1 /* Copyright (C) 2009-2021 Free Software Foundation, Inc.
3 This file is part of GDB.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "amd64-tdep.h"
21 #include "gdbsupport/x86-xstate.h"
25 #include "windows-tdep.h"
28 #include "frame-unwind.h"
29 #include "coff/internal.h"
30 #include "coff/i386.h"
36 /* The registers used to pass integer arguments during a function call. */
37 static int amd64_windows_dummy_call_integer_regs
[] =
39 AMD64_RCX_REGNUM
, /* %rcx */
40 AMD64_RDX_REGNUM
, /* %rdx */
41 AMD64_R8_REGNUM
, /* %r8 */
42 AMD64_R9_REGNUM
/* %r9 */
45 /* This vector maps GDB's idea of a register's number into an offset into
46 the Windows API CONTEXT structure. */
47 static int amd64_windows_gregset_reg_offset
[] =
73 288, /* FloatSave.FloatRegisters[0] */
74 304, /* FloatSave.FloatRegisters[1] */
75 320, /* FloatSave.FloatRegisters[2] */
76 336, /* FloatSave.FloatRegisters[3] */
77 352, /* FloatSave.FloatRegisters[4] */
78 368, /* FloatSave.FloatRegisters[5] */
79 384, /* FloatSave.FloatRegisters[6] */
80 400, /* FloatSave.FloatRegisters[7] */
81 256, /* FloatSave.ControlWord */
82 258, /* FloatSave.StatusWord */
83 260, /* FloatSave.TagWord */
84 268, /* FloatSave.ErrorSelector */
85 264, /* FloatSave.ErrorOffset */
86 276, /* FloatSave.DataSelector */
87 272, /* FloatSave.DataOffset */
88 268, /* FloatSave.ErrorSelector */
105 280, /* FloatSave.MxCsr */
108 #define AMD64_WINDOWS_SIZEOF_GREGSET 1232
110 /* Return nonzero if an argument of type TYPE should be passed
111 via one of the integer registers. */
114 amd64_windows_passed_by_integer_register (struct type
*type
)
116 switch (type
->code ())
121 case TYPE_CODE_RANGE
:
125 case TYPE_CODE_RVALUE_REF
:
126 case TYPE_CODE_STRUCT
:
127 case TYPE_CODE_UNION
:
128 case TYPE_CODE_COMPLEX
:
129 return (TYPE_LENGTH (type
) == 1
130 || TYPE_LENGTH (type
) == 2
131 || TYPE_LENGTH (type
) == 4
132 || TYPE_LENGTH (type
) == 8);
139 /* Return nonzero if an argument of type TYPE should be passed
140 via one of the XMM registers. */
143 amd64_windows_passed_by_xmm_register (struct type
*type
)
145 return ((type
->code () == TYPE_CODE_FLT
146 || type
->code () == TYPE_CODE_DECFLOAT
)
147 && (TYPE_LENGTH (type
) == 4 || TYPE_LENGTH (type
) == 8));
150 /* Return non-zero iff an argument of the given TYPE should be passed
154 amd64_windows_passed_by_pointer (struct type
*type
)
156 if (amd64_windows_passed_by_integer_register (type
))
159 if (amd64_windows_passed_by_xmm_register (type
))
165 /* For each argument that should be passed by pointer, reserve some
166 stack space, store a copy of the argument on the stack, and replace
167 the argument by its address. Return the new Stack Pointer value.
169 NARGS is the number of arguments. ARGS is the array containing
170 the value of each argument. SP is value of the Stack Pointer. */
173 amd64_windows_adjust_args_passed_by_pointer (struct value
**args
,
174 int nargs
, CORE_ADDR sp
)
178 for (i
= 0; i
< nargs
; i
++)
179 if (amd64_windows_passed_by_pointer (value_type (args
[i
])))
181 struct type
*type
= value_type (args
[i
]);
182 const gdb_byte
*valbuf
= value_contents (args
[i
]);
183 const int len
= TYPE_LENGTH (type
);
185 /* Store a copy of that argument on the stack, aligned to
186 a 16 bytes boundary, and then use the copy's address as
191 write_memory (sp
, valbuf
, len
);
194 = value_addr (value_from_contents_and_address (type
, valbuf
, sp
));
200 /* Store the value of ARG in register REGNO (right-justified).
201 REGCACHE is the register cache. */
204 amd64_windows_store_arg_in_reg (struct regcache
*regcache
,
205 struct value
*arg
, int regno
)
207 struct type
*type
= value_type (arg
);
208 const gdb_byte
*valbuf
= value_contents (arg
);
211 gdb_assert (TYPE_LENGTH (type
) <= 8);
212 memset (buf
, 0, sizeof buf
);
213 memcpy (buf
, valbuf
, std::min (TYPE_LENGTH (type
), (ULONGEST
) 8));
214 regcache
->cooked_write (regno
, buf
);
217 /* Push the arguments for an inferior function call, and return
218 the updated value of the SP (Stack Pointer).
220 All arguments are identical to the arguments used in
221 amd64_windows_push_dummy_call. */
224 amd64_windows_push_arguments (struct regcache
*regcache
, int nargs
,
225 struct value
**args
, CORE_ADDR sp
,
226 function_call_return_method return_method
)
230 struct value
**stack_args
= XALLOCAVEC (struct value
*, nargs
);
231 int num_stack_args
= 0;
232 int num_elements
= 0;
235 /* First, handle the arguments passed by pointer.
237 These arguments are replaced by pointers to a copy we are making
238 in inferior memory. So use a copy of the ARGS table, to avoid
239 modifying the original one. */
241 struct value
**args1
= XALLOCAVEC (struct value
*, nargs
);
243 memcpy (args1
, args
, nargs
* sizeof (struct value
*));
244 sp
= amd64_windows_adjust_args_passed_by_pointer (args1
, nargs
, sp
);
248 /* Reserve a register for the "hidden" argument. */
249 if (return_method
== return_method_struct
)
252 for (i
= 0; i
< nargs
; i
++)
254 struct type
*type
= value_type (args
[i
]);
255 int len
= TYPE_LENGTH (type
);
258 if (reg_idx
< ARRAY_SIZE (amd64_windows_dummy_call_integer_regs
))
260 if (amd64_windows_passed_by_integer_register (type
))
262 amd64_windows_store_arg_in_reg
264 amd64_windows_dummy_call_integer_regs
[reg_idx
]);
268 else if (amd64_windows_passed_by_xmm_register (type
))
270 amd64_windows_store_arg_in_reg
271 (regcache
, args
[i
], AMD64_XMM0_REGNUM
+ reg_idx
);
272 /* In case of varargs, these parameters must also be
273 passed via the integer registers. */
274 amd64_windows_store_arg_in_reg
276 amd64_windows_dummy_call_integer_regs
[reg_idx
]);
284 num_elements
+= ((len
+ 7) / 8);
285 stack_args
[num_stack_args
++] = args
[i
];
289 /* Allocate space for the arguments on the stack, keeping it
290 aligned on a 16 byte boundary. */
291 sp
-= num_elements
* 8;
294 /* Write out the arguments to the stack. */
295 for (i
= 0; i
< num_stack_args
; i
++)
297 struct type
*type
= value_type (stack_args
[i
]);
298 const gdb_byte
*valbuf
= value_contents (stack_args
[i
]);
300 write_memory (sp
+ element
* 8, valbuf
, TYPE_LENGTH (type
));
301 element
+= ((TYPE_LENGTH (type
) + 7) / 8);
307 /* Implement the "push_dummy_call" gdbarch method. */
310 amd64_windows_push_dummy_call
311 (struct gdbarch
*gdbarch
, struct value
*function
,
312 struct regcache
*regcache
, CORE_ADDR bp_addr
,
313 int nargs
, struct value
**args
, CORE_ADDR sp
,
314 function_call_return_method return_method
, CORE_ADDR struct_addr
)
316 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
319 /* Pass arguments. */
320 sp
= amd64_windows_push_arguments (regcache
, nargs
, args
, sp
,
323 /* Pass "hidden" argument". */
324 if (return_method
== return_method_struct
)
326 /* The "hidden" argument is passed throught the first argument
328 const int arg_regnum
= amd64_windows_dummy_call_integer_regs
[0];
330 store_unsigned_integer (buf
, 8, byte_order
, struct_addr
);
331 regcache
->cooked_write (arg_regnum
, buf
);
334 /* Reserve some memory on the stack for the integer-parameter
335 registers, as required by the ABI. */
336 sp
-= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs
) * 8;
338 /* Store return address. */
340 store_unsigned_integer (buf
, 8, byte_order
, bp_addr
);
341 write_memory (sp
, buf
, 8);
343 /* Update the stack pointer... */
344 store_unsigned_integer (buf
, 8, byte_order
, sp
);
345 regcache
->cooked_write (AMD64_RSP_REGNUM
, buf
);
347 /* ...and fake a frame pointer. */
348 regcache
->cooked_write (AMD64_RBP_REGNUM
, buf
);
353 /* Implement the "return_value" gdbarch method for amd64-windows. */
355 static enum return_value_convention
356 amd64_windows_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
357 struct type
*type
, struct regcache
*regcache
,
358 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
360 int len
= TYPE_LENGTH (type
);
363 /* See if our value is returned through a register. If it is, then
364 store the associated register number in REGNUM. */
365 switch (type
->code ())
368 /* floats, and doubles are returned via XMM0. */
369 if (len
== 4 || len
== 8)
370 regnum
= AMD64_XMM0_REGNUM
;
372 case TYPE_CODE_ARRAY
:
373 /* __m128, __m128i and __m128d are returned via XMM0. */
374 if (type
->is_vector () && len
== 16)
376 enum type_code code
= TYPE_TARGET_TYPE (type
)->code ();
377 if (code
== TYPE_CODE_INT
|| code
== TYPE_CODE_FLT
)
379 regnum
= AMD64_XMM0_REGNUM
;
385 /* All other values that are 1, 2, 4 or 8 bytes long are returned
387 if (len
== 1 || len
== 2 || len
== 4 || len
== 8)
388 regnum
= AMD64_RAX_REGNUM
;
389 else if (len
== 16 && type
->code () == TYPE_CODE_INT
)
390 regnum
= AMD64_XMM0_REGNUM
;
396 /* RAX contains the address where the return value has been stored. */
401 regcache_raw_read_unsigned (regcache
, AMD64_RAX_REGNUM
, &addr
);
402 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
404 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
408 /* Extract the return value from the register where it was stored. */
410 regcache
->raw_read_part (regnum
, 0, len
, readbuf
);
412 regcache
->raw_write_part (regnum
, 0, len
, writebuf
);
413 return RETURN_VALUE_REGISTER_CONVENTION
;
417 /* Check that the code pointed to by PC corresponds to a call to
418 __main, skip it if so. Return PC otherwise. */
421 amd64_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
423 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
426 target_read_memory (pc
, &op
, 1);
431 if (target_read_memory (pc
+ 1, buf
, sizeof buf
) == 0)
433 struct bound_minimal_symbol s
;
436 call_dest
= pc
+ 5 + extract_signed_integer (buf
, 4, byte_order
);
437 s
= lookup_minimal_symbol_by_pc (call_dest
);
439 && s
.minsym
->linkage_name () != NULL
440 && strcmp (s
.minsym
->linkage_name (), "__main") == 0)
448 struct amd64_windows_frame_cache
450 /* ImageBase for the module. */
451 CORE_ADDR image_base
;
453 /* Function start and end rva. */
457 /* Next instruction to be executed. */
463 /* Address of saved integer and xmm registers. */
464 CORE_ADDR prev_reg_addr
[16];
465 CORE_ADDR prev_xmm_addr
[16];
467 /* These two next fields are set only for machine info frames. */
469 /* Likewise for RIP. */
470 CORE_ADDR prev_rip_addr
;
472 /* Likewise for RSP. */
473 CORE_ADDR prev_rsp_addr
;
475 /* Address of the previous frame. */
479 /* Convert a Windows register number to gdb. */
480 static const enum amd64_regnum amd64_windows_w2gdb_regnum
[] =
500 /* Return TRUE iff PC is the range of the function corresponding to
504 pc_in_range (CORE_ADDR pc
, const struct amd64_windows_frame_cache
*cache
)
506 return (pc
>= cache
->image_base
+ cache
->start_rva
507 && pc
< cache
->image_base
+ cache
->end_rva
);
510 /* Try to recognize and decode an epilogue sequence.
512 Return -1 if we fail to read the instructions for any reason.
513 Return 1 if an epilogue sequence was recognized, 0 otherwise. */
516 amd64_windows_frame_decode_epilogue (struct frame_info
*this_frame
,
517 struct amd64_windows_frame_cache
*cache
)
519 /* According to MSDN an epilogue "must consist of either an add RSP,constant
520 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
521 register pops and a return or a jmp".
523 Furthermore, according to RtlVirtualUnwind, the complete list of
528 - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
529 - jmp qword ptr imm32 - not handled
530 - rex.w jmp reg [4X ff eY]
533 CORE_ADDR pc
= cache
->pc
;
534 CORE_ADDR cur_sp
= cache
->sp
;
535 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
536 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
540 /* We don't care about the instruction deallocating the frame:
541 if it hasn't been executed, the pc is still in the body,
542 if it has been executed, the following epilog decoding will work. */
545 - pop reg [41 58-5f] or [58-5f]. */
550 if (target_read_memory (pc
, &op
, 1) != 0)
553 if (op
>= 0x40 && op
<= 0x4f)
559 if (target_read_memory (pc
+ 1, &op
, 1) != 0)
565 if (op
>= 0x58 && op
<= 0x5f)
568 gdb_byte reg
= (op
& 0x0f) | ((rex
& 1) << 3);
570 cache
->prev_reg_addr
[amd64_windows_w2gdb_regnum
[reg
]] = cur_sp
;
577 /* Allow the user to break this loop. This shouldn't happen as the
578 number of consecutive pop should be small. */
582 /* Then decode the marker. */
585 if (target_read_memory (pc
, &op
, 1) != 0)
592 cache
->prev_rip_addr
= cur_sp
;
593 cache
->prev_sp
= cur_sp
+ 8;
602 if (target_read_memory (pc
+ 1, &rel8
, 1) != 0)
604 npc
= pc
+ 2 + (signed char) rel8
;
606 /* If the jump is within the function, then this is not a marker,
607 otherwise this is a tail-call. */
608 return !pc_in_range (npc
, cache
);
617 if (target_read_memory (pc
+ 1, rel32
, 4) != 0)
619 npc
= pc
+ 5 + extract_signed_integer (rel32
, 4, byte_order
);
621 /* If the jump is within the function, then this is not a marker,
622 otherwise this is a tail-call. */
623 return !pc_in_range (npc
, cache
);
631 if (target_read_memory (pc
+ 1, imm16
, 2) != 0)
633 cache
->prev_rip_addr
= cur_sp
;
634 cache
->prev_sp
= cur_sp
635 + extract_unsigned_integer (imm16
, 4, byte_order
);
644 if (target_read_memory (pc
+ 2, &op1
, 1) != 0)
649 cache
->prev_rip_addr
= cur_sp
;
650 cache
->prev_sp
= cur_sp
+ 8;
670 /* Got a REX prefix, read next byte. */
672 if (target_read_memory (pc
+ 1, &op
, 1) != 0)
680 if (target_read_memory (pc
+ 2, &op1
, 1) != 0)
682 return (op1
& 0xf8) == 0xe0;
688 /* Not REX, so unknown. */
693 /* Decode and execute unwind insns at UNWIND_INFO. */
696 amd64_windows_frame_decode_insns (struct frame_info
*this_frame
,
697 struct amd64_windows_frame_cache
*cache
,
698 CORE_ADDR unwind_info
)
700 CORE_ADDR save_addr
= 0;
701 CORE_ADDR cur_sp
= cache
->sp
;
702 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
703 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
706 /* There are at least 3 possibilities to share an unwind info entry:
707 1. Two different runtime_function entries (in .pdata) can point to the
708 same unwind info entry. There is no such indication while unwinding,
709 so we don't really care about that case. We suppose this scheme is
710 used to save memory when the unwind entries are exactly the same.
711 2. Chained unwind_info entries, with no unwind codes (no prologue).
712 There is a major difference with the previous case: the pc range for
713 the function is different (in case 1, the pc range comes from the
714 runtime_function entry; in case 2, the pc range for the chained entry
715 comes from the first unwind entry). Case 1 cannot be used instead as
716 the pc is not in the prologue. This case is officially documented.
717 (There might be unwind code in the first unwind entry to handle
718 additional unwinding). GCC (at least until gcc 5.0) doesn't chain
720 3. Undocumented unwind info redirection. Hard to know the exact purpose,
721 so it is considered as a memory optimization of case 2.
726 /* Unofficially documented unwind info redirection, when UNWIND_INFO
727 address is odd (http://www.codemachine.com/article_x64deepdive.html).
729 struct external_pex64_runtime_function d
;
731 if (target_read_memory (cache
->image_base
+ (unwind_info
& ~1),
732 (gdb_byte
*) &d
, sizeof (d
)) != 0)
736 = extract_unsigned_integer (d
.rva_BeginAddress
, 4, byte_order
);
738 = extract_unsigned_integer (d
.rva_EndAddress
, 4, byte_order
);
740 = extract_unsigned_integer (d
.rva_UnwindData
, 4, byte_order
);
745 struct external_pex64_unwind_info ex_ui
;
746 /* There are at most 256 16-bit unwind insns. */
747 gdb_byte insns
[2 * 256];
750 unsigned char codes_count
;
751 unsigned char frame_reg
;
754 /* Read and decode header. */
755 if (target_read_memory (cache
->image_base
+ unwind_info
,
756 (gdb_byte
*) &ex_ui
, sizeof (ex_ui
)) != 0)
762 "amd64_windows_frame_decodes_insn: "
763 "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
764 paddress (gdbarch
, unwind_info
),
765 ex_ui
.Version_Flags
, ex_ui
.SizeOfPrologue
,
766 ex_ui
.CountOfCodes
, ex_ui
.FrameRegisterOffset
);
769 if (PEX64_UWI_VERSION (ex_ui
.Version_Flags
) != 1
770 && PEX64_UWI_VERSION (ex_ui
.Version_Flags
) != 2)
773 start
= cache
->image_base
+ cache
->start_rva
;
775 && !(cache
->pc
>= start
&& cache
->pc
< start
+ ex_ui
.SizeOfPrologue
))
777 /* We want to detect if the PC points to an epilogue. This needs
778 to be checked only once, and an epilogue can be anywhere but in
779 the prologue. If so, the epilogue detection+decoding function is
780 sufficient. Otherwise, the unwinder will consider that the PC
781 is in the body of the function and will need to decode unwind
783 if (amd64_windows_frame_decode_epilogue (this_frame
, cache
) == 1)
786 /* Not in an epilog. Clear possible side effects. */
787 memset (cache
->prev_reg_addr
, 0, sizeof (cache
->prev_reg_addr
));
790 codes_count
= ex_ui
.CountOfCodes
;
791 frame_reg
= PEX64_UWI_FRAMEREG (ex_ui
.FrameRegisterOffset
);
795 /* According to msdn:
796 If an FP reg is used, then any unwind code taking an offset must
797 only be used after the FP reg is established in the prolog. */
799 int frreg
= amd64_windows_w2gdb_regnum
[frame_reg
];
801 get_frame_register (this_frame
, frreg
, buf
);
802 save_addr
= extract_unsigned_integer (buf
, 8, byte_order
);
805 fprintf_unfiltered (gdb_stdlog
, " frame_reg=%s, val=%s\n",
806 gdbarch_register_name (gdbarch
, frreg
),
807 paddress (gdbarch
, save_addr
));
812 && target_read_memory (cache
->image_base
+ unwind_info
814 insns
, codes_count
* 2) != 0)
817 end_insns
= &insns
[codes_count
* 2];
820 /* Skip opcodes 6 of version 2. This opcode is not documented. */
821 if (PEX64_UWI_VERSION (ex_ui
.Version_Flags
) == 2)
823 for (; p
< end_insns
; p
+= 2)
824 if (PEX64_UNWCODE_CODE (p
[1]) != 6)
828 for (; p
< end_insns
; p
+= 2)
832 /* Virtually execute the operation if the pc is after the
833 corresponding instruction (that does matter in case of break
834 within the prologue). Note that for chained info (!first), the
835 prologue has been fully executed. */
836 if (cache
->pc
>= start
+ p
[0] || cache
->pc
< start
)
840 (gdb_stdlog
, " op #%u: off=0x%02x, insn=0x%02x\n",
841 (unsigned) (p
- insns
), p
[0], p
[1]);
843 /* If there is no frame registers defined, the current value of
844 rsp is used instead. */
850 switch (PEX64_UNWCODE_CODE (p
[1]))
852 case UWOP_PUSH_NONVOL
:
853 /* Push pre-decrements RSP. */
854 reg
= amd64_windows_w2gdb_regnum
[PEX64_UNWCODE_INFO (p
[1])];
855 cache
->prev_reg_addr
[reg
] = cur_sp
;
858 case UWOP_ALLOC_LARGE
:
859 if (PEX64_UNWCODE_INFO (p
[1]) == 0)
861 8 * extract_unsigned_integer (p
+ 2, 2, byte_order
);
862 else if (PEX64_UNWCODE_INFO (p
[1]) == 1)
863 cur_sp
+= extract_unsigned_integer (p
+ 2, 4, byte_order
);
867 case UWOP_ALLOC_SMALL
:
868 cur_sp
+= 8 + 8 * PEX64_UNWCODE_INFO (p
[1]);
872 - PEX64_UWI_FRAMEOFF (ex_ui
.FrameRegisterOffset
) * 16;
874 case UWOP_SAVE_NONVOL
:
875 reg
= amd64_windows_w2gdb_regnum
[PEX64_UNWCODE_INFO (p
[1])];
876 cache
->prev_reg_addr
[reg
] = save_addr
877 + 8 * extract_unsigned_integer (p
+ 2, 2, byte_order
);
879 case UWOP_SAVE_NONVOL_FAR
:
880 reg
= amd64_windows_w2gdb_regnum
[PEX64_UNWCODE_INFO (p
[1])];
881 cache
->prev_reg_addr
[reg
] = save_addr
882 + 8 * extract_unsigned_integer (p
+ 2, 4, byte_order
);
884 case UWOP_SAVE_XMM128
:
885 cache
->prev_xmm_addr
[PEX64_UNWCODE_INFO (p
[1])] =
887 - 16 * extract_unsigned_integer (p
+ 2, 2, byte_order
);
889 case UWOP_SAVE_XMM128_FAR
:
890 cache
->prev_xmm_addr
[PEX64_UNWCODE_INFO (p
[1])] =
892 - 16 * extract_unsigned_integer (p
+ 2, 4, byte_order
);
894 case UWOP_PUSH_MACHFRAME
:
895 if (PEX64_UNWCODE_INFO (p
[1]) == 0)
897 cache
->prev_rip_addr
= cur_sp
+ 0;
898 cache
->prev_rsp_addr
= cur_sp
+ 24;
901 else if (PEX64_UNWCODE_INFO (p
[1]) == 1)
903 cache
->prev_rip_addr
= cur_sp
+ 8;
904 cache
->prev_rsp_addr
= cur_sp
+ 32;
914 /* Display address where the register was saved. */
915 if (frame_debug
&& reg
>= 0)
917 (gdb_stdlog
, " [reg %s at %s]\n",
918 gdbarch_register_name (gdbarch
, reg
),
919 paddress (gdbarch
, cache
->prev_reg_addr
[reg
]));
922 /* Adjust with the length of the opcode. */
923 switch (PEX64_UNWCODE_CODE (p
[1]))
925 case UWOP_PUSH_NONVOL
:
926 case UWOP_ALLOC_SMALL
:
928 case UWOP_PUSH_MACHFRAME
:
930 case UWOP_ALLOC_LARGE
:
931 if (PEX64_UNWCODE_INFO (p
[1]) == 0)
933 else if (PEX64_UNWCODE_INFO (p
[1]) == 1)
938 case UWOP_SAVE_NONVOL
:
939 case UWOP_SAVE_XMM128
:
942 case UWOP_SAVE_NONVOL_FAR
:
943 case UWOP_SAVE_XMM128_FAR
:
950 if (PEX64_UWI_FLAGS (ex_ui
.Version_Flags
) != UNW_FLAG_CHAININFO
)
952 /* End of unwind info. */
957 /* Read the chained unwind info. */
958 struct external_pex64_runtime_function d
;
961 /* Not anymore the first entry. */
964 /* Stay aligned on word boundary. */
965 chain_vma
= cache
->image_base
+ unwind_info
966 + sizeof (ex_ui
) + ((codes_count
+ 1) & ~1) * 2;
968 if (target_read_memory (chain_vma
, (gdb_byte
*) &d
, sizeof (d
)) != 0)
971 /* Decode begin/end. This may be different from .pdata index, as
972 an unwind info may be shared by several functions (in particular
973 if many functions have the same prolog and handler. */
975 extract_unsigned_integer (d
.rva_BeginAddress
, 4, byte_order
);
977 extract_unsigned_integer (d
.rva_EndAddress
, 4, byte_order
);
979 extract_unsigned_integer (d
.rva_UnwindData
, 4, byte_order
);
984 "amd64_windows_frame_decodes_insn (next in chain):"
985 " unwind_data=%s, start_rva=%s, end_rva=%s\n",
986 paddress (gdbarch
, unwind_info
),
987 paddress (gdbarch
, cache
->start_rva
),
988 paddress (gdbarch
, cache
->end_rva
));
991 /* Allow the user to break this loop. */
994 /* PC is saved by the call. */
995 if (cache
->prev_rip_addr
== 0)
996 cache
->prev_rip_addr
= cur_sp
;
997 cache
->prev_sp
= cur_sp
+ 8;
1000 fprintf_unfiltered (gdb_stdlog
, " prev_sp: %s, prev_pc @%s\n",
1001 paddress (gdbarch
, cache
->prev_sp
),
1002 paddress (gdbarch
, cache
->prev_rip_addr
));
1005 /* Find SEH unwind info for PC, returning 0 on success.
1007 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
1008 to the base address of the corresponding image, and START_RVA
1009 to the rva of the function containing PC. */
1012 amd64_windows_find_unwind_info (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
1013 CORE_ADDR
*unwind_info
,
1014 CORE_ADDR
*image_base
,
1015 CORE_ADDR
*start_rva
,
1018 struct obj_section
*sec
;
1020 IMAGE_DATA_DIRECTORY
*dir
;
1021 struct objfile
*objfile
;
1022 unsigned long lo
, hi
;
1024 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1026 /* Get the corresponding exception directory. */
1027 sec
= find_pc_section (pc
);
1030 objfile
= sec
->objfile
;
1031 pe
= pe_data (sec
->objfile
->obfd
);
1032 dir
= &pe
->pe_opthdr
.DataDirectory
[PE_EXCEPTION_TABLE
];
1034 base
= pe
->pe_opthdr
.ImageBase
+ objfile
->text_section_offset ();
1039 Note: This does not handle dynamically added entries (for JIT
1040 engines). For this, we would need to ask the kernel directly,
1041 which means getting some info from the native layer. For the
1042 rest of the code, however, it's probably faster to search
1043 the entry ourselves. */
1045 hi
= dir
->Size
/ sizeof (struct external_pex64_runtime_function
);
1049 unsigned long mid
= lo
+ (hi
- lo
) / 2;
1050 struct external_pex64_runtime_function d
;
1053 if (target_read_memory (base
+ dir
->VirtualAddress
+ mid
* sizeof (d
),
1054 (gdb_byte
*) &d
, sizeof (d
)) != 0)
1057 sa
= extract_unsigned_integer (d
.rva_BeginAddress
, 4, byte_order
);
1058 ea
= extract_unsigned_integer (d
.rva_EndAddress
, 4, byte_order
);
1061 else if (pc
>= base
+ ea
)
1063 else if (pc
>= base
+ sa
&& pc
< base
+ ea
)
1069 extract_unsigned_integer (d
.rva_UnwindData
, 4, byte_order
);
1079 "amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n",
1080 paddress (gdbarch
, base
), paddress (gdbarch
, *unwind_info
));
1085 /* Fill THIS_CACHE using the native amd64-windows unwinding data
1088 static struct amd64_windows_frame_cache
*
1089 amd64_windows_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
1091 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1092 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1093 struct amd64_windows_frame_cache
*cache
;
1096 CORE_ADDR unwind_info
= 0;
1099 return (struct amd64_windows_frame_cache
*) *this_cache
;
1101 cache
= FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache
);
1102 *this_cache
= cache
;
1104 /* Get current PC and SP. */
1105 pc
= get_frame_pc (this_frame
);
1106 get_frame_register (this_frame
, AMD64_RSP_REGNUM
, buf
);
1107 cache
->sp
= extract_unsigned_integer (buf
, 8, byte_order
);
1110 if (amd64_windows_find_unwind_info (gdbarch
, pc
, &unwind_info
,
1116 if (unwind_info
== 0)
1118 /* Assume a leaf function. */
1119 cache
->prev_sp
= cache
->sp
+ 8;
1120 cache
->prev_rip_addr
= cache
->sp
;
1124 /* Decode unwind insns to compute saved addresses. */
1125 amd64_windows_frame_decode_insns (this_frame
, cache
, unwind_info
);
1130 /* Implement the "prev_register" method of struct frame_unwind
1131 using the standard Windows x64 SEH info. */
1133 static struct value
*
1134 amd64_windows_frame_prev_register (struct frame_info
*this_frame
,
1135 void **this_cache
, int regnum
)
1137 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1138 struct amd64_windows_frame_cache
*cache
=
1139 amd64_windows_frame_cache (this_frame
, this_cache
);
1143 fprintf_unfiltered (gdb_stdlog
,
1144 "amd64_windows_frame_prev_register %s for sp=%s\n",
1145 gdbarch_register_name (gdbarch
, regnum
),
1146 paddress (gdbarch
, cache
->prev_sp
));
1148 if (regnum
>= AMD64_XMM0_REGNUM
&& regnum
<= AMD64_XMM0_REGNUM
+ 15)
1149 prev
= cache
->prev_xmm_addr
[regnum
- AMD64_XMM0_REGNUM
];
1150 else if (regnum
== AMD64_RSP_REGNUM
)
1152 prev
= cache
->prev_rsp_addr
;
1154 return frame_unwind_got_constant (this_frame
, regnum
, cache
->prev_sp
);
1156 else if (regnum
>= AMD64_RAX_REGNUM
&& regnum
<= AMD64_R15_REGNUM
)
1157 prev
= cache
->prev_reg_addr
[regnum
- AMD64_RAX_REGNUM
];
1158 else if (regnum
== AMD64_RIP_REGNUM
)
1159 prev
= cache
->prev_rip_addr
;
1163 if (prev
&& frame_debug
)
1164 fprintf_unfiltered (gdb_stdlog
, " -> at %s\n", paddress (gdbarch
, prev
));
1168 /* Register was saved. */
1169 return frame_unwind_got_memory (this_frame
, regnum
, prev
);
1173 /* Register is either volatile or not modified. */
1174 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
1178 /* Implement the "this_id" method of struct frame_unwind using
1179 the standard Windows x64 SEH info. */
1182 amd64_windows_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
1183 struct frame_id
*this_id
)
1185 struct amd64_windows_frame_cache
*cache
=
1186 amd64_windows_frame_cache (this_frame
, this_cache
);
1188 *this_id
= frame_id_build (cache
->prev_sp
,
1189 cache
->image_base
+ cache
->start_rva
);
1192 /* Windows x64 SEH unwinder. */
1194 static const struct frame_unwind amd64_windows_frame_unwind
=
1197 default_frame_unwind_stop_reason
,
1198 &amd64_windows_frame_this_id
,
1199 &amd64_windows_frame_prev_register
,
1201 default_frame_sniffer
1204 /* Implement the "skip_prologue" gdbarch method. */
1207 amd64_windows_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1209 CORE_ADDR func_addr
;
1210 CORE_ADDR unwind_info
= 0;
1211 CORE_ADDR image_base
, start_rva
, end_rva
;
1212 struct external_pex64_unwind_info ex_ui
;
1214 /* Use prologue size from unwind info. */
1215 if (amd64_windows_find_unwind_info (gdbarch
, pc
, &unwind_info
,
1216 &image_base
, &start_rva
, &end_rva
) == 0)
1218 if (unwind_info
== 0)
1220 /* Leaf function. */
1223 else if (target_read_memory (image_base
+ unwind_info
,
1224 (gdb_byte
*) &ex_ui
, sizeof (ex_ui
)) == 0
1225 && PEX64_UWI_VERSION (ex_ui
.Version_Flags
) == 1)
1226 return std::max (pc
, image_base
+ start_rva
+ ex_ui
.SizeOfPrologue
);
1229 /* See if we can determine the end of the prologue via the symbol
1230 table. If so, then return either the PC, or the PC after
1231 the prologue, whichever is greater. */
1232 if (find_pc_partial_function (pc
, NULL
, &func_addr
, NULL
))
1234 CORE_ADDR post_prologue_pc
1235 = skip_prologue_using_sal (gdbarch
, func_addr
);
1237 if (post_prologue_pc
!= 0)
1238 return std::max (pc
, post_prologue_pc
);
1244 /* Check Win64 DLL jmp trampolines and find jump destination. */
1247 amd64_windows_skip_trampoline_code (struct frame_info
*frame
, CORE_ADDR pc
)
1249 CORE_ADDR destination
= 0;
1250 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1251 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1253 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
1254 if (pc
&& read_memory_unsigned_integer (pc
, 2, byte_order
) == 0x25ff)
1256 /* Get opcode offset and see if we can find a reference in our data. */
1258 = read_memory_unsigned_integer (pc
+ 2, 4, byte_order
);
1260 /* Get address of function pointer at end of pc. */
1261 CORE_ADDR indirect_addr
= pc
+ offset
+ 6;
1263 struct minimal_symbol
*indsym
1265 ? lookup_minimal_symbol_by_pc (indirect_addr
).minsym
1267 const char *symname
= indsym
? indsym
->linkage_name () : NULL
;
1271 if (startswith (symname
, "__imp_")
1272 || startswith (symname
, "_imp_"))
1274 = read_memory_unsigned_integer (indirect_addr
, 8, byte_order
);
1281 /* Implement the "auto_wide_charset" gdbarch method. */
1284 amd64_windows_auto_wide_charset (void)
1289 /* Common parts for gdbarch initialization for Windows and Cygwin on AMD64. */
1292 amd64_windows_init_abi_common (gdbarch_info info
, struct gdbarch
*gdbarch
)
1294 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1296 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1297 preferred over the SEH one. The reasons are:
1298 - binaries without SEH but with dwarf2 debug info are correctly handled
1299 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1301 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1302 handled if the dwarf2 unwinder is used).
1304 The call to amd64_init_abi appends default unwinders, that aren't
1305 compatible with the SEH one.
1307 frame_unwind_append_unwinder (gdbarch
, &amd64_windows_frame_unwind
);
1309 amd64_init_abi (info
, gdbarch
,
1310 amd64_target_description (X86_XSTATE_SSE_MASK
, false));
1312 /* Function calls. */
1313 set_gdbarch_push_dummy_call (gdbarch
, amd64_windows_push_dummy_call
);
1314 set_gdbarch_return_value (gdbarch
, amd64_windows_return_value
);
1315 set_gdbarch_skip_main_prologue (gdbarch
, amd64_skip_main_prologue
);
1316 set_gdbarch_skip_trampoline_code (gdbarch
,
1317 amd64_windows_skip_trampoline_code
);
1319 set_gdbarch_skip_prologue (gdbarch
, amd64_windows_skip_prologue
);
1321 tdep
->gregset_reg_offset
= amd64_windows_gregset_reg_offset
;
1322 tdep
->gregset_num_regs
= ARRAY_SIZE (amd64_windows_gregset_reg_offset
);
1323 tdep
->sizeof_gregset
= AMD64_WINDOWS_SIZEOF_GREGSET
;
1324 tdep
->sizeof_fpregset
= 0;
1326 /* Core file support. */
1327 set_gdbarch_core_xfer_shared_libraries
1328 (gdbarch
, windows_core_xfer_shared_libraries
);
1329 set_gdbarch_core_pid_to_str (gdbarch
, windows_core_pid_to_str
);
1331 set_gdbarch_auto_wide_charset (gdbarch
, amd64_windows_auto_wide_charset
);
1334 /* gdbarch initialization for Windows on AMD64. */
1337 amd64_windows_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
1339 amd64_windows_init_abi_common (info
, gdbarch
);
1340 windows_init_abi (info
, gdbarch
);
1342 /* On Windows, "long"s are only 32bit. */
1343 set_gdbarch_long_bit (gdbarch
, 32);
1346 /* gdbarch initialization for Cygwin on AMD64. */
1349 amd64_cygwin_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
1351 amd64_windows_init_abi_common (info
, gdbarch
);
1352 cygwin_init_abi (info
, gdbarch
);
1356 amd64_windows_osabi_sniffer (bfd
*abfd
)
1358 const char *target_name
= bfd_get_target (abfd
);
1360 if (!streq (target_name
, "pei-x86-64"))
1361 return GDB_OSABI_UNKNOWN
;
1363 if (is_linked_with_cygwin_dll (abfd
))
1364 return GDB_OSABI_CYGWIN
;
1366 return GDB_OSABI_WINDOWS
;
1369 static enum gdb_osabi
1370 amd64_cygwin_core_osabi_sniffer (bfd
*abfd
)
1372 const char *target_name
= bfd_get_target (abfd
);
1374 /* Cygwin uses elf core dumps. Do not claim all ELF executables,
1375 check whether there is a .reg section of proper size. */
1376 if (strcmp (target_name
, "elf64-x86-64") == 0)
1378 asection
*section
= bfd_get_section_by_name (abfd
, ".reg");
1379 if (section
!= nullptr
1380 && bfd_section_size (section
) == AMD64_WINDOWS_SIZEOF_GREGSET
)
1381 return GDB_OSABI_CYGWIN
;
1384 return GDB_OSABI_UNKNOWN
;
1387 void _initialize_amd64_windows_tdep ();
1389 _initialize_amd64_windows_tdep ()
1391 gdbarch_register_osabi (bfd_arch_i386
, bfd_mach_x86_64
, GDB_OSABI_WINDOWS
,
1392 amd64_windows_init_abi
);
1393 gdbarch_register_osabi (bfd_arch_i386
, bfd_mach_x86_64
, GDB_OSABI_CYGWIN
,
1394 amd64_cygwin_init_abi
);
1396 gdbarch_register_osabi_sniffer (bfd_arch_i386
, bfd_target_coff_flavour
,
1397 amd64_windows_osabi_sniffer
);
1399 /* Cygwin uses elf core dumps. */
1400 gdbarch_register_osabi_sniffer (bfd_arch_i386
, bfd_target_elf_flavour
,
1401 amd64_cygwin_core_osabi_sniffer
);