[PATCH 5/57][Arm][GAS] Add support for MVE instructions: vmull{b,t}
[binutils-gdb.git] / gdb / bfin-tdep.c
blob9d3e8ebce164e41be97acc9fad903077512c6ce8
1 /* Target-dependent code for Analog Devices Blackfin processor, for GDB.
3 Copyright (C) 2005-2019 Free Software Foundation, Inc.
5 Contributed by Analog Devices, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "arch-utils.h"
26 #include "regcache.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dis-asm.h"
32 #include "sim-regno.h"
33 #include "gdb/sim-bfin.h"
34 #include "dwarf2-frame.h"
35 #include "symtab.h"
36 #include "elf-bfd.h"
37 #include "elf/bfin.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "xml-syscall.h"
41 #include "bfin-tdep.h"
43 /* Macros used by prologue functions. */
44 #define P_LINKAGE 0xE800
45 #define P_MINUS_SP1 0x0140
46 #define P_MINUS_SP2 0x05C0
47 #define P_MINUS_SP3 0x0540
48 #define P_MINUS_SP4 0x04C0
49 #define P_SP_PLUS 0x6C06
50 #define P_P2_LOW 0xE10A
51 #define P_P2_HIGH 0XE14A
52 #define P_SP_EQ_SP_PLUS_P2 0X5BB2
53 #define P_SP_EQ_P2_PLUS_SP 0x5B96
54 #define P_MINUS_MINUS_SP_EQ_RETS 0x0167
56 /* Macros used for program flow control. */
57 /* 16 bit instruction, max */
58 #define P_16_BIT_INSR_MAX 0xBFFF
59 /* 32 bit instruction, min */
60 #define P_32_BIT_INSR_MIN 0xC000
61 /* 32 bit instruction, max */
62 #define P_32_BIT_INSR_MAX 0xE801
63 /* jump (preg), 16-bit, min */
64 #define P_JUMP_PREG_MIN 0x0050
65 /* jump (preg), 16-bit, max */
66 #define P_JUMP_PREG_MAX 0x0057
67 /* jump (pc+preg), 16-bit, min */
68 #define P_JUMP_PC_PLUS_PREG_MIN 0x0080
69 /* jump (pc+preg), 16-bit, max */
70 #define P_JUMP_PC_PLUS_PREG_MAX 0x0087
71 /* jump.s pcrel13m2, 16-bit, min */
72 #define P_JUMP_S_MIN 0x2000
73 /* jump.s pcrel13m2, 16-bit, max */
74 #define P_JUMP_S_MAX 0x2FFF
75 /* jump.l pcrel25m2, 32-bit, min */
76 #define P_JUMP_L_MIN 0xE200
77 /* jump.l pcrel25m2, 32-bit, max */
78 #define P_JUMP_L_MAX 0xE2FF
79 /* conditional jump pcrel11m2, 16-bit, min */
80 #define P_IF_CC_JUMP_MIN 0x1800
81 /* conditional jump pcrel11m2, 16-bit, max */
82 #define P_IF_CC_JUMP_MAX 0x1BFF
83 /* conditional jump(bp) pcrel11m2, 16-bit, min */
84 #define P_IF_CC_JUMP_BP_MIN 0x1C00
85 /* conditional jump(bp) pcrel11m2, 16-bit, max */
86 #define P_IF_CC_JUMP_BP_MAX 0x1FFF
87 /* conditional !jump pcrel11m2, 16-bit, min */
88 #define P_IF_NOT_CC_JUMP_MIN 0x1000
89 /* conditional !jump pcrel11m2, 16-bit, max */
90 #define P_IF_NOT_CC_JUMP_MAX 0x13FF
91 /* conditional jump(bp) pcrel11m2, 16-bit, min */
92 #define P_IF_NOT_CC_JUMP_BP_MIN 0x1400
93 /* conditional jump(bp) pcrel11m2, 16-bit, max */
94 #define P_IF_NOT_CC_JUMP_BP_MAX 0x17FF
95 /* call (preg), 16-bit, min */
96 #define P_CALL_PREG_MIN 0x0060
97 /* call (preg), 16-bit, max */
98 #define P_CALL_PREG_MAX 0x0067
99 /* call (pc+preg), 16-bit, min */
100 #define P_CALL_PC_PLUS_PREG_MIN 0x0070
101 /* call (pc+preg), 16-bit, max */
102 #define P_CALL_PC_PLUS_PREG_MAX 0x0077
103 /* call pcrel25m2, 32-bit, min */
104 #define P_CALL_MIN 0xE300
105 /* call pcrel25m2, 32-bit, max */
106 #define P_CALL_MAX 0xE3FF
107 /* RTS */
108 #define P_RTS 0x0010
109 /* MNOP */
110 #define P_MNOP 0xC803
111 /* EXCPT, 16-bit, min */
112 #define P_EXCPT_MIN 0x00A0
113 /* EXCPT, 16-bit, max */
114 #define P_EXCPT_MAX 0x00AF
115 /* multi instruction mask 1, 16-bit */
116 #define P_BIT_MULTI_INS_1 0xC000
117 /* multi instruction mask 2, 16-bit */
118 #define P_BIT_MULTI_INS_2 0x0800
120 /* The maximum bytes we search to skip the prologue. */
121 #define UPPER_LIMIT 40
123 /* ASTAT bits */
124 #define ASTAT_CC_POS 5
125 #define ASTAT_CC (1 << ASTAT_CC_POS)
127 /* Initial value: Register names used in BFIN's ISA documentation. */
129 static const char * const bfin_register_name_strings[] =
131 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
132 "p0", "p1", "p2", "p3", "p4", "p5", "sp", "fp",
133 "i0", "i1", "i2", "i3", "m0", "m1", "m2", "m3",
134 "b0", "b1", "b2", "b3", "l0", "l1", "l2", "l3",
135 "a0x", "a0w", "a1x", "a1w", "astat", "rets",
136 "lc0", "lt0", "lb0", "lc1", "lt1", "lb1", "cycles", "cycles2",
137 "usp", "seqstat", "syscfg", "reti", "retx", "retn", "rete",
138 "pc", "cc",
141 #define NUM_BFIN_REGNAMES ARRAY_SIZE (bfin_register_name_strings)
144 /* In this diagram successive memory locations increase downwards or the
145 stack grows upwards with negative indices. (PUSH analogy for stack.)
147 The top frame is the "frame" of the current function being executed.
149 +--------------+ SP -
150 | local vars | ^
151 +--------------+ |
152 | save regs | |
153 +--------------+ FP |
154 | old FP -|-- top
155 +--------------+ | frame
156 | RETS | | |
157 +--------------+ | |
158 | param 1 | | |
159 | param 2 | | |
160 | ... | | V
161 +--------------+ | -
162 | local vars | | ^
163 +--------------+ | |
164 | save regs | | |
165 +--------------+<- |
166 | old FP -|-- next
167 +--------------+ | frame
168 | RETS | | |
169 +--------------+ | |
170 | param 1 | | |
171 | param 2 | | |
172 | ... | | V
173 +--------------+ | -
174 | local vars | | ^
175 +--------------+ | |
176 | save regs | | |
177 +--------------+<- next frame
178 | old FP | |
179 +--------------+ |
180 | RETS | V
181 +--------------+ -
183 The frame chain is formed as following:
185 FP has the topmost frame.
186 FP + 4 has the previous FP and so on. */
189 /* Map from DWARF2 register number to GDB register number. */
191 static const int map_gcc_gdb[] =
193 BFIN_R0_REGNUM,
194 BFIN_R1_REGNUM,
195 BFIN_R2_REGNUM,
196 BFIN_R3_REGNUM,
197 BFIN_R4_REGNUM,
198 BFIN_R5_REGNUM,
199 BFIN_R6_REGNUM,
200 BFIN_R7_REGNUM,
201 BFIN_P0_REGNUM,
202 BFIN_P1_REGNUM,
203 BFIN_P2_REGNUM,
204 BFIN_P3_REGNUM,
205 BFIN_P4_REGNUM,
206 BFIN_P5_REGNUM,
207 BFIN_SP_REGNUM,
208 BFIN_FP_REGNUM,
209 BFIN_I0_REGNUM,
210 BFIN_I1_REGNUM,
211 BFIN_I2_REGNUM,
212 BFIN_I3_REGNUM,
213 BFIN_B0_REGNUM,
214 BFIN_B1_REGNUM,
215 BFIN_B2_REGNUM,
216 BFIN_B3_REGNUM,
217 BFIN_L0_REGNUM,
218 BFIN_L1_REGNUM,
219 BFIN_L2_REGNUM,
220 BFIN_L3_REGNUM,
221 BFIN_M0_REGNUM,
222 BFIN_M1_REGNUM,
223 BFIN_M2_REGNUM,
224 BFIN_M3_REGNUM,
225 BFIN_A0_DOT_X_REGNUM,
226 BFIN_A1_DOT_X_REGNUM,
227 BFIN_CC_REGNUM,
228 BFIN_RETS_REGNUM,
229 BFIN_RETI_REGNUM,
230 BFIN_RETX_REGNUM,
231 BFIN_RETN_REGNUM,
232 BFIN_RETE_REGNUM,
233 BFIN_ASTAT_REGNUM,
234 BFIN_SEQSTAT_REGNUM,
235 BFIN_USP_REGNUM,
236 BFIN_LT0_REGNUM,
237 BFIN_LT1_REGNUM,
238 BFIN_LC0_REGNUM,
239 BFIN_LC1_REGNUM,
240 BFIN_LB0_REGNUM,
241 BFIN_LB1_REGNUM
244 /* Big enough to hold the size of the largest register in bytes. */
245 #define BFIN_MAX_REGISTER_SIZE 4
247 struct bfin_frame_cache
249 /* Base address. */
250 CORE_ADDR base;
251 CORE_ADDR sp_offset;
252 CORE_ADDR pc;
253 int frameless_pc_value;
255 /* Saved registers. */
256 CORE_ADDR saved_regs[BFIN_NUM_REGS];
257 CORE_ADDR saved_sp;
259 /* Stack space reserved for local variables. */
260 long locals;
263 /* Allocate and initialize a frame cache. */
265 static struct bfin_frame_cache *
266 bfin_alloc_frame_cache (void)
268 struct bfin_frame_cache *cache;
269 int i;
271 cache = FRAME_OBSTACK_ZALLOC (struct bfin_frame_cache);
273 /* Base address. */
274 cache->base = 0;
275 cache->sp_offset = -4;
276 cache->pc = 0;
277 cache->frameless_pc_value = 0;
279 /* Saved registers. We initialize these to -1 since zero is a valid
280 offset (that's where fp is supposed to be stored). */
281 for (i = 0; i < BFIN_NUM_REGS; i++)
282 cache->saved_regs[i] = -1;
284 /* Frameless until proven otherwise. */
285 cache->locals = -1;
287 return cache;
290 static struct bfin_frame_cache *
291 bfin_frame_cache (struct frame_info *this_frame, void **this_cache)
293 struct bfin_frame_cache *cache;
294 int i;
296 if (*this_cache)
297 return (struct bfin_frame_cache *) *this_cache;
299 cache = bfin_alloc_frame_cache ();
300 *this_cache = cache;
302 cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
303 if (cache->base == 0)
304 return cache;
306 /* For normal frames, PC is stored at [FP + 4]. */
307 cache->saved_regs[BFIN_PC_REGNUM] = 4;
308 cache->saved_regs[BFIN_FP_REGNUM] = 0;
310 /* Adjust all the saved registers such that they contain addresses
311 instead of offsets. */
312 for (i = 0; i < BFIN_NUM_REGS; i++)
313 if (cache->saved_regs[i] != -1)
314 cache->saved_regs[i] += cache->base;
316 cache->pc = get_frame_func (this_frame) ;
317 if (cache->pc == 0 || cache->pc == get_frame_pc (this_frame))
319 /* Either there is no prologue (frameless function) or we are at
320 the start of a function. In short we do not have a frame.
321 PC is stored in rets register. FP points to previous frame. */
323 cache->saved_regs[BFIN_PC_REGNUM] =
324 get_frame_register_unsigned (this_frame, BFIN_RETS_REGNUM);
325 cache->frameless_pc_value = 1;
326 cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
327 cache->saved_regs[BFIN_FP_REGNUM] = cache->base;
328 cache->saved_sp = cache->base;
330 else
332 cache->frameless_pc_value = 0;
334 /* Now that we have the base address for the stack frame we can
335 calculate the value of SP in the calling frame. */
336 cache->saved_sp = cache->base + 8;
339 return cache;
342 static void
343 bfin_frame_this_id (struct frame_info *this_frame,
344 void **this_cache,
345 struct frame_id *this_id)
347 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
349 /* This marks the outermost frame. */
350 if (cache->base == 0)
351 return;
353 /* See the end of bfin_push_dummy_call. */
354 *this_id = frame_id_build (cache->base + 8, cache->pc);
357 static struct value *
358 bfin_frame_prev_register (struct frame_info *this_frame,
359 void **this_cache,
360 int regnum)
362 struct gdbarch *gdbarch = get_frame_arch (this_frame);
363 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
365 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
366 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
368 if (regnum < BFIN_NUM_REGS && cache->saved_regs[regnum] != -1)
369 return frame_unwind_got_memory (this_frame, regnum,
370 cache->saved_regs[regnum]);
372 return frame_unwind_got_register (this_frame, regnum, regnum);
375 static const struct frame_unwind bfin_frame_unwind =
377 NORMAL_FRAME,
378 default_frame_unwind_stop_reason,
379 bfin_frame_this_id,
380 bfin_frame_prev_register,
381 NULL,
382 default_frame_sniffer
385 /* Check for "[--SP] = <reg>;" insns. These are appear in function
386 prologues to save misc registers onto the stack. */
388 static int
389 is_minus_minus_sp (int op)
391 op &= 0xFFC0;
393 if ((op == P_MINUS_SP1) || (op == P_MINUS_SP2)
394 || (op == P_MINUS_SP3) || (op == P_MINUS_SP4))
395 return 1;
397 return 0;
400 /* Skip all the insns that appear in generated function prologues. */
402 static CORE_ADDR
403 bfin_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
406 int op = read_memory_unsigned_integer (pc, 2, byte_order);
407 CORE_ADDR orig_pc = pc;
408 int done = 0;
410 /* The new gcc prologue generates the register saves BEFORE the link
411 or RETS saving instruction.
412 So, our job is to stop either at those instructions or some upper
413 limit saying there is no frame! */
415 while (!done)
417 if (is_minus_minus_sp (op))
419 while (is_minus_minus_sp (op))
421 pc += 2;
422 op = read_memory_unsigned_integer (pc, 2, byte_order);
425 if (op == P_LINKAGE)
426 pc += 4;
428 done = 1;
430 else if (op == P_LINKAGE)
432 pc += 4;
433 done = 1;
435 else if (op == P_MINUS_MINUS_SP_EQ_RETS)
437 pc += 2;
438 done = 1;
440 else if (op == P_RTS)
442 done = 1;
444 else if ((op >= P_JUMP_PREG_MIN && op <= P_JUMP_PREG_MAX)
445 || (op >= P_JUMP_PC_PLUS_PREG_MIN
446 && op <= P_JUMP_PC_PLUS_PREG_MAX)
447 || (op == P_JUMP_S_MIN && op <= P_JUMP_S_MAX))
449 done = 1;
451 else if (pc - orig_pc >= UPPER_LIMIT)
453 warning (_("Function Prologue not recognised; "
454 "pc will point to ENTRY_POINT of the function"));
455 pc = orig_pc + 2;
456 done = 1;
458 else
460 pc += 2; /* Not a terminating instruction go on. */
461 op = read_memory_unsigned_integer (pc, 2, byte_order);
465 /* TODO:
466 Dwarf2 uses entry point value AFTER some register initializations.
467 We should perhaps skip such asssignments as well (R6 = R1, ...). */
469 return pc;
472 /* Return the GDB type object for the "standard" data type of data in
473 register N. This should be void pointer for P0-P5, SP, FP;
474 void pointer to function for PC; int otherwise. */
476 static struct type *
477 bfin_register_type (struct gdbarch *gdbarch, int regnum)
479 if ((regnum >= BFIN_P0_REGNUM && regnum <= BFIN_FP_REGNUM)
480 || regnum == BFIN_USP_REGNUM)
481 return builtin_type (gdbarch)->builtin_data_ptr;
483 if (regnum == BFIN_PC_REGNUM || regnum == BFIN_RETS_REGNUM
484 || regnum == BFIN_RETI_REGNUM || regnum == BFIN_RETX_REGNUM
485 || regnum == BFIN_RETN_REGNUM || regnum == BFIN_RETE_REGNUM
486 || regnum == BFIN_LT0_REGNUM || regnum == BFIN_LB0_REGNUM
487 || regnum == BFIN_LT1_REGNUM || regnum == BFIN_LB1_REGNUM)
488 return builtin_type (gdbarch)->builtin_func_ptr;
490 return builtin_type (gdbarch)->builtin_int32;
493 static CORE_ADDR
494 bfin_push_dummy_call (struct gdbarch *gdbarch,
495 struct value *function,
496 struct regcache *regcache,
497 CORE_ADDR bp_addr,
498 int nargs,
499 struct value **args,
500 CORE_ADDR sp,
501 function_call_return_method return_method,
502 CORE_ADDR struct_addr)
504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
505 int i;
506 long reg_r0, reg_r1, reg_r2;
507 int total_len = 0;
509 for (i = nargs - 1; i >= 0; i--)
511 struct type *value_type = value_enclosing_type (args[i]);
513 total_len += (TYPE_LENGTH (value_type) + 3) & ~3;
516 /* At least twelve bytes of stack space must be allocated for the function's
517 arguments, even for functions that have less than 12 bytes of argument
518 data. */
520 if (total_len < 12)
521 sp -= 12 - total_len;
523 /* Push arguments in reverse order. */
525 for (i = nargs - 1; i >= 0; i--)
527 struct type *value_type = value_enclosing_type (args[i]);
528 struct type *arg_type = check_typedef (value_type);
529 int container_len = (TYPE_LENGTH (arg_type) + 3) & ~3;
531 sp -= container_len;
532 write_memory (sp, value_contents (args[i]), container_len);
535 /* Initialize R0, R1, and R2 to the first 3 words of parameters. */
537 reg_r0 = read_memory_integer (sp, 4, byte_order);
538 regcache_cooked_write_unsigned (regcache, BFIN_R0_REGNUM, reg_r0);
539 reg_r1 = read_memory_integer (sp + 4, 4, byte_order);
540 regcache_cooked_write_unsigned (regcache, BFIN_R1_REGNUM, reg_r1);
541 reg_r2 = read_memory_integer (sp + 8, 4, byte_order);
542 regcache_cooked_write_unsigned (regcache, BFIN_R2_REGNUM, reg_r2);
544 /* Store struct value address. */
546 if (return_method == return_method_struct)
547 regcache_cooked_write_unsigned (regcache, BFIN_P0_REGNUM, struct_addr);
549 /* Set the dummy return value to bp_addr.
550 A dummy breakpoint will be setup to execute the call. */
552 regcache_cooked_write_unsigned (regcache, BFIN_RETS_REGNUM, bp_addr);
554 /* Finally, update the stack pointer. */
556 regcache_cooked_write_unsigned (regcache, BFIN_SP_REGNUM, sp);
558 return sp;
561 /* Convert DWARF2 register number REG to the appropriate register number
562 used by GDB. */
564 static int
565 bfin_reg_to_regnum (struct gdbarch *gdbarch, int reg)
567 if (reg < 0 || reg >= ARRAY_SIZE (map_gcc_gdb))
568 return -1;
570 return map_gcc_gdb[reg];
573 /* Implement the breakpoint_kind_from_pc gdbarch method. */
575 static int
576 bfin_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579 unsigned short iw;
581 iw = read_memory_unsigned_integer (*pcptr, 2, byte_order);
583 if ((iw & 0xf000) >= 0xc000)
584 /* 32-bit instruction. */
585 return 4;
586 else
587 return 2;
590 /* Implement the sw_breakpoint_from_kind gdbarch method. */
592 static const gdb_byte *
593 bfin_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
595 static unsigned char bfin_breakpoint[] = {0xa1, 0x00, 0x00, 0x00};
596 static unsigned char bfin_sim_breakpoint[] = {0x25, 0x00, 0x00, 0x00};
598 *size = kind;
600 if (strcmp (target_shortname, "sim") == 0)
601 return bfin_sim_breakpoint;
602 else
603 return bfin_breakpoint;
606 static void
607 bfin_extract_return_value (struct type *type,
608 struct regcache *regs,
609 gdb_byte *dst)
611 struct gdbarch *gdbarch = regs->arch ();
612 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
613 bfd_byte *valbuf = dst;
614 int len = TYPE_LENGTH (type);
615 ULONGEST tmp;
616 int regno = BFIN_R0_REGNUM;
618 gdb_assert (len <= 8);
620 while (len > 0)
622 regcache_cooked_read_unsigned (regs, regno++, &tmp);
623 store_unsigned_integer (valbuf, (len > 4 ? 4 : len), byte_order, tmp);
624 len -= 4;
625 valbuf += 4;
629 /* Write into appropriate registers a function return value of type
630 TYPE, given in virtual format. */
632 static void
633 bfin_store_return_value (struct type *type,
634 struct regcache *regs,
635 const gdb_byte *src)
637 const bfd_byte *valbuf = src;
639 /* Integral values greater than one word are stored in consecutive
640 registers starting with R0. This will always be a multiple of
641 the register size. */
643 int len = TYPE_LENGTH (type);
644 int regno = BFIN_R0_REGNUM;
646 gdb_assert (len <= 8);
648 while (len > 0)
650 regs->cooked_write (regno++, valbuf);
651 len -= 4;
652 valbuf += 4;
656 /* Determine, for architecture GDBARCH, how a return value of TYPE
657 should be returned. If it is supposed to be returned in registers,
658 and READBUF is nonzero, read the appropriate value from REGCACHE,
659 and copy it into READBUF. If WRITEBUF is nonzero, write the value
660 from WRITEBUF into REGCACHE. */
662 static enum return_value_convention
663 bfin_return_value (struct gdbarch *gdbarch,
664 struct value *function,
665 struct type *type,
666 struct regcache *regcache,
667 gdb_byte *readbuf,
668 const gdb_byte *writebuf)
670 if (TYPE_LENGTH (type) > 8)
671 return RETURN_VALUE_STRUCT_CONVENTION;
673 if (readbuf)
674 bfin_extract_return_value (type, regcache, readbuf);
676 if (writebuf)
677 bfin_store_return_value (type, regcache, writebuf);
679 return RETURN_VALUE_REGISTER_CONVENTION;
682 /* Return the BFIN register name corresponding to register I. */
684 static const char *
685 bfin_register_name (struct gdbarch *gdbarch, int i)
687 return bfin_register_name_strings[i];
690 static enum register_status
691 bfin_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
692 int regnum, gdb_byte *buffer)
694 gdb_byte buf[BFIN_MAX_REGISTER_SIZE];
695 enum register_status status;
697 if (regnum != BFIN_CC_REGNUM)
698 internal_error (__FILE__, __LINE__,
699 _("invalid register number %d"), regnum);
701 /* Extract the CC bit from the ASTAT register. */
702 status = regcache->raw_read (BFIN_ASTAT_REGNUM, buf);
703 if (status == REG_VALID)
705 buffer[1] = buffer[2] = buffer[3] = 0;
706 buffer[0] = !!(buf[0] & ASTAT_CC);
708 return status;
711 static void
712 bfin_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
713 int regnum, const gdb_byte *buffer)
715 gdb_byte buf[BFIN_MAX_REGISTER_SIZE];
717 if (regnum != BFIN_CC_REGNUM)
718 internal_error (__FILE__, __LINE__,
719 _("invalid register number %d"), regnum);
721 /* Overlay the CC bit in the ASTAT register. */
722 regcache->raw_read (BFIN_ASTAT_REGNUM, buf);
723 buf[0] = (buf[0] & ~ASTAT_CC) | ((buffer[0] & 1) << ASTAT_CC_POS);
724 regcache->raw_write (BFIN_ASTAT_REGNUM, buf);
727 static CORE_ADDR
728 bfin_frame_base_address (struct frame_info *this_frame, void **this_cache)
730 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
732 return cache->base;
735 static CORE_ADDR
736 bfin_frame_local_address (struct frame_info *this_frame, void **this_cache)
738 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
740 return cache->base - 4;
743 static CORE_ADDR
744 bfin_frame_args_address (struct frame_info *this_frame, void **this_cache)
746 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
748 return cache->base + 8;
751 static const struct frame_base bfin_frame_base =
753 &bfin_frame_unwind,
754 bfin_frame_base_address,
755 bfin_frame_local_address,
756 bfin_frame_args_address
759 static CORE_ADDR
760 bfin_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
762 return (address & ~0x3);
765 enum bfin_abi
766 bfin_abi (struct gdbarch *gdbarch)
768 return gdbarch_tdep (gdbarch)->bfin_abi;
771 /* Initialize the current architecture based on INFO. If possible,
772 re-use an architecture from ARCHES, which is a list of
773 architectures already created during this debugging session.
775 Called e.g. at program startup, when reading a core file, and when
776 reading a binary file. */
778 static struct gdbarch *
779 bfin_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
781 struct gdbarch_tdep *tdep;
782 struct gdbarch *gdbarch;
783 enum bfin_abi abi;
785 abi = BFIN_ABI_FLAT;
787 /* If there is already a candidate, use it. */
789 for (arches = gdbarch_list_lookup_by_info (arches, &info);
790 arches != NULL;
791 arches = gdbarch_list_lookup_by_info (arches->next, &info))
793 if (gdbarch_tdep (arches->gdbarch)->bfin_abi != abi)
794 continue;
795 return arches->gdbarch;
798 tdep = XCNEW (struct gdbarch_tdep);
799 gdbarch = gdbarch_alloc (&info, tdep);
801 tdep->bfin_abi = abi;
803 set_gdbarch_num_regs (gdbarch, BFIN_NUM_REGS);
804 set_gdbarch_pseudo_register_read (gdbarch, bfin_pseudo_register_read);
805 set_gdbarch_pseudo_register_write (gdbarch, bfin_pseudo_register_write);
806 set_gdbarch_num_pseudo_regs (gdbarch, BFIN_NUM_PSEUDO_REGS);
807 set_gdbarch_sp_regnum (gdbarch, BFIN_SP_REGNUM);
808 set_gdbarch_pc_regnum (gdbarch, BFIN_PC_REGNUM);
809 set_gdbarch_ps_regnum (gdbarch, BFIN_ASTAT_REGNUM);
810 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, bfin_reg_to_regnum);
811 set_gdbarch_register_name (gdbarch, bfin_register_name);
812 set_gdbarch_register_type (gdbarch, bfin_register_type);
813 set_gdbarch_push_dummy_call (gdbarch, bfin_push_dummy_call);
814 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
815 set_gdbarch_return_value (gdbarch, bfin_return_value);
816 set_gdbarch_skip_prologue (gdbarch, bfin_skip_prologue);
817 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
818 set_gdbarch_breakpoint_kind_from_pc (gdbarch, bfin_breakpoint_kind_from_pc);
819 set_gdbarch_sw_breakpoint_from_kind (gdbarch, bfin_sw_breakpoint_from_kind);
820 set_gdbarch_decr_pc_after_break (gdbarch, 2);
821 set_gdbarch_frame_args_skip (gdbarch, 8);
822 set_gdbarch_frame_align (gdbarch, bfin_frame_align);
824 /* Hook in ABI-specific overrides, if they have been registered. */
825 gdbarch_init_osabi (info, gdbarch);
827 dwarf2_append_unwinders (gdbarch);
829 frame_base_set_default (gdbarch, &bfin_frame_base);
831 frame_unwind_append_unwinder (gdbarch, &bfin_frame_unwind);
833 return gdbarch;
836 void
837 _initialize_bfin_tdep (void)
839 register_gdbarch_init (bfd_arch_bfin, bfin_gdbarch_init);