error (_("Symbol \"%s\" is not a function (class = %d)"),
11146 sym->linkage_name (), SYMBOL_CLASS (sym));
11147 return 0;
11150 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11151 if (sym == NULL)
11153 struct bound_minimal_symbol msym
11154 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11156 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11157 error (_("Your Ada runtime appears to be missing some debugging "
11158 "information.\nCannot insert Ada exception catchpoint "
11159 "in this configuration."));
11161 return 0;
11164 /* Make sure that the symbol we found corresponds to a function. */
11166 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11168 error (_("Symbol \"%s\" is not a function (class = %d)"),
11169 sym->linkage_name (), SYMBOL_CLASS (sym));
11170 return 0;
11173 return 1;
11176 /* Inspect the Ada runtime and determine which exception info structure
11177 should be used to provide support for exception catchpoints.
11179 This function will always set the per-inferior exception_info,
11180 or raise an error. */
11182 static void
11183 ada_exception_support_info_sniffer (void)
11185 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11187 /* If the exception info is already known, then no need to recompute it. */
11188 if (data->exception_info != NULL)
11189 return;
11191 /* Check the latest (default) exception support info. */
11192 if (ada_has_this_exception_support (&default_exception_support_info))
11194 data->exception_info = &default_exception_support_info;
11195 return;
11198 /* Try the v0 exception suport info. */
11199 if (ada_has_this_exception_support (&exception_support_info_v0))
11201 data->exception_info = &exception_support_info_v0;
11202 return;
11205 /* Try our fallback exception suport info. */
11206 if (ada_has_this_exception_support (&exception_support_info_fallback))
11208 data->exception_info = &exception_support_info_fallback;
11209 return;
11212 /* Sometimes, it is normal for us to not be able to find the routine
11213 we are looking for. This happens when the program is linked with
11214 the shared version of the GNAT runtime, and the program has not been
11215 started yet. Inform the user of these two possible causes if
11216 applicable. */
11218 if (ada_update_initial_language (language_unknown) != language_ada)
11219 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11221 /* If the symbol does not exist, then check that the program is
11222 already started, to make sure that shared libraries have been
11223 loaded. If it is not started, this may mean that the symbol is
11224 in a shared library. */
11226 if (inferior_ptid.pid () == 0)
11227 error (_("Unable to insert catchpoint. Try to start the program first."));
11229 /* At this point, we know that we are debugging an Ada program and
11230 that the inferior has been started, but we still are not able to
11231 find the run-time symbols. That can mean that we are in
11232 configurable run time mode, or that a-except as been optimized
11233 out by the linker... In any case, at this point it is not worth
11234 supporting this feature. */
11236 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11239 /* True iff FRAME is very likely to be that of a function that is
11240 part of the runtime system. This is all very heuristic, but is
11241 intended to be used as advice as to what frames are uninteresting
11242 to most users. */
11244 static int
11245 is_known_support_routine (struct frame_info *frame)
11247 enum language func_lang;
11248 int i;
11249 const char *fullname;
11251 /* If this code does not have any debugging information (no symtab),
11252 This cannot be any user code. */
11254 symtab_and_line sal = find_frame_sal (frame);
11255 if (sal.symtab == NULL)
11256 return 1;
11258 /* If there is a symtab, but the associated source file cannot be
11259 located, then assume this is not user code: Selecting a frame
11260 for which we cannot display the code would not be very helpful
11261 for the user. This should also take care of case such as VxWorks
11262 where the kernel has some debugging info provided for a few units. */
11264 fullname = symtab_to_fullname (sal.symtab);
11265 if (access (fullname, R_OK) != 0)
11266 return 1;
11268 /* Check the unit filename against the Ada runtime file naming.
11269 We also check the name of the objfile against the name of some
11270 known system libraries that sometimes come with debugging info
11271 too. */
11273 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11275 re_comp (known_runtime_file_name_patterns[i]);
11276 if (re_exec (lbasename (sal.symtab->filename)))
11277 return 1;
11278 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11279 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11280 return 1;
11283 /* Check whether the function is a GNAT-generated entity. */
11285 gdb::unique_xmalloc_ptr<char> func_name
11286 = find_frame_funname (frame, &func_lang, NULL);
11287 if (func_name == NULL)
11288 return 1;
11290 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11292 re_comp (known_auxiliary_function_name_patterns[i]);
11293 if (re_exec (func_name.get ()))
11294 return 1;
11297 return 0;
11300 /* Find the first frame that contains debugging information and that is not
11301 part of the Ada run-time, starting from FI and moving upward. */
11303 void
11304 ada_find_printable_frame (struct frame_info *fi)
11306 for (; fi != NULL; fi = get_prev_frame (fi))
11308 if (!is_known_support_routine (fi))
11310 select_frame (fi);
11311 break;
11317 /* Assuming that the inferior just triggered an unhandled exception
11318 catchpoint, return the address in inferior memory where the name
11319 of the exception is stored.
11321 Return zero if the address could not be computed. */
11323 static CORE_ADDR
11324 ada_unhandled_exception_name_addr (void)
11326 return parse_and_eval_address ("e.full_name");
11329 /* Same as ada_unhandled_exception_name_addr, except that this function
11330 should be used when the inferior uses an older version of the runtime,
11331 where the exception name needs to be extracted from a specific frame
11332 several frames up in the callstack. */
11334 static CORE_ADDR
11335 ada_unhandled_exception_name_addr_from_raise (void)
11337 int frame_level;
11338 struct frame_info *fi;
11339 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11341 /* To determine the name of this exception, we need to select
11342 the frame corresponding to RAISE_SYM_NAME. This frame is
11343 at least 3 levels up, so we simply skip the first 3 frames
11344 without checking the name of their associated function. */
11345 fi = get_current_frame ();
11346 for (frame_level = 0; frame_level < 3; frame_level += 1)
11347 if (fi != NULL)
11348 fi = get_prev_frame (fi);
11350 while (fi != NULL)
11352 enum language func_lang;
11354 gdb::unique_xmalloc_ptr<char> func_name
11355 = find_frame_funname (fi, &func_lang, NULL);
11356 if (func_name != NULL)
11358 if (strcmp (func_name.get (),
11359 data->exception_info->catch_exception_sym) == 0)
11360 break; /* We found the frame we were looking for... */
11362 fi = get_prev_frame (fi);
11365 if (fi == NULL)
11366 return 0;
11368 select_frame (fi);
11369 return parse_and_eval_address ("id.full_name");
11372 /* Assuming the inferior just triggered an Ada exception catchpoint
11373 (of any type), return the address in inferior memory where the name
11374 of the exception is stored, if applicable.
11376 Assumes the selected frame is the current frame.
11378 Return zero if the address could not be computed, or if not relevant. */
11380 static CORE_ADDR
11381 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11382 struct breakpoint *b)
11384 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11386 switch (ex)
11388 case ada_catch_exception:
11389 return (parse_and_eval_address ("e.full_name"));
11390 break;
11392 case ada_catch_exception_unhandled:
11393 return data->exception_info->unhandled_exception_name_addr ();
11394 break;
11396 case ada_catch_handlers:
11397 return 0; /* The runtimes does not provide access to the exception
11398 name. */
11399 break;
11401 case ada_catch_assert:
11402 return 0; /* Exception name is not relevant in this case. */
11403 break;
11405 default:
11406 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11407 break;
11410 return 0; /* Should never be reached. */
11413 /* Assuming the inferior is stopped at an exception catchpoint,
11414 return the message which was associated to the exception, if
11415 available. Return NULL if the message could not be retrieved.
11417 Note: The exception message can be associated to an exception
11418 either through the use of the Raise_Exception function, or
11419 more simply (Ada 2005 and later), via:
11421 raise Exception_Name with "exception message";
11425 static gdb::unique_xmalloc_ptr<char>
11426 ada_exception_message_1 (void)
11428 struct value *e_msg_val;
11429 int e_msg_len;
11431 /* For runtimes that support this feature, the exception message
11432 is passed as an unbounded string argument called "message". */
11433 e_msg_val = parse_and_eval ("message");
11434 if (e_msg_val == NULL)
11435 return NULL; /* Exception message not supported. */
11437 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11438 gdb_assert (e_msg_val != NULL);
11439 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11441 /* If the message string is empty, then treat it as if there was
11442 no exception message. */
11443 if (e_msg_len <= 0)
11444 return NULL;
11446 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11447 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11448 e_msg_len);
11449 e_msg.get ()[e_msg_len] = '\0';
11451 return e_msg;
11454 /* Same as ada_exception_message_1, except that all exceptions are
11455 contained here (returning NULL instead). */
11457 static gdb::unique_xmalloc_ptr<char>
11458 ada_exception_message (void)
11460 gdb::unique_xmalloc_ptr<char> e_msg;
11464 e_msg = ada_exception_message_1 ();
11466 catch (const gdb_exception_error &e)
11468 e_msg.reset (nullptr);
11471 return e_msg;
11474 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11475 any error that ada_exception_name_addr_1 might cause to be thrown.
11476 When an error is intercepted, a warning with the error message is printed,
11477 and zero is returned. */
11479 static CORE_ADDR
11480 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11481 struct breakpoint *b)
11483 CORE_ADDR result = 0;
11487 result = ada_exception_name_addr_1 (ex, b);
11490 catch (const gdb_exception_error &e)
11492 warning (_("failed to get exception name: %s"), e.what ());
11493 return 0;
11496 return result;
11499 static std::string ada_exception_catchpoint_cond_string
11500 (const char *excep_string,
11501 enum ada_exception_catchpoint_kind ex);
11503 /* Ada catchpoints.
11505 In the case of catchpoints on Ada exceptions, the catchpoint will
11506 stop the target on every exception the program throws. When a user
11507 specifies the name of a specific exception, we translate this
11508 request into a condition expression (in text form), and then parse
11509 it into an expression stored in each of the catchpoint's locations.
11510 We then use this condition to check whether the exception that was
11511 raised is the one the user is interested in. If not, then the
11512 target is resumed again. We store the name of the requested
11513 exception, in order to be able to re-set the condition expression
11514 when symbols change. */
11516 /* An instance of this type is used to represent an Ada catchpoint
11517 breakpoint location. */
11519 class ada_catchpoint_location : public bp_location
11521 public:
11522 ada_catchpoint_location (breakpoint *owner)
11523 : bp_location (owner, bp_loc_software_breakpoint)
11526 /* The condition that checks whether the exception that was raised
11527 is the specific exception the user specified on catchpoint
11528 creation. */
11529 expression_up excep_cond_expr;
11532 /* An instance of this type is used to represent an Ada catchpoint. */
11534 struct ada_catchpoint : public breakpoint
11536 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11537 : m_kind (kind)
11541 /* The name of the specific exception the user specified. */
11542 std::string excep_string;
11544 /* What kind of catchpoint this is. */
11545 enum ada_exception_catchpoint_kind m_kind;
11548 /* Parse the exception condition string in the context of each of the
11549 catchpoint's locations, and store them for later evaluation. */
11551 static void
11552 create_excep_cond_exprs (struct ada_catchpoint *c,
11553 enum ada_exception_catchpoint_kind ex)
11555 struct bp_location *bl;
11557 /* Nothing to do if there's no specific exception to catch. */
11558 if (c->excep_string.empty ())
11559 return;
11561 /* Same if there are no locations... */
11562 if (c->loc == NULL)
11563 return;
11565 /* Compute the condition expression in text form, from the specific
11566 expection we want to catch. */
11567 std::string cond_string
11568 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11570 /* Iterate over all the catchpoint's locations, and parse an
11571 expression for each. */
11572 for (bl = c->loc; bl != NULL; bl = bl->next)
11574 struct ada_catchpoint_location *ada_loc
11575 = (struct ada_catchpoint_location *) bl;
11576 expression_up exp;
11578 if (!bl->shlib_disabled)
11580 const char *s;
11582 s = cond_string.c_str ();
11585 exp = parse_exp_1 (&s, bl->address,
11586 block_for_pc (bl->address),
11589 catch (const gdb_exception_error &e)
11591 warning (_("failed to reevaluate internal exception condition "
11592 "for catchpoint %d: %s"),
11593 c->number, e.what ());
11597 ada_loc->excep_cond_expr = std::move (exp);
11601 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11602 structure for all exception catchpoint kinds. */
11604 static struct bp_location *
11605 allocate_location_exception (struct breakpoint *self)
11607 return new ada_catchpoint_location (self);
11610 /* Implement the RE_SET method in the breakpoint_ops structure for all
11611 exception catchpoint kinds. */
11613 static void
11614 re_set_exception (struct breakpoint *b)
11616 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11618 /* Call the base class's method. This updates the catchpoint's
11619 locations. */
11620 bkpt_breakpoint_ops.re_set (b);
11622 /* Reparse the exception conditional expressions. One for each
11623 location. */
11624 create_excep_cond_exprs (c, c->m_kind);
11627 /* Returns true if we should stop for this breakpoint hit. If the
11628 user specified a specific exception, we only want to cause a stop
11629 if the program thrown that exception. */
11631 static int
11632 should_stop_exception (const struct bp_location *bl)
11634 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11635 const struct ada_catchpoint_location *ada_loc
11636 = (const struct ada_catchpoint_location *) bl;
11637 int stop;
11639 struct internalvar *var = lookup_internalvar ("_ada_exception");
11640 if (c->m_kind == ada_catch_assert)
11641 clear_internalvar (var);
11642 else
11646 const char *expr;
11648 if (c->m_kind == ada_catch_handlers)
11649 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11650 ".all.occurrence.id");
11651 else
11652 expr = "e";
11654 struct value *exc = parse_and_eval (expr);
11655 set_internalvar (var, exc);
11657 catch (const gdb_exception_error &ex)
11659 clear_internalvar (var);
11663 /* With no specific exception, should always stop. */
11664 if (c->excep_string.empty ())
11665 return 1;
11667 if (ada_loc->excep_cond_expr == NULL)
11669 /* We will have a NULL expression if back when we were creating
11670 the expressions, this location's had failed to parse. */
11671 return 1;
11674 stop = 1;
11677 struct value *mark;
11679 mark = value_mark ();
11680 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11681 value_free_to_mark (mark);
11683 catch (const gdb_exception &ex)
11685 exception_fprintf (gdb_stderr, ex,
11686 _("Error in testing exception condition:\n"));
11689 return stop;
11692 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11693 for all exception catchpoint kinds. */
11695 static void
11696 check_status_exception (bpstat bs)
11698 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11701 /* Implement the PRINT_IT method in the breakpoint_ops structure
11702 for all exception catchpoint kinds. */
11704 static enum print_stop_action
11705 print_it_exception (bpstat bs)
11707 struct ui_out *uiout = current_uiout;
11708 struct breakpoint *b = bs->breakpoint_at;
11710 annotate_catchpoint (b->number);
11712 if (uiout->is_mi_like_p ())
11714 uiout->field_string ("reason",
11715 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11716 uiout->field_string ("disp", bpdisp_text (b->disposition));
11719 uiout->text (b->disposition == disp_del
11720 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11721 uiout->field_signed ("bkptno", b->number);
11722 uiout->text (", ");
11724 /* ada_exception_name_addr relies on the selected frame being the
11725 current frame. Need to do this here because this function may be
11726 called more than once when printing a stop, and below, we'll
11727 select the first frame past the Ada run-time (see
11728 ada_find_printable_frame). */
11729 select_frame (get_current_frame ());
11731 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11732 switch (c->m_kind)
11734 case ada_catch_exception:
11735 case ada_catch_exception_unhandled:
11736 case ada_catch_handlers:
11738 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11739 char exception_name[256];
11741 if (addr != 0)
11743 read_memory (addr, (gdb_byte *) exception_name,
11744 sizeof (exception_name) - 1);
11745 exception_name [sizeof (exception_name) - 1] = '\0';
11747 else
11749 /* For some reason, we were unable to read the exception
11750 name. This could happen if the Runtime was compiled
11751 without debugging info, for instance. In that case,
11752 just replace the exception name by the generic string
11753 "exception" - it will read as "an exception" in the
11754 notification we are about to print. */
11755 memcpy (exception_name, "exception", sizeof ("exception"));
11757 /* In the case of unhandled exception breakpoints, we print
11758 the exception name as "unhandled EXCEPTION_NAME", to make
11759 it clearer to the user which kind of catchpoint just got
11760 hit. We used ui_out_text to make sure that this extra
11761 info does not pollute the exception name in the MI case. */
11762 if (c->m_kind == ada_catch_exception_unhandled)
11763 uiout->text ("unhandled ");
11764 uiout->field_string ("exception-name", exception_name);
11766 break;
11767 case ada_catch_assert:
11768 /* In this case, the name of the exception is not really
11769 important. Just print "failed assertion" to make it clearer
11770 that his program just hit an assertion-failure catchpoint.
11771 We used ui_out_text because this info does not belong in
11772 the MI output. */
11773 uiout->text ("failed assertion");
11774 break;
11777 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11778 if (exception_message != NULL)
11780 uiout->text (" (");
11781 uiout->field_string ("exception-message", exception_message.get ());
11782 uiout->text (")");
11785 uiout->text (" at ");
11786 ada_find_printable_frame (get_current_frame ());
11788 return PRINT_SRC_AND_LOC;
11791 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11792 for all exception catchpoint kinds. */
11794 static void
11795 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11797 struct ui_out *uiout = current_uiout;
11798 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11799 struct value_print_options opts;
11801 get_user_print_options (&opts);
11803 if (opts.addressprint)
11804 uiout->field_skip ("addr");
11806 annotate_field (5);
11807 switch (c->m_kind)
11809 case ada_catch_exception:
11810 if (!c->excep_string.empty ())
11812 std::string msg = string_printf (_("`%s' Ada exception"),
11813 c->excep_string.c_str ());
11815 uiout->field_string ("what", msg);
11817 else
11818 uiout->field_string ("what", "all Ada exceptions");
11820 break;
11822 case ada_catch_exception_unhandled:
11823 uiout->field_string ("what", "unhandled Ada exceptions");
11824 break;
11826 case ada_catch_handlers:
11827 if (!c->excep_string.empty ())
11829 uiout->field_fmt ("what",
11830 _("`%s' Ada exception handlers"),
11831 c->excep_string.c_str ());
11833 else
11834 uiout->field_string ("what", "all Ada exceptions handlers");
11835 break;
11837 case ada_catch_assert:
11838 uiout->field_string ("what", "failed Ada assertions");
11839 break;
11841 default:
11842 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11843 break;
11847 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11848 for all exception catchpoint kinds. */
11850 static void
11851 print_mention_exception (struct breakpoint *b)
11853 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11854 struct ui_out *uiout = current_uiout;
11856 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11857 : _("Catchpoint "));
11858 uiout->field_signed ("bkptno", b->number);
11859 uiout->text (": ");
11861 switch (c->m_kind)
11863 case ada_catch_exception:
11864 if (!c->excep_string.empty ())
11866 std::string info = string_printf (_("`%s' Ada exception"),
11867 c->excep_string.c_str ());
11868 uiout->text (info.c_str ());
11870 else
11871 uiout->text (_("all Ada exceptions"));
11872 break;
11874 case ada_catch_exception_unhandled:
11875 uiout->text (_("unhandled Ada exceptions"));
11876 break;
11878 case ada_catch_handlers:
11879 if (!c->excep_string.empty ())
11881 std::string info
11882 = string_printf (_("`%s' Ada exception handlers"),
11883 c->excep_string.c_str ());
11884 uiout->text (info.c_str ());
11886 else
11887 uiout->text (_("all Ada exceptions handlers"));
11888 break;
11890 case ada_catch_assert:
11891 uiout->text (_("failed Ada assertions"));
11892 break;
11894 default:
11895 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11896 break;
11900 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11901 for all exception catchpoint kinds. */
11903 static void
11904 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
11906 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11908 switch (c->m_kind)
11910 case ada_catch_exception:
11911 fprintf_filtered (fp, "catch exception");
11912 if (!c->excep_string.empty ())
11913 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
11914 break;
11916 case ada_catch_exception_unhandled:
11917 fprintf_filtered (fp, "catch exception unhandled");
11918 break;
11920 case ada_catch_handlers:
11921 fprintf_filtered (fp, "catch handlers");
11922 break;
11924 case ada_catch_assert:
11925 fprintf_filtered (fp, "catch assert");
11926 break;
11928 default:
11929 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11931 print_recreate_thread (b, fp);
11934 /* Virtual tables for various breakpoint types. */
11935 static struct breakpoint_ops catch_exception_breakpoint_ops;
11936 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11937 static struct breakpoint_ops catch_assert_breakpoint_ops;
11938 static struct breakpoint_ops catch_handlers_breakpoint_ops;
11940 /* See ada-lang.h. */
11942 bool
11943 is_ada_exception_catchpoint (breakpoint *bp)
11945 return (bp->ops == &catch_exception_breakpoint_ops
11946 || bp->ops == &catch_exception_unhandled_breakpoint_ops
11947 || bp->ops == &catch_assert_breakpoint_ops
11948 || bp->ops == &catch_handlers_breakpoint_ops);
11951 /* Split the arguments specified in a "catch exception" command.
11952 Set EX to the appropriate catchpoint type.
11953 Set EXCEP_STRING to the name of the specific exception if
11954 specified by the user.
11955 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
11956 "catch handlers" command. False otherwise.
11957 If a condition is found at the end of the arguments, the condition
11958 expression is stored in COND_STRING (memory must be deallocated
11959 after use). Otherwise COND_STRING is set to NULL. */
11961 static void
11962 catch_ada_exception_command_split (const char *args,
11963 bool is_catch_handlers_cmd,
11964 enum ada_exception_catchpoint_kind *ex,
11965 std::string *excep_string,
11966 std::string *cond_string)
11968 std::string exception_name;
11970 exception_name = extract_arg (&args);
11971 if (exception_name == "if")
11973 /* This is not an exception name; this is the start of a condition
11974 expression for a catchpoint on all exceptions. So, "un-get"
11975 this token, and set exception_name to NULL. */
11976 exception_name.clear ();
11977 args -= 2;
11980 /* Check to see if we have a condition. */
11982 args = skip_spaces (args);
11983 if (startswith (args, "if")
11984 && (isspace (args[2]) || args[2] == '\0'))
11986 args += 2;
11987 args = skip_spaces (args);
11989 if (args[0] == '\0')
11990 error (_("Condition missing after `if' keyword"));
11991 *cond_string = args;
11993 args += strlen (args);
11996 /* Check that we do not have any more arguments. Anything else
11997 is unexpected. */
11999 if (args[0] != '\0')
12000 error (_("Junk at end of expression"));
12002 if (is_catch_handlers_cmd)
12004 /* Catch handling of exceptions. */
12005 *ex = ada_catch_handlers;
12006 *excep_string = exception_name;
12008 else if (exception_name.empty ())
12010 /* Catch all exceptions. */
12011 *ex = ada_catch_exception;
12012 excep_string->clear ();
12014 else if (exception_name == "unhandled")
12016 /* Catch unhandled exceptions. */
12017 *ex = ada_catch_exception_unhandled;
12018 excep_string->clear ();
12020 else
12022 /* Catch a specific exception. */
12023 *ex = ada_catch_exception;
12024 *excep_string = exception_name;
12028 /* Return the name of the symbol on which we should break in order to
12029 implement a catchpoint of the EX kind. */
12031 static const char *
12032 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12034 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12036 gdb_assert (data->exception_info != NULL);
12038 switch (ex)
12040 case ada_catch_exception:
12041 return (data->exception_info->catch_exception_sym);
12042 break;
12043 case ada_catch_exception_unhandled:
12044 return (data->exception_info->catch_exception_unhandled_sym);
12045 break;
12046 case ada_catch_assert:
12047 return (data->exception_info->catch_assert_sym);
12048 break;
12049 case ada_catch_handlers:
12050 return (data->exception_info->catch_handlers_sym);
12051 break;
12052 default:
12053 internal_error (__FILE__, __LINE__,
12054 _("unexpected catchpoint kind (%d)"), ex);
12058 /* Return the breakpoint ops "virtual table" used for catchpoints
12059 of the EX kind. */
12061 static const struct breakpoint_ops *
12062 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12064 switch (ex)
12066 case ada_catch_exception:
12067 return (&catch_exception_breakpoint_ops);
12068 break;
12069 case ada_catch_exception_unhandled:
12070 return (&catch_exception_unhandled_breakpoint_ops);
12071 break;
12072 case ada_catch_assert:
12073 return (&catch_assert_breakpoint_ops);
12074 break;
12075 case ada_catch_handlers:
12076 return (&catch_handlers_breakpoint_ops);
12077 break;
12078 default:
12079 internal_error (__FILE__, __LINE__,
12080 _("unexpected catchpoint kind (%d)"), ex);
12084 /* Return the condition that will be used to match the current exception
12085 being raised with the exception that the user wants to catch. This
12086 assumes that this condition is used when the inferior just triggered
12087 an exception catchpoint.
12088 EX: the type of catchpoints used for catching Ada exceptions. */
12090 static std::string
12091 ada_exception_catchpoint_cond_string (const char *excep_string,
12092 enum ada_exception_catchpoint_kind ex)
12094 int i;
12095 bool is_standard_exc = false;
12096 std::string result;
12098 if (ex == ada_catch_handlers)
12100 /* For exception handlers catchpoints, the condition string does
12101 not use the same parameter as for the other exceptions. */
12102 result = ("long_integer (GNAT_GCC_exception_Access"
12103 "(gcc_exception).all.occurrence.id)");
12105 else
12106 result = "long_integer (e)";
12108 /* The standard exceptions are a special case. They are defined in
12109 runtime units that have been compiled without debugging info; if
12110 EXCEP_STRING is the not-fully-qualified name of a standard
12111 exception (e.g. "constraint_error") then, during the evaluation
12112 of the condition expression, the symbol lookup on this name would
12113 *not* return this standard exception. The catchpoint condition
12114 may then be set only on user-defined exceptions which have the
12115 same not-fully-qualified name (e.g. my_package.constraint_error).
12117 To avoid this unexcepted behavior, these standard exceptions are
12118 systematically prefixed by "standard". This means that "catch
12119 exception constraint_error" is rewritten into "catch exception
12120 standard.constraint_error".
12122 If an exception named constraint_error is defined in another package of
12123 the inferior program, then the only way to specify this exception as a
12124 breakpoint condition is to use its fully-qualified named:
12125 e.g. my_package.constraint_error. */
12127 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12129 if (strcmp (standard_exc [i], excep_string) == 0)
12131 is_standard_exc = true;
12132 break;
12136 result += " = ";
12138 if (is_standard_exc)
12139 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12140 else
12141 string_appendf (result, "long_integer (&%s)", excep_string);
12143 return result;
12146 /* Return the symtab_and_line that should be used to insert an exception
12147 catchpoint of the TYPE kind.
12149 ADDR_STRING returns the name of the function where the real
12150 breakpoint that implements the catchpoints is set, depending on the
12151 type of catchpoint we need to create. */
12153 static struct symtab_and_line
12154 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12155 std::string *addr_string, const struct breakpoint_ops **ops)
12157 const char *sym_name;
12158 struct symbol *sym;
12160 /* First, find out which exception support info to use. */
12161 ada_exception_support_info_sniffer ();
12163 /* Then lookup the function on which we will break in order to catch
12164 the Ada exceptions requested by the user. */
12165 sym_name = ada_exception_sym_name (ex);
12166 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12168 if (sym == NULL)
12169 error (_("Catchpoint symbol not found: %s"), sym_name);
12171 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12172 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12174 /* Set ADDR_STRING. */
12175 *addr_string = sym_name;
12177 /* Set OPS. */
12178 *ops = ada_exception_breakpoint_ops (ex);
12180 return find_function_start_sal (sym, 1);
12183 /* Create an Ada exception catchpoint.
12185 EX_KIND is the kind of exception catchpoint to be created.
12187 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12188 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12189 of the exception to which this catchpoint applies.
12191 COND_STRING, if not empty, is the catchpoint condition.
12193 TEMPFLAG, if nonzero, means that the underlying breakpoint
12194 should be temporary.
12196 FROM_TTY is the usual argument passed to all commands implementations. */
12198 void
12199 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12200 enum ada_exception_catchpoint_kind ex_kind,
12201 const std::string &excep_string,
12202 const std::string &cond_string,
12203 int tempflag,
12204 int disabled,
12205 int from_tty)
12207 std::string addr_string;
12208 const struct breakpoint_ops *ops = NULL;
12209 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12211 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12212 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12213 ops, tempflag, disabled, from_tty);
12214 c->excep_string = excep_string;
12215 create_excep_cond_exprs (c.get (), ex_kind);
12216 if (!cond_string.empty ())
12217 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12218 install_breakpoint (0, std::move (c), 1);
12221 /* Implement the "catch exception" command. */
12223 static void
12224 catch_ada_exception_command (const char *arg_entry, int from_tty,
12225 struct cmd_list_element *command)
12227 const char *arg = arg_entry;
12228 struct gdbarch *gdbarch = get_current_arch ();
12229 int tempflag;
12230 enum ada_exception_catchpoint_kind ex_kind;
12231 std::string excep_string;
12232 std::string cond_string;
12234 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12236 if (!arg)
12237 arg = "";
12238 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12239 &cond_string);
12240 create_ada_exception_catchpoint (gdbarch, ex_kind,
12241 excep_string, cond_string,
12242 tempflag, 1 /* enabled */,
12243 from_tty);
12246 /* Implement the "catch handlers" command. */
12248 static void
12249 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12250 struct cmd_list_element *command)
12252 const char *arg = arg_entry;
12253 struct gdbarch *gdbarch = get_current_arch ();
12254 int tempflag;
12255 enum ada_exception_catchpoint_kind ex_kind;
12256 std::string excep_string;
12257 std::string cond_string;
12259 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12261 if (!arg)
12262 arg = "";
12263 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12264 &cond_string);
12265 create_ada_exception_catchpoint (gdbarch, ex_kind,
12266 excep_string, cond_string,
12267 tempflag, 1 /* enabled */,
12268 from_tty);
12271 /* Completion function for the Ada "catch" commands. */
12273 static void
12274 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12275 const char *text, const char *word)
12277 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12279 for (const ada_exc_info &info : exceptions)
12281 if (startswith (info.name, word))
12282 tracker.add_completion (make_unique_xstrdup (info.name));
12286 /* Split the arguments specified in a "catch assert" command.
12288 ARGS contains the command's arguments (or the empty string if
12289 no arguments were passed).
12291 If ARGS contains a condition, set COND_STRING to that condition
12292 (the memory needs to be deallocated after use). */
12294 static void
12295 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12297 args = skip_spaces (args);
12299 /* Check whether a condition was provided. */
12300 if (startswith (args, "if")
12301 && (isspace (args[2]) || args[2] == '\0'))
12303 args += 2;
12304 args = skip_spaces (args);
12305 if (args[0] == '\0')
12306 error (_("condition missing after `if' keyword"));
12307 cond_string.assign (args);
12310 /* Otherwise, there should be no other argument at the end of
12311 the command. */
12312 else if (args[0] != '\0')
12313 error (_("Junk at end of arguments."));
12316 /* Implement the "catch assert" command. */
12318 static void
12319 catch_assert_command (const char *arg_entry, int from_tty,
12320 struct cmd_list_element *command)
12322 const char *arg = arg_entry;
12323 struct gdbarch *gdbarch = get_current_arch ();
12324 int tempflag;
12325 std::string cond_string;
12327 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12329 if (!arg)
12330 arg = "";
12331 catch_ada_assert_command_split (arg, cond_string);
12332 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12333 "", cond_string,
12334 tempflag, 1 /* enabled */,
12335 from_tty);
12338 /* Return non-zero if the symbol SYM is an Ada exception object. */
12340 static int
12341 ada_is_exception_sym (struct symbol *sym)
12343 const char *type_name = SYMBOL_TYPE (sym)->name ();
12345 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12346 && SYMBOL_CLASS (sym) != LOC_BLOCK
12347 && SYMBOL_CLASS (sym) != LOC_CONST
12348 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12349 && type_name != NULL && strcmp (type_name, "exception") == 0);
12352 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12353 Ada exception object. This matches all exceptions except the ones
12354 defined by the Ada language. */
12356 static int
12357 ada_is_non_standard_exception_sym (struct symbol *sym)
12359 int i;
12361 if (!ada_is_exception_sym (sym))
12362 return 0;
12364 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12365 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12366 return 0; /* A standard exception. */
12368 /* Numeric_Error is also a standard exception, so exclude it.
12369 See the STANDARD_EXC description for more details as to why
12370 this exception is not listed in that array. */
12371 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12372 return 0;
12374 return 1;
12377 /* A helper function for std::sort, comparing two struct ada_exc_info
12378 objects.
12380 The comparison is determined first by exception name, and then
12381 by exception address. */
12383 bool
12384 ada_exc_info::operator< (const ada_exc_info &other) const
12386 int result;
12388 result = strcmp (name, other.name);
12389 if (result < 0)
12390 return true;
12391 if (result == 0 && addr < other.addr)
12392 return true;
12393 return false;
12396 bool
12397 ada_exc_info::operator== (const ada_exc_info &other) const
12399 return addr == other.addr && strcmp (name, other.name) == 0;
12402 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12403 routine, but keeping the first SKIP elements untouched.
12405 All duplicates are also removed. */
12407 static void
12408 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12409 int skip)
12411 std::sort (exceptions->begin () + skip, exceptions->end ());
12412 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12413 exceptions->end ());
12416 /* Add all exceptions defined by the Ada standard whose name match
12417 a regular expression.
12419 If PREG is not NULL, then this regexp_t object is used to
12420 perform the symbol name matching. Otherwise, no name-based
12421 filtering is performed.
12423 EXCEPTIONS is a vector of exceptions to which matching exceptions
12424 gets pushed. */
12426 static void
12427 ada_add_standard_exceptions (compiled_regex *preg,
12428 std::vector<ada_exc_info> *exceptions)
12430 int i;
12432 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12434 if (preg == NULL
12435 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12437 struct bound_minimal_symbol msymbol
12438 = ada_lookup_simple_minsym (standard_exc[i]);
12440 if (msymbol.minsym != NULL)
12442 struct ada_exc_info info
12443 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12445 exceptions->push_back (info);
12451 /* Add all Ada exceptions defined locally and accessible from the given
12452 FRAME.
12454 If PREG is not NULL, then this regexp_t object is used to
12455 perform the symbol name matching. Otherwise, no name-based
12456 filtering is performed.
12458 EXCEPTIONS is a vector of exceptions to which matching exceptions
12459 gets pushed. */
12461 static void
12462 ada_add_exceptions_from_frame (compiled_regex *preg,
12463 struct frame_info *frame,
12464 std::vector<ada_exc_info> *exceptions)
12466 const struct block *block = get_frame_block (frame, 0);
12468 while (block != 0)
12470 struct block_iterator iter;
12471 struct symbol *sym;
12473 ALL_BLOCK_SYMBOLS (block, iter, sym)
12475 switch (SYMBOL_CLASS (sym))
12477 case LOC_TYPEDEF:
12478 case LOC_BLOCK:
12479 case LOC_CONST:
12480 break;
12481 default:
12482 if (ada_is_exception_sym (sym))
12484 struct ada_exc_info info = {sym->print_name (),
12485 SYMBOL_VALUE_ADDRESS (sym)};
12487 exceptions->push_back (info);
12491 if (BLOCK_FUNCTION (block) != NULL)
12492 break;
12493 block = BLOCK_SUPERBLOCK (block);
12497 /* Return true if NAME matches PREG or if PREG is NULL. */
12499 static bool
12500 name_matches_regex (const char *name, compiled_regex *preg)
12502 return (preg == NULL
12503 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12506 /* Add all exceptions defined globally whose name name match
12507 a regular expression, excluding standard exceptions.
12509 The reason we exclude standard exceptions is that they need
12510 to be handled separately: Standard exceptions are defined inside
12511 a runtime unit which is normally not compiled with debugging info,
12512 and thus usually do not show up in our symbol search. However,
12513 if the unit was in fact built with debugging info, we need to
12514 exclude them because they would duplicate the entry we found
12515 during the special loop that specifically searches for those
12516 standard exceptions.
12518 If PREG is not NULL, then this regexp_t object is used to
12519 perform the symbol name matching. Otherwise, no name-based
12520 filtering is performed.
12522 EXCEPTIONS is a vector of exceptions to which matching exceptions
12523 gets pushed. */
12525 static void
12526 ada_add_global_exceptions (compiled_regex *preg,
12527 std::vector<ada_exc_info> *exceptions)
12529 /* In Ada, the symbol "search name" is a linkage name, whereas the
12530 regular expression used to do the matching refers to the natural
12531 name. So match against the decoded name. */
12532 expand_symtabs_matching (NULL,
12533 lookup_name_info::match_any (),
12534 [&] (const char *search_name)
12536 std::string decoded = ada_decode (search_name);
12537 return name_matches_regex (decoded.c_str (), preg);
12539 NULL,
12540 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12541 VARIABLES_DOMAIN);
12543 for (objfile *objfile : current_program_space->objfiles ())
12545 for (compunit_symtab *s : objfile->compunits ())
12547 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12548 int i;
12550 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12552 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12553 struct block_iterator iter;
12554 struct symbol *sym;
12556 ALL_BLOCK_SYMBOLS (b, iter, sym)
12557 if (ada_is_non_standard_exception_sym (sym)
12558 && name_matches_regex (sym->natural_name (), preg))
12560 struct ada_exc_info info
12561 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12563 exceptions->push_back (info);
12570 /* Implements ada_exceptions_list with the regular expression passed
12571 as a regex_t, rather than a string.
12573 If not NULL, PREG is used to filter out exceptions whose names
12574 do not match. Otherwise, all exceptions are listed. */
12576 static std::vector<ada_exc_info>
12577 ada_exceptions_list_1 (compiled_regex *preg)
12579 std::vector<ada_exc_info> result;
12580 int prev_len;
12582 /* First, list the known standard exceptions. These exceptions
12583 need to be handled separately, as they are usually defined in
12584 runtime units that have been compiled without debugging info. */
12586 ada_add_standard_exceptions (preg, &result);
12588 /* Next, find all exceptions whose scope is local and accessible
12589 from the currently selected frame. */
12591 if (has_stack_frames ())
12593 prev_len = result.size ();
12594 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12595 &result);
12596 if (result.size () > prev_len)
12597 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12600 /* Add all exceptions whose scope is global. */
12602 prev_len = result.size ();
12603 ada_add_global_exceptions (preg, &result);
12604 if (result.size () > prev_len)
12605 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12607 return result;
12610 /* Return a vector of ada_exc_info.
12612 If REGEXP is NULL, all exceptions are included in the result.
12613 Otherwise, it should contain a valid regular expression,
12614 and only the exceptions whose names match that regular expression
12615 are included in the result.
12617 The exceptions are sorted in the following order:
12618 - Standard exceptions (defined by the Ada language), in
12619 alphabetical order;
12620 - Exceptions only visible from the current frame, in
12621 alphabetical order;
12622 - Exceptions whose scope is global, in alphabetical order. */
12624 std::vector<ada_exc_info>
12625 ada_exceptions_list (const char *regexp)
12627 if (regexp == NULL)
12628 return ada_exceptions_list_1 (NULL);
12630 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12631 return ada_exceptions_list_1 (&reg);
12634 /* Implement the "info exceptions" command. */
12636 static void
12637 info_exceptions_command (const char *regexp, int from_tty)
12639 struct gdbarch *gdbarch = get_current_arch ();
12641 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12643 if (regexp != NULL)
12644 printf_filtered
12645 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12646 else
12647 printf_filtered (_("All defined Ada exceptions:\n"));
12649 for (const ada_exc_info &info : exceptions)
12650 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12654 /* Language vector */
12656 /* symbol_name_matcher_ftype adapter for wild_match. */
12658 static bool
12659 do_wild_match (const char *symbol_search_name,
12660 const lookup_name_info &lookup_name,
12661 completion_match_result *comp_match_res)
12663 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12666 /* symbol_name_matcher_ftype adapter for full_match. */
12668 static bool
12669 do_full_match (const char *symbol_search_name,
12670 const lookup_name_info &lookup_name,
12671 completion_match_result *comp_match_res)
12673 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12675 /* If both symbols start with "_ada_", just let the loop below
12676 handle the comparison. However, if only the symbol name starts
12677 with "_ada_", skip the prefix and let the match proceed as
12678 usual. */
12679 if (startswith (symbol_search_name, "_ada_")
12680 && !startswith (lname, "_ada"))
12681 symbol_search_name += 5;
12683 int uscore_count = 0;
12684 while (*lname != '\0')
12686 if (*symbol_search_name != *lname)
12688 if (*symbol_search_name == 'B' && uscore_count == 2
12689 && symbol_search_name[1] == '_')
12691 symbol_search_name += 2;
12692 while (isdigit (*symbol_search_name))
12693 ++symbol_search_name;
12694 if (symbol_search_name[0] == '_'
12695 && symbol_search_name[1] == '_')
12697 symbol_search_name += 2;
12698 continue;
12701 return false;
12704 if (*symbol_search_name == '_')
12705 ++uscore_count;
12706 else
12707 uscore_count = 0;
12709 ++symbol_search_name;
12710 ++lname;
12713 return is_name_suffix (symbol_search_name);
12716 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12718 static bool
12719 do_exact_match (const char *symbol_search_name,
12720 const lookup_name_info &lookup_name,
12721 completion_match_result *comp_match_res)
12723 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12726 /* Build the Ada lookup name for LOOKUP_NAME. */
12728 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12730 gdb::string_view user_name = lookup_name.name ();
12732 if (!user_name.empty () && user_name[0] == '<')
12734 if (user_name.back () == '>')
12735 m_encoded_name
12736 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12737 else
12738 m_encoded_name
12739 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12740 m_encoded_p = true;
12741 m_verbatim_p = true;
12742 m_wild_match_p = false;
12743 m_standard_p = false;
12745 else
12747 m_verbatim_p = false;
12749 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12751 if (!m_encoded_p)
12753 const char *folded = ada_fold_name (user_name);
12754 m_encoded_name = ada_encode_1 (folded, false);
12755 if (m_encoded_name.empty ())
12756 m_encoded_name = gdb::to_string (user_name);
12758 else
12759 m_encoded_name = gdb::to_string (user_name);
12761 /* Handle the 'package Standard' special case. See description
12762 of m_standard_p. */
12763 if (startswith (m_encoded_name.c_str (), "standard__"))
12765 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12766 m_standard_p = true;
12768 else
12769 m_standard_p = false;
12771 /* If the name contains a ".", then the user is entering a fully
12772 qualified entity name, and the match must not be done in wild
12773 mode. Similarly, if the user wants to complete what looks
12774 like an encoded name, the match must not be done in wild
12775 mode. Also, in the standard__ special case always do
12776 non-wild matching. */
12777 m_wild_match_p
12778 = (lookup_name.match_type () != symbol_name_match_type::FULL
12779 && !m_encoded_p
12780 && !m_standard_p
12781 && user_name.find ('.') == std::string::npos);
12785 /* symbol_name_matcher_ftype method for Ada. This only handles
12786 completion mode. */
12788 static bool
12789 ada_symbol_name_matches (const char *symbol_search_name,
12790 const lookup_name_info &lookup_name,
12791 completion_match_result *comp_match_res)
12793 return lookup_name.ada ().matches (symbol_search_name,
12794 lookup_name.match_type (),
12795 comp_match_res);
12798 /* A name matcher that matches the symbol name exactly, with
12799 strcmp. */
12801 static bool
12802 literal_symbol_name_matcher (const char *symbol_search_name,
12803 const lookup_name_info &lookup_name,
12804 completion_match_result *comp_match_res)
12806 gdb::string_view name_view = lookup_name.name ();
12808 if (lookup_name.completion_mode ()
12809 ? (strncmp (symbol_search_name, name_view.data (),
12810 name_view.size ()) == 0)
12811 : symbol_search_name == name_view)
12813 if (comp_match_res != NULL)
12814 comp_match_res->set_match (symbol_search_name);
12815 return true;
12817 else
12818 return false;
12821 /* Implement the "get_symbol_name_matcher" language_defn method for
12822 Ada. */
12824 static symbol_name_matcher_ftype *
12825 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12827 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12828 return literal_symbol_name_matcher;
12830 if (lookup_name.completion_mode ())
12831 return ada_symbol_name_matches;
12832 else
12834 if (lookup_name.ada ().wild_match_p ())
12835 return do_wild_match;
12836 else if (lookup_name.ada ().verbatim_p ())
12837 return do_exact_match;
12838 else
12839 return do_full_match;
12843 /* Class representing the Ada language. */
12845 class ada_language : public language_defn
12847 public:
12848 ada_language ()
12849 : language_defn (language_ada)
12850 { /* Nothing. */ }
12852 /* See language.h. */
12854 const char *name () const override
12855 { return "ada"; }
12857 /* See language.h. */
12859 const char *natural_name () const override
12860 { return "Ada"; }
12862 /* See language.h. */
12864 const std::vector<const char *> &filename_extensions () const override
12866 static const std::vector<const char *> extensions
12867 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12868 return extensions;
12871 /* Print an array element index using the Ada syntax. */
12873 void print_array_index (struct type *index_type,
12874 LONGEST index,
12875 struct ui_file *stream,
12876 const value_print_options *options) const override
12878 struct value *index_value = val_atr (index_type, index);
12880 value_print (index_value, stream, options);
12881 fprintf_filtered (stream, " => ");
12884 /* Implement the "read_var_value" language_defn method for Ada. */
12886 struct value *read_var_value (struct symbol *var,
12887 const struct block *var_block,
12888 struct frame_info *frame) const override
12890 /* The only case where default_read_var_value is not sufficient
12891 is when VAR is a renaming... */
12892 if (frame != nullptr)
12894 const struct block *frame_block = get_frame_block (frame, NULL);
12895 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12896 return ada_read_renaming_var_value (var, frame_block);
12899 /* This is a typical case where we expect the default_read_var_value
12900 function to work. */
12901 return language_defn::read_var_value (var, var_block, frame);
12904 /* See language.h. */
12905 void language_arch_info (struct gdbarch *gdbarch,
12906 struct language_arch_info *lai) const override
12908 const struct builtin_type *builtin = builtin_type (gdbarch);
12910 /* Helper function to allow shorter lines below. */
12911 auto add = [&] (struct type *t)
12913 lai->add_primitive_type (t);
12916 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12917 0, "integer"));
12918 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12919 0, "long_integer"));
12920 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12921 0, "short_integer"));
12922 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
12923 0, "character");
12924 lai->set_string_char_type (char_type);
12925 add (char_type);
12926 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12927 "float", gdbarch_float_format (gdbarch)));
12928 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12929 "long_float", gdbarch_double_format (gdbarch)));
12930 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12931 0, "long_long_integer"));
12932 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
12933 "long_long_float",
12934 gdbarch_long_double_format (gdbarch)));
12935 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12936 0, "natural"));
12937 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12938 0, "positive"));
12939 add (builtin->builtin_void);
12941 struct type *system_addr_ptr
12942 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
12943 "void"));
12944 system_addr_ptr->set_name ("system__address");
12945 add (system_addr_ptr);
12947 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
12948 type. This is a signed integral type whose size is the same as
12949 the size of addresses. */
12950 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
12951 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
12952 "storage_offset"));
12954 lai->set_bool_type (builtin->builtin_bool);
12957 /* See language.h. */
12959 bool iterate_over_symbols
12960 (const struct block *block, const lookup_name_info &name,
12961 domain_enum domain,
12962 gdb::function_view<symbol_found_callback_ftype> callback) const override
12964 std::vector<struct block_symbol> results
12965 = ada_lookup_symbol_list_worker (name, block, domain, 0);
12966 for (block_symbol &sym : results)
12968 if (!callback (&sym))
12969 return false;
12972 return true;
12975 /* See language.h. */
12976 bool sniff_from_mangled_name (const char *mangled,
12977 char **out) const override
12979 std::string demangled = ada_decode (mangled);
12981 *out = NULL;
12983 if (demangled != mangled && demangled[0] != '<')
12985 /* Set the gsymbol language to Ada, but still return 0.
12986 Two reasons for that:
12988 1. For Ada, we prefer computing the symbol's decoded name
12989 on the fly rather than pre-compute it, in order to save
12990 memory (Ada projects are typically very large).
12992 2. There are some areas in the definition of the GNAT
12993 encoding where, with a bit of bad luck, we might be able
12994 to decode a non-Ada symbol, generating an incorrect
12995 demangled name (Eg: names ending with "TB" for instance
12996 are identified as task bodies and so stripped from
12997 the decoded name returned).
12999 Returning true, here, but not setting *DEMANGLED, helps us get
13000 a little bit of the best of both worlds. Because we're last,
13001 we should not affect any of the other languages that were
13002 able to demangle the symbol before us; we get to correctly
13003 tag Ada symbols as such; and even if we incorrectly tagged a
13004 non-Ada symbol, which should be rare, any routing through the
13005 Ada language should be transparent (Ada tries to behave much
13006 like C/C++ with non-Ada symbols). */
13007 return true;
13010 return false;
13013 /* See language.h. */
13015 char *demangle_symbol (const char *mangled, int options) const override
13017 return ada_la_decode (mangled, options);
13020 /* See language.h. */
13022 void print_type (struct type *type, const char *varstring,
13023 struct ui_file *stream, int show, int level,
13024 const struct type_print_options *flags) const override
13026 ada_print_type (type, varstring, stream, show, level, flags);
13029 /* See language.h. */
13031 const char *word_break_characters (void) const override
13033 return ada_completer_word_break_characters;
13036 /* See language.h. */
13038 void collect_symbol_completion_matches (completion_tracker &tracker,
13039 complete_symbol_mode mode,
13040 symbol_name_match_type name_match_type,
13041 const char *text, const char *word,
13042 enum type_code code) const override
13044 struct symbol *sym;
13045 const struct block *b, *surrounding_static_block = 0;
13046 struct block_iterator iter;
13048 gdb_assert (code == TYPE_CODE_UNDEF);
13050 lookup_name_info lookup_name (text, name_match_type, true);
13052 /* First, look at the partial symtab symbols. */
13053 expand_symtabs_matching (NULL,
13054 lookup_name,
13055 NULL,
13056 NULL,
13057 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13058 ALL_DOMAIN);
13060 /* At this point scan through the misc symbol vectors and add each
13061 symbol you find to the list. Eventually we want to ignore
13062 anything that isn't a text symbol (everything else will be
13063 handled by the psymtab code above). */
13065 for (objfile *objfile : current_program_space->objfiles ())
13067 for (minimal_symbol *msymbol : objfile->msymbols ())
13069 QUIT;
13071 if (completion_skip_symbol (mode, msymbol))
13072 continue;
13074 language symbol_language = msymbol->language ();
13076 /* Ada minimal symbols won't have their language set to Ada. If
13077 we let completion_list_add_name compare using the
13078 default/C-like matcher, then when completing e.g., symbols in a
13079 package named "pck", we'd match internal Ada symbols like
13080 "pckS", which are invalid in an Ada expression, unless you wrap
13081 them in '<' '>' to request a verbatim match.
13083 Unfortunately, some Ada encoded names successfully demangle as
13084 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13085 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13086 with the wrong language set. Paper over that issue here. */
13087 if (symbol_language == language_auto
13088 || symbol_language == language_cplus)
13089 symbol_language = language_ada;
13091 completion_list_add_name (tracker,
13092 symbol_language,
13093 msymbol->linkage_name (),
13094 lookup_name, text, word);
13098 /* Search upwards from currently selected frame (so that we can
13099 complete on local vars. */
13101 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13103 if (!BLOCK_SUPERBLOCK (b))
13104 surrounding_static_block = b; /* For elmin of dups */
13106 ALL_BLOCK_SYMBOLS (b, iter, sym)
13108 if (completion_skip_symbol (mode, sym))
13109 continue;
13111 completion_list_add_name (tracker,
13112 sym->language (),
13113 sym->linkage_name (),
13114 lookup_name, text, word);
13118 /* Go through the symtabs and check the externs and statics for
13119 symbols which match. */
13121 for (objfile *objfile : current_program_space->objfiles ())
13123 for (compunit_symtab *s : objfile->compunits ())
13125 QUIT;
13126 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13127 ALL_BLOCK_SYMBOLS (b, iter, sym)
13129 if (completion_skip_symbol (mode, sym))
13130 continue;
13132 completion_list_add_name (tracker,
13133 sym->language (),
13134 sym->linkage_name (),
13135 lookup_name, text, word);
13140 for (objfile *objfile : current_program_space->objfiles ())
13142 for (compunit_symtab *s : objfile->compunits ())
13144 QUIT;
13145 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13146 /* Don't do this block twice. */
13147 if (b == surrounding_static_block)
13148 continue;
13149 ALL_BLOCK_SYMBOLS (b, iter, sym)
13151 if (completion_skip_symbol (mode, sym))
13152 continue;
13154 completion_list_add_name (tracker,
13155 sym->language (),
13156 sym->linkage_name (),
13157 lookup_name, text, word);
13163 /* See language.h. */
13165 gdb::unique_xmalloc_ptr<char> watch_location_expression
13166 (struct type *type, CORE_ADDR addr) const override
13168 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13169 std::string name = type_to_string (type);
13170 return gdb::unique_xmalloc_ptr<char>
13171 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13174 /* See language.h. */
13176 void value_print (struct value *val, struct ui_file *stream,
13177 const struct value_print_options *options) const override
13179 return ada_value_print (val, stream, options);
13182 /* See language.h. */
13184 void value_print_inner
13185 (struct value *val, struct ui_file *stream, int recurse,
13186 const struct value_print_options *options) const override
13188 return ada_value_print_inner (val, stream, recurse, options);
13191 /* See language.h. */
13193 struct block_symbol lookup_symbol_nonlocal
13194 (const char *name, const struct block *block,
13195 const domain_enum domain) const override
13197 struct block_symbol sym;
13199 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13200 if (sym.symbol != NULL)
13201 return sym;
13203 /* If we haven't found a match at this point, try the primitive
13204 types. In other languages, this search is performed before
13205 searching for global symbols in order to short-circuit that
13206 global-symbol search if it happens that the name corresponds
13207 to a primitive type. But we cannot do the same in Ada, because
13208 it is perfectly legitimate for a program to declare a type which
13209 has the same name as a standard type. If looking up a type in
13210 that situation, we have traditionally ignored the primitive type
13211 in favor of user-defined types. This is why, unlike most other
13212 languages, we search the primitive types this late and only after
13213 having searched the global symbols without success. */
13215 if (domain == VAR_DOMAIN)
13217 struct gdbarch *gdbarch;
13219 if (block == NULL)
13220 gdbarch = target_gdbarch ();
13221 else
13222 gdbarch = block_gdbarch (block);
13223 sym.symbol
13224 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13225 if (sym.symbol != NULL)
13226 return sym;
13229 return {};
13232 /* See language.h. */
13234 int parser (struct parser_state *ps) const override
13236 warnings_issued = 0;
13237 return ada_parse (ps);
13240 /* See language.h. */
13242 void emitchar (int ch, struct type *chtype,
13243 struct ui_file *stream, int quoter) const override
13245 ada_emit_char (ch, chtype, stream, quoter, 1);
13248 /* See language.h. */
13250 void printchar (int ch, struct type *chtype,
13251 struct ui_file *stream) const override
13253 ada_printchar (ch, chtype, stream);
13256 /* See language.h. */
13258 void printstr (struct ui_file *stream, struct type *elttype,
13259 const gdb_byte *string, unsigned int length,
13260 const char *encoding, int force_ellipses,
13261 const struct value_print_options *options) const override
13263 ada_printstr (stream, elttype, string, length, encoding,
13264 force_ellipses, options);
13267 /* See language.h. */
13269 void print_typedef (struct type *type, struct symbol *new_symbol,
13270 struct ui_file *stream) const override
13272 ada_print_typedef (type, new_symbol, stream);
13275 /* See language.h. */
13277 bool is_string_type_p (struct type *type) const override
13279 return ada_is_string_type (type);
13282 /* See language.h. */
13284 const char *struct_too_deep_ellipsis () const override
13285 { return "(...)"; }
13287 /* See language.h. */
13289 bool c_style_arrays_p () const override
13290 { return false; }
13292 /* See language.h. */
13294 bool store_sym_names_in_linkage_form_p () const override
13295 { return true; }
13297 /* See language.h. */
13299 const struct lang_varobj_ops *varobj_ops () const override
13300 { return &ada_varobj_ops; }
13302 protected:
13303 /* See language.h. */
13305 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13306 (const lookup_name_info &lookup_name) const override
13308 return ada_get_symbol_name_matcher (lookup_name);
13312 /* Single instance of the Ada language class. */
13314 static ada_language ada_language_defn;
13316 /* Command-list for the "set/show ada" prefix command. */
13317 static struct cmd_list_element *set_ada_list;
13318 static struct cmd_list_element *show_ada_list;
13320 static void
13321 initialize_ada_catchpoint_ops (void)
13323 struct breakpoint_ops *ops;
13325 initialize_breakpoint_ops ();
13327 ops = &catch_exception_breakpoint_ops;
13328 *ops = bkpt_breakpoint_ops;
13329 ops->allocate_location = allocate_location_exception;
13330 ops->re_set = re_set_exception;
13331 ops->check_status = check_status_exception;
13332 ops->print_it = print_it_exception;
13333 ops->print_one = print_one_exception;
13334 ops->print_mention = print_mention_exception;
13335 ops->print_recreate = print_recreate_exception;
13337 ops = &catch_exception_unhandled_breakpoint_ops;
13338 *ops = bkpt_breakpoint_ops;
13339 ops->allocate_location = allocate_location_exception;
13340 ops->re_set = re_set_exception;
13341 ops->check_status = check_status_exception;
13342 ops->print_it = print_it_exception;
13343 ops->print_one = print_one_exception;
13344 ops->print_mention = print_mention_exception;
13345 ops->print_recreate = print_recreate_exception;
13347 ops = &catch_assert_breakpoint_ops;
13348 *ops = bkpt_breakpoint_ops;
13349 ops->allocate_location = allocate_location_exception;
13350 ops->re_set = re_set_exception;
13351 ops->check_status = check_status_exception;
13352 ops->print_it = print_it_exception;
13353 ops->print_one = print_one_exception;
13354 ops->print_mention = print_mention_exception;
13355 ops->print_recreate = print_recreate_exception;
13357 ops = &catch_handlers_breakpoint_ops;
13358 *ops = bkpt_breakpoint_ops;
13359 ops->allocate_location = allocate_location_exception;
13360 ops->re_set = re_set_exception;
13361 ops->check_status = check_status_exception;
13362 ops->print_it = print_it_exception;
13363 ops->print_one = print_one_exception;
13364 ops->print_mention = print_mention_exception;
13365 ops->print_recreate = print_recreate_exception;
13368 /* This module's 'new_objfile' observer. */
13370 static void
13371 ada_new_objfile_observer (struct objfile *objfile)
13373 ada_clear_symbol_cache ();
13376 /* This module's 'free_objfile' observer. */
13378 static void
13379 ada_free_objfile_observer (struct objfile *objfile)
13381 ada_clear_symbol_cache ();
13384 void _initialize_ada_language ();
13385 void
13386 _initialize_ada_language ()
13388 initialize_ada_catchpoint_ops ();
13390 add_basic_prefix_cmd ("ada", no_class,
13391 _("Prefix command for changing Ada-specific settings."),
13392 &set_ada_list, "set ada ", 0, &setlist);
13394 add_show_prefix_cmd ("ada", no_class,
13395 _("Generic command for showing Ada-specific settings."),
13396 &show_ada_list, "show ada ", 0, &showlist);
13398 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13399 &trust_pad_over_xvs, _("\
13400 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13401 Show whether an optimization trusting PAD types over XVS types is activated."),
13402 _("\
13403 This is related to the encoding used by the GNAT compiler. The debugger\n\
13404 should normally trust the contents of PAD types, but certain older versions\n\
13405 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13406 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13407 work around this bug. It is always safe to turn this option \"off\", but\n\
13408 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13409 this option to \"off\" unless necessary."),
13410 NULL, NULL, &set_ada_list, &show_ada_list);
13412 add_setshow_boolean_cmd ("print-signatures", class_vars,
13413 &print_signatures, _("\
13414 Enable or disable the output of formal and return types for functions in the \
13415 overloads selection menu."), _("\
13416 Show whether the output of formal and return types for functions in the \
13417 overloads selection menu is activated."),
13418 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13420 add_catch_command ("exception", _("\
13421 Catch Ada exceptions, when raised.\n\
13422 Usage: catch exception [ARG] [if CONDITION]\n\
13423 Without any argument, stop when any Ada exception is raised.\n\
13424 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13425 being raised does not have a handler (and will therefore lead to the task's\n\
13426 termination).\n\
13427 Otherwise, the catchpoint only stops when the name of the exception being\n\
13428 raised is the same as ARG.\n\
13429 CONDITION is a boolean expression that is evaluated to see whether the\n\
13430 exception should cause a stop."),
13431 catch_ada_exception_command,
13432 catch_ada_completer,
13433 CATCH_PERMANENT,
13434 CATCH_TEMPORARY);
13436 add_catch_command ("handlers", _("\
13437 Catch Ada exceptions, when handled.\n\
13438 Usage: catch handlers [ARG] [if CONDITION]\n\
13439 Without any argument, stop when any Ada exception is handled.\n\
13440 With an argument, catch only exceptions with the given name.\n\
13441 CONDITION is a boolean expression that is evaluated to see whether the\n\
13442 exception should cause a stop."),
13443 catch_ada_handlers_command,
13444 catch_ada_completer,
13445 CATCH_PERMANENT,
13446 CATCH_TEMPORARY);
13447 add_catch_command ("assert", _("\
13448 Catch failed Ada assertions, when raised.\n\
13449 Usage: catch assert [if CONDITION]\n\
13450 CONDITION is a boolean expression that is evaluated to see whether the\n\
13451 exception should cause a stop."),
13452 catch_assert_command,
13453 NULL,
13454 CATCH_PERMANENT,
13455 CATCH_TEMPORARY);
13457 varsize_limit = 65536;
13458 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13459 &varsize_limit, _("\
13460 Set the maximum number of bytes allowed in a variable-size object."), _("\
13461 Show the maximum number of bytes allowed in a variable-size object."), _("\
13462 Attempts to access an object whose size is not a compile-time constant\n\
13463 and exceeds this limit will cause an error."),
13464 NULL, NULL, &setlist, &showlist);
13466 add_info ("exceptions", info_exceptions_command,
13467 _("\
13468 List all Ada exception names.\n\
13469 Usage: info exceptions [REGEXP]\n\
13470 If a regular expression is passed as an argument, only those matching\n\
13471 the regular expression are listed."));
13473 add_basic_prefix_cmd ("ada", class_maintenance,
13474 _("Set Ada maintenance-related variables."),
13475 &maint_set_ada_cmdlist, "maintenance set ada ",
13476 0/*allow-unknown*/, &maintenance_set_cmdlist);
13478 add_show_prefix_cmd ("ada", class_maintenance,
13479 _("Show Ada maintenance-related variables."),
13480 &maint_show_ada_cmdlist, "maintenance show ada ",
13481 0/*allow-unknown*/, &maintenance_show_cmdlist);
13483 add_setshow_boolean_cmd
13484 ("ignore-descriptive-types", class_maintenance,
13485 &ada_ignore_descriptive_types_p,
13486 _("Set whether descriptive types generated by GNAT should be ignored."),
13487 _("Show whether descriptive types generated by GNAT should be ignored."),
13488 _("\
13489 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13490 DWARF attribute."),
13491 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13493 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
13494 NULL, xcalloc, xfree);
13496 /* The ada-lang observers. */
13497 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13498 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13499 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");