* avr-tdep.c (avr_read_pc): Use regcache instead of read_register.
[binutils-gdb.git] / gdb / avr-tdep.c
blob7322432ea294417ad47edac148831c95e7594a86
1 /* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Contributed by Theodore A. Roth, troth@openavr.org */
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
27 #include "defs.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
40 /* AVR Background:
42 (AVR micros are pure Harvard Architecture processors.)
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
71 #undef XMALLOC
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74 #undef EXTRACT_INSN
75 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
77 /* Constants: prefixed with AVR_ to avoid name space clashes */
79 enum
81 AVR_REG_W = 24,
82 AVR_REG_X = 26,
83 AVR_REG_Y = 28,
84 AVR_FP_REGNUM = 28,
85 AVR_REG_Z = 30,
87 AVR_SREG_REGNUM = 32,
88 AVR_SP_REGNUM = 33,
89 AVR_PC_REGNUM = 34,
91 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
92 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
94 AVR_PC_REG_INDEX = 35, /* index into array of registers */
96 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
98 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
99 AVR_MAX_PUSHES = 18,
101 /* Number of the last pushed register. r17 for current avr-gcc */
102 AVR_LAST_PUSHED_REGNUM = 17,
104 AVR_ARG1_REGNUM = 24, /* Single byte argument */
105 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
107 AVR_RET1_REGNUM = 24, /* Single byte return value */
108 AVR_RETN_REGNUM = 25, /* Multi byte return value */
110 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
111 bits? Do these have to match the bfd vma values?. It sure would make
112 things easier in the future if they didn't need to match.
114 Note: I chose these values so as to be consistent with bfd vma
115 addresses.
117 TRoth/2002-04-08: There is already a conflict with very large programs
118 in the mega128. The mega128 has 128K instruction bytes (64K words),
119 thus the Most Significant Bit is 0x10000 which gets masked off my
120 AVR_MEM_MASK.
122 The problem manifests itself when trying to set a breakpoint in a
123 function which resides in the upper half of the instruction space and
124 thus requires a 17-bit address.
126 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
127 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
128 but could be for some remote targets by just adding the correct offset
129 to the address and letting the remote target handle the low-level
130 details of actually accessing the eeprom. */
132 AVR_IMEM_START = 0x00000000, /* INSN memory */
133 AVR_SMEM_START = 0x00800000, /* SRAM memory */
134 #if 1
135 /* No eeprom mask defined */
136 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
137 #else
138 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
139 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
140 #endif
143 /* Prologue types:
145 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
146 causes the generation of the CALL type prologues). */
148 enum {
149 AVR_PROLOGUE_NONE, /* No prologue */
150 AVR_PROLOGUE_NORMAL,
151 AVR_PROLOGUE_CALL, /* -mcall-prologues */
152 AVR_PROLOGUE_MAIN,
153 AVR_PROLOGUE_INTR, /* interrupt handler */
154 AVR_PROLOGUE_SIG, /* signal handler */
157 /* Any function with a frame looks like this
158 ....... <-SP POINTS HERE
159 LOCALS1 <-FP POINTS HERE
160 LOCALS0
161 SAVED FP
162 SAVED R3
163 SAVED R2
164 RET PC
165 FIRST ARG
166 SECOND ARG */
168 struct avr_unwind_cache
170 /* The previous frame's inner most stack address. Used as this
171 frame ID's stack_addr. */
172 CORE_ADDR prev_sp;
173 /* The frame's base, optionally used by the high-level debug info. */
174 CORE_ADDR base;
175 int size;
176 int prologue_type;
177 /* Table indicating the location of each and every register. */
178 struct trad_frame_saved_reg *saved_regs;
181 struct gdbarch_tdep
183 /* FIXME: TRoth: is there anything to put here? */
184 int foo;
187 /* Lookup the name of a register given it's number. */
189 static const char *
190 avr_register_name (int regnum)
192 static char *register_names[] = {
193 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
194 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
195 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
196 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
197 "SREG", "SP", "PC"
199 if (regnum < 0)
200 return NULL;
201 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
202 return NULL;
203 return register_names[regnum];
206 /* Return the GDB type object for the "standard" data type
207 of data in register N. */
209 static struct type *
210 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
212 if (reg_nr == AVR_PC_REGNUM)
213 return builtin_type_uint32;
214 if (reg_nr == AVR_SP_REGNUM)
215 return builtin_type_void_data_ptr;
216 else
217 return builtin_type_uint8;
220 /* Instruction address checks and convertions. */
222 static CORE_ADDR
223 avr_make_iaddr (CORE_ADDR x)
225 return ((x) | AVR_IMEM_START);
228 static int
229 avr_iaddr_p (CORE_ADDR x)
231 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
234 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
235 devices are already up to 128KBytes of flash space.
237 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
239 static CORE_ADDR
240 avr_convert_iaddr_to_raw (CORE_ADDR x)
242 return ((x) & 0xffffffff);
245 /* SRAM address checks and convertions. */
247 static CORE_ADDR
248 avr_make_saddr (CORE_ADDR x)
250 return ((x) | AVR_SMEM_START);
253 static int
254 avr_saddr_p (CORE_ADDR x)
256 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
259 static CORE_ADDR
260 avr_convert_saddr_to_raw (CORE_ADDR x)
262 return ((x) & 0xffffffff);
265 /* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
268 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
269 programs in the mega128. */
271 /* static CORE_ADDR */
272 /* avr_make_eaddr (CORE_ADDR x) */
273 /* { */
274 /* return ((x) | AVR_EMEM_START); */
275 /* } */
277 /* static int */
278 /* avr_eaddr_p (CORE_ADDR x) */
279 /* { */
280 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
281 /* } */
283 /* static CORE_ADDR */
284 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
285 /* { */
286 /* return ((x) & 0xffffffff); */
287 /* } */
289 /* Convert from address to pointer and vice-versa. */
291 static void
292 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
294 /* Is it a code address? */
295 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
296 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
298 store_unsigned_integer (buf, TYPE_LENGTH (type),
299 avr_convert_iaddr_to_raw (addr >> 1));
301 else
303 /* Strip off any upper segment bits. */
304 store_unsigned_integer (buf, TYPE_LENGTH (type),
305 avr_convert_saddr_to_raw (addr));
309 static CORE_ADDR
310 avr_pointer_to_address (struct type *type, const void *buf)
312 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
314 /* Is it a code address? */
315 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
316 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
317 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
318 return avr_make_iaddr (addr << 1);
319 else
320 return avr_make_saddr (addr);
323 static CORE_ADDR
324 avr_read_pc (ptid_t ptid)
326 ptid_t save_ptid;
327 ULONGEST pc;
328 CORE_ADDR retval;
330 save_ptid = inferior_ptid;
331 inferior_ptid = ptid;
332 regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc);
333 inferior_ptid = save_ptid;
334 retval = avr_make_iaddr (pc);
335 return retval;
338 static void
339 avr_write_pc (CORE_ADDR val, ptid_t ptid)
341 ptid_t save_ptid;
343 save_ptid = inferior_ptid;
344 inferior_ptid = ptid;
345 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
346 inferior_ptid = save_ptid;
349 static CORE_ADDR
350 avr_read_sp (void)
352 ULONGEST sp;
354 regcache_cooked_read_unsigned (current_regcache, AVR_SP_REGNUM, &sp);
355 return (avr_make_saddr (sp));
358 static int
359 avr_scan_arg_moves (int vpc, unsigned char *prologue)
361 unsigned short insn;
363 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
365 insn = EXTRACT_INSN (&prologue[vpc]);
366 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
367 continue;
368 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
369 continue;
370 else
371 break;
374 return vpc;
377 /* Function: avr_scan_prologue
379 This function decodes an AVR function prologue to determine:
380 1) the size of the stack frame
381 2) which registers are saved on it
382 3) the offsets of saved regs
383 This information is stored in the avr_unwind_cache structure.
385 Some devices lack the sbiw instruction, so on those replace this:
386 sbiw r28, XX
387 with this:
388 subi r28,lo8(XX)
389 sbci r29,hi8(XX)
391 A typical AVR function prologue with a frame pointer might look like this:
392 push rXX ; saved regs
394 push r28
395 push r29
396 in r28,__SP_L__
397 in r29,__SP_H__
398 sbiw r28,<LOCALS_SIZE>
399 in __tmp_reg__,__SREG__
401 out __SP_H__,r29
402 out __SREG__,__tmp_reg__
403 out __SP_L__,r28
405 A typical AVR function prologue without a frame pointer might look like
406 this:
407 push rXX ; saved regs
410 A main function prologue looks like this:
411 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
412 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
413 out __SP_H__,r29
414 out __SP_L__,r28
416 A signal handler prologue looks like this:
417 push __zero_reg__
418 push __tmp_reg__
419 in __tmp_reg__, __SREG__
420 push __tmp_reg__
421 clr __zero_reg__
422 push rXX ; save registers r18:r27, r30:r31
424 push r28 ; save frame pointer
425 push r29
426 in r28, __SP_L__
427 in r29, __SP_H__
428 sbiw r28, <LOCALS_SIZE>
429 out __SP_H__, r29
430 out __SP_L__, r28
432 A interrupt handler prologue looks like this:
434 push __zero_reg__
435 push __tmp_reg__
436 in __tmp_reg__, __SREG__
437 push __tmp_reg__
438 clr __zero_reg__
439 push rXX ; save registers r18:r27, r30:r31
441 push r28 ; save frame pointer
442 push r29
443 in r28, __SP_L__
444 in r29, __SP_H__
445 sbiw r28, <LOCALS_SIZE>
447 out __SP_H__, r29
448 sei
449 out __SP_L__, r28
451 A `-mcall-prologues' prologue looks like this (Note that the megas use a
452 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
453 32 bit insn and rjmp is a 16 bit insn):
454 ldi r26,lo8(<LOCALS_SIZE>)
455 ldi r27,hi8(<LOCALS_SIZE>)
456 ldi r30,pm_lo8(.L_foo_body)
457 ldi r31,pm_hi8(.L_foo_body)
458 rjmp __prologue_saves__+RRR
459 .L_foo_body: */
461 /* Not really part of a prologue, but still need to scan for it, is when a
462 function prologue moves values passed via registers as arguments to new
463 registers. In this case, all local variables live in registers, so there
464 may be some register saves. This is what it looks like:
465 movw rMM, rNN
468 There could be multiple movw's. If the target doesn't have a movw insn, it
469 will use two mov insns. This could be done after any of the above prologue
470 types. */
472 static CORE_ADDR
473 avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
475 int i;
476 unsigned short insn;
477 int scan_stage = 0;
478 struct minimal_symbol *msymbol;
479 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
480 int vpc = 0;
482 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
483 reading in the bytes of the prologue. The problem is that the figuring
484 out where the end of the prologue is is a bit difficult. The old code
485 tried to do that, but failed quite often. */
486 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
488 /* Scanning main()'s prologue
489 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
490 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
491 out __SP_H__,r29
492 out __SP_L__,r28 */
494 if (1)
496 CORE_ADDR locals;
497 unsigned char img[] = {
498 0xde, 0xbf, /* out __SP_H__,r29 */
499 0xcd, 0xbf /* out __SP_L__,r28 */
502 insn = EXTRACT_INSN (&prologue[vpc]);
503 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
504 if ((insn & 0xf0f0) == 0xe0c0)
506 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
507 insn = EXTRACT_INSN (&prologue[vpc + 2]);
508 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
509 if ((insn & 0xf0f0) == 0xe0d0)
511 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
512 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
514 info->prologue_type = AVR_PROLOGUE_MAIN;
515 info->base = locals;
516 return pc + 4;
522 /* Scanning `-mcall-prologues' prologue
523 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
525 while (1) /* Using a while to avoid many goto's */
527 int loc_size;
528 int body_addr;
529 unsigned num_pushes;
530 int pc_offset = 0;
532 insn = EXTRACT_INSN (&prologue[vpc]);
533 /* ldi r26,<LOCALS_SIZE> */
534 if ((insn & 0xf0f0) != 0xe0a0)
535 break;
536 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
537 pc_offset += 2;
539 insn = EXTRACT_INSN (&prologue[vpc + 2]);
540 /* ldi r27,<LOCALS_SIZE> / 256 */
541 if ((insn & 0xf0f0) != 0xe0b0)
542 break;
543 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
544 pc_offset += 2;
546 insn = EXTRACT_INSN (&prologue[vpc + 4]);
547 /* ldi r30,pm_lo8(.L_foo_body) */
548 if ((insn & 0xf0f0) != 0xe0e0)
549 break;
550 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
551 pc_offset += 2;
553 insn = EXTRACT_INSN (&prologue[vpc + 6]);
554 /* ldi r31,pm_hi8(.L_foo_body) */
555 if ((insn & 0xf0f0) != 0xe0f0)
556 break;
557 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
558 pc_offset += 2;
560 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
561 if (!msymbol)
562 break;
564 insn = EXTRACT_INSN (&prologue[vpc + 8]);
565 /* rjmp __prologue_saves__+RRR */
566 if ((insn & 0xf000) == 0xc000)
568 /* Extract PC relative offset from RJMP */
569 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
570 /* Convert offset to byte addressable mode */
571 i *= 2;
572 /* Destination address */
573 i += pc + 10;
575 if (body_addr != (pc + 10)/2)
576 break;
578 pc_offset += 2;
580 else if ((insn & 0xfe0e) == 0x940c)
582 /* Extract absolute PC address from JMP */
583 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
584 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
585 /* Convert address to byte addressable mode */
586 i *= 2;
588 if (body_addr != (pc + 12)/2)
589 break;
591 pc_offset += 4;
593 else
594 break;
596 /* Resolve offset (in words) from __prologue_saves__ symbol.
597 Which is a pushes count in `-mcall-prologues' mode */
598 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
600 if (num_pushes > AVR_MAX_PUSHES)
602 fprintf_unfiltered (gdb_stderr, "Num pushes too large: %d\n",
603 num_pushes);
604 num_pushes = 0;
607 if (num_pushes)
609 int from;
611 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
612 if (num_pushes >= 2)
613 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
615 i = 0;
616 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
617 from <= AVR_LAST_PUSHED_REGNUM; ++from)
618 info->saved_regs [from].addr = ++i;
620 info->size = loc_size + num_pushes;
621 info->prologue_type = AVR_PROLOGUE_CALL;
623 return pc + pc_offset;
626 /* Scan for the beginning of the prologue for an interrupt or signal
627 function. Note that we have to set the prologue type here since the
628 third stage of the prologue may not be present (e.g. no saved registered
629 or changing of the SP register). */
631 if (1)
633 unsigned char img[] = {
634 0x78, 0x94, /* sei */
635 0x1f, 0x92, /* push r1 */
636 0x0f, 0x92, /* push r0 */
637 0x0f, 0xb6, /* in r0,0x3f SREG */
638 0x0f, 0x92, /* push r0 */
639 0x11, 0x24 /* clr r1 */
641 if (memcmp (prologue, img, sizeof (img)) == 0)
643 info->prologue_type = AVR_PROLOGUE_INTR;
644 vpc += sizeof (img);
645 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
646 info->saved_regs[0].addr = 2;
647 info->saved_regs[1].addr = 1;
648 info->size += 3;
650 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
652 info->prologue_type = AVR_PROLOGUE_SIG;
653 vpc += sizeof (img) - 2;
654 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
655 info->saved_regs[0].addr = 2;
656 info->saved_regs[1].addr = 1;
657 info->size += 3;
661 /* First stage of the prologue scanning.
662 Scan pushes (saved registers) */
664 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
666 insn = EXTRACT_INSN (&prologue[vpc]);
667 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
669 /* Bits 4-9 contain a mask for registers R0-R32. */
670 int regno = (insn & 0x1f0) >> 4;
671 info->size++;
672 info->saved_regs[regno].addr = info->size;
673 scan_stage = 1;
675 else
676 break;
679 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
680 fprintf_unfiltered (gdb_stderr,
681 "Hit end of prologue while scanning pushes\n");
683 /* Second stage of the prologue scanning.
684 Scan:
685 in r28,__SP_L__
686 in r29,__SP_H__ */
688 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
690 unsigned char img[] = {
691 0xcd, 0xb7, /* in r28,__SP_L__ */
692 0xde, 0xb7 /* in r29,__SP_H__ */
694 unsigned short insn1;
696 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
698 vpc += 4;
699 scan_stage = 2;
703 /* Third stage of the prologue scanning. (Really two stages)
704 Scan for:
705 sbiw r28,XX or subi r28,lo8(XX)
706 sbci r29,hi8(XX)
707 in __tmp_reg__,__SREG__
709 out __SP_H__,r29
710 out __SREG__,__tmp_reg__
711 out __SP_L__,r28 */
713 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
715 int locals_size = 0;
716 unsigned char img[] = {
717 0x0f, 0xb6, /* in r0,0x3f */
718 0xf8, 0x94, /* cli */
719 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
720 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
721 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
723 unsigned char img_sig[] = {
724 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
725 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
727 unsigned char img_int[] = {
728 0xf8, 0x94, /* cli */
729 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
730 0x78, 0x94, /* sei */
731 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
734 insn = EXTRACT_INSN (&prologue[vpc]);
735 vpc += 2;
736 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
737 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
738 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
740 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
741 insn = EXTRACT_INSN (&prologue[vpc]);
742 vpc += 2;
743 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
745 else
746 return pc + vpc;
748 /* Scan the last part of the prologue. May not be present for interrupt
749 or signal handler functions, which is why we set the prologue type
750 when we saw the beginning of the prologue previously. */
752 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
754 vpc += sizeof (img_sig);
756 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
758 vpc += sizeof (img_int);
760 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
762 info->prologue_type = AVR_PROLOGUE_NORMAL;
763 vpc += sizeof (img);
766 info->size += locals_size;
768 return pc + avr_scan_arg_moves (vpc, prologue);
771 /* If we got this far, we could not scan the prologue, so just return the pc
772 of the frame plus an adjustment for argument move insns. */
774 return pc + avr_scan_arg_moves (vpc, prologue);;
777 /* Returns the return address for a dummy. */
779 static CORE_ADDR
780 avr_call_dummy_address (void)
782 return entry_point_address ();
785 static CORE_ADDR
786 avr_skip_prologue (CORE_ADDR pc)
788 CORE_ADDR func_addr, func_end;
789 CORE_ADDR prologue_end = pc;
791 /* See what the symbol table says */
793 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
795 struct symtab_and_line sal;
796 struct avr_unwind_cache info = {0};
797 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
799 info.saved_regs = saved_regs;
801 /* Need to run the prologue scanner to figure out if the function has a
802 prologue and possibly skip over moving arguments passed via registers
803 to other registers. */
805 prologue_end = avr_scan_prologue (pc, &info);
807 if (info.prologue_type != AVR_PROLOGUE_NONE)
809 sal = find_pc_line (func_addr, 0);
811 if (sal.line != 0 && sal.end < func_end)
812 return sal.end;
816 /* Either we didn't find the start of this function (nothing we can do),
817 or there's no line info, or the line after the prologue is after
818 the end of the function (there probably isn't a prologue). */
820 return prologue_end;
823 /* Not all avr devices support the BREAK insn. Those that don't should treat
824 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
825 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
827 static const unsigned char *
828 avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
830 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
831 *lenptr = sizeof (avr_break_insn);
832 return avr_break_insn;
835 /* Given a return value in `regbuf' with a type `valtype',
836 extract and copy its value into `valbuf'.
838 Return values are always passed via registers r25:r24:... */
840 static void
841 avr_extract_return_value (struct type *type, struct regcache *regcache,
842 void *valbuf)
844 ULONGEST r24, r25;
845 ULONGEST c;
846 int len;
847 if (TYPE_LENGTH (type) == 1)
849 regcache_cooked_read_unsigned (regcache, 24, &c);
850 store_unsigned_integer (valbuf, 1, c);
852 else
854 int i;
855 /* The MSB of the return value is always in r25, calculate which
856 register holds the LSB. */
857 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
859 for (i=0; i< TYPE_LENGTH (type); i++)
861 regcache_cooked_read (regcache, lsb_reg + i,
862 (bfd_byte *) valbuf + i);
867 static void
868 avr_saved_regs_unwinder (struct frame_info *next_frame,
869 struct trad_frame_saved_reg *this_saved_regs,
870 int regnum, int *optimizedp,
871 enum lval_type *lvalp, CORE_ADDR *addrp,
872 int *realnump, void *bufferp)
874 if (this_saved_regs[regnum].addr != 0)
876 *optimizedp = 0;
877 *lvalp = lval_memory;
878 *addrp = this_saved_regs[regnum].addr;
879 *realnump = -1;
880 if (bufferp != NULL)
882 /* Read the value in from memory. */
884 if (regnum == AVR_PC_REGNUM)
886 /* Reading the return PC from the PC register is slightly
887 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
888 but in reality, only two bytes (3 in upcoming mega256) are
889 stored on the stack.
891 Also, note that the value on the stack is an addr to a word
892 not a byte, so we will need to multiply it by two at some
893 point.
895 And to confuse matters even more, the return address stored
896 on the stack is in big endian byte order, even though most
897 everything else about the avr is little endian. Ick! */
899 /* FIXME: number of bytes read here will need updated for the
900 mega256 when it is available. */
902 ULONGEST pc;
903 unsigned char tmp;
904 unsigned char buf[2];
906 read_memory (this_saved_regs[regnum].addr, buf, 2);
908 /* Convert the PC read from memory as a big-endian to
909 little-endian order. */
910 tmp = buf[0];
911 buf[0] = buf[1];
912 buf[1] = tmp;
914 pc = (extract_unsigned_integer (buf, 2) * 2);
915 store_unsigned_integer (bufferp,
916 register_size (current_gdbarch, regnum),
917 pc);
919 else
921 read_memory (this_saved_regs[regnum].addr, bufferp,
922 register_size (current_gdbarch, regnum));
926 return;
929 /* No luck, assume this and the next frame have the same register
930 value. If a value is needed, pass the request on down the chain;
931 otherwise just return an indication that the value is in the same
932 register as the next frame. */
933 frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
934 realnump, bufferp);
937 /* Put here the code to store, into fi->saved_regs, the addresses of
938 the saved registers of frame described by FRAME_INFO. This
939 includes special registers such as pc and fp saved in special ways
940 in the stack frame. sp is even more special: the address we return
941 for it IS the sp for the next frame. */
943 struct avr_unwind_cache *
944 avr_frame_unwind_cache (struct frame_info *next_frame,
945 void **this_prologue_cache)
947 CORE_ADDR pc;
948 ULONGEST prev_sp;
949 ULONGEST this_base;
950 struct avr_unwind_cache *info;
951 int i;
953 if ((*this_prologue_cache))
954 return (*this_prologue_cache);
956 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
957 (*this_prologue_cache) = info;
958 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
960 info->size = 0;
961 info->prologue_type = AVR_PROLOGUE_NONE;
963 pc = frame_func_unwind (next_frame);
965 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
966 avr_scan_prologue (pc, info);
968 if (info->prologue_type != AVR_PROLOGUE_NONE)
970 ULONGEST high_base; /* High byte of FP */
972 /* The SP was moved to the FP. This indicates that a new frame
973 was created. Get THIS frame's FP value by unwinding it from
974 the next frame. */
975 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
976 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
977 this_base += (high_base << 8);
979 /* The FP points at the last saved register. Adjust the FP back
980 to before the first saved register giving the SP. */
981 prev_sp = this_base + info->size;
983 else
985 /* Assume that the FP is this frame's SP but with that pushed
986 stack space added back. */
987 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
988 prev_sp = this_base + info->size;
991 /* Add 1 here to adjust for the post-decrement nature of the push
992 instruction.*/
993 info->prev_sp = avr_make_saddr (prev_sp+1);
995 info->base = avr_make_saddr (this_base);
997 /* Adjust all the saved registers so that they contain addresses and not
998 offsets. We need to add one to the addresses since push ops are post
999 decrement on the avr. */
1000 for (i = 0; i < NUM_REGS - 1; i++)
1001 if (info->saved_regs[i].addr)
1003 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
1006 /* Except for the main and startup code, the return PC is always saved on
1007 the stack and is at the base of the frame. */
1009 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1011 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1014 return info;
1017 static CORE_ADDR
1018 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1020 ULONGEST pc;
1022 frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
1024 return avr_make_iaddr (pc);
1027 /* Given a GDB frame, determine the address of the calling function's
1028 frame. This will be used to create a new GDB frame struct. */
1030 static void
1031 avr_frame_this_id (struct frame_info *next_frame,
1032 void **this_prologue_cache,
1033 struct frame_id *this_id)
1035 struct avr_unwind_cache *info
1036 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
1037 CORE_ADDR base;
1038 CORE_ADDR func;
1039 struct frame_id id;
1041 /* The FUNC is easy. */
1042 func = frame_func_unwind (next_frame);
1044 /* This is meant to halt the backtrace at "_start". Make sure we
1045 don't halt it at a generic dummy frame. */
1046 if (inside_entry_file (func))
1047 return;
1049 /* Hopefully the prologue analysis either correctly determined the
1050 frame's base (which is the SP from the previous frame), or set
1051 that base to "NULL". */
1052 base = info->prev_sp;
1053 if (base == 0)
1054 return;
1056 id = frame_id_build (base, func);
1058 /* Check that we're not going round in circles with the same frame
1059 ID (but avoid applying the test to sentinel frames which do go
1060 round in circles). Can't use frame_id_eq() as that doesn't yet
1061 compare the frame's PC value. */
1062 if (frame_relative_level (next_frame) >= 0
1063 && get_frame_type (next_frame) != DUMMY_FRAME
1064 && frame_id_eq (get_frame_id (next_frame), id))
1065 return;
1067 (*this_id) = id;
1070 static void
1071 avr_frame_prev_register (struct frame_info *next_frame,
1072 void **this_prologue_cache,
1073 int regnum, int *optimizedp,
1074 enum lval_type *lvalp, CORE_ADDR *addrp,
1075 int *realnump, void *bufferp)
1077 struct avr_unwind_cache *info
1078 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
1080 avr_saved_regs_unwinder (next_frame, info->saved_regs, regnum, optimizedp,
1081 lvalp, addrp, realnump, bufferp);
1084 static const struct frame_unwind avr_frame_unwind = {
1085 NORMAL_FRAME,
1086 avr_frame_this_id,
1087 avr_frame_prev_register
1090 const struct frame_unwind *
1091 avr_frame_p (CORE_ADDR pc)
1093 return &avr_frame_unwind;
1096 static CORE_ADDR
1097 avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
1099 struct avr_unwind_cache *info
1100 = avr_frame_unwind_cache (next_frame, this_cache);
1102 return info->base;
1105 static const struct frame_base avr_frame_base = {
1106 &avr_frame_unwind,
1107 avr_frame_base_address,
1108 avr_frame_base_address,
1109 avr_frame_base_address
1112 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1113 dummy frame. The frame ID's base needs to match the TOS value
1114 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1115 breakpoint. */
1117 static struct frame_id
1118 avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1120 ULONGEST base;
1122 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1123 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
1126 /* When arguments must be pushed onto the stack, they go on in reverse
1127 order. The below implements a FILO (stack) to do this. */
1129 struct stack_item
1131 int len;
1132 struct stack_item *prev;
1133 void *data;
1136 static struct stack_item *push_stack_item (struct stack_item *prev,
1137 void *contents, int len);
1138 static struct stack_item *
1139 push_stack_item (struct stack_item *prev, void *contents, int len)
1141 struct stack_item *si;
1142 si = xmalloc (sizeof (struct stack_item));
1143 si->data = xmalloc (len);
1144 si->len = len;
1145 si->prev = prev;
1146 memcpy (si->data, contents, len);
1147 return si;
1150 static struct stack_item *pop_stack_item (struct stack_item *si);
1151 static struct stack_item *
1152 pop_stack_item (struct stack_item *si)
1154 struct stack_item *dead = si;
1155 si = si->prev;
1156 xfree (dead->data);
1157 xfree (dead);
1158 return si;
1161 /* Setup the function arguments for calling a function in the inferior.
1163 On the AVR architecture, there are 18 registers (R25 to R8) which are
1164 dedicated for passing function arguments. Up to the first 18 arguments
1165 (depending on size) may go into these registers. The rest go on the stack.
1167 All arguments are aligned to start in even-numbered registers (odd-sized
1168 arguments, including char, have one free register above them). For example,
1169 an int in arg1 and a char in arg2 would be passed as such:
1171 arg1 -> r25:r24
1172 arg2 -> r22
1174 Arguments that are larger than 2 bytes will be split between two or more
1175 registers as available, but will NOT be split between a register and the
1176 stack. Arguments that go onto the stack are pushed last arg first (this is
1177 similar to the d10v). */
1179 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1180 inaccurate.
1182 An exceptional case exists for struct arguments (and possibly other
1183 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1184 not a multiple of WORDSIZE bytes. In this case the argument is never split
1185 between the registers and the stack, but instead is copied in its entirety
1186 onto the stack, AND also copied into as many registers as there is room
1187 for. In other words, space in registers permitting, two copies of the same
1188 argument are passed in. As far as I can tell, only the one on the stack is
1189 used, although that may be a function of the level of compiler
1190 optimization. I suspect this is a compiler bug. Arguments of these odd
1191 sizes are left-justified within the word (as opposed to arguments smaller
1192 than WORDSIZE bytes, which are right-justified).
1194 If the function is to return an aggregate type such as a struct, the caller
1195 must allocate space into which the callee will copy the return value. In
1196 this case, a pointer to the return value location is passed into the callee
1197 in register R0, which displaces one of the other arguments passed in via
1198 registers R0 to R2. */
1200 static CORE_ADDR
1201 avr_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1202 struct regcache *regcache, CORE_ADDR bp_addr,
1203 int nargs, struct value **args, CORE_ADDR sp,
1204 int struct_return, CORE_ADDR struct_addr)
1206 int i;
1207 unsigned char buf[2];
1208 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1209 int regnum = AVR_ARGN_REGNUM;
1210 struct stack_item *si = NULL;
1212 #if 0
1213 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1214 if (struct_return)
1216 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1217 write_register (argreg--, struct_addr & 0xff);
1218 write_register (argreg--, (struct_addr >>8) & 0xff);
1220 #endif
1222 for (i = 0; i < nargs; i++)
1224 int last_regnum;
1225 int j;
1226 struct value *arg = args[i];
1227 struct type *type = check_typedef (VALUE_TYPE (arg));
1228 char *contents = VALUE_CONTENTS (arg);
1229 int len = TYPE_LENGTH (type);
1231 /* Calculate the potential last register needed. */
1232 last_regnum = regnum - (len + (len & 1));
1234 /* If there are registers available, use them. Once we start putting
1235 stuff on the stack, all subsequent args go on stack. */
1236 if ((si == NULL) && (last_regnum >= 8))
1238 ULONGEST val;
1240 /* Skip a register for odd length args. */
1241 if (len & 1)
1242 regnum--;
1244 val = extract_unsigned_integer (contents, len);
1245 for (j=0; j<len; j++)
1247 regcache_cooked_write_unsigned (regcache, regnum--,
1248 val >> (8*(len-j-1)));
1251 /* No registers available, push the args onto the stack. */
1252 else
1254 /* From here on, we don't care about regnum. */
1255 si = push_stack_item (si, contents, len);
1259 /* Push args onto the stack. */
1260 while (si)
1262 sp -= si->len;
1263 /* Add 1 to sp here to account for post decr nature of pushes. */
1264 write_memory (sp+1, si->data, si->len);
1265 si = pop_stack_item (si);
1268 /* Set the return address. For the avr, the return address is the BP_ADDR.
1269 Need to push the return address onto the stack noting that it needs to be
1270 in big-endian order on the stack. */
1271 buf[0] = (return_pc >> 8) & 0xff;
1272 buf[1] = return_pc & 0xff;
1274 sp -= 2;
1275 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
1277 /* Finally, update the SP register. */
1278 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1279 avr_convert_saddr_to_raw (sp));
1281 return sp;
1284 /* Initialize the gdbarch structure for the AVR's. */
1286 static struct gdbarch *
1287 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1289 struct gdbarch *gdbarch;
1290 struct gdbarch_tdep *tdep;
1292 /* Find a candidate among the list of pre-declared architectures. */
1293 arches = gdbarch_list_lookup_by_info (arches, &info);
1294 if (arches != NULL)
1295 return arches->gdbarch;
1297 /* None found, create a new architecture from the information provided. */
1298 tdep = XMALLOC (struct gdbarch_tdep);
1299 gdbarch = gdbarch_alloc (&info, tdep);
1301 /* If we ever need to differentiate the device types, do it here. */
1302 switch (info.bfd_arch_info->mach)
1304 case bfd_mach_avr1:
1305 case bfd_mach_avr2:
1306 case bfd_mach_avr3:
1307 case bfd_mach_avr4:
1308 case bfd_mach_avr5:
1309 break;
1312 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1313 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1314 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1315 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1316 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1317 set_gdbarch_addr_bit (gdbarch, 32);
1318 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
1320 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1321 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1322 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1324 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1325 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1326 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1328 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1329 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1330 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1332 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1334 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1335 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1337 set_gdbarch_register_name (gdbarch, avr_register_name);
1338 set_gdbarch_register_type (gdbarch, avr_register_type);
1340 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
1341 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1343 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1344 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1346 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1347 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1349 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1351 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1352 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1354 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1355 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1357 set_gdbarch_function_start_offset (gdbarch, 0);
1359 set_gdbarch_frame_args_skip (gdbarch, 0);
1360 set_gdbarch_frameless_function_invocation (gdbarch,
1361 frameless_look_for_prologue);
1363 frame_unwind_append_predicate (gdbarch, avr_frame_p);
1364 frame_base_set_default (gdbarch, &avr_frame_base);
1366 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1368 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1370 return gdbarch;
1373 /* Send a query request to the avr remote target asking for values of the io
1374 registers. If args parameter is not NULL, then the user has requested info
1375 on a specific io register [This still needs implemented and is ignored for
1376 now]. The query string should be one of these forms:
1378 "Ravr.io_reg" -> reply is "NN" number of io registers
1380 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1381 registers to be read. The reply should be "<NAME>,VV;" for each io register
1382 where, <NAME> is a string, and VV is the hex value of the register.
1384 All io registers are 8-bit. */
1386 static void
1387 avr_io_reg_read_command (char *args, int from_tty)
1389 int bufsiz = 0;
1390 char buf[400];
1391 char query[400];
1392 char *p;
1393 unsigned int nreg = 0;
1394 unsigned int val;
1395 int i, j, k, step;
1397 if (!current_target.to_query)
1399 fprintf_unfiltered (gdb_stderr,
1400 "ERR: info io_registers NOT supported by current "
1401 "target\n");
1402 return;
1405 /* Just get the maximum buffer size. */
1406 target_query ((int) 'R', 0, 0, &bufsiz);
1407 if (bufsiz > sizeof (buf))
1408 bufsiz = sizeof (buf);
1410 /* Find out how many io registers the target has. */
1411 strcpy (query, "avr.io_reg");
1412 target_query ((int) 'R', query, buf, &bufsiz);
1414 if (strncmp (buf, "", bufsiz) == 0)
1416 fprintf_unfiltered (gdb_stderr,
1417 "info io_registers NOT supported by target\n");
1418 return;
1421 if (sscanf (buf, "%x", &nreg) != 1)
1423 fprintf_unfiltered (gdb_stderr,
1424 "Error fetching number of io registers\n");
1425 return;
1428 reinitialize_more_filter ();
1430 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1432 /* only fetch up to 8 registers at a time to keep the buffer small */
1433 step = 8;
1435 for (i = 0; i < nreg; i += step)
1437 /* how many registers this round? */
1438 j = step;
1439 if ((i+j) >= nreg)
1440 j = nreg - i; /* last block is less than 8 registers */
1442 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1443 target_query ((int) 'R', query, buf, &bufsiz);
1445 p = buf;
1446 for (k = i; k < (i + j); k++)
1448 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1450 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1451 while ((*p != ';') && (*p != '\0'))
1452 p++;
1453 p++; /* skip over ';' */
1454 if (*p == '\0')
1455 break;
1461 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1463 void
1464 _initialize_avr_tdep (void)
1466 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1468 /* Add a new command to allow the user to query the avr remote target for
1469 the values of the io space registers in a saner way than just using
1470 `x/NNNb ADDR`. */
1472 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1473 io_registers' to signify it is not available on other platforms. */
1475 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1476 "query remote avr target for io space register values", &infolist);