[PATCH 5/57][Arm][GAS] Add support for MVE instructions: vmull{b,t}
[binutils-gdb.git] / gas / doc / c-i386.texi
blob86cde7907e6f58f4421107f2085b9277fd948378
1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
24 @menu
25 * i386-Options::                Options
26 * i386-Directives::             X86 specific directives
27 * i386-Syntax::                 Syntactical considerations
28 * i386-Mnemonics::              Instruction Naming
29 * i386-Regs::                   Register Naming
30 * i386-Prefixes::               Instruction Prefixes
31 * i386-Memory::                 Memory References
32 * i386-Jumps::                  Handling of Jump Instructions
33 * i386-Float::                  Floating Point
34 * i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP::                    AMD's Lightweight Profiling Instructions
36 * i386-BMI::                    Bit Manipulation Instruction
37 * i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit::                  Writing 16-bit Code
39 * i386-Arch::                   Specifying an x86 CPU architecture
40 * i386-Bugs::                   AT&T Syntax bugs
41 * i386-Notes::                  Notes
42 @end menu
44 @node i386-Options
45 @section Options
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits.  @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi.  This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions.  The
84 @samp{--divide} option turns @samp{/} into a normal character.  This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor.  The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor.  The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics.  For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}.  The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{avx512f},
187 @code{avx512cd},
188 @code{avx512er},
189 @code{avx512pf},
190 @code{avx512vl},
191 @code{avx512bw},
192 @code{avx512dq},
193 @code{avx512ifma},
194 @code{avx512vbmi},
195 @code{avx512_4fmaps},
196 @code{avx512_4vnniw},
197 @code{avx512_vpopcntdq},
198 @code{avx512_vbmi2},
199 @code{avx512_vnni},
200 @code{avx512_bitalg},
201 @code{avx512_bf16},
202 @code{noavx512f},
203 @code{noavx512cd},
204 @code{noavx512er},
205 @code{noavx512pf},
206 @code{noavx512vl},
207 @code{noavx512bw},
208 @code{noavx512dq},
209 @code{noavx512ifma},
210 @code{noavx512vbmi},
211 @code{noavx512_4fmaps},
212 @code{noavx512_4vnniw},
213 @code{noavx512_vpopcntdq},
214 @code{noavx512_vbmi2},
215 @code{noavx512_vnni},
216 @code{noavx512_bitalg},
217 @code{noavx512_bf16},
218 @code{vmx},
219 @code{vmfunc},
220 @code{smx},
221 @code{xsave},
222 @code{xsaveopt},
223 @code{xsavec},
224 @code{xsaves},
225 @code{aes},
226 @code{pclmul},
227 @code{fsgsbase},
228 @code{rdrnd},
229 @code{f16c},
230 @code{bmi2},
231 @code{fma},
232 @code{movbe},
233 @code{ept},
234 @code{lzcnt},
235 @code{hle},
236 @code{rtm},
237 @code{invpcid},
238 @code{clflush},
239 @code{mwaitx},
240 @code{clzero},
241 @code{wbnoinvd},
242 @code{pconfig},
243 @code{waitpkg},
244 @code{cldemote},
245 @code{lwp},
246 @code{fma4},
247 @code{xop},
248 @code{cx16},
249 @code{syscall},
250 @code{rdtscp},
251 @code{3dnow},
252 @code{3dnowa},
253 @code{sse4a},
254 @code{sse5},
255 @code{svme},
256 @code{abm} and
257 @code{padlock}.
258 Note that rather than extending a basic instruction set, the extension
259 mnemonics starting with @code{no} revoke the respective functionality.
261 When the @code{.arch} directive is used with @option{-march}, the
262 @code{.arch} directive will take precedent.
264 @cindex @samp{-mtune=} option, i386
265 @cindex @samp{-mtune=} option, x86-64
266 @item -mtune=@var{CPU}
267 This option specifies a processor to optimize for. When used in
268 conjunction with the @option{-march} option, only instructions
269 of the processor specified by the @option{-march} option will be
270 generated.
272 Valid @var{CPU} values are identical to the processor list of
273 @option{-march=@var{CPU}}.
275 @cindex @samp{-msse2avx} option, i386
276 @cindex @samp{-msse2avx} option, x86-64
277 @item -msse2avx
278 This option specifies that the assembler should encode SSE instructions
279 with VEX prefix.
281 @cindex @samp{-msse-check=} option, i386
282 @cindex @samp{-msse-check=} option, x86-64
283 @item -msse-check=@var{none}
284 @itemx -msse-check=@var{warning}
285 @itemx -msse-check=@var{error}
286 These options control if the assembler should check SSE instructions.
287 @option{-msse-check=@var{none}} will make the assembler not to check SSE
288 instructions,  which is the default.  @option{-msse-check=@var{warning}}
289 will make the assembler issue a warning for any SSE instruction.
290 @option{-msse-check=@var{error}} will make the assembler issue an error
291 for any SSE instruction.
293 @cindex @samp{-mavxscalar=} option, i386
294 @cindex @samp{-mavxscalar=} option, x86-64
295 @item -mavxscalar=@var{128}
296 @itemx -mavxscalar=@var{256}
297 These options control how the assembler should encode scalar AVX
298 instructions.  @option{-mavxscalar=@var{128}} will encode scalar
299 AVX instructions with 128bit vector length, which is the default.
300 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
301 with 256bit vector length.
303 @cindex @samp{-mvexwig=} option, i386
304 @cindex @samp{-mvexwig=} option, x86-64
305 @item -mvexwig=@var{0}
306 @itemx -mvexwig=@var{1}
307 These options control how the assembler should encode VEX.W-ignored (WIG)
308 VEX instructions.  @option{-mvexwig=@var{0}} will encode WIG VEX
309 instructions with vex.w = 0, which is the default.
310 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
311 vex.w = 1.
313 @cindex @samp{-mevexlig=} option, i386
314 @cindex @samp{-mevexlig=} option, x86-64
315 @item -mevexlig=@var{128}
316 @itemx -mevexlig=@var{256}
317 @itemx -mevexlig=@var{512}
318 These options control how the assembler should encode length-ignored
319 (LIG) EVEX instructions.  @option{-mevexlig=@var{128}} will encode LIG
320 EVEX instructions with 128bit vector length, which is the default.
321 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
322 encode LIG EVEX instructions with 256bit and 512bit vector length,
323 respectively.
325 @cindex @samp{-mevexwig=} option, i386
326 @cindex @samp{-mevexwig=} option, x86-64
327 @item -mevexwig=@var{0}
328 @itemx -mevexwig=@var{1}
329 These options control how the assembler should encode w-ignored (WIG)
330 EVEX instructions.  @option{-mevexwig=@var{0}} will encode WIG
331 EVEX instructions with evex.w = 0, which is the default.
332 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
333 evex.w = 1.
335 @cindex @samp{-mmnemonic=} option, i386
336 @cindex @samp{-mmnemonic=} option, x86-64
337 @item -mmnemonic=@var{att}
338 @itemx -mmnemonic=@var{intel}
339 This option specifies instruction mnemonic for matching instructions.
340 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
341 take precedent.
343 @cindex @samp{-msyntax=} option, i386
344 @cindex @samp{-msyntax=} option, x86-64
345 @item -msyntax=@var{att}
346 @itemx -msyntax=@var{intel}
347 This option specifies instruction syntax when processing instructions.
348 The @code{.att_syntax} and @code{.intel_syntax} directives will
349 take precedent.
351 @cindex @samp{-mnaked-reg} option, i386
352 @cindex @samp{-mnaked-reg} option, x86-64
353 @item -mnaked-reg
354 This option specifies that registers don't require a @samp{%} prefix.
355 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
357 @cindex @samp{-madd-bnd-prefix} option, i386
358 @cindex @samp{-madd-bnd-prefix} option, x86-64
359 @item -madd-bnd-prefix
360 This option forces the assembler to add BND prefix to all branches, even
361 if such prefix was not explicitly specified in the source code.
363 @cindex @samp{-mshared} option, i386
364 @cindex @samp{-mshared} option, x86-64
365 @item -mno-shared
366 On ELF target, the assembler normally optimizes out non-PLT relocations
367 against defined non-weak global branch targets with default visibility.
368 The @samp{-mshared} option tells the assembler to generate code which
369 may go into a shared library where all non-weak global branch targets
370 with default visibility can be preempted.  The resulting code is
371 slightly bigger.  This option only affects the handling of branch
372 instructions.
374 @cindex @samp{-mbig-obj} option, x86-64
375 @item -mbig-obj
376 On x86-64 PE/COFF target this option forces the use of big object file
377 format, which allows more than 32768 sections.
379 @cindex @samp{-momit-lock-prefix=} option, i386
380 @cindex @samp{-momit-lock-prefix=} option, x86-64
381 @item -momit-lock-prefix=@var{no}
382 @itemx -momit-lock-prefix=@var{yes}
383 These options control how the assembler should encode lock prefix.
384 This option is intended as a workaround for processors, that fail on
385 lock prefix. This option can only be safely used with single-core,
386 single-thread computers
387 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
388 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
389 which is the default.
391 @cindex @samp{-mfence-as-lock-add=} option, i386
392 @cindex @samp{-mfence-as-lock-add=} option, x86-64
393 @item -mfence-as-lock-add=@var{no}
394 @itemx -mfence-as-lock-add=@var{yes}
395 These options control how the assembler should encode lfence, mfence and
396 sfence.
397 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
398 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
399 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
400 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
401 sfence as usual, which is the default.
403 @cindex @samp{-mrelax-relocations=} option, i386
404 @cindex @samp{-mrelax-relocations=} option, x86-64
405 @item -mrelax-relocations=@var{no}
406 @itemx -mrelax-relocations=@var{yes}
407 These options control whether the assembler should generate relax
408 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
409 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
410 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
411 @option{-mrelax-relocations=@var{no}} will not generate relax
412 relocations.  The default can be controlled by a configure option
413 @option{--enable-x86-relax-relocations}.
415 @cindex @samp{-mx86-used-note=} option, i386
416 @cindex @samp{-mx86-used-note=} option, x86-64
417 @item -mx86-used-note=@var{no}
418 @itemx -mx86-used-note=@var{yes}
419 These options control whether the assembler should generate
420 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
421 GNU property notes.  The default can be controlled by the
422 @option{--enable-x86-used-note} configure option.
424 @cindex @samp{-mevexrcig=} option, i386
425 @cindex @samp{-mevexrcig=} option, x86-64
426 @item -mevexrcig=@var{rne}
427 @itemx -mevexrcig=@var{rd}
428 @itemx -mevexrcig=@var{ru}
429 @itemx -mevexrcig=@var{rz}
430 These options control how the assembler should encode SAE-only
431 EVEX instructions.  @option{-mevexrcig=@var{rne}} will encode RC bits
432 of EVEX instruction with 00, which is the default.
433 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
434 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
435 with 01, 10 and 11 RC bits, respectively.
437 @cindex @samp{-mamd64} option, x86-64
438 @cindex @samp{-mintel64} option, x86-64
439 @item -mamd64
440 @itemx -mintel64
441 This option specifies that the assembler should accept only AMD64 or
442 Intel64 ISA in 64-bit mode.  The default is to accept both.
444 @cindex @samp{-O0} option, i386
445 @cindex @samp{-O0} option, x86-64
446 @cindex @samp{-O} option, i386
447 @cindex @samp{-O} option, x86-64
448 @cindex @samp{-O1} option, i386
449 @cindex @samp{-O1} option, x86-64
450 @cindex @samp{-O2} option, i386
451 @cindex @samp{-O2} option, x86-64
452 @cindex @samp{-Os} option, i386
453 @cindex @samp{-Os} option, x86-64
454 @item -O0 | -O | -O1 | -O2 | -Os
455 Optimize instruction encoding with smaller instruction size.  @samp{-O}
456 and @samp{-O1} encode 64-bit register load instructions with 64-bit
457 immediate as 32-bit register load instructions with 31-bit or 32-bits
458 immediates, encode 64-bit register clearing instructions with 32-bit
459 register clearing instructions and encode 256-bit/512-bit VEX/EVEX
460 vector register clearing instructions with 128-bit VEX vector register
461 clearing instructions as well as encode 128-bit/256-bit EVEX vector
462 register load/store instructions with VEX vector register load/store
463 instructions.  @samp{-O2} includes @samp{-O1} optimization plus
464 encodes 256-bit/512-bit EVEX vector register clearing instructions with
465 128-bit EVEX vector register clearing instructions.
466 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
467 and 64-bit register tests with immediate as 8-bit register test with
468 immediate.  @samp{-O0} turns off this optimization.
470 @end table
471 @c man end
473 @node i386-Directives
474 @section x86 specific Directives
476 @cindex machine directives, x86
477 @cindex x86 machine directives
478 @table @code
480 @cindex @code{lcomm} directive, COFF
481 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
482 Reserve @var{length} (an absolute expression) bytes for a local common
483 denoted by @var{symbol}.  The section and value of @var{symbol} are
484 those of the new local common.  The addresses are allocated in the bss
485 section, so that at run-time the bytes start off zeroed.  Since
486 @var{symbol} is not declared global, it is normally not visible to
487 @code{@value{LD}}.  The optional third parameter, @var{alignment},
488 specifies the desired alignment of the symbol in the bss section.
490 This directive is only available for COFF based x86 targets.
492 @cindex @code{largecomm} directive, ELF
493 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
494 This directive behaves in the same way as the @code{comm} directive
495 except that the data is placed into the @var{.lbss} section instead of
496 the @var{.bss} section @ref{Comm}.
498 The directive is intended to be used for data which requires a large
499 amount of space, and it is only available for ELF based x86_64
500 targets.
502 @c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
504 @end table
506 @node i386-Syntax
507 @section i386 Syntactical Considerations
508 @menu
509 * i386-Variations::           AT&T Syntax versus Intel Syntax
510 * i386-Chars::                Special Characters
511 @end menu
513 @node i386-Variations
514 @subsection AT&T Syntax versus Intel Syntax
516 @cindex i386 intel_syntax pseudo op
517 @cindex intel_syntax pseudo op, i386
518 @cindex i386 att_syntax pseudo op
519 @cindex att_syntax pseudo op, i386
520 @cindex i386 syntax compatibility
521 @cindex syntax compatibility, i386
522 @cindex x86-64 intel_syntax pseudo op
523 @cindex intel_syntax pseudo op, x86-64
524 @cindex x86-64 att_syntax pseudo op
525 @cindex att_syntax pseudo op, x86-64
526 @cindex x86-64 syntax compatibility
527 @cindex syntax compatibility, x86-64
529 @code{@value{AS}} now supports assembly using Intel assembler syntax.
530 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
531 back to the usual AT&T mode for compatibility with the output of
532 @code{@value{GCC}}.  Either of these directives may have an optional
533 argument, @code{prefix}, or @code{noprefix} specifying whether registers
534 require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
535 different from Intel syntax.  We mention these differences because
536 almost all 80386 documents use Intel syntax.  Notable differences
537 between the two syntaxes are:
539 @cindex immediate operands, i386
540 @cindex i386 immediate operands
541 @cindex register operands, i386
542 @cindex i386 register operands
543 @cindex jump/call operands, i386
544 @cindex i386 jump/call operands
545 @cindex operand delimiters, i386
547 @cindex immediate operands, x86-64
548 @cindex x86-64 immediate operands
549 @cindex register operands, x86-64
550 @cindex x86-64 register operands
551 @cindex jump/call operands, x86-64
552 @cindex x86-64 jump/call operands
553 @cindex operand delimiters, x86-64
554 @itemize @bullet
555 @item
556 AT&T immediate operands are preceded by @samp{$}; Intel immediate
557 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
558 AT&T register operands are preceded by @samp{%}; Intel register operands
559 are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
560 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
562 @cindex i386 source, destination operands
563 @cindex source, destination operands; i386
564 @cindex x86-64 source, destination operands
565 @cindex source, destination operands; x86-64
566 @item
567 AT&T and Intel syntax use the opposite order for source and destination
568 operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
569 @samp{source, dest} convention is maintained for compatibility with
570 previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
571 instructions with 2 immediate operands, such as the @samp{enter}
572 instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
574 @cindex mnemonic suffixes, i386
575 @cindex sizes operands, i386
576 @cindex i386 size suffixes
577 @cindex mnemonic suffixes, x86-64
578 @cindex sizes operands, x86-64
579 @cindex x86-64 size suffixes
580 @item
581 In AT&T syntax the size of memory operands is determined from the last
582 character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
583 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
584 (32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
585 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
586 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
587 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
588 syntax.
590 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
591 instruction with the 64-bit displacement or immediate operand.
593 @cindex return instructions, i386
594 @cindex i386 jump, call, return
595 @cindex return instructions, x86-64
596 @cindex x86-64 jump, call, return
597 @item
598 Immediate form long jumps and calls are
599 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
600 Intel syntax is
601 @samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
602 instruction
603 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
604 @samp{ret far @var{stack-adjust}}.
606 @cindex sections, i386
607 @cindex i386 sections
608 @cindex sections, x86-64
609 @cindex x86-64 sections
610 @item
611 The AT&T assembler does not provide support for multiple section
612 programs.  Unix style systems expect all programs to be single sections.
613 @end itemize
615 @node i386-Chars
616 @subsection Special Characters
618 @cindex line comment character, i386
619 @cindex i386 line comment character
620 The presence of a @samp{#} appearing anywhere on a line indicates the
621 start of a comment that extends to the end of that line.
623 If a @samp{#} appears as the first character of a line then the whole
624 line is treated as a comment, but in this case the line can also be a
625 logical line number directive (@pxref{Comments}) or a preprocessor
626 control command (@pxref{Preprocessing}).
628 If the @option{--divide} command-line option has not been specified
629 then the @samp{/} character appearing anywhere on a line also
630 introduces a line comment.
632 @cindex line separator, i386
633 @cindex statement separator, i386
634 @cindex i386 line separator
635 The @samp{;} character can be used to separate statements on the same
636 line.
638 @node i386-Mnemonics
639 @section i386-Mnemonics
640 @subsection Instruction Naming
642 @cindex i386 instruction naming
643 @cindex instruction naming, i386
644 @cindex x86-64 instruction naming
645 @cindex instruction naming, x86-64
647 Instruction mnemonics are suffixed with one character modifiers which
648 specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
649 and @samp{q} specify byte, word, long and quadruple word operands.  If
650 no suffix is specified by an instruction then @code{@value{AS}} tries to
651 fill in the missing suffix based on the destination register operand
652 (the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
653 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
654 @samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
655 assembler which assumes that a missing mnemonic suffix implies long
656 operand size.  (This incompatibility does not affect compiler output
657 since compilers always explicitly specify the mnemonic suffix.)
659 Almost all instructions have the same names in AT&T and Intel format.
660 There are a few exceptions.  The sign extend and zero extend
661 instructions need two sizes to specify them.  They need a size to
662 sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
663 is accomplished by using two instruction mnemonic suffixes in AT&T
664 syntax.  Base names for sign extend and zero extend are
665 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
666 and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
667 are tacked on to this base name, the @emph{from} suffix before the
668 @emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
669 ``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
670 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
671 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
672 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
673 quadruple word).
675 @cindex encoding options, i386
676 @cindex encoding options, x86-64
678 Different encoding options can be specified via pseudo prefixes:
680 @itemize @bullet
681 @item
682 @samp{@{disp8@}} -- prefer 8-bit displacement.
684 @item
685 @samp{@{disp32@}} -- prefer 32-bit displacement.
687 @item
688 @samp{@{load@}} -- prefer load-form instruction.
690 @item
691 @samp{@{store@}} -- prefer store-form instruction.
693 @item
694 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
696 @item
697 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
699 @item
700 @samp{@{evex@}} --  encode with EVEX prefix.
702 @item
703 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
704 instructions (x86-64 only).  Note that this differs from the @samp{rex}
705 prefix which generates REX prefix unconditionally.
707 @item
708 @samp{@{nooptimize@}} -- disable instruction size optimization.
709 @end itemize
711 @cindex conversion instructions, i386
712 @cindex i386 conversion instructions
713 @cindex conversion instructions, x86-64
714 @cindex x86-64 conversion instructions
715 The Intel-syntax conversion instructions
717 @itemize @bullet
718 @item
719 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
721 @item
722 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
724 @item
725 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
727 @item
728 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
730 @item
731 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
732 (x86-64 only),
734 @item
735 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
736 @samp{%rdx:%rax} (x86-64 only),
737 @end itemize
739 @noindent
740 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
741 @samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
742 instructions.
744 @cindex jump instructions, i386
745 @cindex call instructions, i386
746 @cindex jump instructions, x86-64
747 @cindex call instructions, x86-64
748 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
749 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
750 convention.
752 @subsection AT&T Mnemonic versus Intel Mnemonic
754 @cindex i386 mnemonic compatibility
755 @cindex mnemonic compatibility, i386
757 @code{@value{AS}} supports assembly using Intel mnemonic.
758 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
759 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
760 syntax for compatibility with the output of @code{@value{GCC}}.
761 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
762 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
763 @samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
764 assembler with different mnemonics from those in Intel IA32 specification.
765 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
767 @node i386-Regs
768 @section Register Naming
770 @cindex i386 registers
771 @cindex registers, i386
772 @cindex x86-64 registers
773 @cindex registers, x86-64
774 Register operands are always prefixed with @samp{%}.  The 80386 registers
775 consist of
777 @itemize @bullet
778 @item
779 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
780 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
781 frame pointer), and @samp{%esp} (the stack pointer).
783 @item
784 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
785 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
787 @item
788 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
789 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
790 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
791 @samp{%cx}, and @samp{%dx})
793 @item
794 the 6 section registers @samp{%cs} (code section), @samp{%ds}
795 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
796 and @samp{%gs}.
798 @item
799 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
800 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
802 @item
803 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
804 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
806 @item
807 the 2 test registers @samp{%tr6} and @samp{%tr7}.
809 @item
810 the 8 floating point register stack @samp{%st} or equivalently
811 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
812 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
813 These registers are overloaded by 8 MMX registers @samp{%mm0},
814 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
815 @samp{%mm6} and @samp{%mm7}.
817 @item
818 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
819 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
820 @end itemize
822 The AMD x86-64 architecture extends the register set by:
824 @itemize @bullet
825 @item
826 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
827 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
828 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
829 pointer)
831 @item
832 the 8 extended registers @samp{%r8}--@samp{%r15}.
834 @item
835 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
837 @item
838 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
840 @item
841 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
843 @item
844 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
846 @item
847 the 8 debug registers: @samp{%db8}--@samp{%db15}.
849 @item
850 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
851 @end itemize
853 With the AVX extensions more registers were made available:
855 @itemize @bullet
857 @item
858 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
859 available in 32-bit mode).  The bottom 128 bits are overlaid with the
860 @samp{xmm0}--@samp{xmm15} registers.
862 @end itemize
864 The AVX2 extensions made in 64-bit mode more registers available:
866 @itemize @bullet
868 @item
869 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
870 registers @samp{%ymm16}--@samp{%ymm31}.
872 @end itemize
874 The AVX512 extensions added the following registers:
876 @itemize @bullet
878 @item
879 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
880 available in 32-bit mode).  The bottom 128 bits are overlaid with the
881 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
882 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
884 @item
885 the 8 mask registers @samp{%k0}--@samp{%k7}.
887 @end itemize
889 @node i386-Prefixes
890 @section Instruction Prefixes
892 @cindex i386 instruction prefixes
893 @cindex instruction prefixes, i386
894 @cindex prefixes, i386
895 Instruction prefixes are used to modify the following instruction.  They
896 are used to repeat string instructions, to provide section overrides, to
897 perform bus lock operations, and to change operand and address sizes.
898 (Most instructions that normally operate on 32-bit operands will use
899 16-bit operands if the instruction has an ``operand size'' prefix.)
900 Instruction prefixes are best written on the same line as the instruction
901 they act upon. For example, the @samp{scas} (scan string) instruction is
902 repeated with:
904 @smallexample
905         repne scas %es:(%edi),%al
906 @end smallexample
908 You may also place prefixes on the lines immediately preceding the
909 instruction, but this circumvents checks that @code{@value{AS}} does
910 with prefixes, and will not work with all prefixes.
912 Here is a list of instruction prefixes:
914 @cindex section override prefixes, i386
915 @itemize @bullet
916 @item
917 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
918 @samp{fs}, @samp{gs}.  These are automatically added by specifying
919 using the @var{section}:@var{memory-operand} form for memory references.
921 @cindex size prefixes, i386
922 @item
923 Operand/Address size prefixes @samp{data16} and @samp{addr16}
924 change 32-bit operands/addresses into 16-bit operands/addresses,
925 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
926 @code{.code16} section) into 32-bit operands/addresses.  These prefixes
927 @emph{must} appear on the same line of code as the instruction they
928 modify. For example, in a 16-bit @code{.code16} section, you might
929 write:
931 @smallexample
932         addr32 jmpl *(%ebx)
933 @end smallexample
935 @cindex bus lock prefixes, i386
936 @cindex inhibiting interrupts, i386
937 @item
938 The bus lock prefix @samp{lock} inhibits interrupts during execution of
939 the instruction it precedes.  (This is only valid with certain
940 instructions; see a 80386 manual for details).
942 @cindex coprocessor wait, i386
943 @item
944 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
945 complete the current instruction.  This should never be needed for the
946 80386/80387 combination.
948 @cindex repeat prefixes, i386
949 @item
950 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
951 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
952 times if the current address size is 16-bits).
953 @cindex REX prefixes, i386
954 @item
955 The @samp{rex} family of prefixes is used by x86-64 to encode
956 extensions to i386 instruction set.  The @samp{rex} prefix has four
957 bits --- an operand size overwrite (@code{64}) used to change operand size
958 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
959 register set.
961 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
962 instruction emits @samp{rex} prefix with all the bits set.  By omitting
963 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
964 prefixes as well.  Normally, there is no need to write the prefixes
965 explicitly, since gas will automatically generate them based on the
966 instruction operands.
967 @end itemize
969 @node i386-Memory
970 @section Memory References
972 @cindex i386 memory references
973 @cindex memory references, i386
974 @cindex x86-64 memory references
975 @cindex memory references, x86-64
976 An Intel syntax indirect memory reference of the form
978 @smallexample
979 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
980 @end smallexample
982 @noindent
983 is translated into the AT&T syntax
985 @smallexample
986 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
987 @end smallexample
989 @noindent
990 where @var{base} and @var{index} are the optional 32-bit base and
991 index registers, @var{disp} is the optional displacement, and
992 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
993 to calculate the address of the operand.  If no @var{scale} is
994 specified, @var{scale} is taken to be 1.  @var{section} specifies the
995 optional section register for the memory operand, and may override the
996 default section register (see a 80386 manual for section register
997 defaults). Note that section overrides in AT&T syntax @emph{must}
998 be preceded by a @samp{%}.  If you specify a section override which
999 coincides with the default section register, @code{@value{AS}} does @emph{not}
1000 output any section register override prefixes to assemble the given
1001 instruction.  Thus, section overrides can be specified to emphasize which
1002 section register is used for a given memory operand.
1004 Here are some examples of Intel and AT&T style memory references:
1006 @table @asis
1007 @item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
1008 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1009 missing, and the default section is used (@samp{%ss} for addressing with
1010 @samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
1012 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1013 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1014 @samp{foo}.  All other fields are missing.  The section register here
1015 defaults to @samp{%ds}.
1017 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1018 This uses the value pointed to by @samp{foo} as a memory operand.
1019 Note that @var{base} and @var{index} are both missing, but there is only
1020 @emph{one} @samp{,}.  This is a syntactic exception.
1022 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1023 This selects the contents of the variable @samp{foo} with section
1024 register @var{section} being @samp{%gs}.
1025 @end table
1027 Absolute (as opposed to PC relative) call and jump operands must be
1028 prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
1029 always chooses PC relative addressing for jump/call labels.
1031 Any instruction that has a memory operand, but no register operand,
1032 @emph{must} specify its size (byte, word, long, or quadruple) with an
1033 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1034 respectively).
1036 The x86-64 architecture adds an RIP (instruction pointer relative)
1037 addressing.  This addressing mode is specified by using @samp{rip} as a
1038 base register.  Only constant offsets are valid. For example:
1040 @table @asis
1041 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1042 Points to the address 1234 bytes past the end of the current
1043 instruction.
1045 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1046 Points to the @code{symbol} in RIP relative way, this is shorter than
1047 the default absolute addressing.
1048 @end table
1050 Other addressing modes remain unchanged in x86-64 architecture, except
1051 registers used are 64-bit instead of 32-bit.
1053 @node i386-Jumps
1054 @section Handling of Jump Instructions
1056 @cindex jump optimization, i386
1057 @cindex i386 jump optimization
1058 @cindex jump optimization, x86-64
1059 @cindex x86-64 jump optimization
1060 Jump instructions are always optimized to use the smallest possible
1061 displacements.  This is accomplished by using byte (8-bit) displacement
1062 jumps whenever the target is sufficiently close.  If a byte displacement
1063 is insufficient a long displacement is used.  We do not support
1064 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1065 instruction with the @samp{data16} instruction prefix), since the 80386
1066 insists upon masking @samp{%eip} to 16 bits after the word displacement
1067 is added. (See also @pxref{i386-Arch})
1069 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1070 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1071 displacements, so that if you use these instructions (@code{@value{GCC}} does
1072 not use them) you may get an error message (and incorrect code).  The AT&T
1073 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1076 @smallexample
1077          jcxz cx_zero
1078          jmp cx_nonzero
1079 cx_zero: jmp foo
1080 cx_nonzero:
1081 @end smallexample
1083 @node i386-Float
1084 @section Floating Point
1086 @cindex i386 floating point
1087 @cindex floating point, i386
1088 @cindex x86-64 floating point
1089 @cindex floating point, x86-64
1090 All 80387 floating point types except packed BCD are supported.
1091 (BCD support may be added without much difficulty).  These data
1092 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1093 double (64-bit), and extended (80-bit) precision floating point.
1094 Each supported type has an instruction mnemonic suffix and a constructor
1095 associated with it.  Instruction mnemonic suffixes specify the operand's
1096 data type.  Constructors build these data types into memory.
1098 @cindex @code{float} directive, i386
1099 @cindex @code{single} directive, i386
1100 @cindex @code{double} directive, i386
1101 @cindex @code{tfloat} directive, i386
1102 @cindex @code{float} directive, x86-64
1103 @cindex @code{single} directive, x86-64
1104 @cindex @code{double} directive, x86-64
1105 @cindex @code{tfloat} directive, x86-64
1106 @itemize @bullet
1107 @item
1108 Floating point constructors are @samp{.float} or @samp{.single},
1109 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1110 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1111 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
1112 only supports this format via the @samp{fldt} (load 80-bit real to stack
1113 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1115 @cindex @code{word} directive, i386
1116 @cindex @code{long} directive, i386
1117 @cindex @code{int} directive, i386
1118 @cindex @code{quad} directive, i386
1119 @cindex @code{word} directive, x86-64
1120 @cindex @code{long} directive, x86-64
1121 @cindex @code{int} directive, x86-64
1122 @cindex @code{quad} directive, x86-64
1123 @item
1124 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1125 @samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
1126 corresponding instruction mnemonic suffixes are @samp{s} (single),
1127 @samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
1128 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1129 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1130 stack) instructions.
1131 @end itemize
1133 Register to register operations should not use instruction mnemonic suffixes.
1134 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1135 wrote @samp{fst %st, %st(1)}, since all register to register operations
1136 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1137 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1138 then stores the result in the 4 byte location @samp{mem})
1140 @node i386-SIMD
1141 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1143 @cindex MMX, i386
1144 @cindex 3DNow!, i386
1145 @cindex SIMD, i386
1146 @cindex MMX, x86-64
1147 @cindex 3DNow!, x86-64
1148 @cindex SIMD, x86-64
1150 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1151 instructions for integer data), available on Intel's Pentium MMX
1152 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1153 Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
1154 instruction set (SIMD instructions for 32-bit floating point data)
1155 available on AMD's K6-2 processor and possibly others in the future.
1157 Currently, @code{@value{AS}} does not support Intel's floating point
1158 SIMD, Katmai (KNI).
1160 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1161 @samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
1162 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1163 floating point values.  The MMX registers cannot be used at the same time
1164 as the floating point stack.
1166 See Intel and AMD documentation, keeping in mind that the operand order in
1167 instructions is reversed from the Intel syntax.
1169 @node i386-LWP
1170 @section AMD's Lightweight Profiling Instructions
1172 @cindex LWP, i386
1173 @cindex LWP, x86-64
1175 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1176 instruction set, available on AMD's Family 15h (Orochi) processors.
1178 LWP enables applications to collect and manage performance data, and
1179 react to performance events.  The collection of performance data
1180 requires no context switches.  LWP runs in the context of a thread and
1181 so several counters can be used independently across multiple threads.
1182 LWP can be used in both 64-bit and legacy 32-bit modes.
1184 For detailed information on the LWP instruction set, see the
1185 @cite{AMD Lightweight Profiling Specification} available at
1186 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1188 @node i386-BMI
1189 @section Bit Manipulation Instructions
1191 @cindex BMI, i386
1192 @cindex BMI, x86-64
1194 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1196 BMI instructions provide several instructions implementing individual
1197 bit manipulation operations such as isolation, masking, setting, or
1198 resetting.
1200 @c Need to add a specification citation here when available.
1202 @node i386-TBM
1203 @section AMD's Trailing Bit Manipulation Instructions
1205 @cindex TBM, i386
1206 @cindex TBM, x86-64
1208 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1209 instruction set, available on AMD's BDVER2 processors (Trinity and
1210 Viperfish).
1212 TBM instructions provide instructions implementing individual bit
1213 manipulation operations such as isolating, masking, setting, resetting,
1214 complementing, and operations on trailing zeros and ones.
1216 @c Need to add a specification citation here when available.
1218 @node i386-16bit
1219 @section Writing 16-bit Code
1221 @cindex i386 16-bit code
1222 @cindex 16-bit code, i386
1223 @cindex real-mode code, i386
1224 @cindex @code{code16gcc} directive, i386
1225 @cindex @code{code16} directive, i386
1226 @cindex @code{code32} directive, i386
1227 @cindex @code{code64} directive, i386
1228 @cindex @code{code64} directive, x86-64
1229 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1230 or 64-bit x86-64 code depending on the default configuration,
1231 it also supports writing code to run in real mode or in 16-bit protected
1232 mode code segments.  To do this, put a @samp{.code16} or
1233 @samp{.code16gcc} directive before the assembly language instructions to
1234 be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
1235 32-bit code with the @samp{.code32} directive or 64-bit code with the
1236 @samp{.code64} directive.
1238 @samp{.code16gcc} provides experimental support for generating 16-bit
1239 code from gcc, and differs from @samp{.code16} in that @samp{call},
1240 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1241 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1242 default to 32-bit size.  This is so that the stack pointer is
1243 manipulated in the same way over function calls, allowing access to
1244 function parameters at the same stack offsets as in 32-bit mode.
1245 @samp{.code16gcc} also automatically adds address size prefixes where
1246 necessary to use the 32-bit addressing modes that gcc generates.
1248 The code which @code{@value{AS}} generates in 16-bit mode will not
1249 necessarily run on a 16-bit pre-80386 processor.  To write code that
1250 runs on such a processor, you must refrain from using @emph{any} 32-bit
1251 constructs which require @code{@value{AS}} to output address or operand
1252 size prefixes.
1254 Note that writing 16-bit code instructions by explicitly specifying a
1255 prefix or an instruction mnemonic suffix within a 32-bit code section
1256 generates different machine instructions than those generated for a
1257 16-bit code segment.  In a 32-bit code section, the following code
1258 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1259 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1261 @smallexample
1262         pushw $4
1263 @end smallexample
1265 The same code in a 16-bit code section would generate the machine
1266 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1267 is correct since the processor default operand size is assumed to be 16
1268 bits in a 16-bit code section.
1270 @node i386-Arch
1271 @section Specifying CPU Architecture
1273 @cindex arch directive, i386
1274 @cindex i386 arch directive
1275 @cindex arch directive, x86-64
1276 @cindex x86-64 arch directive
1278 @code{@value{AS}} may be told to assemble for a particular CPU
1279 (sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
1280 directive enables a warning when gas detects an instruction that is not
1281 supported on the CPU specified.  The choices for @var{cpu_type} are:
1283 @multitable @columnfractions .20 .20 .20 .20
1284 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1285 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1286 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1287 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1288 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1289 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1290 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1291 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1292 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1293 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1294 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1295 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1296 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1297 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1298 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1299 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1300 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1301 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1302 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1303 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1304 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1305 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1306 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1307 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1308 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16}
1309 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1310 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1311 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1312 @item @samp{.movdiri} @tab @samp{.movdir64b}
1313 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1314 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1315 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1316 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1317 @end multitable
1319 Apart from the warning, there are only two other effects on
1320 @code{@value{AS}} operation;  Firstly, if you specify a CPU other than
1321 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1322 will automatically use a two byte opcode sequence.  The larger three
1323 byte opcode sequence is used on the 486 (and when no architecture is
1324 specified) because it executes faster on the 486.  Note that you can
1325 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1326 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1327 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1328 conditional jumps will be promoted when necessary to a two instruction
1329 sequence consisting of a conditional jump of the opposite sense around
1330 an unconditional jump to the target.
1332 Following the CPU architecture (but not a sub-architecture, which are those
1333 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1334 control automatic promotion of conditional jumps. @samp{jumps} is the
1335 default, and enables jump promotion;  All external jumps will be of the long
1336 variety, and file-local jumps will be promoted as necessary.
1337 (@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
1338 byte offset jumps, and warns about file-local conditional jumps that
1339 @code{@value{AS}} promotes.
1340 Unconditional jumps are treated as for @samp{jumps}.
1342 For example
1344 @smallexample
1345  .arch i8086,nojumps
1346 @end smallexample
1348 @node i386-Bugs
1349 @section AT&T Syntax bugs
1351 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1352 assemblers, generate floating point instructions with reversed source
1353 and destination registers in certain cases.  Unfortunately, gcc and
1354 possibly many other programs use this reversed syntax, so we're stuck
1355 with it.
1357 For example
1359 @smallexample
1360         fsub %st,%st(3)
1361 @end smallexample
1362 @noindent
1363 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1364 than the expected @samp{%st(3) - %st}.  This happens with all the
1365 non-commutative arithmetic floating point operations with two register
1366 operands where the source register is @samp{%st} and the destination
1367 register is @samp{%st(i)}.
1369 @node i386-Notes
1370 @section Notes
1372 @cindex i386 @code{mul}, @code{imul} instructions
1373 @cindex @code{mul} instruction, i386
1374 @cindex @code{imul} instruction, i386
1375 @cindex @code{mul} instruction, x86-64
1376 @cindex @code{imul} instruction, x86-64
1377 There is some trickery concerning the @samp{mul} and @samp{imul}
1378 instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1379 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1380 for @samp{imul}) can be output only in the one operand form.  Thus,
1381 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1382 the expanding multiply would clobber the @samp{%edx} register, and this
1383 would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
1384 64-bit product in @samp{%edx:%eax}.
1386 We have added a two operand form of @samp{imul} when the first operand
1387 is an immediate mode expression and the second operand is a register.
1388 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1389 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1390 $69, %eax, %eax}.