1 // symtab.cc -- the gold symbol table
3 // Copyright (C) 2006-2024 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
43 #include "incremental.h"
50 // Initialize fields in Symbol. This initializes everything except
51 // u1_, u2_ and source_.
54 Symbol::init_fields(const char* name
, const char* version
,
55 elfcpp::STT type
, elfcpp::STB binding
,
56 elfcpp::STV visibility
, unsigned char nonvis
)
59 this->version_
= version
;
60 this->symtab_index_
= 0;
61 this->dynsym_index_
= 0;
62 this->got_offsets_
.init();
63 this->plt_offset_
= -1U;
65 this->binding_
= binding
;
66 this->visibility_
= visibility
;
67 this->nonvis_
= nonvis
;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_warning_
= false;
75 this->is_copied_from_dynobj_
= false;
76 this->is_forced_local_
= false;
77 this->is_ordinary_shndx_
= false;
78 this->in_real_elf_
= false;
79 this->is_defined_in_discarded_section_
= false;
80 this->undef_binding_set_
= false;
81 this->undef_binding_weak_
= false;
82 this->is_predefined_
= false;
83 this->is_protected_
= false;
84 this->non_zero_localentry_
= false;
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
91 demangle(const char* name
)
93 if (!parameters
->options().do_demangle())
96 // cplus_demangle allocates memory for the result it returns,
97 // and returns NULL if the name is already demangled.
98 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
99 if (demangled_name
== NULL
)
102 std::string
retval(demangled_name
);
103 free(demangled_name
);
108 Symbol::demangled_name() const
110 return demangle(this->name());
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
115 template<int size
, bool big_endian
>
117 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
118 const elfcpp::Sym
<size
, big_endian
>& sym
,
119 unsigned int st_shndx
, bool is_ordinary
)
121 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
122 sym
.get_st_visibility(), sym
.get_st_nonvis());
123 this->u1_
.object
= object
;
124 this->u2_
.shndx
= st_shndx
;
125 this->is_ordinary_shndx_
= is_ordinary
;
126 this->source_
= FROM_OBJECT
;
127 this->in_reg_
= !object
->is_dynamic();
128 this->in_dyn_
= object
->is_dynamic();
129 this->in_real_elf_
= object
->pluginobj() == NULL
;
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
136 Symbol::init_base_output_data(const char* name
, const char* version
,
137 Output_data
* od
, elfcpp::STT type
,
138 elfcpp::STB binding
, elfcpp::STV visibility
,
139 unsigned char nonvis
, bool offset_is_from_end
,
142 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
143 this->u1_
.output_data
= od
;
144 this->u2_
.offset_is_from_end
= offset_is_from_end
;
145 this->source_
= IN_OUTPUT_DATA
;
146 this->in_reg_
= true;
147 this->in_real_elf_
= true;
148 this->is_predefined_
= is_predefined
;
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
155 Symbol::init_base_output_segment(const char* name
, const char* version
,
156 Output_segment
* os
, elfcpp::STT type
,
157 elfcpp::STB binding
, elfcpp::STV visibility
,
158 unsigned char nonvis
,
159 Segment_offset_base offset_base
,
162 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
163 this->u1_
.output_segment
= os
;
164 this->u2_
.offset_base
= offset_base
;
165 this->source_
= IN_OUTPUT_SEGMENT
;
166 this->in_reg_
= true;
167 this->in_real_elf_
= true;
168 this->is_predefined_
= is_predefined
;
171 // Initialize the fields in the base class Symbol for a symbol defined
175 Symbol::init_base_constant(const char* name
, const char* version
,
176 elfcpp::STT type
, elfcpp::STB binding
,
177 elfcpp::STV visibility
, unsigned char nonvis
,
180 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
181 this->source_
= IS_CONSTANT
;
182 this->in_reg_
= true;
183 this->in_real_elf_
= true;
184 this->is_predefined_
= is_predefined
;
187 // Initialize the fields in the base class Symbol for an undefined
191 Symbol::init_base_undefined(const char* name
, const char* version
,
192 elfcpp::STT type
, elfcpp::STB binding
,
193 elfcpp::STV visibility
, unsigned char nonvis
)
195 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
196 this->dynsym_index_
= -1U;
197 this->source_
= IS_UNDEFINED
;
198 this->in_reg_
= true;
199 this->in_real_elf_
= true;
202 // Allocate a common symbol in the base.
205 Symbol::allocate_base_common(Output_data
* od
)
207 gold_assert(this->is_common());
208 this->source_
= IN_OUTPUT_DATA
;
209 this->u1_
.output_data
= od
;
210 this->u2_
.offset_is_from_end
= false;
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
216 template<bool big_endian
>
218 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
220 const elfcpp::Sym
<size
, big_endian
>& sym
,
221 unsigned int st_shndx
, bool is_ordinary
)
223 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
224 this->value_
= sym
.get_st_value();
225 this->symsize_
= sym
.get_st_size();
228 // Initialize the fields in Sized_symbol for a symbol defined in an
233 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
234 Output_data
* od
, Value_type value
,
235 Size_type symsize
, elfcpp::STT type
,
237 elfcpp::STV visibility
,
238 unsigned char nonvis
,
239 bool offset_is_from_end
,
242 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
243 nonvis
, offset_is_from_end
, is_predefined
);
244 this->value_
= value
;
245 this->symsize_
= symsize
;
248 // Initialize the fields in Sized_symbol for a symbol defined in an
253 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
254 Output_segment
* os
, Value_type value
,
255 Size_type symsize
, elfcpp::STT type
,
257 elfcpp::STV visibility
,
258 unsigned char nonvis
,
259 Segment_offset_base offset_base
,
262 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
263 nonvis
, offset_base
, is_predefined
);
264 this->value_
= value
;
265 this->symsize_
= symsize
;
268 // Initialize the fields in Sized_symbol for a symbol defined as a
273 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
274 Value_type value
, Size_type symsize
,
275 elfcpp::STT type
, elfcpp::STB binding
,
276 elfcpp::STV visibility
, unsigned char nonvis
,
279 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
,
281 this->value_
= value
;
282 this->symsize_
= symsize
;
285 // Initialize the fields in Sized_symbol for an undefined symbol.
289 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
290 Value_type value
, elfcpp::STT type
,
291 elfcpp::STB binding
, elfcpp::STV visibility
,
292 unsigned char nonvis
)
294 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
295 this->value_
= value
;
299 // Return an allocated string holding the symbol's name as
300 // name@version. This is used for relocatable links.
303 Symbol::versioned_name() const
305 gold_assert(this->version_
!= NULL
);
306 std::string ret
= this->name_
;
310 ret
+= this->version_
;
314 // Return true if SHNDX represents a common symbol.
317 Symbol::is_common_shndx(unsigned int shndx
)
319 return (shndx
== elfcpp::SHN_COMMON
320 || shndx
== parameters
->target().small_common_shndx()
321 || shndx
== parameters
->target().large_common_shndx());
324 // Allocate a common symbol.
328 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
330 this->allocate_base_common(od
);
331 this->value_
= value
;
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
337 // Return true if this symbol should be added to the dynamic symbol
341 Symbol::should_add_dynsym_entry(Symbol_table
* symtab
) const
343 // If the symbol is only present on plugin files, the plugin decided we
345 if (!this->in_real_elf())
348 // If the symbol is used by a dynamic relocation, we need to add it.
349 if (this->needs_dynsym_entry())
352 // If this symbol's section is not added, the symbol need not be added.
353 // The section may have been GCed. Note that export_dynamic is being
354 // overridden here. This should not be done for shared objects.
355 if (parameters
->options().gc_sections()
356 && !parameters
->options().shared()
357 && this->source() == Symbol::FROM_OBJECT
358 && !this->object()->is_dynamic())
360 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
362 unsigned int shndx
= this->shndx(&is_ordinary
);
363 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
364 && !relobj
->is_section_included(shndx
)
365 && !symtab
->is_section_folded(relobj
, shndx
))
369 // If the symbol was forced dynamic in a --dynamic-list file
370 // or an --export-dynamic-symbol option, add it.
371 if (!this->is_from_dynobj()
372 && (parameters
->options().in_dynamic_list(this->name())
373 || parameters
->options().is_export_dynamic_symbol(this->name())))
375 if (!this->is_forced_local())
377 gold_warning(_("Cannot export local symbol '%s'"),
378 this->demangled_name().c_str());
382 // If the symbol was forced local in a version script, do not add it.
383 if (this->is_forced_local())
386 // If dynamic-list-data was specified, add any STT_OBJECT.
387 if (parameters
->options().dynamic_list_data()
388 && !this->is_from_dynobj()
389 && this->type() == elfcpp::STT_OBJECT
)
392 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394 if ((parameters
->options().dynamic_list_cpp_new()
395 || parameters
->options().dynamic_list_cpp_typeinfo())
396 && !this->is_from_dynobj())
398 // TODO(csilvers): We could probably figure out if we're an operator
399 // new/delete or typeinfo without the need to demangle.
400 char* demangled_name
= cplus_demangle(this->name(),
401 DMGL_ANSI
| DMGL_PARAMS
);
402 if (demangled_name
== NULL
)
404 // Not a C++ symbol, so it can't satisfy these flags
406 else if (parameters
->options().dynamic_list_cpp_new()
407 && (strprefix(demangled_name
, "operator new")
408 || strprefix(demangled_name
, "operator delete")))
410 free(demangled_name
);
413 else if (parameters
->options().dynamic_list_cpp_typeinfo()
414 && (strprefix(demangled_name
, "typeinfo name for")
415 || strprefix(demangled_name
, "typeinfo for")))
417 free(demangled_name
);
421 free(demangled_name
);
424 // If exporting all symbols or building a shared library,
425 // or the symbol should be globally unique (GNU_UNIQUE),
426 // and the symbol is defined in a regular object and is
427 // externally visible, we need to add it.
428 if ((parameters
->options().export_dynamic()
429 || parameters
->options().shared()
430 || (parameters
->options().gnu_unique()
431 && this->binding() == elfcpp::STB_GNU_UNIQUE
))
432 && !this->is_from_dynobj()
433 && !this->is_undefined()
434 && this->is_externally_visible())
440 // Return true if the final value of this symbol is known at link
444 Symbol::final_value_is_known() const
446 // If we are not generating an executable, then no final values are
447 // known, since they will change at runtime, with the exception of
448 // TLS symbols in a position-independent executable.
449 if ((parameters
->options().output_is_position_independent()
450 || parameters
->options().relocatable())
451 && !(this->type() == elfcpp::STT_TLS
452 && parameters
->options().pie()))
455 // If the symbol is not from an object file, and is not undefined,
456 // then it is defined, and known.
457 if (this->source_
!= FROM_OBJECT
)
459 if (this->source_
!= IS_UNDEFINED
)
464 // If the symbol is from a dynamic object, then the final value
466 if (this->object()->is_dynamic())
469 // If the symbol is not undefined (it is defined or common),
470 // then the final value is known.
471 if (!this->is_undefined())
475 // If the symbol is undefined, then whether the final value is known
476 // depends on whether we are doing a static link. If we are doing a
477 // dynamic link, then the final value could be filled in at runtime.
478 // This could reasonably be the case for a weak undefined symbol.
479 return parameters
->doing_static_link();
482 // Return the output section where this symbol is defined.
485 Symbol::output_section() const
487 switch (this->source_
)
491 unsigned int shndx
= this->u2_
.shndx
;
492 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
494 gold_assert(!this->u1_
.object
->is_dynamic());
495 gold_assert(this->u1_
.object
->pluginobj() == NULL
);
496 Relobj
* relobj
= static_cast<Relobj
*>(this->u1_
.object
);
497 return relobj
->output_section(shndx
);
503 return this->u1_
.output_data
->output_section();
505 case IN_OUTPUT_SEGMENT
:
515 // Set the symbol's output section. This is used for symbols defined
516 // in scripts. This should only be called after the symbol table has
520 Symbol::set_output_section(Output_section
* os
)
522 switch (this->source_
)
526 gold_assert(this->output_section() == os
);
529 this->source_
= IN_OUTPUT_DATA
;
530 this->u1_
.output_data
= os
;
531 this->u2_
.offset_is_from_end
= false;
533 case IN_OUTPUT_SEGMENT
:
540 // Set the symbol's output segment. This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
545 Symbol::set_output_segment(Output_segment
* os
, Segment_offset_base base
)
547 gold_assert(this->is_predefined_
);
548 this->source_
= IN_OUTPUT_SEGMENT
;
549 this->u1_
.output_segment
= os
;
550 this->u2_
.offset_base
= base
;
553 // Set the symbol to undefined. This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
558 Symbol::set_undefined()
560 this->source_
= IS_UNDEFINED
;
561 this->is_predefined_
= false;
564 // Class Symbol_table.
566 Symbol_table::Symbol_table(unsigned int count
,
567 const Version_script_info
& version_script
)
568 : saw_undefined_(0), offset_(0), has_gnu_output_(false), table_(count
),
569 namepool_(), forwarders_(), commons_(), tls_commons_(), small_commons_(),
570 large_commons_(), forced_locals_(), warnings_(),
571 version_script_(version_script
), gc_(NULL
), icf_(NULL
),
574 namepool_
.reserve(count
);
577 Symbol_table::~Symbol_table()
581 // The symbol table key equality function. This is called with
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
586 const Symbol_table_key
& k2
) const
588 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
592 Symbol_table::is_section_folded(Relobj
* obj
, unsigned int shndx
) const
594 return (parameters
->options().icf_enabled()
595 && this->icf_
->is_section_folded(obj
, shndx
));
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
602 Symbol_table::gc_mark_undef_symbols(Layout
* layout
)
604 for (options::String_set::const_iterator p
=
605 parameters
->options().undefined_begin();
606 p
!= parameters
->options().undefined_end();
609 const char* name
= p
->c_str();
610 Symbol
* sym
= this->lookup(name
);
611 gold_assert(sym
!= NULL
);
612 if (sym
->source() == Symbol::FROM_OBJECT
613 && !sym
->object()->is_dynamic())
615 this->gc_mark_symbol(sym
);
619 for (options::String_set::const_iterator p
=
620 parameters
->options().export_dynamic_symbol_begin();
621 p
!= parameters
->options().export_dynamic_symbol_end();
624 const char* name
= p
->c_str();
625 Symbol
* sym
= this->lookup(name
);
626 // It's not an error if a symbol named by --export-dynamic-symbol
629 && sym
->source() == Symbol::FROM_OBJECT
630 && !sym
->object()->is_dynamic())
632 this->gc_mark_symbol(sym
);
636 for (Script_options::referenced_const_iterator p
=
637 layout
->script_options()->referenced_begin();
638 p
!= layout
->script_options()->referenced_end();
641 Symbol
* sym
= this->lookup(p
->c_str());
642 gold_assert(sym
!= NULL
);
643 if (sym
->source() == Symbol::FROM_OBJECT
644 && !sym
->object()->is_dynamic())
646 this->gc_mark_symbol(sym
);
652 Symbol_table::gc_mark_symbol(Symbol
* sym
)
654 // Add the object and section to the work list.
656 unsigned int shndx
= sym
->shndx(&is_ordinary
);
657 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
&& !sym
->object()->is_dynamic())
659 gold_assert(this->gc_
!= NULL
);
660 Relobj
* relobj
= static_cast<Relobj
*>(sym
->object());
661 this->gc_
->worklist().push_back(Section_id(relobj
, shndx
));
663 parameters
->target().gc_mark_symbol(this, sym
);
666 // When doing garbage collection, keep symbols that have been seen in
669 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
671 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
672 && !sym
->object()->is_dynamic())
673 this->gc_mark_symbol(sym
);
676 // Make TO a symbol which forwards to FROM.
679 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
681 gold_assert(from
!= to
);
682 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
683 this->forwarders_
[from
] = to
;
684 from
->set_forwarder();
687 // Resolve the forwards from FROM, returning the real symbol.
690 Symbol_table::resolve_forwards(const Symbol
* from
) const
692 gold_assert(from
->is_forwarder());
693 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
694 this->forwarders_
.find(from
);
695 gold_assert(p
!= this->forwarders_
.end());
699 // Look up a symbol by name.
702 Symbol_table::lookup(const char* name
, const char* version
) const
704 Stringpool::Key name_key
;
705 name
= this->namepool_
.find(name
, &name_key
);
709 Stringpool::Key version_key
= 0;
712 version
= this->namepool_
.find(version
, &version_key
);
717 Symbol_table_key
key(name_key
, version_key
);
718 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
719 if (p
== this->table_
.end())
724 // Resolve a Symbol with another Symbol. This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version. Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
730 template<int size
, bool big_endian
>
732 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
734 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
735 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
736 // We don't bother to set the st_name or the st_shndx field.
737 esym
.put_st_value(from
->value());
738 esym
.put_st_size(from
->symsize());
739 esym
.put_st_info(from
->binding(), from
->type());
740 esym
.put_st_other(from
->visibility(), from
->nonvis());
742 unsigned int shndx
= from
->shndx(&is_ordinary
);
743 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
744 from
->version(), true);
749 if (parameters
->options().gc_sections())
750 this->gc_mark_dyn_syms(to
);
753 // Record that a symbol is forced to be local by a version script or
757 Symbol_table::force_local(Symbol
* sym
)
759 if (!sym
->is_defined() && !sym
->is_common())
761 if (sym
->is_forced_local())
763 // We already got this one.
766 sym
->set_is_forced_local();
767 this->forced_locals_
.push_back(sym
);
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
771 // is only called for undefined symbols, when at least one --wrap
775 Symbol_table::wrap_symbol(const char* name
, Stringpool::Key
* name_key
)
777 // For some targets, we need to ignore a specific character when
778 // wrapping, and add it back later.
780 if (name
[0] == parameters
->target().wrap_char())
786 if (parameters
->options().is_wrap(name
))
788 // Turn NAME into __wrap_NAME.
795 // This will give us both the old and new name in NAMEPOOL_, but
796 // that is OK. Only the versions we need will wind up in the
797 // real string table in the output file.
798 return this->namepool_
.add(s
.c_str(), true, name_key
);
801 const char* const real_prefix
= "__real_";
802 const size_t real_prefix_length
= strlen(real_prefix
);
803 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
804 && parameters
->options().is_wrap(name
+ real_prefix_length
))
806 // Turn __real_NAME into NAME.
810 s
+= name
+ real_prefix_length
;
811 return this->namepool_
.add(s
.c_str(), true, name_key
);
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version. SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
823 template<int size
, bool big_endian
>
825 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
827 Symbol_table_type::iterator pdef
)
831 // This is the first time we have seen NAME/NULL. Make
832 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
835 sym
->set_is_default();
837 else if (pdef
->second
== sym
)
839 // NAME/NULL already points to NAME/VERSION. Don't mark the
840 // symbol as the default if it is not already the default.
844 // This is the unfortunate case where we already have entries
845 // for both NAME/VERSION and NAME/NULL. We now see a symbol
846 // NAME/VERSION where VERSION is the default version. We have
847 // already resolved this new symbol with the existing
848 // NAME/VERSION symbol.
850 // It's possible that NAME/NULL and NAME/VERSION are both
851 // defined in regular objects. This can only happen if one
852 // object file defines foo and another defines foo@@ver. This
853 // is somewhat obscure, but we call it a multiple definition
856 // It's possible that NAME/NULL actually has a version, in which
857 // case it won't be the same as VERSION. This happens with
858 // ver_test_7.so in the testsuite for the symbol t2_2. We see
859 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
860 // then see an unadorned t2_2 in an object file and give it
861 // version VER1 from the version script. This looks like a
862 // default definition for VER1, so it looks like we should merge
863 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
864 // not obvious that this is an error, either. So we just punt.
866 // If one of the symbols has non-default visibility, and the
867 // other is defined in a shared object, then they are different
870 // If the two symbols are from different shared objects,
871 // they are different symbols.
873 // Otherwise, we just resolve the symbols as though they were
876 if (pdef
->second
->version() != NULL
)
877 gold_assert(pdef
->second
->version() != sym
->version());
878 else if (sym
->visibility() != elfcpp::STV_DEFAULT
879 && pdef
->second
->is_from_dynobj())
881 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
882 && sym
->is_from_dynobj())
884 else if (pdef
->second
->is_from_dynobj()
885 && sym
->is_from_dynobj()
886 && pdef
->second
->is_defined()
887 && pdef
->second
->object() != sym
->object())
891 const Sized_symbol
<size
>* symdef
;
892 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
893 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
894 this->make_forwarder(pdef
->second
, sym
);
896 sym
->set_is_default();
901 // Add one symbol from OBJECT to the symbol table. NAME is symbol
902 // name and VERSION is the version; both are canonicalized. DEF is
903 // whether this is the default version. ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol. That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol. This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION. If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure. That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table. We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files. So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code. ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
931 template<int size
, bool big_endian
>
933 Symbol_table::add_from_object(Object
* object
,
935 Stringpool::Key name_key
,
937 Stringpool::Key version_key
,
938 bool is_default_version
,
939 const elfcpp::Sym
<size
, big_endian
>& sym
,
940 unsigned int st_shndx
,
942 unsigned int orig_st_shndx
)
944 // Print a message if this symbol is being traced.
945 if (parameters
->options().is_trace_symbol(name
))
947 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
948 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
950 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
953 // For an undefined symbol, we may need to adjust the name using
955 if (orig_st_shndx
== elfcpp::SHN_UNDEF
956 && parameters
->options().any_wrap())
958 const char* wrap_name
= this->wrap_symbol(name
, &name_key
);
959 if (wrap_name
!= name
)
961 // If we see a reference to malloc with version GLIBC_2.0,
962 // and we turn it into a reference to __wrap_malloc, then we
963 // discard the version number. Otherwise the user would be
964 // required to specify the correct version for
972 Symbol
* const snull
= NULL
;
973 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
974 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
977 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
978 std::make_pair(this->table_
.end(), false);
979 if (is_default_version
)
981 const Stringpool::Key vnull_key
= 0;
982 insdefault
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
987 // ins.first: an iterator, which is a pointer to a pair.
988 // ins.first->first: the key (a pair of name and version).
989 // ins.first->second: the value (Symbol*).
990 // ins.second: true if new entry was inserted, false if not.
992 Sized_symbol
<size
>* ret
= NULL
;
993 bool was_undefined_in_reg
;
997 // We already have an entry for NAME/VERSION.
998 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
999 gold_assert(ret
!= NULL
);
1001 bool ret_is_ordinary
;
1002 const unsigned int ret_shndx
= ret
->shndx(&ret_is_ordinary
);
1004 was_undefined_in_reg
= ret
->is_undefined() && ret
->in_reg();
1005 // Commons from plugins are just placeholders.
1006 was_common
= ret
->is_common() && ret
->object()->pluginobj() == NULL
;
1008 // It's possible for a symbol to be defined in an object file
1009 // using .symver to give it a version, and for there to also be
1010 // a linker script giving that symbol the same version. We
1011 // don't want to give a multiple-definition error for this
1012 // harmless redefinition.
1013 bool check_version
= false;
1014 bool erase_default_version
= false;
1015 bool no_default_version
= false;
1016 if (ret
->source() == Symbol::FROM_OBJECT
1018 && ret_shndx
== st_shndx
)
1020 if (ret
->object() == object
)
1021 check_version
= true;
1023 if (version
!= NULL
&& version
== ret
->version())
1025 // Don't give a multiple-definition error if the hidden
1026 // version from .symver is the same as the default version
1027 // from the unversioned symbol.
1028 if (is_default_version
&& !ret
->is_default ())
1030 no_default_version
= true;
1031 if (insdefault
.second
)
1033 // Don't make the unversioned symbol the default
1035 is_default_version
= false;
1036 erase_default_version
= true;
1037 check_version
= true;
1040 else if (!is_default_version
&& ret
->is_default ())
1042 // Don't make the unversioned symbol the default
1044 ret
->set_is_not_default();
1045 no_default_version
= true;
1046 check_version
= true;
1052 && ret
->is_defined()
1054 && (no_default_version
1055 || ret
->value() == sym
.get_st_value())))
1056 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
,
1057 object
, version
, is_default_version
);
1059 if (parameters
->options().gc_sections())
1060 this->gc_mark_dyn_syms(ret
);
1062 if (is_default_version
)
1063 this->define_default_version
<size
, big_endian
>(ret
, insdefault
.second
,
1067 if (version
!= NULL
&& check_version
)
1069 // We have seen NAME/VERSION already, and marked it as the
1070 // default version, but now we see a definition for
1071 // NAME/VERSION that is not the default version. This can
1072 // happen when the assembler generates two symbols for
1073 // a symbol as a result of a ".symver foo,foo@VER"
1074 // directive. We see the first unversioned symbol and
1075 // we may mark it as the default version (from a
1076 // version script); then we see the second versioned
1077 // symbol and we need to override the first.
1078 // In any other case, the two symbols should have generated
1079 // a multiple definition error.
1080 // (See PR gold/18703.)
1081 // If the hidden version from .symver is the same as the
1082 // default version from the unversioned symbol, don't make
1083 // the unversioned symbol the default versioned symbol.
1084 const Stringpool::Key vnull_key
= 0;
1085 if (erase_default_version
)
1086 this->table_
.erase(std::make_pair(name_key
, vnull_key
));
1087 else if (ret
->object() == object
)
1089 ret
->set_is_not_default();
1090 this->table_
.erase(std::make_pair(name_key
, vnull_key
));
1097 // This is the first time we have seen NAME/VERSION.
1098 gold_assert(ins
.first
->second
== NULL
);
1100 if (is_default_version
&& !insdefault
.second
)
1102 // We already have an entry for NAME/NULL. If we override
1103 // it, then change it to NAME/VERSION.
1104 ret
= this->get_sized_symbol
<size
>(insdefault
.first
->second
);
1106 // If the existing symbol already has a version,
1107 // don't override it with the new symbol.
1108 // This should only happen when the new symbol
1109 // is from a shared library.
1110 if (ret
->version() != NULL
)
1112 if (!object
->is_dynamic())
1114 gold_warning(_("%s: conflicting default version definition"
1116 object
->name().c_str(), name
, version
);
1117 if (ret
->source() == Symbol::FROM_OBJECT
)
1118 gold_info(_("%s: %s: previous definition of %s@@%s here"),
1120 ret
->object()->name().c_str(),
1121 name
, ret
->version());
1124 is_default_version
= false;
1128 was_undefined_in_reg
= ret
->is_undefined() && ret
->in_reg();
1129 // Commons from plugins are just placeholders.
1130 was_common
= (ret
->is_common()
1131 && ret
->object()->pluginobj() == NULL
);
1133 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
,
1134 object
, version
, is_default_version
);
1135 if (parameters
->options().gc_sections())
1136 this->gc_mark_dyn_syms(ret
);
1137 ins
.first
->second
= ret
;
1143 was_undefined_in_reg
= false;
1146 Sized_target
<size
, big_endian
>* target
=
1147 parameters
->sized_target
<size
, big_endian
>();
1148 if (!target
->has_make_symbol())
1149 ret
= new Sized_symbol
<size
>();
1152 ret
= target
->make_symbol(name
, sym
.get_st_type(), object
,
1153 st_shndx
, sym
.get_st_value());
1156 // This means that we don't want a symbol table
1158 if (!is_default_version
)
1159 this->table_
.erase(ins
.first
);
1162 this->table_
.erase(insdefault
.first
);
1163 // Inserting INSDEFAULT invalidated INS.
1164 this->table_
.erase(std::make_pair(name_key
,
1171 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
1173 ins
.first
->second
= ret
;
1174 if (is_default_version
)
1176 // This is the first time we have seen NAME/NULL. Point
1177 // it at the new entry for NAME/VERSION.
1178 gold_assert(insdefault
.second
);
1179 insdefault
.first
->second
= ret
;
1183 if (is_default_version
)
1184 ret
->set_is_default();
1187 // Record every time we see a new undefined symbol, to speed up archive
1188 // groups. We only care about symbols undefined in regular objects here
1189 // because undefined symbols only in dynamic objects should't trigger rescans.
1190 if (!was_undefined_in_reg
&& ret
->is_undefined() && ret
->in_reg())
1192 ++this->saw_undefined_
;
1193 if (parameters
->options().has_plugins())
1194 parameters
->options().plugins()->new_undefined_symbol(ret
);
1197 // Keep track of common symbols, to speed up common symbol
1198 // allocation. Don't record commons from plugin objects;
1199 // we need to wait until we see the real symbol in the
1200 // replacement file.
1201 if (!was_common
&& ret
->is_common() && ret
->object()->pluginobj() == NULL
)
1203 if (ret
->type() == elfcpp::STT_TLS
)
1204 this->tls_commons_
.push_back(ret
);
1205 else if (!is_ordinary
1206 && st_shndx
== parameters
->target().small_common_shndx())
1207 this->small_commons_
.push_back(ret
);
1208 else if (!is_ordinary
1209 && st_shndx
== parameters
->target().large_common_shndx())
1210 this->large_commons_
.push_back(ret
);
1212 this->commons_
.push_back(ret
);
1215 // If we're not doing a relocatable link, then any symbol with
1216 // hidden or internal visibility is local.
1217 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1218 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1219 && (ret
->binding() == elfcpp::STB_GLOBAL
1220 || ret
->binding() == elfcpp::STB_GNU_UNIQUE
1221 || ret
->binding() == elfcpp::STB_WEAK
)
1222 && !parameters
->options().relocatable())
1223 this->force_local(ret
);
1228 // Add all the symbols in a relocatable object to the hash table.
1230 template<int size
, bool big_endian
>
1232 Symbol_table::add_from_relobj(
1233 Sized_relobj_file
<size
, big_endian
>* relobj
,
1234 const unsigned char* syms
,
1236 size_t symndx_offset
,
1237 const char* sym_names
,
1238 size_t sym_name_size
,
1239 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1244 gold_assert(size
== parameters
->target().get_size());
1246 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1248 const bool just_symbols
= relobj
->just_symbols();
1250 const unsigned char* p
= syms
;
1251 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1253 (*sympointers
)[i
] = NULL
;
1255 elfcpp::Sym
<size
, big_endian
> sym(p
);
1257 unsigned int st_name
= sym
.get_st_name();
1258 if (st_name
>= sym_name_size
)
1260 relobj
->error(_("bad global symbol name offset %u at %zu"),
1265 const char* name
= sym_names
+ st_name
;
1267 if (!parameters
->options().relocatable()
1270 && strcmp (name
+ (name
[2] == '_'), "__gnu_lto_slim") == 0)
1271 gold_info(_("%s: plugin needed to handle lto object"),
1272 relobj
->name().c_str());
1275 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1278 unsigned int orig_st_shndx
= st_shndx
;
1280 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1282 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1285 // A symbol defined in a section which we are not including must
1286 // be treated as an undefined symbol.
1287 bool is_defined_in_discarded_section
= false;
1288 if (st_shndx
!= elfcpp::SHN_UNDEF
1290 && !relobj
->is_section_included(st_shndx
)
1291 && !this->is_section_folded(relobj
, st_shndx
))
1293 st_shndx
= elfcpp::SHN_UNDEF
;
1294 is_defined_in_discarded_section
= true;
1297 // In an object file, an '@' in the name separates the symbol
1298 // name from the version name. If there are two '@' characters,
1299 // this is the default version.
1300 const char* ver
= strchr(name
, '@');
1301 Stringpool::Key ver_key
= 0;
1303 // IS_DEFAULT_VERSION: is the version default?
1304 // IS_FORCED_LOCAL: is the symbol forced local?
1305 bool is_default_version
= false;
1306 bool is_forced_local
= false;
1308 // FIXME: For incremental links, we don't store version information,
1309 // so we need to ignore version symbols for now.
1310 if (parameters
->incremental_update() && ver
!= NULL
)
1312 namelen
= ver
- name
;
1318 // The symbol name is of the form foo@VERSION or foo@@VERSION
1319 namelen
= ver
- name
;
1323 is_default_version
= true;
1326 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1328 // We don't want to assign a version to an undefined symbol,
1329 // even if it is listed in the version script. FIXME: What
1330 // about a common symbol?
1333 namelen
= strlen(name
);
1334 if (!this->version_script_
.empty()
1335 && st_shndx
!= elfcpp::SHN_UNDEF
)
1337 // The symbol name did not have a version, but the
1338 // version script may assign a version anyway.
1339 std::string version
;
1341 if (this->version_script_
.get_symbol_version(name
, &version
,
1345 is_forced_local
= true;
1346 else if (!version
.empty())
1348 ver
= this->namepool_
.add_with_length(version
.c_str(),
1352 is_default_version
= true;
1358 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1359 unsigned char symbuf
[sym_size
];
1360 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1363 memcpy(symbuf
, p
, sym_size
);
1364 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1365 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
1367 && relobj
->e_type() == elfcpp::ET_REL
)
1369 // Symbol values in relocatable object files are section
1370 // relative. This is normally what we want, but since here
1371 // we are converting the symbol to absolute we need to add
1372 // the section address. The section address in an object
1373 // file is normally zero, but people can use a linker
1374 // script to change it.
1375 sw
.put_st_value(sym
.get_st_value()
1376 + relobj
->section_address(orig_st_shndx
));
1378 st_shndx
= elfcpp::SHN_ABS
;
1379 is_ordinary
= false;
1383 // Fix up visibility if object has no-export set.
1384 if (relobj
->no_export()
1385 && (orig_st_shndx
!= elfcpp::SHN_UNDEF
|| !is_ordinary
))
1387 // We may have copied symbol already above.
1390 memcpy(symbuf
, p
, sym_size
);
1394 elfcpp::STV visibility
= sym2
.get_st_visibility();
1395 if (visibility
== elfcpp::STV_DEFAULT
1396 || visibility
== elfcpp::STV_PROTECTED
)
1398 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1399 unsigned char nonvis
= sym2
.get_st_nonvis();
1400 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1404 Stringpool::Key name_key
;
1405 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1408 Sized_symbol
<size
>* res
;
1409 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1410 is_default_version
, *psym
, st_shndx
,
1411 is_ordinary
, orig_st_shndx
);
1416 if (is_forced_local
)
1417 this->force_local(res
);
1419 // Do not treat this symbol as garbage if this symbol will be
1420 // exported to the dynamic symbol table. This is true when
1421 // building a shared library or using --export-dynamic and
1422 // the symbol is externally visible.
1423 if (parameters
->options().gc_sections()
1424 && res
->is_externally_visible()
1425 && !res
->is_from_dynobj()
1426 && (parameters
->options().shared()
1427 || parameters
->options().export_dynamic()
1428 || parameters
->options().in_dynamic_list(res
->name())))
1429 this->gc_mark_symbol(res
);
1431 if (is_defined_in_discarded_section
)
1432 res
->set_is_defined_in_discarded_section();
1434 (*sympointers
)[i
] = res
;
1438 // Add a symbol from a plugin-claimed file.
1440 template<int size
, bool big_endian
>
1442 Symbol_table::add_from_pluginobj(
1443 Sized_pluginobj
<size
, big_endian
>* obj
,
1446 elfcpp::Sym
<size
, big_endian
>* sym
)
1448 unsigned int st_shndx
= sym
->get_st_shndx();
1449 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1451 Stringpool::Key ver_key
= 0;
1452 bool is_default_version
= false;
1453 bool is_forced_local
= false;
1457 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1459 // We don't want to assign a version to an undefined symbol,
1460 // even if it is listed in the version script. FIXME: What
1461 // about a common symbol?
1464 if (!this->version_script_
.empty()
1465 && st_shndx
!= elfcpp::SHN_UNDEF
)
1467 // The symbol name did not have a version, but the
1468 // version script may assign a version anyway.
1469 std::string version
;
1471 if (this->version_script_
.get_symbol_version(name
, &version
,
1475 is_forced_local
= true;
1476 else if (!version
.empty())
1478 ver
= this->namepool_
.add_with_length(version
.c_str(),
1482 is_default_version
= true;
1488 Stringpool::Key name_key
;
1489 name
= this->namepool_
.add(name
, true, &name_key
);
1491 Sized_symbol
<size
>* res
;
1492 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1493 is_default_version
, *sym
, st_shndx
,
1494 is_ordinary
, st_shndx
);
1499 if (is_forced_local
)
1500 this->force_local(res
);
1505 // Add all the symbols in a dynamic object to the hash table.
1507 template<int size
, bool big_endian
>
1509 Symbol_table::add_from_dynobj(
1510 Sized_dynobj
<size
, big_endian
>* dynobj
,
1511 const unsigned char* syms
,
1513 const char* sym_names
,
1514 size_t sym_name_size
,
1515 const unsigned char* versym
,
1517 const std::vector
<const char*>* version_map
,
1518 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1523 gold_assert(size
== parameters
->target().get_size());
1525 if (dynobj
->just_symbols())
1527 gold_error(_("--just-symbols does not make sense with a shared object"));
1531 // FIXME: For incremental links, we don't store version information,
1532 // so we need to ignore version symbols for now.
1533 if (parameters
->incremental_update())
1536 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1538 dynobj
->error(_("too few symbol versions"));
1542 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1544 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1545 // weak aliases. This is necessary because if the dynamic object
1546 // provides the same variable under two names, one of which is a
1547 // weak definition, and the regular object refers to the weak
1548 // definition, we have to put both the weak definition and the
1549 // strong definition into the dynamic symbol table. Given a weak
1550 // definition, the only way that we can find the corresponding
1551 // strong definition, if any, is to search the symbol table.
1552 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1554 const unsigned char* p
= syms
;
1555 const unsigned char* vs
= versym
;
1556 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1558 elfcpp::Sym
<size
, big_endian
> sym(p
);
1560 if (sympointers
!= NULL
)
1561 (*sympointers
)[i
] = NULL
;
1563 // Ignore symbols with local binding or that have
1564 // internal or hidden visibility.
1565 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1566 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1567 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1570 // A protected symbol in a shared library must be treated as a
1571 // normal symbol when viewed from outside the shared library.
1572 // Implement this by overriding the visibility here.
1573 // Likewise, an IFUNC symbol in a shared library must be treated
1574 // as a normal FUNC symbol.
1575 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1576 unsigned char symbuf
[sym_size
];
1577 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1578 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
1579 || sym
.get_st_type() == elfcpp::STT_GNU_IFUNC
)
1581 memcpy(symbuf
, p
, sym_size
);
1582 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1583 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1584 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1585 if (sym
.get_st_type() == elfcpp::STT_GNU_IFUNC
)
1586 sw
.put_st_info(sym
.get_st_bind(), elfcpp::STT_FUNC
);
1590 unsigned int st_name
= psym
->get_st_name();
1591 if (st_name
>= sym_name_size
)
1593 dynobj
->error(_("bad symbol name offset %u at %zu"),
1598 const char* name
= sym_names
+ st_name
;
1601 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1604 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1607 Sized_symbol
<size
>* res
;
1611 Stringpool::Key name_key
;
1612 name
= this->namepool_
.add(name
, true, &name_key
);
1613 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1614 false, *psym
, st_shndx
, is_ordinary
,
1619 // Read the version information.
1621 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1623 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1624 v
&= elfcpp::VERSYM_VERSION
;
1626 // The Sun documentation says that V can be VER_NDX_LOCAL,
1627 // or VER_NDX_GLOBAL, or a version index. The meaning of
1628 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1629 // The old GNU linker will happily generate VER_NDX_LOCAL
1630 // for an undefined symbol. I don't know what the Sun
1631 // linker will generate.
1633 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1634 && st_shndx
!= elfcpp::SHN_UNDEF
)
1636 // This symbol should not be visible outside the object.
1640 // At this point we are definitely going to add this symbol.
1641 Stringpool::Key name_key
;
1642 name
= this->namepool_
.add(name
, true, &name_key
);
1644 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1645 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1647 // This symbol does not have a version.
1648 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1649 false, *psym
, st_shndx
, is_ordinary
,
1654 if (v
>= version_map
->size())
1656 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1661 const char* version
= (*version_map
)[v
];
1662 if (version
== NULL
)
1664 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1669 Stringpool::Key version_key
;
1670 version
= this->namepool_
.add(version
, true, &version_key
);
1672 // If this is an absolute symbol, and the version name
1673 // and symbol name are the same, then this is the
1674 // version definition symbol. These symbols exist to
1675 // support using -u to pull in particular versions. We
1676 // do not want to record a version for them.
1677 if (st_shndx
== elfcpp::SHN_ABS
1679 && name_key
== version_key
)
1680 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1681 false, *psym
, st_shndx
, is_ordinary
,
1685 const bool is_default_version
=
1686 !hidden
&& st_shndx
!= elfcpp::SHN_UNDEF
;
1687 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1688 version_key
, is_default_version
,
1690 is_ordinary
, st_shndx
);
1698 // Note that it is possible that RES was overridden by an
1699 // earlier object, in which case it can't be aliased here.
1700 if (st_shndx
!= elfcpp::SHN_UNDEF
1702 && psym
->get_st_type() == elfcpp::STT_OBJECT
1703 && res
->source() == Symbol::FROM_OBJECT
1704 && res
->object() == dynobj
)
1705 object_symbols
.push_back(res
);
1707 // If the symbol has protected visibility in the dynobj,
1708 // mark it as such if it was not overridden.
1709 if (res
->source() == Symbol::FROM_OBJECT
1710 && res
->object() == dynobj
1711 && sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1712 res
->set_is_protected();
1714 if (sympointers
!= NULL
)
1715 (*sympointers
)[i
] = res
;
1718 this->record_weak_aliases(&object_symbols
);
1721 // Add a symbol from a incremental object file.
1723 template<int size
, bool big_endian
>
1725 Symbol_table::add_from_incrobj(
1729 elfcpp::Sym
<size
, big_endian
>* sym
)
1731 unsigned int st_shndx
= sym
->get_st_shndx();
1732 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1734 Stringpool::Key ver_key
= 0;
1735 bool is_default_version
= false;
1737 Stringpool::Key name_key
;
1738 name
= this->namepool_
.add(name
, true, &name_key
);
1740 Sized_symbol
<size
>* res
;
1741 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1742 is_default_version
, *sym
, st_shndx
,
1743 is_ordinary
, st_shndx
);
1748 // This is used to sort weak aliases. We sort them first by section
1749 // index, then by offset, then by weak ahead of strong.
1752 class Weak_alias_sorter
1755 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1760 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1761 const Sized_symbol
<size
>* s2
) const
1764 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1765 gold_assert(is_ordinary
);
1766 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1767 gold_assert(is_ordinary
);
1768 if (s1_shndx
!= s2_shndx
)
1769 return s1_shndx
< s2_shndx
;
1771 if (s1
->value() != s2
->value())
1772 return s1
->value() < s2
->value();
1773 if (s1
->binding() != s2
->binding())
1775 if (s1
->binding() == elfcpp::STB_WEAK
)
1777 if (s2
->binding() == elfcpp::STB_WEAK
)
1780 return std::string(s1
->name()) < std::string(s2
->name());
1783 // SYMBOLS is a list of object symbols from a dynamic object. Look
1784 // for any weak aliases, and record them so that if we add the weak
1785 // alias to the dynamic symbol table, we also add the corresponding
1790 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1792 // Sort the vector by section index, then by offset, then by weak
1794 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1796 // Walk through the vector. For each weak definition, record
1798 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1800 p
!= symbols
->end();
1803 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1806 // Build a circular list of weak aliases. Each symbol points to
1807 // the next one in the circular list.
1809 Sized_symbol
<size
>* from_sym
= *p
;
1810 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1811 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1814 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1815 || (*q
)->value() != from_sym
->value())
1818 this->weak_aliases_
[from_sym
] = *q
;
1819 from_sym
->set_has_alias();
1825 this->weak_aliases_
[from_sym
] = *p
;
1826 from_sym
->set_has_alias();
1833 // Create and return a specially defined symbol. If ONLY_IF_REF is
1834 // true, then only create the symbol if there is a reference to it.
1835 // If this does not return NULL, it sets *POLDSYM to the existing
1836 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1837 // resolve the newly created symbol to the old one. This
1838 // canonicalizes *PNAME and *PVERSION.
1840 template<int size
, bool big_endian
>
1842 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1844 elfcpp::STV visibility
,
1845 Sized_symbol
<size
>** poldsym
,
1846 bool* resolve_oldsym
, bool is_forced_local
)
1848 *resolve_oldsym
= false;
1851 // If the caller didn't give us a version, see if we get one from
1852 // the version script.
1854 bool is_default_version
= false;
1855 if (!is_forced_local
&& *pversion
== NULL
)
1858 if (this->version_script_
.get_symbol_version(*pname
, &v
, &is_global
))
1860 if (is_global
&& !v
.empty())
1862 *pversion
= v
.c_str();
1863 // If we get the version from a version script, then we
1864 // are also the default version.
1865 is_default_version
= true;
1871 Sized_symbol
<size
>* sym
;
1873 bool add_to_table
= false;
1874 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1875 bool add_def_to_table
= false;
1876 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1880 oldsym
= this->lookup(*pname
, *pversion
);
1881 if (oldsym
== NULL
&& is_default_version
)
1882 oldsym
= this->lookup(*pname
, NULL
);
1885 if (!oldsym
->is_undefined())
1887 // Skip if the old definition is from a regular object.
1888 if (!oldsym
->is_from_dynobj())
1891 // If the symbol has hidden or internal visibility, ignore
1892 // definition and reference from a dynamic object.
1893 if ((visibility
== elfcpp::STV_HIDDEN
1894 || visibility
== elfcpp::STV_INTERNAL
)
1895 && !oldsym
->in_reg())
1899 *pname
= oldsym
->name();
1900 if (is_default_version
)
1901 *pversion
= this->namepool_
.add(*pversion
, true, NULL
);
1903 *pversion
= oldsym
->version();
1907 // Canonicalize NAME and VERSION.
1908 Stringpool::Key name_key
;
1909 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1911 Stringpool::Key version_key
= 0;
1912 if (*pversion
!= NULL
)
1913 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1915 Symbol
* const snull
= NULL
;
1916 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1917 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1921 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
1922 std::make_pair(this->table_
.end(), false);
1923 if (is_default_version
)
1925 const Stringpool::Key vnull
= 0;
1927 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1934 // We already have a symbol table entry for NAME/VERSION.
1935 oldsym
= ins
.first
->second
;
1936 gold_assert(oldsym
!= NULL
);
1938 if (is_default_version
)
1940 Sized_symbol
<size
>* soldsym
=
1941 this->get_sized_symbol
<size
>(oldsym
);
1942 this->define_default_version
<size
, big_endian
>(soldsym
,
1949 // We haven't seen this symbol before.
1950 gold_assert(ins
.first
->second
== NULL
);
1952 add_to_table
= true;
1953 add_loc
= ins
.first
;
1955 if (is_default_version
1956 && !insdefault
.second
1957 && insdefault
.first
->second
->version() == NULL
)
1959 // We are adding NAME/VERSION, and it is the default
1960 // version. We already have an entry for NAME/NULL
1961 // that does not already have a version.
1962 oldsym
= insdefault
.first
->second
;
1963 *resolve_oldsym
= true;
1969 if (is_default_version
)
1971 add_def_to_table
= true;
1972 add_def_loc
= insdefault
.first
;
1978 const Target
& target
= parameters
->target();
1979 if (!target
.has_make_symbol())
1980 sym
= new Sized_symbol
<size
>();
1983 Sized_target
<size
, big_endian
>* sized_target
=
1984 parameters
->sized_target
<size
, big_endian
>();
1985 sym
= sized_target
->make_symbol(*pname
, elfcpp::STT_NOTYPE
,
1986 NULL
, elfcpp::SHN_UNDEF
, 0);
1992 add_loc
->second
= sym
;
1994 gold_assert(oldsym
!= NULL
);
1996 if (add_def_to_table
)
1997 add_def_loc
->second
= sym
;
1999 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
2004 // Define a symbol based on an Output_data.
2007 Symbol_table::define_in_output_data(const char* name
,
2008 const char* version
,
2014 elfcpp::STB binding
,
2015 elfcpp::STV visibility
,
2016 unsigned char nonvis
,
2017 bool offset_is_from_end
,
2020 if (parameters
->target().get_size() == 32)
2022 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2023 return this->do_define_in_output_data
<32>(name
, version
, defined
, od
,
2024 value
, symsize
, type
, binding
,
2032 else if (parameters
->target().get_size() == 64)
2034 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2035 return this->do_define_in_output_data
<64>(name
, version
, defined
, od
,
2036 value
, symsize
, type
, binding
,
2048 // Define a symbol in an Output_data, sized version.
2052 Symbol_table::do_define_in_output_data(
2054 const char* version
,
2057 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2058 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2060 elfcpp::STB binding
,
2061 elfcpp::STV visibility
,
2062 unsigned char nonvis
,
2063 bool offset_is_from_end
,
2066 Sized_symbol
<size
>* sym
;
2067 Sized_symbol
<size
>* oldsym
;
2068 bool resolve_oldsym
;
2069 const bool is_forced_local
= binding
== elfcpp::STB_LOCAL
;
2071 if (parameters
->target().is_big_endian())
2073 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2074 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2087 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2101 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
2102 visibility
, nonvis
, offset_is_from_end
,
2103 defined
== PREDEFINED
);
2107 if (is_forced_local
|| this->version_script_
.symbol_is_local(name
))
2108 this->force_local(sym
);
2109 else if (version
!= NULL
)
2110 sym
->set_is_default();
2114 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2115 this->override_with_special(oldsym
, sym
);
2121 if (defined
== PREDEFINED
2122 && (is_forced_local
|| this->version_script_
.symbol_is_local(name
)))
2123 this->force_local(oldsym
);
2129 // Define a symbol based on an Output_segment.
2132 Symbol_table::define_in_output_segment(const char* name
,
2133 const char* version
,
2139 elfcpp::STB binding
,
2140 elfcpp::STV visibility
,
2141 unsigned char nonvis
,
2142 Symbol::Segment_offset_base offset_base
,
2145 if (parameters
->target().get_size() == 32)
2147 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2148 return this->do_define_in_output_segment
<32>(name
, version
, defined
, os
,
2149 value
, symsize
, type
,
2150 binding
, visibility
, nonvis
,
2151 offset_base
, only_if_ref
);
2156 else if (parameters
->target().get_size() == 64)
2158 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2159 return this->do_define_in_output_segment
<64>(name
, version
, defined
, os
,
2160 value
, symsize
, type
,
2161 binding
, visibility
, nonvis
,
2162 offset_base
, only_if_ref
);
2171 // Define a symbol in an Output_segment, sized version.
2175 Symbol_table::do_define_in_output_segment(
2177 const char* version
,
2180 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2181 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2183 elfcpp::STB binding
,
2184 elfcpp::STV visibility
,
2185 unsigned char nonvis
,
2186 Symbol::Segment_offset_base offset_base
,
2189 Sized_symbol
<size
>* sym
;
2190 Sized_symbol
<size
>* oldsym
;
2191 bool resolve_oldsym
;
2192 const bool is_forced_local
= binding
== elfcpp::STB_LOCAL
;
2194 if (parameters
->target().is_big_endian())
2196 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2197 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2209 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2210 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2224 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
2225 visibility
, nonvis
, offset_base
,
2226 defined
== PREDEFINED
);
2230 if (is_forced_local
|| this->version_script_
.symbol_is_local(name
))
2231 this->force_local(sym
);
2232 else if (version
!= NULL
)
2233 sym
->set_is_default();
2237 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2238 this->override_with_special(oldsym
, sym
);
2244 if (is_forced_local
|| this->version_script_
.symbol_is_local(name
))
2245 this->force_local(oldsym
);
2251 // Define a special symbol with a constant value. It is a multiple
2252 // definition error if this symbol is already defined.
2255 Symbol_table::define_as_constant(const char* name
,
2256 const char* version
,
2261 elfcpp::STB binding
,
2262 elfcpp::STV visibility
,
2263 unsigned char nonvis
,
2265 bool force_override
)
2267 if (parameters
->target().get_size() == 32)
2269 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2270 return this->do_define_as_constant
<32>(name
, version
, defined
, value
,
2271 symsize
, type
, binding
,
2272 visibility
, nonvis
, only_if_ref
,
2278 else if (parameters
->target().get_size() == 64)
2280 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2281 return this->do_define_as_constant
<64>(name
, version
, defined
, value
,
2282 symsize
, type
, binding
,
2283 visibility
, nonvis
, only_if_ref
,
2293 // Define a symbol as a constant, sized version.
2297 Symbol_table::do_define_as_constant(
2299 const char* version
,
2301 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2302 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2304 elfcpp::STB binding
,
2305 elfcpp::STV visibility
,
2306 unsigned char nonvis
,
2308 bool force_override
)
2310 Sized_symbol
<size
>* sym
;
2311 Sized_symbol
<size
>* oldsym
;
2312 bool resolve_oldsym
;
2313 const bool is_forced_local
= binding
== elfcpp::STB_LOCAL
;
2315 if (parameters
->target().is_big_endian())
2317 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2318 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2330 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2331 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2345 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
2346 nonvis
, defined
== PREDEFINED
);
2350 // Version symbols are absolute symbols with name == version.
2351 // We don't want to force them to be local.
2352 if ((version
== NULL
2355 && (is_forced_local
|| this->version_script_
.symbol_is_local(name
)))
2356 this->force_local(sym
);
2357 else if (version
!= NULL
2358 && (name
!= version
|| value
!= 0))
2359 sym
->set_is_default();
2364 || Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2365 this->override_with_special(oldsym
, sym
);
2371 if (is_forced_local
|| this->version_script_
.symbol_is_local(name
))
2372 this->force_local(oldsym
);
2378 // Define a set of symbols in output sections.
2381 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2382 const Define_symbol_in_section
* p
,
2385 for (int i
= 0; i
< count
; ++i
, ++p
)
2387 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2389 this->define_in_output_data(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2390 p
->size
, p
->type
, p
->binding
,
2391 p
->visibility
, p
->nonvis
,
2392 p
->offset_is_from_end
,
2393 only_if_ref
|| p
->only_if_ref
);
2395 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2396 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2397 only_if_ref
|| p
->only_if_ref
,
2402 // Define a set of symbols in output segments.
2405 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2406 const Define_symbol_in_segment
* p
,
2409 for (int i
= 0; i
< count
; ++i
, ++p
)
2411 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2412 p
->segment_flags_set
,
2413 p
->segment_flags_clear
);
2415 this->define_in_output_segment(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2416 p
->size
, p
->type
, p
->binding
,
2417 p
->visibility
, p
->nonvis
,
2419 only_if_ref
|| p
->only_if_ref
);
2421 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2422 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2423 only_if_ref
|| p
->only_if_ref
,
2428 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2429 // symbol should be defined--typically a .dyn.bss section. VALUE is
2430 // the offset within POSD.
2434 Symbol_table::define_with_copy_reloc(
2435 Sized_symbol
<size
>* csym
,
2437 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2439 gold_assert(csym
->is_from_dynobj());
2440 gold_assert(!csym
->is_copied_from_dynobj());
2441 Object
* object
= csym
->object();
2442 gold_assert(object
->is_dynamic());
2443 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2445 // Our copied variable has to override any variable in a shared
2447 elfcpp::STB binding
= csym
->binding();
2448 if (binding
== elfcpp::STB_WEAK
)
2449 binding
= elfcpp::STB_GLOBAL
;
2451 this->define_in_output_data(csym
->name(), csym
->version(), COPY
,
2452 posd
, value
, csym
->symsize(),
2453 csym
->type(), binding
,
2454 csym
->visibility(), csym
->nonvis(),
2457 csym
->set_is_copied_from_dynobj();
2458 csym
->set_needs_dynsym_entry();
2460 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2462 // We have now defined all aliases, but we have not entered them all
2463 // in the copied_symbol_dynobjs_ map.
2464 if (csym
->has_alias())
2469 sym
= this->weak_aliases_
[sym
];
2472 gold_assert(sym
->output_data() == posd
);
2474 sym
->set_is_copied_from_dynobj();
2475 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2480 // SYM is defined using a COPY reloc. Return the dynamic object where
2481 // the original definition was found.
2484 Symbol_table::get_copy_source(const Symbol
* sym
) const
2486 gold_assert(sym
->is_copied_from_dynobj());
2487 Copied_symbol_dynobjs::const_iterator p
=
2488 this->copied_symbol_dynobjs_
.find(sym
);
2489 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2493 // Add any undefined symbols named on the command line.
2496 Symbol_table::add_undefined_symbols_from_command_line(Layout
* layout
)
2498 if (parameters
->options().any_undefined()
2499 || layout
->script_options()->any_unreferenced())
2501 if (parameters
->target().get_size() == 32)
2503 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2504 this->do_add_undefined_symbols_from_command_line
<32>(layout
);
2509 else if (parameters
->target().get_size() == 64)
2511 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2512 this->do_add_undefined_symbols_from_command_line
<64>(layout
);
2524 Symbol_table::do_add_undefined_symbols_from_command_line(Layout
* layout
)
2526 for (options::String_set::const_iterator p
=
2527 parameters
->options().undefined_begin();
2528 p
!= parameters
->options().undefined_end();
2530 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2532 for (Script_options::referenced_const_iterator p
=
2533 layout
->script_options()->referenced_begin();
2534 p
!= layout
->script_options()->referenced_end();
2536 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2541 Symbol_table::add_undefined_symbol_from_command_line(const char* name
)
2543 if (this->lookup(name
) != NULL
)
2546 const char* version
= NULL
;
2548 Sized_symbol
<size
>* sym
;
2549 Sized_symbol
<size
>* oldsym
;
2550 bool resolve_oldsym
;
2551 if (parameters
->target().is_big_endian())
2553 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2554 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2556 elfcpp::STV_DEFAULT
,
2566 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2567 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2569 elfcpp::STV_DEFAULT
,
2578 gold_assert(oldsym
== NULL
);
2580 sym
->init_undefined(name
, version
, 0, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2581 elfcpp::STV_DEFAULT
, 0);
2582 ++this->saw_undefined_
;
2585 // Set the dynamic symbol indexes. INDEX is the index of the first
2586 // global dynamic symbol. Pointers to the global symbols are stored
2587 // into the vector SYMS. The names are added to DYNPOOL.
2588 // This returns an updated dynamic symbol index.
2591 Symbol_table::set_dynsym_indexes(unsigned int index
,
2592 unsigned int* pforced_local_count
,
2593 std::vector
<Symbol
*>* syms
,
2594 Stringpool
* dynpool
,
2597 // First process all the symbols which have been forced to be local,
2598 // as they must appear before all global symbols.
2599 unsigned int forced_local_count
= 0;
2600 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2601 p
!= this->forced_locals_
.end();
2605 gold_assert(sym
->is_forced_local());
2606 if (sym
->has_dynsym_index())
2608 if (!sym
->should_add_dynsym_entry(this))
2609 sym
->set_dynsym_index(-1U);
2612 sym
->set_dynsym_index(index
);
2614 ++forced_local_count
;
2615 dynpool
->add(sym
->name(), false, NULL
);
2616 if (sym
->type() == elfcpp::STT_GNU_IFUNC
)
2617 this->set_has_gnu_output();
2620 *pforced_local_count
= forced_local_count
;
2622 // Allow a target to set dynsym indexes.
2623 if (parameters
->target().has_custom_set_dynsym_indexes())
2625 std::vector
<Symbol
*> dyn_symbols
;
2626 for (Symbol_table_type::iterator p
= this->table_
.begin();
2627 p
!= this->table_
.end();
2630 Symbol
* sym
= p
->second
;
2631 if (sym
->is_forced_local())
2633 if (!sym
->should_add_dynsym_entry(this))
2634 sym
->set_dynsym_index(-1U);
2637 dyn_symbols
.push_back(sym
);
2638 if (sym
->type() == elfcpp::STT_GNU_IFUNC
2639 || (sym
->binding() == elfcpp::STB_GNU_UNIQUE
2640 && parameters
->options().gnu_unique()))
2641 this->set_has_gnu_output();
2645 return parameters
->target().set_dynsym_indexes(&dyn_symbols
, index
, syms
,
2646 dynpool
, versions
, this);
2649 for (Symbol_table_type::iterator p
= this->table_
.begin();
2650 p
!= this->table_
.end();
2653 Symbol
* sym
= p
->second
;
2655 if (sym
->is_forced_local())
2658 // Note that SYM may already have a dynamic symbol index, since
2659 // some symbols appear more than once in the symbol table, with
2660 // and without a version.
2662 if (!sym
->should_add_dynsym_entry(this))
2663 sym
->set_dynsym_index(-1U);
2664 else if (!sym
->has_dynsym_index())
2666 sym
->set_dynsym_index(index
);
2668 syms
->push_back(sym
);
2669 dynpool
->add(sym
->name(), false, NULL
);
2670 if (sym
->type() == elfcpp::STT_GNU_IFUNC
2671 || (sym
->binding() == elfcpp::STB_GNU_UNIQUE
2672 && parameters
->options().gnu_unique()))
2673 this->set_has_gnu_output();
2675 // Record any version information, except those from
2676 // as-needed libraries not seen to be needed. Note that the
2677 // is_needed state for such libraries can change in this loop.
2678 if (sym
->version() != NULL
)
2680 if (!sym
->is_from_dynobj()
2681 || !sym
->object()->as_needed()
2682 || sym
->object()->is_needed())
2683 versions
->record_version(this, dynpool
, sym
);
2686 if (parameters
->options().warn_drop_version())
2687 gold_warning(_("discarding version information for "
2688 "%s@%s, defined in unused shared library %s "
2689 "(linked with --as-needed)"),
2690 sym
->name(), sym
->version(),
2691 sym
->object()->name().c_str());
2692 sym
->clear_version();
2698 // Finish up the versions. In some cases this may add new dynamic
2700 index
= versions
->finalize(this, index
, syms
);
2702 // Process target-specific symbols.
2703 for (std::vector
<Symbol
*>::iterator p
= this->target_symbols_
.begin();
2704 p
!= this->target_symbols_
.end();
2707 (*p
)->set_dynsym_index(index
);
2709 syms
->push_back(*p
);
2710 dynpool
->add((*p
)->name(), false, NULL
);
2716 // Set the final values for all the symbols. The index of the first
2717 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2718 // file offset OFF. Add their names to POOL. Return the new file
2719 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2720 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2721 // written from the global symbol table in Symtab::write_globals(),
2722 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2723 // not necessarily the same as the sh_info field for the .dynsym
2724 // section, which will point to the first real global symbol.
2727 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2728 size_t dyncount
, Stringpool
* pool
,
2729 unsigned int* plocal_symcount
)
2733 gold_assert(*plocal_symcount
!= 0);
2734 this->first_global_index_
= *plocal_symcount
;
2736 this->dynamic_offset_
= dynoff
;
2737 this->first_dynamic_global_index_
= dyn_global_index
;
2738 this->dynamic_count_
= dyncount
;
2740 if (parameters
->target().get_size() == 32)
2742 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2743 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2748 else if (parameters
->target().get_size() == 64)
2750 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2751 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2759 if (this->has_gnu_output_
)
2761 Target
* target
= const_cast<Target
*>(¶meters
->target());
2762 if (target
->osabi() == elfcpp::ELFOSABI_NONE
)
2763 target
->set_osabi(elfcpp::ELFOSABI_GNU
);
2766 // Now that we have the final symbol table, we can reliably note
2767 // which symbols should get warnings.
2768 this->warnings_
.note_warnings(this);
2773 // SYM is going into the symbol table at *PINDEX. Add the name to
2774 // POOL, update *PINDEX and *POFF.
2778 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2779 unsigned int* pindex
, off_t
* poff
)
2781 sym
->set_symtab_index(*pindex
);
2782 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
2783 pool
->add(sym
->name(), false, NULL
);
2785 pool
->add(sym
->versioned_name(), true, NULL
);
2787 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2790 // Set the final value for all the symbols. This is called after
2791 // Layout::finalize, so all the output sections have their final
2796 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2797 unsigned int* plocal_symcount
)
2799 off
= align_address(off
, size
>> 3);
2800 this->offset_
= off
;
2802 unsigned int index
= *plocal_symcount
;
2803 const unsigned int orig_index
= index
;
2805 // First do all the symbols which have been forced to be local, as
2806 // they must appear before all global symbols.
2807 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2808 p
!= this->forced_locals_
.end();
2812 gold_assert(sym
->is_forced_local());
2813 if (this->sized_finalize_symbol
<size
>(sym
))
2815 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2817 if (sym
->type() == elfcpp::STT_GNU_IFUNC
)
2818 this->set_has_gnu_output();
2822 // Now do all the remaining symbols.
2823 for (Symbol_table_type::iterator p
= this->table_
.begin();
2824 p
!= this->table_
.end();
2827 Symbol
* sym
= p
->second
;
2828 if (this->sized_finalize_symbol
<size
>(sym
))
2830 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2831 if (sym
->type() == elfcpp::STT_GNU_IFUNC
2832 || (sym
->binding() == elfcpp::STB_GNU_UNIQUE
2833 && parameters
->options().gnu_unique()))
2834 this->set_has_gnu_output();
2838 // Now do target-specific symbols.
2839 for (std::vector
<Symbol
*>::iterator p
= this->target_symbols_
.begin();
2840 p
!= this->target_symbols_
.end();
2843 this->add_to_final_symtab
<size
>(*p
, pool
, &index
, &off
);
2846 this->output_count_
= index
- orig_index
;
2851 // Compute the final value of SYM and store status in location PSTATUS.
2852 // During relaxation, this may be called multiple times for a symbol to
2853 // compute its would-be final value in each relaxation pass.
2856 typename Sized_symbol
<size
>::Value_type
2857 Symbol_table::compute_final_value(
2858 const Sized_symbol
<size
>* sym
,
2859 Compute_final_value_status
* pstatus
) const
2861 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2864 switch (sym
->source())
2866 case Symbol::FROM_OBJECT
:
2869 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2872 && shndx
!= elfcpp::SHN_ABS
2873 && !Symbol::is_common_shndx(shndx
))
2875 *pstatus
= CFVS_UNSUPPORTED_SYMBOL_SECTION
;
2879 Object
* symobj
= sym
->object();
2880 if (symobj
->is_dynamic())
2883 shndx
= elfcpp::SHN_UNDEF
;
2885 else if (symobj
->pluginobj() != NULL
)
2888 shndx
= elfcpp::SHN_UNDEF
;
2890 else if (shndx
== elfcpp::SHN_UNDEF
)
2892 else if (!is_ordinary
2893 && (shndx
== elfcpp::SHN_ABS
2894 || Symbol::is_common_shndx(shndx
)))
2895 value
= sym
->value();
2898 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2899 Output_section
* os
= relobj
->output_section(shndx
);
2901 if (this->is_section_folded(relobj
, shndx
))
2903 gold_assert(os
== NULL
);
2904 // Get the os of the section it is folded onto.
2905 Section_id folded
= this->icf_
->get_folded_section(relobj
,
2907 gold_assert(folded
.first
!= NULL
);
2908 Relobj
* folded_obj
= reinterpret_cast<Relobj
*>(folded
.first
);
2909 unsigned folded_shndx
= folded
.second
;
2911 os
= folded_obj
->output_section(folded_shndx
);
2912 gold_assert(os
!= NULL
);
2914 // Replace (relobj, shndx) with canonical ICF input section.
2915 shndx
= folded_shndx
;
2916 relobj
= folded_obj
;
2919 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2922 bool static_or_reloc
= (parameters
->doing_static_link() ||
2923 parameters
->options().relocatable());
2924 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2926 *pstatus
= CFVS_NO_OUTPUT_SECTION
;
2930 if (secoff64
== -1ULL)
2932 // The section needs special handling (e.g., a merge section).
2934 value
= os
->output_address(relobj
, shndx
, sym
->value());
2939 convert_types
<Value_type
, uint64_t>(secoff64
);
2940 if (sym
->type() == elfcpp::STT_TLS
)
2941 value
= sym
->value() + os
->tls_offset() + secoff
;
2943 value
= sym
->value() + os
->address() + secoff
;
2949 case Symbol::IN_OUTPUT_DATA
:
2951 Output_data
* od
= sym
->output_data();
2952 value
= sym
->value();
2953 if (sym
->type() != elfcpp::STT_TLS
)
2954 value
+= od
->address();
2957 Output_section
* os
= od
->output_section();
2958 gold_assert(os
!= NULL
);
2959 value
+= os
->tls_offset() + (od
->address() - os
->address());
2961 if (sym
->offset_is_from_end())
2962 value
+= od
->data_size();
2966 case Symbol::IN_OUTPUT_SEGMENT
:
2968 Output_segment
* os
= sym
->output_segment();
2969 value
= sym
->value();
2970 if (sym
->type() != elfcpp::STT_TLS
)
2971 value
+= os
->vaddr();
2972 switch (sym
->offset_base())
2974 case Symbol::SEGMENT_START
:
2976 case Symbol::SEGMENT_END
:
2977 value
+= os
->memsz();
2979 case Symbol::SEGMENT_BSS
:
2980 value
+= os
->filesz();
2988 case Symbol::IS_CONSTANT
:
2989 value
= sym
->value();
2992 case Symbol::IS_UNDEFINED
:
3004 // Finalize the symbol SYM. This returns true if the symbol should be
3005 // added to the symbol table, false otherwise.
3009 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
3011 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
3013 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
3015 // The default version of a symbol may appear twice in the symbol
3016 // table. We only need to finalize it once.
3017 if (sym
->has_symtab_index())
3022 gold_assert(!sym
->has_symtab_index());
3023 sym
->set_symtab_index(-1U);
3024 gold_assert(sym
->dynsym_index() == -1U);
3028 // If the symbol is only present on plugin files, the plugin decided we
3030 if (!sym
->in_real_elf())
3032 gold_assert(!sym
->has_symtab_index());
3033 sym
->set_symtab_index(-1U);
3037 // Compute final symbol value.
3038 Compute_final_value_status status
;
3039 Value_type value
= this->compute_final_value(sym
, &status
);
3045 case CFVS_UNSUPPORTED_SYMBOL_SECTION
:
3048 unsigned int shndx
= sym
->shndx(&is_ordinary
);
3049 gold_error(_("%s: unsupported symbol section 0x%x"),
3050 sym
->demangled_name().c_str(), shndx
);
3053 case CFVS_NO_OUTPUT_SECTION
:
3054 sym
->set_symtab_index(-1U);
3060 sym
->set_value(value
);
3062 if (parameters
->options().strip_all()
3063 || !parameters
->options().should_retain_symbol(sym
->name()))
3065 sym
->set_symtab_index(-1U);
3072 // Write out the global symbols.
3075 Symbol_table::write_globals(const Stringpool
* sympool
,
3076 const Stringpool
* dynpool
,
3077 Output_symtab_xindex
* symtab_xindex
,
3078 Output_symtab_xindex
* dynsym_xindex
,
3079 Output_file
* of
) const
3081 switch (parameters
->size_and_endianness())
3083 #ifdef HAVE_TARGET_32_LITTLE
3084 case Parameters::TARGET_32_LITTLE
:
3085 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
3089 #ifdef HAVE_TARGET_32_BIG
3090 case Parameters::TARGET_32_BIG
:
3091 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
3095 #ifdef HAVE_TARGET_64_LITTLE
3096 case Parameters::TARGET_64_LITTLE
:
3097 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
3101 #ifdef HAVE_TARGET_64_BIG
3102 case Parameters::TARGET_64_BIG
:
3103 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
3112 // Write out the global symbols.
3114 template<int size
, bool big_endian
>
3116 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
3117 const Stringpool
* dynpool
,
3118 Output_symtab_xindex
* symtab_xindex
,
3119 Output_symtab_xindex
* dynsym_xindex
,
3120 Output_file
* of
) const
3122 const Target
& target
= parameters
->target();
3124 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
3126 const unsigned int output_count
= this->output_count_
;
3127 const section_size_type oview_size
= output_count
* sym_size
;
3128 const unsigned int first_global_index
= this->first_global_index_
;
3129 unsigned char* psyms
;
3130 if (this->offset_
== 0 || output_count
== 0)
3133 psyms
= of
->get_output_view(this->offset_
, oview_size
);
3135 const unsigned int dynamic_count
= this->dynamic_count_
;
3136 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
3137 const unsigned int first_dynamic_global_index
=
3138 this->first_dynamic_global_index_
;
3139 unsigned char* dynamic_view
;
3140 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
3141 dynamic_view
= NULL
;
3143 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
3145 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
3146 p
!= this->table_
.end();
3149 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
3151 // Possibly warn about unresolved symbols in shared libraries.
3152 this->warn_about_undefined_dynobj_symbol(sym
);
3154 unsigned int sym_index
= sym
->symtab_index();
3155 unsigned int dynsym_index
;
3156 if (dynamic_view
== NULL
)
3159 dynsym_index
= sym
->dynsym_index();
3161 if (sym_index
== -1U && dynsym_index
== -1U)
3163 // This symbol is not included in the output file.
3168 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
3169 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
3170 elfcpp::STB binding
= sym
->binding();
3172 // If --weak-unresolved-symbols is set, change binding of unresolved
3173 // global symbols to STB_WEAK.
3174 if (parameters
->options().weak_unresolved_symbols()
3175 && binding
== elfcpp::STB_GLOBAL
3176 && sym
->is_undefined())
3177 binding
= elfcpp::STB_WEAK
;
3179 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3180 if (binding
== elfcpp::STB_GNU_UNIQUE
3181 && !parameters
->options().gnu_unique())
3182 binding
= elfcpp::STB_GLOBAL
;
3184 switch (sym
->source())
3186 case Symbol::FROM_OBJECT
:
3189 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
3192 && in_shndx
!= elfcpp::SHN_ABS
3193 && !Symbol::is_common_shndx(in_shndx
))
3195 gold_error(_("%s: unsupported symbol section 0x%x"),
3196 sym
->demangled_name().c_str(), in_shndx
);
3201 Object
* symobj
= sym
->object();
3202 if (symobj
->is_dynamic())
3204 if (sym
->needs_dynsym_value())
3205 dynsym_value
= target
.dynsym_value(sym
);
3206 shndx
= elfcpp::SHN_UNDEF
;
3207 if (sym
->is_undef_binding_weak())
3208 binding
= elfcpp::STB_WEAK
;
3210 binding
= elfcpp::STB_GLOBAL
;
3212 else if (symobj
->pluginobj() != NULL
)
3213 shndx
= elfcpp::SHN_UNDEF
;
3214 else if (in_shndx
== elfcpp::SHN_UNDEF
3216 && (in_shndx
== elfcpp::SHN_ABS
3217 || Symbol::is_common_shndx(in_shndx
))))
3221 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
3222 Output_section
* os
= relobj
->output_section(in_shndx
);
3223 if (this->is_section_folded(relobj
, in_shndx
))
3225 // This global symbol must be written out even though
3227 // Get the os of the section it is folded onto.
3229 this->icf_
->get_folded_section(relobj
, in_shndx
);
3230 gold_assert(folded
.first
!=NULL
);
3231 Relobj
* folded_obj
=
3232 reinterpret_cast<Relobj
*>(folded
.first
);
3233 os
= folded_obj
->output_section(folded
.second
);
3234 gold_assert(os
!= NULL
);
3236 gold_assert(os
!= NULL
);
3237 shndx
= os
->out_shndx();
3239 if (shndx
>= elfcpp::SHN_LORESERVE
)
3241 if (sym_index
!= -1U)
3242 symtab_xindex
->add(sym_index
, shndx
);
3243 if (dynsym_index
!= -1U)
3244 dynsym_xindex
->add(dynsym_index
, shndx
);
3245 shndx
= elfcpp::SHN_XINDEX
;
3248 // In object files symbol values are section
3250 if (parameters
->options().relocatable())
3251 sym_value
-= os
->address();
3257 case Symbol::IN_OUTPUT_DATA
:
3259 Output_data
* od
= sym
->output_data();
3261 shndx
= od
->out_shndx();
3262 if (shndx
>= elfcpp::SHN_LORESERVE
)
3264 if (sym_index
!= -1U)
3265 symtab_xindex
->add(sym_index
, shndx
);
3266 if (dynsym_index
!= -1U)
3267 dynsym_xindex
->add(dynsym_index
, shndx
);
3268 shndx
= elfcpp::SHN_XINDEX
;
3271 // In object files symbol values are section
3273 if (parameters
->options().relocatable())
3275 Output_section
* os
= od
->output_section();
3276 gold_assert(os
!= NULL
);
3277 sym_value
-= os
->address();
3282 case Symbol::IN_OUTPUT_SEGMENT
:
3284 Output_segment
* oseg
= sym
->output_segment();
3285 Output_section
* osect
= oseg
->first_section();
3287 shndx
= elfcpp::SHN_ABS
;
3289 shndx
= osect
->out_shndx();
3293 case Symbol::IS_CONSTANT
:
3294 shndx
= elfcpp::SHN_ABS
;
3297 case Symbol::IS_UNDEFINED
:
3298 shndx
= elfcpp::SHN_UNDEF
;
3305 if (sym_index
!= -1U)
3307 sym_index
-= first_global_index
;
3308 gold_assert(sym_index
< output_count
);
3309 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
3310 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
3311 binding
, sympool
, ps
);
3314 if (dynsym_index
!= -1U)
3316 dynsym_index
-= first_dynamic_global_index
;
3317 gold_assert(dynsym_index
< dynamic_count
);
3318 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
3319 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
3320 binding
, dynpool
, pd
);
3321 // Allow a target to adjust dynamic symbol value.
3322 parameters
->target().adjust_dyn_symbol(sym
, pd
);
3326 // Write the target-specific symbols.
3327 for (std::vector
<Symbol
*>::const_iterator p
= this->target_symbols_
.begin();
3328 p
!= this->target_symbols_
.end();
3331 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(*p
);
3333 unsigned int sym_index
= sym
->symtab_index();
3334 unsigned int dynsym_index
;
3335 if (dynamic_view
== NULL
)
3338 dynsym_index
= sym
->dynsym_index();
3341 switch (sym
->source())
3343 case Symbol::IS_CONSTANT
:
3344 shndx
= elfcpp::SHN_ABS
;
3346 case Symbol::IS_UNDEFINED
:
3347 shndx
= elfcpp::SHN_UNDEF
;
3353 if (sym_index
!= -1U)
3355 sym_index
-= first_global_index
;
3356 gold_assert(sym_index
< output_count
);
3357 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
3358 this->sized_write_symbol
<size
, big_endian
>(sym
, sym
->value(), shndx
,
3359 sym
->binding(), sympool
,
3363 if (dynsym_index
!= -1U)
3365 dynsym_index
-= first_dynamic_global_index
;
3366 gold_assert(dynsym_index
< dynamic_count
);
3367 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
3368 this->sized_write_symbol
<size
, big_endian
>(sym
, sym
->value(), shndx
,
3369 sym
->binding(), dynpool
,
3374 of
->write_output_view(this->offset_
, oview_size
, psyms
);
3375 if (dynamic_view
!= NULL
)
3376 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
3379 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3380 // strtab holding the name.
3382 template<int size
, bool big_endian
>
3384 Symbol_table::sized_write_symbol(
3385 Sized_symbol
<size
>* sym
,
3386 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
3388 elfcpp::STB binding
,
3389 const Stringpool
* pool
,
3390 unsigned char* p
) const
3392 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
3393 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
3394 osym
.put_st_name(pool
->get_offset(sym
->name()));
3396 osym
.put_st_name(pool
->get_offset(sym
->versioned_name()));
3397 osym
.put_st_value(value
);
3398 // Use a symbol size of zero for undefined symbols from shared libraries.
3399 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
3400 osym
.put_st_size(0);
3402 osym
.put_st_size(sym
->symsize());
3403 elfcpp::STT type
= sym
->type();
3404 gold_assert(type
!= elfcpp::STT_GNU_IFUNC
|| !sym
->is_from_dynobj());
3405 // A version script may have overridden the default binding.
3406 if (sym
->is_forced_local())
3407 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, type
));
3409 osym
.put_st_info(elfcpp::elf_st_info(binding
, type
));
3410 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
3411 osym
.put_st_shndx(shndx
);
3414 // Check for unresolved symbols in shared libraries. This is
3415 // controlled by the --allow-shlib-undefined option.
3417 // We only warn about libraries for which we have seen all the
3418 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3419 // which were not seen in this link. If we didn't see a DT_NEEDED
3420 // entry, we aren't going to be able to reliably report whether the
3421 // symbol is undefined.
3423 // We also don't warn about libraries found in a system library
3424 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3425 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3426 // can have undefined references satisfied by ld-linux.so.
3429 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
3432 if (sym
->source() == Symbol::FROM_OBJECT
3433 && sym
->object()->is_dynamic()
3434 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
3435 && sym
->binding() != elfcpp::STB_WEAK
3436 && !parameters
->options().allow_shlib_undefined()
3437 && !parameters
->target().is_defined_by_abi(sym
)
3438 && !sym
->object()->is_in_system_directory())
3440 // A very ugly cast.
3441 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
3442 if (!dynobj
->has_unknown_needed_entries())
3443 gold_undefined_symbol(sym
);
3447 // Write out a section symbol. Return the update offset.
3450 Symbol_table::write_section_symbol(const Output_section
* os
,
3451 Output_symtab_xindex
* symtab_xindex
,
3455 switch (parameters
->size_and_endianness())
3457 #ifdef HAVE_TARGET_32_LITTLE
3458 case Parameters::TARGET_32_LITTLE
:
3459 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
3463 #ifdef HAVE_TARGET_32_BIG
3464 case Parameters::TARGET_32_BIG
:
3465 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
3469 #ifdef HAVE_TARGET_64_LITTLE
3470 case Parameters::TARGET_64_LITTLE
:
3471 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
3475 #ifdef HAVE_TARGET_64_BIG
3476 case Parameters::TARGET_64_BIG
:
3477 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
3486 // Write out a section symbol, specialized for size and endianness.
3488 template<int size
, bool big_endian
>
3490 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
3491 Output_symtab_xindex
* symtab_xindex
,
3495 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
3497 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
3499 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
3500 osym
.put_st_name(0);
3501 if (parameters
->options().relocatable())
3502 osym
.put_st_value(0);
3504 osym
.put_st_value(os
->address());
3505 osym
.put_st_size(0);
3506 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
3507 elfcpp::STT_SECTION
));
3508 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
3510 unsigned int shndx
= os
->out_shndx();
3511 if (shndx
>= elfcpp::SHN_LORESERVE
)
3513 symtab_xindex
->add(os
->symtab_index(), shndx
);
3514 shndx
= elfcpp::SHN_XINDEX
;
3516 osym
.put_st_shndx(shndx
);
3518 of
->write_output_view(offset
, sym_size
, pov
);
3521 // Print statistical information to stderr. This is used for --stats.
3524 Symbol_table::print_stats() const
3526 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3527 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3528 program_name
, this->table_
.size(), this->table_
.bucket_count());
3530 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
3531 program_name
, this->table_
.size());
3533 this->namepool_
.print_stats("symbol table stringpool");
3536 // We check for ODR violations by looking for symbols with the same
3537 // name for which the debugging information reports that they were
3538 // defined in disjoint source locations. When comparing the source
3539 // location, we consider instances with the same base filename to be
3540 // the same. This is because different object files/shared libraries
3541 // can include the same header file using different paths, and
3542 // different optimization settings can make the line number appear to
3543 // be a couple lines off, and we don't want to report an ODR violation
3546 // This struct is used to compare line information, as returned by
3547 // Dwarf_line_info::one_addr2line. It implements a < comparison
3548 // operator used with std::sort.
3550 struct Odr_violation_compare
3553 operator()(const std::string
& s1
, const std::string
& s2
) const
3555 // Inputs should be of the form "dirname/filename:linenum" where
3556 // "dirname/" is optional. We want to compare just the filename:linenum.
3558 // Find the last '/' in each string.
3559 std::string::size_type s1begin
= s1
.rfind('/');
3560 std::string::size_type s2begin
= s2
.rfind('/');
3561 // If there was no '/' in a string, start at the beginning.
3562 if (s1begin
== std::string::npos
)
3564 if (s2begin
== std::string::npos
)
3566 return s1
.compare(s1begin
, std::string::npos
,
3567 s2
, s2begin
, std::string::npos
) < 0;
3571 // Returns all of the lines attached to LOC, not just the one the
3572 // instruction actually came from.
3573 std::vector
<std::string
>
3574 Symbol_table::linenos_from_loc(const Task
* task
,
3575 const Symbol_location
& loc
)
3577 // We need to lock the object in order to read it. This
3578 // means that we have to run in a singleton Task. If we
3579 // want to run this in a general Task for better
3580 // performance, we will need one Task for object, plus
3581 // appropriate locking to ensure that we don't conflict with
3582 // other uses of the object. Also note, one_addr2line is not
3583 // currently thread-safe.
3584 Task_lock_obj
<Object
> tl(task
, loc
.object
);
3586 std::vector
<std::string
> result
;
3587 Symbol_location code_loc
= loc
;
3588 parameters
->target().function_location(&code_loc
);
3589 // 16 is the size of the object-cache that one_addr2line should use.
3590 std::string canonical_result
= Dwarf_line_info::one_addr2line(
3591 code_loc
.object
, code_loc
.shndx
, code_loc
.offset
, 16, &result
);
3592 if (!canonical_result
.empty())
3593 result
.push_back(canonical_result
);
3597 // OutputIterator that records if it was ever assigned to. This
3598 // allows it to be used with std::set_intersection() to check for
3599 // intersection rather than computing the intersection.
3600 struct Check_intersection
3602 Check_intersection()
3606 bool had_intersection() const
3607 { return this->value_
; }
3609 Check_intersection
& operator++()
3612 Check_intersection
& operator*()
3615 template<typename T
>
3616 Check_intersection
& operator=(const T
&)
3618 this->value_
= true;
3626 // Check candidate_odr_violations_ to find symbols with the same name
3627 // but apparently different definitions (different source-file/line-no
3628 // for each line assigned to the first instruction).
3631 Symbol_table::detect_odr_violations(const Task
* task
,
3632 const char* output_file_name
) const
3634 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
3635 it
!= candidate_odr_violations_
.end();
3638 const char* const symbol_name
= it
->first
;
3640 std::string first_object_name
;
3641 std::vector
<std::string
> first_object_linenos
;
3643 Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3644 locs
= it
->second
.begin();
3645 const Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3646 locs_end
= it
->second
.end();
3647 for (; locs
!= locs_end
&& first_object_linenos
.empty(); ++locs
)
3649 // Save the line numbers from the first definition to
3650 // compare to the other definitions. Ideally, we'd compare
3651 // every definition to every other, but we don't want to
3652 // take O(N^2) time to do this. This shortcut may cause
3653 // false negatives that appear or disappear depending on the
3654 // link order, but it won't cause false positives.
3655 first_object_name
= locs
->object
->name();
3656 first_object_linenos
= this->linenos_from_loc(task
, *locs
);
3658 if (first_object_linenos
.empty())
3661 // Sort by Odr_violation_compare to make std::set_intersection work.
3662 std::string first_object_canonical_result
= first_object_linenos
.back();
3663 std::sort(first_object_linenos
.begin(), first_object_linenos
.end(),
3664 Odr_violation_compare());
3666 for (; locs
!= locs_end
; ++locs
)
3668 std::vector
<std::string
> linenos
=
3669 this->linenos_from_loc(task
, *locs
);
3670 // linenos will be empty if we couldn't parse the debug info.
3671 if (linenos
.empty())
3673 // Sort by Odr_violation_compare to make std::set_intersection work.
3674 gold_assert(!linenos
.empty());
3675 std::string second_object_canonical_result
= linenos
.back();
3676 std::sort(linenos
.begin(), linenos
.end(), Odr_violation_compare());
3678 Check_intersection intersection_result
=
3679 std::set_intersection(first_object_linenos
.begin(),
3680 first_object_linenos
.end(),
3683 Check_intersection(),
3684 Odr_violation_compare());
3685 if (!intersection_result
.had_intersection())
3687 gold_warning(_("while linking %s: symbol '%s' defined in "
3688 "multiple places (possible ODR violation):"),
3689 output_file_name
, demangle(symbol_name
).c_str());
3690 // This only prints one location from each definition,
3691 // which may not be the location we expect to intersect
3692 // with another definition. We could print the whole
3693 // set of locations, but that seems too verbose.
3694 fprintf(stderr
, _(" %s from %s\n"),
3695 first_object_canonical_result
.c_str(),
3696 first_object_name
.c_str());
3697 fprintf(stderr
, _(" %s from %s\n"),
3698 second_object_canonical_result
.c_str(),
3699 locs
->object
->name().c_str());
3700 // Only print one broken pair, to avoid needing to
3701 // compare against a list of the disjoint definition
3702 // locations we've found so far. (If we kept comparing
3703 // against just the first one, we'd get a lot of
3704 // redundant complaints about the second definition
3710 // We only call one_addr2line() in this function, so we can clear its cache.
3711 Dwarf_line_info::clear_addr2line_cache();
3714 // Warnings functions.
3716 // Add a new warning.
3719 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
3720 const std::string
& warning
)
3722 name
= symtab
->canonicalize_name(name
);
3723 this->warnings_
[name
].set(obj
, warning
);
3726 // Look through the warnings and mark the symbols for which we should
3727 // warn. This is called during Layout::finalize when we know the
3728 // sources for all the symbols.
3731 Warnings::note_warnings(Symbol_table
* symtab
)
3733 for (Warning_table::iterator p
= this->warnings_
.begin();
3734 p
!= this->warnings_
.end();
3737 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
3739 && sym
->source() == Symbol::FROM_OBJECT
3740 && sym
->object() == p
->second
.object
)
3741 sym
->set_has_warning();
3745 // Issue a warning. This is called when we see a relocation against a
3746 // symbol for which has a warning.
3748 template<int size
, bool big_endian
>
3750 Warnings::issue_warning(const Symbol
* sym
,
3751 const Relocate_info
<size
, big_endian
>* relinfo
,
3752 size_t relnum
, off_t reloffset
) const
3754 gold_assert(sym
->has_warning());
3756 // We don't want to issue a warning for a relocation against the
3757 // symbol in the same object file in which the symbol is defined.
3758 if (sym
->object() == relinfo
->object
)
3761 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
3762 gold_assert(p
!= this->warnings_
.end());
3763 gold_warning_at_location(relinfo
, relnum
, reloffset
,
3764 "%s", p
->second
.text
.c_str());
3767 // Instantiate the templates we need. We could use the configure
3768 // script to restrict this to only the ones needed for implemented
3771 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3774 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3777 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3780 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3783 #ifdef HAVE_TARGET_32_LITTLE
3786 Symbol_table::add_from_relobj
<32, false>(
3787 Sized_relobj_file
<32, false>* relobj
,
3788 const unsigned char* syms
,
3790 size_t symndx_offset
,
3791 const char* sym_names
,
3792 size_t sym_name_size
,
3793 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3797 #ifdef HAVE_TARGET_32_BIG
3800 Symbol_table::add_from_relobj
<32, true>(
3801 Sized_relobj_file
<32, true>* relobj
,
3802 const unsigned char* syms
,
3804 size_t symndx_offset
,
3805 const char* sym_names
,
3806 size_t sym_name_size
,
3807 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3811 #ifdef HAVE_TARGET_64_LITTLE
3814 Symbol_table::add_from_relobj
<64, false>(
3815 Sized_relobj_file
<64, false>* relobj
,
3816 const unsigned char* syms
,
3818 size_t symndx_offset
,
3819 const char* sym_names
,
3820 size_t sym_name_size
,
3821 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3825 #ifdef HAVE_TARGET_64_BIG
3828 Symbol_table::add_from_relobj
<64, true>(
3829 Sized_relobj_file
<64, true>* relobj
,
3830 const unsigned char* syms
,
3832 size_t symndx_offset
,
3833 const char* sym_names
,
3834 size_t sym_name_size
,
3835 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3839 #ifdef HAVE_TARGET_32_LITTLE
3842 Symbol_table::add_from_pluginobj
<32, false>(
3843 Sized_pluginobj
<32, false>* obj
,
3846 elfcpp::Sym
<32, false>* sym
);
3849 #ifdef HAVE_TARGET_32_BIG
3852 Symbol_table::add_from_pluginobj
<32, true>(
3853 Sized_pluginobj
<32, true>* obj
,
3856 elfcpp::Sym
<32, true>* sym
);
3859 #ifdef HAVE_TARGET_64_LITTLE
3862 Symbol_table::add_from_pluginobj
<64, false>(
3863 Sized_pluginobj
<64, false>* obj
,
3866 elfcpp::Sym
<64, false>* sym
);
3869 #ifdef HAVE_TARGET_64_BIG
3872 Symbol_table::add_from_pluginobj
<64, true>(
3873 Sized_pluginobj
<64, true>* obj
,
3876 elfcpp::Sym
<64, true>* sym
);
3879 #ifdef HAVE_TARGET_32_LITTLE
3882 Symbol_table::add_from_dynobj
<32, false>(
3883 Sized_dynobj
<32, false>* dynobj
,
3884 const unsigned char* syms
,
3886 const char* sym_names
,
3887 size_t sym_name_size
,
3888 const unsigned char* versym
,
3890 const std::vector
<const char*>* version_map
,
3891 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3895 #ifdef HAVE_TARGET_32_BIG
3898 Symbol_table::add_from_dynobj
<32, true>(
3899 Sized_dynobj
<32, true>* dynobj
,
3900 const unsigned char* syms
,
3902 const char* sym_names
,
3903 size_t sym_name_size
,
3904 const unsigned char* versym
,
3906 const std::vector
<const char*>* version_map
,
3907 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3911 #ifdef HAVE_TARGET_64_LITTLE
3914 Symbol_table::add_from_dynobj
<64, false>(
3915 Sized_dynobj
<64, false>* dynobj
,
3916 const unsigned char* syms
,
3918 const char* sym_names
,
3919 size_t sym_name_size
,
3920 const unsigned char* versym
,
3922 const std::vector
<const char*>* version_map
,
3923 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3927 #ifdef HAVE_TARGET_64_BIG
3930 Symbol_table::add_from_dynobj
<64, true>(
3931 Sized_dynobj
<64, true>* dynobj
,
3932 const unsigned char* syms
,
3934 const char* sym_names
,
3935 size_t sym_name_size
,
3936 const unsigned char* versym
,
3938 const std::vector
<const char*>* version_map
,
3939 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3943 #ifdef HAVE_TARGET_32_LITTLE
3946 Symbol_table::add_from_incrobj(
3950 elfcpp::Sym
<32, false>* sym
);
3953 #ifdef HAVE_TARGET_32_BIG
3956 Symbol_table::add_from_incrobj(
3960 elfcpp::Sym
<32, true>* sym
);
3963 #ifdef HAVE_TARGET_64_LITTLE
3966 Symbol_table::add_from_incrobj(
3970 elfcpp::Sym
<64, false>* sym
);
3973 #ifdef HAVE_TARGET_64_BIG
3976 Symbol_table::add_from_incrobj(
3980 elfcpp::Sym
<64, true>* sym
);
3983 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3986 Symbol_table::define_with_copy_reloc
<32>(
3987 Sized_symbol
<32>* sym
,
3989 elfcpp::Elf_types
<32>::Elf_Addr value
);
3992 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3995 Symbol_table::define_with_copy_reloc
<64>(
3996 Sized_symbol
<64>* sym
,
3998 elfcpp::Elf_types
<64>::Elf_Addr value
);
4001 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
4004 Sized_symbol
<32>::init_output_data(const char* name
, const char* version
,
4005 Output_data
* od
, Value_type value
,
4006 Size_type symsize
, elfcpp::STT type
,
4007 elfcpp::STB binding
,
4008 elfcpp::STV visibility
,
4009 unsigned char nonvis
,
4010 bool offset_is_from_end
,
4011 bool is_predefined
);
4015 Sized_symbol
<32>::init_constant(const char* name
, const char* version
,
4016 Value_type value
, Size_type symsize
,
4017 elfcpp::STT type
, elfcpp::STB binding
,
4018 elfcpp::STV visibility
, unsigned char nonvis
,
4019 bool is_predefined
);
4023 Sized_symbol
<32>::init_undefined(const char* name
, const char* version
,
4024 Value_type value
, elfcpp::STT type
,
4025 elfcpp::STB binding
, elfcpp::STV visibility
,
4026 unsigned char nonvis
);
4029 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
4032 Sized_symbol
<64>::init_output_data(const char* name
, const char* version
,
4033 Output_data
* od
, Value_type value
,
4034 Size_type symsize
, elfcpp::STT type
,
4035 elfcpp::STB binding
,
4036 elfcpp::STV visibility
,
4037 unsigned char nonvis
,
4038 bool offset_is_from_end
,
4039 bool is_predefined
);
4043 Sized_symbol
<64>::init_constant(const char* name
, const char* version
,
4044 Value_type value
, Size_type symsize
,
4045 elfcpp::STT type
, elfcpp::STB binding
,
4046 elfcpp::STV visibility
, unsigned char nonvis
,
4047 bool is_predefined
);
4051 Sized_symbol
<64>::init_undefined(const char* name
, const char* version
,
4052 Value_type value
, elfcpp::STT type
,
4053 elfcpp::STB binding
, elfcpp::STV visibility
,
4054 unsigned char nonvis
);
4057 #ifdef HAVE_TARGET_32_LITTLE
4060 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
4061 const Relocate_info
<32, false>* relinfo
,
4062 size_t relnum
, off_t reloffset
) const;
4065 #ifdef HAVE_TARGET_32_BIG
4068 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
4069 const Relocate_info
<32, true>* relinfo
,
4070 size_t relnum
, off_t reloffset
) const;
4073 #ifdef HAVE_TARGET_64_LITTLE
4076 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
4077 const Relocate_info
<64, false>* relinfo
,
4078 size_t relnum
, off_t reloffset
) const;
4081 #ifdef HAVE_TARGET_64_BIG
4084 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
4085 const Relocate_info
<64, true>* relinfo
,
4086 size_t relnum
, off_t reloffset
) const;
4089 } // End namespace gold.