[PATCH 5/57][Arm][GAS] Add support for MVE instructions: vmull{b,t}
[binutils-gdb.git] / gdb / h8300-tdep.c
blobb41a0b6c260a9731a22cbcdbc021aac25900def1
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
25 #include "defs.h"
26 #include "value.h"
27 #include "arch-utils.h"
28 #include "regcache.h"
29 #include "gdbcore.h"
30 #include "objfiles.h"
31 #include "dis-asm.h"
32 #include "dwarf2-frame.h"
33 #include "frame-base.h"
34 #include "frame-unwind.h"
36 enum gdb_regnum
38 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
39 E_RET0_REGNUM = E_R0_REGNUM,
40 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
41 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
42 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
44 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
45 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
46 E_SP_REGNUM,
47 E_CCR_REGNUM,
48 E_PC_REGNUM,
49 E_CYCLES_REGNUM,
50 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
51 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
52 E_INSTS_REGNUM,
53 E_MACH_REGNUM,
54 E_MACL_REGNUM,
55 E_SBR_REGNUM,
56 E_VBR_REGNUM
59 #define H8300_MAX_NUM_REGS 18
61 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
62 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
64 struct h8300_frame_cache
66 /* Base address. */
67 CORE_ADDR base;
68 CORE_ADDR sp_offset;
69 CORE_ADDR pc;
71 /* Flag showing that a frame has been created in the prologue code. */
72 int uses_fp;
74 /* Saved registers. */
75 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
76 CORE_ADDR saved_sp;
79 enum
81 h8300_reg_size = 2,
82 h8300h_reg_size = 4,
83 h8300_max_reg_size = 4,
86 static int is_h8300hmode (struct gdbarch *gdbarch);
87 static int is_h8300smode (struct gdbarch *gdbarch);
88 static int is_h8300sxmode (struct gdbarch *gdbarch);
89 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
91 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
92 && !is_h8300_normal_mode (gdbarch)) \
93 ? h8300h_reg_size : h8300_reg_size)
95 /* Normal frames. */
97 /* Allocate and initialize a frame cache. */
99 static void
100 h8300_init_frame_cache (struct gdbarch *gdbarch,
101 struct h8300_frame_cache *cache)
103 int i;
105 /* Base address. */
106 cache->base = 0;
107 cache->sp_offset = 0;
108 cache->pc = 0;
110 /* Frameless until proven otherwise. */
111 cache->uses_fp = 0;
113 /* Saved registers. We initialize these to -1 since zero is a valid
114 offset (that's where %fp is supposed to be stored). */
115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
116 cache->saved_regs[i] = -1;
119 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
120 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
121 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
122 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
123 #define IS_MOVB_EXT(x) ((x) == 0x7860)
124 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
125 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
126 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
127 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
128 /* Same instructions as mov.w, just prefixed with 0x0100. */
129 #define IS_MOVL_PRE(x) ((x) == 0x0100)
130 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
131 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
132 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
134 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
135 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
136 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
137 #define IS_SUB2_SP(x) ((x) == 0x1b87)
138 #define IS_SUB4_SP(x) ((x) == 0x1b97)
139 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
140 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
141 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
142 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
143 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
144 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
145 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
147 /* If the instruction at PC is an argument register spill, return its
148 length. Otherwise, return zero.
150 An argument register spill is an instruction that moves an argument
151 from the register in which it was passed to the stack slot in which
152 it really lives. It is a byte, word, or longword move from an
153 argument register to a negative offset from the frame pointer.
155 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
156 is used, it could be a byte, word or long move to registers r3-r5. */
158 static int
159 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
161 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
162 int w = read_memory_unsigned_integer (pc, 2, byte_order);
164 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
165 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
166 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
167 return 2;
169 if (IS_MOVB_Rn16_SP (w)
170 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
172 /* ... and d:16 is negative. */
173 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
174 return 4;
176 else if (IS_MOVB_EXT (w))
178 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
179 2, byte_order)))
181 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
183 /* ... and d:24 is negative. */
184 if (disp < 0 && disp > 0xffffff)
185 return 8;
188 else if (IS_MOVW_Rn16_SP (w)
189 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
191 /* ... and d:16 is negative. */
192 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
193 return 4;
195 else if (IS_MOVW_EXT (w))
197 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
198 2, byte_order)))
200 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
202 /* ... and d:24 is negative. */
203 if (disp < 0 && disp > 0xffffff)
204 return 8;
207 else if (IS_MOVL_PRE (w))
209 int w2 = read_memory_integer (pc + 2, 2, byte_order);
211 if (IS_MOVL_Rn16_SP (w2)
212 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
214 /* ... and d:16 is negative. */
215 if (read_memory_integer (pc + 4, 2, byte_order) < 0)
216 return 6;
218 else if (IS_MOVL_EXT (w2))
220 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
222 LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);
224 /* ... and d:24 is negative. */
225 if (disp < 0 && disp > 0xffffff)
226 return 10;
231 return 0;
234 /* Do a full analysis of the prologue at PC and update CACHE
235 accordingly. Bail out early if CURRENT_PC is reached. Return the
236 address where the analysis stopped.
238 We handle all cases that can be generated by gcc.
240 For allocating a stack frame:
242 mov.w r6,@-sp
243 mov.w sp,r6
244 mov.w #-n,rN
245 add.w rN,sp
247 mov.w r6,@-sp
248 mov.w sp,r6
249 subs #2,sp
250 (repeat)
252 mov.l er6,@-sp
253 mov.l sp,er6
254 add.l #-n,sp
256 mov.w r6,@-sp
257 mov.w sp,r6
258 subs #4,sp
259 (repeat)
261 For saving registers:
263 mov.w rN,@-sp
264 mov.l erN,@-sp
265 stm.l reglist,@-sp
269 static CORE_ADDR
270 h8300_analyze_prologue (struct gdbarch *gdbarch,
271 CORE_ADDR pc, CORE_ADDR current_pc,
272 struct h8300_frame_cache *cache)
274 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
275 unsigned int op;
276 int regno, i, spill_size;
278 cache->sp_offset = 0;
280 if (pc >= current_pc)
281 return current_pc;
283 op = read_memory_unsigned_integer (pc, 4, byte_order);
285 if (IS_PUSHFP_MOVESPFP (op))
287 cache->saved_regs[E_FP_REGNUM] = 0;
288 cache->uses_fp = 1;
289 pc += 4;
291 else if (IS_PUSH_FP (op))
293 cache->saved_regs[E_FP_REGNUM] = 0;
294 pc += 4;
295 if (pc >= current_pc)
296 return current_pc;
297 op = read_memory_unsigned_integer (pc, 2, byte_order);
298 if (IS_MOV_SP_FP (op))
300 cache->uses_fp = 1;
301 pc += 2;
305 while (pc < current_pc)
307 op = read_memory_unsigned_integer (pc, 2, byte_order);
308 if (IS_SUB2_SP (op))
310 cache->sp_offset += 2;
311 pc += 2;
313 else if (IS_SUB4_SP (op))
315 cache->sp_offset += 4;
316 pc += 2;
318 else if (IS_ADD_IMM_SP (op))
320 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
321 pc += 4;
323 else if (IS_SUB_IMM_SP (op))
325 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
326 pc += 4;
328 else if (IS_SUBL4_SP (op))
330 cache->sp_offset += 4;
331 pc += 2;
333 else if (IS_MOV_IMM_Rn (op))
335 int offset = read_memory_integer (pc + 2, 2, byte_order);
336 regno = op & 0x000f;
337 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
338 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
340 cache->sp_offset -= offset;
341 pc += 6;
343 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
345 cache->sp_offset += offset;
346 pc += 6;
348 else
349 break;
351 else if (IS_PUSH (op))
353 regno = op & 0x000f;
354 cache->sp_offset += 2;
355 cache->saved_regs[regno] = cache->sp_offset;
356 pc += 2;
358 else if (op == 0x0100)
360 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
361 if (IS_PUSH (op))
363 regno = op & 0x000f;
364 cache->sp_offset += 4;
365 cache->saved_regs[regno] = cache->sp_offset;
366 pc += 4;
368 else
369 break;
371 else if ((op & 0xffcf) == 0x0100)
373 int op1;
374 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
375 if (IS_PUSH (op1))
377 /* Since the prefix is 0x01x0, this is not a simple pushm but a
378 stm.l reglist,@-sp */
379 i = ((op & 0x0030) >> 4) + 1;
380 regno = op1 & 0x000f;
381 for (; i > 0; regno++, --i)
383 cache->sp_offset += 4;
384 cache->saved_regs[regno] = cache->sp_offset;
386 pc += 4;
388 else
389 break;
391 else
392 break;
395 /* Check for spilling an argument register to the stack frame.
396 This could also be an initializing store from non-prologue code,
397 but I don't think there's any harm in skipping that. */
398 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
399 && pc + spill_size <= current_pc)
400 pc += spill_size;
402 return pc;
405 static struct h8300_frame_cache *
406 h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
408 struct gdbarch *gdbarch = get_frame_arch (this_frame);
409 struct h8300_frame_cache *cache;
410 int i;
411 CORE_ADDR current_pc;
413 if (*this_cache)
414 return (struct h8300_frame_cache *) *this_cache;
416 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
417 h8300_init_frame_cache (gdbarch, cache);
418 *this_cache = cache;
420 /* In principle, for normal frames, %fp holds the frame pointer,
421 which holds the base address for the current stack frame.
422 However, for functions that don't need it, the frame pointer is
423 optional. For these "frameless" functions the frame pointer is
424 actually the frame pointer of the calling frame. */
426 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
427 if (cache->base == 0)
428 return cache;
430 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
432 cache->pc = get_frame_func (this_frame);
433 current_pc = get_frame_pc (this_frame);
434 if (cache->pc != 0)
435 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
437 if (!cache->uses_fp)
439 /* We didn't find a valid frame, which means that CACHE->base
440 currently holds the frame pointer for our calling frame. If
441 we're at the start of a function, or somewhere half-way its
442 prologue, the function's frame probably hasn't been fully
443 setup yet. Try to reconstruct the base address for the stack
444 frame by looking at the stack pointer. For truly "frameless"
445 functions this might work too. */
447 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
448 + cache->sp_offset;
449 cache->saved_sp = cache->base + BINWORD (gdbarch);
450 cache->saved_regs[E_PC_REGNUM] = 0;
452 else
454 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
455 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
458 /* Adjust all the saved registers such that they contain addresses
459 instead of offsets. */
460 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
461 if (cache->saved_regs[i] != -1)
462 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
464 return cache;
467 static void
468 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
469 struct frame_id *this_id)
471 struct h8300_frame_cache *cache =
472 h8300_frame_cache (this_frame, this_cache);
474 /* This marks the outermost frame. */
475 if (cache->base == 0)
476 return;
478 *this_id = frame_id_build (cache->saved_sp, cache->pc);
481 static struct value *
482 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
483 int regnum)
485 struct gdbarch *gdbarch = get_frame_arch (this_frame);
486 struct h8300_frame_cache *cache =
487 h8300_frame_cache (this_frame, this_cache);
489 gdb_assert (regnum >= 0);
491 if (regnum == E_SP_REGNUM && cache->saved_sp)
492 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
494 if (regnum < gdbarch_num_regs (gdbarch)
495 && cache->saved_regs[regnum] != -1)
496 return frame_unwind_got_memory (this_frame, regnum,
497 cache->saved_regs[regnum]);
499 return frame_unwind_got_register (this_frame, regnum, regnum);
502 static const struct frame_unwind h8300_frame_unwind = {
503 NORMAL_FRAME,
504 default_frame_unwind_stop_reason,
505 h8300_frame_this_id,
506 h8300_frame_prev_register,
507 NULL,
508 default_frame_sniffer
511 static CORE_ADDR
512 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
514 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
515 return cache->base;
518 static const struct frame_base h8300_frame_base = {
519 &h8300_frame_unwind,
520 h8300_frame_base_address,
521 h8300_frame_base_address,
522 h8300_frame_base_address
525 static CORE_ADDR
526 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
528 CORE_ADDR func_addr = 0 , func_end = 0;
530 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
532 struct symtab_and_line sal;
533 struct h8300_frame_cache cache;
535 /* Found a function. */
536 sal = find_pc_line (func_addr, 0);
537 if (sal.end && sal.end < func_end)
538 /* Found a line number, use it as end of prologue. */
539 return sal.end;
541 /* No useable line symbol. Use prologue parsing method. */
542 h8300_init_frame_cache (gdbarch, &cache);
543 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
546 /* No function symbol -- just return the PC. */
547 return (CORE_ADDR) pc;
550 /* Function: push_dummy_call
551 Setup the function arguments for calling a function in the inferior.
552 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
553 on the H8/300H.
555 There are actually two ABI's here: -mquickcall (the default) and
556 -mno-quickcall. With -mno-quickcall, all arguments are passed on
557 the stack after the return address, word-aligned. With
558 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
559 GCC doesn't indicate in the object file which ABI was used to
560 compile it, GDB only supports the default --- -mquickcall.
562 Here are the rules for -mquickcall, in detail:
564 Each argument, whether scalar or aggregate, is padded to occupy a
565 whole number of words. Arguments smaller than a word are padded at
566 the most significant end; those larger than a word are padded at
567 the least significant end.
569 The initial arguments are passed in r0 -- r2. Earlier arguments go in
570 lower-numbered registers. Multi-word arguments are passed in
571 consecutive registers, with the most significant end in the
572 lower-numbered register.
574 If an argument doesn't fit entirely in the remaining registers, it
575 is passed entirely on the stack. Stack arguments begin just after
576 the return address. Once an argument has overflowed onto the stack
577 this way, all subsequent arguments are passed on the stack.
579 The above rule has odd consequences. For example, on the h8/300s,
580 if a function takes two longs and an int as arguments:
581 - the first long will be passed in r0/r1,
582 - the second long will be passed entirely on the stack, since it
583 doesn't fit in r2,
584 - and the int will be passed on the stack, even though it could fit
585 in r2.
587 A weird exception: if an argument is larger than a word, but not a
588 whole number of words in length (before padding), it is passed on
589 the stack following the rules for stack arguments above, even if
590 there are sufficient registers available to hold it. Stranger
591 still, the argument registers are still `used up' --- even though
592 there's nothing in them.
594 So, for example, on the h8/300s, if a function expects a three-byte
595 structure and an int, the structure will go on the stack, and the
596 int will go in r2, not r0.
598 If the function returns an aggregate type (struct, union, or class)
599 by value, the caller must allocate space to hold the return value,
600 and pass the callee a pointer to this space as an invisible first
601 argument, in R0.
603 For varargs functions, the last fixed argument and all the variable
604 arguments are always passed on the stack. This means that calls to
605 varargs functions don't work properly unless there is a prototype
606 in scope.
608 Basically, this ABI is not good, for the following reasons:
609 - You can't call vararg functions properly unless a prototype is in scope.
610 - Structure passing is inconsistent, to no purpose I can see.
611 - It often wastes argument registers, of which there are only three
612 to begin with. */
614 static CORE_ADDR
615 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
616 struct regcache *regcache, CORE_ADDR bp_addr,
617 int nargs, struct value **args, CORE_ADDR sp,
618 function_call_return_method return_method,
619 CORE_ADDR struct_addr)
621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
622 int stack_alloc = 0, stack_offset = 0;
623 int wordsize = BINWORD (gdbarch);
624 int reg = E_ARG0_REGNUM;
625 int argument;
627 /* First, make sure the stack is properly aligned. */
628 sp = align_down (sp, wordsize);
630 /* Now make sure there's space on the stack for the arguments. We
631 may over-allocate a little here, but that won't hurt anything. */
632 for (argument = 0; argument < nargs; argument++)
633 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
634 wordsize);
635 sp -= stack_alloc;
637 /* Now load as many arguments as possible into registers, and push
638 the rest onto the stack.
639 If we're returning a structure by value, then we must pass a
640 pointer to the buffer for the return value as an invisible first
641 argument. */
642 if (return_method == return_method_struct)
643 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
645 for (argument = 0; argument < nargs; argument++)
647 struct type *type = value_type (args[argument]);
648 int len = TYPE_LENGTH (type);
649 char *contents = (char *) value_contents (args[argument]);
651 /* Pad the argument appropriately. */
652 int padded_len = align_up (len, wordsize);
653 /* Use std::vector here to get zero initialization. */
654 std::vector<gdb_byte> padded (padded_len);
656 memcpy ((len < wordsize ? padded.data () + padded_len - len
657 : padded.data ()),
658 contents, len);
660 /* Could the argument fit in the remaining registers? */
661 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
663 /* Are we going to pass it on the stack anyway, for no good
664 reason? */
665 if (len > wordsize && len % wordsize)
667 /* I feel so unclean. */
668 write_memory (sp + stack_offset, padded.data (), padded_len);
669 stack_offset += padded_len;
671 /* That's right --- even though we passed the argument
672 on the stack, we consume the registers anyway! Love
673 me, love my dog. */
674 reg += padded_len / wordsize;
676 else
678 /* Heavens to Betsy --- it's really going in registers!
679 Note that on the h8/300s, there are gaps between the
680 registers in the register file. */
681 int offset;
683 for (offset = 0; offset < padded_len; offset += wordsize)
685 ULONGEST word
686 = extract_unsigned_integer (&padded[offset],
687 wordsize, byte_order);
688 regcache_cooked_write_unsigned (regcache, reg++, word);
692 else
694 /* It doesn't fit in registers! Onto the stack it goes. */
695 write_memory (sp + stack_offset, padded.data (), padded_len);
696 stack_offset += padded_len;
698 /* Once one argument has spilled onto the stack, all
699 subsequent arguments go on the stack. */
700 reg = E_ARGLAST_REGNUM + 1;
704 /* Store return address. */
705 sp -= wordsize;
706 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
708 /* Update stack pointer. */
709 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
711 /* Return the new stack pointer minus the return address slot since
712 that's what DWARF2/GCC uses as the frame's CFA. */
713 return sp + wordsize;
716 /* Function: extract_return_value
717 Figure out where in REGBUF the called function has left its return value.
718 Copy that into VALBUF. Be sure to account for CPU type. */
720 static void
721 h8300_extract_return_value (struct type *type, struct regcache *regcache,
722 gdb_byte *valbuf)
724 struct gdbarch *gdbarch = regcache->arch ();
725 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
726 int len = TYPE_LENGTH (type);
727 ULONGEST c, addr;
729 switch (len)
731 case 1:
732 case 2:
733 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
734 store_unsigned_integer (valbuf, len, byte_order, c);
735 break;
736 case 4: /* Needs two registers on plain H8/300 */
737 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
738 store_unsigned_integer (valbuf, 2, byte_order, c);
739 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
740 store_unsigned_integer (valbuf + 2, 2, byte_order, c);
741 break;
742 case 8: /* long long is now 8 bytes. */
743 if (TYPE_CODE (type) == TYPE_CODE_INT)
745 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
746 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
747 store_unsigned_integer (valbuf, len, byte_order, c);
749 else
751 error (_("I don't know how this 8 byte value is returned."));
753 break;
757 static void
758 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
759 gdb_byte *valbuf)
761 struct gdbarch *gdbarch = regcache->arch ();
762 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
763 ULONGEST c;
765 switch (TYPE_LENGTH (type))
767 case 1:
768 case 2:
769 case 4:
770 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
771 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
772 break;
773 case 8: /* long long is now 8 bytes. */
774 if (TYPE_CODE (type) == TYPE_CODE_INT)
776 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
777 store_unsigned_integer (valbuf, 4, byte_order, c);
778 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
779 store_unsigned_integer (valbuf + 4, 4, byte_order, c);
781 else
783 error (_("I don't know how this 8 byte value is returned."));
785 break;
789 static int
790 h8300_use_struct_convention (struct type *value_type)
792 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
793 stack. */
795 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
796 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
797 return 1;
798 return !(TYPE_LENGTH (value_type) == 1
799 || TYPE_LENGTH (value_type) == 2
800 || TYPE_LENGTH (value_type) == 4);
803 static int
804 h8300h_use_struct_convention (struct type *value_type)
806 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
807 returned in R0/R1, everything else on the stack. */
808 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
809 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
810 return 1;
811 return !(TYPE_LENGTH (value_type) == 1
812 || TYPE_LENGTH (value_type) == 2
813 || TYPE_LENGTH (value_type) == 4
814 || (TYPE_LENGTH (value_type) == 8
815 && TYPE_CODE (value_type) == TYPE_CODE_INT));
818 /* Function: store_return_value
819 Place the appropriate value in the appropriate registers.
820 Primarily used by the RETURN command. */
822 static void
823 h8300_store_return_value (struct type *type, struct regcache *regcache,
824 const gdb_byte *valbuf)
826 struct gdbarch *gdbarch = regcache->arch ();
827 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
828 ULONGEST val;
830 switch (TYPE_LENGTH (type))
832 case 1:
833 case 2: /* short... */
834 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
835 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
836 break;
837 case 4: /* long, float */
838 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
839 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
840 (val >> 16) & 0xffff);
841 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
842 break;
843 case 8: /* long long, double and long double
844 are all defined as 4 byte types so
845 far so this shouldn't happen. */
846 error (_("I don't know how to return an 8 byte value."));
847 break;
851 static void
852 h8300h_store_return_value (struct type *type, struct regcache *regcache,
853 const gdb_byte *valbuf)
855 struct gdbarch *gdbarch = regcache->arch ();
856 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
857 ULONGEST val;
859 switch (TYPE_LENGTH (type))
861 case 1:
862 case 2:
863 case 4: /* long, float */
864 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
865 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
866 break;
867 case 8:
868 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
869 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
870 (val >> 32) & 0xffffffff);
871 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
872 val & 0xffffffff);
873 break;
877 static enum return_value_convention
878 h8300_return_value (struct gdbarch *gdbarch, struct value *function,
879 struct type *type, struct regcache *regcache,
880 gdb_byte *readbuf, const gdb_byte *writebuf)
882 if (h8300_use_struct_convention (type))
883 return RETURN_VALUE_STRUCT_CONVENTION;
884 if (writebuf)
885 h8300_store_return_value (type, regcache, writebuf);
886 else if (readbuf)
887 h8300_extract_return_value (type, regcache, readbuf);
888 return RETURN_VALUE_REGISTER_CONVENTION;
891 static enum return_value_convention
892 h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
893 struct type *type, struct regcache *regcache,
894 gdb_byte *readbuf, const gdb_byte *writebuf)
896 if (h8300h_use_struct_convention (type))
898 if (readbuf)
900 ULONGEST addr;
902 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
903 read_memory (addr, readbuf, TYPE_LENGTH (type));
906 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
908 if (writebuf)
909 h8300h_store_return_value (type, regcache, writebuf);
910 else if (readbuf)
911 h8300h_extract_return_value (type, regcache, readbuf);
912 return RETURN_VALUE_REGISTER_CONVENTION;
915 /* Implementation of 'register_sim_regno' gdbarch method. */
917 static int
918 h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum)
920 /* Only makes sense to supply raw registers. */
921 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
923 /* We hide the raw ccr from the user by making it nameless. Because
924 the default register_sim_regno hook returns
925 LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to
926 override it. The sim register numbering is compatible with
927 gdb's. */
928 return regnum;
931 static const char *
932 h8300_register_name (struct gdbarch *gdbarch, int regno)
934 /* The register names change depending on which h8300 processor
935 type is selected. */
936 static const char *register_names[] = {
937 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
938 "sp", "", "pc", "cycles", "tick", "inst",
939 "ccr", /* pseudo register */
941 if (regno < 0
942 || regno >= (sizeof (register_names) / sizeof (*register_names)))
943 internal_error (__FILE__, __LINE__,
944 _("h8300_register_name: illegal register number %d"),
945 regno);
946 else
947 return register_names[regno];
950 static const char *
951 h8300s_register_name (struct gdbarch *gdbarch, int regno)
953 static const char *register_names[] = {
954 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
955 "sp", "", "pc", "cycles", "", "tick", "inst",
956 "mach", "macl",
957 "ccr", "exr" /* pseudo registers */
959 if (regno < 0
960 || regno >= (sizeof (register_names) / sizeof (*register_names)))
961 internal_error (__FILE__, __LINE__,
962 _("h8300s_register_name: illegal register number %d"),
963 regno);
964 else
965 return register_names[regno];
968 static const char *
969 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
971 static const char *register_names[] = {
972 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
973 "sp", "", "pc", "cycles", "", "tick", "inst",
974 "mach", "macl", "sbr", "vbr",
975 "ccr", "exr" /* pseudo registers */
977 if (regno < 0
978 || regno >= (sizeof (register_names) / sizeof (*register_names)))
979 internal_error (__FILE__, __LINE__,
980 _("h8300sx_register_name: illegal register number %d"),
981 regno);
982 else
983 return register_names[regno];
986 static void
987 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
988 struct frame_info *frame, int regno)
990 LONGEST rval;
991 const char *name = gdbarch_register_name (gdbarch, regno);
993 if (!name || !*name)
994 return;
996 rval = get_frame_register_signed (frame, regno);
998 fprintf_filtered (file, "%-14s ", name);
999 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1000 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1002 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1003 print_longest (file, 'u', 1, rval);
1005 else
1007 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1008 BINWORD (gdbarch)));
1009 print_longest (file, 'd', 1, rval);
1011 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1013 /* CCR register */
1014 int C, Z, N, V;
1015 unsigned char l = rval & 0xff;
1016 fprintf_filtered (file, "\t");
1017 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1018 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1019 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1020 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1021 N = (l & 0x8) != 0;
1022 Z = (l & 0x4) != 0;
1023 V = (l & 0x2) != 0;
1024 C = (l & 0x1) != 0;
1025 fprintf_filtered (file, "N-%d ", N);
1026 fprintf_filtered (file, "Z-%d ", Z);
1027 fprintf_filtered (file, "V-%d ", V);
1028 fprintf_filtered (file, "C-%d ", C);
1029 if ((C | Z) == 0)
1030 fprintf_filtered (file, "u> ");
1031 if ((C | Z) == 1)
1032 fprintf_filtered (file, "u<= ");
1033 if (C == 0)
1034 fprintf_filtered (file, "u>= ");
1035 if (C == 1)
1036 fprintf_filtered (file, "u< ");
1037 if (Z == 0)
1038 fprintf_filtered (file, "!= ");
1039 if (Z == 1)
1040 fprintf_filtered (file, "== ");
1041 if ((N ^ V) == 0)
1042 fprintf_filtered (file, ">= ");
1043 if ((N ^ V) == 1)
1044 fprintf_filtered (file, "< ");
1045 if ((Z | (N ^ V)) == 0)
1046 fprintf_filtered (file, "> ");
1047 if ((Z | (N ^ V)) == 1)
1048 fprintf_filtered (file, "<= ");
1050 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1052 /* EXR register */
1053 unsigned char l = rval & 0xff;
1054 fprintf_filtered (file, "\t");
1055 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1056 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1057 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1058 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1060 fprintf_filtered (file, "\n");
1063 static void
1064 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1065 struct frame_info *frame, int regno, int cpregs)
1067 if (regno < 0)
1069 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1070 h8300_print_register (gdbarch, file, frame, regno);
1071 h8300_print_register (gdbarch, file, frame,
1072 E_PSEUDO_CCR_REGNUM (gdbarch));
1073 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1074 if (is_h8300smode (gdbarch))
1076 h8300_print_register (gdbarch, file, frame,
1077 E_PSEUDO_EXR_REGNUM (gdbarch));
1078 if (is_h8300sxmode (gdbarch))
1080 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1081 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1083 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1084 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1085 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1086 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1087 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1089 else
1091 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1092 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1093 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1096 else
1098 if (regno == E_CCR_REGNUM)
1099 h8300_print_register (gdbarch, file, frame,
1100 E_PSEUDO_CCR_REGNUM (gdbarch));
1101 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1102 && is_h8300smode (gdbarch))
1103 h8300_print_register (gdbarch, file, frame,
1104 E_PSEUDO_EXR_REGNUM (gdbarch));
1105 else
1106 h8300_print_register (gdbarch, file, frame, regno);
1110 static struct type *
1111 h8300_register_type (struct gdbarch *gdbarch, int regno)
1113 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
1114 internal_error (__FILE__, __LINE__,
1115 _("h8300_register_type: illegal register number %d"),
1116 regno);
1117 else
1119 switch (regno)
1121 case E_PC_REGNUM:
1122 return builtin_type (gdbarch)->builtin_func_ptr;
1123 case E_SP_REGNUM:
1124 case E_FP_REGNUM:
1125 return builtin_type (gdbarch)->builtin_data_ptr;
1126 default:
1127 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1128 return builtin_type (gdbarch)->builtin_uint8;
1129 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1130 return builtin_type (gdbarch)->builtin_uint8;
1131 else if (is_h8300hmode (gdbarch))
1132 return builtin_type (gdbarch)->builtin_int32;
1133 else
1134 return builtin_type (gdbarch)->builtin_int16;
1139 /* Helpers for h8300_pseudo_register_read. We expose ccr/exr as
1140 pseudo-registers to users with smaller sizes than the corresponding
1141 raw registers. These helpers extend/narrow the values. */
1143 static enum register_status
1144 pseudo_from_raw_register (struct gdbarch *gdbarch, readable_regcache *regcache,
1145 gdb_byte *buf, int pseudo_regno, int raw_regno)
1147 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1148 enum register_status status;
1149 ULONGEST val;
1151 status = regcache->raw_read (raw_regno, &val);
1152 if (status == REG_VALID)
1153 store_unsigned_integer (buf,
1154 register_size (gdbarch, pseudo_regno),
1155 byte_order, val);
1156 return status;
1159 /* See pseudo_from_raw_register. */
1161 static void
1162 raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache,
1163 const gdb_byte *buf, int raw_regno, int pseudo_regno)
1165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1166 ULONGEST val;
1168 val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno),
1169 byte_order);
1170 regcache_raw_write_unsigned (regcache, raw_regno, val);
1173 static enum register_status
1174 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1175 readable_regcache *regcache, int regno,
1176 gdb_byte *buf)
1178 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1180 return pseudo_from_raw_register (gdbarch, regcache, buf,
1181 regno, E_CCR_REGNUM);
1183 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1185 return pseudo_from_raw_register (gdbarch, regcache, buf,
1186 regno, E_EXR_REGNUM);
1188 else
1189 return regcache->raw_read (regno, buf);
1192 static void
1193 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1194 struct regcache *regcache, int regno,
1195 const gdb_byte *buf)
1197 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1198 raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno);
1199 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1200 raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno);
1201 else
1202 regcache->raw_write (regno, buf);
1205 static int
1206 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1208 if (regno == E_CCR_REGNUM)
1209 return E_PSEUDO_CCR_REGNUM (gdbarch);
1210 return regno;
1213 static int
1214 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1216 if (regno == E_CCR_REGNUM)
1217 return E_PSEUDO_CCR_REGNUM (gdbarch);
1218 if (regno == E_EXR_REGNUM)
1219 return E_PSEUDO_EXR_REGNUM (gdbarch);
1220 return regno;
1223 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1224 constexpr gdb_byte h8300_break_insn[] = { 0x01, 0x80 }; /* Sleep */
1226 typedef BP_MANIPULATION (h8300_break_insn) h8300_breakpoint;
1228 static struct gdbarch *
1229 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1231 struct gdbarch *gdbarch;
1233 arches = gdbarch_list_lookup_by_info (arches, &info);
1234 if (arches != NULL)
1235 return arches->gdbarch;
1237 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1238 return NULL;
1240 gdbarch = gdbarch_alloc (&info, 0);
1242 set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno);
1244 switch (info.bfd_arch_info->mach)
1246 case bfd_mach_h8300:
1247 set_gdbarch_num_regs (gdbarch, 13);
1248 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1249 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1250 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1251 set_gdbarch_register_name (gdbarch, h8300_register_name);
1252 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1253 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1254 set_gdbarch_return_value (gdbarch, h8300_return_value);
1255 break;
1256 case bfd_mach_h8300h:
1257 case bfd_mach_h8300hn:
1258 set_gdbarch_num_regs (gdbarch, 13);
1259 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1260 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1261 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1262 set_gdbarch_register_name (gdbarch, h8300_register_name);
1263 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1265 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1266 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1268 else
1270 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1271 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1273 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1274 break;
1275 case bfd_mach_h8300s:
1276 case bfd_mach_h8300sn:
1277 set_gdbarch_num_regs (gdbarch, 16);
1278 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1279 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1280 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1281 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1282 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1284 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1285 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1287 else
1289 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1290 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1292 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1293 break;
1294 case bfd_mach_h8300sx:
1295 case bfd_mach_h8300sxn:
1296 set_gdbarch_num_regs (gdbarch, 18);
1297 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1298 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1299 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1300 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1301 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1303 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1304 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1306 else
1308 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1309 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1311 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1312 break;
1315 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1316 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1319 * Basic register fields and methods.
1322 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1323 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1324 set_gdbarch_register_type (gdbarch, h8300_register_type);
1325 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1328 * Frame Info
1330 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1332 /* Frame unwinder. */
1333 frame_base_set_default (gdbarch, &h8300_frame_base);
1336 * Miscelany
1338 /* Stack grows up. */
1339 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1341 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1342 h8300_breakpoint::kind_from_pc);
1343 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1344 h8300_breakpoint::bp_from_kind);
1345 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1347 set_gdbarch_char_signed (gdbarch, 0);
1348 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1349 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1350 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1352 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1353 set_gdbarch_wchar_signed (gdbarch, 0);
1355 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1356 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1357 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1358 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1360 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1362 /* Hook in the DWARF CFI frame unwinder. */
1363 dwarf2_append_unwinders (gdbarch);
1364 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
1366 return gdbarch;
1370 void
1371 _initialize_h8300_tdep (void)
1373 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1376 static int
1377 is_h8300hmode (struct gdbarch *gdbarch)
1379 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1380 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1381 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1382 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1383 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1384 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1387 static int
1388 is_h8300smode (struct gdbarch *gdbarch)
1390 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1391 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1392 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1393 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1396 static int
1397 is_h8300sxmode (struct gdbarch *gdbarch)
1399 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1400 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1403 static int
1404 is_h8300_normal_mode (struct gdbarch *gdbarch)
1406 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1407 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1408 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;