* ppc-opc.c (powerpc_opcodes) <"lswx">: Use RAX for the second and
[binutils-gdb.git] / gdb / i386-linux-tdep.c
blob8475d7a8e1062e36064e84a1023edc38f7c9d74a
1 /* Target-dependent code for GNU/Linux i386.
3 Copyright (C) 2000-2005, 2007-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2-frame.h"
30 #include "gdb_string.h"
32 #include "i386-tdep.h"
33 #include "i386-linux-tdep.h"
34 #include "linux-tdep.h"
35 #include "glibc-tdep.h"
36 #include "solib-svr4.h"
37 #include "symtab.h"
38 #include "arch-utils.h"
39 #include "xml-syscall.h"
41 #include "i387-tdep.h"
42 #include "i386-xstate.h"
44 /* The syscall's XML filename for i386. */
45 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
47 #include "record.h"
48 #include "linux-record.h"
49 #include <stdint.h>
51 #include "features/i386/i386-linux.c"
52 #include "features/i386/i386-mmx-linux.c"
53 #include "features/i386/i386-avx-linux.c"
55 /* Supported register note sections. */
56 static struct core_regset_section i386_linux_regset_sections[] =
58 { ".reg", 68, "general-purpose" },
59 { ".reg2", 108, "floating-point" },
60 { NULL, 0 }
63 static struct core_regset_section i386_linux_sse_regset_sections[] =
65 { ".reg", 68, "general-purpose" },
66 { ".reg-xfp", 512, "extended floating-point" },
67 { NULL, 0 }
70 static struct core_regset_section i386_linux_avx_regset_sections[] =
72 { ".reg", 68, "general-purpose" },
73 { ".reg-xstate", I386_XSTATE_MAX_SIZE, "XSAVE extended state" },
74 { NULL, 0 }
77 /* Return non-zero, when the register is in the corresponding register
78 group. Put the LINUX_ORIG_EAX register in the system group. */
79 static int
80 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
81 struct reggroup *group)
83 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
84 return (group == system_reggroup
85 || group == save_reggroup
86 || group == restore_reggroup);
87 return i386_register_reggroup_p (gdbarch, regnum, group);
91 /* Recognizing signal handler frames. */
93 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
94 "realtime" (RT) signals. The RT signals can provide additional
95 information to the signal handler if the SA_SIGINFO flag is set
96 when establishing a signal handler using `sigaction'. It is not
97 unlikely that future versions of GNU/Linux will support SA_SIGINFO
98 for normal signals too. */
100 /* When the i386 Linux kernel calls a signal handler and the
101 SA_RESTORER flag isn't set, the return address points to a bit of
102 code on the stack. This function returns whether the PC appears to
103 be within this bit of code.
105 The instruction sequence for normal signals is
106 pop %eax
107 mov $0x77, %eax
108 int $0x80
109 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
111 Checking for the code sequence should be somewhat reliable, because
112 the effect is to call the system call sigreturn. This is unlikely
113 to occur anywhere other than in a signal trampoline.
115 It kind of sucks that we have to read memory from the process in
116 order to identify a signal trampoline, but there doesn't seem to be
117 any other way. Therefore we only do the memory reads if no
118 function name could be identified, which should be the case since
119 the code is on the stack.
121 Detection of signal trampolines for handlers that set the
122 SA_RESTORER flag is in general not possible. Unfortunately this is
123 what the GNU C Library has been doing for quite some time now.
124 However, as of version 2.1.2, the GNU C Library uses signal
125 trampolines (named __restore and __restore_rt) that are identical
126 to the ones used by the kernel. Therefore, these trampolines are
127 supported too. */
129 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
130 #define LINUX_SIGTRAMP_OFFSET0 0
131 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
132 #define LINUX_SIGTRAMP_OFFSET1 1
133 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
134 #define LINUX_SIGTRAMP_OFFSET2 6
136 static const gdb_byte linux_sigtramp_code[] =
138 LINUX_SIGTRAMP_INSN0, /* pop %eax */
139 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
140 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
143 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
145 /* If THIS_FRAME is a sigtramp routine, return the address of the
146 start of the routine. Otherwise, return 0. */
148 static CORE_ADDR
149 i386_linux_sigtramp_start (struct frame_info *this_frame)
151 CORE_ADDR pc = get_frame_pc (this_frame);
152 gdb_byte buf[LINUX_SIGTRAMP_LEN];
154 /* We only recognize a signal trampoline if PC is at the start of
155 one of the three instructions. We optimize for finding the PC at
156 the start, as will be the case when the trampoline is not the
157 first frame on the stack. We assume that in the case where the
158 PC is not at the start of the instruction sequence, there will be
159 a few trailing readable bytes on the stack. */
161 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
162 return 0;
164 if (buf[0] != LINUX_SIGTRAMP_INSN0)
166 int adjust;
168 switch (buf[0])
170 case LINUX_SIGTRAMP_INSN1:
171 adjust = LINUX_SIGTRAMP_OFFSET1;
172 break;
173 case LINUX_SIGTRAMP_INSN2:
174 adjust = LINUX_SIGTRAMP_OFFSET2;
175 break;
176 default:
177 return 0;
180 pc -= adjust;
182 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
183 return 0;
186 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
187 return 0;
189 return pc;
192 /* This function does the same for RT signals. Here the instruction
193 sequence is
194 mov $0xad, %eax
195 int $0x80
196 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
198 The effect is to call the system call rt_sigreturn. */
200 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
201 #define LINUX_RT_SIGTRAMP_OFFSET0 0
202 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
203 #define LINUX_RT_SIGTRAMP_OFFSET1 5
205 static const gdb_byte linux_rt_sigtramp_code[] =
207 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
208 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
211 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
213 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
214 start of the routine. Otherwise, return 0. */
216 static CORE_ADDR
217 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
219 CORE_ADDR pc = get_frame_pc (this_frame);
220 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
222 /* We only recognize a signal trampoline if PC is at the start of
223 one of the two instructions. We optimize for finding the PC at
224 the start, as will be the case when the trampoline is not the
225 first frame on the stack. We assume that in the case where the
226 PC is not at the start of the instruction sequence, there will be
227 a few trailing readable bytes on the stack. */
229 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
230 return 0;
232 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
234 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
235 return 0;
237 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
239 if (!safe_frame_unwind_memory (this_frame, pc, buf,
240 LINUX_RT_SIGTRAMP_LEN))
241 return 0;
244 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
245 return 0;
247 return pc;
250 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
251 routine. */
253 static int
254 i386_linux_sigtramp_p (struct frame_info *this_frame)
256 CORE_ADDR pc = get_frame_pc (this_frame);
257 const char *name;
259 find_pc_partial_function (pc, &name, NULL, NULL);
261 /* If we have NAME, we can optimize the search. The trampolines are
262 named __restore and __restore_rt. However, they aren't dynamically
263 exported from the shared C library, so the trampoline may appear to
264 be part of the preceding function. This should always be sigaction,
265 __sigaction, or __libc_sigaction (all aliases to the same function). */
266 if (name == NULL || strstr (name, "sigaction") != NULL)
267 return (i386_linux_sigtramp_start (this_frame) != 0
268 || i386_linux_rt_sigtramp_start (this_frame) != 0);
270 return (strcmp ("__restore", name) == 0
271 || strcmp ("__restore_rt", name) == 0);
274 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
275 may have DWARF-2 CFI. */
277 static int
278 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
279 struct frame_info *this_frame)
281 CORE_ADDR pc = get_frame_pc (this_frame);
282 const char *name;
284 find_pc_partial_function (pc, &name, NULL, NULL);
286 /* If a vsyscall DSO is in use, the signal trampolines may have these
287 names. */
288 if (name && (strcmp (name, "__kernel_sigreturn") == 0
289 || strcmp (name, "__kernel_rt_sigreturn") == 0))
290 return 1;
292 return 0;
295 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
296 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
298 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
299 address of the associated sigcontext structure. */
301 static CORE_ADDR
302 i386_linux_sigcontext_addr (struct frame_info *this_frame)
304 struct gdbarch *gdbarch = get_frame_arch (this_frame);
305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
306 CORE_ADDR pc;
307 CORE_ADDR sp;
308 gdb_byte buf[4];
310 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
311 sp = extract_unsigned_integer (buf, 4, byte_order);
313 pc = i386_linux_sigtramp_start (this_frame);
314 if (pc)
316 /* The sigcontext structure lives on the stack, right after
317 the signum argument. We determine the address of the
318 sigcontext structure by looking at the frame's stack
319 pointer. Keep in mind that the first instruction of the
320 sigtramp code is "pop %eax". If the PC is after this
321 instruction, adjust the returned value accordingly. */
322 if (pc == get_frame_pc (this_frame))
323 return sp + 4;
324 return sp;
327 pc = i386_linux_rt_sigtramp_start (this_frame);
328 if (pc)
330 CORE_ADDR ucontext_addr;
332 /* The sigcontext structure is part of the user context. A
333 pointer to the user context is passed as the third argument
334 to the signal handler. */
335 read_memory (sp + 8, buf, 4);
336 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
337 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
340 error (_("Couldn't recognize signal trampoline."));
341 return 0;
344 /* Set the program counter for process PTID to PC. */
346 static void
347 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
349 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
351 /* We must be careful with modifying the program counter. If we
352 just interrupted a system call, the kernel might try to restart
353 it when we resume the inferior. On restarting the system call,
354 the kernel will try backing up the program counter even though it
355 no longer points at the system call. This typically results in a
356 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
357 "orig_eax" pseudo-register.
359 Note that "orig_eax" is saved when setting up a dummy call frame.
360 This means that it is properly restored when that frame is
361 popped, and that the interrupted system call will be restarted
362 when we resume the inferior on return from a function call from
363 within GDB. In all other cases the system call will not be
364 restarted. */
365 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
368 /* Record all registers but IP register for process-record. */
370 static int
371 i386_all_but_ip_registers_record (struct regcache *regcache)
373 if (record_arch_list_add_reg (regcache, I386_EAX_REGNUM))
374 return -1;
375 if (record_arch_list_add_reg (regcache, I386_ECX_REGNUM))
376 return -1;
377 if (record_arch_list_add_reg (regcache, I386_EDX_REGNUM))
378 return -1;
379 if (record_arch_list_add_reg (regcache, I386_EBX_REGNUM))
380 return -1;
381 if (record_arch_list_add_reg (regcache, I386_ESP_REGNUM))
382 return -1;
383 if (record_arch_list_add_reg (regcache, I386_EBP_REGNUM))
384 return -1;
385 if (record_arch_list_add_reg (regcache, I386_ESI_REGNUM))
386 return -1;
387 if (record_arch_list_add_reg (regcache, I386_EDI_REGNUM))
388 return -1;
389 if (record_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
390 return -1;
392 return 0;
395 /* i386_canonicalize_syscall maps from the native i386 Linux set
396 of syscall ids into a canonical set of syscall ids used by
397 process record (a mostly trivial mapping, since the canonical
398 set was originally taken from the i386 set). */
400 static enum gdb_syscall
401 i386_canonicalize_syscall (int syscall)
403 enum { i386_syscall_max = 499 };
405 if (syscall <= i386_syscall_max)
406 return syscall;
407 else
408 return -1;
411 /* Parse the arguments of current system call instruction and record
412 the values of the registers and memory that will be changed into
413 "record_arch_list". This instruction is "int 0x80" (Linux
414 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
416 Return -1 if something wrong. */
418 static struct linux_record_tdep i386_linux_record_tdep;
420 static int
421 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
423 int ret;
424 LONGEST syscall_native;
425 enum gdb_syscall syscall_gdb;
427 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
429 syscall_gdb = i386_canonicalize_syscall (syscall_native);
431 if (syscall_gdb < 0)
433 printf_unfiltered (_("Process record and replay target doesn't "
434 "support syscall number %s\n"),
435 plongest (syscall_native));
436 return -1;
439 if (syscall_gdb == gdb_sys_sigreturn
440 || syscall_gdb == gdb_sys_rt_sigreturn)
442 if (i386_all_but_ip_registers_record (regcache))
443 return -1;
444 return 0;
447 ret = record_linux_system_call (syscall_gdb, regcache,
448 &i386_linux_record_tdep);
449 if (ret)
450 return ret;
452 /* Record the return value of the system call. */
453 if (record_arch_list_add_reg (regcache, I386_EAX_REGNUM))
454 return -1;
456 return 0;
459 #define I386_LINUX_xstate 270
460 #define I386_LINUX_frame_size 732
462 static int
463 i386_linux_record_signal (struct gdbarch *gdbarch,
464 struct regcache *regcache,
465 enum gdb_signal signal)
467 ULONGEST esp;
469 if (i386_all_but_ip_registers_record (regcache))
470 return -1;
472 if (record_arch_list_add_reg (regcache, I386_EIP_REGNUM))
473 return -1;
475 /* Record the change in the stack. */
476 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
477 /* This is for xstate.
478 sp -= sizeof (struct _fpstate); */
479 esp -= I386_LINUX_xstate;
480 /* This is for frame_size.
481 sp -= sizeof (struct rt_sigframe); */
482 esp -= I386_LINUX_frame_size;
483 if (record_arch_list_add_mem (esp,
484 I386_LINUX_xstate + I386_LINUX_frame_size))
485 return -1;
487 if (record_arch_list_add_end ())
488 return -1;
490 return 0;
494 /* Core of the implementation for gdbarch get_syscall_number. Get pending
495 syscall number from REGCACHE. If there is no pending syscall -1 will be
496 returned. Pending syscall means ptrace has stepped into the syscall but
497 another ptrace call will step out. PC is right after the int $0x80
498 / syscall / sysenter instruction in both cases, PC does not change during
499 the second ptrace step. */
501 static LONGEST
502 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
504 struct gdbarch *gdbarch = get_regcache_arch (regcache);
505 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
506 /* The content of a register. */
507 gdb_byte buf[4];
508 /* The result. */
509 LONGEST ret;
511 /* Getting the system call number from the register.
512 When dealing with x86 architecture, this information
513 is stored at %eax register. */
514 regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
516 ret = extract_signed_integer (buf, 4, byte_order);
518 return ret;
521 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
522 compatible with gdbarch get_syscall_number method prototype. */
524 static LONGEST
525 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
526 ptid_t ptid)
528 struct regcache *regcache = get_thread_regcache (ptid);
530 return i386_linux_get_syscall_number_from_regcache (regcache);
533 /* The register sets used in GNU/Linux ELF core-dumps are identical to
534 the register sets in `struct user' that are used for a.out
535 core-dumps. These are also used by ptrace(2). The corresponding
536 types are `elf_gregset_t' for the general-purpose registers (with
537 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
538 for the floating-point registers.
540 Those types used to be available under the names `gregset_t' and
541 `fpregset_t' too, and GDB used those names in the past. But those
542 names are now used for the register sets used in the `mcontext_t'
543 type, which have a different size and layout. */
545 /* Mapping between the general-purpose registers in `struct user'
546 format and GDB's register cache layout. */
548 /* From <sys/reg.h>. */
549 int i386_linux_gregset_reg_offset[] =
551 6 * 4, /* %eax */
552 1 * 4, /* %ecx */
553 2 * 4, /* %edx */
554 0 * 4, /* %ebx */
555 15 * 4, /* %esp */
556 5 * 4, /* %ebp */
557 3 * 4, /* %esi */
558 4 * 4, /* %edi */
559 12 * 4, /* %eip */
560 14 * 4, /* %eflags */
561 13 * 4, /* %cs */
562 16 * 4, /* %ss */
563 7 * 4, /* %ds */
564 8 * 4, /* %es */
565 9 * 4, /* %fs */
566 10 * 4, /* %gs */
567 -1, -1, -1, -1, -1, -1, -1, -1,
568 -1, -1, -1, -1, -1, -1, -1, -1,
569 -1, -1, -1, -1, -1, -1, -1, -1,
571 -1, -1, -1, -1, -1, -1, -1, -1,
572 11 * 4 /* "orig_eax" */
575 /* Mapping between the general-purpose registers in `struct
576 sigcontext' format and GDB's register cache layout. */
578 /* From <asm/sigcontext.h>. */
579 static int i386_linux_sc_reg_offset[] =
581 11 * 4, /* %eax */
582 10 * 4, /* %ecx */
583 9 * 4, /* %edx */
584 8 * 4, /* %ebx */
585 7 * 4, /* %esp */
586 6 * 4, /* %ebp */
587 5 * 4, /* %esi */
588 4 * 4, /* %edi */
589 14 * 4, /* %eip */
590 16 * 4, /* %eflags */
591 15 * 4, /* %cs */
592 18 * 4, /* %ss */
593 3 * 4, /* %ds */
594 2 * 4, /* %es */
595 1 * 4, /* %fs */
596 0 * 4 /* %gs */
599 /* Get XSAVE extended state xcr0 from core dump. */
601 uint64_t
602 i386_linux_core_read_xcr0 (struct gdbarch *gdbarch,
603 struct target_ops *target, bfd *abfd)
605 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
606 uint64_t xcr0;
608 if (xstate)
610 size_t size = bfd_section_size (abfd, xstate);
612 /* Check extended state size. */
613 if (size < I386_XSTATE_AVX_SIZE)
614 xcr0 = I386_XSTATE_SSE_MASK;
615 else
617 char contents[8];
619 if (! bfd_get_section_contents (abfd, xstate, contents,
620 I386_LINUX_XSAVE_XCR0_OFFSET,
623 warning (_("Couldn't read `xcr0' bytes from "
624 "`.reg-xstate' section in core file."));
625 return 0;
628 xcr0 = bfd_get_64 (abfd, contents);
631 else
632 xcr0 = 0;
634 return xcr0;
637 /* Get Linux/x86 target description from core dump. */
639 static const struct target_desc *
640 i386_linux_core_read_description (struct gdbarch *gdbarch,
641 struct target_ops *target,
642 bfd *abfd)
644 /* Linux/i386. */
645 uint64_t xcr0 = i386_linux_core_read_xcr0 (gdbarch, target, abfd);
646 switch ((xcr0 & I386_XSTATE_AVX_MASK))
648 case I386_XSTATE_AVX_MASK:
649 return tdesc_i386_avx_linux;
650 case I386_XSTATE_SSE_MASK:
651 return tdesc_i386_linux;
652 case I386_XSTATE_X87_MASK:
653 return tdesc_i386_mmx_linux;
654 default:
655 break;
658 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
659 return tdesc_i386_linux;
660 else
661 return tdesc_i386_mmx_linux;
664 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
665 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
666 finish the syscall but PC will not change.
668 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
669 i386_displaced_step_fixup would keep PC at the displaced pad location.
670 As PC is pointing to the 'ret' instruction before the step
671 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
672 and PC should not be adjusted. In reality it finished syscall instead and
673 PC should get relocated back to its vDSO address. Hide the 'ret'
674 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
676 It is not fully correct as the bytes in struct displaced_step_closure will
677 not match the inferior code. But we would need some new flag in
678 displaced_step_closure otherwise to keep the state that syscall is finishing
679 for the later i386_displaced_step_fixup execution as the syscall execution
680 is already no longer detectable there. The new flag field would mean
681 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
682 which does not seem worth it. The same effect is achieved by patching that
683 'nop' instruction there instead. */
685 static struct displaced_step_closure *
686 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
687 CORE_ADDR from, CORE_ADDR to,
688 struct regcache *regs)
690 struct displaced_step_closure *closure;
692 closure = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
694 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
696 /* Since we use simple_displaced_step_copy_insn, our closure is a
697 copy of the instruction. */
698 gdb_byte *insn = (gdb_byte *) closure;
700 /* Fake nop. */
701 insn[0] = 0x90;
704 return closure;
707 static void
708 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
710 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
711 const struct target_desc *tdesc = info.target_desc;
712 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
713 const struct tdesc_feature *feature;
714 int valid_p;
716 gdb_assert (tdesc_data);
718 linux_init_abi (info, gdbarch);
720 /* GNU/Linux uses ELF. */
721 i386_elf_init_abi (info, gdbarch);
723 /* Reserve a number for orig_eax. */
724 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
726 if (! tdesc_has_registers (tdesc))
727 tdesc = tdesc_i386_linux;
728 tdep->tdesc = tdesc;
730 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
731 if (feature == NULL)
732 return;
734 valid_p = tdesc_numbered_register (feature, tdesc_data,
735 I386_LINUX_ORIG_EAX_REGNUM,
736 "orig_eax");
737 if (!valid_p)
738 return;
740 /* Add the %orig_eax register used for syscall restarting. */
741 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
743 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
745 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
746 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
747 tdep->sizeof_gregset = 17 * 4;
749 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
751 tdep->sigtramp_p = i386_linux_sigtramp_p;
752 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
753 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
754 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
756 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
758 set_gdbarch_process_record (gdbarch, i386_process_record);
759 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
761 /* Initialize the i386_linux_record_tdep. */
762 /* These values are the size of the type that will be used in a system
763 call. They are obtained from Linux Kernel source. */
764 i386_linux_record_tdep.size_pointer
765 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
766 i386_linux_record_tdep.size__old_kernel_stat = 32;
767 i386_linux_record_tdep.size_tms = 16;
768 i386_linux_record_tdep.size_loff_t = 8;
769 i386_linux_record_tdep.size_flock = 16;
770 i386_linux_record_tdep.size_oldold_utsname = 45;
771 i386_linux_record_tdep.size_ustat = 20;
772 i386_linux_record_tdep.size_old_sigaction = 140;
773 i386_linux_record_tdep.size_old_sigset_t = 128;
774 i386_linux_record_tdep.size_rlimit = 8;
775 i386_linux_record_tdep.size_rusage = 72;
776 i386_linux_record_tdep.size_timeval = 8;
777 i386_linux_record_tdep.size_timezone = 8;
778 i386_linux_record_tdep.size_old_gid_t = 2;
779 i386_linux_record_tdep.size_old_uid_t = 2;
780 i386_linux_record_tdep.size_fd_set = 128;
781 i386_linux_record_tdep.size_dirent = 268;
782 i386_linux_record_tdep.size_dirent64 = 276;
783 i386_linux_record_tdep.size_statfs = 64;
784 i386_linux_record_tdep.size_statfs64 = 84;
785 i386_linux_record_tdep.size_sockaddr = 16;
786 i386_linux_record_tdep.size_int
787 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
788 i386_linux_record_tdep.size_long
789 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
790 i386_linux_record_tdep.size_ulong
791 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
792 i386_linux_record_tdep.size_msghdr = 28;
793 i386_linux_record_tdep.size_itimerval = 16;
794 i386_linux_record_tdep.size_stat = 88;
795 i386_linux_record_tdep.size_old_utsname = 325;
796 i386_linux_record_tdep.size_sysinfo = 64;
797 i386_linux_record_tdep.size_msqid_ds = 88;
798 i386_linux_record_tdep.size_shmid_ds = 84;
799 i386_linux_record_tdep.size_new_utsname = 390;
800 i386_linux_record_tdep.size_timex = 128;
801 i386_linux_record_tdep.size_mem_dqinfo = 24;
802 i386_linux_record_tdep.size_if_dqblk = 68;
803 i386_linux_record_tdep.size_fs_quota_stat = 68;
804 i386_linux_record_tdep.size_timespec = 8;
805 i386_linux_record_tdep.size_pollfd = 8;
806 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
807 i386_linux_record_tdep.size_knfsd_fh = 132;
808 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
809 i386_linux_record_tdep.size_sigaction = 140;
810 i386_linux_record_tdep.size_sigset_t = 8;
811 i386_linux_record_tdep.size_siginfo_t = 128;
812 i386_linux_record_tdep.size_cap_user_data_t = 12;
813 i386_linux_record_tdep.size_stack_t = 12;
814 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
815 i386_linux_record_tdep.size_stat64 = 96;
816 i386_linux_record_tdep.size_gid_t = 2;
817 i386_linux_record_tdep.size_uid_t = 2;
818 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
819 i386_linux_record_tdep.size_flock64 = 24;
820 i386_linux_record_tdep.size_user_desc = 16;
821 i386_linux_record_tdep.size_io_event = 32;
822 i386_linux_record_tdep.size_iocb = 64;
823 i386_linux_record_tdep.size_epoll_event = 12;
824 i386_linux_record_tdep.size_itimerspec
825 = i386_linux_record_tdep.size_timespec * 2;
826 i386_linux_record_tdep.size_mq_attr = 32;
827 i386_linux_record_tdep.size_siginfo = 128;
828 i386_linux_record_tdep.size_termios = 36;
829 i386_linux_record_tdep.size_termios2 = 44;
830 i386_linux_record_tdep.size_pid_t = 4;
831 i386_linux_record_tdep.size_winsize = 8;
832 i386_linux_record_tdep.size_serial_struct = 60;
833 i386_linux_record_tdep.size_serial_icounter_struct = 80;
834 i386_linux_record_tdep.size_hayes_esp_config = 12;
835 i386_linux_record_tdep.size_size_t = 4;
836 i386_linux_record_tdep.size_iovec = 8;
838 /* These values are the second argument of system call "sys_ioctl".
839 They are obtained from Linux Kernel source. */
840 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
841 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
842 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
843 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
844 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
845 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
846 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
847 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
848 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
849 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
850 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
851 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
852 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
853 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
854 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
855 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
856 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
857 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
858 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
859 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
860 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
861 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
862 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
863 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
864 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
865 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
866 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
867 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
868 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
869 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
870 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
871 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
872 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
873 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
874 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
875 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
876 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
877 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
878 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
879 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
880 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
881 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
882 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
883 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
884 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
885 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
886 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
887 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
888 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
889 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
890 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
891 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
892 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
893 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
894 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
895 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
896 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
897 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
898 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
899 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
900 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
901 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
902 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
903 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
904 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
906 /* These values are the second argument of system call "sys_fcntl"
907 and "sys_fcntl64". They are obtained from Linux Kernel source. */
908 i386_linux_record_tdep.fcntl_F_GETLK = 5;
909 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
910 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
911 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
913 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
914 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
915 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
916 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
917 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
918 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
920 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
921 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
922 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
924 /* N_FUN symbols in shared libaries have 0 for their values and need
925 to be relocated. */
926 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
928 /* GNU/Linux uses SVR4-style shared libraries. */
929 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
930 set_solib_svr4_fetch_link_map_offsets
931 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
933 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
934 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
936 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
938 /* Enable TLS support. */
939 set_gdbarch_fetch_tls_load_module_address (gdbarch,
940 svr4_fetch_objfile_link_map);
942 /* Install supported register note sections. */
943 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx"))
944 set_gdbarch_core_regset_sections (gdbarch, i386_linux_avx_regset_sections);
945 else if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse"))
946 set_gdbarch_core_regset_sections (gdbarch, i386_linux_sse_regset_sections);
947 else
948 set_gdbarch_core_regset_sections (gdbarch, i386_linux_regset_sections);
950 set_gdbarch_core_read_description (gdbarch,
951 i386_linux_core_read_description);
953 /* Displaced stepping. */
954 set_gdbarch_displaced_step_copy_insn (gdbarch,
955 i386_linux_displaced_step_copy_insn);
956 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
957 set_gdbarch_displaced_step_free_closure (gdbarch,
958 simple_displaced_step_free_closure);
959 set_gdbarch_displaced_step_location (gdbarch,
960 displaced_step_at_entry_point);
962 /* Functions for 'catch syscall'. */
963 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_I386);
964 set_gdbarch_get_syscall_number (gdbarch,
965 i386_linux_get_syscall_number);
967 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
970 /* Provide a prototype to silence -Wmissing-prototypes. */
971 extern void _initialize_i386_linux_tdep (void);
973 void
974 _initialize_i386_linux_tdep (void)
976 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
977 i386_linux_init_abi);
979 /* Initialize the Linux target description. */
980 initialize_tdesc_i386_linux ();
981 initialize_tdesc_i386_mmx_linux ();
982 initialize_tdesc_i386_avx_linux ();