1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdbsupport/gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "cli/cli-cmds.h"
48 #include "typeprint.h"
50 #include "gdbsupport/gdb_obstack.h"
52 #include "dictionary.h"
54 #include <sys/types.h>
59 #include "cp-support.h"
60 #include "observable.h"
63 #include "macroscope.h"
65 #include "parser-defs.h"
66 #include "completer.h"
67 #include "progspace-and-thread.h"
68 #include "gdbsupport/gdb_optional.h"
69 #include "filename-seen-cache.h"
70 #include "arch-utils.h"
72 #include "gdbsupport/gdb_string_view.h"
73 #include "gdbsupport/pathstuff.h"
74 #include "gdbsupport/common-utils.h"
76 /* Forward declarations for local functions. */
78 static void rbreak_command (const char *, int);
80 static int find_line_common (struct linetable
*, int, int *, int);
82 static struct block_symbol
83 lookup_symbol_aux (const char *name
,
84 symbol_name_match_type match_type
,
85 const struct block
*block
,
86 const domain_enum domain
,
87 enum language language
,
88 struct field_of_this_result
*);
91 struct block_symbol
lookup_local_symbol (const char *name
,
92 symbol_name_match_type match_type
,
93 const struct block
*block
,
94 const domain_enum domain
,
95 enum language language
);
97 static struct block_symbol
98 lookup_symbol_in_objfile (struct objfile
*objfile
,
99 enum block_enum block_index
,
100 const char *name
, const domain_enum domain
);
102 /* Type of the data stored on the program space. */
106 main_info () = default;
110 xfree (name_of_main
);
113 /* Name of "main". */
115 char *name_of_main
= nullptr;
117 /* Language of "main". */
119 enum language language_of_main
= language_unknown
;
122 /* Program space key for finding name and language of "main". */
124 static const registry
<program_space
>::key
<main_info
> main_progspace_key
;
126 /* The default symbol cache size.
127 There is no extra cpu cost for large N (except when flushing the cache,
128 which is rare). The value here is just a first attempt. A better default
129 value may be higher or lower. A prime number can make up for a bad hash
130 computation, so that's why the number is what it is. */
131 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
133 /* The maximum symbol cache size.
134 There's no method to the decision of what value to use here, other than
135 there's no point in allowing a user typo to make gdb consume all memory. */
136 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
138 /* symbol_cache_lookup returns this if a previous lookup failed to find the
139 symbol in any objfile. */
140 #define SYMBOL_LOOKUP_FAILED \
141 ((struct block_symbol) {(struct symbol *) 1, NULL})
142 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
144 /* Recording lookups that don't find the symbol is just as important, if not
145 more so, than recording found symbols. */
147 enum symbol_cache_slot_state
150 SYMBOL_SLOT_NOT_FOUND
,
154 struct symbol_cache_slot
156 enum symbol_cache_slot_state state
;
158 /* The objfile that was current when the symbol was looked up.
159 This is only needed for global blocks, but for simplicity's sake
160 we allocate the space for both. If data shows the extra space used
161 for static blocks is a problem, we can split things up then.
163 Global blocks need cache lookup to include the objfile context because
164 we need to account for gdbarch_iterate_over_objfiles_in_search_order
165 which can traverse objfiles in, effectively, any order, depending on
166 the current objfile, thus affecting which symbol is found. Normally,
167 only the current objfile is searched first, and then the rest are
168 searched in recorded order; but putting cache lookup inside
169 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
170 Instead we just make the current objfile part of the context of
171 cache lookup. This means we can record the same symbol multiple times,
172 each with a different "current objfile" that was in effect when the
173 lookup was saved in the cache, but cache space is pretty cheap. */
174 const struct objfile
*objfile_context
;
178 struct block_symbol found
;
187 /* Clear out SLOT. */
190 symbol_cache_clear_slot (struct symbol_cache_slot
*slot
)
192 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
193 xfree (slot
->value
.not_found
.name
);
194 slot
->state
= SYMBOL_SLOT_UNUSED
;
197 /* Symbols don't specify global vs static block.
198 So keep them in separate caches. */
200 struct block_symbol_cache
204 unsigned int collisions
;
206 /* SYMBOLS is a variable length array of this size.
207 One can imagine that in general one cache (global/static) should be a
208 fraction of the size of the other, but there's no data at the moment
209 on which to decide. */
212 struct symbol_cache_slot symbols
[1];
215 /* Clear all slots of BSC and free BSC. */
218 destroy_block_symbol_cache (struct block_symbol_cache
*bsc
)
222 for (unsigned int i
= 0; i
< bsc
->size
; i
++)
223 symbol_cache_clear_slot (&bsc
->symbols
[i
]);
230 Searching for symbols in the static and global blocks over multiple objfiles
231 again and again can be slow, as can searching very big objfiles. This is a
232 simple cache to improve symbol lookup performance, which is critical to
233 overall gdb performance.
235 Symbols are hashed on the name, its domain, and block.
236 They are also hashed on their objfile for objfile-specific lookups. */
240 symbol_cache () = default;
244 destroy_block_symbol_cache (global_symbols
);
245 destroy_block_symbol_cache (static_symbols
);
248 struct block_symbol_cache
*global_symbols
= nullptr;
249 struct block_symbol_cache
*static_symbols
= nullptr;
252 /* Program space key for finding its symbol cache. */
254 static const registry
<program_space
>::key
<symbol_cache
> symbol_cache_key
;
256 /* When non-zero, print debugging messages related to symtab creation. */
257 unsigned int symtab_create_debug
= 0;
259 /* When non-zero, print debugging messages related to symbol lookup. */
260 unsigned int symbol_lookup_debug
= 0;
262 /* The size of the cache is staged here. */
263 static unsigned int new_symbol_cache_size
= DEFAULT_SYMBOL_CACHE_SIZE
;
265 /* The current value of the symbol cache size.
266 This is saved so that if the user enters a value too big we can restore
267 the original value from here. */
268 static unsigned int symbol_cache_size
= DEFAULT_SYMBOL_CACHE_SIZE
;
270 /* True if a file may be known by two different basenames.
271 This is the uncommon case, and significantly slows down gdb.
272 Default set to "off" to not slow down the common case. */
273 bool basenames_may_differ
= false;
275 /* Allow the user to configure the debugger behavior with respect
276 to multiple-choice menus when more than one symbol matches during
279 const char multiple_symbols_ask
[] = "ask";
280 const char multiple_symbols_all
[] = "all";
281 const char multiple_symbols_cancel
[] = "cancel";
282 static const char *const multiple_symbols_modes
[] =
284 multiple_symbols_ask
,
285 multiple_symbols_all
,
286 multiple_symbols_cancel
,
289 static const char *multiple_symbols_mode
= multiple_symbols_all
;
291 /* When TRUE, ignore the prologue-end flag in linetable_entry when searching
292 for the SAL past a function prologue. */
293 static bool ignore_prologue_end_flag
= false;
295 /* Read-only accessor to AUTO_SELECT_MODE. */
298 multiple_symbols_select_mode (void)
300 return multiple_symbols_mode
;
303 /* Return the name of a domain_enum. */
306 domain_name (domain_enum e
)
310 case UNDEF_DOMAIN
: return "UNDEF_DOMAIN";
311 case VAR_DOMAIN
: return "VAR_DOMAIN";
312 case STRUCT_DOMAIN
: return "STRUCT_DOMAIN";
313 case MODULE_DOMAIN
: return "MODULE_DOMAIN";
314 case LABEL_DOMAIN
: return "LABEL_DOMAIN";
315 case COMMON_BLOCK_DOMAIN
: return "COMMON_BLOCK_DOMAIN";
316 default: gdb_assert_not_reached ("bad domain_enum");
320 /* Return the name of a search_domain . */
323 search_domain_name (enum search_domain e
)
327 case VARIABLES_DOMAIN
: return "VARIABLES_DOMAIN";
328 case FUNCTIONS_DOMAIN
: return "FUNCTIONS_DOMAIN";
329 case TYPES_DOMAIN
: return "TYPES_DOMAIN";
330 case MODULES_DOMAIN
: return "MODULES_DOMAIN";
331 case ALL_DOMAIN
: return "ALL_DOMAIN";
332 default: gdb_assert_not_reached ("bad search_domain");
339 compunit_symtab::find_call_site (CORE_ADDR pc
) const
341 if (m_call_site_htab
== nullptr)
345 = this->objfile ()->section_offsets
[this->block_line_section ()];
346 CORE_ADDR unrelocated_pc
= pc
- delta
;
348 struct call_site
call_site_local (unrelocated_pc
, nullptr, nullptr);
350 = htab_find_slot (m_call_site_htab
, &call_site_local
, NO_INSERT
);
354 return (call_site
*) *slot
;
360 compunit_symtab::set_call_site_htab (htab_t call_site_htab
)
362 gdb_assert (m_call_site_htab
== nullptr);
363 m_call_site_htab
= call_site_htab
;
369 compunit_symtab::set_primary_filetab (symtab
*primary_filetab
)
371 symtab
*prev_filetab
= nullptr;
373 /* Move PRIMARY_FILETAB to the head of the filetab list. */
374 for (symtab
*filetab
: this->filetabs ())
376 if (filetab
== primary_filetab
)
378 if (prev_filetab
!= nullptr)
380 prev_filetab
->next
= primary_filetab
->next
;
381 primary_filetab
->next
= m_filetabs
;
382 m_filetabs
= primary_filetab
;
388 prev_filetab
= filetab
;
391 gdb_assert (primary_filetab
== m_filetabs
);
397 compunit_symtab::primary_filetab () const
399 gdb_assert (m_filetabs
!= nullptr);
401 /* The primary file symtab is the first one in the list. */
408 compunit_symtab::language () const
410 struct symtab
*symtab
= primary_filetab ();
412 /* The language of the compunit symtab is the language of its
413 primary source file. */
414 return symtab
->language ();
417 /* The relocated address of the minimal symbol, using the section
418 offsets from OBJFILE. */
421 minimal_symbol::value_address (objfile
*objfile
) const
423 if (this->maybe_copied
)
424 return get_msymbol_address (objfile
, this);
426 return (this->value_raw_address ()
427 + objfile
->section_offsets
[this->section_index ()]);
433 minimal_symbol::data_p () const
435 return m_type
== mst_data
438 || m_type
== mst_file_data
439 || m_type
== mst_file_bss
;
445 minimal_symbol::text_p () const
447 return m_type
== mst_text
448 || m_type
== mst_text_gnu_ifunc
449 || m_type
== mst_data_gnu_ifunc
450 || m_type
== mst_slot_got_plt
451 || m_type
== mst_solib_trampoline
452 || m_type
== mst_file_text
;
455 /* See whether FILENAME matches SEARCH_NAME using the rule that we
456 advertise to the user. (The manual's description of linespecs
457 describes what we advertise). Returns true if they match, false
461 compare_filenames_for_search (const char *filename
, const char *search_name
)
463 int len
= strlen (filename
);
464 size_t search_len
= strlen (search_name
);
466 if (len
< search_len
)
469 /* The tail of FILENAME must match. */
470 if (FILENAME_CMP (filename
+ len
- search_len
, search_name
) != 0)
473 /* Either the names must completely match, or the character
474 preceding the trailing SEARCH_NAME segment of FILENAME must be a
477 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
478 cannot match FILENAME "/path//dir/file.c" - as user has requested
479 absolute path. The sama applies for "c:\file.c" possibly
480 incorrectly hypothetically matching "d:\dir\c:\file.c".
482 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
483 compatible with SEARCH_NAME "file.c". In such case a compiler had
484 to put the "c:file.c" name into debug info. Such compatibility
485 works only on GDB built for DOS host. */
486 return (len
== search_len
487 || (!IS_ABSOLUTE_PATH (search_name
)
488 && IS_DIR_SEPARATOR (filename
[len
- search_len
- 1]))
489 || (HAS_DRIVE_SPEC (filename
)
490 && STRIP_DRIVE_SPEC (filename
) == &filename
[len
- search_len
]));
493 /* Same as compare_filenames_for_search, but for glob-style patterns.
494 Heads up on the order of the arguments. They match the order of
495 compare_filenames_for_search, but it's the opposite of the order of
496 arguments to gdb_filename_fnmatch. */
499 compare_glob_filenames_for_search (const char *filename
,
500 const char *search_name
)
502 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
503 all /s have to be explicitly specified. */
504 int file_path_elements
= count_path_elements (filename
);
505 int search_path_elements
= count_path_elements (search_name
);
507 if (search_path_elements
> file_path_elements
)
510 if (IS_ABSOLUTE_PATH (search_name
))
512 return (search_path_elements
== file_path_elements
513 && gdb_filename_fnmatch (search_name
, filename
,
514 FNM_FILE_NAME
| FNM_NOESCAPE
) == 0);
518 const char *file_to_compare
519 = strip_leading_path_elements (filename
,
520 file_path_elements
- search_path_elements
);
522 return gdb_filename_fnmatch (search_name
, file_to_compare
,
523 FNM_FILE_NAME
| FNM_NOESCAPE
) == 0;
527 /* Check for a symtab of a specific name by searching some symtabs.
528 This is a helper function for callbacks of iterate_over_symtabs.
530 If NAME is not absolute, then REAL_PATH is NULL
531 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
533 The return value, NAME, REAL_PATH and CALLBACK are identical to the
534 `map_symtabs_matching_filename' method of quick_symbol_functions.
536 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
537 Each symtab within the specified compunit symtab is also searched.
538 AFTER_LAST is one past the last compunit symtab to search; NULL means to
539 search until the end of the list. */
542 iterate_over_some_symtabs (const char *name
,
543 const char *real_path
,
544 struct compunit_symtab
*first
,
545 struct compunit_symtab
*after_last
,
546 gdb::function_view
<bool (symtab
*)> callback
)
548 struct compunit_symtab
*cust
;
549 const char* base_name
= lbasename (name
);
551 for (cust
= first
; cust
!= NULL
&& cust
!= after_last
; cust
= cust
->next
)
553 for (symtab
*s
: cust
->filetabs ())
555 if (compare_filenames_for_search (s
->filename
, name
))
562 /* Before we invoke realpath, which can get expensive when many
563 files are involved, do a quick comparison of the basenames. */
564 if (! basenames_may_differ
565 && FILENAME_CMP (base_name
, lbasename (s
->filename
)) != 0)
568 if (compare_filenames_for_search (symtab_to_fullname (s
), name
))
575 /* If the user gave us an absolute path, try to find the file in
576 this symtab and use its absolute path. */
577 if (real_path
!= NULL
)
579 const char *fullname
= symtab_to_fullname (s
);
581 gdb_assert (IS_ABSOLUTE_PATH (real_path
));
582 gdb_assert (IS_ABSOLUTE_PATH (name
));
583 gdb::unique_xmalloc_ptr
<char> fullname_real_path
584 = gdb_realpath (fullname
);
585 fullname
= fullname_real_path
.get ();
586 if (FILENAME_CMP (real_path
, fullname
) == 0)
599 /* Check for a symtab of a specific name; first in symtabs, then in
600 psymtabs. *If* there is no '/' in the name, a match after a '/'
601 in the symtab filename will also work.
603 Calls CALLBACK with each symtab that is found. If CALLBACK returns
604 true, the search stops. */
607 iterate_over_symtabs (const char *name
,
608 gdb::function_view
<bool (symtab
*)> callback
)
610 gdb::unique_xmalloc_ptr
<char> real_path
;
612 /* Here we are interested in canonicalizing an absolute path, not
613 absolutizing a relative path. */
614 if (IS_ABSOLUTE_PATH (name
))
616 real_path
= gdb_realpath (name
);
617 gdb_assert (IS_ABSOLUTE_PATH (real_path
.get ()));
620 for (objfile
*objfile
: current_program_space
->objfiles ())
622 if (iterate_over_some_symtabs (name
, real_path
.get (),
623 objfile
->compunit_symtabs
, NULL
,
628 /* Same search rules as above apply here, but now we look thru the
631 for (objfile
*objfile
: current_program_space
->objfiles ())
633 if (objfile
->map_symtabs_matching_filename (name
, real_path
.get (),
639 /* A wrapper for iterate_over_symtabs that returns the first matching
643 lookup_symtab (const char *name
)
645 struct symtab
*result
= NULL
;
647 iterate_over_symtabs (name
, [&] (symtab
*symtab
)
657 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
658 full method name, which consist of the class name (from T), the unadorned
659 method name from METHOD_ID, and the signature for the specific overload,
660 specified by SIGNATURE_ID. Note that this function is g++ specific. */
663 gdb_mangle_name (struct type
*type
, int method_id
, int signature_id
)
665 int mangled_name_len
;
667 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, method_id
);
668 struct fn_field
*method
= &f
[signature_id
];
669 const char *field_name
= TYPE_FN_FIELDLIST_NAME (type
, method_id
);
670 const char *physname
= TYPE_FN_FIELD_PHYSNAME (f
, signature_id
);
671 const char *newname
= type
->name ();
673 /* Does the form of physname indicate that it is the full mangled name
674 of a constructor (not just the args)? */
675 int is_full_physname_constructor
;
678 int is_destructor
= is_destructor_name (physname
);
679 /* Need a new type prefix. */
680 const char *const_prefix
= method
->is_const
? "C" : "";
681 const char *volatile_prefix
= method
->is_volatile
? "V" : "";
683 int len
= (newname
== NULL
? 0 : strlen (newname
));
685 /* Nothing to do if physname already contains a fully mangled v3 abi name
686 or an operator name. */
687 if ((physname
[0] == '_' && physname
[1] == 'Z')
688 || is_operator_name (field_name
))
689 return xstrdup (physname
);
691 is_full_physname_constructor
= is_constructor_name (physname
);
693 is_constructor
= is_full_physname_constructor
694 || (newname
&& strcmp (field_name
, newname
) == 0);
697 is_destructor
= (startswith (physname
, "__dt"));
699 if (is_destructor
|| is_full_physname_constructor
)
701 mangled_name
= (char *) xmalloc (strlen (physname
) + 1);
702 strcpy (mangled_name
, physname
);
708 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
710 else if (physname
[0] == 't' || physname
[0] == 'Q')
712 /* The physname for template and qualified methods already includes
714 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
720 xsnprintf (buf
, sizeof (buf
), "__%s%s%d", const_prefix
,
721 volatile_prefix
, len
);
723 mangled_name_len
= ((is_constructor
? 0 : strlen (field_name
))
724 + strlen (buf
) + len
+ strlen (physname
) + 1);
726 mangled_name
= (char *) xmalloc (mangled_name_len
);
728 mangled_name
[0] = '\0';
730 strcpy (mangled_name
, field_name
);
732 strcat (mangled_name
, buf
);
733 /* If the class doesn't have a name, i.e. newname NULL, then we just
734 mangle it using 0 for the length of the class. Thus it gets mangled
735 as something starting with `::' rather than `classname::'. */
737 strcat (mangled_name
, newname
);
739 strcat (mangled_name
, physname
);
740 return (mangled_name
);
746 general_symbol_info::set_demangled_name (const char *name
,
747 struct obstack
*obstack
)
749 if (language () == language_ada
)
754 language_specific
.obstack
= obstack
;
759 language_specific
.demangled_name
= name
;
763 language_specific
.demangled_name
= name
;
767 /* Initialize the language dependent portion of a symbol
768 depending upon the language for the symbol. */
771 general_symbol_info::set_language (enum language language
,
772 struct obstack
*obstack
)
774 m_language
= language
;
775 if (language
== language_cplus
776 || language
== language_d
777 || language
== language_go
778 || language
== language_objc
779 || language
== language_fortran
)
781 set_demangled_name (NULL
, obstack
);
783 else if (language
== language_ada
)
785 gdb_assert (ada_mangled
== 0);
786 language_specific
.obstack
= obstack
;
790 memset (&language_specific
, 0, sizeof (language_specific
));
794 /* Functions to initialize a symbol's mangled name. */
796 /* Objects of this type are stored in the demangled name hash table. */
797 struct demangled_name_entry
799 demangled_name_entry (gdb::string_view mangled_name
)
800 : mangled (mangled_name
) {}
802 gdb::string_view mangled
;
803 enum language language
;
804 gdb::unique_xmalloc_ptr
<char> demangled
;
807 /* Hash function for the demangled name hash. */
810 hash_demangled_name_entry (const void *data
)
812 const struct demangled_name_entry
*e
813 = (const struct demangled_name_entry
*) data
;
815 return fast_hash (e
->mangled
.data (), e
->mangled
.length ());
818 /* Equality function for the demangled name hash. */
821 eq_demangled_name_entry (const void *a
, const void *b
)
823 const struct demangled_name_entry
*da
824 = (const struct demangled_name_entry
*) a
;
825 const struct demangled_name_entry
*db
826 = (const struct demangled_name_entry
*) b
;
828 return da
->mangled
== db
->mangled
;
832 free_demangled_name_entry (void *data
)
834 struct demangled_name_entry
*e
835 = (struct demangled_name_entry
*) data
;
837 e
->~demangled_name_entry();
840 /* Create the hash table used for demangled names. Each hash entry is
841 a pair of strings; one for the mangled name and one for the demangled
842 name. The entry is hashed via just the mangled name. */
845 create_demangled_names_hash (struct objfile_per_bfd_storage
*per_bfd
)
847 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
848 The hash table code will round this up to the next prime number.
849 Choosing a much larger table size wastes memory, and saves only about
850 1% in symbol reading. However, if the minsym count is already
851 initialized (e.g. because symbol name setting was deferred to
852 a background thread) we can initialize the hashtable with a count
853 based on that, because we will almost certainly have at least that
854 many entries. If we have a nonzero number but less than 256,
855 we still stay with 256 to have some space for psymbols, etc. */
857 /* htab will expand the table when it is 3/4th full, so we account for that
858 here. +2 to round up. */
859 int minsym_based_count
= (per_bfd
->minimal_symbol_count
+ 2) / 3 * 4;
860 int count
= std::max (per_bfd
->minimal_symbol_count
, minsym_based_count
);
862 per_bfd
->demangled_names_hash
.reset (htab_create_alloc
863 (count
, hash_demangled_name_entry
, eq_demangled_name_entry
,
864 free_demangled_name_entry
, xcalloc
, xfree
));
869 gdb::unique_xmalloc_ptr
<char>
870 symbol_find_demangled_name (struct general_symbol_info
*gsymbol
,
873 gdb::unique_xmalloc_ptr
<char> demangled
;
876 if (gsymbol
->language () == language_unknown
)
877 gsymbol
->m_language
= language_auto
;
879 if (gsymbol
->language () != language_auto
)
881 const struct language_defn
*lang
= language_def (gsymbol
->language ());
883 lang
->sniff_from_mangled_name (mangled
, &demangled
);
887 for (i
= language_unknown
; i
< nr_languages
; ++i
)
889 enum language l
= (enum language
) i
;
890 const struct language_defn
*lang
= language_def (l
);
892 if (lang
->sniff_from_mangled_name (mangled
, &demangled
))
894 gsymbol
->m_language
= l
;
902 /* Set both the mangled and demangled (if any) names for GSYMBOL based
903 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
904 objfile's obstack; but if COPY_NAME is 0 and if NAME is
905 NUL-terminated, then this function assumes that NAME is already
906 correctly saved (either permanently or with a lifetime tied to the
907 objfile), and it will not be copied.
909 The hash table corresponding to OBJFILE is used, and the memory
910 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
911 so the pointer can be discarded after calling this function. */
914 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name
,
916 objfile_per_bfd_storage
*per_bfd
,
917 gdb::optional
<hashval_t
> hash
)
919 struct demangled_name_entry
**slot
;
921 if (language () == language_ada
)
923 /* In Ada, we do the symbol lookups using the mangled name, so
924 we can save some space by not storing the demangled name. */
926 m_name
= linkage_name
.data ();
928 m_name
= obstack_strndup (&per_bfd
->storage_obstack
,
929 linkage_name
.data (),
930 linkage_name
.length ());
931 set_demangled_name (NULL
, &per_bfd
->storage_obstack
);
936 if (per_bfd
->demangled_names_hash
== NULL
)
937 create_demangled_names_hash (per_bfd
);
939 struct demangled_name_entry
entry (linkage_name
);
940 if (!hash
.has_value ())
941 hash
= hash_demangled_name_entry (&entry
);
942 slot
= ((struct demangled_name_entry
**)
943 htab_find_slot_with_hash (per_bfd
->demangled_names_hash
.get (),
944 &entry
, *hash
, INSERT
));
946 /* The const_cast is safe because the only reason it is already
947 initialized is if we purposefully set it from a background
948 thread to avoid doing the work here. However, it is still
949 allocated from the heap and needs to be freed by us, just
950 like if we called symbol_find_demangled_name here. If this is
951 nullptr, we call symbol_find_demangled_name below, but we put
952 this smart pointer here to be sure that we don't leak this name. */
953 gdb::unique_xmalloc_ptr
<char> demangled_name
954 (const_cast<char *> (language_specific
.demangled_name
));
956 /* If this name is not in the hash table, add it. */
958 /* A C version of the symbol may have already snuck into the table.
959 This happens to, e.g., main.init (__go_init_main). Cope. */
960 || (language () == language_go
&& (*slot
)->demangled
== nullptr))
962 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
963 to true if the string might not be nullterminated. We have to make
964 this copy because demangling needs a nullterminated string. */
965 gdb::string_view linkage_name_copy
;
968 char *alloc_name
= (char *) alloca (linkage_name
.length () + 1);
969 memcpy (alloc_name
, linkage_name
.data (), linkage_name
.length ());
970 alloc_name
[linkage_name
.length ()] = '\0';
972 linkage_name_copy
= gdb::string_view (alloc_name
,
973 linkage_name
.length ());
976 linkage_name_copy
= linkage_name
;
978 if (demangled_name
.get () == nullptr)
980 = symbol_find_demangled_name (this, linkage_name_copy
.data ());
982 /* Suppose we have demangled_name==NULL, copy_name==0, and
983 linkage_name_copy==linkage_name. In this case, we already have the
984 mangled name saved, and we don't have a demangled name. So,
985 you might think we could save a little space by not recording
986 this in the hash table at all.
988 It turns out that it is actually important to still save such
989 an entry in the hash table, because storing this name gives
990 us better bcache hit rates for partial symbols. */
994 = ((struct demangled_name_entry
*)
995 obstack_alloc (&per_bfd
->storage_obstack
,
996 sizeof (demangled_name_entry
)));
997 new (*slot
) demangled_name_entry (linkage_name
);
1001 /* If we must copy the mangled name, put it directly after
1002 the struct so we can have a single allocation. */
1004 = ((struct demangled_name_entry
*)
1005 obstack_alloc (&per_bfd
->storage_obstack
,
1006 sizeof (demangled_name_entry
)
1007 + linkage_name
.length () + 1));
1008 char *mangled_ptr
= reinterpret_cast<char *> (*slot
+ 1);
1009 memcpy (mangled_ptr
, linkage_name
.data (), linkage_name
.length ());
1010 mangled_ptr
[linkage_name
.length ()] = '\0';
1011 new (*slot
) demangled_name_entry
1012 (gdb::string_view (mangled_ptr
, linkage_name
.length ()));
1014 (*slot
)->demangled
= std::move (demangled_name
);
1015 (*slot
)->language
= language ();
1017 else if (language () == language_unknown
|| language () == language_auto
)
1018 m_language
= (*slot
)->language
;
1020 m_name
= (*slot
)->mangled
.data ();
1021 set_demangled_name ((*slot
)->demangled
.get (), &per_bfd
->storage_obstack
);
1027 general_symbol_info::natural_name () const
1029 switch (language ())
1031 case language_cplus
:
1035 case language_fortran
:
1037 if (language_specific
.demangled_name
!= nullptr)
1038 return language_specific
.demangled_name
;
1041 return ada_decode_symbol (this);
1045 return linkage_name ();
1051 general_symbol_info::demangled_name () const
1053 const char *dem_name
= NULL
;
1055 switch (language ())
1057 case language_cplus
:
1061 case language_fortran
:
1063 dem_name
= language_specific
.demangled_name
;
1066 dem_name
= ada_decode_symbol (this);
1077 general_symbol_info::search_name () const
1079 if (language () == language_ada
)
1080 return linkage_name ();
1082 return natural_name ();
1087 struct obj_section
*
1088 general_symbol_info::obj_section (const struct objfile
*objfile
) const
1090 if (section_index () >= 0)
1091 return &objfile
->sections
[section_index ()];
1098 symbol_matches_search_name (const struct general_symbol_info
*gsymbol
,
1099 const lookup_name_info
&name
)
1101 symbol_name_matcher_ftype
*name_match
1102 = language_def (gsymbol
->language ())->get_symbol_name_matcher (name
);
1103 return name_match (gsymbol
->search_name (), name
, NULL
);
1108 /* Return true if the two sections are the same, or if they could
1109 plausibly be copies of each other, one in an original object
1110 file and another in a separated debug file. */
1113 matching_obj_sections (struct obj_section
*obj_first
,
1114 struct obj_section
*obj_second
)
1116 asection
*first
= obj_first
? obj_first
->the_bfd_section
: NULL
;
1117 asection
*second
= obj_second
? obj_second
->the_bfd_section
: NULL
;
1119 /* If they're the same section, then they match. */
1120 if (first
== second
)
1123 /* If either is NULL, give up. */
1124 if (first
== NULL
|| second
== NULL
)
1127 /* This doesn't apply to absolute symbols. */
1128 if (first
->owner
== NULL
|| second
->owner
== NULL
)
1131 /* If they're in the same object file, they must be different sections. */
1132 if (first
->owner
== second
->owner
)
1135 /* Check whether the two sections are potentially corresponding. They must
1136 have the same size, address, and name. We can't compare section indexes,
1137 which would be more reliable, because some sections may have been
1139 if (bfd_section_size (first
) != bfd_section_size (second
))
1142 /* In-memory addresses may start at a different offset, relativize them. */
1143 if (bfd_section_vma (first
) - bfd_get_start_address (first
->owner
)
1144 != bfd_section_vma (second
) - bfd_get_start_address (second
->owner
))
1147 if (bfd_section_name (first
) == NULL
1148 || bfd_section_name (second
) == NULL
1149 || strcmp (bfd_section_name (first
), bfd_section_name (second
)) != 0)
1152 /* Otherwise check that they are in corresponding objfiles. */
1154 struct objfile
*obj
= NULL
;
1155 for (objfile
*objfile
: current_program_space
->objfiles ())
1156 if (objfile
->obfd
== first
->owner
)
1161 gdb_assert (obj
!= NULL
);
1163 if (obj
->separate_debug_objfile
!= NULL
1164 && obj
->separate_debug_objfile
->obfd
== second
->owner
)
1166 if (obj
->separate_debug_objfile_backlink
!= NULL
1167 && obj
->separate_debug_objfile_backlink
->obfd
== second
->owner
)
1176 expand_symtab_containing_pc (CORE_ADDR pc
, struct obj_section
*section
)
1178 struct bound_minimal_symbol msymbol
;
1180 /* If we know that this is not a text address, return failure. This is
1181 necessary because we loop based on texthigh and textlow, which do
1182 not include the data ranges. */
1183 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
);
1184 if (msymbol
.minsym
&& msymbol
.minsym
->data_p ())
1187 for (objfile
*objfile
: current_program_space
->objfiles ())
1189 struct compunit_symtab
*cust
1190 = objfile
->find_pc_sect_compunit_symtab (msymbol
, pc
, section
, 0);
1196 /* Hash function for the symbol cache. */
1199 hash_symbol_entry (const struct objfile
*objfile_context
,
1200 const char *name
, domain_enum domain
)
1202 unsigned int hash
= (uintptr_t) objfile_context
;
1205 hash
+= htab_hash_string (name
);
1207 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1208 to map to the same slot. */
1209 if (domain
== STRUCT_DOMAIN
)
1210 hash
+= VAR_DOMAIN
* 7;
1217 /* Equality function for the symbol cache. */
1220 eq_symbol_entry (const struct symbol_cache_slot
*slot
,
1221 const struct objfile
*objfile_context
,
1222 const char *name
, domain_enum domain
)
1224 const char *slot_name
;
1225 domain_enum slot_domain
;
1227 if (slot
->state
== SYMBOL_SLOT_UNUSED
)
1230 if (slot
->objfile_context
!= objfile_context
)
1233 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1235 slot_name
= slot
->value
.not_found
.name
;
1236 slot_domain
= slot
->value
.not_found
.domain
;
1240 slot_name
= slot
->value
.found
.symbol
->search_name ();
1241 slot_domain
= slot
->value
.found
.symbol
->domain ();
1244 /* NULL names match. */
1245 if (slot_name
== NULL
&& name
== NULL
)
1247 /* But there's no point in calling symbol_matches_domain in the
1248 SYMBOL_SLOT_FOUND case. */
1249 if (slot_domain
!= domain
)
1252 else if (slot_name
!= NULL
&& name
!= NULL
)
1254 /* It's important that we use the same comparison that was done
1255 the first time through. If the slot records a found symbol,
1256 then this means using the symbol name comparison function of
1257 the symbol's language with symbol->search_name (). See
1258 dictionary.c. It also means using symbol_matches_domain for
1259 found symbols. See block.c.
1261 If the slot records a not-found symbol, then require a precise match.
1262 We could still be lax with whitespace like strcmp_iw though. */
1264 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1266 if (strcmp (slot_name
, name
) != 0)
1268 if (slot_domain
!= domain
)
1273 struct symbol
*sym
= slot
->value
.found
.symbol
;
1274 lookup_name_info
lookup_name (name
, symbol_name_match_type::FULL
);
1276 if (!symbol_matches_search_name (sym
, lookup_name
))
1279 if (!symbol_matches_domain (sym
->language (), slot_domain
, domain
))
1285 /* Only one name is NULL. */
1292 /* Given a cache of size SIZE, return the size of the struct (with variable
1293 length array) in bytes. */
1296 symbol_cache_byte_size (unsigned int size
)
1298 return (sizeof (struct block_symbol_cache
)
1299 + ((size
- 1) * sizeof (struct symbol_cache_slot
)));
1305 resize_symbol_cache (struct symbol_cache
*cache
, unsigned int new_size
)
1307 /* If there's no change in size, don't do anything.
1308 All caches have the same size, so we can just compare with the size
1309 of the global symbols cache. */
1310 if ((cache
->global_symbols
!= NULL
1311 && cache
->global_symbols
->size
== new_size
)
1312 || (cache
->global_symbols
== NULL
1316 destroy_block_symbol_cache (cache
->global_symbols
);
1317 destroy_block_symbol_cache (cache
->static_symbols
);
1321 cache
->global_symbols
= NULL
;
1322 cache
->static_symbols
= NULL
;
1326 size_t total_size
= symbol_cache_byte_size (new_size
);
1328 cache
->global_symbols
1329 = (struct block_symbol_cache
*) xcalloc (1, total_size
);
1330 cache
->static_symbols
1331 = (struct block_symbol_cache
*) xcalloc (1, total_size
);
1332 cache
->global_symbols
->size
= new_size
;
1333 cache
->static_symbols
->size
= new_size
;
1337 /* Return the symbol cache of PSPACE.
1338 Create one if it doesn't exist yet. */
1340 static struct symbol_cache
*
1341 get_symbol_cache (struct program_space
*pspace
)
1343 struct symbol_cache
*cache
= symbol_cache_key
.get (pspace
);
1347 cache
= symbol_cache_key
.emplace (pspace
);
1348 resize_symbol_cache (cache
, symbol_cache_size
);
1354 /* Set the size of the symbol cache in all program spaces. */
1357 set_symbol_cache_size (unsigned int new_size
)
1359 for (struct program_space
*pspace
: program_spaces
)
1361 struct symbol_cache
*cache
= symbol_cache_key
.get (pspace
);
1363 /* The pspace could have been created but not have a cache yet. */
1365 resize_symbol_cache (cache
, new_size
);
1369 /* Called when symbol-cache-size is set. */
1372 set_symbol_cache_size_handler (const char *args
, int from_tty
,
1373 struct cmd_list_element
*c
)
1375 if (new_symbol_cache_size
> MAX_SYMBOL_CACHE_SIZE
)
1377 /* Restore the previous value.
1378 This is the value the "show" command prints. */
1379 new_symbol_cache_size
= symbol_cache_size
;
1381 error (_("Symbol cache size is too large, max is %u."),
1382 MAX_SYMBOL_CACHE_SIZE
);
1384 symbol_cache_size
= new_symbol_cache_size
;
1386 set_symbol_cache_size (symbol_cache_size
);
1389 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1390 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1391 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1392 failed (and thus this one will too), or NULL if the symbol is not present
1394 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1395 can be used to save the result of a full lookup attempt. */
1397 static struct block_symbol
1398 symbol_cache_lookup (struct symbol_cache
*cache
,
1399 struct objfile
*objfile_context
, enum block_enum block
,
1400 const char *name
, domain_enum domain
,
1401 struct block_symbol_cache
**bsc_ptr
,
1402 struct symbol_cache_slot
**slot_ptr
)
1404 struct block_symbol_cache
*bsc
;
1406 struct symbol_cache_slot
*slot
;
1408 if (block
== GLOBAL_BLOCK
)
1409 bsc
= cache
->global_symbols
;
1411 bsc
= cache
->static_symbols
;
1419 hash
= hash_symbol_entry (objfile_context
, name
, domain
);
1420 slot
= bsc
->symbols
+ hash
% bsc
->size
;
1425 if (eq_symbol_entry (slot
, objfile_context
, name
, domain
))
1427 symbol_lookup_debug_printf ("%s block symbol cache hit%s for %s, %s",
1428 block
== GLOBAL_BLOCK
? "Global" : "Static",
1429 slot
->state
== SYMBOL_SLOT_NOT_FOUND
1430 ? " (not found)" : "", name
,
1431 domain_name (domain
));
1433 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1434 return SYMBOL_LOOKUP_FAILED
;
1435 return slot
->value
.found
;
1438 /* Symbol is not present in the cache. */
1440 symbol_lookup_debug_printf ("%s block symbol cache miss for %s, %s",
1441 block
== GLOBAL_BLOCK
? "Global" : "Static",
1442 name
, domain_name (domain
));
1447 /* Mark SYMBOL as found in SLOT.
1448 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1449 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1450 necessarily the objfile the symbol was found in. */
1453 symbol_cache_mark_found (struct block_symbol_cache
*bsc
,
1454 struct symbol_cache_slot
*slot
,
1455 struct objfile
*objfile_context
,
1456 struct symbol
*symbol
,
1457 const struct block
*block
)
1461 if (slot
->state
!= SYMBOL_SLOT_UNUSED
)
1464 symbol_cache_clear_slot (slot
);
1466 slot
->state
= SYMBOL_SLOT_FOUND
;
1467 slot
->objfile_context
= objfile_context
;
1468 slot
->value
.found
.symbol
= symbol
;
1469 slot
->value
.found
.block
= block
;
1472 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1473 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1474 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1477 symbol_cache_mark_not_found (struct block_symbol_cache
*bsc
,
1478 struct symbol_cache_slot
*slot
,
1479 struct objfile
*objfile_context
,
1480 const char *name
, domain_enum domain
)
1484 if (slot
->state
!= SYMBOL_SLOT_UNUSED
)
1487 symbol_cache_clear_slot (slot
);
1489 slot
->state
= SYMBOL_SLOT_NOT_FOUND
;
1490 slot
->objfile_context
= objfile_context
;
1491 slot
->value
.not_found
.name
= xstrdup (name
);
1492 slot
->value
.not_found
.domain
= domain
;
1495 /* Flush the symbol cache of PSPACE. */
1498 symbol_cache_flush (struct program_space
*pspace
)
1500 struct symbol_cache
*cache
= symbol_cache_key
.get (pspace
);
1505 if (cache
->global_symbols
== NULL
)
1507 gdb_assert (symbol_cache_size
== 0);
1508 gdb_assert (cache
->static_symbols
== NULL
);
1512 /* If the cache is untouched since the last flush, early exit.
1513 This is important for performance during the startup of a program linked
1514 with 100s (or 1000s) of shared libraries. */
1515 if (cache
->global_symbols
->misses
== 0
1516 && cache
->static_symbols
->misses
== 0)
1519 gdb_assert (cache
->global_symbols
->size
== symbol_cache_size
);
1520 gdb_assert (cache
->static_symbols
->size
== symbol_cache_size
);
1522 for (pass
= 0; pass
< 2; ++pass
)
1524 struct block_symbol_cache
*bsc
1525 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1528 for (i
= 0; i
< bsc
->size
; ++i
)
1529 symbol_cache_clear_slot (&bsc
->symbols
[i
]);
1532 cache
->global_symbols
->hits
= 0;
1533 cache
->global_symbols
->misses
= 0;
1534 cache
->global_symbols
->collisions
= 0;
1535 cache
->static_symbols
->hits
= 0;
1536 cache
->static_symbols
->misses
= 0;
1537 cache
->static_symbols
->collisions
= 0;
1543 symbol_cache_dump (const struct symbol_cache
*cache
)
1547 if (cache
->global_symbols
== NULL
)
1549 gdb_printf (" <disabled>\n");
1553 for (pass
= 0; pass
< 2; ++pass
)
1555 const struct block_symbol_cache
*bsc
1556 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1560 gdb_printf ("Global symbols:\n");
1562 gdb_printf ("Static symbols:\n");
1564 for (i
= 0; i
< bsc
->size
; ++i
)
1566 const struct symbol_cache_slot
*slot
= &bsc
->symbols
[i
];
1570 switch (slot
->state
)
1572 case SYMBOL_SLOT_UNUSED
:
1574 case SYMBOL_SLOT_NOT_FOUND
:
1575 gdb_printf (" [%4u] = %s, %s %s (not found)\n", i
,
1576 host_address_to_string (slot
->objfile_context
),
1577 slot
->value
.not_found
.name
,
1578 domain_name (slot
->value
.not_found
.domain
));
1580 case SYMBOL_SLOT_FOUND
:
1582 struct symbol
*found
= slot
->value
.found
.symbol
;
1583 const struct objfile
*context
= slot
->objfile_context
;
1585 gdb_printf (" [%4u] = %s, %s %s\n", i
,
1586 host_address_to_string (context
),
1587 found
->print_name (),
1588 domain_name (found
->domain ()));
1596 /* The "mt print symbol-cache" command. */
1599 maintenance_print_symbol_cache (const char *args
, int from_tty
)
1601 for (struct program_space
*pspace
: program_spaces
)
1603 struct symbol_cache
*cache
;
1605 gdb_printf (_("Symbol cache for pspace %d\n%s:\n"),
1607 pspace
->symfile_object_file
!= NULL
1608 ? objfile_name (pspace
->symfile_object_file
)
1609 : "(no object file)");
1611 /* If the cache hasn't been created yet, avoid creating one. */
1612 cache
= symbol_cache_key
.get (pspace
);
1614 gdb_printf (" <empty>\n");
1616 symbol_cache_dump (cache
);
1620 /* The "mt flush-symbol-cache" command. */
1623 maintenance_flush_symbol_cache (const char *args
, int from_tty
)
1625 for (struct program_space
*pspace
: program_spaces
)
1627 symbol_cache_flush (pspace
);
1631 /* Print usage statistics of CACHE. */
1634 symbol_cache_stats (struct symbol_cache
*cache
)
1638 if (cache
->global_symbols
== NULL
)
1640 gdb_printf (" <disabled>\n");
1644 for (pass
= 0; pass
< 2; ++pass
)
1646 const struct block_symbol_cache
*bsc
1647 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1652 gdb_printf ("Global block cache stats:\n");
1654 gdb_printf ("Static block cache stats:\n");
1656 gdb_printf (" size: %u\n", bsc
->size
);
1657 gdb_printf (" hits: %u\n", bsc
->hits
);
1658 gdb_printf (" misses: %u\n", bsc
->misses
);
1659 gdb_printf (" collisions: %u\n", bsc
->collisions
);
1663 /* The "mt print symbol-cache-statistics" command. */
1666 maintenance_print_symbol_cache_statistics (const char *args
, int from_tty
)
1668 for (struct program_space
*pspace
: program_spaces
)
1670 struct symbol_cache
*cache
;
1672 gdb_printf (_("Symbol cache statistics for pspace %d\n%s:\n"),
1674 pspace
->symfile_object_file
!= NULL
1675 ? objfile_name (pspace
->symfile_object_file
)
1676 : "(no object file)");
1678 /* If the cache hasn't been created yet, avoid creating one. */
1679 cache
= symbol_cache_key
.get (pspace
);
1681 gdb_printf (" empty, no stats available\n");
1683 symbol_cache_stats (cache
);
1687 /* This module's 'new_objfile' observer. */
1690 symtab_new_objfile_observer (struct objfile
*objfile
)
1692 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1693 symbol_cache_flush (current_program_space
);
1696 /* This module's 'free_objfile' observer. */
1699 symtab_free_objfile_observer (struct objfile
*objfile
)
1701 symbol_cache_flush (objfile
->pspace
);
1704 /* Debug symbols usually don't have section information. We need to dig that
1705 out of the minimal symbols and stash that in the debug symbol. */
1708 fixup_section (struct general_symbol_info
*ginfo
,
1709 CORE_ADDR addr
, struct objfile
*objfile
)
1711 struct minimal_symbol
*msym
;
1713 /* First, check whether a minimal symbol with the same name exists
1714 and points to the same address. The address check is required
1715 e.g. on PowerPC64, where the minimal symbol for a function will
1716 point to the function descriptor, while the debug symbol will
1717 point to the actual function code. */
1718 msym
= lookup_minimal_symbol_by_pc_name (addr
, ginfo
->linkage_name (),
1721 ginfo
->set_section_index (msym
->section_index ());
1724 /* Static, function-local variables do appear in the linker
1725 (minimal) symbols, but are frequently given names that won't
1726 be found via lookup_minimal_symbol(). E.g., it has been
1727 observed in frv-uclinux (ELF) executables that a static,
1728 function-local variable named "foo" might appear in the
1729 linker symbols as "foo.6" or "foo.3". Thus, there is no
1730 point in attempting to extend the lookup-by-name mechanism to
1731 handle this case due to the fact that there can be multiple
1734 So, instead, search the section table when lookup by name has
1735 failed. The ``addr'' and ``endaddr'' fields may have already
1736 been relocated. If so, the relocation offset needs to be
1737 subtracted from these values when performing the comparison.
1738 We unconditionally subtract it, because, when no relocation
1739 has been performed, the value will simply be zero.
1741 The address of the symbol whose section we're fixing up HAS
1742 NOT BEEN adjusted (relocated) yet. It can't have been since
1743 the section isn't yet known and knowing the section is
1744 necessary in order to add the correct relocation value. In
1745 other words, we wouldn't even be in this function (attempting
1746 to compute the section) if it were already known.
1748 Note that it is possible to search the minimal symbols
1749 (subtracting the relocation value if necessary) to find the
1750 matching minimal symbol, but this is overkill and much less
1751 efficient. It is not necessary to find the matching minimal
1752 symbol, only its section.
1754 Note that this technique (of doing a section table search)
1755 can fail when unrelocated section addresses overlap. For
1756 this reason, we still attempt a lookup by name prior to doing
1757 a search of the section table. */
1759 struct obj_section
*s
;
1762 ALL_OBJFILE_OSECTIONS (objfile
, s
)
1764 int idx
= s
- objfile
->sections
;
1765 CORE_ADDR offset
= objfile
->section_offsets
[idx
];
1770 if (s
->addr () - offset
<= addr
&& addr
< s
->endaddr () - offset
)
1772 ginfo
->set_section_index (idx
);
1777 /* If we didn't find the section, assume it is in the first
1778 section. If there is no allocated section, then it hardly
1779 matters what we pick, so just pick zero. */
1781 ginfo
->set_section_index (0);
1783 ginfo
->set_section_index (fallback
);
1788 fixup_symbol_section (struct symbol
*sym
, struct objfile
*objfile
)
1795 if (!sym
->is_objfile_owned ())
1798 /* We either have an OBJFILE, or we can get at it from the sym's
1799 symtab. Anything else is a bug. */
1800 gdb_assert (objfile
|| sym
->symtab ());
1802 if (objfile
== NULL
)
1803 objfile
= sym
->objfile ();
1805 if (sym
->obj_section (objfile
) != nullptr)
1808 /* We should have an objfile by now. */
1809 gdb_assert (objfile
);
1811 switch (sym
->aclass ())
1815 addr
= sym
->value_address ();
1818 addr
= sym
->value_block ()->entry_pc ();
1822 /* Nothing else will be listed in the minsyms -- no use looking
1827 fixup_section (sym
, addr
, objfile
);
1834 demangle_for_lookup_info::demangle_for_lookup_info
1835 (const lookup_name_info
&lookup_name
, language lang
)
1837 demangle_result_storage storage
;
1839 if (lookup_name
.ignore_parameters () && lang
== language_cplus
)
1841 gdb::unique_xmalloc_ptr
<char> without_params
1842 = cp_remove_params_if_any (lookup_name
.c_str (),
1843 lookup_name
.completion_mode ());
1845 if (without_params
!= NULL
)
1847 if (lookup_name
.match_type () != symbol_name_match_type::SEARCH_NAME
)
1848 m_demangled_name
= demangle_for_lookup (without_params
.get (),
1854 if (lookup_name
.match_type () == symbol_name_match_type::SEARCH_NAME
)
1855 m_demangled_name
= lookup_name
.c_str ();
1857 m_demangled_name
= demangle_for_lookup (lookup_name
.c_str (),
1863 const lookup_name_info
&
1864 lookup_name_info::match_any ()
1866 /* Lookup any symbol that "" would complete. I.e., this matches all
1868 static const lookup_name_info
lookup_name ("", symbol_name_match_type::FULL
,
1874 /* Compute the demangled form of NAME as used by the various symbol
1875 lookup functions. The result can either be the input NAME
1876 directly, or a pointer to a buffer owned by the STORAGE object.
1878 For Ada, this function just returns NAME, unmodified.
1879 Normally, Ada symbol lookups are performed using the encoded name
1880 rather than the demangled name, and so it might seem to make sense
1881 for this function to return an encoded version of NAME.
1882 Unfortunately, we cannot do this, because this function is used in
1883 circumstances where it is not appropriate to try to encode NAME.
1884 For instance, when displaying the frame info, we demangle the name
1885 of each parameter, and then perform a symbol lookup inside our
1886 function using that demangled name. In Ada, certain functions
1887 have internally-generated parameters whose name contain uppercase
1888 characters. Encoding those name would result in those uppercase
1889 characters to become lowercase, and thus cause the symbol lookup
1893 demangle_for_lookup (const char *name
, enum language lang
,
1894 demangle_result_storage
&storage
)
1896 /* If we are using C++, D, or Go, demangle the name before doing a
1897 lookup, so we can always binary search. */
1898 if (lang
== language_cplus
)
1900 gdb::unique_xmalloc_ptr
<char> demangled_name
1901 = gdb_demangle (name
, DMGL_ANSI
| DMGL_PARAMS
);
1902 if (demangled_name
!= NULL
)
1903 return storage
.set_malloc_ptr (std::move (demangled_name
));
1905 /* If we were given a non-mangled name, canonicalize it
1906 according to the language (so far only for C++). */
1907 gdb::unique_xmalloc_ptr
<char> canon
= cp_canonicalize_string (name
);
1908 if (canon
!= nullptr)
1909 return storage
.set_malloc_ptr (std::move (canon
));
1911 else if (lang
== language_d
)
1913 gdb::unique_xmalloc_ptr
<char> demangled_name
= d_demangle (name
, 0);
1914 if (demangled_name
!= NULL
)
1915 return storage
.set_malloc_ptr (std::move (demangled_name
));
1917 else if (lang
== language_go
)
1919 gdb::unique_xmalloc_ptr
<char> demangled_name
1920 = language_def (language_go
)->demangle_symbol (name
, 0);
1921 if (demangled_name
!= NULL
)
1922 return storage
.set_malloc_ptr (std::move (demangled_name
));
1931 search_name_hash (enum language language
, const char *search_name
)
1933 return language_def (language
)->search_name_hash (search_name
);
1938 This function (or rather its subordinates) have a bunch of loops and
1939 it would seem to be attractive to put in some QUIT's (though I'm not really
1940 sure whether it can run long enough to be really important). But there
1941 are a few calls for which it would appear to be bad news to quit
1942 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1943 that there is C++ code below which can error(), but that probably
1944 doesn't affect these calls since they are looking for a known
1945 variable and thus can probably assume it will never hit the C++
1949 lookup_symbol_in_language (const char *name
, const struct block
*block
,
1950 const domain_enum domain
, enum language lang
,
1951 struct field_of_this_result
*is_a_field_of_this
)
1953 SYMBOL_LOOKUP_SCOPED_DEBUG_ENTER_EXIT
;
1955 demangle_result_storage storage
;
1956 const char *modified_name
= demangle_for_lookup (name
, lang
, storage
);
1958 return lookup_symbol_aux (modified_name
,
1959 symbol_name_match_type::FULL
,
1960 block
, domain
, lang
,
1961 is_a_field_of_this
);
1967 lookup_symbol (const char *name
, const struct block
*block
,
1969 struct field_of_this_result
*is_a_field_of_this
)
1971 return lookup_symbol_in_language (name
, block
, domain
,
1972 current_language
->la_language
,
1973 is_a_field_of_this
);
1979 lookup_symbol_search_name (const char *search_name
, const struct block
*block
,
1982 return lookup_symbol_aux (search_name
, symbol_name_match_type::SEARCH_NAME
,
1983 block
, domain
, language_asm
, NULL
);
1989 lookup_language_this (const struct language_defn
*lang
,
1990 const struct block
*block
)
1992 if (lang
->name_of_this () == NULL
|| block
== NULL
)
1995 symbol_lookup_debug_printf_v ("lookup_language_this (%s, %s (objfile %s))",
1996 lang
->name (), host_address_to_string (block
),
1997 objfile_debug_name (block_objfile (block
)));
2003 sym
= block_lookup_symbol (block
, lang
->name_of_this (),
2004 symbol_name_match_type::SEARCH_NAME
,
2008 symbol_lookup_debug_printf_v
2009 ("lookup_language_this (...) = %s (%s, block %s)",
2010 sym
->print_name (), host_address_to_string (sym
),
2011 host_address_to_string (block
));
2012 return (struct block_symbol
) {sym
, block
};
2014 if (block
->function ())
2016 block
= block
->superblock ();
2019 symbol_lookup_debug_printf_v ("lookup_language_this (...) = NULL");
2023 /* Given TYPE, a structure/union,
2024 return 1 if the component named NAME from the ultimate target
2025 structure/union is defined, otherwise, return 0. */
2028 check_field (struct type
*type
, const char *name
,
2029 struct field_of_this_result
*is_a_field_of_this
)
2033 /* The type may be a stub. */
2034 type
= check_typedef (type
);
2036 for (i
= type
->num_fields () - 1; i
>= TYPE_N_BASECLASSES (type
); i
--)
2038 const char *t_field_name
= type
->field (i
).name ();
2040 if (t_field_name
&& (strcmp_iw (t_field_name
, name
) == 0))
2042 is_a_field_of_this
->type
= type
;
2043 is_a_field_of_this
->field
= &type
->field (i
);
2048 /* C++: If it was not found as a data field, then try to return it
2049 as a pointer to a method. */
2051 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; --i
)
2053 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type
, i
), name
) == 0)
2055 is_a_field_of_this
->type
= type
;
2056 is_a_field_of_this
->fn_field
= &TYPE_FN_FIELDLIST (type
, i
);
2061 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
2062 if (check_field (TYPE_BASECLASS (type
, i
), name
, is_a_field_of_this
))
2068 /* Behave like lookup_symbol except that NAME is the natural name
2069 (e.g., demangled name) of the symbol that we're looking for. */
2071 static struct block_symbol
2072 lookup_symbol_aux (const char *name
, symbol_name_match_type match_type
,
2073 const struct block
*block
,
2074 const domain_enum domain
, enum language language
,
2075 struct field_of_this_result
*is_a_field_of_this
)
2077 SYMBOL_LOOKUP_SCOPED_DEBUG_ENTER_EXIT
;
2079 struct block_symbol result
;
2080 const struct language_defn
*langdef
;
2082 if (symbol_lookup_debug
)
2084 struct objfile
*objfile
= (block
== nullptr
2085 ? nullptr : block_objfile (block
));
2087 symbol_lookup_debug_printf
2088 ("demangled symbol name = \"%s\", block @ %s (objfile %s)",
2089 name
, host_address_to_string (block
),
2090 objfile
!= NULL
? objfile_debug_name (objfile
) : "NULL");
2091 symbol_lookup_debug_printf
2092 ("domain name = \"%s\", language = \"%s\")",
2093 domain_name (domain
), language_str (language
));
2096 /* Make sure we do something sensible with is_a_field_of_this, since
2097 the callers that set this parameter to some non-null value will
2098 certainly use it later. If we don't set it, the contents of
2099 is_a_field_of_this are undefined. */
2100 if (is_a_field_of_this
!= NULL
)
2101 memset (is_a_field_of_this
, 0, sizeof (*is_a_field_of_this
));
2103 /* Search specified block and its superiors. Don't search
2104 STATIC_BLOCK or GLOBAL_BLOCK. */
2106 result
= lookup_local_symbol (name
, match_type
, block
, domain
, language
);
2107 if (result
.symbol
!= NULL
)
2109 symbol_lookup_debug_printf
2110 ("found symbol @ %s (using lookup_local_symbol)",
2111 host_address_to_string (result
.symbol
));
2115 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2116 check to see if NAME is a field of `this'. */
2118 langdef
= language_def (language
);
2120 /* Don't do this check if we are searching for a struct. It will
2121 not be found by check_field, but will be found by other
2123 if (is_a_field_of_this
!= NULL
&& domain
!= STRUCT_DOMAIN
)
2125 result
= lookup_language_this (langdef
, block
);
2129 struct type
*t
= result
.symbol
->type ();
2131 /* I'm not really sure that type of this can ever
2132 be typedefed; just be safe. */
2133 t
= check_typedef (t
);
2134 if (t
->is_pointer_or_reference ())
2135 t
= t
->target_type ();
2137 if (t
->code () != TYPE_CODE_STRUCT
2138 && t
->code () != TYPE_CODE_UNION
)
2139 error (_("Internal error: `%s' is not an aggregate"),
2140 langdef
->name_of_this ());
2142 if (check_field (t
, name
, is_a_field_of_this
))
2144 symbol_lookup_debug_printf ("no symbol found");
2150 /* Now do whatever is appropriate for LANGUAGE to look
2151 up static and global variables. */
2153 result
= langdef
->lookup_symbol_nonlocal (name
, block
, domain
);
2154 if (result
.symbol
!= NULL
)
2156 symbol_lookup_debug_printf
2157 ("found symbol @ %s (using language lookup_symbol_nonlocal)",
2158 host_address_to_string (result
.symbol
));
2162 /* Now search all static file-level symbols. Not strictly correct,
2163 but more useful than an error. */
2165 result
= lookup_static_symbol (name
, domain
);
2166 symbol_lookup_debug_printf
2167 ("found symbol @ %s (using lookup_static_symbol)",
2168 result
.symbol
!= NULL
? host_address_to_string (result
.symbol
) : "NULL");
2172 /* Check to see if the symbol is defined in BLOCK or its superiors.
2173 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2175 static struct block_symbol
2176 lookup_local_symbol (const char *name
,
2177 symbol_name_match_type match_type
,
2178 const struct block
*block
,
2179 const domain_enum domain
,
2180 enum language language
)
2183 const struct block
*static_block
= block_static_block (block
);
2184 const char *scope
= block_scope (block
);
2186 /* Check if either no block is specified or it's a global block. */
2188 if (static_block
== NULL
)
2191 while (block
!= static_block
)
2193 sym
= lookup_symbol_in_block (name
, match_type
, block
, domain
);
2195 return (struct block_symbol
) {sym
, block
};
2197 if (language
== language_cplus
|| language
== language_fortran
)
2199 struct block_symbol blocksym
2200 = cp_lookup_symbol_imports_or_template (scope
, name
, block
,
2203 if (blocksym
.symbol
!= NULL
)
2207 if (block
->function () != NULL
&& block_inlined_p (block
))
2209 block
= block
->superblock ();
2212 /* We've reached the end of the function without finding a result. */
2220 lookup_symbol_in_block (const char *name
, symbol_name_match_type match_type
,
2221 const struct block
*block
,
2222 const domain_enum domain
)
2226 if (symbol_lookup_debug
)
2228 struct objfile
*objfile
2229 = block
== nullptr ? nullptr : block_objfile (block
);
2231 symbol_lookup_debug_printf_v
2232 ("lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2233 name
, host_address_to_string (block
),
2234 objfile
!= nullptr ? objfile_debug_name (objfile
) : "NULL",
2235 domain_name (domain
));
2238 sym
= block_lookup_symbol (block
, name
, match_type
, domain
);
2241 symbol_lookup_debug_printf_v ("lookup_symbol_in_block (...) = %s",
2242 host_address_to_string (sym
));
2243 return fixup_symbol_section (sym
, NULL
);
2246 symbol_lookup_debug_printf_v ("lookup_symbol_in_block (...) = NULL");
2253 lookup_global_symbol_from_objfile (struct objfile
*main_objfile
,
2254 enum block_enum block_index
,
2256 const domain_enum domain
)
2258 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2260 for (objfile
*objfile
: main_objfile
->separate_debug_objfiles ())
2262 struct block_symbol result
2263 = lookup_symbol_in_objfile (objfile
, block_index
, name
, domain
);
2265 if (result
.symbol
!= nullptr)
2272 /* Check to see if the symbol is defined in one of the OBJFILE's
2273 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2274 depending on whether or not we want to search global symbols or
2277 static struct block_symbol
2278 lookup_symbol_in_objfile_symtabs (struct objfile
*objfile
,
2279 enum block_enum block_index
, const char *name
,
2280 const domain_enum domain
)
2282 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2284 symbol_lookup_debug_printf_v
2285 ("lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2286 objfile_debug_name (objfile
),
2287 block_index
== GLOBAL_BLOCK
? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2288 name
, domain_name (domain
));
2290 struct block_symbol other
;
2291 other
.symbol
= NULL
;
2292 for (compunit_symtab
*cust
: objfile
->compunits ())
2294 const struct blockvector
*bv
;
2295 const struct block
*block
;
2296 struct block_symbol result
;
2298 bv
= cust
->blockvector ();
2299 block
= bv
->block (block_index
);
2300 result
.symbol
= block_lookup_symbol_primary (block
, name
, domain
);
2301 result
.block
= block
;
2302 if (result
.symbol
== NULL
)
2304 if (best_symbol (result
.symbol
, domain
))
2309 if (symbol_matches_domain (result
.symbol
->language (),
2310 result
.symbol
->domain (), domain
))
2312 struct symbol
*better
2313 = better_symbol (other
.symbol
, result
.symbol
, domain
);
2314 if (better
!= other
.symbol
)
2316 other
.symbol
= better
;
2317 other
.block
= block
;
2322 if (other
.symbol
!= NULL
)
2324 symbol_lookup_debug_printf_v
2325 ("lookup_symbol_in_objfile_symtabs (...) = %s (block %s)",
2326 host_address_to_string (other
.symbol
),
2327 host_address_to_string (other
.block
));
2328 other
.symbol
= fixup_symbol_section (other
.symbol
, objfile
);
2332 symbol_lookup_debug_printf_v
2333 ("lookup_symbol_in_objfile_symtabs (...) = NULL");
2337 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2338 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2339 and all associated separate debug objfiles.
2341 Normally we only look in OBJFILE, and not any separate debug objfiles
2342 because the outer loop will cause them to be searched too. This case is
2343 different. Here we're called from search_symbols where it will only
2344 call us for the objfile that contains a matching minsym. */
2346 static struct block_symbol
2347 lookup_symbol_in_objfile_from_linkage_name (struct objfile
*objfile
,
2348 const char *linkage_name
,
2351 enum language lang
= current_language
->la_language
;
2352 struct objfile
*main_objfile
;
2354 demangle_result_storage storage
;
2355 const char *modified_name
= demangle_for_lookup (linkage_name
, lang
, storage
);
2357 if (objfile
->separate_debug_objfile_backlink
)
2358 main_objfile
= objfile
->separate_debug_objfile_backlink
;
2360 main_objfile
= objfile
;
2362 for (::objfile
*cur_objfile
: main_objfile
->separate_debug_objfiles ())
2364 struct block_symbol result
;
2366 result
= lookup_symbol_in_objfile_symtabs (cur_objfile
, GLOBAL_BLOCK
,
2367 modified_name
, domain
);
2368 if (result
.symbol
== NULL
)
2369 result
= lookup_symbol_in_objfile_symtabs (cur_objfile
, STATIC_BLOCK
,
2370 modified_name
, domain
);
2371 if (result
.symbol
!= NULL
)
2378 /* A helper function that throws an exception when a symbol was found
2379 in a psymtab but not in a symtab. */
2381 static void ATTRIBUTE_NORETURN
2382 error_in_psymtab_expansion (enum block_enum block_index
, const char *name
,
2383 struct compunit_symtab
*cust
)
2386 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2387 %s may be an inlined function, or may be a template function\n \
2388 (if a template, try specifying an instantiation: %s<type>)."),
2389 block_index
== GLOBAL_BLOCK
? "global" : "static",
2391 symtab_to_filename_for_display (cust
->primary_filetab ()),
2395 /* A helper function for various lookup routines that interfaces with
2396 the "quick" symbol table functions. */
2398 static struct block_symbol
2399 lookup_symbol_via_quick_fns (struct objfile
*objfile
,
2400 enum block_enum block_index
, const char *name
,
2401 const domain_enum domain
)
2403 struct compunit_symtab
*cust
;
2404 const struct blockvector
*bv
;
2405 const struct block
*block
;
2406 struct block_symbol result
;
2408 symbol_lookup_debug_printf_v
2409 ("lookup_symbol_via_quick_fns (%s, %s, %s, %s)",
2410 objfile_debug_name (objfile
),
2411 block_index
== GLOBAL_BLOCK
? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2412 name
, domain_name (domain
));
2414 cust
= objfile
->lookup_symbol (block_index
, name
, domain
);
2417 symbol_lookup_debug_printf_v
2418 ("lookup_symbol_via_quick_fns (...) = NULL");
2422 bv
= cust
->blockvector ();
2423 block
= bv
->block (block_index
);
2424 result
.symbol
= block_lookup_symbol (block
, name
,
2425 symbol_name_match_type::FULL
, domain
);
2426 if (result
.symbol
== NULL
)
2427 error_in_psymtab_expansion (block_index
, name
, cust
);
2429 symbol_lookup_debug_printf_v
2430 ("lookup_symbol_via_quick_fns (...) = %s (block %s)",
2431 host_address_to_string (result
.symbol
),
2432 host_address_to_string (block
));
2434 result
.symbol
= fixup_symbol_section (result
.symbol
, objfile
);
2435 result
.block
= block
;
2439 /* See language.h. */
2442 language_defn::lookup_symbol_nonlocal (const char *name
,
2443 const struct block
*block
,
2444 const domain_enum domain
) const
2446 struct block_symbol result
;
2448 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2449 the current objfile. Searching the current objfile first is useful
2450 for both matching user expectations as well as performance. */
2452 result
= lookup_symbol_in_static_block (name
, block
, domain
);
2453 if (result
.symbol
!= NULL
)
2456 /* If we didn't find a definition for a builtin type in the static block,
2457 search for it now. This is actually the right thing to do and can be
2458 a massive performance win. E.g., when debugging a program with lots of
2459 shared libraries we could search all of them only to find out the
2460 builtin type isn't defined in any of them. This is common for types
2462 if (domain
== VAR_DOMAIN
)
2464 struct gdbarch
*gdbarch
;
2467 gdbarch
= target_gdbarch ();
2469 gdbarch
= block_gdbarch (block
);
2470 result
.symbol
= language_lookup_primitive_type_as_symbol (this,
2472 result
.block
= NULL
;
2473 if (result
.symbol
!= NULL
)
2477 return lookup_global_symbol (name
, block
, domain
);
2483 lookup_symbol_in_static_block (const char *name
,
2484 const struct block
*block
,
2485 const domain_enum domain
)
2487 const struct block
*static_block
= block_static_block (block
);
2490 if (static_block
== NULL
)
2493 if (symbol_lookup_debug
)
2495 struct objfile
*objfile
= (block
== nullptr
2496 ? nullptr : block_objfile (block
));
2498 symbol_lookup_debug_printf
2499 ("lookup_symbol_in_static_block (%s, %s (objfile %s), %s)",
2500 name
, host_address_to_string (block
),
2501 objfile
!= nullptr ? objfile_debug_name (objfile
) : "NULL",
2502 domain_name (domain
));
2505 sym
= lookup_symbol_in_block (name
,
2506 symbol_name_match_type::FULL
,
2507 static_block
, domain
);
2508 symbol_lookup_debug_printf ("lookup_symbol_in_static_block (...) = %s",
2510 ? host_address_to_string (sym
) : "NULL");
2511 return (struct block_symbol
) {sym
, static_block
};
2514 /* Perform the standard symbol lookup of NAME in OBJFILE:
2515 1) First search expanded symtabs, and if not found
2516 2) Search the "quick" symtabs (partial or .gdb_index).
2517 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2519 static struct block_symbol
2520 lookup_symbol_in_objfile (struct objfile
*objfile
, enum block_enum block_index
,
2521 const char *name
, const domain_enum domain
)
2523 struct block_symbol result
;
2525 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2527 symbol_lookup_debug_printf ("lookup_symbol_in_objfile (%s, %s, %s, %s)",
2528 objfile_debug_name (objfile
),
2529 block_index
== GLOBAL_BLOCK
2530 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2531 name
, domain_name (domain
));
2533 result
= lookup_symbol_in_objfile_symtabs (objfile
, block_index
,
2535 if (result
.symbol
!= NULL
)
2537 symbol_lookup_debug_printf
2538 ("lookup_symbol_in_objfile (...) = %s (in symtabs)",
2539 host_address_to_string (result
.symbol
));
2543 result
= lookup_symbol_via_quick_fns (objfile
, block_index
,
2545 symbol_lookup_debug_printf ("lookup_symbol_in_objfile (...) = %s%s",
2546 result
.symbol
!= NULL
2547 ? host_address_to_string (result
.symbol
)
2549 result
.symbol
!= NULL
? " (via quick fns)"
2554 /* This function contains the common code of lookup_{global,static}_symbol.
2555 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2556 the objfile to start the lookup in. */
2558 static struct block_symbol
2559 lookup_global_or_static_symbol (const char *name
,
2560 enum block_enum block_index
,
2561 struct objfile
*objfile
,
2562 const domain_enum domain
)
2564 struct symbol_cache
*cache
= get_symbol_cache (current_program_space
);
2565 struct block_symbol result
;
2566 struct block_symbol_cache
*bsc
;
2567 struct symbol_cache_slot
*slot
;
2569 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2570 gdb_assert (objfile
== nullptr || block_index
== GLOBAL_BLOCK
);
2572 /* First see if we can find the symbol in the cache.
2573 This works because we use the current objfile to qualify the lookup. */
2574 result
= symbol_cache_lookup (cache
, objfile
, block_index
, name
, domain
,
2576 if (result
.symbol
!= NULL
)
2578 if (SYMBOL_LOOKUP_FAILED_P (result
))
2583 /* Do a global search (of global blocks, heh). */
2584 if (result
.symbol
== NULL
)
2585 gdbarch_iterate_over_objfiles_in_search_order
2586 (objfile
!= NULL
? objfile
->arch () : target_gdbarch (),
2587 [&result
, block_index
, name
, domain
] (struct objfile
*objfile_iter
)
2589 result
= lookup_symbol_in_objfile (objfile_iter
, block_index
,
2591 return result
.symbol
!= nullptr;
2595 if (result
.symbol
!= NULL
)
2596 symbol_cache_mark_found (bsc
, slot
, objfile
, result
.symbol
, result
.block
);
2598 symbol_cache_mark_not_found (bsc
, slot
, objfile
, name
, domain
);
2606 lookup_static_symbol (const char *name
, const domain_enum domain
)
2608 return lookup_global_or_static_symbol (name
, STATIC_BLOCK
, nullptr, domain
);
2614 lookup_global_symbol (const char *name
,
2615 const struct block
*block
,
2616 const domain_enum domain
)
2618 /* If a block was passed in, we want to search the corresponding
2619 global block first. This yields "more expected" behavior, and is
2620 needed to support 'FILENAME'::VARIABLE lookups. */
2621 const struct block
*global_block
= block_global_block (block
);
2623 if (global_block
!= nullptr)
2625 sym
= lookup_symbol_in_block (name
,
2626 symbol_name_match_type::FULL
,
2627 global_block
, domain
);
2628 if (sym
!= NULL
&& best_symbol (sym
, domain
))
2629 return { sym
, global_block
};
2632 struct objfile
*objfile
= nullptr;
2633 if (block
!= nullptr)
2635 objfile
= block_objfile (block
);
2636 if (objfile
->separate_debug_objfile_backlink
!= nullptr)
2637 objfile
= objfile
->separate_debug_objfile_backlink
;
2641 = lookup_global_or_static_symbol (name
, GLOBAL_BLOCK
, objfile
, domain
);
2642 if (better_symbol (sym
, bs
.symbol
, domain
) == sym
)
2643 return { sym
, global_block
};
2649 symbol_matches_domain (enum language symbol_language
,
2650 domain_enum symbol_domain
,
2653 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2654 Similarly, any Ada type declaration implicitly defines a typedef. */
2655 if (symbol_language
== language_cplus
2656 || symbol_language
== language_d
2657 || symbol_language
== language_ada
2658 || symbol_language
== language_rust
)
2660 if ((domain
== VAR_DOMAIN
|| domain
== STRUCT_DOMAIN
)
2661 && symbol_domain
== STRUCT_DOMAIN
)
2664 /* For all other languages, strict match is required. */
2665 return (symbol_domain
== domain
);
2671 lookup_transparent_type (const char *name
)
2673 return current_language
->lookup_transparent_type (name
);
2676 /* A helper for basic_lookup_transparent_type that interfaces with the
2677 "quick" symbol table functions. */
2679 static struct type
*
2680 basic_lookup_transparent_type_quick (struct objfile
*objfile
,
2681 enum block_enum block_index
,
2684 struct compunit_symtab
*cust
;
2685 const struct blockvector
*bv
;
2686 const struct block
*block
;
2689 cust
= objfile
->lookup_symbol (block_index
, name
, STRUCT_DOMAIN
);
2693 bv
= cust
->blockvector ();
2694 block
= bv
->block (block_index
);
2695 sym
= block_find_symbol (block
, name
, STRUCT_DOMAIN
,
2696 block_find_non_opaque_type
, NULL
);
2698 error_in_psymtab_expansion (block_index
, name
, cust
);
2699 gdb_assert (!TYPE_IS_OPAQUE (sym
->type ()));
2700 return sym
->type ();
2703 /* Subroutine of basic_lookup_transparent_type to simplify it.
2704 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2705 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2707 static struct type
*
2708 basic_lookup_transparent_type_1 (struct objfile
*objfile
,
2709 enum block_enum block_index
,
2712 const struct blockvector
*bv
;
2713 const struct block
*block
;
2714 const struct symbol
*sym
;
2716 for (compunit_symtab
*cust
: objfile
->compunits ())
2718 bv
= cust
->blockvector ();
2719 block
= bv
->block (block_index
);
2720 sym
= block_find_symbol (block
, name
, STRUCT_DOMAIN
,
2721 block_find_non_opaque_type
, NULL
);
2724 gdb_assert (!TYPE_IS_OPAQUE (sym
->type ()));
2725 return sym
->type ();
2732 /* The standard implementation of lookup_transparent_type. This code
2733 was modeled on lookup_symbol -- the parts not relevant to looking
2734 up types were just left out. In particular it's assumed here that
2735 types are available in STRUCT_DOMAIN and only in file-static or
2739 basic_lookup_transparent_type (const char *name
)
2743 /* Now search all the global symbols. Do the symtab's first, then
2744 check the psymtab's. If a psymtab indicates the existence
2745 of the desired name as a global, then do psymtab-to-symtab
2746 conversion on the fly and return the found symbol. */
2748 for (objfile
*objfile
: current_program_space
->objfiles ())
2750 t
= basic_lookup_transparent_type_1 (objfile
, GLOBAL_BLOCK
, name
);
2755 for (objfile
*objfile
: current_program_space
->objfiles ())
2757 t
= basic_lookup_transparent_type_quick (objfile
, GLOBAL_BLOCK
, name
);
2762 /* Now search the static file-level symbols.
2763 Not strictly correct, but more useful than an error.
2764 Do the symtab's first, then
2765 check the psymtab's. If a psymtab indicates the existence
2766 of the desired name as a file-level static, then do psymtab-to-symtab
2767 conversion on the fly and return the found symbol. */
2769 for (objfile
*objfile
: current_program_space
->objfiles ())
2771 t
= basic_lookup_transparent_type_1 (objfile
, STATIC_BLOCK
, name
);
2776 for (objfile
*objfile
: current_program_space
->objfiles ())
2778 t
= basic_lookup_transparent_type_quick (objfile
, STATIC_BLOCK
, name
);
2783 return (struct type
*) 0;
2789 iterate_over_symbols (const struct block
*block
,
2790 const lookup_name_info
&name
,
2791 const domain_enum domain
,
2792 gdb::function_view
<symbol_found_callback_ftype
> callback
)
2794 struct block_iterator iter
;
2797 ALL_BLOCK_SYMBOLS_WITH_NAME (block
, name
, iter
, sym
)
2799 if (symbol_matches_domain (sym
->language (), sym
->domain (), domain
))
2801 struct block_symbol block_sym
= {sym
, block
};
2803 if (!callback (&block_sym
))
2813 iterate_over_symbols_terminated
2814 (const struct block
*block
,
2815 const lookup_name_info
&name
,
2816 const domain_enum domain
,
2817 gdb::function_view
<symbol_found_callback_ftype
> callback
)
2819 if (!iterate_over_symbols (block
, name
, domain
, callback
))
2821 struct block_symbol block_sym
= {nullptr, block
};
2822 return callback (&block_sym
);
2825 /* Find the compunit symtab associated with PC and SECTION.
2826 This will read in debug info as necessary. */
2828 struct compunit_symtab
*
2829 find_pc_sect_compunit_symtab (CORE_ADDR pc
, struct obj_section
*section
)
2831 struct compunit_symtab
*best_cust
= NULL
;
2832 CORE_ADDR best_cust_range
= 0;
2833 struct bound_minimal_symbol msymbol
;
2835 /* If we know that this is not a text address, return failure. This is
2836 necessary because we loop based on the block's high and low code
2837 addresses, which do not include the data ranges, and because
2838 we call find_pc_sect_psymtab which has a similar restriction based
2839 on the partial_symtab's texthigh and textlow. */
2840 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
);
2841 if (msymbol
.minsym
&& msymbol
.minsym
->data_p ())
2844 /* Search all symtabs for the one whose file contains our address, and which
2845 is the smallest of all the ones containing the address. This is designed
2846 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2847 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2848 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2850 This happens for native ecoff format, where code from included files
2851 gets its own symtab. The symtab for the included file should have
2852 been read in already via the dependency mechanism.
2853 It might be swifter to create several symtabs with the same name
2854 like xcoff does (I'm not sure).
2856 It also happens for objfiles that have their functions reordered.
2857 For these, the symtab we are looking for is not necessarily read in. */
2859 for (objfile
*obj_file
: current_program_space
->objfiles ())
2861 for (compunit_symtab
*cust
: obj_file
->compunits ())
2863 const struct blockvector
*bv
= cust
->blockvector ();
2864 const struct block
*global_block
= bv
->global_block ();
2865 CORE_ADDR start
= global_block
->start ();
2866 CORE_ADDR end
= global_block
->end ();
2867 bool in_range_p
= start
<= pc
&& pc
< end
;
2871 if (bv
->map () != nullptr)
2873 if (bv
->map ()->find (pc
) == nullptr)
2879 CORE_ADDR range
= end
- start
;
2880 if (best_cust
!= nullptr
2881 && range
>= best_cust_range
)
2882 /* Cust doesn't have a smaller range than best_cust, skip it. */
2885 /* For an objfile that has its functions reordered,
2886 find_pc_psymtab will find the proper partial symbol table
2887 and we simply return its corresponding symtab. */
2888 /* In order to better support objfiles that contain both
2889 stabs and coff debugging info, we continue on if a psymtab
2891 if ((obj_file
->flags
& OBJF_REORDERED
) != 0)
2893 struct compunit_symtab
*result
;
2896 = obj_file
->find_pc_sect_compunit_symtab (msymbol
,
2906 struct symbol
*sym
= NULL
;
2907 struct block_iterator iter
;
2909 for (int b_index
= GLOBAL_BLOCK
;
2910 b_index
<= STATIC_BLOCK
&& sym
== NULL
;
2913 const struct block
*b
= bv
->block (b_index
);
2914 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
2916 fixup_symbol_section (sym
, obj_file
);
2917 if (matching_obj_sections (sym
->obj_section (obj_file
),
2923 continue; /* No symbol in this symtab matches
2927 /* Cust is best found sofar, save it. */
2929 best_cust_range
= range
;
2933 if (best_cust
!= NULL
)
2936 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2938 for (objfile
*objf
: current_program_space
->objfiles ())
2940 struct compunit_symtab
*result
2941 = objf
->find_pc_sect_compunit_symtab (msymbol
, pc
, section
, 1);
2949 /* Find the compunit symtab associated with PC.
2950 This will read in debug info as necessary.
2951 Backward compatibility, no section. */
2953 struct compunit_symtab
*
2954 find_pc_compunit_symtab (CORE_ADDR pc
)
2956 return find_pc_sect_compunit_symtab (pc
, find_pc_mapped_section (pc
));
2962 find_symbol_at_address (CORE_ADDR address
)
2964 /* A helper function to search a given symtab for a symbol matching
2966 auto search_symtab
= [] (compunit_symtab
*symtab
, CORE_ADDR addr
) -> symbol
*
2968 const struct blockvector
*bv
= symtab
->blockvector ();
2970 for (int i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; ++i
)
2972 const struct block
*b
= bv
->block (i
);
2973 struct block_iterator iter
;
2976 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
2978 if (sym
->aclass () == LOC_STATIC
2979 && sym
->value_address () == addr
)
2986 for (objfile
*objfile
: current_program_space
->objfiles ())
2988 /* If this objfile was read with -readnow, then we need to
2989 search the symtabs directly. */
2990 if ((objfile
->flags
& OBJF_READNOW
) != 0)
2992 for (compunit_symtab
*symtab
: objfile
->compunits ())
2994 struct symbol
*sym
= search_symtab (symtab
, address
);
3001 struct compunit_symtab
*symtab
3002 = objfile
->find_compunit_symtab_by_address (address
);
3005 struct symbol
*sym
= search_symtab (symtab
, address
);
3017 /* Find the source file and line number for a given PC value and SECTION.
3018 Return a structure containing a symtab pointer, a line number,
3019 and a pc range for the entire source line.
3020 The value's .pc field is NOT the specified pc.
3021 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3022 use the line that ends there. Otherwise, in that case, the line
3023 that begins there is used. */
3025 /* The big complication here is that a line may start in one file, and end just
3026 before the start of another file. This usually occurs when you #include
3027 code in the middle of a subroutine. To properly find the end of a line's PC
3028 range, we must search all symtabs associated with this compilation unit, and
3029 find the one whose first PC is closer than that of the next line in this
3032 struct symtab_and_line
3033 find_pc_sect_line (CORE_ADDR pc
, struct obj_section
*section
, int notcurrent
)
3035 struct compunit_symtab
*cust
;
3036 struct linetable
*l
;
3038 struct linetable_entry
*item
;
3039 const struct blockvector
*bv
;
3040 struct bound_minimal_symbol msymbol
;
3042 /* Info on best line seen so far, and where it starts, and its file. */
3044 struct linetable_entry
*best
= NULL
;
3045 CORE_ADDR best_end
= 0;
3046 struct symtab
*best_symtab
= 0;
3048 /* Store here the first line number
3049 of a file which contains the line at the smallest pc after PC.
3050 If we don't find a line whose range contains PC,
3051 we will use a line one less than this,
3052 with a range from the start of that file to the first line's pc. */
3053 struct linetable_entry
*alt
= NULL
;
3055 /* Info on best line seen in this file. */
3057 struct linetable_entry
*prev
;
3059 /* If this pc is not from the current frame,
3060 it is the address of the end of a call instruction.
3061 Quite likely that is the start of the following statement.
3062 But what we want is the statement containing the instruction.
3063 Fudge the pc to make sure we get that. */
3065 /* It's tempting to assume that, if we can't find debugging info for
3066 any function enclosing PC, that we shouldn't search for line
3067 number info, either. However, GAS can emit line number info for
3068 assembly files --- very helpful when debugging hand-written
3069 assembly code. In such a case, we'd have no debug info for the
3070 function, but we would have line info. */
3075 /* elz: added this because this function returned the wrong
3076 information if the pc belongs to a stub (import/export)
3077 to call a shlib function. This stub would be anywhere between
3078 two functions in the target, and the line info was erroneously
3079 taken to be the one of the line before the pc. */
3081 /* RT: Further explanation:
3083 * We have stubs (trampolines) inserted between procedures.
3085 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3086 * exists in the main image.
3088 * In the minimal symbol table, we have a bunch of symbols
3089 * sorted by start address. The stubs are marked as "trampoline",
3090 * the others appear as text. E.g.:
3092 * Minimal symbol table for main image
3093 * main: code for main (text symbol)
3094 * shr1: stub (trampoline symbol)
3095 * foo: code for foo (text symbol)
3097 * Minimal symbol table for "shr1" image:
3099 * shr1: code for shr1 (text symbol)
3102 * So the code below is trying to detect if we are in the stub
3103 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3104 * and if found, do the symbolization from the real-code address
3105 * rather than the stub address.
3107 * Assumptions being made about the minimal symbol table:
3108 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3109 * if we're really in the trampoline.s If we're beyond it (say
3110 * we're in "foo" in the above example), it'll have a closer
3111 * symbol (the "foo" text symbol for example) and will not
3112 * return the trampoline.
3113 * 2. lookup_minimal_symbol_text() will find a real text symbol
3114 * corresponding to the trampoline, and whose address will
3115 * be different than the trampoline address. I put in a sanity
3116 * check for the address being the same, to avoid an
3117 * infinite recursion.
3119 msymbol
= lookup_minimal_symbol_by_pc (pc
);
3120 if (msymbol
.minsym
!= NULL
)
3121 if (msymbol
.minsym
->type () == mst_solib_trampoline
)
3123 struct bound_minimal_symbol mfunsym
3124 = lookup_minimal_symbol_text (msymbol
.minsym
->linkage_name (),
3127 if (mfunsym
.minsym
== NULL
)
3128 /* I eliminated this warning since it is coming out
3129 * in the following situation:
3130 * gdb shmain // test program with shared libraries
3131 * (gdb) break shr1 // function in shared lib
3132 * Warning: In stub for ...
3133 * In the above situation, the shared lib is not loaded yet,
3134 * so of course we can't find the real func/line info,
3135 * but the "break" still works, and the warning is annoying.
3136 * So I commented out the warning. RT */
3137 /* warning ("In stub for %s; unable to find real function/line info",
3138 msymbol->linkage_name ()); */
3141 else if (mfunsym
.value_address ()
3142 == msymbol
.value_address ())
3143 /* Avoid infinite recursion */
3144 /* See above comment about why warning is commented out. */
3145 /* warning ("In stub for %s; unable to find real function/line info",
3146 msymbol->linkage_name ()); */
3151 /* Detect an obvious case of infinite recursion. If this
3152 should occur, we'd like to know about it, so error out,
3154 if (mfunsym
.value_address () == pc
)
3155 internal_error (_("Infinite recursion detected in find_pc_sect_line;"
3156 "please file a bug report"));
3158 return find_pc_line (mfunsym
.value_address (), 0);
3162 symtab_and_line val
;
3163 val
.pspace
= current_program_space
;
3165 cust
= find_pc_sect_compunit_symtab (pc
, section
);
3168 /* If no symbol information, return previous pc. */
3175 bv
= cust
->blockvector ();
3177 /* Look at all the symtabs that share this blockvector.
3178 They all have the same apriori range, that we found was right;
3179 but they have different line tables. */
3181 for (symtab
*iter_s
: cust
->filetabs ())
3183 /* Find the best line in this symtab. */
3184 l
= iter_s
->linetable ();
3190 /* I think len can be zero if the symtab lacks line numbers
3191 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3192 I'm not sure which, and maybe it depends on the symbol
3198 item
= l
->item
; /* Get first line info. */
3200 /* Is this file's first line closer than the first lines of other files?
3201 If so, record this file, and its first line, as best alternate. */
3202 if (item
->pc
> pc
&& (!alt
|| item
->pc
< alt
->pc
))
3205 auto pc_compare
= [](const CORE_ADDR
& comp_pc
,
3206 const struct linetable_entry
& lhs
)->bool
3208 return comp_pc
< lhs
.pc
;
3211 struct linetable_entry
*first
= item
;
3212 struct linetable_entry
*last
= item
+ len
;
3213 item
= std::upper_bound (first
, last
, pc
, pc_compare
);
3215 prev
= item
- 1; /* Found a matching item. */
3217 /* At this point, prev points at the line whose start addr is <= pc, and
3218 item points at the next line. If we ran off the end of the linetable
3219 (pc >= start of the last line), then prev == item. If pc < start of
3220 the first line, prev will not be set. */
3222 /* Is this file's best line closer than the best in the other files?
3223 If so, record this file, and its best line, as best so far. Don't
3224 save prev if it represents the end of a function (i.e. line number
3225 0) instead of a real line. */
3227 if (prev
&& prev
->line
&& (!best
|| prev
->pc
> best
->pc
))
3230 best_symtab
= iter_s
;
3232 /* If during the binary search we land on a non-statement entry,
3233 scan backward through entries at the same address to see if
3234 there is an entry marked as is-statement. In theory this
3235 duplication should have been removed from the line table
3236 during construction, this is just a double check. If the line
3237 table has had the duplication removed then this should be
3241 struct linetable_entry
*tmp
= best
;
3242 while (tmp
> first
&& (tmp
- 1)->pc
== tmp
->pc
3243 && (tmp
- 1)->line
!= 0 && !tmp
->is_stmt
)
3249 /* Discard BEST_END if it's before the PC of the current BEST. */
3250 if (best_end
<= best
->pc
)
3254 /* If another line (denoted by ITEM) is in the linetable and its
3255 PC is after BEST's PC, but before the current BEST_END, then
3256 use ITEM's PC as the new best_end. */
3257 if (best
&& item
< last
&& item
->pc
> best
->pc
3258 && (best_end
== 0 || best_end
> item
->pc
))
3259 best_end
= item
->pc
;
3264 /* If we didn't find any line number info, just return zeros.
3265 We used to return alt->line - 1 here, but that could be
3266 anywhere; if we don't have line number info for this PC,
3267 don't make some up. */
3270 else if (best
->line
== 0)
3272 /* If our best fit is in a range of PC's for which no line
3273 number info is available (line number is zero) then we didn't
3274 find any valid line information. */
3279 val
.is_stmt
= best
->is_stmt
;
3280 val
.symtab
= best_symtab
;
3281 val
.line
= best
->line
;
3283 if (best_end
&& (!alt
|| best_end
< alt
->pc
))
3288 val
.end
= bv
->global_block ()->end ();
3290 val
.section
= section
;
3294 /* Backward compatibility (no section). */
3296 struct symtab_and_line
3297 find_pc_line (CORE_ADDR pc
, int notcurrent
)
3299 struct obj_section
*section
;
3301 section
= find_pc_overlay (pc
);
3302 if (!pc_in_unmapped_range (pc
, section
))
3303 return find_pc_sect_line (pc
, section
, notcurrent
);
3305 /* If the original PC was an unmapped address then we translate this to a
3306 mapped address in order to lookup the sal. However, as the user
3307 passed us an unmapped address it makes more sense to return a result
3308 that has the pc and end fields translated to unmapped addresses. */
3309 pc
= overlay_mapped_address (pc
, section
);
3310 symtab_and_line sal
= find_pc_sect_line (pc
, section
, notcurrent
);
3311 sal
.pc
= overlay_unmapped_address (sal
.pc
, section
);
3312 sal
.end
= overlay_unmapped_address (sal
.end
, section
);
3319 find_pc_line_symtab (CORE_ADDR pc
)
3321 struct symtab_and_line sal
;
3323 /* This always passes zero for NOTCURRENT to find_pc_line.
3324 There are currently no callers that ever pass non-zero. */
3325 sal
= find_pc_line (pc
, 0);
3329 /* Find line number LINE in any symtab whose name is the same as
3332 If found, return the symtab that contains the linetable in which it was
3333 found, set *INDEX to the index in the linetable of the best entry
3334 found, and set *EXACT_MATCH to true if the value returned is an
3337 If not found, return NULL. */
3340 find_line_symtab (struct symtab
*sym_tab
, int line
,
3341 int *index
, bool *exact_match
)
3343 int exact
= 0; /* Initialized here to avoid a compiler warning. */
3345 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3349 struct linetable
*best_linetable
;
3350 struct symtab
*best_symtab
;
3352 /* First try looking it up in the given symtab. */
3353 best_linetable
= sym_tab
->linetable ();
3354 best_symtab
= sym_tab
;
3355 best_index
= find_line_common (best_linetable
, line
, &exact
, 0);
3356 if (best_index
< 0 || !exact
)
3358 /* Didn't find an exact match. So we better keep looking for
3359 another symtab with the same name. In the case of xcoff,
3360 multiple csects for one source file (produced by IBM's FORTRAN
3361 compiler) produce multiple symtabs (this is unavoidable
3362 assuming csects can be at arbitrary places in memory and that
3363 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3365 /* BEST is the smallest linenumber > LINE so far seen,
3366 or 0 if none has been seen so far.
3367 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3370 if (best_index
>= 0)
3371 best
= best_linetable
->item
[best_index
].line
;
3375 for (objfile
*objfile
: current_program_space
->objfiles ())
3376 objfile
->expand_symtabs_with_fullname (symtab_to_fullname (sym_tab
));
3378 for (objfile
*objfile
: current_program_space
->objfiles ())
3380 for (compunit_symtab
*cu
: objfile
->compunits ())
3382 for (symtab
*s
: cu
->filetabs ())
3384 struct linetable
*l
;
3387 if (FILENAME_CMP (sym_tab
->filename
, s
->filename
) != 0)
3389 if (FILENAME_CMP (symtab_to_fullname (sym_tab
),
3390 symtab_to_fullname (s
)) != 0)
3392 l
= s
->linetable ();
3393 ind
= find_line_common (l
, line
, &exact
, 0);
3403 if (best
== 0 || l
->item
[ind
].line
< best
)
3405 best
= l
->item
[ind
].line
;
3420 *index
= best_index
;
3422 *exact_match
= (exact
!= 0);
3427 /* Given SYMTAB, returns all the PCs function in the symtab that
3428 exactly match LINE. Returns an empty vector if there are no exact
3429 matches, but updates BEST_ITEM in this case. */
3431 std::vector
<CORE_ADDR
>
3432 find_pcs_for_symtab_line (struct symtab
*symtab
, int line
,
3433 struct linetable_entry
**best_item
)
3436 std::vector
<CORE_ADDR
> result
;
3438 /* First, collect all the PCs that are at this line. */
3444 idx
= find_line_common (symtab
->linetable (), line
, &was_exact
,
3451 struct linetable_entry
*item
= &symtab
->linetable ()->item
[idx
];
3453 if (*best_item
== NULL
3454 || (item
->line
< (*best_item
)->line
&& item
->is_stmt
))
3460 result
.push_back (symtab
->linetable ()->item
[idx
].pc
);
3468 /* Set the PC value for a given source file and line number and return true.
3469 Returns false for invalid line number (and sets the PC to 0).
3470 The source file is specified with a struct symtab. */
3473 find_line_pc (struct symtab
*symtab
, int line
, CORE_ADDR
*pc
)
3475 struct linetable
*l
;
3482 symtab
= find_line_symtab (symtab
, line
, &ind
, NULL
);
3485 l
= symtab
->linetable ();
3486 *pc
= l
->item
[ind
].pc
;
3493 /* Find the range of pc values in a line.
3494 Store the starting pc of the line into *STARTPTR
3495 and the ending pc (start of next line) into *ENDPTR.
3496 Returns true to indicate success.
3497 Returns false if could not find the specified line. */
3500 find_line_pc_range (struct symtab_and_line sal
, CORE_ADDR
*startptr
,
3503 CORE_ADDR startaddr
;
3504 struct symtab_and_line found_sal
;
3507 if (startaddr
== 0 && !find_line_pc (sal
.symtab
, sal
.line
, &startaddr
))
3510 /* This whole function is based on address. For example, if line 10 has
3511 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3512 "info line *0x123" should say the line goes from 0x100 to 0x200
3513 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3514 This also insures that we never give a range like "starts at 0x134
3515 and ends at 0x12c". */
3517 found_sal
= find_pc_sect_line (startaddr
, sal
.section
, 0);
3518 if (found_sal
.line
!= sal
.line
)
3520 /* The specified line (sal) has zero bytes. */
3521 *startptr
= found_sal
.pc
;
3522 *endptr
= found_sal
.pc
;
3526 *startptr
= found_sal
.pc
;
3527 *endptr
= found_sal
.end
;
3532 /* Given a line table and a line number, return the index into the line
3533 table for the pc of the nearest line whose number is >= the specified one.
3534 Return -1 if none is found. The value is >= 0 if it is an index.
3535 START is the index at which to start searching the line table.
3537 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3540 find_line_common (struct linetable
*l
, int lineno
,
3541 int *exact_match
, int start
)
3546 /* BEST is the smallest linenumber > LINENO so far seen,
3547 or 0 if none has been seen so far.
3548 BEST_INDEX identifies the item for it. */
3550 int best_index
= -1;
3561 for (i
= start
; i
< len
; i
++)
3563 struct linetable_entry
*item
= &(l
->item
[i
]);
3565 /* Ignore non-statements. */
3569 if (item
->line
== lineno
)
3571 /* Return the first (lowest address) entry which matches. */
3576 if (item
->line
> lineno
&& (best
== 0 || item
->line
< best
))
3583 /* If we got here, we didn't get an exact match. */
3588 find_pc_line_pc_range (CORE_ADDR pc
, CORE_ADDR
*startptr
, CORE_ADDR
*endptr
)
3590 struct symtab_and_line sal
;
3592 sal
= find_pc_line (pc
, 0);
3595 return sal
.symtab
!= 0;
3598 /* Helper for find_function_start_sal. Does most of the work, except
3599 setting the sal's symbol. */
3601 static symtab_and_line
3602 find_function_start_sal_1 (CORE_ADDR func_addr
, obj_section
*section
,
3605 symtab_and_line sal
= find_pc_sect_line (func_addr
, section
, 0);
3607 if (funfirstline
&& sal
.symtab
!= NULL
3608 && (sal
.symtab
->compunit ()->locations_valid ()
3609 || sal
.symtab
->language () == language_asm
))
3611 struct gdbarch
*gdbarch
= sal
.symtab
->compunit ()->objfile ()->arch ();
3614 if (gdbarch_skip_entrypoint_p (gdbarch
))
3615 sal
.pc
= gdbarch_skip_entrypoint (gdbarch
, sal
.pc
);
3619 /* We always should have a line for the function start address.
3620 If we don't, something is odd. Create a plain SAL referring
3621 just the PC and hope that skip_prologue_sal (if requested)
3622 can find a line number for after the prologue. */
3623 if (sal
.pc
< func_addr
)
3626 sal
.pspace
= current_program_space
;
3628 sal
.section
= section
;
3632 skip_prologue_sal (&sal
);
3640 find_function_start_sal (CORE_ADDR func_addr
, obj_section
*section
,
3644 = find_function_start_sal_1 (func_addr
, section
, funfirstline
);
3646 /* find_function_start_sal_1 does a linetable search, so it finds
3647 the symtab and linenumber, but not a symbol. Fill in the
3648 function symbol too. */
3649 sal
.symbol
= find_pc_sect_containing_function (sal
.pc
, sal
.section
);
3657 find_function_start_sal (symbol
*sym
, bool funfirstline
)
3659 fixup_symbol_section (sym
, NULL
);
3661 = find_function_start_sal_1 (sym
->value_block ()->entry_pc (),
3662 sym
->obj_section (sym
->objfile ()),
3669 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3670 address for that function that has an entry in SYMTAB's line info
3671 table. If such an entry cannot be found, return FUNC_ADDR
3675 skip_prologue_using_lineinfo (CORE_ADDR func_addr
, struct symtab
*symtab
)
3677 CORE_ADDR func_start
, func_end
;
3678 struct linetable
*l
;
3681 /* Give up if this symbol has no lineinfo table. */
3682 l
= symtab
->linetable ();
3686 /* Get the range for the function's PC values, or give up if we
3687 cannot, for some reason. */
3688 if (!find_pc_partial_function (func_addr
, NULL
, &func_start
, &func_end
))
3691 /* Linetable entries are ordered by PC values, see the commentary in
3692 symtab.h where `struct linetable' is defined. Thus, the first
3693 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3694 address we are looking for. */
3695 for (i
= 0; i
< l
->nitems
; i
++)
3697 struct linetable_entry
*item
= &(l
->item
[i
]);
3699 /* Don't use line numbers of zero, they mark special entries in
3700 the table. See the commentary on symtab.h before the
3701 definition of struct linetable. */
3702 if (item
->line
> 0 && func_start
<= item
->pc
&& item
->pc
< func_end
)
3709 /* Try to locate the address where a breakpoint should be placed past the
3710 prologue of function starting at FUNC_ADDR using the line table.
3712 Return the address associated with the first entry in the line-table for
3713 the function starting at FUNC_ADDR which has prologue_end set to true if
3714 such entry exist, otherwise return an empty optional. */
3716 static gdb::optional
<CORE_ADDR
>
3717 skip_prologue_using_linetable (CORE_ADDR func_addr
)
3719 CORE_ADDR start_pc
, end_pc
;
3721 if (!find_pc_partial_function (func_addr
, nullptr, &start_pc
, &end_pc
))
3724 const struct symtab_and_line prologue_sal
= find_pc_line (start_pc
, 0);
3725 if (prologue_sal
.symtab
!= nullptr
3726 && prologue_sal
.symtab
->language () != language_asm
)
3728 struct linetable
*linetable
= prologue_sal
.symtab
->linetable ();
3730 auto it
= std::lower_bound
3731 (linetable
->item
, linetable
->item
+ linetable
->nitems
, start_pc
,
3732 [] (const linetable_entry
<e
, CORE_ADDR pc
) -> bool
3738 it
< linetable
->item
+ linetable
->nitems
&& it
->pc
<= end_pc
;
3740 if (it
->prologue_end
)
3747 /* Adjust SAL to the first instruction past the function prologue.
3748 If the PC was explicitly specified, the SAL is not changed.
3749 If the line number was explicitly specified then the SAL can still be
3750 updated, unless the language for SAL is assembler, in which case the SAL
3751 will be left unchanged.
3752 If SAL is already past the prologue, then do nothing. */
3755 skip_prologue_sal (struct symtab_and_line
*sal
)
3758 struct symtab_and_line start_sal
;
3759 CORE_ADDR pc
, saved_pc
;
3760 struct obj_section
*section
;
3762 struct objfile
*objfile
;
3763 struct gdbarch
*gdbarch
;
3764 const struct block
*b
, *function_block
;
3765 int force_skip
, skip
;
3767 /* Do not change the SAL if PC was specified explicitly. */
3768 if (sal
->explicit_pc
)
3771 /* In assembly code, if the user asks for a specific line then we should
3772 not adjust the SAL. The user already has instruction level
3773 visibility in this case, so selecting a line other than one requested
3774 is likely to be the wrong choice. */
3775 if (sal
->symtab
!= nullptr
3776 && sal
->explicit_line
3777 && sal
->symtab
->language () == language_asm
)
3780 scoped_restore_current_pspace_and_thread restore_pspace_thread
;
3782 switch_to_program_space_and_thread (sal
->pspace
);
3784 sym
= find_pc_sect_function (sal
->pc
, sal
->section
);
3787 fixup_symbol_section (sym
, NULL
);
3789 objfile
= sym
->objfile ();
3790 pc
= sym
->value_block ()->entry_pc ();
3791 section
= sym
->obj_section (objfile
);
3792 name
= sym
->linkage_name ();
3796 struct bound_minimal_symbol msymbol
3797 = lookup_minimal_symbol_by_pc_section (sal
->pc
, sal
->section
);
3799 if (msymbol
.minsym
== NULL
)
3802 objfile
= msymbol
.objfile
;
3803 pc
= msymbol
.value_address ();
3804 section
= msymbol
.minsym
->obj_section (objfile
);
3805 name
= msymbol
.minsym
->linkage_name ();
3808 gdbarch
= objfile
->arch ();
3810 /* Process the prologue in two passes. In the first pass try to skip the
3811 prologue (SKIP is true) and verify there is a real need for it (indicated
3812 by FORCE_SKIP). If no such reason was found run a second pass where the
3813 prologue is not skipped (SKIP is false). */
3818 /* Be conservative - allow direct PC (without skipping prologue) only if we
3819 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3820 have to be set by the caller so we use SYM instead. */
3822 && sym
->symtab ()->compunit ()->locations_valid ())
3830 /* Check if the compiler explicitly indicated where a breakpoint should
3831 be placed to skip the prologue. */
3832 if (!ignore_prologue_end_flag
&& skip
)
3834 gdb::optional
<CORE_ADDR
> linetable_pc
3835 = skip_prologue_using_linetable (pc
);
3839 start_sal
= find_pc_sect_line (pc
, section
, 0);
3845 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3846 so that gdbarch_skip_prologue has something unique to work on. */
3847 if (section_is_overlay (section
) && !section_is_mapped (section
))
3848 pc
= overlay_unmapped_address (pc
, section
);
3850 /* Skip "first line" of function (which is actually its prologue). */
3851 pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
3852 if (gdbarch_skip_entrypoint_p (gdbarch
))
3853 pc
= gdbarch_skip_entrypoint (gdbarch
, pc
);
3855 pc
= gdbarch_skip_prologue_noexcept (gdbarch
, pc
);
3857 /* For overlays, map pc back into its mapped VMA range. */
3858 pc
= overlay_mapped_address (pc
, section
);
3860 /* Calculate line number. */
3861 start_sal
= find_pc_sect_line (pc
, section
, 0);
3863 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3864 line is still part of the same function. */
3865 if (skip
&& start_sal
.pc
!= pc
3866 && (sym
? (sym
->value_block ()->entry_pc () <= start_sal
.end
3867 && start_sal
.end
< sym
->value_block()->end ())
3868 : (lookup_minimal_symbol_by_pc_section (start_sal
.end
, section
).minsym
3869 == lookup_minimal_symbol_by_pc_section (pc
, section
).minsym
)))
3871 /* First pc of next line */
3873 /* Recalculate the line number (might not be N+1). */
3874 start_sal
= find_pc_sect_line (pc
, section
, 0);
3877 /* On targets with executable formats that don't have a concept of
3878 constructors (ELF with .init has, PE doesn't), gcc emits a call
3879 to `__main' in `main' between the prologue and before user
3881 if (gdbarch_skip_main_prologue_p (gdbarch
)
3882 && name
&& strcmp_iw (name
, "main") == 0)
3884 pc
= gdbarch_skip_main_prologue (gdbarch
, pc
);
3885 /* Recalculate the line number (might not be N+1). */
3886 start_sal
= find_pc_sect_line (pc
, section
, 0);
3890 while (!force_skip
&& skip
--);
3892 /* If we still don't have a valid source line, try to find the first
3893 PC in the lineinfo table that belongs to the same function. This
3894 happens with COFF debug info, which does not seem to have an
3895 entry in lineinfo table for the code after the prologue which has
3896 no direct relation to source. For example, this was found to be
3897 the case with the DJGPP target using "gcc -gcoff" when the
3898 compiler inserted code after the prologue to make sure the stack
3900 if (!force_skip
&& sym
&& start_sal
.symtab
== NULL
)
3902 pc
= skip_prologue_using_lineinfo (pc
, sym
->symtab ());
3903 /* Recalculate the line number. */
3904 start_sal
= find_pc_sect_line (pc
, section
, 0);
3907 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3908 forward SAL to the end of the prologue. */
3913 sal
->section
= section
;
3914 sal
->symtab
= start_sal
.symtab
;
3915 sal
->line
= start_sal
.line
;
3916 sal
->end
= start_sal
.end
;
3918 /* Check if we are now inside an inlined function. If we can,
3919 use the call site of the function instead. */
3920 b
= block_for_pc_sect (sal
->pc
, sal
->section
);
3921 function_block
= NULL
;
3924 if (b
->function () != NULL
&& block_inlined_p (b
))
3926 else if (b
->function () != NULL
)
3928 b
= b
->superblock ();
3930 if (function_block
!= NULL
3931 && function_block
->function ()->line () != 0)
3933 sal
->line
= function_block
->function ()->line ();
3934 sal
->symtab
= function_block
->function ()->symtab ();
3938 /* Given PC at the function's start address, attempt to find the
3939 prologue end using SAL information. Return zero if the skip fails.
3941 A non-optimized prologue traditionally has one SAL for the function
3942 and a second for the function body. A single line function has
3943 them both pointing at the same line.
3945 An optimized prologue is similar but the prologue may contain
3946 instructions (SALs) from the instruction body. Need to skip those
3947 while not getting into the function body.
3949 The functions end point and an increasing SAL line are used as
3950 indicators of the prologue's endpoint.
3952 This code is based on the function refine_prologue_limit
3956 skip_prologue_using_sal (struct gdbarch
*gdbarch
, CORE_ADDR func_addr
)
3958 struct symtab_and_line prologue_sal
;
3961 const struct block
*bl
;
3963 /* Get an initial range for the function. */
3964 find_pc_partial_function (func_addr
, NULL
, &start_pc
, &end_pc
);
3965 start_pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
3967 prologue_sal
= find_pc_line (start_pc
, 0);
3968 if (prologue_sal
.line
!= 0)
3970 /* For languages other than assembly, treat two consecutive line
3971 entries at the same address as a zero-instruction prologue.
3972 The GNU assembler emits separate line notes for each instruction
3973 in a multi-instruction macro, but compilers generally will not
3975 if (prologue_sal
.symtab
->language () != language_asm
)
3977 struct linetable
*linetable
= prologue_sal
.symtab
->linetable ();
3980 /* Skip any earlier lines, and any end-of-sequence marker
3981 from a previous function. */
3982 while (linetable
->item
[idx
].pc
!= prologue_sal
.pc
3983 || linetable
->item
[idx
].line
== 0)
3986 if (idx
+1 < linetable
->nitems
3987 && linetable
->item
[idx
+1].line
!= 0
3988 && linetable
->item
[idx
+1].pc
== start_pc
)
3992 /* If there is only one sal that covers the entire function,
3993 then it is probably a single line function, like
3995 if (prologue_sal
.end
>= end_pc
)
3998 while (prologue_sal
.end
< end_pc
)
4000 struct symtab_and_line sal
;
4002 sal
= find_pc_line (prologue_sal
.end
, 0);
4005 /* Assume that a consecutive SAL for the same (or larger)
4006 line mark the prologue -> body transition. */
4007 if (sal
.line
>= prologue_sal
.line
)
4009 /* Likewise if we are in a different symtab altogether
4010 (e.g. within a file included via #include). */
4011 if (sal
.symtab
!= prologue_sal
.symtab
)
4014 /* The line number is smaller. Check that it's from the
4015 same function, not something inlined. If it's inlined,
4016 then there is no point comparing the line numbers. */
4017 bl
= block_for_pc (prologue_sal
.end
);
4020 if (block_inlined_p (bl
))
4022 if (bl
->function ())
4027 bl
= bl
->superblock ();
4032 /* The case in which compiler's optimizer/scheduler has
4033 moved instructions into the prologue. We look ahead in
4034 the function looking for address ranges whose
4035 corresponding line number is less the first one that we
4036 found for the function. This is more conservative then
4037 refine_prologue_limit which scans a large number of SALs
4038 looking for any in the prologue. */
4043 if (prologue_sal
.end
< end_pc
)
4044 /* Return the end of this line, or zero if we could not find a
4046 return prologue_sal
.end
;
4048 /* Don't return END_PC, which is past the end of the function. */
4049 return prologue_sal
.pc
;
4055 find_function_alias_target (bound_minimal_symbol msymbol
)
4057 CORE_ADDR func_addr
;
4058 if (!msymbol_is_function (msymbol
.objfile
, msymbol
.minsym
, &func_addr
))
4061 symbol
*sym
= find_pc_function (func_addr
);
4063 && sym
->aclass () == LOC_BLOCK
4064 && sym
->value_block ()->entry_pc () == func_addr
)
4071 /* If P is of the form "operator[ \t]+..." where `...' is
4072 some legitimate operator text, return a pointer to the
4073 beginning of the substring of the operator text.
4074 Otherwise, return "". */
4077 operator_chars (const char *p
, const char **end
)
4080 if (!startswith (p
, CP_OPERATOR_STR
))
4082 p
+= CP_OPERATOR_LEN
;
4084 /* Don't get faked out by `operator' being part of a longer
4086 if (isalpha (*p
) || *p
== '_' || *p
== '$' || *p
== '\0')
4089 /* Allow some whitespace between `operator' and the operator symbol. */
4090 while (*p
== ' ' || *p
== '\t')
4093 /* Recognize 'operator TYPENAME'. */
4095 if (isalpha (*p
) || *p
== '_' || *p
== '$')
4097 const char *q
= p
+ 1;
4099 while (isalnum (*q
) || *q
== '_' || *q
== '$')
4108 case '\\': /* regexp quoting */
4111 if (p
[2] == '=') /* 'operator\*=' */
4113 else /* 'operator\*' */
4117 else if (p
[1] == '[')
4120 error (_("mismatched quoting on brackets, "
4121 "try 'operator\\[\\]'"));
4122 else if (p
[2] == '\\' && p
[3] == ']')
4124 *end
= p
+ 4; /* 'operator\[\]' */
4128 error (_("nothing is allowed between '[' and ']'"));
4132 /* Gratuitous quote: skip it and move on. */
4154 if (p
[0] == '-' && p
[1] == '>')
4156 /* Struct pointer member operator 'operator->'. */
4159 *end
= p
+ 3; /* 'operator->*' */
4162 else if (p
[2] == '\\')
4164 *end
= p
+ 4; /* Hopefully 'operator->\*' */
4169 *end
= p
+ 2; /* 'operator->' */
4173 if (p
[1] == '=' || p
[1] == p
[0])
4184 error (_("`operator ()' must be specified "
4185 "without whitespace in `()'"));
4190 error (_("`operator ?:' must be specified "
4191 "without whitespace in `?:'"));
4196 error (_("`operator []' must be specified "
4197 "without whitespace in `[]'"));
4201 error (_("`operator %s' not supported"), p
);
4210 /* See class declaration. */
4212 info_sources_filter::info_sources_filter (match_on match_type
,
4214 : m_match_type (match_type
),
4217 /* Setup the compiled regular expression M_C_REGEXP based on M_REGEXP. */
4218 if (m_regexp
!= nullptr && *m_regexp
!= '\0')
4220 gdb_assert (m_regexp
!= nullptr);
4222 int cflags
= REG_NOSUB
;
4223 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4224 cflags
|= REG_ICASE
;
4226 m_c_regexp
.emplace (m_regexp
, cflags
, _("Invalid regexp"));
4230 /* See class declaration. */
4233 info_sources_filter::matches (const char *fullname
) const
4235 /* Does it match regexp? */
4236 if (m_c_regexp
.has_value ())
4238 const char *to_match
;
4239 std::string dirname
;
4241 switch (m_match_type
)
4243 case match_on::DIRNAME
:
4244 dirname
= ldirname (fullname
);
4245 to_match
= dirname
.c_str ();
4247 case match_on::BASENAME
:
4248 to_match
= lbasename (fullname
);
4250 case match_on::FULLNAME
:
4251 to_match
= fullname
;
4254 gdb_assert_not_reached ("bad m_match_type");
4257 if (m_c_regexp
->exec (to_match
, 0, NULL
, 0) != 0)
4264 /* Data structure to maintain the state used for printing the results of
4265 the 'info sources' command. */
4267 struct output_source_filename_data
4269 /* Create an object for displaying the results of the 'info sources'
4270 command to UIOUT. FILTER must remain valid and unchanged for the
4271 lifetime of this object as this object retains a reference to FILTER. */
4272 output_source_filename_data (struct ui_out
*uiout
,
4273 const info_sources_filter
&filter
)
4274 : m_filter (filter
),
4278 DISABLE_COPY_AND_ASSIGN (output_source_filename_data
);
4280 /* Reset enough state of this object so we can match against a new set of
4281 files. The existing regular expression is retained though. */
4282 void reset_output ()
4285 m_filename_seen_cache
.clear ();
4288 /* Worker for sources_info, outputs the file name formatted for either
4289 cli or mi (based on the current_uiout). In cli mode displays
4290 FULLNAME with a comma separating this name from any previously
4291 printed name (line breaks are added at the comma). In MI mode
4292 outputs a tuple containing DISP_NAME (the files display name),
4293 FULLNAME, and EXPANDED_P (true when this file is from a fully
4294 expanded symtab, otherwise false). */
4295 void output (const char *disp_name
, const char *fullname
, bool expanded_p
);
4297 /* An overload suitable for use as a callback to
4298 quick_symbol_functions::map_symbol_filenames. */
4299 void operator() (const char *filename
, const char *fullname
)
4301 /* The false here indicates that this file is from an unexpanded
4303 output (filename
, fullname
, false);
4306 /* Return true if at least one filename has been printed (after a call to
4307 output) since either this object was created, or the last call to
4309 bool printed_filename_p () const
4316 /* Flag of whether we're printing the first one. */
4317 bool m_first
= true;
4319 /* Cache of what we've seen so far. */
4320 filename_seen_cache m_filename_seen_cache
;
4322 /* How source filename should be filtered. */
4323 const info_sources_filter
&m_filter
;
4325 /* The object to which output is sent. */
4326 struct ui_out
*m_uiout
;
4329 /* See comment in class declaration above. */
4332 output_source_filename_data::output (const char *disp_name
,
4333 const char *fullname
,
4336 /* Since a single source file can result in several partial symbol
4337 tables, we need to avoid printing it more than once. Note: if
4338 some of the psymtabs are read in and some are not, it gets
4339 printed both under "Source files for which symbols have been
4340 read" and "Source files for which symbols will be read in on
4341 demand". I consider this a reasonable way to deal with the
4342 situation. I'm not sure whether this can also happen for
4343 symtabs; it doesn't hurt to check. */
4345 /* Was NAME already seen? If so, then don't print it again. */
4346 if (m_filename_seen_cache
.seen (fullname
))
4349 /* If the filter rejects this file then don't print it. */
4350 if (!m_filter
.matches (fullname
))
4353 ui_out_emit_tuple
ui_emitter (m_uiout
, nullptr);
4355 /* Print it and reset *FIRST. */
4357 m_uiout
->text (", ");
4360 m_uiout
->wrap_hint (0);
4361 if (m_uiout
->is_mi_like_p ())
4363 m_uiout
->field_string ("file", disp_name
, file_name_style
.style ());
4364 if (fullname
!= nullptr)
4365 m_uiout
->field_string ("fullname", fullname
,
4366 file_name_style
.style ());
4367 m_uiout
->field_string ("debug-fully-read",
4368 (expanded_p
? "true" : "false"));
4372 if (fullname
== nullptr)
4373 fullname
= disp_name
;
4374 m_uiout
->field_string ("fullname", fullname
,
4375 file_name_style
.style ());
4379 /* For the 'info sources' command, what part of the file names should we be
4380 matching the user supplied regular expression against? */
4382 struct filename_partial_match_opts
4384 /* Only match the directory name part. */
4385 bool dirname
= false;
4387 /* Only match the basename part. */
4388 bool basename
= false;
4391 using isrc_flag_option_def
4392 = gdb::option::flag_option_def
<filename_partial_match_opts
>;
4394 static const gdb::option::option_def info_sources_option_defs
[] = {
4396 isrc_flag_option_def
{
4398 [] (filename_partial_match_opts
*opts
) { return &opts
->dirname
; },
4399 N_("Show only the files having a dirname matching REGEXP."),
4402 isrc_flag_option_def
{
4404 [] (filename_partial_match_opts
*opts
) { return &opts
->basename
; },
4405 N_("Show only the files having a basename matching REGEXP."),
4410 /* Create an option_def_group for the "info sources" options, with
4411 ISRC_OPTS as context. */
4413 static inline gdb::option::option_def_group
4414 make_info_sources_options_def_group (filename_partial_match_opts
*isrc_opts
)
4416 return {{info_sources_option_defs
}, isrc_opts
};
4419 /* Completer for "info sources". */
4422 info_sources_command_completer (cmd_list_element
*ignore
,
4423 completion_tracker
&tracker
,
4424 const char *text
, const char *word
)
4426 const auto group
= make_info_sources_options_def_group (nullptr);
4427 if (gdb::option::complete_options
4428 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
4435 info_sources_worker (struct ui_out
*uiout
,
4436 bool group_by_objfile
,
4437 const info_sources_filter
&filter
)
4439 output_source_filename_data
data (uiout
, filter
);
4441 ui_out_emit_list
results_emitter (uiout
, "files");
4442 gdb::optional
<ui_out_emit_tuple
> output_tuple
;
4443 gdb::optional
<ui_out_emit_list
> sources_list
;
4445 gdb_assert (group_by_objfile
|| uiout
->is_mi_like_p ());
4447 for (objfile
*objfile
: current_program_space
->objfiles ())
4449 if (group_by_objfile
)
4451 output_tuple
.emplace (uiout
, nullptr);
4452 uiout
->field_string ("filename", objfile_name (objfile
),
4453 file_name_style
.style ());
4454 uiout
->text (":\n");
4455 bool debug_fully_readin
= !objfile
->has_unexpanded_symtabs ();
4456 if (uiout
->is_mi_like_p ())
4458 const char *debug_info_state
;
4459 if (objfile_has_symbols (objfile
))
4461 if (debug_fully_readin
)
4462 debug_info_state
= "fully-read";
4464 debug_info_state
= "partially-read";
4467 debug_info_state
= "none";
4468 current_uiout
->field_string ("debug-info", debug_info_state
);
4472 if (!debug_fully_readin
)
4473 uiout
->text ("(Full debug information has not yet been read "
4474 "for this file.)\n");
4475 if (!objfile_has_symbols (objfile
))
4476 uiout
->text ("(Objfile has no debug information.)\n");
4479 sources_list
.emplace (uiout
, "sources");
4482 for (compunit_symtab
*cu
: objfile
->compunits ())
4484 for (symtab
*s
: cu
->filetabs ())
4486 const char *file
= symtab_to_filename_for_display (s
);
4487 const char *fullname
= symtab_to_fullname (s
);
4488 data
.output (file
, fullname
, true);
4492 if (group_by_objfile
)
4494 objfile
->map_symbol_filenames (data
, true /* need_fullname */);
4495 if (data
.printed_filename_p ())
4496 uiout
->text ("\n\n");
4497 data
.reset_output ();
4498 sources_list
.reset ();
4499 output_tuple
.reset ();
4503 if (!group_by_objfile
)
4505 data
.reset_output ();
4506 map_symbol_filenames (data
, true /*need_fullname*/);
4510 /* Implement the 'info sources' command. */
4513 info_sources_command (const char *args
, int from_tty
)
4515 if (!have_full_symbols () && !have_partial_symbols ())
4516 error (_("No symbol table is loaded. Use the \"file\" command."));
4518 filename_partial_match_opts match_opts
;
4519 auto group
= make_info_sources_options_def_group (&match_opts
);
4520 gdb::option::process_options
4521 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR
, group
);
4523 if (match_opts
.dirname
&& match_opts
.basename
)
4524 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4526 const char *regex
= nullptr;
4527 if (args
!= NULL
&& *args
!= '\000')
4530 if ((match_opts
.dirname
|| match_opts
.basename
) && regex
== nullptr)
4531 error (_("Missing REGEXP for 'info sources'."));
4533 info_sources_filter::match_on match_type
;
4534 if (match_opts
.dirname
)
4535 match_type
= info_sources_filter::match_on::DIRNAME
;
4536 else if (match_opts
.basename
)
4537 match_type
= info_sources_filter::match_on::BASENAME
;
4539 match_type
= info_sources_filter::match_on::FULLNAME
;
4541 info_sources_filter
filter (match_type
, regex
);
4542 info_sources_worker (current_uiout
, true, filter
);
4545 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4546 true compare only lbasename of FILENAMES. */
4549 file_matches (const char *file
, const std::vector
<const char *> &filenames
,
4552 if (filenames
.empty ())
4555 for (const char *name
: filenames
)
4557 name
= (basenames
? lbasename (name
) : name
);
4558 if (compare_filenames_for_search (file
, name
))
4565 /* Helper function for std::sort on symbol_search objects. Can only sort
4566 symbols, not minimal symbols. */
4569 symbol_search::compare_search_syms (const symbol_search
&sym_a
,
4570 const symbol_search
&sym_b
)
4574 c
= FILENAME_CMP (sym_a
.symbol
->symtab ()->filename
,
4575 sym_b
.symbol
->symtab ()->filename
);
4579 if (sym_a
.block
!= sym_b
.block
)
4580 return sym_a
.block
- sym_b
.block
;
4582 return strcmp (sym_a
.symbol
->print_name (), sym_b
.symbol
->print_name ());
4585 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4586 If SYM has no symbol_type or symbol_name, returns false. */
4589 treg_matches_sym_type_name (const compiled_regex
&treg
,
4590 const struct symbol
*sym
)
4592 struct type
*sym_type
;
4593 std::string printed_sym_type_name
;
4595 symbol_lookup_debug_printf_v ("treg_matches_sym_type_name, sym %s",
4596 sym
->natural_name ());
4598 sym_type
= sym
->type ();
4599 if (sym_type
== NULL
)
4603 scoped_switch_to_sym_language_if_auto
l (sym
);
4605 printed_sym_type_name
= type_to_string (sym_type
);
4608 symbol_lookup_debug_printf_v ("sym_type_name %s",
4609 printed_sym_type_name
.c_str ());
4611 if (printed_sym_type_name
.empty ())
4614 return treg
.exec (printed_sym_type_name
.c_str (), 0, NULL
, 0) == 0;
4620 global_symbol_searcher::is_suitable_msymbol
4621 (const enum search_domain kind
, const minimal_symbol
*msymbol
)
4623 switch (msymbol
->type ())
4629 return kind
== VARIABLES_DOMAIN
;
4632 case mst_solib_trampoline
:
4633 case mst_text_gnu_ifunc
:
4634 return kind
== FUNCTIONS_DOMAIN
;
4643 global_symbol_searcher::expand_symtabs
4644 (objfile
*objfile
, const gdb::optional
<compiled_regex
> &preg
) const
4646 enum search_domain kind
= m_kind
;
4647 bool found_msymbol
= false;
4649 auto do_file_match
= [&] (const char *filename
, bool basenames
)
4651 return file_matches (filename
, filenames
, basenames
);
4653 gdb::function_view
<expand_symtabs_file_matcher_ftype
> file_matcher
= nullptr;
4654 if (!filenames
.empty ())
4655 file_matcher
= do_file_match
;
4657 objfile
->expand_symtabs_matching
4659 &lookup_name_info::match_any (),
4660 [&] (const char *symname
)
4662 return (!preg
.has_value ()
4663 || preg
->exec (symname
, 0, NULL
, 0) == 0);
4666 SEARCH_GLOBAL_BLOCK
| SEARCH_STATIC_BLOCK
,
4670 /* Here, we search through the minimal symbol tables for functions and
4671 variables that match, and force their symbols to be read. This is in
4672 particular necessary for demangled variable names, which are no longer
4673 put into the partial symbol tables. The symbol will then be found
4674 during the scan of symtabs later.
4676 For functions, find_pc_symtab should succeed if we have debug info for
4677 the function, for variables we have to call
4678 lookup_symbol_in_objfile_from_linkage_name to determine if the
4679 variable has debug info. If the lookup fails, set found_msymbol so
4680 that we will rescan to print any matching symbols without debug info.
4681 We only search the objfile the msymbol came from, we no longer search
4682 all objfiles. In large programs (1000s of shared libs) searching all
4683 objfiles is not worth the pain. */
4684 if (filenames
.empty ()
4685 && (kind
== VARIABLES_DOMAIN
|| kind
== FUNCTIONS_DOMAIN
))
4687 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4691 if (msymbol
->created_by_gdb
)
4694 if (is_suitable_msymbol (kind
, msymbol
))
4696 if (!preg
.has_value ()
4697 || preg
->exec (msymbol
->natural_name (), 0,
4700 /* An important side-effect of these lookup functions is
4701 to expand the symbol table if msymbol is found, later
4702 in the process we will add matching symbols or
4703 msymbols to the results list, and that requires that
4704 the symbols tables are expanded. */
4705 if (kind
== FUNCTIONS_DOMAIN
4706 ? (find_pc_compunit_symtab
4707 (msymbol
->value_address (objfile
)) == NULL
)
4708 : (lookup_symbol_in_objfile_from_linkage_name
4709 (objfile
, msymbol
->linkage_name (),
4712 found_msymbol
= true;
4718 return found_msymbol
;
4724 global_symbol_searcher::add_matching_symbols
4726 const gdb::optional
<compiled_regex
> &preg
,
4727 const gdb::optional
<compiled_regex
> &treg
,
4728 std::set
<symbol_search
> *result_set
) const
4730 enum search_domain kind
= m_kind
;
4732 /* Add matching symbols (if not already present). */
4733 for (compunit_symtab
*cust
: objfile
->compunits ())
4735 const struct blockvector
*bv
= cust
->blockvector ();
4737 for (block_enum block
: { GLOBAL_BLOCK
, STATIC_BLOCK
})
4739 struct block_iterator iter
;
4741 const struct block
*b
= bv
->block (block
);
4743 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4745 struct symtab
*real_symtab
= sym
->symtab ();
4749 /* Check first sole REAL_SYMTAB->FILENAME. It does
4750 not need to be a substring of symtab_to_fullname as
4751 it may contain "./" etc. */
4752 if ((file_matches (real_symtab
->filename
, filenames
, false)
4753 || ((basenames_may_differ
4754 || file_matches (lbasename (real_symtab
->filename
),
4756 && file_matches (symtab_to_fullname (real_symtab
),
4758 && ((!preg
.has_value ()
4759 || preg
->exec (sym
->natural_name (), 0,
4761 && ((kind
== VARIABLES_DOMAIN
4762 && sym
->aclass () != LOC_TYPEDEF
4763 && sym
->aclass () != LOC_UNRESOLVED
4764 && sym
->aclass () != LOC_BLOCK
4765 /* LOC_CONST can be used for more than
4766 just enums, e.g., c++ static const
4767 members. We only want to skip enums
4769 && !(sym
->aclass () == LOC_CONST
4770 && (sym
->type ()->code ()
4772 && (!treg
.has_value ()
4773 || treg_matches_sym_type_name (*treg
, sym
)))
4774 || (kind
== FUNCTIONS_DOMAIN
4775 && sym
->aclass () == LOC_BLOCK
4776 && (!treg
.has_value ()
4777 || treg_matches_sym_type_name (*treg
,
4779 || (kind
== TYPES_DOMAIN
4780 && sym
->aclass () == LOC_TYPEDEF
4781 && sym
->domain () != MODULE_DOMAIN
)
4782 || (kind
== MODULES_DOMAIN
4783 && sym
->domain () == MODULE_DOMAIN
4784 && sym
->line () != 0))))
4786 if (result_set
->size () < m_max_search_results
)
4788 /* Match, insert if not already in the results. */
4789 symbol_search
ss (block
, sym
);
4790 if (result_set
->find (ss
) == result_set
->end ())
4791 result_set
->insert (ss
);
4806 global_symbol_searcher::add_matching_msymbols
4807 (objfile
*objfile
, const gdb::optional
<compiled_regex
> &preg
,
4808 std::vector
<symbol_search
> *results
) const
4810 enum search_domain kind
= m_kind
;
4812 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4816 if (msymbol
->created_by_gdb
)
4819 if (is_suitable_msymbol (kind
, msymbol
))
4821 if (!preg
.has_value ()
4822 || preg
->exec (msymbol
->natural_name (), 0,
4825 /* For functions we can do a quick check of whether the
4826 symbol might be found via find_pc_symtab. */
4827 if (kind
!= FUNCTIONS_DOMAIN
4828 || (find_pc_compunit_symtab
4829 (msymbol
->value_address (objfile
)) == NULL
))
4831 if (lookup_symbol_in_objfile_from_linkage_name
4832 (objfile
, msymbol
->linkage_name (),
4833 VAR_DOMAIN
).symbol
== NULL
)
4835 /* Matching msymbol, add it to the results list. */
4836 if (results
->size () < m_max_search_results
)
4837 results
->emplace_back (GLOBAL_BLOCK
, msymbol
, objfile
);
4851 std::vector
<symbol_search
>
4852 global_symbol_searcher::search () const
4854 gdb::optional
<compiled_regex
> preg
;
4855 gdb::optional
<compiled_regex
> treg
;
4857 gdb_assert (m_kind
!= ALL_DOMAIN
);
4859 if (m_symbol_name_regexp
!= NULL
)
4861 const char *symbol_name_regexp
= m_symbol_name_regexp
;
4862 std::string symbol_name_regexp_holder
;
4864 /* Make sure spacing is right for C++ operators.
4865 This is just a courtesy to make the matching less sensitive
4866 to how many spaces the user leaves between 'operator'
4867 and <TYPENAME> or <OPERATOR>. */
4869 const char *opname
= operator_chars (symbol_name_regexp
, &opend
);
4873 int fix
= -1; /* -1 means ok; otherwise number of
4876 if (isalpha (*opname
) || *opname
== '_' || *opname
== '$')
4878 /* There should 1 space between 'operator' and 'TYPENAME'. */
4879 if (opname
[-1] != ' ' || opname
[-2] == ' ')
4884 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4885 if (opname
[-1] == ' ')
4888 /* If wrong number of spaces, fix it. */
4891 symbol_name_regexp_holder
4892 = string_printf ("operator%.*s%s", fix
, " ", opname
);
4893 symbol_name_regexp
= symbol_name_regexp_holder
.c_str ();
4897 int cflags
= REG_NOSUB
| (case_sensitivity
== case_sensitive_off
4899 preg
.emplace (symbol_name_regexp
, cflags
,
4900 _("Invalid regexp"));
4903 if (m_symbol_type_regexp
!= NULL
)
4905 int cflags
= REG_NOSUB
| (case_sensitivity
== case_sensitive_off
4907 treg
.emplace (m_symbol_type_regexp
, cflags
,
4908 _("Invalid regexp"));
4911 bool found_msymbol
= false;
4912 std::set
<symbol_search
> result_set
;
4913 for (objfile
*objfile
: current_program_space
->objfiles ())
4915 /* Expand symtabs within objfile that possibly contain matching
4917 found_msymbol
|= expand_symtabs (objfile
, preg
);
4919 /* Find matching symbols within OBJFILE and add them in to the
4920 RESULT_SET set. Use a set here so that we can easily detect
4921 duplicates as we go, and can therefore track how many unique
4922 matches we have found so far. */
4923 if (!add_matching_symbols (objfile
, preg
, treg
, &result_set
))
4927 /* Convert the result set into a sorted result list, as std::set is
4928 defined to be sorted then no explicit call to std::sort is needed. */
4929 std::vector
<symbol_search
> result (result_set
.begin (), result_set
.end ());
4931 /* If there are no debug symbols, then add matching minsyms. But if the
4932 user wants to see symbols matching a type regexp, then never give a
4933 minimal symbol, as we assume that a minimal symbol does not have a
4935 if ((found_msymbol
|| (filenames
.empty () && m_kind
== VARIABLES_DOMAIN
))
4936 && !m_exclude_minsyms
4937 && !treg
.has_value ())
4939 gdb_assert (m_kind
== VARIABLES_DOMAIN
|| m_kind
== FUNCTIONS_DOMAIN
);
4940 for (objfile
*objfile
: current_program_space
->objfiles ())
4941 if (!add_matching_msymbols (objfile
, preg
, &result
))
4951 symbol_to_info_string (struct symbol
*sym
, int block
,
4952 enum search_domain kind
)
4956 gdb_assert (block
== GLOBAL_BLOCK
|| block
== STATIC_BLOCK
);
4958 if (kind
!= TYPES_DOMAIN
&& block
== STATIC_BLOCK
)
4961 /* Typedef that is not a C++ class. */
4962 if (kind
== TYPES_DOMAIN
4963 && sym
->domain () != STRUCT_DOMAIN
)
4965 string_file tmp_stream
;
4967 /* FIXME: For C (and C++) we end up with a difference in output here
4968 between how a typedef is printed, and non-typedefs are printed.
4969 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4970 appear C-like, while TYPE_PRINT doesn't.
4972 For the struct printing case below, things are worse, we force
4973 printing of the ";" in this function, which is going to be wrong
4974 for languages that don't require a ";" between statements. */
4975 if (sym
->type ()->code () == TYPE_CODE_TYPEDEF
)
4976 typedef_print (sym
->type (), sym
, &tmp_stream
);
4978 type_print (sym
->type (), "", &tmp_stream
, -1);
4979 str
+= tmp_stream
.string ();
4981 /* variable, func, or typedef-that-is-c++-class. */
4982 else if (kind
< TYPES_DOMAIN
4983 || (kind
== TYPES_DOMAIN
4984 && sym
->domain () == STRUCT_DOMAIN
))
4986 string_file tmp_stream
;
4988 type_print (sym
->type (),
4989 (sym
->aclass () == LOC_TYPEDEF
4990 ? "" : sym
->print_name ()),
4993 str
+= tmp_stream
.string ();
4996 /* Printing of modules is currently done here, maybe at some future
4997 point we might want a language specific method to print the module
4998 symbol so that we can customise the output more. */
4999 else if (kind
== MODULES_DOMAIN
)
5000 str
+= sym
->print_name ();
5005 /* Helper function for symbol info commands, for example 'info functions',
5006 'info variables', etc. KIND is the kind of symbol we searched for, and
5007 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
5008 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
5009 print file and line number information for the symbol as well. Skip
5010 printing the filename if it matches LAST. */
5013 print_symbol_info (enum search_domain kind
,
5015 int block
, const char *last
)
5017 scoped_switch_to_sym_language_if_auto
l (sym
);
5018 struct symtab
*s
= sym
->symtab ();
5022 const char *s_filename
= symtab_to_filename_for_display (s
);
5024 if (filename_cmp (last
, s_filename
) != 0)
5026 gdb_printf (_("\nFile %ps:\n"),
5027 styled_string (file_name_style
.style (),
5031 if (sym
->line () != 0)
5032 gdb_printf ("%d:\t", sym
->line ());
5037 std::string str
= symbol_to_info_string (sym
, block
, kind
);
5038 gdb_printf ("%s\n", str
.c_str ());
5041 /* This help function for symtab_symbol_info() prints information
5042 for non-debugging symbols to gdb_stdout. */
5045 print_msymbol_info (struct bound_minimal_symbol msymbol
)
5047 struct gdbarch
*gdbarch
= msymbol
.objfile
->arch ();
5050 if (gdbarch_addr_bit (gdbarch
) <= 32)
5051 tmp
= hex_string_custom (msymbol
.value_address ()
5052 & (CORE_ADDR
) 0xffffffff,
5055 tmp
= hex_string_custom (msymbol
.value_address (),
5058 ui_file_style sym_style
= (msymbol
.minsym
->text_p ()
5059 ? function_name_style
.style ()
5060 : ui_file_style ());
5062 gdb_printf (_("%ps %ps\n"),
5063 styled_string (address_style
.style (), tmp
),
5064 styled_string (sym_style
, msymbol
.minsym
->print_name ()));
5067 /* This is the guts of the commands "info functions", "info types", and
5068 "info variables". It calls search_symbols to find all matches and then
5069 print_[m]symbol_info to print out some useful information about the
5073 symtab_symbol_info (bool quiet
, bool exclude_minsyms
,
5074 const char *regexp
, enum search_domain kind
,
5075 const char *t_regexp
, int from_tty
)
5077 static const char * const classnames
[] =
5078 {"variable", "function", "type", "module"};
5079 const char *last_filename
= "";
5082 gdb_assert (kind
!= ALL_DOMAIN
);
5084 if (regexp
!= nullptr && *regexp
== '\0')
5087 global_symbol_searcher
spec (kind
, regexp
);
5088 spec
.set_symbol_type_regexp (t_regexp
);
5089 spec
.set_exclude_minsyms (exclude_minsyms
);
5090 std::vector
<symbol_search
> symbols
= spec
.search ();
5096 if (t_regexp
!= NULL
)
5098 (_("All %ss matching regular expression \"%s\""
5099 " with type matching regular expression \"%s\":\n"),
5100 classnames
[kind
], regexp
, t_regexp
);
5102 gdb_printf (_("All %ss matching regular expression \"%s\":\n"),
5103 classnames
[kind
], regexp
);
5107 if (t_regexp
!= NULL
)
5109 (_("All defined %ss"
5110 " with type matching regular expression \"%s\" :\n"),
5111 classnames
[kind
], t_regexp
);
5113 gdb_printf (_("All defined %ss:\n"), classnames
[kind
]);
5117 for (const symbol_search
&p
: symbols
)
5121 if (p
.msymbol
.minsym
!= NULL
)
5126 gdb_printf (_("\nNon-debugging symbols:\n"));
5129 print_msymbol_info (p
.msymbol
);
5133 print_symbol_info (kind
,
5138 = symtab_to_filename_for_display (p
.symbol
->symtab ());
5143 /* Structure to hold the values of the options used by the 'info variables'
5144 and 'info functions' commands. These correspond to the -q, -t, and -n
5147 struct info_vars_funcs_options
5150 bool exclude_minsyms
= false;
5151 std::string type_regexp
;
5154 /* The options used by the 'info variables' and 'info functions'
5157 static const gdb::option::option_def info_vars_funcs_options_defs
[] = {
5158 gdb::option::boolean_option_def
<info_vars_funcs_options
> {
5160 [] (info_vars_funcs_options
*opt
) { return &opt
->quiet
; },
5161 nullptr, /* show_cmd_cb */
5162 nullptr /* set_doc */
5165 gdb::option::boolean_option_def
<info_vars_funcs_options
> {
5167 [] (info_vars_funcs_options
*opt
) { return &opt
->exclude_minsyms
; },
5168 nullptr, /* show_cmd_cb */
5169 nullptr /* set_doc */
5172 gdb::option::string_option_def
<info_vars_funcs_options
> {
5174 [] (info_vars_funcs_options
*opt
) { return &opt
->type_regexp
; },
5175 nullptr, /* show_cmd_cb */
5176 nullptr /* set_doc */
5180 /* Returns the option group used by 'info variables' and 'info
5183 static gdb::option::option_def_group
5184 make_info_vars_funcs_options_def_group (info_vars_funcs_options
*opts
)
5186 return {{info_vars_funcs_options_defs
}, opts
};
5189 /* Command completer for 'info variables' and 'info functions'. */
5192 info_vars_funcs_command_completer (struct cmd_list_element
*ignore
,
5193 completion_tracker
&tracker
,
5194 const char *text
, const char * /* word */)
5197 = make_info_vars_funcs_options_def_group (nullptr);
5198 if (gdb::option::complete_options
5199 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
5202 const char *word
= advance_to_expression_complete_word_point (tracker
, text
);
5203 symbol_completer (ignore
, tracker
, text
, word
);
5206 /* Implement the 'info variables' command. */
5209 info_variables_command (const char *args
, int from_tty
)
5211 info_vars_funcs_options opts
;
5212 auto grp
= make_info_vars_funcs_options_def_group (&opts
);
5213 gdb::option::process_options
5214 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5215 if (args
!= nullptr && *args
== '\0')
5219 (opts
.quiet
, opts
.exclude_minsyms
, args
, VARIABLES_DOMAIN
,
5220 opts
.type_regexp
.empty () ? nullptr : opts
.type_regexp
.c_str (),
5224 /* Implement the 'info functions' command. */
5227 info_functions_command (const char *args
, int from_tty
)
5229 info_vars_funcs_options opts
;
5231 auto grp
= make_info_vars_funcs_options_def_group (&opts
);
5232 gdb::option::process_options
5233 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5234 if (args
!= nullptr && *args
== '\0')
5238 (opts
.quiet
, opts
.exclude_minsyms
, args
, FUNCTIONS_DOMAIN
,
5239 opts
.type_regexp
.empty () ? nullptr : opts
.type_regexp
.c_str (),
5243 /* Holds the -q option for the 'info types' command. */
5245 struct info_types_options
5250 /* The options used by the 'info types' command. */
5252 static const gdb::option::option_def info_types_options_defs
[] = {
5253 gdb::option::boolean_option_def
<info_types_options
> {
5255 [] (info_types_options
*opt
) { return &opt
->quiet
; },
5256 nullptr, /* show_cmd_cb */
5257 nullptr /* set_doc */
5261 /* Returns the option group used by 'info types'. */
5263 static gdb::option::option_def_group
5264 make_info_types_options_def_group (info_types_options
*opts
)
5266 return {{info_types_options_defs
}, opts
};
5269 /* Implement the 'info types' command. */
5272 info_types_command (const char *args
, int from_tty
)
5274 info_types_options opts
;
5276 auto grp
= make_info_types_options_def_group (&opts
);
5277 gdb::option::process_options
5278 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5279 if (args
!= nullptr && *args
== '\0')
5281 symtab_symbol_info (opts
.quiet
, false, args
, TYPES_DOMAIN
, NULL
, from_tty
);
5284 /* Command completer for 'info types' command. */
5287 info_types_command_completer (struct cmd_list_element
*ignore
,
5288 completion_tracker
&tracker
,
5289 const char *text
, const char * /* word */)
5292 = make_info_types_options_def_group (nullptr);
5293 if (gdb::option::complete_options
5294 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
5297 const char *word
= advance_to_expression_complete_word_point (tracker
, text
);
5298 symbol_completer (ignore
, tracker
, text
, word
);
5301 /* Implement the 'info modules' command. */
5304 info_modules_command (const char *args
, int from_tty
)
5306 info_types_options opts
;
5308 auto grp
= make_info_types_options_def_group (&opts
);
5309 gdb::option::process_options
5310 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5311 if (args
!= nullptr && *args
== '\0')
5313 symtab_symbol_info (opts
.quiet
, true, args
, MODULES_DOMAIN
, NULL
,
5318 rbreak_command (const char *regexp
, int from_tty
)
5321 const char *file_name
= nullptr;
5323 if (regexp
!= nullptr)
5325 const char *colon
= strchr (regexp
, ':');
5327 /* Ignore the colon if it is part of a Windows drive. */
5328 if (HAS_DRIVE_SPEC (regexp
)
5329 && (regexp
[2] == '/' || regexp
[2] == '\\'))
5330 colon
= strchr (STRIP_DRIVE_SPEC (regexp
), ':');
5332 if (colon
&& *(colon
+ 1) != ':')
5337 colon_index
= colon
- regexp
;
5338 local_name
= (char *) alloca (colon_index
+ 1);
5339 memcpy (local_name
, regexp
, colon_index
);
5340 local_name
[colon_index
--] = 0;
5341 while (isspace (local_name
[colon_index
]))
5342 local_name
[colon_index
--] = 0;
5343 file_name
= local_name
;
5344 regexp
= skip_spaces (colon
+ 1);
5348 global_symbol_searcher
spec (FUNCTIONS_DOMAIN
, regexp
);
5349 if (file_name
!= nullptr)
5350 spec
.filenames
.push_back (file_name
);
5351 std::vector
<symbol_search
> symbols
= spec
.search ();
5353 scoped_rbreak_breakpoints finalize
;
5354 for (const symbol_search
&p
: symbols
)
5356 if (p
.msymbol
.minsym
== NULL
)
5358 struct symtab
*symtab
= p
.symbol
->symtab ();
5359 const char *fullname
= symtab_to_fullname (symtab
);
5361 string
= string_printf ("%s:'%s'", fullname
,
5362 p
.symbol
->linkage_name ());
5363 break_command (&string
[0], from_tty
);
5364 print_symbol_info (FUNCTIONS_DOMAIN
, p
.symbol
, p
.block
, NULL
);
5368 string
= string_printf ("'%s'",
5369 p
.msymbol
.minsym
->linkage_name ());
5371 break_command (&string
[0], from_tty
);
5372 gdb_printf ("<function, no debug info> %s;\n",
5373 p
.msymbol
.minsym
->print_name ());
5379 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5382 compare_symbol_name (const char *symbol_name
, language symbol_language
,
5383 const lookup_name_info
&lookup_name
,
5384 completion_match_result
&match_res
)
5386 const language_defn
*lang
= language_def (symbol_language
);
5388 symbol_name_matcher_ftype
*name_match
5389 = lang
->get_symbol_name_matcher (lookup_name
);
5391 return name_match (symbol_name
, lookup_name
, &match_res
);
5397 completion_list_add_name (completion_tracker
&tracker
,
5398 language symbol_language
,
5399 const char *symname
,
5400 const lookup_name_info
&lookup_name
,
5401 const char *text
, const char *word
)
5403 completion_match_result
&match_res
5404 = tracker
.reset_completion_match_result ();
5406 /* Clip symbols that cannot match. */
5407 if (!compare_symbol_name (symname
, symbol_language
, lookup_name
, match_res
))
5410 /* Refresh SYMNAME from the match string. It's potentially
5411 different depending on language. (E.g., on Ada, the match may be
5412 the encoded symbol name wrapped in "<>"). */
5413 symname
= match_res
.match
.match ();
5414 gdb_assert (symname
!= NULL
);
5416 /* We have a match for a completion, so add SYMNAME to the current list
5417 of matches. Note that the name is moved to freshly malloc'd space. */
5420 gdb::unique_xmalloc_ptr
<char> completion
5421 = make_completion_match_str (symname
, text
, word
);
5423 /* Here we pass the match-for-lcd object to add_completion. Some
5424 languages match the user text against substrings of symbol
5425 names in some cases. E.g., in C++, "b push_ba" completes to
5426 "std::vector::push_back", "std::string::push_back", etc., and
5427 in this case we want the completion lowest common denominator
5428 to be "push_back" instead of "std::". */
5429 tracker
.add_completion (std::move (completion
),
5430 &match_res
.match_for_lcd
, text
, word
);
5436 /* completion_list_add_name wrapper for struct symbol. */
5439 completion_list_add_symbol (completion_tracker
&tracker
,
5441 const lookup_name_info
&lookup_name
,
5442 const char *text
, const char *word
)
5444 if (!completion_list_add_name (tracker
, sym
->language (),
5445 sym
->natural_name (),
5446 lookup_name
, text
, word
))
5449 /* C++ function symbols include the parameters within both the msymbol
5450 name and the symbol name. The problem is that the msymbol name will
5451 describe the parameters in the most basic way, with typedefs stripped
5452 out, while the symbol name will represent the types as they appear in
5453 the program. This means we will see duplicate entries in the
5454 completion tracker. The following converts the symbol name back to
5455 the msymbol name and removes the msymbol name from the completion
5457 if (sym
->language () == language_cplus
5458 && sym
->domain () == VAR_DOMAIN
5459 && sym
->aclass () == LOC_BLOCK
)
5461 /* The call to canonicalize returns the empty string if the input
5462 string is already in canonical form, thanks to this we don't
5463 remove the symbol we just added above. */
5464 gdb::unique_xmalloc_ptr
<char> str
5465 = cp_canonicalize_string_no_typedefs (sym
->natural_name ());
5467 tracker
.remove_completion (str
.get ());
5471 /* completion_list_add_name wrapper for struct minimal_symbol. */
5474 completion_list_add_msymbol (completion_tracker
&tracker
,
5475 minimal_symbol
*sym
,
5476 const lookup_name_info
&lookup_name
,
5477 const char *text
, const char *word
)
5479 completion_list_add_name (tracker
, sym
->language (),
5480 sym
->natural_name (),
5481 lookup_name
, text
, word
);
5485 /* ObjC: In case we are completing on a selector, look as the msymbol
5486 again and feed all the selectors into the mill. */
5489 completion_list_objc_symbol (completion_tracker
&tracker
,
5490 struct minimal_symbol
*msymbol
,
5491 const lookup_name_info
&lookup_name
,
5492 const char *text
, const char *word
)
5494 static char *tmp
= NULL
;
5495 static unsigned int tmplen
= 0;
5497 const char *method
, *category
, *selector
;
5500 method
= msymbol
->natural_name ();
5502 /* Is it a method? */
5503 if ((method
[0] != '-') && (method
[0] != '+'))
5507 /* Complete on shortened method method. */
5508 completion_list_add_name (tracker
, language_objc
,
5513 while ((strlen (method
) + 1) >= tmplen
)
5519 tmp
= (char *) xrealloc (tmp
, tmplen
);
5521 selector
= strchr (method
, ' ');
5522 if (selector
!= NULL
)
5525 category
= strchr (method
, '(');
5527 if ((category
!= NULL
) && (selector
!= NULL
))
5529 memcpy (tmp
, method
, (category
- method
));
5530 tmp
[category
- method
] = ' ';
5531 memcpy (tmp
+ (category
- method
) + 1, selector
, strlen (selector
) + 1);
5532 completion_list_add_name (tracker
, language_objc
, tmp
,
5533 lookup_name
, text
, word
);
5535 completion_list_add_name (tracker
, language_objc
, tmp
+ 1,
5536 lookup_name
, text
, word
);
5539 if (selector
!= NULL
)
5541 /* Complete on selector only. */
5542 strcpy (tmp
, selector
);
5543 tmp2
= strchr (tmp
, ']');
5547 completion_list_add_name (tracker
, language_objc
, tmp
,
5548 lookup_name
, text
, word
);
5552 /* Break the non-quoted text based on the characters which are in
5553 symbols. FIXME: This should probably be language-specific. */
5556 language_search_unquoted_string (const char *text
, const char *p
)
5558 for (; p
> text
; --p
)
5560 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0')
5564 if ((current_language
->la_language
== language_objc
))
5566 if (p
[-1] == ':') /* Might be part of a method name. */
5568 else if (p
[-1] == '[' && (p
[-2] == '-' || p
[-2] == '+'))
5569 p
-= 2; /* Beginning of a method name. */
5570 else if (p
[-1] == ' ' || p
[-1] == '(' || p
[-1] == ')')
5571 { /* Might be part of a method name. */
5574 /* Seeing a ' ' or a '(' is not conclusive evidence
5575 that we are in the middle of a method name. However,
5576 finding "-[" or "+[" should be pretty un-ambiguous.
5577 Unfortunately we have to find it now to decide. */
5580 if (isalnum (t
[-1]) || t
[-1] == '_' ||
5581 t
[-1] == ' ' || t
[-1] == ':' ||
5582 t
[-1] == '(' || t
[-1] == ')')
5587 if (t
[-1] == '[' && (t
[-2] == '-' || t
[-2] == '+'))
5588 p
= t
- 2; /* Method name detected. */
5589 /* Else we leave with p unchanged. */
5599 completion_list_add_fields (completion_tracker
&tracker
,
5601 const lookup_name_info
&lookup_name
,
5602 const char *text
, const char *word
)
5604 if (sym
->aclass () == LOC_TYPEDEF
)
5606 struct type
*t
= sym
->type ();
5607 enum type_code c
= t
->code ();
5610 if (c
== TYPE_CODE_UNION
|| c
== TYPE_CODE_STRUCT
)
5611 for (j
= TYPE_N_BASECLASSES (t
); j
< t
->num_fields (); j
++)
5612 if (t
->field (j
).name ())
5613 completion_list_add_name (tracker
, sym
->language (),
5614 t
->field (j
).name (),
5615 lookup_name
, text
, word
);
5622 symbol_is_function_or_method (symbol
*sym
)
5624 switch (sym
->type ()->code ())
5626 case TYPE_CODE_FUNC
:
5627 case TYPE_CODE_METHOD
:
5637 symbol_is_function_or_method (minimal_symbol
*msymbol
)
5639 switch (msymbol
->type ())
5642 case mst_text_gnu_ifunc
:
5643 case mst_solib_trampoline
:
5653 bound_minimal_symbol
5654 find_gnu_ifunc (const symbol
*sym
)
5656 if (sym
->aclass () != LOC_BLOCK
)
5659 lookup_name_info
lookup_name (sym
->search_name (),
5660 symbol_name_match_type::SEARCH_NAME
);
5661 struct objfile
*objfile
= sym
->objfile ();
5663 CORE_ADDR address
= sym
->value_block ()->entry_pc ();
5664 minimal_symbol
*ifunc
= NULL
;
5666 iterate_over_minimal_symbols (objfile
, lookup_name
,
5667 [&] (minimal_symbol
*minsym
)
5669 if (minsym
->type () == mst_text_gnu_ifunc
5670 || minsym
->type () == mst_data_gnu_ifunc
)
5672 CORE_ADDR msym_addr
= minsym
->value_address (objfile
);
5673 if (minsym
->type () == mst_data_gnu_ifunc
)
5675 struct gdbarch
*gdbarch
= objfile
->arch ();
5676 msym_addr
= gdbarch_convert_from_func_ptr_addr
5677 (gdbarch
, msym_addr
, current_inferior ()->top_target ());
5679 if (msym_addr
== address
)
5689 return {ifunc
, objfile
};
5693 /* Add matching symbols from SYMTAB to the current completion list. */
5696 add_symtab_completions (struct compunit_symtab
*cust
,
5697 completion_tracker
&tracker
,
5698 complete_symbol_mode mode
,
5699 const lookup_name_info
&lookup_name
,
5700 const char *text
, const char *word
,
5701 enum type_code code
)
5704 struct block_iterator iter
;
5710 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
5714 const struct block
*b
= cust
->blockvector ()->block (i
);
5715 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5717 if (completion_skip_symbol (mode
, sym
))
5720 if (code
== TYPE_CODE_UNDEF
5721 || (sym
->domain () == STRUCT_DOMAIN
5722 && sym
->type ()->code () == code
))
5723 completion_list_add_symbol (tracker
, sym
,
5731 default_collect_symbol_completion_matches_break_on
5732 (completion_tracker
&tracker
, complete_symbol_mode mode
,
5733 symbol_name_match_type name_match_type
,
5734 const char *text
, const char *word
,
5735 const char *break_on
, enum type_code code
)
5737 /* Problem: All of the symbols have to be copied because readline
5738 frees them. I'm not going to worry about this; hopefully there
5739 won't be that many. */
5742 const struct block
*b
;
5743 const struct block
*surrounding_static_block
, *surrounding_global_block
;
5744 struct block_iterator iter
;
5745 /* The symbol we are completing on. Points in same buffer as text. */
5746 const char *sym_text
;
5748 /* Now look for the symbol we are supposed to complete on. */
5749 if (mode
== complete_symbol_mode::LINESPEC
)
5755 const char *quote_pos
= NULL
;
5757 /* First see if this is a quoted string. */
5759 for (p
= text
; *p
!= '\0'; ++p
)
5761 if (quote_found
!= '\0')
5763 if (*p
== quote_found
)
5764 /* Found close quote. */
5766 else if (*p
== '\\' && p
[1] == quote_found
)
5767 /* A backslash followed by the quote character
5768 doesn't end the string. */
5771 else if (*p
== '\'' || *p
== '"')
5777 if (quote_found
== '\'')
5778 /* A string within single quotes can be a symbol, so complete on it. */
5779 sym_text
= quote_pos
+ 1;
5780 else if (quote_found
== '"')
5781 /* A double-quoted string is never a symbol, nor does it make sense
5782 to complete it any other way. */
5788 /* It is not a quoted string. Break it based on the characters
5789 which are in symbols. */
5792 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0'
5793 || p
[-1] == ':' || strchr (break_on
, p
[-1]) != NULL
)
5802 lookup_name_info
lookup_name (sym_text
, name_match_type
, true);
5804 /* At this point scan through the misc symbol vectors and add each
5805 symbol you find to the list. Eventually we want to ignore
5806 anything that isn't a text symbol (everything else will be
5807 handled by the psymtab code below). */
5809 if (code
== TYPE_CODE_UNDEF
)
5811 for (objfile
*objfile
: current_program_space
->objfiles ())
5813 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
5817 if (completion_skip_symbol (mode
, msymbol
))
5820 completion_list_add_msymbol (tracker
, msymbol
, lookup_name
,
5823 completion_list_objc_symbol (tracker
, msymbol
, lookup_name
,
5829 /* Add completions for all currently loaded symbol tables. */
5830 for (objfile
*objfile
: current_program_space
->objfiles ())
5832 for (compunit_symtab
*cust
: objfile
->compunits ())
5833 add_symtab_completions (cust
, tracker
, mode
, lookup_name
,
5834 sym_text
, word
, code
);
5837 /* Look through the partial symtabs for all symbols which begin by
5838 matching SYM_TEXT. Expand all CUs that you find to the list. */
5839 expand_symtabs_matching (NULL
,
5842 [&] (compunit_symtab
*symtab
) /* expansion notify */
5844 add_symtab_completions (symtab
,
5845 tracker
, mode
, lookup_name
,
5846 sym_text
, word
, code
);
5849 SEARCH_GLOBAL_BLOCK
| SEARCH_STATIC_BLOCK
,
5852 /* Search upwards from currently selected frame (so that we can
5853 complete on local vars). Also catch fields of types defined in
5854 this places which match our text string. Only complete on types
5855 visible from current context. */
5857 b
= get_selected_block (0);
5858 surrounding_static_block
= block_static_block (b
);
5859 surrounding_global_block
= block_global_block (b
);
5860 if (surrounding_static_block
!= NULL
)
5861 while (b
!= surrounding_static_block
)
5865 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5867 if (code
== TYPE_CODE_UNDEF
)
5869 completion_list_add_symbol (tracker
, sym
, lookup_name
,
5871 completion_list_add_fields (tracker
, sym
, lookup_name
,
5874 else if (sym
->domain () == STRUCT_DOMAIN
5875 && sym
->type ()->code () == code
)
5876 completion_list_add_symbol (tracker
, sym
, lookup_name
,
5880 /* Stop when we encounter an enclosing function. Do not stop for
5881 non-inlined functions - the locals of the enclosing function
5882 are in scope for a nested function. */
5883 if (b
->function () != NULL
&& block_inlined_p (b
))
5885 b
= b
->superblock ();
5888 /* Add fields from the file's types; symbols will be added below. */
5890 if (code
== TYPE_CODE_UNDEF
)
5892 if (surrounding_static_block
!= NULL
)
5893 ALL_BLOCK_SYMBOLS (surrounding_static_block
, iter
, sym
)
5894 completion_list_add_fields (tracker
, sym
, lookup_name
,
5897 if (surrounding_global_block
!= NULL
)
5898 ALL_BLOCK_SYMBOLS (surrounding_global_block
, iter
, sym
)
5899 completion_list_add_fields (tracker
, sym
, lookup_name
,
5903 /* Skip macros if we are completing a struct tag -- arguable but
5904 usually what is expected. */
5905 if (current_language
->macro_expansion () == macro_expansion_c
5906 && code
== TYPE_CODE_UNDEF
)
5908 gdb::unique_xmalloc_ptr
<struct macro_scope
> scope
;
5910 /* This adds a macro's name to the current completion list. */
5911 auto add_macro_name
= [&] (const char *macro_name
,
5912 const macro_definition
*,
5913 macro_source_file
*,
5916 completion_list_add_name (tracker
, language_c
, macro_name
,
5917 lookup_name
, sym_text
, word
);
5920 /* Add any macros visible in the default scope. Note that this
5921 may yield the occasional wrong result, because an expression
5922 might be evaluated in a scope other than the default. For
5923 example, if the user types "break file:line if <TAB>", the
5924 resulting expression will be evaluated at "file:line" -- but
5925 at there does not seem to be a way to detect this at
5927 scope
= default_macro_scope ();
5929 macro_for_each_in_scope (scope
->file
, scope
->line
,
5932 /* User-defined macros are always visible. */
5933 macro_for_each (macro_user_macros
, add_macro_name
);
5937 /* Collect all symbols (regardless of class) which begin by matching
5941 collect_symbol_completion_matches (completion_tracker
&tracker
,
5942 complete_symbol_mode mode
,
5943 symbol_name_match_type name_match_type
,
5944 const char *text
, const char *word
)
5946 current_language
->collect_symbol_completion_matches (tracker
, mode
,
5952 /* Like collect_symbol_completion_matches, but only collect
5953 STRUCT_DOMAIN symbols whose type code is CODE. */
5956 collect_symbol_completion_matches_type (completion_tracker
&tracker
,
5957 const char *text
, const char *word
,
5958 enum type_code code
)
5960 complete_symbol_mode mode
= complete_symbol_mode::EXPRESSION
;
5961 symbol_name_match_type name_match_type
= symbol_name_match_type::EXPRESSION
;
5963 gdb_assert (code
== TYPE_CODE_UNION
5964 || code
== TYPE_CODE_STRUCT
5965 || code
== TYPE_CODE_ENUM
);
5966 current_language
->collect_symbol_completion_matches (tracker
, mode
,
5971 /* Like collect_symbol_completion_matches, but collects a list of
5972 symbols defined in all source files named SRCFILE. */
5975 collect_file_symbol_completion_matches (completion_tracker
&tracker
,
5976 complete_symbol_mode mode
,
5977 symbol_name_match_type name_match_type
,
5978 const char *text
, const char *word
,
5979 const char *srcfile
)
5981 /* The symbol we are completing on. Points in same buffer as text. */
5982 const char *sym_text
;
5984 /* Now look for the symbol we are supposed to complete on.
5985 FIXME: This should be language-specific. */
5986 if (mode
== complete_symbol_mode::LINESPEC
)
5992 const char *quote_pos
= NULL
;
5994 /* First see if this is a quoted string. */
5996 for (p
= text
; *p
!= '\0'; ++p
)
5998 if (quote_found
!= '\0')
6000 if (*p
== quote_found
)
6001 /* Found close quote. */
6003 else if (*p
== '\\' && p
[1] == quote_found
)
6004 /* A backslash followed by the quote character
6005 doesn't end the string. */
6008 else if (*p
== '\'' || *p
== '"')
6014 if (quote_found
== '\'')
6015 /* A string within single quotes can be a symbol, so complete on it. */
6016 sym_text
= quote_pos
+ 1;
6017 else if (quote_found
== '"')
6018 /* A double-quoted string is never a symbol, nor does it make sense
6019 to complete it any other way. */
6025 /* Not a quoted string. */
6026 sym_text
= language_search_unquoted_string (text
, p
);
6030 lookup_name_info
lookup_name (sym_text
, name_match_type
, true);
6032 /* Go through symtabs for SRCFILE and check the externs and statics
6033 for symbols which match. */
6034 iterate_over_symtabs (srcfile
, [&] (symtab
*s
)
6036 add_symtab_completions (s
->compunit (),
6037 tracker
, mode
, lookup_name
,
6038 sym_text
, word
, TYPE_CODE_UNDEF
);
6043 /* A helper function for make_source_files_completion_list. It adds
6044 another file name to a list of possible completions, growing the
6045 list as necessary. */
6048 add_filename_to_list (const char *fname
, const char *text
, const char *word
,
6049 completion_list
*list
)
6051 list
->emplace_back (make_completion_match_str (fname
, text
, word
));
6055 not_interesting_fname (const char *fname
)
6057 static const char *illegal_aliens
[] = {
6058 "_globals_", /* inserted by coff_symtab_read */
6063 for (i
= 0; illegal_aliens
[i
]; i
++)
6065 if (filename_cmp (fname
, illegal_aliens
[i
]) == 0)
6071 /* An object of this type is passed as the callback argument to
6072 map_partial_symbol_filenames. */
6073 struct add_partial_filename_data
6075 struct filename_seen_cache
*filename_seen_cache
;
6079 completion_list
*list
;
6081 void operator() (const char *filename
, const char *fullname
);
6084 /* A callback for map_partial_symbol_filenames. */
6087 add_partial_filename_data::operator() (const char *filename
,
6088 const char *fullname
)
6090 if (not_interesting_fname (filename
))
6092 if (!filename_seen_cache
->seen (filename
)
6093 && filename_ncmp (filename
, text
, text_len
) == 0)
6095 /* This file matches for a completion; add it to the
6096 current list of matches. */
6097 add_filename_to_list (filename
, text
, word
, list
);
6101 const char *base_name
= lbasename (filename
);
6103 if (base_name
!= filename
6104 && !filename_seen_cache
->seen (base_name
)
6105 && filename_ncmp (base_name
, text
, text_len
) == 0)
6106 add_filename_to_list (base_name
, text
, word
, list
);
6110 /* Return a list of all source files whose names begin with matching
6111 TEXT. The file names are looked up in the symbol tables of this
6115 make_source_files_completion_list (const char *text
, const char *word
)
6117 size_t text_len
= strlen (text
);
6118 completion_list list
;
6119 const char *base_name
;
6120 struct add_partial_filename_data datum
;
6122 if (!have_full_symbols () && !have_partial_symbols ())
6125 filename_seen_cache filenames_seen
;
6127 for (objfile
*objfile
: current_program_space
->objfiles ())
6129 for (compunit_symtab
*cu
: objfile
->compunits ())
6131 for (symtab
*s
: cu
->filetabs ())
6133 if (not_interesting_fname (s
->filename
))
6135 if (!filenames_seen
.seen (s
->filename
)
6136 && filename_ncmp (s
->filename
, text
, text_len
) == 0)
6138 /* This file matches for a completion; add it to the current
6140 add_filename_to_list (s
->filename
, text
, word
, &list
);
6144 /* NOTE: We allow the user to type a base name when the
6145 debug info records leading directories, but not the other
6146 way around. This is what subroutines of breakpoint
6147 command do when they parse file names. */
6148 base_name
= lbasename (s
->filename
);
6149 if (base_name
!= s
->filename
6150 && !filenames_seen
.seen (base_name
)
6151 && filename_ncmp (base_name
, text
, text_len
) == 0)
6152 add_filename_to_list (base_name
, text
, word
, &list
);
6158 datum
.filename_seen_cache
= &filenames_seen
;
6161 datum
.text_len
= text_len
;
6163 map_symbol_filenames (datum
, false /*need_fullname*/);
6170 /* Return the "main_info" object for the current program space. If
6171 the object has not yet been created, create it and fill in some
6174 static struct main_info
*
6175 get_main_info (void)
6177 struct main_info
*info
= main_progspace_key
.get (current_program_space
);
6181 /* It may seem strange to store the main name in the progspace
6182 and also in whatever objfile happens to see a main name in
6183 its debug info. The reason for this is mainly historical:
6184 gdb returned "main" as the name even if no function named
6185 "main" was defined the program; and this approach lets us
6186 keep compatibility. */
6187 info
= main_progspace_key
.emplace (current_program_space
);
6194 set_main_name (const char *name
, enum language lang
)
6196 struct main_info
*info
= get_main_info ();
6198 if (info
->name_of_main
!= NULL
)
6200 xfree (info
->name_of_main
);
6201 info
->name_of_main
= NULL
;
6202 info
->language_of_main
= language_unknown
;
6206 info
->name_of_main
= xstrdup (name
);
6207 info
->language_of_main
= lang
;
6211 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6215 find_main_name (void)
6217 const char *new_main_name
;
6219 /* First check the objfiles to see whether a debuginfo reader has
6220 picked up the appropriate main name. Historically the main name
6221 was found in a more or less random way; this approach instead
6222 relies on the order of objfile creation -- which still isn't
6223 guaranteed to get the correct answer, but is just probably more
6225 for (objfile
*objfile
: current_program_space
->objfiles ())
6227 if (objfile
->per_bfd
->name_of_main
!= NULL
)
6229 set_main_name (objfile
->per_bfd
->name_of_main
,
6230 objfile
->per_bfd
->language_of_main
);
6235 /* Try to see if the main procedure is in Ada. */
6236 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6237 be to add a new method in the language vector, and call this
6238 method for each language until one of them returns a non-empty
6239 name. This would allow us to remove this hard-coded call to
6240 an Ada function. It is not clear that this is a better approach
6241 at this point, because all methods need to be written in a way
6242 such that false positives never be returned. For instance, it is
6243 important that a method does not return a wrong name for the main
6244 procedure if the main procedure is actually written in a different
6245 language. It is easy to guaranty this with Ada, since we use a
6246 special symbol generated only when the main in Ada to find the name
6247 of the main procedure. It is difficult however to see how this can
6248 be guarantied for languages such as C, for instance. This suggests
6249 that order of call for these methods becomes important, which means
6250 a more complicated approach. */
6251 new_main_name
= ada_main_name ();
6252 if (new_main_name
!= NULL
)
6254 set_main_name (new_main_name
, language_ada
);
6258 new_main_name
= d_main_name ();
6259 if (new_main_name
!= NULL
)
6261 set_main_name (new_main_name
, language_d
);
6265 new_main_name
= go_main_name ();
6266 if (new_main_name
!= NULL
)
6268 set_main_name (new_main_name
, language_go
);
6272 new_main_name
= pascal_main_name ();
6273 if (new_main_name
!= NULL
)
6275 set_main_name (new_main_name
, language_pascal
);
6279 /* The languages above didn't identify the name of the main procedure.
6280 Fallback to "main". */
6282 /* Try to find language for main in psymtabs. */
6283 bool symbol_found_p
= false;
6284 gdbarch_iterate_over_objfiles_in_search_order
6286 [&symbol_found_p
] (objfile
*obj
)
6289 = obj
->lookup_global_symbol_language ("main", VAR_DOMAIN
,
6293 set_main_name ("main", lang
);
6303 set_main_name ("main", language_unknown
);
6311 struct main_info
*info
= get_main_info ();
6313 if (info
->name_of_main
== NULL
)
6316 return info
->name_of_main
;
6319 /* Return the language of the main function. If it is not known,
6320 return language_unknown. */
6323 main_language (void)
6325 struct main_info
*info
= get_main_info ();
6327 if (info
->name_of_main
== NULL
)
6330 return info
->language_of_main
;
6333 /* Handle ``executable_changed'' events for the symtab module. */
6336 symtab_observer_executable_changed (void)
6338 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6339 set_main_name (NULL
, language_unknown
);
6342 /* Return 1 if the supplied producer string matches the ARM RealView
6343 compiler (armcc). */
6346 producer_is_realview (const char *producer
)
6348 static const char *const arm_idents
[] = {
6349 "ARM C Compiler, ADS",
6350 "Thumb C Compiler, ADS",
6351 "ARM C++ Compiler, ADS",
6352 "Thumb C++ Compiler, ADS",
6353 "ARM/Thumb C/C++ Compiler, RVCT",
6354 "ARM C/C++ Compiler, RVCT"
6357 if (producer
== NULL
)
6360 for (const char *ident
: arm_idents
)
6361 if (startswith (producer
, ident
))
6369 /* The next index to hand out in response to a registration request. */
6371 static int next_aclass_value
= LOC_FINAL_VALUE
;
6373 /* The maximum number of "aclass" registrations we support. This is
6374 constant for convenience. */
6375 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6377 /* The objects representing the various "aclass" values. The elements
6378 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6379 elements are those registered at gdb initialization time. */
6381 static struct symbol_impl symbol_impl
[MAX_SYMBOL_IMPLS
];
6383 /* The globally visible pointer. This is separate from 'symbol_impl'
6384 so that it can be const. */
6386 gdb::array_view
<const struct symbol_impl
> symbol_impls (symbol_impl
);
6388 /* Make sure we saved enough room in struct symbol. */
6390 gdb_static_assert (MAX_SYMBOL_IMPLS
<= (1 << SYMBOL_ACLASS_BITS
));
6392 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6393 is the ops vector associated with this index. This returns the new
6394 index, which should be used as the aclass_index field for symbols
6398 register_symbol_computed_impl (enum address_class aclass
,
6399 const struct symbol_computed_ops
*ops
)
6401 int result
= next_aclass_value
++;
6403 gdb_assert (aclass
== LOC_COMPUTED
);
6404 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6405 symbol_impl
[result
].aclass
= aclass
;
6406 symbol_impl
[result
].ops_computed
= ops
;
6408 /* Sanity check OPS. */
6409 gdb_assert (ops
!= NULL
);
6410 gdb_assert (ops
->tracepoint_var_ref
!= NULL
);
6411 gdb_assert (ops
->describe_location
!= NULL
);
6412 gdb_assert (ops
->get_symbol_read_needs
!= NULL
);
6413 gdb_assert (ops
->read_variable
!= NULL
);
6418 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6419 OPS is the ops vector associated with this index. This returns the
6420 new index, which should be used as the aclass_index field for symbols
6424 register_symbol_block_impl (enum address_class aclass
,
6425 const struct symbol_block_ops
*ops
)
6427 int result
= next_aclass_value
++;
6429 gdb_assert (aclass
== LOC_BLOCK
);
6430 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6431 symbol_impl
[result
].aclass
= aclass
;
6432 symbol_impl
[result
].ops_block
= ops
;
6434 /* Sanity check OPS. */
6435 gdb_assert (ops
!= NULL
);
6436 gdb_assert (ops
->find_frame_base_location
!= NULL
);
6441 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6442 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6443 this index. This returns the new index, which should be used as
6444 the aclass_index field for symbols of this type. */
6447 register_symbol_register_impl (enum address_class aclass
,
6448 const struct symbol_register_ops
*ops
)
6450 int result
= next_aclass_value
++;
6452 gdb_assert (aclass
== LOC_REGISTER
|| aclass
== LOC_REGPARM_ADDR
);
6453 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6454 symbol_impl
[result
].aclass
= aclass
;
6455 symbol_impl
[result
].ops_register
= ops
;
6460 /* Initialize elements of 'symbol_impl' for the constants in enum
6464 initialize_ordinary_address_classes (void)
6468 for (i
= 0; i
< LOC_FINAL_VALUE
; ++i
)
6469 symbol_impl
[i
].aclass
= (enum address_class
) i
;
6477 symbol::objfile () const
6479 gdb_assert (is_objfile_owned ());
6480 return owner
.symtab
->compunit ()->objfile ();
6486 symbol::arch () const
6488 if (!is_objfile_owned ())
6490 return owner
.symtab
->compunit ()->objfile ()->arch ();
6496 symbol::symtab () const
6498 gdb_assert (is_objfile_owned ());
6499 return owner
.symtab
;
6505 symbol::set_symtab (struct symtab
*symtab
)
6507 gdb_assert (is_objfile_owned ());
6508 owner
.symtab
= symtab
;
6514 get_symbol_address (const struct symbol
*sym
)
6516 gdb_assert (sym
->maybe_copied
);
6517 gdb_assert (sym
->aclass () == LOC_STATIC
);
6519 const char *linkage_name
= sym
->linkage_name ();
6521 for (objfile
*objfile
: current_program_space
->objfiles ())
6523 if (objfile
->separate_debug_objfile_backlink
!= nullptr)
6526 bound_minimal_symbol minsym
6527 = lookup_minimal_symbol_linkage (linkage_name
, objfile
);
6528 if (minsym
.minsym
!= nullptr)
6529 return minsym
.value_address ();
6531 return sym
->m_value
.address
;
6537 get_msymbol_address (struct objfile
*objf
, const struct minimal_symbol
*minsym
)
6539 gdb_assert (minsym
->maybe_copied
);
6540 gdb_assert ((objf
->flags
& OBJF_MAINLINE
) == 0);
6542 const char *linkage_name
= minsym
->linkage_name ();
6544 for (objfile
*objfile
: current_program_space
->objfiles ())
6546 if (objfile
->separate_debug_objfile_backlink
== nullptr
6547 && (objfile
->flags
& OBJF_MAINLINE
) != 0)
6549 bound_minimal_symbol found
6550 = lookup_minimal_symbol_linkage (linkage_name
, objfile
);
6551 if (found
.minsym
!= nullptr)
6552 return found
.value_address ();
6555 return (minsym
->m_value
.address
6556 + objf
->section_offsets
[minsym
->section_index ()]);
6561 /* Hold the sub-commands of 'info module'. */
6563 static struct cmd_list_element
*info_module_cmdlist
= NULL
;
6567 std::vector
<module_symbol_search
>
6568 search_module_symbols (const char *module_regexp
, const char *regexp
,
6569 const char *type_regexp
, search_domain kind
)
6571 std::vector
<module_symbol_search
> results
;
6573 /* Search for all modules matching MODULE_REGEXP. */
6574 global_symbol_searcher
spec1 (MODULES_DOMAIN
, module_regexp
);
6575 spec1
.set_exclude_minsyms (true);
6576 std::vector
<symbol_search
> modules
= spec1
.search ();
6578 /* Now search for all symbols of the required KIND matching the required
6579 regular expressions. We figure out which ones are in which modules
6581 global_symbol_searcher
spec2 (kind
, regexp
);
6582 spec2
.set_symbol_type_regexp (type_regexp
);
6583 spec2
.set_exclude_minsyms (true);
6584 std::vector
<symbol_search
> symbols
= spec2
.search ();
6586 /* Now iterate over all MODULES, checking to see which items from
6587 SYMBOLS are in each module. */
6588 for (const symbol_search
&p
: modules
)
6592 /* This is a module. */
6593 gdb_assert (p
.symbol
!= nullptr);
6595 std::string prefix
= p
.symbol
->print_name ();
6598 for (const symbol_search
&q
: symbols
)
6600 if (q
.symbol
== nullptr)
6603 if (strncmp (q
.symbol
->print_name (), prefix
.c_str (),
6604 prefix
.size ()) != 0)
6607 results
.push_back ({p
, q
});
6614 /* Implement the core of both 'info module functions' and 'info module
6618 info_module_subcommand (bool quiet
, const char *module_regexp
,
6619 const char *regexp
, const char *type_regexp
,
6622 /* Print a header line. Don't build the header line bit by bit as this
6623 prevents internationalisation. */
6626 if (module_regexp
== nullptr)
6628 if (type_regexp
== nullptr)
6630 if (regexp
== nullptr)
6631 gdb_printf ((kind
== VARIABLES_DOMAIN
6632 ? _("All variables in all modules:")
6633 : _("All functions in all modules:")));
6636 ((kind
== VARIABLES_DOMAIN
6637 ? _("All variables matching regular expression"
6638 " \"%s\" in all modules:")
6639 : _("All functions matching regular expression"
6640 " \"%s\" in all modules:")),
6645 if (regexp
== nullptr)
6647 ((kind
== VARIABLES_DOMAIN
6648 ? _("All variables with type matching regular "
6649 "expression \"%s\" in all modules:")
6650 : _("All functions with type matching regular "
6651 "expression \"%s\" in all modules:")),
6655 ((kind
== VARIABLES_DOMAIN
6656 ? _("All variables matching regular expression "
6657 "\"%s\",\n\twith type matching regular "
6658 "expression \"%s\" in all modules:")
6659 : _("All functions matching regular expression "
6660 "\"%s\",\n\twith type matching regular "
6661 "expression \"%s\" in all modules:")),
6662 regexp
, type_regexp
);
6667 if (type_regexp
== nullptr)
6669 if (regexp
== nullptr)
6671 ((kind
== VARIABLES_DOMAIN
6672 ? _("All variables in all modules matching regular "
6673 "expression \"%s\":")
6674 : _("All functions in all modules matching regular "
6675 "expression \"%s\":")),
6679 ((kind
== VARIABLES_DOMAIN
6680 ? _("All variables matching regular expression "
6681 "\"%s\",\n\tin all modules matching regular "
6682 "expression \"%s\":")
6683 : _("All functions matching regular expression "
6684 "\"%s\",\n\tin all modules matching regular "
6685 "expression \"%s\":")),
6686 regexp
, module_regexp
);
6690 if (regexp
== nullptr)
6692 ((kind
== VARIABLES_DOMAIN
6693 ? _("All variables with type matching regular "
6694 "expression \"%s\"\n\tin all modules matching "
6695 "regular expression \"%s\":")
6696 : _("All functions with type matching regular "
6697 "expression \"%s\"\n\tin all modules matching "
6698 "regular expression \"%s\":")),
6699 type_regexp
, module_regexp
);
6702 ((kind
== VARIABLES_DOMAIN
6703 ? _("All variables matching regular expression "
6704 "\"%s\",\n\twith type matching regular expression "
6705 "\"%s\",\n\tin all modules matching regular "
6706 "expression \"%s\":")
6707 : _("All functions matching regular expression "
6708 "\"%s\",\n\twith type matching regular expression "
6709 "\"%s\",\n\tin all modules matching regular "
6710 "expression \"%s\":")),
6711 regexp
, type_regexp
, module_regexp
);
6717 /* Find all symbols of type KIND matching the given regular expressions
6718 along with the symbols for the modules in which those symbols
6720 std::vector
<module_symbol_search
> module_symbols
6721 = search_module_symbols (module_regexp
, regexp
, type_regexp
, kind
);
6723 std::sort (module_symbols
.begin (), module_symbols
.end (),
6724 [] (const module_symbol_search
&a
, const module_symbol_search
&b
)
6726 if (a
.first
< b
.first
)
6728 else if (a
.first
== b
.first
)
6729 return a
.second
< b
.second
;
6734 const char *last_filename
= "";
6735 const symbol
*last_module_symbol
= nullptr;
6736 for (const module_symbol_search
&ms
: module_symbols
)
6738 const symbol_search
&p
= ms
.first
;
6739 const symbol_search
&q
= ms
.second
;
6741 gdb_assert (q
.symbol
!= nullptr);
6743 if (last_module_symbol
!= p
.symbol
)
6746 gdb_printf (_("Module \"%s\":\n"), p
.symbol
->print_name ());
6747 last_module_symbol
= p
.symbol
;
6751 print_symbol_info (FUNCTIONS_DOMAIN
, q
.symbol
, q
.block
,
6754 = symtab_to_filename_for_display (q
.symbol
->symtab ());
6758 /* Hold the option values for the 'info module .....' sub-commands. */
6760 struct info_modules_var_func_options
6763 std::string type_regexp
;
6764 std::string module_regexp
;
6767 /* The options used by 'info module variables' and 'info module functions'
6770 static const gdb::option::option_def info_modules_var_func_options_defs
[] = {
6771 gdb::option::boolean_option_def
<info_modules_var_func_options
> {
6773 [] (info_modules_var_func_options
*opt
) { return &opt
->quiet
; },
6774 nullptr, /* show_cmd_cb */
6775 nullptr /* set_doc */
6778 gdb::option::string_option_def
<info_modules_var_func_options
> {
6780 [] (info_modules_var_func_options
*opt
) { return &opt
->type_regexp
; },
6781 nullptr, /* show_cmd_cb */
6782 nullptr /* set_doc */
6785 gdb::option::string_option_def
<info_modules_var_func_options
> {
6787 [] (info_modules_var_func_options
*opt
) { return &opt
->module_regexp
; },
6788 nullptr, /* show_cmd_cb */
6789 nullptr /* set_doc */
6793 /* Return the option group used by the 'info module ...' sub-commands. */
6795 static inline gdb::option::option_def_group
6796 make_info_modules_var_func_options_def_group
6797 (info_modules_var_func_options
*opts
)
6799 return {{info_modules_var_func_options_defs
}, opts
};
6802 /* Implements the 'info module functions' command. */
6805 info_module_functions_command (const char *args
, int from_tty
)
6807 info_modules_var_func_options opts
;
6808 auto grp
= make_info_modules_var_func_options_def_group (&opts
);
6809 gdb::option::process_options
6810 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
6811 if (args
!= nullptr && *args
== '\0')
6814 info_module_subcommand
6816 opts
.module_regexp
.empty () ? nullptr : opts
.module_regexp
.c_str (), args
,
6817 opts
.type_regexp
.empty () ? nullptr : opts
.type_regexp
.c_str (),
6821 /* Implements the 'info module variables' command. */
6824 info_module_variables_command (const char *args
, int from_tty
)
6826 info_modules_var_func_options opts
;
6827 auto grp
= make_info_modules_var_func_options_def_group (&opts
);
6828 gdb::option::process_options
6829 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
6830 if (args
!= nullptr && *args
== '\0')
6833 info_module_subcommand
6835 opts
.module_regexp
.empty () ? nullptr : opts
.module_regexp
.c_str (), args
,
6836 opts
.type_regexp
.empty () ? nullptr : opts
.type_regexp
.c_str (),
6840 /* Command completer for 'info module ...' sub-commands. */
6843 info_module_var_func_command_completer (struct cmd_list_element
*ignore
,
6844 completion_tracker
&tracker
,
6846 const char * /* word */)
6849 const auto group
= make_info_modules_var_func_options_def_group (nullptr);
6850 if (gdb::option::complete_options
6851 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
6854 const char *word
= advance_to_expression_complete_word_point (tracker
, text
);
6855 symbol_completer (ignore
, tracker
, text
, word
);
6860 void _initialize_symtab ();
6862 _initialize_symtab ()
6864 cmd_list_element
*c
;
6866 initialize_ordinary_address_classes ();
6868 c
= add_info ("variables", info_variables_command
,
6869 info_print_args_help (_("\
6870 All global and static variable names or those matching REGEXPs.\n\
6871 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6872 Prints the global and static variables.\n"),
6873 _("global and static variables"),
6875 set_cmd_completer_handle_brkchars (c
, info_vars_funcs_command_completer
);
6877 c
= add_info ("functions", info_functions_command
,
6878 info_print_args_help (_("\
6879 All function names or those matching REGEXPs.\n\
6880 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6881 Prints the functions.\n"),
6884 set_cmd_completer_handle_brkchars (c
, info_vars_funcs_command_completer
);
6886 c
= add_info ("types", info_types_command
, _("\
6887 All type names, or those matching REGEXP.\n\
6888 Usage: info types [-q] [REGEXP]\n\
6889 Print information about all types matching REGEXP, or all types if no\n\
6890 REGEXP is given. The optional flag -q disables printing of headers."));
6891 set_cmd_completer_handle_brkchars (c
, info_types_command_completer
);
6893 const auto info_sources_opts
6894 = make_info_sources_options_def_group (nullptr);
6896 static std::string info_sources_help
6897 = gdb::option::build_help (_("\
6898 All source files in the program or those matching REGEXP.\n\
6899 Usage: info sources [OPTION]... [REGEXP]\n\
6900 By default, REGEXP is used to match anywhere in the filename.\n\
6906 c
= add_info ("sources", info_sources_command
, info_sources_help
.c_str ());
6907 set_cmd_completer_handle_brkchars (c
, info_sources_command_completer
);
6909 c
= add_info ("modules", info_modules_command
,
6910 _("All module names, or those matching REGEXP."));
6911 set_cmd_completer_handle_brkchars (c
, info_types_command_completer
);
6913 add_basic_prefix_cmd ("module", class_info
, _("\
6914 Print information about modules."),
6915 &info_module_cmdlist
, 0, &infolist
);
6917 c
= add_cmd ("functions", class_info
, info_module_functions_command
, _("\
6918 Display functions arranged by modules.\n\
6919 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6920 Print a summary of all functions within each Fortran module, grouped by\n\
6921 module and file. For each function the line on which the function is\n\
6922 defined is given along with the type signature and name of the function.\n\
6924 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6925 listed. If MODREGEXP is provided then only functions in modules matching\n\
6926 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6927 type signature matches TYPEREGEXP are listed.\n\
6929 The -q flag suppresses printing some header information."),
6930 &info_module_cmdlist
);
6931 set_cmd_completer_handle_brkchars
6932 (c
, info_module_var_func_command_completer
);
6934 c
= add_cmd ("variables", class_info
, info_module_variables_command
, _("\
6935 Display variables arranged by modules.\n\
6936 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6937 Print a summary of all variables within each Fortran module, grouped by\n\
6938 module and file. For each variable the line on which the variable is\n\
6939 defined is given along with the type and name of the variable.\n\
6941 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6942 listed. If MODREGEXP is provided then only variables in modules matching\n\
6943 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6944 type matches TYPEREGEXP are listed.\n\
6946 The -q flag suppresses printing some header information."),
6947 &info_module_cmdlist
);
6948 set_cmd_completer_handle_brkchars
6949 (c
, info_module_var_func_command_completer
);
6951 add_com ("rbreak", class_breakpoint
, rbreak_command
,
6952 _("Set a breakpoint for all functions matching REGEXP."));
6954 add_setshow_enum_cmd ("multiple-symbols", no_class
,
6955 multiple_symbols_modes
, &multiple_symbols_mode
,
6957 Set how the debugger handles ambiguities in expressions."), _("\
6958 Show how the debugger handles ambiguities in expressions."), _("\
6959 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6960 NULL
, NULL
, &setlist
, &showlist
);
6962 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure
,
6963 &basenames_may_differ
, _("\
6964 Set whether a source file may have multiple base names."), _("\
6965 Show whether a source file may have multiple base names."), _("\
6966 (A \"base name\" is the name of a file with the directory part removed.\n\
6967 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6968 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6969 before comparing them. Canonicalization is an expensive operation,\n\
6970 but it allows the same file be known by more than one base name.\n\
6971 If not set (the default), all source files are assumed to have just\n\
6972 one base name, and gdb will do file name comparisons more efficiently."),
6974 &setlist
, &showlist
);
6976 add_setshow_zuinteger_cmd ("symtab-create", no_class
, &symtab_create_debug
,
6977 _("Set debugging of symbol table creation."),
6978 _("Show debugging of symbol table creation."), _("\
6979 When enabled (non-zero), debugging messages are printed when building\n\
6980 symbol tables. A value of 1 (one) normally provides enough information.\n\
6981 A value greater than 1 provides more verbose information."),
6984 &setdebuglist
, &showdebuglist
);
6986 add_setshow_zuinteger_cmd ("symbol-lookup", no_class
, &symbol_lookup_debug
,
6988 Set debugging of symbol lookup."), _("\
6989 Show debugging of symbol lookup."), _("\
6990 When enabled (non-zero), symbol lookups are logged."),
6992 &setdebuglist
, &showdebuglist
);
6994 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class
,
6995 &new_symbol_cache_size
,
6996 _("Set the size of the symbol cache."),
6997 _("Show the size of the symbol cache."), _("\
6998 The size of the symbol cache.\n\
6999 If zero then the symbol cache is disabled."),
7000 set_symbol_cache_size_handler
, NULL
,
7001 &maintenance_set_cmdlist
,
7002 &maintenance_show_cmdlist
);
7004 add_setshow_boolean_cmd ("ignore-prologue-end-flag", no_class
,
7005 &ignore_prologue_end_flag
,
7006 _("Set if the PROLOGUE-END flag is ignored."),
7007 _("Show if the PROLOGUE-END flag is ignored."),
7009 The PROLOGUE-END flag from the line-table entries is used to place \
7010 breakpoints past the prologue of functions. Disabeling its use use forces \
7011 the use of prologue scanners."),
7013 &maintenance_set_cmdlist
,
7014 &maintenance_show_cmdlist
);
7017 add_cmd ("symbol-cache", class_maintenance
, maintenance_print_symbol_cache
,
7018 _("Dump the symbol cache for each program space."),
7019 &maintenanceprintlist
);
7021 add_cmd ("symbol-cache-statistics", class_maintenance
,
7022 maintenance_print_symbol_cache_statistics
,
7023 _("Print symbol cache statistics for each program space."),
7024 &maintenanceprintlist
);
7026 cmd_list_element
*maintenance_flush_symbol_cache_cmd
7027 = add_cmd ("symbol-cache", class_maintenance
,
7028 maintenance_flush_symbol_cache
,
7029 _("Flush the symbol cache for each program space."),
7030 &maintenanceflushlist
);
7031 c
= add_alias_cmd ("flush-symbol-cache", maintenance_flush_symbol_cache_cmd
,
7032 class_maintenance
, 0, &maintenancelist
);
7033 deprecate_cmd (c
, "maintenancelist flush symbol-cache");
7035 gdb::observers::executable_changed
.attach (symtab_observer_executable_changed
,
7037 gdb::observers::new_objfile
.attach (symtab_new_objfile_observer
, "symtab");
7038 gdb::observers::free_objfile
.attach (symtab_free_objfile_observer
, "symtab");