1 /* Top level stuff for GDB, the GNU debugger.
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
34 #include "gdbthread.h"
35 #include "observable.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
40 #include "common/buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
48 /* readline defines this. */
51 static std::string
top_level_prompt ();
53 /* Signal handlers. */
55 static void handle_sigquit (int sig
);
58 static void handle_sighup (int sig
);
60 static void handle_sigfpe (int sig
);
62 /* Functions to be invoked by the event loop in response to
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data
);
68 static void async_disconnect (gdb_client_data
);
70 static void async_float_handler (gdb_client_data
);
72 static void async_sigtstp_handler (gdb_client_data
);
74 static void async_sigterm_handler (gdb_client_data arg
);
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
81 /* Important variables for the event loop. */
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var
;
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p
= 0;
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
98 int call_stdin_event_handler_again_p
;
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler
*sigint_token
;
108 static struct async_signal_handler
*sighup_token
;
111 static struct async_signal_handler
*sigquit_token
;
113 static struct async_signal_handler
*sigfpe_token
;
115 static struct async_signal_handler
*sigtstp_token
;
117 static struct async_signal_handler
*async_sigterm_token
;
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook
) (void);
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
133 On the exceptions issue:
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. This must be
161 noexcept in order to avoid problems with mixing sjlj and
162 (sjlj-based) C++ exceptions. */
164 static struct gdb_exception
165 gdb_rl_callback_read_char_wrapper_noexcept () noexcept
167 struct gdb_exception gdb_expt
;
169 /* C++ exceptions can't normally be thrown across readline (unless
170 it is built with -fexceptions, but it won't by default on many
171 ABIs). So we instead wrap the readline call with a sjlj-based
172 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
175 rl_callback_read_char ();
176 if (after_char_processing_hook
)
177 (*after_char_processing_hook
) ();
179 CATCH_SJLJ (ex
, RETURN_MASK_ALL
)
181 gdb_expt
= std::move (ex
);
189 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data
)
191 struct gdb_exception gdb_expt
192 = gdb_rl_callback_read_char_wrapper_noexcept ();
194 /* Rethrow using the normal EH mechanism. */
195 if (gdb_expt
.reason
< 0)
196 throw_exception (std::move (gdb_expt
));
199 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
200 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
201 across readline. See gdb_rl_callback_read_char_wrapper. This must
202 be noexcept in order to avoid problems with mixing sjlj and
203 (sjlj-based) C++ exceptions. */
206 gdb_rl_callback_handler (char *rl
) noexcept
208 /* This is static to avoid undefined behavior when calling longjmp
209 -- gdb_exception has a destructor with side effects. */
210 static struct gdb_exception gdb_rl_expt
;
211 struct ui
*ui
= current_ui
;
215 /* Ensure the exception is reset on each call. */
217 ui
->input_handler (gdb::unique_xmalloc_ptr
<char> (rl
));
219 catch (gdb_exception
&ex
)
221 gdb_rl_expt
= std::move (ex
);
224 /* If we caught a GDB exception, longjmp out of the readline
225 callback. There's no other way for the callback to signal to
226 readline that an error happened. A normal return would have
227 readline potentially continue processing further input, redisplay
228 the prompt, etc. (This is what GDB historically did when it was
229 a C program.) Note that since we're long jumping, local variable
230 dtors are NOT run automatically. */
231 if (gdb_rl_expt
.reason
< 0)
232 throw_exception_sjlj (gdb_rl_expt
);
235 /* Change the function to be invoked every time there is a character
236 ready on stdin. This is used when the user sets the editing off,
237 therefore bypassing readline, and letting gdb handle the input
238 itself, via gdb_readline_no_editing_callback. Also it is used in
239 the opposite case in which the user sets editing on again, by
240 restoring readline handling of the input.
242 NOTE: this operates on input_fd, not instream. If we are reading
243 commands from a file, instream will point to the file. However, we
244 always read commands from a file with editing off. This means that
245 the 'set editing on/off' will have effect only on the interactive
249 change_line_handler (int editing
)
251 struct ui
*ui
= current_ui
;
253 /* We can only have one instance of readline, so we only allow
254 editing on the main UI. */
258 /* Don't try enabling editing if the interpreter doesn't support it
260 if (!interp_supports_command_editing (top_level_interpreter ())
261 || !interp_supports_command_editing (command_interp ()))
266 gdb_assert (ui
== main_ui
);
268 /* Turn on editing by using readline. */
269 ui
->call_readline
= gdb_rl_callback_read_char_wrapper
;
273 /* Turn off editing by using gdb_readline_no_editing_callback. */
274 if (ui
->command_editing
)
275 gdb_rl_callback_handler_remove ();
276 ui
->call_readline
= gdb_readline_no_editing_callback
;
278 ui
->command_editing
= editing
;
281 /* The functions below are wrappers for rl_callback_handler_remove and
282 rl_callback_handler_install that keep track of whether the callback
283 handler is installed in readline. This is necessary because after
284 handling a target event of a background execution command, we may
285 need to reinstall the callback handler if it was removed due to a
286 secondary prompt. See gdb_readline_wrapper_line. We don't
287 unconditionally install the handler for every target event because
288 that also clears the line buffer, thus installing it while the user
289 is typing would lose input. */
291 /* Whether we've registered a callback handler with readline. */
292 static int callback_handler_installed
;
294 /* See event-top.h, and above. */
297 gdb_rl_callback_handler_remove (void)
299 gdb_assert (current_ui
== main_ui
);
301 rl_callback_handler_remove ();
302 callback_handler_installed
= 0;
305 /* See event-top.h, and above. Note this wrapper doesn't have an
306 actual callback parameter because we always install
310 gdb_rl_callback_handler_install (const char *prompt
)
312 gdb_assert (current_ui
== main_ui
);
314 /* Calling rl_callback_handler_install resets readline's input
315 buffer. Calling this when we were already processing input
316 therefore loses input. */
317 gdb_assert (!callback_handler_installed
);
319 rl_callback_handler_install (prompt
, gdb_rl_callback_handler
);
320 callback_handler_installed
= 1;
323 /* See event-top.h, and above. */
326 gdb_rl_callback_handler_reinstall (void)
328 gdb_assert (current_ui
== main_ui
);
330 if (!callback_handler_installed
)
332 /* Passing NULL as prompt argument tells readline to not display
334 gdb_rl_callback_handler_install (NULL
);
338 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
339 prompt that is displayed is the current top level prompt.
340 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
343 This is used after each gdb command has completed, and in the
346 1. When the user enters a command line which is ended by '\'
347 indicating that the command will continue on the next line. In
348 that case the prompt that is displayed is the empty string.
350 2. When the user is entering 'commands' for a breakpoint, or
351 actions for a tracepoint. In this case the prompt will be '>'
353 3. On prompting for pagination. */
356 display_gdb_prompt (const char *new_prompt
)
358 std::string actual_gdb_prompt
;
360 annotate_display_prompt ();
362 /* Reset the nesting depth used when trace-commands is set. */
363 reset_command_nest_depth ();
365 /* Do not call the python hook on an explicit prompt change as
366 passed to this function, as this forms a secondary/local prompt,
367 IE, displayed but not set. */
370 struct ui
*ui
= current_ui
;
372 if (ui
->prompt_state
== PROMPTED
)
373 internal_error (__FILE__
, __LINE__
, _("double prompt"));
374 else if (ui
->prompt_state
== PROMPT_BLOCKED
)
376 /* This is to trick readline into not trying to display the
377 prompt. Even though we display the prompt using this
378 function, readline still tries to do its own display if
379 we don't call rl_callback_handler_install and
380 rl_callback_handler_remove (which readline detects
381 because a global variable is not set). If readline did
382 that, it could mess up gdb signal handlers for SIGINT.
383 Readline assumes that between calls to rl_set_signals and
384 rl_clear_signals gdb doesn't do anything with the signal
385 handlers. Well, that's not the case, because when the
386 target executes we change the SIGINT signal handler. If
387 we allowed readline to display the prompt, the signal
388 handler change would happen exactly between the calls to
389 the above two functions. Calling
390 rl_callback_handler_remove(), does the job. */
392 if (current_ui
->command_editing
)
393 gdb_rl_callback_handler_remove ();
396 else if (ui
->prompt_state
== PROMPT_NEEDED
)
398 /* Display the top level prompt. */
399 actual_gdb_prompt
= top_level_prompt ();
400 ui
->prompt_state
= PROMPTED
;
404 actual_gdb_prompt
= new_prompt
;
406 if (current_ui
->command_editing
)
408 gdb_rl_callback_handler_remove ();
409 gdb_rl_callback_handler_install (actual_gdb_prompt
.c_str ());
411 /* new_prompt at this point can be the top of the stack or the one
412 passed in. It can't be NULL. */
415 /* Don't use a _filtered function here. It causes the assumed
416 character position to be off, since the newline we read from
417 the user is not accounted for. */
418 fputs_unfiltered (actual_gdb_prompt
.c_str (), gdb_stdout
);
419 gdb_flush (gdb_stdout
);
423 /* Return the top level prompt, as specified by "set prompt", possibly
424 overriden by the python gdb.prompt_hook hook, and then composed
425 with the prompt prefix and suffix (annotations). */
428 top_level_prompt (void)
432 /* Give observers a chance of changing the prompt. E.g., the python
433 `gdb.prompt_hook' is installed as an observer. */
434 gdb::observers::before_prompt
.notify (get_prompt ());
436 prompt
= get_prompt ();
438 if (annotation_level
>= 2)
440 /* Prefix needs to have new line at end. */
441 const char prefix
[] = "\n\032\032pre-prompt\n";
443 /* Suffix needs to have a new line at end and \032 \032 at
445 const char suffix
[] = "\n\032\032prompt\n";
447 return std::string (prefix
) + prompt
+ suffix
;
456 struct ui
*current_ui
;
459 /* Get a pointer to the current UI's line buffer. This is used to
460 construct a whole line of input from partial input. */
462 static struct buffer
*
463 get_command_line_buffer (void)
465 return ¤t_ui
->line_buffer
;
468 /* When there is an event ready on the stdin file descriptor, instead
469 of calling readline directly throught the callback function, or
470 instead of calling gdb_readline_no_editing_callback, give gdb a
471 chance to detect errors and do something. */
474 stdin_event_handler (int error
, gdb_client_data client_data
)
476 struct ui
*ui
= (struct ui
*) client_data
;
480 /* Switch to the main UI, so diagnostics always go there. */
481 current_ui
= main_ui
;
483 delete_file_handler (ui
->input_fd
);
486 /* If stdin died, we may as well kill gdb. */
487 printf_unfiltered (_("error detected on stdin\n"));
488 quit_command ((char *) 0, 0);
492 /* Simply delete the UI. */
498 /* Switch to the UI whose input descriptor woke up the event
502 /* This makes sure a ^C immediately followed by further input is
503 always processed in that order. E.g,. with input like
504 "^Cprint 1\n", the SIGINT handler runs, marks the async
505 signal handler, and then select/poll may return with stdin
506 ready, instead of -1/EINTR. The
507 gdb.base/double-prompt-target-event-error.exp test exercises
513 call_stdin_event_handler_again_p
= 0;
514 ui
->call_readline (client_data
);
516 while (call_stdin_event_handler_again_p
!= 0);
523 ui_register_input_event_handler (struct ui
*ui
)
525 add_file_handler (ui
->input_fd
, stdin_event_handler
, ui
);
531 ui_unregister_input_event_handler (struct ui
*ui
)
533 delete_file_handler (ui
->input_fd
);
536 /* Re-enable stdin after the end of an execution command in
537 synchronous mode, or after an error from the target, and we aborted
538 the exec operation. */
541 async_enable_stdin (void)
543 struct ui
*ui
= current_ui
;
545 if (ui
->prompt_state
== PROMPT_BLOCKED
)
547 target_terminal::ours ();
548 ui_register_input_event_handler (ui
);
549 ui
->prompt_state
= PROMPT_NEEDED
;
553 /* Disable reads from stdin (the console) marking the command as
557 async_disable_stdin (void)
559 struct ui
*ui
= current_ui
;
561 ui
->prompt_state
= PROMPT_BLOCKED
;
562 delete_file_handler (ui
->input_fd
);
566 /* Handle a gdb command line. This function is called when
567 handle_line_of_input has concatenated one or more input lines into
571 command_handler (const char *command
)
573 struct ui
*ui
= current_ui
;
576 if (ui
->instream
== ui
->stdin_stream
)
577 reinitialize_more_filter ();
579 scoped_command_stats
stat_reporter (true);
581 /* Do not execute commented lines. */
582 for (c
= command
; *c
== ' ' || *c
== '\t'; c
++)
586 execute_command (command
, ui
->instream
== ui
->stdin_stream
);
588 /* Do any commands attached to breakpoint we stopped at. */
589 bpstat_do_actions ();
593 /* Append RL, an input line returned by readline or one of its
594 emulations, to CMD_LINE_BUFFER. Returns the command line if we
595 have a whole command line ready to be processed by the command
596 interpreter or NULL if the command line isn't complete yet (input
597 line ends in a backslash). */
600 command_line_append_input_line (struct buffer
*cmd_line_buffer
, const char *rl
)
607 if (len
> 0 && rl
[len
- 1] == '\\')
609 /* Don't copy the backslash and wait for more. */
610 buffer_grow (cmd_line_buffer
, rl
, len
- 1);
615 /* Copy whole line including terminating null, and we're
617 buffer_grow (cmd_line_buffer
, rl
, len
+ 1);
618 cmd
= cmd_line_buffer
->buffer
;
624 /* Handle a line of input coming from readline.
626 If the read line ends with a continuation character (backslash),
627 save the partial input in CMD_LINE_BUFFER (except the backslash),
628 and return NULL. Otherwise, save the partial input and return a
629 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
630 whole command line is ready to be executed.
632 Returns EOF on end of file.
634 If REPEAT, handle command repetitions:
636 - If the input command line is NOT empty, the command returned is
637 copied into the global 'saved_command_line' var so that it can
640 - OTOH, if the input command line IS empty, return the previously
641 saved command instead of the empty input line.
645 handle_line_of_input (struct buffer
*cmd_line_buffer
,
646 const char *rl
, int repeat
,
647 const char *annotation_suffix
)
649 struct ui
*ui
= current_ui
;
650 int from_tty
= ui
->instream
== ui
->stdin_stream
;
657 cmd
= command_line_append_input_line (cmd_line_buffer
, rl
);
661 /* We have a complete command line now. Prepare for the next
662 command, but leave ownership of memory to the buffer . */
663 cmd_line_buffer
->used_size
= 0;
665 if (from_tty
&& annotation_level
> 1)
667 printf_unfiltered (("\n\032\032post-"));
668 puts_unfiltered (annotation_suffix
);
669 printf_unfiltered (("\n"));
672 #define SERVER_COMMAND_PREFIX "server "
673 server_command
= startswith (cmd
, SERVER_COMMAND_PREFIX
);
676 /* Note that we don't set `saved_command_line'. Between this
677 and the check in dont_repeat, this insures that repeating
678 will still do the right thing. */
679 return cmd
+ strlen (SERVER_COMMAND_PREFIX
);
682 /* Do history expansion if that is wished. */
683 if (history_expansion_p
&& from_tty
&& input_interactive_p (current_ui
))
688 expanded
= history_expand (cmd
, &cmd_expansion
);
689 gdb::unique_xmalloc_ptr
<char> history_value (cmd_expansion
);
694 /* Print the changes. */
695 printf_unfiltered ("%s\n", history_value
.get ());
697 /* If there was an error, call this function again. */
701 /* history_expand returns an allocated string. Just replace
702 our buffer with it. */
703 len
= strlen (history_value
.get ());
704 xfree (buffer_finish (cmd_line_buffer
));
705 cmd_line_buffer
->buffer
= history_value
.get ();
706 cmd_line_buffer
->buffer_size
= len
+ 1;
707 cmd
= history_value
.release ();
711 /* If we just got an empty line, and that is supposed to repeat the
712 previous command, return the previously saved command. */
713 for (p1
= cmd
; *p1
== ' ' || *p1
== '\t'; p1
++)
715 if (repeat
&& *p1
== '\0')
716 return saved_command_line
;
718 /* Add command to history if appropriate. Note: lines consisting
719 solely of comments are also added to the command history. This
720 is useful when you type a command, and then realize you don't
721 want to execute it quite yet. You can comment out the command
722 and then later fetch it from the value history and remove the
723 '#'. The kill ring is probably better, but some people are in
724 the habit of commenting things out. */
725 if (*cmd
!= '\0' && from_tty
&& input_interactive_p (current_ui
))
726 gdb_add_history (cmd
);
728 /* Save into global buffer if appropriate. */
731 xfree (saved_command_line
);
732 saved_command_line
= xstrdup (cmd
);
733 return saved_command_line
;
739 /* Handle a complete line of input. This is called by the callback
740 mechanism within the readline library. Deal with incomplete
741 commands as well, by saving the partial input in a global
744 NOTE: This is the asynchronous version of the command_line_input
748 command_line_handler (gdb::unique_xmalloc_ptr
<char> &&rl
)
750 struct buffer
*line_buffer
= get_command_line_buffer ();
751 struct ui
*ui
= current_ui
;
754 cmd
= handle_line_of_input (line_buffer
, rl
.get (), 1, "prompt");
755 if (cmd
== (char *) EOF
)
757 /* stdin closed. The connection with the terminal is gone.
758 This happens at the end of a testsuite run, after Expect has
759 hung up but GDB is still alive. In such a case, we just quit
760 gdb killing the inferior program too. */
761 printf_unfiltered ("quit\n");
762 execute_command ("quit", 1);
764 else if (cmd
== NULL
)
766 /* We don't have a full line yet. Print an empty prompt. */
767 display_gdb_prompt ("");
771 ui
->prompt_state
= PROMPT_NEEDED
;
773 command_handler (cmd
);
775 if (ui
->prompt_state
!= PROMPTED
)
776 display_gdb_prompt (0);
780 /* Does reading of input from terminal w/o the editing features
781 provided by the readline library. Calls the line input handler
782 once we have a whole input line. */
785 gdb_readline_no_editing_callback (gdb_client_data client_data
)
789 struct buffer line_buffer
;
790 static int done_once
= 0;
791 struct ui
*ui
= current_ui
;
793 buffer_init (&line_buffer
);
795 /* Unbuffer the input stream, so that, later on, the calls to fgetc
796 fetch only one char at the time from the stream. The fgetc's will
797 get up to the first newline, but there may be more chars in the
798 stream after '\n'. If we buffer the input and fgetc drains the
799 stream, getting stuff beyond the newline as well, a select, done
800 afterwards will not trigger. */
801 if (!done_once
&& !ISATTY (ui
->instream
))
803 setbuf (ui
->instream
, NULL
);
807 /* We still need the while loop here, even though it would seem
808 obvious to invoke gdb_readline_no_editing_callback at every
809 character entered. If not using the readline library, the
810 terminal is in cooked mode, which sends the characters all at
811 once. Poll will notice that the input fd has changed state only
812 after enter is pressed. At this point we still need to fetch all
813 the chars entered. */
817 /* Read from stdin if we are executing a user defined command.
818 This is the right thing for prompt_for_continue, at least. */
819 c
= fgetc (ui
->instream
!= NULL
? ui
->instream
: ui
->stdin_stream
);
823 if (line_buffer
.used_size
> 0)
825 /* The last line does not end with a newline. Return it, and
826 if we are called again fgetc will still return EOF and
827 we'll return NULL then. */
830 xfree (buffer_finish (&line_buffer
));
831 ui
->input_handler (NULL
);
837 if (line_buffer
.used_size
> 0
838 && line_buffer
.buffer
[line_buffer
.used_size
- 1] == '\r')
839 line_buffer
.used_size
--;
843 buffer_grow_char (&line_buffer
, c
);
846 buffer_grow_char (&line_buffer
, '\0');
847 result
= buffer_finish (&line_buffer
);
848 ui
->input_handler (gdb::unique_xmalloc_ptr
<char> (result
));
852 /* The serial event associated with the QUIT flag. set_quit_flag sets
853 this, and check_quit_flag clears it. Used by interruptible_select
854 to be able to do interruptible I/O with no race with the SIGINT
856 static struct serial_event
*quit_serial_event
;
858 /* Initialization of signal handlers and tokens. There is a function
859 handle_sig* for each of the signals GDB cares about. Specifically:
860 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
861 functions are the actual signal handlers associated to the signals
862 via calls to signal(). The only job for these functions is to
863 enqueue the appropriate event/procedure with the event loop. Such
864 procedures are the old signal handlers. The event loop will take
865 care of invoking the queued procedures to perform the usual tasks
866 associated with the reception of the signal. */
867 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
868 init_signals will become obsolete as we move to have to event loop
869 as the default for gdb. */
871 async_init_signals (void)
873 initialize_async_signal_handlers ();
875 quit_serial_event
= make_serial_event ();
877 signal (SIGINT
, handle_sigint
);
879 create_async_signal_handler (async_request_quit
, NULL
);
880 signal (SIGTERM
, handle_sigterm
);
882 = create_async_signal_handler (async_sigterm_handler
, NULL
);
884 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
885 to the inferior and breakpoints will be ignored. */
887 signal (SIGTRAP
, SIG_DFL
);
891 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
892 passed to the inferior, which we don't want. It would be
893 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
894 on BSD4.3 systems using vfork, that can affect the
895 GDB process as well as the inferior (the signal handling tables
896 might be in memory, shared between the two). Since we establish
897 a handler for SIGQUIT, when we call exec it will set the signal
898 to SIG_DFL for us. */
899 signal (SIGQUIT
, handle_sigquit
);
901 create_async_signal_handler (async_do_nothing
, NULL
);
904 if (signal (SIGHUP
, handle_sighup
) != SIG_IGN
)
906 create_async_signal_handler (async_disconnect
, NULL
);
909 create_async_signal_handler (async_do_nothing
, NULL
);
911 signal (SIGFPE
, handle_sigfpe
);
913 create_async_signal_handler (async_float_handler
, NULL
);
917 create_async_signal_handler (async_sigtstp_handler
, NULL
);
924 quit_serial_event_set (void)
926 serial_event_set (quit_serial_event
);
932 quit_serial_event_clear (void)
934 serial_event_clear (quit_serial_event
);
937 /* Return the selectable file descriptor of the serial event
938 associated with the quit flag. */
941 quit_serial_event_fd (void)
943 return serial_event_fd (quit_serial_event
);
949 default_quit_handler (void)
951 if (check_quit_flag ())
953 if (target_terminal::is_ours ())
956 target_pass_ctrlc ();
961 quit_handler_ftype
*quit_handler
= default_quit_handler
;
963 /* Handle a SIGINT. */
966 handle_sigint (int sig
)
968 signal (sig
, handle_sigint
);
970 /* We could be running in a loop reading in symfiles or something so
971 it may be quite a while before we get back to the event loop. So
972 set quit_flag to 1 here. Then if QUIT is called before we get to
973 the event loop, we will unwind as expected. */
976 /* In case nothing calls QUIT before the event loop is reached, the
977 event loop handles it. */
978 mark_async_signal_handler (sigint_token
);
981 /* See gdb_select.h. */
984 interruptible_select (int n
,
985 fd_set
*readfds
, fd_set
*writefds
, fd_set
*exceptfds
,
986 struct timeval
*timeout
)
994 readfds
= &my_readfds
;
995 FD_ZERO (&my_readfds
);
998 fd
= quit_serial_event_fd ();
999 FD_SET (fd
, readfds
);
1005 res
= gdb_select (n
, readfds
, writefds
, exceptfds
, timeout
);
1007 while (res
== -1 && errno
== EINTR
);
1009 if (res
== 1 && FD_ISSET (fd
, readfds
))
1017 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1020 async_sigterm_handler (gdb_client_data arg
)
1022 quit_force (NULL
, 0);
1026 volatile int sync_quit_force_run
;
1028 /* Quit GDB if SIGTERM is received.
1029 GDB would quit anyway, but this way it will clean up properly. */
1031 handle_sigterm (int sig
)
1033 signal (sig
, handle_sigterm
);
1035 sync_quit_force_run
= 1;
1038 mark_async_signal_handler (async_sigterm_token
);
1041 /* Do the quit. All the checks have been done by the caller. */
1043 async_request_quit (gdb_client_data arg
)
1045 /* If the quit_flag has gotten reset back to 0 by the time we get
1046 back here, that means that an exception was thrown to unwind the
1047 current command before we got back to the event loop. So there
1048 is no reason to call quit again here. */
1053 /* Tell the event loop what to do if SIGQUIT is received.
1054 See event-signal.c. */
1056 handle_sigquit (int sig
)
1058 mark_async_signal_handler (sigquit_token
);
1059 signal (sig
, handle_sigquit
);
1063 #if defined (SIGQUIT) || defined (SIGHUP)
1064 /* Called by the event loop in response to a SIGQUIT or an
1067 async_do_nothing (gdb_client_data arg
)
1069 /* Empty function body. */
1074 /* Tell the event loop what to do if SIGHUP is received.
1075 See event-signal.c. */
1077 handle_sighup (int sig
)
1079 mark_async_signal_handler (sighup_token
);
1080 signal (sig
, handle_sighup
);
1083 /* Called by the event loop to process a SIGHUP. */
1085 async_disconnect (gdb_client_data arg
)
1093 catch (const gdb_exception
&exception
)
1095 fputs_filtered ("Could not kill the program being debugged",
1097 exception_print (gdb_stderr
, exception
);
1104 catch (const gdb_exception
&exception
)
1108 signal (SIGHUP
, SIG_DFL
); /*FIXME: ??????????? */
1115 handle_sigtstp (int sig
)
1117 mark_async_signal_handler (sigtstp_token
);
1118 signal (sig
, handle_sigtstp
);
1122 async_sigtstp_handler (gdb_client_data arg
)
1124 char *prompt
= get_prompt ();
1126 signal (SIGTSTP
, SIG_DFL
);
1127 #if HAVE_SIGPROCMASK
1131 sigemptyset (&zero
);
1132 sigprocmask (SIG_SETMASK
, &zero
, 0);
1134 #elif HAVE_SIGSETMASK
1138 signal (SIGTSTP
, handle_sigtstp
);
1139 printf_unfiltered ("%s", prompt
);
1140 gdb_flush (gdb_stdout
);
1142 /* Forget about any previous command -- null line now will do
1146 #endif /* SIGTSTP */
1148 /* Tell the event loop what to do if SIGFPE is received.
1149 See event-signal.c. */
1151 handle_sigfpe (int sig
)
1153 mark_async_signal_handler (sigfpe_token
);
1154 signal (sig
, handle_sigfpe
);
1157 /* Event loop will call this functin to process a SIGFPE. */
1159 async_float_handler (gdb_client_data arg
)
1161 /* This message is based on ANSI C, section 4.7. Note that integer
1162 divide by zero causes this, so "float" is a misnomer. */
1163 error (_("Erroneous arithmetic operation."));
1167 /* Set things up for readline to be invoked via the alternate
1168 interface, i.e. via a callback function
1169 (gdb_rl_callback_read_char), and hook up instream to the event
1173 gdb_setup_readline (int editing
)
1175 struct ui
*ui
= current_ui
;
1177 /* This function is a noop for the sync case. The assumption is
1178 that the sync setup is ALL done in gdb_init, and we would only
1179 mess it up here. The sync stuff should really go away over
1182 gdb_stdout
= new stdio_file (ui
->outstream
);
1183 gdb_stderr
= new stderr_file (ui
->errstream
);
1184 gdb_stdlog
= gdb_stderr
; /* for moment */
1185 gdb_stdtarg
= gdb_stderr
; /* for moment */
1186 gdb_stdtargerr
= gdb_stderr
; /* for moment */
1188 /* If the input stream is connected to a terminal, turn on editing.
1189 However, that is only allowed on the main UI, as we can only have
1190 one instance of readline. */
1191 if (ISATTY (ui
->instream
) && editing
&& ui
== main_ui
)
1193 /* Tell gdb that we will be using the readline library. This
1194 could be overwritten by a command in .gdbinit like 'set
1195 editing on' or 'off'. */
1196 ui
->command_editing
= 1;
1198 /* When a character is detected on instream by select or poll,
1199 readline will be invoked via this callback function. */
1200 ui
->call_readline
= gdb_rl_callback_read_char_wrapper
;
1202 /* Tell readline to use the same input stream that gdb uses. */
1203 rl_instream
= ui
->instream
;
1207 ui
->command_editing
= 0;
1208 ui
->call_readline
= gdb_readline_no_editing_callback
;
1211 /* Now create the event source for this UI's input file descriptor.
1212 Another source is going to be the target program (inferior), but
1213 that must be registered only when it actually exists (I.e. after
1214 we say 'run' or after we connect to a remote target. */
1215 ui_register_input_event_handler (ui
);
1218 /* Disable command input through the standard CLI channels. Used in
1219 the suspend proc for interpreters that use the standard gdb readline
1220 interface, like the cli & the mi. */
1223 gdb_disable_readline (void)
1225 struct ui
*ui
= current_ui
;
1227 /* FIXME - It is too heavyweight to delete and remake these every
1228 time you run an interpreter that needs readline. It is probably
1229 better to have the interpreters cache these, which in turn means
1230 that this needs to be moved into interpreter specific code. */
1233 ui_file_delete (gdb_stdout
);
1234 ui_file_delete (gdb_stderr
);
1237 gdb_stdtargerr
= NULL
;
1240 if (ui
->command_editing
)
1241 gdb_rl_callback_handler_remove ();
1242 delete_file_handler (ui
->input_fd
);