manual copyright year range of various GDB files to add 2023
[binutils-gdb.git] / gdb / solib-frv.c
blob38aed7a6ca4def3708fa628202a5733abb45b8d2
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2023 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
34 /* FR-V pointers are four bytes wide. */
35 enum { FRV_PTR_SIZE = 4 };
37 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
39 /* External versions; the size and alignment of the fields should be
40 the same as those on the target. When loaded, the placement of
41 the bits in each field will be the same as on the target. */
42 typedef gdb_byte ext_Elf32_Half[2];
43 typedef gdb_byte ext_Elf32_Addr[4];
44 typedef gdb_byte ext_Elf32_Word[4];
46 struct ext_elf32_fdpic_loadseg
48 /* Core address to which the segment is mapped. */
49 ext_Elf32_Addr addr;
50 /* VMA recorded in the program header. */
51 ext_Elf32_Addr p_vaddr;
52 /* Size of this segment in memory. */
53 ext_Elf32_Word p_memsz;
56 struct ext_elf32_fdpic_loadmap {
57 /* Protocol version number, must be zero. */
58 ext_Elf32_Half version;
59 /* Number of segments in this map. */
60 ext_Elf32_Half nsegs;
61 /* The actual memory map. */
62 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
65 /* Internal versions; the types are GDB types and the data in each
66 of the fields is (or will be) decoded from the external struct
67 for ease of consumption. */
68 struct int_elf32_fdpic_loadseg
70 /* Core address to which the segment is mapped. */
71 CORE_ADDR addr;
72 /* VMA recorded in the program header. */
73 CORE_ADDR p_vaddr;
74 /* Size of this segment in memory. */
75 long p_memsz;
78 struct int_elf32_fdpic_loadmap {
79 /* Protocol version number, must be zero. */
80 int version;
81 /* Number of segments in this map. */
82 int nsegs;
83 /* The actual memory map. */
84 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
87 /* Given address LDMADDR, fetch and decode the loadmap at that address.
88 Return NULL if there is a problem reading the target memory or if
89 there doesn't appear to be a loadmap at the given address. The
90 allocated space (representing the loadmap) returned by this
91 function may be freed via a single call to xfree(). */
93 static struct int_elf32_fdpic_loadmap *
94 fetch_loadmap (CORE_ADDR ldmaddr)
96 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
98 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
99 struct int_elf32_fdpic_loadmap *int_ldmbuf;
100 int ext_ldmbuf_size, int_ldmbuf_size;
101 int version, seg, nsegs;
103 /* Fetch initial portion of the loadmap. */
104 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
105 sizeof ext_ldmbuf_partial))
107 /* Problem reading the target's memory. */
108 return NULL;
111 /* Extract the version. */
112 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
113 sizeof ext_ldmbuf_partial.version,
114 byte_order);
115 if (version != 0)
117 /* We only handle version 0. */
118 return NULL;
121 /* Extract the number of segments. */
122 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
123 sizeof ext_ldmbuf_partial.nsegs,
124 byte_order);
126 if (nsegs <= 0)
127 return NULL;
129 /* Allocate space for the complete (external) loadmap. */
130 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
131 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
132 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
134 /* Copy over the portion of the loadmap that's already been read. */
135 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
137 /* Read the rest of the loadmap from the target. */
138 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
139 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
140 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
142 /* Couldn't read rest of the loadmap. */
143 xfree (ext_ldmbuf);
144 return NULL;
147 /* Allocate space into which to put information extract from the
148 external loadsegs. I.e, allocate the internal loadsegs. */
149 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
150 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
151 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
153 /* Place extracted information in internal structs. */
154 int_ldmbuf->version = version;
155 int_ldmbuf->nsegs = nsegs;
156 for (seg = 0; seg < nsegs; seg++)
158 int_ldmbuf->segs[seg].addr
159 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
160 sizeof (ext_ldmbuf->segs[seg].addr),
161 byte_order);
162 int_ldmbuf->segs[seg].p_vaddr
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
164 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
165 byte_order);
166 int_ldmbuf->segs[seg].p_memsz
167 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
168 sizeof (ext_ldmbuf->segs[seg].p_memsz),
169 byte_order);
172 xfree (ext_ldmbuf);
173 return int_ldmbuf;
176 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
178 typedef gdb_byte ext_ptr[4];
180 struct ext_elf32_fdpic_loadaddr
182 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
183 ext_ptr got_value; /* void *got_value; */
186 struct ext_link_map
188 struct ext_elf32_fdpic_loadaddr l_addr;
190 /* Absolute file name object was found in. */
191 ext_ptr l_name; /* char *l_name; */
193 /* Dynamic section of the shared object. */
194 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
196 /* Chain of loaded objects. */
197 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
200 /* Link map info to include in an allocated so_list entry. */
202 struct lm_info_frv : public lm_info_base
204 ~lm_info_frv ()
206 xfree (this->map);
207 xfree (this->dyn_syms);
208 xfree (this->dyn_relocs);
211 /* The loadmap, digested into an easier to use form. */
212 int_elf32_fdpic_loadmap *map = NULL;
213 /* The GOT address for this link map entry. */
214 CORE_ADDR got_value = 0;
215 /* The link map address, needed for frv_fetch_objfile_link_map(). */
216 CORE_ADDR lm_addr = 0;
218 /* Cached dynamic symbol table and dynamic relocs initialized and
219 used only by find_canonical_descriptor_in_load_object().
221 Note: kevinb/2004-02-26: It appears that calls to
222 bfd_canonicalize_dynamic_reloc() will use the same symbols as
223 those supplied to the first call to this function. Therefore,
224 it's important to NOT free the asymbol ** data structure
225 supplied to the first call. Thus the caching of the dynamic
226 symbols (dyn_syms) is critical for correct operation. The
227 caching of the dynamic relocations could be dispensed with. */
228 asymbol **dyn_syms = NULL;
229 arelent **dyn_relocs = NULL;
230 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
233 /* The load map, got value, etc. are not available from the chain
234 of loaded shared objects. ``main_executable_lm_info'' provides
235 a way to get at this information so that it doesn't need to be
236 frequently recomputed. Initialized by frv_relocate_main_executable(). */
237 static lm_info_frv *main_executable_lm_info;
239 static void frv_relocate_main_executable (void);
240 static CORE_ADDR main_got (void);
241 static int enable_break2 (void);
243 /* Implement the "open_symbol_file_object" target_so_ops method. */
245 static int
246 open_symbol_file_object (int from_tty)
248 /* Unimplemented. */
249 return 0;
252 /* Cached value for lm_base(), below. */
253 static CORE_ADDR lm_base_cache = 0;
255 /* Link map address for main module. */
256 static CORE_ADDR main_lm_addr = 0;
258 /* Return the address from which the link map chain may be found. On
259 the FR-V, this may be found in a number of ways. Assuming that the
260 main executable has already been relocated, the easiest way to find
261 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
262 pointer to the start of the link map will be located at the word found
263 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
264 reserve area mandated by the ABI.) */
266 static CORE_ADDR
267 lm_base (void)
269 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
270 struct bound_minimal_symbol got_sym;
271 CORE_ADDR addr;
272 gdb_byte buf[FRV_PTR_SIZE];
274 /* One of our assumptions is that the main executable has been relocated.
275 Bail out if this has not happened. (Note that post_create_inferior()
276 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
277 If we allow this to happen, lm_base_cache will be initialized with
278 a bogus value. */
279 if (main_executable_lm_info == 0)
280 return 0;
282 /* If we already have a cached value, return it. */
283 if (lm_base_cache)
284 return lm_base_cache;
286 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
287 current_program_space->symfile_object_file);
288 if (got_sym.minsym == 0)
290 solib_debug_printf ("_GLOBAL_OFFSET_TABLE_ not found.");
291 return 0;
294 addr = got_sym.value_address () + 8;
296 solib_debug_printf ("_GLOBAL_OFFSET_TABLE_ + 8 = %s",
297 hex_string_custom (addr, 8));
299 if (target_read_memory (addr, buf, sizeof buf) != 0)
300 return 0;
301 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
303 solib_debug_printf ("lm_base_cache = %s",
304 hex_string_custom (lm_base_cache, 8));
306 return lm_base_cache;
310 /* Implement the "current_sos" target_so_ops method. */
312 static struct so_list *
313 frv_current_sos (void)
315 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
316 CORE_ADDR lm_addr, mgot;
317 struct so_list *sos_head = NULL;
318 struct so_list **sos_next_ptr = &sos_head;
320 /* Make sure that the main executable has been relocated. This is
321 required in order to find the address of the global offset table,
322 which in turn is used to find the link map info. (See lm_base()
323 for details.)
325 Note that the relocation of the main executable is also performed
326 by solib_create_inferior_hook(), however, in the case of core
327 files, this hook is called too late in order to be of benefit to
328 solib_add. solib_add eventually calls this this function,
329 frv_current_sos, and also precedes the call to
330 solib_create_inferior_hook(). (See post_create_inferior() in
331 infcmd.c.) */
332 if (main_executable_lm_info == 0 && core_bfd != NULL)
333 frv_relocate_main_executable ();
335 /* Fetch the GOT corresponding to the main executable. */
336 mgot = main_got ();
338 /* Locate the address of the first link map struct. */
339 lm_addr = lm_base ();
341 /* We have at least one link map entry. Fetch the lot of them,
342 building the solist chain. */
343 while (lm_addr)
345 struct ext_link_map lm_buf;
346 CORE_ADDR got_addr;
348 solib_debug_printf ("reading link_map entry at %s",
349 hex_string_custom (lm_addr, 8));
351 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
352 sizeof (lm_buf)) != 0)
354 warning (_("frv_current_sos: Unable to read link map entry. "
355 "Shared object chain may be incomplete."));
356 break;
359 got_addr
360 = extract_unsigned_integer (lm_buf.l_addr.got_value,
361 sizeof (lm_buf.l_addr.got_value),
362 byte_order);
363 /* If the got_addr is the same as mgotr, then we're looking at the
364 entry for the main executable. By convention, we don't include
365 this in the list of shared objects. */
366 if (got_addr != mgot)
368 struct int_elf32_fdpic_loadmap *loadmap;
369 struct so_list *sop;
370 CORE_ADDR addr;
372 /* Fetch the load map address. */
373 addr = extract_unsigned_integer (lm_buf.l_addr.map,
374 sizeof lm_buf.l_addr.map,
375 byte_order);
376 loadmap = fetch_loadmap (addr);
377 if (loadmap == NULL)
379 warning (_("frv_current_sos: Unable to fetch load map. "
380 "Shared object chain may be incomplete."));
381 break;
384 sop = XCNEW (struct so_list);
385 lm_info_frv *li = new lm_info_frv;
386 sop->lm_info = li;
387 li->map = loadmap;
388 li->got_value = got_addr;
389 li->lm_addr = lm_addr;
390 /* Fetch the name. */
391 addr = extract_unsigned_integer (lm_buf.l_name,
392 sizeof (lm_buf.l_name),
393 byte_order);
394 gdb::unique_xmalloc_ptr<char> name_buf
395 = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1);
397 solib_debug_printf ("name = %s", name_buf.get ());
399 if (name_buf == nullptr)
400 warning (_("Can't read pathname for link map entry."));
401 else
403 strncpy (sop->so_name, name_buf.get (),
404 SO_NAME_MAX_PATH_SIZE - 1);
405 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
406 strcpy (sop->so_original_name, sop->so_name);
409 *sos_next_ptr = sop;
410 sos_next_ptr = &sop->next;
412 else
414 main_lm_addr = lm_addr;
417 lm_addr = extract_unsigned_integer (lm_buf.l_next,
418 sizeof (lm_buf.l_next), byte_order);
421 enable_break2 ();
423 return sos_head;
427 /* Return 1 if PC lies in the dynamic symbol resolution code of the
428 run time loader. */
430 static CORE_ADDR interp_text_sect_low;
431 static CORE_ADDR interp_text_sect_high;
432 static CORE_ADDR interp_plt_sect_low;
433 static CORE_ADDR interp_plt_sect_high;
435 static int
436 frv_in_dynsym_resolve_code (CORE_ADDR pc)
438 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
439 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
440 || in_plt_section (pc));
443 /* Given a loadmap and an address, return the displacement needed
444 to relocate the address. */
446 static CORE_ADDR
447 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
448 CORE_ADDR addr)
450 int seg;
452 for (seg = 0; seg < map->nsegs; seg++)
454 if (map->segs[seg].p_vaddr <= addr
455 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
457 return map->segs[seg].addr - map->segs[seg].p_vaddr;
461 return 0;
464 /* Print a warning about being unable to set the dynamic linker
465 breakpoint. */
467 static void
468 enable_break_failure_warning (void)
470 warning (_("Unable to find dynamic linker breakpoint function.\n"
471 "GDB will be unable to debug shared library initializers\n"
472 "and track explicitly loaded dynamic code."));
475 /* Helper function for gdb_bfd_lookup_symbol. */
477 static int
478 cmp_name (const asymbol *sym, const void *data)
480 return (strcmp (sym->name, (const char *) data) == 0);
483 /* Arrange for dynamic linker to hit breakpoint.
485 The dynamic linkers has, as part of its debugger interface, support
486 for arranging for the inferior to hit a breakpoint after mapping in
487 the shared libraries. This function enables that breakpoint.
489 On the FR-V, using the shared library (FDPIC) ABI, the symbol
490 _dl_debug_addr points to the r_debug struct which contains
491 a field called r_brk. r_brk is the address of the function
492 descriptor upon which a breakpoint must be placed. Being a
493 function descriptor, we must extract the entry point in order
494 to set the breakpoint.
496 Our strategy will be to get the .interp section from the
497 executable. This section will provide us with the name of the
498 interpreter. We'll open the interpreter and then look up
499 the address of _dl_debug_addr. We then relocate this address
500 using the interpreter's loadmap. Once the relocated address
501 is known, we fetch the value (address) corresponding to r_brk
502 and then use that value to fetch the entry point of the function
503 we're interested in. */
505 static int enable_break2_done = 0;
507 static int
508 enable_break2 (void)
510 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
511 asection *interp_sect;
513 if (enable_break2_done)
514 return 1;
516 interp_text_sect_low = interp_text_sect_high = 0;
517 interp_plt_sect_low = interp_plt_sect_high = 0;
519 /* Find the .interp section; if not found, warn the user and drop
520 into the old breakpoint at symbol code. */
521 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
522 ".interp");
523 if (interp_sect)
525 unsigned int interp_sect_size;
526 char *buf;
527 int status;
528 CORE_ADDR addr, interp_loadmap_addr;
529 gdb_byte addr_buf[FRV_PTR_SIZE];
530 struct int_elf32_fdpic_loadmap *ldm;
532 /* Read the contents of the .interp section into a local buffer;
533 the contents specify the dynamic linker this program uses. */
534 interp_sect_size = bfd_section_size (interp_sect);
535 buf = (char *) alloca (interp_sect_size);
536 bfd_get_section_contents (current_program_space->exec_bfd (),
537 interp_sect, buf, 0, interp_sect_size);
539 /* Now we need to figure out where the dynamic linker was
540 loaded so that we can load its symbols and place a breakpoint
541 in the dynamic linker itself.
543 This address is stored on the stack. However, I've been unable
544 to find any magic formula to find it for Solaris (appears to
545 be trivial on GNU/Linux). Therefore, we have to try an alternate
546 mechanism to find the dynamic linker's base address. */
548 gdb_bfd_ref_ptr tmp_bfd;
551 tmp_bfd = solib_bfd_open (buf);
553 catch (const gdb_exception &ex)
557 if (tmp_bfd == NULL)
559 enable_break_failure_warning ();
560 return 0;
563 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
564 &interp_loadmap_addr, 0);
565 if (status < 0)
567 warning (_("Unable to determine dynamic linker loadmap address."));
568 enable_break_failure_warning ();
569 return 0;
572 solib_debug_printf ("interp_loadmap_addr = %s",
573 hex_string_custom (interp_loadmap_addr, 8));
575 ldm = fetch_loadmap (interp_loadmap_addr);
576 if (ldm == NULL)
578 warning (_("Unable to load dynamic linker loadmap at address %s."),
579 hex_string_custom (interp_loadmap_addr, 8));
580 enable_break_failure_warning ();
581 return 0;
584 /* Record the relocated start and end address of the dynamic linker
585 text and plt section for svr4_in_dynsym_resolve_code. */
586 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
587 if (interp_sect)
589 interp_text_sect_low = bfd_section_vma (interp_sect);
590 interp_text_sect_low
591 += displacement_from_map (ldm, interp_text_sect_low);
592 interp_text_sect_high
593 = interp_text_sect_low + bfd_section_size (interp_sect);
595 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
596 if (interp_sect)
598 interp_plt_sect_low = bfd_section_vma (interp_sect);
599 interp_plt_sect_low
600 += displacement_from_map (ldm, interp_plt_sect_low);
601 interp_plt_sect_high =
602 interp_plt_sect_low + bfd_section_size (interp_sect);
605 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
607 if (addr == 0)
609 warning (_("Could not find symbol _dl_debug_addr "
610 "in dynamic linker"));
611 enable_break_failure_warning ();
612 return 0;
615 solib_debug_printf ("_dl_debug_addr (prior to relocation) = %s",
616 hex_string_custom (addr, 8));
618 addr += displacement_from_map (ldm, addr);
620 solib_debug_printf ("_dl_debug_addr (after relocation) = %s",
621 hex_string_custom (addr, 8));
623 /* Fetch the address of the r_debug struct. */
624 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
626 warning (_("Unable to fetch contents of _dl_debug_addr "
627 "(at address %s) from dynamic linker"),
628 hex_string_custom (addr, 8));
630 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
632 solib_debug_printf ("_dl_debug_addr[0..3] = %s",
633 hex_string_custom (addr, 8));
635 /* If it's zero, then the ldso hasn't initialized yet, and so
636 there are no shared libs yet loaded. */
637 if (addr == 0)
639 solib_debug_printf ("ldso not yet initialized");
640 /* Do not warn, but mark to run again. */
641 return 0;
644 /* Fetch the r_brk field. It's 8 bytes from the start of
645 _dl_debug_addr. */
646 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
648 warning (_("Unable to fetch _dl_debug_addr->r_brk "
649 "(at address %s) from dynamic linker"),
650 hex_string_custom (addr + 8, 8));
651 enable_break_failure_warning ();
652 return 0;
654 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
656 /* Now fetch the function entry point. */
657 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
659 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
660 "(at address %s) from dynamic linker"),
661 hex_string_custom (addr, 8));
662 enable_break_failure_warning ();
663 return 0;
665 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
667 /* We're done with the loadmap. */
668 xfree (ldm);
670 /* Remove all the solib event breakpoints. Their addresses
671 may have changed since the last time we ran the program. */
672 remove_solib_event_breakpoints ();
674 /* Now (finally!) create the solib breakpoint. */
675 create_solib_event_breakpoint (target_gdbarch (), addr);
677 enable_break2_done = 1;
679 return 1;
682 /* Tell the user we couldn't set a dynamic linker breakpoint. */
683 enable_break_failure_warning ();
685 /* Failure return. */
686 return 0;
689 static int
690 enable_break (void)
692 asection *interp_sect;
693 CORE_ADDR entry_point;
695 if (current_program_space->symfile_object_file == NULL)
697 solib_debug_printf ("No symbol file found.");
698 return 0;
701 if (!entry_point_address_query (&entry_point))
703 solib_debug_printf ("Symbol file has no entry point.");
704 return 0;
707 /* Check for the presence of a .interp section. If there is no
708 such section, the executable is statically linked. */
710 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
711 ".interp");
713 if (interp_sect == NULL)
715 solib_debug_printf ("No .interp section found.");
716 return 0;
719 create_solib_event_breakpoint (target_gdbarch (), entry_point);
721 solib_debug_printf ("solib event breakpoint placed at entry point: %s",
722 hex_string_custom (entry_point, 8));
723 return 1;
726 static void
727 frv_relocate_main_executable (void)
729 int status;
730 CORE_ADDR exec_addr, interp_addr;
731 struct int_elf32_fdpic_loadmap *ldm;
732 int changed;
733 struct obj_section *osect;
735 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
736 &interp_addr, &exec_addr);
738 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
740 /* Not using FDPIC ABI, so do nothing. */
741 return;
744 /* Fetch the loadmap located at ``exec_addr''. */
745 ldm = fetch_loadmap (exec_addr);
746 if (ldm == NULL)
747 error (_("Unable to load the executable's loadmap."));
749 delete main_executable_lm_info;
750 main_executable_lm_info = new lm_info_frv;
751 main_executable_lm_info->map = ldm;
753 objfile *objf = current_program_space->symfile_object_file;
754 section_offsets new_offsets (objf->section_offsets.size ());
755 changed = 0;
757 ALL_OBJFILE_OSECTIONS (objf, osect)
759 CORE_ADDR orig_addr, addr, offset;
760 int osect_idx;
761 int seg;
763 osect_idx = osect - objf->sections;
765 /* Current address of section. */
766 addr = osect->addr ();
767 /* Offset from where this section started. */
768 offset = objf->section_offsets[osect_idx];
769 /* Original address prior to any past relocations. */
770 orig_addr = addr - offset;
772 for (seg = 0; seg < ldm->nsegs; seg++)
774 if (ldm->segs[seg].p_vaddr <= orig_addr
775 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
777 new_offsets[osect_idx]
778 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
780 if (new_offsets[osect_idx] != offset)
781 changed = 1;
782 break;
787 if (changed)
788 objfile_relocate (objf, new_offsets);
790 /* Now that OBJF has been relocated, we can compute the GOT value
791 and stash it away. */
792 main_executable_lm_info->got_value = main_got ();
795 /* Implement the "create_inferior_hook" target_solib_ops method.
797 For the FR-V shared library ABI (FDPIC), the main executable needs
798 to be relocated. The shared library breakpoints also need to be
799 enabled. */
801 static void
802 frv_solib_create_inferior_hook (int from_tty)
804 /* Relocate main executable. */
805 frv_relocate_main_executable ();
807 /* Enable shared library breakpoints. */
808 if (!enable_break ())
810 warning (_("shared library handler failed to enable breakpoint"));
811 return;
815 static void
816 frv_clear_solib (void)
818 lm_base_cache = 0;
819 enable_break2_done = 0;
820 main_lm_addr = 0;
822 delete main_executable_lm_info;
823 main_executable_lm_info = NULL;
826 static void
827 frv_free_so (struct so_list *so)
829 lm_info_frv *li = (lm_info_frv *) so->lm_info;
831 delete li;
834 static void
835 frv_relocate_section_addresses (struct so_list *so,
836 struct target_section *sec)
838 int seg;
839 lm_info_frv *li = (lm_info_frv *) so->lm_info;
840 int_elf32_fdpic_loadmap *map = li->map;
842 for (seg = 0; seg < map->nsegs; seg++)
844 if (map->segs[seg].p_vaddr <= sec->addr
845 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
847 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
849 sec->addr += displ;
850 sec->endaddr += displ;
851 break;
856 /* Return the GOT address associated with the main executable. Return
857 0 if it can't be found. */
859 static CORE_ADDR
860 main_got (void)
862 struct bound_minimal_symbol got_sym;
864 objfile *objf = current_program_space->symfile_object_file;
865 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, objf);
866 if (got_sym.minsym == 0)
867 return 0;
869 return got_sym.value_address ();
872 /* Find the global pointer for the given function address ADDR. */
874 CORE_ADDR
875 frv_fdpic_find_global_pointer (CORE_ADDR addr)
877 for (struct so_list *so : current_program_space->solibs ())
879 int seg;
880 lm_info_frv *li = (lm_info_frv *) so->lm_info;
881 int_elf32_fdpic_loadmap *map = li->map;
883 for (seg = 0; seg < map->nsegs; seg++)
885 if (map->segs[seg].addr <= addr
886 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
887 return li->got_value;
891 /* Didn't find it in any of the shared objects. So assume it's in the
892 main executable. */
893 return main_got ();
896 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
897 static CORE_ADDR find_canonical_descriptor_in_load_object
898 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
900 /* Given a function entry point, attempt to find the canonical descriptor
901 associated with that entry point. Return 0 if no canonical descriptor
902 could be found. */
904 CORE_ADDR
905 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
907 const char *name;
908 CORE_ADDR addr;
909 CORE_ADDR got_value;
910 struct symbol *sym;
912 /* Fetch the corresponding global pointer for the entry point. */
913 got_value = frv_fdpic_find_global_pointer (entry_point);
915 /* Attempt to find the name of the function. If the name is available,
916 it'll be used as an aid in finding matching functions in the dynamic
917 symbol table. */
918 sym = find_pc_function (entry_point);
919 if (sym == 0)
920 name = 0;
921 else
922 name = sym->linkage_name ();
924 /* Check the main executable. */
925 objfile *objf = current_program_space->symfile_object_file;
926 addr = find_canonical_descriptor_in_load_object
927 (entry_point, got_value, name, objf->obfd.get (),
928 main_executable_lm_info);
930 /* If descriptor not found via main executable, check each load object
931 in list of shared objects. */
932 if (addr == 0)
934 for (struct so_list *so : current_program_space->solibs ())
936 lm_info_frv *li = (lm_info_frv *) so->lm_info;
938 addr = find_canonical_descriptor_in_load_object
939 (entry_point, got_value, name, so->abfd, li);
941 if (addr != 0)
942 break;
946 return addr;
949 static CORE_ADDR
950 find_canonical_descriptor_in_load_object
951 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
952 lm_info_frv *lm)
954 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
955 arelent *rel;
956 unsigned int i;
957 CORE_ADDR addr = 0;
959 /* Nothing to do if no bfd. */
960 if (abfd == 0)
961 return 0;
963 /* Nothing to do if no link map. */
964 if (lm == 0)
965 return 0;
967 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
968 (More about this later.) But in order to fetch the relocs, we
969 need to first fetch the dynamic symbols. These symbols need to
970 be cached due to the way that bfd_canonicalize_dynamic_reloc()
971 works. (See the comments in the declaration of struct lm_info
972 for more information.) */
973 if (lm->dyn_syms == NULL)
975 long storage_needed;
976 unsigned int number_of_symbols;
978 /* Determine amount of space needed to hold the dynamic symbol table. */
979 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
981 /* If there are no dynamic symbols, there's nothing to do. */
982 if (storage_needed <= 0)
983 return 0;
985 /* Allocate space for the dynamic symbol table. */
986 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
988 /* Fetch the dynamic symbol table. */
989 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
991 if (number_of_symbols == 0)
992 return 0;
995 /* Fetch the dynamic relocations if not already cached. */
996 if (lm->dyn_relocs == NULL)
998 long storage_needed;
1000 /* Determine amount of space needed to hold the dynamic relocs. */
1001 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1003 /* Bail out if there are no dynamic relocs. */
1004 if (storage_needed <= 0)
1005 return 0;
1007 /* Allocate space for the relocs. */
1008 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1010 /* Fetch the dynamic relocs. */
1011 lm->dyn_reloc_count
1012 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1015 /* Search the dynamic relocs. */
1016 for (i = 0; i < lm->dyn_reloc_count; i++)
1018 rel = lm->dyn_relocs[i];
1020 /* Relocs of interest are those which meet the following
1021 criteria:
1023 - the names match (assuming the caller could provide
1024 a name which matches ``entry_point'').
1025 - the relocation type must be R_FRV_FUNCDESC. Relocs
1026 of this type are used (by the dynamic linker) to
1027 look up the address of a canonical descriptor (allocating
1028 it if need be) and initializing the GOT entry referred
1029 to by the offset to the address of the descriptor.
1031 These relocs of interest may be used to obtain a
1032 candidate descriptor by first adjusting the reloc's
1033 address according to the link map and then dereferencing
1034 this address (which is a GOT entry) to obtain a descriptor
1035 address. */
1036 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1037 && rel->howto->type == R_FRV_FUNCDESC)
1039 gdb_byte buf [FRV_PTR_SIZE];
1041 /* Compute address of address of candidate descriptor. */
1042 addr = rel->address + displacement_from_map (lm->map, rel->address);
1044 /* Fetch address of candidate descriptor. */
1045 if (target_read_memory (addr, buf, sizeof buf) != 0)
1046 continue;
1047 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1049 /* Check for matching entry point. */
1050 if (target_read_memory (addr, buf, sizeof buf) != 0)
1051 continue;
1052 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1053 != entry_point)
1054 continue;
1056 /* Check for matching got value. */
1057 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1058 continue;
1059 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1060 != got_value)
1061 continue;
1063 /* Match was successful! Exit loop. */
1064 break;
1068 return addr;
1071 /* Given an objfile, return the address of its link map. This value is
1072 needed for TLS support. */
1073 CORE_ADDR
1074 frv_fetch_objfile_link_map (struct objfile *objfile)
1076 /* Cause frv_current_sos() to be run if it hasn't been already. */
1077 if (main_lm_addr == 0)
1078 solib_add (0, 0, 1);
1080 /* frv_current_sos() will set main_lm_addr for the main executable. */
1081 if (objfile == current_program_space->symfile_object_file)
1082 return main_lm_addr;
1084 /* The other link map addresses may be found by examining the list
1085 of shared libraries. */
1086 for (struct so_list *so : current_program_space->solibs ())
1088 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1090 if (so->objfile == objfile)
1091 return li->lm_addr;
1094 /* Not found! */
1095 return 0;
1098 const struct target_so_ops frv_so_ops =
1100 frv_relocate_section_addresses,
1101 frv_free_so,
1102 nullptr,
1103 frv_clear_solib,
1104 frv_solib_create_inferior_hook,
1105 frv_current_sos,
1106 open_symbol_file_object,
1107 frv_in_dynsym_resolve_code,
1108 solib_bfd_open,