1 // layout.cc -- lay out output file sections for gold
3 // Copyright (C) 2006-2023 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
45 #include "parameters.h"
49 #include "script-sections.h"
54 #include "gdb-index.h"
55 #include "compressed_output.h"
56 #include "reduced_debug_output.h"
59 #include "descriptors.h"
61 #include "incremental.h"
69 // The total number of free lists used.
70 unsigned int Free_list::num_lists
= 0;
71 // The total number of free list nodes used.
72 unsigned int Free_list::num_nodes
= 0;
73 // The total number of calls to Free_list::remove.
74 unsigned int Free_list::num_removes
= 0;
75 // The total number of nodes visited during calls to Free_list::remove.
76 unsigned int Free_list::num_remove_visits
= 0;
77 // The total number of calls to Free_list::allocate.
78 unsigned int Free_list::num_allocates
= 0;
79 // The total number of nodes visited during calls to Free_list::allocate.
80 unsigned int Free_list::num_allocate_visits
= 0;
82 // Initialize the free list. Creates a single free list node that
83 // describes the entire region of length LEN. If EXTEND is true,
84 // allocate() is allowed to extend the region beyond its initial
88 Free_list::init(off_t len
, bool extend
)
90 this->list_
.push_front(Free_list_node(0, len
));
91 this->last_remove_
= this->list_
.begin();
92 this->extend_
= extend
;
94 ++Free_list::num_lists
;
95 ++Free_list::num_nodes
;
98 // Remove a chunk from the free list. Because we start with a single
99 // node that covers the entire section, and remove chunks from it one
100 // at a time, we do not need to coalesce chunks or handle cases that
101 // span more than one free node. We expect to remove chunks from the
102 // free list in order, and we expect to have only a few chunks of free
103 // space left (corresponding to files that have changed since the last
104 // incremental link), so a simple linear list should provide sufficient
108 Free_list::remove(off_t start
, off_t end
)
112 gold_assert(start
< end
);
114 ++Free_list::num_removes
;
116 Iterator p
= this->last_remove_
;
117 if (p
->start_
> start
)
118 p
= this->list_
.begin();
120 for (; p
!= this->list_
.end(); ++p
)
122 ++Free_list::num_remove_visits
;
123 // Find a node that wholly contains the indicated region.
124 if (p
->start_
<= start
&& p
->end_
>= end
)
126 // Case 1: the indicated region spans the whole node.
127 // Add some fuzz to avoid creating tiny free chunks.
128 if (p
->start_
+ 3 >= start
&& p
->end_
<= end
+ 3)
129 p
= this->list_
.erase(p
);
130 // Case 2: remove a chunk from the start of the node.
131 else if (p
->start_
+ 3 >= start
)
133 // Case 3: remove a chunk from the end of the node.
134 else if (p
->end_
<= end
+ 3)
136 // Case 4: remove a chunk from the middle, and split
137 // the node into two.
140 Free_list_node
newnode(p
->start_
, start
);
142 this->list_
.insert(p
, newnode
);
143 ++Free_list::num_nodes
;
145 this->last_remove_
= p
;
150 // Did not find a node containing the given chunk. This could happen
151 // because a small chunk was already removed due to the fuzz.
152 gold_debug(DEBUG_INCREMENTAL
,
153 "Free_list::remove(%d,%d) not found",
154 static_cast<int>(start
), static_cast<int>(end
));
157 // Allocate a chunk of size LEN from the free list. Returns -1ULL
158 // if a sufficiently large chunk of free space is not found.
159 // We use a simple first-fit algorithm.
162 Free_list::allocate(off_t len
, uint64_t align
, off_t minoff
)
164 gold_debug(DEBUG_INCREMENTAL
,
165 "Free_list::allocate(%08lx, %d, %08lx)",
166 static_cast<long>(len
), static_cast<int>(align
),
167 static_cast<long>(minoff
));
169 return align_address(minoff
, align
);
171 ++Free_list::num_allocates
;
173 // We usually want to drop free chunks smaller than 4 bytes.
174 // If we need to guarantee a minimum hole size, though, we need
175 // to keep track of all free chunks.
176 const int fuzz
= this->min_hole_
> 0 ? 0 : 3;
178 for (Iterator p
= this->list_
.begin(); p
!= this->list_
.end(); ++p
)
180 ++Free_list::num_allocate_visits
;
181 off_t start
= p
->start_
> minoff
? p
->start_
: minoff
;
182 start
= align_address(start
, align
);
183 off_t end
= start
+ len
;
184 if (end
> p
->end_
&& p
->end_
== this->length_
&& this->extend_
)
189 if (end
== p
->end_
|| (end
<= p
->end_
- this->min_hole_
))
191 if (p
->start_
+ fuzz
>= start
&& p
->end_
<= end
+ fuzz
)
192 this->list_
.erase(p
);
193 else if (p
->start_
+ fuzz
>= start
)
195 else if (p
->end_
<= end
+ fuzz
)
199 Free_list_node
newnode(p
->start_
, start
);
201 this->list_
.insert(p
, newnode
);
202 ++Free_list::num_nodes
;
209 off_t start
= align_address(this->length_
, align
);
210 this->length_
= start
+ len
;
216 // Dump the free list (for debugging).
220 gold_info("Free list:\n start end length\n");
221 for (Iterator p
= this->list_
.begin(); p
!= this->list_
.end(); ++p
)
222 gold_info(" %08lx %08lx %08lx", static_cast<long>(p
->start_
),
223 static_cast<long>(p
->end_
),
224 static_cast<long>(p
->end_
- p
->start_
));
227 // Print the statistics for the free lists.
229 Free_list::print_stats()
231 fprintf(stderr
, _("%s: total free lists: %u\n"),
232 program_name
, Free_list::num_lists
);
233 fprintf(stderr
, _("%s: total free list nodes: %u\n"),
234 program_name
, Free_list::num_nodes
);
235 fprintf(stderr
, _("%s: calls to Free_list::remove: %u\n"),
236 program_name
, Free_list::num_removes
);
237 fprintf(stderr
, _("%s: nodes visited: %u\n"),
238 program_name
, Free_list::num_remove_visits
);
239 fprintf(stderr
, _("%s: calls to Free_list::allocate: %u\n"),
240 program_name
, Free_list::num_allocates
);
241 fprintf(stderr
, _("%s: nodes visited: %u\n"),
242 program_name
, Free_list::num_allocate_visits
);
245 // A Hash_task computes the MD5 checksum of an array of char.
247 class Hash_task
: public Task
250 Hash_task(Output_file
* of
,
254 Task_token
* final_blocker
)
255 : of_(of
), offset_(offset
), size_(size
), dst_(dst
),
256 final_blocker_(final_blocker
)
262 const unsigned char* iv
=
263 this->of_
->get_input_view(this->offset_
, this->size_
);
264 md5_buffer(reinterpret_cast<const char*>(iv
), this->size_
, this->dst_
);
265 this->of_
->free_input_view(this->offset_
, this->size_
, iv
);
272 // Unblock FINAL_BLOCKER_ when done.
274 locks(Task_locker
* tl
)
275 { tl
->add(this, this->final_blocker_
); }
279 { return "Hash_task"; }
283 const size_t offset_
;
285 unsigned char* const dst_
;
286 Task_token
* const final_blocker_
;
289 // Layout::Relaxation_debug_check methods.
291 // Check that sections and special data are in reset states.
292 // We do not save states for Output_sections and special Output_data.
293 // So we check that they have not assigned any addresses or offsets.
294 // clean_up_after_relaxation simply resets their addresses and offsets.
296 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
297 const Layout::Section_list
& sections
,
298 const Layout::Data_list
& special_outputs
,
299 const Layout::Data_list
& relax_outputs
)
301 for(Layout::Section_list::const_iterator p
= sections
.begin();
304 gold_assert((*p
)->address_and_file_offset_have_reset_values());
306 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
307 p
!= special_outputs
.end();
309 gold_assert((*p
)->address_and_file_offset_have_reset_values());
311 gold_assert(relax_outputs
.empty());
314 // Save information of SECTIONS for checking later.
317 Layout::Relaxation_debug_check::read_sections(
318 const Layout::Section_list
& sections
)
320 for(Layout::Section_list::const_iterator p
= sections
.begin();
324 Output_section
* os
= *p
;
326 info
.output_section
= os
;
327 info
.address
= os
->is_address_valid() ? os
->address() : 0;
328 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
329 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
330 this->section_infos_
.push_back(info
);
334 // Verify SECTIONS using previously recorded information.
337 Layout::Relaxation_debug_check::verify_sections(
338 const Layout::Section_list
& sections
)
341 for(Layout::Section_list::const_iterator p
= sections
.begin();
345 Output_section
* os
= *p
;
346 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
347 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
348 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
350 if (i
>= this->section_infos_
.size())
352 gold_fatal("Section_info of %s missing.\n", os
->name());
354 const Section_info
& info
= this->section_infos_
[i
];
355 if (os
!= info
.output_section
)
356 gold_fatal("Section order changed. Expecting %s but see %s\n",
357 info
.output_section
->name(), os
->name());
358 if (address
!= info
.address
359 || data_size
!= info
.data_size
360 || offset
!= info
.offset
)
361 gold_fatal("Section %s changed.\n", os
->name());
365 // Layout_task_runner methods.
367 // Lay out the sections. This is called after all the input objects
371 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
373 // See if any of the input definitions violate the One Definition Rule.
374 // TODO: if this is too slow, do this as a task, rather than inline.
375 this->symtab_
->detect_odr_violations(task
, this->options_
.output_file_name());
377 Layout
* layout
= this->layout_
;
378 off_t file_size
= layout
->finalize(this->input_objects_
,
383 // Now we know the final size of the output file and we know where
384 // each piece of information goes.
386 if (this->mapfile_
!= NULL
)
388 this->mapfile_
->print_discarded_sections(this->input_objects_
);
389 layout
->print_to_mapfile(this->mapfile_
);
393 if (layout
->incremental_base() == NULL
)
395 of
= new Output_file(parameters
->options().output_file_name());
396 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
397 of
->set_is_temporary();
402 of
= layout
->incremental_base()->output_file();
404 // Apply the incremental relocations for symbols whose values
405 // have changed. We do this before we resize the file and start
406 // writing anything else to it, so that we can read the old
407 // incremental information from the file before (possibly)
409 if (parameters
->incremental_update())
410 layout
->incremental_base()->apply_incremental_relocs(this->symtab_
,
414 of
->resize(file_size
);
417 // Queue up the final set of tasks.
418 gold::queue_final_tasks(this->options_
, this->input_objects_
,
419 this->symtab_
, layout
, workqueue
, of
);
424 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
425 : number_of_input_files_(number_of_input_files
),
426 script_options_(script_options
),
434 unattached_section_list_(),
435 special_output_list_(),
436 relax_output_list_(),
437 section_headers_(NULL
),
439 relro_segment_(NULL
),
440 interp_segment_(NULL
),
442 symtab_section_(NULL
),
443 symtab_xindex_(NULL
),
444 dynsym_section_(NULL
),
445 dynsym_xindex_(NULL
),
446 dynamic_section_(NULL
),
447 dynamic_symbol_(NULL
),
449 eh_frame_section_(NULL
),
450 eh_frame_data_(NULL
),
451 added_eh_frame_data_(false),
452 eh_frame_hdr_section_(NULL
),
453 gdb_index_data_(NULL
),
454 build_id_note_(NULL
),
458 output_file_size_(-1),
459 have_added_input_section_(false),
460 sections_are_attached_(false),
461 input_requires_executable_stack_(false),
462 input_with_gnu_stack_note_(false),
463 input_without_gnu_stack_note_(false),
464 has_static_tls_(false),
465 any_postprocessing_sections_(false),
466 resized_signatures_(false),
467 have_stabstr_section_(false),
468 section_ordering_specified_(false),
469 unique_segment_for_sections_specified_(false),
470 incremental_inputs_(NULL
),
471 record_output_section_data_from_script_(false),
472 lto_slim_object_(false),
473 script_output_section_data_list_(),
474 segment_states_(NULL
),
475 relaxation_debug_check_(NULL
),
476 section_order_map_(),
477 section_segment_map_(),
478 input_section_position_(),
479 input_section_glob_(),
480 incremental_base_(NULL
),
484 // Make space for more than enough segments for a typical file.
485 // This is just for efficiency--it's OK if we wind up needing more.
486 this->segment_list_
.reserve(12);
488 // We expect two unattached Output_data objects: the file header and
489 // the segment headers.
490 this->special_output_list_
.reserve(2);
492 // Initialize structure needed for an incremental build.
493 if (parameters
->incremental())
494 this->incremental_inputs_
= new Incremental_inputs
;
496 // The section name pool is worth optimizing in all cases, because
497 // it is small, but there are often overlaps due to .rel sections.
498 this->namepool_
.set_optimize();
501 // For incremental links, record the base file to be modified.
504 Layout::set_incremental_base(Incremental_binary
* base
)
506 this->incremental_base_
= base
;
507 this->free_list_
.init(base
->output_file()->filesize(), true);
510 // Hash a key we use to look up an output section mapping.
513 Layout::Hash_key::operator()(const Layout::Key
& k
) const
515 return k
.first
+ k
.second
.first
+ k
.second
.second
;
518 // These are the debug sections that are actually used by gdb.
519 // Currently, we've checked versions of gdb up to and including 7.4.
520 // We only check the part of the name that follows ".debug_" or
523 static const char* gdb_sections
[] =
526 "addr", // Fission extension
527 // "aranges", // not used by gdb as of 7.4
536 // "pubnames", // not used by gdb as of 7.4
537 // "pubtypes", // not used by gdb as of 7.4
538 // "gnu_pubnames", // Fission extension
539 // "gnu_pubtypes", // Fission extension
545 // This is the minimum set of sections needed for line numbers.
547 static const char* lines_only_debug_sections
[] =
550 // "addr", // Fission extension
551 // "aranges", // not used by gdb as of 7.4
560 // "pubnames", // not used by gdb as of 7.4
561 // "pubtypes", // not used by gdb as of 7.4
562 // "gnu_pubnames", // Fission extension
563 // "gnu_pubtypes", // Fission extension
566 "str_offsets", // Fission extension
569 // These sections are the DWARF fast-lookup tables, and are not needed
570 // when building a .gdb_index section.
572 static const char* gdb_fast_lookup_sections
[] =
581 // Returns whether the given debug section is in the list of
582 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
583 // portion of the name following ".debug_" or ".zdebug_".
586 is_gdb_debug_section(const char* suffix
)
588 // We can do this faster: binary search or a hashtable. But why bother?
589 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
590 if (strcmp(suffix
, gdb_sections
[i
]) == 0)
595 // Returns whether the given section is needed for lines-only debugging.
598 is_lines_only_debug_section(const char* suffix
)
600 // We can do this faster: binary search or a hashtable. But why bother?
602 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
604 if (strcmp(suffix
, lines_only_debug_sections
[i
]) == 0)
609 // Returns whether the given section is a fast-lookup section that
610 // will not be needed when building a .gdb_index section.
613 is_gdb_fast_lookup_section(const char* suffix
)
615 // We can do this faster: binary search or a hashtable. But why bother?
617 i
< sizeof(gdb_fast_lookup_sections
)/sizeof(*gdb_fast_lookup_sections
);
619 if (strcmp(suffix
, gdb_fast_lookup_sections
[i
]) == 0)
624 // Sometimes we compress sections. This is typically done for
625 // sections that are not part of normal program execution (such as
626 // .debug_* sections), and where the readers of these sections know
627 // how to deal with compressed sections. This routine doesn't say for
628 // certain whether we'll compress -- it depends on commandline options
629 // as well -- just whether this section is a candidate for compression.
630 // (The Output_compressed_section class decides whether to compress
631 // a given section, and picks the name of the compressed section.)
634 is_compressible_debug_section(const char* secname
)
636 return (is_prefix_of(".debug", secname
));
639 // We may see compressed debug sections in input files. Return TRUE
640 // if this is the name of a compressed debug section.
643 is_compressed_debug_section(const char* secname
)
645 return (is_prefix_of(".zdebug", secname
));
649 corresponding_uncompressed_section_name(std::string secname
)
651 gold_assert(secname
[0] == '.' && secname
[1] == 'z');
652 std::string
ret(".");
653 ret
.append(secname
, 2, std::string::npos
);
657 // Whether to include this section in the link.
659 template<int size
, bool big_endian
>
661 Layout::include_section(Sized_relobj_file
<size
, big_endian
>*, const char* name
,
662 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
664 if (!parameters
->options().relocatable()
665 && (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
))
668 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
670 if ((sh_type
>= elfcpp::SHT_LOOS
&& sh_type
<= elfcpp::SHT_HIOS
)
671 || (sh_type
>= elfcpp::SHT_LOPROC
&& sh_type
<= elfcpp::SHT_HIPROC
))
672 return parameters
->target().should_include_section(sh_type
);
676 case elfcpp::SHT_NULL
:
677 case elfcpp::SHT_SYMTAB
:
678 case elfcpp::SHT_DYNSYM
:
679 case elfcpp::SHT_HASH
:
680 case elfcpp::SHT_DYNAMIC
:
681 case elfcpp::SHT_SYMTAB_SHNDX
:
684 case elfcpp::SHT_STRTAB
:
685 // Discard the sections which have special meanings in the ELF
686 // ABI. Keep others (e.g., .stabstr). We could also do this by
687 // checking the sh_link fields of the appropriate sections.
688 return (strcmp(name
, ".dynstr") != 0
689 && strcmp(name
, ".strtab") != 0
690 && strcmp(name
, ".shstrtab") != 0);
692 case elfcpp::SHT_RELA
:
693 case elfcpp::SHT_REL
:
694 case elfcpp::SHT_GROUP
:
695 // If we are emitting relocations these should be handled
697 gold_assert(!parameters
->options().relocatable());
700 case elfcpp::SHT_PROGBITS
:
701 if (parameters
->options().strip_debug()
702 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
704 if (is_debug_info_section(name
))
707 if (parameters
->options().strip_debug_non_line()
708 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
710 // Debugging sections can only be recognized by name.
711 if (is_prefix_of(".debug_", name
)
712 && !is_lines_only_debug_section(name
+ 7))
714 if (is_prefix_of(".zdebug_", name
)
715 && !is_lines_only_debug_section(name
+ 8))
718 if (parameters
->options().strip_debug_gdb()
719 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
721 // Debugging sections can only be recognized by name.
722 if (is_prefix_of(".debug_", name
)
723 && !is_gdb_debug_section(name
+ 7))
725 if (is_prefix_of(".zdebug_", name
)
726 && !is_gdb_debug_section(name
+ 8))
729 if (parameters
->options().gdb_index()
730 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
732 // When building .gdb_index, we can strip .debug_pubnames,
733 // .debug_pubtypes, and .debug_aranges sections.
734 if (is_prefix_of(".debug_", name
)
735 && is_gdb_fast_lookup_section(name
+ 7))
737 if (is_prefix_of(".zdebug_", name
)
738 && is_gdb_fast_lookup_section(name
+ 8))
741 if (parameters
->options().strip_lto_sections()
742 && !parameters
->options().relocatable()
743 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
745 // Ignore LTO sections containing intermediate code.
746 if (is_prefix_of(".gnu.lto_", name
))
749 // The GNU linker strips .gnu_debuglink sections, so we do too.
750 // This is a feature used to keep debugging information in
752 if (strcmp(name
, ".gnu_debuglink") == 0)
761 // Return an output section named NAME, or NULL if there is none.
764 Layout::find_output_section(const char* name
) const
766 for (Section_list::const_iterator p
= this->section_list_
.begin();
767 p
!= this->section_list_
.end();
769 if (strcmp((*p
)->name(), name
) == 0)
774 // Return an output segment of type TYPE, with segment flags SET set
775 // and segment flags CLEAR clear. Return NULL if there is none.
778 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
779 elfcpp::Elf_Word clear
) const
781 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
782 p
!= this->segment_list_
.end();
784 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
785 && ((*p
)->flags() & set
) == set
786 && ((*p
)->flags() & clear
) == 0)
791 // When we put a .ctors or .dtors section with more than one word into
792 // a .init_array or .fini_array section, we need to reverse the words
793 // in the .ctors/.dtors section. This is because .init_array executes
794 // constructors front to back, where .ctors executes them back to
795 // front, and vice-versa for .fini_array/.dtors. Although we do want
796 // to remap .ctors/.dtors into .init_array/.fini_array because it can
797 // be more efficient, we don't want to change the order in which
798 // constructors/destructors are run. This set just keeps track of
799 // these sections which need to be reversed. It is only changed by
800 // Layout::layout. It should be a private member of Layout, but that
801 // would require layout.h to #include object.h to get the definition
803 static Unordered_set
<Section_id
, Section_id_hash
> ctors_sections_in_init_array
;
805 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
806 // .init_array/.fini_array section.
809 Layout::is_ctors_in_init_array(Relobj
* relobj
, unsigned int shndx
) const
811 return (ctors_sections_in_init_array
.find(Section_id(relobj
, shndx
))
812 != ctors_sections_in_init_array
.end());
815 // Return the output section to use for section NAME with type TYPE
816 // and section flags FLAGS. NAME must be canonicalized in the string
817 // pool, and NAME_KEY is the key. ORDER is where this should appear
818 // in the output sections. IS_RELRO is true for a relro section.
821 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
822 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
823 Output_section_order order
, bool is_relro
)
825 elfcpp::Elf_Word lookup_type
= type
;
827 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
828 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
829 // .init_array, .fini_array, and .preinit_array sections by name
830 // whatever their type in the input file. We do this because the
831 // types are not always right in the input files.
832 if (lookup_type
== elfcpp::SHT_INIT_ARRAY
833 || lookup_type
== elfcpp::SHT_FINI_ARRAY
834 || lookup_type
== elfcpp::SHT_PREINIT_ARRAY
)
835 lookup_type
= elfcpp::SHT_PROGBITS
;
837 elfcpp::Elf_Xword lookup_flags
= flags
;
839 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
840 // read-write with read-only sections. Some other ELF linkers do
841 // not do this. FIXME: Perhaps there should be an option
843 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
845 const Key
key(name_key
, std::make_pair(lookup_type
, lookup_flags
));
846 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
847 std::pair
<Section_name_map::iterator
, bool> ins(
848 this->section_name_map_
.insert(v
));
851 return ins
.first
->second
;
854 // This is the first time we've seen this name/type/flags
855 // combination. For compatibility with the GNU linker, we
856 // combine sections with contents and zero flags with sections
857 // with non-zero flags. This is a workaround for cases where
858 // assembler code forgets to set section flags. FIXME: Perhaps
859 // there should be an option to control this.
860 Output_section
* os
= NULL
;
862 if (lookup_type
== elfcpp::SHT_PROGBITS
)
866 Output_section
* same_name
= this->find_output_section(name
);
867 if (same_name
!= NULL
868 && (same_name
->type() == elfcpp::SHT_PROGBITS
869 || same_name
->type() == elfcpp::SHT_INIT_ARRAY
870 || same_name
->type() == elfcpp::SHT_FINI_ARRAY
871 || same_name
->type() == elfcpp::SHT_PREINIT_ARRAY
)
872 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
875 else if ((flags
& elfcpp::SHF_TLS
) == 0)
877 elfcpp::Elf_Xword zero_flags
= 0;
878 const Key
zero_key(name_key
, std::make_pair(lookup_type
,
880 Section_name_map::iterator p
=
881 this->section_name_map_
.find(zero_key
);
882 if (p
!= this->section_name_map_
.end())
888 os
= this->make_output_section(name
, type
, flags
, order
, is_relro
);
890 ins
.first
->second
= os
;
895 // Returns TRUE iff NAME (an input section from RELOBJ) will
896 // be mapped to an output section that should be KEPT.
899 Layout::keep_input_section(const Relobj
* relobj
, const char* name
)
901 if (! this->script_options_
->saw_sections_clause())
904 Script_sections
* ss
= this->script_options_
->script_sections();
905 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
906 Output_section
** output_section_slot
;
907 Script_sections::Section_type script_section_type
;
910 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
911 &script_section_type
, &keep
, true);
912 return name
!= NULL
&& keep
;
915 // Clear the input section flags that should not be copied to the
919 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags
)
921 // Some flags in the input section should not be automatically
922 // copied to the output section.
923 input_section_flags
&= ~ (elfcpp::SHF_INFO_LINK
925 | elfcpp::SHF_COMPRESSED
927 | elfcpp::SHF_STRINGS
);
929 // We only clear the SHF_LINK_ORDER flag in for
930 // a non-relocatable link.
931 if (!parameters
->options().relocatable())
932 input_section_flags
&= ~elfcpp::SHF_LINK_ORDER
;
934 return input_section_flags
;
937 // Pick the output section to use for section NAME, in input file
938 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
939 // linker created section. IS_INPUT_SECTION is true if we are
940 // choosing an output section for an input section found in a input
941 // file. ORDER is where this section should appear in the output
942 // sections. IS_RELRO is true for a relro section. This will return
943 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
944 // is true if the section name should be matched against input specs
945 // in a linker script.
948 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
949 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
950 bool is_input_section
, Output_section_order order
,
951 bool is_relro
, bool is_reloc
,
952 bool match_input_spec
)
954 // We should not see any input sections after we have attached
955 // sections to segments.
956 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
958 flags
= this->get_output_section_flags(flags
);
960 if (this->script_options_
->saw_sections_clause() && !is_reloc
)
962 // We are using a SECTIONS clause, so the output section is
963 // chosen based only on the name.
965 Script_sections
* ss
= this->script_options_
->script_sections();
966 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
967 Output_section
** output_section_slot
;
968 Script_sections::Section_type script_section_type
;
969 const char* orig_name
= name
;
971 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
972 &script_section_type
, &keep
,
977 gold_debug(DEBUG_SCRIPT
, _("Unable to create output section '%s' "
978 "because it is not allowed by the "
979 "SECTIONS clause of the linker script"),
981 // The SECTIONS clause says to discard this input section.
985 // We can only handle script section types ST_NONE and ST_NOLOAD.
986 switch (script_section_type
)
988 case Script_sections::ST_NONE
:
990 case Script_sections::ST_NOLOAD
:
991 flags
&= elfcpp::SHF_ALLOC
;
997 // If this is an orphan section--one not mentioned in the linker
998 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
999 // default processing below.
1001 if (output_section_slot
!= NULL
)
1003 if (*output_section_slot
!= NULL
)
1005 (*output_section_slot
)->update_flags_for_input_section(flags
);
1006 return *output_section_slot
;
1009 // We don't put sections found in the linker script into
1010 // SECTION_NAME_MAP_. That keeps us from getting confused
1011 // if an orphan section is mapped to a section with the same
1012 // name as one in the linker script.
1014 name
= this->namepool_
.add(name
, false, NULL
);
1016 Output_section
* os
= this->make_output_section(name
, type
, flags
,
1019 os
->set_found_in_sections_clause();
1021 // Special handling for NOLOAD sections.
1022 if (script_section_type
== Script_sections::ST_NOLOAD
)
1024 os
->set_is_noload();
1026 // The constructor of Output_section sets addresses of non-ALLOC
1027 // sections to 0 by default. We don't want that for NOLOAD
1028 // sections even if they have no SHF_ALLOC flag.
1029 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0
1030 && os
->is_address_valid())
1032 gold_assert(os
->address() == 0
1033 && !os
->is_offset_valid()
1034 && !os
->is_data_size_valid());
1035 os
->reset_address_and_file_offset();
1039 *output_section_slot
= os
;
1044 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1046 size_t len
= strlen(name
);
1047 std::string uncompressed_name
;
1049 // Compressed debug sections should be mapped to the corresponding
1050 // uncompressed section.
1051 if (is_compressed_debug_section(name
))
1054 corresponding_uncompressed_section_name(std::string(name
, len
));
1055 name
= uncompressed_name
.c_str();
1056 len
= uncompressed_name
.length();
1059 // Turn NAME from the name of the input section into the name of the
1061 if (is_input_section
1062 && !this->script_options_
->saw_sections_clause()
1063 && !parameters
->options().relocatable())
1065 const char *orig_name
= name
;
1066 name
= parameters
->target().output_section_name(relobj
, name
, &len
);
1068 name
= Layout::output_section_name(relobj
, orig_name
, &len
);
1071 Stringpool::Key name_key
;
1072 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
1074 // Find or make the output section. The output section is selected
1075 // based on the section name, type, and flags.
1076 return this->get_output_section(name
, name_key
, type
, flags
, order
, is_relro
);
1079 // For incremental links, record the initial fixed layout of a section
1080 // from the base file, and return a pointer to the Output_section.
1082 template<int size
, bool big_endian
>
1084 Layout::init_fixed_output_section(const char* name
,
1085 elfcpp::Shdr
<size
, big_endian
>& shdr
)
1087 unsigned int sh_type
= shdr
.get_sh_type();
1089 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1090 // PRE_INIT_ARRAY, and NOTE sections.
1091 // All others will be created from scratch and reallocated.
1092 if (!can_incremental_update(sh_type
))
1095 // If we're generating a .gdb_index section, we need to regenerate
1097 if (parameters
->options().gdb_index()
1098 && sh_type
== elfcpp::SHT_PROGBITS
1099 && strcmp(name
, ".gdb_index") == 0)
1102 typename
elfcpp::Elf_types
<size
>::Elf_Addr sh_addr
= shdr
.get_sh_addr();
1103 typename
elfcpp::Elf_types
<size
>::Elf_Off sh_offset
= shdr
.get_sh_offset();
1104 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
1105 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
=
1106 this->get_output_section_flags(shdr
.get_sh_flags());
1107 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_addralign
=
1108 shdr
.get_sh_addralign();
1110 // Make the output section.
1111 Stringpool::Key name_key
;
1112 name
= this->namepool_
.add(name
, true, &name_key
);
1113 Output_section
* os
= this->get_output_section(name
, name_key
, sh_type
,
1114 sh_flags
, ORDER_INVALID
, false);
1115 os
->set_fixed_layout(sh_addr
, sh_offset
, sh_size
, sh_addralign
);
1116 if (sh_type
!= elfcpp::SHT_NOBITS
)
1117 this->free_list_
.remove(sh_offset
, sh_offset
+ sh_size
);
1121 // Return the index by which an input section should be ordered. This
1122 // is used to sort some .text sections, for compatibility with GNU ld.
1125 Layout::special_ordering_of_input_section(const char* name
)
1127 // The GNU linker has some special handling for some sections that
1128 // wind up in the .text section. Sections that start with these
1129 // prefixes must appear first, and must appear in the order listed
1131 static const char* const text_section_sort
[] =
1141 i
< sizeof(text_section_sort
) / sizeof(text_section_sort
[0]);
1143 if (is_prefix_of(text_section_sort
[i
], name
))
1149 // Return the output section to use for input section SHNDX, with name
1150 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1151 // index of a relocation section which applies to this section, or 0
1152 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1153 // relocation section if there is one. Set *OFF to the offset of this
1154 // input section without the output section. Return NULL if the
1155 // section should be discarded. Set *OFF to -1 if the section
1156 // contents should not be written directly to the output file, but
1157 // will instead receive special handling.
1159 template<int size
, bool big_endian
>
1161 Layout::layout(Sized_relobj_file
<size
, big_endian
>* object
, unsigned int shndx
,
1162 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1163 unsigned int sh_type
, unsigned int reloc_shndx
,
1164 unsigned int, off_t
* off
)
1168 if (!this->include_section(object
, name
, shdr
))
1171 // In a relocatable link a grouped section must not be combined with
1172 // any other sections.
1174 if (parameters
->options().relocatable()
1175 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
1177 // Some flags in the input section should not be automatically
1178 // copied to the output section.
1179 elfcpp::Elf_Xword sh_flags
= (shdr
.get_sh_flags()
1180 & ~ elfcpp::SHF_COMPRESSED
);
1181 name
= this->namepool_
.add(name
, true, NULL
);
1182 os
= this->make_output_section(name
, sh_type
, sh_flags
, ORDER_INVALID
,
1187 // Get the section flags and mask out any flags that do not
1188 // take part in section matching.
1189 elfcpp::Elf_Xword sh_flags
1190 = (this->get_output_section_flags(shdr
.get_sh_flags())
1191 & ~object
->osabi().ignored_sh_flags());
1193 // All ".text.unlikely.*" sections can be moved to a unique
1194 // segment with --text-unlikely-segment option.
1195 bool text_unlikely_segment
1196 = (parameters
->options().text_unlikely_segment()
1197 && is_prefix_of(".text.unlikely",
1198 object
->section_name(shndx
).c_str()));
1199 if (text_unlikely_segment
)
1201 Stringpool::Key name_key
;
1202 const char* os_name
= this->namepool_
.add(".text.unlikely", true,
1204 os
= this->get_output_section(os_name
, name_key
, sh_type
, sh_flags
,
1205 ORDER_INVALID
, false);
1206 // Map this output section to a unique segment. This is done to
1207 // separate "text" that is not likely to be executed from "text"
1208 // that is likely executed.
1209 os
->set_is_unique_segment();
1213 // Plugins can choose to place one or more subsets of sections in
1214 // unique segments and this is done by mapping these section subsets
1215 // to unique output sections. Check if this section needs to be
1216 // remapped to a unique output section.
1217 Section_segment_map::iterator it
1218 = this->section_segment_map_
.find(Const_section_id(object
, shndx
));
1219 if (it
== this->section_segment_map_
.end())
1221 os
= this->choose_output_section(object
, name
, sh_type
,
1222 sh_flags
, true, ORDER_INVALID
,
1223 false, false, true);
1227 // We know the name of the output section, directly call
1228 // get_output_section here by-passing choose_output_section.
1229 const char* os_name
= it
->second
->name
;
1230 Stringpool::Key name_key
;
1231 os_name
= this->namepool_
.add(os_name
, true, &name_key
);
1232 os
= this->get_output_section(os_name
, name_key
, sh_type
,
1233 sh_flags
, ORDER_INVALID
, false);
1234 if (!os
->is_unique_segment())
1236 os
->set_is_unique_segment();
1237 os
->set_extra_segment_flags(it
->second
->flags
);
1238 os
->set_segment_alignment(it
->second
->align
);
1246 // By default the GNU linker sorts input sections whose names match
1247 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1248 // sections are sorted by name. This is used to implement
1249 // constructor priority ordering. We are compatible. When we put
1250 // .ctor sections in .init_array and .dtor sections in .fini_array,
1251 // we must also sort plain .ctor and .dtor sections.
1252 if (!this->script_options_
->saw_sections_clause()
1253 && !parameters
->options().relocatable()
1254 && (is_prefix_of(".ctors.", name
)
1255 || is_prefix_of(".dtors.", name
)
1256 || is_prefix_of(".init_array.", name
)
1257 || is_prefix_of(".fini_array.", name
)
1258 || (parameters
->options().ctors_in_init_array()
1259 && (strcmp(name
, ".ctors") == 0
1260 || strcmp(name
, ".dtors") == 0))))
1261 os
->set_must_sort_attached_input_sections();
1263 // By default the GNU linker sorts some special text sections ahead
1264 // of others. We are compatible.
1265 if (parameters
->options().text_reorder()
1266 && !this->script_options_
->saw_sections_clause()
1267 && !this->is_section_ordering_specified()
1268 && !parameters
->options().relocatable()
1269 && Layout::special_ordering_of_input_section(name
) >= 0)
1270 os
->set_must_sort_attached_input_sections();
1272 // If this is a .ctors or .ctors.* section being mapped to a
1273 // .init_array section, or a .dtors or .dtors.* section being mapped
1274 // to a .fini_array section, we will need to reverse the words if
1275 // there is more than one. Record this section for later. See
1276 // ctors_sections_in_init_array above.
1277 if (!this->script_options_
->saw_sections_clause()
1278 && !parameters
->options().relocatable()
1279 && shdr
.get_sh_size() > size
/ 8
1280 && (((strcmp(name
, ".ctors") == 0
1281 || is_prefix_of(".ctors.", name
))
1282 && strcmp(os
->name(), ".init_array") == 0)
1283 || ((strcmp(name
, ".dtors") == 0
1284 || is_prefix_of(".dtors.", name
))
1285 && strcmp(os
->name(), ".fini_array") == 0)))
1286 ctors_sections_in_init_array
.insert(Section_id(object
, shndx
));
1288 // FIXME: Handle SHF_LINK_ORDER somewhere.
1290 elfcpp::Elf_Xword orig_flags
= os
->flags();
1292 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
1293 this->script_options_
->saw_sections_clause());
1295 // If the flags changed, we may have to change the order.
1296 if ((orig_flags
& elfcpp::SHF_ALLOC
) != 0)
1298 orig_flags
&= (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
1299 elfcpp::Elf_Xword new_flags
=
1300 os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
1301 if (orig_flags
!= new_flags
)
1302 os
->set_order(this->default_section_order(os
, false));
1305 this->have_added_input_section_
= true;
1310 // Maps section SECN to SEGMENT s.
1312 Layout::insert_section_segment_map(Const_section_id secn
,
1313 Unique_segment_info
*s
)
1315 gold_assert(this->unique_segment_for_sections_specified_
);
1316 this->section_segment_map_
[secn
] = s
;
1319 // Handle a relocation section when doing a relocatable link.
1321 template<int size
, bool big_endian
>
1323 Layout::layout_reloc(Sized_relobj_file
<size
, big_endian
>*,
1325 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1326 Output_section
* data_section
,
1327 Relocatable_relocs
* rr
)
1329 gold_assert(parameters
->options().relocatable()
1330 || parameters
->options().emit_relocs());
1332 int sh_type
= shdr
.get_sh_type();
1335 if (sh_type
== elfcpp::SHT_REL
)
1337 else if (sh_type
== elfcpp::SHT_RELA
)
1341 name
+= data_section
->name();
1343 // If the output data section already has a reloc section, use that;
1344 // otherwise, make a new one.
1345 Output_section
* os
= data_section
->reloc_section();
1348 const char* n
= this->namepool_
.add(name
.c_str(), true, NULL
);
1349 os
= this->make_output_section(n
, sh_type
, shdr
.get_sh_flags(),
1350 ORDER_INVALID
, false);
1351 os
->set_should_link_to_symtab();
1352 os
->set_info_section(data_section
);
1353 data_section
->set_reloc_section(os
);
1356 Output_section_data
* posd
;
1357 if (sh_type
== elfcpp::SHT_REL
)
1359 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1360 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
1364 else if (sh_type
== elfcpp::SHT_RELA
)
1366 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1367 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
1374 os
->add_output_section_data(posd
);
1375 rr
->set_output_data(posd
);
1380 // Handle a group section when doing a relocatable link.
1382 template<int size
, bool big_endian
>
1384 Layout::layout_group(Symbol_table
* symtab
,
1385 Sized_relobj_file
<size
, big_endian
>* object
,
1387 const char* group_section_name
,
1388 const char* signature
,
1389 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1390 elfcpp::Elf_Word flags
,
1391 std::vector
<unsigned int>* shndxes
)
1393 gold_assert(parameters
->options().relocatable());
1394 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
1395 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
1396 Output_section
* os
= this->make_output_section(group_section_name
,
1398 shdr
.get_sh_flags(),
1399 ORDER_INVALID
, false);
1401 // We need to find a symbol with the signature in the symbol table.
1402 // If we don't find one now, we need to look again later.
1403 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
1405 os
->set_info_symndx(sym
);
1408 // Reserve some space to minimize reallocations.
1409 if (this->group_signatures_
.empty())
1410 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
1412 // We will wind up using a symbol whose name is the signature.
1413 // So just put the signature in the symbol name pool to save it.
1414 signature
= symtab
->canonicalize_name(signature
);
1415 this->group_signatures_
.push_back(Group_signature(os
, signature
));
1418 os
->set_should_link_to_symtab();
1421 section_size_type entry_count
=
1422 convert_to_section_size_type(shdr
.get_sh_size() / 4);
1423 Output_section_data
* posd
=
1424 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
1426 os
->add_output_section_data(posd
);
1429 // Special GNU handling of sections name .eh_frame. They will
1430 // normally hold exception frame data as defined by the C++ ABI
1431 // (http://codesourcery.com/cxx-abi/).
1433 template<int size
, bool big_endian
>
1435 Layout::layout_eh_frame(Sized_relobj_file
<size
, big_endian
>* object
,
1436 const unsigned char* symbols
,
1438 const unsigned char* symbol_names
,
1439 off_t symbol_names_size
,
1441 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1442 unsigned int reloc_shndx
, unsigned int reloc_type
,
1445 const unsigned int unwind_section_type
=
1446 parameters
->target().unwind_section_type();
1448 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
1449 || shdr
.get_sh_type() == unwind_section_type
);
1450 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
1452 Output_section
* os
= this->make_eh_frame_section(object
);
1456 gold_assert(this->eh_frame_section_
== os
);
1458 elfcpp::Elf_Xword orig_flags
= os
->flags();
1460 Eh_frame::Eh_frame_section_disposition disp
=
1461 Eh_frame::EH_UNRECOGNIZED_SECTION
;
1462 if (!parameters
->incremental())
1464 disp
= this->eh_frame_data_
->add_ehframe_input_section(object
,
1474 if (disp
== Eh_frame::EH_OPTIMIZABLE_SECTION
)
1476 os
->update_flags_for_input_section(shdr
.get_sh_flags());
1478 // A writable .eh_frame section is a RELRO section.
1479 if ((orig_flags
& (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
))
1480 != (os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
)))
1483 os
->set_order(ORDER_RELRO
);
1490 if (disp
== Eh_frame::EH_END_MARKER_SECTION
&& !this->added_eh_frame_data_
)
1492 // We found the end marker section, so now we can add the set of
1493 // optimized sections to the output section. We need to postpone
1494 // adding this until we've found a section we can optimize so that
1495 // the .eh_frame section in crtbeginT.o winds up at the start of
1496 // the output section.
1497 os
->add_output_section_data(this->eh_frame_data_
);
1498 this->added_eh_frame_data_
= true;
1501 // We couldn't handle this .eh_frame section for some reason.
1502 // Add it as a normal section.
1503 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
1504 *off
= os
->add_input_section(this, object
, shndx
, ".eh_frame", shdr
,
1505 reloc_shndx
, saw_sections_clause
);
1506 this->have_added_input_section_
= true;
1508 if ((orig_flags
& (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
))
1509 != (os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
)))
1510 os
->set_order(this->default_section_order(os
, false));
1516 Layout::finalize_eh_frame_section()
1518 // If we never found an end marker section, we need to add the
1519 // optimized eh sections to the output section now.
1520 if (!parameters
->incremental()
1521 && this->eh_frame_section_
!= NULL
1522 && !this->added_eh_frame_data_
)
1524 this->eh_frame_section_
->add_output_section_data(this->eh_frame_data_
);
1525 this->added_eh_frame_data_
= true;
1529 // Create and return the magic .eh_frame section. Create
1530 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1531 // input .eh_frame section; it may be NULL.
1534 Layout::make_eh_frame_section(const Relobj
* object
)
1536 const unsigned int unwind_section_type
=
1537 parameters
->target().unwind_section_type();
1539 Output_section
* os
= this->choose_output_section(object
, ".eh_frame",
1540 unwind_section_type
,
1541 elfcpp::SHF_ALLOC
, false,
1542 ORDER_EHFRAME
, false, false,
1547 if (this->eh_frame_section_
== NULL
)
1549 this->eh_frame_section_
= os
;
1550 this->eh_frame_data_
= new Eh_frame();
1552 // For incremental linking, we do not optimize .eh_frame sections
1553 // or create a .eh_frame_hdr section.
1554 if (parameters
->options().eh_frame_hdr() && !parameters
->incremental())
1556 Output_section
* hdr_os
=
1557 this->choose_output_section(NULL
, ".eh_frame_hdr",
1558 unwind_section_type
,
1559 elfcpp::SHF_ALLOC
, false,
1560 ORDER_EHFRAME
, false, false,
1565 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
1566 this->eh_frame_data_
);
1567 hdr_os
->add_output_section_data(hdr_posd
);
1569 hdr_os
->set_after_input_sections();
1571 if (!this->script_options_
->saw_phdrs_clause())
1573 Output_segment
* hdr_oseg
;
1574 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
1576 hdr_oseg
->add_output_section_to_nonload(hdr_os
,
1580 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
1588 // Add an exception frame for a PLT. This is called from target code.
1591 Layout::add_eh_frame_for_plt(Output_data
* plt
, const unsigned char* cie_data
,
1592 size_t cie_length
, const unsigned char* fde_data
,
1595 if (parameters
->incremental())
1597 // FIXME: Maybe this could work some day....
1600 Output_section
* os
= this->make_eh_frame_section(NULL
);
1603 this->eh_frame_data_
->add_ehframe_for_plt(plt
, cie_data
, cie_length
,
1604 fde_data
, fde_length
);
1605 if (!this->added_eh_frame_data_
)
1607 os
->add_output_section_data(this->eh_frame_data_
);
1608 this->added_eh_frame_data_
= true;
1612 // Remove all post-map .eh_frame information for a PLT.
1615 Layout::remove_eh_frame_for_plt(Output_data
* plt
, const unsigned char* cie_data
,
1618 if (parameters
->incremental())
1620 // FIXME: Maybe this could work some day....
1623 this->eh_frame_data_
->remove_ehframe_for_plt(plt
, cie_data
, cie_length
);
1626 // Scan a .debug_info or .debug_types section, and add summary
1627 // information to the .gdb_index section.
1629 template<int size
, bool big_endian
>
1631 Layout::add_to_gdb_index(bool is_type_unit
,
1632 Sized_relobj
<size
, big_endian
>* object
,
1633 const unsigned char* symbols
,
1636 unsigned int reloc_shndx
,
1637 unsigned int reloc_type
)
1639 if (this->gdb_index_data_
== NULL
)
1641 Output_section
* os
= this->choose_output_section(NULL
, ".gdb_index",
1642 elfcpp::SHT_PROGBITS
, 0,
1643 false, ORDER_INVALID
,
1644 false, false, false);
1648 this->gdb_index_data_
= new Gdb_index(os
);
1649 os
->add_output_section_data(this->gdb_index_data_
);
1650 os
->set_after_input_sections();
1653 this->gdb_index_data_
->scan_debug_info(is_type_unit
, object
, symbols
,
1654 symbols_size
, shndx
, reloc_shndx
,
1658 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1659 // the output section.
1662 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
1663 elfcpp::Elf_Xword flags
,
1664 Output_section_data
* posd
,
1665 Output_section_order order
, bool is_relro
)
1667 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
1668 false, order
, is_relro
,
1671 os
->add_output_section_data(posd
);
1675 // Map section flags to segment flags.
1678 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
1680 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
1681 if ((flags
& elfcpp::SHF_WRITE
) != 0)
1682 ret
|= elfcpp::PF_W
;
1683 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
1684 ret
|= elfcpp::PF_X
;
1688 // Make a new Output_section, and attach it to segments as
1689 // appropriate. ORDER is the order in which this section should
1690 // appear in the output segment. IS_RELRO is true if this is a relro
1691 // (read-only after relocations) section.
1694 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
1695 elfcpp::Elf_Xword flags
,
1696 Output_section_order order
, bool is_relro
)
1699 if ((flags
& elfcpp::SHF_ALLOC
) == 0
1700 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
1701 && is_compressible_debug_section(name
))
1702 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
1704 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
1705 && parameters
->options().strip_debug_non_line()
1706 && strcmp(".debug_abbrev", name
) == 0)
1708 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
1710 if (this->debug_info_
)
1711 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
1713 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
1714 && parameters
->options().strip_debug_non_line()
1715 && strcmp(".debug_info", name
) == 0)
1717 os
= this->debug_info_
= new Output_reduced_debug_info_section(
1719 if (this->debug_abbrev_
)
1720 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
1724 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1725 // not have correct section types. Force them here.
1726 if (type
== elfcpp::SHT_PROGBITS
)
1728 if (is_prefix_of(".init_array", name
))
1729 type
= elfcpp::SHT_INIT_ARRAY
;
1730 else if (is_prefix_of(".preinit_array", name
))
1731 type
= elfcpp::SHT_PREINIT_ARRAY
;
1732 else if (is_prefix_of(".fini_array", name
))
1733 type
= elfcpp::SHT_FINI_ARRAY
;
1736 // FIXME: const_cast is ugly.
1737 Target
* target
= const_cast<Target
*>(¶meters
->target());
1738 os
= target
->make_output_section(name
, type
, flags
);
1741 // With -z relro, we have to recognize the special sections by name.
1742 // There is no other way.
1743 bool is_relro_local
= false;
1744 if (!this->script_options_
->saw_sections_clause()
1745 && parameters
->options().relro()
1746 && (flags
& elfcpp::SHF_ALLOC
) != 0
1747 && (flags
& elfcpp::SHF_WRITE
) != 0)
1749 if (type
== elfcpp::SHT_PROGBITS
)
1751 if ((flags
& elfcpp::SHF_TLS
) != 0)
1753 else if (strcmp(name
, ".data.rel.ro") == 0)
1755 else if (strcmp(name
, ".data.rel.ro.local") == 0)
1758 is_relro_local
= true;
1760 else if (strcmp(name
, ".ctors") == 0
1761 || strcmp(name
, ".dtors") == 0
1762 || strcmp(name
, ".jcr") == 0)
1765 else if (type
== elfcpp::SHT_INIT_ARRAY
1766 || type
== elfcpp::SHT_FINI_ARRAY
1767 || type
== elfcpp::SHT_PREINIT_ARRAY
)
1774 if (order
== ORDER_INVALID
&& (flags
& elfcpp::SHF_ALLOC
) != 0)
1775 order
= this->default_section_order(os
, is_relro_local
);
1777 os
->set_order(order
);
1779 parameters
->target().new_output_section(os
);
1781 this->section_list_
.push_back(os
);
1783 // The GNU linker by default sorts some sections by priority, so we
1784 // do the same. We need to know that this might happen before we
1785 // attach any input sections.
1786 if (!this->script_options_
->saw_sections_clause()
1787 && !parameters
->options().relocatable()
1788 && (strcmp(name
, ".init_array") == 0
1789 || strcmp(name
, ".fini_array") == 0
1790 || (!parameters
->options().ctors_in_init_array()
1791 && (strcmp(name
, ".ctors") == 0
1792 || strcmp(name
, ".dtors") == 0))))
1793 os
->set_may_sort_attached_input_sections();
1795 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1796 // sections before other .text sections. We are compatible. We
1797 // need to know that this might happen before we attach any input
1799 if (parameters
->options().text_reorder()
1800 && !this->script_options_
->saw_sections_clause()
1801 && !this->is_section_ordering_specified()
1802 && !parameters
->options().relocatable()
1803 && strcmp(name
, ".text") == 0)
1804 os
->set_may_sort_attached_input_sections();
1806 // GNU linker sorts section by name with --sort-section=name.
1807 if (strcmp(parameters
->options().sort_section(), "name") == 0)
1808 os
->set_must_sort_attached_input_sections();
1810 // Check for .stab*str sections, as .stab* sections need to link to
1812 if (type
== elfcpp::SHT_STRTAB
1813 && !this->have_stabstr_section_
1814 && strncmp(name
, ".stab", 5) == 0
1815 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
1816 this->have_stabstr_section_
= true;
1818 // During a full incremental link, we add patch space to most
1819 // PROGBITS and NOBITS sections. Flag those that may be
1820 // arbitrarily padded.
1821 if ((type
== elfcpp::SHT_PROGBITS
|| type
== elfcpp::SHT_NOBITS
)
1822 && order
!= ORDER_INTERP
1823 && order
!= ORDER_INIT
1824 && order
!= ORDER_PLT
1825 && order
!= ORDER_FINI
1826 && order
!= ORDER_RELRO_LAST
1827 && order
!= ORDER_NON_RELRO_FIRST
1828 && strcmp(name
, ".eh_frame") != 0
1829 && strcmp(name
, ".ctors") != 0
1830 && strcmp(name
, ".dtors") != 0
1831 && strcmp(name
, ".jcr") != 0)
1833 os
->set_is_patch_space_allowed();
1835 // Certain sections require "holes" to be filled with
1836 // specific fill patterns. These fill patterns may have
1837 // a minimum size, so we must prevent allocations from the
1838 // free list that leave a hole smaller than the minimum.
1839 if (strcmp(name
, ".debug_info") == 0)
1840 os
->set_free_space_fill(new Output_fill_debug_info(false));
1841 else if (strcmp(name
, ".debug_types") == 0)
1842 os
->set_free_space_fill(new Output_fill_debug_info(true));
1843 else if (strcmp(name
, ".debug_line") == 0)
1844 os
->set_free_space_fill(new Output_fill_debug_line());
1847 // If we have already attached the sections to segments, then we
1848 // need to attach this one now. This happens for sections created
1849 // directly by the linker.
1850 if (this->sections_are_attached_
)
1851 this->attach_section_to_segment(¶meters
->target(), os
);
1856 // Return the default order in which a section should be placed in an
1857 // output segment. This function captures a lot of the ideas in
1858 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1859 // linker created section is normally set when the section is created;
1860 // this function is used for input sections.
1862 Output_section_order
1863 Layout::default_section_order(Output_section
* os
, bool is_relro_local
)
1865 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
1866 bool is_write
= (os
->flags() & elfcpp::SHF_WRITE
) != 0;
1867 bool is_execinstr
= (os
->flags() & elfcpp::SHF_EXECINSTR
) != 0;
1868 bool is_bss
= false;
1873 case elfcpp::SHT_PROGBITS
:
1875 case elfcpp::SHT_NOBITS
:
1878 case elfcpp::SHT_RELA
:
1879 case elfcpp::SHT_REL
:
1881 return ORDER_DYNAMIC_RELOCS
;
1883 case elfcpp::SHT_HASH
:
1884 case elfcpp::SHT_DYNAMIC
:
1885 case elfcpp::SHT_SHLIB
:
1886 case elfcpp::SHT_DYNSYM
:
1887 case elfcpp::SHT_GNU_HASH
:
1888 case elfcpp::SHT_GNU_verdef
:
1889 case elfcpp::SHT_GNU_verneed
:
1890 case elfcpp::SHT_GNU_versym
:
1892 return ORDER_DYNAMIC_LINKER
;
1894 case elfcpp::SHT_NOTE
:
1895 return is_write
? ORDER_RW_NOTE
: ORDER_RO_NOTE
;
1898 if ((os
->flags() & elfcpp::SHF_TLS
) != 0)
1899 return is_bss
? ORDER_TLS_BSS
: ORDER_TLS_DATA
;
1901 if (!is_bss
&& !is_write
)
1905 if (strcmp(os
->name(), ".init") == 0)
1907 else if (strcmp(os
->name(), ".fini") == 0)
1909 else if (parameters
->options().keep_text_section_prefix())
1911 // -z,keep-text-section-prefix introduces additional
1913 if (strcmp(os
->name(), ".text.hot") == 0)
1914 return ORDER_TEXT_HOT
;
1915 else if (strcmp(os
->name(), ".text.startup") == 0)
1916 return ORDER_TEXT_STARTUP
;
1917 else if (strcmp(os
->name(), ".text.exit") == 0)
1918 return ORDER_TEXT_EXIT
;
1919 else if (strcmp(os
->name(), ".text.unlikely") == 0)
1920 return ORDER_TEXT_UNLIKELY
;
1923 return is_execinstr
? ORDER_TEXT
: ORDER_READONLY
;
1927 return is_relro_local
? ORDER_RELRO_LOCAL
: ORDER_RELRO
;
1929 if (os
->is_small_section())
1930 return is_bss
? ORDER_SMALL_BSS
: ORDER_SMALL_DATA
;
1931 if (os
->is_large_section())
1932 return is_bss
? ORDER_LARGE_BSS
: ORDER_LARGE_DATA
;
1934 return is_bss
? ORDER_BSS
: ORDER_DATA
;
1937 // Attach output sections to segments. This is called after we have
1938 // seen all the input sections.
1941 Layout::attach_sections_to_segments(const Target
* target
)
1943 for (Section_list::iterator p
= this->section_list_
.begin();
1944 p
!= this->section_list_
.end();
1946 this->attach_section_to_segment(target
, *p
);
1948 this->sections_are_attached_
= true;
1951 // Attach an output section to a segment.
1954 Layout::attach_section_to_segment(const Target
* target
, Output_section
* os
)
1956 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1957 this->unattached_section_list_
.push_back(os
);
1959 this->attach_allocated_section_to_segment(target
, os
);
1962 // Attach an allocated output section to a segment.
1965 Layout::attach_allocated_section_to_segment(const Target
* target
,
1968 elfcpp::Elf_Xword flags
= os
->flags();
1969 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1971 if (parameters
->options().relocatable())
1974 // If we have a SECTIONS clause, we can't handle the attachment to
1975 // segments until after we've seen all the sections.
1976 if (this->script_options_
->saw_sections_clause())
1979 gold_assert(!this->script_options_
->saw_phdrs_clause());
1981 // This output section goes into a PT_LOAD segment.
1983 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1985 // If this output section's segment has extra flags that need to be set,
1986 // coming from a linker plugin, do that.
1987 seg_flags
|= os
->extra_segment_flags();
1989 // Check for --section-start.
1991 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1993 // In general the only thing we really care about for PT_LOAD
1994 // segments is whether or not they are writable or executable,
1995 // so that is how we search for them.
1996 // Large data sections also go into their own PT_LOAD segment.
1997 // People who need segments sorted on some other basis will
1998 // have to use a linker script.
2000 Segment_list::const_iterator p
;
2001 if (!os
->is_unique_segment())
2003 for (p
= this->segment_list_
.begin();
2004 p
!= this->segment_list_
.end();
2007 if ((*p
)->type() != elfcpp::PT_LOAD
)
2009 if ((*p
)->is_unique_segment())
2011 if (!parameters
->options().omagic()
2012 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
2014 if ((target
->isolate_execinstr() || parameters
->options().rosegment())
2015 && ((*p
)->flags() & elfcpp::PF_X
) != (seg_flags
& elfcpp::PF_X
))
2017 // If -Tbss was specified, we need to separate the data and BSS
2019 if (parameters
->options().user_set_Tbss())
2021 if ((os
->type() == elfcpp::SHT_NOBITS
)
2022 == (*p
)->has_any_data_sections())
2025 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
2030 if ((*p
)->are_addresses_set())
2033 (*p
)->add_initial_output_data(os
);
2034 (*p
)->update_flags_for_output_section(seg_flags
);
2035 (*p
)->set_addresses(addr
, addr
);
2039 (*p
)->add_output_section_to_load(this, os
, seg_flags
);
2044 if (p
== this->segment_list_
.end()
2045 || os
->is_unique_segment())
2047 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
2049 if (os
->is_large_data_section())
2050 oseg
->set_is_large_data_segment();
2051 oseg
->add_output_section_to_load(this, os
, seg_flags
);
2053 oseg
->set_addresses(addr
, addr
);
2054 // Check if segment should be marked unique. For segments marked
2055 // unique by linker plugins, set the new alignment if specified.
2056 if (os
->is_unique_segment())
2058 oseg
->set_is_unique_segment();
2059 if (os
->segment_alignment() != 0)
2060 oseg
->set_minimum_p_align(os
->segment_alignment());
2064 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2066 if (os
->type() == elfcpp::SHT_NOTE
)
2068 uint64_t os_align
= os
->addralign();
2070 // See if we already have an equivalent PT_NOTE segment.
2071 for (p
= this->segment_list_
.begin();
2072 p
!= segment_list_
.end();
2075 if ((*p
)->type() == elfcpp::PT_NOTE
2076 && (*p
)->align() == os_align
2077 && (((*p
)->flags() & elfcpp::PF_W
)
2078 == (seg_flags
& elfcpp::PF_W
)))
2080 (*p
)->add_output_section_to_nonload(os
, seg_flags
);
2085 if (p
== this->segment_list_
.end())
2087 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
2089 oseg
->add_output_section_to_nonload(os
, seg_flags
);
2090 oseg
->set_align(os_align
);
2094 // If we see a loadable SHF_TLS section, we create a PT_TLS
2095 // segment. There can only be one such segment.
2096 if ((flags
& elfcpp::SHF_TLS
) != 0)
2098 if (this->tls_segment_
== NULL
)
2099 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
2100 this->tls_segment_
->add_output_section_to_nonload(os
, seg_flags
);
2103 // If -z relro is in effect, and we see a relro section, we create a
2104 // PT_GNU_RELRO segment. There can only be one such segment.
2105 if (os
->is_relro() && parameters
->options().relro())
2107 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
2108 if (this->relro_segment_
== NULL
)
2109 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
2110 this->relro_segment_
->add_output_section_to_nonload(os
, seg_flags
);
2113 // If we see a section named .interp, put it into a PT_INTERP
2114 // segment. This seems broken to me, but this is what GNU ld does,
2115 // and glibc expects it.
2116 if (strcmp(os
->name(), ".interp") == 0
2117 && !this->script_options_
->saw_phdrs_clause())
2119 if (this->interp_segment_
== NULL
)
2120 this->make_output_segment(elfcpp::PT_INTERP
, seg_flags
);
2122 gold_warning(_("multiple '.interp' sections in input files "
2123 "may cause confusing PT_INTERP segment"));
2124 this->interp_segment_
->add_output_section_to_nonload(os
, seg_flags
);
2128 // Make an output section for a script.
2131 Layout::make_output_section_for_script(
2133 Script_sections::Section_type section_type
)
2135 name
= this->namepool_
.add(name
, false, NULL
);
2136 elfcpp::Elf_Xword sh_flags
= elfcpp::SHF_ALLOC
;
2137 if (section_type
== Script_sections::ST_NOLOAD
)
2139 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
2140 sh_flags
, ORDER_INVALID
,
2142 os
->set_found_in_sections_clause();
2143 if (section_type
== Script_sections::ST_NOLOAD
)
2144 os
->set_is_noload();
2148 // Return the number of segments we expect to see.
2151 Layout::expected_segment_count() const
2153 size_t ret
= this->segment_list_
.size();
2155 // If we didn't see a SECTIONS clause in a linker script, we should
2156 // already have the complete list of segments. Otherwise we ask the
2157 // SECTIONS clause how many segments it expects, and add in the ones
2158 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2160 if (!this->script_options_
->saw_sections_clause())
2164 const Script_sections
* ss
= this->script_options_
->script_sections();
2165 return ret
+ ss
->expected_segment_count(this);
2169 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2170 // is whether we saw a .note.GNU-stack section in the object file.
2171 // GNU_STACK_FLAGS is the section flags. The flags give the
2172 // protection required for stack memory. We record this in an
2173 // executable as a PT_GNU_STACK segment. If an object file does not
2174 // have a .note.GNU-stack segment, we must assume that it is an old
2175 // object. On some targets that will force an executable stack.
2178 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
,
2181 if (!seen_gnu_stack
)
2183 this->input_without_gnu_stack_note_
= true;
2184 if (parameters
->options().warn_execstack()
2185 && parameters
->target().is_default_stack_executable())
2186 gold_warning(_("%s: missing .note.GNU-stack section"
2187 " implies executable stack"),
2188 obj
->name().c_str());
2192 this->input_with_gnu_stack_note_
= true;
2193 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
2195 this->input_requires_executable_stack_
= true;
2196 if (parameters
->options().warn_execstack())
2197 gold_warning(_("%s: requires executable stack"),
2198 obj
->name().c_str());
2203 // Read a value with given size and endianness.
2205 static inline uint64_t
2206 read_sized_value(size_t size
, const unsigned char* buf
, bool is_big_endian
,
2207 const Object
* object
)
2213 val
= elfcpp::Swap
<32, true>::readval(buf
);
2215 val
= elfcpp::Swap
<32, false>::readval(buf
);
2220 val
= elfcpp::Swap
<64, true>::readval(buf
);
2222 val
= elfcpp::Swap
<64, false>::readval(buf
);
2226 gold_warning(_("%s: in .note.gnu.property section, "
2227 "pr_datasz must be 4 or 8"),
2228 object
->name().c_str());
2233 // Write a value with given size and endianness.
2236 write_sized_value(uint64_t value
, size_t size
, unsigned char* buf
,
2242 elfcpp::Swap
<32, true>::writeval(buf
, static_cast<uint32_t>(value
));
2244 elfcpp::Swap
<32, false>::writeval(buf
, static_cast<uint32_t>(value
));
2249 elfcpp::Swap
<64, true>::writeval(buf
, value
);
2251 elfcpp::Swap
<64, false>::writeval(buf
, value
);
2255 // We will have already complained about this.
2259 // Handle the .note.gnu.property section at layout time.
2262 Layout::layout_gnu_property(unsigned int note_type
,
2263 unsigned int pr_type
,
2265 const unsigned char* pr_data
,
2266 const Object
* object
)
2268 // We currently support only the one note type.
2269 gold_assert(note_type
== elfcpp::NT_GNU_PROPERTY_TYPE_0
);
2271 if (pr_type
>= elfcpp::GNU_PROPERTY_LOPROC
2272 && pr_type
< elfcpp::GNU_PROPERTY_HIPROC
)
2274 // Target-dependent property value; call the target to record.
2275 const int size
= parameters
->target().get_size();
2276 const bool is_big_endian
= parameters
->target().is_big_endian();
2281 #ifdef HAVE_TARGET_32_BIG
2282 parameters
->sized_target
<32, true>()->
2283 record_gnu_property(note_type
, pr_type
, pr_datasz
, pr_data
,
2291 #ifdef HAVE_TARGET_32_LITTLE
2292 parameters
->sized_target
<32, false>()->
2293 record_gnu_property(note_type
, pr_type
, pr_datasz
, pr_data
,
2300 else if (size
== 64)
2304 #ifdef HAVE_TARGET_64_BIG
2305 parameters
->sized_target
<64, true>()->
2306 record_gnu_property(note_type
, pr_type
, pr_datasz
, pr_data
,
2314 #ifdef HAVE_TARGET_64_LITTLE
2315 parameters
->sized_target
<64, false>()->
2316 record_gnu_property(note_type
, pr_type
, pr_datasz
, pr_data
,
2328 Gnu_properties::iterator pprop
= this->gnu_properties_
.find(pr_type
);
2329 if (pprop
== this->gnu_properties_
.end())
2332 prop
.pr_datasz
= pr_datasz
;
2333 prop
.pr_data
= new unsigned char[pr_datasz
];
2334 memcpy(prop
.pr_data
, pr_data
, pr_datasz
);
2335 this->gnu_properties_
[pr_type
] = prop
;
2339 const bool is_big_endian
= parameters
->target().is_big_endian();
2342 case elfcpp::GNU_PROPERTY_STACK_SIZE
:
2343 // Record the maximum value seen.
2345 uint64_t val1
= read_sized_value(pprop
->second
.pr_datasz
,
2346 pprop
->second
.pr_data
,
2347 is_big_endian
, object
);
2348 uint64_t val2
= read_sized_value(pr_datasz
, pr_data
,
2349 is_big_endian
, object
);
2351 write_sized_value(val2
, pprop
->second
.pr_datasz
,
2352 pprop
->second
.pr_data
, is_big_endian
);
2355 case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED
:
2356 // No data to merge.
2359 gold_warning(_("%s: unknown program property type %d "
2360 "in .note.gnu.property section"),
2361 object
->name().c_str(), pr_type
);
2366 // Merge per-object properties with program properties.
2367 // This lets the target identify objects that are missing certain
2368 // properties, in cases where properties must be ANDed together.
2371 Layout::merge_gnu_properties(const Object
* object
)
2373 const int size
= parameters
->target().get_size();
2374 const bool is_big_endian
= parameters
->target().is_big_endian();
2379 #ifdef HAVE_TARGET_32_BIG
2380 parameters
->sized_target
<32, true>()->merge_gnu_properties(object
);
2387 #ifdef HAVE_TARGET_32_LITTLE
2388 parameters
->sized_target
<32, false>()->merge_gnu_properties(object
);
2394 else if (size
== 64)
2398 #ifdef HAVE_TARGET_64_BIG
2399 parameters
->sized_target
<64, true>()->merge_gnu_properties(object
);
2406 #ifdef HAVE_TARGET_64_LITTLE
2407 parameters
->sized_target
<64, false>()->merge_gnu_properties(object
);
2417 // Add a target-specific property for the output .note.gnu.property section.
2420 Layout::add_gnu_property(unsigned int note_type
,
2421 unsigned int pr_type
,
2423 const unsigned char* pr_data
)
2425 gold_assert(note_type
== elfcpp::NT_GNU_PROPERTY_TYPE_0
);
2428 prop
.pr_datasz
= pr_datasz
;
2429 prop
.pr_data
= new unsigned char[pr_datasz
];
2430 memcpy(prop
.pr_data
, pr_data
, pr_datasz
);
2431 this->gnu_properties_
[pr_type
] = prop
;
2434 // Create automatic note sections.
2437 Layout::create_notes()
2439 this->create_gnu_properties_note();
2440 this->create_gold_note();
2441 this->create_stack_segment();
2442 this->create_build_id();
2443 this->create_package_metadata();
2446 // Create the dynamic sections which are needed before we read the
2450 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
2452 if (parameters
->doing_static_link())
2455 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
2456 elfcpp::SHT_DYNAMIC
,
2458 | elfcpp::SHF_WRITE
),
2460 true, false, false);
2462 // A linker script may discard .dynamic, so check for NULL.
2463 if (this->dynamic_section_
!= NULL
)
2465 this->dynamic_symbol_
=
2466 symtab
->define_in_output_data("_DYNAMIC", NULL
,
2467 Symbol_table::PREDEFINED
,
2468 this->dynamic_section_
, 0, 0,
2469 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
2470 elfcpp::STV_HIDDEN
, 0, false, false);
2472 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
2474 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
2478 // For each output section whose name can be represented as C symbol,
2479 // define __start and __stop symbols for the section. This is a GNU
2483 Layout::define_section_symbols(Symbol_table
* symtab
)
2485 const elfcpp::STV visibility
= parameters
->options().start_stop_visibility_enum();
2486 for (Section_list::const_iterator p
= this->section_list_
.begin();
2487 p
!= this->section_list_
.end();
2490 const char* const name
= (*p
)->name();
2491 if (is_cident(name
))
2493 const std::string
name_string(name
);
2494 const std::string
start_name(cident_section_start_prefix
2496 const std::string
stop_name(cident_section_stop_prefix
2499 symtab
->define_in_output_data(start_name
.c_str(),
2501 Symbol_table::PREDEFINED
,
2509 false, // offset_is_from_end
2510 true); // only_if_ref
2512 symtab
->define_in_output_data(stop_name
.c_str(),
2514 Symbol_table::PREDEFINED
,
2522 true, // offset_is_from_end
2523 true); // only_if_ref
2528 // Define symbols for group signatures.
2531 Layout::define_group_signatures(Symbol_table
* symtab
)
2533 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
2534 p
!= this->group_signatures_
.end();
2537 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
2539 p
->section
->set_info_symndx(sym
);
2542 // Force the name of the group section to the group
2543 // signature, and use the group's section symbol as the
2544 // signature symbol.
2545 if (strcmp(p
->section
->name(), p
->signature
) != 0)
2547 const char* name
= this->namepool_
.add(p
->signature
,
2549 p
->section
->set_name(name
);
2551 p
->section
->set_needs_symtab_index();
2552 p
->section
->set_info_section_symndx(p
->section
);
2556 this->group_signatures_
.clear();
2559 // Find the first read-only PT_LOAD segment, creating one if
2563 Layout::find_first_load_seg(const Target
* target
)
2565 Output_segment
* best
= NULL
;
2566 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2567 p
!= this->segment_list_
.end();
2570 if ((*p
)->type() == elfcpp::PT_LOAD
2571 && ((*p
)->flags() & elfcpp::PF_R
) != 0
2572 && (parameters
->options().omagic()
2573 || ((*p
)->flags() & elfcpp::PF_W
) == 0)
2574 && (!target
->isolate_execinstr()
2575 || ((*p
)->flags() & elfcpp::PF_X
) == 0))
2577 if (best
== NULL
|| this->segment_precedes(*p
, best
))
2584 gold_assert(!this->script_options_
->saw_phdrs_clause());
2586 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
2591 // Save states of all current output segments. Store saved states
2592 // in SEGMENT_STATES.
2595 Layout::save_segments(Segment_states
* segment_states
)
2597 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2598 p
!= this->segment_list_
.end();
2601 Output_segment
* segment
= *p
;
2603 Output_segment
* copy
= new Output_segment(*segment
);
2604 (*segment_states
)[segment
] = copy
;
2608 // Restore states of output segments and delete any segment not found in
2612 Layout::restore_segments(const Segment_states
* segment_states
)
2614 // Go through the segment list and remove any segment added in the
2616 this->tls_segment_
= NULL
;
2617 this->relro_segment_
= NULL
;
2618 Segment_list::iterator list_iter
= this->segment_list_
.begin();
2619 while (list_iter
!= this->segment_list_
.end())
2621 Output_segment
* segment
= *list_iter
;
2622 Segment_states::const_iterator states_iter
=
2623 segment_states
->find(segment
);
2624 if (states_iter
!= segment_states
->end())
2626 const Output_segment
* copy
= states_iter
->second
;
2627 // Shallow copy to restore states.
2630 // Also fix up TLS and RELRO segment pointers as appropriate.
2631 if (segment
->type() == elfcpp::PT_TLS
)
2632 this->tls_segment_
= segment
;
2633 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
2634 this->relro_segment_
= segment
;
2640 list_iter
= this->segment_list_
.erase(list_iter
);
2641 // This is a segment created during section layout. It should be
2642 // safe to remove it since we should have removed all pointers to it.
2648 // Clean up after relaxation so that sections can be laid out again.
2651 Layout::clean_up_after_relaxation()
2653 // Restore the segments to point state just prior to the relaxation loop.
2654 Script_sections
* script_section
= this->script_options_
->script_sections();
2655 script_section
->release_segments();
2656 this->restore_segments(this->segment_states_
);
2658 // Reset section addresses and file offsets
2659 for (Section_list::iterator p
= this->section_list_
.begin();
2660 p
!= this->section_list_
.end();
2663 (*p
)->restore_states();
2665 // If an input section changes size because of relaxation,
2666 // we need to adjust the section offsets of all input sections.
2667 // after such a section.
2668 if ((*p
)->section_offsets_need_adjustment())
2669 (*p
)->adjust_section_offsets();
2671 (*p
)->reset_address_and_file_offset();
2674 // Reset special output object address and file offsets.
2675 for (Data_list::iterator p
= this->special_output_list_
.begin();
2676 p
!= this->special_output_list_
.end();
2678 (*p
)->reset_address_and_file_offset();
2680 // A linker script may have created some output section data objects.
2681 // They are useless now.
2682 for (Output_section_data_list::const_iterator p
=
2683 this->script_output_section_data_list_
.begin();
2684 p
!= this->script_output_section_data_list_
.end();
2687 this->script_output_section_data_list_
.clear();
2689 // Special-case fill output objects are recreated each time through
2690 // the relaxation loop.
2691 this->reset_relax_output();
2695 Layout::reset_relax_output()
2697 for (Data_list::const_iterator p
= this->relax_output_list_
.begin();
2698 p
!= this->relax_output_list_
.end();
2701 this->relax_output_list_
.clear();
2704 // Prepare for relaxation.
2707 Layout::prepare_for_relaxation()
2709 // Create an relaxation debug check if in debugging mode.
2710 if (is_debugging_enabled(DEBUG_RELAXATION
))
2711 this->relaxation_debug_check_
= new Relaxation_debug_check();
2713 // Save segment states.
2714 this->segment_states_
= new Segment_states();
2715 this->save_segments(this->segment_states_
);
2717 for(Section_list::const_iterator p
= this->section_list_
.begin();
2718 p
!= this->section_list_
.end();
2720 (*p
)->save_states();
2722 if (is_debugging_enabled(DEBUG_RELAXATION
))
2723 this->relaxation_debug_check_
->check_output_data_for_reset_values(
2724 this->section_list_
, this->special_output_list_
,
2725 this->relax_output_list_
);
2727 // Also enable recording of output section data from scripts.
2728 this->record_output_section_data_from_script_
= true;
2731 // If the user set the address of the text segment, that may not be
2732 // compatible with putting the segment headers and file headers into
2733 // that segment. For isolate_execinstr() targets, it's the rodata
2734 // segment rather than text where we might put the headers.
2736 load_seg_unusable_for_headers(const Target
* target
)
2738 const General_options
& options
= parameters
->options();
2739 if (target
->isolate_execinstr())
2740 return (options
.user_set_Trodata_segment()
2741 && options
.Trodata_segment() % target
->abi_pagesize() != 0);
2743 return (options
.user_set_Ttext()
2744 && options
.Ttext() % target
->abi_pagesize() != 0);
2747 // Relaxation loop body: If target has no relaxation, this runs only once
2748 // Otherwise, the target relaxation hook is called at the end of
2749 // each iteration. If the hook returns true, it means re-layout of
2750 // section is required.
2752 // The number of segments created by a linking script without a PHDRS
2753 // clause may be affected by section sizes and alignments. There is
2754 // a remote chance that relaxation causes different number of PT_LOAD
2755 // segments are created and sections are attached to different segments.
2756 // Therefore, we always throw away all segments created during section
2757 // layout. In order to be able to restart the section layout, we keep
2758 // a copy of the segment list right before the relaxation loop and use
2759 // that to restore the segments.
2761 // PASS is the current relaxation pass number.
2762 // SYMTAB is a symbol table.
2763 // PLOAD_SEG is the address of a pointer for the load segment.
2764 // PHDR_SEG is a pointer to the PHDR segment.
2765 // SEGMENT_HEADERS points to the output segment header.
2766 // FILE_HEADER points to the output file header.
2767 // PSHNDX is the address to store the output section index.
2770 Layout::relaxation_loop_body(
2773 Symbol_table
* symtab
,
2774 Output_segment
** pload_seg
,
2775 Output_segment
* phdr_seg
,
2776 Output_segment_headers
* segment_headers
,
2777 Output_file_header
* file_header
,
2778 unsigned int* pshndx
)
2780 // If this is not the first iteration, we need to clean up after
2781 // relaxation so that we can lay out the sections again.
2783 this->clean_up_after_relaxation();
2785 // If there is a SECTIONS clause, put all the input sections into
2786 // the required order.
2787 Output_segment
* load_seg
;
2788 if (this->script_options_
->saw_sections_clause())
2789 load_seg
= this->set_section_addresses_from_script(symtab
);
2790 else if (parameters
->options().relocatable())
2793 load_seg
= this->find_first_load_seg(target
);
2795 if (parameters
->options().oformat_enum()
2796 != General_options::OBJECT_FORMAT_ELF
)
2799 if (load_seg_unusable_for_headers(target
))
2805 gold_assert(phdr_seg
== NULL
2807 || this->script_options_
->saw_sections_clause());
2809 // If the address of the load segment we found has been set by
2810 // --section-start rather than by a script, then adjust the VMA and
2811 // LMA downward if possible to include the file and section headers.
2812 uint64_t header_gap
= 0;
2813 if (load_seg
!= NULL
2814 && load_seg
->are_addresses_set()
2815 && !this->script_options_
->saw_sections_clause()
2816 && !parameters
->options().relocatable())
2818 file_header
->finalize_data_size();
2819 segment_headers
->finalize_data_size();
2820 size_t sizeof_headers
= (file_header
->data_size()
2821 + segment_headers
->data_size());
2822 const uint64_t abi_pagesize
= target
->abi_pagesize();
2823 uint64_t hdr_paddr
= load_seg
->paddr() - sizeof_headers
;
2824 hdr_paddr
&= ~(abi_pagesize
- 1);
2825 uint64_t subtract
= load_seg
->paddr() - hdr_paddr
;
2826 if (load_seg
->paddr() < subtract
|| load_seg
->vaddr() < subtract
)
2830 load_seg
->set_addresses(load_seg
->vaddr() - subtract
,
2831 load_seg
->paddr() - subtract
);
2832 header_gap
= subtract
- sizeof_headers
;
2836 // Lay out the segment headers.
2837 if (!parameters
->options().relocatable())
2839 gold_assert(segment_headers
!= NULL
);
2840 if (header_gap
!= 0 && load_seg
!= NULL
)
2842 Output_data_zero_fill
* z
= new Output_data_zero_fill(header_gap
, 1);
2843 load_seg
->add_initial_output_data(z
);
2845 if (load_seg
!= NULL
)
2846 load_seg
->add_initial_output_data(segment_headers
);
2847 if (phdr_seg
!= NULL
)
2848 phdr_seg
->add_initial_output_data(segment_headers
);
2851 // Lay out the file header.
2852 if (load_seg
!= NULL
)
2853 load_seg
->add_initial_output_data(file_header
);
2855 if (this->script_options_
->saw_phdrs_clause()
2856 && !parameters
->options().relocatable())
2858 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2859 // clause in a linker script.
2860 Script_sections
* ss
= this->script_options_
->script_sections();
2861 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
2864 // We set the output section indexes in set_segment_offsets and
2865 // set_section_indexes.
2868 // Set the file offsets of all the segments, and all the sections
2871 if (!parameters
->options().relocatable())
2872 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
2874 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
2876 // Verify that the dummy relaxation does not change anything.
2877 if (is_debugging_enabled(DEBUG_RELAXATION
))
2880 this->relaxation_debug_check_
->read_sections(this->section_list_
);
2882 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
2885 *pload_seg
= load_seg
;
2889 // Search the list of patterns and find the position of the given section
2890 // name in the output section. If the section name matches a glob
2891 // pattern and a non-glob name, then the non-glob position takes
2892 // precedence. Return 0 if no match is found.
2895 Layout::find_section_order_index(const std::string
& section_name
)
2897 Unordered_map
<std::string
, unsigned int>::iterator map_it
;
2898 map_it
= this->input_section_position_
.find(section_name
);
2899 if (map_it
!= this->input_section_position_
.end())
2900 return map_it
->second
;
2902 // Absolute match failed. Linear search the glob patterns.
2903 std::vector
<std::string
>::iterator it
;
2904 for (it
= this->input_section_glob_
.begin();
2905 it
!= this->input_section_glob_
.end();
2908 if (fnmatch((*it
).c_str(), section_name
.c_str(), FNM_NOESCAPE
) == 0)
2910 map_it
= this->input_section_position_
.find(*it
);
2911 gold_assert(map_it
!= this->input_section_position_
.end());
2912 return map_it
->second
;
2918 // Read the sequence of input sections from the file specified with
2919 // option --section-ordering-file.
2922 Layout::read_layout_from_file()
2924 const char* filename
= parameters
->options().section_ordering_file();
2930 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2931 filename
, strerror(errno
));
2933 File_read::record_file_read(filename
);
2935 std::getline(in
, line
); // this chops off the trailing \n, if any
2936 unsigned int position
= 1;
2937 this->set_section_ordering_specified();
2941 if (!line
.empty() && line
[line
.length() - 1] == '\r') // Windows
2942 line
.resize(line
.length() - 1);
2943 // Ignore comments, beginning with '#'
2946 std::getline(in
, line
);
2949 this->input_section_position_
[line
] = position
;
2950 // Store all glob patterns in a vector.
2951 if (is_wildcard_string(line
.c_str()))
2952 this->input_section_glob_
.push_back(line
);
2954 std::getline(in
, line
);
2958 // Finalize the layout. When this is called, we have created all the
2959 // output sections and all the output segments which are based on
2960 // input sections. We have several things to do, and we have to do
2961 // them in the right order, so that we get the right results correctly
2964 // 1) Finalize the list of output segments and create the segment
2967 // 2) Finalize the dynamic symbol table and associated sections.
2969 // 3) Determine the final file offset of all the output segments.
2971 // 4) Determine the final file offset of all the SHF_ALLOC output
2974 // 5) Create the symbol table sections and the section name table
2977 // 6) Finalize the symbol table: set symbol values to their final
2978 // value and make a final determination of which symbols are going
2979 // into the output symbol table.
2981 // 7) Create the section table header.
2983 // 8) Determine the final file offset of all the output sections which
2984 // are not SHF_ALLOC, including the section table header.
2986 // 9) Finalize the ELF file header.
2988 // This function returns the size of the output file.
2991 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
2992 Target
* target
, const Task
* task
)
2994 unsigned int local_dynamic_count
= 0;
2995 unsigned int forced_local_dynamic_count
= 0;
2997 target
->finalize_sections(this, input_objects
, symtab
);
2999 this->count_local_symbols(task
, input_objects
);
3001 this->link_stabs_sections();
3003 Output_segment
* phdr_seg
= NULL
;
3004 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
3006 // There was a dynamic object in the link. We need to create
3007 // some information for the dynamic linker.
3009 // Create the PT_PHDR segment which will hold the program
3011 if (!this->script_options_
->saw_phdrs_clause())
3012 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
3014 // Create the dynamic symbol table, including the hash table.
3015 Output_section
* dynstr
;
3016 std::vector
<Symbol
*> dynamic_symbols
;
3017 Versions
versions(*this->script_options()->version_script_info(),
3019 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
3020 &local_dynamic_count
,
3021 &forced_local_dynamic_count
,
3025 // Create the .interp section to hold the name of the
3026 // interpreter, and put it in a PT_INTERP segment. Don't do it
3027 // if we saw a .interp section in an input file.
3028 if ((!parameters
->options().shared()
3029 || parameters
->options().dynamic_linker() != NULL
)
3030 && this->interp_segment_
== NULL
)
3031 this->create_interp(target
);
3033 // Finish the .dynamic section to hold the dynamic data, and put
3034 // it in a PT_DYNAMIC segment.
3035 this->finish_dynamic_section(input_objects
, symtab
);
3037 // We should have added everything we need to the dynamic string
3039 this->dynpool_
.set_string_offsets();
3041 // Create the version sections. We can't do this until the
3042 // dynamic string table is complete.
3043 this->create_version_sections(&versions
, symtab
,
3044 (local_dynamic_count
3045 + forced_local_dynamic_count
),
3046 dynamic_symbols
, dynstr
);
3048 // Set the size of the _DYNAMIC symbol. We can't do this until
3049 // after we call create_version_sections.
3050 this->set_dynamic_symbol_size(symtab
);
3053 // Create segment headers.
3054 Output_segment_headers
* segment_headers
=
3055 (parameters
->options().relocatable()
3057 : new Output_segment_headers(this->segment_list_
));
3059 // Lay out the file header.
3060 Output_file_header
* file_header
= new Output_file_header(target
, symtab
,
3063 this->special_output_list_
.push_back(file_header
);
3064 if (segment_headers
!= NULL
)
3065 this->special_output_list_
.push_back(segment_headers
);
3067 // Find approriate places for orphan output sections if we are using
3069 if (this->script_options_
->saw_sections_clause())
3070 this->place_orphan_sections_in_script();
3072 Output_segment
* load_seg
;
3077 // Take a snapshot of the section layout as needed.
3078 if (target
->may_relax())
3079 this->prepare_for_relaxation();
3081 // Run the relaxation loop to lay out sections.
3084 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
3085 phdr_seg
, segment_headers
, file_header
,
3089 while (target
->may_relax()
3090 && target
->relax(pass
, input_objects
, symtab
, this, task
));
3092 // If there is a load segment that contains the file and program headers,
3093 // provide a symbol __ehdr_start pointing there.
3094 // A program can use this to examine itself robustly.
3095 Symbol
*ehdr_start
= symtab
->lookup("__ehdr_start");
3096 if (ehdr_start
!= NULL
&& ehdr_start
->is_predefined())
3098 if (load_seg
!= NULL
)
3099 ehdr_start
->set_output_segment(load_seg
, Symbol::SEGMENT_START
);
3101 ehdr_start
->set_undefined();
3104 // Set the file offsets of all the non-data sections we've seen so
3105 // far which don't have to wait for the input sections. We need
3106 // this in order to finalize local symbols in non-allocated
3108 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
3110 // Set the section indexes of all unallocated sections seen so far,
3111 // in case any of them are somehow referenced by a symbol.
3112 shndx
= this->set_section_indexes(shndx
);
3114 // Create the symbol table sections.
3115 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
,
3116 local_dynamic_count
);
3117 if (!parameters
->doing_static_link())
3118 this->assign_local_dynsym_offsets(input_objects
);
3120 // Process any symbol assignments from a linker script. This must
3121 // be called after the symbol table has been finalized.
3122 this->script_options_
->finalize_symbols(symtab
, this);
3124 // Create the incremental inputs sections.
3125 if (this->incremental_inputs_
)
3127 this->incremental_inputs_
->finalize();
3128 this->create_incremental_info_sections(symtab
);
3131 // Create the .shstrtab section.
3132 Output_section
* shstrtab_section
= this->create_shstrtab();
3134 // Set the file offsets of the rest of the non-data sections which
3135 // don't have to wait for the input sections.
3136 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
3138 // Now that all sections have been created, set the section indexes
3139 // for any sections which haven't been done yet.
3140 shndx
= this->set_section_indexes(shndx
);
3142 // Create the section table header.
3143 this->create_shdrs(shstrtab_section
, &off
);
3145 // If there are no sections which require postprocessing, we can
3146 // handle the section names now, and avoid a resize later.
3147 if (!this->any_postprocessing_sections_
)
3149 off
= this->set_section_offsets(off
,
3150 POSTPROCESSING_SECTIONS_PASS
);
3152 this->set_section_offsets(off
,
3153 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3156 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
3158 // Now we know exactly where everything goes in the output file
3159 // (except for non-allocated sections which require postprocessing).
3160 Output_data::layout_complete();
3162 this->output_file_size_
= off
;
3167 // Create a note header following the format defined in the ELF ABI.
3168 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3169 // of the section to create, DESCSZ is the size of the descriptor.
3170 // ALLOCATE is true if the section should be allocated in memory.
3171 // This returns the new note section. It sets *TRAILING_PADDING to
3172 // the number of trailing zero bytes required.
3175 Layout::create_note(const char* name
, int note_type
,
3176 const char* section_name
, size_t descsz
,
3177 bool allocate
, size_t* trailing_padding
)
3179 // Authorities all agree that the values in a .note field should
3180 // be aligned on 4-byte boundaries for 32-bit binaries. However,
3181 // they differ on what the alignment is for 64-bit binaries.
3182 // The GABI says unambiguously they take 8-byte alignment:
3183 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3184 // Other documentation says alignment should always be 4 bytes:
3185 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3186 // GNU ld and GNU readelf both support the latter (at least as of
3187 // version 2.16.91), and glibc always generates the latter for
3188 // .note.ABI-tag (as of version 1.6), so that's the one we go with
3190 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
3191 const int size
= parameters
->target().get_size();
3193 const int size
= 32;
3195 // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size.
3196 const int addralign
= ((note_type
== elfcpp::NT_GNU_PROPERTY_TYPE_0
3197 ? parameters
->target().get_size()
3200 // The contents of the .note section.
3201 size_t namesz
= strlen(name
) + 1;
3202 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
3203 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
3205 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
3207 unsigned char* buffer
= new unsigned char[notehdrsz
];
3208 memset(buffer
, 0, notehdrsz
);
3210 bool is_big_endian
= parameters
->target().is_big_endian();
3216 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
3217 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
3218 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
3222 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
3223 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
3224 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
3227 else if (size
== 64)
3231 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
3232 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
3233 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
3237 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
3238 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
3239 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
3245 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
3247 elfcpp::Elf_Xword flags
= 0;
3248 Output_section_order order
= ORDER_INVALID
;
3251 flags
= elfcpp::SHF_ALLOC
;
3252 order
= (note_type
== elfcpp::NT_GNU_PROPERTY_TYPE_0
3253 ? ORDER_PROPERTY_NOTE
: ORDER_RO_NOTE
);
3255 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
3257 flags
, false, order
, false,
3262 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
3265 os
->add_output_section_data(posd
);
3267 *trailing_padding
= aligned_descsz
- descsz
;
3272 // Create a .note.gnu.property section to record program properties
3273 // accumulated from the input files.
3276 Layout::create_gnu_properties_note()
3278 parameters
->target().finalize_gnu_properties(this);
3280 if (this->gnu_properties_
.empty())
3283 const unsigned int size
= parameters
->target().get_size();
3284 const bool is_big_endian
= parameters
->target().is_big_endian();
3286 // Compute the total size of the properties array.
3288 for (Gnu_properties::const_iterator prop
= this->gnu_properties_
.begin();
3289 prop
!= this->gnu_properties_
.end();
3292 descsz
= align_address(descsz
+ 8 + prop
->second
.pr_datasz
, size
/ 8);
3295 // Create the note section.
3296 size_t trailing_padding
;
3297 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0
,
3298 ".note.gnu.property", descsz
,
3299 true, &trailing_padding
);
3302 gold_assert(trailing_padding
== 0);
3304 // Allocate and fill the properties array.
3305 unsigned char* desc
= new unsigned char[descsz
];
3306 unsigned char* p
= desc
;
3307 for (Gnu_properties::const_iterator prop
= this->gnu_properties_
.begin();
3308 prop
!= this->gnu_properties_
.end();
3311 size_t datasz
= prop
->second
.pr_datasz
;
3312 size_t aligned_datasz
= align_address(prop
->second
.pr_datasz
, size
/ 8);
3313 write_sized_value(prop
->first
, 4, p
, is_big_endian
);
3314 write_sized_value(datasz
, 4, p
+ 4, is_big_endian
);
3315 memcpy(p
+ 8, prop
->second
.pr_data
, datasz
);
3316 if (aligned_datasz
> datasz
)
3317 memset(p
+ 8 + datasz
, 0, aligned_datasz
- datasz
);
3318 p
+= 8 + aligned_datasz
;
3320 Output_section_data
* posd
= new Output_data_const(desc
, descsz
, 4);
3321 os
->add_output_section_data(posd
);
3324 // For an executable or shared library, create a note to record the
3325 // version of gold used to create the binary.
3328 Layout::create_gold_note()
3330 if (parameters
->options().relocatable()
3331 || parameters
->incremental_update())
3334 std::string desc
= std::string("gold ") + gold::get_version_string();
3336 size_t trailing_padding
;
3337 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
3338 ".note.gnu.gold-version", desc
.size(),
3339 false, &trailing_padding
);
3343 Output_section_data
* posd
= new Output_data_const(desc
, 4);
3344 os
->add_output_section_data(posd
);
3346 if (trailing_padding
> 0)
3348 posd
= new Output_data_zero_fill(trailing_padding
, 0);
3349 os
->add_output_section_data(posd
);
3353 // Record whether the stack should be executable. This can be set
3354 // from the command line using the -z execstack or -z noexecstack
3355 // options. Otherwise, if any input file has a .note.GNU-stack
3356 // section with the SHF_EXECINSTR flag set, the stack should be
3357 // executable. Otherwise, if at least one input file a
3358 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3359 // section, we use the target default for whether the stack should be
3360 // executable. If -z stack-size was used to set a p_memsz value for
3361 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3362 // don't generate a stack note. When generating a object file, we
3363 // create a .note.GNU-stack section with the appropriate marking.
3364 // When generating an executable or shared library, we create a
3365 // PT_GNU_STACK segment.
3368 Layout::create_stack_segment()
3370 bool is_stack_executable
;
3371 if (parameters
->options().is_execstack_set())
3373 is_stack_executable
= parameters
->options().is_stack_executable();
3374 if (!is_stack_executable
3375 && this->input_requires_executable_stack_
3376 && parameters
->options().warn_execstack())
3377 gold_warning(_("one or more inputs require executable stack, "
3378 "but -z noexecstack was given"));
3380 else if (!this->input_with_gnu_stack_note_
3381 && (!parameters
->options().user_set_stack_size()
3382 || parameters
->options().relocatable()))
3386 if (this->input_requires_executable_stack_
)
3387 is_stack_executable
= true;
3388 else if (this->input_without_gnu_stack_note_
)
3389 is_stack_executable
=
3390 parameters
->target().is_default_stack_executable();
3392 is_stack_executable
= false;
3395 if (parameters
->options().relocatable())
3397 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
3398 elfcpp::Elf_Xword flags
= 0;
3399 if (is_stack_executable
)
3400 flags
|= elfcpp::SHF_EXECINSTR
;
3401 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
,
3402 ORDER_INVALID
, false);
3406 if (this->script_options_
->saw_phdrs_clause())
3408 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
3409 if (is_stack_executable
)
3410 flags
|= elfcpp::PF_X
;
3411 Output_segment
* seg
=
3412 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
3413 seg
->set_size(parameters
->options().stack_size());
3414 // BFD lets targets override this default alignment, but the only
3415 // targets that do so are ones that Gold does not support so far.
3416 seg
->set_minimum_p_align(16);
3420 // If --build-id was used, set up the build ID note.
3423 Layout::create_build_id()
3425 if (!parameters
->options().user_set_build_id())
3428 const char* style
= parameters
->options().build_id();
3429 if (strcmp(style
, "none") == 0)
3432 // Set DESCSZ to the size of the note descriptor. When possible,
3433 // set DESC to the note descriptor contents.
3436 if (strcmp(style
, "md5") == 0)
3438 else if ((strcmp(style
, "sha1") == 0) || (strcmp(style
, "tree") == 0))
3440 else if (strcmp(style
, "uuid") == 0)
3443 const size_t uuidsz
= 128 / 8;
3445 char buffer
[uuidsz
];
3446 memset(buffer
, 0, uuidsz
);
3448 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
3450 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3454 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
3455 release_descriptor(descriptor
, true);
3457 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
3458 else if (static_cast<size_t>(got
) != uuidsz
)
3459 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3463 desc
.assign(buffer
, uuidsz
);
3465 #else // __MINGW32__
3467 typedef RPC_STATUS (RPC_ENTRY
*UuidCreateFn
)(UUID
*Uuid
);
3469 HMODULE rpc_library
= LoadLibrary("rpcrt4.dll");
3471 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3474 UuidCreateFn uuid_create
= reinterpret_cast<UuidCreateFn
>(
3475 GetProcAddress(rpc_library
, "UuidCreate"));
3477 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3478 else if (uuid_create(&uuid
) != RPC_S_OK
)
3479 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3480 FreeLibrary(rpc_library
);
3482 desc
.assign(reinterpret_cast<const char *>(&uuid
), sizeof(UUID
));
3483 descsz
= sizeof(UUID
);
3484 #endif // __MINGW32__
3486 else if (strncmp(style
, "0x", 2) == 0)
3489 const char* p
= style
+ 2;
3492 if (hex_p(p
[0]) && hex_p(p
[1]))
3494 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
3498 else if (*p
== '-' || *p
== ':')
3501 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3504 descsz
= desc
.size();
3507 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
3510 size_t trailing_padding
;
3511 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
3512 ".note.gnu.build-id", descsz
, true,
3519 // We know the value already, so we fill it in now.
3520 gold_assert(desc
.size() == descsz
);
3522 Output_section_data
* posd
= new Output_data_const(desc
, 4);
3523 os
->add_output_section_data(posd
);
3525 if (trailing_padding
!= 0)
3527 posd
= new Output_data_zero_fill(trailing_padding
, 0);
3528 os
->add_output_section_data(posd
);
3533 // We need to compute a checksum after we have completed the
3535 gold_assert(trailing_padding
== 0);
3536 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
3537 os
->add_output_section_data(this->build_id_note_
);
3541 // If --package-metadata was used, set up the package metadata note.
3542 // https://systemd.io/ELF_PACKAGE_METADATA/
3545 Layout::create_package_metadata()
3547 if (!parameters
->options().user_set_package_metadata())
3550 const char* desc
= parameters
->options().package_metadata();
3551 if (strcmp(desc
, "") == 0)
3555 json_error_t json_error
;
3556 json_t
*json
= json_loads(desc
, 0, &json_error
);
3561 gold_fatal(_("error: --package-metadata=%s does not contain valid "
3563 desc
, json_error
.text
);
3568 size_t trailing_padding
;
3569 // Ensure the trailing NULL byte is always included, as per specification.
3570 size_t descsz
= strlen(desc
) + 1;
3571 Output_section
* os
= this->create_note("FDO", elfcpp::FDO_PACKAGING_METADATA
,
3572 ".note.package", descsz
, true,
3577 Output_section_data
* posd
= new Output_data_const(desc
, descsz
, 4);
3578 os
->add_output_section_data(posd
);
3580 if (trailing_padding
!= 0)
3582 posd
= new Output_data_zero_fill(trailing_padding
, 0);
3583 os
->add_output_section_data(posd
);
3587 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3588 // field of the former should point to the latter. I'm not sure who
3589 // started this, but the GNU linker does it, and some tools depend
3593 Layout::link_stabs_sections()
3595 if (!this->have_stabstr_section_
)
3598 for (Section_list::iterator p
= this->section_list_
.begin();
3599 p
!= this->section_list_
.end();
3602 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
3605 const char* name
= (*p
)->name();
3606 if (strncmp(name
, ".stab", 5) != 0)
3609 size_t len
= strlen(name
);
3610 if (strcmp(name
+ len
- 3, "str") != 0)
3613 std::string
stab_name(name
, len
- 3);
3614 Output_section
* stab_sec
;
3615 stab_sec
= this->find_output_section(stab_name
.c_str());
3616 if (stab_sec
!= NULL
)
3617 stab_sec
->set_link_section(*p
);
3621 // Create .gnu_incremental_inputs and related sections needed
3622 // for the next run of incremental linking to check what has changed.
3625 Layout::create_incremental_info_sections(Symbol_table
* symtab
)
3627 Incremental_inputs
* incr
= this->incremental_inputs_
;
3629 gold_assert(incr
!= NULL
);
3631 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3632 incr
->create_data_sections(symtab
);
3634 // Add the .gnu_incremental_inputs section.
3635 const char* incremental_inputs_name
=
3636 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
3637 Output_section
* incremental_inputs_os
=
3638 this->make_output_section(incremental_inputs_name
,
3639 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
3640 ORDER_INVALID
, false);
3641 incremental_inputs_os
->add_output_section_data(incr
->inputs_section());
3643 // Add the .gnu_incremental_symtab section.
3644 const char* incremental_symtab_name
=
3645 this->namepool_
.add(".gnu_incremental_symtab", false, NULL
);
3646 Output_section
* incremental_symtab_os
=
3647 this->make_output_section(incremental_symtab_name
,
3648 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB
, 0,
3649 ORDER_INVALID
, false);
3650 incremental_symtab_os
->add_output_section_data(incr
->symtab_section());
3651 incremental_symtab_os
->set_entsize(4);
3653 // Add the .gnu_incremental_relocs section.
3654 const char* incremental_relocs_name
=
3655 this->namepool_
.add(".gnu_incremental_relocs", false, NULL
);
3656 Output_section
* incremental_relocs_os
=
3657 this->make_output_section(incremental_relocs_name
,
3658 elfcpp::SHT_GNU_INCREMENTAL_RELOCS
, 0,
3659 ORDER_INVALID
, false);
3660 incremental_relocs_os
->add_output_section_data(incr
->relocs_section());
3661 incremental_relocs_os
->set_entsize(incr
->relocs_entsize());
3663 // Add the .gnu_incremental_got_plt section.
3664 const char* incremental_got_plt_name
=
3665 this->namepool_
.add(".gnu_incremental_got_plt", false, NULL
);
3666 Output_section
* incremental_got_plt_os
=
3667 this->make_output_section(incremental_got_plt_name
,
3668 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT
, 0,
3669 ORDER_INVALID
, false);
3670 incremental_got_plt_os
->add_output_section_data(incr
->got_plt_section());
3672 // Add the .gnu_incremental_strtab section.
3673 const char* incremental_strtab_name
=
3674 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
3675 Output_section
* incremental_strtab_os
= this->make_output_section(incremental_strtab_name
,
3676 elfcpp::SHT_STRTAB
, 0,
3677 ORDER_INVALID
, false);
3678 Output_data_strtab
* strtab_data
=
3679 new Output_data_strtab(incr
->get_stringpool());
3680 incremental_strtab_os
->add_output_section_data(strtab_data
);
3682 incremental_inputs_os
->set_after_input_sections();
3683 incremental_symtab_os
->set_after_input_sections();
3684 incremental_relocs_os
->set_after_input_sections();
3685 incremental_got_plt_os
->set_after_input_sections();
3687 incremental_inputs_os
->set_link_section(incremental_strtab_os
);
3688 incremental_symtab_os
->set_link_section(incremental_inputs_os
);
3689 incremental_relocs_os
->set_link_section(incremental_inputs_os
);
3690 incremental_got_plt_os
->set_link_section(incremental_inputs_os
);
3693 // Return whether SEG1 should be before SEG2 in the output file. This
3694 // is based entirely on the segment type and flags. When this is
3695 // called the segment addresses have normally not yet been set.
3698 Layout::segment_precedes(const Output_segment
* seg1
,
3699 const Output_segment
* seg2
)
3701 // In order to produce a stable ordering if we're called with the same pointer
3706 elfcpp::Elf_Word type1
= seg1
->type();
3707 elfcpp::Elf_Word type2
= seg2
->type();
3709 // The single PT_PHDR segment is required to precede any loadable
3710 // segment. We simply make it always first.
3711 if (type1
== elfcpp::PT_PHDR
)
3713 gold_assert(type2
!= elfcpp::PT_PHDR
);
3716 if (type2
== elfcpp::PT_PHDR
)
3719 // The single PT_INTERP segment is required to precede any loadable
3720 // segment. We simply make it always second.
3721 if (type1
== elfcpp::PT_INTERP
)
3723 gold_assert(type2
!= elfcpp::PT_INTERP
);
3726 if (type2
== elfcpp::PT_INTERP
)
3729 // We then put PT_LOAD segments before any other segments.
3730 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
3732 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
3735 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3736 // segment, because that is where the dynamic linker expects to find
3737 // it (this is just for efficiency; other positions would also work
3739 if (type1
== elfcpp::PT_TLS
3740 && type2
!= elfcpp::PT_TLS
3741 && type2
!= elfcpp::PT_GNU_RELRO
)
3743 if (type2
== elfcpp::PT_TLS
3744 && type1
!= elfcpp::PT_TLS
3745 && type1
!= elfcpp::PT_GNU_RELRO
)
3748 // We put the PT_GNU_RELRO segment last, because that is where the
3749 // dynamic linker expects to find it (as with PT_TLS, this is just
3751 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
3753 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
3756 const elfcpp::Elf_Word flags1
= seg1
->flags();
3757 const elfcpp::Elf_Word flags2
= seg2
->flags();
3759 // The order of non-PT_LOAD segments is unimportant. We simply sort
3760 // by the numeric segment type and flags values. There should not
3761 // be more than one segment with the same type and flags, except
3762 // when a linker script specifies such.
3763 if (type1
!= elfcpp::PT_LOAD
)
3766 return type1
< type2
;
3767 uint64_t align1
= seg1
->align();
3768 uint64_t align2
= seg2
->align();
3769 // Place segments with larger alignments first.
3770 if (align1
!= align2
)
3771 return align1
> align2
;
3772 gold_assert(flags1
!= flags2
3773 || this->script_options_
->saw_phdrs_clause());
3774 return flags1
< flags2
;
3777 // If the addresses are set already, sort by load address.
3778 if (seg1
->are_addresses_set())
3780 if (!seg2
->are_addresses_set())
3783 unsigned int section_count1
= seg1
->output_section_count();
3784 unsigned int section_count2
= seg2
->output_section_count();
3785 if (section_count1
== 0 && section_count2
> 0)
3787 if (section_count1
> 0 && section_count2
== 0)
3790 uint64_t paddr1
= (seg1
->are_addresses_set()
3792 : seg1
->first_section_load_address());
3793 uint64_t paddr2
= (seg2
->are_addresses_set()
3795 : seg2
->first_section_load_address());
3797 if (paddr1
!= paddr2
)
3798 return paddr1
< paddr2
;
3800 else if (seg2
->are_addresses_set())
3803 // A segment which holds large data comes after a segment which does
3804 // not hold large data.
3805 if (seg1
->is_large_data_segment())
3807 if (!seg2
->is_large_data_segment())
3810 else if (seg2
->is_large_data_segment())
3813 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3814 // segments come before writable segments. Then writable segments
3815 // with data come before writable segments without data. Then
3816 // executable segments come before non-executable segments. Then
3817 // the unlikely case of a non-readable segment comes before the
3818 // normal case of a readable segment. If there are multiple
3819 // segments with the same type and flags, we require that the
3820 // address be set, and we sort by virtual address and then physical
3822 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
3823 return (flags1
& elfcpp::PF_W
) == 0;
3824 if ((flags1
& elfcpp::PF_W
) != 0
3825 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
3826 return seg1
->has_any_data_sections();
3827 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
3828 return (flags1
& elfcpp::PF_X
) != 0;
3829 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
3830 return (flags1
& elfcpp::PF_R
) == 0;
3832 // We shouldn't get here--we shouldn't create segments which we
3833 // can't distinguish. Unless of course we are using a weird linker
3834 // script or overlapping --section-start options. We could also get
3835 // here if plugins want unique segments for subsets of sections.
3836 gold_assert(this->script_options_
->saw_phdrs_clause()
3837 || parameters
->options().any_section_start()
3838 || this->is_unique_segment_for_sections_specified()
3839 || parameters
->options().text_unlikely_segment());
3843 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3846 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
3848 uint64_t unsigned_off
= off
;
3849 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
3850 | (addr
& (abi_pagesize
- 1)));
3851 if (aligned_off
< unsigned_off
)
3852 aligned_off
+= abi_pagesize
;
3856 // On targets where the text segment contains only executable code,
3857 // a non-executable segment is never the text segment.
3860 is_text_segment(const Target
* target
, const Output_segment
* seg
)
3862 elfcpp::Elf_Xword flags
= seg
->flags();
3863 if ((flags
& elfcpp::PF_W
) != 0)
3865 if ((flags
& elfcpp::PF_X
) == 0)
3866 return !target
->isolate_execinstr();
3870 // Set the file offsets of all the segments, and all the sections they
3871 // contain. They have all been created. LOAD_SEG must be laid out
3872 // first. Return the offset of the data to follow.
3875 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
3876 unsigned int* pshndx
)
3878 // Sort them into the final order. We use a stable sort so that we
3879 // don't randomize the order of indistinguishable segments created
3880 // by linker scripts.
3881 std::stable_sort(this->segment_list_
.begin(), this->segment_list_
.end(),
3882 Layout::Compare_segments(this));
3884 // Find the PT_LOAD segments, and set their addresses and offsets
3885 // and their section's addresses and offsets.
3886 uint64_t start_addr
;
3887 if (parameters
->options().user_set_Ttext())
3888 start_addr
= parameters
->options().Ttext();
3889 else if (parameters
->options().output_is_position_independent())
3892 start_addr
= target
->default_text_segment_address();
3894 uint64_t addr
= start_addr
;
3897 // If LOAD_SEG is NULL, then the file header and segment headers
3898 // will not be loadable. But they still need to be at offset 0 in
3899 // the file. Set their offsets now.
3900 if (load_seg
== NULL
)
3902 for (Data_list::iterator p
= this->special_output_list_
.begin();
3903 p
!= this->special_output_list_
.end();
3906 off
= align_address(off
, (*p
)->addralign());
3907 (*p
)->set_address_and_file_offset(0, off
);
3908 off
+= (*p
)->data_size();
3912 unsigned int increase_relro
= this->increase_relro_
;
3913 if (this->script_options_
->saw_sections_clause())
3916 const bool check_sections
= parameters
->options().check_sections();
3917 Output_segment
* last_load_segment
= NULL
;
3919 unsigned int shndx_begin
= *pshndx
;
3920 unsigned int shndx_load_seg
= *pshndx
;
3922 for (Segment_list::iterator p
= this->segment_list_
.begin();
3923 p
!= this->segment_list_
.end();
3926 if ((*p
)->type() == elfcpp::PT_LOAD
)
3928 if (target
->isolate_execinstr())
3930 // When we hit the segment that should contain the
3931 // file headers, reset the file offset so we place
3932 // it and subsequent segments appropriately.
3933 // We'll fix up the preceding segments below.
3941 shndx_load_seg
= *pshndx
;
3947 // Verify that the file headers fall into the first segment.
3948 if (load_seg
!= NULL
&& load_seg
!= *p
)
3953 bool are_addresses_set
= (*p
)->are_addresses_set();
3954 if (are_addresses_set
)
3956 // When it comes to setting file offsets, we care about
3957 // the physical address.
3958 addr
= (*p
)->paddr();
3960 else if (parameters
->options().user_set_Ttext()
3961 && (parameters
->options().omagic()
3962 || is_text_segment(target
, *p
)))
3964 are_addresses_set
= true;
3966 else if (parameters
->options().user_set_Trodata_segment()
3967 && ((*p
)->flags() & (elfcpp::PF_W
| elfcpp::PF_X
)) == 0)
3969 addr
= parameters
->options().Trodata_segment();
3970 are_addresses_set
= true;
3972 else if (parameters
->options().user_set_Tdata()
3973 && ((*p
)->flags() & elfcpp::PF_W
) != 0
3974 && (!parameters
->options().user_set_Tbss()
3975 || (*p
)->has_any_data_sections()))
3977 addr
= parameters
->options().Tdata();
3978 are_addresses_set
= true;
3980 else if (parameters
->options().user_set_Tbss()
3981 && ((*p
)->flags() & elfcpp::PF_W
) != 0
3982 && !(*p
)->has_any_data_sections())
3984 addr
= parameters
->options().Tbss();
3985 are_addresses_set
= true;
3988 uint64_t orig_addr
= addr
;
3989 uint64_t orig_off
= off
;
3991 uint64_t aligned_addr
= 0;
3992 uint64_t abi_pagesize
= target
->abi_pagesize();
3993 uint64_t common_pagesize
= target
->common_pagesize();
3995 if (!parameters
->options().nmagic()
3996 && !parameters
->options().omagic())
3997 (*p
)->set_minimum_p_align(abi_pagesize
);
3999 if (!are_addresses_set
)
4001 // Skip the address forward one page, maintaining the same
4002 // position within the page. This lets us store both segments
4003 // overlapping on a single page in the file, but the loader will
4004 // put them on different pages in memory. We will revisit this
4005 // decision once we know the size of the segment.
4007 uint64_t max_align
= (*p
)->maximum_alignment();
4008 if (max_align
> abi_pagesize
)
4009 addr
= align_address(addr
, max_align
);
4010 aligned_addr
= addr
;
4014 // This is the segment that will contain the file
4015 // headers, so its offset will have to be exactly zero.
4016 gold_assert(orig_off
== 0);
4018 // If the target wants a fixed minimum distance from the
4019 // text segment to the read-only segment, move up now.
4021 start_addr
+ (parameters
->options().user_set_rosegment_gap()
4022 ? parameters
->options().rosegment_gap()
4023 : target
->rosegment_gap());
4024 if (addr
< min_addr
)
4027 // But this is not the first segment! To make its
4028 // address congruent with its offset, that address better
4029 // be aligned to the ABI-mandated page size.
4030 addr
= align_address(addr
, abi_pagesize
);
4031 aligned_addr
= addr
;
4035 if ((addr
& (abi_pagesize
- 1)) != 0)
4036 addr
= addr
+ abi_pagesize
;
4038 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
4042 if (!parameters
->options().nmagic()
4043 && !parameters
->options().omagic())
4045 // Here we are also taking care of the case when
4046 // the maximum segment alignment is larger than the page size.
4047 off
= align_file_offset(off
, addr
,
4048 std::max(abi_pagesize
,
4049 (*p
)->maximum_alignment()));
4053 // This is -N or -n with a section script which prevents
4054 // us from using a load segment. We need to ensure that
4055 // the file offset is aligned to the alignment of the
4056 // segment. This is because the linker script
4057 // implicitly assumed a zero offset. If we don't align
4058 // here, then the alignment of the sections in the
4059 // linker script may not match the alignment of the
4060 // sections in the set_section_addresses call below,
4061 // causing an error about dot moving backward.
4062 off
= align_address(off
, (*p
)->maximum_alignment());
4065 unsigned int shndx_hold
= *pshndx
;
4066 bool has_relro
= false;
4067 uint64_t new_addr
= (*p
)->set_section_addresses(target
, this,
4073 // Now that we know the size of this segment, we may be able
4074 // to save a page in memory, at the cost of wasting some
4075 // file space, by instead aligning to the start of a new
4076 // page. Here we use the real machine page size rather than
4077 // the ABI mandated page size. If the segment has been
4078 // aligned so that the relro data ends at a page boundary,
4079 // we do not try to realign it.
4081 if (!are_addresses_set
4083 && aligned_addr
!= addr
4084 && !parameters
->incremental())
4086 uint64_t first_off
= (common_pagesize
4088 & (common_pagesize
- 1)));
4089 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
4092 && ((aligned_addr
& ~ (common_pagesize
- 1))
4093 != (new_addr
& ~ (common_pagesize
- 1)))
4094 && first_off
+ last_off
<= common_pagesize
)
4096 *pshndx
= shndx_hold
;
4097 addr
= align_address(aligned_addr
, common_pagesize
);
4098 addr
= align_address(addr
, (*p
)->maximum_alignment());
4099 if ((addr
& (abi_pagesize
- 1)) != 0)
4100 addr
= addr
+ abi_pagesize
;
4101 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
4102 off
= align_file_offset(off
, addr
, abi_pagesize
);
4104 increase_relro
= this->increase_relro_
;
4105 if (this->script_options_
->saw_sections_clause())
4109 new_addr
= (*p
)->set_section_addresses(target
, this,
4119 // Implement --check-sections. We know that the segments
4120 // are sorted by LMA.
4121 if (check_sections
&& last_load_segment
!= NULL
)
4123 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
4124 if (last_load_segment
->paddr() + last_load_segment
->memsz()
4127 unsigned long long lb1
= last_load_segment
->paddr();
4128 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
4129 unsigned long long lb2
= (*p
)->paddr();
4130 unsigned long long le2
= lb2
+ (*p
)->memsz();
4131 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4132 "[0x%llx -> 0x%llx]"),
4133 lb1
, le1
, lb2
, le2
);
4136 last_load_segment
= *p
;
4140 if (load_seg
!= NULL
&& target
->isolate_execinstr())
4142 // Process the early segments again, setting their file offsets
4143 // so they land after the segments starting at LOAD_SEG.
4144 off
= align_file_offset(off
, 0, target
->abi_pagesize());
4146 this->reset_relax_output();
4148 for (Segment_list::iterator p
= this->segment_list_
.begin();
4152 if ((*p
)->type() == elfcpp::PT_LOAD
)
4154 // We repeat the whole job of assigning addresses and
4155 // offsets, but we really only want to change the offsets and
4156 // must ensure that the addresses all come out the same as
4157 // they did the first time through.
4158 bool has_relro
= false;
4159 const uint64_t old_addr
= (*p
)->vaddr();
4160 const uint64_t old_end
= old_addr
+ (*p
)->memsz();
4161 uint64_t new_addr
= (*p
)->set_section_addresses(target
, this,
4167 gold_assert(new_addr
== old_end
);
4171 gold_assert(shndx_begin
== shndx_load_seg
);
4174 // Handle the non-PT_LOAD segments, setting their offsets from their
4175 // section's offsets.
4176 for (Segment_list::iterator p
= this->segment_list_
.begin();
4177 p
!= this->segment_list_
.end();
4180 // PT_GNU_STACK was set up correctly when it was created.
4181 if ((*p
)->type() != elfcpp::PT_LOAD
4182 && (*p
)->type() != elfcpp::PT_GNU_STACK
)
4183 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
4188 // Set the TLS offsets for each section in the PT_TLS segment.
4189 if (this->tls_segment_
!= NULL
)
4190 this->tls_segment_
->set_tls_offsets();
4195 // Set the offsets of all the allocated sections when doing a
4196 // relocatable link. This does the same jobs as set_segment_offsets,
4197 // only for a relocatable link.
4200 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
4201 unsigned int* pshndx
)
4205 file_header
->set_address_and_file_offset(0, 0);
4206 off
+= file_header
->data_size();
4208 for (Section_list::iterator p
= this->section_list_
.begin();
4209 p
!= this->section_list_
.end();
4212 // We skip unallocated sections here, except that group sections
4213 // have to come first.
4214 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
4215 && (*p
)->type() != elfcpp::SHT_GROUP
)
4218 off
= align_address(off
, (*p
)->addralign());
4220 // The linker script might have set the address.
4221 if (!(*p
)->is_address_valid())
4222 (*p
)->set_address(0);
4223 (*p
)->set_file_offset(off
);
4224 (*p
)->finalize_data_size();
4225 if ((*p
)->type() != elfcpp::SHT_NOBITS
)
4226 off
+= (*p
)->data_size();
4228 (*p
)->set_out_shndx(*pshndx
);
4235 // Set the file offset of all the sections not associated with a
4239 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
4241 off_t startoff
= off
;
4244 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
4245 p
!= this->unattached_section_list_
.end();
4248 // The symtab section is handled in create_symtab_sections.
4249 if (*p
== this->symtab_section_
)
4252 // If we've already set the data size, don't set it again.
4253 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
4256 if (pass
== BEFORE_INPUT_SECTIONS_PASS
4257 && (*p
)->requires_postprocessing())
4259 (*p
)->create_postprocessing_buffer();
4260 this->any_postprocessing_sections_
= true;
4263 if (pass
== BEFORE_INPUT_SECTIONS_PASS
4264 && (*p
)->after_input_sections())
4266 else if (pass
== POSTPROCESSING_SECTIONS_PASS
4267 && (!(*p
)->after_input_sections()
4268 || (*p
)->type() == elfcpp::SHT_STRTAB
))
4270 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4271 && (!(*p
)->after_input_sections()
4272 || (*p
)->type() != elfcpp::SHT_STRTAB
))
4275 if (!parameters
->incremental_update())
4277 off
= align_address(off
, (*p
)->addralign());
4278 (*p
)->set_file_offset(off
);
4279 (*p
)->finalize_data_size();
4283 // Incremental update: allocate file space from free list.
4284 (*p
)->pre_finalize_data_size();
4285 off_t current_size
= (*p
)->current_data_size();
4286 off
= this->allocate(current_size
, (*p
)->addralign(), startoff
);
4289 if (is_debugging_enabled(DEBUG_INCREMENTAL
))
4290 this->free_list_
.dump();
4291 gold_assert((*p
)->output_section() != NULL
);
4292 gold_fallback(_("out of patch space for section %s; "
4293 "relink with --incremental-full"),
4294 (*p
)->output_section()->name());
4296 (*p
)->set_file_offset(off
);
4297 (*p
)->finalize_data_size();
4298 if ((*p
)->data_size() > current_size
)
4300 gold_assert((*p
)->output_section() != NULL
);
4301 gold_fallback(_("%s: section changed size; "
4302 "relink with --incremental-full"),
4303 (*p
)->output_section()->name());
4305 gold_debug(DEBUG_INCREMENTAL
,
4306 "set_section_offsets: %08lx %08lx %s",
4307 static_cast<long>(off
),
4308 static_cast<long>((*p
)->data_size()),
4309 ((*p
)->output_section() != NULL
4310 ? (*p
)->output_section()->name() : "(special)"));
4313 off
+= (*p
)->data_size();
4317 // At this point the name must be set.
4318 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
4319 this->namepool_
.add((*p
)->name(), false, NULL
);
4324 // Set the section indexes of all the sections not associated with a
4328 Layout::set_section_indexes(unsigned int shndx
)
4330 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
4331 p
!= this->unattached_section_list_
.end();
4334 if (!(*p
)->has_out_shndx())
4336 (*p
)->set_out_shndx(shndx
);
4343 // Set the section addresses according to the linker script. This is
4344 // only called when we see a SECTIONS clause. This returns the
4345 // program segment which should hold the file header and segment
4346 // headers, if any. It will return NULL if they should not be in a
4350 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
4352 Script_sections
* ss
= this->script_options_
->script_sections();
4353 gold_assert(ss
->saw_sections_clause());
4354 return this->script_options_
->set_section_addresses(symtab
, this);
4357 // Place the orphan sections in the linker script.
4360 Layout::place_orphan_sections_in_script()
4362 Script_sections
* ss
= this->script_options_
->script_sections();
4363 gold_assert(ss
->saw_sections_clause());
4365 // Place each orphaned output section in the script.
4366 for (Section_list::iterator p
= this->section_list_
.begin();
4367 p
!= this->section_list_
.end();
4370 if (!(*p
)->found_in_sections_clause())
4371 ss
->place_orphan(*p
);
4375 // Count the local symbols in the regular symbol table and the dynamic
4376 // symbol table, and build the respective string pools.
4379 Layout::count_local_symbols(const Task
* task
,
4380 const Input_objects
* input_objects
)
4382 // First, figure out an upper bound on the number of symbols we'll
4383 // be inserting into each pool. This helps us create the pools with
4384 // the right size, to avoid unnecessary hashtable resizing.
4385 unsigned int symbol_count
= 0;
4386 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
4387 p
!= input_objects
->relobj_end();
4389 symbol_count
+= (*p
)->local_symbol_count();
4391 // Go from "upper bound" to "estimate." We overcount for two
4392 // reasons: we double-count symbols that occur in more than one
4393 // object file, and we count symbols that are dropped from the
4394 // output. Add it all together and assume we overcount by 100%.
4397 // We assume all symbols will go into both the sympool and dynpool.
4398 this->sympool_
.reserve(symbol_count
);
4399 this->dynpool_
.reserve(symbol_count
);
4401 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
4402 p
!= input_objects
->relobj_end();
4405 Task_lock_obj
<Object
> tlo(task
, *p
);
4406 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
4410 // Create the symbol table sections. Here we also set the final
4411 // values of the symbols. At this point all the loadable sections are
4412 // fully laid out. SHNUM is the number of sections so far.
4415 Layout::create_symtab_sections(const Input_objects
* input_objects
,
4416 Symbol_table
* symtab
,
4419 unsigned int local_dynamic_count
)
4423 if (parameters
->target().get_size() == 32)
4425 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
4428 else if (parameters
->target().get_size() == 64)
4430 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
4436 // Compute file offsets relative to the start of the symtab section.
4439 // Save space for the dummy symbol at the start of the section. We
4440 // never bother to write this out--it will just be left as zero.
4442 unsigned int local_symbol_index
= 1;
4444 // Add STT_SECTION symbols for each Output section which needs one.
4445 for (Section_list::iterator p
= this->section_list_
.begin();
4446 p
!= this->section_list_
.end();
4449 if (!(*p
)->needs_symtab_index())
4450 (*p
)->set_symtab_index(-1U);
4453 (*p
)->set_symtab_index(local_symbol_index
);
4454 ++local_symbol_index
;
4459 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
4460 p
!= input_objects
->relobj_end();
4463 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
4465 off
+= (index
- local_symbol_index
) * symsize
;
4466 local_symbol_index
= index
;
4469 unsigned int local_symcount
= local_symbol_index
;
4470 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
);
4474 if (this->dynsym_section_
== NULL
)
4481 off_t locsize
= local_dynamic_count
* this->dynsym_section_
->entsize();
4482 dynoff
= this->dynsym_section_
->offset() + locsize
;
4483 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
4484 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
4485 == this->dynsym_section_
->data_size() - locsize
);
4488 off_t global_off
= off
;
4489 off
= symtab
->finalize(off
, dynoff
, local_dynamic_count
, dyncount
,
4490 &this->sympool_
, &local_symcount
);
4492 if (!parameters
->options().strip_all())
4494 this->sympool_
.set_string_offsets();
4496 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
4497 Output_section
* osymtab
= this->make_output_section(symtab_name
,
4501 this->symtab_section_
= osymtab
;
4503 Output_section_data
* pos
= new Output_data_fixed_space(off
, align
,
4505 osymtab
->add_output_section_data(pos
);
4507 // We generate a .symtab_shndx section if we have more than
4508 // SHN_LORESERVE sections. Technically it is possible that we
4509 // don't need one, because it is possible that there are no
4510 // symbols in any of sections with indexes larger than
4511 // SHN_LORESERVE. That is probably unusual, though, and it is
4512 // easier to always create one than to compute section indexes
4513 // twice (once here, once when writing out the symbols).
4514 if (shnum
>= elfcpp::SHN_LORESERVE
)
4516 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
4518 Output_section
* osymtab_xindex
=
4519 this->make_output_section(symtab_xindex_name
,
4520 elfcpp::SHT_SYMTAB_SHNDX
, 0,
4521 ORDER_INVALID
, false);
4523 size_t symcount
= off
/ symsize
;
4524 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
4526 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
4528 osymtab_xindex
->set_link_section(osymtab
);
4529 osymtab_xindex
->set_addralign(4);
4530 osymtab_xindex
->set_entsize(4);
4532 osymtab_xindex
->set_after_input_sections();
4534 // This tells the driver code to wait until the symbol table
4535 // has written out before writing out the postprocessing
4536 // sections, including the .symtab_shndx section.
4537 this->any_postprocessing_sections_
= true;
4540 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
4541 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
4546 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
4547 ostrtab
->add_output_section_data(pstr
);
4550 if (!parameters
->incremental_update())
4551 symtab_off
= align_address(*poff
, align
);
4554 symtab_off
= this->allocate(off
, align
, *poff
);
4556 gold_fallback(_("out of patch space for symbol table; "
4557 "relink with --incremental-full"));
4558 gold_debug(DEBUG_INCREMENTAL
,
4559 "create_symtab_sections: %08lx %08lx .symtab",
4560 static_cast<long>(symtab_off
),
4561 static_cast<long>(off
));
4564 symtab
->set_file_offset(symtab_off
+ global_off
);
4565 osymtab
->set_file_offset(symtab_off
);
4566 osymtab
->finalize_data_size();
4567 osymtab
->set_link_section(ostrtab
);
4568 osymtab
->set_info(local_symcount
);
4569 osymtab
->set_entsize(symsize
);
4571 if (symtab_off
+ off
> *poff
)
4572 *poff
= symtab_off
+ off
;
4576 // Create the .shstrtab section, which holds the names of the
4577 // sections. At the time this is called, we have created all the
4578 // output sections except .shstrtab itself.
4581 Layout::create_shstrtab()
4583 // FIXME: We don't need to create a .shstrtab section if we are
4584 // stripping everything.
4586 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
4588 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
4589 ORDER_INVALID
, false);
4591 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
4593 // We can't write out this section until we've set all the
4594 // section names, and we don't set the names of compressed
4595 // output sections until relocations are complete. FIXME: With
4596 // the current names we use, this is unnecessary.
4597 os
->set_after_input_sections();
4600 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
4601 os
->add_output_section_data(posd
);
4606 // Create the section headers. SIZE is 32 or 64. OFF is the file
4610 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
4612 Output_section_headers
* oshdrs
;
4613 oshdrs
= new Output_section_headers(this,
4614 &this->segment_list_
,
4615 &this->section_list_
,
4616 &this->unattached_section_list_
,
4620 if (!parameters
->incremental_update())
4621 off
= align_address(*poff
, oshdrs
->addralign());
4624 oshdrs
->pre_finalize_data_size();
4625 off
= this->allocate(oshdrs
->data_size(), oshdrs
->addralign(), *poff
);
4627 gold_fallback(_("out of patch space for section header table; "
4628 "relink with --incremental-full"));
4629 gold_debug(DEBUG_INCREMENTAL
,
4630 "create_shdrs: %08lx %08lx (section header table)",
4631 static_cast<long>(off
),
4632 static_cast<long>(off
+ oshdrs
->data_size()));
4634 oshdrs
->set_address_and_file_offset(0, off
);
4635 off
+= oshdrs
->data_size();
4638 this->section_headers_
= oshdrs
;
4641 // Count the allocated sections.
4644 Layout::allocated_output_section_count() const
4646 size_t section_count
= 0;
4647 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4648 p
!= this->segment_list_
.end();
4650 section_count
+= (*p
)->output_section_count();
4651 return section_count
;
4654 // Create the dynamic symbol table.
4655 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4656 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4657 // to the number of global symbols that have been forced local.
4658 // We need to remember the former because the forced-local symbols are
4659 // written along with the global symbols in Symtab::write_globals().
4662 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
4663 Symbol_table
* symtab
,
4664 Output_section
** pdynstr
,
4665 unsigned int* plocal_dynamic_count
,
4666 unsigned int* pforced_local_dynamic_count
,
4667 std::vector
<Symbol
*>* pdynamic_symbols
,
4668 Versions
* pversions
)
4670 // Count all the symbols in the dynamic symbol table, and set the
4671 // dynamic symbol indexes.
4673 // Skip symbol 0, which is always all zeroes.
4674 unsigned int index
= 1;
4676 // Add STT_SECTION symbols for each Output section which needs one.
4677 for (Section_list::iterator p
= this->section_list_
.begin();
4678 p
!= this->section_list_
.end();
4681 if (!(*p
)->needs_dynsym_index())
4682 (*p
)->set_dynsym_index(-1U);
4685 (*p
)->set_dynsym_index(index
);
4690 // Count the local symbols that need to go in the dynamic symbol table,
4691 // and set the dynamic symbol indexes.
4692 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
4693 p
!= input_objects
->relobj_end();
4696 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
4700 unsigned int local_symcount
= index
;
4701 unsigned int forced_local_count
= 0;
4703 index
= symtab
->set_dynsym_indexes(index
, &forced_local_count
,
4704 pdynamic_symbols
, &this->dynpool_
,
4707 *plocal_dynamic_count
= local_symcount
;
4708 *pforced_local_dynamic_count
= forced_local_count
;
4712 const int size
= parameters
->target().get_size();
4715 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
4718 else if (size
== 64)
4720 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
4726 // Create the dynamic symbol table section.
4728 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
4732 ORDER_DYNAMIC_LINKER
,
4733 false, false, false);
4735 // Check for NULL as a linker script may discard .dynsym.
4738 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
4741 dynsym
->add_output_section_data(odata
);
4743 dynsym
->set_info(local_symcount
+ forced_local_count
);
4744 dynsym
->set_entsize(symsize
);
4745 dynsym
->set_addralign(align
);
4747 this->dynsym_section_
= dynsym
;
4750 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
4753 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
4754 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
4757 // If there are more than SHN_LORESERVE allocated sections, we
4758 // create a .dynsym_shndx section. It is possible that we don't
4759 // need one, because it is possible that there are no dynamic
4760 // symbols in any of the sections with indexes larger than
4761 // SHN_LORESERVE. This is probably unusual, though, and at this
4762 // time we don't know the actual section indexes so it is
4763 // inconvenient to check.
4764 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
4766 Output_section
* dynsym_xindex
=
4767 this->choose_output_section(NULL
, ".dynsym_shndx",
4768 elfcpp::SHT_SYMTAB_SHNDX
,
4770 false, ORDER_DYNAMIC_LINKER
, false, false,
4773 if (dynsym_xindex
!= NULL
)
4775 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
4777 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
4779 dynsym_xindex
->set_link_section(dynsym
);
4780 dynsym_xindex
->set_addralign(4);
4781 dynsym_xindex
->set_entsize(4);
4783 dynsym_xindex
->set_after_input_sections();
4785 // This tells the driver code to wait until the symbol table
4786 // has written out before writing out the postprocessing
4787 // sections, including the .dynsym_shndx section.
4788 this->any_postprocessing_sections_
= true;
4792 // Create the dynamic string table section.
4794 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
4798 ORDER_DYNAMIC_LINKER
,
4799 false, false, false);
4803 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
4804 dynstr
->add_output_section_data(strdata
);
4807 dynsym
->set_link_section(dynstr
);
4808 if (this->dynamic_section_
!= NULL
)
4809 this->dynamic_section_
->set_link_section(dynstr
);
4813 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
4814 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
4818 // Create the hash tables. The Gnu-style hash table must be
4819 // built first, because it changes the order of the symbols
4820 // in the dynamic symbol table.
4822 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
4823 || strcmp(parameters
->options().hash_style(), "both") == 0)
4825 unsigned char* phash
;
4826 unsigned int hashlen
;
4827 Dynobj::create_gnu_hash_table(*pdynamic_symbols
,
4828 local_symcount
+ forced_local_count
,
4831 Output_section
* hashsec
=
4832 this->choose_output_section(NULL
, ".gnu.hash", elfcpp::SHT_GNU_HASH
,
4833 elfcpp::SHF_ALLOC
, false,
4834 ORDER_DYNAMIC_LINKER
, false, false,
4837 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
4841 if (hashsec
!= NULL
&& hashdata
!= NULL
)
4842 hashsec
->add_output_section_data(hashdata
);
4844 if (hashsec
!= NULL
)
4847 hashsec
->set_link_section(dynsym
);
4849 // For a 64-bit target, the entries in .gnu.hash do not have
4850 // a uniform size, so we only set the entry size for a
4852 if (parameters
->target().get_size() == 32)
4853 hashsec
->set_entsize(4);
4856 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
4860 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
4861 || strcmp(parameters
->options().hash_style(), "both") == 0)
4863 unsigned char* phash
;
4864 unsigned int hashlen
;
4865 Dynobj::create_elf_hash_table(*pdynamic_symbols
,
4866 local_symcount
+ forced_local_count
,
4869 Output_section
* hashsec
=
4870 this->choose_output_section(NULL
, ".hash", elfcpp::SHT_HASH
,
4871 elfcpp::SHF_ALLOC
, false,
4872 ORDER_DYNAMIC_LINKER
, false, false,
4875 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
4879 if (hashsec
!= NULL
&& hashdata
!= NULL
)
4880 hashsec
->add_output_section_data(hashdata
);
4882 if (hashsec
!= NULL
)
4885 hashsec
->set_link_section(dynsym
);
4886 hashsec
->set_entsize(parameters
->target().hash_entry_size() / 8);
4890 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
4894 // Assign offsets to each local portion of the dynamic symbol table.
4897 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
4899 Output_section
* dynsym
= this->dynsym_section_
;
4903 off_t off
= dynsym
->offset();
4905 // Skip the dummy symbol at the start of the section.
4906 off
+= dynsym
->entsize();
4908 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
4909 p
!= input_objects
->relobj_end();
4912 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
4913 off
+= count
* dynsym
->entsize();
4917 // Create the version sections.
4920 Layout::create_version_sections(const Versions
* versions
,
4921 const Symbol_table
* symtab
,
4922 unsigned int local_symcount
,
4923 const std::vector
<Symbol
*>& dynamic_symbols
,
4924 const Output_section
* dynstr
)
4926 if (!versions
->any_defs() && !versions
->any_needs())
4929 switch (parameters
->size_and_endianness())
4931 #ifdef HAVE_TARGET_32_LITTLE
4932 case Parameters::TARGET_32_LITTLE
:
4933 this->sized_create_version_sections
<32, false>(versions
, symtab
,
4935 dynamic_symbols
, dynstr
);
4938 #ifdef HAVE_TARGET_32_BIG
4939 case Parameters::TARGET_32_BIG
:
4940 this->sized_create_version_sections
<32, true>(versions
, symtab
,
4942 dynamic_symbols
, dynstr
);
4945 #ifdef HAVE_TARGET_64_LITTLE
4946 case Parameters::TARGET_64_LITTLE
:
4947 this->sized_create_version_sections
<64, false>(versions
, symtab
,
4949 dynamic_symbols
, dynstr
);
4952 #ifdef HAVE_TARGET_64_BIG
4953 case Parameters::TARGET_64_BIG
:
4954 this->sized_create_version_sections
<64, true>(versions
, symtab
,
4956 dynamic_symbols
, dynstr
);
4964 // Create the version sections, sized version.
4966 template<int size
, bool big_endian
>
4968 Layout::sized_create_version_sections(
4969 const Versions
* versions
,
4970 const Symbol_table
* symtab
,
4971 unsigned int local_symcount
,
4972 const std::vector
<Symbol
*>& dynamic_symbols
,
4973 const Output_section
* dynstr
)
4975 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
4976 elfcpp::SHT_GNU_versym
,
4979 ORDER_DYNAMIC_LINKER
,
4980 false, false, false);
4982 // Check for NULL since a linker script may discard this section.
4985 unsigned char* vbuf
;
4987 versions
->symbol_section_contents
<size
, big_endian
>(symtab
,
4993 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
4996 vsec
->add_output_section_data(vdata
);
4997 vsec
->set_entsize(2);
4998 vsec
->set_link_section(this->dynsym_section_
);
5001 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
5002 if (odyn
!= NULL
&& vsec
!= NULL
)
5003 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
5005 if (versions
->any_defs())
5007 Output_section
* vdsec
;
5008 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
5009 elfcpp::SHT_GNU_verdef
,
5011 false, ORDER_DYNAMIC_LINKER
, false,
5016 unsigned char* vdbuf
;
5017 unsigned int vdsize
;
5018 unsigned int vdentries
;
5019 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
,
5023 Output_section_data
* vddata
=
5024 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
5026 vdsec
->add_output_section_data(vddata
);
5027 vdsec
->set_link_section(dynstr
);
5028 vdsec
->set_info(vdentries
);
5032 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
5033 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
5038 if (versions
->any_needs())
5040 Output_section
* vnsec
;
5041 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
5042 elfcpp::SHT_GNU_verneed
,
5044 false, ORDER_DYNAMIC_LINKER
, false,
5049 unsigned char* vnbuf
;
5050 unsigned int vnsize
;
5051 unsigned int vnentries
;
5052 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
5056 Output_section_data
* vndata
=
5057 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
5059 vnsec
->add_output_section_data(vndata
);
5060 vnsec
->set_link_section(dynstr
);
5061 vnsec
->set_info(vnentries
);
5065 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
5066 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
5072 // Create the .interp section and PT_INTERP segment.
5075 Layout::create_interp(const Target
* target
)
5077 gold_assert(this->interp_segment_
== NULL
);
5079 const char* interp
= parameters
->options().dynamic_linker();
5082 interp
= target
->dynamic_linker();
5083 gold_assert(interp
!= NULL
);
5086 size_t len
= strlen(interp
) + 1;
5088 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
5090 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
5091 elfcpp::SHT_PROGBITS
,
5093 false, ORDER_INTERP
,
5094 false, false, false);
5096 osec
->add_output_section_data(odata
);
5099 // Add dynamic tags for the PLT and the dynamic relocs. This is
5100 // called by the target-specific code. This does nothing if not doing
5103 // USE_REL is true for REL relocs rather than RELA relocs.
5105 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5107 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5108 // and we also set DT_PLTREL. We use PLT_REL's output section, since
5109 // some targets have multiple reloc sections in PLT_REL.
5111 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5112 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
5115 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5119 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
5120 const Output_data
* plt_rel
,
5121 const Output_data_reloc_generic
* dyn_rel
,
5122 bool add_debug
, bool dynrel_includes_plt
)
5124 Output_data_dynamic
* odyn
= this->dynamic_data_
;
5128 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
5129 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
5131 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
5133 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
5134 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
5135 odyn
->add_constant(elfcpp::DT_PLTREL
,
5136 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
5139 if ((dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
5140 || (dynrel_includes_plt
5142 && plt_rel
->output_section() != NULL
))
5144 bool have_dyn_rel
= dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
;
5145 bool have_plt_rel
= plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
;
5146 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
5148 ? dyn_rel
->output_section()
5149 : plt_rel
->output_section()));
5150 elfcpp::DT size_tag
= use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
;
5151 if (have_dyn_rel
&& have_plt_rel
&& dynrel_includes_plt
)
5152 odyn
->add_section_size(size_tag
,
5153 dyn_rel
->output_section(),
5154 plt_rel
->output_section());
5155 else if (have_dyn_rel
)
5156 odyn
->add_section_size(size_tag
, dyn_rel
->output_section());
5158 odyn
->add_section_size(size_tag
, plt_rel
->output_section());
5159 const int size
= parameters
->target().get_size();
5164 rel_tag
= elfcpp::DT_RELENT
;
5166 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
5167 else if (size
== 64)
5168 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
5174 rel_tag
= elfcpp::DT_RELAENT
;
5176 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
5177 else if (size
== 64)
5178 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
5182 odyn
->add_constant(rel_tag
, rel_size
);
5184 if (parameters
->options().combreloc() && have_dyn_rel
)
5186 size_t c
= dyn_rel
->relative_reloc_count();
5188 odyn
->add_constant((use_rel
5189 ? elfcpp::DT_RELCOUNT
5190 : elfcpp::DT_RELACOUNT
),
5195 if (add_debug
&& !parameters
->options().shared())
5197 // The value of the DT_DEBUG tag is filled in by the dynamic
5198 // linker at run time, and used by the debugger.
5199 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
5204 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag
, unsigned int val
)
5206 Output_data_dynamic
* odyn
= this->dynamic_data_
;
5209 odyn
->add_constant(tag
, val
);
5212 // Finish the .dynamic section and PT_DYNAMIC segment.
5215 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
5216 const Symbol_table
* symtab
)
5218 if (!this->script_options_
->saw_phdrs_clause()
5219 && this->dynamic_section_
!= NULL
)
5221 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
5224 oseg
->add_output_section_to_nonload(this->dynamic_section_
,
5225 elfcpp::PF_R
| elfcpp::PF_W
);
5228 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
5232 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
5233 p
!= input_objects
->dynobj_end();
5236 if (!(*p
)->is_needed() && (*p
)->as_needed())
5238 // This dynamic object was linked with --as-needed, but it
5243 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
5246 if (parameters
->options().shared())
5248 const char* soname
= parameters
->options().soname();
5250 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
5253 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
5254 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
5255 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
5257 sym
= symtab
->lookup(parameters
->options().fini());
5258 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
5259 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
5261 // Look for .init_array, .preinit_array and .fini_array by checking
5263 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
5264 p
!= this->section_list_
.end();
5266 switch((*p
)->type())
5268 case elfcpp::SHT_FINI_ARRAY
:
5269 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
5270 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
5272 case elfcpp::SHT_INIT_ARRAY
:
5273 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
5274 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
5276 case elfcpp::SHT_PREINIT_ARRAY
:
5277 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
5278 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
5284 // Add a DT_RPATH entry if needed.
5285 const General_options::Dir_list
& rpath(parameters
->options().rpath());
5288 std::string rpath_val
;
5289 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
5293 if (rpath_val
.empty())
5294 rpath_val
= p
->name();
5297 // Eliminate duplicates.
5298 General_options::Dir_list::const_iterator q
;
5299 for (q
= rpath
.begin(); q
!= p
; ++q
)
5300 if (q
->name() == p
->name())
5305 rpath_val
+= p
->name();
5310 if (!parameters
->options().enable_new_dtags())
5311 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
5313 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
5316 // Look for text segments that have dynamic relocations.
5317 bool have_textrel
= false;
5318 if (!this->script_options_
->saw_sections_clause())
5320 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
5321 p
!= this->segment_list_
.end();
5324 if ((*p
)->type() == elfcpp::PT_LOAD
5325 && ((*p
)->flags() & elfcpp::PF_W
) == 0
5326 && (*p
)->has_dynamic_reloc())
5328 have_textrel
= true;
5335 // We don't know the section -> segment mapping, so we are
5336 // conservative and just look for readonly sections with
5337 // relocations. If those sections wind up in writable segments,
5338 // then we have created an unnecessary DT_TEXTREL entry.
5339 for (Section_list::const_iterator p
= this->section_list_
.begin();
5340 p
!= this->section_list_
.end();
5343 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
5344 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
5345 && (*p
)->has_dynamic_reloc())
5347 have_textrel
= true;
5353 if (parameters
->options().filter() != NULL
)
5354 odyn
->add_string(elfcpp::DT_FILTER
, parameters
->options().filter());
5355 if (parameters
->options().any_auxiliary())
5357 for (options::String_set::const_iterator p
=
5358 parameters
->options().auxiliary_begin();
5359 p
!= parameters
->options().auxiliary_end();
5361 odyn
->add_string(elfcpp::DT_AUXILIARY
, *p
);
5364 // Add a DT_FLAGS entry if necessary.
5365 unsigned int flags
= 0;
5368 // Add a DT_TEXTREL for compatibility with older loaders.
5369 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
5370 flags
|= elfcpp::DF_TEXTREL
;
5372 if (parameters
->options().text())
5373 gold_error(_("read-only segment has dynamic relocations"));
5374 else if (parameters
->options().warn_shared_textrel()
5375 && parameters
->options().shared())
5376 gold_warning(_("shared library text segment is not shareable"));
5378 if (parameters
->options().shared() && this->has_static_tls())
5379 flags
|= elfcpp::DF_STATIC_TLS
;
5380 if (parameters
->options().origin())
5381 flags
|= elfcpp::DF_ORIGIN
;
5382 if (parameters
->options().Bsymbolic()
5383 && !parameters
->options().have_dynamic_list())
5385 flags
|= elfcpp::DF_SYMBOLIC
;
5386 // Add DT_SYMBOLIC for compatibility with older loaders.
5387 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
5389 if (parameters
->options().now())
5390 flags
|= elfcpp::DF_BIND_NOW
;
5392 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
5395 if (parameters
->options().global())
5396 flags
|= elfcpp::DF_1_GLOBAL
;
5397 if (parameters
->options().initfirst())
5398 flags
|= elfcpp::DF_1_INITFIRST
;
5399 if (parameters
->options().interpose())
5400 flags
|= elfcpp::DF_1_INTERPOSE
;
5401 if (parameters
->options().loadfltr())
5402 flags
|= elfcpp::DF_1_LOADFLTR
;
5403 if (parameters
->options().nodefaultlib())
5404 flags
|= elfcpp::DF_1_NODEFLIB
;
5405 if (parameters
->options().nodelete())
5406 flags
|= elfcpp::DF_1_NODELETE
;
5407 if (parameters
->options().nodlopen())
5408 flags
|= elfcpp::DF_1_NOOPEN
;
5409 if (parameters
->options().nodump())
5410 flags
|= elfcpp::DF_1_NODUMP
;
5411 if (!parameters
->options().shared())
5412 flags
&= ~(elfcpp::DF_1_INITFIRST
5413 | elfcpp::DF_1_NODELETE
5414 | elfcpp::DF_1_NOOPEN
);
5415 if (parameters
->options().origin())
5416 flags
|= elfcpp::DF_1_ORIGIN
;
5417 if (parameters
->options().now())
5418 flags
|= elfcpp::DF_1_NOW
;
5419 if (parameters
->options().Bgroup())
5420 flags
|= elfcpp::DF_1_GROUP
;
5421 if (parameters
->options().pie())
5422 flags
|= elfcpp::DF_1_PIE
;
5424 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
5427 if (parameters
->options().unique())
5428 flags
|= elfcpp::DF_GNU_1_UNIQUE
;
5430 odyn
->add_constant(elfcpp::DT_GNU_FLAGS_1
, flags
);
5433 // Set the size of the _DYNAMIC symbol table to be the size of the
5437 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
5439 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
5442 odyn
->finalize_data_size();
5443 if (this->dynamic_symbol_
== NULL
)
5445 off_t data_size
= odyn
->data_size();
5446 const int size
= parameters
->target().get_size();
5448 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
5449 else if (size
== 64)
5450 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
5455 // The mapping of input section name prefixes to output section names.
5456 // In some cases one prefix is itself a prefix of another prefix; in
5457 // such a case the longer prefix must come first. These prefixes are
5458 // based on the GNU linker default ELF linker script.
5460 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5461 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5462 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
5464 MAPPING_INIT(".text.", ".text"),
5465 MAPPING_INIT(".rodata.", ".rodata"),
5466 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5467 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5468 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5469 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5470 MAPPING_INIT(".data.", ".data"),
5471 MAPPING_INIT(".bss.", ".bss"),
5472 MAPPING_INIT(".tdata.", ".tdata"),
5473 MAPPING_INIT(".tbss.", ".tbss"),
5474 MAPPING_INIT(".init_array.", ".init_array"),
5475 MAPPING_INIT(".fini_array.", ".fini_array"),
5476 MAPPING_INIT(".sdata.", ".sdata"),
5477 MAPPING_INIT(".sbss.", ".sbss"),
5478 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5479 // differently depending on whether it is creating a shared library.
5480 MAPPING_INIT(".sdata2.", ".sdata"),
5481 MAPPING_INIT(".sbss2.", ".sbss"),
5482 MAPPING_INIT(".lrodata.", ".lrodata"),
5483 MAPPING_INIT(".ldata.", ".ldata"),
5484 MAPPING_INIT(".lbss.", ".lbss"),
5485 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5486 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5487 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5488 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5489 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5490 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5491 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5492 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5493 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5494 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5495 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5496 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5497 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5498 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5499 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5500 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5501 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5502 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5503 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5504 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5505 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5506 MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5509 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5510 const Layout::Section_name_mapping
Layout::text_section_name_mapping
[] =
5512 MAPPING_INIT(".text.hot.", ".text.hot"),
5513 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5514 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5515 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5516 MAPPING_INIT(".text.startup.", ".text.startup"),
5517 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5518 MAPPING_INIT(".text.exit.", ".text.exit"),
5519 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5520 MAPPING_INIT(".text.", ".text"),
5523 #undef MAPPING_INIT_EXACT
5525 const int Layout::section_name_mapping_count
=
5526 (sizeof(Layout::section_name_mapping
)
5527 / sizeof(Layout::section_name_mapping
[0]));
5529 const int Layout::text_section_name_mapping_count
=
5530 (sizeof(Layout::text_section_name_mapping
)
5531 / sizeof(Layout::text_section_name_mapping
[0]));
5533 // Find section name NAME in PSNM and return the mapped name if found
5534 // with the length set in PLEN.
5536 Layout::match_section_name(const Layout::Section_name_mapping
* psnm
,
5538 const char* name
, size_t* plen
)
5540 for (int i
= 0; i
< count
; ++i
, ++psnm
)
5542 if (psnm
->fromlen
> 0)
5544 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
5546 *plen
= psnm
->tolen
;
5552 if (strcmp(name
, psnm
->from
) == 0)
5554 *plen
= psnm
->tolen
;
5562 // Choose the output section name to use given an input section name.
5563 // Set *PLEN to the length of the name. *PLEN is initialized to the
5567 Layout::output_section_name(const Relobj
* relobj
, const char* name
,
5570 // gcc 4.3 generates the following sorts of section names when it
5571 // needs a section name specific to a function:
5577 // .data.rel.local.FN
5579 // .data.rel.ro.local.FN
5586 // The GNU linker maps all of those to the part before the .FN,
5587 // except that .data.rel.local.FN is mapped to .data, and
5588 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5589 // beginning with .data.rel.ro.local are grouped together.
5591 // For an anonymous namespace, the string FN can contain a '.'.
5593 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5594 // GNU linker maps to .rodata.
5596 // The .data.rel.ro sections are used with -z relro. The sections
5597 // are recognized by name. We use the same names that the GNU
5598 // linker does for these sections.
5600 // It is hard to handle this in a principled way, so we don't even
5601 // try. We use a table of mappings. If the input section name is
5602 // not found in the table, we simply use it as the output section
5605 if (parameters
->options().keep_text_section_prefix()
5606 && is_prefix_of(".text", name
))
5608 const char* match
= match_section_name(text_section_name_mapping
,
5609 text_section_name_mapping_count
,
5615 const char* match
= match_section_name(section_name_mapping
,
5616 section_name_mapping_count
, name
, plen
);
5620 // As an additional complication, .ctors sections are output in
5621 // either .ctors or .init_array sections, and .dtors sections are
5622 // output in either .dtors or .fini_array sections.
5623 if (is_prefix_of(".ctors.", name
) || is_prefix_of(".dtors.", name
))
5625 if (parameters
->options().ctors_in_init_array())
5628 return name
[1] == 'c' ? ".init_array" : ".fini_array";
5633 return name
[1] == 'c' ? ".ctors" : ".dtors";
5636 if (parameters
->options().ctors_in_init_array()
5637 && (strcmp(name
, ".ctors") == 0 || strcmp(name
, ".dtors") == 0))
5639 // To make .init_array/.fini_array work with gcc we must exclude
5640 // .ctors and .dtors sections from the crtbegin and crtend
5643 || (!Layout::match_file_name(relobj
, "crtbegin")
5644 && !Layout::match_file_name(relobj
, "crtend")))
5647 return name
[1] == 'c' ? ".init_array" : ".fini_array";
5654 // Return true if RELOBJ is an input file whose base name matches
5655 // FILE_NAME. The base name must have an extension of ".o", and must
5656 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5657 // to match crtbegin.o as well as crtbeginS.o without getting confused
5658 // by other possibilities. Overall matching the file name this way is
5659 // a dreadful hack, but the GNU linker does it in order to better
5660 // support gcc, and we need to be compatible.
5663 Layout::match_file_name(const Relobj
* relobj
, const char* match
)
5665 const std::string
& file_name(relobj
->name());
5666 const char* base_name
= lbasename(file_name
.c_str());
5667 size_t match_len
= strlen(match
);
5668 if (strncmp(base_name
, match
, match_len
) != 0)
5670 size_t base_len
= strlen(base_name
);
5671 if (base_len
!= match_len
+ 2 && base_len
!= match_len
+ 3)
5673 return memcmp(base_name
+ base_len
- 2, ".o", 2) == 0;
5676 // Check if a comdat group or .gnu.linkonce section with the given
5677 // NAME is selected for the link. If there is already a section,
5678 // *KEPT_SECTION is set to point to the existing section and the
5679 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5680 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5681 // *KEPT_SECTION is set to the internal copy and the function returns
5685 Layout::find_or_add_kept_section(const std::string
& name
,
5690 Kept_section
** kept_section
)
5692 // It's normal to see a couple of entries here, for the x86 thunk
5693 // sections. If we see more than a few, we're linking a C++
5694 // program, and we resize to get more space to minimize rehashing.
5695 if (this->signatures_
.size() > 4
5696 && !this->resized_signatures_
)
5698 reserve_unordered_map(&this->signatures_
,
5699 this->number_of_input_files_
* 64);
5700 this->resized_signatures_
= true;
5703 Kept_section candidate
;
5704 std::pair
<Signatures::iterator
, bool> ins
=
5705 this->signatures_
.insert(std::make_pair(name
, candidate
));
5707 if (kept_section
!= NULL
)
5708 *kept_section
= &ins
.first
->second
;
5711 // This is the first time we've seen this signature.
5712 ins
.first
->second
.set_object(object
);
5713 ins
.first
->second
.set_shndx(shndx
);
5715 ins
.first
->second
.set_is_comdat();
5717 ins
.first
->second
.set_is_group_name();
5721 // We have already seen this signature.
5723 if (ins
.first
->second
.is_group_name())
5725 // We've already seen a real section group with this signature.
5726 // If the kept group is from a plugin object, and we're in the
5727 // replacement phase, accept the new one as a replacement.
5728 if (ins
.first
->second
.object() == NULL
5729 && parameters
->options().plugins()->in_replacement_phase())
5731 ins
.first
->second
.set_object(object
);
5732 ins
.first
->second
.set_shndx(shndx
);
5737 else if (is_group_name
)
5739 // This is a real section group, and we've already seen a
5740 // linkonce section with this signature. Record that we've seen
5741 // a section group, and don't include this section group.
5742 ins
.first
->second
.set_is_group_name();
5747 // We've already seen a linkonce section and this is a linkonce
5748 // section. These don't block each other--this may be the same
5749 // symbol name with different section types.
5754 // Store the allocated sections into the section list.
5757 Layout::get_allocated_sections(Section_list
* section_list
) const
5759 for (Section_list::const_iterator p
= this->section_list_
.begin();
5760 p
!= this->section_list_
.end();
5762 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
5763 section_list
->push_back(*p
);
5766 // Store the executable sections into the section list.
5769 Layout::get_executable_sections(Section_list
* section_list
) const
5771 for (Section_list::const_iterator p
= this->section_list_
.begin();
5772 p
!= this->section_list_
.end();
5774 if (((*p
)->flags() & (elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR
))
5775 == (elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR
))
5776 section_list
->push_back(*p
);
5779 // Create an output segment.
5782 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
5784 gold_assert(!parameters
->options().relocatable());
5785 Output_segment
* oseg
= new Output_segment(type
, flags
);
5786 this->segment_list_
.push_back(oseg
);
5788 if (type
== elfcpp::PT_TLS
)
5789 this->tls_segment_
= oseg
;
5790 else if (type
== elfcpp::PT_GNU_RELRO
)
5791 this->relro_segment_
= oseg
;
5792 else if (type
== elfcpp::PT_INTERP
)
5793 this->interp_segment_
= oseg
;
5798 // Return the file offset of the normal symbol table.
5801 Layout::symtab_section_offset() const
5803 if (this->symtab_section_
!= NULL
)
5804 return this->symtab_section_
->offset();
5808 // Return the section index of the normal symbol table. It may have
5809 // been stripped by the -s/--strip-all option.
5812 Layout::symtab_section_shndx() const
5814 if (this->symtab_section_
!= NULL
)
5815 return this->symtab_section_
->out_shndx();
5819 // Write out the Output_sections. Most won't have anything to write,
5820 // since most of the data will come from input sections which are
5821 // handled elsewhere. But some Output_sections do have Output_data.
5824 Layout::write_output_sections(Output_file
* of
) const
5826 for (Section_list::const_iterator p
= this->section_list_
.begin();
5827 p
!= this->section_list_
.end();
5830 if (!(*p
)->after_input_sections())
5835 // Write out data not associated with a section or the symbol table.
5838 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
5840 if (!parameters
->options().strip_all())
5842 const Output_section
* symtab_section
= this->symtab_section_
;
5843 for (Section_list::const_iterator p
= this->section_list_
.begin();
5844 p
!= this->section_list_
.end();
5847 if ((*p
)->needs_symtab_index())
5849 gold_assert(symtab_section
!= NULL
);
5850 unsigned int index
= (*p
)->symtab_index();
5851 gold_assert(index
> 0 && index
!= -1U);
5852 off_t off
= (symtab_section
->offset()
5853 + index
* symtab_section
->entsize());
5854 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
5859 const Output_section
* dynsym_section
= this->dynsym_section_
;
5860 for (Section_list::const_iterator p
= this->section_list_
.begin();
5861 p
!= this->section_list_
.end();
5864 if ((*p
)->needs_dynsym_index())
5866 gold_assert(dynsym_section
!= NULL
);
5867 unsigned int index
= (*p
)->dynsym_index();
5868 gold_assert(index
> 0 && index
!= -1U);
5869 off_t off
= (dynsym_section
->offset()
5870 + index
* dynsym_section
->entsize());
5871 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
5875 // Write out the Output_data which are not in an Output_section.
5876 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
5877 p
!= this->special_output_list_
.end();
5881 // Write out the Output_data which are not in an Output_section
5882 // and are regenerated in each iteration of relaxation.
5883 for (Data_list::const_iterator p
= this->relax_output_list_
.begin();
5884 p
!= this->relax_output_list_
.end();
5889 // Write out the Output_sections which can only be written after the
5890 // input sections are complete.
5893 Layout::write_sections_after_input_sections(Output_file
* of
)
5895 // Determine the final section offsets, and thus the final output
5896 // file size. Note we finalize the .shstrab last, to allow the
5897 // after_input_section sections to modify their section-names before
5899 if (this->any_postprocessing_sections_
)
5901 off_t off
= this->output_file_size_
;
5902 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
5904 // Now that we've finalized the names, we can finalize the shstrab.
5906 this->set_section_offsets(off
,
5907 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
5909 if (off
> this->output_file_size_
)
5912 this->output_file_size_
= off
;
5916 for (Section_list::const_iterator p
= this->section_list_
.begin();
5917 p
!= this->section_list_
.end();
5920 if ((*p
)->after_input_sections())
5924 this->section_headers_
->write(of
);
5927 // If a tree-style build ID was requested, the parallel part of that computation
5928 // is already done, and the final hash-of-hashes is computed here. For other
5929 // types of build IDs, all the work is done here.
5932 Layout::write_build_id(Output_file
* of
, unsigned char* array_of_hashes
,
5933 size_t size_of_hashes
) const
5935 if (this->build_id_note_
== NULL
)
5938 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
5939 this->build_id_note_
->data_size());
5941 if (array_of_hashes
== NULL
)
5943 const size_t output_file_size
= this->output_file_size();
5944 const unsigned char* iv
= of
->get_input_view(0, output_file_size
);
5945 const char* style
= parameters
->options().build_id();
5947 // If we get here with style == "tree" then the output must be
5948 // too small for chunking, and we use SHA-1 in that case.
5949 if ((strcmp(style
, "sha1") == 0) || (strcmp(style
, "tree") == 0))
5950 sha1_buffer(reinterpret_cast<const char*>(iv
), output_file_size
, ov
);
5951 else if (strcmp(style
, "md5") == 0)
5952 md5_buffer(reinterpret_cast<const char*>(iv
), output_file_size
, ov
);
5956 of
->free_input_view(0, output_file_size
, iv
);
5960 // Non-overlapping substrings of the output file have been hashed.
5961 // Compute SHA-1 hash of the hashes.
5962 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes
),
5963 size_of_hashes
, ov
);
5964 delete[] array_of_hashes
;
5967 of
->write_output_view(this->build_id_note_
->offset(),
5968 this->build_id_note_
->data_size(),
5972 // Write out a binary file. This is called after the link is
5973 // complete. IN is the temporary output file we used to generate the
5974 // ELF code. We simply walk through the segments, read them from
5975 // their file offset in IN, and write them to their load address in
5976 // the output file. FIXME: with a bit more work, we could support
5977 // S-records and/or Intel hex format here.
5980 Layout::write_binary(Output_file
* in
) const
5982 gold_assert(parameters
->options().oformat_enum()
5983 == General_options::OBJECT_FORMAT_BINARY
);
5985 // Get the size of the binary file.
5986 uint64_t max_load_address
= 0;
5987 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
5988 p
!= this->segment_list_
.end();
5991 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
5993 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
5994 if (max_paddr
> max_load_address
)
5995 max_load_address
= max_paddr
;
5999 Output_file
out(parameters
->options().output_file_name());
6000 out
.open(max_load_address
);
6002 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
6003 p
!= this->segment_list_
.end();
6006 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
6008 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
6010 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
6012 memcpy(vout
, vin
, (*p
)->filesz());
6013 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
6014 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
6021 // Print the output sections to the map file.
6024 Layout::print_to_mapfile(Mapfile
* mapfile
) const
6026 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
6027 p
!= this->segment_list_
.end();
6029 (*p
)->print_sections_to_mapfile(mapfile
);
6030 for (Section_list::const_iterator p
= this->unattached_section_list_
.begin();
6031 p
!= this->unattached_section_list_
.end();
6033 (*p
)->print_to_mapfile(mapfile
);
6036 // Print statistical information to stderr. This is used for --stats.
6039 Layout::print_stats() const
6041 this->namepool_
.print_stats("section name pool");
6042 this->sympool_
.print_stats("output symbol name pool");
6043 this->dynpool_
.print_stats("dynamic name pool");
6045 for (Section_list::const_iterator p
= this->section_list_
.begin();
6046 p
!= this->section_list_
.end();
6048 (*p
)->print_merge_stats();
6051 // Write_sections_task methods.
6053 // We can always run this task.
6056 Write_sections_task::is_runnable()
6061 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
6065 Write_sections_task::locks(Task_locker
* tl
)
6067 tl
->add(this, this->output_sections_blocker_
);
6068 if (this->input_sections_blocker_
!= NULL
)
6069 tl
->add(this, this->input_sections_blocker_
);
6070 tl
->add(this, this->final_blocker_
);
6073 // Run the task--write out the data.
6076 Write_sections_task::run(Workqueue
*)
6078 this->layout_
->write_output_sections(this->of_
);
6081 // Write_data_task methods.
6083 // We can always run this task.
6086 Write_data_task::is_runnable()
6091 // We need to unlock FINAL_BLOCKER when finished.
6094 Write_data_task::locks(Task_locker
* tl
)
6096 tl
->add(this, this->final_blocker_
);
6099 // Run the task--write out the data.
6102 Write_data_task::run(Workqueue
*)
6104 this->layout_
->write_data(this->symtab_
, this->of_
);
6107 // Write_symbols_task methods.
6109 // We can always run this task.
6112 Write_symbols_task::is_runnable()
6117 // We need to unlock FINAL_BLOCKER when finished.
6120 Write_symbols_task::locks(Task_locker
* tl
)
6122 tl
->add(this, this->final_blocker_
);
6125 // Run the task--write out the symbols.
6128 Write_symbols_task::run(Workqueue
*)
6130 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
6131 this->layout_
->symtab_xindex(),
6132 this->layout_
->dynsym_xindex(), this->of_
);
6135 // Write_after_input_sections_task methods.
6137 // We can only run this task after the input sections have completed.
6140 Write_after_input_sections_task::is_runnable()
6142 if (this->input_sections_blocker_
->is_blocked())
6143 return this->input_sections_blocker_
;
6147 // We need to unlock FINAL_BLOCKER when finished.
6150 Write_after_input_sections_task::locks(Task_locker
* tl
)
6152 tl
->add(this, this->final_blocker_
);
6158 Write_after_input_sections_task::run(Workqueue
*)
6160 this->layout_
->write_sections_after_input_sections(this->of_
);
6163 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6164 // or as a "tree" where each chunk of the string is hashed and then those
6165 // hashes are put into a (much smaller) string which is hashed with sha1.
6166 // We compute a checksum over the entire file because that is simplest.
6169 Build_id_task_runner::run(Workqueue
* workqueue
, const Task
*)
6171 Task_token
* post_hash_tasks_blocker
= new Task_token(true);
6172 const Layout
* layout
= this->layout_
;
6173 Output_file
* of
= this->of_
;
6174 const size_t filesize
= (layout
->output_file_size() <= 0 ? 0
6175 : static_cast<size_t>(layout
->output_file_size()));
6176 unsigned char* array_of_hashes
= NULL
;
6177 size_t size_of_hashes
= 0;
6179 if (strcmp(this->options_
->build_id(), "tree") == 0
6180 && this->options_
->build_id_chunk_size_for_treehash() > 0
6182 && (filesize
>= this->options_
->build_id_min_file_size_for_treehash()))
6184 static const size_t MD5_OUTPUT_SIZE_IN_BYTES
= 16;
6185 const size_t chunk_size
=
6186 this->options_
->build_id_chunk_size_for_treehash();
6187 const size_t num_hashes
= ((filesize
- 1) / chunk_size
) + 1;
6188 post_hash_tasks_blocker
->add_blockers(num_hashes
);
6189 size_of_hashes
= num_hashes
* MD5_OUTPUT_SIZE_IN_BYTES
;
6190 array_of_hashes
= new unsigned char[size_of_hashes
];
6191 unsigned char *dst
= array_of_hashes
;
6192 for (size_t i
= 0, src_offset
= 0; i
< num_hashes
;
6193 i
++, dst
+= MD5_OUTPUT_SIZE_IN_BYTES
, src_offset
+= chunk_size
)
6195 size_t size
= std::min(chunk_size
, filesize
- src_offset
);
6196 workqueue
->queue(new Hash_task(of
,
6200 post_hash_tasks_blocker
));
6204 // Queue the final task to write the build id and close the output file.
6205 workqueue
->queue(new Task_function(new Close_task_runner(this->options_
,
6210 post_hash_tasks_blocker
,
6211 "Task_function Close_task_runner"));
6214 // Close_task_runner methods.
6216 // Finish up the build ID computation, if necessary, and write a binary file,
6217 // if necessary. Then close the output file.
6220 Close_task_runner::run(Workqueue
*, const Task
*)
6222 // At this point the multi-threaded part of the build ID computation,
6223 // if any, is done. See Build_id_task_runner.
6224 this->layout_
->write_build_id(this->of_
, this->array_of_hashes_
,
6225 this->size_of_hashes_
);
6227 // If we've been asked to create a binary file, we do so here.
6228 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
6229 this->layout_
->write_binary(this->of_
);
6231 if (this->options_
->dependency_file())
6232 File_read::write_dependency_file(this->options_
->dependency_file(),
6233 this->options_
->output_file_name());
6238 // Instantiate the templates we need. We could use the configure
6239 // script to restrict this to only the ones for implemented targets.
6241 #ifdef HAVE_TARGET_32_LITTLE
6244 Layout::init_fixed_output_section
<32, false>(
6246 elfcpp::Shdr
<32, false>& shdr
);
6249 #ifdef HAVE_TARGET_32_BIG
6252 Layout::init_fixed_output_section
<32, true>(
6254 elfcpp::Shdr
<32, true>& shdr
);
6257 #ifdef HAVE_TARGET_64_LITTLE
6260 Layout::init_fixed_output_section
<64, false>(
6262 elfcpp::Shdr
<64, false>& shdr
);
6265 #ifdef HAVE_TARGET_64_BIG
6268 Layout::init_fixed_output_section
<64, true>(
6270 elfcpp::Shdr
<64, true>& shdr
);
6273 #ifdef HAVE_TARGET_32_LITTLE
6276 Layout::layout
<32, false>(Sized_relobj_file
<32, false>* object
,
6279 const elfcpp::Shdr
<32, false>& shdr
,
6280 unsigned int, unsigned int, unsigned int, off_t
*);
6283 #ifdef HAVE_TARGET_32_BIG
6286 Layout::layout
<32, true>(Sized_relobj_file
<32, true>* object
,
6289 const elfcpp::Shdr
<32, true>& shdr
,
6290 unsigned int, unsigned int, unsigned int, off_t
*);
6293 #ifdef HAVE_TARGET_64_LITTLE
6296 Layout::layout
<64, false>(Sized_relobj_file
<64, false>* object
,
6299 const elfcpp::Shdr
<64, false>& shdr
,
6300 unsigned int, unsigned int, unsigned int, off_t
*);
6303 #ifdef HAVE_TARGET_64_BIG
6306 Layout::layout
<64, true>(Sized_relobj_file
<64, true>* object
,
6309 const elfcpp::Shdr
<64, true>& shdr
,
6310 unsigned int, unsigned int, unsigned int, off_t
*);
6313 #ifdef HAVE_TARGET_32_LITTLE
6316 Layout::layout_reloc
<32, false>(Sized_relobj_file
<32, false>* object
,
6317 unsigned int reloc_shndx
,
6318 const elfcpp::Shdr
<32, false>& shdr
,
6319 Output_section
* data_section
,
6320 Relocatable_relocs
* rr
);
6323 #ifdef HAVE_TARGET_32_BIG
6326 Layout::layout_reloc
<32, true>(Sized_relobj_file
<32, true>* object
,
6327 unsigned int reloc_shndx
,
6328 const elfcpp::Shdr
<32, true>& shdr
,
6329 Output_section
* data_section
,
6330 Relocatable_relocs
* rr
);
6333 #ifdef HAVE_TARGET_64_LITTLE
6336 Layout::layout_reloc
<64, false>(Sized_relobj_file
<64, false>* object
,
6337 unsigned int reloc_shndx
,
6338 const elfcpp::Shdr
<64, false>& shdr
,
6339 Output_section
* data_section
,
6340 Relocatable_relocs
* rr
);
6343 #ifdef HAVE_TARGET_64_BIG
6346 Layout::layout_reloc
<64, true>(Sized_relobj_file
<64, true>* object
,
6347 unsigned int reloc_shndx
,
6348 const elfcpp::Shdr
<64, true>& shdr
,
6349 Output_section
* data_section
,
6350 Relocatable_relocs
* rr
);
6353 #ifdef HAVE_TARGET_32_LITTLE
6356 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
6357 Sized_relobj_file
<32, false>* object
,
6359 const char* group_section_name
,
6360 const char* signature
,
6361 const elfcpp::Shdr
<32, false>& shdr
,
6362 elfcpp::Elf_Word flags
,
6363 std::vector
<unsigned int>* shndxes
);
6366 #ifdef HAVE_TARGET_32_BIG
6369 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
6370 Sized_relobj_file
<32, true>* object
,
6372 const char* group_section_name
,
6373 const char* signature
,
6374 const elfcpp::Shdr
<32, true>& shdr
,
6375 elfcpp::Elf_Word flags
,
6376 std::vector
<unsigned int>* shndxes
);
6379 #ifdef HAVE_TARGET_64_LITTLE
6382 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
6383 Sized_relobj_file
<64, false>* object
,
6385 const char* group_section_name
,
6386 const char* signature
,
6387 const elfcpp::Shdr
<64, false>& shdr
,
6388 elfcpp::Elf_Word flags
,
6389 std::vector
<unsigned int>* shndxes
);
6392 #ifdef HAVE_TARGET_64_BIG
6395 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
6396 Sized_relobj_file
<64, true>* object
,
6398 const char* group_section_name
,
6399 const char* signature
,
6400 const elfcpp::Shdr
<64, true>& shdr
,
6401 elfcpp::Elf_Word flags
,
6402 std::vector
<unsigned int>* shndxes
);
6405 #ifdef HAVE_TARGET_32_LITTLE
6408 Layout::layout_eh_frame
<32, false>(Sized_relobj_file
<32, false>* object
,
6409 const unsigned char* symbols
,
6411 const unsigned char* symbol_names
,
6412 off_t symbol_names_size
,
6414 const elfcpp::Shdr
<32, false>& shdr
,
6415 unsigned int reloc_shndx
,
6416 unsigned int reloc_type
,
6420 #ifdef HAVE_TARGET_32_BIG
6423 Layout::layout_eh_frame
<32, true>(Sized_relobj_file
<32, true>* object
,
6424 const unsigned char* symbols
,
6426 const unsigned char* symbol_names
,
6427 off_t symbol_names_size
,
6429 const elfcpp::Shdr
<32, true>& shdr
,
6430 unsigned int reloc_shndx
,
6431 unsigned int reloc_type
,
6435 #ifdef HAVE_TARGET_64_LITTLE
6438 Layout::layout_eh_frame
<64, false>(Sized_relobj_file
<64, false>* object
,
6439 const unsigned char* symbols
,
6441 const unsigned char* symbol_names
,
6442 off_t symbol_names_size
,
6444 const elfcpp::Shdr
<64, false>& shdr
,
6445 unsigned int reloc_shndx
,
6446 unsigned int reloc_type
,
6450 #ifdef HAVE_TARGET_64_BIG
6453 Layout::layout_eh_frame
<64, true>(Sized_relobj_file
<64, true>* object
,
6454 const unsigned char* symbols
,
6456 const unsigned char* symbol_names
,
6457 off_t symbol_names_size
,
6459 const elfcpp::Shdr
<64, true>& shdr
,
6460 unsigned int reloc_shndx
,
6461 unsigned int reloc_type
,
6465 #ifdef HAVE_TARGET_32_LITTLE
6468 Layout::add_to_gdb_index(bool is_type_unit
,
6469 Sized_relobj
<32, false>* object
,
6470 const unsigned char* symbols
,
6473 unsigned int reloc_shndx
,
6474 unsigned int reloc_type
);
6477 #ifdef HAVE_TARGET_32_BIG
6480 Layout::add_to_gdb_index(bool is_type_unit
,
6481 Sized_relobj
<32, true>* object
,
6482 const unsigned char* symbols
,
6485 unsigned int reloc_shndx
,
6486 unsigned int reloc_type
);
6489 #ifdef HAVE_TARGET_64_LITTLE
6492 Layout::add_to_gdb_index(bool is_type_unit
,
6493 Sized_relobj
<64, false>* object
,
6494 const unsigned char* symbols
,
6497 unsigned int reloc_shndx
,
6498 unsigned int reloc_type
);
6501 #ifdef HAVE_TARGET_64_BIG
6504 Layout::add_to_gdb_index(bool is_type_unit
,
6505 Sized_relobj
<64, true>* object
,
6506 const unsigned char* symbols
,
6509 unsigned int reloc_shndx
,
6510 unsigned int reloc_type
);
6513 } // End namespace gold.