1 /* Copyright (C) 2009-2024 Free Software Foundation, Inc.
3 This file is part of GDB.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18 #include "event-top.h"
19 #include "extract-store-integer.h"
21 #include "amd64-tdep.h"
22 #include "gdbsupport/x86-xstate.h"
26 #include "windows-tdep.h"
29 #include "frame-unwind.h"
30 #include "coff/internal.h"
31 #include "coff/i386.h"
37 /* The registers used to pass integer arguments during a function call. */
38 static int amd64_windows_dummy_call_integer_regs
[] =
40 AMD64_RCX_REGNUM
, /* %rcx */
41 AMD64_RDX_REGNUM
, /* %rdx */
42 AMD64_R8_REGNUM
, /* %r8 */
43 AMD64_R9_REGNUM
/* %r9 */
46 /* This vector maps GDB's idea of a register's number into an offset into
47 the Windows API CONTEXT structure. */
48 static int amd64_windows_gregset_reg_offset
[] =
74 288, /* FloatSave.FloatRegisters[0] */
75 304, /* FloatSave.FloatRegisters[1] */
76 320, /* FloatSave.FloatRegisters[2] */
77 336, /* FloatSave.FloatRegisters[3] */
78 352, /* FloatSave.FloatRegisters[4] */
79 368, /* FloatSave.FloatRegisters[5] */
80 384, /* FloatSave.FloatRegisters[6] */
81 400, /* FloatSave.FloatRegisters[7] */
82 256, /* FloatSave.ControlWord */
83 258, /* FloatSave.StatusWord */
84 260, /* FloatSave.TagWord */
85 268, /* FloatSave.ErrorSelector */
86 264, /* FloatSave.ErrorOffset */
87 276, /* FloatSave.DataSelector */
88 272, /* FloatSave.DataOffset */
89 268, /* FloatSave.ErrorSelector */
106 280, /* FloatSave.MxCsr */
109 #define AMD64_WINDOWS_SIZEOF_GREGSET 1232
111 /* Return nonzero if an argument of type TYPE should be passed
112 via one of the integer registers. */
115 amd64_windows_passed_by_integer_register (struct type
*type
)
117 switch (type
->code ())
122 case TYPE_CODE_RANGE
:
126 case TYPE_CODE_RVALUE_REF
:
127 case TYPE_CODE_STRUCT
:
128 case TYPE_CODE_UNION
:
129 case TYPE_CODE_COMPLEX
:
130 return (type
->length () == 1
131 || type
->length () == 2
132 || type
->length () == 4
133 || type
->length () == 8);
140 /* Return nonzero if an argument of type TYPE should be passed
141 via one of the XMM registers. */
144 amd64_windows_passed_by_xmm_register (struct type
*type
)
146 return ((type
->code () == TYPE_CODE_FLT
147 || type
->code () == TYPE_CODE_DECFLOAT
)
148 && (type
->length () == 4 || type
->length () == 8));
151 /* Return non-zero iff an argument of the given TYPE should be passed
155 amd64_windows_passed_by_pointer (struct type
*type
)
157 if (amd64_windows_passed_by_integer_register (type
))
160 if (amd64_windows_passed_by_xmm_register (type
))
166 /* For each argument that should be passed by pointer, reserve some
167 stack space, store a copy of the argument on the stack, and replace
168 the argument by its address. Return the new Stack Pointer value.
170 NARGS is the number of arguments. ARGS is the array containing
171 the value of each argument. SP is value of the Stack Pointer. */
174 amd64_windows_adjust_args_passed_by_pointer (struct value
**args
,
175 int nargs
, CORE_ADDR sp
)
179 for (i
= 0; i
< nargs
; i
++)
180 if (amd64_windows_passed_by_pointer (args
[i
]->type ()))
182 struct type
*type
= args
[i
]->type ();
183 const gdb_byte
*valbuf
= args
[i
]->contents ().data ();
184 const int len
= type
->length ();
186 /* Store a copy of that argument on the stack, aligned to
187 a 16 bytes boundary, and then use the copy's address as
192 write_memory (sp
, valbuf
, len
);
195 = value_addr (value_from_contents_and_address (type
, valbuf
, sp
));
201 /* Store the value of ARG in register REGNO (right-justified).
202 REGCACHE is the register cache. */
205 amd64_windows_store_arg_in_reg (struct regcache
*regcache
,
206 struct value
*arg
, int regno
)
208 struct type
*type
= arg
->type ();
209 const gdb_byte
*valbuf
= arg
->contents ().data ();
212 gdb_assert (type
->length () <= 8);
213 memset (buf
, 0, sizeof buf
);
214 memcpy (buf
, valbuf
, std::min (type
->length (), (ULONGEST
) 8));
215 regcache
->cooked_write (regno
, buf
);
218 /* Push the arguments for an inferior function call, and return
219 the updated value of the SP (Stack Pointer).
221 All arguments are identical to the arguments used in
222 amd64_windows_push_dummy_call. */
225 amd64_windows_push_arguments (struct regcache
*regcache
, int nargs
,
226 struct value
**args
, CORE_ADDR sp
,
227 function_call_return_method return_method
)
231 struct value
**stack_args
= XALLOCAVEC (struct value
*, nargs
);
232 int num_stack_args
= 0;
233 int num_elements
= 0;
236 /* First, handle the arguments passed by pointer.
238 These arguments are replaced by pointers to a copy we are making
239 in inferior memory. So use a copy of the ARGS table, to avoid
240 modifying the original one. */
242 struct value
**args1
= XALLOCAVEC (struct value
*, nargs
);
244 memcpy (args1
, args
, nargs
* sizeof (struct value
*));
245 sp
= amd64_windows_adjust_args_passed_by_pointer (args1
, nargs
, sp
);
249 /* Reserve a register for the "hidden" argument. */
250 if (return_method
== return_method_struct
)
253 for (i
= 0; i
< nargs
; i
++)
255 struct type
*type
= args
[i
]->type ();
256 int len
= type
->length ();
259 if (reg_idx
< ARRAY_SIZE (amd64_windows_dummy_call_integer_regs
))
261 if (amd64_windows_passed_by_integer_register (type
))
263 amd64_windows_store_arg_in_reg
265 amd64_windows_dummy_call_integer_regs
[reg_idx
]);
269 else if (amd64_windows_passed_by_xmm_register (type
))
271 amd64_windows_store_arg_in_reg
272 (regcache
, args
[i
], AMD64_XMM0_REGNUM
+ reg_idx
);
273 /* In case of varargs, these parameters must also be
274 passed via the integer registers. */
275 amd64_windows_store_arg_in_reg
277 amd64_windows_dummy_call_integer_regs
[reg_idx
]);
285 num_elements
+= ((len
+ 7) / 8);
286 stack_args
[num_stack_args
++] = args
[i
];
290 /* Allocate space for the arguments on the stack, keeping it
291 aligned on a 16 byte boundary. */
292 sp
-= num_elements
* 8;
295 /* Write out the arguments to the stack. */
296 for (i
= 0; i
< num_stack_args
; i
++)
298 struct type
*type
= stack_args
[i
]->type ();
299 const gdb_byte
*valbuf
= stack_args
[i
]->contents ().data ();
301 write_memory (sp
+ element
* 8, valbuf
, type
->length ());
302 element
+= ((type
->length () + 7) / 8);
308 /* Implement the "push_dummy_call" gdbarch method. */
311 amd64_windows_push_dummy_call
312 (struct gdbarch
*gdbarch
, struct value
*function
,
313 struct regcache
*regcache
, CORE_ADDR bp_addr
,
314 int nargs
, struct value
**args
, CORE_ADDR sp
,
315 function_call_return_method return_method
, CORE_ADDR struct_addr
)
317 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
320 /* Pass arguments. */
321 sp
= amd64_windows_push_arguments (regcache
, nargs
, args
, sp
,
324 /* Pass "hidden" argument". */
325 if (return_method
== return_method_struct
)
327 /* The "hidden" argument is passed throught the first argument
329 const int arg_regnum
= amd64_windows_dummy_call_integer_regs
[0];
331 store_unsigned_integer (buf
, 8, byte_order
, struct_addr
);
332 regcache
->cooked_write (arg_regnum
, buf
);
335 /* Reserve some memory on the stack for the integer-parameter
336 registers, as required by the ABI. */
337 sp
-= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs
) * 8;
339 /* Store return address. */
341 store_unsigned_integer (buf
, 8, byte_order
, bp_addr
);
342 write_memory (sp
, buf
, 8);
344 /* Update the stack pointer... */
345 store_unsigned_integer (buf
, 8, byte_order
, sp
);
346 regcache
->cooked_write (AMD64_RSP_REGNUM
, buf
);
348 /* ...and fake a frame pointer. */
349 regcache
->cooked_write (AMD64_RBP_REGNUM
, buf
);
354 /* Implement the "return_value" gdbarch method for amd64-windows. */
356 static enum return_value_convention
357 amd64_windows_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
358 struct type
*type
, struct regcache
*regcache
,
359 struct value
**read_value
, const gdb_byte
*writebuf
)
361 int len
= type
->length ();
364 /* See if our value is returned through a register. If it is, then
365 store the associated register number in REGNUM. */
366 switch (type
->code ())
369 /* floats, and doubles are returned via XMM0. */
370 if (len
== 4 || len
== 8)
371 regnum
= AMD64_XMM0_REGNUM
;
373 case TYPE_CODE_ARRAY
:
374 /* __m128, __m128i and __m128d are returned via XMM0. */
375 if (type
->is_vector () && len
== 16)
377 enum type_code code
= type
->target_type ()->code ();
378 if (code
== TYPE_CODE_INT
|| code
== TYPE_CODE_FLT
)
380 regnum
= AMD64_XMM0_REGNUM
;
386 /* All other values that are 1, 2, 4 or 8 bytes long are returned
388 if (len
== 1 || len
== 2 || len
== 4 || len
== 8)
389 regnum
= AMD64_RAX_REGNUM
;
390 else if (len
== 16 && type
->code () == TYPE_CODE_INT
)
391 regnum
= AMD64_XMM0_REGNUM
;
397 /* RAX contains the address where the return value has been stored. */
398 if (read_value
!= nullptr)
402 regcache_raw_read_unsigned (regcache
, AMD64_RAX_REGNUM
, &addr
);
403 *read_value
= value_at_non_lval (type
, addr
);
405 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
409 /* Extract the return value from the register where it was stored. */
410 if (read_value
!= nullptr)
412 *read_value
= value::allocate (type
);
413 regcache
->raw_read_part (regnum
, 0, len
,
414 (*read_value
)->contents_raw ().data ());
417 regcache
->raw_write_part (regnum
, 0, len
, writebuf
);
418 return RETURN_VALUE_REGISTER_CONVENTION
;
422 /* Check that the code pointed to by PC corresponds to a call to
423 __main, skip it if so. Return PC otherwise. */
426 amd64_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
428 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
431 target_read_memory (pc
, &op
, 1);
436 if (target_read_memory (pc
+ 1, buf
, sizeof buf
) == 0)
438 struct bound_minimal_symbol s
;
441 call_dest
= pc
+ 5 + extract_signed_integer (buf
, 4, byte_order
);
442 s
= lookup_minimal_symbol_by_pc (call_dest
);
444 && s
.minsym
->linkage_name () != NULL
445 && strcmp (s
.minsym
->linkage_name (), "__main") == 0)
453 struct amd64_windows_frame_cache
455 /* ImageBase for the module. */
456 CORE_ADDR image_base
;
458 /* Function start and end rva. */
462 /* Next instruction to be executed. */
468 /* Address of saved integer and xmm registers. */
469 CORE_ADDR prev_reg_addr
[16];
470 CORE_ADDR prev_xmm_addr
[16];
472 /* These two next fields are set only for machine info frames. */
474 /* Likewise for RIP. */
475 CORE_ADDR prev_rip_addr
;
477 /* Likewise for RSP. */
478 CORE_ADDR prev_rsp_addr
;
480 /* Address of the previous frame. */
484 /* Convert a Windows register number to gdb. */
485 static const enum amd64_regnum amd64_windows_w2gdb_regnum
[] =
505 /* Return TRUE iff PC is the range of the function corresponding to
509 pc_in_range (CORE_ADDR pc
, const struct amd64_windows_frame_cache
*cache
)
511 return (pc
>= cache
->image_base
+ cache
->start_rva
512 && pc
< cache
->image_base
+ cache
->end_rva
);
515 /* Try to recognize and decode an epilogue sequence.
517 Return -1 if we fail to read the instructions for any reason.
518 Return 1 if an epilogue sequence was recognized, 0 otherwise. */
521 amd64_windows_frame_decode_epilogue (const frame_info_ptr
&this_frame
,
522 struct amd64_windows_frame_cache
*cache
)
524 /* According to MSDN an epilogue "must consist of either an add RSP,constant
525 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
526 register pops and a return or a jmp".
528 Furthermore, according to RtlVirtualUnwind, the complete list of
533 - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
534 - jmp qword ptr imm32 - not handled
535 - rex.w jmp reg [4X ff eY]
538 CORE_ADDR pc
= cache
->pc
;
539 CORE_ADDR cur_sp
= cache
->sp
;
540 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
541 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
545 /* We don't care about the instruction deallocating the frame:
546 if it hasn't been executed, the pc is still in the body,
547 if it has been executed, the following epilog decoding will work. */
550 - pop reg [41 58-5f] or [58-5f]. */
555 if (target_read_memory (pc
, &op
, 1) != 0)
558 if (op
>= 0x40 && op
<= 0x4f)
564 if (target_read_memory (pc
+ 1, &op
, 1) != 0)
570 if (op
>= 0x58 && op
<= 0x5f)
573 gdb_byte reg
= (op
& 0x0f) | ((rex
& 1) << 3);
575 cache
->prev_reg_addr
[amd64_windows_w2gdb_regnum
[reg
]] = cur_sp
;
582 /* Allow the user to break this loop. This shouldn't happen as the
583 number of consecutive pop should be small. */
587 /* Then decode the marker. */
590 if (target_read_memory (pc
, &op
, 1) != 0)
597 cache
->prev_rip_addr
= cur_sp
;
598 cache
->prev_sp
= cur_sp
+ 8;
607 if (target_read_memory (pc
+ 1, &rel8
, 1) != 0)
609 npc
= pc
+ 2 + (signed char) rel8
;
611 /* If the jump is within the function, then this is not a marker,
612 otherwise this is a tail-call. */
613 return !pc_in_range (npc
, cache
);
622 if (target_read_memory (pc
+ 1, rel32
, 4) != 0)
624 npc
= pc
+ 5 + extract_signed_integer (rel32
, 4, byte_order
);
626 /* If the jump is within the function, then this is not a marker,
627 otherwise this is a tail-call. */
628 return !pc_in_range (npc
, cache
);
636 if (target_read_memory (pc
+ 1, imm16
, 2) != 0)
638 cache
->prev_rip_addr
= cur_sp
;
639 cache
->prev_sp
= cur_sp
640 + extract_unsigned_integer (imm16
, 4, byte_order
);
649 if (target_read_memory (pc
+ 2, &op1
, 1) != 0)
654 cache
->prev_rip_addr
= cur_sp
;
655 cache
->prev_sp
= cur_sp
+ 8;
675 /* Got a REX prefix, read next byte. */
677 if (target_read_memory (pc
+ 1, &op
, 1) != 0)
685 if (target_read_memory (pc
+ 2, &op1
, 1) != 0)
687 return (op1
& 0xf8) == 0xe0;
693 /* Not REX, so unknown. */
698 /* Decode and execute unwind insns at UNWIND_INFO. */
701 amd64_windows_frame_decode_insns (const frame_info_ptr
&this_frame
,
702 struct amd64_windows_frame_cache
*cache
,
703 CORE_ADDR unwind_info
)
705 CORE_ADDR save_addr
= 0;
706 CORE_ADDR cur_sp
= cache
->sp
;
707 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
708 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
711 /* There are at least 3 possibilities to share an unwind info entry:
712 1. Two different runtime_function entries (in .pdata) can point to the
713 same unwind info entry. There is no such indication while unwinding,
714 so we don't really care about that case. We suppose this scheme is
715 used to save memory when the unwind entries are exactly the same.
716 2. Chained unwind_info entries, with no unwind codes (no prologue).
717 There is a major difference with the previous case: the pc range for
718 the function is different (in case 1, the pc range comes from the
719 runtime_function entry; in case 2, the pc range for the chained entry
720 comes from the first unwind entry). Case 1 cannot be used instead as
721 the pc is not in the prologue. This case is officially documented.
722 (There might be unwind code in the first unwind entry to handle
723 additional unwinding). GCC (at least until gcc 5.0) doesn't chain
725 3. Undocumented unwind info redirection. Hard to know the exact purpose,
726 so it is considered as a memory optimization of case 2.
731 /* Unofficially documented unwind info redirection, when UNWIND_INFO
732 address is odd (http://www.codemachine.com/article_x64deepdive.html).
734 struct external_pex64_runtime_function d
;
736 if (target_read_memory (cache
->image_base
+ (unwind_info
& ~1),
737 (gdb_byte
*) &d
, sizeof (d
)) != 0)
741 = extract_unsigned_integer (d
.rva_BeginAddress
, 4, byte_order
);
743 = extract_unsigned_integer (d
.rva_EndAddress
, 4, byte_order
);
745 = extract_unsigned_integer (d
.rva_UnwindData
, 4, byte_order
);
750 struct external_pex64_unwind_info ex_ui
;
751 /* There are at most 256 16-bit unwind insns. */
752 gdb_byte insns
[2 * 256];
755 unsigned char codes_count
;
756 unsigned char frame_reg
;
759 /* Read and decode header. */
760 if (target_read_memory (cache
->image_base
+ unwind_info
,
761 (gdb_byte
*) &ex_ui
, sizeof (ex_ui
)) != 0)
764 frame_debug_printf ("%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x",
765 paddress (gdbarch
, unwind_info
),
766 ex_ui
.Version_Flags
, ex_ui
.SizeOfPrologue
,
767 ex_ui
.CountOfCodes
, ex_ui
.FrameRegisterOffset
);
770 if (PEX64_UWI_VERSION (ex_ui
.Version_Flags
) != 1
771 && PEX64_UWI_VERSION (ex_ui
.Version_Flags
) != 2)
774 start
= cache
->image_base
+ cache
->start_rva
;
776 && !(cache
->pc
>= start
&& cache
->pc
< start
+ ex_ui
.SizeOfPrologue
))
778 /* We want to detect if the PC points to an epilogue. This needs
779 to be checked only once, and an epilogue can be anywhere but in
780 the prologue. If so, the epilogue detection+decoding function is
781 sufficient. Otherwise, the unwinder will consider that the PC
782 is in the body of the function and will need to decode unwind
784 if (amd64_windows_frame_decode_epilogue (this_frame
, cache
) == 1)
787 /* Not in an epilog. Clear possible side effects. */
788 memset (cache
->prev_reg_addr
, 0, sizeof (cache
->prev_reg_addr
));
791 codes_count
= ex_ui
.CountOfCodes
;
792 frame_reg
= PEX64_UWI_FRAMEREG (ex_ui
.FrameRegisterOffset
);
796 /* According to msdn:
797 If an FP reg is used, then any unwind code taking an offset must
798 only be used after the FP reg is established in the prolog. */
800 int frreg
= amd64_windows_w2gdb_regnum
[frame_reg
];
802 get_frame_register (this_frame
, frreg
, buf
);
803 save_addr
= extract_unsigned_integer (buf
, 8, byte_order
);
805 frame_debug_printf (" frame_reg=%s, val=%s",
806 gdbarch_register_name (gdbarch
, frreg
),
807 paddress (gdbarch
, save_addr
));
812 && target_read_memory (cache
->image_base
+ unwind_info
814 insns
, codes_count
* 2) != 0)
817 end_insns
= &insns
[codes_count
* 2];
820 /* Skip opcodes 6 of version 2. This opcode is not documented. */
821 if (PEX64_UWI_VERSION (ex_ui
.Version_Flags
) == 2)
823 for (; p
< end_insns
; p
+= 2)
824 if (PEX64_UNWCODE_CODE (p
[1]) != 6)
828 for (; p
< end_insns
; p
+= 2)
832 /* Virtually execute the operation if the pc is after the
833 corresponding instruction (that does matter in case of break
834 within the prologue). Note that for chained info (!first), the
835 prologue has been fully executed. */
836 if (cache
->pc
>= start
+ p
[0] || cache
->pc
< start
)
838 frame_debug_printf (" op #%u: off=0x%02x, insn=0x%02x",
839 (unsigned) (p
- insns
), p
[0], p
[1]);
841 /* If there is no frame registers defined, the current value of
842 rsp is used instead. */
848 switch (PEX64_UNWCODE_CODE (p
[1]))
850 case UWOP_PUSH_NONVOL
:
851 /* Push pre-decrements RSP. */
852 reg
= amd64_windows_w2gdb_regnum
[PEX64_UNWCODE_INFO (p
[1])];
853 cache
->prev_reg_addr
[reg
] = cur_sp
;
856 case UWOP_ALLOC_LARGE
:
857 if (PEX64_UNWCODE_INFO (p
[1]) == 0)
859 8 * extract_unsigned_integer (p
+ 2, 2, byte_order
);
860 else if (PEX64_UNWCODE_INFO (p
[1]) == 1)
861 cur_sp
+= extract_unsigned_integer (p
+ 2, 4, byte_order
);
865 case UWOP_ALLOC_SMALL
:
866 cur_sp
+= 8 + 8 * PEX64_UNWCODE_INFO (p
[1]);
870 - PEX64_UWI_FRAMEOFF (ex_ui
.FrameRegisterOffset
) * 16;
872 case UWOP_SAVE_NONVOL
:
873 reg
= amd64_windows_w2gdb_regnum
[PEX64_UNWCODE_INFO (p
[1])];
874 cache
->prev_reg_addr
[reg
] = save_addr
875 + 8 * extract_unsigned_integer (p
+ 2, 2, byte_order
);
877 case UWOP_SAVE_NONVOL_FAR
:
878 reg
= amd64_windows_w2gdb_regnum
[PEX64_UNWCODE_INFO (p
[1])];
879 cache
->prev_reg_addr
[reg
] = save_addr
880 + 8 * extract_unsigned_integer (p
+ 2, 4, byte_order
);
882 case UWOP_SAVE_XMM128
:
883 cache
->prev_xmm_addr
[PEX64_UNWCODE_INFO (p
[1])] =
885 - 16 * extract_unsigned_integer (p
+ 2, 2, byte_order
);
887 case UWOP_SAVE_XMM128_FAR
:
888 cache
->prev_xmm_addr
[PEX64_UNWCODE_INFO (p
[1])] =
890 - 16 * extract_unsigned_integer (p
+ 2, 4, byte_order
);
892 case UWOP_PUSH_MACHFRAME
:
893 if (PEX64_UNWCODE_INFO (p
[1]) == 0)
895 cache
->prev_rip_addr
= cur_sp
+ 0;
896 cache
->prev_rsp_addr
= cur_sp
+ 24;
899 else if (PEX64_UNWCODE_INFO (p
[1]) == 1)
901 cache
->prev_rip_addr
= cur_sp
+ 8;
902 cache
->prev_rsp_addr
= cur_sp
+ 32;
912 /* Display address where the register was saved. */
914 frame_debug_printf (" [reg %s at %s]",
915 gdbarch_register_name (gdbarch
, reg
),
917 cache
->prev_reg_addr
[reg
]));
920 /* Adjust with the length of the opcode. */
921 switch (PEX64_UNWCODE_CODE (p
[1]))
923 case UWOP_PUSH_NONVOL
:
924 case UWOP_ALLOC_SMALL
:
926 case UWOP_PUSH_MACHFRAME
:
928 case UWOP_ALLOC_LARGE
:
929 if (PEX64_UNWCODE_INFO (p
[1]) == 0)
931 else if (PEX64_UNWCODE_INFO (p
[1]) == 1)
936 case UWOP_SAVE_NONVOL
:
937 case UWOP_SAVE_XMM128
:
940 case UWOP_SAVE_NONVOL_FAR
:
941 case UWOP_SAVE_XMM128_FAR
:
948 if (PEX64_UWI_FLAGS (ex_ui
.Version_Flags
) != UNW_FLAG_CHAININFO
)
950 /* End of unwind info. */
955 /* Read the chained unwind info. */
956 struct external_pex64_runtime_function d
;
959 /* Not anymore the first entry. */
962 /* Stay aligned on word boundary. */
963 chain_vma
= cache
->image_base
+ unwind_info
964 + sizeof (ex_ui
) + ((codes_count
+ 1) & ~1) * 2;
966 if (target_read_memory (chain_vma
, (gdb_byte
*) &d
, sizeof (d
)) != 0)
969 /* Decode begin/end. This may be different from .pdata index, as
970 an unwind info may be shared by several functions (in particular
971 if many functions have the same prolog and handler. */
973 extract_unsigned_integer (d
.rva_BeginAddress
, 4, byte_order
);
975 extract_unsigned_integer (d
.rva_EndAddress
, 4, byte_order
);
977 extract_unsigned_integer (d
.rva_UnwindData
, 4, byte_order
);
979 frame_debug_printf ("next in chain: unwind_data=%s, start_rva=%s, "
981 paddress (gdbarch
, unwind_info
),
982 paddress (gdbarch
, cache
->start_rva
),
983 paddress (gdbarch
, cache
->end_rva
));
986 /* Allow the user to break this loop. */
989 /* PC is saved by the call. */
990 if (cache
->prev_rip_addr
== 0)
991 cache
->prev_rip_addr
= cur_sp
;
992 cache
->prev_sp
= cur_sp
+ 8;
994 frame_debug_printf (" prev_sp: %s, prev_pc @%s",
995 paddress (gdbarch
, cache
->prev_sp
),
996 paddress (gdbarch
, cache
->prev_rip_addr
));
999 /* Find SEH unwind info for PC, returning 0 on success.
1001 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
1002 to the base address of the corresponding image, and START_RVA
1003 to the rva of the function containing PC. */
1006 amd64_windows_find_unwind_info (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
1007 CORE_ADDR
*unwind_info
,
1008 CORE_ADDR
*image_base
,
1009 CORE_ADDR
*start_rva
,
1012 struct obj_section
*sec
;
1014 IMAGE_DATA_DIRECTORY
*dir
;
1015 struct objfile
*objfile
;
1016 unsigned long lo
, hi
;
1018 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1020 /* Get the corresponding exception directory. */
1021 sec
= find_pc_section (pc
);
1024 objfile
= sec
->objfile
;
1025 pe
= pe_data (sec
->objfile
->obfd
);
1026 dir
= &pe
->pe_opthdr
.DataDirectory
[PE_EXCEPTION_TABLE
];
1028 base
= pe
->pe_opthdr
.ImageBase
+ objfile
->text_section_offset ();
1033 Note: This does not handle dynamically added entries (for JIT
1034 engines). For this, we would need to ask the kernel directly,
1035 which means getting some info from the native layer. For the
1036 rest of the code, however, it's probably faster to search
1037 the entry ourselves. */
1039 hi
= dir
->Size
/ sizeof (struct external_pex64_runtime_function
);
1043 unsigned long mid
= lo
+ (hi
- lo
) / 2;
1044 struct external_pex64_runtime_function d
;
1047 if (target_read_memory (base
+ dir
->VirtualAddress
+ mid
* sizeof (d
),
1048 (gdb_byte
*) &d
, sizeof (d
)) != 0)
1051 sa
= extract_unsigned_integer (d
.rva_BeginAddress
, 4, byte_order
);
1052 ea
= extract_unsigned_integer (d
.rva_EndAddress
, 4, byte_order
);
1055 else if (pc
>= base
+ ea
)
1057 else if (pc
>= base
+ sa
&& pc
< base
+ ea
)
1063 extract_unsigned_integer (d
.rva_UnwindData
, 4, byte_order
);
1070 frame_debug_printf ("image_base=%s, unwind_data=%s",
1071 paddress (gdbarch
, base
),
1072 paddress (gdbarch
, *unwind_info
));
1077 /* Fill THIS_CACHE using the native amd64-windows unwinding data
1080 static struct amd64_windows_frame_cache
*
1081 amd64_windows_frame_cache (const frame_info_ptr
&this_frame
, void **this_cache
)
1083 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1084 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1085 struct amd64_windows_frame_cache
*cache
;
1088 CORE_ADDR unwind_info
= 0;
1091 return (struct amd64_windows_frame_cache
*) *this_cache
;
1093 cache
= FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache
);
1094 *this_cache
= cache
;
1096 /* Get current PC and SP. */
1097 pc
= get_frame_pc (this_frame
);
1098 get_frame_register (this_frame
, AMD64_RSP_REGNUM
, buf
);
1099 cache
->sp
= extract_unsigned_integer (buf
, 8, byte_order
);
1102 /* If we can't find the unwind info, keep trying as though this is a
1103 leaf function. This situation can happen when PC==0, see
1104 https://sourceware.org/bugzilla/show_bug.cgi?id=30255. */
1105 if (amd64_windows_find_unwind_info (gdbarch
, pc
, &unwind_info
,
1109 || unwind_info
== 0)
1111 /* Assume a leaf function. */
1112 cache
->prev_sp
= cache
->sp
+ 8;
1113 cache
->prev_rip_addr
= cache
->sp
;
1117 /* Decode unwind insns to compute saved addresses. */
1118 amd64_windows_frame_decode_insns (this_frame
, cache
, unwind_info
);
1123 /* Implement the "prev_register" method of struct frame_unwind
1124 using the standard Windows x64 SEH info. */
1126 static struct value
*
1127 amd64_windows_frame_prev_register (const frame_info_ptr
&this_frame
,
1128 void **this_cache
, int regnum
)
1130 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1131 struct amd64_windows_frame_cache
*cache
=
1132 amd64_windows_frame_cache (this_frame
, this_cache
);
1135 frame_debug_printf ("%s for sp=%s",
1136 gdbarch_register_name (gdbarch
, regnum
),
1137 paddress (gdbarch
, cache
->prev_sp
));
1139 if (regnum
>= AMD64_XMM0_REGNUM
&& regnum
<= AMD64_XMM0_REGNUM
+ 15)
1140 prev
= cache
->prev_xmm_addr
[regnum
- AMD64_XMM0_REGNUM
];
1141 else if (regnum
== AMD64_RSP_REGNUM
)
1143 prev
= cache
->prev_rsp_addr
;
1145 return frame_unwind_got_constant (this_frame
, regnum
, cache
->prev_sp
);
1147 else if (regnum
>= AMD64_RAX_REGNUM
&& regnum
<= AMD64_R15_REGNUM
)
1148 prev
= cache
->prev_reg_addr
[regnum
- AMD64_RAX_REGNUM
];
1149 else if (regnum
== AMD64_RIP_REGNUM
)
1150 prev
= cache
->prev_rip_addr
;
1155 frame_debug_printf (" -> at %s", paddress (gdbarch
, prev
));
1159 /* Register was saved. */
1160 return frame_unwind_got_memory (this_frame
, regnum
, prev
);
1164 /* Register is either volatile or not modified. */
1165 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
1169 /* Implement the "this_id" method of struct frame_unwind using
1170 the standard Windows x64 SEH info. */
1173 amd64_windows_frame_this_id (const frame_info_ptr
&this_frame
, void **this_cache
,
1174 struct frame_id
*this_id
)
1176 struct amd64_windows_frame_cache
*cache
=
1177 amd64_windows_frame_cache (this_frame
, this_cache
);
1179 *this_id
= frame_id_build (cache
->prev_sp
,
1180 cache
->image_base
+ cache
->start_rva
);
1183 /* Windows x64 SEH unwinder. */
1185 static const struct frame_unwind amd64_windows_frame_unwind
=
1189 default_frame_unwind_stop_reason
,
1190 &amd64_windows_frame_this_id
,
1191 &amd64_windows_frame_prev_register
,
1193 default_frame_sniffer
1196 /* Implement the "skip_prologue" gdbarch method. */
1199 amd64_windows_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1201 CORE_ADDR func_addr
;
1202 CORE_ADDR unwind_info
= 0;
1203 CORE_ADDR image_base
, start_rva
, end_rva
;
1204 struct external_pex64_unwind_info ex_ui
;
1206 /* Use prologue size from unwind info. */
1207 if (amd64_windows_find_unwind_info (gdbarch
, pc
, &unwind_info
,
1208 &image_base
, &start_rva
, &end_rva
) == 0)
1210 if (unwind_info
== 0)
1212 /* Leaf function. */
1215 else if (target_read_memory (image_base
+ unwind_info
,
1216 (gdb_byte
*) &ex_ui
, sizeof (ex_ui
)) == 0
1217 && PEX64_UWI_VERSION (ex_ui
.Version_Flags
) == 1)
1218 return std::max (pc
, image_base
+ start_rva
+ ex_ui
.SizeOfPrologue
);
1221 /* See if we can determine the end of the prologue via the symbol
1222 table. If so, then return either the PC, or the PC after
1223 the prologue, whichever is greater. */
1224 if (find_pc_partial_function (pc
, NULL
, &func_addr
, NULL
))
1226 CORE_ADDR post_prologue_pc
1227 = skip_prologue_using_sal (gdbarch
, func_addr
);
1229 if (post_prologue_pc
!= 0)
1230 return std::max (pc
, post_prologue_pc
);
1236 /* Check Win64 DLL jmp trampolines and find jump destination. */
1239 amd64_windows_skip_trampoline_code (const frame_info_ptr
&frame
, CORE_ADDR pc
)
1241 CORE_ADDR destination
= 0;
1242 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1243 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1245 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
1246 if (pc
&& read_memory_unsigned_integer (pc
, 2, byte_order
) == 0x25ff)
1248 /* Get opcode offset and see if we can find a reference in our data. */
1250 = read_memory_unsigned_integer (pc
+ 2, 4, byte_order
);
1252 /* Get address of function pointer at end of pc. */
1253 CORE_ADDR indirect_addr
= pc
+ offset
+ 6;
1255 struct minimal_symbol
*indsym
1257 ? lookup_minimal_symbol_by_pc (indirect_addr
).minsym
1259 const char *symname
= indsym
? indsym
->linkage_name () : NULL
;
1263 if (startswith (symname
, "__imp_")
1264 || startswith (symname
, "_imp_"))
1266 = read_memory_unsigned_integer (indirect_addr
, 8, byte_order
);
1273 /* Implement the "auto_wide_charset" gdbarch method. */
1276 amd64_windows_auto_wide_charset (void)
1281 /* Common parts for gdbarch initialization for Windows and Cygwin on AMD64. */
1284 amd64_windows_init_abi_common (gdbarch_info info
, struct gdbarch
*gdbarch
)
1286 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
1288 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1289 preferred over the SEH one. The reasons are:
1290 - binaries without SEH but with dwarf2 debug info are correctly handled
1291 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1293 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1294 handled if the dwarf2 unwinder is used).
1296 The call to amd64_init_abi appends default unwinders, that aren't
1297 compatible with the SEH one.
1299 frame_unwind_append_unwinder (gdbarch
, &amd64_windows_frame_unwind
);
1301 amd64_init_abi (info
, gdbarch
,
1302 amd64_target_description (X86_XSTATE_SSE_MASK
, false));
1304 /* Function calls. */
1305 set_gdbarch_push_dummy_call (gdbarch
, amd64_windows_push_dummy_call
);
1306 set_gdbarch_return_value_as_value (gdbarch
, amd64_windows_return_value
);
1307 set_gdbarch_skip_main_prologue (gdbarch
, amd64_skip_main_prologue
);
1308 set_gdbarch_skip_trampoline_code (gdbarch
,
1309 amd64_windows_skip_trampoline_code
);
1311 set_gdbarch_skip_prologue (gdbarch
, amd64_windows_skip_prologue
);
1313 tdep
->gregset_reg_offset
= amd64_windows_gregset_reg_offset
;
1314 tdep
->gregset_num_regs
= ARRAY_SIZE (amd64_windows_gregset_reg_offset
);
1315 tdep
->sizeof_gregset
= AMD64_WINDOWS_SIZEOF_GREGSET
;
1316 tdep
->sizeof_fpregset
= 0;
1318 /* Core file support. */
1319 set_gdbarch_core_xfer_shared_libraries
1320 (gdbarch
, windows_core_xfer_shared_libraries
);
1321 set_gdbarch_core_pid_to_str (gdbarch
, windows_core_pid_to_str
);
1323 set_gdbarch_auto_wide_charset (gdbarch
, amd64_windows_auto_wide_charset
);
1326 /* gdbarch initialization for Windows on AMD64. */
1329 amd64_windows_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
1331 amd64_windows_init_abi_common (info
, gdbarch
);
1332 windows_init_abi (info
, gdbarch
);
1334 /* On Windows, "long"s are only 32bit. */
1335 set_gdbarch_long_bit (gdbarch
, 32);
1338 /* Sigwrapper unwinder instruction patterns for AMD64. */
1340 static const gdb_byte amd64_sigbe_bytes
[] = {
1341 0x49, 0xc7, 0xc3, 0xf8, 0xff, 0xff, 0xff, /* movq $-8,%r11 */
1342 0x4d, 0x0f, 0xc1, 0x9a, /* xaddq %r11,$tls::stackptr(%r10) */
1343 /* 4 bytes for tls::stackptr operand. */
1346 static const gdb_byte amd64_sigdelayed_bytes
[] = {
1347 0x49, 0xc7, 0xc3, 0xf8, 0xff, 0xff, 0xff, /* movq $-8,%r11 */
1348 0x4d, 0x0f, 0xc1, 0x9c, 0x24, /* xaddq %r11,$tls::stackptr(%r12) */
1349 /* 4 bytes for tls::stackptr operand. */
1352 static const gdb::array_view
<const gdb_byte
> amd64_sig_patterns
[] {
1353 { amd64_sigbe_bytes
},
1354 { amd64_sigdelayed_bytes
},
1357 /* The sigwrapper unwinder on AMD64. */
1359 static const cygwin_sigwrapper_frame_unwind
1360 amd64_cygwin_sigwrapper_frame_unwind (amd64_sig_patterns
);
1362 /* gdbarch initialization for Cygwin on AMD64. */
1365 amd64_cygwin_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
1367 frame_unwind_append_unwinder (gdbarch
, &amd64_cygwin_sigwrapper_frame_unwind
);
1369 amd64_windows_init_abi_common (info
, gdbarch
);
1370 cygwin_init_abi (info
, gdbarch
);
1374 amd64_windows_osabi_sniffer (bfd
*abfd
)
1376 const char *target_name
= bfd_get_target (abfd
);
1378 if (!streq (target_name
, "pei-x86-64"))
1379 return GDB_OSABI_UNKNOWN
;
1381 if (is_linked_with_cygwin_dll (abfd
))
1382 return GDB_OSABI_CYGWIN
;
1384 return GDB_OSABI_WINDOWS
;
1387 static enum gdb_osabi
1388 amd64_cygwin_core_osabi_sniffer (bfd
*abfd
)
1390 const char *target_name
= bfd_get_target (abfd
);
1392 /* Cygwin uses elf core dumps. Do not claim all ELF executables,
1393 check whether there is a .reg section of proper size. */
1394 if (strcmp (target_name
, "elf64-x86-64") == 0)
1396 asection
*section
= bfd_get_section_by_name (abfd
, ".reg");
1397 if (section
!= nullptr
1398 && bfd_section_size (section
) == AMD64_WINDOWS_SIZEOF_GREGSET
)
1399 return GDB_OSABI_CYGWIN
;
1402 return GDB_OSABI_UNKNOWN
;
1405 void _initialize_amd64_windows_tdep ();
1407 _initialize_amd64_windows_tdep ()
1409 gdbarch_register_osabi (bfd_arch_i386
, bfd_mach_x86_64
, GDB_OSABI_WINDOWS
,
1410 amd64_windows_init_abi
);
1411 gdbarch_register_osabi (bfd_arch_i386
, bfd_mach_x86_64
, GDB_OSABI_CYGWIN
,
1412 amd64_cygwin_init_abi
);
1414 gdbarch_register_osabi_sniffer (bfd_arch_i386
, bfd_target_coff_flavour
,
1415 amd64_windows_osabi_sniffer
);
1417 /* Cygwin uses elf core dumps. */
1418 gdbarch_register_osabi_sniffer (bfd_arch_i386
, bfd_target_elf_flavour
,
1419 amd64_cygwin_core_osabi_sniffer
);