1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
38 struct elf_info_failed
40 struct bfd_link_info
*info
;
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
47 struct elf_find_verdep_info
49 /* General link information. */
50 struct bfd_link_info
*info
;
51 /* The number of dependencies. */
53 /* Whether we had a failure. */
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie
*cookie
,
62 unsigned long r_symndx
,
65 if (r_symndx
>= cookie
->locsymcount
66 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
68 struct elf_link_hash_entry
*h
;
70 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
72 while (h
->root
.type
== bfd_link_hash_indirect
73 || h
->root
.type
== bfd_link_hash_warning
)
74 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
76 if ((h
->root
.type
== bfd_link_hash_defined
77 || h
->root
.type
== bfd_link_hash_defweak
)
78 && discarded_section (h
->root
.u
.def
.section
))
79 return h
->root
.u
.def
.section
;
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
89 Elf_Internal_Sym
*isym
;
91 /* Need to: get the symbol; get the section. */
92 isym
= &cookie
->locsyms
[r_symndx
];
93 isec
= bfd_section_from_elf_index (cookie
->abfd
, isym
->st_shndx
);
95 && discard
? discarded_section (isec
) : 1)
101 /* Define a symbol in a dynamic linkage section. */
103 struct elf_link_hash_entry
*
104 _bfd_elf_define_linkage_sym (bfd
*abfd
,
105 struct bfd_link_info
*info
,
109 struct elf_link_hash_entry
*h
;
110 struct bfd_link_hash_entry
*bh
;
111 const struct elf_backend_data
*bed
;
113 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h
->root
.type
= bfd_link_hash_new
;
126 bed
= get_elf_backend_data (abfd
);
127 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
128 sec
, 0, NULL
, FALSE
, bed
->collect
,
131 h
= (struct elf_link_hash_entry
*) bh
;
132 BFD_ASSERT (h
!= NULL
);
135 h
->root
.linker_def
= 1;
136 h
->type
= STT_OBJECT
;
137 if (ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
)
138 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
140 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
145 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
149 struct elf_link_hash_entry
*h
;
150 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
151 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
153 /* This function may be called more than once. */
154 if (htab
->sgot
!= NULL
)
157 flags
= bed
->dynamic_sec_flags
;
159 s
= bfd_make_section_anyway_with_flags (abfd
,
160 (bed
->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed
->dynamic_sec_flags
165 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
169 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
171 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
175 if (bed
->want_got_plt
)
177 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt", flags
);
179 || !bfd_set_section_alignment (abfd
, s
,
180 bed
->s
->log_file_align
))
185 /* The first bit of the global offset table is the header. */
186 s
->size
+= bed
->got_header_size
;
188 if (bed
->want_got_sym
)
190 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
191 (or .got.plt) section. We don't do this in the linker script
192 because we don't want to define the symbol if we are not creating
193 a global offset table. */
194 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
195 "_GLOBAL_OFFSET_TABLE_");
196 elf_hash_table (info
)->hgot
= h
;
204 /* Create a strtab to hold the dynamic symbol names. */
206 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
208 struct elf_link_hash_table
*hash_table
;
210 hash_table
= elf_hash_table (info
);
211 if (hash_table
->dynobj
== NULL
)
213 /* We may not set dynobj, an input file holding linker created
214 dynamic sections to abfd, which may be a dynamic object with
215 its own dynamic sections. We need to find a normal input file
216 to hold linker created sections if possible. */
217 if ((abfd
->flags
& (DYNAMIC
| BFD_PLUGIN
)) != 0)
221 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
223 & (DYNAMIC
| BFD_LINKER_CREATED
| BFD_PLUGIN
)) == 0
224 && bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
225 && elf_object_id (ibfd
) == elf_hash_table_id (hash_table
)
226 && !((s
= ibfd
->sections
) != NULL
227 && s
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
))
233 hash_table
->dynobj
= abfd
;
236 if (hash_table
->dynstr
== NULL
)
238 hash_table
->dynstr
= _bfd_elf_strtab_init ();
239 if (hash_table
->dynstr
== NULL
)
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
253 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
257 const struct elf_backend_data
*bed
;
258 struct elf_link_hash_entry
*h
;
260 if (! is_elf_hash_table (info
->hash
))
263 if (elf_hash_table (info
)->dynamic_sections_created
)
266 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
269 abfd
= elf_hash_table (info
)->dynobj
;
270 bed
= get_elf_backend_data (abfd
);
272 flags
= bed
->dynamic_sec_flags
;
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info
) && !info
->nointerp
)
278 s
= bfd_make_section_anyway_with_flags (abfd
, ".interp",
279 flags
| SEC_READONLY
);
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version_d",
287 flags
| SEC_READONLY
);
289 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
292 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version",
293 flags
| SEC_READONLY
);
295 || ! bfd_set_section_alignment (abfd
, s
, 1))
298 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version_r",
299 flags
| SEC_READONLY
);
301 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
304 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynsym",
305 flags
| SEC_READONLY
);
307 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
309 elf_hash_table (info
)->dynsym
= s
;
311 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynstr",
312 flags
| SEC_READONLY
);
316 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynamic", flags
);
318 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC");
328 elf_hash_table (info
)->hdynamic
= h
;
334 s
= bfd_make_section_anyway_with_flags (abfd
, ".hash",
335 flags
| SEC_READONLY
);
337 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
339 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
342 if (info
->emit_gnu_hash
)
344 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.hash",
345 flags
| SEC_READONLY
);
347 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed
->s
->arch_size
== 64)
353 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
355 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed
->elf_backend_create_dynamic_sections
== NULL
362 || ! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
365 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
370 /* Create dynamic sections when linking against a dynamic object. */
373 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
375 flagword flags
, pltflags
;
376 struct elf_link_hash_entry
*h
;
378 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
379 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags
= bed
->dynamic_sec_flags
;
386 if (bed
->plt_not_loaded
)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
392 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
393 if (bed
->plt_readonly
)
394 pltflags
|= SEC_READONLY
;
396 s
= bfd_make_section_anyway_with_flags (abfd
, ".plt", pltflags
);
398 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
404 if (bed
->want_plt_sym
)
406 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info
)->hplt
= h
;
413 s
= bfd_make_section_anyway_with_flags (abfd
,
414 (bed
->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags
| SEC_READONLY
);
418 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
422 if (! _bfd_elf_create_got_section (abfd
, info
))
425 if (bed
->want_dynbss
)
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynbss",
434 SEC_ALLOC
| SEC_LINKER_CREATED
);
439 if (bed
->want_dynrelro
)
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s
= bfd_make_section_anyway_with_flags (abfd
, ".data.rel.ro",
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
462 if (bfd_link_executable (info
))
464 s
= bfd_make_section_anyway_with_flags (abfd
,
465 (bed
->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags
| SEC_READONLY
);
469 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
473 if (bed
->want_dynrelro
)
475 s
= (bfd_make_section_anyway_with_flags
476 (abfd
, (bed
->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags
| SEC_READONLY
));
480 || ! bfd_set_section_alignment (abfd
, s
,
481 bed
->s
->log_file_align
))
483 htab
->sreldynrelro
= s
;
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
501 struct elf_link_hash_entry
*h
)
503 if (h
->dynindx
== -1)
505 struct elf_strtab_hash
*dynstr
;
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h
->other
))
518 if (h
->root
.type
!= bfd_link_hash_undefined
519 && h
->root
.type
!= bfd_link_hash_undefweak
)
522 if (!elf_hash_table (info
)->is_relocatable_executable
)
530 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
531 ++elf_hash_table (info
)->dynsymcount
;
533 dynstr
= elf_hash_table (info
)->dynstr
;
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
542 /* We don't put any version information in the dynamic string
544 name
= h
->root
.root
.string
;
545 p
= strchr (name
, ELF_VER_CHR
);
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
554 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
559 if (indx
== (size_t) -1)
561 h
->dynstr_index
= indx
;
567 /* Mark a symbol dynamic. */
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
571 struct elf_link_hash_entry
*h
,
572 Elf_Internal_Sym
*sym
)
574 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
576 /* It may be called more than once on the same H. */
577 if(h
->dynamic
|| bfd_link_relocatable (info
))
580 if ((info
->dynamic_data
581 && (h
->type
== STT_OBJECT
582 || h
->type
== STT_COMMON
584 && (ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
585 || ELF_ST_TYPE (sym
->st_info
) == STT_COMMON
))))
588 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
593 h
->root
.non_ir_ref_dynamic
= 1;
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
601 bfd_elf_record_link_assignment (bfd
*output_bfd
,
602 struct bfd_link_info
*info
,
607 struct elf_link_hash_entry
*h
, *hv
;
608 struct elf_link_hash_table
*htab
;
609 const struct elf_backend_data
*bed
;
611 if (!is_elf_hash_table (info
->hash
))
614 htab
= elf_hash_table (info
);
615 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
619 if (h
->root
.type
== bfd_link_hash_warning
)
620 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
622 if (h
->versioned
== unknown
)
624 /* Set versioned if symbol version is unknown. */
625 char *version
= strrchr (name
, ELF_VER_CHR
);
628 if (version
> name
&& version
[-1] != ELF_VER_CHR
)
629 h
->versioned
= versioned_hidden
;
631 h
->versioned
= versioned
;
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
639 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
643 switch (h
->root
.type
)
645 case bfd_link_hash_defined
:
646 case bfd_link_hash_defweak
:
647 case bfd_link_hash_common
:
649 case bfd_link_hash_undefweak
:
650 case bfd_link_hash_undefined
:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h
->root
.type
= bfd_link_hash_new
;
655 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
656 bfd_link_repair_undef_list (&htab
->root
);
658 case bfd_link_hash_new
:
660 case bfd_link_hash_indirect
:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed
= get_elf_backend_data (output_bfd
);
665 while (hv
->root
.type
== bfd_link_hash_indirect
666 || hv
->root
.type
== bfd_link_hash_warning
)
667 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
668 /* We don't need to update h->root.u since linker will set them
670 h
->root
.type
= bfd_link_hash_undefined
;
671 hv
->root
.type
= bfd_link_hash_indirect
;
672 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
673 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
687 h
->root
.type
= bfd_link_hash_undefined
;
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
693 if (h
->def_dynamic
&& !h
->def_regular
)
694 h
->verinfo
.verdef
= NULL
;
696 /* Make sure this symbol is not garbage collected. */
703 bed
= get_elf_backend_data (output_bfd
);
704 if (ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
)
705 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
706 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
711 if (!bfd_link_relocatable (info
)
713 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
719 || bfd_link_dll (info
)
720 || elf_hash_table (info
)->is_relocatable_executable
)
724 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
732 struct elf_link_hash_entry
*def
= weakdef (h
);
734 if (def
->dynindx
== -1
735 && !bfd_elf_link_record_dynamic_symbol (info
, def
))
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
753 struct elf_link_local_dynamic_entry
*entry
;
754 struct elf_link_hash_table
*eht
;
755 struct elf_strtab_hash
*dynstr
;
758 Elf_External_Sym_Shndx eshndx
;
759 char esym
[sizeof (Elf64_External_Sym
)];
761 if (! is_elf_hash_table (info
->hash
))
764 /* See if the entry exists already. */
765 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
766 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
769 amt
= sizeof (*entry
);
770 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
776 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
778 bfd_release (input_bfd
, entry
);
782 if (entry
->isym
.st_shndx
!= SHN_UNDEF
783 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
787 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
788 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd
, entry
);
797 name
= (bfd_elf_string_from_elf_section
798 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
799 entry
->isym
.st_name
));
801 dynstr
= elf_hash_table (info
)->dynstr
;
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
810 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
811 if (dynstr_index
== (size_t) -1)
813 entry
->isym
.st_name
= dynstr_index
;
815 eht
= elf_hash_table (info
);
817 entry
->next
= eht
->dynlocal
;
818 eht
->dynlocal
= entry
;
819 entry
->input_bfd
= input_bfd
;
820 entry
->input_indx
= input_indx
;
823 /* Whatever binding the symbol had before, it's now local. */
825 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
827 /* The dynindx will be set at the end of size_dynamic_sections. */
832 /* Return the dynindex of a local dynamic symbol. */
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
839 struct elf_link_local_dynamic_entry
*e
;
841 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
842 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
855 size_t *count
= (size_t *) data
;
860 if (h
->dynindx
!= -1)
861 h
->dynindx
= ++(*count
);
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
874 size_t *count
= (size_t *) data
;
876 if (!h
->forced_local
)
879 if (h
->dynindx
!= -1)
880 h
->dynindx
= ++(*count
);
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
888 _bfd_elf_omit_section_dynsym_default (bfd
*output_bfd ATTRIBUTE_UNUSED
,
889 struct bfd_link_info
*info
,
892 struct elf_link_hash_table
*htab
;
895 switch (elf_section_data (p
)->this_hdr
.sh_type
)
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
902 htab
= elf_hash_table (info
);
903 if (p
== htab
->tls_sec
)
906 if (htab
->text_index_section
!= NULL
)
907 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
909 return (htab
->dynobj
!= NULL
910 && (ip
= bfd_get_linker_section (htab
->dynobj
, p
->name
)) != NULL
911 && ip
->output_section
== p
);
913 /* There shouldn't be section relative relocations
914 against any other section. */
921 _bfd_elf_omit_section_dynsym_all
922 (bfd
*output_bfd ATTRIBUTE_UNUSED
,
923 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
924 asection
*p ATTRIBUTE_UNUSED
)
929 /* Assign dynsym indices. In a shared library we generate a section
930 symbol for each output section, which come first. Next come symbols
931 which have been forced to local binding. Then all of the back-end
932 allocated local dynamic syms, followed by the rest of the global
933 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
934 (This prevents the early call before elf_backend_init_index_section
935 and strip_excluded_output_sections setting dynindx for sections
936 that are stripped.) */
939 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
940 struct bfd_link_info
*info
,
941 unsigned long *section_sym_count
)
943 unsigned long dynsymcount
= 0;
944 bfd_boolean do_sec
= section_sym_count
!= NULL
;
946 if (bfd_link_pic (info
)
947 || elf_hash_table (info
)->is_relocatable_executable
)
949 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
951 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
952 if ((p
->flags
& SEC_EXCLUDE
) == 0
953 && (p
->flags
& SEC_ALLOC
) != 0
954 && elf_hash_table (info
)->dynamic_relocs
955 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
959 elf_section_data (p
)->dynindx
= dynsymcount
;
962 elf_section_data (p
)->dynindx
= 0;
965 *section_sym_count
= dynsymcount
;
967 elf_link_hash_traverse (elf_hash_table (info
),
968 elf_link_renumber_local_hash_table_dynsyms
,
971 if (elf_hash_table (info
)->dynlocal
)
973 struct elf_link_local_dynamic_entry
*p
;
974 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
975 p
->dynindx
= ++dynsymcount
;
977 elf_hash_table (info
)->local_dynsymcount
= dynsymcount
;
979 elf_link_hash_traverse (elf_hash_table (info
),
980 elf_link_renumber_hash_table_dynsyms
,
983 /* There is an unused NULL entry at the head of the table which we
984 must account for in our count even if the table is empty since it
985 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
989 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
993 /* Merge st_other field. */
996 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
997 const Elf_Internal_Sym
*isym
, asection
*sec
,
998 bfd_boolean definition
, bfd_boolean dynamic
)
1000 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1002 /* If st_other has a processor-specific meaning, specific
1003 code might be needed here. */
1004 if (bed
->elf_backend_merge_symbol_attribute
)
1005 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
1010 unsigned symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
1011 unsigned hvis
= ELF_ST_VISIBILITY (h
->other
);
1013 /* Keep the most constraining visibility. Leave the remainder
1014 of the st_other field to elf_backend_merge_symbol_attribute. */
1015 if (symvis
- 1 < hvis
- 1)
1016 h
->other
= symvis
| (h
->other
& ~ELF_ST_VISIBILITY (-1));
1019 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_DEFAULT
1020 && (sec
->flags
& SEC_READONLY
) == 0)
1021 h
->protected_def
= 1;
1024 /* This function is called when we want to merge a new symbol with an
1025 existing symbol. It handles the various cases which arise when we
1026 find a definition in a dynamic object, or when there is already a
1027 definition in a dynamic object. The new symbol is described by
1028 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1029 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1030 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1031 of an old common symbol. We set OVERRIDE if the old symbol is
1032 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1033 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1034 to change. By OK to change, we mean that we shouldn't warn if the
1035 type or size does change. */
1038 _bfd_elf_merge_symbol (bfd
*abfd
,
1039 struct bfd_link_info
*info
,
1041 Elf_Internal_Sym
*sym
,
1044 struct elf_link_hash_entry
**sym_hash
,
1046 bfd_boolean
*pold_weak
,
1047 unsigned int *pold_alignment
,
1049 bfd_boolean
*override
,
1050 bfd_boolean
*type_change_ok
,
1051 bfd_boolean
*size_change_ok
,
1052 bfd_boolean
*matched
)
1054 asection
*sec
, *oldsec
;
1055 struct elf_link_hash_entry
*h
;
1056 struct elf_link_hash_entry
*hi
;
1057 struct elf_link_hash_entry
*flip
;
1060 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
1061 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
1062 const struct elf_backend_data
*bed
;
1064 bfd_boolean default_sym
= *matched
;
1070 bind
= ELF_ST_BIND (sym
->st_info
);
1072 if (! bfd_is_und_section (sec
))
1073 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
1075 h
= ((struct elf_link_hash_entry
*)
1076 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
1081 bed
= get_elf_backend_data (abfd
);
1083 /* NEW_VERSION is the symbol version of the new symbol. */
1084 if (h
->versioned
!= unversioned
)
1086 /* Symbol version is unknown or versioned. */
1087 new_version
= strrchr (name
, ELF_VER_CHR
);
1090 if (h
->versioned
== unknown
)
1092 if (new_version
> name
&& new_version
[-1] != ELF_VER_CHR
)
1093 h
->versioned
= versioned_hidden
;
1095 h
->versioned
= versioned
;
1098 if (new_version
[0] == '\0')
1102 h
->versioned
= unversioned
;
1107 /* For merging, we only care about real symbols. But we need to make
1108 sure that indirect symbol dynamic flags are updated. */
1110 while (h
->root
.type
== bfd_link_hash_indirect
1111 || h
->root
.type
== bfd_link_hash_warning
)
1112 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1116 if (hi
== h
|| h
->root
.type
== bfd_link_hash_new
)
1120 /* OLD_HIDDEN is true if the existing symbol is only visible
1121 to the symbol with the same symbol version. NEW_HIDDEN is
1122 true if the new symbol is only visible to the symbol with
1123 the same symbol version. */
1124 bfd_boolean old_hidden
= h
->versioned
== versioned_hidden
;
1125 bfd_boolean new_hidden
= hi
->versioned
== versioned_hidden
;
1126 if (!old_hidden
&& !new_hidden
)
1127 /* The new symbol matches the existing symbol if both
1132 /* OLD_VERSION is the symbol version of the existing
1136 if (h
->versioned
>= versioned
)
1137 old_version
= strrchr (h
->root
.root
.string
,
1142 /* The new symbol matches the existing symbol if they
1143 have the same symbol version. */
1144 *matched
= (old_version
== new_version
1145 || (old_version
!= NULL
1146 && new_version
!= NULL
1147 && strcmp (old_version
, new_version
) == 0));
1152 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1157 switch (h
->root
.type
)
1162 case bfd_link_hash_undefined
:
1163 case bfd_link_hash_undefweak
:
1164 oldbfd
= h
->root
.u
.undef
.abfd
;
1167 case bfd_link_hash_defined
:
1168 case bfd_link_hash_defweak
:
1169 oldbfd
= h
->root
.u
.def
.section
->owner
;
1170 oldsec
= h
->root
.u
.def
.section
;
1173 case bfd_link_hash_common
:
1174 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1175 oldsec
= h
->root
.u
.c
.p
->section
;
1177 *pold_alignment
= h
->root
.u
.c
.p
->alignment_power
;
1180 if (poldbfd
&& *poldbfd
== NULL
)
1183 /* Differentiate strong and weak symbols. */
1184 newweak
= bind
== STB_WEAK
;
1185 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1186 || h
->root
.type
== bfd_link_hash_undefweak
);
1188 *pold_weak
= oldweak
;
1190 /* We have to check it for every instance since the first few may be
1191 references and not all compilers emit symbol type for undefined
1193 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
1195 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1196 respectively, is from a dynamic object. */
1198 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1200 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1201 syms and defined syms in dynamic libraries respectively.
1202 ref_dynamic on the other hand can be set for a symbol defined in
1203 a dynamic library, and def_dynamic may not be set; When the
1204 definition in a dynamic lib is overridden by a definition in the
1205 executable use of the symbol in the dynamic lib becomes a
1206 reference to the executable symbol. */
1209 if (bfd_is_und_section (sec
))
1211 if (bind
!= STB_WEAK
)
1213 h
->ref_dynamic_nonweak
= 1;
1214 hi
->ref_dynamic_nonweak
= 1;
1219 /* Update the existing symbol only if they match. */
1222 hi
->dynamic_def
= 1;
1226 /* If we just created the symbol, mark it as being an ELF symbol.
1227 Other than that, there is nothing to do--there is no merge issue
1228 with a newly defined symbol--so we just return. */
1230 if (h
->root
.type
== bfd_link_hash_new
)
1236 /* In cases involving weak versioned symbols, we may wind up trying
1237 to merge a symbol with itself. Catch that here, to avoid the
1238 confusion that results if we try to override a symbol with
1239 itself. The additional tests catch cases like
1240 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1241 dynamic object, which we do want to handle here. */
1243 && (newweak
|| oldweak
)
1244 && ((abfd
->flags
& DYNAMIC
) == 0
1245 || !h
->def_regular
))
1250 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1251 else if (oldsec
!= NULL
)
1253 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1254 indices used by MIPS ELF. */
1255 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1258 /* Handle a case where plugin_notice won't be called and thus won't
1259 set the non_ir_ref flags on the first pass over symbols. */
1261 && (oldbfd
->flags
& BFD_PLUGIN
) != (abfd
->flags
& BFD_PLUGIN
)
1262 && newdyn
!= olddyn
)
1264 h
->root
.non_ir_ref_dynamic
= TRUE
;
1265 hi
->root
.non_ir_ref_dynamic
= TRUE
;
1268 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1269 respectively, appear to be a definition rather than reference. */
1271 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1273 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1274 && h
->root
.type
!= bfd_link_hash_undefweak
1275 && h
->root
.type
!= bfd_link_hash_common
);
1277 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1278 respectively, appear to be a function. */
1280 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1281 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1283 oldfunc
= (h
->type
!= STT_NOTYPE
1284 && bed
->is_function_type (h
->type
));
1286 if (!(newfunc
&& oldfunc
)
1287 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1288 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1289 && h
->type
!= STT_NOTYPE
1290 && (newdef
|| bfd_is_com_section (sec
))
1291 && (olddef
|| h
->root
.type
== bfd_link_hash_common
))
1293 /* If creating a default indirect symbol ("foo" or "foo@") from
1294 a dynamic versioned definition ("foo@@") skip doing so if
1295 there is an existing regular definition with a different
1296 type. We don't want, for example, a "time" variable in the
1297 executable overriding a "time" function in a shared library. */
1305 /* When adding a symbol from a regular object file after we have
1306 created indirect symbols, undo the indirection and any
1313 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1314 h
->forced_local
= 0;
1318 if (h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1320 h
->root
.type
= bfd_link_hash_undefined
;
1321 h
->root
.u
.undef
.abfd
= abfd
;
1325 h
->root
.type
= bfd_link_hash_new
;
1326 h
->root
.u
.undef
.abfd
= NULL
;
1332 /* Check TLS symbols. We don't check undefined symbols introduced
1333 by "ld -u" which have no type (and oldbfd NULL), and we don't
1334 check symbols from plugins because they also have no type. */
1336 && (oldbfd
->flags
& BFD_PLUGIN
) == 0
1337 && (abfd
->flags
& BFD_PLUGIN
) == 0
1338 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1339 && (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
))
1342 bfd_boolean ntdef
, tdef
;
1343 asection
*ntsec
, *tsec
;
1345 if (h
->type
== STT_TLS
)
1366 /* xgettext:c-format */
1367 (_("%s: TLS definition in %pB section %pA "
1368 "mismatches non-TLS definition in %pB section %pA"),
1369 h
->root
.root
.string
, tbfd
, tsec
, ntbfd
, ntsec
);
1370 else if (!tdef
&& !ntdef
)
1372 /* xgettext:c-format */
1373 (_("%s: TLS reference in %pB "
1374 "mismatches non-TLS reference in %pB"),
1375 h
->root
.root
.string
, tbfd
, ntbfd
);
1378 /* xgettext:c-format */
1379 (_("%s: TLS definition in %pB section %pA "
1380 "mismatches non-TLS reference in %pB"),
1381 h
->root
.root
.string
, tbfd
, tsec
, ntbfd
);
1384 /* xgettext:c-format */
1385 (_("%s: TLS reference in %pB "
1386 "mismatches non-TLS definition in %pB section %pA"),
1387 h
->root
.root
.string
, tbfd
, ntbfd
, ntsec
);
1389 bfd_set_error (bfd_error_bad_value
);
1393 /* If the old symbol has non-default visibility, we ignore the new
1394 definition from a dynamic object. */
1396 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1397 && !bfd_is_und_section (sec
))
1400 /* Make sure this symbol is dynamic. */
1402 hi
->ref_dynamic
= 1;
1403 /* A protected symbol has external availability. Make sure it is
1404 recorded as dynamic.
1406 FIXME: Should we check type and size for protected symbol? */
1407 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1408 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1413 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1416 /* If the new symbol with non-default visibility comes from a
1417 relocatable file and the old definition comes from a dynamic
1418 object, we remove the old definition. */
1419 if (hi
->root
.type
== bfd_link_hash_indirect
)
1421 /* Handle the case where the old dynamic definition is
1422 default versioned. We need to copy the symbol info from
1423 the symbol with default version to the normal one if it
1424 was referenced before. */
1427 hi
->root
.type
= h
->root
.type
;
1428 h
->root
.type
= bfd_link_hash_indirect
;
1429 (*bed
->elf_backend_copy_indirect_symbol
) (info
, hi
, h
);
1431 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1432 if (ELF_ST_VISIBILITY (sym
->st_other
) != STV_PROTECTED
)
1434 /* If the new symbol is hidden or internal, completely undo
1435 any dynamic link state. */
1436 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1437 h
->forced_local
= 0;
1444 /* FIXME: Should we check type and size for protected symbol? */
1454 /* If the old symbol was undefined before, then it will still be
1455 on the undefs list. If the new symbol is undefined or
1456 common, we can't make it bfd_link_hash_new here, because new
1457 undefined or common symbols will be added to the undefs list
1458 by _bfd_generic_link_add_one_symbol. Symbols may not be
1459 added twice to the undefs list. Also, if the new symbol is
1460 undefweak then we don't want to lose the strong undef. */
1461 if (h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1463 h
->root
.type
= bfd_link_hash_undefined
;
1464 h
->root
.u
.undef
.abfd
= abfd
;
1468 h
->root
.type
= bfd_link_hash_new
;
1469 h
->root
.u
.undef
.abfd
= NULL
;
1472 if (ELF_ST_VISIBILITY (sym
->st_other
) != STV_PROTECTED
)
1474 /* If the new symbol is hidden or internal, completely undo
1475 any dynamic link state. */
1476 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1477 h
->forced_local
= 0;
1483 /* FIXME: Should we check type and size for protected symbol? */
1489 /* If a new weak symbol definition comes from a regular file and the
1490 old symbol comes from a dynamic library, we treat the new one as
1491 strong. Similarly, an old weak symbol definition from a regular
1492 file is treated as strong when the new symbol comes from a dynamic
1493 library. Further, an old weak symbol from a dynamic library is
1494 treated as strong if the new symbol is from a dynamic library.
1495 This reflects the way glibc's ld.so works.
1497 Also allow a weak symbol to override a linker script symbol
1498 defined by an early pass over the script. This is done so the
1499 linker knows the symbol is defined in an object file, for the
1500 DEFINED script function.
1502 Do this before setting *type_change_ok or *size_change_ok so that
1503 we warn properly when dynamic library symbols are overridden. */
1505 if (newdef
&& !newdyn
&& (olddyn
|| h
->root
.ldscript_def
))
1507 if (olddef
&& newdyn
)
1510 /* Allow changes between different types of function symbol. */
1511 if (newfunc
&& oldfunc
)
1512 *type_change_ok
= TRUE
;
1514 /* It's OK to change the type if either the existing symbol or the
1515 new symbol is weak. A type change is also OK if the old symbol
1516 is undefined and the new symbol is defined. */
1521 && h
->root
.type
== bfd_link_hash_undefined
))
1522 *type_change_ok
= TRUE
;
1524 /* It's OK to change the size if either the existing symbol or the
1525 new symbol is weak, or if the old symbol is undefined. */
1528 || h
->root
.type
== bfd_link_hash_undefined
)
1529 *size_change_ok
= TRUE
;
1531 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1532 symbol, respectively, appears to be a common symbol in a dynamic
1533 object. If a symbol appears in an uninitialized section, and is
1534 not weak, and is not a function, then it may be a common symbol
1535 which was resolved when the dynamic object was created. We want
1536 to treat such symbols specially, because they raise special
1537 considerations when setting the symbol size: if the symbol
1538 appears as a common symbol in a regular object, and the size in
1539 the regular object is larger, we must make sure that we use the
1540 larger size. This problematic case can always be avoided in C,
1541 but it must be handled correctly when using Fortran shared
1544 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1545 likewise for OLDDYNCOMMON and OLDDEF.
1547 Note that this test is just a heuristic, and that it is quite
1548 possible to have an uninitialized symbol in a shared object which
1549 is really a definition, rather than a common symbol. This could
1550 lead to some minor confusion when the symbol really is a common
1551 symbol in some regular object. However, I think it will be
1557 && (sec
->flags
& SEC_ALLOC
) != 0
1558 && (sec
->flags
& SEC_LOAD
) == 0
1561 newdyncommon
= TRUE
;
1563 newdyncommon
= FALSE
;
1567 && h
->root
.type
== bfd_link_hash_defined
1569 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1570 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1573 olddyncommon
= TRUE
;
1575 olddyncommon
= FALSE
;
1577 /* We now know everything about the old and new symbols. We ask the
1578 backend to check if we can merge them. */
1579 if (bed
->merge_symbol
!= NULL
)
1581 if (!bed
->merge_symbol (h
, sym
, psec
, newdef
, olddef
, oldbfd
, oldsec
))
1586 /* There are multiple definitions of a normal symbol. Skip the
1587 default symbol as well as definition from an IR object. */
1588 if (olddef
&& !olddyn
&& !oldweak
&& newdef
&& !newdyn
&& !newweak
1589 && !default_sym
&& h
->def_regular
1591 && (oldbfd
->flags
& BFD_PLUGIN
) != 0
1592 && (abfd
->flags
& BFD_PLUGIN
) == 0))
1594 /* Handle a multiple definition. */
1595 (*info
->callbacks
->multiple_definition
) (info
, &h
->root
,
1596 abfd
, sec
, *pvalue
);
1601 /* If both the old and the new symbols look like common symbols in a
1602 dynamic object, set the size of the symbol to the larger of the
1607 && sym
->st_size
!= h
->size
)
1609 /* Since we think we have two common symbols, issue a multiple
1610 common warning if desired. Note that we only warn if the
1611 size is different. If the size is the same, we simply let
1612 the old symbol override the new one as normally happens with
1613 symbols defined in dynamic objects. */
1615 (*info
->callbacks
->multiple_common
) (info
, &h
->root
, abfd
,
1616 bfd_link_hash_common
, sym
->st_size
);
1617 if (sym
->st_size
> h
->size
)
1618 h
->size
= sym
->st_size
;
1620 *size_change_ok
= TRUE
;
1623 /* If we are looking at a dynamic object, and we have found a
1624 definition, we need to see if the symbol was already defined by
1625 some other object. If so, we want to use the existing
1626 definition, and we do not want to report a multiple symbol
1627 definition error; we do this by clobbering *PSEC to be
1628 bfd_und_section_ptr.
1630 We treat a common symbol as a definition if the symbol in the
1631 shared library is a function, since common symbols always
1632 represent variables; this can cause confusion in principle, but
1633 any such confusion would seem to indicate an erroneous program or
1634 shared library. We also permit a common symbol in a regular
1635 object to override a weak symbol in a shared object. */
1640 || (h
->root
.type
== bfd_link_hash_common
1641 && (newweak
|| newfunc
))))
1645 newdyncommon
= FALSE
;
1647 *psec
= sec
= bfd_und_section_ptr
;
1648 *size_change_ok
= TRUE
;
1650 /* If we get here when the old symbol is a common symbol, then
1651 we are explicitly letting it override a weak symbol or
1652 function in a dynamic object, and we don't want to warn about
1653 a type change. If the old symbol is a defined symbol, a type
1654 change warning may still be appropriate. */
1656 if (h
->root
.type
== bfd_link_hash_common
)
1657 *type_change_ok
= TRUE
;
1660 /* Handle the special case of an old common symbol merging with a
1661 new symbol which looks like a common symbol in a shared object.
1662 We change *PSEC and *PVALUE to make the new symbol look like a
1663 common symbol, and let _bfd_generic_link_add_one_symbol do the
1667 && h
->root
.type
== bfd_link_hash_common
)
1671 newdyncommon
= FALSE
;
1672 *pvalue
= sym
->st_size
;
1673 *psec
= sec
= bed
->common_section (oldsec
);
1674 *size_change_ok
= TRUE
;
1677 /* Skip weak definitions of symbols that are already defined. */
1678 if (newdef
&& olddef
&& newweak
)
1680 /* Don't skip new non-IR weak syms. */
1681 if (!(oldbfd
!= NULL
1682 && (oldbfd
->flags
& BFD_PLUGIN
) != 0
1683 && (abfd
->flags
& BFD_PLUGIN
) == 0))
1689 /* Merge st_other. If the symbol already has a dynamic index,
1690 but visibility says it should not be visible, turn it into a
1692 elf_merge_st_other (abfd
, h
, sym
, sec
, newdef
, newdyn
);
1693 if (h
->dynindx
!= -1)
1694 switch (ELF_ST_VISIBILITY (h
->other
))
1698 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1703 /* If the old symbol is from a dynamic object, and the new symbol is
1704 a definition which is not from a dynamic object, then the new
1705 symbol overrides the old symbol. Symbols from regular files
1706 always take precedence over symbols from dynamic objects, even if
1707 they are defined after the dynamic object in the link.
1709 As above, we again permit a common symbol in a regular object to
1710 override a definition in a shared object if the shared object
1711 symbol is a function or is weak. */
1716 || (bfd_is_com_section (sec
)
1717 && (oldweak
|| oldfunc
)))
1722 /* Change the hash table entry to undefined, and let
1723 _bfd_generic_link_add_one_symbol do the right thing with the
1726 h
->root
.type
= bfd_link_hash_undefined
;
1727 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1728 *size_change_ok
= TRUE
;
1731 olddyncommon
= FALSE
;
1733 /* We again permit a type change when a common symbol may be
1734 overriding a function. */
1736 if (bfd_is_com_section (sec
))
1740 /* If a common symbol overrides a function, make sure
1741 that it isn't defined dynamically nor has type
1744 h
->type
= STT_NOTYPE
;
1746 *type_change_ok
= TRUE
;
1749 if (hi
->root
.type
== bfd_link_hash_indirect
)
1752 /* This union may have been set to be non-NULL when this symbol
1753 was seen in a dynamic object. We must force the union to be
1754 NULL, so that it is correct for a regular symbol. */
1755 h
->verinfo
.vertree
= NULL
;
1758 /* Handle the special case of a new common symbol merging with an
1759 old symbol that looks like it might be a common symbol defined in
1760 a shared object. Note that we have already handled the case in
1761 which a new common symbol should simply override the definition
1762 in the shared library. */
1765 && bfd_is_com_section (sec
)
1768 /* It would be best if we could set the hash table entry to a
1769 common symbol, but we don't know what to use for the section
1770 or the alignment. */
1771 (*info
->callbacks
->multiple_common
) (info
, &h
->root
, abfd
,
1772 bfd_link_hash_common
, sym
->st_size
);
1774 /* If the presumed common symbol in the dynamic object is
1775 larger, pretend that the new symbol has its size. */
1777 if (h
->size
> *pvalue
)
1780 /* We need to remember the alignment required by the symbol
1781 in the dynamic object. */
1782 BFD_ASSERT (pold_alignment
);
1783 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1786 olddyncommon
= FALSE
;
1788 h
->root
.type
= bfd_link_hash_undefined
;
1789 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1791 *size_change_ok
= TRUE
;
1792 *type_change_ok
= TRUE
;
1794 if (hi
->root
.type
== bfd_link_hash_indirect
)
1797 h
->verinfo
.vertree
= NULL
;
1802 /* Handle the case where we had a versioned symbol in a dynamic
1803 library and now find a definition in a normal object. In this
1804 case, we make the versioned symbol point to the normal one. */
1805 flip
->root
.type
= h
->root
.type
;
1806 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1807 h
->root
.type
= bfd_link_hash_indirect
;
1808 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1809 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1813 flip
->ref_dynamic
= 1;
1820 /* This function is called to create an indirect symbol from the
1821 default for the symbol with the default version if needed. The
1822 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1823 set DYNSYM if the new indirect symbol is dynamic. */
1826 _bfd_elf_add_default_symbol (bfd
*abfd
,
1827 struct bfd_link_info
*info
,
1828 struct elf_link_hash_entry
*h
,
1830 Elf_Internal_Sym
*sym
,
1834 bfd_boolean
*dynsym
)
1836 bfd_boolean type_change_ok
;
1837 bfd_boolean size_change_ok
;
1840 struct elf_link_hash_entry
*hi
;
1841 struct bfd_link_hash_entry
*bh
;
1842 const struct elf_backend_data
*bed
;
1843 bfd_boolean collect
;
1844 bfd_boolean dynamic
;
1845 bfd_boolean override
;
1847 size_t len
, shortlen
;
1849 bfd_boolean matched
;
1851 if (h
->versioned
== unversioned
|| h
->versioned
== versioned_hidden
)
1854 /* If this symbol has a version, and it is the default version, we
1855 create an indirect symbol from the default name to the fully
1856 decorated name. This will cause external references which do not
1857 specify a version to be bound to this version of the symbol. */
1858 p
= strchr (name
, ELF_VER_CHR
);
1859 if (h
->versioned
== unknown
)
1863 h
->versioned
= unversioned
;
1868 if (p
[1] != ELF_VER_CHR
)
1870 h
->versioned
= versioned_hidden
;
1874 h
->versioned
= versioned
;
1879 /* PR ld/19073: We may see an unversioned definition after the
1885 bed
= get_elf_backend_data (abfd
);
1886 collect
= bed
->collect
;
1887 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1889 shortlen
= p
- name
;
1890 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1891 if (shortname
== NULL
)
1893 memcpy (shortname
, name
, shortlen
);
1894 shortname
[shortlen
] = '\0';
1896 /* We are going to create a new symbol. Merge it with any existing
1897 symbol with this name. For the purposes of the merge, act as
1898 though we were defining the symbol we just defined, although we
1899 actually going to define an indirect symbol. */
1900 type_change_ok
= FALSE
;
1901 size_change_ok
= FALSE
;
1904 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &tmp_sec
, &value
,
1905 &hi
, poldbfd
, NULL
, NULL
, &skip
, &override
,
1906 &type_change_ok
, &size_change_ok
, &matched
))
1912 if (hi
->def_regular
)
1914 /* If the undecorated symbol will have a version added by a
1915 script different to H, then don't indirect to/from the
1916 undecorated symbol. This isn't ideal because we may not yet
1917 have seen symbol versions, if given by a script on the
1918 command line rather than via --version-script. */
1919 if (hi
->verinfo
.vertree
== NULL
&& info
->version_info
!= NULL
)
1924 = bfd_find_version_for_sym (info
->version_info
,
1925 hi
->root
.root
.string
, &hide
);
1926 if (hi
->verinfo
.vertree
!= NULL
&& hide
)
1928 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
1932 if (hi
->verinfo
.vertree
!= NULL
1933 && strcmp (p
+ 1 + (p
[1] == '@'), hi
->verinfo
.vertree
->name
) != 0)
1939 /* Add the default symbol if not performing a relocatable link. */
1940 if (! bfd_link_relocatable (info
))
1943 if (bh
->type
== bfd_link_hash_defined
1944 && bh
->u
.def
.section
->owner
!= NULL
1945 && (bh
->u
.def
.section
->owner
->flags
& BFD_PLUGIN
) != 0)
1947 /* Mark the previous definition from IR object as
1948 undefined so that the generic linker will override
1950 bh
->type
= bfd_link_hash_undefined
;
1951 bh
->u
.undef
.abfd
= bh
->u
.def
.section
->owner
;
1953 if (! (_bfd_generic_link_add_one_symbol
1954 (info
, abfd
, shortname
, BSF_INDIRECT
,
1955 bfd_ind_section_ptr
,
1956 0, name
, FALSE
, collect
, &bh
)))
1958 hi
= (struct elf_link_hash_entry
*) bh
;
1963 /* In this case the symbol named SHORTNAME is overriding the
1964 indirect symbol we want to add. We were planning on making
1965 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1966 is the name without a version. NAME is the fully versioned
1967 name, and it is the default version.
1969 Overriding means that we already saw a definition for the
1970 symbol SHORTNAME in a regular object, and it is overriding
1971 the symbol defined in the dynamic object.
1973 When this happens, we actually want to change NAME, the
1974 symbol we just added, to refer to SHORTNAME. This will cause
1975 references to NAME in the shared object to become references
1976 to SHORTNAME in the regular object. This is what we expect
1977 when we override a function in a shared object: that the
1978 references in the shared object will be mapped to the
1979 definition in the regular object. */
1981 while (hi
->root
.type
== bfd_link_hash_indirect
1982 || hi
->root
.type
== bfd_link_hash_warning
)
1983 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1985 h
->root
.type
= bfd_link_hash_indirect
;
1986 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1990 hi
->ref_dynamic
= 1;
1994 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1999 /* Now set HI to H, so that the following code will set the
2000 other fields correctly. */
2004 /* Check if HI is a warning symbol. */
2005 if (hi
->root
.type
== bfd_link_hash_warning
)
2006 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
2008 /* If there is a duplicate definition somewhere, then HI may not
2009 point to an indirect symbol. We will have reported an error to
2010 the user in that case. */
2012 if (hi
->root
.type
== bfd_link_hash_indirect
)
2014 struct elf_link_hash_entry
*ht
;
2016 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
2017 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
2019 /* A reference to the SHORTNAME symbol from a dynamic library
2020 will be satisfied by the versioned symbol at runtime. In
2021 effect, we have a reference to the versioned symbol. */
2022 ht
->ref_dynamic_nonweak
|= hi
->ref_dynamic_nonweak
;
2023 hi
->dynamic_def
|= ht
->dynamic_def
;
2025 /* See if the new flags lead us to realize that the symbol must
2031 if (! bfd_link_executable (info
)
2038 if (hi
->ref_regular
)
2044 /* We also need to define an indirection from the nondefault version
2048 len
= strlen (name
);
2049 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
2050 if (shortname
== NULL
)
2052 memcpy (shortname
, name
, shortlen
);
2053 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
2055 /* Once again, merge with any existing symbol. */
2056 type_change_ok
= FALSE
;
2057 size_change_ok
= FALSE
;
2059 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &tmp_sec
, &value
,
2060 &hi
, poldbfd
, NULL
, NULL
, &skip
, &override
,
2061 &type_change_ok
, &size_change_ok
, &matched
))
2069 /* Here SHORTNAME is a versioned name, so we don't expect to see
2070 the type of override we do in the case above unless it is
2071 overridden by a versioned definition. */
2072 if (hi
->root
.type
!= bfd_link_hash_defined
2073 && hi
->root
.type
!= bfd_link_hash_defweak
)
2075 /* xgettext:c-format */
2076 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2082 if (! (_bfd_generic_link_add_one_symbol
2083 (info
, abfd
, shortname
, BSF_INDIRECT
,
2084 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
2086 hi
= (struct elf_link_hash_entry
*) bh
;
2088 /* If there is a duplicate definition somewhere, then HI may not
2089 point to an indirect symbol. We will have reported an error
2090 to the user in that case. */
2092 if (hi
->root
.type
== bfd_link_hash_indirect
)
2094 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
2095 h
->ref_dynamic_nonweak
|= hi
->ref_dynamic_nonweak
;
2096 hi
->dynamic_def
|= h
->dynamic_def
;
2098 /* See if the new flags lead us to realize that the symbol
2104 if (! bfd_link_executable (info
)
2110 if (hi
->ref_regular
)
2120 /* This routine is used to export all defined symbols into the dynamic
2121 symbol table. It is called via elf_link_hash_traverse. */
2124 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
2126 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2128 /* Ignore indirect symbols. These are added by the versioning code. */
2129 if (h
->root
.type
== bfd_link_hash_indirect
)
2132 /* Ignore this if we won't export it. */
2133 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
2136 if (h
->dynindx
== -1
2137 && (h
->def_regular
|| h
->ref_regular
)
2138 && ! bfd_hide_sym_by_version (eif
->info
->version_info
,
2139 h
->root
.root
.string
))
2141 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2151 /* Look through the symbols which are defined in other shared
2152 libraries and referenced here. Update the list of version
2153 dependencies. This will be put into the .gnu.version_r section.
2154 This function is called via elf_link_hash_traverse. */
2157 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
2160 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
2161 Elf_Internal_Verneed
*t
;
2162 Elf_Internal_Vernaux
*a
;
2165 /* We only care about symbols defined in shared objects with version
2170 || h
->verinfo
.verdef
== NULL
2171 || (elf_dyn_lib_class (h
->verinfo
.verdef
->vd_bfd
)
2172 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
| DYN_NO_NEEDED
)))
2175 /* See if we already know about this version. */
2176 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
2180 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
2183 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
2184 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
2190 /* This is a new version. Add it to tree we are building. */
2195 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
2198 rinfo
->failed
= TRUE
;
2202 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
2203 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
2204 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
2208 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
2211 rinfo
->failed
= TRUE
;
2215 /* Note that we are copying a string pointer here, and testing it
2216 above. If bfd_elf_string_from_elf_section is ever changed to
2217 discard the string data when low in memory, this will have to be
2219 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
2221 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
2222 a
->vna_nextptr
= t
->vn_auxptr
;
2224 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
2227 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
2234 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2235 hidden. Set *T_P to NULL if there is no match. */
2238 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info
*info
,
2239 struct elf_link_hash_entry
*h
,
2240 const char *version_p
,
2241 struct bfd_elf_version_tree
**t_p
,
2244 struct bfd_elf_version_tree
*t
;
2246 /* Look for the version. If we find it, it is no longer weak. */
2247 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
2249 if (strcmp (t
->name
, version_p
) == 0)
2253 struct bfd_elf_version_expr
*d
;
2255 len
= version_p
- h
->root
.root
.string
;
2256 alc
= (char *) bfd_malloc (len
);
2259 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2260 alc
[len
- 1] = '\0';
2261 if (alc
[len
- 2] == ELF_VER_CHR
)
2262 alc
[len
- 2] = '\0';
2264 h
->verinfo
.vertree
= t
;
2268 if (t
->globals
.list
!= NULL
)
2269 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2271 /* See if there is anything to force this symbol to
2273 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2275 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2278 && ! info
->export_dynamic
)
2292 /* Return TRUE if the symbol H is hidden by version script. */
2295 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info
*info
,
2296 struct elf_link_hash_entry
*h
)
2299 bfd_boolean hide
= FALSE
;
2300 const struct elf_backend_data
*bed
2301 = get_elf_backend_data (info
->output_bfd
);
2303 /* Version script only hides symbols defined in regular objects. */
2304 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
2307 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
2308 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
2310 struct bfd_elf_version_tree
*t
;
2313 if (*p
== ELF_VER_CHR
)
2317 && _bfd_elf_link_hide_versioned_symbol (info
, h
, p
, &t
, &hide
)
2321 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2326 /* If we don't have a version for this symbol, see if we can find
2328 if (h
->verinfo
.vertree
== NULL
&& info
->version_info
!= NULL
)
2331 = bfd_find_version_for_sym (info
->version_info
,
2332 h
->root
.root
.string
, &hide
);
2333 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2335 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2343 /* Figure out appropriate versions for all the symbols. We may not
2344 have the version number script until we have read all of the input
2345 files, so until that point we don't know which symbols should be
2346 local. This function is called via elf_link_hash_traverse. */
2349 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
2351 struct elf_info_failed
*sinfo
;
2352 struct bfd_link_info
*info
;
2353 const struct elf_backend_data
*bed
;
2354 struct elf_info_failed eif
;
2358 sinfo
= (struct elf_info_failed
*) data
;
2361 /* Fix the symbol flags. */
2364 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
2367 sinfo
->failed
= TRUE
;
2371 bed
= get_elf_backend_data (info
->output_bfd
);
2373 /* We only need version numbers for symbols defined in regular
2375 if (!h
->def_regular
)
2377 /* Hide symbols defined in discarded input sections. */
2378 if ((h
->root
.type
== bfd_link_hash_defined
2379 || h
->root
.type
== bfd_link_hash_defweak
)
2380 && discarded_section (h
->root
.u
.def
.section
))
2381 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2386 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
2387 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
2389 struct bfd_elf_version_tree
*t
;
2392 if (*p
== ELF_VER_CHR
)
2395 /* If there is no version string, we can just return out. */
2399 if (!_bfd_elf_link_hide_versioned_symbol (info
, h
, p
, &t
, &hide
))
2401 sinfo
->failed
= TRUE
;
2406 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2408 /* If we are building an application, we need to create a
2409 version node for this version. */
2410 if (t
== NULL
&& bfd_link_executable (info
))
2412 struct bfd_elf_version_tree
**pp
;
2415 /* If we aren't going to export this symbol, we don't need
2416 to worry about it. */
2417 if (h
->dynindx
== -1)
2420 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
,
2424 sinfo
->failed
= TRUE
;
2429 t
->name_indx
= (unsigned int) -1;
2433 /* Don't count anonymous version tag. */
2434 if (sinfo
->info
->version_info
!= NULL
2435 && sinfo
->info
->version_info
->vernum
== 0)
2437 for (pp
= &sinfo
->info
->version_info
;
2441 t
->vernum
= version_index
;
2445 h
->verinfo
.vertree
= t
;
2449 /* We could not find the version for a symbol when
2450 generating a shared archive. Return an error. */
2452 /* xgettext:c-format */
2453 (_("%pB: version node not found for symbol %s"),
2454 info
->output_bfd
, h
->root
.root
.string
);
2455 bfd_set_error (bfd_error_bad_value
);
2456 sinfo
->failed
= TRUE
;
2461 /* If we don't have a version for this symbol, see if we can find
2464 && h
->verinfo
.vertree
== NULL
2465 && sinfo
->info
->version_info
!= NULL
)
2468 = bfd_find_version_for_sym (sinfo
->info
->version_info
,
2469 h
->root
.root
.string
, &hide
);
2470 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2471 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2477 /* Read and swap the relocs from the section indicated by SHDR. This
2478 may be either a REL or a RELA section. The relocations are
2479 translated into RELA relocations and stored in INTERNAL_RELOCS,
2480 which should have already been allocated to contain enough space.
2481 The EXTERNAL_RELOCS are a buffer where the external form of the
2482 relocations should be stored.
2484 Returns FALSE if something goes wrong. */
2487 elf_link_read_relocs_from_section (bfd
*abfd
,
2489 Elf_Internal_Shdr
*shdr
,
2490 void *external_relocs
,
2491 Elf_Internal_Rela
*internal_relocs
)
2493 const struct elf_backend_data
*bed
;
2494 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2495 const bfd_byte
*erela
;
2496 const bfd_byte
*erelaend
;
2497 Elf_Internal_Rela
*irela
;
2498 Elf_Internal_Shdr
*symtab_hdr
;
2501 /* Position ourselves at the start of the section. */
2502 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2505 /* Read the relocations. */
2506 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2509 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2510 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2512 bed
= get_elf_backend_data (abfd
);
2514 /* Convert the external relocations to the internal format. */
2515 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2516 swap_in
= bed
->s
->swap_reloc_in
;
2517 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2518 swap_in
= bed
->s
->swap_reloca_in
;
2521 bfd_set_error (bfd_error_wrong_format
);
2525 erela
= (const bfd_byte
*) external_relocs
;
2526 /* Setting erelaend like this and comparing with <= handles case of
2527 a fuzzed object with sh_size not a multiple of sh_entsize. */
2528 erelaend
= erela
+ shdr
->sh_size
- shdr
->sh_entsize
;
2529 irela
= internal_relocs
;
2530 while (erela
<= erelaend
)
2534 (*swap_in
) (abfd
, erela
, irela
);
2535 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2536 if (bed
->s
->arch_size
== 64)
2540 if ((size_t) r_symndx
>= nsyms
)
2543 /* xgettext:c-format */
2544 (_("%pB: bad reloc symbol index (%#" PRIx64
" >= %#lx)"
2545 " for offset %#" PRIx64
" in section `%pA'"),
2546 abfd
, (uint64_t) r_symndx
, (unsigned long) nsyms
,
2547 (uint64_t) irela
->r_offset
, sec
);
2548 bfd_set_error (bfd_error_bad_value
);
2552 else if (r_symndx
!= STN_UNDEF
)
2555 /* xgettext:c-format */
2556 (_("%pB: non-zero symbol index (%#" PRIx64
")"
2557 " for offset %#" PRIx64
" in section `%pA'"
2558 " when the object file has no symbol table"),
2559 abfd
, (uint64_t) r_symndx
,
2560 (uint64_t) irela
->r_offset
, sec
);
2561 bfd_set_error (bfd_error_bad_value
);
2564 irela
+= bed
->s
->int_rels_per_ext_rel
;
2565 erela
+= shdr
->sh_entsize
;
2571 /* Read and swap the relocs for a section O. They may have been
2572 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2573 not NULL, they are used as buffers to read into. They are known to
2574 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2575 the return value is allocated using either malloc or bfd_alloc,
2576 according to the KEEP_MEMORY argument. If O has two relocation
2577 sections (both REL and RELA relocations), then the REL_HDR
2578 relocations will appear first in INTERNAL_RELOCS, followed by the
2579 RELA_HDR relocations. */
2582 _bfd_elf_link_read_relocs (bfd
*abfd
,
2584 void *external_relocs
,
2585 Elf_Internal_Rela
*internal_relocs
,
2586 bfd_boolean keep_memory
)
2588 void *alloc1
= NULL
;
2589 Elf_Internal_Rela
*alloc2
= NULL
;
2590 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2591 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
2592 Elf_Internal_Rela
*internal_rela_relocs
;
2594 if (esdo
->relocs
!= NULL
)
2595 return esdo
->relocs
;
2597 if (o
->reloc_count
== 0)
2600 if (internal_relocs
== NULL
)
2604 size
= (bfd_size_type
) o
->reloc_count
* sizeof (Elf_Internal_Rela
);
2606 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2608 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2609 if (internal_relocs
== NULL
)
2613 if (external_relocs
== NULL
)
2615 bfd_size_type size
= 0;
2618 size
+= esdo
->rel
.hdr
->sh_size
;
2620 size
+= esdo
->rela
.hdr
->sh_size
;
2622 alloc1
= bfd_malloc (size
);
2625 external_relocs
= alloc1
;
2628 internal_rela_relocs
= internal_relocs
;
2631 if (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rel
.hdr
,
2635 external_relocs
= (((bfd_byte
*) external_relocs
)
2636 + esdo
->rel
.hdr
->sh_size
);
2637 internal_rela_relocs
+= (NUM_SHDR_ENTRIES (esdo
->rel
.hdr
)
2638 * bed
->s
->int_rels_per_ext_rel
);
2642 && (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rela
.hdr
,
2644 internal_rela_relocs
)))
2647 /* Cache the results for next time, if we can. */
2649 esdo
->relocs
= internal_relocs
;
2654 /* Don't free alloc2, since if it was allocated we are passing it
2655 back (under the name of internal_relocs). */
2657 return internal_relocs
;
2665 bfd_release (abfd
, alloc2
);
2672 /* Compute the size of, and allocate space for, REL_HDR which is the
2673 section header for a section containing relocations for O. */
2676 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2677 struct bfd_elf_section_reloc_data
*reldata
)
2679 Elf_Internal_Shdr
*rel_hdr
= reldata
->hdr
;
2681 /* That allows us to calculate the size of the section. */
2682 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reldata
->count
;
2684 /* The contents field must last into write_object_contents, so we
2685 allocate it with bfd_alloc rather than malloc. Also since we
2686 cannot be sure that the contents will actually be filled in,
2687 we zero the allocated space. */
2688 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2689 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2692 if (reldata
->hashes
== NULL
&& reldata
->count
)
2694 struct elf_link_hash_entry
**p
;
2696 p
= ((struct elf_link_hash_entry
**)
2697 bfd_zmalloc (reldata
->count
* sizeof (*p
)));
2701 reldata
->hashes
= p
;
2707 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2708 originated from the section given by INPUT_REL_HDR) to the
2712 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2713 asection
*input_section
,
2714 Elf_Internal_Shdr
*input_rel_hdr
,
2715 Elf_Internal_Rela
*internal_relocs
,
2716 struct elf_link_hash_entry
**rel_hash
2719 Elf_Internal_Rela
*irela
;
2720 Elf_Internal_Rela
*irelaend
;
2722 struct bfd_elf_section_reloc_data
*output_reldata
;
2723 asection
*output_section
;
2724 const struct elf_backend_data
*bed
;
2725 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2726 struct bfd_elf_section_data
*esdo
;
2728 output_section
= input_section
->output_section
;
2730 bed
= get_elf_backend_data (output_bfd
);
2731 esdo
= elf_section_data (output_section
);
2732 if (esdo
->rel
.hdr
&& esdo
->rel
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2734 output_reldata
= &esdo
->rel
;
2735 swap_out
= bed
->s
->swap_reloc_out
;
2737 else if (esdo
->rela
.hdr
2738 && esdo
->rela
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2740 output_reldata
= &esdo
->rela
;
2741 swap_out
= bed
->s
->swap_reloca_out
;
2746 /* xgettext:c-format */
2747 (_("%pB: relocation size mismatch in %pB section %pA"),
2748 output_bfd
, input_section
->owner
, input_section
);
2749 bfd_set_error (bfd_error_wrong_format
);
2753 erel
= output_reldata
->hdr
->contents
;
2754 erel
+= output_reldata
->count
* input_rel_hdr
->sh_entsize
;
2755 irela
= internal_relocs
;
2756 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2757 * bed
->s
->int_rels_per_ext_rel
);
2758 while (irela
< irelaend
)
2760 (*swap_out
) (output_bfd
, irela
, erel
);
2761 irela
+= bed
->s
->int_rels_per_ext_rel
;
2762 erel
+= input_rel_hdr
->sh_entsize
;
2765 /* Bump the counter, so that we know where to add the next set of
2767 output_reldata
->count
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2772 /* Make weak undefined symbols in PIE dynamic. */
2775 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2776 struct elf_link_hash_entry
*h
)
2778 if (bfd_link_pie (info
)
2780 && h
->root
.type
== bfd_link_hash_undefweak
)
2781 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2786 /* Fix up the flags for a symbol. This handles various cases which
2787 can only be fixed after all the input files are seen. This is
2788 currently called by both adjust_dynamic_symbol and
2789 assign_sym_version, which is unnecessary but perhaps more robust in
2790 the face of future changes. */
2793 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2794 struct elf_info_failed
*eif
)
2796 const struct elf_backend_data
*bed
;
2798 /* If this symbol was mentioned in a non-ELF file, try to set
2799 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2800 permit a non-ELF file to correctly refer to a symbol defined in
2801 an ELF dynamic object. */
2804 while (h
->root
.type
== bfd_link_hash_indirect
)
2805 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2807 if (h
->root
.type
!= bfd_link_hash_defined
2808 && h
->root
.type
!= bfd_link_hash_defweak
)
2811 h
->ref_regular_nonweak
= 1;
2815 if (h
->root
.u
.def
.section
->owner
!= NULL
2816 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2817 == bfd_target_elf_flavour
))
2820 h
->ref_regular_nonweak
= 1;
2826 if (h
->dynindx
== -1
2830 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2839 /* Unfortunately, NON_ELF is only correct if the symbol
2840 was first seen in a non-ELF file. Fortunately, if the symbol
2841 was first seen in an ELF file, we're probably OK unless the
2842 symbol was defined in a non-ELF file. Catch that case here.
2843 FIXME: We're still in trouble if the symbol was first seen in
2844 a dynamic object, and then later in a non-ELF regular object. */
2845 if ((h
->root
.type
== bfd_link_hash_defined
2846 || h
->root
.type
== bfd_link_hash_defweak
)
2848 && (h
->root
.u
.def
.section
->owner
!= NULL
2849 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2850 != bfd_target_elf_flavour
)
2851 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2852 && !h
->def_dynamic
)))
2856 /* Backend specific symbol fixup. */
2857 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2858 if (bed
->elf_backend_fixup_symbol
2859 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2862 /* If this is a final link, and the symbol was defined as a common
2863 symbol in a regular object file, and there was no definition in
2864 any dynamic object, then the linker will have allocated space for
2865 the symbol in a common section but the DEF_REGULAR
2866 flag will not have been set. */
2867 if (h
->root
.type
== bfd_link_hash_defined
2871 && (h
->root
.u
.def
.section
->owner
->flags
& (DYNAMIC
| BFD_PLUGIN
)) == 0)
2874 /* Symbols defined in discarded sections shouldn't be dynamic. */
2875 if (h
->root
.type
== bfd_link_hash_undefined
&& h
->indx
== -3)
2876 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2878 /* If a weak undefined symbol has non-default visibility, we also
2879 hide it from the dynamic linker. */
2880 else if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2881 && h
->root
.type
== bfd_link_hash_undefweak
)
2882 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2884 /* A hidden versioned symbol in executable should be forced local if
2885 it is is locally defined, not referenced by shared library and not
2887 else if (bfd_link_executable (eif
->info
)
2888 && h
->versioned
== versioned_hidden
2889 && !eif
->info
->export_dynamic
2893 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2895 /* If -Bsymbolic was used (which means to bind references to global
2896 symbols to the definition within the shared object), and this
2897 symbol was defined in a regular object, then it actually doesn't
2898 need a PLT entry. Likewise, if the symbol has non-default
2899 visibility. If the symbol has hidden or internal visibility, we
2900 will force it local. */
2901 else if (h
->needs_plt
2902 && bfd_link_pic (eif
->info
)
2903 && is_elf_hash_table (eif
->info
->hash
)
2904 && (SYMBOLIC_BIND (eif
->info
, h
)
2905 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2908 bfd_boolean force_local
;
2910 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2911 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2912 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2915 /* If this is a weak defined symbol in a dynamic object, and we know
2916 the real definition in the dynamic object, copy interesting flags
2917 over to the real definition. */
2918 if (h
->is_weakalias
)
2920 struct elf_link_hash_entry
*def
= weakdef (h
);
2922 /* If the real definition is defined by a regular object file,
2923 don't do anything special. See the longer description in
2924 _bfd_elf_adjust_dynamic_symbol, below. */
2925 if (def
->def_regular
)
2928 while ((h
= h
->u
.alias
) != def
)
2929 h
->is_weakalias
= 0;
2933 while (h
->root
.type
== bfd_link_hash_indirect
)
2934 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2935 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2936 || h
->root
.type
== bfd_link_hash_defweak
);
2937 BFD_ASSERT (def
->def_dynamic
);
2938 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
2939 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, def
, h
);
2946 /* Make the backend pick a good value for a dynamic symbol. This is
2947 called via elf_link_hash_traverse, and also calls itself
2951 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2953 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2954 struct elf_link_hash_table
*htab
;
2955 const struct elf_backend_data
*bed
;
2957 if (! is_elf_hash_table (eif
->info
->hash
))
2960 /* Ignore indirect symbols. These are added by the versioning code. */
2961 if (h
->root
.type
== bfd_link_hash_indirect
)
2964 /* Fix the symbol flags. */
2965 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2968 htab
= elf_hash_table (eif
->info
);
2969 bed
= get_elf_backend_data (htab
->dynobj
);
2971 if (h
->root
.type
== bfd_link_hash_undefweak
)
2973 if (eif
->info
->dynamic_undefined_weak
== 0)
2974 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2975 else if (eif
->info
->dynamic_undefined_weak
> 0
2977 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2978 && !bfd_hide_sym_by_version (eif
->info
->version_info
,
2979 h
->root
.root
.string
))
2981 if (!bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2989 /* If this symbol does not require a PLT entry, and it is not
2990 defined by a dynamic object, or is not referenced by a regular
2991 object, ignore it. We do have to handle a weak defined symbol,
2992 even if no regular object refers to it, if we decided to add it
2993 to the dynamic symbol table. FIXME: Do we normally need to worry
2994 about symbols which are defined by one dynamic object and
2995 referenced by another one? */
2997 && h
->type
!= STT_GNU_IFUNC
3001 && (!h
->is_weakalias
|| weakdef (h
)->dynindx
== -1))))
3003 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
3007 /* If we've already adjusted this symbol, don't do it again. This
3008 can happen via a recursive call. */
3009 if (h
->dynamic_adjusted
)
3012 /* Don't look at this symbol again. Note that we must set this
3013 after checking the above conditions, because we may look at a
3014 symbol once, decide not to do anything, and then get called
3015 recursively later after REF_REGULAR is set below. */
3016 h
->dynamic_adjusted
= 1;
3018 /* If this is a weak definition, and we know a real definition, and
3019 the real symbol is not itself defined by a regular object file,
3020 then get a good value for the real definition. We handle the
3021 real symbol first, for the convenience of the backend routine.
3023 Note that there is a confusing case here. If the real definition
3024 is defined by a regular object file, we don't get the real symbol
3025 from the dynamic object, but we do get the weak symbol. If the
3026 processor backend uses a COPY reloc, then if some routine in the
3027 dynamic object changes the real symbol, we will not see that
3028 change in the corresponding weak symbol. This is the way other
3029 ELF linkers work as well, and seems to be a result of the shared
3032 I will clarify this issue. Most SVR4 shared libraries define the
3033 variable _timezone and define timezone as a weak synonym. The
3034 tzset call changes _timezone. If you write
3035 extern int timezone;
3037 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3038 you might expect that, since timezone is a synonym for _timezone,
3039 the same number will print both times. However, if the processor
3040 backend uses a COPY reloc, then actually timezone will be copied
3041 into your process image, and, since you define _timezone
3042 yourself, _timezone will not. Thus timezone and _timezone will
3043 wind up at different memory locations. The tzset call will set
3044 _timezone, leaving timezone unchanged. */
3046 if (h
->is_weakalias
)
3048 struct elf_link_hash_entry
*def
= weakdef (h
);
3050 /* If we get to this point, there is an implicit reference to
3051 the alias by a regular object file via the weak symbol H. */
3052 def
->ref_regular
= 1;
3054 /* Ensure that the backend adjust_dynamic_symbol function sees
3055 the strong alias before H by recursively calling ourselves. */
3056 if (!_bfd_elf_adjust_dynamic_symbol (def
, eif
))
3060 /* If a symbol has no type and no size and does not require a PLT
3061 entry, then we are probably about to do the wrong thing here: we
3062 are probably going to create a COPY reloc for an empty object.
3063 This case can arise when a shared object is built with assembly
3064 code, and the assembly code fails to set the symbol type. */
3066 && h
->type
== STT_NOTYPE
3069 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3070 h
->root
.root
.string
);
3072 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
3081 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3085 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info
*info
,
3086 struct elf_link_hash_entry
*h
,
3089 unsigned int power_of_two
;
3091 asection
*sec
= h
->root
.u
.def
.section
;
3093 /* The section alignment of the definition is the maximum alignment
3094 requirement of symbols defined in the section. Since we don't
3095 know the symbol alignment requirement, we start with the
3096 maximum alignment and check low bits of the symbol address
3097 for the minimum alignment. */
3098 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
3099 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
3100 while ((h
->root
.u
.def
.value
& mask
) != 0)
3106 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
3109 /* Adjust the section alignment if needed. */
3110 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
3115 /* We make sure that the symbol will be aligned properly. */
3116 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
3118 /* Define the symbol as being at this point in DYNBSS. */
3119 h
->root
.u
.def
.section
= dynbss
;
3120 h
->root
.u
.def
.value
= dynbss
->size
;
3122 /* Increment the size of DYNBSS to make room for the symbol. */
3123 dynbss
->size
+= h
->size
;
3125 /* No error if extern_protected_data is true. */
3126 if (h
->protected_def
3127 && (!info
->extern_protected_data
3128 || (info
->extern_protected_data
< 0
3129 && !get_elf_backend_data (dynbss
->owner
)->extern_protected_data
)))
3130 info
->callbacks
->einfo
3131 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3132 h
->root
.root
.string
);
3137 /* Adjust all external symbols pointing into SEC_MERGE sections
3138 to reflect the object merging within the sections. */
3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
3145 if ((h
->root
.type
== bfd_link_hash_defined
3146 || h
->root
.type
== bfd_link_hash_defweak
)
3147 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
3148 && sec
->sec_info_type
== SEC_INFO_TYPE_MERGE
)
3150 bfd
*output_bfd
= (bfd
*) data
;
3152 h
->root
.u
.def
.value
=
3153 _bfd_merged_section_offset (output_bfd
,
3154 &h
->root
.u
.def
.section
,
3155 elf_section_data (sec
)->sec_info
,
3156 h
->root
.u
.def
.value
);
3162 /* Returns false if the symbol referred to by H should be considered
3163 to resolve local to the current module, and true if it should be
3164 considered to bind dynamically. */
3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
3168 struct bfd_link_info
*info
,
3169 bfd_boolean not_local_protected
)
3171 bfd_boolean binding_stays_local_p
;
3172 const struct elf_backend_data
*bed
;
3173 struct elf_link_hash_table
*hash_table
;
3178 while (h
->root
.type
== bfd_link_hash_indirect
3179 || h
->root
.type
== bfd_link_hash_warning
)
3180 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3182 /* If it was forced local, then clearly it's not dynamic. */
3183 if (h
->dynindx
== -1)
3185 if (h
->forced_local
)
3188 /* Identify the cases where name binding rules say that a
3189 visible symbol resolves locally. */
3190 binding_stays_local_p
= (bfd_link_executable (info
)
3191 || SYMBOLIC_BIND (info
, h
));
3193 switch (ELF_ST_VISIBILITY (h
->other
))
3200 hash_table
= elf_hash_table (info
);
3201 if (!is_elf_hash_table (hash_table
))
3204 bed
= get_elf_backend_data (hash_table
->dynobj
);
3206 /* Proper resolution for function pointer equality may require
3207 that these symbols perhaps be resolved dynamically, even though
3208 we should be resolving them to the current module. */
3209 if (!not_local_protected
|| !bed
->is_function_type (h
->type
))
3210 binding_stays_local_p
= TRUE
;
3217 /* If it isn't defined locally, then clearly it's dynamic. */
3218 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
3221 /* Otherwise, the symbol is dynamic if binding rules don't tell
3222 us that it remains local. */
3223 return !binding_stays_local_p
;
3226 /* Return true if the symbol referred to by H should be considered
3227 to resolve local to the current module, and false otherwise. Differs
3228 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3229 undefined symbols. The two functions are virtually identical except
3230 for the place where dynindx == -1 is tested. If that test is true,
3231 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3232 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3234 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3235 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3236 treatment of undefined weak symbols. For those that do not make
3237 undefined weak symbols dynamic, both functions may return false. */
3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
3241 struct bfd_link_info
*info
,
3242 bfd_boolean local_protected
)
3244 const struct elf_backend_data
*bed
;
3245 struct elf_link_hash_table
*hash_table
;
3247 /* If it's a local sym, of course we resolve locally. */
3251 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3252 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
3253 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
3256 /* Forced local symbols resolve locally. */
3257 if (h
->forced_local
)
3260 /* Common symbols that become definitions don't get the DEF_REGULAR
3261 flag set, so test it first, and don't bail out. */
3262 if (ELF_COMMON_DEF_P (h
))
3264 /* If we don't have a definition in a regular file, then we can't
3265 resolve locally. The sym is either undefined or dynamic. */
3266 else if (!h
->def_regular
)
3269 /* Non-dynamic symbols resolve locally. */
3270 if (h
->dynindx
== -1)
3273 /* At this point, we know the symbol is defined and dynamic. In an
3274 executable it must resolve locally, likewise when building symbolic
3275 shared libraries. */
3276 if (bfd_link_executable (info
) || SYMBOLIC_BIND (info
, h
))
3279 /* Now deal with defined dynamic symbols in shared libraries. Ones
3280 with default visibility might not resolve locally. */
3281 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
3284 hash_table
= elf_hash_table (info
);
3285 if (!is_elf_hash_table (hash_table
))
3288 bed
= get_elf_backend_data (hash_table
->dynobj
);
3290 /* If extern_protected_data is false, STV_PROTECTED non-function
3291 symbols are local. */
3292 if ((!info
->extern_protected_data
3293 || (info
->extern_protected_data
< 0
3294 && !bed
->extern_protected_data
))
3295 && !bed
->is_function_type (h
->type
))
3298 /* Function pointer equality tests may require that STV_PROTECTED
3299 symbols be treated as dynamic symbols. If the address of a
3300 function not defined in an executable is set to that function's
3301 plt entry in the executable, then the address of the function in
3302 a shared library must also be the plt entry in the executable. */
3303 return local_protected
;
3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3307 aligned. Returns the first TLS output section. */
3309 struct bfd_section
*
3310 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
3312 struct bfd_section
*sec
, *tls
;
3313 unsigned int align
= 0;
3315 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3316 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
3320 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
3321 if (sec
->alignment_power
> align
)
3322 align
= sec
->alignment_power
;
3324 elf_hash_table (info
)->tls_sec
= tls
;
3326 /* Ensure the alignment of the first section is the largest alignment,
3327 so that the tls segment starts aligned. */
3329 tls
->alignment_power
= align
;
3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3336 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
3337 Elf_Internal_Sym
*sym
)
3339 const struct elf_backend_data
*bed
;
3341 /* Local symbols do not count, but target specific ones might. */
3342 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
3343 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
3346 bed
= get_elf_backend_data (abfd
);
3347 /* Function symbols do not count. */
3348 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
3351 /* If the section is undefined, then so is the symbol. */
3352 if (sym
->st_shndx
== SHN_UNDEF
)
3355 /* If the symbol is defined in the common section, then
3356 it is a common definition and so does not count. */
3357 if (bed
->common_definition (sym
))
3360 /* If the symbol is in a target specific section then we
3361 must rely upon the backend to tell us what it is. */
3362 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
3363 /* FIXME - this function is not coded yet:
3365 return _bfd_is_global_symbol_definition (abfd, sym);
3367 Instead for now assume that the definition is not global,
3368 Even if this is wrong, at least the linker will behave
3369 in the same way that it used to do. */
3375 /* Search the symbol table of the archive element of the archive ABFD
3376 whose archive map contains a mention of SYMDEF, and determine if
3377 the symbol is defined in this element. */
3379 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
3381 Elf_Internal_Shdr
* hdr
;
3385 Elf_Internal_Sym
*isymbuf
;
3386 Elf_Internal_Sym
*isym
;
3387 Elf_Internal_Sym
*isymend
;
3390 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
3394 if (! bfd_check_format (abfd
, bfd_object
))
3397 /* Select the appropriate symbol table. If we don't know if the
3398 object file is an IR object, give linker LTO plugin a chance to
3399 get the correct symbol table. */
3400 if (abfd
->plugin_format
== bfd_plugin_yes
3401 #if BFD_SUPPORTS_PLUGINS
3402 || (abfd
->plugin_format
== bfd_plugin_unknown
3403 && bfd_link_plugin_object_p (abfd
))
3407 /* Use the IR symbol table if the object has been claimed by
3409 abfd
= abfd
->plugin_dummy_bfd
;
3410 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3412 else if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
3413 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3415 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3417 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3419 /* The sh_info field of the symtab header tells us where the
3420 external symbols start. We don't care about the local symbols. */
3421 if (elf_bad_symtab (abfd
))
3423 extsymcount
= symcount
;
3428 extsymcount
= symcount
- hdr
->sh_info
;
3429 extsymoff
= hdr
->sh_info
;
3432 if (extsymcount
== 0)
3435 /* Read in the symbol table. */
3436 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3438 if (isymbuf
== NULL
)
3441 /* Scan the symbol table looking for SYMDEF. */
3443 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3447 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3452 if (strcmp (name
, symdef
->name
) == 0)
3454 result
= is_global_data_symbol_definition (abfd
, isym
);
3464 /* Add an entry to the .dynamic table. */
3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3471 struct elf_link_hash_table
*hash_table
;
3472 const struct elf_backend_data
*bed
;
3474 bfd_size_type newsize
;
3475 bfd_byte
*newcontents
;
3476 Elf_Internal_Dyn dyn
;
3478 hash_table
= elf_hash_table (info
);
3479 if (! is_elf_hash_table (hash_table
))
3482 if (tag
== DT_RELA
|| tag
== DT_REL
)
3483 hash_table
->dynamic_relocs
= TRUE
;
3485 bed
= get_elf_backend_data (hash_table
->dynobj
);
3486 s
= bfd_get_linker_section (hash_table
->dynobj
, ".dynamic");
3487 BFD_ASSERT (s
!= NULL
);
3489 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3490 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3491 if (newcontents
== NULL
)
3495 dyn
.d_un
.d_val
= val
;
3496 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3499 s
->contents
= newcontents
;
3504 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3505 otherwise just check whether one already exists. Returns -1 on error,
3506 1 if a DT_NEEDED tag already exists, and 0 on success. */
3509 elf_add_dt_needed_tag (bfd
*abfd
,
3510 struct bfd_link_info
*info
,
3514 struct elf_link_hash_table
*hash_table
;
3517 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3520 hash_table
= elf_hash_table (info
);
3521 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3522 if (strindex
== (size_t) -1)
3525 if (_bfd_elf_strtab_refcount (hash_table
->dynstr
, strindex
) != 1)
3528 const struct elf_backend_data
*bed
;
3531 bed
= get_elf_backend_data (hash_table
->dynobj
);
3532 sdyn
= bfd_get_linker_section (hash_table
->dynobj
, ".dynamic");
3534 for (extdyn
= sdyn
->contents
;
3535 extdyn
< sdyn
->contents
+ sdyn
->size
;
3536 extdyn
+= bed
->s
->sizeof_dyn
)
3538 Elf_Internal_Dyn dyn
;
3540 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3541 if (dyn
.d_tag
== DT_NEEDED
3542 && dyn
.d_un
.d_val
== strindex
)
3544 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3552 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3555 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3559 /* We were just checking for existence of the tag. */
3560 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3565 /* Return true if SONAME is on the needed list between NEEDED and STOP
3566 (or the end of list if STOP is NULL), and needed by a library that
3570 on_needed_list (const char *soname
,
3571 struct bfd_link_needed_list
*needed
,
3572 struct bfd_link_needed_list
*stop
)
3574 struct bfd_link_needed_list
*look
;
3575 for (look
= needed
; look
!= stop
; look
= look
->next
)
3576 if (strcmp (soname
, look
->name
) == 0
3577 && ((elf_dyn_lib_class (look
->by
) & DYN_AS_NEEDED
) == 0
3578 /* If needed by a library that itself is not directly
3579 needed, recursively check whether that library is
3580 indirectly needed. Since we add DT_NEEDED entries to
3581 the end of the list, library dependencies appear after
3582 the library. Therefore search prior to the current
3583 LOOK, preventing possible infinite recursion. */
3584 || on_needed_list (elf_dt_name (look
->by
), needed
, look
)))
3590 /* Sort symbol by value, section, and size. */
3592 elf_sort_symbol (const void *arg1
, const void *arg2
)
3594 const struct elf_link_hash_entry
*h1
;
3595 const struct elf_link_hash_entry
*h2
;
3596 bfd_signed_vma vdiff
;
3598 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3599 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3600 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3602 return vdiff
> 0 ? 1 : -1;
3605 int sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3607 return sdiff
> 0 ? 1 : -1;
3609 vdiff
= h1
->size
- h2
->size
;
3610 return vdiff
== 0 ? 0 : vdiff
> 0 ? 1 : -1;
3613 /* This function is used to adjust offsets into .dynstr for
3614 dynamic symbols. This is called via elf_link_hash_traverse. */
3617 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3619 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3621 if (h
->dynindx
!= -1)
3622 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3626 /* Assign string offsets in .dynstr, update all structures referencing
3630 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3632 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3633 struct elf_link_local_dynamic_entry
*entry
;
3634 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3635 bfd
*dynobj
= hash_table
->dynobj
;
3638 const struct elf_backend_data
*bed
;
3641 _bfd_elf_strtab_finalize (dynstr
);
3642 size
= _bfd_elf_strtab_size (dynstr
);
3644 bed
= get_elf_backend_data (dynobj
);
3645 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
3646 BFD_ASSERT (sdyn
!= NULL
);
3648 /* Update all .dynamic entries referencing .dynstr strings. */
3649 for (extdyn
= sdyn
->contents
;
3650 extdyn
< sdyn
->contents
+ sdyn
->size
;
3651 extdyn
+= bed
->s
->sizeof_dyn
)
3653 Elf_Internal_Dyn dyn
;
3655 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3659 dyn
.d_un
.d_val
= size
;
3669 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3674 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3677 /* Now update local dynamic symbols. */
3678 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3679 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3680 entry
->isym
.st_name
);
3682 /* And the rest of dynamic symbols. */
3683 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3685 /* Adjust version definitions. */
3686 if (elf_tdata (output_bfd
)->cverdefs
)
3691 Elf_Internal_Verdef def
;
3692 Elf_Internal_Verdaux defaux
;
3694 s
= bfd_get_linker_section (dynobj
, ".gnu.version_d");
3698 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3700 p
+= sizeof (Elf_External_Verdef
);
3701 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3703 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3705 _bfd_elf_swap_verdaux_in (output_bfd
,
3706 (Elf_External_Verdaux
*) p
, &defaux
);
3707 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3709 _bfd_elf_swap_verdaux_out (output_bfd
,
3710 &defaux
, (Elf_External_Verdaux
*) p
);
3711 p
+= sizeof (Elf_External_Verdaux
);
3714 while (def
.vd_next
);
3717 /* Adjust version references. */
3718 if (elf_tdata (output_bfd
)->verref
)
3723 Elf_Internal_Verneed need
;
3724 Elf_Internal_Vernaux needaux
;
3726 s
= bfd_get_linker_section (dynobj
, ".gnu.version_r");
3730 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3732 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3733 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3734 (Elf_External_Verneed
*) p
);
3735 p
+= sizeof (Elf_External_Verneed
);
3736 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3738 _bfd_elf_swap_vernaux_in (output_bfd
,
3739 (Elf_External_Vernaux
*) p
, &needaux
);
3740 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3742 _bfd_elf_swap_vernaux_out (output_bfd
,
3744 (Elf_External_Vernaux
*) p
);
3745 p
+= sizeof (Elf_External_Vernaux
);
3748 while (need
.vn_next
);
3754 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3755 The default is to only match when the INPUT and OUTPUT are exactly
3759 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3760 const bfd_target
*output
)
3762 return input
== output
;
3765 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3766 This version is used when different targets for the same architecture
3767 are virtually identical. */
3770 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3771 const bfd_target
*output
)
3773 const struct elf_backend_data
*obed
, *ibed
;
3775 if (input
== output
)
3778 ibed
= xvec_get_elf_backend_data (input
);
3779 obed
= xvec_get_elf_backend_data (output
);
3781 if (ibed
->arch
!= obed
->arch
)
3784 /* If both backends are using this function, deem them compatible. */
3785 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3788 /* Make a special call to the linker "notice" function to tell it that
3789 we are about to handle an as-needed lib, or have finished
3790 processing the lib. */
3793 _bfd_elf_notice_as_needed (bfd
*ibfd
,
3794 struct bfd_link_info
*info
,
3795 enum notice_asneeded_action act
)
3797 return (*info
->callbacks
->notice
) (info
, NULL
, NULL
, ibfd
, NULL
, act
, 0);
3800 /* Check relocations an ELF object file. */
3803 _bfd_elf_link_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
)
3805 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3806 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
3808 /* If this object is the same format as the output object, and it is
3809 not a shared library, then let the backend look through the
3812 This is required to build global offset table entries and to
3813 arrange for dynamic relocs. It is not required for the
3814 particular common case of linking non PIC code, even when linking
3815 against shared libraries, but unfortunately there is no way of
3816 knowing whether an object file has been compiled PIC or not.
3817 Looking through the relocs is not particularly time consuming.
3818 The problem is that we must either (1) keep the relocs in memory,
3819 which causes the linker to require additional runtime memory or
3820 (2) read the relocs twice from the input file, which wastes time.
3821 This would be a good case for using mmap.
3823 I have no idea how to handle linking PIC code into a file of a
3824 different format. It probably can't be done. */
3825 if ((abfd
->flags
& DYNAMIC
) == 0
3826 && is_elf_hash_table (htab
)
3827 && bed
->check_relocs
!= NULL
3828 && elf_object_id (abfd
) == elf_hash_table_id (htab
)
3829 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
3833 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
3835 Elf_Internal_Rela
*internal_relocs
;
3838 /* Don't check relocations in excluded sections. */
3839 if ((o
->flags
& SEC_RELOC
) == 0
3840 || (o
->flags
& SEC_EXCLUDE
) != 0
3841 || o
->reloc_count
== 0
3842 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
3843 && (o
->flags
& SEC_DEBUGGING
) != 0)
3844 || bfd_is_abs_section (o
->output_section
))
3847 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
3849 if (internal_relocs
== NULL
)
3852 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
3854 if (elf_section_data (o
)->relocs
!= internal_relocs
)
3855 free (internal_relocs
);
3865 /* Add symbols from an ELF object file to the linker hash table. */
3868 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3870 Elf_Internal_Ehdr
*ehdr
;
3871 Elf_Internal_Shdr
*hdr
;
3875 struct elf_link_hash_entry
**sym_hash
;
3876 bfd_boolean dynamic
;
3877 Elf_External_Versym
*extversym
= NULL
;
3878 Elf_External_Versym
*extversym_end
= NULL
;
3879 Elf_External_Versym
*ever
;
3880 struct elf_link_hash_entry
*weaks
;
3881 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3882 size_t nondeflt_vers_cnt
= 0;
3883 Elf_Internal_Sym
*isymbuf
= NULL
;
3884 Elf_Internal_Sym
*isym
;
3885 Elf_Internal_Sym
*isymend
;
3886 const struct elf_backend_data
*bed
;
3887 bfd_boolean add_needed
;
3888 struct elf_link_hash_table
*htab
;
3890 void *alloc_mark
= NULL
;
3891 struct bfd_hash_entry
**old_table
= NULL
;
3892 unsigned int old_size
= 0;
3893 unsigned int old_count
= 0;
3894 void *old_tab
= NULL
;
3896 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3897 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3898 void *old_strtab
= NULL
;
3901 bfd_boolean just_syms
;
3903 htab
= elf_hash_table (info
);
3904 bed
= get_elf_backend_data (abfd
);
3906 if ((abfd
->flags
& DYNAMIC
) == 0)
3912 /* You can't use -r against a dynamic object. Also, there's no
3913 hope of using a dynamic object which does not exactly match
3914 the format of the output file. */
3915 if (bfd_link_relocatable (info
)
3916 || !is_elf_hash_table (htab
)
3917 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3919 if (bfd_link_relocatable (info
))
3920 bfd_set_error (bfd_error_invalid_operation
);
3922 bfd_set_error (bfd_error_wrong_format
);
3927 ehdr
= elf_elfheader (abfd
);
3928 if (info
->warn_alternate_em
3929 && bed
->elf_machine_code
!= ehdr
->e_machine
3930 && ((bed
->elf_machine_alt1
!= 0
3931 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3932 || (bed
->elf_machine_alt2
!= 0
3933 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3935 /* xgettext:c-format */
3936 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3937 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3939 /* As a GNU extension, any input sections which are named
3940 .gnu.warning.SYMBOL are treated as warning symbols for the given
3941 symbol. This differs from .gnu.warning sections, which generate
3942 warnings when they are included in an output file. */
3943 /* PR 12761: Also generate this warning when building shared libraries. */
3944 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3948 name
= bfd_get_section_name (abfd
, s
);
3949 if (CONST_STRNEQ (name
, ".gnu.warning."))
3954 name
+= sizeof ".gnu.warning." - 1;
3956 /* If this is a shared object, then look up the symbol
3957 in the hash table. If it is there, and it is already
3958 been defined, then we will not be using the entry
3959 from this shared object, so we don't need to warn.
3960 FIXME: If we see the definition in a regular object
3961 later on, we will warn, but we shouldn't. The only
3962 fix is to keep track of what warnings we are supposed
3963 to emit, and then handle them all at the end of the
3967 struct elf_link_hash_entry
*h
;
3969 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3971 /* FIXME: What about bfd_link_hash_common? */
3973 && (h
->root
.type
== bfd_link_hash_defined
3974 || h
->root
.type
== bfd_link_hash_defweak
))
3979 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
3983 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3988 if (! (_bfd_generic_link_add_one_symbol
3989 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3990 FALSE
, bed
->collect
, NULL
)))
3993 if (bfd_link_executable (info
))
3995 /* Clobber the section size so that the warning does
3996 not get copied into the output file. */
3999 /* Also set SEC_EXCLUDE, so that symbols defined in
4000 the warning section don't get copied to the output. */
4001 s
->flags
|= SEC_EXCLUDE
;
4006 just_syms
= ((s
= abfd
->sections
) != NULL
4007 && s
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
);
4012 /* If we are creating a shared library, create all the dynamic
4013 sections immediately. We need to attach them to something,
4014 so we attach them to this BFD, provided it is the right
4015 format and is not from ld --just-symbols. Always create the
4016 dynamic sections for -E/--dynamic-list. FIXME: If there
4017 are no input BFD's of the same format as the output, we can't
4018 make a shared library. */
4020 && (bfd_link_pic (info
)
4021 || (!bfd_link_relocatable (info
)
4023 && (info
->export_dynamic
|| info
->dynamic
)))
4024 && is_elf_hash_table (htab
)
4025 && info
->output_bfd
->xvec
== abfd
->xvec
4026 && !htab
->dynamic_sections_created
)
4028 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
4032 else if (!is_elf_hash_table (htab
))
4036 const char *soname
= NULL
;
4038 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
4039 const Elf_Internal_Phdr
*phdr
;
4042 /* ld --just-symbols and dynamic objects don't mix very well.
4043 ld shouldn't allow it. */
4047 /* If this dynamic lib was specified on the command line with
4048 --as-needed in effect, then we don't want to add a DT_NEEDED
4049 tag unless the lib is actually used. Similary for libs brought
4050 in by another lib's DT_NEEDED. When --no-add-needed is used
4051 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4052 any dynamic library in DT_NEEDED tags in the dynamic lib at
4054 add_needed
= (elf_dyn_lib_class (abfd
)
4055 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
4056 | DYN_NO_NEEDED
)) == 0;
4058 s
= bfd_get_section_by_name (abfd
, ".dynamic");
4063 unsigned int elfsec
;
4064 unsigned long shlink
;
4066 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
4073 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
4074 if (elfsec
== SHN_BAD
)
4075 goto error_free_dyn
;
4076 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
4078 for (extdyn
= dynbuf
;
4079 extdyn
<= dynbuf
+ s
->size
- bed
->s
->sizeof_dyn
;
4080 extdyn
+= bed
->s
->sizeof_dyn
)
4082 Elf_Internal_Dyn dyn
;
4084 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
4085 if (dyn
.d_tag
== DT_SONAME
)
4087 unsigned int tagv
= dyn
.d_un
.d_val
;
4088 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
4090 goto error_free_dyn
;
4092 if (dyn
.d_tag
== DT_NEEDED
)
4094 struct bfd_link_needed_list
*n
, **pn
;
4096 unsigned int tagv
= dyn
.d_un
.d_val
;
4098 amt
= sizeof (struct bfd_link_needed_list
);
4099 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
4100 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
4101 if (n
== NULL
|| fnm
== NULL
)
4102 goto error_free_dyn
;
4103 amt
= strlen (fnm
) + 1;
4104 anm
= (char *) bfd_alloc (abfd
, amt
);
4106 goto error_free_dyn
;
4107 memcpy (anm
, fnm
, amt
);
4111 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
4115 if (dyn
.d_tag
== DT_RUNPATH
)
4117 struct bfd_link_needed_list
*n
, **pn
;
4119 unsigned int tagv
= dyn
.d_un
.d_val
;
4121 amt
= sizeof (struct bfd_link_needed_list
);
4122 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
4123 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
4124 if (n
== NULL
|| fnm
== NULL
)
4125 goto error_free_dyn
;
4126 amt
= strlen (fnm
) + 1;
4127 anm
= (char *) bfd_alloc (abfd
, amt
);
4129 goto error_free_dyn
;
4130 memcpy (anm
, fnm
, amt
);
4134 for (pn
= & runpath
;
4140 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4141 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
4143 struct bfd_link_needed_list
*n
, **pn
;
4145 unsigned int tagv
= dyn
.d_un
.d_val
;
4147 amt
= sizeof (struct bfd_link_needed_list
);
4148 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
4149 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
4150 if (n
== NULL
|| fnm
== NULL
)
4151 goto error_free_dyn
;
4152 amt
= strlen (fnm
) + 1;
4153 anm
= (char *) bfd_alloc (abfd
, amt
);
4155 goto error_free_dyn
;
4156 memcpy (anm
, fnm
, amt
);
4166 if (dyn
.d_tag
== DT_AUDIT
)
4168 unsigned int tagv
= dyn
.d_un
.d_val
;
4169 audit
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
4176 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4177 frees all more recently bfd_alloc'd blocks as well. */
4183 struct bfd_link_needed_list
**pn
;
4184 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
4189 /* If we have a PT_GNU_RELRO program header, mark as read-only
4190 all sections contained fully therein. This makes relro
4191 shared library sections appear as they will at run-time. */
4192 phdr
= elf_tdata (abfd
)->phdr
+ elf_elfheader (abfd
)->e_phnum
;
4193 while (phdr
-- > elf_tdata (abfd
)->phdr
)
4194 if (phdr
->p_type
== PT_GNU_RELRO
)
4196 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4197 if ((s
->flags
& SEC_ALLOC
) != 0
4198 && s
->vma
>= phdr
->p_vaddr
4199 && s
->vma
+ s
->size
<= phdr
->p_vaddr
+ phdr
->p_memsz
)
4200 s
->flags
|= SEC_READONLY
;
4204 /* We do not want to include any of the sections in a dynamic
4205 object in the output file. We hack by simply clobbering the
4206 list of sections in the BFD. This could be handled more
4207 cleanly by, say, a new section flag; the existing
4208 SEC_NEVER_LOAD flag is not the one we want, because that one
4209 still implies that the section takes up space in the output
4211 bfd_section_list_clear (abfd
);
4213 /* Find the name to use in a DT_NEEDED entry that refers to this
4214 object. If the object has a DT_SONAME entry, we use it.
4215 Otherwise, if the generic linker stuck something in
4216 elf_dt_name, we use that. Otherwise, we just use the file
4218 if (soname
== NULL
|| *soname
== '\0')
4220 soname
= elf_dt_name (abfd
);
4221 if (soname
== NULL
|| *soname
== '\0')
4222 soname
= bfd_get_filename (abfd
);
4225 /* Save the SONAME because sometimes the linker emulation code
4226 will need to know it. */
4227 elf_dt_name (abfd
) = soname
;
4229 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4233 /* If we have already included this dynamic object in the
4234 link, just ignore it. There is no reason to include a
4235 particular dynamic object more than once. */
4239 /* Save the DT_AUDIT entry for the linker emulation code. */
4240 elf_dt_audit (abfd
) = audit
;
4243 /* If this is a dynamic object, we always link against the .dynsym
4244 symbol table, not the .symtab symbol table. The dynamic linker
4245 will only see the .dynsym symbol table, so there is no reason to
4246 look at .symtab for a dynamic object. */
4248 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
4249 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
4251 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
4253 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
4255 /* The sh_info field of the symtab header tells us where the
4256 external symbols start. We don't care about the local symbols at
4258 if (elf_bad_symtab (abfd
))
4260 extsymcount
= symcount
;
4265 extsymcount
= symcount
- hdr
->sh_info
;
4266 extsymoff
= hdr
->sh_info
;
4269 sym_hash
= elf_sym_hashes (abfd
);
4270 if (extsymcount
!= 0)
4272 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
4274 if (isymbuf
== NULL
)
4277 if (sym_hash
== NULL
)
4279 /* We store a pointer to the hash table entry for each
4282 amt
*= sizeof (struct elf_link_hash_entry
*);
4283 sym_hash
= (struct elf_link_hash_entry
**) bfd_zalloc (abfd
, amt
);
4284 if (sym_hash
== NULL
)
4285 goto error_free_sym
;
4286 elf_sym_hashes (abfd
) = sym_hash
;
4292 /* Read in any version definitions. */
4293 if (!_bfd_elf_slurp_version_tables (abfd
,
4294 info
->default_imported_symver
))
4295 goto error_free_sym
;
4297 /* Read in the symbol versions, but don't bother to convert them
4298 to internal format. */
4299 if (elf_dynversym (abfd
) != 0)
4301 Elf_Internal_Shdr
*versymhdr
;
4303 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
4304 amt
= versymhdr
->sh_size
;
4305 extversym
= (Elf_External_Versym
*) bfd_malloc (amt
);
4306 if (extversym
== NULL
)
4307 goto error_free_sym
;
4308 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
4309 || bfd_bread (extversym
, amt
, abfd
) != amt
)
4310 goto error_free_vers
;
4311 extversym_end
= extversym
+ (amt
/ sizeof (* extversym
));
4315 /* If we are loading an as-needed shared lib, save the symbol table
4316 state before we start adding symbols. If the lib turns out
4317 to be unneeded, restore the state. */
4318 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4323 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
4325 struct bfd_hash_entry
*p
;
4326 struct elf_link_hash_entry
*h
;
4328 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4330 h
= (struct elf_link_hash_entry
*) p
;
4331 entsize
+= htab
->root
.table
.entsize
;
4332 if (h
->root
.type
== bfd_link_hash_warning
)
4333 entsize
+= htab
->root
.table
.entsize
;
4337 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
4338 old_tab
= bfd_malloc (tabsize
+ entsize
);
4339 if (old_tab
== NULL
)
4340 goto error_free_vers
;
4342 /* Remember the current objalloc pointer, so that all mem for
4343 symbols added can later be reclaimed. */
4344 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
4345 if (alloc_mark
== NULL
)
4346 goto error_free_vers
;
4348 /* Make a special call to the linker "notice" function to
4349 tell it that we are about to handle an as-needed lib. */
4350 if (!(*bed
->notice_as_needed
) (abfd
, info
, notice_as_needed
))
4351 goto error_free_vers
;
4353 /* Clone the symbol table. Remember some pointers into the
4354 symbol table, and dynamic symbol count. */
4355 old_ent
= (char *) old_tab
+ tabsize
;
4356 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
4357 old_undefs
= htab
->root
.undefs
;
4358 old_undefs_tail
= htab
->root
.undefs_tail
;
4359 old_table
= htab
->root
.table
.table
;
4360 old_size
= htab
->root
.table
.size
;
4361 old_count
= htab
->root
.table
.count
;
4362 old_strtab
= _bfd_elf_strtab_save (htab
->dynstr
);
4363 if (old_strtab
== NULL
)
4364 goto error_free_vers
;
4366 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4368 struct bfd_hash_entry
*p
;
4369 struct elf_link_hash_entry
*h
;
4371 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4373 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
4374 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4375 h
= (struct elf_link_hash_entry
*) p
;
4376 if (h
->root
.type
== bfd_link_hash_warning
)
4378 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
4379 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4386 if (extversym
== NULL
)
4388 else if (extversym
+ extsymoff
< extversym_end
)
4389 ever
= extversym
+ extsymoff
;
4392 /* xgettext:c-format */
4393 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4394 abfd
, (long) extsymoff
,
4395 (long) (extversym_end
- extversym
) / sizeof (* extversym
));
4396 bfd_set_error (bfd_error_bad_value
);
4397 goto error_free_vers
;
4400 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
4402 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
4406 asection
*sec
, *new_sec
;
4409 struct elf_link_hash_entry
*h
;
4410 struct elf_link_hash_entry
*hi
;
4411 bfd_boolean definition
;
4412 bfd_boolean size_change_ok
;
4413 bfd_boolean type_change_ok
;
4414 bfd_boolean new_weak
;
4415 bfd_boolean old_weak
;
4416 bfd_boolean override
;
4418 bfd_boolean discarded
;
4419 unsigned int old_alignment
;
4421 bfd_boolean matched
;
4425 flags
= BSF_NO_FLAGS
;
4427 value
= isym
->st_value
;
4428 common
= bed
->common_definition (isym
);
4429 if (common
&& info
->inhibit_common_definition
)
4431 /* Treat common symbol as undefined for --no-define-common. */
4432 isym
->st_shndx
= SHN_UNDEF
;
4437 bind
= ELF_ST_BIND (isym
->st_info
);
4441 /* This should be impossible, since ELF requires that all
4442 global symbols follow all local symbols, and that sh_info
4443 point to the first global symbol. Unfortunately, Irix 5
4445 if (elf_bad_symtab (abfd
))
4448 /* If we aren't prepared to handle locals within the globals
4449 then we'll likely segfault on a NULL section. */
4450 bfd_set_error (bfd_error_bad_value
);
4451 goto error_free_vers
;
4454 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
4462 case STB_GNU_UNIQUE
:
4463 flags
= BSF_GNU_UNIQUE
;
4467 /* Leave it up to the processor backend. */
4471 if (isym
->st_shndx
== SHN_UNDEF
)
4472 sec
= bfd_und_section_ptr
;
4473 else if (isym
->st_shndx
== SHN_ABS
)
4474 sec
= bfd_abs_section_ptr
;
4475 else if (isym
->st_shndx
== SHN_COMMON
)
4477 sec
= bfd_com_section_ptr
;
4478 /* What ELF calls the size we call the value. What ELF
4479 calls the value we call the alignment. */
4480 value
= isym
->st_size
;
4484 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
4486 sec
= bfd_abs_section_ptr
;
4487 else if (discarded_section (sec
))
4489 /* Symbols from discarded section are undefined. We keep
4491 sec
= bfd_und_section_ptr
;
4493 isym
->st_shndx
= SHN_UNDEF
;
4495 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
4499 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
4502 goto error_free_vers
;
4504 if (isym
->st_shndx
== SHN_COMMON
4505 && (abfd
->flags
& BFD_PLUGIN
) != 0)
4507 asection
*xc
= bfd_get_section_by_name (abfd
, "COMMON");
4511 flagword sflags
= (SEC_ALLOC
| SEC_IS_COMMON
| SEC_KEEP
4513 xc
= bfd_make_section_with_flags (abfd
, "COMMON", sflags
);
4515 goto error_free_vers
;
4519 else if (isym
->st_shndx
== SHN_COMMON
4520 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
4521 && !bfd_link_relocatable (info
))
4523 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
4527 flagword sflags
= (SEC_ALLOC
| SEC_THREAD_LOCAL
| SEC_IS_COMMON
4528 | SEC_LINKER_CREATED
);
4529 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon", sflags
);
4531 goto error_free_vers
;
4535 else if (bed
->elf_add_symbol_hook
)
4537 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
4539 goto error_free_vers
;
4541 /* The hook function sets the name to NULL if this symbol
4542 should be skipped for some reason. */
4547 /* Sanity check that all possibilities were handled. */
4550 bfd_set_error (bfd_error_bad_value
);
4551 goto error_free_vers
;
4554 /* Silently discard TLS symbols from --just-syms. There's
4555 no way to combine a static TLS block with a new TLS block
4556 for this executable. */
4557 if (ELF_ST_TYPE (isym
->st_info
) == STT_TLS
4558 && sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
4561 if (bfd_is_und_section (sec
)
4562 || bfd_is_com_section (sec
))
4567 size_change_ok
= FALSE
;
4568 type_change_ok
= bed
->type_change_ok
;
4575 if (is_elf_hash_table (htab
))
4577 Elf_Internal_Versym iver
;
4578 unsigned int vernum
= 0;
4583 if (info
->default_imported_symver
)
4584 /* Use the default symbol version created earlier. */
4585 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4589 else if (ever
>= extversym_end
)
4591 /* xgettext:c-format */
4592 _bfd_error_handler (_("%pB: not enough version information"),
4594 bfd_set_error (bfd_error_bad_value
);
4595 goto error_free_vers
;
4598 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4600 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4602 /* If this is a hidden symbol, or if it is not version
4603 1, we append the version name to the symbol name.
4604 However, we do not modify a non-hidden absolute symbol
4605 if it is not a function, because it might be the version
4606 symbol itself. FIXME: What if it isn't? */
4607 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4609 && (!bfd_is_abs_section (sec
)
4610 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4613 size_t namelen
, verlen
, newlen
;
4616 if (isym
->st_shndx
!= SHN_UNDEF
)
4618 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4620 else if (vernum
> 1)
4622 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4629 /* xgettext:c-format */
4630 (_("%pB: %s: invalid version %u (max %d)"),
4632 elf_tdata (abfd
)->cverdefs
);
4633 bfd_set_error (bfd_error_bad_value
);
4634 goto error_free_vers
;
4639 /* We cannot simply test for the number of
4640 entries in the VERNEED section since the
4641 numbers for the needed versions do not start
4643 Elf_Internal_Verneed
*t
;
4646 for (t
= elf_tdata (abfd
)->verref
;
4650 Elf_Internal_Vernaux
*a
;
4652 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4654 if (a
->vna_other
== vernum
)
4656 verstr
= a
->vna_nodename
;
4666 /* xgettext:c-format */
4667 (_("%pB: %s: invalid needed version %d"),
4668 abfd
, name
, vernum
);
4669 bfd_set_error (bfd_error_bad_value
);
4670 goto error_free_vers
;
4674 namelen
= strlen (name
);
4675 verlen
= strlen (verstr
);
4676 newlen
= namelen
+ verlen
+ 2;
4677 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4678 && isym
->st_shndx
!= SHN_UNDEF
)
4681 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4682 if (newname
== NULL
)
4683 goto error_free_vers
;
4684 memcpy (newname
, name
, namelen
);
4685 p
= newname
+ namelen
;
4687 /* If this is a defined non-hidden version symbol,
4688 we add another @ to the name. This indicates the
4689 default version of the symbol. */
4690 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4691 && isym
->st_shndx
!= SHN_UNDEF
)
4693 memcpy (p
, verstr
, verlen
+ 1);
4698 /* If this symbol has default visibility and the user has
4699 requested we not re-export it, then mark it as hidden. */
4700 if (!bfd_is_und_section (sec
)
4703 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
4704 isym
->st_other
= (STV_HIDDEN
4705 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
4707 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
, &value
,
4708 sym_hash
, &old_bfd
, &old_weak
,
4709 &old_alignment
, &skip
, &override
,
4710 &type_change_ok
, &size_change_ok
,
4712 goto error_free_vers
;
4717 /* Override a definition only if the new symbol matches the
4719 if (override
&& matched
)
4723 while (h
->root
.type
== bfd_link_hash_indirect
4724 || h
->root
.type
== bfd_link_hash_warning
)
4725 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4727 if (elf_tdata (abfd
)->verdef
!= NULL
4730 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4733 if (! (_bfd_generic_link_add_one_symbol
4734 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4735 (struct bfd_link_hash_entry
**) sym_hash
)))
4736 goto error_free_vers
;
4738 if ((abfd
->flags
& DYNAMIC
) == 0
4739 && (bfd_get_flavour (info
->output_bfd
)
4740 == bfd_target_elf_flavour
))
4742 if (ELF_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
4743 elf_tdata (info
->output_bfd
)->has_gnu_symbols
4744 |= elf_gnu_symbol_ifunc
;
4745 if ((flags
& BSF_GNU_UNIQUE
))
4746 elf_tdata (info
->output_bfd
)->has_gnu_symbols
4747 |= elf_gnu_symbol_unique
;
4751 /* We need to make sure that indirect symbol dynamic flags are
4754 while (h
->root
.type
== bfd_link_hash_indirect
4755 || h
->root
.type
== bfd_link_hash_warning
)
4756 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4758 /* Setting the index to -3 tells elf_link_output_extsym that
4759 this symbol is defined in a discarded section. */
4765 new_weak
= (flags
& BSF_WEAK
) != 0;
4769 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4770 && is_elf_hash_table (htab
)
4771 && h
->u
.alias
== NULL
)
4773 /* Keep a list of all weak defined non function symbols from
4774 a dynamic object, using the alias field. Later in this
4775 function we will set the alias field to the correct
4776 value. We only put non-function symbols from dynamic
4777 objects on this list, because that happens to be the only
4778 time we need to know the normal symbol corresponding to a
4779 weak symbol, and the information is time consuming to
4780 figure out. If the alias field is not already NULL,
4781 then this symbol was already defined by some previous
4782 dynamic object, and we will be using that previous
4783 definition anyhow. */
4789 /* Set the alignment of a common symbol. */
4790 if ((common
|| bfd_is_com_section (sec
))
4791 && h
->root
.type
== bfd_link_hash_common
)
4796 align
= bfd_log2 (isym
->st_value
);
4799 /* The new symbol is a common symbol in a shared object.
4800 We need to get the alignment from the section. */
4801 align
= new_sec
->alignment_power
;
4803 if (align
> old_alignment
)
4804 h
->root
.u
.c
.p
->alignment_power
= align
;
4806 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4809 if (is_elf_hash_table (htab
))
4811 /* Set a flag in the hash table entry indicating the type of
4812 reference or definition we just found. A dynamic symbol
4813 is one which is referenced or defined by both a regular
4814 object and a shared object. */
4815 bfd_boolean dynsym
= FALSE
;
4817 /* Plugin symbols aren't normal. Don't set def_regular or
4818 ref_regular for them, or make them dynamic. */
4819 if ((abfd
->flags
& BFD_PLUGIN
) != 0)
4826 if (bind
!= STB_WEAK
)
4827 h
->ref_regular_nonweak
= 1;
4839 /* If the indirect symbol has been forced local, don't
4840 make the real symbol dynamic. */
4841 if ((h
== hi
|| !hi
->forced_local
)
4842 && (bfd_link_dll (info
)
4852 hi
->ref_dynamic
= 1;
4857 hi
->def_dynamic
= 1;
4860 /* If the indirect symbol has been forced local, don't
4861 make the real symbol dynamic. */
4862 if ((h
== hi
|| !hi
->forced_local
)
4866 && weakdef (h
)->dynindx
!= -1)))
4870 /* Check to see if we need to add an indirect symbol for
4871 the default name. */
4873 || (!override
&& h
->root
.type
== bfd_link_hash_common
))
4874 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4875 sec
, value
, &old_bfd
, &dynsym
))
4876 goto error_free_vers
;
4878 /* Check the alignment when a common symbol is involved. This
4879 can change when a common symbol is overridden by a normal
4880 definition or a common symbol is ignored due to the old
4881 normal definition. We need to make sure the maximum
4882 alignment is maintained. */
4883 if ((old_alignment
|| common
)
4884 && h
->root
.type
!= bfd_link_hash_common
)
4886 unsigned int common_align
;
4887 unsigned int normal_align
;
4888 unsigned int symbol_align
;
4892 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
4893 || h
->root
.type
== bfd_link_hash_defweak
);
4895 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4896 if (h
->root
.u
.def
.section
->owner
!= NULL
4897 && (h
->root
.u
.def
.section
->owner
->flags
4898 & (DYNAMIC
| BFD_PLUGIN
)) == 0)
4900 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4901 if (normal_align
> symbol_align
)
4902 normal_align
= symbol_align
;
4905 normal_align
= symbol_align
;
4909 common_align
= old_alignment
;
4910 common_bfd
= old_bfd
;
4915 common_align
= bfd_log2 (isym
->st_value
);
4917 normal_bfd
= old_bfd
;
4920 if (normal_align
< common_align
)
4922 /* PR binutils/2735 */
4923 if (normal_bfd
== NULL
)
4925 /* xgettext:c-format */
4926 (_("warning: alignment %u of common symbol `%s' in %pB is"
4927 " greater than the alignment (%u) of its section %pA"),
4928 1 << common_align
, name
, common_bfd
,
4929 1 << normal_align
, h
->root
.u
.def
.section
);
4932 /* xgettext:c-format */
4933 (_("warning: alignment %u of symbol `%s' in %pB"
4934 " is smaller than %u in %pB"),
4935 1 << normal_align
, name
, normal_bfd
,
4936 1 << common_align
, common_bfd
);
4940 /* Remember the symbol size if it isn't undefined. */
4941 if (isym
->st_size
!= 0
4942 && isym
->st_shndx
!= SHN_UNDEF
4943 && (definition
|| h
->size
== 0))
4946 && h
->size
!= isym
->st_size
4947 && ! size_change_ok
)
4949 /* xgettext:c-format */
4950 (_("warning: size of symbol `%s' changed"
4951 " from %" PRIu64
" in %pB to %" PRIu64
" in %pB"),
4952 name
, (uint64_t) h
->size
, old_bfd
,
4953 (uint64_t) isym
->st_size
, abfd
);
4955 h
->size
= isym
->st_size
;
4958 /* If this is a common symbol, then we always want H->SIZE
4959 to be the size of the common symbol. The code just above
4960 won't fix the size if a common symbol becomes larger. We
4961 don't warn about a size change here, because that is
4962 covered by --warn-common. Allow changes between different
4964 if (h
->root
.type
== bfd_link_hash_common
)
4965 h
->size
= h
->root
.u
.c
.size
;
4967 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4968 && ((definition
&& !new_weak
)
4969 || (old_weak
&& h
->root
.type
== bfd_link_hash_common
)
4970 || h
->type
== STT_NOTYPE
))
4972 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
4974 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4976 if (type
== STT_GNU_IFUNC
4977 && (abfd
->flags
& DYNAMIC
) != 0)
4980 if (h
->type
!= type
)
4982 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
4983 /* xgettext:c-format */
4985 (_("warning: type of symbol `%s' changed"
4986 " from %d to %d in %pB"),
4987 name
, h
->type
, type
, abfd
);
4993 /* Merge st_other field. */
4994 elf_merge_st_other (abfd
, h
, isym
, sec
, definition
, dynamic
);
4996 /* We don't want to make debug symbol dynamic. */
4998 && (sec
->flags
& SEC_DEBUGGING
)
4999 && !bfd_link_relocatable (info
))
5002 /* Nor should we make plugin symbols dynamic. */
5003 if ((abfd
->flags
& BFD_PLUGIN
) != 0)
5008 h
->target_internal
= isym
->st_target_internal
;
5009 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
5012 if (definition
&& !dynamic
)
5014 char *p
= strchr (name
, ELF_VER_CHR
);
5015 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
5017 /* Queue non-default versions so that .symver x, x@FOO
5018 aliases can be checked. */
5021 amt
= ((isymend
- isym
+ 1)
5022 * sizeof (struct elf_link_hash_entry
*));
5024 = (struct elf_link_hash_entry
**) bfd_malloc (amt
);
5026 goto error_free_vers
;
5028 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
5032 if (dynsym
&& h
->dynindx
== -1)
5034 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5035 goto error_free_vers
;
5037 && weakdef (h
)->dynindx
== -1)
5039 if (!bfd_elf_link_record_dynamic_symbol (info
, weakdef (h
)))
5040 goto error_free_vers
;
5043 else if (h
->dynindx
!= -1)
5044 /* If the symbol already has a dynamic index, but
5045 visibility says it should not be visible, turn it into
5047 switch (ELF_ST_VISIBILITY (h
->other
))
5051 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
5056 /* Don't add DT_NEEDED for references from the dummy bfd nor
5057 for unmatched symbol. */
5062 && h
->ref_regular_nonweak
5064 || (old_bfd
->flags
& BFD_PLUGIN
) == 0))
5065 || (h
->ref_dynamic_nonweak
5066 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
5067 && !on_needed_list (elf_dt_name (abfd
),
5068 htab
->needed
, NULL
))))
5071 const char *soname
= elf_dt_name (abfd
);
5073 info
->callbacks
->minfo ("%!", soname
, old_bfd
,
5074 h
->root
.root
.string
);
5076 /* A symbol from a library loaded via DT_NEEDED of some
5077 other library is referenced by a regular object.
5078 Add a DT_NEEDED entry for it. Issue an error if
5079 --no-add-needed is used and the reference was not
5082 && (elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
5085 /* xgettext:c-format */
5086 (_("%pB: undefined reference to symbol '%s'"),
5088 bfd_set_error (bfd_error_missing_dso
);
5089 goto error_free_vers
;
5092 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
5093 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
5096 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
5098 goto error_free_vers
;
5100 BFD_ASSERT (ret
== 0);
5105 if (info
->lto_plugin_active
5106 && !bfd_link_relocatable (info
)
5107 && (abfd
->flags
& BFD_PLUGIN
) == 0
5113 if (bed
->s
->arch_size
== 32)
5118 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5119 referenced in regular objects so that linker plugin will get
5120 the correct symbol resolution. */
5122 sym_hash
= elf_sym_hashes (abfd
);
5123 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5125 Elf_Internal_Rela
*internal_relocs
;
5126 Elf_Internal_Rela
*rel
, *relend
;
5128 /* Don't check relocations in excluded sections. */
5129 if ((s
->flags
& SEC_RELOC
) == 0
5130 || s
->reloc_count
== 0
5131 || (s
->flags
& SEC_EXCLUDE
) != 0
5132 || ((info
->strip
== strip_all
5133 || info
->strip
== strip_debugger
)
5134 && (s
->flags
& SEC_DEBUGGING
) != 0))
5137 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, s
, NULL
,
5140 if (internal_relocs
== NULL
)
5141 goto error_free_vers
;
5143 rel
= internal_relocs
;
5144 relend
= rel
+ s
->reloc_count
;
5145 for ( ; rel
< relend
; rel
++)
5147 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
5148 struct elf_link_hash_entry
*h
;
5150 /* Skip local symbols. */
5151 if (r_symndx
< extsymoff
)
5154 h
= sym_hash
[r_symndx
- extsymoff
];
5156 h
->root
.non_ir_ref_regular
= 1;
5159 if (elf_section_data (s
)->relocs
!= internal_relocs
)
5160 free (internal_relocs
);
5164 if (extversym
!= NULL
)
5170 if (isymbuf
!= NULL
)
5176 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
5180 /* Restore the symbol table. */
5181 old_ent
= (char *) old_tab
+ tabsize
;
5182 memset (elf_sym_hashes (abfd
), 0,
5183 extsymcount
* sizeof (struct elf_link_hash_entry
*));
5184 htab
->root
.table
.table
= old_table
;
5185 htab
->root
.table
.size
= old_size
;
5186 htab
->root
.table
.count
= old_count
;
5187 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
5188 htab
->root
.undefs
= old_undefs
;
5189 htab
->root
.undefs_tail
= old_undefs_tail
;
5190 _bfd_elf_strtab_restore (htab
->dynstr
, old_strtab
);
5193 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
5195 struct bfd_hash_entry
*p
;
5196 struct elf_link_hash_entry
*h
;
5198 unsigned int alignment_power
;
5199 unsigned int non_ir_ref_dynamic
;
5201 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
5203 h
= (struct elf_link_hash_entry
*) p
;
5204 if (h
->root
.type
== bfd_link_hash_warning
)
5205 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5207 /* Preserve the maximum alignment and size for common
5208 symbols even if this dynamic lib isn't on DT_NEEDED
5209 since it can still be loaded at run time by another
5211 if (h
->root
.type
== bfd_link_hash_common
)
5213 size
= h
->root
.u
.c
.size
;
5214 alignment_power
= h
->root
.u
.c
.p
->alignment_power
;
5219 alignment_power
= 0;
5221 /* Preserve non_ir_ref_dynamic so that this symbol
5222 will be exported when the dynamic lib becomes needed
5223 in the second pass. */
5224 non_ir_ref_dynamic
= h
->root
.non_ir_ref_dynamic
;
5225 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
5226 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
5227 h
= (struct elf_link_hash_entry
*) p
;
5228 if (h
->root
.type
== bfd_link_hash_warning
)
5230 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
5231 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
5232 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5234 if (h
->root
.type
== bfd_link_hash_common
)
5236 if (size
> h
->root
.u
.c
.size
)
5237 h
->root
.u
.c
.size
= size
;
5238 if (alignment_power
> h
->root
.u
.c
.p
->alignment_power
)
5239 h
->root
.u
.c
.p
->alignment_power
= alignment_power
;
5241 h
->root
.non_ir_ref_dynamic
= non_ir_ref_dynamic
;
5245 /* Make a special call to the linker "notice" function to
5246 tell it that symbols added for crefs may need to be removed. */
5247 if (!(*bed
->notice_as_needed
) (abfd
, info
, notice_not_needed
))
5248 goto error_free_vers
;
5251 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
5253 if (nondeflt_vers
!= NULL
)
5254 free (nondeflt_vers
);
5258 if (old_tab
!= NULL
)
5260 if (!(*bed
->notice_as_needed
) (abfd
, info
, notice_needed
))
5261 goto error_free_vers
;
5266 /* Now that all the symbols from this input file are created, if
5267 not performing a relocatable link, handle .symver foo, foo@BAR
5268 such that any relocs against foo become foo@BAR. */
5269 if (!bfd_link_relocatable (info
) && nondeflt_vers
!= NULL
)
5273 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
5275 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
5276 char *shortname
, *p
;
5278 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
5280 || (h
->root
.type
!= bfd_link_hash_defined
5281 && h
->root
.type
!= bfd_link_hash_defweak
))
5284 amt
= p
- h
->root
.root
.string
;
5285 shortname
= (char *) bfd_malloc (amt
+ 1);
5287 goto error_free_vers
;
5288 memcpy (shortname
, h
->root
.root
.string
, amt
);
5289 shortname
[amt
] = '\0';
5291 hi
= (struct elf_link_hash_entry
*)
5292 bfd_link_hash_lookup (&htab
->root
, shortname
,
5293 FALSE
, FALSE
, FALSE
);
5295 && hi
->root
.type
== h
->root
.type
5296 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
5297 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
5299 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
5300 hi
->root
.type
= bfd_link_hash_indirect
;
5301 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
5302 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
5303 sym_hash
= elf_sym_hashes (abfd
);
5305 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
5306 if (sym_hash
[symidx
] == hi
)
5308 sym_hash
[symidx
] = h
;
5314 free (nondeflt_vers
);
5315 nondeflt_vers
= NULL
;
5318 /* Now set the alias field correctly for all the weak defined
5319 symbols we found. The only way to do this is to search all the
5320 symbols. Since we only need the information for non functions in
5321 dynamic objects, that's the only time we actually put anything on
5322 the list WEAKS. We need this information so that if a regular
5323 object refers to a symbol defined weakly in a dynamic object, the
5324 real symbol in the dynamic object is also put in the dynamic
5325 symbols; we also must arrange for both symbols to point to the
5326 same memory location. We could handle the general case of symbol
5327 aliasing, but a general symbol alias can only be generated in
5328 assembler code, handling it correctly would be very time
5329 consuming, and other ELF linkers don't handle general aliasing
5333 struct elf_link_hash_entry
**hpp
;
5334 struct elf_link_hash_entry
**hppend
;
5335 struct elf_link_hash_entry
**sorted_sym_hash
;
5336 struct elf_link_hash_entry
*h
;
5339 /* Since we have to search the whole symbol list for each weak
5340 defined symbol, search time for N weak defined symbols will be
5341 O(N^2). Binary search will cut it down to O(NlogN). */
5343 amt
*= sizeof (struct elf_link_hash_entry
*);
5344 sorted_sym_hash
= (struct elf_link_hash_entry
**) bfd_malloc (amt
);
5345 if (sorted_sym_hash
== NULL
)
5347 sym_hash
= sorted_sym_hash
;
5348 hpp
= elf_sym_hashes (abfd
);
5349 hppend
= hpp
+ extsymcount
;
5351 for (; hpp
< hppend
; hpp
++)
5355 && h
->root
.type
== bfd_link_hash_defined
5356 && !bed
->is_function_type (h
->type
))
5364 qsort (sorted_sym_hash
, sym_count
,
5365 sizeof (struct elf_link_hash_entry
*),
5368 while (weaks
!= NULL
)
5370 struct elf_link_hash_entry
*hlook
;
5373 size_t i
, j
, idx
= 0;
5376 weaks
= hlook
->u
.alias
;
5377 hlook
->u
.alias
= NULL
;
5379 if (hlook
->root
.type
!= bfd_link_hash_defined
5380 && hlook
->root
.type
!= bfd_link_hash_defweak
)
5383 slook
= hlook
->root
.u
.def
.section
;
5384 vlook
= hlook
->root
.u
.def
.value
;
5390 bfd_signed_vma vdiff
;
5392 h
= sorted_sym_hash
[idx
];
5393 vdiff
= vlook
- h
->root
.u
.def
.value
;
5400 int sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
5410 /* We didn't find a value/section match. */
5414 /* With multiple aliases, or when the weak symbol is already
5415 strongly defined, we have multiple matching symbols and
5416 the binary search above may land on any of them. Step
5417 one past the matching symbol(s). */
5420 h
= sorted_sym_hash
[idx
];
5421 if (h
->root
.u
.def
.section
!= slook
5422 || h
->root
.u
.def
.value
!= vlook
)
5426 /* Now look back over the aliases. Since we sorted by size
5427 as well as value and section, we'll choose the one with
5428 the largest size. */
5431 h
= sorted_sym_hash
[idx
];
5433 /* Stop if value or section doesn't match. */
5434 if (h
->root
.u
.def
.section
!= slook
5435 || h
->root
.u
.def
.value
!= vlook
)
5437 else if (h
!= hlook
)
5439 struct elf_link_hash_entry
*t
;
5442 hlook
->is_weakalias
= 1;
5444 if (t
->u
.alias
!= NULL
)
5445 while (t
->u
.alias
!= h
)
5449 /* If the weak definition is in the list of dynamic
5450 symbols, make sure the real definition is put
5452 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
5454 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5457 free (sorted_sym_hash
);
5462 /* If the real definition is in the list of dynamic
5463 symbols, make sure the weak definition is put
5464 there as well. If we don't do this, then the
5465 dynamic loader might not merge the entries for the
5466 real definition and the weak definition. */
5467 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
5469 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
5470 goto err_free_sym_hash
;
5477 free (sorted_sym_hash
);
5480 if (bed
->check_directives
5481 && !(*bed
->check_directives
) (abfd
, info
))
5484 /* If this is a non-traditional link, try to optimize the handling
5485 of the .stab/.stabstr sections. */
5487 && ! info
->traditional_format
5488 && is_elf_hash_table (htab
)
5489 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
5493 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
5494 if (stabstr
!= NULL
)
5496 bfd_size_type string_offset
= 0;
5499 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
5500 if (CONST_STRNEQ (stab
->name
, ".stab")
5501 && (!stab
->name
[5] ||
5502 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
5503 && (stab
->flags
& SEC_MERGE
) == 0
5504 && !bfd_is_abs_section (stab
->output_section
))
5506 struct bfd_elf_section_data
*secdata
;
5508 secdata
= elf_section_data (stab
);
5509 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
5510 stabstr
, &secdata
->sec_info
,
5513 if (secdata
->sec_info
)
5514 stab
->sec_info_type
= SEC_INFO_TYPE_STABS
;
5519 if (is_elf_hash_table (htab
) && add_needed
)
5521 /* Add this bfd to the loaded list. */
5522 struct elf_link_loaded_list
*n
;
5524 n
= (struct elf_link_loaded_list
*) bfd_alloc (abfd
, sizeof (*n
));
5528 n
->next
= htab
->loaded
;
5535 if (old_tab
!= NULL
)
5537 if (old_strtab
!= NULL
)
5539 if (nondeflt_vers
!= NULL
)
5540 free (nondeflt_vers
);
5541 if (extversym
!= NULL
)
5544 if (isymbuf
!= NULL
)
5550 /* Return the linker hash table entry of a symbol that might be
5551 satisfied by an archive symbol. Return -1 on error. */
5553 struct elf_link_hash_entry
*
5554 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
5555 struct bfd_link_info
*info
,
5558 struct elf_link_hash_entry
*h
;
5562 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, TRUE
);
5566 /* If this is a default version (the name contains @@), look up the
5567 symbol again with only one `@' as well as without the version.
5568 The effect is that references to the symbol with and without the
5569 version will be matched by the default symbol in the archive. */
5571 p
= strchr (name
, ELF_VER_CHR
);
5572 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
5575 /* First check with only one `@'. */
5576 len
= strlen (name
);
5577 copy
= (char *) bfd_alloc (abfd
, len
);
5579 return (struct elf_link_hash_entry
*) -1;
5581 first
= p
- name
+ 1;
5582 memcpy (copy
, name
, first
);
5583 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
5585 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, TRUE
);
5588 /* We also need to check references to the symbol without the
5590 copy
[first
- 1] = '\0';
5591 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
5592 FALSE
, FALSE
, TRUE
);
5595 bfd_release (abfd
, copy
);
5599 /* Add symbols from an ELF archive file to the linker hash table. We
5600 don't use _bfd_generic_link_add_archive_symbols because we need to
5601 handle versioned symbols.
5603 Fortunately, ELF archive handling is simpler than that done by
5604 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5605 oddities. In ELF, if we find a symbol in the archive map, and the
5606 symbol is currently undefined, we know that we must pull in that
5609 Unfortunately, we do have to make multiple passes over the symbol
5610 table until nothing further is resolved. */
5613 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5616 unsigned char *included
= NULL
;
5620 const struct elf_backend_data
*bed
;
5621 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
5622 (bfd
*, struct bfd_link_info
*, const char *);
5624 if (! bfd_has_map (abfd
))
5626 /* An empty archive is a special case. */
5627 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
5629 bfd_set_error (bfd_error_no_armap
);
5633 /* Keep track of all symbols we know to be already defined, and all
5634 files we know to be already included. This is to speed up the
5635 second and subsequent passes. */
5636 c
= bfd_ardata (abfd
)->symdef_count
;
5640 amt
*= sizeof (*included
);
5641 included
= (unsigned char *) bfd_zmalloc (amt
);
5642 if (included
== NULL
)
5645 symdefs
= bfd_ardata (abfd
)->symdefs
;
5646 bed
= get_elf_backend_data (abfd
);
5647 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
5660 symdefend
= symdef
+ c
;
5661 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5663 struct elf_link_hash_entry
*h
;
5665 struct bfd_link_hash_entry
*undefs_tail
;
5670 if (symdef
->file_offset
== last
)
5676 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5677 if (h
== (struct elf_link_hash_entry
*) -1)
5683 if (h
->root
.type
== bfd_link_hash_common
)
5685 /* We currently have a common symbol. The archive map contains
5686 a reference to this symbol, so we may want to include it. We
5687 only want to include it however, if this archive element
5688 contains a definition of the symbol, not just another common
5691 Unfortunately some archivers (including GNU ar) will put
5692 declarations of common symbols into their archive maps, as
5693 well as real definitions, so we cannot just go by the archive
5694 map alone. Instead we must read in the element's symbol
5695 table and check that to see what kind of symbol definition
5697 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5700 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5702 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5703 /* Symbol must be defined. Don't check it again. */
5708 /* We need to include this archive member. */
5709 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5710 if (element
== NULL
)
5713 if (! bfd_check_format (element
, bfd_object
))
5716 undefs_tail
= info
->hash
->undefs_tail
;
5718 if (!(*info
->callbacks
5719 ->add_archive_element
) (info
, element
, symdef
->name
, &element
))
5721 if (!bfd_link_add_symbols (element
, info
))
5724 /* If there are any new undefined symbols, we need to make
5725 another pass through the archive in order to see whether
5726 they can be defined. FIXME: This isn't perfect, because
5727 common symbols wind up on undefs_tail and because an
5728 undefined symbol which is defined later on in this pass
5729 does not require another pass. This isn't a bug, but it
5730 does make the code less efficient than it could be. */
5731 if (undefs_tail
!= info
->hash
->undefs_tail
)
5734 /* Look backward to mark all symbols from this object file
5735 which we have already seen in this pass. */
5739 included
[mark
] = TRUE
;
5744 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5746 /* We mark subsequent symbols from this object file as we go
5747 on through the loop. */
5748 last
= symdef
->file_offset
;
5758 if (included
!= NULL
)
5763 /* Given an ELF BFD, add symbols to the global hash table as
5767 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5769 switch (bfd_get_format (abfd
))
5772 return elf_link_add_object_symbols (abfd
, info
);
5774 return elf_link_add_archive_symbols (abfd
, info
);
5776 bfd_set_error (bfd_error_wrong_format
);
5781 struct hash_codes_info
5783 unsigned long *hashcodes
;
5787 /* This function will be called though elf_link_hash_traverse to store
5788 all hash value of the exported symbols in an array. */
5791 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5793 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5798 /* Ignore indirect symbols. These are added by the versioning code. */
5799 if (h
->dynindx
== -1)
5802 name
= h
->root
.root
.string
;
5803 if (h
->versioned
>= versioned
)
5805 char *p
= strchr (name
, ELF_VER_CHR
);
5808 alc
= (char *) bfd_malloc (p
- name
+ 1);
5814 memcpy (alc
, name
, p
- name
);
5815 alc
[p
- name
] = '\0';
5820 /* Compute the hash value. */
5821 ha
= bfd_elf_hash (name
);
5823 /* Store the found hash value in the array given as the argument. */
5824 *(inf
->hashcodes
)++ = ha
;
5826 /* And store it in the struct so that we can put it in the hash table
5828 h
->u
.elf_hash_value
= ha
;
5836 struct collect_gnu_hash_codes
5839 const struct elf_backend_data
*bed
;
5840 unsigned long int nsyms
;
5841 unsigned long int maskbits
;
5842 unsigned long int *hashcodes
;
5843 unsigned long int *hashval
;
5844 unsigned long int *indx
;
5845 unsigned long int *counts
;
5848 long int min_dynindx
;
5849 unsigned long int bucketcount
;
5850 unsigned long int symindx
;
5851 long int local_indx
;
5852 long int shift1
, shift2
;
5853 unsigned long int mask
;
5857 /* This function will be called though elf_link_hash_traverse to store
5858 all hash value of the exported symbols in an array. */
5861 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5863 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5868 /* Ignore indirect symbols. These are added by the versioning code. */
5869 if (h
->dynindx
== -1)
5872 /* Ignore also local symbols and undefined symbols. */
5873 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5876 name
= h
->root
.root
.string
;
5877 if (h
->versioned
>= versioned
)
5879 char *p
= strchr (name
, ELF_VER_CHR
);
5882 alc
= (char *) bfd_malloc (p
- name
+ 1);
5888 memcpy (alc
, name
, p
- name
);
5889 alc
[p
- name
] = '\0';
5894 /* Compute the hash value. */
5895 ha
= bfd_elf_gnu_hash (name
);
5897 /* Store the found hash value in the array for compute_bucket_count,
5898 and also for .dynsym reordering purposes. */
5899 s
->hashcodes
[s
->nsyms
] = ha
;
5900 s
->hashval
[h
->dynindx
] = ha
;
5902 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5903 s
->min_dynindx
= h
->dynindx
;
5911 /* This function will be called though elf_link_hash_traverse to do
5912 final dynaminc symbol renumbering. */
5915 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5917 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5918 unsigned long int bucket
;
5919 unsigned long int val
;
5921 /* Ignore indirect symbols. */
5922 if (h
->dynindx
== -1)
5925 /* Ignore also local symbols and undefined symbols. */
5926 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5928 if (h
->dynindx
>= s
->min_dynindx
)
5929 h
->dynindx
= s
->local_indx
++;
5933 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5934 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5935 & ((s
->maskbits
>> s
->shift1
) - 1);
5936 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5938 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5939 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5940 if (s
->counts
[bucket
] == 1)
5941 /* Last element terminates the chain. */
5943 bfd_put_32 (s
->output_bfd
, val
,
5944 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5945 --s
->counts
[bucket
];
5946 h
->dynindx
= s
->indx
[bucket
]++;
5950 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5953 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5955 return !(h
->forced_local
5956 || h
->root
.type
== bfd_link_hash_undefined
5957 || h
->root
.type
== bfd_link_hash_undefweak
5958 || ((h
->root
.type
== bfd_link_hash_defined
5959 || h
->root
.type
== bfd_link_hash_defweak
)
5960 && h
->root
.u
.def
.section
->output_section
== NULL
));
5963 /* Array used to determine the number of hash table buckets to use
5964 based on the number of symbols there are. If there are fewer than
5965 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5966 fewer than 37 we use 17 buckets, and so forth. We never use more
5967 than 32771 buckets. */
5969 static const size_t elf_buckets
[] =
5971 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5975 /* Compute bucket count for hashing table. We do not use a static set
5976 of possible tables sizes anymore. Instead we determine for all
5977 possible reasonable sizes of the table the outcome (i.e., the
5978 number of collisions etc) and choose the best solution. The
5979 weighting functions are not too simple to allow the table to grow
5980 without bounds. Instead one of the weighting factors is the size.
5981 Therefore the result is always a good payoff between few collisions
5982 (= short chain lengths) and table size. */
5984 compute_bucket_count (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5985 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5986 unsigned long int nsyms
,
5989 size_t best_size
= 0;
5990 unsigned long int i
;
5992 /* We have a problem here. The following code to optimize the table
5993 size requires an integer type with more the 32 bits. If
5994 BFD_HOST_U_64_BIT is set we know about such a type. */
5995 #ifdef BFD_HOST_U_64_BIT
6000 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
6001 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
6002 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
6003 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
6004 unsigned long int *counts
;
6006 unsigned int no_improvement_count
= 0;
6008 /* Possible optimization parameters: if we have NSYMS symbols we say
6009 that the hashing table must at least have NSYMS/4 and at most
6011 minsize
= nsyms
/ 4;
6014 best_size
= maxsize
= nsyms
* 2;
6019 if ((best_size
& 31) == 0)
6023 /* Create array where we count the collisions in. We must use bfd_malloc
6024 since the size could be large. */
6026 amt
*= sizeof (unsigned long int);
6027 counts
= (unsigned long int *) bfd_malloc (amt
);
6031 /* Compute the "optimal" size for the hash table. The criteria is a
6032 minimal chain length. The minor criteria is (of course) the size
6034 for (i
= minsize
; i
< maxsize
; ++i
)
6036 /* Walk through the array of hashcodes and count the collisions. */
6037 BFD_HOST_U_64_BIT max
;
6038 unsigned long int j
;
6039 unsigned long int fact
;
6041 if (gnu_hash
&& (i
& 31) == 0)
6044 memset (counts
, '\0', i
* sizeof (unsigned long int));
6046 /* Determine how often each hash bucket is used. */
6047 for (j
= 0; j
< nsyms
; ++j
)
6048 ++counts
[hashcodes
[j
] % i
];
6050 /* For the weight function we need some information about the
6051 pagesize on the target. This is information need not be 100%
6052 accurate. Since this information is not available (so far) we
6053 define it here to a reasonable default value. If it is crucial
6054 to have a better value some day simply define this value. */
6055 # ifndef BFD_TARGET_PAGESIZE
6056 # define BFD_TARGET_PAGESIZE (4096)
6059 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6061 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
6064 /* Variant 1: optimize for short chains. We add the squares
6065 of all the chain lengths (which favors many small chain
6066 over a few long chains). */
6067 for (j
= 0; j
< i
; ++j
)
6068 max
+= counts
[j
] * counts
[j
];
6070 /* This adds penalties for the overall size of the table. */
6071 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
6074 /* Variant 2: Optimize a lot more for small table. Here we
6075 also add squares of the size but we also add penalties for
6076 empty slots (the +1 term). */
6077 for (j
= 0; j
< i
; ++j
)
6078 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
6080 /* The overall size of the table is considered, but not as
6081 strong as in variant 1, where it is squared. */
6082 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
6086 /* Compare with current best results. */
6087 if (max
< best_chlen
)
6091 no_improvement_count
= 0;
6093 /* PR 11843: Avoid futile long searches for the best bucket size
6094 when there are a large number of symbols. */
6095 else if (++no_improvement_count
== 100)
6102 #endif /* defined (BFD_HOST_U_64_BIT) */
6104 /* This is the fallback solution if no 64bit type is available or if we
6105 are not supposed to spend much time on optimizations. We select the
6106 bucket count using a fixed set of numbers. */
6107 for (i
= 0; elf_buckets
[i
] != 0; i
++)
6109 best_size
= elf_buckets
[i
];
6110 if (nsyms
< elf_buckets
[i
+ 1])
6113 if (gnu_hash
&& best_size
< 2)
6120 /* Size any SHT_GROUP section for ld -r. */
6123 _bfd_elf_size_group_sections (struct bfd_link_info
*info
)
6128 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
6129 if (bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
6130 && (s
= ibfd
->sections
) != NULL
6131 && s
->sec_info_type
!= SEC_INFO_TYPE_JUST_SYMS
6132 && !_bfd_elf_fixup_group_sections (ibfd
, bfd_abs_section_ptr
))
6137 /* Set a default stack segment size. The value in INFO wins. If it
6138 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6139 undefined it is initialized. */
6142 bfd_elf_stack_segment_size (bfd
*output_bfd
,
6143 struct bfd_link_info
*info
,
6144 const char *legacy_symbol
,
6145 bfd_vma default_size
)
6147 struct elf_link_hash_entry
*h
= NULL
;
6149 /* Look for legacy symbol. */
6151 h
= elf_link_hash_lookup (elf_hash_table (info
), legacy_symbol
,
6152 FALSE
, FALSE
, FALSE
);
6153 if (h
&& (h
->root
.type
== bfd_link_hash_defined
6154 || h
->root
.type
== bfd_link_hash_defweak
)
6156 && (h
->type
== STT_NOTYPE
|| h
->type
== STT_OBJECT
))
6158 /* The symbol has no type if specified on the command line. */
6159 h
->type
= STT_OBJECT
;
6160 if (info
->stacksize
)
6161 /* xgettext:c-format */
6162 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6163 output_bfd
, legacy_symbol
);
6164 else if (h
->root
.u
.def
.section
!= bfd_abs_section_ptr
)
6165 /* xgettext:c-format */
6166 _bfd_error_handler (_("%pB: %s not absolute"),
6167 output_bfd
, legacy_symbol
);
6169 info
->stacksize
= h
->root
.u
.def
.value
;
6172 if (!info
->stacksize
)
6173 /* If the user didn't set a size, or explicitly inhibit the
6174 size, set it now. */
6175 info
->stacksize
= default_size
;
6177 /* Provide the legacy symbol, if it is referenced. */
6178 if (h
&& (h
->root
.type
== bfd_link_hash_undefined
6179 || h
->root
.type
== bfd_link_hash_undefweak
))
6181 struct bfd_link_hash_entry
*bh
= NULL
;
6183 if (!(_bfd_generic_link_add_one_symbol
6184 (info
, output_bfd
, legacy_symbol
,
6185 BSF_GLOBAL
, bfd_abs_section_ptr
,
6186 info
->stacksize
>= 0 ? info
->stacksize
: 0,
6187 NULL
, FALSE
, get_elf_backend_data (output_bfd
)->collect
, &bh
)))
6190 h
= (struct elf_link_hash_entry
*) bh
;
6192 h
->type
= STT_OBJECT
;
6198 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6200 struct elf_gc_sweep_symbol_info
6202 struct bfd_link_info
*info
;
6203 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
6208 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
6211 && (((h
->root
.type
== bfd_link_hash_defined
6212 || h
->root
.type
== bfd_link_hash_defweak
)
6213 && !((h
->def_regular
|| ELF_COMMON_DEF_P (h
))
6214 && h
->root
.u
.def
.section
->gc_mark
))
6215 || h
->root
.type
== bfd_link_hash_undefined
6216 || h
->root
.type
== bfd_link_hash_undefweak
))
6218 struct elf_gc_sweep_symbol_info
*inf
;
6220 inf
= (struct elf_gc_sweep_symbol_info
*) data
;
6221 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
6224 h
->ref_regular_nonweak
= 0;
6230 /* Set up the sizes and contents of the ELF dynamic sections. This is
6231 called by the ELF linker emulation before_allocation routine. We
6232 must set the sizes of the sections before the linker sets the
6233 addresses of the various sections. */
6236 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
6239 const char *filter_shlib
,
6241 const char *depaudit
,
6242 const char * const *auxiliary_filters
,
6243 struct bfd_link_info
*info
,
6244 asection
**sinterpptr
)
6247 const struct elf_backend_data
*bed
;
6251 if (!is_elf_hash_table (info
->hash
))
6254 dynobj
= elf_hash_table (info
)->dynobj
;
6256 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
6258 struct bfd_elf_version_tree
*verdefs
;
6259 struct elf_info_failed asvinfo
;
6260 struct bfd_elf_version_tree
*t
;
6261 struct bfd_elf_version_expr
*d
;
6265 /* If we are supposed to export all symbols into the dynamic symbol
6266 table (this is not the normal case), then do so. */
6267 if (info
->export_dynamic
6268 || (bfd_link_executable (info
) && info
->dynamic
))
6270 struct elf_info_failed eif
;
6274 elf_link_hash_traverse (elf_hash_table (info
),
6275 _bfd_elf_export_symbol
,
6283 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6285 if (soname_indx
== (size_t) -1
6286 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
6290 soname_indx
= (size_t) -1;
6292 /* Make all global versions with definition. */
6293 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
6294 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
6295 if (!d
->symver
&& d
->literal
)
6297 const char *verstr
, *name
;
6298 size_t namelen
, verlen
, newlen
;
6299 char *newname
, *p
, leading_char
;
6300 struct elf_link_hash_entry
*newh
;
6302 leading_char
= bfd_get_symbol_leading_char (output_bfd
);
6304 namelen
= strlen (name
) + (leading_char
!= '\0');
6306 verlen
= strlen (verstr
);
6307 newlen
= namelen
+ verlen
+ 3;
6309 newname
= (char *) bfd_malloc (newlen
);
6310 if (newname
== NULL
)
6312 newname
[0] = leading_char
;
6313 memcpy (newname
+ (leading_char
!= '\0'), name
, namelen
);
6315 /* Check the hidden versioned definition. */
6316 p
= newname
+ namelen
;
6318 memcpy (p
, verstr
, verlen
+ 1);
6319 newh
= elf_link_hash_lookup (elf_hash_table (info
),
6320 newname
, FALSE
, FALSE
,
6323 || (newh
->root
.type
!= bfd_link_hash_defined
6324 && newh
->root
.type
!= bfd_link_hash_defweak
))
6326 /* Check the default versioned definition. */
6328 memcpy (p
, verstr
, verlen
+ 1);
6329 newh
= elf_link_hash_lookup (elf_hash_table (info
),
6330 newname
, FALSE
, FALSE
,
6335 /* Mark this version if there is a definition and it is
6336 not defined in a shared object. */
6338 && !newh
->def_dynamic
6339 && (newh
->root
.type
== bfd_link_hash_defined
6340 || newh
->root
.type
== bfd_link_hash_defweak
))
6344 /* Attach all the symbols to their version information. */
6345 asvinfo
.info
= info
;
6346 asvinfo
.failed
= FALSE
;
6348 elf_link_hash_traverse (elf_hash_table (info
),
6349 _bfd_elf_link_assign_sym_version
,
6354 if (!info
->allow_undefined_version
)
6356 /* Check if all global versions have a definition. */
6357 bfd_boolean all_defined
= TRUE
;
6358 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
6359 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
6360 if (d
->literal
&& !d
->symver
&& !d
->script
)
6363 (_("%s: undefined version: %s"),
6364 d
->pattern
, t
->name
);
6365 all_defined
= FALSE
;
6370 bfd_set_error (bfd_error_bad_value
);
6375 /* Set up the version definition section. */
6376 s
= bfd_get_linker_section (dynobj
, ".gnu.version_d");
6377 BFD_ASSERT (s
!= NULL
);
6379 /* We may have created additional version definitions if we are
6380 just linking a regular application. */
6381 verdefs
= info
->version_info
;
6383 /* Skip anonymous version tag. */
6384 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
6385 verdefs
= verdefs
->next
;
6387 if (verdefs
== NULL
&& !info
->create_default_symver
)
6388 s
->flags
|= SEC_EXCLUDE
;
6394 Elf_Internal_Verdef def
;
6395 Elf_Internal_Verdaux defaux
;
6396 struct bfd_link_hash_entry
*bh
;
6397 struct elf_link_hash_entry
*h
;
6403 /* Make space for the base version. */
6404 size
+= sizeof (Elf_External_Verdef
);
6405 size
+= sizeof (Elf_External_Verdaux
);
6408 /* Make space for the default version. */
6409 if (info
->create_default_symver
)
6411 size
+= sizeof (Elf_External_Verdef
);
6415 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6417 struct bfd_elf_version_deps
*n
;
6419 /* Don't emit base version twice. */
6423 size
+= sizeof (Elf_External_Verdef
);
6424 size
+= sizeof (Elf_External_Verdaux
);
6427 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6428 size
+= sizeof (Elf_External_Verdaux
);
6432 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6433 if (s
->contents
== NULL
&& s
->size
!= 0)
6436 /* Fill in the version definition section. */
6440 def
.vd_version
= VER_DEF_CURRENT
;
6441 def
.vd_flags
= VER_FLG_BASE
;
6444 if (info
->create_default_symver
)
6446 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
6447 def
.vd_next
= sizeof (Elf_External_Verdef
);
6451 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6452 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6453 + sizeof (Elf_External_Verdaux
));
6456 if (soname_indx
!= (size_t) -1)
6458 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6460 def
.vd_hash
= bfd_elf_hash (soname
);
6461 defaux
.vda_name
= soname_indx
;
6468 name
= lbasename (output_bfd
->filename
);
6469 def
.vd_hash
= bfd_elf_hash (name
);
6470 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6472 if (indx
== (size_t) -1)
6474 defaux
.vda_name
= indx
;
6476 defaux
.vda_next
= 0;
6478 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6479 (Elf_External_Verdef
*) p
);
6480 p
+= sizeof (Elf_External_Verdef
);
6481 if (info
->create_default_symver
)
6483 /* Add a symbol representing this version. */
6485 if (! (_bfd_generic_link_add_one_symbol
6486 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6488 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6490 h
= (struct elf_link_hash_entry
*) bh
;
6493 h
->type
= STT_OBJECT
;
6494 h
->verinfo
.vertree
= NULL
;
6496 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6499 /* Create a duplicate of the base version with the same
6500 aux block, but different flags. */
6503 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6505 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6506 + sizeof (Elf_External_Verdaux
));
6509 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6510 (Elf_External_Verdef
*) p
);
6511 p
+= sizeof (Elf_External_Verdef
);
6513 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6514 (Elf_External_Verdaux
*) p
);
6515 p
+= sizeof (Elf_External_Verdaux
);
6517 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6520 struct bfd_elf_version_deps
*n
;
6522 /* Don't emit the base version twice. */
6527 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6530 /* Add a symbol representing this version. */
6532 if (! (_bfd_generic_link_add_one_symbol
6533 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6535 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6537 h
= (struct elf_link_hash_entry
*) bh
;
6540 h
->type
= STT_OBJECT
;
6541 h
->verinfo
.vertree
= t
;
6543 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6546 def
.vd_version
= VER_DEF_CURRENT
;
6548 if (t
->globals
.list
== NULL
6549 && t
->locals
.list
== NULL
6551 def
.vd_flags
|= VER_FLG_WEAK
;
6552 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6553 def
.vd_cnt
= cdeps
+ 1;
6554 def
.vd_hash
= bfd_elf_hash (t
->name
);
6555 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6558 /* If a basever node is next, it *must* be the last node in
6559 the chain, otherwise Verdef construction breaks. */
6560 if (t
->next
!= NULL
&& t
->next
->vernum
== 0)
6561 BFD_ASSERT (t
->next
->next
== NULL
);
6563 if (t
->next
!= NULL
&& t
->next
->vernum
!= 0)
6564 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6565 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6567 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6568 (Elf_External_Verdef
*) p
);
6569 p
+= sizeof (Elf_External_Verdef
);
6571 defaux
.vda_name
= h
->dynstr_index
;
6572 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6574 defaux
.vda_next
= 0;
6575 if (t
->deps
!= NULL
)
6576 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6577 t
->name_indx
= defaux
.vda_name
;
6579 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6580 (Elf_External_Verdaux
*) p
);
6581 p
+= sizeof (Elf_External_Verdaux
);
6583 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6585 if (n
->version_needed
== NULL
)
6587 /* This can happen if there was an error in the
6589 defaux
.vda_name
= 0;
6593 defaux
.vda_name
= n
->version_needed
->name_indx
;
6594 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6597 if (n
->next
== NULL
)
6598 defaux
.vda_next
= 0;
6600 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6602 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6603 (Elf_External_Verdaux
*) p
);
6604 p
+= sizeof (Elf_External_Verdaux
);
6608 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6612 bed
= get_elf_backend_data (output_bfd
);
6614 if (info
->gc_sections
&& bed
->can_gc_sections
)
6616 struct elf_gc_sweep_symbol_info sweep_info
;
6618 /* Remove the symbols that were in the swept sections from the
6619 dynamic symbol table. */
6620 sweep_info
.info
= info
;
6621 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
6622 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
6626 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
6629 struct elf_find_verdep_info sinfo
;
6631 /* Work out the size of the version reference section. */
6633 s
= bfd_get_linker_section (dynobj
, ".gnu.version_r");
6634 BFD_ASSERT (s
!= NULL
);
6637 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6638 if (sinfo
.vers
== 0)
6640 sinfo
.failed
= FALSE
;
6642 elf_link_hash_traverse (elf_hash_table (info
),
6643 _bfd_elf_link_find_version_dependencies
,
6648 if (elf_tdata (output_bfd
)->verref
== NULL
)
6649 s
->flags
|= SEC_EXCLUDE
;
6652 Elf_Internal_Verneed
*vn
;
6657 /* Build the version dependency section. */
6660 for (vn
= elf_tdata (output_bfd
)->verref
;
6662 vn
= vn
->vn_nextref
)
6664 Elf_Internal_Vernaux
*a
;
6666 size
+= sizeof (Elf_External_Verneed
);
6668 for (a
= vn
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6669 size
+= sizeof (Elf_External_Vernaux
);
6673 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6674 if (s
->contents
== NULL
)
6678 for (vn
= elf_tdata (output_bfd
)->verref
;
6680 vn
= vn
->vn_nextref
)
6683 Elf_Internal_Vernaux
*a
;
6687 for (a
= vn
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6690 vn
->vn_version
= VER_NEED_CURRENT
;
6692 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6693 elf_dt_name (vn
->vn_bfd
) != NULL
6694 ? elf_dt_name (vn
->vn_bfd
)
6695 : lbasename (vn
->vn_bfd
->filename
),
6697 if (indx
== (size_t) -1)
6700 vn
->vn_aux
= sizeof (Elf_External_Verneed
);
6701 if (vn
->vn_nextref
== NULL
)
6704 vn
->vn_next
= (sizeof (Elf_External_Verneed
)
6705 + caux
* sizeof (Elf_External_Vernaux
));
6707 _bfd_elf_swap_verneed_out (output_bfd
, vn
,
6708 (Elf_External_Verneed
*) p
);
6709 p
+= sizeof (Elf_External_Verneed
);
6711 for (a
= vn
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6713 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6714 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6715 a
->vna_nodename
, FALSE
);
6716 if (indx
== (size_t) -1)
6719 if (a
->vna_nextptr
== NULL
)
6722 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6724 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6725 (Elf_External_Vernaux
*) p
);
6726 p
+= sizeof (Elf_External_Vernaux
);
6730 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6734 /* Any syms created from now on start with -1 in
6735 got.refcount/offset and plt.refcount/offset. */
6736 elf_hash_table (info
)->init_got_refcount
6737 = elf_hash_table (info
)->init_got_offset
;
6738 elf_hash_table (info
)->init_plt_refcount
6739 = elf_hash_table (info
)->init_plt_offset
;
6741 if (bfd_link_relocatable (info
)
6742 && !_bfd_elf_size_group_sections (info
))
6745 /* The backend may have to create some sections regardless of whether
6746 we're dynamic or not. */
6747 if (bed
->elf_backend_always_size_sections
6748 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
6751 /* Determine any GNU_STACK segment requirements, after the backend
6752 has had a chance to set a default segment size. */
6753 if (info
->execstack
)
6754 elf_stack_flags (output_bfd
) = PF_R
| PF_W
| PF_X
;
6755 else if (info
->noexecstack
)
6756 elf_stack_flags (output_bfd
) = PF_R
| PF_W
;
6760 asection
*notesec
= NULL
;
6763 for (inputobj
= info
->input_bfds
;
6765 inputobj
= inputobj
->link
.next
)
6770 & (DYNAMIC
| EXEC_P
| BFD_PLUGIN
| BFD_LINKER_CREATED
))
6772 s
= inputobj
->sections
;
6773 if (s
== NULL
|| s
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
6776 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
6779 if (s
->flags
& SEC_CODE
)
6783 else if (bed
->default_execstack
)
6786 if (notesec
|| info
->stacksize
> 0)
6787 elf_stack_flags (output_bfd
) = PF_R
| PF_W
| exec
;
6788 if (notesec
&& exec
&& bfd_link_relocatable (info
)
6789 && notesec
->output_section
!= bfd_abs_section_ptr
)
6790 notesec
->output_section
->flags
|= SEC_CODE
;
6793 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
6795 struct elf_info_failed eif
;
6796 struct elf_link_hash_entry
*h
;
6800 *sinterpptr
= bfd_get_linker_section (dynobj
, ".interp");
6801 BFD_ASSERT (*sinterpptr
!= NULL
|| !bfd_link_executable (info
) || info
->nointerp
);
6805 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
6807 info
->flags
|= DF_SYMBOLIC
;
6815 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
6817 if (indx
== (size_t) -1)
6820 tag
= info
->new_dtags
? DT_RUNPATH
: DT_RPATH
;
6821 if (!_bfd_elf_add_dynamic_entry (info
, tag
, indx
))
6825 if (filter_shlib
!= NULL
)
6829 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6830 filter_shlib
, TRUE
);
6831 if (indx
== (size_t) -1
6832 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
6836 if (auxiliary_filters
!= NULL
)
6838 const char * const *p
;
6840 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
6844 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6846 if (indx
== (size_t) -1
6847 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
6856 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, audit
,
6858 if (indx
== (size_t) -1
6859 || !_bfd_elf_add_dynamic_entry (info
, DT_AUDIT
, indx
))
6863 if (depaudit
!= NULL
)
6867 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, depaudit
,
6869 if (indx
== (size_t) -1
6870 || !_bfd_elf_add_dynamic_entry (info
, DT_DEPAUDIT
, indx
))
6877 /* Find all symbols which were defined in a dynamic object and make
6878 the backend pick a reasonable value for them. */
6879 elf_link_hash_traverse (elf_hash_table (info
),
6880 _bfd_elf_adjust_dynamic_symbol
,
6885 /* Add some entries to the .dynamic section. We fill in some of the
6886 values later, in bfd_elf_final_link, but we must add the entries
6887 now so that we know the final size of the .dynamic section. */
6889 /* If there are initialization and/or finalization functions to
6890 call then add the corresponding DT_INIT/DT_FINI entries. */
6891 h
= (info
->init_function
6892 ? elf_link_hash_lookup (elf_hash_table (info
),
6893 info
->init_function
, FALSE
,
6900 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
6903 h
= (info
->fini_function
6904 ? elf_link_hash_lookup (elf_hash_table (info
),
6905 info
->fini_function
, FALSE
,
6912 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
6916 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
6917 if (s
!= NULL
&& s
->linker_has_input
)
6919 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6920 if (! bfd_link_executable (info
))
6925 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
6926 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
6927 && (o
= sub
->sections
) != NULL
6928 && o
->sec_info_type
!= SEC_INFO_TYPE_JUST_SYMS
)
6929 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
6930 if (elf_section_data (o
)->this_hdr
.sh_type
6931 == SHT_PREINIT_ARRAY
)
6934 (_("%pB: .preinit_array section is not allowed in DSO"),
6939 bfd_set_error (bfd_error_nonrepresentable_section
);
6943 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
6944 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
6947 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
6948 if (s
!= NULL
&& s
->linker_has_input
)
6950 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
6951 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
6954 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
6955 if (s
!= NULL
&& s
->linker_has_input
)
6957 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
6958 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
6962 dynstr
= bfd_get_linker_section (dynobj
, ".dynstr");
6963 /* If .dynstr is excluded from the link, we don't want any of
6964 these tags. Strictly, we should be checking each section
6965 individually; This quick check covers for the case where
6966 someone does a /DISCARD/ : { *(*) }. */
6967 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
6969 bfd_size_type strsize
;
6971 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6972 if ((info
->emit_hash
6973 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
6974 || (info
->emit_gnu_hash
6975 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
6976 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
6977 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
6978 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
6979 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
6980 bed
->s
->sizeof_sym
))
6985 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
6988 /* The backend must work out the sizes of all the other dynamic
6991 && bed
->elf_backend_size_dynamic_sections
!= NULL
6992 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
6995 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
6997 if (elf_tdata (output_bfd
)->cverdefs
)
6999 unsigned int crefs
= elf_tdata (output_bfd
)->cverdefs
;
7001 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
7002 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, crefs
))
7006 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
7008 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
7011 else if (info
->flags
& DF_BIND_NOW
)
7013 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
7019 if (bfd_link_executable (info
))
7020 info
->flags_1
&= ~ (DF_1_INITFIRST
7023 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
7027 if (elf_tdata (output_bfd
)->cverrefs
)
7029 unsigned int crefs
= elf_tdata (output_bfd
)->cverrefs
;
7031 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
7032 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
7036 if ((elf_tdata (output_bfd
)->cverrefs
== 0
7037 && elf_tdata (output_bfd
)->cverdefs
== 0)
7038 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
, NULL
) <= 1)
7042 s
= bfd_get_linker_section (dynobj
, ".gnu.version");
7043 s
->flags
|= SEC_EXCLUDE
;
7049 /* Find the first non-excluded output section. We'll use its
7050 section symbol for some emitted relocs. */
7052 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
7056 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
7057 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
7058 && !_bfd_elf_omit_section_dynsym_default (output_bfd
, info
, s
))
7060 elf_hash_table (info
)->text_index_section
= s
;
7065 /* Find two non-excluded output sections, one for code, one for data.
7066 We'll use their section symbols for some emitted relocs. */
7068 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
7072 /* Data first, since setting text_index_section changes
7073 _bfd_elf_omit_section_dynsym_default. */
7074 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
7075 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
7076 && !_bfd_elf_omit_section_dynsym_default (output_bfd
, info
, s
))
7078 elf_hash_table (info
)->data_index_section
= s
;
7082 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
7083 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
7084 == (SEC_ALLOC
| SEC_READONLY
))
7085 && !_bfd_elf_omit_section_dynsym_default (output_bfd
, info
, s
))
7087 elf_hash_table (info
)->text_index_section
= s
;
7091 if (elf_hash_table (info
)->text_index_section
== NULL
)
7092 elf_hash_table (info
)->text_index_section
7093 = elf_hash_table (info
)->data_index_section
;
7097 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
7099 const struct elf_backend_data
*bed
;
7100 unsigned long section_sym_count
;
7101 bfd_size_type dynsymcount
= 0;
7103 if (!is_elf_hash_table (info
->hash
))
7106 bed
= get_elf_backend_data (output_bfd
);
7107 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
7109 /* Assign dynsym indices. In a shared library we generate a section
7110 symbol for each output section, which come first. Next come all
7111 of the back-end allocated local dynamic syms, followed by the rest
7112 of the global symbols.
7114 This is usually not needed for static binaries, however backends
7115 can request to always do it, e.g. the MIPS backend uses dynamic
7116 symbol counts to lay out GOT, which will be produced in the
7117 presence of GOT relocations even in static binaries (holding fixed
7118 data in that case, to satisfy those relocations). */
7120 if (elf_hash_table (info
)->dynamic_sections_created
7121 || bed
->always_renumber_dynsyms
)
7122 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
7123 §ion_sym_count
);
7125 if (elf_hash_table (info
)->dynamic_sections_created
)
7129 unsigned int dtagcount
;
7131 dynobj
= elf_hash_table (info
)->dynobj
;
7133 /* Work out the size of the symbol version section. */
7134 s
= bfd_get_linker_section (dynobj
, ".gnu.version");
7135 BFD_ASSERT (s
!= NULL
);
7136 if ((s
->flags
& SEC_EXCLUDE
) == 0)
7138 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
7139 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
7140 if (s
->contents
== NULL
)
7143 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
7147 /* Set the size of the .dynsym and .hash sections. We counted
7148 the number of dynamic symbols in elf_link_add_object_symbols.
7149 We will build the contents of .dynsym and .hash when we build
7150 the final symbol table, because until then we do not know the
7151 correct value to give the symbols. We built the .dynstr
7152 section as we went along in elf_link_add_object_symbols. */
7153 s
= elf_hash_table (info
)->dynsym
;
7154 BFD_ASSERT (s
!= NULL
);
7155 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
7157 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
7158 if (s
->contents
== NULL
)
7161 /* The first entry in .dynsym is a dummy symbol. Clear all the
7162 section syms, in case we don't output them all. */
7163 ++section_sym_count
;
7164 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
7166 elf_hash_table (info
)->bucketcount
= 0;
7168 /* Compute the size of the hashing table. As a side effect this
7169 computes the hash values for all the names we export. */
7170 if (info
->emit_hash
)
7172 unsigned long int *hashcodes
;
7173 struct hash_codes_info hashinf
;
7175 unsigned long int nsyms
;
7177 size_t hash_entry_size
;
7179 /* Compute the hash values for all exported symbols. At the same
7180 time store the values in an array so that we could use them for
7182 amt
= dynsymcount
* sizeof (unsigned long int);
7183 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
7184 if (hashcodes
== NULL
)
7186 hashinf
.hashcodes
= hashcodes
;
7187 hashinf
.error
= FALSE
;
7189 /* Put all hash values in HASHCODES. */
7190 elf_link_hash_traverse (elf_hash_table (info
),
7191 elf_collect_hash_codes
, &hashinf
);
7198 nsyms
= hashinf
.hashcodes
- hashcodes
;
7200 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
7203 if (bucketcount
== 0 && nsyms
> 0)
7206 elf_hash_table (info
)->bucketcount
= bucketcount
;
7208 s
= bfd_get_linker_section (dynobj
, ".hash");
7209 BFD_ASSERT (s
!= NULL
);
7210 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
7211 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
7212 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
7213 if (s
->contents
== NULL
)
7216 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
7217 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
7218 s
->contents
+ hash_entry_size
);
7221 if (info
->emit_gnu_hash
)
7224 unsigned char *contents
;
7225 struct collect_gnu_hash_codes cinfo
;
7229 memset (&cinfo
, 0, sizeof (cinfo
));
7231 /* Compute the hash values for all exported symbols. At the same
7232 time store the values in an array so that we could use them for
7234 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
7235 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
7236 if (cinfo
.hashcodes
== NULL
)
7239 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
7240 cinfo
.min_dynindx
= -1;
7241 cinfo
.output_bfd
= output_bfd
;
7244 /* Put all hash values in HASHCODES. */
7245 elf_link_hash_traverse (elf_hash_table (info
),
7246 elf_collect_gnu_hash_codes
, &cinfo
);
7249 free (cinfo
.hashcodes
);
7254 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
7256 if (bucketcount
== 0)
7258 free (cinfo
.hashcodes
);
7262 s
= bfd_get_linker_section (dynobj
, ".gnu.hash");
7263 BFD_ASSERT (s
!= NULL
);
7265 if (cinfo
.nsyms
== 0)
7267 /* Empty .gnu.hash section is special. */
7268 BFD_ASSERT (cinfo
.min_dynindx
== -1);
7269 free (cinfo
.hashcodes
);
7270 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
7271 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
7272 if (contents
== NULL
)
7274 s
->contents
= contents
;
7275 /* 1 empty bucket. */
7276 bfd_put_32 (output_bfd
, 1, contents
);
7277 /* SYMIDX above the special symbol 0. */
7278 bfd_put_32 (output_bfd
, 1, contents
+ 4);
7279 /* Just one word for bitmask. */
7280 bfd_put_32 (output_bfd
, 1, contents
+ 8);
7281 /* Only hash fn bloom filter. */
7282 bfd_put_32 (output_bfd
, 0, contents
+ 12);
7283 /* No hashes are valid - empty bitmask. */
7284 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
7285 /* No hashes in the only bucket. */
7286 bfd_put_32 (output_bfd
, 0,
7287 contents
+ 16 + bed
->s
->arch_size
/ 8);
7291 unsigned long int maskwords
, maskbitslog2
, x
;
7292 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
7296 while ((x
>>= 1) != 0)
7298 if (maskbitslog2
< 3)
7300 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
7301 maskbitslog2
= maskbitslog2
+ 3;
7303 maskbitslog2
= maskbitslog2
+ 2;
7304 if (bed
->s
->arch_size
== 64)
7306 if (maskbitslog2
== 5)
7312 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
7313 cinfo
.shift2
= maskbitslog2
;
7314 cinfo
.maskbits
= 1 << maskbitslog2
;
7315 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
7316 amt
= bucketcount
* sizeof (unsigned long int) * 2;
7317 amt
+= maskwords
* sizeof (bfd_vma
);
7318 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
7319 if (cinfo
.bitmask
== NULL
)
7321 free (cinfo
.hashcodes
);
7325 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
7326 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
7327 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
7328 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
7330 /* Determine how often each hash bucket is used. */
7331 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
7332 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
7333 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
7335 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
7336 if (cinfo
.counts
[i
] != 0)
7338 cinfo
.indx
[i
] = cnt
;
7339 cnt
+= cinfo
.counts
[i
];
7341 BFD_ASSERT (cnt
== dynsymcount
);
7342 cinfo
.bucketcount
= bucketcount
;
7343 cinfo
.local_indx
= cinfo
.min_dynindx
;
7345 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
7346 s
->size
+= cinfo
.maskbits
/ 8;
7347 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
7348 if (contents
== NULL
)
7350 free (cinfo
.bitmask
);
7351 free (cinfo
.hashcodes
);
7355 s
->contents
= contents
;
7356 bfd_put_32 (output_bfd
, bucketcount
, contents
);
7357 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
7358 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
7359 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
7360 contents
+= 16 + cinfo
.maskbits
/ 8;
7362 for (i
= 0; i
< bucketcount
; ++i
)
7364 if (cinfo
.counts
[i
] == 0)
7365 bfd_put_32 (output_bfd
, 0, contents
);
7367 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
7371 cinfo
.contents
= contents
;
7373 /* Renumber dynamic symbols, populate .gnu.hash section. */
7374 elf_link_hash_traverse (elf_hash_table (info
),
7375 elf_renumber_gnu_hash_syms
, &cinfo
);
7377 contents
= s
->contents
+ 16;
7378 for (i
= 0; i
< maskwords
; ++i
)
7380 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
7382 contents
+= bed
->s
->arch_size
/ 8;
7385 free (cinfo
.bitmask
);
7386 free (cinfo
.hashcodes
);
7390 s
= bfd_get_linker_section (dynobj
, ".dynstr");
7391 BFD_ASSERT (s
!= NULL
);
7393 elf_finalize_dynstr (output_bfd
, info
);
7395 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
7397 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
7398 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
7405 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7408 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
7411 BFD_ASSERT (sec
->sec_info_type
== SEC_INFO_TYPE_MERGE
);
7412 sec
->sec_info_type
= SEC_INFO_TYPE_NONE
;
7415 /* Finish SHF_MERGE section merging. */
7418 _bfd_elf_merge_sections (bfd
*obfd
, struct bfd_link_info
*info
)
7423 if (!is_elf_hash_table (info
->hash
))
7426 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
7427 if ((ibfd
->flags
& DYNAMIC
) == 0
7428 && bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
7429 && (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
7430 == get_elf_backend_data (obfd
)->s
->elfclass
))
7431 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
7432 if ((sec
->flags
& SEC_MERGE
) != 0
7433 && !bfd_is_abs_section (sec
->output_section
))
7435 struct bfd_elf_section_data
*secdata
;
7437 secdata
= elf_section_data (sec
);
7438 if (! _bfd_add_merge_section (obfd
,
7439 &elf_hash_table (info
)->merge_info
,
7440 sec
, &secdata
->sec_info
))
7442 else if (secdata
->sec_info
)
7443 sec
->sec_info_type
= SEC_INFO_TYPE_MERGE
;
7446 if (elf_hash_table (info
)->merge_info
!= NULL
)
7447 _bfd_merge_sections (obfd
, info
, elf_hash_table (info
)->merge_info
,
7448 merge_sections_remove_hook
);
7452 /* Create an entry in an ELF linker hash table. */
7454 struct bfd_hash_entry
*
7455 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
7456 struct bfd_hash_table
*table
,
7459 /* Allocate the structure if it has not already been allocated by a
7463 entry
= (struct bfd_hash_entry
*)
7464 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
7469 /* Call the allocation method of the superclass. */
7470 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
7473 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
7474 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
7476 /* Set local fields. */
7479 ret
->got
= htab
->init_got_refcount
;
7480 ret
->plt
= htab
->init_plt_refcount
;
7481 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
7482 - offsetof (struct elf_link_hash_entry
, size
)));
7483 /* Assume that we have been called by a non-ELF symbol reader.
7484 This flag is then reset by the code which reads an ELF input
7485 file. This ensures that a symbol created by a non-ELF symbol
7486 reader will have the flag set correctly. */
7493 /* Copy data from an indirect symbol to its direct symbol, hiding the
7494 old indirect symbol. Also used for copying flags to a weakdef. */
7497 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
7498 struct elf_link_hash_entry
*dir
,
7499 struct elf_link_hash_entry
*ind
)
7501 struct elf_link_hash_table
*htab
;
7503 /* Copy down any references that we may have already seen to the
7504 symbol which just became indirect. */
7506 if (dir
->versioned
!= versioned_hidden
)
7507 dir
->ref_dynamic
|= ind
->ref_dynamic
;
7508 dir
->ref_regular
|= ind
->ref_regular
;
7509 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
7510 dir
->non_got_ref
|= ind
->non_got_ref
;
7511 dir
->needs_plt
|= ind
->needs_plt
;
7512 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
7514 if (ind
->root
.type
!= bfd_link_hash_indirect
)
7517 /* Copy over the global and procedure linkage table refcount entries.
7518 These may have been already set up by a check_relocs routine. */
7519 htab
= elf_hash_table (info
);
7520 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
7522 if (dir
->got
.refcount
< 0)
7523 dir
->got
.refcount
= 0;
7524 dir
->got
.refcount
+= ind
->got
.refcount
;
7525 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
7528 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
7530 if (dir
->plt
.refcount
< 0)
7531 dir
->plt
.refcount
= 0;
7532 dir
->plt
.refcount
+= ind
->plt
.refcount
;
7533 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
7536 if (ind
->dynindx
!= -1)
7538 if (dir
->dynindx
!= -1)
7539 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
7540 dir
->dynindx
= ind
->dynindx
;
7541 dir
->dynstr_index
= ind
->dynstr_index
;
7543 ind
->dynstr_index
= 0;
7548 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
7549 struct elf_link_hash_entry
*h
,
7550 bfd_boolean force_local
)
7552 /* STT_GNU_IFUNC symbol must go through PLT. */
7553 if (h
->type
!= STT_GNU_IFUNC
)
7555 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
7560 h
->forced_local
= 1;
7561 if (h
->dynindx
!= -1)
7563 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
7566 h
->dynstr_index
= 0;
7571 /* Hide a symbol. */
7574 _bfd_elf_link_hide_symbol (bfd
*output_bfd
,
7575 struct bfd_link_info
*info
,
7576 struct bfd_link_hash_entry
*h
)
7578 if (is_elf_hash_table (info
->hash
))
7580 const struct elf_backend_data
*bed
7581 = get_elf_backend_data (output_bfd
);
7582 struct elf_link_hash_entry
*eh
7583 = (struct elf_link_hash_entry
*) h
;
7584 bed
->elf_backend_hide_symbol (info
, eh
, TRUE
);
7585 eh
->def_dynamic
= 0;
7586 eh
->ref_dynamic
= 0;
7587 eh
->dynamic_def
= 0;
7591 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7595 _bfd_elf_link_hash_table_init
7596 (struct elf_link_hash_table
*table
,
7598 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
7599 struct bfd_hash_table
*,
7601 unsigned int entsize
,
7602 enum elf_target_id target_id
)
7605 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
7607 table
->init_got_refcount
.refcount
= can_refcount
- 1;
7608 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
7609 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
7610 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
7611 /* The first dynamic symbol is a dummy. */
7612 table
->dynsymcount
= 1;
7614 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
7616 table
->root
.type
= bfd_link_elf_hash_table
;
7617 table
->hash_table_id
= target_id
;
7622 /* Create an ELF linker hash table. */
7624 struct bfd_link_hash_table
*
7625 _bfd_elf_link_hash_table_create (bfd
*abfd
)
7627 struct elf_link_hash_table
*ret
;
7628 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
7630 ret
= (struct elf_link_hash_table
*) bfd_zmalloc (amt
);
7634 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
7635 sizeof (struct elf_link_hash_entry
),
7641 ret
->root
.hash_table_free
= _bfd_elf_link_hash_table_free
;
7646 /* Destroy an ELF linker hash table. */
7649 _bfd_elf_link_hash_table_free (bfd
*obfd
)
7651 struct elf_link_hash_table
*htab
;
7653 htab
= (struct elf_link_hash_table
*) obfd
->link
.hash
;
7654 if (htab
->dynstr
!= NULL
)
7655 _bfd_elf_strtab_free (htab
->dynstr
);
7656 _bfd_merge_sections_free (htab
->merge_info
);
7657 _bfd_generic_link_hash_table_free (obfd
);
7660 /* This is a hook for the ELF emulation code in the generic linker to
7661 tell the backend linker what file name to use for the DT_NEEDED
7662 entry for a dynamic object. */
7665 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
7667 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7668 && bfd_get_format (abfd
) == bfd_object
)
7669 elf_dt_name (abfd
) = name
;
7673 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
7676 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7677 && bfd_get_format (abfd
) == bfd_object
)
7678 lib_class
= elf_dyn_lib_class (abfd
);
7685 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
7687 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7688 && bfd_get_format (abfd
) == bfd_object
)
7689 elf_dyn_lib_class (abfd
) = lib_class
;
7692 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7693 the linker ELF emulation code. */
7695 struct bfd_link_needed_list
*
7696 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
7697 struct bfd_link_info
*info
)
7699 if (! is_elf_hash_table (info
->hash
))
7701 return elf_hash_table (info
)->needed
;
7704 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7705 hook for the linker ELF emulation code. */
7707 struct bfd_link_needed_list
*
7708 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
7709 struct bfd_link_info
*info
)
7711 if (! is_elf_hash_table (info
->hash
))
7713 return elf_hash_table (info
)->runpath
;
7716 /* Get the name actually used for a dynamic object for a link. This
7717 is the SONAME entry if there is one. Otherwise, it is the string
7718 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7721 bfd_elf_get_dt_soname (bfd
*abfd
)
7723 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7724 && bfd_get_format (abfd
) == bfd_object
)
7725 return elf_dt_name (abfd
);
7729 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7730 the ELF linker emulation code. */
7733 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
7734 struct bfd_link_needed_list
**pneeded
)
7737 bfd_byte
*dynbuf
= NULL
;
7738 unsigned int elfsec
;
7739 unsigned long shlink
;
7740 bfd_byte
*extdyn
, *extdynend
;
7742 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
7746 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
7747 || bfd_get_format (abfd
) != bfd_object
)
7750 s
= bfd_get_section_by_name (abfd
, ".dynamic");
7751 if (s
== NULL
|| s
->size
== 0)
7754 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
7757 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
7758 if (elfsec
== SHN_BAD
)
7761 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
7763 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
7764 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
7767 extdynend
= extdyn
+ s
->size
;
7768 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
7770 Elf_Internal_Dyn dyn
;
7772 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
7774 if (dyn
.d_tag
== DT_NULL
)
7777 if (dyn
.d_tag
== DT_NEEDED
)
7780 struct bfd_link_needed_list
*l
;
7781 unsigned int tagv
= dyn
.d_un
.d_val
;
7784 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
7789 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
7810 struct elf_symbuf_symbol
7812 unsigned long st_name
; /* Symbol name, index in string tbl */
7813 unsigned char st_info
; /* Type and binding attributes */
7814 unsigned char st_other
; /* Visibilty, and target specific */
7817 struct elf_symbuf_head
7819 struct elf_symbuf_symbol
*ssym
;
7821 unsigned int st_shndx
;
7828 Elf_Internal_Sym
*isym
;
7829 struct elf_symbuf_symbol
*ssym
;
7834 /* Sort references to symbols by ascending section number. */
7837 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7839 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
7840 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
7842 return s1
->st_shndx
- s2
->st_shndx
;
7846 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7848 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7849 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7850 return strcmp (s1
->name
, s2
->name
);
7853 static struct elf_symbuf_head
*
7854 elf_create_symbuf (size_t symcount
, Elf_Internal_Sym
*isymbuf
)
7856 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
7857 struct elf_symbuf_symbol
*ssym
;
7858 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
7859 size_t i
, shndx_count
, total_size
;
7861 indbuf
= (Elf_Internal_Sym
**) bfd_malloc2 (symcount
, sizeof (*indbuf
));
7865 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
7866 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
7867 *ind
++ = &isymbuf
[i
];
7870 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
7871 elf_sort_elf_symbol
);
7874 if (indbufend
> indbuf
)
7875 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
7876 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
7879 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
7880 + (indbufend
- indbuf
) * sizeof (*ssym
));
7881 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
7882 if (ssymbuf
== NULL
)
7888 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
7889 ssymbuf
->ssym
= NULL
;
7890 ssymbuf
->count
= shndx_count
;
7891 ssymbuf
->st_shndx
= 0;
7892 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
7894 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7897 ssymhead
->ssym
= ssym
;
7898 ssymhead
->count
= 0;
7899 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7901 ssym
->st_name
= (*ind
)->st_name
;
7902 ssym
->st_info
= (*ind
)->st_info
;
7903 ssym
->st_other
= (*ind
)->st_other
;
7906 BFD_ASSERT ((size_t) (ssymhead
- ssymbuf
) == shndx_count
7907 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7914 /* Check if 2 sections define the same set of local and global
7918 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7919 struct bfd_link_info
*info
)
7922 const struct elf_backend_data
*bed1
, *bed2
;
7923 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7924 size_t symcount1
, symcount2
;
7925 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7926 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7927 Elf_Internal_Sym
*isym
, *isymend
;
7928 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7929 size_t count1
, count2
, i
;
7930 unsigned int shndx1
, shndx2
;
7936 /* Both sections have to be in ELF. */
7937 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7938 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7941 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7944 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7945 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7946 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7949 bed1
= get_elf_backend_data (bfd1
);
7950 bed2
= get_elf_backend_data (bfd2
);
7951 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7952 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7953 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7954 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7956 if (symcount1
== 0 || symcount2
== 0)
7962 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
7963 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
7965 if (ssymbuf1
== NULL
)
7967 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7969 if (isymbuf1
== NULL
)
7972 if (!info
->reduce_memory_overheads
)
7973 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7974 = elf_create_symbuf (symcount1
, isymbuf1
);
7977 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7979 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7981 if (isymbuf2
== NULL
)
7984 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7985 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7986 = elf_create_symbuf (symcount2
, isymbuf2
);
7989 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7991 /* Optimized faster version. */
7993 struct elf_symbol
*symp
;
7994 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7997 hi
= ssymbuf1
->count
;
8002 mid
= (lo
+ hi
) / 2;
8003 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
8005 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
8009 count1
= ssymbuf1
[mid
].count
;
8016 hi
= ssymbuf2
->count
;
8021 mid
= (lo
+ hi
) / 2;
8022 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
8024 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
8028 count2
= ssymbuf2
[mid
].count
;
8034 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8038 = (struct elf_symbol
*) bfd_malloc (count1
* sizeof (*symtable1
));
8040 = (struct elf_symbol
*) bfd_malloc (count2
* sizeof (*symtable2
));
8041 if (symtable1
== NULL
|| symtable2
== NULL
)
8045 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
8046 ssym
< ssymend
; ssym
++, symp
++)
8048 symp
->u
.ssym
= ssym
;
8049 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8055 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
8056 ssym
< ssymend
; ssym
++, symp
++)
8058 symp
->u
.ssym
= ssym
;
8059 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8064 /* Sort symbol by name. */
8065 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8066 elf_sym_name_compare
);
8067 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8068 elf_sym_name_compare
);
8070 for (i
= 0; i
< count1
; i
++)
8071 /* Two symbols must have the same binding, type and name. */
8072 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
8073 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
8074 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8081 symtable1
= (struct elf_symbol
*)
8082 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
8083 symtable2
= (struct elf_symbol
*)
8084 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
8085 if (symtable1
== NULL
|| symtable2
== NULL
)
8088 /* Count definitions in the section. */
8090 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
8091 if (isym
->st_shndx
== shndx1
)
8092 symtable1
[count1
++].u
.isym
= isym
;
8095 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
8096 if (isym
->st_shndx
== shndx2
)
8097 symtable2
[count2
++].u
.isym
= isym
;
8099 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8102 for (i
= 0; i
< count1
; i
++)
8104 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
8105 symtable1
[i
].u
.isym
->st_name
);
8107 for (i
= 0; i
< count2
; i
++)
8109 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
8110 symtable2
[i
].u
.isym
->st_name
);
8112 /* Sort symbol by name. */
8113 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8114 elf_sym_name_compare
);
8115 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8116 elf_sym_name_compare
);
8118 for (i
= 0; i
< count1
; i
++)
8119 /* Two symbols must have the same binding, type and name. */
8120 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
8121 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
8122 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8140 /* Return TRUE if 2 section types are compatible. */
8143 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8144 bfd
*bbfd
, const asection
*bsec
)
8148 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8149 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8152 return elf_section_type (asec
) == elf_section_type (bsec
);
8155 /* Final phase of ELF linker. */
8157 /* A structure we use to avoid passing large numbers of arguments. */
8159 struct elf_final_link_info
8161 /* General link information. */
8162 struct bfd_link_info
*info
;
8165 /* Symbol string table. */
8166 struct elf_strtab_hash
*symstrtab
;
8167 /* .hash section. */
8169 /* symbol version section (.gnu.version). */
8170 asection
*symver_sec
;
8171 /* Buffer large enough to hold contents of any section. */
8173 /* Buffer large enough to hold external relocs of any section. */
8174 void *external_relocs
;
8175 /* Buffer large enough to hold internal relocs of any section. */
8176 Elf_Internal_Rela
*internal_relocs
;
8177 /* Buffer large enough to hold external local symbols of any input
8179 bfd_byte
*external_syms
;
8180 /* And a buffer for symbol section indices. */
8181 Elf_External_Sym_Shndx
*locsym_shndx
;
8182 /* Buffer large enough to hold internal local symbols of any input
8184 Elf_Internal_Sym
*internal_syms
;
8185 /* Array large enough to hold a symbol index for each local symbol
8186 of any input BFD. */
8188 /* Array large enough to hold a section pointer for each local
8189 symbol of any input BFD. */
8190 asection
**sections
;
8191 /* Buffer for SHT_SYMTAB_SHNDX section. */
8192 Elf_External_Sym_Shndx
*symshndxbuf
;
8193 /* Number of STT_FILE syms seen. */
8194 size_t filesym_count
;
8197 /* This struct is used to pass information to elf_link_output_extsym. */
8199 struct elf_outext_info
8202 bfd_boolean localsyms
;
8203 bfd_boolean file_sym_done
;
8204 struct elf_final_link_info
*flinfo
;
8208 /* Support for evaluating a complex relocation.
8210 Complex relocations are generalized, self-describing relocations. The
8211 implementation of them consists of two parts: complex symbols, and the
8212 relocations themselves.
8214 The relocations are use a reserved elf-wide relocation type code (R_RELC
8215 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8216 information (start bit, end bit, word width, etc) into the addend. This
8217 information is extracted from CGEN-generated operand tables within gas.
8219 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8220 internal) representing prefix-notation expressions, including but not
8221 limited to those sorts of expressions normally encoded as addends in the
8222 addend field. The symbol mangling format is:
8225 | <unary-operator> ':' <node>
8226 | <binary-operator> ':' <node> ':' <node>
8229 <literal> := 's' <digits=N> ':' <N character symbol name>
8230 | 'S' <digits=N> ':' <N character section name>
8234 <binary-operator> := as in C
8235 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8238 set_symbol_value (bfd
*bfd_with_globals
,
8239 Elf_Internal_Sym
*isymbuf
,
8244 struct elf_link_hash_entry
**sym_hashes
;
8245 struct elf_link_hash_entry
*h
;
8246 size_t extsymoff
= locsymcount
;
8248 if (symidx
< locsymcount
)
8250 Elf_Internal_Sym
*sym
;
8252 sym
= isymbuf
+ symidx
;
8253 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
8255 /* It is a local symbol: move it to the
8256 "absolute" section and give it a value. */
8257 sym
->st_shndx
= SHN_ABS
;
8258 sym
->st_value
= val
;
8261 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
8265 /* It is a global symbol: set its link type
8266 to "defined" and give it a value. */
8268 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
8269 h
= sym_hashes
[symidx
- extsymoff
];
8270 while (h
->root
.type
== bfd_link_hash_indirect
8271 || h
->root
.type
== bfd_link_hash_warning
)
8272 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8273 h
->root
.type
= bfd_link_hash_defined
;
8274 h
->root
.u
.def
.value
= val
;
8275 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
8279 resolve_symbol (const char *name
,
8281 struct elf_final_link_info
*flinfo
,
8283 Elf_Internal_Sym
*isymbuf
,
8286 Elf_Internal_Sym
*sym
;
8287 struct bfd_link_hash_entry
*global_entry
;
8288 const char *candidate
= NULL
;
8289 Elf_Internal_Shdr
*symtab_hdr
;
8292 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
8294 for (i
= 0; i
< locsymcount
; ++ i
)
8298 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
8301 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
8302 symtab_hdr
->sh_link
,
8305 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8306 name
, candidate
, (unsigned long) sym
->st_value
);
8308 if (candidate
&& strcmp (candidate
, name
) == 0)
8310 asection
*sec
= flinfo
->sections
[i
];
8312 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
8313 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
8315 printf ("Found symbol with value %8.8lx\n",
8316 (unsigned long) *result
);
8322 /* Hmm, haven't found it yet. perhaps it is a global. */
8323 global_entry
= bfd_link_hash_lookup (flinfo
->info
->hash
, name
,
8324 FALSE
, FALSE
, TRUE
);
8328 if (global_entry
->type
== bfd_link_hash_defined
8329 || global_entry
->type
== bfd_link_hash_defweak
)
8331 *result
= (global_entry
->u
.def
.value
8332 + global_entry
->u
.def
.section
->output_section
->vma
8333 + global_entry
->u
.def
.section
->output_offset
);
8335 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8336 global_entry
->root
.string
, (unsigned long) *result
);
8344 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8345 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8346 names like "foo.end" which is the end address of section "foo". */
8349 resolve_section (const char *name
,
8357 for (curr
= sections
; curr
; curr
= curr
->next
)
8358 if (strcmp (curr
->name
, name
) == 0)
8360 *result
= curr
->vma
;
8364 /* Hmm. still haven't found it. try pseudo-section names. */
8365 /* FIXME: This could be coded more efficiently... */
8366 for (curr
= sections
; curr
; curr
= curr
->next
)
8368 len
= strlen (curr
->name
);
8369 if (len
> strlen (name
))
8372 if (strncmp (curr
->name
, name
, len
) == 0)
8374 if (strncmp (".end", name
+ len
, 4) == 0)
8376 *result
= curr
->vma
+ curr
->size
/ bfd_octets_per_byte (abfd
);
8380 /* Insert more pseudo-section names here, if you like. */
8388 undefined_reference (const char *reftype
, const char *name
)
8390 /* xgettext:c-format */
8391 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8396 eval_symbol (bfd_vma
*result
,
8399 struct elf_final_link_info
*flinfo
,
8401 Elf_Internal_Sym
*isymbuf
,
8410 const char *sym
= *symp
;
8412 bfd_boolean symbol_is_section
= FALSE
;
8417 if (len
< 1 || len
> sizeof (symbuf
))
8419 bfd_set_error (bfd_error_invalid_operation
);
8432 *result
= strtoul (sym
, (char **) symp
, 16);
8436 symbol_is_section
= TRUE
;
8440 symlen
= strtol (sym
, (char **) symp
, 10);
8441 sym
= *symp
+ 1; /* Skip the trailing ':'. */
8443 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
8445 bfd_set_error (bfd_error_invalid_operation
);
8449 memcpy (symbuf
, sym
, symlen
);
8450 symbuf
[symlen
] = '\0';
8451 *symp
= sym
+ symlen
;
8453 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8454 the symbol as a section, or vice-versa. so we're pretty liberal in our
8455 interpretation here; section means "try section first", not "must be a
8456 section", and likewise with symbol. */
8458 if (symbol_is_section
)
8460 if (!resolve_section (symbuf
, flinfo
->output_bfd
->sections
, result
, input_bfd
)
8461 && !resolve_symbol (symbuf
, input_bfd
, flinfo
, result
,
8462 isymbuf
, locsymcount
))
8464 undefined_reference ("section", symbuf
);
8470 if (!resolve_symbol (symbuf
, input_bfd
, flinfo
, result
,
8471 isymbuf
, locsymcount
)
8472 && !resolve_section (symbuf
, flinfo
->output_bfd
->sections
,
8475 undefined_reference ("symbol", symbuf
);
8482 /* All that remains are operators. */
8484 #define UNARY_OP(op) \
8485 if (strncmp (sym, #op, strlen (#op)) == 0) \
8487 sym += strlen (#op); \
8491 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8492 isymbuf, locsymcount, signed_p)) \
8495 *result = op ((bfd_signed_vma) a); \
8501 #define BINARY_OP(op) \
8502 if (strncmp (sym, #op, strlen (#op)) == 0) \
8504 sym += strlen (#op); \
8508 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8509 isymbuf, locsymcount, signed_p)) \
8512 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8513 isymbuf, locsymcount, signed_p)) \
8516 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8546 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
8547 bfd_set_error (bfd_error_invalid_operation
);
8553 put_value (bfd_vma size
,
8554 unsigned long chunksz
,
8559 location
+= (size
- chunksz
);
8561 for (; size
; size
-= chunksz
, location
-= chunksz
)
8566 bfd_put_8 (input_bfd
, x
, location
);
8570 bfd_put_16 (input_bfd
, x
, location
);
8574 bfd_put_32 (input_bfd
, x
, location
);
8575 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8581 bfd_put_64 (input_bfd
, x
, location
);
8582 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8595 get_value (bfd_vma size
,
8596 unsigned long chunksz
,
8603 /* Sanity checks. */
8604 BFD_ASSERT (chunksz
<= sizeof (x
)
8607 && (size
% chunksz
) == 0
8608 && input_bfd
!= NULL
8609 && location
!= NULL
);
8611 if (chunksz
== sizeof (x
))
8613 BFD_ASSERT (size
== chunksz
);
8615 /* Make sure that we do not perform an undefined shift operation.
8616 We know that size == chunksz so there will only be one iteration
8617 of the loop below. */
8621 shift
= 8 * chunksz
;
8623 for (; size
; size
-= chunksz
, location
+= chunksz
)
8628 x
= (x
<< shift
) | bfd_get_8 (input_bfd
, location
);
8631 x
= (x
<< shift
) | bfd_get_16 (input_bfd
, location
);
8634 x
= (x
<< shift
) | bfd_get_32 (input_bfd
, location
);
8638 x
= (x
<< shift
) | bfd_get_64 (input_bfd
, location
);
8649 decode_complex_addend (unsigned long *start
, /* in bits */
8650 unsigned long *oplen
, /* in bits */
8651 unsigned long *len
, /* in bits */
8652 unsigned long *wordsz
, /* in bytes */
8653 unsigned long *chunksz
, /* in bytes */
8654 unsigned long *lsb0_p
,
8655 unsigned long *signed_p
,
8656 unsigned long *trunc_p
,
8657 unsigned long encoded
)
8659 * start
= encoded
& 0x3F;
8660 * len
= (encoded
>> 6) & 0x3F;
8661 * oplen
= (encoded
>> 12) & 0x3F;
8662 * wordsz
= (encoded
>> 18) & 0xF;
8663 * chunksz
= (encoded
>> 22) & 0xF;
8664 * lsb0_p
= (encoded
>> 27) & 1;
8665 * signed_p
= (encoded
>> 28) & 1;
8666 * trunc_p
= (encoded
>> 29) & 1;
8669 bfd_reloc_status_type
8670 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
8671 asection
*input_section ATTRIBUTE_UNUSED
,
8673 Elf_Internal_Rela
*rel
,
8676 bfd_vma shift
, x
, mask
;
8677 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
8678 bfd_reloc_status_type r
;
8680 /* Perform this reloc, since it is complex.
8681 (this is not to say that it necessarily refers to a complex
8682 symbol; merely that it is a self-describing CGEN based reloc.
8683 i.e. the addend has the complete reloc information (bit start, end,
8684 word size, etc) encoded within it.). */
8686 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
8687 &chunksz
, &lsb0_p
, &signed_p
,
8688 &trunc_p
, rel
->r_addend
);
8690 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
8693 shift
= (start
+ 1) - len
;
8695 shift
= (8 * wordsz
) - (start
+ len
);
8697 x
= get_value (wordsz
, chunksz
, input_bfd
,
8698 contents
+ rel
->r_offset
* bfd_octets_per_byte (input_bfd
));
8701 printf ("Doing complex reloc: "
8702 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8703 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8704 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8705 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
8706 oplen
, (unsigned long) x
, (unsigned long) mask
,
8707 (unsigned long) relocation
);
8712 /* Now do an overflow check. */
8713 r
= bfd_check_overflow ((signed_p
8714 ? complain_overflow_signed
8715 : complain_overflow_unsigned
),
8716 len
, 0, (8 * wordsz
),
8720 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
8723 printf (" relocation: %8.8lx\n"
8724 " shifted mask: %8.8lx\n"
8725 " shifted/masked reloc: %8.8lx\n"
8726 " result: %8.8lx\n",
8727 (unsigned long) relocation
, (unsigned long) (mask
<< shift
),
8728 (unsigned long) ((relocation
& mask
) << shift
), (unsigned long) x
);
8730 put_value (wordsz
, chunksz
, input_bfd
, x
,
8731 contents
+ rel
->r_offset
* bfd_octets_per_byte (input_bfd
));
8735 /* Functions to read r_offset from external (target order) reloc
8736 entry. Faster than bfd_getl32 et al, because we let the compiler
8737 know the value is aligned. */
8740 ext32l_r_offset (const void *p
)
8747 const union aligned32
*a
8748 = (const union aligned32
*) &((const Elf32_External_Rel
*) p
)->r_offset
;
8750 uint32_t aval
= ( (uint32_t) a
->c
[0]
8751 | (uint32_t) a
->c
[1] << 8
8752 | (uint32_t) a
->c
[2] << 16
8753 | (uint32_t) a
->c
[3] << 24);
8758 ext32b_r_offset (const void *p
)
8765 const union aligned32
*a
8766 = (const union aligned32
*) &((const Elf32_External_Rel
*) p
)->r_offset
;
8768 uint32_t aval
= ( (uint32_t) a
->c
[0] << 24
8769 | (uint32_t) a
->c
[1] << 16
8770 | (uint32_t) a
->c
[2] << 8
8771 | (uint32_t) a
->c
[3]);
8775 #ifdef BFD_HOST_64_BIT
8777 ext64l_r_offset (const void *p
)
8784 const union aligned64
*a
8785 = (const union aligned64
*) &((const Elf64_External_Rel
*) p
)->r_offset
;
8787 uint64_t aval
= ( (uint64_t) a
->c
[0]
8788 | (uint64_t) a
->c
[1] << 8
8789 | (uint64_t) a
->c
[2] << 16
8790 | (uint64_t) a
->c
[3] << 24
8791 | (uint64_t) a
->c
[4] << 32
8792 | (uint64_t) a
->c
[5] << 40
8793 | (uint64_t) a
->c
[6] << 48
8794 | (uint64_t) a
->c
[7] << 56);
8799 ext64b_r_offset (const void *p
)
8806 const union aligned64
*a
8807 = (const union aligned64
*) &((const Elf64_External_Rel
*) p
)->r_offset
;
8809 uint64_t aval
= ( (uint64_t) a
->c
[0] << 56
8810 | (uint64_t) a
->c
[1] << 48
8811 | (uint64_t) a
->c
[2] << 40
8812 | (uint64_t) a
->c
[3] << 32
8813 | (uint64_t) a
->c
[4] << 24
8814 | (uint64_t) a
->c
[5] << 16
8815 | (uint64_t) a
->c
[6] << 8
8816 | (uint64_t) a
->c
[7]);
8821 /* When performing a relocatable link, the input relocations are
8822 preserved. But, if they reference global symbols, the indices
8823 referenced must be updated. Update all the relocations found in
8827 elf_link_adjust_relocs (bfd
*abfd
,
8829 struct bfd_elf_section_reloc_data
*reldata
,
8831 struct bfd_link_info
*info
)
8834 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8836 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
8837 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
8838 bfd_vma r_type_mask
;
8840 unsigned int count
= reldata
->count
;
8841 struct elf_link_hash_entry
**rel_hash
= reldata
->hashes
;
8843 if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
8845 swap_in
= bed
->s
->swap_reloc_in
;
8846 swap_out
= bed
->s
->swap_reloc_out
;
8848 else if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
8850 swap_in
= bed
->s
->swap_reloca_in
;
8851 swap_out
= bed
->s
->swap_reloca_out
;
8856 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
8859 if (bed
->s
->arch_size
== 32)
8866 r_type_mask
= 0xffffffff;
8870 erela
= reldata
->hdr
->contents
;
8871 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= reldata
->hdr
->sh_entsize
)
8873 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
8876 if (*rel_hash
== NULL
)
8879 if ((*rel_hash
)->indx
== -2
8880 && info
->gc_sections
8881 && ! info
->gc_keep_exported
)
8883 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8884 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8886 (*rel_hash
)->root
.root
.string
);
8887 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8889 bfd_set_error (bfd_error_invalid_operation
);
8892 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
8894 (*swap_in
) (abfd
, erela
, irela
);
8895 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
8896 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
8897 | (irela
[j
].r_info
& r_type_mask
));
8898 (*swap_out
) (abfd
, irela
, erela
);
8901 if (bed
->elf_backend_update_relocs
)
8902 (*bed
->elf_backend_update_relocs
) (sec
, reldata
);
8904 if (sort
&& count
!= 0)
8906 bfd_vma (*ext_r_off
) (const void *);
8909 bfd_byte
*base
, *end
, *p
, *loc
;
8910 bfd_byte
*buf
= NULL
;
8912 if (bed
->s
->arch_size
== 32)
8914 if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_LITTLE
)
8915 ext_r_off
= ext32l_r_offset
;
8916 else if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_BIG
)
8917 ext_r_off
= ext32b_r_offset
;
8923 #ifdef BFD_HOST_64_BIT
8924 if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_LITTLE
)
8925 ext_r_off
= ext64l_r_offset
;
8926 else if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_BIG
)
8927 ext_r_off
= ext64b_r_offset
;
8933 /* Must use a stable sort here. A modified insertion sort,
8934 since the relocs are mostly sorted already. */
8935 elt_size
= reldata
->hdr
->sh_entsize
;
8936 base
= reldata
->hdr
->contents
;
8937 end
= base
+ count
* elt_size
;
8938 if (elt_size
> sizeof (Elf64_External_Rela
))
8941 /* Ensure the first element is lowest. This acts as a sentinel,
8942 speeding the main loop below. */
8943 r_off
= (*ext_r_off
) (base
);
8944 for (p
= loc
= base
; (p
+= elt_size
) < end
; )
8946 bfd_vma r_off2
= (*ext_r_off
) (p
);
8955 /* Don't just swap *base and *loc as that changes the order
8956 of the original base[0] and base[1] if they happen to
8957 have the same r_offset. */
8958 bfd_byte onebuf
[sizeof (Elf64_External_Rela
)];
8959 memcpy (onebuf
, loc
, elt_size
);
8960 memmove (base
+ elt_size
, base
, loc
- base
);
8961 memcpy (base
, onebuf
, elt_size
);
8964 for (p
= base
+ elt_size
; (p
+= elt_size
) < end
; )
8966 /* base to p is sorted, *p is next to insert. */
8967 r_off
= (*ext_r_off
) (p
);
8968 /* Search the sorted region for location to insert. */
8970 while (r_off
< (*ext_r_off
) (loc
))
8975 /* Chances are there is a run of relocs to insert here,
8976 from one of more input files. Files are not always
8977 linked in order due to the way elf_link_input_bfd is
8978 called. See pr17666. */
8979 size_t sortlen
= p
- loc
;
8980 bfd_vma r_off2
= (*ext_r_off
) (loc
);
8981 size_t runlen
= elt_size
;
8982 size_t buf_size
= 96 * 1024;
8983 while (p
+ runlen
< end
8984 && (sortlen
<= buf_size
8985 || runlen
+ elt_size
<= buf_size
)
8986 && r_off2
> (*ext_r_off
) (p
+ runlen
))
8990 buf
= bfd_malloc (buf_size
);
8994 if (runlen
< sortlen
)
8996 memcpy (buf
, p
, runlen
);
8997 memmove (loc
+ runlen
, loc
, sortlen
);
8998 memcpy (loc
, buf
, runlen
);
9002 memcpy (buf
, loc
, sortlen
);
9003 memmove (loc
, p
, runlen
);
9004 memcpy (loc
+ runlen
, buf
, sortlen
);
9006 p
+= runlen
- elt_size
;
9009 /* Hashes are no longer valid. */
9010 free (reldata
->hashes
);
9011 reldata
->hashes
= NULL
;
9017 struct elf_link_sort_rela
9023 enum elf_reloc_type_class type
;
9024 /* We use this as an array of size int_rels_per_ext_rel. */
9025 Elf_Internal_Rela rela
[1];
9029 elf_link_sort_cmp1 (const void *A
, const void *B
)
9031 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
9032 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
9033 int relativea
, relativeb
;
9035 relativea
= a
->type
== reloc_class_relative
;
9036 relativeb
= b
->type
== reloc_class_relative
;
9038 if (relativea
< relativeb
)
9040 if (relativea
> relativeb
)
9042 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
9044 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
9046 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
9048 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
9054 elf_link_sort_cmp2 (const void *A
, const void *B
)
9056 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
9057 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
9059 if (a
->type
< b
->type
)
9061 if (a
->type
> b
->type
)
9063 if (a
->u
.offset
< b
->u
.offset
)
9065 if (a
->u
.offset
> b
->u
.offset
)
9067 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
9069 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
9075 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
9077 asection
*dynamic_relocs
;
9080 bfd_size_type count
, size
;
9081 size_t i
, ret
, sort_elt
, ext_size
;
9082 bfd_byte
*sort
, *s_non_relative
, *p
;
9083 struct elf_link_sort_rela
*sq
;
9084 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9085 int i2e
= bed
->s
->int_rels_per_ext_rel
;
9086 unsigned int opb
= bfd_octets_per_byte (abfd
);
9087 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
9088 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
9089 struct bfd_link_order
*lo
;
9091 bfd_boolean use_rela
;
9093 /* Find a dynamic reloc section. */
9094 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
9095 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
9096 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
9097 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
9099 bfd_boolean use_rela_initialised
= FALSE
;
9101 /* This is just here to stop gcc from complaining.
9102 Its initialization checking code is not perfect. */
9105 /* Both sections are present. Examine the sizes
9106 of the indirect sections to help us choose. */
9107 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
9108 if (lo
->type
== bfd_indirect_link_order
)
9110 asection
*o
= lo
->u
.indirect
.section
;
9112 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
9114 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
9115 /* Section size is divisible by both rel and rela sizes.
9116 It is of no help to us. */
9120 /* Section size is only divisible by rela. */
9121 if (use_rela_initialised
&& !use_rela
)
9123 _bfd_error_handler (_("%pB: unable to sort relocs - "
9124 "they are in more than one size"),
9126 bfd_set_error (bfd_error_invalid_operation
);
9132 use_rela_initialised
= TRUE
;
9136 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
9138 /* Section size is only divisible by rel. */
9139 if (use_rela_initialised
&& use_rela
)
9141 _bfd_error_handler (_("%pB: unable to sort relocs - "
9142 "they are in more than one size"),
9144 bfd_set_error (bfd_error_invalid_operation
);
9150 use_rela_initialised
= TRUE
;
9155 /* The section size is not divisible by either -
9156 something is wrong. */
9157 _bfd_error_handler (_("%pB: unable to sort relocs - "
9158 "they are of an unknown size"), abfd
);
9159 bfd_set_error (bfd_error_invalid_operation
);
9164 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
9165 if (lo
->type
== bfd_indirect_link_order
)
9167 asection
*o
= lo
->u
.indirect
.section
;
9169 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
9171 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
9172 /* Section size is divisible by both rel and rela sizes.
9173 It is of no help to us. */
9177 /* Section size is only divisible by rela. */
9178 if (use_rela_initialised
&& !use_rela
)
9180 _bfd_error_handler (_("%pB: unable to sort relocs - "
9181 "they are in more than one size"),
9183 bfd_set_error (bfd_error_invalid_operation
);
9189 use_rela_initialised
= TRUE
;
9193 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
9195 /* Section size is only divisible by rel. */
9196 if (use_rela_initialised
&& use_rela
)
9198 _bfd_error_handler (_("%pB: unable to sort relocs - "
9199 "they are in more than one size"),
9201 bfd_set_error (bfd_error_invalid_operation
);
9207 use_rela_initialised
= TRUE
;
9212 /* The section size is not divisible by either -
9213 something is wrong. */
9214 _bfd_error_handler (_("%pB: unable to sort relocs - "
9215 "they are of an unknown size"), abfd
);
9216 bfd_set_error (bfd_error_invalid_operation
);
9221 if (! use_rela_initialised
)
9225 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
9227 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
9234 dynamic_relocs
= rela_dyn
;
9235 ext_size
= bed
->s
->sizeof_rela
;
9236 swap_in
= bed
->s
->swap_reloca_in
;
9237 swap_out
= bed
->s
->swap_reloca_out
;
9241 dynamic_relocs
= rel_dyn
;
9242 ext_size
= bed
->s
->sizeof_rel
;
9243 swap_in
= bed
->s
->swap_reloc_in
;
9244 swap_out
= bed
->s
->swap_reloc_out
;
9248 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
9249 if (lo
->type
== bfd_indirect_link_order
)
9250 size
+= lo
->u
.indirect
.section
->size
;
9252 if (size
!= dynamic_relocs
->size
)
9255 sort_elt
= (sizeof (struct elf_link_sort_rela
)
9256 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
9258 count
= dynamic_relocs
->size
/ ext_size
;
9261 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
9265 (*info
->callbacks
->warning
)
9266 (info
, _("not enough memory to sort relocations"), 0, abfd
, 0, 0);
9270 if (bed
->s
->arch_size
== 32)
9271 r_sym_mask
= ~(bfd_vma
) 0xff;
9273 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
9275 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
9276 if (lo
->type
== bfd_indirect_link_order
)
9278 bfd_byte
*erel
, *erelend
;
9279 asection
*o
= lo
->u
.indirect
.section
;
9281 if (o
->contents
== NULL
&& o
->size
!= 0)
9283 /* This is a reloc section that is being handled as a normal
9284 section. See bfd_section_from_shdr. We can't combine
9285 relocs in this case. */
9290 erelend
= o
->contents
+ o
->size
;
9291 p
= sort
+ o
->output_offset
* opb
/ ext_size
* sort_elt
;
9293 while (erel
< erelend
)
9295 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
9297 (*swap_in
) (abfd
, erel
, s
->rela
);
9298 s
->type
= (*bed
->elf_backend_reloc_type_class
) (info
, o
, s
->rela
);
9299 s
->u
.sym_mask
= r_sym_mask
;
9305 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
9307 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
9309 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
9310 if (s
->type
!= reloc_class_relative
)
9316 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
9317 for (; i
< count
; i
++, p
+= sort_elt
)
9319 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
9320 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
9322 sp
->u
.offset
= sq
->rela
->r_offset
;
9325 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
9327 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
9328 if (htab
->srelplt
&& htab
->srelplt
->output_section
== dynamic_relocs
)
9330 /* We have plt relocs in .rela.dyn. */
9331 sq
= (struct elf_link_sort_rela
*) sort
;
9332 for (i
= 0; i
< count
; i
++)
9333 if (sq
[count
- i
- 1].type
!= reloc_class_plt
)
9335 if (i
!= 0 && htab
->srelplt
->size
== i
* ext_size
)
9337 struct bfd_link_order
**plo
;
9338 /* Put srelplt link_order last. This is so the output_offset
9339 set in the next loop is correct for DT_JMPREL. */
9340 for (plo
= &dynamic_relocs
->map_head
.link_order
; *plo
!= NULL
; )
9341 if ((*plo
)->type
== bfd_indirect_link_order
9342 && (*plo
)->u
.indirect
.section
== htab
->srelplt
)
9348 plo
= &(*plo
)->next
;
9351 dynamic_relocs
->map_tail
.link_order
= lo
;
9356 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
9357 if (lo
->type
== bfd_indirect_link_order
)
9359 bfd_byte
*erel
, *erelend
;
9360 asection
*o
= lo
->u
.indirect
.section
;
9363 erelend
= o
->contents
+ o
->size
;
9364 o
->output_offset
= (p
- sort
) / sort_elt
* ext_size
/ opb
;
9365 while (erel
< erelend
)
9367 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
9368 (*swap_out
) (abfd
, s
->rela
, erel
);
9375 *psec
= dynamic_relocs
;
9379 /* Add a symbol to the output symbol string table. */
9382 elf_link_output_symstrtab (struct elf_final_link_info
*flinfo
,
9384 Elf_Internal_Sym
*elfsym
,
9385 asection
*input_sec
,
9386 struct elf_link_hash_entry
*h
)
9388 int (*output_symbol_hook
)
9389 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
9390 struct elf_link_hash_entry
*);
9391 struct elf_link_hash_table
*hash_table
;
9392 const struct elf_backend_data
*bed
;
9393 bfd_size_type strtabsize
;
9395 BFD_ASSERT (elf_onesymtab (flinfo
->output_bfd
));
9397 bed
= get_elf_backend_data (flinfo
->output_bfd
);
9398 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
9399 if (output_symbol_hook
!= NULL
)
9401 int ret
= (*output_symbol_hook
) (flinfo
->info
, name
, elfsym
, input_sec
, h
);
9408 || (input_sec
->flags
& SEC_EXCLUDE
))
9409 elfsym
->st_name
= (unsigned long) -1;
9412 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9413 to get the final offset for st_name. */
9415 = (unsigned long) _bfd_elf_strtab_add (flinfo
->symstrtab
,
9417 if (elfsym
->st_name
== (unsigned long) -1)
9421 hash_table
= elf_hash_table (flinfo
->info
);
9422 strtabsize
= hash_table
->strtabsize
;
9423 if (strtabsize
<= hash_table
->strtabcount
)
9425 strtabsize
+= strtabsize
;
9426 hash_table
->strtabsize
= strtabsize
;
9427 strtabsize
*= sizeof (*hash_table
->strtab
);
9429 = (struct elf_sym_strtab
*) bfd_realloc (hash_table
->strtab
,
9431 if (hash_table
->strtab
== NULL
)
9434 hash_table
->strtab
[hash_table
->strtabcount
].sym
= *elfsym
;
9435 hash_table
->strtab
[hash_table
->strtabcount
].dest_index
9436 = hash_table
->strtabcount
;
9437 hash_table
->strtab
[hash_table
->strtabcount
].destshndx_index
9438 = flinfo
->symshndxbuf
? bfd_get_symcount (flinfo
->output_bfd
) : 0;
9440 bfd_get_symcount (flinfo
->output_bfd
) += 1;
9441 hash_table
->strtabcount
+= 1;
9446 /* Swap symbols out to the symbol table and flush the output symbols to
9450 elf_link_swap_symbols_out (struct elf_final_link_info
*flinfo
)
9452 struct elf_link_hash_table
*hash_table
= elf_hash_table (flinfo
->info
);
9455 const struct elf_backend_data
*bed
;
9457 Elf_Internal_Shdr
*hdr
;
9461 if (!hash_table
->strtabcount
)
9464 BFD_ASSERT (elf_onesymtab (flinfo
->output_bfd
));
9466 bed
= get_elf_backend_data (flinfo
->output_bfd
);
9468 amt
= bed
->s
->sizeof_sym
* hash_table
->strtabcount
;
9469 symbuf
= (bfd_byte
*) bfd_malloc (amt
);
9473 if (flinfo
->symshndxbuf
)
9475 amt
= sizeof (Elf_External_Sym_Shndx
);
9476 amt
*= bfd_get_symcount (flinfo
->output_bfd
);
9477 flinfo
->symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
9478 if (flinfo
->symshndxbuf
== NULL
)
9485 for (i
= 0; i
< hash_table
->strtabcount
; i
++)
9487 struct elf_sym_strtab
*elfsym
= &hash_table
->strtab
[i
];
9488 if (elfsym
->sym
.st_name
== (unsigned long) -1)
9489 elfsym
->sym
.st_name
= 0;
9492 = (unsigned long) _bfd_elf_strtab_offset (flinfo
->symstrtab
,
9493 elfsym
->sym
.st_name
);
9494 bed
->s
->swap_symbol_out (flinfo
->output_bfd
, &elfsym
->sym
,
9495 ((bfd_byte
*) symbuf
9496 + (elfsym
->dest_index
9497 * bed
->s
->sizeof_sym
)),
9498 (flinfo
->symshndxbuf
9499 + elfsym
->destshndx_index
));
9502 hdr
= &elf_tdata (flinfo
->output_bfd
)->symtab_hdr
;
9503 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
9504 amt
= hash_table
->strtabcount
* bed
->s
->sizeof_sym
;
9505 if (bfd_seek (flinfo
->output_bfd
, pos
, SEEK_SET
) == 0
9506 && bfd_bwrite (symbuf
, amt
, flinfo
->output_bfd
) == amt
)
9508 hdr
->sh_size
+= amt
;
9516 free (hash_table
->strtab
);
9517 hash_table
->strtab
= NULL
;
9522 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9525 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
9527 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
9528 && sym
->st_shndx
< SHN_LORESERVE
)
9530 /* The gABI doesn't support dynamic symbols in output sections
9533 /* xgettext:c-format */
9534 (_("%pB: too many sections: %d (>= %d)"),
9535 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
9536 bfd_set_error (bfd_error_nonrepresentable_section
);
9542 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9543 allowing an unsatisfied unversioned symbol in the DSO to match a
9544 versioned symbol that would normally require an explicit version.
9545 We also handle the case that a DSO references a hidden symbol
9546 which may be satisfied by a versioned symbol in another DSO. */
9549 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
9550 const struct elf_backend_data
*bed
,
9551 struct elf_link_hash_entry
*h
)
9554 struct elf_link_loaded_list
*loaded
;
9556 if (!is_elf_hash_table (info
->hash
))
9559 /* Check indirect symbol. */
9560 while (h
->root
.type
== bfd_link_hash_indirect
)
9561 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9563 switch (h
->root
.type
)
9569 case bfd_link_hash_undefined
:
9570 case bfd_link_hash_undefweak
:
9571 abfd
= h
->root
.u
.undef
.abfd
;
9573 || (abfd
->flags
& DYNAMIC
) == 0
9574 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
9578 case bfd_link_hash_defined
:
9579 case bfd_link_hash_defweak
:
9580 abfd
= h
->root
.u
.def
.section
->owner
;
9583 case bfd_link_hash_common
:
9584 abfd
= h
->root
.u
.c
.p
->section
->owner
;
9587 BFD_ASSERT (abfd
!= NULL
);
9589 for (loaded
= elf_hash_table (info
)->loaded
;
9591 loaded
= loaded
->next
)
9594 Elf_Internal_Shdr
*hdr
;
9598 Elf_Internal_Shdr
*versymhdr
;
9599 Elf_Internal_Sym
*isym
;
9600 Elf_Internal_Sym
*isymend
;
9601 Elf_Internal_Sym
*isymbuf
;
9602 Elf_External_Versym
*ever
;
9603 Elf_External_Versym
*extversym
;
9605 input
= loaded
->abfd
;
9607 /* We check each DSO for a possible hidden versioned definition. */
9609 || (input
->flags
& DYNAMIC
) == 0
9610 || elf_dynversym (input
) == 0)
9613 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
9615 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9616 if (elf_bad_symtab (input
))
9618 extsymcount
= symcount
;
9623 extsymcount
= symcount
- hdr
->sh_info
;
9624 extsymoff
= hdr
->sh_info
;
9627 if (extsymcount
== 0)
9630 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
9632 if (isymbuf
== NULL
)
9635 /* Read in any version definitions. */
9636 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
9637 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
9638 if (extversym
== NULL
)
9641 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
9642 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
9643 != versymhdr
->sh_size
))
9651 ever
= extversym
+ extsymoff
;
9652 isymend
= isymbuf
+ extsymcount
;
9653 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
9656 Elf_Internal_Versym iver
;
9657 unsigned short version_index
;
9659 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
9660 || isym
->st_shndx
== SHN_UNDEF
)
9663 name
= bfd_elf_string_from_elf_section (input
,
9666 if (strcmp (name
, h
->root
.root
.string
) != 0)
9669 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
9671 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
9673 && h
->forced_local
))
9675 /* If we have a non-hidden versioned sym, then it should
9676 have provided a definition for the undefined sym unless
9677 it is defined in a non-shared object and forced local.
9682 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
9683 if (version_index
== 1 || version_index
== 2)
9685 /* This is the base or first version. We can use it. */
9699 /* Convert ELF common symbol TYPE. */
9702 elf_link_convert_common_type (struct bfd_link_info
*info
, int type
)
9704 /* Commom symbol can only appear in relocatable link. */
9705 if (!bfd_link_relocatable (info
))
9707 switch (info
->elf_stt_common
)
9711 case elf_stt_common
:
9714 case no_elf_stt_common
:
9721 /* Add an external symbol to the symbol table. This is called from
9722 the hash table traversal routine. When generating a shared object,
9723 we go through the symbol table twice. The first time we output
9724 anything that might have been forced to local scope in a version
9725 script. The second time we output the symbols that are still
9729 elf_link_output_extsym (struct bfd_hash_entry
*bh
, void *data
)
9731 struct elf_link_hash_entry
*h
= (struct elf_link_hash_entry
*) bh
;
9732 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
9733 struct elf_final_link_info
*flinfo
= eoinfo
->flinfo
;
9735 Elf_Internal_Sym sym
;
9736 asection
*input_sec
;
9737 const struct elf_backend_data
*bed
;
9742 if (h
->root
.type
== bfd_link_hash_warning
)
9744 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9745 if (h
->root
.type
== bfd_link_hash_new
)
9749 /* Decide whether to output this symbol in this pass. */
9750 if (eoinfo
->localsyms
)
9752 if (!h
->forced_local
)
9757 if (h
->forced_local
)
9761 bed
= get_elf_backend_data (flinfo
->output_bfd
);
9763 if (h
->root
.type
== bfd_link_hash_undefined
)
9765 /* If we have an undefined symbol reference here then it must have
9766 come from a shared library that is being linked in. (Undefined
9767 references in regular files have already been handled unless
9768 they are in unreferenced sections which are removed by garbage
9770 bfd_boolean ignore_undef
= FALSE
;
9772 /* Some symbols may be special in that the fact that they're
9773 undefined can be safely ignored - let backend determine that. */
9774 if (bed
->elf_backend_ignore_undef_symbol
)
9775 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
9777 /* If we are reporting errors for this situation then do so now. */
9779 && h
->ref_dynamic_nonweak
9780 && (!h
->ref_regular
|| flinfo
->info
->gc_sections
)
9781 && !elf_link_check_versioned_symbol (flinfo
->info
, bed
, h
)
9782 && flinfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
9783 (*flinfo
->info
->callbacks
->undefined_symbol
)
9784 (flinfo
->info
, h
->root
.root
.string
,
9785 h
->ref_regular
? NULL
: h
->root
.u
.undef
.abfd
,
9787 flinfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
);
9789 /* Strip a global symbol defined in a discarded section. */
9794 /* We should also warn if a forced local symbol is referenced from
9795 shared libraries. */
9796 if (bfd_link_executable (flinfo
->info
)
9801 && h
->ref_dynamic_nonweak
9802 && !elf_link_check_versioned_symbol (flinfo
->info
, bed
, h
))
9806 struct elf_link_hash_entry
*hi
= h
;
9808 /* Check indirect symbol. */
9809 while (hi
->root
.type
== bfd_link_hash_indirect
)
9810 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
9812 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
9813 /* xgettext:c-format */
9814 msg
= _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9815 else if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
9816 /* xgettext:c-format */
9817 msg
= _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9819 /* xgettext:c-format */
9820 msg
= _("%pB: local symbol `%s' in %pB is referenced by DSO");
9821 def_bfd
= flinfo
->output_bfd
;
9822 if (hi
->root
.u
.def
.section
!= bfd_abs_section_ptr
)
9823 def_bfd
= hi
->root
.u
.def
.section
->owner
;
9824 _bfd_error_handler (msg
, flinfo
->output_bfd
,
9825 h
->root
.root
.string
, def_bfd
);
9826 bfd_set_error (bfd_error_bad_value
);
9827 eoinfo
->failed
= TRUE
;
9831 /* We don't want to output symbols that have never been mentioned by
9832 a regular file, or that we have been told to strip. However, if
9833 h->indx is set to -2, the symbol is used by a reloc and we must
9838 else if ((h
->def_dynamic
9840 || h
->root
.type
== bfd_link_hash_new
)
9844 else if (flinfo
->info
->strip
== strip_all
)
9846 else if (flinfo
->info
->strip
== strip_some
9847 && bfd_hash_lookup (flinfo
->info
->keep_hash
,
9848 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
9850 else if ((h
->root
.type
== bfd_link_hash_defined
9851 || h
->root
.type
== bfd_link_hash_defweak
)
9852 && ((flinfo
->info
->strip_discarded
9853 && discarded_section (h
->root
.u
.def
.section
))
9854 || ((h
->root
.u
.def
.section
->flags
& SEC_LINKER_CREATED
) == 0
9855 && h
->root
.u
.def
.section
->owner
!= NULL
9856 && (h
->root
.u
.def
.section
->owner
->flags
& BFD_PLUGIN
) != 0)))
9858 else if ((h
->root
.type
== bfd_link_hash_undefined
9859 || h
->root
.type
== bfd_link_hash_undefweak
)
9860 && h
->root
.u
.undef
.abfd
!= NULL
9861 && (h
->root
.u
.undef
.abfd
->flags
& BFD_PLUGIN
) != 0)
9866 /* If we're stripping it, and it's not a dynamic symbol, there's
9867 nothing else to do. However, if it is a forced local symbol or
9868 an ifunc symbol we need to give the backend finish_dynamic_symbol
9869 function a chance to make it dynamic. */
9872 && type
!= STT_GNU_IFUNC
9873 && !h
->forced_local
)
9877 sym
.st_size
= h
->size
;
9878 sym
.st_other
= h
->other
;
9879 switch (h
->root
.type
)
9882 case bfd_link_hash_new
:
9883 case bfd_link_hash_warning
:
9887 case bfd_link_hash_undefined
:
9888 case bfd_link_hash_undefweak
:
9889 input_sec
= bfd_und_section_ptr
;
9890 sym
.st_shndx
= SHN_UNDEF
;
9893 case bfd_link_hash_defined
:
9894 case bfd_link_hash_defweak
:
9896 input_sec
= h
->root
.u
.def
.section
;
9897 if (input_sec
->output_section
!= NULL
)
9900 _bfd_elf_section_from_bfd_section (flinfo
->output_bfd
,
9901 input_sec
->output_section
);
9902 if (sym
.st_shndx
== SHN_BAD
)
9905 /* xgettext:c-format */
9906 (_("%pB: could not find output section %pA for input section %pA"),
9907 flinfo
->output_bfd
, input_sec
->output_section
, input_sec
);
9908 bfd_set_error (bfd_error_nonrepresentable_section
);
9909 eoinfo
->failed
= TRUE
;
9913 /* ELF symbols in relocatable files are section relative,
9914 but in nonrelocatable files they are virtual
9916 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
9917 if (!bfd_link_relocatable (flinfo
->info
))
9919 sym
.st_value
+= input_sec
->output_section
->vma
;
9920 if (h
->type
== STT_TLS
)
9922 asection
*tls_sec
= elf_hash_table (flinfo
->info
)->tls_sec
;
9923 if (tls_sec
!= NULL
)
9924 sym
.st_value
-= tls_sec
->vma
;
9930 BFD_ASSERT (input_sec
->owner
== NULL
9931 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
9932 sym
.st_shndx
= SHN_UNDEF
;
9933 input_sec
= bfd_und_section_ptr
;
9938 case bfd_link_hash_common
:
9939 input_sec
= h
->root
.u
.c
.p
->section
;
9940 sym
.st_shndx
= bed
->common_section_index (input_sec
);
9941 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
9944 case bfd_link_hash_indirect
:
9945 /* These symbols are created by symbol versioning. They point
9946 to the decorated version of the name. For example, if the
9947 symbol foo@@GNU_1.2 is the default, which should be used when
9948 foo is used with no version, then we add an indirect symbol
9949 foo which points to foo@@GNU_1.2. We ignore these symbols,
9950 since the indirected symbol is already in the hash table. */
9954 if (type
== STT_COMMON
|| type
== STT_OBJECT
)
9955 switch (h
->root
.type
)
9957 case bfd_link_hash_common
:
9958 type
= elf_link_convert_common_type (flinfo
->info
, type
);
9960 case bfd_link_hash_defined
:
9961 case bfd_link_hash_defweak
:
9962 if (bed
->common_definition (&sym
))
9963 type
= elf_link_convert_common_type (flinfo
->info
, type
);
9967 case bfd_link_hash_undefined
:
9968 case bfd_link_hash_undefweak
:
9974 if (h
->forced_local
)
9976 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, type
);
9977 /* Turn off visibility on local symbol. */
9978 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
9980 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9981 else if (h
->unique_global
&& h
->def_regular
)
9982 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, type
);
9983 else if (h
->root
.type
== bfd_link_hash_undefweak
9984 || h
->root
.type
== bfd_link_hash_defweak
)
9985 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, type
);
9987 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
9988 sym
.st_target_internal
= h
->target_internal
;
9990 /* Give the processor backend a chance to tweak the symbol value,
9991 and also to finish up anything that needs to be done for this
9992 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9993 forced local syms when non-shared is due to a historical quirk.
9994 STT_GNU_IFUNC symbol must go through PLT. */
9995 if ((h
->type
== STT_GNU_IFUNC
9997 && !bfd_link_relocatable (flinfo
->info
))
9998 || ((h
->dynindx
!= -1
10000 && ((bfd_link_pic (flinfo
->info
)
10001 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
10002 || h
->root
.type
!= bfd_link_hash_undefweak
))
10003 || !h
->forced_local
)
10004 && elf_hash_table (flinfo
->info
)->dynamic_sections_created
))
10006 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
10007 (flinfo
->output_bfd
, flinfo
->info
, h
, &sym
)))
10009 eoinfo
->failed
= TRUE
;
10014 /* If we are marking the symbol as undefined, and there are no
10015 non-weak references to this symbol from a regular object, then
10016 mark the symbol as weak undefined; if there are non-weak
10017 references, mark the symbol as strong. We can't do this earlier,
10018 because it might not be marked as undefined until the
10019 finish_dynamic_symbol routine gets through with it. */
10020 if (sym
.st_shndx
== SHN_UNDEF
10022 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
10023 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
10026 type
= ELF_ST_TYPE (sym
.st_info
);
10028 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10029 if (type
== STT_GNU_IFUNC
)
10032 if (h
->ref_regular_nonweak
)
10033 bindtype
= STB_GLOBAL
;
10035 bindtype
= STB_WEAK
;
10036 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
10039 /* If this is a symbol defined in a dynamic library, don't use the
10040 symbol size from the dynamic library. Relinking an executable
10041 against a new library may introduce gratuitous changes in the
10042 executable's symbols if we keep the size. */
10043 if (sym
.st_shndx
== SHN_UNDEF
10048 /* If a non-weak symbol with non-default visibility is not defined
10049 locally, it is a fatal error. */
10050 if (!bfd_link_relocatable (flinfo
->info
)
10051 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
10052 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
10053 && h
->root
.type
== bfd_link_hash_undefined
10054 && !h
->def_regular
)
10058 if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
)
10059 /* xgettext:c-format */
10060 msg
= _("%pB: protected symbol `%s' isn't defined");
10061 else if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
)
10062 /* xgettext:c-format */
10063 msg
= _("%pB: internal symbol `%s' isn't defined");
10065 /* xgettext:c-format */
10066 msg
= _("%pB: hidden symbol `%s' isn't defined");
10067 _bfd_error_handler (msg
, flinfo
->output_bfd
, h
->root
.root
.string
);
10068 bfd_set_error (bfd_error_bad_value
);
10069 eoinfo
->failed
= TRUE
;
10073 /* If this symbol should be put in the .dynsym section, then put it
10074 there now. We already know the symbol index. We also fill in
10075 the entry in the .hash section. */
10076 if (h
->dynindx
!= -1
10077 && elf_hash_table (flinfo
->info
)->dynamic_sections_created
10078 && elf_hash_table (flinfo
->info
)->dynsym
!= NULL
10079 && !discarded_section (elf_hash_table (flinfo
->info
)->dynsym
))
10083 /* Since there is no version information in the dynamic string,
10084 if there is no version info in symbol version section, we will
10085 have a run-time problem if not linking executable, referenced
10086 by shared library, or not bound locally. */
10087 if (h
->verinfo
.verdef
== NULL
10088 && (!bfd_link_executable (flinfo
->info
)
10090 || !h
->def_regular
))
10092 char *p
= strrchr (h
->root
.root
.string
, ELF_VER_CHR
);
10094 if (p
&& p
[1] != '\0')
10097 /* xgettext:c-format */
10098 (_("%pB: no symbol version section for versioned symbol `%s'"),
10099 flinfo
->output_bfd
, h
->root
.root
.string
);
10100 eoinfo
->failed
= TRUE
;
10105 sym
.st_name
= h
->dynstr_index
;
10106 esym
= (elf_hash_table (flinfo
->info
)->dynsym
->contents
10107 + h
->dynindx
* bed
->s
->sizeof_sym
);
10108 if (!check_dynsym (flinfo
->output_bfd
, &sym
))
10110 eoinfo
->failed
= TRUE
;
10113 bed
->s
->swap_symbol_out (flinfo
->output_bfd
, &sym
, esym
, 0);
10115 if (flinfo
->hash_sec
!= NULL
)
10117 size_t hash_entry_size
;
10118 bfd_byte
*bucketpos
;
10120 size_t bucketcount
;
10123 bucketcount
= elf_hash_table (flinfo
->info
)->bucketcount
;
10124 bucket
= h
->u
.elf_hash_value
% bucketcount
;
10127 = elf_section_data (flinfo
->hash_sec
)->this_hdr
.sh_entsize
;
10128 bucketpos
= ((bfd_byte
*) flinfo
->hash_sec
->contents
10129 + (bucket
+ 2) * hash_entry_size
);
10130 chain
= bfd_get (8 * hash_entry_size
, flinfo
->output_bfd
, bucketpos
);
10131 bfd_put (8 * hash_entry_size
, flinfo
->output_bfd
, h
->dynindx
,
10133 bfd_put (8 * hash_entry_size
, flinfo
->output_bfd
, chain
,
10134 ((bfd_byte
*) flinfo
->hash_sec
->contents
10135 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
10138 if (flinfo
->symver_sec
!= NULL
&& flinfo
->symver_sec
->contents
!= NULL
)
10140 Elf_Internal_Versym iversym
;
10141 Elf_External_Versym
*eversym
;
10143 if (!h
->def_regular
)
10145 if (h
->verinfo
.verdef
== NULL
10146 || (elf_dyn_lib_class (h
->verinfo
.verdef
->vd_bfd
)
10147 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
| DYN_NO_NEEDED
)))
10148 iversym
.vs_vers
= 0;
10150 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
10154 if (h
->verinfo
.vertree
== NULL
)
10155 iversym
.vs_vers
= 1;
10157 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
10158 if (flinfo
->info
->create_default_symver
)
10162 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10163 defined locally. */
10164 if (h
->versioned
== versioned_hidden
&& h
->def_regular
)
10165 iversym
.vs_vers
|= VERSYM_HIDDEN
;
10167 eversym
= (Elf_External_Versym
*) flinfo
->symver_sec
->contents
;
10168 eversym
+= h
->dynindx
;
10169 _bfd_elf_swap_versym_out (flinfo
->output_bfd
, &iversym
, eversym
);
10173 /* If the symbol is undefined, and we didn't output it to .dynsym,
10174 strip it from .symtab too. Obviously we can't do this for
10175 relocatable output or when needed for --emit-relocs. */
10176 else if (input_sec
== bfd_und_section_ptr
10178 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10179 && (h
->mark
!= 1 || ELF_ST_BIND (sym
.st_info
) != STB_GLOBAL
)
10180 && !bfd_link_relocatable (flinfo
->info
))
10183 /* Also strip others that we couldn't earlier due to dynamic symbol
10187 if ((input_sec
->flags
& SEC_EXCLUDE
) != 0)
10190 /* Output a FILE symbol so that following locals are not associated
10191 with the wrong input file. We need one for forced local symbols
10192 if we've seen more than one FILE symbol or when we have exactly
10193 one FILE symbol but global symbols are present in a file other
10194 than the one with the FILE symbol. We also need one if linker
10195 defined symbols are present. In practice these conditions are
10196 always met, so just emit the FILE symbol unconditionally. */
10197 if (eoinfo
->localsyms
10198 && !eoinfo
->file_sym_done
10199 && eoinfo
->flinfo
->filesym_count
!= 0)
10201 Elf_Internal_Sym fsym
;
10203 memset (&fsym
, 0, sizeof (fsym
));
10204 fsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
10205 fsym
.st_shndx
= SHN_ABS
;
10206 if (!elf_link_output_symstrtab (eoinfo
->flinfo
, NULL
, &fsym
,
10207 bfd_und_section_ptr
, NULL
))
10210 eoinfo
->file_sym_done
= TRUE
;
10213 indx
= bfd_get_symcount (flinfo
->output_bfd
);
10214 ret
= elf_link_output_symstrtab (flinfo
, h
->root
.root
.string
, &sym
,
10218 eoinfo
->failed
= TRUE
;
10223 else if (h
->indx
== -2)
10229 /* Return TRUE if special handling is done for relocs in SEC against
10230 symbols defined in discarded sections. */
10233 elf_section_ignore_discarded_relocs (asection
*sec
)
10235 const struct elf_backend_data
*bed
;
10237 switch (sec
->sec_info_type
)
10239 case SEC_INFO_TYPE_STABS
:
10240 case SEC_INFO_TYPE_EH_FRAME
:
10241 case SEC_INFO_TYPE_EH_FRAME_ENTRY
:
10247 bed
= get_elf_backend_data (sec
->owner
);
10248 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
10249 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
10255 /* Return a mask saying how ld should treat relocations in SEC against
10256 symbols defined in discarded sections. If this function returns
10257 COMPLAIN set, ld will issue a warning message. If this function
10258 returns PRETEND set, and the discarded section was link-once and the
10259 same size as the kept link-once section, ld will pretend that the
10260 symbol was actually defined in the kept section. Otherwise ld will
10261 zero the reloc (at least that is the intent, but some cooperation by
10262 the target dependent code is needed, particularly for REL targets). */
10265 _bfd_elf_default_action_discarded (asection
*sec
)
10267 if (sec
->flags
& SEC_DEBUGGING
)
10270 if (strcmp (".eh_frame", sec
->name
) == 0)
10273 if (strcmp (".gcc_except_table", sec
->name
) == 0)
10276 return COMPLAIN
| PRETEND
;
10279 /* Find a match between a section and a member of a section group. */
10282 match_group_member (asection
*sec
, asection
*group
,
10283 struct bfd_link_info
*info
)
10285 asection
*first
= elf_next_in_group (group
);
10286 asection
*s
= first
;
10290 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
10293 s
= elf_next_in_group (s
);
10301 /* Check if the kept section of a discarded section SEC can be used
10302 to replace it. Return the replacement if it is OK. Otherwise return
10306 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
10310 kept
= sec
->kept_section
;
10313 if ((kept
->flags
& SEC_GROUP
) != 0)
10314 kept
= match_group_member (sec
, kept
, info
);
10316 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
10317 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
10319 sec
->kept_section
= kept
;
10324 /* Link an input file into the linker output file. This function
10325 handles all the sections and relocations of the input file at once.
10326 This is so that we only have to read the local symbols once, and
10327 don't have to keep them in memory. */
10330 elf_link_input_bfd (struct elf_final_link_info
*flinfo
, bfd
*input_bfd
)
10332 int (*relocate_section
)
10333 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
10334 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
10336 Elf_Internal_Shdr
*symtab_hdr
;
10337 size_t locsymcount
;
10339 Elf_Internal_Sym
*isymbuf
;
10340 Elf_Internal_Sym
*isym
;
10341 Elf_Internal_Sym
*isymend
;
10343 asection
**ppsection
;
10345 const struct elf_backend_data
*bed
;
10346 struct elf_link_hash_entry
**sym_hashes
;
10347 bfd_size_type address_size
;
10348 bfd_vma r_type_mask
;
10350 bfd_boolean have_file_sym
= FALSE
;
10352 output_bfd
= flinfo
->output_bfd
;
10353 bed
= get_elf_backend_data (output_bfd
);
10354 relocate_section
= bed
->elf_backend_relocate_section
;
10356 /* If this is a dynamic object, we don't want to do anything here:
10357 we don't want the local symbols, and we don't want the section
10359 if ((input_bfd
->flags
& DYNAMIC
) != 0)
10362 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
10363 if (elf_bad_symtab (input_bfd
))
10365 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
10370 locsymcount
= symtab_hdr
->sh_info
;
10371 extsymoff
= symtab_hdr
->sh_info
;
10374 /* Read the local symbols. */
10375 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
10376 if (isymbuf
== NULL
&& locsymcount
!= 0)
10378 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
10379 flinfo
->internal_syms
,
10380 flinfo
->external_syms
,
10381 flinfo
->locsym_shndx
);
10382 if (isymbuf
== NULL
)
10386 /* Find local symbol sections and adjust values of symbols in
10387 SEC_MERGE sections. Write out those local symbols we know are
10388 going into the output file. */
10389 isymend
= isymbuf
+ locsymcount
;
10390 for (isym
= isymbuf
, pindex
= flinfo
->indices
, ppsection
= flinfo
->sections
;
10392 isym
++, pindex
++, ppsection
++)
10396 Elf_Internal_Sym osym
;
10402 if (elf_bad_symtab (input_bfd
))
10404 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
10411 if (isym
->st_shndx
== SHN_UNDEF
)
10412 isec
= bfd_und_section_ptr
;
10413 else if (isym
->st_shndx
== SHN_ABS
)
10414 isec
= bfd_abs_section_ptr
;
10415 else if (isym
->st_shndx
== SHN_COMMON
)
10416 isec
= bfd_com_section_ptr
;
10419 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
10422 /* Don't attempt to output symbols with st_shnx in the
10423 reserved range other than SHN_ABS and SHN_COMMON. */
10424 isec
= bfd_und_section_ptr
;
10426 else if (isec
->sec_info_type
== SEC_INFO_TYPE_MERGE
10427 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
10429 _bfd_merged_section_offset (output_bfd
, &isec
,
10430 elf_section_data (isec
)->sec_info
,
10436 /* Don't output the first, undefined, symbol. In fact, don't
10437 output any undefined local symbol. */
10438 if (isec
== bfd_und_section_ptr
)
10441 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
10443 /* We never output section symbols. Instead, we use the
10444 section symbol of the corresponding section in the output
10449 /* If we are stripping all symbols, we don't want to output this
10451 if (flinfo
->info
->strip
== strip_all
)
10454 /* If we are discarding all local symbols, we don't want to
10455 output this one. If we are generating a relocatable output
10456 file, then some of the local symbols may be required by
10457 relocs; we output them below as we discover that they are
10459 if (flinfo
->info
->discard
== discard_all
)
10462 /* If this symbol is defined in a section which we are
10463 discarding, we don't need to keep it. */
10464 if (isym
->st_shndx
!= SHN_UNDEF
10465 && isym
->st_shndx
< SHN_LORESERVE
10466 && bfd_section_removed_from_list (output_bfd
,
10467 isec
->output_section
))
10470 /* Get the name of the symbol. */
10471 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
10476 /* See if we are discarding symbols with this name. */
10477 if ((flinfo
->info
->strip
== strip_some
10478 && (bfd_hash_lookup (flinfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
10480 || (((flinfo
->info
->discard
== discard_sec_merge
10481 && (isec
->flags
& SEC_MERGE
)
10482 && !bfd_link_relocatable (flinfo
->info
))
10483 || flinfo
->info
->discard
== discard_l
)
10484 && bfd_is_local_label_name (input_bfd
, name
)))
10487 if (ELF_ST_TYPE (isym
->st_info
) == STT_FILE
)
10489 if (input_bfd
->lto_output
)
10490 /* -flto puts a temp file name here. This means builds
10491 are not reproducible. Discard the symbol. */
10493 have_file_sym
= TRUE
;
10494 flinfo
->filesym_count
+= 1;
10496 if (!have_file_sym
)
10498 /* In the absence of debug info, bfd_find_nearest_line uses
10499 FILE symbols to determine the source file for local
10500 function symbols. Provide a FILE symbol here if input
10501 files lack such, so that their symbols won't be
10502 associated with a previous input file. It's not the
10503 source file, but the best we can do. */
10504 have_file_sym
= TRUE
;
10505 flinfo
->filesym_count
+= 1;
10506 memset (&osym
, 0, sizeof (osym
));
10507 osym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
10508 osym
.st_shndx
= SHN_ABS
;
10509 if (!elf_link_output_symstrtab (flinfo
,
10510 (input_bfd
->lto_output
? NULL
10511 : input_bfd
->filename
),
10512 &osym
, bfd_abs_section_ptr
,
10519 /* Adjust the section index for the output file. */
10520 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
10521 isec
->output_section
);
10522 if (osym
.st_shndx
== SHN_BAD
)
10525 /* ELF symbols in relocatable files are section relative, but
10526 in executable files they are virtual addresses. Note that
10527 this code assumes that all ELF sections have an associated
10528 BFD section with a reasonable value for output_offset; below
10529 we assume that they also have a reasonable value for
10530 output_section. Any special sections must be set up to meet
10531 these requirements. */
10532 osym
.st_value
+= isec
->output_offset
;
10533 if (!bfd_link_relocatable (flinfo
->info
))
10535 osym
.st_value
+= isec
->output_section
->vma
;
10536 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
10538 /* STT_TLS symbols are relative to PT_TLS segment base. */
10539 if (elf_hash_table (flinfo
->info
)->tls_sec
!= NULL
)
10540 osym
.st_value
-= elf_hash_table (flinfo
->info
)->tls_sec
->vma
;
10542 osym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (osym
.st_info
),
10547 indx
= bfd_get_symcount (output_bfd
);
10548 ret
= elf_link_output_symstrtab (flinfo
, name
, &osym
, isec
, NULL
);
10555 if (bed
->s
->arch_size
== 32)
10557 r_type_mask
= 0xff;
10563 r_type_mask
= 0xffffffff;
10568 /* Relocate the contents of each section. */
10569 sym_hashes
= elf_sym_hashes (input_bfd
);
10570 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
10572 bfd_byte
*contents
;
10574 if (! o
->linker_mark
)
10576 /* This section was omitted from the link. */
10580 if (!flinfo
->info
->resolve_section_groups
10581 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
10583 /* Deal with the group signature symbol. */
10584 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
10585 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
10586 asection
*osec
= o
->output_section
;
10588 BFD_ASSERT (bfd_link_relocatable (flinfo
->info
));
10589 if (symndx
>= locsymcount
10590 || (elf_bad_symtab (input_bfd
)
10591 && flinfo
->sections
[symndx
] == NULL
))
10593 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
10594 while (h
->root
.type
== bfd_link_hash_indirect
10595 || h
->root
.type
== bfd_link_hash_warning
)
10596 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10597 /* Arrange for symbol to be output. */
10599 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
10601 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
10603 /* We'll use the output section target_index. */
10604 asection
*sec
= flinfo
->sections
[symndx
]->output_section
;
10605 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
10609 if (flinfo
->indices
[symndx
] == -1)
10611 /* Otherwise output the local symbol now. */
10612 Elf_Internal_Sym sym
= isymbuf
[symndx
];
10613 asection
*sec
= flinfo
->sections
[symndx
]->output_section
;
10618 name
= bfd_elf_string_from_elf_section (input_bfd
,
10619 symtab_hdr
->sh_link
,
10624 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
10626 if (sym
.st_shndx
== SHN_BAD
)
10629 sym
.st_value
+= o
->output_offset
;
10631 indx
= bfd_get_symcount (output_bfd
);
10632 ret
= elf_link_output_symstrtab (flinfo
, name
, &sym
, o
,
10637 flinfo
->indices
[symndx
] = indx
;
10641 elf_section_data (osec
)->this_hdr
.sh_info
10642 = flinfo
->indices
[symndx
];
10646 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
10647 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
10650 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
10652 /* Section was created by _bfd_elf_link_create_dynamic_sections
10657 /* Get the contents of the section. They have been cached by a
10658 relaxation routine. Note that o is a section in an input
10659 file, so the contents field will not have been set by any of
10660 the routines which work on output files. */
10661 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
10663 contents
= elf_section_data (o
)->this_hdr
.contents
;
10664 if (bed
->caches_rawsize
10666 && o
->rawsize
< o
->size
)
10668 memcpy (flinfo
->contents
, contents
, o
->rawsize
);
10669 contents
= flinfo
->contents
;
10674 contents
= flinfo
->contents
;
10675 if (! bfd_get_full_section_contents (input_bfd
, o
, &contents
))
10679 if ((o
->flags
& SEC_RELOC
) != 0)
10681 Elf_Internal_Rela
*internal_relocs
;
10682 Elf_Internal_Rela
*rel
, *relend
;
10683 int action_discarded
;
10686 /* Get the swapped relocs. */
10688 = _bfd_elf_link_read_relocs (input_bfd
, o
, flinfo
->external_relocs
,
10689 flinfo
->internal_relocs
, FALSE
);
10690 if (internal_relocs
== NULL
10691 && o
->reloc_count
> 0)
10694 /* We need to reverse-copy input .ctors/.dtors sections if
10695 they are placed in .init_array/.finit_array for output. */
10696 if (o
->size
> address_size
10697 && ((strncmp (o
->name
, ".ctors", 6) == 0
10698 && strcmp (o
->output_section
->name
,
10699 ".init_array") == 0)
10700 || (strncmp (o
->name
, ".dtors", 6) == 0
10701 && strcmp (o
->output_section
->name
,
10702 ".fini_array") == 0))
10703 && (o
->name
[6] == 0 || o
->name
[6] == '.'))
10705 if (o
->size
* bed
->s
->int_rels_per_ext_rel
10706 != o
->reloc_count
* address_size
)
10709 /* xgettext:c-format */
10710 (_("error: %pB: size of section %pA is not "
10711 "multiple of address size"),
10713 bfd_set_error (bfd_error_bad_value
);
10716 o
->flags
|= SEC_ELF_REVERSE_COPY
;
10719 action_discarded
= -1;
10720 if (!elf_section_ignore_discarded_relocs (o
))
10721 action_discarded
= (*bed
->action_discarded
) (o
);
10723 /* Run through the relocs evaluating complex reloc symbols and
10724 looking for relocs against symbols from discarded sections
10725 or section symbols from removed link-once sections.
10726 Complain about relocs against discarded sections. Zero
10727 relocs against removed link-once sections. */
10729 rel
= internal_relocs
;
10730 relend
= rel
+ o
->reloc_count
;
10731 for ( ; rel
< relend
; rel
++)
10733 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
10734 unsigned int s_type
;
10735 asection
**ps
, *sec
;
10736 struct elf_link_hash_entry
*h
= NULL
;
10737 const char *sym_name
;
10739 if (r_symndx
== STN_UNDEF
)
10742 if (r_symndx
>= locsymcount
10743 || (elf_bad_symtab (input_bfd
)
10744 && flinfo
->sections
[r_symndx
] == NULL
))
10746 h
= sym_hashes
[r_symndx
- extsymoff
];
10748 /* Badly formatted input files can contain relocs that
10749 reference non-existant symbols. Check here so that
10750 we do not seg fault. */
10754 /* xgettext:c-format */
10755 (_("error: %pB contains a reloc (%#" PRIx64
") for section %pA "
10756 "that references a non-existent global symbol"),
10757 input_bfd
, (uint64_t) rel
->r_info
, o
);
10758 bfd_set_error (bfd_error_bad_value
);
10762 while (h
->root
.type
== bfd_link_hash_indirect
10763 || h
->root
.type
== bfd_link_hash_warning
)
10764 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10768 /* If a plugin symbol is referenced from a non-IR file,
10769 mark the symbol as undefined. Note that the
10770 linker may attach linker created dynamic sections
10771 to the plugin bfd. Symbols defined in linker
10772 created sections are not plugin symbols. */
10773 if ((h
->root
.non_ir_ref_regular
10774 || h
->root
.non_ir_ref_dynamic
)
10775 && (h
->root
.type
== bfd_link_hash_defined
10776 || h
->root
.type
== bfd_link_hash_defweak
)
10777 && (h
->root
.u
.def
.section
->flags
10778 & SEC_LINKER_CREATED
) == 0
10779 && h
->root
.u
.def
.section
->owner
!= NULL
10780 && (h
->root
.u
.def
.section
->owner
->flags
10781 & BFD_PLUGIN
) != 0)
10783 h
->root
.type
= bfd_link_hash_undefined
;
10784 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
10788 if (h
->root
.type
== bfd_link_hash_defined
10789 || h
->root
.type
== bfd_link_hash_defweak
)
10790 ps
= &h
->root
.u
.def
.section
;
10792 sym_name
= h
->root
.root
.string
;
10796 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
10798 s_type
= ELF_ST_TYPE (sym
->st_info
);
10799 ps
= &flinfo
->sections
[r_symndx
];
10800 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
10804 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
10805 && !bfd_link_relocatable (flinfo
->info
))
10808 bfd_vma dot
= (rel
->r_offset
10809 + o
->output_offset
+ o
->output_section
->vma
);
10811 printf ("Encountered a complex symbol!");
10812 printf (" (input_bfd %s, section %s, reloc %ld\n",
10813 input_bfd
->filename
, o
->name
,
10814 (long) (rel
- internal_relocs
));
10815 printf (" symbol: idx %8.8lx, name %s\n",
10816 r_symndx
, sym_name
);
10817 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10818 (unsigned long) rel
->r_info
,
10819 (unsigned long) rel
->r_offset
);
10821 if (!eval_symbol (&val
, &sym_name
, input_bfd
, flinfo
, dot
,
10822 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
10825 /* Symbol evaluated OK. Update to absolute value. */
10826 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
10831 if (action_discarded
!= -1 && ps
!= NULL
)
10833 /* Complain if the definition comes from a
10834 discarded section. */
10835 if ((sec
= *ps
) != NULL
&& discarded_section (sec
))
10837 BFD_ASSERT (r_symndx
!= STN_UNDEF
);
10838 if (action_discarded
& COMPLAIN
)
10839 (*flinfo
->info
->callbacks
->einfo
)
10840 /* xgettext:c-format */
10841 (_("%X`%s' referenced in section `%pA' of %pB: "
10842 "defined in discarded section `%pA' of %pB\n"),
10843 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
10845 /* Try to do the best we can to support buggy old
10846 versions of gcc. Pretend that the symbol is
10847 really defined in the kept linkonce section.
10848 FIXME: This is quite broken. Modifying the
10849 symbol here means we will be changing all later
10850 uses of the symbol, not just in this section. */
10851 if (action_discarded
& PRETEND
)
10855 kept
= _bfd_elf_check_kept_section (sec
,
10867 /* Relocate the section by invoking a back end routine.
10869 The back end routine is responsible for adjusting the
10870 section contents as necessary, and (if using Rela relocs
10871 and generating a relocatable output file) adjusting the
10872 reloc addend as necessary.
10874 The back end routine does not have to worry about setting
10875 the reloc address or the reloc symbol index.
10877 The back end routine is given a pointer to the swapped in
10878 internal symbols, and can access the hash table entries
10879 for the external symbols via elf_sym_hashes (input_bfd).
10881 When generating relocatable output, the back end routine
10882 must handle STB_LOCAL/STT_SECTION symbols specially. The
10883 output symbol is going to be a section symbol
10884 corresponding to the output section, which will require
10885 the addend to be adjusted. */
10887 ret
= (*relocate_section
) (output_bfd
, flinfo
->info
,
10888 input_bfd
, o
, contents
,
10896 || bfd_link_relocatable (flinfo
->info
)
10897 || flinfo
->info
->emitrelocations
)
10899 Elf_Internal_Rela
*irela
;
10900 Elf_Internal_Rela
*irelaend
, *irelamid
;
10901 bfd_vma last_offset
;
10902 struct elf_link_hash_entry
**rel_hash
;
10903 struct elf_link_hash_entry
**rel_hash_list
, **rela_hash_list
;
10904 Elf_Internal_Shdr
*input_rel_hdr
, *input_rela_hdr
;
10905 unsigned int next_erel
;
10906 bfd_boolean rela_normal
;
10907 struct bfd_elf_section_data
*esdi
, *esdo
;
10909 esdi
= elf_section_data (o
);
10910 esdo
= elf_section_data (o
->output_section
);
10911 rela_normal
= FALSE
;
10913 /* Adjust the reloc addresses and symbol indices. */
10915 irela
= internal_relocs
;
10916 irelaend
= irela
+ o
->reloc_count
;
10917 rel_hash
= esdo
->rel
.hashes
+ esdo
->rel
.count
;
10918 /* We start processing the REL relocs, if any. When we reach
10919 IRELAMID in the loop, we switch to the RELA relocs. */
10921 if (esdi
->rel
.hdr
!= NULL
)
10922 irelamid
+= (NUM_SHDR_ENTRIES (esdi
->rel
.hdr
)
10923 * bed
->s
->int_rels_per_ext_rel
);
10924 rel_hash_list
= rel_hash
;
10925 rela_hash_list
= NULL
;
10926 last_offset
= o
->output_offset
;
10927 if (!bfd_link_relocatable (flinfo
->info
))
10928 last_offset
+= o
->output_section
->vma
;
10929 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
10931 unsigned long r_symndx
;
10933 Elf_Internal_Sym sym
;
10935 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
10941 if (irela
== irelamid
)
10943 rel_hash
= esdo
->rela
.hashes
+ esdo
->rela
.count
;
10944 rela_hash_list
= rel_hash
;
10945 rela_normal
= bed
->rela_normal
;
10948 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
10951 if (irela
->r_offset
>= (bfd_vma
) -2)
10953 /* This is a reloc for a deleted entry or somesuch.
10954 Turn it into an R_*_NONE reloc, at the same
10955 offset as the last reloc. elf_eh_frame.c and
10956 bfd_elf_discard_info rely on reloc offsets
10958 irela
->r_offset
= last_offset
;
10960 irela
->r_addend
= 0;
10964 irela
->r_offset
+= o
->output_offset
;
10966 /* Relocs in an executable have to be virtual addresses. */
10967 if (!bfd_link_relocatable (flinfo
->info
))
10968 irela
->r_offset
+= o
->output_section
->vma
;
10970 last_offset
= irela
->r_offset
;
10972 r_symndx
= irela
->r_info
>> r_sym_shift
;
10973 if (r_symndx
== STN_UNDEF
)
10976 if (r_symndx
>= locsymcount
10977 || (elf_bad_symtab (input_bfd
)
10978 && flinfo
->sections
[r_symndx
] == NULL
))
10980 struct elf_link_hash_entry
*rh
;
10981 unsigned long indx
;
10983 /* This is a reloc against a global symbol. We
10984 have not yet output all the local symbols, so
10985 we do not know the symbol index of any global
10986 symbol. We set the rel_hash entry for this
10987 reloc to point to the global hash table entry
10988 for this symbol. The symbol index is then
10989 set at the end of bfd_elf_final_link. */
10990 indx
= r_symndx
- extsymoff
;
10991 rh
= elf_sym_hashes (input_bfd
)[indx
];
10992 while (rh
->root
.type
== bfd_link_hash_indirect
10993 || rh
->root
.type
== bfd_link_hash_warning
)
10994 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
10996 /* Setting the index to -2 tells
10997 elf_link_output_extsym that this symbol is
10998 used by a reloc. */
10999 BFD_ASSERT (rh
->indx
< 0);
11006 /* This is a reloc against a local symbol. */
11009 sym
= isymbuf
[r_symndx
];
11010 sec
= flinfo
->sections
[r_symndx
];
11011 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
11013 /* I suppose the backend ought to fill in the
11014 section of any STT_SECTION symbol against a
11015 processor specific section. */
11016 r_symndx
= STN_UNDEF
;
11017 if (bfd_is_abs_section (sec
))
11019 else if (sec
== NULL
|| sec
->owner
== NULL
)
11021 bfd_set_error (bfd_error_bad_value
);
11026 asection
*osec
= sec
->output_section
;
11028 /* If we have discarded a section, the output
11029 section will be the absolute section. In
11030 case of discarded SEC_MERGE sections, use
11031 the kept section. relocate_section should
11032 have already handled discarded linkonce
11034 if (bfd_is_abs_section (osec
)
11035 && sec
->kept_section
!= NULL
11036 && sec
->kept_section
->output_section
!= NULL
)
11038 osec
= sec
->kept_section
->output_section
;
11039 irela
->r_addend
-= osec
->vma
;
11042 if (!bfd_is_abs_section (osec
))
11044 r_symndx
= osec
->target_index
;
11045 if (r_symndx
== STN_UNDEF
)
11047 irela
->r_addend
+= osec
->vma
;
11048 osec
= _bfd_nearby_section (output_bfd
, osec
,
11050 irela
->r_addend
-= osec
->vma
;
11051 r_symndx
= osec
->target_index
;
11056 /* Adjust the addend according to where the
11057 section winds up in the output section. */
11059 irela
->r_addend
+= sec
->output_offset
;
11063 if (flinfo
->indices
[r_symndx
] == -1)
11065 unsigned long shlink
;
11070 if (flinfo
->info
->strip
== strip_all
)
11072 /* You can't do ld -r -s. */
11073 bfd_set_error (bfd_error_invalid_operation
);
11077 /* This symbol was skipped earlier, but
11078 since it is needed by a reloc, we
11079 must output it now. */
11080 shlink
= symtab_hdr
->sh_link
;
11081 name
= (bfd_elf_string_from_elf_section
11082 (input_bfd
, shlink
, sym
.st_name
));
11086 osec
= sec
->output_section
;
11088 _bfd_elf_section_from_bfd_section (output_bfd
,
11090 if (sym
.st_shndx
== SHN_BAD
)
11093 sym
.st_value
+= sec
->output_offset
;
11094 if (!bfd_link_relocatable (flinfo
->info
))
11096 sym
.st_value
+= osec
->vma
;
11097 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
11099 struct elf_link_hash_table
*htab
11100 = elf_hash_table (flinfo
->info
);
11102 /* STT_TLS symbols are relative to PT_TLS
11104 if (htab
->tls_sec
!= NULL
)
11105 sym
.st_value
-= htab
->tls_sec
->vma
;
11108 = ELF_ST_INFO (ELF_ST_BIND (sym
.st_info
),
11113 indx
= bfd_get_symcount (output_bfd
);
11114 ret
= elf_link_output_symstrtab (flinfo
, name
,
11120 flinfo
->indices
[r_symndx
] = indx
;
11125 r_symndx
= flinfo
->indices
[r_symndx
];
11128 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
11129 | (irela
->r_info
& r_type_mask
));
11132 /* Swap out the relocs. */
11133 input_rel_hdr
= esdi
->rel
.hdr
;
11134 if (input_rel_hdr
&& input_rel_hdr
->sh_size
!= 0)
11136 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
11141 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
11142 * bed
->s
->int_rels_per_ext_rel
);
11143 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
11146 input_rela_hdr
= esdi
->rela
.hdr
;
11147 if (input_rela_hdr
&& input_rela_hdr
->sh_size
!= 0)
11149 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
11158 /* Write out the modified section contents. */
11159 if (bed
->elf_backend_write_section
11160 && (*bed
->elf_backend_write_section
) (output_bfd
, flinfo
->info
, o
,
11163 /* Section written out. */
11165 else switch (o
->sec_info_type
)
11167 case SEC_INFO_TYPE_STABS
:
11168 if (! (_bfd_write_section_stabs
11170 &elf_hash_table (flinfo
->info
)->stab_info
,
11171 o
, &elf_section_data (o
)->sec_info
, contents
)))
11174 case SEC_INFO_TYPE_MERGE
:
11175 if (! _bfd_write_merged_section (output_bfd
, o
,
11176 elf_section_data (o
)->sec_info
))
11179 case SEC_INFO_TYPE_EH_FRAME
:
11181 if (! _bfd_elf_write_section_eh_frame (output_bfd
, flinfo
->info
,
11186 case SEC_INFO_TYPE_EH_FRAME_ENTRY
:
11188 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd
,
11196 if (! (o
->flags
& SEC_EXCLUDE
))
11198 file_ptr offset
= (file_ptr
) o
->output_offset
;
11199 bfd_size_type todo
= o
->size
;
11201 offset
*= bfd_octets_per_byte (output_bfd
);
11203 if ((o
->flags
& SEC_ELF_REVERSE_COPY
))
11205 /* Reverse-copy input section to output. */
11208 todo
-= address_size
;
11209 if (! bfd_set_section_contents (output_bfd
,
11217 offset
+= address_size
;
11221 else if (! bfd_set_section_contents (output_bfd
,
11235 /* Generate a reloc when linking an ELF file. This is a reloc
11236 requested by the linker, and does not come from any input file. This
11237 is used to build constructor and destructor tables when linking
11241 elf_reloc_link_order (bfd
*output_bfd
,
11242 struct bfd_link_info
*info
,
11243 asection
*output_section
,
11244 struct bfd_link_order
*link_order
)
11246 reloc_howto_type
*howto
;
11250 struct bfd_elf_section_reloc_data
*reldata
;
11251 struct elf_link_hash_entry
**rel_hash_ptr
;
11252 Elf_Internal_Shdr
*rel_hdr
;
11253 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
11254 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
11257 struct bfd_elf_section_data
*esdo
= elf_section_data (output_section
);
11259 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
11262 bfd_set_error (bfd_error_bad_value
);
11266 addend
= link_order
->u
.reloc
.p
->addend
;
11269 reldata
= &esdo
->rel
;
11270 else if (esdo
->rela
.hdr
)
11271 reldata
= &esdo
->rela
;
11278 /* Figure out the symbol index. */
11279 rel_hash_ptr
= reldata
->hashes
+ reldata
->count
;
11280 if (link_order
->type
== bfd_section_reloc_link_order
)
11282 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
11283 BFD_ASSERT (indx
!= 0);
11284 *rel_hash_ptr
= NULL
;
11288 struct elf_link_hash_entry
*h
;
11290 /* Treat a reloc against a defined symbol as though it were
11291 actually against the section. */
11292 h
= ((struct elf_link_hash_entry
*)
11293 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
11294 link_order
->u
.reloc
.p
->u
.name
,
11295 FALSE
, FALSE
, TRUE
));
11297 && (h
->root
.type
== bfd_link_hash_defined
11298 || h
->root
.type
== bfd_link_hash_defweak
))
11302 section
= h
->root
.u
.def
.section
;
11303 indx
= section
->output_section
->target_index
;
11304 *rel_hash_ptr
= NULL
;
11305 /* It seems that we ought to add the symbol value to the
11306 addend here, but in practice it has already been added
11307 because it was passed to constructor_callback. */
11308 addend
+= section
->output_section
->vma
+ section
->output_offset
;
11310 else if (h
!= NULL
)
11312 /* Setting the index to -2 tells elf_link_output_extsym that
11313 this symbol is used by a reloc. */
11320 (*info
->callbacks
->unattached_reloc
)
11321 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0);
11326 /* If this is an inplace reloc, we must write the addend into the
11328 if (howto
->partial_inplace
&& addend
!= 0)
11330 bfd_size_type size
;
11331 bfd_reloc_status_type rstat
;
11334 const char *sym_name
;
11336 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
11337 buf
= (bfd_byte
*) bfd_zmalloc (size
);
11338 if (buf
== NULL
&& size
!= 0)
11340 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
11347 case bfd_reloc_outofrange
:
11350 case bfd_reloc_overflow
:
11351 if (link_order
->type
== bfd_section_reloc_link_order
)
11352 sym_name
= bfd_section_name (output_bfd
,
11353 link_order
->u
.reloc
.p
->u
.section
);
11355 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
11356 (*info
->callbacks
->reloc_overflow
) (info
, NULL
, sym_name
,
11357 howto
->name
, addend
, NULL
, NULL
,
11362 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
11364 * bfd_octets_per_byte (output_bfd
),
11371 /* The address of a reloc is relative to the section in a
11372 relocatable file, and is a virtual address in an executable
11374 offset
= link_order
->offset
;
11375 if (! bfd_link_relocatable (info
))
11376 offset
+= output_section
->vma
;
11378 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
11380 irel
[i
].r_offset
= offset
;
11381 irel
[i
].r_info
= 0;
11382 irel
[i
].r_addend
= 0;
11384 if (bed
->s
->arch_size
== 32)
11385 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
11387 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
11389 rel_hdr
= reldata
->hdr
;
11390 erel
= rel_hdr
->contents
;
11391 if (rel_hdr
->sh_type
== SHT_REL
)
11393 erel
+= reldata
->count
* bed
->s
->sizeof_rel
;
11394 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
11398 irel
[0].r_addend
= addend
;
11399 erel
+= reldata
->count
* bed
->s
->sizeof_rela
;
11400 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
11409 /* Get the output vma of the section pointed to by the sh_link field. */
11412 elf_get_linked_section_vma (struct bfd_link_order
*p
)
11414 Elf_Internal_Shdr
**elf_shdrp
;
11418 s
= p
->u
.indirect
.section
;
11419 elf_shdrp
= elf_elfsections (s
->owner
);
11420 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
11421 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
11423 The Intel C compiler generates SHT_IA_64_UNWIND with
11424 SHF_LINK_ORDER. But it doesn't set the sh_link or
11425 sh_info fields. Hence we could get the situation
11426 where elfsec is 0. */
11429 const struct elf_backend_data
*bed
11430 = get_elf_backend_data (s
->owner
);
11431 if (bed
->link_order_error_handler
)
11432 bed
->link_order_error_handler
11433 /* xgettext:c-format */
11434 (_("%pB: warning: sh_link not set for section `%pA'"), s
->owner
, s
);
11439 s
= elf_shdrp
[elfsec
]->bfd_section
;
11440 return s
->output_section
->vma
+ s
->output_offset
;
11445 /* Compare two sections based on the locations of the sections they are
11446 linked to. Used by elf_fixup_link_order. */
11449 compare_link_order (const void * a
, const void * b
)
11454 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
11455 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
11458 return apos
> bpos
;
11462 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11463 order as their linked sections. Returns false if this could not be done
11464 because an output section includes both ordered and unordered
11465 sections. Ideally we'd do this in the linker proper. */
11468 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
11470 int seen_linkorder
;
11473 struct bfd_link_order
*p
;
11475 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11477 struct bfd_link_order
**sections
;
11478 asection
*s
, *other_sec
, *linkorder_sec
;
11482 linkorder_sec
= NULL
;
11484 seen_linkorder
= 0;
11485 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11487 if (p
->type
== bfd_indirect_link_order
)
11489 s
= p
->u
.indirect
.section
;
11491 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
11492 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
11493 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
11494 && elfsec
< elf_numsections (sub
)
11495 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
11496 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
11510 if (seen_other
&& seen_linkorder
)
11512 if (other_sec
&& linkorder_sec
)
11514 /* xgettext:c-format */
11515 (_("%pA has both ordered [`%pA' in %pB] "
11516 "and unordered [`%pA' in %pB] sections"),
11517 o
, linkorder_sec
, linkorder_sec
->owner
,
11518 other_sec
, other_sec
->owner
);
11521 (_("%pA has both ordered and unordered sections"), o
);
11522 bfd_set_error (bfd_error_bad_value
);
11527 if (!seen_linkorder
)
11530 sections
= (struct bfd_link_order
**)
11531 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
11532 if (sections
== NULL
)
11534 seen_linkorder
= 0;
11536 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11538 sections
[seen_linkorder
++] = p
;
11540 /* Sort the input sections in the order of their linked section. */
11541 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
11542 compare_link_order
);
11544 /* Change the offsets of the sections. */
11546 for (n
= 0; n
< seen_linkorder
; n
++)
11548 s
= sections
[n
]->u
.indirect
.section
;
11549 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
11550 s
->output_offset
= offset
/ bfd_octets_per_byte (abfd
);
11551 sections
[n
]->offset
= offset
;
11552 offset
+= sections
[n
]->size
;
11559 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11560 Returns TRUE upon success, FALSE otherwise. */
11563 elf_output_implib (bfd
*abfd
, struct bfd_link_info
*info
)
11565 bfd_boolean ret
= FALSE
;
11567 const struct elf_backend_data
*bed
;
11569 enum bfd_architecture arch
;
11571 asymbol
**sympp
= NULL
;
11575 elf_symbol_type
*osymbuf
;
11577 implib_bfd
= info
->out_implib_bfd
;
11578 bed
= get_elf_backend_data (abfd
);
11580 if (!bfd_set_format (implib_bfd
, bfd_object
))
11583 /* Use flag from executable but make it a relocatable object. */
11584 flags
= bfd_get_file_flags (abfd
);
11585 flags
&= ~HAS_RELOC
;
11586 if (!bfd_set_start_address (implib_bfd
, 0)
11587 || !bfd_set_file_flags (implib_bfd
, flags
& ~EXEC_P
))
11590 /* Copy architecture of output file to import library file. */
11591 arch
= bfd_get_arch (abfd
);
11592 mach
= bfd_get_mach (abfd
);
11593 if (!bfd_set_arch_mach (implib_bfd
, arch
, mach
)
11594 && (abfd
->target_defaulted
11595 || bfd_get_arch (abfd
) != bfd_get_arch (implib_bfd
)))
11598 /* Get symbol table size. */
11599 symsize
= bfd_get_symtab_upper_bound (abfd
);
11603 /* Read in the symbol table. */
11604 sympp
= (asymbol
**) xmalloc (symsize
);
11605 symcount
= bfd_canonicalize_symtab (abfd
, sympp
);
11609 /* Allow the BFD backend to copy any private header data it
11610 understands from the output BFD to the import library BFD. */
11611 if (! bfd_copy_private_header_data (abfd
, implib_bfd
))
11614 /* Filter symbols to appear in the import library. */
11615 if (bed
->elf_backend_filter_implib_symbols
)
11616 symcount
= bed
->elf_backend_filter_implib_symbols (abfd
, info
, sympp
,
11619 symcount
= _bfd_elf_filter_global_symbols (abfd
, info
, sympp
, symcount
);
11622 bfd_set_error (bfd_error_no_symbols
);
11623 _bfd_error_handler (_("%pB: no symbol found for import library"),
11629 /* Make symbols absolute. */
11630 osymbuf
= (elf_symbol_type
*) bfd_alloc2 (implib_bfd
, symcount
,
11631 sizeof (*osymbuf
));
11632 for (src_count
= 0; src_count
< symcount
; src_count
++)
11634 memcpy (&osymbuf
[src_count
], (elf_symbol_type
*) sympp
[src_count
],
11635 sizeof (*osymbuf
));
11636 osymbuf
[src_count
].symbol
.section
= bfd_abs_section_ptr
;
11637 osymbuf
[src_count
].internal_elf_sym
.st_shndx
= SHN_ABS
;
11638 osymbuf
[src_count
].symbol
.value
+= sympp
[src_count
]->section
->vma
;
11639 osymbuf
[src_count
].internal_elf_sym
.st_value
=
11640 osymbuf
[src_count
].symbol
.value
;
11641 sympp
[src_count
] = &osymbuf
[src_count
].symbol
;
11644 bfd_set_symtab (implib_bfd
, sympp
, symcount
);
11646 /* Allow the BFD backend to copy any private data it understands
11647 from the output BFD to the import library BFD. This is done last
11648 to permit the routine to look at the filtered symbol table. */
11649 if (! bfd_copy_private_bfd_data (abfd
, implib_bfd
))
11652 if (!bfd_close (implib_bfd
))
11663 elf_final_link_free (bfd
*obfd
, struct elf_final_link_info
*flinfo
)
11667 if (flinfo
->symstrtab
!= NULL
)
11668 _bfd_elf_strtab_free (flinfo
->symstrtab
);
11669 if (flinfo
->contents
!= NULL
)
11670 free (flinfo
->contents
);
11671 if (flinfo
->external_relocs
!= NULL
)
11672 free (flinfo
->external_relocs
);
11673 if (flinfo
->internal_relocs
!= NULL
)
11674 free (flinfo
->internal_relocs
);
11675 if (flinfo
->external_syms
!= NULL
)
11676 free (flinfo
->external_syms
);
11677 if (flinfo
->locsym_shndx
!= NULL
)
11678 free (flinfo
->locsym_shndx
);
11679 if (flinfo
->internal_syms
!= NULL
)
11680 free (flinfo
->internal_syms
);
11681 if (flinfo
->indices
!= NULL
)
11682 free (flinfo
->indices
);
11683 if (flinfo
->sections
!= NULL
)
11684 free (flinfo
->sections
);
11685 if (flinfo
->symshndxbuf
!= NULL
)
11686 free (flinfo
->symshndxbuf
);
11687 for (o
= obfd
->sections
; o
!= NULL
; o
= o
->next
)
11689 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11690 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rel
.hashes
!= NULL
)
11691 free (esdo
->rel
.hashes
);
11692 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rela
.hashes
!= NULL
)
11693 free (esdo
->rela
.hashes
);
11697 /* Do the final step of an ELF link. */
11700 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11702 bfd_boolean dynamic
;
11703 bfd_boolean emit_relocs
;
11705 struct elf_final_link_info flinfo
;
11707 struct bfd_link_order
*p
;
11709 bfd_size_type max_contents_size
;
11710 bfd_size_type max_external_reloc_size
;
11711 bfd_size_type max_internal_reloc_count
;
11712 bfd_size_type max_sym_count
;
11713 bfd_size_type max_sym_shndx_count
;
11714 Elf_Internal_Sym elfsym
;
11716 Elf_Internal_Shdr
*symtab_hdr
;
11717 Elf_Internal_Shdr
*symtab_shndx_hdr
;
11718 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11719 struct elf_outext_info eoinfo
;
11720 bfd_boolean merged
;
11721 size_t relativecount
= 0;
11722 asection
*reldyn
= 0;
11724 asection
*attr_section
= NULL
;
11725 bfd_vma attr_size
= 0;
11726 const char *std_attrs_section
;
11727 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
11729 if (!is_elf_hash_table (htab
))
11732 if (bfd_link_pic (info
))
11733 abfd
->flags
|= DYNAMIC
;
11735 dynamic
= htab
->dynamic_sections_created
;
11736 dynobj
= htab
->dynobj
;
11738 emit_relocs
= (bfd_link_relocatable (info
)
11739 || info
->emitrelocations
);
11741 flinfo
.info
= info
;
11742 flinfo
.output_bfd
= abfd
;
11743 flinfo
.symstrtab
= _bfd_elf_strtab_init ();
11744 if (flinfo
.symstrtab
== NULL
)
11749 flinfo
.hash_sec
= NULL
;
11750 flinfo
.symver_sec
= NULL
;
11754 flinfo
.hash_sec
= bfd_get_linker_section (dynobj
, ".hash");
11755 /* Note that dynsym_sec can be NULL (on VMS). */
11756 flinfo
.symver_sec
= bfd_get_linker_section (dynobj
, ".gnu.version");
11757 /* Note that it is OK if symver_sec is NULL. */
11760 flinfo
.contents
= NULL
;
11761 flinfo
.external_relocs
= NULL
;
11762 flinfo
.internal_relocs
= NULL
;
11763 flinfo
.external_syms
= NULL
;
11764 flinfo
.locsym_shndx
= NULL
;
11765 flinfo
.internal_syms
= NULL
;
11766 flinfo
.indices
= NULL
;
11767 flinfo
.sections
= NULL
;
11768 flinfo
.symshndxbuf
= NULL
;
11769 flinfo
.filesym_count
= 0;
11771 /* The object attributes have been merged. Remove the input
11772 sections from the link, and set the contents of the output
11774 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
11775 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11777 bfd_boolean remove_section
= FALSE
;
11779 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
11780 || strcmp (o
->name
, ".gnu.attributes") == 0)
11782 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11784 asection
*input_section
;
11786 if (p
->type
!= bfd_indirect_link_order
)
11788 input_section
= p
->u
.indirect
.section
;
11789 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11790 elf_link_input_bfd ignores this section. */
11791 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11794 attr_size
= bfd_elf_obj_attr_size (abfd
);
11795 bfd_set_section_size (abfd
, o
, attr_size
);
11796 /* Skip this section later on. */
11797 o
->map_head
.link_order
= NULL
;
11801 remove_section
= TRUE
;
11803 else if ((o
->flags
& SEC_GROUP
) != 0 && o
->size
== 0)
11805 /* Remove empty group section from linker output. */
11806 remove_section
= TRUE
;
11808 if (remove_section
)
11810 o
->flags
|= SEC_EXCLUDE
;
11811 bfd_section_list_remove (abfd
, o
);
11812 abfd
->section_count
--;
11816 /* Count up the number of relocations we will output for each output
11817 section, so that we know the sizes of the reloc sections. We
11818 also figure out some maximum sizes. */
11819 max_contents_size
= 0;
11820 max_external_reloc_size
= 0;
11821 max_internal_reloc_count
= 0;
11823 max_sym_shndx_count
= 0;
11825 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11827 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11828 o
->reloc_count
= 0;
11830 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11832 unsigned int reloc_count
= 0;
11833 unsigned int additional_reloc_count
= 0;
11834 struct bfd_elf_section_data
*esdi
= NULL
;
11836 if (p
->type
== bfd_section_reloc_link_order
11837 || p
->type
== bfd_symbol_reloc_link_order
)
11839 else if (p
->type
== bfd_indirect_link_order
)
11843 sec
= p
->u
.indirect
.section
;
11845 /* Mark all sections which are to be included in the
11846 link. This will normally be every section. We need
11847 to do this so that we can identify any sections which
11848 the linker has decided to not include. */
11849 sec
->linker_mark
= TRUE
;
11851 if (sec
->flags
& SEC_MERGE
)
11854 if (sec
->rawsize
> max_contents_size
)
11855 max_contents_size
= sec
->rawsize
;
11856 if (sec
->size
> max_contents_size
)
11857 max_contents_size
= sec
->size
;
11859 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
11860 && (sec
->owner
->flags
& DYNAMIC
) == 0)
11864 /* We are interested in just local symbols, not all
11866 if (elf_bad_symtab (sec
->owner
))
11867 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
11868 / bed
->s
->sizeof_sym
);
11870 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
11872 if (sym_count
> max_sym_count
)
11873 max_sym_count
= sym_count
;
11875 if (sym_count
> max_sym_shndx_count
11876 && elf_symtab_shndx_list (sec
->owner
) != NULL
)
11877 max_sym_shndx_count
= sym_count
;
11879 if (esdo
->this_hdr
.sh_type
== SHT_REL
11880 || esdo
->this_hdr
.sh_type
== SHT_RELA
)
11881 /* Some backends use reloc_count in relocation sections
11882 to count particular types of relocs. Of course,
11883 reloc sections themselves can't have relocations. */
11885 else if (emit_relocs
)
11887 reloc_count
= sec
->reloc_count
;
11888 if (bed
->elf_backend_count_additional_relocs
)
11891 c
= (*bed
->elf_backend_count_additional_relocs
) (sec
);
11892 additional_reloc_count
+= c
;
11895 else if (bed
->elf_backend_count_relocs
)
11896 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
11898 esdi
= elf_section_data (sec
);
11900 if ((sec
->flags
& SEC_RELOC
) != 0)
11902 size_t ext_size
= 0;
11904 if (esdi
->rel
.hdr
!= NULL
)
11905 ext_size
= esdi
->rel
.hdr
->sh_size
;
11906 if (esdi
->rela
.hdr
!= NULL
)
11907 ext_size
+= esdi
->rela
.hdr
->sh_size
;
11909 if (ext_size
> max_external_reloc_size
)
11910 max_external_reloc_size
= ext_size
;
11911 if (sec
->reloc_count
> max_internal_reloc_count
)
11912 max_internal_reloc_count
= sec
->reloc_count
;
11917 if (reloc_count
== 0)
11920 reloc_count
+= additional_reloc_count
;
11921 o
->reloc_count
+= reloc_count
;
11923 if (p
->type
== bfd_indirect_link_order
&& emit_relocs
)
11927 esdo
->rel
.count
+= NUM_SHDR_ENTRIES (esdi
->rel
.hdr
);
11928 esdo
->rel
.count
+= additional_reloc_count
;
11930 if (esdi
->rela
.hdr
)
11932 esdo
->rela
.count
+= NUM_SHDR_ENTRIES (esdi
->rela
.hdr
);
11933 esdo
->rela
.count
+= additional_reloc_count
;
11939 esdo
->rela
.count
+= reloc_count
;
11941 esdo
->rel
.count
+= reloc_count
;
11945 if (o
->reloc_count
> 0)
11946 o
->flags
|= SEC_RELOC
;
11949 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11950 set it (this is probably a bug) and if it is set
11951 assign_section_numbers will create a reloc section. */
11952 o
->flags
&=~ SEC_RELOC
;
11955 /* If the SEC_ALLOC flag is not set, force the section VMA to
11956 zero. This is done in elf_fake_sections as well, but forcing
11957 the VMA to 0 here will ensure that relocs against these
11958 sections are handled correctly. */
11959 if ((o
->flags
& SEC_ALLOC
) == 0
11960 && ! o
->user_set_vma
)
11964 if (! bfd_link_relocatable (info
) && merged
)
11965 elf_link_hash_traverse (htab
, _bfd_elf_link_sec_merge_syms
, abfd
);
11967 /* Figure out the file positions for everything but the symbol table
11968 and the relocs. We set symcount to force assign_section_numbers
11969 to create a symbol table. */
11970 bfd_get_symcount (abfd
) = info
->strip
!= strip_all
|| emit_relocs
;
11971 BFD_ASSERT (! abfd
->output_has_begun
);
11972 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
11975 /* Set sizes, and assign file positions for reloc sections. */
11976 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11978 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11979 if ((o
->flags
& SEC_RELOC
) != 0)
11982 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rel
)))
11986 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rela
)))
11990 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11991 to count upwards while actually outputting the relocations. */
11992 esdo
->rel
.count
= 0;
11993 esdo
->rela
.count
= 0;
11995 if (esdo
->this_hdr
.sh_offset
== (file_ptr
) -1)
11997 /* Cache the section contents so that they can be compressed
11998 later. Use bfd_malloc since it will be freed by
11999 bfd_compress_section_contents. */
12000 unsigned char *contents
= esdo
->this_hdr
.contents
;
12001 if ((o
->flags
& SEC_ELF_COMPRESS
) == 0 || contents
!= NULL
)
12004 = (unsigned char *) bfd_malloc (esdo
->this_hdr
.sh_size
);
12005 if (contents
== NULL
)
12007 esdo
->this_hdr
.contents
= contents
;
12011 /* We have now assigned file positions for all the sections except
12012 .symtab, .strtab, and non-loaded reloc sections. We start the
12013 .symtab section at the current file position, and write directly
12014 to it. We build the .strtab section in memory. */
12015 bfd_get_symcount (abfd
) = 0;
12016 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
12017 /* sh_name is set in prep_headers. */
12018 symtab_hdr
->sh_type
= SHT_SYMTAB
;
12019 /* sh_flags, sh_addr and sh_size all start off zero. */
12020 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
12021 /* sh_link is set in assign_section_numbers. */
12022 /* sh_info is set below. */
12023 /* sh_offset is set just below. */
12024 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
12026 if (max_sym_count
< 20)
12027 max_sym_count
= 20;
12028 htab
->strtabsize
= max_sym_count
;
12029 amt
= max_sym_count
* sizeof (struct elf_sym_strtab
);
12030 htab
->strtab
= (struct elf_sym_strtab
*) bfd_malloc (amt
);
12031 if (htab
->strtab
== NULL
)
12033 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12035 = (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF)
12036 ? (Elf_External_Sym_Shndx
*) -1 : NULL
);
12038 if (info
->strip
!= strip_all
|| emit_relocs
)
12040 file_ptr off
= elf_next_file_pos (abfd
);
12042 _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
12044 /* Note that at this point elf_next_file_pos (abfd) is
12045 incorrect. We do not yet know the size of the .symtab section.
12046 We correct next_file_pos below, after we do know the size. */
12048 /* Start writing out the symbol table. The first symbol is always a
12050 elfsym
.st_value
= 0;
12051 elfsym
.st_size
= 0;
12052 elfsym
.st_info
= 0;
12053 elfsym
.st_other
= 0;
12054 elfsym
.st_shndx
= SHN_UNDEF
;
12055 elfsym
.st_target_internal
= 0;
12056 if (elf_link_output_symstrtab (&flinfo
, NULL
, &elfsym
,
12057 bfd_und_section_ptr
, NULL
) != 1)
12060 /* Output a symbol for each section. We output these even if we are
12061 discarding local symbols, since they are used for relocs. These
12062 symbols have no names. We store the index of each one in the
12063 index field of the section, so that we can find it again when
12064 outputting relocs. */
12066 elfsym
.st_size
= 0;
12067 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
12068 elfsym
.st_other
= 0;
12069 elfsym
.st_value
= 0;
12070 elfsym
.st_target_internal
= 0;
12071 for (i
= 1; i
< elf_numsections (abfd
); i
++)
12073 o
= bfd_section_from_elf_index (abfd
, i
);
12076 o
->target_index
= bfd_get_symcount (abfd
);
12077 elfsym
.st_shndx
= i
;
12078 if (!bfd_link_relocatable (info
))
12079 elfsym
.st_value
= o
->vma
;
12080 if (elf_link_output_symstrtab (&flinfo
, NULL
, &elfsym
, o
,
12087 /* Allocate some memory to hold information read in from the input
12089 if (max_contents_size
!= 0)
12091 flinfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
12092 if (flinfo
.contents
== NULL
)
12096 if (max_external_reloc_size
!= 0)
12098 flinfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
12099 if (flinfo
.external_relocs
== NULL
)
12103 if (max_internal_reloc_count
!= 0)
12105 amt
= max_internal_reloc_count
* sizeof (Elf_Internal_Rela
);
12106 flinfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
12107 if (flinfo
.internal_relocs
== NULL
)
12111 if (max_sym_count
!= 0)
12113 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
12114 flinfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
12115 if (flinfo
.external_syms
== NULL
)
12118 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
12119 flinfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
12120 if (flinfo
.internal_syms
== NULL
)
12123 amt
= max_sym_count
* sizeof (long);
12124 flinfo
.indices
= (long int *) bfd_malloc (amt
);
12125 if (flinfo
.indices
== NULL
)
12128 amt
= max_sym_count
* sizeof (asection
*);
12129 flinfo
.sections
= (asection
**) bfd_malloc (amt
);
12130 if (flinfo
.sections
== NULL
)
12134 if (max_sym_shndx_count
!= 0)
12136 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
12137 flinfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
12138 if (flinfo
.locsym_shndx
== NULL
)
12144 bfd_vma base
, end
= 0;
12147 for (sec
= htab
->tls_sec
;
12148 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
12151 bfd_size_type size
= sec
->size
;
12154 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
12156 struct bfd_link_order
*ord
= sec
->map_tail
.link_order
;
12159 size
= ord
->offset
+ ord
->size
;
12161 end
= sec
->vma
+ size
;
12163 base
= htab
->tls_sec
->vma
;
12164 /* Only align end of TLS section if static TLS doesn't have special
12165 alignment requirements. */
12166 if (bed
->static_tls_alignment
== 1)
12167 end
= align_power (end
, htab
->tls_sec
->alignment_power
);
12168 htab
->tls_size
= end
- base
;
12171 /* Reorder SHF_LINK_ORDER sections. */
12172 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
12174 if (!elf_fixup_link_order (abfd
, o
))
12178 if (!_bfd_elf_fixup_eh_frame_hdr (info
))
12181 /* Since ELF permits relocations to be against local symbols, we
12182 must have the local symbols available when we do the relocations.
12183 Since we would rather only read the local symbols once, and we
12184 would rather not keep them in memory, we handle all the
12185 relocations for a single input file at the same time.
12187 Unfortunately, there is no way to know the total number of local
12188 symbols until we have seen all of them, and the local symbol
12189 indices precede the global symbol indices. This means that when
12190 we are generating relocatable output, and we see a reloc against
12191 a global symbol, we can not know the symbol index until we have
12192 finished examining all the local symbols to see which ones we are
12193 going to output. To deal with this, we keep the relocations in
12194 memory, and don't output them until the end of the link. This is
12195 an unfortunate waste of memory, but I don't see a good way around
12196 it. Fortunately, it only happens when performing a relocatable
12197 link, which is not the common case. FIXME: If keep_memory is set
12198 we could write the relocs out and then read them again; I don't
12199 know how bad the memory loss will be. */
12201 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
12202 sub
->output_has_begun
= FALSE
;
12203 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
12205 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
12207 if (p
->type
== bfd_indirect_link_order
12208 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
12209 == bfd_target_elf_flavour
)
12210 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
12212 if (! sub
->output_has_begun
)
12214 if (! elf_link_input_bfd (&flinfo
, sub
))
12216 sub
->output_has_begun
= TRUE
;
12219 else if (p
->type
== bfd_section_reloc_link_order
12220 || p
->type
== bfd_symbol_reloc_link_order
)
12222 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
12227 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
12229 if (p
->type
== bfd_indirect_link_order
12230 && (bfd_get_flavour (sub
)
12231 == bfd_target_elf_flavour
)
12232 && (elf_elfheader (sub
)->e_ident
[EI_CLASS
]
12233 != bed
->s
->elfclass
))
12235 const char *iclass
, *oclass
;
12237 switch (bed
->s
->elfclass
)
12239 case ELFCLASS64
: oclass
= "ELFCLASS64"; break;
12240 case ELFCLASS32
: oclass
= "ELFCLASS32"; break;
12241 case ELFCLASSNONE
: oclass
= "ELFCLASSNONE"; break;
12245 switch (elf_elfheader (sub
)->e_ident
[EI_CLASS
])
12247 case ELFCLASS64
: iclass
= "ELFCLASS64"; break;
12248 case ELFCLASS32
: iclass
= "ELFCLASS32"; break;
12249 case ELFCLASSNONE
: iclass
= "ELFCLASSNONE"; break;
12253 bfd_set_error (bfd_error_wrong_format
);
12255 /* xgettext:c-format */
12256 (_("%pB: file class %s incompatible with %s"),
12257 sub
, iclass
, oclass
);
12266 /* Free symbol buffer if needed. */
12267 if (!info
->reduce_memory_overheads
)
12269 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
12270 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
12271 && elf_tdata (sub
)->symbuf
)
12273 free (elf_tdata (sub
)->symbuf
);
12274 elf_tdata (sub
)->symbuf
= NULL
;
12278 /* Output any global symbols that got converted to local in a
12279 version script or due to symbol visibility. We do this in a
12280 separate step since ELF requires all local symbols to appear
12281 prior to any global symbols. FIXME: We should only do this if
12282 some global symbols were, in fact, converted to become local.
12283 FIXME: Will this work correctly with the Irix 5 linker? */
12284 eoinfo
.failed
= FALSE
;
12285 eoinfo
.flinfo
= &flinfo
;
12286 eoinfo
.localsyms
= TRUE
;
12287 eoinfo
.file_sym_done
= FALSE
;
12288 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
12292 /* If backend needs to output some local symbols not present in the hash
12293 table, do it now. */
12294 if (bed
->elf_backend_output_arch_local_syms
12295 && (info
->strip
!= strip_all
|| emit_relocs
))
12297 typedef int (*out_sym_func
)
12298 (void *, const char *, Elf_Internal_Sym
*, asection
*,
12299 struct elf_link_hash_entry
*);
12301 if (! ((*bed
->elf_backend_output_arch_local_syms
)
12302 (abfd
, info
, &flinfo
,
12303 (out_sym_func
) elf_link_output_symstrtab
)))
12307 /* That wrote out all the local symbols. Finish up the symbol table
12308 with the global symbols. Even if we want to strip everything we
12309 can, we still need to deal with those global symbols that got
12310 converted to local in a version script. */
12312 /* The sh_info field records the index of the first non local symbol. */
12313 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
12316 && htab
->dynsym
!= NULL
12317 && htab
->dynsym
->output_section
!= bfd_abs_section_ptr
)
12319 Elf_Internal_Sym sym
;
12320 bfd_byte
*dynsym
= htab
->dynsym
->contents
;
12322 o
= htab
->dynsym
->output_section
;
12323 elf_section_data (o
)->this_hdr
.sh_info
= htab
->local_dynsymcount
+ 1;
12325 /* Write out the section symbols for the output sections. */
12326 if (bfd_link_pic (info
)
12327 || htab
->is_relocatable_executable
)
12333 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
12335 sym
.st_target_internal
= 0;
12337 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
12343 dynindx
= elf_section_data (s
)->dynindx
;
12346 indx
= elf_section_data (s
)->this_idx
;
12347 BFD_ASSERT (indx
> 0);
12348 sym
.st_shndx
= indx
;
12349 if (! check_dynsym (abfd
, &sym
))
12351 sym
.st_value
= s
->vma
;
12352 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
12353 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
12357 /* Write out the local dynsyms. */
12358 if (htab
->dynlocal
)
12360 struct elf_link_local_dynamic_entry
*e
;
12361 for (e
= htab
->dynlocal
; e
; e
= e
->next
)
12366 /* Copy the internal symbol and turn off visibility.
12367 Note that we saved a word of storage and overwrote
12368 the original st_name with the dynstr_index. */
12370 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
12372 s
= bfd_section_from_elf_index (e
->input_bfd
,
12377 elf_section_data (s
->output_section
)->this_idx
;
12378 if (! check_dynsym (abfd
, &sym
))
12380 sym
.st_value
= (s
->output_section
->vma
12382 + e
->isym
.st_value
);
12385 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
12386 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
12391 /* We get the global symbols from the hash table. */
12392 eoinfo
.failed
= FALSE
;
12393 eoinfo
.localsyms
= FALSE
;
12394 eoinfo
.flinfo
= &flinfo
;
12395 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
12399 /* If backend needs to output some symbols not present in the hash
12400 table, do it now. */
12401 if (bed
->elf_backend_output_arch_syms
12402 && (info
->strip
!= strip_all
|| emit_relocs
))
12404 typedef int (*out_sym_func
)
12405 (void *, const char *, Elf_Internal_Sym
*, asection
*,
12406 struct elf_link_hash_entry
*);
12408 if (! ((*bed
->elf_backend_output_arch_syms
)
12409 (abfd
, info
, &flinfo
,
12410 (out_sym_func
) elf_link_output_symstrtab
)))
12414 /* Finalize the .strtab section. */
12415 _bfd_elf_strtab_finalize (flinfo
.symstrtab
);
12417 /* Swap out the .strtab section. */
12418 if (!elf_link_swap_symbols_out (&flinfo
))
12421 /* Now we know the size of the symtab section. */
12422 if (bfd_get_symcount (abfd
) > 0)
12424 /* Finish up and write out the symbol string table (.strtab)
12426 Elf_Internal_Shdr
*symstrtab_hdr
= NULL
;
12427 file_ptr off
= symtab_hdr
->sh_offset
+ symtab_hdr
->sh_size
;
12429 if (elf_symtab_shndx_list (abfd
))
12431 symtab_shndx_hdr
= & elf_symtab_shndx_list (abfd
)->hdr
;
12433 if (symtab_shndx_hdr
!= NULL
&& symtab_shndx_hdr
->sh_name
!= 0)
12435 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
12436 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
12437 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
12438 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
12439 symtab_shndx_hdr
->sh_size
= amt
;
12441 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
12444 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
12445 || (bfd_bwrite (flinfo
.symshndxbuf
, amt
, abfd
) != amt
))
12450 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
12451 /* sh_name was set in prep_headers. */
12452 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
12453 symstrtab_hdr
->sh_flags
= bed
->elf_strtab_flags
;
12454 symstrtab_hdr
->sh_addr
= 0;
12455 symstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (flinfo
.symstrtab
);
12456 symstrtab_hdr
->sh_entsize
= 0;
12457 symstrtab_hdr
->sh_link
= 0;
12458 symstrtab_hdr
->sh_info
= 0;
12459 /* sh_offset is set just below. */
12460 symstrtab_hdr
->sh_addralign
= 1;
12462 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
,
12464 elf_next_file_pos (abfd
) = off
;
12466 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
12467 || ! _bfd_elf_strtab_emit (abfd
, flinfo
.symstrtab
))
12471 if (info
->out_implib_bfd
&& !elf_output_implib (abfd
, info
))
12473 _bfd_error_handler (_("%pB: failed to generate import library"),
12474 info
->out_implib_bfd
);
12478 /* Adjust the relocs to have the correct symbol indices. */
12479 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
12481 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
12484 if ((o
->flags
& SEC_RELOC
) == 0)
12487 sort
= bed
->sort_relocs_p
== NULL
|| (*bed
->sort_relocs_p
) (o
);
12488 if (esdo
->rel
.hdr
!= NULL
12489 && !elf_link_adjust_relocs (abfd
, o
, &esdo
->rel
, sort
, info
))
12491 if (esdo
->rela
.hdr
!= NULL
12492 && !elf_link_adjust_relocs (abfd
, o
, &esdo
->rela
, sort
, info
))
12495 /* Set the reloc_count field to 0 to prevent write_relocs from
12496 trying to swap the relocs out itself. */
12497 o
->reloc_count
= 0;
12500 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
12501 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
12503 /* If we are linking against a dynamic object, or generating a
12504 shared library, finish up the dynamic linking information. */
12507 bfd_byte
*dyncon
, *dynconend
;
12509 /* Fix up .dynamic entries. */
12510 o
= bfd_get_linker_section (dynobj
, ".dynamic");
12511 BFD_ASSERT (o
!= NULL
);
12513 dyncon
= o
->contents
;
12514 dynconend
= o
->contents
+ o
->size
;
12515 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
12517 Elf_Internal_Dyn dyn
;
12520 bfd_size_type sh_size
;
12523 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
12530 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
12532 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
12534 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
12535 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
12538 dyn
.d_un
.d_val
= relativecount
;
12545 name
= info
->init_function
;
12548 name
= info
->fini_function
;
12551 struct elf_link_hash_entry
*h
;
12553 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
12555 && (h
->root
.type
== bfd_link_hash_defined
12556 || h
->root
.type
== bfd_link_hash_defweak
))
12558 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
12559 o
= h
->root
.u
.def
.section
;
12560 if (o
->output_section
!= NULL
)
12561 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
12562 + o
->output_offset
);
12565 /* The symbol is imported from another shared
12566 library and does not apply to this one. */
12567 dyn
.d_un
.d_ptr
= 0;
12574 case DT_PREINIT_ARRAYSZ
:
12575 name
= ".preinit_array";
12577 case DT_INIT_ARRAYSZ
:
12578 name
= ".init_array";
12580 case DT_FINI_ARRAYSZ
:
12581 name
= ".fini_array";
12583 o
= bfd_get_section_by_name (abfd
, name
);
12587 (_("could not find section %s"), name
);
12592 (_("warning: %s section has zero size"), name
);
12593 dyn
.d_un
.d_val
= o
->size
;
12596 case DT_PREINIT_ARRAY
:
12597 name
= ".preinit_array";
12599 case DT_INIT_ARRAY
:
12600 name
= ".init_array";
12602 case DT_FINI_ARRAY
:
12603 name
= ".fini_array";
12605 o
= bfd_get_section_by_name (abfd
, name
);
12612 name
= ".gnu.hash";
12621 name
= ".gnu.version_d";
12624 name
= ".gnu.version_r";
12627 name
= ".gnu.version";
12629 o
= bfd_get_linker_section (dynobj
, name
);
12631 if (o
== NULL
|| bfd_is_abs_section (o
->output_section
))
12634 (_("could not find section %s"), name
);
12637 if (elf_section_data (o
->output_section
)->this_hdr
.sh_type
== SHT_NOTE
)
12640 (_("warning: section '%s' is being made into a note"), name
);
12641 bfd_set_error (bfd_error_nonrepresentable_section
);
12644 dyn
.d_un
.d_ptr
= o
->output_section
->vma
+ o
->output_offset
;
12651 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
12657 for (i
= 1; i
< elf_numsections (abfd
); i
++)
12659 Elf_Internal_Shdr
*hdr
;
12661 hdr
= elf_elfsections (abfd
)[i
];
12662 if (hdr
->sh_type
== type
12663 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
12665 sh_size
+= hdr
->sh_size
;
12667 || sh_addr
> hdr
->sh_addr
)
12668 sh_addr
= hdr
->sh_addr
;
12672 if (bed
->dtrel_excludes_plt
&& htab
->srelplt
!= NULL
)
12674 /* Don't count procedure linkage table relocs in the
12675 overall reloc count. */
12676 sh_size
-= htab
->srelplt
->size
;
12678 /* If the size is zero, make the address zero too.
12679 This is to avoid a glibc bug. If the backend
12680 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12681 zero, then we'll put DT_RELA at the end of
12682 DT_JMPREL. glibc will interpret the end of
12683 DT_RELA matching the end of DT_JMPREL as the
12684 case where DT_RELA includes DT_JMPREL, and for
12685 LD_BIND_NOW will decide that processing DT_RELA
12686 will process the PLT relocs too. Net result:
12687 No PLT relocs applied. */
12690 /* If .rela.plt is the first .rela section, exclude
12691 it from DT_RELA. */
12692 else if (sh_addr
== (htab
->srelplt
->output_section
->vma
12693 + htab
->srelplt
->output_offset
))
12694 sh_addr
+= htab
->srelplt
->size
;
12697 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
12698 dyn
.d_un
.d_val
= sh_size
;
12700 dyn
.d_un
.d_ptr
= sh_addr
;
12703 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
12707 /* If we have created any dynamic sections, then output them. */
12708 if (dynobj
!= NULL
)
12710 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
12713 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12714 if (((info
->warn_shared_textrel
&& bfd_link_pic (info
))
12715 || info
->error_textrel
)
12716 && (o
= bfd_get_linker_section (dynobj
, ".dynamic")) != NULL
)
12718 bfd_byte
*dyncon
, *dynconend
;
12720 dyncon
= o
->contents
;
12721 dynconend
= o
->contents
+ o
->size
;
12722 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
12724 Elf_Internal_Dyn dyn
;
12726 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
12728 if (dyn
.d_tag
== DT_TEXTREL
)
12730 if (info
->error_textrel
)
12731 info
->callbacks
->einfo
12732 (_("%P%X: read-only segment has dynamic relocations\n"));
12734 info
->callbacks
->einfo
12735 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12741 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
12743 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
12745 || o
->output_section
== bfd_abs_section_ptr
)
12747 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
12749 /* At this point, we are only interested in sections
12750 created by _bfd_elf_link_create_dynamic_sections. */
12753 if (htab
->stab_info
.stabstr
== o
)
12755 if (htab
->eh_info
.hdr_sec
== o
)
12757 if (strcmp (o
->name
, ".dynstr") != 0)
12759 if (! bfd_set_section_contents (abfd
, o
->output_section
,
12761 (file_ptr
) o
->output_offset
12762 * bfd_octets_per_byte (abfd
),
12768 /* The contents of the .dynstr section are actually in a
12772 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
12773 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
12774 || !_bfd_elf_strtab_emit (abfd
, htab
->dynstr
))
12780 if (!info
->resolve_section_groups
)
12782 bfd_boolean failed
= FALSE
;
12784 BFD_ASSERT (bfd_link_relocatable (info
));
12785 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
12790 /* If we have optimized stabs strings, output them. */
12791 if (htab
->stab_info
.stabstr
!= NULL
)
12793 if (!_bfd_write_stab_strings (abfd
, &htab
->stab_info
))
12797 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
12800 elf_final_link_free (abfd
, &flinfo
);
12802 elf_linker (abfd
) = TRUE
;
12806 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
12807 if (contents
== NULL
)
12808 return FALSE
; /* Bail out and fail. */
12809 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
12810 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
12817 elf_final_link_free (abfd
, &flinfo
);
12821 /* Initialize COOKIE for input bfd ABFD. */
12824 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
12825 struct bfd_link_info
*info
, bfd
*abfd
)
12827 Elf_Internal_Shdr
*symtab_hdr
;
12828 const struct elf_backend_data
*bed
;
12830 bed
= get_elf_backend_data (abfd
);
12831 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
12833 cookie
->abfd
= abfd
;
12834 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
12835 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
12836 if (cookie
->bad_symtab
)
12838 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
12839 cookie
->extsymoff
= 0;
12843 cookie
->locsymcount
= symtab_hdr
->sh_info
;
12844 cookie
->extsymoff
= symtab_hdr
->sh_info
;
12847 if (bed
->s
->arch_size
== 32)
12848 cookie
->r_sym_shift
= 8;
12850 cookie
->r_sym_shift
= 32;
12852 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
12853 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
12855 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
12856 cookie
->locsymcount
, 0,
12858 if (cookie
->locsyms
== NULL
)
12860 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
12863 if (info
->keep_memory
)
12864 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
12869 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12872 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
12874 Elf_Internal_Shdr
*symtab_hdr
;
12876 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
12877 if (cookie
->locsyms
!= NULL
12878 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
12879 free (cookie
->locsyms
);
12882 /* Initialize the relocation information in COOKIE for input section SEC
12883 of input bfd ABFD. */
12886 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
12887 struct bfd_link_info
*info
, bfd
*abfd
,
12890 if (sec
->reloc_count
== 0)
12892 cookie
->rels
= NULL
;
12893 cookie
->relend
= NULL
;
12897 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
12898 info
->keep_memory
);
12899 if (cookie
->rels
== NULL
)
12901 cookie
->rel
= cookie
->rels
;
12902 cookie
->relend
= cookie
->rels
+ sec
->reloc_count
;
12904 cookie
->rel
= cookie
->rels
;
12908 /* Free the memory allocated by init_reloc_cookie_rels,
12912 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
12915 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
12916 free (cookie
->rels
);
12919 /* Initialize the whole of COOKIE for input section SEC. */
12922 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
12923 struct bfd_link_info
*info
,
12926 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
12928 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
12933 fini_reloc_cookie (cookie
, sec
->owner
);
12938 /* Free the memory allocated by init_reloc_cookie_for_section,
12942 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
12945 fini_reloc_cookie_rels (cookie
, sec
);
12946 fini_reloc_cookie (cookie
, sec
->owner
);
12949 /* Garbage collect unused sections. */
12951 /* Default gc_mark_hook. */
12954 _bfd_elf_gc_mark_hook (asection
*sec
,
12955 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12956 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
12957 struct elf_link_hash_entry
*h
,
12958 Elf_Internal_Sym
*sym
)
12962 switch (h
->root
.type
)
12964 case bfd_link_hash_defined
:
12965 case bfd_link_hash_defweak
:
12966 return h
->root
.u
.def
.section
;
12968 case bfd_link_hash_common
:
12969 return h
->root
.u
.c
.p
->section
;
12976 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
12981 /* Return the debug definition section. */
12984 elf_gc_mark_debug_section (asection
*sec ATTRIBUTE_UNUSED
,
12985 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12986 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
12987 struct elf_link_hash_entry
*h
,
12988 Elf_Internal_Sym
*sym
)
12992 /* Return the global debug definition section. */
12993 if ((h
->root
.type
== bfd_link_hash_defined
12994 || h
->root
.type
== bfd_link_hash_defweak
)
12995 && (h
->root
.u
.def
.section
->flags
& SEC_DEBUGGING
) != 0)
12996 return h
->root
.u
.def
.section
;
13000 /* Return the local debug definition section. */
13001 asection
*isec
= bfd_section_from_elf_index (sec
->owner
,
13003 if ((isec
->flags
& SEC_DEBUGGING
) != 0)
13010 /* COOKIE->rel describes a relocation against section SEC, which is
13011 a section we've decided to keep. Return the section that contains
13012 the relocation symbol, or NULL if no section contains it. */
13015 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
13016 elf_gc_mark_hook_fn gc_mark_hook
,
13017 struct elf_reloc_cookie
*cookie
,
13018 bfd_boolean
*start_stop
)
13020 unsigned long r_symndx
;
13021 struct elf_link_hash_entry
*h
;
13023 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
13024 if (r_symndx
== STN_UNDEF
)
13027 if (r_symndx
>= cookie
->locsymcount
13028 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
13030 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
13033 info
->callbacks
->einfo (_("%F%P: corrupt input: %pB\n"),
13037 while (h
->root
.type
== bfd_link_hash_indirect
13038 || h
->root
.type
== bfd_link_hash_warning
)
13039 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
13041 /* If this symbol is weak and there is a non-weak definition, we
13042 keep the non-weak definition because many backends put
13043 dynamic reloc info on the non-weak definition for code
13044 handling copy relocs. */
13045 if (h
->is_weakalias
)
13046 weakdef (h
)->mark
= 1;
13048 if (start_stop
!= NULL
)
13050 /* To work around a glibc bug, mark XXX input sections
13051 when there is a reference to __start_XXX or __stop_XXX
13055 asection
*s
= h
->u2
.start_stop_section
;
13056 *start_stop
= !s
->gc_mark
;
13061 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
13064 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
13065 &cookie
->locsyms
[r_symndx
]);
13068 /* COOKIE->rel describes a relocation against section SEC, which is
13069 a section we've decided to keep. Mark the section that contains
13070 the relocation symbol. */
13073 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
13075 elf_gc_mark_hook_fn gc_mark_hook
,
13076 struct elf_reloc_cookie
*cookie
)
13079 bfd_boolean start_stop
= FALSE
;
13081 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
, &start_stop
);
13082 while (rsec
!= NULL
)
13084 if (!rsec
->gc_mark
)
13086 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
13087 || (rsec
->owner
->flags
& DYNAMIC
) != 0)
13089 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
13094 rsec
= bfd_get_next_section_by_name (rsec
->owner
, rsec
);
13099 /* The mark phase of garbage collection. For a given section, mark
13100 it and any sections in this section's group, and all the sections
13101 which define symbols to which it refers. */
13104 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
13106 elf_gc_mark_hook_fn gc_mark_hook
)
13109 asection
*group_sec
, *eh_frame
;
13113 /* Mark all the sections in the group. */
13114 group_sec
= elf_section_data (sec
)->next_in_group
;
13115 if (group_sec
&& !group_sec
->gc_mark
)
13116 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
13119 /* Look through the section relocs. */
13121 eh_frame
= elf_eh_frame_section (sec
->owner
);
13122 if ((sec
->flags
& SEC_RELOC
) != 0
13123 && sec
->reloc_count
> 0
13124 && sec
!= eh_frame
)
13126 struct elf_reloc_cookie cookie
;
13128 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
13132 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
13133 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
13138 fini_reloc_cookie_for_section (&cookie
, sec
);
13142 if (ret
&& eh_frame
&& elf_fde_list (sec
))
13144 struct elf_reloc_cookie cookie
;
13146 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
13150 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
13151 gc_mark_hook
, &cookie
))
13153 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
13157 eh_frame
= elf_section_eh_frame_entry (sec
);
13158 if (ret
&& eh_frame
&& !eh_frame
->gc_mark
)
13159 if (!_bfd_elf_gc_mark (info
, eh_frame
, gc_mark_hook
))
13165 /* Scan and mark sections in a special or debug section group. */
13168 _bfd_elf_gc_mark_debug_special_section_group (asection
*grp
)
13170 /* Point to first section of section group. */
13172 /* Used to iterate the section group. */
13175 bfd_boolean is_special_grp
= TRUE
;
13176 bfd_boolean is_debug_grp
= TRUE
;
13178 /* First scan to see if group contains any section other than debug
13179 and special section. */
13180 ssec
= msec
= elf_next_in_group (grp
);
13183 if ((msec
->flags
& SEC_DEBUGGING
) == 0)
13184 is_debug_grp
= FALSE
;
13186 if ((msec
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) != 0)
13187 is_special_grp
= FALSE
;
13189 msec
= elf_next_in_group (msec
);
13191 while (msec
!= ssec
);
13193 /* If this is a pure debug section group or pure special section group,
13194 keep all sections in this group. */
13195 if (is_debug_grp
|| is_special_grp
)
13200 msec
= elf_next_in_group (msec
);
13202 while (msec
!= ssec
);
13206 /* Keep debug and special sections. */
13209 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info
*info
,
13210 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED
)
13214 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
13217 bfd_boolean some_kept
;
13218 bfd_boolean debug_frag_seen
;
13219 bfd_boolean has_kept_debug_info
;
13221 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
13223 isec
= ibfd
->sections
;
13224 if (isec
== NULL
|| isec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
13227 /* Ensure all linker created sections are kept,
13228 see if any other section is already marked,
13229 and note if we have any fragmented debug sections. */
13230 debug_frag_seen
= some_kept
= has_kept_debug_info
= FALSE
;
13231 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
13233 if ((isec
->flags
& SEC_LINKER_CREATED
) != 0)
13235 else if (isec
->gc_mark
13236 && (isec
->flags
& SEC_ALLOC
) != 0
13237 && elf_section_type (isec
) != SHT_NOTE
)
13240 if (!debug_frag_seen
13241 && (isec
->flags
& SEC_DEBUGGING
)
13242 && CONST_STRNEQ (isec
->name
, ".debug_line."))
13243 debug_frag_seen
= TRUE
;
13246 /* If no non-note alloc section in this file will be kept, then
13247 we can toss out the debug and special sections. */
13251 /* Keep debug and special sections like .comment when they are
13252 not part of a group. Also keep section groups that contain
13253 just debug sections or special sections. */
13254 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
13256 if ((isec
->flags
& SEC_GROUP
) != 0)
13257 _bfd_elf_gc_mark_debug_special_section_group (isec
);
13258 else if (((isec
->flags
& SEC_DEBUGGING
) != 0
13259 || (isec
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
13260 && elf_next_in_group (isec
) == NULL
)
13262 if (isec
->gc_mark
&& (isec
->flags
& SEC_DEBUGGING
) != 0)
13263 has_kept_debug_info
= TRUE
;
13266 /* Look for CODE sections which are going to be discarded,
13267 and find and discard any fragmented debug sections which
13268 are associated with that code section. */
13269 if (debug_frag_seen
)
13270 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
13271 if ((isec
->flags
& SEC_CODE
) != 0
13272 && isec
->gc_mark
== 0)
13277 ilen
= strlen (isec
->name
);
13279 /* Association is determined by the name of the debug
13280 section containing the name of the code section as
13281 a suffix. For example .debug_line.text.foo is a
13282 debug section associated with .text.foo. */
13283 for (dsec
= ibfd
->sections
; dsec
!= NULL
; dsec
= dsec
->next
)
13287 if (dsec
->gc_mark
== 0
13288 || (dsec
->flags
& SEC_DEBUGGING
) == 0)
13291 dlen
= strlen (dsec
->name
);
13294 && strncmp (dsec
->name
+ (dlen
- ilen
),
13295 isec
->name
, ilen
) == 0)
13300 /* Mark debug sections referenced by kept debug sections. */
13301 if (has_kept_debug_info
)
13302 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
13304 && (isec
->flags
& SEC_DEBUGGING
) != 0)
13305 if (!_bfd_elf_gc_mark (info
, isec
,
13306 elf_gc_mark_debug_section
))
13313 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
13316 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13318 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
13322 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
13323 || elf_object_id (sub
) != elf_hash_table_id (elf_hash_table (info
))
13324 || !(*bed
->relocs_compatible
) (sub
->xvec
, abfd
->xvec
))
13327 if (o
== NULL
|| o
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
13330 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
13332 /* When any section in a section group is kept, we keep all
13333 sections in the section group. If the first member of
13334 the section group is excluded, we will also exclude the
13336 if (o
->flags
& SEC_GROUP
)
13338 asection
*first
= elf_next_in_group (o
);
13339 o
->gc_mark
= first
->gc_mark
;
13345 /* Skip sweeping sections already excluded. */
13346 if (o
->flags
& SEC_EXCLUDE
)
13349 /* Since this is early in the link process, it is simple
13350 to remove a section from the output. */
13351 o
->flags
|= SEC_EXCLUDE
;
13353 if (info
->print_gc_sections
&& o
->size
!= 0)
13354 /* xgettext:c-format */
13355 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13363 /* Propagate collected vtable information. This is called through
13364 elf_link_hash_traverse. */
13367 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
13369 /* Those that are not vtables. */
13371 || h
->u2
.vtable
== NULL
13372 || h
->u2
.vtable
->parent
== NULL
)
13375 /* Those vtables that do not have parents, we cannot merge. */
13376 if (h
->u2
.vtable
->parent
== (struct elf_link_hash_entry
*) -1)
13379 /* If we've already been done, exit. */
13380 if (h
->u2
.vtable
->used
&& h
->u2
.vtable
->used
[-1])
13383 /* Make sure the parent's table is up to date. */
13384 elf_gc_propagate_vtable_entries_used (h
->u2
.vtable
->parent
, okp
);
13386 if (h
->u2
.vtable
->used
== NULL
)
13388 /* None of this table's entries were referenced. Re-use the
13390 h
->u2
.vtable
->used
= h
->u2
.vtable
->parent
->u2
.vtable
->used
;
13391 h
->u2
.vtable
->size
= h
->u2
.vtable
->parent
->u2
.vtable
->size
;
13396 bfd_boolean
*cu
, *pu
;
13398 /* Or the parent's entries into ours. */
13399 cu
= h
->u2
.vtable
->used
;
13401 pu
= h
->u2
.vtable
->parent
->u2
.vtable
->used
;
13404 const struct elf_backend_data
*bed
;
13405 unsigned int log_file_align
;
13407 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
13408 log_file_align
= bed
->s
->log_file_align
;
13409 n
= h
->u2
.vtable
->parent
->u2
.vtable
->size
>> log_file_align
;
13424 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
13427 bfd_vma hstart
, hend
;
13428 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
13429 const struct elf_backend_data
*bed
;
13430 unsigned int log_file_align
;
13432 /* Take care of both those symbols that do not describe vtables as
13433 well as those that are not loaded. */
13435 || h
->u2
.vtable
== NULL
13436 || h
->u2
.vtable
->parent
== NULL
)
13439 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
13440 || h
->root
.type
== bfd_link_hash_defweak
);
13442 sec
= h
->root
.u
.def
.section
;
13443 hstart
= h
->root
.u
.def
.value
;
13444 hend
= hstart
+ h
->size
;
13446 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
13448 return *(bfd_boolean
*) okp
= FALSE
;
13449 bed
= get_elf_backend_data (sec
->owner
);
13450 log_file_align
= bed
->s
->log_file_align
;
13452 relend
= relstart
+ sec
->reloc_count
;
13454 for (rel
= relstart
; rel
< relend
; ++rel
)
13455 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
13457 /* If the entry is in use, do nothing. */
13458 if (h
->u2
.vtable
->used
13459 && (rel
->r_offset
- hstart
) < h
->u2
.vtable
->size
)
13461 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
13462 if (h
->u2
.vtable
->used
[entry
])
13465 /* Otherwise, kill it. */
13466 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
13472 /* Mark sections containing dynamically referenced symbols. When
13473 building shared libraries, we must assume that any visible symbol is
13477 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
13479 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
13480 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
13482 if ((h
->root
.type
== bfd_link_hash_defined
13483 || h
->root
.type
== bfd_link_hash_defweak
)
13484 && ((h
->ref_dynamic
&& !h
->forced_local
)
13485 || ((h
->def_regular
|| ELF_COMMON_DEF_P (h
))
13486 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
13487 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
13488 && (!bfd_link_executable (info
)
13489 || info
->gc_keep_exported
13490 || info
->export_dynamic
13493 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
13494 && (h
->versioned
>= versioned
13495 || !bfd_hide_sym_by_version (info
->version_info
,
13496 h
->root
.root
.string
)))))
13497 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
13502 /* Keep all sections containing symbols undefined on the command-line,
13503 and the section containing the entry symbol. */
13506 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
13508 struct bfd_sym_chain
*sym
;
13510 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
13512 struct elf_link_hash_entry
*h
;
13514 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
13515 FALSE
, FALSE
, FALSE
);
13518 && (h
->root
.type
== bfd_link_hash_defined
13519 || h
->root
.type
== bfd_link_hash_defweak
)
13520 && !bfd_is_abs_section (h
->root
.u
.def
.section
)
13521 && !bfd_is_und_section (h
->root
.u
.def
.section
))
13522 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
13527 bfd_elf_parse_eh_frame_entries (bfd
*abfd ATTRIBUTE_UNUSED
,
13528 struct bfd_link_info
*info
)
13530 bfd
*ibfd
= info
->input_bfds
;
13532 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
13535 struct elf_reloc_cookie cookie
;
13537 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
13539 sec
= ibfd
->sections
;
13540 if (sec
== NULL
|| sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
13543 if (!init_reloc_cookie (&cookie
, info
, ibfd
))
13546 for (sec
= ibfd
->sections
; sec
; sec
= sec
->next
)
13548 if (CONST_STRNEQ (bfd_section_name (ibfd
, sec
), ".eh_frame_entry")
13549 && init_reloc_cookie_rels (&cookie
, info
, ibfd
, sec
))
13551 _bfd_elf_parse_eh_frame_entry (info
, sec
, &cookie
);
13552 fini_reloc_cookie_rels (&cookie
, sec
);
13559 /* Do mark and sweep of unused sections. */
13562 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
13564 bfd_boolean ok
= TRUE
;
13566 elf_gc_mark_hook_fn gc_mark_hook
;
13567 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13568 struct elf_link_hash_table
*htab
;
13570 if (!bed
->can_gc_sections
13571 || !is_elf_hash_table (info
->hash
))
13573 _bfd_error_handler(_("warning: gc-sections option ignored"));
13577 bed
->gc_keep (info
);
13578 htab
= elf_hash_table (info
);
13580 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13581 at the .eh_frame section if we can mark the FDEs individually. */
13582 for (sub
= info
->input_bfds
;
13583 info
->eh_frame_hdr_type
!= COMPACT_EH_HDR
&& sub
!= NULL
;
13584 sub
= sub
->link
.next
)
13587 struct elf_reloc_cookie cookie
;
13589 sec
= sub
->sections
;
13590 if (sec
== NULL
|| sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
13592 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
13593 while (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
13595 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
13596 if (elf_section_data (sec
)->sec_info
13597 && (sec
->flags
& SEC_LINKER_CREATED
) == 0)
13598 elf_eh_frame_section (sub
) = sec
;
13599 fini_reloc_cookie_for_section (&cookie
, sec
);
13600 sec
= bfd_get_next_section_by_name (NULL
, sec
);
13604 /* Apply transitive closure to the vtable entry usage info. */
13605 elf_link_hash_traverse (htab
, elf_gc_propagate_vtable_entries_used
, &ok
);
13609 /* Kill the vtable relocations that were not used. */
13610 elf_link_hash_traverse (htab
, elf_gc_smash_unused_vtentry_relocs
, &ok
);
13614 /* Mark dynamically referenced symbols. */
13615 if (htab
->dynamic_sections_created
|| info
->gc_keep_exported
)
13616 elf_link_hash_traverse (htab
, bed
->gc_mark_dynamic_ref
, info
);
13618 /* Grovel through relocs to find out who stays ... */
13619 gc_mark_hook
= bed
->gc_mark_hook
;
13620 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
13624 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
13625 || elf_object_id (sub
) != elf_hash_table_id (htab
)
13626 || !(*bed
->relocs_compatible
) (sub
->xvec
, abfd
->xvec
))
13630 if (o
== NULL
|| o
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
13633 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13634 Also treat note sections as a root, if the section is not part
13635 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13636 well as FINI_ARRAY sections for ld -r. */
13637 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
13639 && (o
->flags
& SEC_EXCLUDE
) == 0
13640 && ((o
->flags
& SEC_KEEP
) != 0
13641 || (bfd_link_relocatable (info
)
13642 && ((elf_section_data (o
)->this_hdr
.sh_type
13643 == SHT_PREINIT_ARRAY
)
13644 || (elf_section_data (o
)->this_hdr
.sh_type
13646 || (elf_section_data (o
)->this_hdr
.sh_type
13647 == SHT_FINI_ARRAY
)))
13648 || (elf_section_data (o
)->this_hdr
.sh_type
== SHT_NOTE
13649 && elf_next_in_group (o
) == NULL
)))
13651 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
13656 /* Allow the backend to mark additional target specific sections. */
13657 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
13659 /* ... and mark SEC_EXCLUDE for those that go. */
13660 return elf_gc_sweep (abfd
, info
);
13663 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13666 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
13668 struct elf_link_hash_entry
*h
,
13671 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
13672 struct elf_link_hash_entry
**search
, *child
;
13673 size_t extsymcount
;
13674 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13676 /* The sh_info field of the symtab header tells us where the
13677 external symbols start. We don't care about the local symbols at
13679 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
13680 if (!elf_bad_symtab (abfd
))
13681 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
13683 sym_hashes
= elf_sym_hashes (abfd
);
13684 sym_hashes_end
= sym_hashes
+ extsymcount
;
13686 /* Hunt down the child symbol, which is in this section at the same
13687 offset as the relocation. */
13688 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
13690 if ((child
= *search
) != NULL
13691 && (child
->root
.type
== bfd_link_hash_defined
13692 || child
->root
.type
== bfd_link_hash_defweak
)
13693 && child
->root
.u
.def
.section
== sec
13694 && child
->root
.u
.def
.value
== offset
)
13698 /* xgettext:c-format */
13699 _bfd_error_handler (_("%pB: %pA+%#" PRIx64
": no symbol found for INHERIT"),
13700 abfd
, sec
, (uint64_t) offset
);
13701 bfd_set_error (bfd_error_invalid_operation
);
13705 if (!child
->u2
.vtable
)
13707 child
->u2
.vtable
= ((struct elf_link_virtual_table_entry
*)
13708 bfd_zalloc (abfd
, sizeof (*child
->u2
.vtable
)));
13709 if (!child
->u2
.vtable
)
13714 /* This *should* only be the absolute section. It could potentially
13715 be that someone has defined a non-global vtable though, which
13716 would be bad. It isn't worth paging in the local symbols to be
13717 sure though; that case should simply be handled by the assembler. */
13719 child
->u2
.vtable
->parent
= (struct elf_link_hash_entry
*) -1;
13722 child
->u2
.vtable
->parent
= h
;
13727 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13730 bfd_elf_gc_record_vtentry (bfd
*abfd
, asection
*sec
,
13731 struct elf_link_hash_entry
*h
,
13734 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13735 unsigned int log_file_align
= bed
->s
->log_file_align
;
13739 /* xgettext:c-format */
13740 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13742 bfd_set_error (bfd_error_bad_value
);
13748 h
->u2
.vtable
= ((struct elf_link_virtual_table_entry
*)
13749 bfd_zalloc (abfd
, sizeof (*h
->u2
.vtable
)));
13754 if (addend
>= h
->u2
.vtable
->size
)
13756 size_t size
, bytes
, file_align
;
13757 bfd_boolean
*ptr
= h
->u2
.vtable
->used
;
13759 /* While the symbol is undefined, we have to be prepared to handle
13761 file_align
= 1 << log_file_align
;
13762 if (h
->root
.type
== bfd_link_hash_undefined
)
13763 size
= addend
+ file_align
;
13767 if (addend
>= size
)
13769 /* Oops! We've got a reference past the defined end of
13770 the table. This is probably a bug -- shall we warn? */
13771 size
= addend
+ file_align
;
13774 size
= (size
+ file_align
- 1) & -file_align
;
13776 /* Allocate one extra entry for use as a "done" flag for the
13777 consolidation pass. */
13778 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
13782 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
13788 oldbytes
= (((h
->u2
.vtable
->size
>> log_file_align
) + 1)
13789 * sizeof (bfd_boolean
));
13790 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
13794 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
13799 /* And arrange for that done flag to be at index -1. */
13800 h
->u2
.vtable
->used
= ptr
+ 1;
13801 h
->u2
.vtable
->size
= size
;
13804 h
->u2
.vtable
->used
[addend
>> log_file_align
] = TRUE
;
13809 /* Map an ELF section header flag to its corresponding string. */
13813 flagword flag_value
;
13814 } elf_flags_to_name_table
;
13816 static elf_flags_to_name_table elf_flags_to_names
[] =
13818 { "SHF_WRITE", SHF_WRITE
},
13819 { "SHF_ALLOC", SHF_ALLOC
},
13820 { "SHF_EXECINSTR", SHF_EXECINSTR
},
13821 { "SHF_MERGE", SHF_MERGE
},
13822 { "SHF_STRINGS", SHF_STRINGS
},
13823 { "SHF_INFO_LINK", SHF_INFO_LINK
},
13824 { "SHF_LINK_ORDER", SHF_LINK_ORDER
},
13825 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING
},
13826 { "SHF_GROUP", SHF_GROUP
},
13827 { "SHF_TLS", SHF_TLS
},
13828 { "SHF_MASKOS", SHF_MASKOS
},
13829 { "SHF_EXCLUDE", SHF_EXCLUDE
},
13832 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13834 bfd_elf_lookup_section_flags (struct bfd_link_info
*info
,
13835 struct flag_info
*flaginfo
,
13838 const bfd_vma sh_flags
= elf_section_flags (section
);
13840 if (!flaginfo
->flags_initialized
)
13842 bfd
*obfd
= info
->output_bfd
;
13843 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
13844 struct flag_info_list
*tf
= flaginfo
->flag_list
;
13846 int without_hex
= 0;
13848 for (tf
= flaginfo
->flag_list
; tf
!= NULL
; tf
= tf
->next
)
13851 flagword (*lookup
) (char *);
13853 lookup
= bed
->elf_backend_lookup_section_flags_hook
;
13854 if (lookup
!= NULL
)
13856 flagword hexval
= (*lookup
) ((char *) tf
->name
);
13860 if (tf
->with
== with_flags
)
13861 with_hex
|= hexval
;
13862 else if (tf
->with
== without_flags
)
13863 without_hex
|= hexval
;
13868 for (i
= 0; i
< ARRAY_SIZE (elf_flags_to_names
); ++i
)
13870 if (strcmp (tf
->name
, elf_flags_to_names
[i
].flag_name
) == 0)
13872 if (tf
->with
== with_flags
)
13873 with_hex
|= elf_flags_to_names
[i
].flag_value
;
13874 else if (tf
->with
== without_flags
)
13875 without_hex
|= elf_flags_to_names
[i
].flag_value
;
13882 info
->callbacks
->einfo
13883 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf
->name
);
13887 flaginfo
->flags_initialized
= TRUE
;
13888 flaginfo
->only_with_flags
|= with_hex
;
13889 flaginfo
->not_with_flags
|= without_hex
;
13892 if ((flaginfo
->only_with_flags
& sh_flags
) != flaginfo
->only_with_flags
)
13895 if ((flaginfo
->not_with_flags
& sh_flags
) != 0)
13901 struct alloc_got_off_arg
{
13903 struct bfd_link_info
*info
;
13906 /* We need a special top-level link routine to convert got reference counts
13907 to real got offsets. */
13910 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
13912 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
13913 bfd
*obfd
= gofarg
->info
->output_bfd
;
13914 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
13916 if (h
->got
.refcount
> 0)
13918 h
->got
.offset
= gofarg
->gotoff
;
13919 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
13922 h
->got
.offset
= (bfd_vma
) -1;
13927 /* And an accompanying bit to work out final got entry offsets once
13928 we're done. Should be called from final_link. */
13931 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
13932 struct bfd_link_info
*info
)
13935 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13937 struct alloc_got_off_arg gofarg
;
13939 BFD_ASSERT (abfd
== info
->output_bfd
);
13941 if (! is_elf_hash_table (info
->hash
))
13944 /* The GOT offset is relative to the .got section, but the GOT header is
13945 put into the .got.plt section, if the backend uses it. */
13946 if (bed
->want_got_plt
)
13949 gotoff
= bed
->got_header_size
;
13951 /* Do the local .got entries first. */
13952 for (i
= info
->input_bfds
; i
; i
= i
->link
.next
)
13954 bfd_signed_vma
*local_got
;
13955 size_t j
, locsymcount
;
13956 Elf_Internal_Shdr
*symtab_hdr
;
13958 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
13961 local_got
= elf_local_got_refcounts (i
);
13965 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
13966 if (elf_bad_symtab (i
))
13967 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
13969 locsymcount
= symtab_hdr
->sh_info
;
13971 for (j
= 0; j
< locsymcount
; ++j
)
13973 if (local_got
[j
] > 0)
13975 local_got
[j
] = gotoff
;
13976 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
13979 local_got
[j
] = (bfd_vma
) -1;
13983 /* Then the global .got entries. .plt refcounts are handled by
13984 adjust_dynamic_symbol */
13985 gofarg
.gotoff
= gotoff
;
13986 gofarg
.info
= info
;
13987 elf_link_hash_traverse (elf_hash_table (info
),
13988 elf_gc_allocate_got_offsets
,
13993 /* Many folk need no more in the way of final link than this, once
13994 got entry reference counting is enabled. */
13997 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
13999 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
14002 /* Invoke the regular ELF backend linker to do all the work. */
14003 return bfd_elf_final_link (abfd
, info
);
14007 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
14009 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
14011 if (rcookie
->bad_symtab
)
14012 rcookie
->rel
= rcookie
->rels
;
14014 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
14016 unsigned long r_symndx
;
14018 if (! rcookie
->bad_symtab
)
14019 if (rcookie
->rel
->r_offset
> offset
)
14021 if (rcookie
->rel
->r_offset
!= offset
)
14024 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
14025 if (r_symndx
== STN_UNDEF
)
14028 if (r_symndx
>= rcookie
->locsymcount
14029 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
14031 struct elf_link_hash_entry
*h
;
14033 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
14035 while (h
->root
.type
== bfd_link_hash_indirect
14036 || h
->root
.type
== bfd_link_hash_warning
)
14037 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
14039 if ((h
->root
.type
== bfd_link_hash_defined
14040 || h
->root
.type
== bfd_link_hash_defweak
)
14041 && (h
->root
.u
.def
.section
->owner
!= rcookie
->abfd
14042 || h
->root
.u
.def
.section
->kept_section
!= NULL
14043 || discarded_section (h
->root
.u
.def
.section
)))
14048 /* It's not a relocation against a global symbol,
14049 but it could be a relocation against a local
14050 symbol for a discarded section. */
14052 Elf_Internal_Sym
*isym
;
14054 /* Need to: get the symbol; get the section. */
14055 isym
= &rcookie
->locsyms
[r_symndx
];
14056 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
14058 && (isec
->kept_section
!= NULL
14059 || discarded_section (isec
)))
14067 /* Discard unneeded references to discarded sections.
14068 Returns -1 on error, 1 if any section's size was changed, 0 if
14069 nothing changed. This function assumes that the relocations are in
14070 sorted order, which is true for all known assemblers. */
14073 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
14075 struct elf_reloc_cookie cookie
;
14080 if (info
->traditional_format
14081 || !is_elf_hash_table (info
->hash
))
14084 o
= bfd_get_section_by_name (output_bfd
, ".stab");
14089 for (i
= o
->map_head
.s
; i
!= NULL
; i
= i
->map_head
.s
)
14092 || i
->reloc_count
== 0
14093 || i
->sec_info_type
!= SEC_INFO_TYPE_STABS
)
14097 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
14100 if (!init_reloc_cookie_for_section (&cookie
, info
, i
))
14103 if (_bfd_discard_section_stabs (abfd
, i
,
14104 elf_section_data (i
)->sec_info
,
14105 bfd_elf_reloc_symbol_deleted_p
,
14109 fini_reloc_cookie_for_section (&cookie
, i
);
14114 if (info
->eh_frame_hdr_type
!= COMPACT_EH_HDR
)
14115 o
= bfd_get_section_by_name (output_bfd
, ".eh_frame");
14119 int eh_changed
= 0;
14120 unsigned int eh_alignment
;
14122 for (i
= o
->map_head
.s
; i
!= NULL
; i
= i
->map_head
.s
)
14128 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
14131 if (!init_reloc_cookie_for_section (&cookie
, info
, i
))
14134 _bfd_elf_parse_eh_frame (abfd
, info
, i
, &cookie
);
14135 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, i
,
14136 bfd_elf_reloc_symbol_deleted_p
,
14140 if (i
->size
!= i
->rawsize
)
14144 fini_reloc_cookie_for_section (&cookie
, i
);
14147 eh_alignment
= 1 << o
->alignment_power
;
14148 /* Skip over zero terminator, and prevent empty sections from
14149 adding alignment padding at the end. */
14150 for (i
= o
->map_tail
.s
; i
!= NULL
; i
= i
->map_tail
.s
)
14152 i
->flags
|= SEC_EXCLUDE
;
14153 else if (i
->size
> 4)
14155 /* The last non-empty eh_frame section doesn't need padding. */
14158 /* Any prior sections must pad the last FDE out to the output
14159 section alignment. Otherwise we might have zero padding
14160 between sections, which would be seen as a terminator. */
14161 for (; i
!= NULL
; i
= i
->map_tail
.s
)
14163 /* All but the last zero terminator should have been removed. */
14168 = (i
->size
+ eh_alignment
- 1) & -eh_alignment
;
14169 if (i
->size
!= size
)
14177 elf_link_hash_traverse (elf_hash_table (info
),
14178 _bfd_elf_adjust_eh_frame_global_symbol
, NULL
);
14181 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
14183 const struct elf_backend_data
*bed
;
14186 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
14188 s
= abfd
->sections
;
14189 if (s
== NULL
|| s
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
14192 bed
= get_elf_backend_data (abfd
);
14194 if (bed
->elf_backend_discard_info
!= NULL
)
14196 if (!init_reloc_cookie (&cookie
, info
, abfd
))
14199 if ((*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
14202 fini_reloc_cookie (&cookie
, abfd
);
14206 if (info
->eh_frame_hdr_type
== COMPACT_EH_HDR
)
14207 _bfd_elf_end_eh_frame_parsing (info
);
14209 if (info
->eh_frame_hdr_type
14210 && !bfd_link_relocatable (info
)
14211 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
14218 _bfd_elf_section_already_linked (bfd
*abfd
,
14220 struct bfd_link_info
*info
)
14223 const char *name
, *key
;
14224 struct bfd_section_already_linked
*l
;
14225 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
14227 if (sec
->output_section
== bfd_abs_section_ptr
)
14230 flags
= sec
->flags
;
14232 /* Return if it isn't a linkonce section. A comdat group section
14233 also has SEC_LINK_ONCE set. */
14234 if ((flags
& SEC_LINK_ONCE
) == 0)
14237 /* Don't put group member sections on our list of already linked
14238 sections. They are handled as a group via their group section. */
14239 if (elf_sec_group (sec
) != NULL
)
14242 /* For a SHT_GROUP section, use the group signature as the key. */
14244 if ((flags
& SEC_GROUP
) != 0
14245 && elf_next_in_group (sec
) != NULL
14246 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
14247 key
= elf_group_name (elf_next_in_group (sec
));
14250 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14251 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
14252 && (key
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
14255 /* Must be a user linkonce section that doesn't follow gcc's
14256 naming convention. In this case we won't be matching
14257 single member groups. */
14261 already_linked_list
= bfd_section_already_linked_table_lookup (key
);
14263 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
14265 /* We may have 2 different types of sections on the list: group
14266 sections with a signature of <key> (<key> is some string),
14267 and linkonce sections named .gnu.linkonce.<type>.<key>.
14268 Match like sections. LTO plugin sections are an exception.
14269 They are always named .gnu.linkonce.t.<key> and match either
14270 type of section. */
14271 if (((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
14272 && ((flags
& SEC_GROUP
) != 0
14273 || strcmp (name
, l
->sec
->name
) == 0))
14274 || (l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0)
14276 /* The section has already been linked. See if we should
14277 issue a warning. */
14278 if (!_bfd_handle_already_linked (sec
, l
, info
))
14281 if (flags
& SEC_GROUP
)
14283 asection
*first
= elf_next_in_group (sec
);
14284 asection
*s
= first
;
14288 s
->output_section
= bfd_abs_section_ptr
;
14289 /* Record which group discards it. */
14290 s
->kept_section
= l
->sec
;
14291 s
= elf_next_in_group (s
);
14292 /* These lists are circular. */
14302 /* A single member comdat group section may be discarded by a
14303 linkonce section and vice versa. */
14304 if ((flags
& SEC_GROUP
) != 0)
14306 asection
*first
= elf_next_in_group (sec
);
14308 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
14309 /* Check this single member group against linkonce sections. */
14310 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
14311 if ((l
->sec
->flags
& SEC_GROUP
) == 0
14312 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
14314 first
->output_section
= bfd_abs_section_ptr
;
14315 first
->kept_section
= l
->sec
;
14316 sec
->output_section
= bfd_abs_section_ptr
;
14321 /* Check this linkonce section against single member groups. */
14322 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
14323 if (l
->sec
->flags
& SEC_GROUP
)
14325 asection
*first
= elf_next_in_group (l
->sec
);
14328 && elf_next_in_group (first
) == first
14329 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
14331 sec
->output_section
= bfd_abs_section_ptr
;
14332 sec
->kept_section
= first
;
14337 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14338 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14339 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14340 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14341 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14342 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14343 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14344 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14345 The reverse order cannot happen as there is never a bfd with only the
14346 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14347 matter as here were are looking only for cross-bfd sections. */
14349 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
14350 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
14351 if ((l
->sec
->flags
& SEC_GROUP
) == 0
14352 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
14354 if (abfd
!= l
->sec
->owner
)
14355 sec
->output_section
= bfd_abs_section_ptr
;
14359 /* This is the first section with this name. Record it. */
14360 if (!bfd_section_already_linked_table_insert (already_linked_list
, sec
))
14361 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
14362 return sec
->output_section
== bfd_abs_section_ptr
;
14366 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
14368 return sym
->st_shndx
== SHN_COMMON
;
14372 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
14378 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
14380 return bfd_com_section_ptr
;
14384 _bfd_elf_default_got_elt_size (bfd
*abfd
,
14385 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
14386 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
14387 bfd
*ibfd ATTRIBUTE_UNUSED
,
14388 unsigned long symndx ATTRIBUTE_UNUSED
)
14390 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14391 return bed
->s
->arch_size
/ 8;
14394 /* Routines to support the creation of dynamic relocs. */
14396 /* Returns the name of the dynamic reloc section associated with SEC. */
14398 static const char *
14399 get_dynamic_reloc_section_name (bfd
* abfd
,
14401 bfd_boolean is_rela
)
14404 const char *old_name
= bfd_get_section_name (NULL
, sec
);
14405 const char *prefix
= is_rela
? ".rela" : ".rel";
14407 if (old_name
== NULL
)
14410 name
= bfd_alloc (abfd
, strlen (prefix
) + strlen (old_name
) + 1);
14411 sprintf (name
, "%s%s", prefix
, old_name
);
14416 /* Returns the dynamic reloc section associated with SEC.
14417 If necessary compute the name of the dynamic reloc section based
14418 on SEC's name (looked up in ABFD's string table) and the setting
14422 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
14424 bfd_boolean is_rela
)
14426 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
14428 if (reloc_sec
== NULL
)
14430 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
14434 reloc_sec
= bfd_get_linker_section (abfd
, name
);
14436 if (reloc_sec
!= NULL
)
14437 elf_section_data (sec
)->sreloc
= reloc_sec
;
14444 /* Returns the dynamic reloc section associated with SEC. If the
14445 section does not exist it is created and attached to the DYNOBJ
14446 bfd and stored in the SRELOC field of SEC's elf_section_data
14449 ALIGNMENT is the alignment for the newly created section and
14450 IS_RELA defines whether the name should be .rela.<SEC's name>
14451 or .rel.<SEC's name>. The section name is looked up in the
14452 string table associated with ABFD. */
14455 _bfd_elf_make_dynamic_reloc_section (asection
*sec
,
14457 unsigned int alignment
,
14459 bfd_boolean is_rela
)
14461 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
14463 if (reloc_sec
== NULL
)
14465 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
14470 reloc_sec
= bfd_get_linker_section (dynobj
, name
);
14472 if (reloc_sec
== NULL
)
14474 flagword flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
14475 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
14476 if ((sec
->flags
& SEC_ALLOC
) != 0)
14477 flags
|= SEC_ALLOC
| SEC_LOAD
;
14479 reloc_sec
= bfd_make_section_anyway_with_flags (dynobj
, name
, flags
);
14480 if (reloc_sec
!= NULL
)
14482 /* _bfd_elf_get_sec_type_attr chooses a section type by
14483 name. Override as it may be wrong, eg. for a user
14484 section named "auto" we'll get ".relauto" which is
14485 seen to be a .rela section. */
14486 elf_section_type (reloc_sec
) = is_rela
? SHT_RELA
: SHT_REL
;
14487 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
14492 elf_section_data (sec
)->sreloc
= reloc_sec
;
14498 /* Copy the ELF symbol type and other attributes for a linker script
14499 assignment from HSRC to HDEST. Generally this should be treated as
14500 if we found a strong non-dynamic definition for HDEST (except that
14501 ld ignores multiple definition errors). */
14503 _bfd_elf_copy_link_hash_symbol_type (bfd
*abfd
,
14504 struct bfd_link_hash_entry
*hdest
,
14505 struct bfd_link_hash_entry
*hsrc
)
14507 struct elf_link_hash_entry
*ehdest
= (struct elf_link_hash_entry
*) hdest
;
14508 struct elf_link_hash_entry
*ehsrc
= (struct elf_link_hash_entry
*) hsrc
;
14509 Elf_Internal_Sym isym
;
14511 ehdest
->type
= ehsrc
->type
;
14512 ehdest
->target_internal
= ehsrc
->target_internal
;
14514 isym
.st_other
= ehsrc
->other
;
14515 elf_merge_st_other (abfd
, ehdest
, &isym
, NULL
, TRUE
, FALSE
);
14518 /* Append a RELA relocation REL to section S in BFD. */
14521 elf_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
14523 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14524 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rela
);
14525 BFD_ASSERT (loc
+ bed
->s
->sizeof_rela
<= s
->contents
+ s
->size
);
14526 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);
14529 /* Append a REL relocation REL to section S in BFD. */
14532 elf_append_rel (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
14534 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14535 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rel
);
14536 BFD_ASSERT (loc
+ bed
->s
->sizeof_rel
<= s
->contents
+ s
->size
);
14537 bed
->s
->swap_reloc_out (abfd
, rel
, loc
);
14540 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14542 struct bfd_link_hash_entry
*
14543 bfd_elf_define_start_stop (struct bfd_link_info
*info
,
14544 const char *symbol
, asection
*sec
)
14546 struct elf_link_hash_entry
*h
;
14548 h
= elf_link_hash_lookup (elf_hash_table (info
), symbol
,
14549 FALSE
, FALSE
, TRUE
);
14551 && (h
->root
.type
== bfd_link_hash_undefined
14552 || h
->root
.type
== bfd_link_hash_undefweak
14553 || ((h
->ref_regular
|| h
->def_dynamic
) && !h
->def_regular
)))
14555 bfd_boolean was_dynamic
= h
->ref_dynamic
|| h
->def_dynamic
;
14556 h
->root
.type
= bfd_link_hash_defined
;
14557 h
->root
.u
.def
.section
= sec
;
14558 h
->root
.u
.def
.value
= 0;
14559 h
->def_regular
= 1;
14560 h
->def_dynamic
= 0;
14562 h
->u2
.start_stop_section
= sec
;
14563 if (symbol
[0] == '.')
14565 /* .startof. and .sizeof. symbols are local. */
14566 const struct elf_backend_data
*bed
;
14567 bed
= get_elf_backend_data (info
->output_bfd
);
14568 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
14572 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
14573 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED
;
14575 bfd_elf_link_record_dynamic_symbol (info
, h
);