Updated translations for the bfd, binutils, gas, ld and opcodes directories
[binutils-gdb.git] / gold / symtab.cc
blob5857dd7b098d2afc65de9283d40fbf89814ec10e
1 // symtab.cc -- the gold symbol table
3 // Copyright (C) 2006-2024 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
45 namespace gold
48 // Class Symbol.
50 // Initialize fields in Symbol. This initializes everything except
51 // u1_, u2_ and source_.
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
84 this->non_zero_localentry_ = false;
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
90 static std::string
91 demangle(const char* name)
93 if (!parameters->options().do_demangle())
94 return name;
96 // cplus_demangle allocates memory for the result it returns,
97 // and returns NULL if the name is already demangled.
98 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99 if (demangled_name == NULL)
100 return name;
102 std::string retval(demangled_name);
103 free(demangled_name);
104 return retval;
107 std::string
108 Symbol::demangled_name() const
110 return demangle(this->name());
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118 const elfcpp::Sym<size, big_endian>& sym,
119 unsigned int st_shndx, bool is_ordinary)
121 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122 sym.get_st_visibility(), sym.get_st_nonvis());
123 this->u1_.object = object;
124 this->u2_.shndx = st_shndx;
125 this->is_ordinary_shndx_ = is_ordinary;
126 this->source_ = FROM_OBJECT;
127 this->in_reg_ = !object->is_dynamic();
128 this->in_dyn_ = object->is_dynamic();
129 this->in_real_elf_ = object->pluginobj() == NULL;
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137 Output_data* od, elfcpp::STT type,
138 elfcpp::STB binding, elfcpp::STV visibility,
139 unsigned char nonvis, bool offset_is_from_end,
140 bool is_predefined)
142 this->init_fields(name, version, type, binding, visibility, nonvis);
143 this->u1_.output_data = od;
144 this->u2_.offset_is_from_end = offset_is_from_end;
145 this->source_ = IN_OUTPUT_DATA;
146 this->in_reg_ = true;
147 this->in_real_elf_ = true;
148 this->is_predefined_ = is_predefined;
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156 Output_segment* os, elfcpp::STT type,
157 elfcpp::STB binding, elfcpp::STV visibility,
158 unsigned char nonvis,
159 Segment_offset_base offset_base,
160 bool is_predefined)
162 this->init_fields(name, version, type, binding, visibility, nonvis);
163 this->u1_.output_segment = os;
164 this->u2_.offset_base = offset_base;
165 this->source_ = IN_OUTPUT_SEGMENT;
166 this->in_reg_ = true;
167 this->in_real_elf_ = true;
168 this->is_predefined_ = is_predefined;
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176 elfcpp::STT type, elfcpp::STB binding,
177 elfcpp::STV visibility, unsigned char nonvis,
178 bool is_predefined)
180 this->init_fields(name, version, type, binding, visibility, nonvis);
181 this->source_ = IS_CONSTANT;
182 this->in_reg_ = true;
183 this->in_real_elf_ = true;
184 this->is_predefined_ = is_predefined;
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192 elfcpp::STT type, elfcpp::STB binding,
193 elfcpp::STV visibility, unsigned char nonvis)
195 this->init_fields(name, version, type, binding, visibility, nonvis);
196 this->dynsym_index_ = -1U;
197 this->source_ = IS_UNDEFINED;
198 this->in_reg_ = true;
199 this->in_real_elf_ = true;
202 // Allocate a common symbol in the base.
204 void
205 Symbol::allocate_base_common(Output_data* od)
207 gold_assert(this->is_common());
208 this->source_ = IN_OUTPUT_DATA;
209 this->u1_.output_data = od;
210 this->u2_.offset_is_from_end = false;
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219 Object* object,
220 const elfcpp::Sym<size, big_endian>& sym,
221 unsigned int st_shndx, bool is_ordinary)
223 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224 this->value_ = sym.get_st_value();
225 this->symsize_ = sym.get_st_size();
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234 Output_data* od, Value_type value,
235 Size_type symsize, elfcpp::STT type,
236 elfcpp::STB binding,
237 elfcpp::STV visibility,
238 unsigned char nonvis,
239 bool offset_is_from_end,
240 bool is_predefined)
242 this->init_base_output_data(name, version, od, type, binding, visibility,
243 nonvis, offset_is_from_end, is_predefined);
244 this->value_ = value;
245 this->symsize_ = symsize;
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254 Output_segment* os, Value_type value,
255 Size_type symsize, elfcpp::STT type,
256 elfcpp::STB binding,
257 elfcpp::STV visibility,
258 unsigned char nonvis,
259 Segment_offset_base offset_base,
260 bool is_predefined)
262 this->init_base_output_segment(name, version, os, type, binding, visibility,
263 nonvis, offset_base, is_predefined);
264 this->value_ = value;
265 this->symsize_ = symsize;
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274 Value_type value, Size_type symsize,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis,
277 bool is_predefined)
279 this->init_base_constant(name, version, type, binding, visibility, nonvis,
280 is_predefined);
281 this->value_ = value;
282 this->symsize_ = symsize;
285 // Initialize the fields in Sized_symbol for an undefined symbol.
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290 Value_type value, elfcpp::STT type,
291 elfcpp::STB binding, elfcpp::STV visibility,
292 unsigned char nonvis)
294 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295 this->value_ = value;
296 this->symsize_ = 0;
299 // Return an allocated string holding the symbol's name as
300 // name@version. This is used for relocatable links.
302 std::string
303 Symbol::versioned_name() const
305 gold_assert(this->version_ != NULL);
306 std::string ret = this->name_;
307 ret.push_back('@');
308 if (this->is_def_)
309 ret.push_back('@');
310 ret += this->version_;
311 return ret;
314 // Return true if SHNDX represents a common symbol.
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
319 return (shndx == elfcpp::SHN_COMMON
320 || shndx == parameters->target().small_common_shndx()
321 || shndx == parameters->target().large_common_shndx());
324 // Allocate a common symbol.
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
330 this->allocate_base_common(od);
331 this->value_ = value;
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
343 // If the symbol is only present on plugin files, the plugin decided we
344 // don't need it.
345 if (!this->in_real_elf())
346 return false;
348 // If the symbol is used by a dynamic relocation, we need to add it.
349 if (this->needs_dynsym_entry())
350 return true;
352 // If this symbol's section is not added, the symbol need not be added.
353 // The section may have been GCed. Note that export_dynamic is being
354 // overridden here. This should not be done for shared objects.
355 if (parameters->options().gc_sections()
356 && !parameters->options().shared()
357 && this->source() == Symbol::FROM_OBJECT
358 && !this->object()->is_dynamic())
360 Relobj* relobj = static_cast<Relobj*>(this->object());
361 bool is_ordinary;
362 unsigned int shndx = this->shndx(&is_ordinary);
363 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364 && !relobj->is_section_included(shndx)
365 && !symtab->is_section_folded(relobj, shndx))
366 return false;
369 // If the symbol was forced dynamic in a --dynamic-list file
370 // or an --export-dynamic-symbol option, add it.
371 if (!this->is_from_dynobj()
372 && (parameters->options().in_dynamic_list(this->name())
373 || parameters->options().is_export_dynamic_symbol(this->name())))
375 if (!this->is_forced_local())
376 return true;
377 gold_warning(_("Cannot export local symbol '%s'"),
378 this->demangled_name().c_str());
379 return false;
382 // If the symbol was forced local in a version script, do not add it.
383 if (this->is_forced_local())
384 return false;
386 // If dynamic-list-data was specified, add any STT_OBJECT.
387 if (parameters->options().dynamic_list_data()
388 && !this->is_from_dynobj()
389 && this->type() == elfcpp::STT_OBJECT)
390 return true;
392 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394 if ((parameters->options().dynamic_list_cpp_new()
395 || parameters->options().dynamic_list_cpp_typeinfo())
396 && !this->is_from_dynobj())
398 // TODO(csilvers): We could probably figure out if we're an operator
399 // new/delete or typeinfo without the need to demangle.
400 char* demangled_name = cplus_demangle(this->name(),
401 DMGL_ANSI | DMGL_PARAMS);
402 if (demangled_name == NULL)
404 // Not a C++ symbol, so it can't satisfy these flags
406 else if (parameters->options().dynamic_list_cpp_new()
407 && (strprefix(demangled_name, "operator new")
408 || strprefix(demangled_name, "operator delete")))
410 free(demangled_name);
411 return true;
413 else if (parameters->options().dynamic_list_cpp_typeinfo()
414 && (strprefix(demangled_name, "typeinfo name for")
415 || strprefix(demangled_name, "typeinfo for")))
417 free(demangled_name);
418 return true;
420 else
421 free(demangled_name);
424 // If exporting all symbols or building a shared library,
425 // or the symbol should be globally unique (GNU_UNIQUE),
426 // and the symbol is defined in a regular object and is
427 // externally visible, we need to add it.
428 if ((parameters->options().export_dynamic()
429 || parameters->options().shared()
430 || (parameters->options().gnu_unique()
431 && this->binding() == elfcpp::STB_GNU_UNIQUE))
432 && !this->is_from_dynobj()
433 && !this->is_undefined()
434 && this->is_externally_visible())
435 return true;
437 return false;
440 // Return true if the final value of this symbol is known at link
441 // time.
443 bool
444 Symbol::final_value_is_known() const
446 // If we are not generating an executable, then no final values are
447 // known, since they will change at runtime, with the exception of
448 // TLS symbols in a position-independent executable.
449 if ((parameters->options().output_is_position_independent()
450 || parameters->options().relocatable())
451 && !(this->type() == elfcpp::STT_TLS
452 && parameters->options().pie()))
453 return false;
455 // If the symbol is not from an object file, and is not undefined,
456 // then it is defined, and known.
457 if (this->source_ != FROM_OBJECT)
459 if (this->source_ != IS_UNDEFINED)
460 return true;
462 else
464 // If the symbol is from a dynamic object, then the final value
465 // is not known.
466 if (this->object()->is_dynamic())
467 return false;
469 // If the symbol is not undefined (it is defined or common),
470 // then the final value is known.
471 if (!this->is_undefined())
472 return true;
475 // If the symbol is undefined, then whether the final value is known
476 // depends on whether we are doing a static link. If we are doing a
477 // dynamic link, then the final value could be filled in at runtime.
478 // This could reasonably be the case for a weak undefined symbol.
479 return parameters->doing_static_link();
482 // Return the output section where this symbol is defined.
484 Output_section*
485 Symbol::output_section() const
487 switch (this->source_)
489 case FROM_OBJECT:
491 unsigned int shndx = this->u2_.shndx;
492 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
494 gold_assert(!this->u1_.object->is_dynamic());
495 gold_assert(this->u1_.object->pluginobj() == NULL);
496 Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
497 return relobj->output_section(shndx);
499 return NULL;
502 case IN_OUTPUT_DATA:
503 return this->u1_.output_data->output_section();
505 case IN_OUTPUT_SEGMENT:
506 case IS_CONSTANT:
507 case IS_UNDEFINED:
508 return NULL;
510 default:
511 gold_unreachable();
515 // Set the symbol's output section. This is used for symbols defined
516 // in scripts. This should only be called after the symbol table has
517 // been finalized.
519 void
520 Symbol::set_output_section(Output_section* os)
522 switch (this->source_)
524 case FROM_OBJECT:
525 case IN_OUTPUT_DATA:
526 gold_assert(this->output_section() == os);
527 break;
528 case IS_CONSTANT:
529 this->source_ = IN_OUTPUT_DATA;
530 this->u1_.output_data = os;
531 this->u2_.offset_is_from_end = false;
532 break;
533 case IN_OUTPUT_SEGMENT:
534 case IS_UNDEFINED:
535 default:
536 gold_unreachable();
540 // Set the symbol's output segment. This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
544 void
545 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
547 gold_assert(this->is_predefined_);
548 this->source_ = IN_OUTPUT_SEGMENT;
549 this->u1_.output_segment = os;
550 this->u2_.offset_base = base;
553 // Set the symbol to undefined. This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
557 void
558 Symbol::set_undefined()
560 this->source_ = IS_UNDEFINED;
561 this->is_predefined_ = false;
564 // Class Symbol_table.
566 Symbol_table::Symbol_table(unsigned int count,
567 const Version_script_info& version_script)
568 : saw_undefined_(0), offset_(0), has_gnu_output_(false), table_(count),
569 namepool_(), forwarders_(), commons_(), tls_commons_(), small_commons_(),
570 large_commons_(), forced_locals_(), warnings_(),
571 version_script_(version_script), gc_(NULL), icf_(NULL),
572 target_symbols_()
574 namepool_.reserve(count);
577 Symbol_table::~Symbol_table()
581 // The symbol table key equality function. This is called with
582 // Stringpool keys.
584 inline bool
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
586 const Symbol_table_key& k2) const
588 return k1.first == k2.first && k1.second == k2.second;
591 bool
592 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
594 return (parameters->options().icf_enabled()
595 && this->icf_->is_section_folded(obj, shndx));
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
601 void
602 Symbol_table::gc_mark_undef_symbols(Layout* layout)
604 for (options::String_set::const_iterator p =
605 parameters->options().undefined_begin();
606 p != parameters->options().undefined_end();
607 ++p)
609 const char* name = p->c_str();
610 Symbol* sym = this->lookup(name);
611 gold_assert(sym != NULL);
612 if (sym->source() == Symbol::FROM_OBJECT
613 && !sym->object()->is_dynamic())
615 this->gc_mark_symbol(sym);
619 for (options::String_set::const_iterator p =
620 parameters->options().export_dynamic_symbol_begin();
621 p != parameters->options().export_dynamic_symbol_end();
622 ++p)
624 const char* name = p->c_str();
625 Symbol* sym = this->lookup(name);
626 // It's not an error if a symbol named by --export-dynamic-symbol
627 // is undefined.
628 if (sym != NULL
629 && sym->source() == Symbol::FROM_OBJECT
630 && !sym->object()->is_dynamic())
632 this->gc_mark_symbol(sym);
636 for (Script_options::referenced_const_iterator p =
637 layout->script_options()->referenced_begin();
638 p != layout->script_options()->referenced_end();
639 ++p)
641 Symbol* sym = this->lookup(p->c_str());
642 gold_assert(sym != NULL);
643 if (sym->source() == Symbol::FROM_OBJECT
644 && !sym->object()->is_dynamic())
646 this->gc_mark_symbol(sym);
651 void
652 Symbol_table::gc_mark_symbol(Symbol* sym)
654 // Add the object and section to the work list.
655 bool is_ordinary;
656 unsigned int shndx = sym->shndx(&is_ordinary);
657 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
659 gold_assert(this->gc_!= NULL);
660 Relobj* relobj = static_cast<Relobj*>(sym->object());
661 this->gc_->worklist().push_back(Section_id(relobj, shndx));
663 parameters->target().gc_mark_symbol(this, sym);
666 // When doing garbage collection, keep symbols that have been seen in
667 // dynamic objects.
668 inline void
669 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
671 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
672 && !sym->object()->is_dynamic())
673 this->gc_mark_symbol(sym);
676 // Make TO a symbol which forwards to FROM.
678 void
679 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
681 gold_assert(from != to);
682 gold_assert(!from->is_forwarder() && !to->is_forwarder());
683 this->forwarders_[from] = to;
684 from->set_forwarder();
687 // Resolve the forwards from FROM, returning the real symbol.
689 Symbol*
690 Symbol_table::resolve_forwards(const Symbol* from) const
692 gold_assert(from->is_forwarder());
693 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
694 this->forwarders_.find(from);
695 gold_assert(p != this->forwarders_.end());
696 return p->second;
699 // Look up a symbol by name.
701 Symbol*
702 Symbol_table::lookup(const char* name, const char* version) const
704 Stringpool::Key name_key;
705 name = this->namepool_.find(name, &name_key);
706 if (name == NULL)
707 return NULL;
709 Stringpool::Key version_key = 0;
710 if (version != NULL)
712 version = this->namepool_.find(version, &version_key);
713 if (version == NULL)
714 return NULL;
717 Symbol_table_key key(name_key, version_key);
718 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
719 if (p == this->table_.end())
720 return NULL;
721 return p->second;
724 // Resolve a Symbol with another Symbol. This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version. Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
730 template<int size, bool big_endian>
731 void
732 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
734 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
735 elfcpp::Sym_write<size, big_endian> esym(buf);
736 // We don't bother to set the st_name or the st_shndx field.
737 esym.put_st_value(from->value());
738 esym.put_st_size(from->symsize());
739 esym.put_st_info(from->binding(), from->type());
740 esym.put_st_other(from->visibility(), from->nonvis());
741 bool is_ordinary;
742 unsigned int shndx = from->shndx(&is_ordinary);
743 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
744 from->version(), true);
745 if (from->in_reg())
746 to->set_in_reg();
747 if (from->in_dyn())
748 to->set_in_dyn();
749 if (parameters->options().gc_sections())
750 this->gc_mark_dyn_syms(to);
753 // Record that a symbol is forced to be local by a version script or
754 // by visibility.
756 void
757 Symbol_table::force_local(Symbol* sym)
759 if (!sym->is_defined() && !sym->is_common())
760 return;
761 if (sym->is_forced_local())
763 // We already got this one.
764 return;
766 sym->set_is_forced_local();
767 this->forced_locals_.push_back(sym);
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
771 // is only called for undefined symbols, when at least one --wrap
772 // option was used.
774 const char*
775 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
777 // For some targets, we need to ignore a specific character when
778 // wrapping, and add it back later.
779 char prefix = '\0';
780 if (name[0] == parameters->target().wrap_char())
782 prefix = name[0];
783 ++name;
786 if (parameters->options().is_wrap(name))
788 // Turn NAME into __wrap_NAME.
789 std::string s;
790 if (prefix != '\0')
791 s += prefix;
792 s += "__wrap_";
793 s += name;
795 // This will give us both the old and new name in NAMEPOOL_, but
796 // that is OK. Only the versions we need will wind up in the
797 // real string table in the output file.
798 return this->namepool_.add(s.c_str(), true, name_key);
801 const char* const real_prefix = "__real_";
802 const size_t real_prefix_length = strlen(real_prefix);
803 if (strncmp(name, real_prefix, real_prefix_length) == 0
804 && parameters->options().is_wrap(name + real_prefix_length))
806 // Turn __real_NAME into NAME.
807 std::string s;
808 if (prefix != '\0')
809 s += prefix;
810 s += name + real_prefix_length;
811 return this->namepool_.add(s.c_str(), true, name_key);
814 return name;
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version. SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
823 template<int size, bool big_endian>
824 void
825 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826 bool default_is_new,
827 Symbol_table_type::iterator pdef)
829 if (default_is_new)
831 // This is the first time we have seen NAME/NULL. Make
832 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
833 // version.
834 pdef->second = sym;
835 sym->set_is_default();
837 else if (pdef->second == sym)
839 // NAME/NULL already points to NAME/VERSION. Don't mark the
840 // symbol as the default if it is not already the default.
842 else
844 // This is the unfortunate case where we already have entries
845 // for both NAME/VERSION and NAME/NULL. We now see a symbol
846 // NAME/VERSION where VERSION is the default version. We have
847 // already resolved this new symbol with the existing
848 // NAME/VERSION symbol.
850 // It's possible that NAME/NULL and NAME/VERSION are both
851 // defined in regular objects. This can only happen if one
852 // object file defines foo and another defines foo@@ver. This
853 // is somewhat obscure, but we call it a multiple definition
854 // error.
856 // It's possible that NAME/NULL actually has a version, in which
857 // case it won't be the same as VERSION. This happens with
858 // ver_test_7.so in the testsuite for the symbol t2_2. We see
859 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
860 // then see an unadorned t2_2 in an object file and give it
861 // version VER1 from the version script. This looks like a
862 // default definition for VER1, so it looks like we should merge
863 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
864 // not obvious that this is an error, either. So we just punt.
866 // If one of the symbols has non-default visibility, and the
867 // other is defined in a shared object, then they are different
868 // symbols.
870 // If the two symbols are from different shared objects,
871 // they are different symbols.
873 // Otherwise, we just resolve the symbols as though they were
874 // the same.
876 if (pdef->second->version() != NULL)
877 gold_assert(pdef->second->version() != sym->version());
878 else if (sym->visibility() != elfcpp::STV_DEFAULT
879 && pdef->second->is_from_dynobj())
881 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
882 && sym->is_from_dynobj())
884 else if (pdef->second->is_from_dynobj()
885 && sym->is_from_dynobj()
886 && pdef->second->is_defined()
887 && pdef->second->object() != sym->object())
889 else
891 const Sized_symbol<size>* symdef;
892 symdef = this->get_sized_symbol<size>(pdef->second);
893 Symbol_table::resolve<size, big_endian>(sym, symdef);
894 this->make_forwarder(pdef->second, sym);
895 pdef->second = sym;
896 sym->set_is_default();
901 // Add one symbol from OBJECT to the symbol table. NAME is symbol
902 // name and VERSION is the version; both are canonicalized. DEF is
903 // whether this is the default version. ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol. That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol. This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION. If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure. That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table. We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files. So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
924 // forwarders.
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code. ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
931 template<int size, bool big_endian>
932 Sized_symbol<size>*
933 Symbol_table::add_from_object(Object* object,
934 const char* name,
935 Stringpool::Key name_key,
936 const char* version,
937 Stringpool::Key version_key,
938 bool is_default_version,
939 const elfcpp::Sym<size, big_endian>& sym,
940 unsigned int st_shndx,
941 bool is_ordinary,
942 unsigned int orig_st_shndx)
944 // Print a message if this symbol is being traced.
945 if (parameters->options().is_trace_symbol(name))
947 if (orig_st_shndx == elfcpp::SHN_UNDEF)
948 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949 else
950 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
953 // For an undefined symbol, we may need to adjust the name using
954 // --wrap.
955 if (orig_st_shndx == elfcpp::SHN_UNDEF
956 && parameters->options().any_wrap())
958 const char* wrap_name = this->wrap_symbol(name, &name_key);
959 if (wrap_name != name)
961 // If we see a reference to malloc with version GLIBC_2.0,
962 // and we turn it into a reference to __wrap_malloc, then we
963 // discard the version number. Otherwise the user would be
964 // required to specify the correct version for
965 // __wrap_malloc.
966 version = NULL;
967 version_key = 0;
968 name = wrap_name;
972 Symbol* const snull = NULL;
973 std::pair<typename Symbol_table_type::iterator, bool> ins =
974 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
975 snull));
977 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
978 std::make_pair(this->table_.end(), false);
979 if (is_default_version)
981 const Stringpool::Key vnull_key = 0;
982 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
983 vnull_key),
984 snull));
987 // ins.first: an iterator, which is a pointer to a pair.
988 // ins.first->first: the key (a pair of name and version).
989 // ins.first->second: the value (Symbol*).
990 // ins.second: true if new entry was inserted, false if not.
992 Sized_symbol<size>* ret = NULL;
993 bool was_undefined_in_reg;
994 bool was_common;
995 if (!ins.second)
997 // We already have an entry for NAME/VERSION.
998 ret = this->get_sized_symbol<size>(ins.first->second);
999 gold_assert(ret != NULL);
1001 bool ret_is_ordinary;
1002 const unsigned int ret_shndx = ret->shndx(&ret_is_ordinary);
1004 was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1005 // Commons from plugins are just placeholders.
1006 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1008 // It's possible for a symbol to be defined in an object file
1009 // using .symver to give it a version, and for there to also be
1010 // a linker script giving that symbol the same version. We
1011 // don't want to give a multiple-definition error for this
1012 // harmless redefinition.
1013 bool check_version = false;
1014 bool erase_default_version = false;
1015 bool no_default_version = false;
1016 if (ret->source() == Symbol::FROM_OBJECT
1017 && is_ordinary
1018 && ret_shndx == st_shndx)
1020 if (ret->object() == object)
1021 check_version = true;
1023 if (version != NULL && version == ret->version())
1025 // Don't give a multiple-definition error if the hidden
1026 // version from .symver is the same as the default version
1027 // from the unversioned symbol.
1028 if (is_default_version && !ret->is_default ())
1030 no_default_version = true;
1031 if (insdefault.second)
1033 // Don't make the unversioned symbol the default
1034 // version.
1035 is_default_version = false;
1036 erase_default_version = true;
1037 check_version = true;
1040 else if (!is_default_version && ret->is_default ())
1042 // Don't make the unversioned symbol the default
1043 // version.
1044 ret->set_is_not_default();
1045 no_default_version = true;
1046 check_version = true;
1051 if (!(check_version
1052 && ret->is_defined()
1053 && ret_is_ordinary
1054 && (no_default_version
1055 || ret->value() == sym.get_st_value())))
1056 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx,
1057 object, version, is_default_version);
1059 if (parameters->options().gc_sections())
1060 this->gc_mark_dyn_syms(ret);
1062 if (is_default_version)
1063 this->define_default_version<size, big_endian>(ret, insdefault.second,
1064 insdefault.first);
1065 else
1067 if (version != NULL && check_version)
1069 // We have seen NAME/VERSION already, and marked it as the
1070 // default version, but now we see a definition for
1071 // NAME/VERSION that is not the default version. This can
1072 // happen when the assembler generates two symbols for
1073 // a symbol as a result of a ".symver foo,foo@VER"
1074 // directive. We see the first unversioned symbol and
1075 // we may mark it as the default version (from a
1076 // version script); then we see the second versioned
1077 // symbol and we need to override the first.
1078 // In any other case, the two symbols should have generated
1079 // a multiple definition error.
1080 // (See PR gold/18703.)
1081 // If the hidden version from .symver is the same as the
1082 // default version from the unversioned symbol, don't make
1083 // the unversioned symbol the default versioned symbol.
1084 const Stringpool::Key vnull_key = 0;
1085 if (erase_default_version)
1086 this->table_.erase(std::make_pair(name_key, vnull_key));
1087 else if (ret->object() == object)
1089 ret->set_is_not_default();
1090 this->table_.erase(std::make_pair(name_key, vnull_key));
1095 else
1097 // This is the first time we have seen NAME/VERSION.
1098 gold_assert(ins.first->second == NULL);
1100 if (is_default_version && !insdefault.second)
1102 // We already have an entry for NAME/NULL. If we override
1103 // it, then change it to NAME/VERSION.
1104 ret = this->get_sized_symbol<size>(insdefault.first->second);
1106 // If the existing symbol already has a version,
1107 // don't override it with the new symbol.
1108 // This should only happen when the new symbol
1109 // is from a shared library.
1110 if (ret->version() != NULL)
1112 if (!object->is_dynamic())
1114 gold_warning(_("%s: conflicting default version definition"
1115 " for %s@@%s"),
1116 object->name().c_str(), name, version);
1117 if (ret->source() == Symbol::FROM_OBJECT)
1118 gold_info(_("%s: %s: previous definition of %s@@%s here"),
1119 program_name,
1120 ret->object()->name().c_str(),
1121 name, ret->version());
1123 ret = NULL;
1124 is_default_version = false;
1126 else
1128 was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1129 // Commons from plugins are just placeholders.
1130 was_common = (ret->is_common()
1131 && ret->object()->pluginobj() == NULL);
1133 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx,
1134 object, version, is_default_version);
1135 if (parameters->options().gc_sections())
1136 this->gc_mark_dyn_syms(ret);
1137 ins.first->second = ret;
1141 if (ret == NULL)
1143 was_undefined_in_reg = false;
1144 was_common = false;
1146 Sized_target<size, big_endian>* target =
1147 parameters->sized_target<size, big_endian>();
1148 if (!target->has_make_symbol())
1149 ret = new Sized_symbol<size>();
1150 else
1152 ret = target->make_symbol(name, sym.get_st_type(), object,
1153 st_shndx, sym.get_st_value());
1154 if (ret == NULL)
1156 // This means that we don't want a symbol table
1157 // entry after all.
1158 if (!is_default_version)
1159 this->table_.erase(ins.first);
1160 else
1162 this->table_.erase(insdefault.first);
1163 // Inserting INSDEFAULT invalidated INS.
1164 this->table_.erase(std::make_pair(name_key,
1165 version_key));
1167 return NULL;
1171 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1173 ins.first->second = ret;
1174 if (is_default_version)
1176 // This is the first time we have seen NAME/NULL. Point
1177 // it at the new entry for NAME/VERSION.
1178 gold_assert(insdefault.second);
1179 insdefault.first->second = ret;
1183 if (is_default_version)
1184 ret->set_is_default();
1187 // Record every time we see a new undefined symbol, to speed up archive
1188 // groups. We only care about symbols undefined in regular objects here
1189 // because undefined symbols only in dynamic objects should't trigger rescans.
1190 if (!was_undefined_in_reg && ret->is_undefined() && ret->in_reg())
1192 ++this->saw_undefined_;
1193 if (parameters->options().has_plugins())
1194 parameters->options().plugins()->new_undefined_symbol(ret);
1197 // Keep track of common symbols, to speed up common symbol
1198 // allocation. Don't record commons from plugin objects;
1199 // we need to wait until we see the real symbol in the
1200 // replacement file.
1201 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1203 if (ret->type() == elfcpp::STT_TLS)
1204 this->tls_commons_.push_back(ret);
1205 else if (!is_ordinary
1206 && st_shndx == parameters->target().small_common_shndx())
1207 this->small_commons_.push_back(ret);
1208 else if (!is_ordinary
1209 && st_shndx == parameters->target().large_common_shndx())
1210 this->large_commons_.push_back(ret);
1211 else
1212 this->commons_.push_back(ret);
1215 // If we're not doing a relocatable link, then any symbol with
1216 // hidden or internal visibility is local.
1217 if ((ret->visibility() == elfcpp::STV_HIDDEN
1218 || ret->visibility() == elfcpp::STV_INTERNAL)
1219 && (ret->binding() == elfcpp::STB_GLOBAL
1220 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1221 || ret->binding() == elfcpp::STB_WEAK)
1222 && !parameters->options().relocatable())
1223 this->force_local(ret);
1225 return ret;
1228 // Add all the symbols in a relocatable object to the hash table.
1230 template<int size, bool big_endian>
1231 void
1232 Symbol_table::add_from_relobj(
1233 Sized_relobj_file<size, big_endian>* relobj,
1234 const unsigned char* syms,
1235 size_t count,
1236 size_t symndx_offset,
1237 const char* sym_names,
1238 size_t sym_name_size,
1239 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1240 size_t* defined)
1242 *defined = 0;
1244 gold_assert(size == parameters->target().get_size());
1246 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1248 const bool just_symbols = relobj->just_symbols();
1250 const unsigned char* p = syms;
1251 for (size_t i = 0; i < count; ++i, p += sym_size)
1253 (*sympointers)[i] = NULL;
1255 elfcpp::Sym<size, big_endian> sym(p);
1257 unsigned int st_name = sym.get_st_name();
1258 if (st_name >= sym_name_size)
1260 relobj->error(_("bad global symbol name offset %u at %zu"),
1261 st_name, i);
1262 continue;
1265 const char* name = sym_names + st_name;
1267 if (!parameters->options().relocatable()
1268 && name[0] == '_'
1269 && name[1] == '_'
1270 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1271 gold_info(_("%s: plugin needed to handle lto object"),
1272 relobj->name().c_str());
1274 bool is_ordinary;
1275 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1276 sym.get_st_shndx(),
1277 &is_ordinary);
1278 unsigned int orig_st_shndx = st_shndx;
1279 if (!is_ordinary)
1280 orig_st_shndx = elfcpp::SHN_UNDEF;
1282 if (st_shndx != elfcpp::SHN_UNDEF)
1283 ++*defined;
1285 // A symbol defined in a section which we are not including must
1286 // be treated as an undefined symbol.
1287 bool is_defined_in_discarded_section = false;
1288 if (st_shndx != elfcpp::SHN_UNDEF
1289 && is_ordinary
1290 && !relobj->is_section_included(st_shndx)
1291 && !this->is_section_folded(relobj, st_shndx))
1293 st_shndx = elfcpp::SHN_UNDEF;
1294 is_defined_in_discarded_section = true;
1297 // In an object file, an '@' in the name separates the symbol
1298 // name from the version name. If there are two '@' characters,
1299 // this is the default version.
1300 const char* ver = strchr(name, '@');
1301 Stringpool::Key ver_key = 0;
1302 int namelen = 0;
1303 // IS_DEFAULT_VERSION: is the version default?
1304 // IS_FORCED_LOCAL: is the symbol forced local?
1305 bool is_default_version = false;
1306 bool is_forced_local = false;
1308 // FIXME: For incremental links, we don't store version information,
1309 // so we need to ignore version symbols for now.
1310 if (parameters->incremental_update() && ver != NULL)
1312 namelen = ver - name;
1313 ver = NULL;
1316 if (ver != NULL)
1318 // The symbol name is of the form foo@VERSION or foo@@VERSION
1319 namelen = ver - name;
1320 ++ver;
1321 if (*ver == '@')
1323 is_default_version = true;
1324 ++ver;
1326 ver = this->namepool_.add(ver, true, &ver_key);
1328 // We don't want to assign a version to an undefined symbol,
1329 // even if it is listed in the version script. FIXME: What
1330 // about a common symbol?
1331 else
1333 namelen = strlen(name);
1334 if (!this->version_script_.empty()
1335 && st_shndx != elfcpp::SHN_UNDEF)
1337 // The symbol name did not have a version, but the
1338 // version script may assign a version anyway.
1339 std::string version;
1340 bool is_global;
1341 if (this->version_script_.get_symbol_version(name, &version,
1342 &is_global))
1344 if (!is_global)
1345 is_forced_local = true;
1346 else if (!version.empty())
1348 ver = this->namepool_.add_with_length(version.c_str(),
1349 version.length(),
1350 true,
1351 &ver_key);
1352 is_default_version = true;
1358 elfcpp::Sym<size, big_endian>* psym = &sym;
1359 unsigned char symbuf[sym_size];
1360 elfcpp::Sym<size, big_endian> sym2(symbuf);
1361 if (just_symbols)
1363 memcpy(symbuf, p, sym_size);
1364 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1365 if (orig_st_shndx != elfcpp::SHN_UNDEF
1366 && is_ordinary
1367 && relobj->e_type() == elfcpp::ET_REL)
1369 // Symbol values in relocatable object files are section
1370 // relative. This is normally what we want, but since here
1371 // we are converting the symbol to absolute we need to add
1372 // the section address. The section address in an object
1373 // file is normally zero, but people can use a linker
1374 // script to change it.
1375 sw.put_st_value(sym.get_st_value()
1376 + relobj->section_address(orig_st_shndx));
1378 st_shndx = elfcpp::SHN_ABS;
1379 is_ordinary = false;
1380 psym = &sym2;
1383 // Fix up visibility if object has no-export set.
1384 if (relobj->no_export()
1385 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1387 // We may have copied symbol already above.
1388 if (psym != &sym2)
1390 memcpy(symbuf, p, sym_size);
1391 psym = &sym2;
1394 elfcpp::STV visibility = sym2.get_st_visibility();
1395 if (visibility == elfcpp::STV_DEFAULT
1396 || visibility == elfcpp::STV_PROTECTED)
1398 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1399 unsigned char nonvis = sym2.get_st_nonvis();
1400 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1404 Stringpool::Key name_key;
1405 name = this->namepool_.add_with_length(name, namelen, true,
1406 &name_key);
1408 Sized_symbol<size>* res;
1409 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1410 is_default_version, *psym, st_shndx,
1411 is_ordinary, orig_st_shndx);
1413 if (res == NULL)
1414 continue;
1416 if (is_forced_local)
1417 this->force_local(res);
1419 // Do not treat this symbol as garbage if this symbol will be
1420 // exported to the dynamic symbol table. This is true when
1421 // building a shared library or using --export-dynamic and
1422 // the symbol is externally visible.
1423 if (parameters->options().gc_sections()
1424 && res->is_externally_visible()
1425 && !res->is_from_dynobj()
1426 && (parameters->options().shared()
1427 || parameters->options().export_dynamic()
1428 || parameters->options().in_dynamic_list(res->name())))
1429 this->gc_mark_symbol(res);
1431 if (is_defined_in_discarded_section)
1432 res->set_is_defined_in_discarded_section();
1434 (*sympointers)[i] = res;
1438 // Add a symbol from a plugin-claimed file.
1440 template<int size, bool big_endian>
1441 Symbol*
1442 Symbol_table::add_from_pluginobj(
1443 Sized_pluginobj<size, big_endian>* obj,
1444 const char* name,
1445 const char* ver,
1446 elfcpp::Sym<size, big_endian>* sym)
1448 unsigned int st_shndx = sym->get_st_shndx();
1449 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1451 Stringpool::Key ver_key = 0;
1452 bool is_default_version = false;
1453 bool is_forced_local = false;
1455 if (ver != NULL)
1457 ver = this->namepool_.add(ver, true, &ver_key);
1459 // We don't want to assign a version to an undefined symbol,
1460 // even if it is listed in the version script. FIXME: What
1461 // about a common symbol?
1462 else
1464 if (!this->version_script_.empty()
1465 && st_shndx != elfcpp::SHN_UNDEF)
1467 // The symbol name did not have a version, but the
1468 // version script may assign a version anyway.
1469 std::string version;
1470 bool is_global;
1471 if (this->version_script_.get_symbol_version(name, &version,
1472 &is_global))
1474 if (!is_global)
1475 is_forced_local = true;
1476 else if (!version.empty())
1478 ver = this->namepool_.add_with_length(version.c_str(),
1479 version.length(),
1480 true,
1481 &ver_key);
1482 is_default_version = true;
1488 Stringpool::Key name_key;
1489 name = this->namepool_.add(name, true, &name_key);
1491 Sized_symbol<size>* res;
1492 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1493 is_default_version, *sym, st_shndx,
1494 is_ordinary, st_shndx);
1496 if (res == NULL)
1497 return NULL;
1499 if (is_forced_local)
1500 this->force_local(res);
1502 return res;
1505 // Add all the symbols in a dynamic object to the hash table.
1507 template<int size, bool big_endian>
1508 void
1509 Symbol_table::add_from_dynobj(
1510 Sized_dynobj<size, big_endian>* dynobj,
1511 const unsigned char* syms,
1512 size_t count,
1513 const char* sym_names,
1514 size_t sym_name_size,
1515 const unsigned char* versym,
1516 size_t versym_size,
1517 const std::vector<const char*>* version_map,
1518 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1519 size_t* defined)
1521 *defined = 0;
1523 gold_assert(size == parameters->target().get_size());
1525 if (dynobj->just_symbols())
1527 gold_error(_("--just-symbols does not make sense with a shared object"));
1528 return;
1531 // FIXME: For incremental links, we don't store version information,
1532 // so we need to ignore version symbols for now.
1533 if (parameters->incremental_update())
1534 versym = NULL;
1536 if (versym != NULL && versym_size / 2 < count)
1538 dynobj->error(_("too few symbol versions"));
1539 return;
1542 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1544 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1545 // weak aliases. This is necessary because if the dynamic object
1546 // provides the same variable under two names, one of which is a
1547 // weak definition, and the regular object refers to the weak
1548 // definition, we have to put both the weak definition and the
1549 // strong definition into the dynamic symbol table. Given a weak
1550 // definition, the only way that we can find the corresponding
1551 // strong definition, if any, is to search the symbol table.
1552 std::vector<Sized_symbol<size>*> object_symbols;
1554 const unsigned char* p = syms;
1555 const unsigned char* vs = versym;
1556 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1558 elfcpp::Sym<size, big_endian> sym(p);
1560 if (sympointers != NULL)
1561 (*sympointers)[i] = NULL;
1563 // Ignore symbols with local binding or that have
1564 // internal or hidden visibility.
1565 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1566 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1567 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1568 continue;
1570 // A protected symbol in a shared library must be treated as a
1571 // normal symbol when viewed from outside the shared library.
1572 // Implement this by overriding the visibility here.
1573 // Likewise, an IFUNC symbol in a shared library must be treated
1574 // as a normal FUNC symbol.
1575 elfcpp::Sym<size, big_endian>* psym = &sym;
1576 unsigned char symbuf[sym_size];
1577 elfcpp::Sym<size, big_endian> sym2(symbuf);
1578 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1579 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1581 memcpy(symbuf, p, sym_size);
1582 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1583 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1584 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1585 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1586 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1587 psym = &sym2;
1590 unsigned int st_name = psym->get_st_name();
1591 if (st_name >= sym_name_size)
1593 dynobj->error(_("bad symbol name offset %u at %zu"),
1594 st_name, i);
1595 continue;
1598 const char* name = sym_names + st_name;
1600 bool is_ordinary;
1601 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1602 &is_ordinary);
1604 if (st_shndx != elfcpp::SHN_UNDEF)
1605 ++*defined;
1607 Sized_symbol<size>* res;
1609 if (versym == NULL)
1611 Stringpool::Key name_key;
1612 name = this->namepool_.add(name, true, &name_key);
1613 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1614 false, *psym, st_shndx, is_ordinary,
1615 st_shndx);
1617 else
1619 // Read the version information.
1621 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1623 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1624 v &= elfcpp::VERSYM_VERSION;
1626 // The Sun documentation says that V can be VER_NDX_LOCAL,
1627 // or VER_NDX_GLOBAL, or a version index. The meaning of
1628 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1629 // The old GNU linker will happily generate VER_NDX_LOCAL
1630 // for an undefined symbol. I don't know what the Sun
1631 // linker will generate.
1633 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1634 && st_shndx != elfcpp::SHN_UNDEF)
1636 // This symbol should not be visible outside the object.
1637 continue;
1640 // At this point we are definitely going to add this symbol.
1641 Stringpool::Key name_key;
1642 name = this->namepool_.add(name, true, &name_key);
1644 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1645 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1647 // This symbol does not have a version.
1648 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1649 false, *psym, st_shndx, is_ordinary,
1650 st_shndx);
1652 else
1654 if (v >= version_map->size())
1656 dynobj->error(_("versym for symbol %zu out of range: %u"),
1657 i, v);
1658 continue;
1661 const char* version = (*version_map)[v];
1662 if (version == NULL)
1664 dynobj->error(_("versym for symbol %zu has no name: %u"),
1665 i, v);
1666 continue;
1669 Stringpool::Key version_key;
1670 version = this->namepool_.add(version, true, &version_key);
1672 // If this is an absolute symbol, and the version name
1673 // and symbol name are the same, then this is the
1674 // version definition symbol. These symbols exist to
1675 // support using -u to pull in particular versions. We
1676 // do not want to record a version for them.
1677 if (st_shndx == elfcpp::SHN_ABS
1678 && !is_ordinary
1679 && name_key == version_key)
1680 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1681 false, *psym, st_shndx, is_ordinary,
1682 st_shndx);
1683 else
1685 const bool is_default_version =
1686 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1687 res = this->add_from_object(dynobj, name, name_key, version,
1688 version_key, is_default_version,
1689 *psym, st_shndx,
1690 is_ordinary, st_shndx);
1695 if (res == NULL)
1696 continue;
1698 // Note that it is possible that RES was overridden by an
1699 // earlier object, in which case it can't be aliased here.
1700 if (st_shndx != elfcpp::SHN_UNDEF
1701 && is_ordinary
1702 && psym->get_st_type() == elfcpp::STT_OBJECT
1703 && res->source() == Symbol::FROM_OBJECT
1704 && res->object() == dynobj)
1705 object_symbols.push_back(res);
1707 // If the symbol has protected visibility in the dynobj,
1708 // mark it as such if it was not overridden.
1709 if (res->source() == Symbol::FROM_OBJECT
1710 && res->object() == dynobj
1711 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1712 res->set_is_protected();
1714 if (sympointers != NULL)
1715 (*sympointers)[i] = res;
1718 this->record_weak_aliases(&object_symbols);
1721 // Add a symbol from a incremental object file.
1723 template<int size, bool big_endian>
1724 Sized_symbol<size>*
1725 Symbol_table::add_from_incrobj(
1726 Object* obj,
1727 const char* name,
1728 const char* ver,
1729 elfcpp::Sym<size, big_endian>* sym)
1731 unsigned int st_shndx = sym->get_st_shndx();
1732 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1734 Stringpool::Key ver_key = 0;
1735 bool is_default_version = false;
1737 Stringpool::Key name_key;
1738 name = this->namepool_.add(name, true, &name_key);
1740 Sized_symbol<size>* res;
1741 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1742 is_default_version, *sym, st_shndx,
1743 is_ordinary, st_shndx);
1745 return res;
1748 // This is used to sort weak aliases. We sort them first by section
1749 // index, then by offset, then by weak ahead of strong.
1751 template<int size>
1752 class Weak_alias_sorter
1754 public:
1755 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1758 template<int size>
1759 bool
1760 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1761 const Sized_symbol<size>* s2) const
1763 bool is_ordinary;
1764 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1765 gold_assert(is_ordinary);
1766 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1767 gold_assert(is_ordinary);
1768 if (s1_shndx != s2_shndx)
1769 return s1_shndx < s2_shndx;
1771 if (s1->value() != s2->value())
1772 return s1->value() < s2->value();
1773 if (s1->binding() != s2->binding())
1775 if (s1->binding() == elfcpp::STB_WEAK)
1776 return true;
1777 if (s2->binding() == elfcpp::STB_WEAK)
1778 return false;
1780 return std::string(s1->name()) < std::string(s2->name());
1783 // SYMBOLS is a list of object symbols from a dynamic object. Look
1784 // for any weak aliases, and record them so that if we add the weak
1785 // alias to the dynamic symbol table, we also add the corresponding
1786 // strong symbol.
1788 template<int size>
1789 void
1790 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1792 // Sort the vector by section index, then by offset, then by weak
1793 // ahead of strong.
1794 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1796 // Walk through the vector. For each weak definition, record
1797 // aliases.
1798 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1799 symbols->begin();
1800 p != symbols->end();
1801 ++p)
1803 if ((*p)->binding() != elfcpp::STB_WEAK)
1804 continue;
1806 // Build a circular list of weak aliases. Each symbol points to
1807 // the next one in the circular list.
1809 Sized_symbol<size>* from_sym = *p;
1810 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1811 for (q = p + 1; q != symbols->end(); ++q)
1813 bool dummy;
1814 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1815 || (*q)->value() != from_sym->value())
1816 break;
1818 this->weak_aliases_[from_sym] = *q;
1819 from_sym->set_has_alias();
1820 from_sym = *q;
1823 if (from_sym != *p)
1825 this->weak_aliases_[from_sym] = *p;
1826 from_sym->set_has_alias();
1829 p = q - 1;
1833 // Create and return a specially defined symbol. If ONLY_IF_REF is
1834 // true, then only create the symbol if there is a reference to it.
1835 // If this does not return NULL, it sets *POLDSYM to the existing
1836 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1837 // resolve the newly created symbol to the old one. This
1838 // canonicalizes *PNAME and *PVERSION.
1840 template<int size, bool big_endian>
1841 Sized_symbol<size>*
1842 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1843 bool only_if_ref,
1844 elfcpp::STV visibility,
1845 Sized_symbol<size>** poldsym,
1846 bool* resolve_oldsym, bool is_forced_local)
1848 *resolve_oldsym = false;
1849 *poldsym = NULL;
1851 // If the caller didn't give us a version, see if we get one from
1852 // the version script.
1853 std::string v;
1854 bool is_default_version = false;
1855 if (!is_forced_local && *pversion == NULL)
1857 bool is_global;
1858 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1860 if (is_global && !v.empty())
1862 *pversion = v.c_str();
1863 // If we get the version from a version script, then we
1864 // are also the default version.
1865 is_default_version = true;
1870 Symbol* oldsym;
1871 Sized_symbol<size>* sym;
1873 bool add_to_table = false;
1874 typename Symbol_table_type::iterator add_loc = this->table_.end();
1875 bool add_def_to_table = false;
1876 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1878 if (only_if_ref)
1880 oldsym = this->lookup(*pname, *pversion);
1881 if (oldsym == NULL && is_default_version)
1882 oldsym = this->lookup(*pname, NULL);
1883 if (oldsym == NULL)
1884 return NULL;
1885 if (!oldsym->is_undefined())
1887 // Skip if the old definition is from a regular object.
1888 if (!oldsym->is_from_dynobj())
1889 return NULL;
1891 // If the symbol has hidden or internal visibility, ignore
1892 // definition and reference from a dynamic object.
1893 if ((visibility == elfcpp::STV_HIDDEN
1894 || visibility == elfcpp::STV_INTERNAL)
1895 && !oldsym->in_reg())
1896 return NULL;
1899 *pname = oldsym->name();
1900 if (is_default_version)
1901 *pversion = this->namepool_.add(*pversion, true, NULL);
1902 else
1903 *pversion = oldsym->version();
1905 else
1907 // Canonicalize NAME and VERSION.
1908 Stringpool::Key name_key;
1909 *pname = this->namepool_.add(*pname, true, &name_key);
1911 Stringpool::Key version_key = 0;
1912 if (*pversion != NULL)
1913 *pversion = this->namepool_.add(*pversion, true, &version_key);
1915 Symbol* const snull = NULL;
1916 std::pair<typename Symbol_table_type::iterator, bool> ins =
1917 this->table_.insert(std::make_pair(std::make_pair(name_key,
1918 version_key),
1919 snull));
1921 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1922 std::make_pair(this->table_.end(), false);
1923 if (is_default_version)
1925 const Stringpool::Key vnull = 0;
1926 insdefault =
1927 this->table_.insert(std::make_pair(std::make_pair(name_key,
1928 vnull),
1929 snull));
1932 if (!ins.second)
1934 // We already have a symbol table entry for NAME/VERSION.
1935 oldsym = ins.first->second;
1936 gold_assert(oldsym != NULL);
1938 if (is_default_version)
1940 Sized_symbol<size>* soldsym =
1941 this->get_sized_symbol<size>(oldsym);
1942 this->define_default_version<size, big_endian>(soldsym,
1943 insdefault.second,
1944 insdefault.first);
1947 else
1949 // We haven't seen this symbol before.
1950 gold_assert(ins.first->second == NULL);
1952 add_to_table = true;
1953 add_loc = ins.first;
1955 if (is_default_version
1956 && !insdefault.second
1957 && insdefault.first->second->version() == NULL)
1959 // We are adding NAME/VERSION, and it is the default
1960 // version. We already have an entry for NAME/NULL
1961 // that does not already have a version.
1962 oldsym = insdefault.first->second;
1963 *resolve_oldsym = true;
1965 else
1967 oldsym = NULL;
1969 if (is_default_version)
1971 add_def_to_table = true;
1972 add_def_loc = insdefault.first;
1978 const Target& target = parameters->target();
1979 if (!target.has_make_symbol())
1980 sym = new Sized_symbol<size>();
1981 else
1983 Sized_target<size, big_endian>* sized_target =
1984 parameters->sized_target<size, big_endian>();
1985 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1986 NULL, elfcpp::SHN_UNDEF, 0);
1987 if (sym == NULL)
1988 return NULL;
1991 if (add_to_table)
1992 add_loc->second = sym;
1993 else
1994 gold_assert(oldsym != NULL);
1996 if (add_def_to_table)
1997 add_def_loc->second = sym;
1999 *poldsym = this->get_sized_symbol<size>(oldsym);
2001 return sym;
2004 // Define a symbol based on an Output_data.
2006 Symbol*
2007 Symbol_table::define_in_output_data(const char* name,
2008 const char* version,
2009 Defined defined,
2010 Output_data* od,
2011 uint64_t value,
2012 uint64_t symsize,
2013 elfcpp::STT type,
2014 elfcpp::STB binding,
2015 elfcpp::STV visibility,
2016 unsigned char nonvis,
2017 bool offset_is_from_end,
2018 bool only_if_ref)
2020 if (parameters->target().get_size() == 32)
2022 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2023 return this->do_define_in_output_data<32>(name, version, defined, od,
2024 value, symsize, type, binding,
2025 visibility, nonvis,
2026 offset_is_from_end,
2027 only_if_ref);
2028 #else
2029 gold_unreachable();
2030 #endif
2032 else if (parameters->target().get_size() == 64)
2034 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2035 return this->do_define_in_output_data<64>(name, version, defined, od,
2036 value, symsize, type, binding,
2037 visibility, nonvis,
2038 offset_is_from_end,
2039 only_if_ref);
2040 #else
2041 gold_unreachable();
2042 #endif
2044 else
2045 gold_unreachable();
2048 // Define a symbol in an Output_data, sized version.
2050 template<int size>
2051 Sized_symbol<size>*
2052 Symbol_table::do_define_in_output_data(
2053 const char* name,
2054 const char* version,
2055 Defined defined,
2056 Output_data* od,
2057 typename elfcpp::Elf_types<size>::Elf_Addr value,
2058 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2059 elfcpp::STT type,
2060 elfcpp::STB binding,
2061 elfcpp::STV visibility,
2062 unsigned char nonvis,
2063 bool offset_is_from_end,
2064 bool only_if_ref)
2066 Sized_symbol<size>* sym;
2067 Sized_symbol<size>* oldsym;
2068 bool resolve_oldsym;
2069 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2071 if (parameters->target().is_big_endian())
2073 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2074 sym = this->define_special_symbol<size, true>(&name, &version,
2075 only_if_ref,
2076 visibility,
2077 &oldsym,
2078 &resolve_oldsym,
2079 is_forced_local);
2080 #else
2081 gold_unreachable();
2082 #endif
2084 else
2086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2087 sym = this->define_special_symbol<size, false>(&name, &version,
2088 only_if_ref,
2089 visibility,
2090 &oldsym,
2091 &resolve_oldsym,
2092 is_forced_local);
2093 #else
2094 gold_unreachable();
2095 #endif
2098 if (sym == NULL)
2099 return NULL;
2101 sym->init_output_data(name, version, od, value, symsize, type, binding,
2102 visibility, nonvis, offset_is_from_end,
2103 defined == PREDEFINED);
2105 if (oldsym == NULL)
2107 if (is_forced_local || this->version_script_.symbol_is_local(name))
2108 this->force_local(sym);
2109 else if (version != NULL)
2110 sym->set_is_default();
2111 return sym;
2114 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2115 this->override_with_special(oldsym, sym);
2117 if (resolve_oldsym)
2118 return sym;
2119 else
2121 if (defined == PREDEFINED
2122 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2123 this->force_local(oldsym);
2124 delete sym;
2125 return oldsym;
2129 // Define a symbol based on an Output_segment.
2131 Symbol*
2132 Symbol_table::define_in_output_segment(const char* name,
2133 const char* version,
2134 Defined defined,
2135 Output_segment* os,
2136 uint64_t value,
2137 uint64_t symsize,
2138 elfcpp::STT type,
2139 elfcpp::STB binding,
2140 elfcpp::STV visibility,
2141 unsigned char nonvis,
2142 Symbol::Segment_offset_base offset_base,
2143 bool only_if_ref)
2145 if (parameters->target().get_size() == 32)
2147 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2148 return this->do_define_in_output_segment<32>(name, version, defined, os,
2149 value, symsize, type,
2150 binding, visibility, nonvis,
2151 offset_base, only_if_ref);
2152 #else
2153 gold_unreachable();
2154 #endif
2156 else if (parameters->target().get_size() == 64)
2158 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2159 return this->do_define_in_output_segment<64>(name, version, defined, os,
2160 value, symsize, type,
2161 binding, visibility, nonvis,
2162 offset_base, only_if_ref);
2163 #else
2164 gold_unreachable();
2165 #endif
2167 else
2168 gold_unreachable();
2171 // Define a symbol in an Output_segment, sized version.
2173 template<int size>
2174 Sized_symbol<size>*
2175 Symbol_table::do_define_in_output_segment(
2176 const char* name,
2177 const char* version,
2178 Defined defined,
2179 Output_segment* os,
2180 typename elfcpp::Elf_types<size>::Elf_Addr value,
2181 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2182 elfcpp::STT type,
2183 elfcpp::STB binding,
2184 elfcpp::STV visibility,
2185 unsigned char nonvis,
2186 Symbol::Segment_offset_base offset_base,
2187 bool only_if_ref)
2189 Sized_symbol<size>* sym;
2190 Sized_symbol<size>* oldsym;
2191 bool resolve_oldsym;
2192 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2194 if (parameters->target().is_big_endian())
2196 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2197 sym = this->define_special_symbol<size, true>(&name, &version,
2198 only_if_ref,
2199 visibility,
2200 &oldsym,
2201 &resolve_oldsym,
2202 is_forced_local);
2203 #else
2204 gold_unreachable();
2205 #endif
2207 else
2209 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2210 sym = this->define_special_symbol<size, false>(&name, &version,
2211 only_if_ref,
2212 visibility,
2213 &oldsym,
2214 &resolve_oldsym,
2215 is_forced_local);
2216 #else
2217 gold_unreachable();
2218 #endif
2221 if (sym == NULL)
2222 return NULL;
2224 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2225 visibility, nonvis, offset_base,
2226 defined == PREDEFINED);
2228 if (oldsym == NULL)
2230 if (is_forced_local || this->version_script_.symbol_is_local(name))
2231 this->force_local(sym);
2232 else if (version != NULL)
2233 sym->set_is_default();
2234 return sym;
2237 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2238 this->override_with_special(oldsym, sym);
2240 if (resolve_oldsym)
2241 return sym;
2242 else
2244 if (is_forced_local || this->version_script_.symbol_is_local(name))
2245 this->force_local(oldsym);
2246 delete sym;
2247 return oldsym;
2251 // Define a special symbol with a constant value. It is a multiple
2252 // definition error if this symbol is already defined.
2254 Symbol*
2255 Symbol_table::define_as_constant(const char* name,
2256 const char* version,
2257 Defined defined,
2258 uint64_t value,
2259 uint64_t symsize,
2260 elfcpp::STT type,
2261 elfcpp::STB binding,
2262 elfcpp::STV visibility,
2263 unsigned char nonvis,
2264 bool only_if_ref,
2265 bool force_override)
2267 if (parameters->target().get_size() == 32)
2269 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2270 return this->do_define_as_constant<32>(name, version, defined, value,
2271 symsize, type, binding,
2272 visibility, nonvis, only_if_ref,
2273 force_override);
2274 #else
2275 gold_unreachable();
2276 #endif
2278 else if (parameters->target().get_size() == 64)
2280 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2281 return this->do_define_as_constant<64>(name, version, defined, value,
2282 symsize, type, binding,
2283 visibility, nonvis, only_if_ref,
2284 force_override);
2285 #else
2286 gold_unreachable();
2287 #endif
2289 else
2290 gold_unreachable();
2293 // Define a symbol as a constant, sized version.
2295 template<int size>
2296 Sized_symbol<size>*
2297 Symbol_table::do_define_as_constant(
2298 const char* name,
2299 const char* version,
2300 Defined defined,
2301 typename elfcpp::Elf_types<size>::Elf_Addr value,
2302 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2303 elfcpp::STT type,
2304 elfcpp::STB binding,
2305 elfcpp::STV visibility,
2306 unsigned char nonvis,
2307 bool only_if_ref,
2308 bool force_override)
2310 Sized_symbol<size>* sym;
2311 Sized_symbol<size>* oldsym;
2312 bool resolve_oldsym;
2313 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2315 if (parameters->target().is_big_endian())
2317 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2318 sym = this->define_special_symbol<size, true>(&name, &version,
2319 only_if_ref,
2320 visibility,
2321 &oldsym,
2322 &resolve_oldsym,
2323 is_forced_local);
2324 #else
2325 gold_unreachable();
2326 #endif
2328 else
2330 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2331 sym = this->define_special_symbol<size, false>(&name, &version,
2332 only_if_ref,
2333 visibility,
2334 &oldsym,
2335 &resolve_oldsym,
2336 is_forced_local);
2337 #else
2338 gold_unreachable();
2339 #endif
2342 if (sym == NULL)
2343 return NULL;
2345 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2346 nonvis, defined == PREDEFINED);
2348 if (oldsym == NULL)
2350 // Version symbols are absolute symbols with name == version.
2351 // We don't want to force them to be local.
2352 if ((version == NULL
2353 || name != version
2354 || value != 0)
2355 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2356 this->force_local(sym);
2357 else if (version != NULL
2358 && (name != version || value != 0))
2359 sym->set_is_default();
2360 return sym;
2363 if (force_override
2364 || Symbol_table::should_override_with_special(oldsym, type, defined))
2365 this->override_with_special(oldsym, sym);
2367 if (resolve_oldsym)
2368 return sym;
2369 else
2371 if (is_forced_local || this->version_script_.symbol_is_local(name))
2372 this->force_local(oldsym);
2373 delete sym;
2374 return oldsym;
2378 // Define a set of symbols in output sections.
2380 void
2381 Symbol_table::define_symbols(const Layout* layout, int count,
2382 const Define_symbol_in_section* p,
2383 bool only_if_ref)
2385 for (int i = 0; i < count; ++i, ++p)
2387 Output_section* os = layout->find_output_section(p->output_section);
2388 if (os != NULL)
2389 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2390 p->size, p->type, p->binding,
2391 p->visibility, p->nonvis,
2392 p->offset_is_from_end,
2393 only_if_ref || p->only_if_ref);
2394 else
2395 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2396 p->type, p->binding, p->visibility, p->nonvis,
2397 only_if_ref || p->only_if_ref,
2398 false);
2402 // Define a set of symbols in output segments.
2404 void
2405 Symbol_table::define_symbols(const Layout* layout, int count,
2406 const Define_symbol_in_segment* p,
2407 bool only_if_ref)
2409 for (int i = 0; i < count; ++i, ++p)
2411 Output_segment* os = layout->find_output_segment(p->segment_type,
2412 p->segment_flags_set,
2413 p->segment_flags_clear);
2414 if (os != NULL)
2415 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2416 p->size, p->type, p->binding,
2417 p->visibility, p->nonvis,
2418 p->offset_base,
2419 only_if_ref || p->only_if_ref);
2420 else
2421 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2422 p->type, p->binding, p->visibility, p->nonvis,
2423 only_if_ref || p->only_if_ref,
2424 false);
2428 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2429 // symbol should be defined--typically a .dyn.bss section. VALUE is
2430 // the offset within POSD.
2432 template<int size>
2433 void
2434 Symbol_table::define_with_copy_reloc(
2435 Sized_symbol<size>* csym,
2436 Output_data* posd,
2437 typename elfcpp::Elf_types<size>::Elf_Addr value)
2439 gold_assert(csym->is_from_dynobj());
2440 gold_assert(!csym->is_copied_from_dynobj());
2441 Object* object = csym->object();
2442 gold_assert(object->is_dynamic());
2443 Dynobj* dynobj = static_cast<Dynobj*>(object);
2445 // Our copied variable has to override any variable in a shared
2446 // library.
2447 elfcpp::STB binding = csym->binding();
2448 if (binding == elfcpp::STB_WEAK)
2449 binding = elfcpp::STB_GLOBAL;
2451 this->define_in_output_data(csym->name(), csym->version(), COPY,
2452 posd, value, csym->symsize(),
2453 csym->type(), binding,
2454 csym->visibility(), csym->nonvis(),
2455 false, false);
2457 csym->set_is_copied_from_dynobj();
2458 csym->set_needs_dynsym_entry();
2460 this->copied_symbol_dynobjs_[csym] = dynobj;
2462 // We have now defined all aliases, but we have not entered them all
2463 // in the copied_symbol_dynobjs_ map.
2464 if (csym->has_alias())
2466 Symbol* sym = csym;
2467 while (true)
2469 sym = this->weak_aliases_[sym];
2470 if (sym == csym)
2471 break;
2472 gold_assert(sym->output_data() == posd);
2474 sym->set_is_copied_from_dynobj();
2475 this->copied_symbol_dynobjs_[sym] = dynobj;
2480 // SYM is defined using a COPY reloc. Return the dynamic object where
2481 // the original definition was found.
2483 Dynobj*
2484 Symbol_table::get_copy_source(const Symbol* sym) const
2486 gold_assert(sym->is_copied_from_dynobj());
2487 Copied_symbol_dynobjs::const_iterator p =
2488 this->copied_symbol_dynobjs_.find(sym);
2489 gold_assert(p != this->copied_symbol_dynobjs_.end());
2490 return p->second;
2493 // Add any undefined symbols named on the command line.
2495 void
2496 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2498 if (parameters->options().any_undefined()
2499 || layout->script_options()->any_unreferenced())
2501 if (parameters->target().get_size() == 32)
2503 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2504 this->do_add_undefined_symbols_from_command_line<32>(layout);
2505 #else
2506 gold_unreachable();
2507 #endif
2509 else if (parameters->target().get_size() == 64)
2511 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2512 this->do_add_undefined_symbols_from_command_line<64>(layout);
2513 #else
2514 gold_unreachable();
2515 #endif
2517 else
2518 gold_unreachable();
2522 template<int size>
2523 void
2524 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2526 for (options::String_set::const_iterator p =
2527 parameters->options().undefined_begin();
2528 p != parameters->options().undefined_end();
2529 ++p)
2530 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2532 for (Script_options::referenced_const_iterator p =
2533 layout->script_options()->referenced_begin();
2534 p != layout->script_options()->referenced_end();
2535 ++p)
2536 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2539 template<int size>
2540 void
2541 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2543 if (this->lookup(name) != NULL)
2544 return;
2546 const char* version = NULL;
2548 Sized_symbol<size>* sym;
2549 Sized_symbol<size>* oldsym;
2550 bool resolve_oldsym;
2551 if (parameters->target().is_big_endian())
2553 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2554 sym = this->define_special_symbol<size, true>(&name, &version,
2555 false,
2556 elfcpp::STV_DEFAULT,
2557 &oldsym,
2558 &resolve_oldsym,
2559 false);
2560 #else
2561 gold_unreachable();
2562 #endif
2564 else
2566 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2567 sym = this->define_special_symbol<size, false>(&name, &version,
2568 false,
2569 elfcpp::STV_DEFAULT,
2570 &oldsym,
2571 &resolve_oldsym,
2572 false);
2573 #else
2574 gold_unreachable();
2575 #endif
2578 gold_assert(oldsym == NULL);
2580 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2581 elfcpp::STV_DEFAULT, 0);
2582 ++this->saw_undefined_;
2585 // Set the dynamic symbol indexes. INDEX is the index of the first
2586 // global dynamic symbol. Pointers to the global symbols are stored
2587 // into the vector SYMS. The names are added to DYNPOOL.
2588 // This returns an updated dynamic symbol index.
2590 unsigned int
2591 Symbol_table::set_dynsym_indexes(unsigned int index,
2592 unsigned int* pforced_local_count,
2593 std::vector<Symbol*>* syms,
2594 Stringpool* dynpool,
2595 Versions* versions)
2597 // First process all the symbols which have been forced to be local,
2598 // as they must appear before all global symbols.
2599 unsigned int forced_local_count = 0;
2600 for (Forced_locals::iterator p = this->forced_locals_.begin();
2601 p != this->forced_locals_.end();
2602 ++p)
2604 Symbol* sym = *p;
2605 gold_assert(sym->is_forced_local());
2606 if (sym->has_dynsym_index())
2607 continue;
2608 if (!sym->should_add_dynsym_entry(this))
2609 sym->set_dynsym_index(-1U);
2610 else
2612 sym->set_dynsym_index(index);
2613 ++index;
2614 ++forced_local_count;
2615 dynpool->add(sym->name(), false, NULL);
2616 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2617 this->set_has_gnu_output();
2620 *pforced_local_count = forced_local_count;
2622 // Allow a target to set dynsym indexes.
2623 if (parameters->target().has_custom_set_dynsym_indexes())
2625 std::vector<Symbol*> dyn_symbols;
2626 for (Symbol_table_type::iterator p = this->table_.begin();
2627 p != this->table_.end();
2628 ++p)
2630 Symbol* sym = p->second;
2631 if (sym->is_forced_local())
2632 continue;
2633 if (!sym->should_add_dynsym_entry(this))
2634 sym->set_dynsym_index(-1U);
2635 else
2637 dyn_symbols.push_back(sym);
2638 if (sym->type() == elfcpp::STT_GNU_IFUNC
2639 || (sym->binding() == elfcpp::STB_GNU_UNIQUE
2640 && parameters->options().gnu_unique()))
2641 this->set_has_gnu_output();
2645 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2646 dynpool, versions, this);
2649 for (Symbol_table_type::iterator p = this->table_.begin();
2650 p != this->table_.end();
2651 ++p)
2653 Symbol* sym = p->second;
2655 if (sym->is_forced_local())
2656 continue;
2658 // Note that SYM may already have a dynamic symbol index, since
2659 // some symbols appear more than once in the symbol table, with
2660 // and without a version.
2662 if (!sym->should_add_dynsym_entry(this))
2663 sym->set_dynsym_index(-1U);
2664 else if (!sym->has_dynsym_index())
2666 sym->set_dynsym_index(index);
2667 ++index;
2668 syms->push_back(sym);
2669 dynpool->add(sym->name(), false, NULL);
2670 if (sym->type() == elfcpp::STT_GNU_IFUNC
2671 || (sym->binding() == elfcpp::STB_GNU_UNIQUE
2672 && parameters->options().gnu_unique()))
2673 this->set_has_gnu_output();
2675 // Record any version information, except those from
2676 // as-needed libraries not seen to be needed. Note that the
2677 // is_needed state for such libraries can change in this loop.
2678 if (sym->version() != NULL)
2680 if (!sym->is_from_dynobj()
2681 || !sym->object()->as_needed()
2682 || sym->object()->is_needed())
2683 versions->record_version(this, dynpool, sym);
2684 else
2686 if (parameters->options().warn_drop_version())
2687 gold_warning(_("discarding version information for "
2688 "%s@%s, defined in unused shared library %s "
2689 "(linked with --as-needed)"),
2690 sym->name(), sym->version(),
2691 sym->object()->name().c_str());
2692 sym->clear_version();
2698 // Finish up the versions. In some cases this may add new dynamic
2699 // symbols.
2700 index = versions->finalize(this, index, syms);
2702 // Process target-specific symbols.
2703 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2704 p != this->target_symbols_.end();
2705 ++p)
2707 (*p)->set_dynsym_index(index);
2708 ++index;
2709 syms->push_back(*p);
2710 dynpool->add((*p)->name(), false, NULL);
2713 return index;
2716 // Set the final values for all the symbols. The index of the first
2717 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2718 // file offset OFF. Add their names to POOL. Return the new file
2719 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2720 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2721 // written from the global symbol table in Symtab::write_globals(),
2722 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2723 // not necessarily the same as the sh_info field for the .dynsym
2724 // section, which will point to the first real global symbol.
2726 off_t
2727 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2728 size_t dyncount, Stringpool* pool,
2729 unsigned int* plocal_symcount)
2731 off_t ret;
2733 gold_assert(*plocal_symcount != 0);
2734 this->first_global_index_ = *plocal_symcount;
2736 this->dynamic_offset_ = dynoff;
2737 this->first_dynamic_global_index_ = dyn_global_index;
2738 this->dynamic_count_ = dyncount;
2740 if (parameters->target().get_size() == 32)
2742 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2743 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2744 #else
2745 gold_unreachable();
2746 #endif
2748 else if (parameters->target().get_size() == 64)
2750 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2751 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2752 #else
2753 gold_unreachable();
2754 #endif
2756 else
2757 gold_unreachable();
2759 if (this->has_gnu_output_)
2761 Target* target = const_cast<Target*>(&parameters->target());
2762 if (target->osabi() == elfcpp::ELFOSABI_NONE)
2763 target->set_osabi(elfcpp::ELFOSABI_GNU);
2766 // Now that we have the final symbol table, we can reliably note
2767 // which symbols should get warnings.
2768 this->warnings_.note_warnings(this);
2770 return ret;
2773 // SYM is going into the symbol table at *PINDEX. Add the name to
2774 // POOL, update *PINDEX and *POFF.
2776 template<int size>
2777 void
2778 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2779 unsigned int* pindex, off_t* poff)
2781 sym->set_symtab_index(*pindex);
2782 if (sym->version() == NULL || !parameters->options().relocatable())
2783 pool->add(sym->name(), false, NULL);
2784 else
2785 pool->add(sym->versioned_name(), true, NULL);
2786 ++*pindex;
2787 *poff += elfcpp::Elf_sizes<size>::sym_size;
2790 // Set the final value for all the symbols. This is called after
2791 // Layout::finalize, so all the output sections have their final
2792 // address.
2794 template<int size>
2795 off_t
2796 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2797 unsigned int* plocal_symcount)
2799 off = align_address(off, size >> 3);
2800 this->offset_ = off;
2802 unsigned int index = *plocal_symcount;
2803 const unsigned int orig_index = index;
2805 // First do all the symbols which have been forced to be local, as
2806 // they must appear before all global symbols.
2807 for (Forced_locals::iterator p = this->forced_locals_.begin();
2808 p != this->forced_locals_.end();
2809 ++p)
2811 Symbol* sym = *p;
2812 gold_assert(sym->is_forced_local());
2813 if (this->sized_finalize_symbol<size>(sym))
2815 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2816 ++*plocal_symcount;
2817 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2818 this->set_has_gnu_output();
2822 // Now do all the remaining symbols.
2823 for (Symbol_table_type::iterator p = this->table_.begin();
2824 p != this->table_.end();
2825 ++p)
2827 Symbol* sym = p->second;
2828 if (this->sized_finalize_symbol<size>(sym))
2830 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2831 if (sym->type() == elfcpp::STT_GNU_IFUNC
2832 || (sym->binding() == elfcpp::STB_GNU_UNIQUE
2833 && parameters->options().gnu_unique()))
2834 this->set_has_gnu_output();
2838 // Now do target-specific symbols.
2839 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2840 p != this->target_symbols_.end();
2841 ++p)
2843 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2846 this->output_count_ = index - orig_index;
2848 return off;
2851 // Compute the final value of SYM and store status in location PSTATUS.
2852 // During relaxation, this may be called multiple times for a symbol to
2853 // compute its would-be final value in each relaxation pass.
2855 template<int size>
2856 typename Sized_symbol<size>::Value_type
2857 Symbol_table::compute_final_value(
2858 const Sized_symbol<size>* sym,
2859 Compute_final_value_status* pstatus) const
2861 typedef typename Sized_symbol<size>::Value_type Value_type;
2862 Value_type value;
2864 switch (sym->source())
2866 case Symbol::FROM_OBJECT:
2868 bool is_ordinary;
2869 unsigned int shndx = sym->shndx(&is_ordinary);
2871 if (!is_ordinary
2872 && shndx != elfcpp::SHN_ABS
2873 && !Symbol::is_common_shndx(shndx))
2875 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2876 return 0;
2879 Object* symobj = sym->object();
2880 if (symobj->is_dynamic())
2882 value = 0;
2883 shndx = elfcpp::SHN_UNDEF;
2885 else if (symobj->pluginobj() != NULL)
2887 value = 0;
2888 shndx = elfcpp::SHN_UNDEF;
2890 else if (shndx == elfcpp::SHN_UNDEF)
2891 value = 0;
2892 else if (!is_ordinary
2893 && (shndx == elfcpp::SHN_ABS
2894 || Symbol::is_common_shndx(shndx)))
2895 value = sym->value();
2896 else
2898 Relobj* relobj = static_cast<Relobj*>(symobj);
2899 Output_section* os = relobj->output_section(shndx);
2901 if (this->is_section_folded(relobj, shndx))
2903 gold_assert(os == NULL);
2904 // Get the os of the section it is folded onto.
2905 Section_id folded = this->icf_->get_folded_section(relobj,
2906 shndx);
2907 gold_assert(folded.first != NULL);
2908 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2909 unsigned folded_shndx = folded.second;
2911 os = folded_obj->output_section(folded_shndx);
2912 gold_assert(os != NULL);
2914 // Replace (relobj, shndx) with canonical ICF input section.
2915 shndx = folded_shndx;
2916 relobj = folded_obj;
2919 uint64_t secoff64 = relobj->output_section_offset(shndx);
2920 if (os == NULL)
2922 bool static_or_reloc = (parameters->doing_static_link() ||
2923 parameters->options().relocatable());
2924 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2926 *pstatus = CFVS_NO_OUTPUT_SECTION;
2927 return 0;
2930 if (secoff64 == -1ULL)
2932 // The section needs special handling (e.g., a merge section).
2934 value = os->output_address(relobj, shndx, sym->value());
2936 else
2938 Value_type secoff =
2939 convert_types<Value_type, uint64_t>(secoff64);
2940 if (sym->type() == elfcpp::STT_TLS)
2941 value = sym->value() + os->tls_offset() + secoff;
2942 else
2943 value = sym->value() + os->address() + secoff;
2947 break;
2949 case Symbol::IN_OUTPUT_DATA:
2951 Output_data* od = sym->output_data();
2952 value = sym->value();
2953 if (sym->type() != elfcpp::STT_TLS)
2954 value += od->address();
2955 else
2957 Output_section* os = od->output_section();
2958 gold_assert(os != NULL);
2959 value += os->tls_offset() + (od->address() - os->address());
2961 if (sym->offset_is_from_end())
2962 value += od->data_size();
2964 break;
2966 case Symbol::IN_OUTPUT_SEGMENT:
2968 Output_segment* os = sym->output_segment();
2969 value = sym->value();
2970 if (sym->type() != elfcpp::STT_TLS)
2971 value += os->vaddr();
2972 switch (sym->offset_base())
2974 case Symbol::SEGMENT_START:
2975 break;
2976 case Symbol::SEGMENT_END:
2977 value += os->memsz();
2978 break;
2979 case Symbol::SEGMENT_BSS:
2980 value += os->filesz();
2981 break;
2982 default:
2983 gold_unreachable();
2986 break;
2988 case Symbol::IS_CONSTANT:
2989 value = sym->value();
2990 break;
2992 case Symbol::IS_UNDEFINED:
2993 value = 0;
2994 break;
2996 default:
2997 gold_unreachable();
3000 *pstatus = CFVS_OK;
3001 return value;
3004 // Finalize the symbol SYM. This returns true if the symbol should be
3005 // added to the symbol table, false otherwise.
3007 template<int size>
3008 bool
3009 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
3011 typedef typename Sized_symbol<size>::Value_type Value_type;
3013 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
3015 // The default version of a symbol may appear twice in the symbol
3016 // table. We only need to finalize it once.
3017 if (sym->has_symtab_index())
3018 return false;
3020 if (!sym->in_reg())
3022 gold_assert(!sym->has_symtab_index());
3023 sym->set_symtab_index(-1U);
3024 gold_assert(sym->dynsym_index() == -1U);
3025 return false;
3028 // If the symbol is only present on plugin files, the plugin decided we
3029 // don't need it.
3030 if (!sym->in_real_elf())
3032 gold_assert(!sym->has_symtab_index());
3033 sym->set_symtab_index(-1U);
3034 return false;
3037 // Compute final symbol value.
3038 Compute_final_value_status status;
3039 Value_type value = this->compute_final_value(sym, &status);
3041 switch (status)
3043 case CFVS_OK:
3044 break;
3045 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
3047 bool is_ordinary;
3048 unsigned int shndx = sym->shndx(&is_ordinary);
3049 gold_error(_("%s: unsupported symbol section 0x%x"),
3050 sym->demangled_name().c_str(), shndx);
3052 break;
3053 case CFVS_NO_OUTPUT_SECTION:
3054 sym->set_symtab_index(-1U);
3055 return false;
3056 default:
3057 gold_unreachable();
3060 sym->set_value(value);
3062 if (parameters->options().strip_all()
3063 || !parameters->options().should_retain_symbol(sym->name()))
3065 sym->set_symtab_index(-1U);
3066 return false;
3069 return true;
3072 // Write out the global symbols.
3074 void
3075 Symbol_table::write_globals(const Stringpool* sympool,
3076 const Stringpool* dynpool,
3077 Output_symtab_xindex* symtab_xindex,
3078 Output_symtab_xindex* dynsym_xindex,
3079 Output_file* of) const
3081 switch (parameters->size_and_endianness())
3083 #ifdef HAVE_TARGET_32_LITTLE
3084 case Parameters::TARGET_32_LITTLE:
3085 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
3086 dynsym_xindex, of);
3087 break;
3088 #endif
3089 #ifdef HAVE_TARGET_32_BIG
3090 case Parameters::TARGET_32_BIG:
3091 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
3092 dynsym_xindex, of);
3093 break;
3094 #endif
3095 #ifdef HAVE_TARGET_64_LITTLE
3096 case Parameters::TARGET_64_LITTLE:
3097 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
3098 dynsym_xindex, of);
3099 break;
3100 #endif
3101 #ifdef HAVE_TARGET_64_BIG
3102 case Parameters::TARGET_64_BIG:
3103 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
3104 dynsym_xindex, of);
3105 break;
3106 #endif
3107 default:
3108 gold_unreachable();
3112 // Write out the global symbols.
3114 template<int size, bool big_endian>
3115 void
3116 Symbol_table::sized_write_globals(const Stringpool* sympool,
3117 const Stringpool* dynpool,
3118 Output_symtab_xindex* symtab_xindex,
3119 Output_symtab_xindex* dynsym_xindex,
3120 Output_file* of) const
3122 const Target& target = parameters->target();
3124 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3126 const unsigned int output_count = this->output_count_;
3127 const section_size_type oview_size = output_count * sym_size;
3128 const unsigned int first_global_index = this->first_global_index_;
3129 unsigned char* psyms;
3130 if (this->offset_ == 0 || output_count == 0)
3131 psyms = NULL;
3132 else
3133 psyms = of->get_output_view(this->offset_, oview_size);
3135 const unsigned int dynamic_count = this->dynamic_count_;
3136 const section_size_type dynamic_size = dynamic_count * sym_size;
3137 const unsigned int first_dynamic_global_index =
3138 this->first_dynamic_global_index_;
3139 unsigned char* dynamic_view;
3140 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3141 dynamic_view = NULL;
3142 else
3143 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3145 for (Symbol_table_type::const_iterator p = this->table_.begin();
3146 p != this->table_.end();
3147 ++p)
3149 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3151 // Possibly warn about unresolved symbols in shared libraries.
3152 this->warn_about_undefined_dynobj_symbol(sym);
3154 unsigned int sym_index = sym->symtab_index();
3155 unsigned int dynsym_index;
3156 if (dynamic_view == NULL)
3157 dynsym_index = -1U;
3158 else
3159 dynsym_index = sym->dynsym_index();
3161 if (sym_index == -1U && dynsym_index == -1U)
3163 // This symbol is not included in the output file.
3164 continue;
3167 unsigned int shndx;
3168 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3169 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3170 elfcpp::STB binding = sym->binding();
3172 // If --weak-unresolved-symbols is set, change binding of unresolved
3173 // global symbols to STB_WEAK.
3174 if (parameters->options().weak_unresolved_symbols()
3175 && binding == elfcpp::STB_GLOBAL
3176 && sym->is_undefined())
3177 binding = elfcpp::STB_WEAK;
3179 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3180 if (binding == elfcpp::STB_GNU_UNIQUE
3181 && !parameters->options().gnu_unique())
3182 binding = elfcpp::STB_GLOBAL;
3184 switch (sym->source())
3186 case Symbol::FROM_OBJECT:
3188 bool is_ordinary;
3189 unsigned int in_shndx = sym->shndx(&is_ordinary);
3191 if (!is_ordinary
3192 && in_shndx != elfcpp::SHN_ABS
3193 && !Symbol::is_common_shndx(in_shndx))
3195 gold_error(_("%s: unsupported symbol section 0x%x"),
3196 sym->demangled_name().c_str(), in_shndx);
3197 shndx = in_shndx;
3199 else
3201 Object* symobj = sym->object();
3202 if (symobj->is_dynamic())
3204 if (sym->needs_dynsym_value())
3205 dynsym_value = target.dynsym_value(sym);
3206 shndx = elfcpp::SHN_UNDEF;
3207 if (sym->is_undef_binding_weak())
3208 binding = elfcpp::STB_WEAK;
3209 else
3210 binding = elfcpp::STB_GLOBAL;
3212 else if (symobj->pluginobj() != NULL)
3213 shndx = elfcpp::SHN_UNDEF;
3214 else if (in_shndx == elfcpp::SHN_UNDEF
3215 || (!is_ordinary
3216 && (in_shndx == elfcpp::SHN_ABS
3217 || Symbol::is_common_shndx(in_shndx))))
3218 shndx = in_shndx;
3219 else
3221 Relobj* relobj = static_cast<Relobj*>(symobj);
3222 Output_section* os = relobj->output_section(in_shndx);
3223 if (this->is_section_folded(relobj, in_shndx))
3225 // This global symbol must be written out even though
3226 // it is folded.
3227 // Get the os of the section it is folded onto.
3228 Section_id folded =
3229 this->icf_->get_folded_section(relobj, in_shndx);
3230 gold_assert(folded.first !=NULL);
3231 Relobj* folded_obj =
3232 reinterpret_cast<Relobj*>(folded.first);
3233 os = folded_obj->output_section(folded.second);
3234 gold_assert(os != NULL);
3236 gold_assert(os != NULL);
3237 shndx = os->out_shndx();
3239 if (shndx >= elfcpp::SHN_LORESERVE)
3241 if (sym_index != -1U)
3242 symtab_xindex->add(sym_index, shndx);
3243 if (dynsym_index != -1U)
3244 dynsym_xindex->add(dynsym_index, shndx);
3245 shndx = elfcpp::SHN_XINDEX;
3248 // In object files symbol values are section
3249 // relative.
3250 if (parameters->options().relocatable())
3251 sym_value -= os->address();
3255 break;
3257 case Symbol::IN_OUTPUT_DATA:
3259 Output_data* od = sym->output_data();
3261 shndx = od->out_shndx();
3262 if (shndx >= elfcpp::SHN_LORESERVE)
3264 if (sym_index != -1U)
3265 symtab_xindex->add(sym_index, shndx);
3266 if (dynsym_index != -1U)
3267 dynsym_xindex->add(dynsym_index, shndx);
3268 shndx = elfcpp::SHN_XINDEX;
3271 // In object files symbol values are section
3272 // relative.
3273 if (parameters->options().relocatable())
3275 Output_section* os = od->output_section();
3276 gold_assert(os != NULL);
3277 sym_value -= os->address();
3280 break;
3282 case Symbol::IN_OUTPUT_SEGMENT:
3284 Output_segment* oseg = sym->output_segment();
3285 Output_section* osect = oseg->first_section();
3286 if (osect == NULL)
3287 shndx = elfcpp::SHN_ABS;
3288 else
3289 shndx = osect->out_shndx();
3291 break;
3293 case Symbol::IS_CONSTANT:
3294 shndx = elfcpp::SHN_ABS;
3295 break;
3297 case Symbol::IS_UNDEFINED:
3298 shndx = elfcpp::SHN_UNDEF;
3299 break;
3301 default:
3302 gold_unreachable();
3305 if (sym_index != -1U)
3307 sym_index -= first_global_index;
3308 gold_assert(sym_index < output_count);
3309 unsigned char* ps = psyms + (sym_index * sym_size);
3310 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3311 binding, sympool, ps);
3314 if (dynsym_index != -1U)
3316 dynsym_index -= first_dynamic_global_index;
3317 gold_assert(dynsym_index < dynamic_count);
3318 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3319 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3320 binding, dynpool, pd);
3321 // Allow a target to adjust dynamic symbol value.
3322 parameters->target().adjust_dyn_symbol(sym, pd);
3326 // Write the target-specific symbols.
3327 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3328 p != this->target_symbols_.end();
3329 ++p)
3331 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3333 unsigned int sym_index = sym->symtab_index();
3334 unsigned int dynsym_index;
3335 if (dynamic_view == NULL)
3336 dynsym_index = -1U;
3337 else
3338 dynsym_index = sym->dynsym_index();
3340 unsigned int shndx;
3341 switch (sym->source())
3343 case Symbol::IS_CONSTANT:
3344 shndx = elfcpp::SHN_ABS;
3345 break;
3346 case Symbol::IS_UNDEFINED:
3347 shndx = elfcpp::SHN_UNDEF;
3348 break;
3349 default:
3350 gold_unreachable();
3353 if (sym_index != -1U)
3355 sym_index -= first_global_index;
3356 gold_assert(sym_index < output_count);
3357 unsigned char* ps = psyms + (sym_index * sym_size);
3358 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3359 sym->binding(), sympool,
3360 ps);
3363 if (dynsym_index != -1U)
3365 dynsym_index -= first_dynamic_global_index;
3366 gold_assert(dynsym_index < dynamic_count);
3367 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3368 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3369 sym->binding(), dynpool,
3370 pd);
3374 of->write_output_view(this->offset_, oview_size, psyms);
3375 if (dynamic_view != NULL)
3376 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3379 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3380 // strtab holding the name.
3382 template<int size, bool big_endian>
3383 void
3384 Symbol_table::sized_write_symbol(
3385 Sized_symbol<size>* sym,
3386 typename elfcpp::Elf_types<size>::Elf_Addr value,
3387 unsigned int shndx,
3388 elfcpp::STB binding,
3389 const Stringpool* pool,
3390 unsigned char* p) const
3392 elfcpp::Sym_write<size, big_endian> osym(p);
3393 if (sym->version() == NULL || !parameters->options().relocatable())
3394 osym.put_st_name(pool->get_offset(sym->name()));
3395 else
3396 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3397 osym.put_st_value(value);
3398 // Use a symbol size of zero for undefined symbols from shared libraries.
3399 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3400 osym.put_st_size(0);
3401 else
3402 osym.put_st_size(sym->symsize());
3403 elfcpp::STT type = sym->type();
3404 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3405 // A version script may have overridden the default binding.
3406 if (sym->is_forced_local())
3407 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3408 else
3409 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3410 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3411 osym.put_st_shndx(shndx);
3414 // Check for unresolved symbols in shared libraries. This is
3415 // controlled by the --allow-shlib-undefined option.
3417 // We only warn about libraries for which we have seen all the
3418 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3419 // which were not seen in this link. If we didn't see a DT_NEEDED
3420 // entry, we aren't going to be able to reliably report whether the
3421 // symbol is undefined.
3423 // We also don't warn about libraries found in a system library
3424 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3425 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3426 // can have undefined references satisfied by ld-linux.so.
3428 inline void
3429 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3431 bool dummy;
3432 if (sym->source() == Symbol::FROM_OBJECT
3433 && sym->object()->is_dynamic()
3434 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3435 && sym->binding() != elfcpp::STB_WEAK
3436 && !parameters->options().allow_shlib_undefined()
3437 && !parameters->target().is_defined_by_abi(sym)
3438 && !sym->object()->is_in_system_directory())
3440 // A very ugly cast.
3441 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3442 if (!dynobj->has_unknown_needed_entries())
3443 gold_undefined_symbol(sym);
3447 // Write out a section symbol. Return the update offset.
3449 void
3450 Symbol_table::write_section_symbol(const Output_section* os,
3451 Output_symtab_xindex* symtab_xindex,
3452 Output_file* of,
3453 off_t offset) const
3455 switch (parameters->size_and_endianness())
3457 #ifdef HAVE_TARGET_32_LITTLE
3458 case Parameters::TARGET_32_LITTLE:
3459 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3460 offset);
3461 break;
3462 #endif
3463 #ifdef HAVE_TARGET_32_BIG
3464 case Parameters::TARGET_32_BIG:
3465 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3466 offset);
3467 break;
3468 #endif
3469 #ifdef HAVE_TARGET_64_LITTLE
3470 case Parameters::TARGET_64_LITTLE:
3471 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3472 offset);
3473 break;
3474 #endif
3475 #ifdef HAVE_TARGET_64_BIG
3476 case Parameters::TARGET_64_BIG:
3477 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3478 offset);
3479 break;
3480 #endif
3481 default:
3482 gold_unreachable();
3486 // Write out a section symbol, specialized for size and endianness.
3488 template<int size, bool big_endian>
3489 void
3490 Symbol_table::sized_write_section_symbol(const Output_section* os,
3491 Output_symtab_xindex* symtab_xindex,
3492 Output_file* of,
3493 off_t offset) const
3495 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3497 unsigned char* pov = of->get_output_view(offset, sym_size);
3499 elfcpp::Sym_write<size, big_endian> osym(pov);
3500 osym.put_st_name(0);
3501 if (parameters->options().relocatable())
3502 osym.put_st_value(0);
3503 else
3504 osym.put_st_value(os->address());
3505 osym.put_st_size(0);
3506 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3507 elfcpp::STT_SECTION));
3508 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3510 unsigned int shndx = os->out_shndx();
3511 if (shndx >= elfcpp::SHN_LORESERVE)
3513 symtab_xindex->add(os->symtab_index(), shndx);
3514 shndx = elfcpp::SHN_XINDEX;
3516 osym.put_st_shndx(shndx);
3518 of->write_output_view(offset, sym_size, pov);
3521 // Print statistical information to stderr. This is used for --stats.
3523 void
3524 Symbol_table::print_stats() const
3526 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3527 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3528 program_name, this->table_.size(), this->table_.bucket_count());
3529 #else
3530 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3531 program_name, this->table_.size());
3532 #endif
3533 this->namepool_.print_stats("symbol table stringpool");
3536 // We check for ODR violations by looking for symbols with the same
3537 // name for which the debugging information reports that they were
3538 // defined in disjoint source locations. When comparing the source
3539 // location, we consider instances with the same base filename to be
3540 // the same. This is because different object files/shared libraries
3541 // can include the same header file using different paths, and
3542 // different optimization settings can make the line number appear to
3543 // be a couple lines off, and we don't want to report an ODR violation
3544 // in those cases.
3546 // This struct is used to compare line information, as returned by
3547 // Dwarf_line_info::one_addr2line. It implements a < comparison
3548 // operator used with std::sort.
3550 struct Odr_violation_compare
3552 bool
3553 operator()(const std::string& s1, const std::string& s2) const
3555 // Inputs should be of the form "dirname/filename:linenum" where
3556 // "dirname/" is optional. We want to compare just the filename:linenum.
3558 // Find the last '/' in each string.
3559 std::string::size_type s1begin = s1.rfind('/');
3560 std::string::size_type s2begin = s2.rfind('/');
3561 // If there was no '/' in a string, start at the beginning.
3562 if (s1begin == std::string::npos)
3563 s1begin = 0;
3564 if (s2begin == std::string::npos)
3565 s2begin = 0;
3566 return s1.compare(s1begin, std::string::npos,
3567 s2, s2begin, std::string::npos) < 0;
3571 // Returns all of the lines attached to LOC, not just the one the
3572 // instruction actually came from.
3573 std::vector<std::string>
3574 Symbol_table::linenos_from_loc(const Task* task,
3575 const Symbol_location& loc)
3577 // We need to lock the object in order to read it. This
3578 // means that we have to run in a singleton Task. If we
3579 // want to run this in a general Task for better
3580 // performance, we will need one Task for object, plus
3581 // appropriate locking to ensure that we don't conflict with
3582 // other uses of the object. Also note, one_addr2line is not
3583 // currently thread-safe.
3584 Task_lock_obj<Object> tl(task, loc.object);
3586 std::vector<std::string> result;
3587 Symbol_location code_loc = loc;
3588 parameters->target().function_location(&code_loc);
3589 // 16 is the size of the object-cache that one_addr2line should use.
3590 std::string canonical_result = Dwarf_line_info::one_addr2line(
3591 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3592 if (!canonical_result.empty())
3593 result.push_back(canonical_result);
3594 return result;
3597 // OutputIterator that records if it was ever assigned to. This
3598 // allows it to be used with std::set_intersection() to check for
3599 // intersection rather than computing the intersection.
3600 struct Check_intersection
3602 Check_intersection()
3603 : value_(false)
3606 bool had_intersection() const
3607 { return this->value_; }
3609 Check_intersection& operator++()
3610 { return *this; }
3612 Check_intersection& operator*()
3613 { return *this; }
3615 template<typename T>
3616 Check_intersection& operator=(const T&)
3618 this->value_ = true;
3619 return *this;
3622 private:
3623 bool value_;
3626 // Check candidate_odr_violations_ to find symbols with the same name
3627 // but apparently different definitions (different source-file/line-no
3628 // for each line assigned to the first instruction).
3630 void
3631 Symbol_table::detect_odr_violations(const Task* task,
3632 const char* output_file_name) const
3634 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3635 it != candidate_odr_violations_.end();
3636 ++it)
3638 const char* const symbol_name = it->first;
3640 std::string first_object_name;
3641 std::vector<std::string> first_object_linenos;
3643 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3644 locs = it->second.begin();
3645 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3646 locs_end = it->second.end();
3647 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3649 // Save the line numbers from the first definition to
3650 // compare to the other definitions. Ideally, we'd compare
3651 // every definition to every other, but we don't want to
3652 // take O(N^2) time to do this. This shortcut may cause
3653 // false negatives that appear or disappear depending on the
3654 // link order, but it won't cause false positives.
3655 first_object_name = locs->object->name();
3656 first_object_linenos = this->linenos_from_loc(task, *locs);
3658 if (first_object_linenos.empty())
3659 continue;
3661 // Sort by Odr_violation_compare to make std::set_intersection work.
3662 std::string first_object_canonical_result = first_object_linenos.back();
3663 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3664 Odr_violation_compare());
3666 for (; locs != locs_end; ++locs)
3668 std::vector<std::string> linenos =
3669 this->linenos_from_loc(task, *locs);
3670 // linenos will be empty if we couldn't parse the debug info.
3671 if (linenos.empty())
3672 continue;
3673 // Sort by Odr_violation_compare to make std::set_intersection work.
3674 gold_assert(!linenos.empty());
3675 std::string second_object_canonical_result = linenos.back();
3676 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3678 Check_intersection intersection_result =
3679 std::set_intersection(first_object_linenos.begin(),
3680 first_object_linenos.end(),
3681 linenos.begin(),
3682 linenos.end(),
3683 Check_intersection(),
3684 Odr_violation_compare());
3685 if (!intersection_result.had_intersection())
3687 gold_warning(_("while linking %s: symbol '%s' defined in "
3688 "multiple places (possible ODR violation):"),
3689 output_file_name, demangle(symbol_name).c_str());
3690 // This only prints one location from each definition,
3691 // which may not be the location we expect to intersect
3692 // with another definition. We could print the whole
3693 // set of locations, but that seems too verbose.
3694 fprintf(stderr, _(" %s from %s\n"),
3695 first_object_canonical_result.c_str(),
3696 first_object_name.c_str());
3697 fprintf(stderr, _(" %s from %s\n"),
3698 second_object_canonical_result.c_str(),
3699 locs->object->name().c_str());
3700 // Only print one broken pair, to avoid needing to
3701 // compare against a list of the disjoint definition
3702 // locations we've found so far. (If we kept comparing
3703 // against just the first one, we'd get a lot of
3704 // redundant complaints about the second definition
3705 // location.)
3706 break;
3710 // We only call one_addr2line() in this function, so we can clear its cache.
3711 Dwarf_line_info::clear_addr2line_cache();
3714 // Warnings functions.
3716 // Add a new warning.
3718 void
3719 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3720 const std::string& warning)
3722 name = symtab->canonicalize_name(name);
3723 this->warnings_[name].set(obj, warning);
3726 // Look through the warnings and mark the symbols for which we should
3727 // warn. This is called during Layout::finalize when we know the
3728 // sources for all the symbols.
3730 void
3731 Warnings::note_warnings(Symbol_table* symtab)
3733 for (Warning_table::iterator p = this->warnings_.begin();
3734 p != this->warnings_.end();
3735 ++p)
3737 Symbol* sym = symtab->lookup(p->first, NULL);
3738 if (sym != NULL
3739 && sym->source() == Symbol::FROM_OBJECT
3740 && sym->object() == p->second.object)
3741 sym->set_has_warning();
3745 // Issue a warning. This is called when we see a relocation against a
3746 // symbol for which has a warning.
3748 template<int size, bool big_endian>
3749 void
3750 Warnings::issue_warning(const Symbol* sym,
3751 const Relocate_info<size, big_endian>* relinfo,
3752 size_t relnum, off_t reloffset) const
3754 gold_assert(sym->has_warning());
3756 // We don't want to issue a warning for a relocation against the
3757 // symbol in the same object file in which the symbol is defined.
3758 if (sym->object() == relinfo->object)
3759 return;
3761 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3762 gold_assert(p != this->warnings_.end());
3763 gold_warning_at_location(relinfo, relnum, reloffset,
3764 "%s", p->second.text.c_str());
3767 // Instantiate the templates we need. We could use the configure
3768 // script to restrict this to only the ones needed for implemented
3769 // targets.
3771 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3772 template
3773 void
3774 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3775 #endif
3777 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3778 template
3779 void
3780 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3781 #endif
3783 #ifdef HAVE_TARGET_32_LITTLE
3784 template
3785 void
3786 Symbol_table::add_from_relobj<32, false>(
3787 Sized_relobj_file<32, false>* relobj,
3788 const unsigned char* syms,
3789 size_t count,
3790 size_t symndx_offset,
3791 const char* sym_names,
3792 size_t sym_name_size,
3793 Sized_relobj_file<32, false>::Symbols* sympointers,
3794 size_t* defined);
3795 #endif
3797 #ifdef HAVE_TARGET_32_BIG
3798 template
3799 void
3800 Symbol_table::add_from_relobj<32, true>(
3801 Sized_relobj_file<32, true>* relobj,
3802 const unsigned char* syms,
3803 size_t count,
3804 size_t symndx_offset,
3805 const char* sym_names,
3806 size_t sym_name_size,
3807 Sized_relobj_file<32, true>::Symbols* sympointers,
3808 size_t* defined);
3809 #endif
3811 #ifdef HAVE_TARGET_64_LITTLE
3812 template
3813 void
3814 Symbol_table::add_from_relobj<64, false>(
3815 Sized_relobj_file<64, false>* relobj,
3816 const unsigned char* syms,
3817 size_t count,
3818 size_t symndx_offset,
3819 const char* sym_names,
3820 size_t sym_name_size,
3821 Sized_relobj_file<64, false>::Symbols* sympointers,
3822 size_t* defined);
3823 #endif
3825 #ifdef HAVE_TARGET_64_BIG
3826 template
3827 void
3828 Symbol_table::add_from_relobj<64, true>(
3829 Sized_relobj_file<64, true>* relobj,
3830 const unsigned char* syms,
3831 size_t count,
3832 size_t symndx_offset,
3833 const char* sym_names,
3834 size_t sym_name_size,
3835 Sized_relobj_file<64, true>::Symbols* sympointers,
3836 size_t* defined);
3837 #endif
3839 #ifdef HAVE_TARGET_32_LITTLE
3840 template
3841 Symbol*
3842 Symbol_table::add_from_pluginobj<32, false>(
3843 Sized_pluginobj<32, false>* obj,
3844 const char* name,
3845 const char* ver,
3846 elfcpp::Sym<32, false>* sym);
3847 #endif
3849 #ifdef HAVE_TARGET_32_BIG
3850 template
3851 Symbol*
3852 Symbol_table::add_from_pluginobj<32, true>(
3853 Sized_pluginobj<32, true>* obj,
3854 const char* name,
3855 const char* ver,
3856 elfcpp::Sym<32, true>* sym);
3857 #endif
3859 #ifdef HAVE_TARGET_64_LITTLE
3860 template
3861 Symbol*
3862 Symbol_table::add_from_pluginobj<64, false>(
3863 Sized_pluginobj<64, false>* obj,
3864 const char* name,
3865 const char* ver,
3866 elfcpp::Sym<64, false>* sym);
3867 #endif
3869 #ifdef HAVE_TARGET_64_BIG
3870 template
3871 Symbol*
3872 Symbol_table::add_from_pluginobj<64, true>(
3873 Sized_pluginobj<64, true>* obj,
3874 const char* name,
3875 const char* ver,
3876 elfcpp::Sym<64, true>* sym);
3877 #endif
3879 #ifdef HAVE_TARGET_32_LITTLE
3880 template
3881 void
3882 Symbol_table::add_from_dynobj<32, false>(
3883 Sized_dynobj<32, false>* dynobj,
3884 const unsigned char* syms,
3885 size_t count,
3886 const char* sym_names,
3887 size_t sym_name_size,
3888 const unsigned char* versym,
3889 size_t versym_size,
3890 const std::vector<const char*>* version_map,
3891 Sized_relobj_file<32, false>::Symbols* sympointers,
3892 size_t* defined);
3893 #endif
3895 #ifdef HAVE_TARGET_32_BIG
3896 template
3897 void
3898 Symbol_table::add_from_dynobj<32, true>(
3899 Sized_dynobj<32, true>* dynobj,
3900 const unsigned char* syms,
3901 size_t count,
3902 const char* sym_names,
3903 size_t sym_name_size,
3904 const unsigned char* versym,
3905 size_t versym_size,
3906 const std::vector<const char*>* version_map,
3907 Sized_relobj_file<32, true>::Symbols* sympointers,
3908 size_t* defined);
3909 #endif
3911 #ifdef HAVE_TARGET_64_LITTLE
3912 template
3913 void
3914 Symbol_table::add_from_dynobj<64, false>(
3915 Sized_dynobj<64, false>* dynobj,
3916 const unsigned char* syms,
3917 size_t count,
3918 const char* sym_names,
3919 size_t sym_name_size,
3920 const unsigned char* versym,
3921 size_t versym_size,
3922 const std::vector<const char*>* version_map,
3923 Sized_relobj_file<64, false>::Symbols* sympointers,
3924 size_t* defined);
3925 #endif
3927 #ifdef HAVE_TARGET_64_BIG
3928 template
3929 void
3930 Symbol_table::add_from_dynobj<64, true>(
3931 Sized_dynobj<64, true>* dynobj,
3932 const unsigned char* syms,
3933 size_t count,
3934 const char* sym_names,
3935 size_t sym_name_size,
3936 const unsigned char* versym,
3937 size_t versym_size,
3938 const std::vector<const char*>* version_map,
3939 Sized_relobj_file<64, true>::Symbols* sympointers,
3940 size_t* defined);
3941 #endif
3943 #ifdef HAVE_TARGET_32_LITTLE
3944 template
3945 Sized_symbol<32>*
3946 Symbol_table::add_from_incrobj(
3947 Object* obj,
3948 const char* name,
3949 const char* ver,
3950 elfcpp::Sym<32, false>* sym);
3951 #endif
3953 #ifdef HAVE_TARGET_32_BIG
3954 template
3955 Sized_symbol<32>*
3956 Symbol_table::add_from_incrobj(
3957 Object* obj,
3958 const char* name,
3959 const char* ver,
3960 elfcpp::Sym<32, true>* sym);
3961 #endif
3963 #ifdef HAVE_TARGET_64_LITTLE
3964 template
3965 Sized_symbol<64>*
3966 Symbol_table::add_from_incrobj(
3967 Object* obj,
3968 const char* name,
3969 const char* ver,
3970 elfcpp::Sym<64, false>* sym);
3971 #endif
3973 #ifdef HAVE_TARGET_64_BIG
3974 template
3975 Sized_symbol<64>*
3976 Symbol_table::add_from_incrobj(
3977 Object* obj,
3978 const char* name,
3979 const char* ver,
3980 elfcpp::Sym<64, true>* sym);
3981 #endif
3983 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3984 template
3985 void
3986 Symbol_table::define_with_copy_reloc<32>(
3987 Sized_symbol<32>* sym,
3988 Output_data* posd,
3989 elfcpp::Elf_types<32>::Elf_Addr value);
3990 #endif
3992 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3993 template
3994 void
3995 Symbol_table::define_with_copy_reloc<64>(
3996 Sized_symbol<64>* sym,
3997 Output_data* posd,
3998 elfcpp::Elf_types<64>::Elf_Addr value);
3999 #endif
4001 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
4002 template
4003 void
4004 Sized_symbol<32>::init_output_data(const char* name, const char* version,
4005 Output_data* od, Value_type value,
4006 Size_type symsize, elfcpp::STT type,
4007 elfcpp::STB binding,
4008 elfcpp::STV visibility,
4009 unsigned char nonvis,
4010 bool offset_is_from_end,
4011 bool is_predefined);
4013 template
4014 void
4015 Sized_symbol<32>::init_constant(const char* name, const char* version,
4016 Value_type value, Size_type symsize,
4017 elfcpp::STT type, elfcpp::STB binding,
4018 elfcpp::STV visibility, unsigned char nonvis,
4019 bool is_predefined);
4021 template
4022 void
4023 Sized_symbol<32>::init_undefined(const char* name, const char* version,
4024 Value_type value, elfcpp::STT type,
4025 elfcpp::STB binding, elfcpp::STV visibility,
4026 unsigned char nonvis);
4027 #endif
4029 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
4030 template
4031 void
4032 Sized_symbol<64>::init_output_data(const char* name, const char* version,
4033 Output_data* od, Value_type value,
4034 Size_type symsize, elfcpp::STT type,
4035 elfcpp::STB binding,
4036 elfcpp::STV visibility,
4037 unsigned char nonvis,
4038 bool offset_is_from_end,
4039 bool is_predefined);
4041 template
4042 void
4043 Sized_symbol<64>::init_constant(const char* name, const char* version,
4044 Value_type value, Size_type symsize,
4045 elfcpp::STT type, elfcpp::STB binding,
4046 elfcpp::STV visibility, unsigned char nonvis,
4047 bool is_predefined);
4049 template
4050 void
4051 Sized_symbol<64>::init_undefined(const char* name, const char* version,
4052 Value_type value, elfcpp::STT type,
4053 elfcpp::STB binding, elfcpp::STV visibility,
4054 unsigned char nonvis);
4055 #endif
4057 #ifdef HAVE_TARGET_32_LITTLE
4058 template
4059 void
4060 Warnings::issue_warning<32, false>(const Symbol* sym,
4061 const Relocate_info<32, false>* relinfo,
4062 size_t relnum, off_t reloffset) const;
4063 #endif
4065 #ifdef HAVE_TARGET_32_BIG
4066 template
4067 void
4068 Warnings::issue_warning<32, true>(const Symbol* sym,
4069 const Relocate_info<32, true>* relinfo,
4070 size_t relnum, off_t reloffset) const;
4071 #endif
4073 #ifdef HAVE_TARGET_64_LITTLE
4074 template
4075 void
4076 Warnings::issue_warning<64, false>(const Symbol* sym,
4077 const Relocate_info<64, false>* relinfo,
4078 size_t relnum, off_t reloffset) const;
4079 #endif
4081 #ifdef HAVE_TARGET_64_BIG
4082 template
4083 void
4084 Warnings::issue_warning<64, true>(const Symbol* sym,
4085 const Relocate_info<64, true>* relinfo,
4086 size_t relnum, off_t reloffset) const;
4087 #endif
4089 } // End namespace gold.