1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2000, 2002-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
22 #include "gdb_string.h"
33 #include "gdb_assert.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
43 #include "tracepoint.h"
46 /* Prototypes for exported functions. */
48 void _initialize_values (void);
50 /* Definition of a user function. */
51 struct internal_function
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
59 internal_function_fn handler
;
61 /* User data for the handler. */
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
69 /* Lowest offset in the range. */
72 /* Length of the range. */
76 typedef struct range range_s
;
80 /* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
84 ranges_overlap (int offset1
, int len1
,
85 int offset2
, int len2
)
89 l
= max (offset1
, offset2
);
90 h
= min (offset1
+ len1
, offset2
+ len2
);
94 /* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
100 range_lessthan (const range_s
*r1
, const range_s
*r2
)
102 return r1
->offset
< r2
->offset
;
105 /* Returns true if RANGES contains any range that overlaps [OFFSET,
109 ranges_contain (VEC(range_s
) *ranges
, int offset
, int length
)
114 what
.offset
= offset
;
115 what
.length
= length
;
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
127 |---| |---| |------| ... |--|
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
137 Then we need to check if the I range overlaps the I range itself.
142 |---| |---| |-------| ... |--|
148 i
= VEC_lower_bound (range_s
, ranges
, &what
, range_lessthan
);
152 struct range
*bef
= VEC_index (range_s
, ranges
, i
- 1);
154 if (ranges_overlap (bef
->offset
, bef
->length
, offset
, length
))
158 if (i
< VEC_length (range_s
, ranges
))
160 struct range
*r
= VEC_index (range_s
, ranges
, i
);
162 if (ranges_overlap (r
->offset
, r
->length
, offset
, length
))
169 static struct cmd_list_element
*functionlist
;
171 /* Note that the fields in this structure are arranged to save a bit
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
180 /* Is it modifiable? Only relevant if lval != not_lval. */
181 unsigned int modifiable
: 1;
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy
: 1;
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out
: 1;
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized
: 1;
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack
: 1;
210 /* If the value has been released. */
211 unsigned int released
: 1;
213 /* Location of value (if lval). */
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
221 /* Pointer to internal variable. */
222 struct internalvar
*internalvar
;
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
229 /* Functions to call. */
230 const struct lval_funcs
*funcs
;
232 /* Closure for those functions to use. */
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
244 /* Only used for bitfields; number of bits contained in them. */
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
262 struct value
*parent
;
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id
;
268 /* Type of the value. */
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
311 struct type
*enclosing_type
;
313 int pointed_to_offset
;
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
321 /* Register number if the value is from a register. */
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s
) *unavailable
;
335 value_bytes_available (const struct value
*value
, int offset
, int length
)
337 gdb_assert (!value
->lazy
);
339 return !ranges_contain (value
->unavailable
, offset
, length
);
343 value_entirely_available (struct value
*value
)
345 /* We can only tell whether the whole value is available when we try
348 value_fetch_lazy (value
);
350 if (VEC_empty (range_s
, value
->unavailable
))
356 mark_value_bytes_unavailable (struct value
*value
, int offset
, int length
)
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
364 newr
.offset
= offset
;
365 newr
.length
= length
;
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
373 #1 - overlaps with previous
377 |---| |---| |------| ... |--|
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
390 #2 - contiguous with previous
394 |--| |---| |------| ... |--|
399 If there's no overlap with the previous range, as in:
401 #3 - not overlapping and not contiguous
405 |--| |---| |------| ... |--|
412 #4 - R is the range with lowest offset
416 |--| |---| |------| ... |--|
421 ... we just push the new range to I.
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
427 #5 - overlapping following ranges
430 |------------------------|
431 |--| |---| |------| ... |--|
440 |--| |---| |------| ... |--|
447 i
= VEC_lower_bound (range_s
, value
->unavailable
, &newr
, range_lessthan
);
450 struct range
*bef
= VEC_index (range_s
, value
->unavailable
, i
- 1);
452 if (ranges_overlap (bef
->offset
, bef
->length
, offset
, length
))
455 ULONGEST l
= min (bef
->offset
, offset
);
456 ULONGEST h
= max (bef
->offset
+ bef
->length
, offset
+ length
);
462 else if (offset
== bef
->offset
+ bef
->length
)
465 bef
->length
+= length
;
471 VEC_safe_insert (range_s
, value
->unavailable
, i
, &newr
);
477 VEC_safe_insert (range_s
, value
->unavailable
, i
, &newr
);
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i
+ 1 < VEC_length (range_s
, value
->unavailable
))
489 /* Get the range we just touched. */
490 t
= VEC_index (range_s
, value
->unavailable
, i
);
494 for (; VEC_iterate (range_s
, value
->unavailable
, i
, r
); i
++)
495 if (r
->offset
<= t
->offset
+ t
->length
)
499 l
= min (t
->offset
, r
->offset
);
500 h
= max (t
->offset
+ t
->length
, r
->offset
+ r
->length
);
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
516 VEC_block_remove (range_s
, value
->unavailable
, next
, removed
);
520 /* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
526 find_first_range_overlap (VEC(range_s
) *ranges
, int pos
,
527 int offset
, int length
)
532 for (i
= pos
; VEC_iterate (range_s
, ranges
, i
, r
); i
++)
533 if (ranges_overlap (r
->offset
, r
->length
, offset
, length
))
540 value_available_contents_eq (const struct value
*val1
, int offset1
,
541 const struct value
*val2
, int offset2
,
544 int idx1
= 0, idx2
= 0;
546 /* This routine is used by printing routines, where we should
547 already have read the value. Note that we only know whether a
548 value chunk is available if we've tried to read it. */
549 gdb_assert (!val1
->lazy
&& !val2
->lazy
);
557 idx1
= find_first_range_overlap (val1
->unavailable
, idx1
,
559 idx2
= find_first_range_overlap (val2
->unavailable
, idx2
,
562 /* The usual case is for both values to be completely available. */
563 if (idx1
== -1 && idx2
== -1)
564 return (memcmp (val1
->contents
+ offset1
,
565 val2
->contents
+ offset2
,
567 /* The contents only match equal if the available set matches as
569 else if (idx1
== -1 || idx2
== -1)
572 gdb_assert (idx1
!= -1 && idx2
!= -1);
574 r1
= VEC_index (range_s
, val1
->unavailable
, idx1
);
575 r2
= VEC_index (range_s
, val2
->unavailable
, idx2
);
577 /* Get the unavailable windows intersected by the incoming
578 ranges. The first and last ranges that overlap the argument
579 range may be wider than said incoming arguments ranges. */
580 l1
= max (offset1
, r1
->offset
);
581 h1
= min (offset1
+ length
, r1
->offset
+ r1
->length
);
583 l2
= max (offset2
, r2
->offset
);
584 h2
= min (offset2
+ length
, r2
->offset
+ r2
->length
);
586 /* Make them relative to the respective start offsets, so we can
587 compare them for equality. */
594 /* Different availability, no match. */
595 if (l1
!= l2
|| h1
!= h2
)
598 /* Compare the _available_ contents. */
599 if (memcmp (val1
->contents
+ offset1
,
600 val2
->contents
+ offset2
,
612 /* Prototypes for local functions. */
614 static void show_values (char *, int);
616 static void show_convenience (char *, int);
619 /* The value-history records all the values printed
620 by print commands during this session. Each chunk
621 records 60 consecutive values. The first chunk on
622 the chain records the most recent values.
623 The total number of values is in value_history_count. */
625 #define VALUE_HISTORY_CHUNK 60
627 struct value_history_chunk
629 struct value_history_chunk
*next
;
630 struct value
*values
[VALUE_HISTORY_CHUNK
];
633 /* Chain of chunks now in use. */
635 static struct value_history_chunk
*value_history_chain
;
637 static int value_history_count
; /* Abs number of last entry stored. */
640 /* List of all value objects currently allocated
641 (except for those released by calls to release_value)
642 This is so they can be freed after each command. */
644 static struct value
*all_values
;
646 /* Allocate a lazy value for type TYPE. Its actual content is
647 "lazily" allocated too: the content field of the return value is
648 NULL; it will be allocated when it is fetched from the target. */
651 allocate_value_lazy (struct type
*type
)
655 /* Call check_typedef on our type to make sure that, if TYPE
656 is a TYPE_CODE_TYPEDEF, its length is set to the length
657 of the target type instead of zero. However, we do not
658 replace the typedef type by the target type, because we want
659 to keep the typedef in order to be able to set the VAL's type
660 description correctly. */
661 check_typedef (type
);
663 val
= (struct value
*) xzalloc (sizeof (struct value
));
664 val
->contents
= NULL
;
665 val
->next
= all_values
;
668 val
->enclosing_type
= type
;
669 VALUE_LVAL (val
) = not_lval
;
670 val
->location
.address
= 0;
671 VALUE_FRAME_ID (val
) = null_frame_id
;
675 VALUE_REGNUM (val
) = -1;
677 val
->optimized_out
= 0;
678 val
->embedded_offset
= 0;
679 val
->pointed_to_offset
= 0;
681 val
->initialized
= 1; /* Default to initialized. */
683 /* Values start out on the all_values chain. */
684 val
->reference_count
= 1;
689 /* Allocate the contents of VAL if it has not been allocated yet. */
692 allocate_value_contents (struct value
*val
)
695 val
->contents
= (gdb_byte
*) xzalloc (TYPE_LENGTH (val
->enclosing_type
));
698 /* Allocate a value and its contents for type TYPE. */
701 allocate_value (struct type
*type
)
703 struct value
*val
= allocate_value_lazy (type
);
705 allocate_value_contents (val
);
710 /* Allocate a value that has the correct length
711 for COUNT repetitions of type TYPE. */
714 allocate_repeat_value (struct type
*type
, int count
)
716 int low_bound
= current_language
->string_lower_bound
; /* ??? */
717 /* FIXME-type-allocation: need a way to free this type when we are
719 struct type
*array_type
720 = lookup_array_range_type (type
, low_bound
, count
+ low_bound
- 1);
722 return allocate_value (array_type
);
726 allocate_computed_value (struct type
*type
,
727 const struct lval_funcs
*funcs
,
730 struct value
*v
= allocate_value_lazy (type
);
732 VALUE_LVAL (v
) = lval_computed
;
733 v
->location
.computed
.funcs
= funcs
;
734 v
->location
.computed
.closure
= closure
;
739 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
742 allocate_optimized_out_value (struct type
*type
)
744 struct value
*retval
= allocate_value_lazy (type
);
746 set_value_optimized_out (retval
, 1);
751 /* Accessor methods. */
754 value_next (struct value
*value
)
760 value_type (const struct value
*value
)
765 deprecated_set_value_type (struct value
*value
, struct type
*type
)
771 value_offset (const struct value
*value
)
773 return value
->offset
;
776 set_value_offset (struct value
*value
, int offset
)
778 value
->offset
= offset
;
782 value_bitpos (const struct value
*value
)
784 return value
->bitpos
;
787 set_value_bitpos (struct value
*value
, int bit
)
793 value_bitsize (const struct value
*value
)
795 return value
->bitsize
;
798 set_value_bitsize (struct value
*value
, int bit
)
800 value
->bitsize
= bit
;
804 value_parent (struct value
*value
)
806 return value
->parent
;
812 set_value_parent (struct value
*value
, struct value
*parent
)
814 value
->parent
= parent
;
818 value_contents_raw (struct value
*value
)
820 allocate_value_contents (value
);
821 return value
->contents
+ value
->embedded_offset
;
825 value_contents_all_raw (struct value
*value
)
827 allocate_value_contents (value
);
828 return value
->contents
;
832 value_enclosing_type (struct value
*value
)
834 return value
->enclosing_type
;
837 /* Look at value.h for description. */
840 value_actual_type (struct value
*value
, int resolve_simple_types
,
841 int *real_type_found
)
843 struct value_print_options opts
;
846 get_user_print_options (&opts
);
849 *real_type_found
= 0;
850 result
= value_type (value
);
851 if (opts
.objectprint
)
853 if (TYPE_CODE (result
) == TYPE_CODE_PTR
854 || TYPE_CODE (result
) == TYPE_CODE_REF
)
856 struct type
*real_type
;
858 real_type
= value_rtti_indirect_type (value
, NULL
, NULL
, NULL
);
862 *real_type_found
= 1;
866 else if (resolve_simple_types
)
869 *real_type_found
= 1;
870 result
= value_enclosing_type (value
);
878 require_not_optimized_out (const struct value
*value
)
880 if (value
->optimized_out
)
881 error (_("value has been optimized out"));
885 require_available (const struct value
*value
)
887 if (!VEC_empty (range_s
, value
->unavailable
))
888 throw_error (NOT_AVAILABLE_ERROR
, _("value is not available"));
892 value_contents_for_printing (struct value
*value
)
895 value_fetch_lazy (value
);
896 return value
->contents
;
900 value_contents_for_printing_const (const struct value
*value
)
902 gdb_assert (!value
->lazy
);
903 return value
->contents
;
907 value_contents_all (struct value
*value
)
909 const gdb_byte
*result
= value_contents_for_printing (value
);
910 require_not_optimized_out (value
);
911 require_available (value
);
915 /* Copy LENGTH bytes of SRC value's (all) contents
916 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
917 contents, starting at DST_OFFSET. If unavailable contents are
918 being copied from SRC, the corresponding DST contents are marked
919 unavailable accordingly. Neither DST nor SRC may be lazy
922 It is assumed the contents of DST in the [DST_OFFSET,
923 DST_OFFSET+LENGTH) range are wholly available. */
926 value_contents_copy_raw (struct value
*dst
, int dst_offset
,
927 struct value
*src
, int src_offset
, int length
)
932 /* A lazy DST would make that this copy operation useless, since as
933 soon as DST's contents were un-lazied (by a later value_contents
934 call, say), the contents would be overwritten. A lazy SRC would
935 mean we'd be copying garbage. */
936 gdb_assert (!dst
->lazy
&& !src
->lazy
);
938 /* The overwritten DST range gets unavailability ORed in, not
939 replaced. Make sure to remember to implement replacing if it
940 turns out actually necessary. */
941 gdb_assert (value_bytes_available (dst
, dst_offset
, length
));
944 memcpy (value_contents_all_raw (dst
) + dst_offset
,
945 value_contents_all_raw (src
) + src_offset
,
948 /* Copy the meta-data, adjusted. */
949 for (i
= 0; VEC_iterate (range_s
, src
->unavailable
, i
, r
); i
++)
953 l
= max (r
->offset
, src_offset
);
954 h
= min (r
->offset
+ r
->length
, src_offset
+ length
);
957 mark_value_bytes_unavailable (dst
,
958 dst_offset
+ (l
- src_offset
),
963 /* Copy LENGTH bytes of SRC value's (all) contents
964 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
965 (all) contents, starting at DST_OFFSET. If unavailable contents
966 are being copied from SRC, the corresponding DST contents are
967 marked unavailable accordingly. DST must not be lazy. If SRC is
968 lazy, it will be fetched now. If SRC is not valid (is optimized
969 out), an error is thrown.
971 It is assumed the contents of DST in the [DST_OFFSET,
972 DST_OFFSET+LENGTH) range are wholly available. */
975 value_contents_copy (struct value
*dst
, int dst_offset
,
976 struct value
*src
, int src_offset
, int length
)
978 require_not_optimized_out (src
);
981 value_fetch_lazy (src
);
983 value_contents_copy_raw (dst
, dst_offset
, src
, src_offset
, length
);
987 value_lazy (struct value
*value
)
993 set_value_lazy (struct value
*value
, int val
)
999 value_stack (struct value
*value
)
1001 return value
->stack
;
1005 set_value_stack (struct value
*value
, int val
)
1011 value_contents (struct value
*value
)
1013 const gdb_byte
*result
= value_contents_writeable (value
);
1014 require_not_optimized_out (value
);
1015 require_available (value
);
1020 value_contents_writeable (struct value
*value
)
1023 value_fetch_lazy (value
);
1024 return value_contents_raw (value
);
1027 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1028 this function is different from value_equal; in C the operator ==
1029 can return 0 even if the two values being compared are equal. */
1032 value_contents_equal (struct value
*val1
, struct value
*val2
)
1038 type1
= check_typedef (value_type (val1
));
1039 type2
= check_typedef (value_type (val2
));
1040 len
= TYPE_LENGTH (type1
);
1041 if (len
!= TYPE_LENGTH (type2
))
1044 return (memcmp (value_contents (val1
), value_contents (val2
), len
) == 0);
1048 value_optimized_out (struct value
*value
)
1050 return value
->optimized_out
;
1054 set_value_optimized_out (struct value
*value
, int val
)
1056 value
->optimized_out
= val
;
1060 value_entirely_optimized_out (const struct value
*value
)
1062 if (!value
->optimized_out
)
1064 if (value
->lval
!= lval_computed
1065 || !value
->location
.computed
.funcs
->check_any_valid
)
1067 return !value
->location
.computed
.funcs
->check_any_valid (value
);
1071 value_bits_valid (const struct value
*value
, int offset
, int length
)
1073 if (!value
->optimized_out
)
1075 if (value
->lval
!= lval_computed
1076 || !value
->location
.computed
.funcs
->check_validity
)
1078 return value
->location
.computed
.funcs
->check_validity (value
, offset
,
1083 value_bits_synthetic_pointer (const struct value
*value
,
1084 int offset
, int length
)
1086 if (value
->lval
!= lval_computed
1087 || !value
->location
.computed
.funcs
->check_synthetic_pointer
)
1089 return value
->location
.computed
.funcs
->check_synthetic_pointer (value
,
1095 value_embedded_offset (struct value
*value
)
1097 return value
->embedded_offset
;
1101 set_value_embedded_offset (struct value
*value
, int val
)
1103 value
->embedded_offset
= val
;
1107 value_pointed_to_offset (struct value
*value
)
1109 return value
->pointed_to_offset
;
1113 set_value_pointed_to_offset (struct value
*value
, int val
)
1115 value
->pointed_to_offset
= val
;
1118 const struct lval_funcs
*
1119 value_computed_funcs (const struct value
*v
)
1121 gdb_assert (value_lval_const (v
) == lval_computed
);
1123 return v
->location
.computed
.funcs
;
1127 value_computed_closure (const struct value
*v
)
1129 gdb_assert (v
->lval
== lval_computed
);
1131 return v
->location
.computed
.closure
;
1135 deprecated_value_lval_hack (struct value
*value
)
1137 return &value
->lval
;
1141 value_lval_const (const struct value
*value
)
1147 value_address (const struct value
*value
)
1149 if (value
->lval
== lval_internalvar
1150 || value
->lval
== lval_internalvar_component
)
1152 if (value
->parent
!= NULL
)
1153 return value_address (value
->parent
) + value
->offset
;
1155 return value
->location
.address
+ value
->offset
;
1159 value_raw_address (struct value
*value
)
1161 if (value
->lval
== lval_internalvar
1162 || value
->lval
== lval_internalvar_component
)
1164 return value
->location
.address
;
1168 set_value_address (struct value
*value
, CORE_ADDR addr
)
1170 gdb_assert (value
->lval
!= lval_internalvar
1171 && value
->lval
!= lval_internalvar_component
);
1172 value
->location
.address
= addr
;
1175 struct internalvar
**
1176 deprecated_value_internalvar_hack (struct value
*value
)
1178 return &value
->location
.internalvar
;
1182 deprecated_value_frame_id_hack (struct value
*value
)
1184 return &value
->frame_id
;
1188 deprecated_value_regnum_hack (struct value
*value
)
1190 return &value
->regnum
;
1194 deprecated_value_modifiable (struct value
*value
)
1196 return value
->modifiable
;
1199 deprecated_set_value_modifiable (struct value
*value
, int modifiable
)
1201 value
->modifiable
= modifiable
;
1204 /* Return a mark in the value chain. All values allocated after the
1205 mark is obtained (except for those released) are subject to being freed
1206 if a subsequent value_free_to_mark is passed the mark. */
1213 /* Take a reference to VAL. VAL will not be deallocated until all
1214 references are released. */
1217 value_incref (struct value
*val
)
1219 val
->reference_count
++;
1222 /* Release a reference to VAL, which was acquired with value_incref.
1223 This function is also called to deallocate values from the value
1227 value_free (struct value
*val
)
1231 gdb_assert (val
->reference_count
> 0);
1232 val
->reference_count
--;
1233 if (val
->reference_count
> 0)
1236 /* If there's an associated parent value, drop our reference to
1238 if (val
->parent
!= NULL
)
1239 value_free (val
->parent
);
1241 if (VALUE_LVAL (val
) == lval_computed
)
1243 const struct lval_funcs
*funcs
= val
->location
.computed
.funcs
;
1245 if (funcs
->free_closure
)
1246 funcs
->free_closure (val
);
1249 xfree (val
->contents
);
1250 VEC_free (range_s
, val
->unavailable
);
1255 /* Free all values allocated since MARK was obtained by value_mark
1256 (except for those released). */
1258 value_free_to_mark (struct value
*mark
)
1263 for (val
= all_values
; val
&& val
!= mark
; val
= next
)
1272 /* Free all the values that have been allocated (except for those released).
1273 Call after each command, successful or not.
1274 In practice this is called before each command, which is sufficient. */
1277 free_all_values (void)
1282 for (val
= all_values
; val
; val
= next
)
1292 /* Frees all the elements in a chain of values. */
1295 free_value_chain (struct value
*v
)
1301 next
= value_next (v
);
1306 /* Remove VAL from the chain all_values
1307 so it will not be freed automatically. */
1310 release_value (struct value
*val
)
1314 if (all_values
== val
)
1316 all_values
= val
->next
;
1322 for (v
= all_values
; v
; v
= v
->next
)
1326 v
->next
= val
->next
;
1334 /* If the value is not already released, release it.
1335 If the value is already released, increment its reference count.
1336 That is, this function ensures that the value is released from the
1337 value chain and that the caller owns a reference to it. */
1340 release_value_or_incref (struct value
*val
)
1345 release_value (val
);
1348 /* Release all values up to mark */
1350 value_release_to_mark (struct value
*mark
)
1355 for (val
= next
= all_values
; next
; next
= next
->next
)
1357 if (next
->next
== mark
)
1359 all_values
= next
->next
;
1369 /* Return a copy of the value ARG.
1370 It contains the same contents, for same memory address,
1371 but it's a different block of storage. */
1374 value_copy (struct value
*arg
)
1376 struct type
*encl_type
= value_enclosing_type (arg
);
1379 if (value_lazy (arg
))
1380 val
= allocate_value_lazy (encl_type
);
1382 val
= allocate_value (encl_type
);
1383 val
->type
= arg
->type
;
1384 VALUE_LVAL (val
) = VALUE_LVAL (arg
);
1385 val
->location
= arg
->location
;
1386 val
->offset
= arg
->offset
;
1387 val
->bitpos
= arg
->bitpos
;
1388 val
->bitsize
= arg
->bitsize
;
1389 VALUE_FRAME_ID (val
) = VALUE_FRAME_ID (arg
);
1390 VALUE_REGNUM (val
) = VALUE_REGNUM (arg
);
1391 val
->lazy
= arg
->lazy
;
1392 val
->optimized_out
= arg
->optimized_out
;
1393 val
->embedded_offset
= value_embedded_offset (arg
);
1394 val
->pointed_to_offset
= arg
->pointed_to_offset
;
1395 val
->modifiable
= arg
->modifiable
;
1396 if (!value_lazy (val
))
1398 memcpy (value_contents_all_raw (val
), value_contents_all_raw (arg
),
1399 TYPE_LENGTH (value_enclosing_type (arg
)));
1402 val
->unavailable
= VEC_copy (range_s
, arg
->unavailable
);
1403 val
->parent
= arg
->parent
;
1405 value_incref (val
->parent
);
1406 if (VALUE_LVAL (val
) == lval_computed
)
1408 const struct lval_funcs
*funcs
= val
->location
.computed
.funcs
;
1410 if (funcs
->copy_closure
)
1411 val
->location
.computed
.closure
= funcs
->copy_closure (val
);
1416 /* Return a version of ARG that is non-lvalue. */
1419 value_non_lval (struct value
*arg
)
1421 if (VALUE_LVAL (arg
) != not_lval
)
1423 struct type
*enc_type
= value_enclosing_type (arg
);
1424 struct value
*val
= allocate_value (enc_type
);
1426 memcpy (value_contents_all_raw (val
), value_contents_all (arg
),
1427 TYPE_LENGTH (enc_type
));
1428 val
->type
= arg
->type
;
1429 set_value_embedded_offset (val
, value_embedded_offset (arg
));
1430 set_value_pointed_to_offset (val
, value_pointed_to_offset (arg
));
1437 set_value_component_location (struct value
*component
,
1438 const struct value
*whole
)
1440 if (whole
->lval
== lval_internalvar
)
1441 VALUE_LVAL (component
) = lval_internalvar_component
;
1443 VALUE_LVAL (component
) = whole
->lval
;
1445 component
->location
= whole
->location
;
1446 if (whole
->lval
== lval_computed
)
1448 const struct lval_funcs
*funcs
= whole
->location
.computed
.funcs
;
1450 if (funcs
->copy_closure
)
1451 component
->location
.computed
.closure
= funcs
->copy_closure (whole
);
1456 /* Access to the value history. */
1458 /* Record a new value in the value history.
1459 Returns the absolute history index of the entry.
1460 Result of -1 indicates the value was not saved; otherwise it is the
1461 value history index of this new item. */
1464 record_latest_value (struct value
*val
)
1468 /* We don't want this value to have anything to do with the inferior anymore.
1469 In particular, "set $1 = 50" should not affect the variable from which
1470 the value was taken, and fast watchpoints should be able to assume that
1471 a value on the value history never changes. */
1472 if (value_lazy (val
))
1473 value_fetch_lazy (val
);
1474 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1475 from. This is a bit dubious, because then *&$1 does not just return $1
1476 but the current contents of that location. c'est la vie... */
1477 val
->modifiable
= 0;
1478 release_value (val
);
1480 /* Here we treat value_history_count as origin-zero
1481 and applying to the value being stored now. */
1483 i
= value_history_count
% VALUE_HISTORY_CHUNK
;
1486 struct value_history_chunk
*new
1487 = (struct value_history_chunk
*)
1489 xmalloc (sizeof (struct value_history_chunk
));
1490 memset (new->values
, 0, sizeof new->values
);
1491 new->next
= value_history_chain
;
1492 value_history_chain
= new;
1495 value_history_chain
->values
[i
] = val
;
1497 /* Now we regard value_history_count as origin-one
1498 and applying to the value just stored. */
1500 return ++value_history_count
;
1503 /* Return a copy of the value in the history with sequence number NUM. */
1506 access_value_history (int num
)
1508 struct value_history_chunk
*chunk
;
1513 absnum
+= value_history_count
;
1518 error (_("The history is empty."));
1520 error (_("There is only one value in the history."));
1522 error (_("History does not go back to $$%d."), -num
);
1524 if (absnum
> value_history_count
)
1525 error (_("History has not yet reached $%d."), absnum
);
1529 /* Now absnum is always absolute and origin zero. */
1531 chunk
= value_history_chain
;
1532 for (i
= (value_history_count
- 1) / VALUE_HISTORY_CHUNK
1533 - absnum
/ VALUE_HISTORY_CHUNK
;
1535 chunk
= chunk
->next
;
1537 return value_copy (chunk
->values
[absnum
% VALUE_HISTORY_CHUNK
]);
1541 show_values (char *num_exp
, int from_tty
)
1549 /* "show values +" should print from the stored position.
1550 "show values <exp>" should print around value number <exp>. */
1551 if (num_exp
[0] != '+' || num_exp
[1] != '\0')
1552 num
= parse_and_eval_long (num_exp
) - 5;
1556 /* "show values" means print the last 10 values. */
1557 num
= value_history_count
- 9;
1563 for (i
= num
; i
< num
+ 10 && i
<= value_history_count
; i
++)
1565 struct value_print_options opts
;
1567 val
= access_value_history (i
);
1568 printf_filtered (("$%d = "), i
);
1569 get_user_print_options (&opts
);
1570 value_print (val
, gdb_stdout
, &opts
);
1571 printf_filtered (("\n"));
1574 /* The next "show values +" should start after what we just printed. */
1577 /* Hitting just return after this command should do the same thing as
1578 "show values +". If num_exp is null, this is unnecessary, since
1579 "show values +" is not useful after "show values". */
1580 if (from_tty
&& num_exp
)
1587 /* Internal variables. These are variables within the debugger
1588 that hold values assigned by debugger commands.
1589 The user refers to them with a '$' prefix
1590 that does not appear in the variable names stored internally. */
1594 struct internalvar
*next
;
1597 /* We support various different kinds of content of an internal variable.
1598 enum internalvar_kind specifies the kind, and union internalvar_data
1599 provides the data associated with this particular kind. */
1601 enum internalvar_kind
1603 /* The internal variable is empty. */
1606 /* The value of the internal variable is provided directly as
1607 a GDB value object. */
1610 /* A fresh value is computed via a call-back routine on every
1611 access to the internal variable. */
1612 INTERNALVAR_MAKE_VALUE
,
1614 /* The internal variable holds a GDB internal convenience function. */
1615 INTERNALVAR_FUNCTION
,
1617 /* The variable holds an integer value. */
1618 INTERNALVAR_INTEGER
,
1620 /* The variable holds a GDB-provided string. */
1625 union internalvar_data
1627 /* A value object used with INTERNALVAR_VALUE. */
1628 struct value
*value
;
1630 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1633 /* The functions to call. */
1634 const struct internalvar_funcs
*functions
;
1636 /* The function's user-data. */
1640 /* The internal function used with INTERNALVAR_FUNCTION. */
1643 struct internal_function
*function
;
1644 /* True if this is the canonical name for the function. */
1648 /* An integer value used with INTERNALVAR_INTEGER. */
1651 /* If type is non-NULL, it will be used as the type to generate
1652 a value for this internal variable. If type is NULL, a default
1653 integer type for the architecture is used. */
1658 /* A string value used with INTERNALVAR_STRING. */
1663 static struct internalvar
*internalvars
;
1665 /* If the variable does not already exist create it and give it the
1666 value given. If no value is given then the default is zero. */
1668 init_if_undefined_command (char* args
, int from_tty
)
1670 struct internalvar
* intvar
;
1672 /* Parse the expression - this is taken from set_command(). */
1673 struct expression
*expr
= parse_expression (args
);
1674 register struct cleanup
*old_chain
=
1675 make_cleanup (free_current_contents
, &expr
);
1677 /* Validate the expression.
1678 Was the expression an assignment?
1679 Or even an expression at all? */
1680 if (expr
->nelts
== 0 || expr
->elts
[0].opcode
!= BINOP_ASSIGN
)
1681 error (_("Init-if-undefined requires an assignment expression."));
1683 /* Extract the variable from the parsed expression.
1684 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1685 if (expr
->elts
[1].opcode
!= OP_INTERNALVAR
)
1686 error (_("The first parameter to init-if-undefined "
1687 "should be a GDB variable."));
1688 intvar
= expr
->elts
[2].internalvar
;
1690 /* Only evaluate the expression if the lvalue is void.
1691 This may still fail if the expresssion is invalid. */
1692 if (intvar
->kind
== INTERNALVAR_VOID
)
1693 evaluate_expression (expr
);
1695 do_cleanups (old_chain
);
1699 /* Look up an internal variable with name NAME. NAME should not
1700 normally include a dollar sign.
1702 If the specified internal variable does not exist,
1703 the return value is NULL. */
1705 struct internalvar
*
1706 lookup_only_internalvar (const char *name
)
1708 struct internalvar
*var
;
1710 for (var
= internalvars
; var
; var
= var
->next
)
1711 if (strcmp (var
->name
, name
) == 0)
1717 /* Complete NAME by comparing it to the names of internal variables.
1718 Returns a vector of newly allocated strings, or NULL if no matches
1722 complete_internalvar (const char *name
)
1724 VEC (char_ptr
) *result
= NULL
;
1725 struct internalvar
*var
;
1728 len
= strlen (name
);
1730 for (var
= internalvars
; var
; var
= var
->next
)
1731 if (strncmp (var
->name
, name
, len
) == 0)
1733 char *r
= xstrdup (var
->name
);
1735 VEC_safe_push (char_ptr
, result
, r
);
1741 /* Create an internal variable with name NAME and with a void value.
1742 NAME should not normally include a dollar sign. */
1744 struct internalvar
*
1745 create_internalvar (const char *name
)
1747 struct internalvar
*var
;
1749 var
= (struct internalvar
*) xmalloc (sizeof (struct internalvar
));
1750 var
->name
= concat (name
, (char *)NULL
);
1751 var
->kind
= INTERNALVAR_VOID
;
1752 var
->next
= internalvars
;
1757 /* Create an internal variable with name NAME and register FUN as the
1758 function that value_of_internalvar uses to create a value whenever
1759 this variable is referenced. NAME should not normally include a
1760 dollar sign. DATA is passed uninterpreted to FUN when it is
1761 called. CLEANUP, if not NULL, is called when the internal variable
1762 is destroyed. It is passed DATA as its only argument. */
1764 struct internalvar
*
1765 create_internalvar_type_lazy (const char *name
,
1766 const struct internalvar_funcs
*funcs
,
1769 struct internalvar
*var
= create_internalvar (name
);
1771 var
->kind
= INTERNALVAR_MAKE_VALUE
;
1772 var
->u
.make_value
.functions
= funcs
;
1773 var
->u
.make_value
.data
= data
;
1777 /* See documentation in value.h. */
1780 compile_internalvar_to_ax (struct internalvar
*var
,
1781 struct agent_expr
*expr
,
1782 struct axs_value
*value
)
1784 if (var
->kind
!= INTERNALVAR_MAKE_VALUE
1785 || var
->u
.make_value
.functions
->compile_to_ax
== NULL
)
1788 var
->u
.make_value
.functions
->compile_to_ax (var
, expr
, value
,
1789 var
->u
.make_value
.data
);
1793 /* Look up an internal variable with name NAME. NAME should not
1794 normally include a dollar sign.
1796 If the specified internal variable does not exist,
1797 one is created, with a void value. */
1799 struct internalvar
*
1800 lookup_internalvar (const char *name
)
1802 struct internalvar
*var
;
1804 var
= lookup_only_internalvar (name
);
1808 return create_internalvar (name
);
1811 /* Return current value of internal variable VAR. For variables that
1812 are not inherently typed, use a value type appropriate for GDBARCH. */
1815 value_of_internalvar (struct gdbarch
*gdbarch
, struct internalvar
*var
)
1818 struct trace_state_variable
*tsv
;
1820 /* If there is a trace state variable of the same name, assume that
1821 is what we really want to see. */
1822 tsv
= find_trace_state_variable (var
->name
);
1825 tsv
->value_known
= target_get_trace_state_variable_value (tsv
->number
,
1827 if (tsv
->value_known
)
1828 val
= value_from_longest (builtin_type (gdbarch
)->builtin_int64
,
1831 val
= allocate_value (builtin_type (gdbarch
)->builtin_void
);
1837 case INTERNALVAR_VOID
:
1838 val
= allocate_value (builtin_type (gdbarch
)->builtin_void
);
1841 case INTERNALVAR_FUNCTION
:
1842 val
= allocate_value (builtin_type (gdbarch
)->internal_fn
);
1845 case INTERNALVAR_INTEGER
:
1846 if (!var
->u
.integer
.type
)
1847 val
= value_from_longest (builtin_type (gdbarch
)->builtin_int
,
1848 var
->u
.integer
.val
);
1850 val
= value_from_longest (var
->u
.integer
.type
, var
->u
.integer
.val
);
1853 case INTERNALVAR_STRING
:
1854 val
= value_cstring (var
->u
.string
, strlen (var
->u
.string
),
1855 builtin_type (gdbarch
)->builtin_char
);
1858 case INTERNALVAR_VALUE
:
1859 val
= value_copy (var
->u
.value
);
1860 if (value_lazy (val
))
1861 value_fetch_lazy (val
);
1864 case INTERNALVAR_MAKE_VALUE
:
1865 val
= (*var
->u
.make_value
.functions
->make_value
) (gdbarch
, var
,
1866 var
->u
.make_value
.data
);
1870 internal_error (__FILE__
, __LINE__
, _("bad kind"));
1873 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1874 on this value go back to affect the original internal variable.
1876 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1877 no underlying modifyable state in the internal variable.
1879 Likewise, if the variable's value is a computed lvalue, we want
1880 references to it to produce another computed lvalue, where
1881 references and assignments actually operate through the
1882 computed value's functions.
1884 This means that internal variables with computed values
1885 behave a little differently from other internal variables:
1886 assignments to them don't just replace the previous value
1887 altogether. At the moment, this seems like the behavior we
1890 if (var
->kind
!= INTERNALVAR_MAKE_VALUE
1891 && val
->lval
!= lval_computed
)
1893 VALUE_LVAL (val
) = lval_internalvar
;
1894 VALUE_INTERNALVAR (val
) = var
;
1901 get_internalvar_integer (struct internalvar
*var
, LONGEST
*result
)
1903 if (var
->kind
== INTERNALVAR_INTEGER
)
1905 *result
= var
->u
.integer
.val
;
1909 if (var
->kind
== INTERNALVAR_VALUE
)
1911 struct type
*type
= check_typedef (value_type (var
->u
.value
));
1913 if (TYPE_CODE (type
) == TYPE_CODE_INT
)
1915 *result
= value_as_long (var
->u
.value
);
1924 get_internalvar_function (struct internalvar
*var
,
1925 struct internal_function
**result
)
1929 case INTERNALVAR_FUNCTION
:
1930 *result
= var
->u
.fn
.function
;
1939 set_internalvar_component (struct internalvar
*var
, int offset
, int bitpos
,
1940 int bitsize
, struct value
*newval
)
1946 case INTERNALVAR_VALUE
:
1947 addr
= value_contents_writeable (var
->u
.value
);
1950 modify_field (value_type (var
->u
.value
), addr
+ offset
,
1951 value_as_long (newval
), bitpos
, bitsize
);
1953 memcpy (addr
+ offset
, value_contents (newval
),
1954 TYPE_LENGTH (value_type (newval
)));
1958 /* We can never get a component of any other kind. */
1959 internal_error (__FILE__
, __LINE__
, _("set_internalvar_component"));
1964 set_internalvar (struct internalvar
*var
, struct value
*val
)
1966 enum internalvar_kind new_kind
;
1967 union internalvar_data new_data
= { 0 };
1969 if (var
->kind
== INTERNALVAR_FUNCTION
&& var
->u
.fn
.canonical
)
1970 error (_("Cannot overwrite convenience function %s"), var
->name
);
1972 /* Prepare new contents. */
1973 switch (TYPE_CODE (check_typedef (value_type (val
))))
1975 case TYPE_CODE_VOID
:
1976 new_kind
= INTERNALVAR_VOID
;
1979 case TYPE_CODE_INTERNAL_FUNCTION
:
1980 gdb_assert (VALUE_LVAL (val
) == lval_internalvar
);
1981 new_kind
= INTERNALVAR_FUNCTION
;
1982 get_internalvar_function (VALUE_INTERNALVAR (val
),
1983 &new_data
.fn
.function
);
1984 /* Copies created here are never canonical. */
1988 new_kind
= INTERNALVAR_VALUE
;
1989 new_data
.value
= value_copy (val
);
1990 new_data
.value
->modifiable
= 1;
1992 /* Force the value to be fetched from the target now, to avoid problems
1993 later when this internalvar is referenced and the target is gone or
1995 if (value_lazy (new_data
.value
))
1996 value_fetch_lazy (new_data
.value
);
1998 /* Release the value from the value chain to prevent it from being
1999 deleted by free_all_values. From here on this function should not
2000 call error () until new_data is installed into the var->u to avoid
2002 release_value (new_data
.value
);
2006 /* Clean up old contents. */
2007 clear_internalvar (var
);
2010 var
->kind
= new_kind
;
2012 /* End code which must not call error(). */
2016 set_internalvar_integer (struct internalvar
*var
, LONGEST l
)
2018 /* Clean up old contents. */
2019 clear_internalvar (var
);
2021 var
->kind
= INTERNALVAR_INTEGER
;
2022 var
->u
.integer
.type
= NULL
;
2023 var
->u
.integer
.val
= l
;
2027 set_internalvar_string (struct internalvar
*var
, const char *string
)
2029 /* Clean up old contents. */
2030 clear_internalvar (var
);
2032 var
->kind
= INTERNALVAR_STRING
;
2033 var
->u
.string
= xstrdup (string
);
2037 set_internalvar_function (struct internalvar
*var
, struct internal_function
*f
)
2039 /* Clean up old contents. */
2040 clear_internalvar (var
);
2042 var
->kind
= INTERNALVAR_FUNCTION
;
2043 var
->u
.fn
.function
= f
;
2044 var
->u
.fn
.canonical
= 1;
2045 /* Variables installed here are always the canonical version. */
2049 clear_internalvar (struct internalvar
*var
)
2051 /* Clean up old contents. */
2054 case INTERNALVAR_VALUE
:
2055 value_free (var
->u
.value
);
2058 case INTERNALVAR_STRING
:
2059 xfree (var
->u
.string
);
2062 case INTERNALVAR_MAKE_VALUE
:
2063 if (var
->u
.make_value
.functions
->destroy
!= NULL
)
2064 var
->u
.make_value
.functions
->destroy (var
->u
.make_value
.data
);
2071 /* Reset to void kind. */
2072 var
->kind
= INTERNALVAR_VOID
;
2076 internalvar_name (struct internalvar
*var
)
2081 static struct internal_function
*
2082 create_internal_function (const char *name
,
2083 internal_function_fn handler
, void *cookie
)
2085 struct internal_function
*ifn
= XNEW (struct internal_function
);
2087 ifn
->name
= xstrdup (name
);
2088 ifn
->handler
= handler
;
2089 ifn
->cookie
= cookie
;
2094 value_internal_function_name (struct value
*val
)
2096 struct internal_function
*ifn
;
2099 gdb_assert (VALUE_LVAL (val
) == lval_internalvar
);
2100 result
= get_internalvar_function (VALUE_INTERNALVAR (val
), &ifn
);
2101 gdb_assert (result
);
2107 call_internal_function (struct gdbarch
*gdbarch
,
2108 const struct language_defn
*language
,
2109 struct value
*func
, int argc
, struct value
**argv
)
2111 struct internal_function
*ifn
;
2114 gdb_assert (VALUE_LVAL (func
) == lval_internalvar
);
2115 result
= get_internalvar_function (VALUE_INTERNALVAR (func
), &ifn
);
2116 gdb_assert (result
);
2118 return (*ifn
->handler
) (gdbarch
, language
, ifn
->cookie
, argc
, argv
);
2121 /* The 'function' command. This does nothing -- it is just a
2122 placeholder to let "help function NAME" work. This is also used as
2123 the implementation of the sub-command that is created when
2124 registering an internal function. */
2126 function_command (char *command
, int from_tty
)
2131 /* Clean up if an internal function's command is destroyed. */
2133 function_destroyer (struct cmd_list_element
*self
, void *ignore
)
2139 /* Add a new internal function. NAME is the name of the function; DOC
2140 is a documentation string describing the function. HANDLER is
2141 called when the function is invoked. COOKIE is an arbitrary
2142 pointer which is passed to HANDLER and is intended for "user
2145 add_internal_function (const char *name
, const char *doc
,
2146 internal_function_fn handler
, void *cookie
)
2148 struct cmd_list_element
*cmd
;
2149 struct internal_function
*ifn
;
2150 struct internalvar
*var
= lookup_internalvar (name
);
2152 ifn
= create_internal_function (name
, handler
, cookie
);
2153 set_internalvar_function (var
, ifn
);
2155 cmd
= add_cmd (xstrdup (name
), no_class
, function_command
, (char *) doc
,
2157 cmd
->destroyer
= function_destroyer
;
2160 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2161 prevent cycles / duplicates. */
2164 preserve_one_value (struct value
*value
, struct objfile
*objfile
,
2165 htab_t copied_types
)
2167 if (TYPE_OBJFILE (value
->type
) == objfile
)
2168 value
->type
= copy_type_recursive (objfile
, value
->type
, copied_types
);
2170 if (TYPE_OBJFILE (value
->enclosing_type
) == objfile
)
2171 value
->enclosing_type
= copy_type_recursive (objfile
,
2172 value
->enclosing_type
,
2176 /* Likewise for internal variable VAR. */
2179 preserve_one_internalvar (struct internalvar
*var
, struct objfile
*objfile
,
2180 htab_t copied_types
)
2184 case INTERNALVAR_INTEGER
:
2185 if (var
->u
.integer
.type
&& TYPE_OBJFILE (var
->u
.integer
.type
) == objfile
)
2187 = copy_type_recursive (objfile
, var
->u
.integer
.type
, copied_types
);
2190 case INTERNALVAR_VALUE
:
2191 preserve_one_value (var
->u
.value
, objfile
, copied_types
);
2196 /* Update the internal variables and value history when OBJFILE is
2197 discarded; we must copy the types out of the objfile. New global types
2198 will be created for every convenience variable which currently points to
2199 this objfile's types, and the convenience variables will be adjusted to
2200 use the new global types. */
2203 preserve_values (struct objfile
*objfile
)
2205 htab_t copied_types
;
2206 struct value_history_chunk
*cur
;
2207 struct internalvar
*var
;
2210 /* Create the hash table. We allocate on the objfile's obstack, since
2211 it is soon to be deleted. */
2212 copied_types
= create_copied_types_hash (objfile
);
2214 for (cur
= value_history_chain
; cur
; cur
= cur
->next
)
2215 for (i
= 0; i
< VALUE_HISTORY_CHUNK
; i
++)
2217 preserve_one_value (cur
->values
[i
], objfile
, copied_types
);
2219 for (var
= internalvars
; var
; var
= var
->next
)
2220 preserve_one_internalvar (var
, objfile
, copied_types
);
2222 preserve_python_values (objfile
, copied_types
);
2224 htab_delete (copied_types
);
2228 show_convenience (char *ignore
, int from_tty
)
2230 struct gdbarch
*gdbarch
= get_current_arch ();
2231 struct internalvar
*var
;
2233 struct value_print_options opts
;
2235 get_user_print_options (&opts
);
2236 for (var
= internalvars
; var
; var
= var
->next
)
2238 volatile struct gdb_exception ex
;
2244 printf_filtered (("$%s = "), var
->name
);
2246 TRY_CATCH (ex
, RETURN_MASK_ERROR
)
2250 val
= value_of_internalvar (gdbarch
, var
);
2251 value_print (val
, gdb_stdout
, &opts
);
2254 fprintf_filtered (gdb_stdout
, _("<error: %s>"), ex
.message
);
2255 printf_filtered (("\n"));
2259 /* This text does not mention convenience functions on purpose.
2260 The user can't create them except via Python, and if Python support
2261 is installed this message will never be printed ($_streq will
2263 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2264 "Convenience variables have "
2265 "names starting with \"$\";\n"
2266 "use \"set\" as in \"set "
2267 "$foo = 5\" to define them.\n"));
2271 /* Extract a value as a C number (either long or double).
2272 Knows how to convert fixed values to double, or
2273 floating values to long.
2274 Does not deallocate the value. */
2277 value_as_long (struct value
*val
)
2279 /* This coerces arrays and functions, which is necessary (e.g.
2280 in disassemble_command). It also dereferences references, which
2281 I suspect is the most logical thing to do. */
2282 val
= coerce_array (val
);
2283 return unpack_long (value_type (val
), value_contents (val
));
2287 value_as_double (struct value
*val
)
2292 foo
= unpack_double (value_type (val
), value_contents (val
), &inv
);
2294 error (_("Invalid floating value found in program."));
2298 /* Extract a value as a C pointer. Does not deallocate the value.
2299 Note that val's type may not actually be a pointer; value_as_long
2300 handles all the cases. */
2302 value_as_address (struct value
*val
)
2304 struct gdbarch
*gdbarch
= get_type_arch (value_type (val
));
2306 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2307 whether we want this to be true eventually. */
2309 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2310 non-address (e.g. argument to "signal", "info break", etc.), or
2311 for pointers to char, in which the low bits *are* significant. */
2312 return gdbarch_addr_bits_remove (gdbarch
, value_as_long (val
));
2315 /* There are several targets (IA-64, PowerPC, and others) which
2316 don't represent pointers to functions as simply the address of
2317 the function's entry point. For example, on the IA-64, a
2318 function pointer points to a two-word descriptor, generated by
2319 the linker, which contains the function's entry point, and the
2320 value the IA-64 "global pointer" register should have --- to
2321 support position-independent code. The linker generates
2322 descriptors only for those functions whose addresses are taken.
2324 On such targets, it's difficult for GDB to convert an arbitrary
2325 function address into a function pointer; it has to either find
2326 an existing descriptor for that function, or call malloc and
2327 build its own. On some targets, it is impossible for GDB to
2328 build a descriptor at all: the descriptor must contain a jump
2329 instruction; data memory cannot be executed; and code memory
2332 Upon entry to this function, if VAL is a value of type `function'
2333 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2334 value_address (val) is the address of the function. This is what
2335 you'll get if you evaluate an expression like `main'. The call
2336 to COERCE_ARRAY below actually does all the usual unary
2337 conversions, which includes converting values of type `function'
2338 to `pointer to function'. This is the challenging conversion
2339 discussed above. Then, `unpack_long' will convert that pointer
2340 back into an address.
2342 So, suppose the user types `disassemble foo' on an architecture
2343 with a strange function pointer representation, on which GDB
2344 cannot build its own descriptors, and suppose further that `foo'
2345 has no linker-built descriptor. The address->pointer conversion
2346 will signal an error and prevent the command from running, even
2347 though the next step would have been to convert the pointer
2348 directly back into the same address.
2350 The following shortcut avoids this whole mess. If VAL is a
2351 function, just return its address directly. */
2352 if (TYPE_CODE (value_type (val
)) == TYPE_CODE_FUNC
2353 || TYPE_CODE (value_type (val
)) == TYPE_CODE_METHOD
)
2354 return value_address (val
);
2356 val
= coerce_array (val
);
2358 /* Some architectures (e.g. Harvard), map instruction and data
2359 addresses onto a single large unified address space. For
2360 instance: An architecture may consider a large integer in the
2361 range 0x10000000 .. 0x1000ffff to already represent a data
2362 addresses (hence not need a pointer to address conversion) while
2363 a small integer would still need to be converted integer to
2364 pointer to address. Just assume such architectures handle all
2365 integer conversions in a single function. */
2369 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2370 must admonish GDB hackers to make sure its behavior matches the
2371 compiler's, whenever possible.
2373 In general, I think GDB should evaluate expressions the same way
2374 the compiler does. When the user copies an expression out of
2375 their source code and hands it to a `print' command, they should
2376 get the same value the compiler would have computed. Any
2377 deviation from this rule can cause major confusion and annoyance,
2378 and needs to be justified carefully. In other words, GDB doesn't
2379 really have the freedom to do these conversions in clever and
2382 AndrewC pointed out that users aren't complaining about how GDB
2383 casts integers to pointers; they are complaining that they can't
2384 take an address from a disassembly listing and give it to `x/i'.
2385 This is certainly important.
2387 Adding an architecture method like integer_to_address() certainly
2388 makes it possible for GDB to "get it right" in all circumstances
2389 --- the target has complete control over how things get done, so
2390 people can Do The Right Thing for their target without breaking
2391 anyone else. The standard doesn't specify how integers get
2392 converted to pointers; usually, the ABI doesn't either, but
2393 ABI-specific code is a more reasonable place to handle it. */
2395 if (TYPE_CODE (value_type (val
)) != TYPE_CODE_PTR
2396 && TYPE_CODE (value_type (val
)) != TYPE_CODE_REF
2397 && gdbarch_integer_to_address_p (gdbarch
))
2398 return gdbarch_integer_to_address (gdbarch
, value_type (val
),
2399 value_contents (val
));
2401 return unpack_long (value_type (val
), value_contents (val
));
2405 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2406 as a long, or as a double, assuming the raw data is described
2407 by type TYPE. Knows how to convert different sizes of values
2408 and can convert between fixed and floating point. We don't assume
2409 any alignment for the raw data. Return value is in host byte order.
2411 If you want functions and arrays to be coerced to pointers, and
2412 references to be dereferenced, call value_as_long() instead.
2414 C++: It is assumed that the front-end has taken care of
2415 all matters concerning pointers to members. A pointer
2416 to member which reaches here is considered to be equivalent
2417 to an INT (or some size). After all, it is only an offset. */
2420 unpack_long (struct type
*type
, const gdb_byte
*valaddr
)
2422 enum bfd_endian byte_order
= gdbarch_byte_order (get_type_arch (type
));
2423 enum type_code code
= TYPE_CODE (type
);
2424 int len
= TYPE_LENGTH (type
);
2425 int nosign
= TYPE_UNSIGNED (type
);
2429 case TYPE_CODE_TYPEDEF
:
2430 return unpack_long (check_typedef (type
), valaddr
);
2431 case TYPE_CODE_ENUM
:
2432 case TYPE_CODE_FLAGS
:
2433 case TYPE_CODE_BOOL
:
2435 case TYPE_CODE_CHAR
:
2436 case TYPE_CODE_RANGE
:
2437 case TYPE_CODE_MEMBERPTR
:
2439 return extract_unsigned_integer (valaddr
, len
, byte_order
);
2441 return extract_signed_integer (valaddr
, len
, byte_order
);
2444 return extract_typed_floating (valaddr
, type
);
2446 case TYPE_CODE_DECFLOAT
:
2447 /* libdecnumber has a function to convert from decimal to integer, but
2448 it doesn't work when the decimal number has a fractional part. */
2449 return decimal_to_doublest (valaddr
, len
, byte_order
);
2453 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2454 whether we want this to be true eventually. */
2455 return extract_typed_address (valaddr
, type
);
2458 error (_("Value can't be converted to integer."));
2460 return 0; /* Placate lint. */
2463 /* Return a double value from the specified type and address.
2464 INVP points to an int which is set to 0 for valid value,
2465 1 for invalid value (bad float format). In either case,
2466 the returned double is OK to use. Argument is in target
2467 format, result is in host format. */
2470 unpack_double (struct type
*type
, const gdb_byte
*valaddr
, int *invp
)
2472 enum bfd_endian byte_order
= gdbarch_byte_order (get_type_arch (type
));
2473 enum type_code code
;
2477 *invp
= 0; /* Assume valid. */
2478 CHECK_TYPEDEF (type
);
2479 code
= TYPE_CODE (type
);
2480 len
= TYPE_LENGTH (type
);
2481 nosign
= TYPE_UNSIGNED (type
);
2482 if (code
== TYPE_CODE_FLT
)
2484 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2485 floating-point value was valid (using the macro
2486 INVALID_FLOAT). That test/macro have been removed.
2488 It turns out that only the VAX defined this macro and then
2489 only in a non-portable way. Fixing the portability problem
2490 wouldn't help since the VAX floating-point code is also badly
2491 bit-rotten. The target needs to add definitions for the
2492 methods gdbarch_float_format and gdbarch_double_format - these
2493 exactly describe the target floating-point format. The
2494 problem here is that the corresponding floatformat_vax_f and
2495 floatformat_vax_d values these methods should be set to are
2496 also not defined either. Oops!
2498 Hopefully someone will add both the missing floatformat
2499 definitions and the new cases for floatformat_is_valid (). */
2501 if (!floatformat_is_valid (floatformat_from_type (type
), valaddr
))
2507 return extract_typed_floating (valaddr
, type
);
2509 else if (code
== TYPE_CODE_DECFLOAT
)
2510 return decimal_to_doublest (valaddr
, len
, byte_order
);
2513 /* Unsigned -- be sure we compensate for signed LONGEST. */
2514 return (ULONGEST
) unpack_long (type
, valaddr
);
2518 /* Signed -- we are OK with unpack_long. */
2519 return unpack_long (type
, valaddr
);
2523 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2524 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2525 We don't assume any alignment for the raw data. Return value is in
2528 If you want functions and arrays to be coerced to pointers, and
2529 references to be dereferenced, call value_as_address() instead.
2531 C++: It is assumed that the front-end has taken care of
2532 all matters concerning pointers to members. A pointer
2533 to member which reaches here is considered to be equivalent
2534 to an INT (or some size). After all, it is only an offset. */
2537 unpack_pointer (struct type
*type
, const gdb_byte
*valaddr
)
2539 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2540 whether we want this to be true eventually. */
2541 return unpack_long (type
, valaddr
);
2545 /* Get the value of the FIELDNO'th field (which must be static) of
2546 TYPE. Return NULL if the field doesn't exist or has been
2550 value_static_field (struct type
*type
, int fieldno
)
2552 struct value
*retval
;
2554 switch (TYPE_FIELD_LOC_KIND (type
, fieldno
))
2556 case FIELD_LOC_KIND_PHYSADDR
:
2557 retval
= value_at_lazy (TYPE_FIELD_TYPE (type
, fieldno
),
2558 TYPE_FIELD_STATIC_PHYSADDR (type
, fieldno
));
2560 case FIELD_LOC_KIND_PHYSNAME
:
2562 const char *phys_name
= TYPE_FIELD_STATIC_PHYSNAME (type
, fieldno
);
2563 /* TYPE_FIELD_NAME (type, fieldno); */
2564 struct symbol
*sym
= lookup_symbol (phys_name
, 0, VAR_DOMAIN
, 0);
2568 /* With some compilers, e.g. HP aCC, static data members are
2569 reported as non-debuggable symbols. */
2570 struct minimal_symbol
*msym
= lookup_minimal_symbol (phys_name
,
2577 retval
= value_at_lazy (TYPE_FIELD_TYPE (type
, fieldno
),
2578 SYMBOL_VALUE_ADDRESS (msym
));
2582 retval
= value_of_variable (sym
, NULL
);
2586 gdb_assert_not_reached ("unexpected field location kind");
2592 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2593 You have to be careful here, since the size of the data area for the value
2594 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2595 than the old enclosing type, you have to allocate more space for the
2599 set_value_enclosing_type (struct value
*val
, struct type
*new_encl_type
)
2601 if (TYPE_LENGTH (new_encl_type
) > TYPE_LENGTH (value_enclosing_type (val
)))
2603 (gdb_byte
*) xrealloc (val
->contents
, TYPE_LENGTH (new_encl_type
));
2605 val
->enclosing_type
= new_encl_type
;
2608 /* Given a value ARG1 (offset by OFFSET bytes)
2609 of a struct or union type ARG_TYPE,
2610 extract and return the value of one of its (non-static) fields.
2611 FIELDNO says which field. */
2614 value_primitive_field (struct value
*arg1
, int offset
,
2615 int fieldno
, struct type
*arg_type
)
2620 CHECK_TYPEDEF (arg_type
);
2621 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
2623 /* Call check_typedef on our type to make sure that, if TYPE
2624 is a TYPE_CODE_TYPEDEF, its length is set to the length
2625 of the target type instead of zero. However, we do not
2626 replace the typedef type by the target type, because we want
2627 to keep the typedef in order to be able to print the type
2628 description correctly. */
2629 check_typedef (type
);
2631 if (value_optimized_out (arg1
))
2632 v
= allocate_optimized_out_value (type
);
2633 else if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
))
2635 /* Handle packed fields.
2637 Create a new value for the bitfield, with bitpos and bitsize
2638 set. If possible, arrange offset and bitpos so that we can
2639 do a single aligned read of the size of the containing type.
2640 Otherwise, adjust offset to the byte containing the first
2641 bit. Assume that the address, offset, and embedded offset
2642 are sufficiently aligned. */
2644 int bitpos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
2645 int container_bitsize
= TYPE_LENGTH (type
) * 8;
2647 v
= allocate_value_lazy (type
);
2648 v
->bitsize
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
2649 if ((bitpos
% container_bitsize
) + v
->bitsize
<= container_bitsize
2650 && TYPE_LENGTH (type
) <= (int) sizeof (LONGEST
))
2651 v
->bitpos
= bitpos
% container_bitsize
;
2653 v
->bitpos
= bitpos
% 8;
2654 v
->offset
= (value_embedded_offset (arg1
)
2656 + (bitpos
- v
->bitpos
) / 8);
2658 value_incref (v
->parent
);
2659 if (!value_lazy (arg1
))
2660 value_fetch_lazy (v
);
2662 else if (fieldno
< TYPE_N_BASECLASSES (arg_type
))
2664 /* This field is actually a base subobject, so preserve the
2665 entire object's contents for later references to virtual
2669 /* Lazy register values with offsets are not supported. */
2670 if (VALUE_LVAL (arg1
) == lval_register
&& value_lazy (arg1
))
2671 value_fetch_lazy (arg1
);
2673 /* We special case virtual inheritance here because this
2674 requires access to the contents, which we would rather avoid
2675 for references to ordinary fields of unavailable values. */
2676 if (BASETYPE_VIA_VIRTUAL (arg_type
, fieldno
))
2677 boffset
= baseclass_offset (arg_type
, fieldno
,
2678 value_contents (arg1
),
2679 value_embedded_offset (arg1
),
2680 value_address (arg1
),
2683 boffset
= TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8;
2685 if (value_lazy (arg1
))
2686 v
= allocate_value_lazy (value_enclosing_type (arg1
));
2689 v
= allocate_value (value_enclosing_type (arg1
));
2690 value_contents_copy_raw (v
, 0, arg1
, 0,
2691 TYPE_LENGTH (value_enclosing_type (arg1
)));
2694 v
->offset
= value_offset (arg1
);
2695 v
->embedded_offset
= offset
+ value_embedded_offset (arg1
) + boffset
;
2699 /* Plain old data member */
2700 offset
+= TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8;
2702 /* Lazy register values with offsets are not supported. */
2703 if (VALUE_LVAL (arg1
) == lval_register
&& value_lazy (arg1
))
2704 value_fetch_lazy (arg1
);
2706 if (value_lazy (arg1
))
2707 v
= allocate_value_lazy (type
);
2710 v
= allocate_value (type
);
2711 value_contents_copy_raw (v
, value_embedded_offset (v
),
2712 arg1
, value_embedded_offset (arg1
) + offset
,
2713 TYPE_LENGTH (type
));
2715 v
->offset
= (value_offset (arg1
) + offset
2716 + value_embedded_offset (arg1
));
2718 set_value_component_location (v
, arg1
);
2719 VALUE_REGNUM (v
) = VALUE_REGNUM (arg1
);
2720 VALUE_FRAME_ID (v
) = VALUE_FRAME_ID (arg1
);
2724 /* Given a value ARG1 of a struct or union type,
2725 extract and return the value of one of its (non-static) fields.
2726 FIELDNO says which field. */
2729 value_field (struct value
*arg1
, int fieldno
)
2731 return value_primitive_field (arg1
, 0, fieldno
, value_type (arg1
));
2734 /* Return a non-virtual function as a value.
2735 F is the list of member functions which contains the desired method.
2736 J is an index into F which provides the desired method.
2738 We only use the symbol for its address, so be happy with either a
2739 full symbol or a minimal symbol. */
2742 value_fn_field (struct value
**arg1p
, struct fn_field
*f
,
2743 int j
, struct type
*type
,
2747 struct type
*ftype
= TYPE_FN_FIELD_TYPE (f
, j
);
2748 const char *physname
= TYPE_FN_FIELD_PHYSNAME (f
, j
);
2750 struct minimal_symbol
*msym
;
2752 sym
= lookup_symbol (physname
, 0, VAR_DOMAIN
, 0);
2759 gdb_assert (sym
== NULL
);
2760 msym
= lookup_minimal_symbol (physname
, NULL
, NULL
);
2765 v
= allocate_value (ftype
);
2768 set_value_address (v
, BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)));
2772 /* The minimal symbol might point to a function descriptor;
2773 resolve it to the actual code address instead. */
2774 struct objfile
*objfile
= msymbol_objfile (msym
);
2775 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
2777 set_value_address (v
,
2778 gdbarch_convert_from_func_ptr_addr
2779 (gdbarch
, SYMBOL_VALUE_ADDRESS (msym
), ¤t_target
));
2784 if (type
!= value_type (*arg1p
))
2785 *arg1p
= value_ind (value_cast (lookup_pointer_type (type
),
2786 value_addr (*arg1p
)));
2788 /* Move the `this' pointer according to the offset.
2789 VALUE_OFFSET (*arg1p) += offset; */
2797 /* Helper function for both unpack_value_bits_as_long and
2798 unpack_bits_as_long. See those functions for more details on the
2799 interface; the only difference is that this function accepts either
2800 a NULL or a non-NULL ORIGINAL_VALUE. */
2803 unpack_value_bits_as_long_1 (struct type
*field_type
, const gdb_byte
*valaddr
,
2804 int embedded_offset
, int bitpos
, int bitsize
,
2805 const struct value
*original_value
,
2808 enum bfd_endian byte_order
= gdbarch_byte_order (get_type_arch (field_type
));
2815 /* Read the minimum number of bytes required; there may not be
2816 enough bytes to read an entire ULONGEST. */
2817 CHECK_TYPEDEF (field_type
);
2819 bytes_read
= ((bitpos
% 8) + bitsize
+ 7) / 8;
2821 bytes_read
= TYPE_LENGTH (field_type
);
2823 read_offset
= bitpos
/ 8;
2825 if (original_value
!= NULL
2826 && !value_bytes_available (original_value
, embedded_offset
+ read_offset
,
2830 val
= extract_unsigned_integer (valaddr
+ embedded_offset
+ read_offset
,
2831 bytes_read
, byte_order
);
2833 /* Extract bits. See comment above. */
2835 if (gdbarch_bits_big_endian (get_type_arch (field_type
)))
2836 lsbcount
= (bytes_read
* 8 - bitpos
% 8 - bitsize
);
2838 lsbcount
= (bitpos
% 8);
2841 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2842 If the field is signed, and is negative, then sign extend. */
2844 if ((bitsize
> 0) && (bitsize
< 8 * (int) sizeof (val
)))
2846 valmask
= (((ULONGEST
) 1) << bitsize
) - 1;
2848 if (!TYPE_UNSIGNED (field_type
))
2850 if (val
& (valmask
^ (valmask
>> 1)))
2861 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2862 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2863 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2864 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2867 Returns false if the value contents are unavailable, otherwise
2868 returns true, indicating a valid value has been stored in *RESULT.
2870 Extracting bits depends on endianness of the machine. Compute the
2871 number of least significant bits to discard. For big endian machines,
2872 we compute the total number of bits in the anonymous object, subtract
2873 off the bit count from the MSB of the object to the MSB of the
2874 bitfield, then the size of the bitfield, which leaves the LSB discard
2875 count. For little endian machines, the discard count is simply the
2876 number of bits from the LSB of the anonymous object to the LSB of the
2879 If the field is signed, we also do sign extension. */
2882 unpack_value_bits_as_long (struct type
*field_type
, const gdb_byte
*valaddr
,
2883 int embedded_offset
, int bitpos
, int bitsize
,
2884 const struct value
*original_value
,
2887 gdb_assert (original_value
!= NULL
);
2889 return unpack_value_bits_as_long_1 (field_type
, valaddr
, embedded_offset
,
2890 bitpos
, bitsize
, original_value
, result
);
2894 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2895 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2896 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2900 unpack_value_field_as_long_1 (struct type
*type
, const gdb_byte
*valaddr
,
2901 int embedded_offset
, int fieldno
,
2902 const struct value
*val
, LONGEST
*result
)
2904 int bitpos
= TYPE_FIELD_BITPOS (type
, fieldno
);
2905 int bitsize
= TYPE_FIELD_BITSIZE (type
, fieldno
);
2906 struct type
*field_type
= TYPE_FIELD_TYPE (type
, fieldno
);
2908 return unpack_value_bits_as_long_1 (field_type
, valaddr
, embedded_offset
,
2909 bitpos
, bitsize
, val
,
2913 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2914 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2915 ORIGINAL_VALUE, which must not be NULL. See
2916 unpack_value_bits_as_long for more details. */
2919 unpack_value_field_as_long (struct type
*type
, const gdb_byte
*valaddr
,
2920 int embedded_offset
, int fieldno
,
2921 const struct value
*val
, LONGEST
*result
)
2923 gdb_assert (val
!= NULL
);
2925 return unpack_value_field_as_long_1 (type
, valaddr
, embedded_offset
,
2926 fieldno
, val
, result
);
2929 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2930 object at VALADDR. See unpack_value_bits_as_long for more details.
2931 This function differs from unpack_value_field_as_long in that it
2932 operates without a struct value object. */
2935 unpack_field_as_long (struct type
*type
, const gdb_byte
*valaddr
, int fieldno
)
2939 unpack_value_field_as_long_1 (type
, valaddr
, 0, fieldno
, NULL
, &result
);
2943 /* Return a new value with type TYPE, which is FIELDNO field of the
2944 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2945 of VAL. If the VAL's contents required to extract the bitfield
2946 from are unavailable, the new value is correspondingly marked as
2950 value_field_bitfield (struct type
*type
, int fieldno
,
2951 const gdb_byte
*valaddr
,
2952 int embedded_offset
, const struct value
*val
)
2956 if (!unpack_value_field_as_long (type
, valaddr
, embedded_offset
, fieldno
,
2959 struct type
*field_type
= TYPE_FIELD_TYPE (type
, fieldno
);
2960 struct value
*retval
= allocate_value (field_type
);
2961 mark_value_bytes_unavailable (retval
, 0, TYPE_LENGTH (field_type
));
2966 return value_from_longest (TYPE_FIELD_TYPE (type
, fieldno
), l
);
2970 /* Modify the value of a bitfield. ADDR points to a block of memory in
2971 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2972 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2973 indicate which bits (in target bit order) comprise the bitfield.
2974 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2975 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2978 modify_field (struct type
*type
, gdb_byte
*addr
,
2979 LONGEST fieldval
, int bitpos
, int bitsize
)
2981 enum bfd_endian byte_order
= gdbarch_byte_order (get_type_arch (type
));
2983 ULONGEST mask
= (ULONGEST
) -1 >> (8 * sizeof (ULONGEST
) - bitsize
);
2986 /* Normalize BITPOS. */
2990 /* If a negative fieldval fits in the field in question, chop
2991 off the sign extension bits. */
2992 if ((~fieldval
& ~(mask
>> 1)) == 0)
2995 /* Warn if value is too big to fit in the field in question. */
2996 if (0 != (fieldval
& ~mask
))
2998 /* FIXME: would like to include fieldval in the message, but
2999 we don't have a sprintf_longest. */
3000 warning (_("Value does not fit in %d bits."), bitsize
);
3002 /* Truncate it, otherwise adjoining fields may be corrupted. */
3006 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3007 false valgrind reports. */
3009 bytesize
= (bitpos
+ bitsize
+ 7) / 8;
3010 oword
= extract_unsigned_integer (addr
, bytesize
, byte_order
);
3012 /* Shifting for bit field depends on endianness of the target machine. */
3013 if (gdbarch_bits_big_endian (get_type_arch (type
)))
3014 bitpos
= bytesize
* 8 - bitpos
- bitsize
;
3016 oword
&= ~(mask
<< bitpos
);
3017 oword
|= fieldval
<< bitpos
;
3019 store_unsigned_integer (addr
, bytesize
, byte_order
, oword
);
3022 /* Pack NUM into BUF using a target format of TYPE. */
3025 pack_long (gdb_byte
*buf
, struct type
*type
, LONGEST num
)
3027 enum bfd_endian byte_order
= gdbarch_byte_order (get_type_arch (type
));
3030 type
= check_typedef (type
);
3031 len
= TYPE_LENGTH (type
);
3033 switch (TYPE_CODE (type
))
3036 case TYPE_CODE_CHAR
:
3037 case TYPE_CODE_ENUM
:
3038 case TYPE_CODE_FLAGS
:
3039 case TYPE_CODE_BOOL
:
3040 case TYPE_CODE_RANGE
:
3041 case TYPE_CODE_MEMBERPTR
:
3042 store_signed_integer (buf
, len
, byte_order
, num
);
3047 store_typed_address (buf
, type
, (CORE_ADDR
) num
);
3051 error (_("Unexpected type (%d) encountered for integer constant."),
3057 /* Pack NUM into BUF using a target format of TYPE. */
3060 pack_unsigned_long (gdb_byte
*buf
, struct type
*type
, ULONGEST num
)
3063 enum bfd_endian byte_order
;
3065 type
= check_typedef (type
);
3066 len
= TYPE_LENGTH (type
);
3067 byte_order
= gdbarch_byte_order (get_type_arch (type
));
3069 switch (TYPE_CODE (type
))
3072 case TYPE_CODE_CHAR
:
3073 case TYPE_CODE_ENUM
:
3074 case TYPE_CODE_FLAGS
:
3075 case TYPE_CODE_BOOL
:
3076 case TYPE_CODE_RANGE
:
3077 case TYPE_CODE_MEMBERPTR
:
3078 store_unsigned_integer (buf
, len
, byte_order
, num
);
3083 store_typed_address (buf
, type
, (CORE_ADDR
) num
);
3087 error (_("Unexpected type (%d) encountered "
3088 "for unsigned integer constant."),
3094 /* Convert C numbers into newly allocated values. */
3097 value_from_longest (struct type
*type
, LONGEST num
)
3099 struct value
*val
= allocate_value (type
);
3101 pack_long (value_contents_raw (val
), type
, num
);
3106 /* Convert C unsigned numbers into newly allocated values. */
3109 value_from_ulongest (struct type
*type
, ULONGEST num
)
3111 struct value
*val
= allocate_value (type
);
3113 pack_unsigned_long (value_contents_raw (val
), type
, num
);
3119 /* Create a value representing a pointer of type TYPE to the address
3122 value_from_pointer (struct type
*type
, CORE_ADDR addr
)
3124 struct value
*val
= allocate_value (type
);
3126 store_typed_address (value_contents_raw (val
), check_typedef (type
), addr
);
3131 /* Create a value of type TYPE whose contents come from VALADDR, if it
3132 is non-null, and whose memory address (in the inferior) is
3136 value_from_contents_and_address (struct type
*type
,
3137 const gdb_byte
*valaddr
,
3142 if (valaddr
== NULL
)
3143 v
= allocate_value_lazy (type
);
3146 v
= allocate_value (type
);
3147 memcpy (value_contents_raw (v
), valaddr
, TYPE_LENGTH (type
));
3149 set_value_address (v
, address
);
3150 VALUE_LVAL (v
) = lval_memory
;
3154 /* Create a value of type TYPE holding the contents CONTENTS.
3155 The new value is `not_lval'. */
3158 value_from_contents (struct type
*type
, const gdb_byte
*contents
)
3160 struct value
*result
;
3162 result
= allocate_value (type
);
3163 memcpy (value_contents_raw (result
), contents
, TYPE_LENGTH (type
));
3168 value_from_double (struct type
*type
, DOUBLEST num
)
3170 struct value
*val
= allocate_value (type
);
3171 struct type
*base_type
= check_typedef (type
);
3172 enum type_code code
= TYPE_CODE (base_type
);
3174 if (code
== TYPE_CODE_FLT
)
3176 store_typed_floating (value_contents_raw (val
), base_type
, num
);
3179 error (_("Unexpected type encountered for floating constant."));
3185 value_from_decfloat (struct type
*type
, const gdb_byte
*dec
)
3187 struct value
*val
= allocate_value (type
);
3189 memcpy (value_contents_raw (val
), dec
, TYPE_LENGTH (type
));
3193 /* Extract a value from the history file. Input will be of the form
3194 $digits or $$digits. See block comment above 'write_dollar_variable'
3198 value_from_history_ref (char *h
, char **endp
)
3210 /* Find length of numeral string. */
3211 for (; isdigit (h
[len
]); len
++)
3214 /* Make sure numeral string is not part of an identifier. */
3215 if (h
[len
] == '_' || isalpha (h
[len
]))
3218 /* Now collect the index value. */
3223 /* For some bizarre reason, "$$" is equivalent to "$$1",
3224 rather than to "$$0" as it ought to be! */
3229 index
= -strtol (&h
[2], endp
, 10);
3235 /* "$" is equivalent to "$0". */
3240 index
= strtol (&h
[1], endp
, 10);
3243 return access_value_history (index
);
3247 coerce_ref_if_computed (const struct value
*arg
)
3249 const struct lval_funcs
*funcs
;
3251 if (TYPE_CODE (check_typedef (value_type (arg
))) != TYPE_CODE_REF
)
3254 if (value_lval_const (arg
) != lval_computed
)
3257 funcs
= value_computed_funcs (arg
);
3258 if (funcs
->coerce_ref
== NULL
)
3261 return funcs
->coerce_ref (arg
);
3264 /* Look at value.h for description. */
3267 readjust_indirect_value_type (struct value
*value
, struct type
*enc_type
,
3268 struct type
*original_type
,
3269 struct value
*original_value
)
3271 /* Re-adjust type. */
3272 deprecated_set_value_type (value
, TYPE_TARGET_TYPE (original_type
));
3274 /* Add embedding info. */
3275 set_value_enclosing_type (value
, enc_type
);
3276 set_value_embedded_offset (value
, value_pointed_to_offset (original_value
));
3278 /* We may be pointing to an object of some derived type. */
3279 return value_full_object (value
, NULL
, 0, 0, 0);
3283 coerce_ref (struct value
*arg
)
3285 struct type
*value_type_arg_tmp
= check_typedef (value_type (arg
));
3286 struct value
*retval
;
3287 struct type
*enc_type
;
3289 retval
= coerce_ref_if_computed (arg
);
3293 if (TYPE_CODE (value_type_arg_tmp
) != TYPE_CODE_REF
)
3296 enc_type
= check_typedef (value_enclosing_type (arg
));
3297 enc_type
= TYPE_TARGET_TYPE (enc_type
);
3299 retval
= value_at_lazy (enc_type
,
3300 unpack_pointer (value_type (arg
),
3301 value_contents (arg
)));
3302 return readjust_indirect_value_type (retval
, enc_type
,
3303 value_type_arg_tmp
, arg
);
3307 coerce_array (struct value
*arg
)
3311 arg
= coerce_ref (arg
);
3312 type
= check_typedef (value_type (arg
));
3314 switch (TYPE_CODE (type
))
3316 case TYPE_CODE_ARRAY
:
3317 if (!TYPE_VECTOR (type
) && current_language
->c_style_arrays
)
3318 arg
= value_coerce_array (arg
);
3320 case TYPE_CODE_FUNC
:
3321 arg
= value_coerce_function (arg
);
3328 /* Return true if the function returning the specified type is using
3329 the convention of returning structures in memory (passing in the
3330 address as a hidden first parameter). */
3333 using_struct_return (struct gdbarch
*gdbarch
,
3334 struct value
*function
, struct type
*value_type
)
3336 enum type_code code
= TYPE_CODE (value_type
);
3338 if (code
== TYPE_CODE_ERROR
)
3339 error (_("Function return type unknown."));
3341 if (code
== TYPE_CODE_VOID
)
3342 /* A void return value is never in memory. See also corresponding
3343 code in "print_return_value". */
3346 /* Probe the architecture for the return-value convention. */
3347 return (gdbarch_return_value (gdbarch
, function
, value_type
,
3349 != RETURN_VALUE_REGISTER_CONVENTION
);
3352 /* Set the initialized field in a value struct. */
3355 set_value_initialized (struct value
*val
, int status
)
3357 val
->initialized
= status
;
3360 /* Return the initialized field in a value struct. */
3363 value_initialized (struct value
*val
)
3365 return val
->initialized
;
3369 _initialize_values (void)
3371 add_cmd ("convenience", no_class
, show_convenience
, _("\
3372 Debugger convenience (\"$foo\") variables and functions.\n\
3373 Convenience variables are created when you assign them values;\n\
3374 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3376 A few convenience variables are given values automatically:\n\
3377 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3378 \"$__\" holds the contents of the last address examined with \"x\"."
3381 Convenience functions are defined via the Python API."
3385 add_cmd ("values", no_set_class
, show_values
, _("\
3386 Elements of value history around item number IDX (or last ten)."),
3389 add_com ("init-if-undefined", class_vars
, init_if_undefined_command
, _("\
3390 Initialize a convenience variable if necessary.\n\
3391 init-if-undefined VARIABLE = EXPRESSION\n\
3392 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3393 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3394 VARIABLE is already initialized."));
3396 add_prefix_cmd ("function", no_class
, function_command
, _("\
3397 Placeholder command for showing help on convenience functions."),
3398 &functionlist
, "function ", 0, &cmdlist
);