testsuite, threads: fix LD_LIBRARY_PATH in 'tls-sepdebug.exp'
[binutils-gdb.git] / gdb / go32-nat.c
blob84533669b53b044995d0f73f55d95bd5c558360b
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2024 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
85 #include <fcntl.h>
87 #include "x86-nat.h"
88 #include "inferior.h"
89 #include "infrun.h"
90 #include "gdbthread.h"
91 #include "gdbsupport/gdb_wait.h"
92 #include "gdbcore.h"
93 #include "command.h"
94 #include "cli/cli-cmds.h"
95 #include "floatformat.h"
96 #include "buildsym-legacy.h"
97 #include "i387-tdep.h"
98 #include "i386-tdep.h"
99 #include "nat/x86-cpuid.h"
100 #include "value.h"
101 #include "regcache.h"
102 #include "top.h"
103 #include "cli/cli-utils.h"
104 #include "inf-child.h"
106 #include <ctype.h>
107 #include <unistd.h>
108 #include <sys/utsname.h>
109 #include <io.h>
110 #include <dos.h>
111 #include <dpmi.h>
112 #include <go32.h>
113 #include <sys/farptr.h>
114 #include <debug/v2load.h>
115 #include <debug/dbgcom.h>
116 #if __DJGPP_MINOR__ > 2
117 #include <debug/redir.h>
118 #endif
120 #include <langinfo.h>
122 #if __DJGPP_MINOR__ < 3
123 /* This code will be provided from DJGPP 2.03 on. Until then I code it
124 here. */
125 typedef struct
127 unsigned short sig0;
128 unsigned short sig1;
129 unsigned short sig2;
130 unsigned short sig3;
131 unsigned short exponent:15;
132 unsigned short sign:1;
134 NPXREG;
136 typedef struct
138 unsigned int control;
139 unsigned int status;
140 unsigned int tag;
141 unsigned int eip;
142 unsigned int cs;
143 unsigned int dataptr;
144 unsigned int datasel;
145 NPXREG reg[8];
147 NPX;
149 static NPX npx;
151 static void save_npx (void); /* Save the FPU of the debugged program. */
152 static void load_npx (void); /* Restore the FPU of the debugged program. */
154 /* ------------------------------------------------------------------------- */
155 /* Store the contents of the NPX in the global variable `npx'. */
157 static void
158 save_npx (void)
160 asm ("inb $0xa0, %%al \n\
161 testb $0x20, %%al \n\
162 jz 1f \n\
163 xorb %%al, %%al \n\
164 outb %%al, $0xf0 \n\
165 movb $0x20, %%al \n\
166 outb %%al, $0xa0 \n\
167 outb %%al, $0x20 \n\
168 1: \n\
169 fnsave %0 \n\
170 fwait "
171 : "=m" (npx)
172 : /* No input */
173 : "%eax");
178 /* ------------------------------------------------------------------------- */
179 /* Reload the contents of the NPX from the global variable `npx'. */
181 static void
182 load_npx (void)
184 asm ("frstor %0":"=m" (npx));
186 /* ------------------------------------------------------------------------- */
187 /* Stubs for the missing redirection functions. */
188 typedef struct {
189 char *command;
190 int redirected;
191 } cmdline_t;
193 void
194 redir_cmdline_delete (cmdline_t *ptr)
196 ptr->redirected = 0;
200 redir_cmdline_parse (const char *args, cmdline_t *ptr)
202 return -1;
206 redir_to_child (cmdline_t *ptr)
208 return 1;
212 redir_to_debugger (cmdline_t *ptr)
214 return 1;
218 redir_debug_init (cmdline_t *ptr)
220 return 0;
222 #endif /* __DJGPP_MINOR < 3 */
224 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
226 /* This holds the current reference counts for each debug register. */
227 static int dr_ref_count[4];
229 #define SOME_PID 42
231 static int prog_has_started = 0;
233 #define r_ofs(x) (offsetof(TSS,x))
235 static struct
237 size_t tss_ofs;
238 size_t size;
240 regno_mapping[] =
242 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
243 {r_ofs (tss_ecx), 4},
244 {r_ofs (tss_edx), 4},
245 {r_ofs (tss_ebx), 4},
246 {r_ofs (tss_esp), 4},
247 {r_ofs (tss_ebp), 4},
248 {r_ofs (tss_esi), 4},
249 {r_ofs (tss_edi), 4},
250 {r_ofs (tss_eip), 4},
251 {r_ofs (tss_eflags), 4},
252 {r_ofs (tss_cs), 2},
253 {r_ofs (tss_ss), 2},
254 {r_ofs (tss_ds), 2},
255 {r_ofs (tss_es), 2},
256 {r_ofs (tss_fs), 2},
257 {r_ofs (tss_gs), 2},
258 {0, 10}, /* 8 FP registers, from npx.reg[] */
259 {1, 10},
260 {2, 10},
261 {3, 10},
262 {4, 10},
263 {5, 10},
264 {6, 10},
265 {7, 10},
266 /* The order of the next 7 registers must be consistent
267 with their numbering in config/i386/tm-i386.h, which see. */
268 {0, 2}, /* control word, from npx */
269 {4, 2}, /* status word, from npx */
270 {8, 2}, /* tag word, from npx */
271 {16, 2}, /* last FP exception CS from npx */
272 {12, 4}, /* last FP exception EIP from npx */
273 {24, 2}, /* last FP exception operand selector from npx */
274 {20, 4}, /* last FP exception operand offset from npx */
275 {18, 2} /* last FP opcode from npx */
278 static struct
280 int go32_sig;
281 enum gdb_signal gdb_sig;
283 sig_map[] =
285 {0, GDB_SIGNAL_FPE},
286 {1, GDB_SIGNAL_TRAP},
287 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
288 but I think SIGBUS is better, since the NMI is usually activated
289 as a result of a memory parity check failure. */
290 {2, GDB_SIGNAL_BUS},
291 {3, GDB_SIGNAL_TRAP},
292 {4, GDB_SIGNAL_FPE},
293 {5, GDB_SIGNAL_SEGV},
294 {6, GDB_SIGNAL_ILL},
295 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
296 {8, GDB_SIGNAL_SEGV},
297 {9, GDB_SIGNAL_SEGV},
298 {10, GDB_SIGNAL_BUS},
299 {11, GDB_SIGNAL_SEGV},
300 {12, GDB_SIGNAL_SEGV},
301 {13, GDB_SIGNAL_SEGV},
302 {14, GDB_SIGNAL_SEGV},
303 {16, GDB_SIGNAL_FPE},
304 {17, GDB_SIGNAL_BUS},
305 {31, GDB_SIGNAL_ILL},
306 {0x1b, GDB_SIGNAL_INT},
307 {0x75, GDB_SIGNAL_FPE},
308 {0x78, GDB_SIGNAL_ALRM},
309 {0x79, GDB_SIGNAL_INT},
310 {0x7a, GDB_SIGNAL_QUIT},
311 {-1, GDB_SIGNAL_LAST}
314 static struct {
315 enum gdb_signal gdb_sig;
316 int djgpp_excepno;
317 } excepn_map[] = {
318 {GDB_SIGNAL_0, -1},
319 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
320 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
321 {GDB_SIGNAL_SEGV, 13}, /* GPF */
322 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
323 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
324 details. */
325 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
326 {GDB_SIGNAL_FPE, 0x75},
327 {GDB_SIGNAL_INT, 0x79},
328 {GDB_SIGNAL_QUIT, 0x7a},
329 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
330 {GDB_SIGNAL_PROF, 0x78},
331 {GDB_SIGNAL_LAST, -1}
334 /* The go32 target. */
336 struct go32_nat_target final : public x86_nat_target<inf_child_target>
338 void attach (const char *, int) override;
340 void resume (ptid_t, int, enum gdb_signal) override;
342 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
344 void fetch_registers (struct regcache *, int) override;
345 void store_registers (struct regcache *, int) override;
347 enum target_xfer_status xfer_partial (enum target_object object,
348 const char *annex,
349 gdb_byte *readbuf,
350 const gdb_byte *writebuf,
351 ULONGEST offset, ULONGEST len,
352 ULONGEST *xfered_len) override;
354 void files_info () override;
356 void terminal_init () override;
358 void terminal_inferior () override;
360 void terminal_ours_for_output () override;
362 void terminal_ours () override;
364 void terminal_info (const char *, int) override;
366 void pass_ctrlc () override;
368 void kill () override;
370 void create_inferior (const char *, const std::string &,
371 char **, int) override;
373 void mourn_inferior () override;
375 bool thread_alive (ptid_t ptid) override;
377 std::string pid_to_str (ptid_t) override;
380 static go32_nat_target the_go32_nat_target;
382 void
383 go32_nat_target::attach (const char *args, int from_tty)
385 error (_("\
386 You cannot attach to a running program on this platform.\n\
387 Use the `run' command to run DJGPP programs."));
390 static int resume_is_step;
391 static int resume_signal = -1;
393 void
394 go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
396 int i;
398 resume_is_step = step;
400 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
402 for (i = 0, resume_signal = -1;
403 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
404 if (excepn_map[i].gdb_sig == siggnal)
406 resume_signal = excepn_map[i].djgpp_excepno;
407 break;
409 if (resume_signal == -1)
410 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
411 gdb_signal_to_name (siggnal));
415 static char child_cwd[FILENAME_MAX];
417 ptid_t
418 go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status,
419 target_wait_flags options)
421 int i;
422 unsigned char saved_opcode;
423 unsigned long INT3_addr = 0;
424 int stepping_over_INT = 0;
426 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
427 if (resume_is_step)
429 /* If the next instruction is INT xx or INTO, we need to handle
430 them specially. Intel manuals say that these instructions
431 reset the single-step flag (a.k.a. TF). However, it seems
432 that, at least in the DPMI environment, and at least when
433 stepping over the DPMI interrupt 31h, the problem is having
434 TF set at all when INT 31h is executed: the debuggee either
435 crashes (and takes the system with it) or is killed by a
436 SIGTRAP.
438 So we need to emulate single-step mode: we put an INT3 opcode
439 right after the INT xx instruction, let the debuggee run
440 until it hits INT3 and stops, then restore the original
441 instruction which we overwrote with the INT3 opcode, and back
442 up the debuggee's EIP to that instruction. */
443 read_child (a_tss.tss_eip, &saved_opcode, 1);
444 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
446 unsigned char INT3_opcode = 0xCC;
448 INT3_addr
449 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
450 stepping_over_INT = 1;
451 read_child (INT3_addr, &saved_opcode, 1);
452 write_child (INT3_addr, &INT3_opcode, 1);
454 else
455 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
458 /* The special value FFFFh in tss_trap indicates to run_child that
459 tss_irqn holds a signal to be delivered to the debuggee. */
460 if (resume_signal <= -1)
462 a_tss.tss_trap = 0;
463 a_tss.tss_irqn = 0xff;
465 else
467 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
468 a_tss.tss_irqn = resume_signal;
471 /* The child might change working directory behind our back. The
472 GDB users won't like the side effects of that when they work with
473 relative file names, and GDB might be confused by its current
474 directory not being in sync with the truth. So we always make a
475 point of changing back to where GDB thinks is its cwd, when we
476 return control to the debugger, but restore child's cwd before we
477 run it. */
478 /* Initialize child_cwd, before the first call to run_child and not
479 in the initialization, so the child get also the changed directory
480 set with the gdb-command "cd ..." */
481 if (!*child_cwd)
482 /* Initialize child's cwd with the current one. */
483 getcwd (child_cwd, sizeof (child_cwd));
485 chdir (child_cwd);
487 #if __DJGPP_MINOR__ < 3
488 load_npx ();
489 #endif
490 run_child ();
491 #if __DJGPP_MINOR__ < 3
492 save_npx ();
493 #endif
495 /* Did we step over an INT xx instruction? */
496 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
498 /* Restore the original opcode. */
499 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
500 write_child (a_tss.tss_eip, &saved_opcode, 1);
501 /* Simulate a TRAP exception. */
502 a_tss.tss_irqn = 1;
503 a_tss.tss_eflags |= 0x0100;
506 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
507 if (current_directory != NULL)
508 chdir (current_directory);
510 if (a_tss.tss_irqn == 0x21)
511 status->set_exited (a_tss.tss_eax & 0xff);
512 else
514 status->set_stopped (GDB_SIGNAL_UNKNOWN);
515 for (i = 0; sig_map[i].go32_sig != -1; i++)
517 if (a_tss.tss_irqn == sig_map[i].go32_sig)
519 #if __DJGPP_MINOR__ < 3
520 status->set_stopped (sig_map[i].gdb_sig);
521 if (status->sig () != GDB_SIGNAL_TRAP)
522 status->set_signalled (status->sig ());
523 #else
524 status->set_stopped (sig_map[i].gdb_sig);
525 #endif
526 break;
530 return ptid_t (SOME_PID);
533 static void
534 fetch_register (struct regcache *regcache, int regno)
536 struct gdbarch *gdbarch = regcache->arch ();
537 if (regno < gdbarch_fp0_regnum (gdbarch))
538 regcache->raw_supply (regno,
539 (char *) &a_tss + regno_mapping[regno].tss_ofs);
540 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
541 regno))
542 i387_supply_fsave (regcache, regno, &npx);
543 else
544 internal_error (_("Invalid register no. %d in fetch_register."), regno);
547 void
548 go32_nat_target::fetch_registers (struct regcache *regcache, int regno)
550 if (regno >= 0)
551 fetch_register (regcache, regno);
552 else
554 for (regno = 0;
555 regno < gdbarch_fp0_regnum (regcache->arch ());
556 regno++)
557 fetch_register (regcache, regno);
558 i387_supply_fsave (regcache, -1, &npx);
562 static void
563 store_register (const struct regcache *regcache, int regno)
565 struct gdbarch *gdbarch = regcache->arch ();
566 if (regno < gdbarch_fp0_regnum (gdbarch))
567 regcache->raw_collect (regno,
568 (char *) &a_tss + regno_mapping[regno].tss_ofs);
569 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
570 regno))
571 i387_collect_fsave (regcache, regno, &npx);
572 else
573 internal_error (_("Invalid register no. %d in store_register."), regno);
576 void
577 go32_nat_target::store_registers (struct regcache *regcache, int regno)
579 unsigned r;
581 if (regno >= 0)
582 store_register (regcache, regno);
583 else
585 for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++)
586 store_register (regcache, r);
587 i387_collect_fsave (regcache, -1, &npx);
591 /* Const-correct version of DJGPP's write_child, which unfortunately
592 takes a non-const buffer pointer. */
594 static int
595 my_write_child (unsigned child_addr, const void *buf, unsigned len)
597 static void *buffer = NULL;
598 static unsigned buffer_len = 0;
599 int res;
601 if (buffer_len < len)
603 buffer = xrealloc (buffer, len);
604 buffer_len = len;
607 memcpy (buffer, buf, len);
608 res = write_child (child_addr, buffer, len);
609 return res;
612 /* Helper for go32_xfer_partial that handles memory transfers.
613 Arguments are like target_xfer_partial. */
615 static enum target_xfer_status
616 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
617 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
619 int res;
621 if (writebuf != NULL)
622 res = my_write_child (memaddr, writebuf, len);
623 else
624 res = read_child (memaddr, readbuf, len);
626 /* read_child and write_child return zero on success, non-zero on
627 failure. */
628 if (res != 0)
629 return TARGET_XFER_E_IO;
631 *xfered_len = len;
632 return TARGET_XFER_OK;
635 /* Target to_xfer_partial implementation. */
637 enum target_xfer_status
638 go32_nat_target::xfer_partial (enum target_object object,
639 const char *annex, gdb_byte *readbuf,
640 const gdb_byte *writebuf, ULONGEST offset,
641 ULONGEST len,
642 ULONGEST *xfered_len)
644 switch (object)
646 case TARGET_OBJECT_MEMORY:
647 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
649 default:
650 return this->beneath ()->xfer_partial (object, annex,
651 readbuf, writebuf, offset, len,
652 xfered_len);
656 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
658 void
659 go32_nat_target::files_info ()
661 gdb_printf ("You are running a DJGPP V2 program.\n");
664 void
665 go32_nat_target::kill_inferior ()
667 mourn_inferior ();
670 void
671 go32_nat_target::create_inferior (const char *exec_file,
672 const std::string &allargs,
673 char **env, int from_tty)
675 extern char **environ;
676 jmp_buf start_state;
677 char *cmdline;
678 char **env_save = environ;
679 size_t cmdlen;
680 struct inferior *inf;
681 int result;
682 const char *args = allargs.c_str ();
684 if (exec_file == nullptr)
685 no_executable_specified_error ();
687 resume_signal = -1;
688 resume_is_step = 0;
690 /* Initialize child's cwd as empty to be initialized when starting
691 the child. */
692 *child_cwd = 0;
694 /* Init command line storage. */
695 if (redir_debug_init (&child_cmd) == -1)
696 internal_error (_("Cannot allocate redirection storage: "
697 "not enough memory.\n"));
699 /* Parse the command line and create redirections. */
700 if (strpbrk (args, "<>"))
702 if (redir_cmdline_parse (args, &child_cmd) == 0)
703 args = child_cmd.command;
704 else
705 error (_("Syntax error in command line."));
707 else
708 child_cmd.command = xstrdup (args);
710 cmdlen = strlen (args);
711 /* v2loadimage passes command lines via DOS memory, so it cannot
712 possibly handle commands longer than 1MB. */
713 if (cmdlen > 1024*1024)
714 error (_("Command line too long."));
716 cmdline = (char *) xmalloc (cmdlen + 4);
717 strcpy (cmdline + 1, args);
718 /* If the command-line length fits into DOS 126-char limits, use the
719 DOS command tail format; otherwise, tell v2loadimage to pass it
720 through a buffer in conventional memory. */
721 if (cmdlen < 127)
723 cmdline[0] = strlen (args);
724 cmdline[cmdlen + 1] = 13;
726 else
727 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
729 environ = env;
731 result = v2loadimage (exec_file, cmdline, start_state);
733 environ = env_save;
734 xfree (cmdline);
736 if (result != 0)
737 error (_("Load failed for image %s"), exec_file);
739 edi_init (start_state);
740 #if __DJGPP_MINOR__ < 3
741 save_npx ();
742 #endif
744 inf = current_inferior ();
745 inferior_appeared (inf, SOME_PID);
747 if (!inf->target_is_pushed (this))
748 inf->push_target (this);
750 thread_info *thr = add_thread_silent (ptid_t (SOME_PID));
751 switch_to_thread (thr);
753 clear_proceed_status (0);
754 insert_breakpoints ();
755 prog_has_started = 1;
758 void
759 go32_nat_target::mourn_inferior ()
761 redir_cmdline_delete (&child_cmd);
762 resume_signal = -1;
763 resume_is_step = 0;
765 cleanup_client ();
767 /* We need to make sure all the breakpoint enable bits in the DR7
768 register are reset when the inferior exits. Otherwise, if they
769 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
770 failure to set more watchpoints, and other calamities. It would
771 be nice if GDB itself would take care to remove all breakpoints
772 at all times, but it doesn't, probably under an assumption that
773 the OS cleans up when the debuggee exits. */
774 x86_cleanup_dregs ();
776 prog_has_started = 0;
778 generic_mourn_inferior ();
779 maybe_unpush_target ();
782 /* Hardware watchpoint support. */
784 #define D_REGS edi.dr
785 #define CONTROL D_REGS[7]
786 #define STATUS D_REGS[6]
788 /* Pass the address ADDR to the inferior in the I'th debug register.
789 Here we just store the address in D_REGS, the watchpoint will be
790 actually set up when go32_wait runs the debuggee. */
791 static void
792 go32_set_dr (int i, CORE_ADDR addr)
794 if (i < 0 || i > 3)
795 internal_error (_("Invalid register %d in go32_set_dr.\n"), i);
796 D_REGS[i] = addr;
799 /* Pass the value VAL to the inferior in the DR7 debug control
800 register. Here we just store the address in D_REGS, the watchpoint
801 will be actually set up when go32_wait runs the debuggee. */
802 static void
803 go32_set_dr7 (unsigned long val)
805 CONTROL = val;
808 /* Get the value of the DR6 debug status register from the inferior.
809 Here we just return the value stored in D_REGS, as we've got it
810 from the last go32_wait call. */
811 static unsigned long
812 go32_get_dr6 (void)
814 return STATUS;
817 /* Get the value of the DR7 debug status register from the inferior.
818 Here we just return the value stored in D_REGS, as we've got it
819 from the last go32_wait call. */
821 static unsigned long
822 go32_get_dr7 (void)
824 return CONTROL;
827 /* Get the value of the DR debug register I from the inferior. Here
828 we just return the value stored in D_REGS, as we've got it from the
829 last go32_wait call. */
831 static CORE_ADDR
832 go32_get_dr (int i)
834 if (i < 0 || i > 3)
835 internal_error (_("Invalid register %d in go32_get_dr.\n"), i);
836 return D_REGS[i];
839 /* Put the device open on handle FD into either raw or cooked
840 mode, return 1 if it was in raw mode, zero otherwise. */
842 static int
843 device_mode (int fd, int raw_p)
845 int oldmode, newmode;
846 __dpmi_regs regs;
848 regs.x.ax = 0x4400;
849 regs.x.bx = fd;
850 __dpmi_int (0x21, &regs);
851 if (regs.x.flags & 1)
852 return -1;
853 newmode = oldmode = regs.x.dx;
855 if (raw_p)
856 newmode |= 0x20;
857 else
858 newmode &= ~0x20;
860 if (oldmode & 0x80) /* Only for character dev. */
862 regs.x.ax = 0x4401;
863 regs.x.bx = fd;
864 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
865 __dpmi_int (0x21, &regs);
866 if (regs.x.flags & 1)
867 return -1;
869 return (oldmode & 0x20) == 0x20;
873 static int inf_mode_valid = 0;
874 static int inf_terminal_mode;
876 /* This semaphore is needed because, amazingly enough, GDB calls
877 target.to_terminal_ours more than once after the inferior stops.
878 But we need the information from the first call only, since the
879 second call will always see GDB's own cooked terminal. */
880 static int terminal_is_ours = 1;
882 void
883 go32_nat_target::terminal_init ()
885 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
886 terminal_is_ours = 1;
889 void
890 go32_nat_target::terminal_info (const char *args, int from_tty)
892 gdb_printf ("Inferior's terminal is in %s mode.\n",
893 !inf_mode_valid
894 ? "default" : inf_terminal_mode ? "raw" : "cooked");
896 #if __DJGPP_MINOR__ > 2
897 if (child_cmd.redirection)
899 int i;
901 for (i = 0; i < DBG_HANDLES; i++)
903 if (child_cmd.redirection[i]->file_name)
904 gdb_printf ("\tFile handle %d is redirected to `%s'.\n",
905 i, child_cmd.redirection[i]->file_name);
906 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
907 gdb_printf
908 ("\tFile handle %d appears to be closed by inferior.\n", i);
909 /* Mask off the raw/cooked bit when comparing device info words. */
910 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
911 != (_get_dev_info (i) & 0xdf))
912 gdb_printf
913 ("\tFile handle %d appears to be redirected by inferior.\n", i);
916 #endif
919 void
920 go32_nat_target::terminal_inferior ()
922 /* Redirect standard handles as child wants them. */
923 errno = 0;
924 if (redir_to_child (&child_cmd) == -1)
926 redir_to_debugger (&child_cmd);
927 error (_("Cannot redirect standard handles for program: %s."),
928 safe_strerror (errno));
930 /* Set the console device of the inferior to whatever mode
931 (raw or cooked) we found it last time. */
932 if (terminal_is_ours)
934 if (inf_mode_valid)
935 device_mode (0, inf_terminal_mode);
936 terminal_is_ours = 0;
940 void
941 go32_nat_target::terminal_ours ()
943 /* Switch to cooked mode on the gdb terminal and save the inferior
944 terminal mode to be restored when it is resumed. */
945 if (!terminal_is_ours)
947 inf_terminal_mode = device_mode (0, 0);
948 if (inf_terminal_mode != -1)
949 inf_mode_valid = 1;
950 else
951 /* If device_mode returned -1, we don't know what happens with
952 handle 0 anymore, so make the info invalid. */
953 inf_mode_valid = 0;
954 terminal_is_ours = 1;
956 /* Restore debugger's standard handles. */
957 errno = 0;
958 if (redir_to_debugger (&child_cmd) == -1)
960 redir_to_child (&child_cmd);
961 error (_("Cannot redirect standard handles for debugger: %s."),
962 safe_strerror (errno));
967 void
968 go32_nat_target::pass_ctrlc ()
972 bool
973 go32_nat_target::thread_alive (ptid_t ptid)
975 return ptid != null_ptid;
978 std::string
979 go32_nat_target::pid_to_str (ptid_t ptid)
981 return normal_pid_to_str (ptid);
984 /* Return the current DOS codepage number. */
985 static int
986 dos_codepage (void)
988 __dpmi_regs regs;
990 regs.x.ax = 0x6601;
991 __dpmi_int (0x21, &regs);
992 if (!(regs.x.flags & 1))
993 return regs.x.bx & 0xffff;
994 else
995 return 437; /* default */
998 /* Limited emulation of `nl_langinfo', for charset.c. */
999 char *
1000 nl_langinfo (nl_item item)
1002 char *retval;
1004 switch (item)
1006 case CODESET:
1008 /* 8 is enough for SHORT_MAX + "CP" + null. */
1009 char buf[8];
1010 int blen = sizeof (buf);
1011 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1013 if (needed > blen) /* Should never happen. */
1014 buf[0] = 0;
1015 retval = xstrdup (buf);
1017 break;
1018 default:
1019 retval = xstrdup ("");
1020 break;
1022 return retval;
1025 unsigned short windows_major, windows_minor;
1027 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1028 static void
1029 go32_get_windows_version(void)
1031 __dpmi_regs r;
1033 r.x.ax = 0x1600;
1034 __dpmi_int(0x2f, &r);
1035 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1036 && (r.h.al > 3 || r.h.ah > 0))
1038 windows_major = r.h.al;
1039 windows_minor = r.h.ah;
1041 else
1042 windows_major = 0xff; /* meaning no Windows */
1045 /* A subroutine of go32_sysinfo to display memory info. */
1046 static void
1047 print_mem (unsigned long datum, const char *header, int in_pages_p)
1049 if (datum != 0xffffffffUL)
1051 if (in_pages_p)
1052 datum <<= 12;
1053 gdb_puts (header);
1054 if (datum > 1024)
1056 gdb_printf ("%lu KB", datum >> 10);
1057 if (datum > 1024 * 1024)
1058 gdb_printf (" (%lu MB)", datum >> 20);
1060 else
1061 gdb_printf ("%lu Bytes", datum);
1062 gdb_puts ("\n");
1066 /* Display assorted information about the underlying OS. */
1067 static void
1068 go32_sysinfo (const char *arg, int from_tty)
1070 static const char test_pattern[] =
1071 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1072 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1073 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1074 struct utsname u;
1075 char cpuid_vendor[13];
1076 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1077 unsigned true_dos_version = _get_dos_version (1);
1078 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1079 int dpmi_flags;
1080 char dpmi_vendor_info[129];
1081 int dpmi_vendor_available;
1082 __dpmi_version_ret dpmi_version_data;
1083 long eflags;
1084 __dpmi_free_mem_info mem_info;
1085 __dpmi_regs regs;
1087 cpuid_vendor[0] = '\0';
1088 if (uname (&u))
1089 strcpy (u.machine, "Unknown x86");
1090 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1092 /* CPUID with EAX = 0 returns the Vendor ID. */
1093 #if 0
1094 /* Ideally we would use x86_cpuid(), but it needs someone to run
1095 native tests first to make sure things actually work. They should.
1096 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1097 unsigned int eax, ebx, ecx, edx;
1099 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
1101 cpuid_max = eax;
1102 memcpy (&vendor[0], &ebx, 4);
1103 memcpy (&vendor[4], &ecx, 4);
1104 memcpy (&vendor[8], &edx, 4);
1105 cpuid_vendor[12] = '\0';
1107 #else
1108 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1109 "xorl %%ecx, %%ecx;"
1110 "xorl %%edx, %%edx;"
1111 "movl $0, %%eax;"
1112 "cpuid;"
1113 "movl %%ebx, %0;"
1114 "movl %%edx, %1;"
1115 "movl %%ecx, %2;"
1116 "movl %%eax, %3;"
1117 : "=m" (cpuid_vendor[0]),
1118 "=m" (cpuid_vendor[4]),
1119 "=m" (cpuid_vendor[8]),
1120 "=m" (cpuid_max)
1122 : "%eax", "%ebx", "%ecx", "%edx");
1123 cpuid_vendor[12] = '\0';
1124 #endif
1127 gdb_printf ("CPU Type.......................%s", u.machine);
1128 if (cpuid_vendor[0])
1129 gdb_printf (" (%s)", cpuid_vendor);
1130 gdb_puts ("\n");
1132 /* CPUID with EAX = 1 returns processor signature and features. */
1133 if (cpuid_max >= 1)
1135 static const char *brand_name[] = {
1137 " Celeron",
1138 " III",
1139 " III Xeon",
1140 "", "", "", "",
1141 " 4"
1143 char cpu_string[80];
1144 char cpu_brand[20];
1145 unsigned brand_idx;
1146 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1147 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1148 int hygon_p = strcmp (cpuid_vendor, "HygonGenuine") == 0;
1149 unsigned cpu_family, cpu_model;
1151 #if 0
1152 /* See comment above about cpuid usage. */
1153 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1154 #else
1155 __asm__ __volatile__ ("movl $1, %%eax;"
1156 "cpuid;"
1157 : "=a" (cpuid_eax),
1158 "=b" (cpuid_ebx),
1159 "=d" (cpuid_edx)
1161 : "%ecx");
1162 #endif
1163 brand_idx = cpuid_ebx & 0xff;
1164 cpu_family = (cpuid_eax >> 8) & 0xf;
1165 cpu_model = (cpuid_eax >> 4) & 0xf;
1166 cpu_brand[0] = '\0';
1167 if (intel_p)
1169 if (brand_idx > 0
1170 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1171 && *brand_name[brand_idx])
1172 strcpy (cpu_brand, brand_name[brand_idx]);
1173 else if (cpu_family == 5)
1175 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1176 strcpy (cpu_brand, " MMX");
1177 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1178 strcpy (cpu_brand, " OverDrive");
1179 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1180 strcpy (cpu_brand, " Dual");
1182 else if (cpu_family == 6 && cpu_model < 8)
1184 switch (cpu_model)
1186 case 1:
1187 strcpy (cpu_brand, " Pro");
1188 break;
1189 case 3:
1190 strcpy (cpu_brand, " II");
1191 break;
1192 case 5:
1193 strcpy (cpu_brand, " II Xeon");
1194 break;
1195 case 6:
1196 strcpy (cpu_brand, " Celeron");
1197 break;
1198 case 7:
1199 strcpy (cpu_brand, " III");
1200 break;
1204 else if (amd_p)
1206 switch (cpu_family)
1208 case 4:
1209 strcpy (cpu_brand, "486/5x86");
1210 break;
1211 case 5:
1212 switch (cpu_model)
1214 case 0:
1215 case 1:
1216 case 2:
1217 case 3:
1218 strcpy (cpu_brand, "-K5");
1219 break;
1220 case 6:
1221 case 7:
1222 strcpy (cpu_brand, "-K6");
1223 break;
1224 case 8:
1225 strcpy (cpu_brand, "-K6-2");
1226 break;
1227 case 9:
1228 strcpy (cpu_brand, "-K6-III");
1229 break;
1231 break;
1232 case 6:
1233 switch (cpu_model)
1235 case 1:
1236 case 2:
1237 case 4:
1238 strcpy (cpu_brand, " Athlon");
1239 break;
1240 case 3:
1241 strcpy (cpu_brand, " Duron");
1242 break;
1244 break;
1247 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1248 intel_p ? "Pentium" : (amd_p ? "AMD" : (hygon_p ? "Hygon" : "ix86")),
1249 cpu_brand, cpu_model, cpuid_eax & 0xf);
1250 gdb_printf ("%*s%s\n", 31, "", cpu_string);
1251 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1252 || ((cpuid_edx & 1) == 0)
1253 || ((amd_p || hygon_p) && (cpuid_edx & (3 << 30)) != 0))
1255 gdb_puts ("CPU Features...................");
1256 /* We only list features which might be useful in the DPMI
1257 environment. */
1258 if ((cpuid_edx & 1) == 0)
1259 gdb_puts ("No FPU "); /* It's unusual to not have an FPU. */
1260 if ((cpuid_edx & (1 << 1)) != 0)
1261 gdb_puts ("VME ");
1262 if ((cpuid_edx & (1 << 2)) != 0)
1263 gdb_puts ("DE ");
1264 if ((cpuid_edx & (1 << 4)) != 0)
1265 gdb_puts ("TSC ");
1266 if ((cpuid_edx & (1 << 23)) != 0)
1267 gdb_puts ("MMX ");
1268 if ((cpuid_edx & (1 << 25)) != 0)
1269 gdb_puts ("SSE ");
1270 if ((cpuid_edx & (1 << 26)) != 0)
1271 gdb_puts ("SSE2 ");
1272 if (amd_p || hygon_p)
1274 if ((cpuid_edx & (1 << 31)) != 0)
1275 gdb_puts ("3DNow! ");
1276 if ((cpuid_edx & (1 << 30)) != 0)
1277 gdb_puts ("3DNow!Ext");
1279 gdb_puts ("\n");
1282 gdb_puts ("\n");
1283 gdb_printf ("DOS Version....................%s %s.%s",
1284 _os_flavor, u.release, u.version);
1285 if (true_dos_version != advertized_dos_version)
1286 gdb_printf (" (disguised as v%d.%d)", _osmajor, _osminor);
1287 gdb_puts ("\n");
1288 if (!windows_major)
1289 go32_get_windows_version ();
1290 if (windows_major != 0xff)
1292 const char *windows_flavor;
1294 gdb_printf ("Windows Version................%d.%02d (Windows ",
1295 windows_major, windows_minor);
1296 switch (windows_major)
1298 case 3:
1299 windows_flavor = "3.X";
1300 break;
1301 case 4:
1302 switch (windows_minor)
1304 case 0:
1305 windows_flavor = "95, 95A, or 95B";
1306 break;
1307 case 3:
1308 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1309 break;
1310 case 10:
1311 windows_flavor = "98 or 98 SE";
1312 break;
1313 case 90:
1314 windows_flavor = "ME";
1315 break;
1316 default:
1317 windows_flavor = "9X";
1318 break;
1320 break;
1321 default:
1322 windows_flavor = "??";
1323 break;
1325 gdb_printf ("%s)\n", windows_flavor);
1327 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1328 gdb_printf ("Windows Version................"
1329 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1330 gdb_puts ("\n");
1331 /* On some versions of Windows, __dpmi_get_capabilities returns
1332 zero, but the buffer is not filled with info, so we fill the
1333 buffer with a known pattern and test for it afterwards. */
1334 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1335 dpmi_vendor_available =
1336 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1337 if (dpmi_vendor_available == 0
1338 && memcmp (dpmi_vendor_info, test_pattern,
1339 sizeof(dpmi_vendor_info)) != 0)
1341 /* The DPMI spec says the vendor string should be ASCIIZ, but
1342 I don't trust the vendors to follow that... */
1343 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1344 dpmi_vendor_info[128] = '\0';
1345 gdb_printf ("DPMI Host......................"
1346 "%s v%d.%d (capabilities: %#x)\n",
1347 &dpmi_vendor_info[2],
1348 (unsigned)dpmi_vendor_info[0],
1349 (unsigned)dpmi_vendor_info[1],
1350 ((unsigned)dpmi_flags & 0x7f));
1352 else
1353 gdb_printf ("DPMI Host......................(Info not available)\n");
1354 __dpmi_get_version (&dpmi_version_data);
1355 gdb_printf ("DPMI Version...................%d.%02d\n",
1356 dpmi_version_data.major, dpmi_version_data.minor);
1357 gdb_printf ("DPMI Info......................"
1358 "%s-bit DPMI, with%s Virtual Memory support\n",
1359 (dpmi_version_data.flags & 1) ? "32" : "16",
1360 (dpmi_version_data.flags & 4) ? "" : "out");
1361 gdb_printf ("%*sInterrupts reflected to %s mode\n", 31, "",
1362 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1363 gdb_printf ("%*sProcessor type: i%d86\n", 31, "",
1364 dpmi_version_data.cpu);
1365 gdb_printf ("%*sPIC base interrupt: Master: %#x Slave: %#x\n", 31, "",
1366 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1368 /* a_tss is only initialized when the debuggee is first run. */
1369 if (prog_has_started)
1371 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1372 gdb_printf ("Protection....................."
1373 "Ring %d (in %s), with%s I/O protection\n",
1374 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1375 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1377 gdb_puts ("\n");
1378 __dpmi_get_free_memory_information (&mem_info);
1379 print_mem (mem_info.total_number_of_physical_pages,
1380 "DPMI Total Physical Memory.....", 1);
1381 print_mem (mem_info.total_number_of_free_pages,
1382 "DPMI Free Physical Memory......", 1);
1383 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1384 "DPMI Swap Space................", 1);
1385 print_mem (mem_info.linear_address_space_size_in_pages,
1386 "DPMI Total Linear Address Size.", 1);
1387 print_mem (mem_info.free_linear_address_space_in_pages,
1388 "DPMI Free Linear Address Size..", 1);
1389 print_mem (mem_info.largest_available_free_block_in_bytes,
1390 "DPMI Largest Free Memory Block.", 0);
1392 regs.h.ah = 0x48;
1393 regs.x.bx = 0xffff;
1394 __dpmi_int (0x21, &regs);
1395 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1396 regs.x.ax = 0x5800;
1397 __dpmi_int (0x21, &regs);
1398 if ((regs.x.flags & 1) == 0)
1400 static const char *dos_hilo[] = {
1401 "Low", "", "", "", "High", "", "", "", "High, then Low"
1403 static const char *dos_fit[] = {
1404 "First", "Best", "Last"
1406 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1407 int fit_idx = regs.x.ax & 0x0f;
1409 if (hilo_idx > 8)
1410 hilo_idx = 0;
1411 if (fit_idx > 2)
1412 fit_idx = 0;
1413 gdb_printf ("DOS Memory Allocation..........%s memory, %s fit\n",
1414 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1415 regs.x.ax = 0x5802;
1416 __dpmi_int (0x21, &regs);
1417 if ((regs.x.flags & 1) != 0)
1418 regs.h.al = 0;
1419 gdb_printf ("%*sUMBs %sin DOS memory chain\n", 31, "",
1420 regs.h.al == 0 ? "not " : "");
1424 struct seg_descr {
1425 unsigned short limit0;
1426 unsigned short base0;
1427 unsigned char base1;
1428 unsigned stype:5;
1429 unsigned dpl:2;
1430 unsigned present:1;
1431 unsigned limit1:4;
1432 unsigned available:1;
1433 unsigned dummy:1;
1434 unsigned bit32:1;
1435 unsigned page_granular:1;
1436 unsigned char base2;
1437 } __attribute__ ((packed));
1439 struct gate_descr {
1440 unsigned short offset0;
1441 unsigned short selector;
1442 unsigned param_count:5;
1443 unsigned dummy:3;
1444 unsigned stype:5;
1445 unsigned dpl:2;
1446 unsigned present:1;
1447 unsigned short offset1;
1448 } __attribute__ ((packed));
1450 /* Read LEN bytes starting at logical address ADDR, and put the result
1451 into DEST. Return 1 if success, zero if not. */
1452 static int
1453 read_memory_region (unsigned long addr, void *dest, size_t len)
1455 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1456 int retval = 1;
1458 /* For the low memory, we can simply use _dos_ds. */
1459 if (addr <= dos_ds_limit - len)
1460 dosmemget (addr, len, dest);
1461 else
1463 /* For memory above 1MB we need to set up a special segment to
1464 be able to access that memory. */
1465 int sel = __dpmi_allocate_ldt_descriptors (1);
1467 if (sel <= 0)
1468 retval = 0;
1469 else
1471 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1472 size_t segment_limit = len - 1;
1474 /* Make sure the crucial bits in the descriptor access
1475 rights are set correctly. Some DPMI providers might barf
1476 if we set the segment limit to something that is not an
1477 integral multiple of 4KB pages if the granularity bit is
1478 not set to byte-granular, even though the DPMI spec says
1479 it's the host's responsibility to set that bit correctly. */
1480 if (len > 1024 * 1024)
1482 access_rights |= 0x8000;
1483 /* Page-granular segments should have the low 12 bits of
1484 the limit set. */
1485 segment_limit |= 0xfff;
1487 else
1488 access_rights &= ~0x8000;
1490 if (__dpmi_set_segment_base_address (sel, addr) != -1
1491 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1492 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1493 /* W2K silently fails to set the segment limit, leaving
1494 it at zero; this test avoids the resulting crash. */
1495 && __dpmi_get_segment_limit (sel) >= segment_limit)
1496 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1497 else
1498 retval = 0;
1500 __dpmi_free_ldt_descriptor (sel);
1503 return retval;
1506 /* Get a segment descriptor stored at index IDX in the descriptor
1507 table whose base address is TABLE_BASE. Return the descriptor
1508 type, or -1 if failure. */
1509 static int
1510 get_descriptor (unsigned long table_base, int idx, void *descr)
1512 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1514 if (read_memory_region (addr, descr, 8))
1515 return (int)((struct seg_descr *)descr)->stype;
1516 return -1;
1519 struct dtr_reg {
1520 unsigned short limit __attribute__((packed));
1521 unsigned long base __attribute__((packed));
1524 /* Display a segment descriptor stored at index IDX in a descriptor
1525 table whose type is TYPE and whose base address is BASE_ADDR. If
1526 FORCE is non-zero, display even invalid descriptors. */
1527 static void
1528 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1530 struct seg_descr descr;
1531 struct gate_descr gate;
1533 /* Get the descriptor from the table. */
1534 if (idx == 0 && type == 0)
1535 gdb_puts ("0x000: null descriptor\n");
1536 else if (get_descriptor (base_addr, idx, &descr) != -1)
1538 /* For each type of descriptor table, this has a bit set if the
1539 corresponding type of selectors is valid in that table. */
1540 static unsigned allowed_descriptors[] = {
1541 0xffffdafeL, /* GDT */
1542 0x0000c0e0L, /* IDT */
1543 0xffffdafaL /* LDT */
1546 /* If the program hasn't started yet, assume the debuggee will
1547 have the same CPL as the debugger. */
1548 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1549 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1551 if (descr.present
1552 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1554 gdb_printf ("0x%03x: ",
1555 type == 1
1556 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1557 if (descr.page_granular)
1558 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1559 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1560 || descr.stype == 9 || descr.stype == 11
1561 || (descr.stype >= 16 && descr.stype < 32))
1562 gdb_printf ("base=0x%02x%02x%04x limit=0x%08lx",
1563 descr.base2, descr.base1, descr.base0, limit);
1565 switch (descr.stype)
1567 case 1:
1568 case 3:
1569 gdb_printf (" 16-bit TSS (task %sactive)",
1570 descr.stype == 3 ? "" : "in");
1571 break;
1572 case 2:
1573 gdb_puts (" LDT");
1574 break;
1575 case 4:
1576 memcpy (&gate, &descr, sizeof gate);
1577 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1578 gate.selector, gate.offset1, gate.offset0);
1579 gdb_printf (" 16-bit Call Gate (params=%d)",
1580 gate.param_count);
1581 break;
1582 case 5:
1583 gdb_printf ("TSS selector=0x%04x", descr.base0);
1584 gdb_printf ("%*sTask Gate", 16, "");
1585 break;
1586 case 6:
1587 case 7:
1588 memcpy (&gate, &descr, sizeof gate);
1589 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1590 gate.selector, gate.offset1, gate.offset0);
1591 gdb_printf (" 16-bit %s Gate",
1592 descr.stype == 6 ? "Interrupt" : "Trap");
1593 break;
1594 case 9:
1595 case 11:
1596 gdb_printf (" 32-bit TSS (task %sactive)",
1597 descr.stype == 3 ? "" : "in");
1598 break;
1599 case 12:
1600 memcpy (&gate, &descr, sizeof gate);
1601 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1602 gate.selector, gate.offset1, gate.offset0);
1603 gdb_printf (" 32-bit Call Gate (params=%d)",
1604 gate.param_count);
1605 break;
1606 case 14:
1607 case 15:
1608 memcpy (&gate, &descr, sizeof gate);
1609 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1610 gate.selector, gate.offset1, gate.offset0);
1611 gdb_printf (" 32-bit %s Gate",
1612 descr.stype == 14 ? "Interrupt" : "Trap");
1613 break;
1614 case 16: /* data segments */
1615 case 17:
1616 case 18:
1617 case 19:
1618 case 20:
1619 case 21:
1620 case 22:
1621 case 23:
1622 gdb_printf (" %s-bit Data (%s Exp-%s%s)",
1623 descr.bit32 ? "32" : "16",
1624 descr.stype & 2
1625 ? "Read/Write," : "Read-Only, ",
1626 descr.stype & 4 ? "down" : "up",
1627 descr.stype & 1 ? "" : ", N.Acc");
1628 break;
1629 case 24: /* code segments */
1630 case 25:
1631 case 26:
1632 case 27:
1633 case 28:
1634 case 29:
1635 case 30:
1636 case 31:
1637 gdb_printf (" %s-bit Code (%s, %sConf%s)",
1638 descr.bit32 ? "32" : "16",
1639 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1640 descr.stype & 4 ? "" : "N.",
1641 descr.stype & 1 ? "" : ", N.Acc");
1642 break;
1643 default:
1644 gdb_printf ("Unknown type 0x%02x", descr.stype);
1645 break;
1647 gdb_puts ("\n");
1649 else if (force)
1651 gdb_printf ("0x%03x: ",
1652 type == 1
1653 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1654 if (!descr.present)
1655 gdb_puts ("Segment not present\n");
1656 else
1657 gdb_printf ("Segment type 0x%02x is invalid in this table\n",
1658 descr.stype);
1661 else if (force)
1662 gdb_printf ("0x%03x: Cannot read this descriptor\n", idx);
1665 static void
1666 go32_sldt (const char *arg, int from_tty)
1668 struct dtr_reg gdtr;
1669 unsigned short ldtr = 0;
1670 int ldt_idx;
1671 struct seg_descr ldt_descr;
1672 long ldt_entry = -1L;
1673 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1675 if (arg && *arg)
1677 arg = skip_spaces (arg);
1679 if (*arg)
1681 ldt_entry = parse_and_eval_long (arg);
1682 if (ldt_entry < 0
1683 || (ldt_entry & 4) == 0
1684 || (ldt_entry & 3) != (cpl & 3))
1685 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1689 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1690 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1691 ldt_idx = ldtr / 8;
1692 if (ldt_idx == 0)
1693 gdb_puts ("There is no LDT.\n");
1694 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1695 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1696 gdb_printf ("LDT is present (at %#x), but unreadable by GDB.\n",
1697 ldt_descr.base0
1698 | (ldt_descr.base1 << 16)
1699 | (ldt_descr.base2 << 24));
1700 else
1702 unsigned base =
1703 ldt_descr.base0
1704 | (ldt_descr.base1 << 16)
1705 | (ldt_descr.base2 << 24);
1706 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1707 int max_entry;
1709 if (ldt_descr.page_granular)
1710 /* Page-granular segments must have the low 12 bits of their
1711 limit set. */
1712 limit = (limit << 12) | 0xfff;
1713 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1714 64KB. */
1715 if (limit > 0xffff)
1716 limit = 0xffff;
1718 max_entry = (limit + 1) / 8;
1720 if (ldt_entry >= 0)
1722 if (ldt_entry > limit)
1723 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1724 (unsigned long)ldt_entry, limit);
1726 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1728 else
1730 int i;
1732 for (i = 0; i < max_entry; i++)
1733 display_descriptor (ldt_descr.stype, base, i, 0);
1738 static void
1739 go32_sgdt (const char *arg, int from_tty)
1741 struct dtr_reg gdtr;
1742 long gdt_entry = -1L;
1743 int max_entry;
1745 if (arg && *arg)
1747 arg = skip_spaces (arg);
1749 if (*arg)
1751 gdt_entry = parse_and_eval_long (arg);
1752 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1753 error (_("Invalid GDT entry 0x%03lx: "
1754 "not an integral multiple of 8."),
1755 (unsigned long)gdt_entry);
1759 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1760 max_entry = (gdtr.limit + 1) / 8;
1762 if (gdt_entry >= 0)
1764 if (gdt_entry > gdtr.limit)
1765 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1766 (unsigned long)gdt_entry, gdtr.limit);
1768 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1770 else
1772 int i;
1774 for (i = 0; i < max_entry; i++)
1775 display_descriptor (0, gdtr.base, i, 0);
1779 static void
1780 go32_sidt (const char *arg, int from_tty)
1782 struct dtr_reg idtr;
1783 long idt_entry = -1L;
1784 int max_entry;
1786 if (arg && *arg)
1788 arg = skip_spaces (arg);
1790 if (*arg)
1792 idt_entry = parse_and_eval_long (arg);
1793 if (idt_entry < 0)
1794 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1798 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1799 max_entry = (idtr.limit + 1) / 8;
1800 if (max_entry > 0x100) /* No more than 256 entries. */
1801 max_entry = 0x100;
1803 if (idt_entry >= 0)
1805 if (idt_entry > idtr.limit)
1806 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1807 (unsigned long)idt_entry, idtr.limit);
1809 display_descriptor (1, idtr.base, idt_entry, 1);
1811 else
1813 int i;
1815 for (i = 0; i < max_entry; i++)
1816 display_descriptor (1, idtr.base, i, 0);
1820 /* Cached linear address of the base of the page directory. For
1821 now, available only under CWSDPMI. Code based on ideas and
1822 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1823 static unsigned long pdbr;
1825 static unsigned long
1826 get_cr3 (void)
1828 unsigned offset;
1829 unsigned taskreg;
1830 unsigned long taskbase, cr3;
1831 struct dtr_reg gdtr;
1833 if (pdbr > 0 && pdbr <= 0xfffff)
1834 return pdbr;
1836 /* Get the linear address of GDT and the Task Register. */
1837 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1838 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1840 /* Task Register is a segment selector for the TSS of the current
1841 task. Therefore, it can be used as an index into the GDT to get
1842 at the segment descriptor for the TSS. To get the index, reset
1843 the low 3 bits of the selector (which give the CPL). Add 2 to the
1844 offset to point to the 3 low bytes of the base address. */
1845 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1848 /* CWSDPMI's task base is always under the 1MB mark. */
1849 if (offset > 0xfffff)
1850 return 0;
1852 _farsetsel (_dos_ds);
1853 taskbase = _farnspeekl (offset) & 0xffffffU;
1854 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1855 if (taskbase > 0xfffff)
1856 return 0;
1858 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1859 offset 1Ch in the TSS. */
1860 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1861 if (cr3 > 0xfffff)
1863 #if 0 /* Not fully supported yet. */
1864 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1865 the first Page Table right below the Page Directory. Thus,
1866 the first Page Table's entry for its own address and the Page
1867 Directory entry for that Page Table will hold the same
1868 physical address. The loop below searches the entire UMB
1869 range of addresses for such an occurrence. */
1870 unsigned long addr, pte_idx;
1872 for (addr = 0xb0000, pte_idx = 0xb0;
1873 pte_idx < 0xff;
1874 addr += 0x1000, pte_idx++)
1876 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1877 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1878 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1880 cr3 = addr + 0x1000;
1881 break;
1884 #endif
1886 if (cr3 > 0xfffff)
1887 cr3 = 0;
1890 return cr3;
1893 /* Return the N'th Page Directory entry. */
1894 static unsigned long
1895 get_pde (int n)
1897 unsigned long pde = 0;
1899 if (pdbr && n >= 0 && n < 1024)
1901 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1903 return pde;
1906 /* Return the N'th entry of the Page Table whose Page Directory entry
1907 is PDE. */
1908 static unsigned long
1909 get_pte (unsigned long pde, int n)
1911 unsigned long pte = 0;
1913 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1914 page tables, for now. */
1915 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1917 pde &= ~0xfff; /* Clear non-address bits. */
1918 pte = _farpeekl (_dos_ds, pde + 4*n);
1920 return pte;
1923 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1924 says this is a Page Directory entry. If FORCE is non-zero, display
1925 the entry even if its Present flag is off. OFF is the offset of the
1926 address from the page's base address. */
1927 static void
1928 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1930 if ((entry & 1) != 0)
1932 gdb_printf ("Base=0x%05lx000", entry >> 12);
1933 if ((entry & 0x100) && !is_dir)
1934 gdb_puts (" Global");
1935 if ((entry & 0x40) && !is_dir)
1936 gdb_puts (" Dirty");
1937 gdb_printf (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1938 gdb_printf (" %sCached", (entry & 0x10) ? "" : "Not-");
1939 gdb_printf (" Write-%s", (entry & 8) ? "Thru" : "Back");
1940 gdb_printf (" %s", (entry & 4) ? "Usr" : "Sup");
1941 gdb_printf (" Read-%s", (entry & 2) ? "Write" : "Only");
1942 if (off)
1943 gdb_printf (" +0x%x", off);
1944 gdb_puts ("\n");
1946 else if (force)
1947 gdb_printf ("Page%s not present or not supported; value=0x%lx.\n",
1948 is_dir ? " Table" : "", entry >> 1);
1951 static void
1952 go32_pde (const char *arg, int from_tty)
1954 long pde_idx = -1, i;
1956 if (arg && *arg)
1958 arg = skip_spaces (arg);
1960 if (*arg)
1962 pde_idx = parse_and_eval_long (arg);
1963 if (pde_idx < 0 || pde_idx >= 1024)
1964 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1968 pdbr = get_cr3 ();
1969 if (!pdbr)
1970 gdb_puts ("Access to Page Directories is "
1971 "not supported on this system.\n");
1972 else if (pde_idx >= 0)
1973 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1974 else
1975 for (i = 0; i < 1024; i++)
1976 display_ptable_entry (get_pde (i), 1, 0, 0);
1979 /* A helper function to display entries in a Page Table pointed to by
1980 the N'th entry in the Page Directory. If FORCE is non-zero, say
1981 something even if the Page Table is not accessible. */
1982 static void
1983 display_page_table (long n, int force)
1985 unsigned long pde = get_pde (n);
1987 if ((pde & 1) != 0)
1989 int i;
1991 gdb_printf ("Page Table pointed to by "
1992 "Page Directory entry 0x%lx:\n", n);
1993 for (i = 0; i < 1024; i++)
1994 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
1995 gdb_puts ("\n");
1997 else if (force)
1998 gdb_printf ("Page Table not present; value=0x%lx.\n", pde >> 1);
2001 static void
2002 go32_pte (const char *arg, int from_tty)
2004 long pde_idx = -1L, i;
2006 if (arg && *arg)
2008 arg = skip_spaces (arg);
2010 if (*arg)
2012 pde_idx = parse_and_eval_long (arg);
2013 if (pde_idx < 0 || pde_idx >= 1024)
2014 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2018 pdbr = get_cr3 ();
2019 if (!pdbr)
2020 gdb_puts ("Access to Page Tables is not supported on this system.\n");
2021 else if (pde_idx >= 0)
2022 display_page_table (pde_idx, 1);
2023 else
2024 for (i = 0; i < 1024; i++)
2025 display_page_table (i, 0);
2028 static void
2029 go32_pte_for_address (const char *arg, int from_tty)
2031 CORE_ADDR addr = 0, i;
2033 if (arg && *arg)
2035 arg = skip_spaces (arg);
2037 if (*arg)
2038 addr = parse_and_eval_address (arg);
2040 if (!addr)
2041 error_no_arg (_("linear address"));
2043 pdbr = get_cr3 ();
2044 if (!pdbr)
2045 gdb_puts ("Access to Page Tables is not supported on this system.\n");
2046 else
2048 int pde_idx = (addr >> 22) & 0x3ff;
2049 int pte_idx = (addr >> 12) & 0x3ff;
2050 unsigned offs = addr & 0xfff;
2052 gdb_printf ("Page Table entry for address %s:\n",
2053 hex_string(addr));
2054 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2058 static struct cmd_list_element *info_dos_cmdlist = NULL;
2060 void _initialize_go32_nat ();
2061 void
2062 _initialize_go32_nat ()
2064 x86_dr_low.set_control = go32_set_dr7;
2065 x86_dr_low.set_addr = go32_set_dr;
2066 x86_dr_low.get_status = go32_get_dr6;
2067 x86_dr_low.get_control = go32_get_dr7;
2068 x86_dr_low.get_addr = go32_get_dr;
2069 x86_set_debug_register_length (4);
2071 add_inf_child_target (&the_go32_nat_target);
2073 /* Initialize child's cwd as empty to be initialized when starting
2074 the child. */
2075 *child_cwd = 0;
2077 /* Initialize child's command line storage. */
2078 if (redir_debug_init (&child_cmd) == -1)
2079 internal_error (_("Cannot allocate redirection storage: "
2080 "not enough memory.\n"));
2082 /* We are always processing GCC-compiled programs. */
2083 processing_gcc_compilation = 2;
2085 add_basic_prefix_cmd ("dos", class_info, _("\
2086 Print information specific to DJGPP (aka MS-DOS) debugging."),
2087 &info_dos_cmdlist, 0, &infolist);
2089 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2090 Display information about the target system, including CPU, OS, DPMI, etc."),
2091 &info_dos_cmdlist);
2092 add_cmd ("ldt", class_info, go32_sldt, _("\
2093 Display entries in the LDT (Local Descriptor Table).\n\
2094 Entry number (an expression) as an argument means display only that entry."),
2095 &info_dos_cmdlist);
2096 add_cmd ("gdt", class_info, go32_sgdt, _("\
2097 Display entries in the GDT (Global Descriptor Table).\n\
2098 Entry number (an expression) as an argument means display only that entry."),
2099 &info_dos_cmdlist);
2100 add_cmd ("idt", class_info, go32_sidt, _("\
2101 Display entries in the IDT (Interrupt Descriptor Table).\n\
2102 Entry number (an expression) as an argument means display only that entry."),
2103 &info_dos_cmdlist);
2104 add_cmd ("pde", class_info, go32_pde, _("\
2105 Display entries in the Page Directory.\n\
2106 Entry number (an expression) as an argument means display only that entry."),
2107 &info_dos_cmdlist);
2108 add_cmd ("pte", class_info, go32_pte, _("\
2109 Display entries in Page Tables.\n\
2110 Entry number (an expression) as an argument means display only entries\n\
2111 from the Page Table pointed to by the specified Page Directory entry."),
2112 &info_dos_cmdlist);
2113 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2114 Display a Page Table entry for a linear address.\n\
2115 The address argument must be a linear address, after adding to\n\
2116 it the base address of the appropriate segment.\n\
2117 The base address of variables and functions in the debuggee's data\n\
2118 or code segment is stored in the variable __djgpp_base_address,\n\
2119 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2120 For other segments, look up their base address in the output of\n\
2121 the `info dos ldt' command."),
2122 &info_dos_cmdlist);
2125 pid_t
2126 tcgetpgrp (int fd)
2128 if (isatty (fd))
2129 return SOME_PID;
2130 errno = ENOTTY;
2131 return -1;
2135 tcsetpgrp (int fd, pid_t pgid)
2137 if (isatty (fd) && pgid == SOME_PID)
2138 return 0;
2139 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2140 return -1;