[PATCH 5/57][Arm][GAS] Add support for MVE instructions: vmull{b,t}
[binutils-gdb.git] / gdb / event-top.c
blob3ccf136ff12d3478bd18c81aa3eb043b3f164cee
1 /* Top level stuff for GDB, the GNU debugger.
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observable.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "common/buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
48 /* readline defines this. */
49 #undef savestring
51 static std::string top_level_prompt ();
53 /* Signal handlers. */
54 #ifdef SIGQUIT
55 static void handle_sigquit (int sig);
56 #endif
57 #ifdef SIGHUP
58 static void handle_sighup (int sig);
59 #endif
60 static void handle_sigfpe (int sig);
62 /* Functions to be invoked by the event loop in response to
63 signals. */
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data);
66 #endif
67 #ifdef SIGHUP
68 static void async_disconnect (gdb_client_data);
69 #endif
70 static void async_float_handler (gdb_client_data);
71 #ifdef SIGTSTP
72 static void async_sigtstp_handler (gdb_client_data);
73 #endif
74 static void async_sigterm_handler (gdb_client_data arg);
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
81 /* Important variables for the event loop. */
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var;
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p = 0;
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
97 run again. */
98 int call_stdin_event_handler_again_p;
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler *sigint_token;
107 #ifdef SIGHUP
108 static struct async_signal_handler *sighup_token;
109 #endif
110 #ifdef SIGQUIT
111 static struct async_signal_handler *sigquit_token;
112 #endif
113 static struct async_signal_handler *sigfpe_token;
114 #ifdef SIGTSTP
115 static struct async_signal_handler *sigtstp_token;
116 #endif
117 static struct async_signal_handler *async_sigterm_token;
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook) (void);
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
133 On the exceptions issue:
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
139 others don't.
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. This must be
161 noexcept in order to avoid problems with mixing sjlj and
162 (sjlj-based) C++ exceptions. */
164 static struct gdb_exception
165 gdb_rl_callback_read_char_wrapper_noexcept () noexcept
167 struct gdb_exception gdb_expt;
169 /* C++ exceptions can't normally be thrown across readline (unless
170 it is built with -fexceptions, but it won't by default on many
171 ABIs). So we instead wrap the readline call with a sjlj-based
172 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
173 TRY_SJLJ
175 rl_callback_read_char ();
176 if (after_char_processing_hook)
177 (*after_char_processing_hook) ();
179 CATCH_SJLJ (ex, RETURN_MASK_ALL)
181 gdb_expt = std::move (ex);
183 END_CATCH_SJLJ
185 return gdb_expt;
188 static void
189 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
191 struct gdb_exception gdb_expt
192 = gdb_rl_callback_read_char_wrapper_noexcept ();
194 /* Rethrow using the normal EH mechanism. */
195 if (gdb_expt.reason < 0)
196 throw_exception (std::move (gdb_expt));
199 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
200 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
201 across readline. See gdb_rl_callback_read_char_wrapper. This must
202 be noexcept in order to avoid problems with mixing sjlj and
203 (sjlj-based) C++ exceptions. */
205 static void
206 gdb_rl_callback_handler (char *rl) noexcept
208 /* This is static to avoid undefined behavior when calling longjmp
209 -- gdb_exception has a destructor with side effects. */
210 static struct gdb_exception gdb_rl_expt;
211 struct ui *ui = current_ui;
215 /* Ensure the exception is reset on each call. */
216 gdb_rl_expt = {};
217 ui->input_handler (gdb::unique_xmalloc_ptr<char> (rl));
219 catch (gdb_exception &ex)
221 gdb_rl_expt = std::move (ex);
224 /* If we caught a GDB exception, longjmp out of the readline
225 callback. There's no other way for the callback to signal to
226 readline that an error happened. A normal return would have
227 readline potentially continue processing further input, redisplay
228 the prompt, etc. (This is what GDB historically did when it was
229 a C program.) Note that since we're long jumping, local variable
230 dtors are NOT run automatically. */
231 if (gdb_rl_expt.reason < 0)
232 throw_exception_sjlj (gdb_rl_expt);
235 /* Change the function to be invoked every time there is a character
236 ready on stdin. This is used when the user sets the editing off,
237 therefore bypassing readline, and letting gdb handle the input
238 itself, via gdb_readline_no_editing_callback. Also it is used in
239 the opposite case in which the user sets editing on again, by
240 restoring readline handling of the input.
242 NOTE: this operates on input_fd, not instream. If we are reading
243 commands from a file, instream will point to the file. However, we
244 always read commands from a file with editing off. This means that
245 the 'set editing on/off' will have effect only on the interactive
246 session. */
248 void
249 change_line_handler (int editing)
251 struct ui *ui = current_ui;
253 /* We can only have one instance of readline, so we only allow
254 editing on the main UI. */
255 if (ui != main_ui)
256 return;
258 /* Don't try enabling editing if the interpreter doesn't support it
259 (e.g., MI). */
260 if (!interp_supports_command_editing (top_level_interpreter ())
261 || !interp_supports_command_editing (command_interp ()))
262 return;
264 if (editing)
266 gdb_assert (ui == main_ui);
268 /* Turn on editing by using readline. */
269 ui->call_readline = gdb_rl_callback_read_char_wrapper;
271 else
273 /* Turn off editing by using gdb_readline_no_editing_callback. */
274 if (ui->command_editing)
275 gdb_rl_callback_handler_remove ();
276 ui->call_readline = gdb_readline_no_editing_callback;
278 ui->command_editing = editing;
281 /* The functions below are wrappers for rl_callback_handler_remove and
282 rl_callback_handler_install that keep track of whether the callback
283 handler is installed in readline. This is necessary because after
284 handling a target event of a background execution command, we may
285 need to reinstall the callback handler if it was removed due to a
286 secondary prompt. See gdb_readline_wrapper_line. We don't
287 unconditionally install the handler for every target event because
288 that also clears the line buffer, thus installing it while the user
289 is typing would lose input. */
291 /* Whether we've registered a callback handler with readline. */
292 static int callback_handler_installed;
294 /* See event-top.h, and above. */
296 void
297 gdb_rl_callback_handler_remove (void)
299 gdb_assert (current_ui == main_ui);
301 rl_callback_handler_remove ();
302 callback_handler_installed = 0;
305 /* See event-top.h, and above. Note this wrapper doesn't have an
306 actual callback parameter because we always install
307 INPUT_HANDLER. */
309 void
310 gdb_rl_callback_handler_install (const char *prompt)
312 gdb_assert (current_ui == main_ui);
314 /* Calling rl_callback_handler_install resets readline's input
315 buffer. Calling this when we were already processing input
316 therefore loses input. */
317 gdb_assert (!callback_handler_installed);
319 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
320 callback_handler_installed = 1;
323 /* See event-top.h, and above. */
325 void
326 gdb_rl_callback_handler_reinstall (void)
328 gdb_assert (current_ui == main_ui);
330 if (!callback_handler_installed)
332 /* Passing NULL as prompt argument tells readline to not display
333 a prompt. */
334 gdb_rl_callback_handler_install (NULL);
338 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
339 prompt that is displayed is the current top level prompt.
340 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
341 prompt.
343 This is used after each gdb command has completed, and in the
344 following cases:
346 1. When the user enters a command line which is ended by '\'
347 indicating that the command will continue on the next line. In
348 that case the prompt that is displayed is the empty string.
350 2. When the user is entering 'commands' for a breakpoint, or
351 actions for a tracepoint. In this case the prompt will be '>'
353 3. On prompting for pagination. */
355 void
356 display_gdb_prompt (const char *new_prompt)
358 std::string actual_gdb_prompt;
360 annotate_display_prompt ();
362 /* Reset the nesting depth used when trace-commands is set. */
363 reset_command_nest_depth ();
365 /* Do not call the python hook on an explicit prompt change as
366 passed to this function, as this forms a secondary/local prompt,
367 IE, displayed but not set. */
368 if (! new_prompt)
370 struct ui *ui = current_ui;
372 if (ui->prompt_state == PROMPTED)
373 internal_error (__FILE__, __LINE__, _("double prompt"));
374 else if (ui->prompt_state == PROMPT_BLOCKED)
376 /* This is to trick readline into not trying to display the
377 prompt. Even though we display the prompt using this
378 function, readline still tries to do its own display if
379 we don't call rl_callback_handler_install and
380 rl_callback_handler_remove (which readline detects
381 because a global variable is not set). If readline did
382 that, it could mess up gdb signal handlers for SIGINT.
383 Readline assumes that between calls to rl_set_signals and
384 rl_clear_signals gdb doesn't do anything with the signal
385 handlers. Well, that's not the case, because when the
386 target executes we change the SIGINT signal handler. If
387 we allowed readline to display the prompt, the signal
388 handler change would happen exactly between the calls to
389 the above two functions. Calling
390 rl_callback_handler_remove(), does the job. */
392 if (current_ui->command_editing)
393 gdb_rl_callback_handler_remove ();
394 return;
396 else if (ui->prompt_state == PROMPT_NEEDED)
398 /* Display the top level prompt. */
399 actual_gdb_prompt = top_level_prompt ();
400 ui->prompt_state = PROMPTED;
403 else
404 actual_gdb_prompt = new_prompt;
406 if (current_ui->command_editing)
408 gdb_rl_callback_handler_remove ();
409 gdb_rl_callback_handler_install (actual_gdb_prompt.c_str ());
411 /* new_prompt at this point can be the top of the stack or the one
412 passed in. It can't be NULL. */
413 else
415 /* Don't use a _filtered function here. It causes the assumed
416 character position to be off, since the newline we read from
417 the user is not accounted for. */
418 fputs_unfiltered (actual_gdb_prompt.c_str (), gdb_stdout);
419 gdb_flush (gdb_stdout);
423 /* Return the top level prompt, as specified by "set prompt", possibly
424 overriden by the python gdb.prompt_hook hook, and then composed
425 with the prompt prefix and suffix (annotations). */
427 static std::string
428 top_level_prompt (void)
430 char *prompt;
432 /* Give observers a chance of changing the prompt. E.g., the python
433 `gdb.prompt_hook' is installed as an observer. */
434 gdb::observers::before_prompt.notify (get_prompt ());
436 prompt = get_prompt ();
438 if (annotation_level >= 2)
440 /* Prefix needs to have new line at end. */
441 const char prefix[] = "\n\032\032pre-prompt\n";
443 /* Suffix needs to have a new line at end and \032 \032 at
444 beginning. */
445 const char suffix[] = "\n\032\032prompt\n";
447 return std::string (prefix) + prompt + suffix;
450 return prompt;
453 /* See top.h. */
455 struct ui *main_ui;
456 struct ui *current_ui;
457 struct ui *ui_list;
459 /* Get a pointer to the current UI's line buffer. This is used to
460 construct a whole line of input from partial input. */
462 static struct buffer *
463 get_command_line_buffer (void)
465 return &current_ui->line_buffer;
468 /* When there is an event ready on the stdin file descriptor, instead
469 of calling readline directly throught the callback function, or
470 instead of calling gdb_readline_no_editing_callback, give gdb a
471 chance to detect errors and do something. */
473 void
474 stdin_event_handler (int error, gdb_client_data client_data)
476 struct ui *ui = (struct ui *) client_data;
478 if (error)
480 /* Switch to the main UI, so diagnostics always go there. */
481 current_ui = main_ui;
483 delete_file_handler (ui->input_fd);
484 if (main_ui == ui)
486 /* If stdin died, we may as well kill gdb. */
487 printf_unfiltered (_("error detected on stdin\n"));
488 quit_command ((char *) 0, 0);
490 else
492 /* Simply delete the UI. */
493 delete ui;
496 else
498 /* Switch to the UI whose input descriptor woke up the event
499 loop. */
500 current_ui = ui;
502 /* This makes sure a ^C immediately followed by further input is
503 always processed in that order. E.g,. with input like
504 "^Cprint 1\n", the SIGINT handler runs, marks the async
505 signal handler, and then select/poll may return with stdin
506 ready, instead of -1/EINTR. The
507 gdb.base/double-prompt-target-event-error.exp test exercises
508 this. */
509 QUIT;
513 call_stdin_event_handler_again_p = 0;
514 ui->call_readline (client_data);
516 while (call_stdin_event_handler_again_p != 0);
520 /* See top.h. */
522 void
523 ui_register_input_event_handler (struct ui *ui)
525 add_file_handler (ui->input_fd, stdin_event_handler, ui);
528 /* See top.h. */
530 void
531 ui_unregister_input_event_handler (struct ui *ui)
533 delete_file_handler (ui->input_fd);
536 /* Re-enable stdin after the end of an execution command in
537 synchronous mode, or after an error from the target, and we aborted
538 the exec operation. */
540 void
541 async_enable_stdin (void)
543 struct ui *ui = current_ui;
545 if (ui->prompt_state == PROMPT_BLOCKED)
547 target_terminal::ours ();
548 ui_register_input_event_handler (ui);
549 ui->prompt_state = PROMPT_NEEDED;
553 /* Disable reads from stdin (the console) marking the command as
554 synchronous. */
556 void
557 async_disable_stdin (void)
559 struct ui *ui = current_ui;
561 ui->prompt_state = PROMPT_BLOCKED;
562 delete_file_handler (ui->input_fd);
566 /* Handle a gdb command line. This function is called when
567 handle_line_of_input has concatenated one or more input lines into
568 a whole command. */
570 void
571 command_handler (const char *command)
573 struct ui *ui = current_ui;
574 const char *c;
576 if (ui->instream == ui->stdin_stream)
577 reinitialize_more_filter ();
579 scoped_command_stats stat_reporter (true);
581 /* Do not execute commented lines. */
582 for (c = command; *c == ' ' || *c == '\t'; c++)
584 if (c[0] != '#')
586 execute_command (command, ui->instream == ui->stdin_stream);
588 /* Do any commands attached to breakpoint we stopped at. */
589 bpstat_do_actions ();
593 /* Append RL, an input line returned by readline or one of its
594 emulations, to CMD_LINE_BUFFER. Returns the command line if we
595 have a whole command line ready to be processed by the command
596 interpreter or NULL if the command line isn't complete yet (input
597 line ends in a backslash). */
599 static char *
600 command_line_append_input_line (struct buffer *cmd_line_buffer, const char *rl)
602 char *cmd;
603 size_t len;
605 len = strlen (rl);
607 if (len > 0 && rl[len - 1] == '\\')
609 /* Don't copy the backslash and wait for more. */
610 buffer_grow (cmd_line_buffer, rl, len - 1);
611 cmd = NULL;
613 else
615 /* Copy whole line including terminating null, and we're
616 done. */
617 buffer_grow (cmd_line_buffer, rl, len + 1);
618 cmd = cmd_line_buffer->buffer;
621 return cmd;
624 /* Handle a line of input coming from readline.
626 If the read line ends with a continuation character (backslash),
627 save the partial input in CMD_LINE_BUFFER (except the backslash),
628 and return NULL. Otherwise, save the partial input and return a
629 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
630 whole command line is ready to be executed.
632 Returns EOF on end of file.
634 If REPEAT, handle command repetitions:
636 - If the input command line is NOT empty, the command returned is
637 copied into the global 'saved_command_line' var so that it can
638 be repeated later.
640 - OTOH, if the input command line IS empty, return the previously
641 saved command instead of the empty input line.
644 char *
645 handle_line_of_input (struct buffer *cmd_line_buffer,
646 const char *rl, int repeat,
647 const char *annotation_suffix)
649 struct ui *ui = current_ui;
650 int from_tty = ui->instream == ui->stdin_stream;
651 char *p1;
652 char *cmd;
654 if (rl == NULL)
655 return (char *) EOF;
657 cmd = command_line_append_input_line (cmd_line_buffer, rl);
658 if (cmd == NULL)
659 return NULL;
661 /* We have a complete command line now. Prepare for the next
662 command, but leave ownership of memory to the buffer . */
663 cmd_line_buffer->used_size = 0;
665 if (from_tty && annotation_level > 1)
667 printf_unfiltered (("\n\032\032post-"));
668 puts_unfiltered (annotation_suffix);
669 printf_unfiltered (("\n"));
672 #define SERVER_COMMAND_PREFIX "server "
673 server_command = startswith (cmd, SERVER_COMMAND_PREFIX);
674 if (server_command)
676 /* Note that we don't set `saved_command_line'. Between this
677 and the check in dont_repeat, this insures that repeating
678 will still do the right thing. */
679 return cmd + strlen (SERVER_COMMAND_PREFIX);
682 /* Do history expansion if that is wished. */
683 if (history_expansion_p && from_tty && input_interactive_p (current_ui))
685 char *cmd_expansion;
686 int expanded;
688 expanded = history_expand (cmd, &cmd_expansion);
689 gdb::unique_xmalloc_ptr<char> history_value (cmd_expansion);
690 if (expanded)
692 size_t len;
694 /* Print the changes. */
695 printf_unfiltered ("%s\n", history_value.get ());
697 /* If there was an error, call this function again. */
698 if (expanded < 0)
699 return cmd;
701 /* history_expand returns an allocated string. Just replace
702 our buffer with it. */
703 len = strlen (history_value.get ());
704 xfree (buffer_finish (cmd_line_buffer));
705 cmd_line_buffer->buffer = history_value.get ();
706 cmd_line_buffer->buffer_size = len + 1;
707 cmd = history_value.release ();
711 /* If we just got an empty line, and that is supposed to repeat the
712 previous command, return the previously saved command. */
713 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
715 if (repeat && *p1 == '\0')
716 return saved_command_line;
718 /* Add command to history if appropriate. Note: lines consisting
719 solely of comments are also added to the command history. This
720 is useful when you type a command, and then realize you don't
721 want to execute it quite yet. You can comment out the command
722 and then later fetch it from the value history and remove the
723 '#'. The kill ring is probably better, but some people are in
724 the habit of commenting things out. */
725 if (*cmd != '\0' && from_tty && input_interactive_p (current_ui))
726 gdb_add_history (cmd);
728 /* Save into global buffer if appropriate. */
729 if (repeat)
731 xfree (saved_command_line);
732 saved_command_line = xstrdup (cmd);
733 return saved_command_line;
735 else
736 return cmd;
739 /* Handle a complete line of input. This is called by the callback
740 mechanism within the readline library. Deal with incomplete
741 commands as well, by saving the partial input in a global
742 buffer.
744 NOTE: This is the asynchronous version of the command_line_input
745 function. */
747 void
748 command_line_handler (gdb::unique_xmalloc_ptr<char> &&rl)
750 struct buffer *line_buffer = get_command_line_buffer ();
751 struct ui *ui = current_ui;
752 char *cmd;
754 cmd = handle_line_of_input (line_buffer, rl.get (), 1, "prompt");
755 if (cmd == (char *) EOF)
757 /* stdin closed. The connection with the terminal is gone.
758 This happens at the end of a testsuite run, after Expect has
759 hung up but GDB is still alive. In such a case, we just quit
760 gdb killing the inferior program too. */
761 printf_unfiltered ("quit\n");
762 execute_command ("quit", 1);
764 else if (cmd == NULL)
766 /* We don't have a full line yet. Print an empty prompt. */
767 display_gdb_prompt ("");
769 else
771 ui->prompt_state = PROMPT_NEEDED;
773 command_handler (cmd);
775 if (ui->prompt_state != PROMPTED)
776 display_gdb_prompt (0);
780 /* Does reading of input from terminal w/o the editing features
781 provided by the readline library. Calls the line input handler
782 once we have a whole input line. */
784 void
785 gdb_readline_no_editing_callback (gdb_client_data client_data)
787 int c;
788 char *result;
789 struct buffer line_buffer;
790 static int done_once = 0;
791 struct ui *ui = current_ui;
793 buffer_init (&line_buffer);
795 /* Unbuffer the input stream, so that, later on, the calls to fgetc
796 fetch only one char at the time from the stream. The fgetc's will
797 get up to the first newline, but there may be more chars in the
798 stream after '\n'. If we buffer the input and fgetc drains the
799 stream, getting stuff beyond the newline as well, a select, done
800 afterwards will not trigger. */
801 if (!done_once && !ISATTY (ui->instream))
803 setbuf (ui->instream, NULL);
804 done_once = 1;
807 /* We still need the while loop here, even though it would seem
808 obvious to invoke gdb_readline_no_editing_callback at every
809 character entered. If not using the readline library, the
810 terminal is in cooked mode, which sends the characters all at
811 once. Poll will notice that the input fd has changed state only
812 after enter is pressed. At this point we still need to fetch all
813 the chars entered. */
815 while (1)
817 /* Read from stdin if we are executing a user defined command.
818 This is the right thing for prompt_for_continue, at least. */
819 c = fgetc (ui->instream != NULL ? ui->instream : ui->stdin_stream);
821 if (c == EOF)
823 if (line_buffer.used_size > 0)
825 /* The last line does not end with a newline. Return it, and
826 if we are called again fgetc will still return EOF and
827 we'll return NULL then. */
828 break;
830 xfree (buffer_finish (&line_buffer));
831 ui->input_handler (NULL);
832 return;
835 if (c == '\n')
837 if (line_buffer.used_size > 0
838 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
839 line_buffer.used_size--;
840 break;
843 buffer_grow_char (&line_buffer, c);
846 buffer_grow_char (&line_buffer, '\0');
847 result = buffer_finish (&line_buffer);
848 ui->input_handler (gdb::unique_xmalloc_ptr<char> (result));
852 /* The serial event associated with the QUIT flag. set_quit_flag sets
853 this, and check_quit_flag clears it. Used by interruptible_select
854 to be able to do interruptible I/O with no race with the SIGINT
855 handler. */
856 static struct serial_event *quit_serial_event;
858 /* Initialization of signal handlers and tokens. There is a function
859 handle_sig* for each of the signals GDB cares about. Specifically:
860 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
861 functions are the actual signal handlers associated to the signals
862 via calls to signal(). The only job for these functions is to
863 enqueue the appropriate event/procedure with the event loop. Such
864 procedures are the old signal handlers. The event loop will take
865 care of invoking the queued procedures to perform the usual tasks
866 associated with the reception of the signal. */
867 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
868 init_signals will become obsolete as we move to have to event loop
869 as the default for gdb. */
870 void
871 async_init_signals (void)
873 initialize_async_signal_handlers ();
875 quit_serial_event = make_serial_event ();
877 signal (SIGINT, handle_sigint);
878 sigint_token =
879 create_async_signal_handler (async_request_quit, NULL);
880 signal (SIGTERM, handle_sigterm);
881 async_sigterm_token
882 = create_async_signal_handler (async_sigterm_handler, NULL);
884 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
885 to the inferior and breakpoints will be ignored. */
886 #ifdef SIGTRAP
887 signal (SIGTRAP, SIG_DFL);
888 #endif
890 #ifdef SIGQUIT
891 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
892 passed to the inferior, which we don't want. It would be
893 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
894 on BSD4.3 systems using vfork, that can affect the
895 GDB process as well as the inferior (the signal handling tables
896 might be in memory, shared between the two). Since we establish
897 a handler for SIGQUIT, when we call exec it will set the signal
898 to SIG_DFL for us. */
899 signal (SIGQUIT, handle_sigquit);
900 sigquit_token =
901 create_async_signal_handler (async_do_nothing, NULL);
902 #endif
903 #ifdef SIGHUP
904 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
905 sighup_token =
906 create_async_signal_handler (async_disconnect, NULL);
907 else
908 sighup_token =
909 create_async_signal_handler (async_do_nothing, NULL);
910 #endif
911 signal (SIGFPE, handle_sigfpe);
912 sigfpe_token =
913 create_async_signal_handler (async_float_handler, NULL);
915 #ifdef SIGTSTP
916 sigtstp_token =
917 create_async_signal_handler (async_sigtstp_handler, NULL);
918 #endif
921 /* See defs.h. */
923 void
924 quit_serial_event_set (void)
926 serial_event_set (quit_serial_event);
929 /* See defs.h. */
931 void
932 quit_serial_event_clear (void)
934 serial_event_clear (quit_serial_event);
937 /* Return the selectable file descriptor of the serial event
938 associated with the quit flag. */
940 static int
941 quit_serial_event_fd (void)
943 return serial_event_fd (quit_serial_event);
946 /* See defs.h. */
948 void
949 default_quit_handler (void)
951 if (check_quit_flag ())
953 if (target_terminal::is_ours ())
954 quit ();
955 else
956 target_pass_ctrlc ();
960 /* See defs.h. */
961 quit_handler_ftype *quit_handler = default_quit_handler;
963 /* Handle a SIGINT. */
965 void
966 handle_sigint (int sig)
968 signal (sig, handle_sigint);
970 /* We could be running in a loop reading in symfiles or something so
971 it may be quite a while before we get back to the event loop. So
972 set quit_flag to 1 here. Then if QUIT is called before we get to
973 the event loop, we will unwind as expected. */
974 set_quit_flag ();
976 /* In case nothing calls QUIT before the event loop is reached, the
977 event loop handles it. */
978 mark_async_signal_handler (sigint_token);
981 /* See gdb_select.h. */
984 interruptible_select (int n,
985 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
986 struct timeval *timeout)
988 fd_set my_readfds;
989 int fd;
990 int res;
992 if (readfds == NULL)
994 readfds = &my_readfds;
995 FD_ZERO (&my_readfds);
998 fd = quit_serial_event_fd ();
999 FD_SET (fd, readfds);
1000 if (n <= fd)
1001 n = fd + 1;
1005 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1007 while (res == -1 && errno == EINTR);
1009 if (res == 1 && FD_ISSET (fd, readfds))
1011 errno = EINTR;
1012 return -1;
1014 return res;
1017 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1019 static void
1020 async_sigterm_handler (gdb_client_data arg)
1022 quit_force (NULL, 0);
1025 /* See defs.h. */
1026 volatile int sync_quit_force_run;
1028 /* Quit GDB if SIGTERM is received.
1029 GDB would quit anyway, but this way it will clean up properly. */
1030 void
1031 handle_sigterm (int sig)
1033 signal (sig, handle_sigterm);
1035 sync_quit_force_run = 1;
1036 set_quit_flag ();
1038 mark_async_signal_handler (async_sigterm_token);
1041 /* Do the quit. All the checks have been done by the caller. */
1042 void
1043 async_request_quit (gdb_client_data arg)
1045 /* If the quit_flag has gotten reset back to 0 by the time we get
1046 back here, that means that an exception was thrown to unwind the
1047 current command before we got back to the event loop. So there
1048 is no reason to call quit again here. */
1049 QUIT;
1052 #ifdef SIGQUIT
1053 /* Tell the event loop what to do if SIGQUIT is received.
1054 See event-signal.c. */
1055 static void
1056 handle_sigquit (int sig)
1058 mark_async_signal_handler (sigquit_token);
1059 signal (sig, handle_sigquit);
1061 #endif
1063 #if defined (SIGQUIT) || defined (SIGHUP)
1064 /* Called by the event loop in response to a SIGQUIT or an
1065 ignored SIGHUP. */
1066 static void
1067 async_do_nothing (gdb_client_data arg)
1069 /* Empty function body. */
1071 #endif
1073 #ifdef SIGHUP
1074 /* Tell the event loop what to do if SIGHUP is received.
1075 See event-signal.c. */
1076 static void
1077 handle_sighup (int sig)
1079 mark_async_signal_handler (sighup_token);
1080 signal (sig, handle_sighup);
1083 /* Called by the event loop to process a SIGHUP. */
1084 static void
1085 async_disconnect (gdb_client_data arg)
1090 quit_cover ();
1093 catch (const gdb_exception &exception)
1095 fputs_filtered ("Could not kill the program being debugged",
1096 gdb_stderr);
1097 exception_print (gdb_stderr, exception);
1102 pop_all_targets ();
1104 catch (const gdb_exception &exception)
1108 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1109 raise (SIGHUP);
1111 #endif
1113 #ifdef SIGTSTP
1114 void
1115 handle_sigtstp (int sig)
1117 mark_async_signal_handler (sigtstp_token);
1118 signal (sig, handle_sigtstp);
1121 static void
1122 async_sigtstp_handler (gdb_client_data arg)
1124 char *prompt = get_prompt ();
1126 signal (SIGTSTP, SIG_DFL);
1127 #if HAVE_SIGPROCMASK
1129 sigset_t zero;
1131 sigemptyset (&zero);
1132 sigprocmask (SIG_SETMASK, &zero, 0);
1134 #elif HAVE_SIGSETMASK
1135 sigsetmask (0);
1136 #endif
1137 raise (SIGTSTP);
1138 signal (SIGTSTP, handle_sigtstp);
1139 printf_unfiltered ("%s", prompt);
1140 gdb_flush (gdb_stdout);
1142 /* Forget about any previous command -- null line now will do
1143 nothing. */
1144 dont_repeat ();
1146 #endif /* SIGTSTP */
1148 /* Tell the event loop what to do if SIGFPE is received.
1149 See event-signal.c. */
1150 static void
1151 handle_sigfpe (int sig)
1153 mark_async_signal_handler (sigfpe_token);
1154 signal (sig, handle_sigfpe);
1157 /* Event loop will call this functin to process a SIGFPE. */
1158 static void
1159 async_float_handler (gdb_client_data arg)
1161 /* This message is based on ANSI C, section 4.7. Note that integer
1162 divide by zero causes this, so "float" is a misnomer. */
1163 error (_("Erroneous arithmetic operation."));
1167 /* Set things up for readline to be invoked via the alternate
1168 interface, i.e. via a callback function
1169 (gdb_rl_callback_read_char), and hook up instream to the event
1170 loop. */
1172 void
1173 gdb_setup_readline (int editing)
1175 struct ui *ui = current_ui;
1177 /* This function is a noop for the sync case. The assumption is
1178 that the sync setup is ALL done in gdb_init, and we would only
1179 mess it up here. The sync stuff should really go away over
1180 time. */
1181 if (!batch_silent)
1182 gdb_stdout = new stdio_file (ui->outstream);
1183 gdb_stderr = new stderr_file (ui->errstream);
1184 gdb_stdlog = gdb_stderr; /* for moment */
1185 gdb_stdtarg = gdb_stderr; /* for moment */
1186 gdb_stdtargerr = gdb_stderr; /* for moment */
1188 /* If the input stream is connected to a terminal, turn on editing.
1189 However, that is only allowed on the main UI, as we can only have
1190 one instance of readline. */
1191 if (ISATTY (ui->instream) && editing && ui == main_ui)
1193 /* Tell gdb that we will be using the readline library. This
1194 could be overwritten by a command in .gdbinit like 'set
1195 editing on' or 'off'. */
1196 ui->command_editing = 1;
1198 /* When a character is detected on instream by select or poll,
1199 readline will be invoked via this callback function. */
1200 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1202 /* Tell readline to use the same input stream that gdb uses. */
1203 rl_instream = ui->instream;
1205 else
1207 ui->command_editing = 0;
1208 ui->call_readline = gdb_readline_no_editing_callback;
1211 /* Now create the event source for this UI's input file descriptor.
1212 Another source is going to be the target program (inferior), but
1213 that must be registered only when it actually exists (I.e. after
1214 we say 'run' or after we connect to a remote target. */
1215 ui_register_input_event_handler (ui);
1218 /* Disable command input through the standard CLI channels. Used in
1219 the suspend proc for interpreters that use the standard gdb readline
1220 interface, like the cli & the mi. */
1222 void
1223 gdb_disable_readline (void)
1225 struct ui *ui = current_ui;
1227 /* FIXME - It is too heavyweight to delete and remake these every
1228 time you run an interpreter that needs readline. It is probably
1229 better to have the interpreters cache these, which in turn means
1230 that this needs to be moved into interpreter specific code. */
1232 #if 0
1233 ui_file_delete (gdb_stdout);
1234 ui_file_delete (gdb_stderr);
1235 gdb_stdlog = NULL;
1236 gdb_stdtarg = NULL;
1237 gdb_stdtargerr = NULL;
1238 #endif
1240 if (ui->command_editing)
1241 gdb_rl_callback_handler_remove ();
1242 delete_file_handler (ui->input_fd);