1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2019 Free Software Foundation, Inc.
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
23 /* This file handles RISC-V ELF targets. */
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
35 /* Internal relocations used exclusively by the relaxation pass. */
36 #define R_RISCV_DELETE (R_RISCV_max + 1)
40 #define MINUS_ONE ((bfd_vma)0 - 1)
42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
46 /* The name of the dynamic interpreter. This is put in the .interp
49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
52 #define ELF_ARCH bfd_arch_riscv
53 #define ELF_TARGET_ID RISCV_ELF_DATA
54 #define ELF_MACHINE_CODE EM_RISCV
55 #define ELF_MAXPAGESIZE 0x1000
56 #define ELF_COMMONPAGESIZE 0x1000
58 /* RISC-V ELF linker hash entry. */
60 struct riscv_elf_link_hash_entry
62 struct elf_link_hash_entry elf
;
64 /* Track dynamic relocs copied for this symbol. */
65 struct elf_dyn_relocs
*dyn_relocs
;
75 #define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
78 struct _bfd_riscv_elf_obj_tdata
80 struct elf_obj_tdata root
;
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type
;
86 #define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
96 #define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
101 #include "elf/common.h"
102 #include "elf/internal.h"
104 struct riscv_elf_link_hash_table
106 struct elf_link_hash_table elf
;
108 /* Short-cuts to get to dynamic linker sections. */
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache
;
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment
;
119 /* Get the RISC-V ELF linker hash table from a link_info structure. */
120 #define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
125 riscv_info_to_howto_rela (bfd
*abfd
,
127 Elf_Internal_Rela
*dst
)
129 cache_ptr
->howto
= riscv_elf_rtype_to_howto (abfd
, ELFNN_R_TYPE (dst
->r_info
));
130 return cache_ptr
->howto
!= NULL
;
134 riscv_elf_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
136 const struct elf_backend_data
*bed
;
139 bed
= get_elf_backend_data (abfd
);
140 loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rela
);
141 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);
146 #define PLT_HEADER_INSNS 8
147 #define PLT_ENTRY_INSNS 4
148 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
151 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
153 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
155 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
158 riscv_elf_got_plt_val (bfd_vma plt_index
, struct bfd_link_info
*info
)
160 return sec_addr (riscv_elf_hash_table (info
)->elf
.sgotplt
)
161 + GOTPLT_HEADER_SIZE
+ (plt_index
* GOT_ENTRY_SIZE
);
165 # define MATCH_LREG MATCH_LW
167 # define MATCH_LREG MATCH_LD
170 /* Generate a PLT header. */
173 riscv_make_plt_header (bfd
*output_bfd
, bfd_vma gotplt_addr
, bfd_vma addr
,
176 bfd_vma gotplt_offset_high
= RISCV_PCREL_HIGH_PART (gotplt_addr
, addr
);
177 bfd_vma gotplt_offset_low
= RISCV_PCREL_LOW_PART (gotplt_addr
, addr
);
179 /* RVE has no t3 register, so this won't work, and is not supported. */
180 if (elf_elfheader (output_bfd
)->e_flags
& EF_RISCV_RVE
)
182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
187 /* auipc t2, %hi(.got.plt)
188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
191 addi t0, t2, %lo(.got.plt) # &.got.plt
192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
193 l[w|d] t0, PTRSIZE(t0) # link map
196 entry
[0] = RISCV_UTYPE (AUIPC
, X_T2
, gotplt_offset_high
);
197 entry
[1] = RISCV_RTYPE (SUB
, X_T1
, X_T1
, X_T3
);
198 entry
[2] = RISCV_ITYPE (LREG
, X_T3
, X_T2
, gotplt_offset_low
);
199 entry
[3] = RISCV_ITYPE (ADDI
, X_T1
, X_T1
, -(PLT_HEADER_SIZE
+ 12));
200 entry
[4] = RISCV_ITYPE (ADDI
, X_T0
, X_T2
, gotplt_offset_low
);
201 entry
[5] = RISCV_ITYPE (SRLI
, X_T1
, X_T1
, 4 - RISCV_ELF_LOG_WORD_BYTES
);
202 entry
[6] = RISCV_ITYPE (LREG
, X_T0
, X_T0
, RISCV_ELF_WORD_BYTES
);
203 entry
[7] = RISCV_ITYPE (JALR
, 0, X_T3
, 0);
208 /* Generate a PLT entry. */
211 riscv_make_plt_entry (bfd
*output_bfd
, bfd_vma got
, bfd_vma addr
,
214 /* RVE has no t3 register, so this won't work, and is not supported. */
215 if (elf_elfheader (output_bfd
)->e_flags
& EF_RISCV_RVE
)
217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
222 /* auipc t3, %hi(.got.plt entry)
223 l[w|d] t3, %lo(.got.plt entry)(t3)
227 entry
[0] = RISCV_UTYPE (AUIPC
, X_T3
, RISCV_PCREL_HIGH_PART (got
, addr
));
228 entry
[1] = RISCV_ITYPE (LREG
, X_T3
, X_T3
, RISCV_PCREL_LOW_PART (got
, addr
));
229 entry
[2] = RISCV_ITYPE (JALR
, X_T1
, X_T3
, 0);
230 entry
[3] = RISCV_NOP
;
235 /* Create an entry in an RISC-V ELF linker hash table. */
237 static struct bfd_hash_entry
*
238 link_hash_newfunc (struct bfd_hash_entry
*entry
,
239 struct bfd_hash_table
*table
, const char *string
)
241 /* Allocate the structure if it has not already been allocated by a
246 bfd_hash_allocate (table
,
247 sizeof (struct riscv_elf_link_hash_entry
));
252 /* Call the allocation method of the superclass. */
253 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
256 struct riscv_elf_link_hash_entry
*eh
;
258 eh
= (struct riscv_elf_link_hash_entry
*) entry
;
259 eh
->dyn_relocs
= NULL
;
260 eh
->tls_type
= GOT_UNKNOWN
;
266 /* Create a RISC-V ELF linker hash table. */
268 static struct bfd_link_hash_table
*
269 riscv_elf_link_hash_table_create (bfd
*abfd
)
271 struct riscv_elf_link_hash_table
*ret
;
272 bfd_size_type amt
= sizeof (struct riscv_elf_link_hash_table
);
274 ret
= (struct riscv_elf_link_hash_table
*) bfd_zmalloc (amt
);
278 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
, link_hash_newfunc
,
279 sizeof (struct riscv_elf_link_hash_entry
),
286 ret
->max_alignment
= (bfd_vma
) -1;
287 return &ret
->elf
.root
;
290 /* Create the .got section. */
293 riscv_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
297 struct elf_link_hash_entry
*h
;
298 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
299 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
301 /* This function may be called more than once. */
302 if (htab
->sgot
!= NULL
)
305 flags
= bed
->dynamic_sec_flags
;
307 s
= bfd_make_section_anyway_with_flags (abfd
,
308 (bed
->rela_plts_and_copies_p
309 ? ".rela.got" : ".rel.got"),
310 (bed
->dynamic_sec_flags
313 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
317 s
= s_got
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
319 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
323 /* The first bit of the global offset table is the header. */
324 s
->size
+= bed
->got_header_size
;
326 if (bed
->want_got_plt
)
328 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt", flags
);
330 || !bfd_set_section_alignment (abfd
, s
,
331 bed
->s
->log_file_align
))
335 /* Reserve room for the header. */
336 s
->size
+= GOTPLT_HEADER_SIZE
;
339 if (bed
->want_got_sym
)
341 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
342 section. We don't do this in the linker script because we don't want
343 to define the symbol if we are not creating a global offset
345 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s_got
,
346 "_GLOBAL_OFFSET_TABLE_");
347 elf_hash_table (info
)->hgot
= h
;
355 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
356 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
360 riscv_elf_create_dynamic_sections (bfd
*dynobj
,
361 struct bfd_link_info
*info
)
363 struct riscv_elf_link_hash_table
*htab
;
365 htab
= riscv_elf_hash_table (info
);
366 BFD_ASSERT (htab
!= NULL
);
368 if (!riscv_elf_create_got_section (dynobj
, info
))
371 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
374 if (!bfd_link_pic (info
))
377 bfd_make_section_anyway_with_flags (dynobj
, ".tdata.dyn",
378 (SEC_ALLOC
| SEC_THREAD_LOCAL
379 | SEC_LINKER_CREATED
));
382 if (!htab
->elf
.splt
|| !htab
->elf
.srelplt
|| !htab
->elf
.sdynbss
383 || (!bfd_link_pic (info
) && (!htab
->elf
.srelbss
|| !htab
->sdyntdata
)))
389 /* Copy the extra info we tack onto an elf_link_hash_entry. */
392 riscv_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
393 struct elf_link_hash_entry
*dir
,
394 struct elf_link_hash_entry
*ind
)
396 struct riscv_elf_link_hash_entry
*edir
, *eind
;
398 edir
= (struct riscv_elf_link_hash_entry
*) dir
;
399 eind
= (struct riscv_elf_link_hash_entry
*) ind
;
401 if (eind
->dyn_relocs
!= NULL
)
403 if (edir
->dyn_relocs
!= NULL
)
405 struct elf_dyn_relocs
**pp
;
406 struct elf_dyn_relocs
*p
;
408 /* Add reloc counts against the indirect sym to the direct sym
409 list. Merge any entries against the same section. */
410 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
412 struct elf_dyn_relocs
*q
;
414 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
415 if (q
->sec
== p
->sec
)
417 q
->pc_count
+= p
->pc_count
;
418 q
->count
+= p
->count
;
425 *pp
= edir
->dyn_relocs
;
428 edir
->dyn_relocs
= eind
->dyn_relocs
;
429 eind
->dyn_relocs
= NULL
;
432 if (ind
->root
.type
== bfd_link_hash_indirect
433 && dir
->got
.refcount
<= 0)
435 edir
->tls_type
= eind
->tls_type
;
436 eind
->tls_type
= GOT_UNKNOWN
;
438 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
442 riscv_elf_record_tls_type (bfd
*abfd
, struct elf_link_hash_entry
*h
,
443 unsigned long symndx
, char tls_type
)
445 char *new_tls_type
= &_bfd_riscv_elf_tls_type (abfd
, h
, symndx
);
447 *new_tls_type
|= tls_type
;
448 if ((*new_tls_type
& GOT_NORMAL
) && (*new_tls_type
& ~GOT_NORMAL
))
450 (*_bfd_error_handler
)
451 (_("%pB: `%s' accessed both as normal and thread local symbol"),
452 abfd
, h
? h
->root
.root
.string
: "<local>");
459 riscv_elf_record_got_reference (bfd
*abfd
, struct bfd_link_info
*info
,
460 struct elf_link_hash_entry
*h
, long symndx
)
462 struct riscv_elf_link_hash_table
*htab
= riscv_elf_hash_table (info
);
463 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
465 if (htab
->elf
.sgot
== NULL
)
467 if (!riscv_elf_create_got_section (htab
->elf
.dynobj
, info
))
473 h
->got
.refcount
+= 1;
477 /* This is a global offset table entry for a local symbol. */
478 if (elf_local_got_refcounts (abfd
) == NULL
)
480 bfd_size_type size
= symtab_hdr
->sh_info
* (sizeof (bfd_vma
) + 1);
481 if (!(elf_local_got_refcounts (abfd
) = bfd_zalloc (abfd
, size
)))
483 _bfd_riscv_elf_local_got_tls_type (abfd
)
484 = (char *) (elf_local_got_refcounts (abfd
) + symtab_hdr
->sh_info
);
486 elf_local_got_refcounts (abfd
) [symndx
] += 1;
492 bad_static_reloc (bfd
*abfd
, unsigned r_type
, struct elf_link_hash_entry
*h
)
494 reloc_howto_type
* r
= riscv_elf_rtype_to_howto (abfd
, r_type
);
496 (*_bfd_error_handler
)
497 (_("%pB: relocation %s against `%s' can not be used when making a shared "
498 "object; recompile with -fPIC"),
499 abfd
, r
? r
->name
: _("<unknown>"),
500 h
!= NULL
? h
->root
.root
.string
: "a local symbol");
501 bfd_set_error (bfd_error_bad_value
);
504 /* Look through the relocs for a section during the first phase, and
505 allocate space in the global offset table or procedure linkage
509 riscv_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
510 asection
*sec
, const Elf_Internal_Rela
*relocs
)
512 struct riscv_elf_link_hash_table
*htab
;
513 Elf_Internal_Shdr
*symtab_hdr
;
514 struct elf_link_hash_entry
**sym_hashes
;
515 const Elf_Internal_Rela
*rel
;
516 asection
*sreloc
= NULL
;
518 if (bfd_link_relocatable (info
))
521 htab
= riscv_elf_hash_table (info
);
522 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
523 sym_hashes
= elf_sym_hashes (abfd
);
525 if (htab
->elf
.dynobj
== NULL
)
526 htab
->elf
.dynobj
= abfd
;
528 for (rel
= relocs
; rel
< relocs
+ sec
->reloc_count
; rel
++)
531 unsigned int r_symndx
;
532 struct elf_link_hash_entry
*h
;
534 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
535 r_type
= ELFNN_R_TYPE (rel
->r_info
);
537 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
539 (*_bfd_error_handler
) (_("%pB: bad symbol index: %d"),
544 if (r_symndx
< symtab_hdr
->sh_info
)
548 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
549 while (h
->root
.type
== bfd_link_hash_indirect
550 || h
->root
.type
== bfd_link_hash_warning
)
551 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
556 case R_RISCV_TLS_GD_HI20
:
557 if (!riscv_elf_record_got_reference (abfd
, info
, h
, r_symndx
)
558 || !riscv_elf_record_tls_type (abfd
, h
, r_symndx
, GOT_TLS_GD
))
562 case R_RISCV_TLS_GOT_HI20
:
563 if (bfd_link_pic (info
))
564 info
->flags
|= DF_STATIC_TLS
;
565 if (!riscv_elf_record_got_reference (abfd
, info
, h
, r_symndx
)
566 || !riscv_elf_record_tls_type (abfd
, h
, r_symndx
, GOT_TLS_IE
))
570 case R_RISCV_GOT_HI20
:
571 if (!riscv_elf_record_got_reference (abfd
, info
, h
, r_symndx
)
572 || !riscv_elf_record_tls_type (abfd
, h
, r_symndx
, GOT_NORMAL
))
576 case R_RISCV_CALL_PLT
:
577 /* This symbol requires a procedure linkage table entry. We
578 actually build the entry in adjust_dynamic_symbol,
579 because this might be a case of linking PIC code without
580 linking in any dynamic objects, in which case we don't
581 need to generate a procedure linkage table after all. */
586 h
->plt
.refcount
+= 1;
593 case R_RISCV_RVC_BRANCH
:
594 case R_RISCV_RVC_JUMP
:
595 case R_RISCV_PCREL_HI20
:
596 /* In shared libraries, these relocs are known to bind locally. */
597 if (bfd_link_pic (info
))
601 case R_RISCV_TPREL_HI20
:
602 if (!bfd_link_executable (info
))
603 return bad_static_reloc (abfd
, r_type
, h
);
605 riscv_elf_record_tls_type (abfd
, h
, r_symndx
, GOT_TLS_LE
);
609 if (bfd_link_pic (info
))
610 return bad_static_reloc (abfd
, r_type
, h
);
614 case R_RISCV_JUMP_SLOT
:
615 case R_RISCV_RELATIVE
:
621 /* This reloc might not bind locally. */
625 if (h
!= NULL
&& !bfd_link_pic (info
))
627 /* We may need a .plt entry if the function this reloc
628 refers to is in a shared lib. */
629 h
->plt
.refcount
+= 1;
632 /* If we are creating a shared library, and this is a reloc
633 against a global symbol, or a non PC relative reloc
634 against a local symbol, then we need to copy the reloc
635 into the shared library. However, if we are linking with
636 -Bsymbolic, we do not need to copy a reloc against a
637 global symbol which is defined in an object we are
638 including in the link (i.e., DEF_REGULAR is set). At
639 this point we have not seen all the input files, so it is
640 possible that DEF_REGULAR is not set now but will be set
641 later (it is never cleared). In case of a weak definition,
642 DEF_REGULAR may be cleared later by a strong definition in
643 a shared library. We account for that possibility below by
644 storing information in the relocs_copied field of the hash
645 table entry. A similar situation occurs when creating
646 shared libraries and symbol visibility changes render the
649 If on the other hand, we are creating an executable, we
650 may need to keep relocations for symbols satisfied by a
651 dynamic library if we manage to avoid copy relocs for the
653 reloc_howto_type
* r
= riscv_elf_rtype_to_howto (abfd
, r_type
);
655 if ((bfd_link_pic (info
)
656 && (sec
->flags
& SEC_ALLOC
) != 0
657 && ((r
!= NULL
&& ! r
->pc_relative
)
660 || h
->root
.type
== bfd_link_hash_defweak
661 || !h
->def_regular
))))
662 || (!bfd_link_pic (info
)
663 && (sec
->flags
& SEC_ALLOC
) != 0
665 && (h
->root
.type
== bfd_link_hash_defweak
666 || !h
->def_regular
)))
668 struct elf_dyn_relocs
*p
;
669 struct elf_dyn_relocs
**head
;
671 /* When creating a shared object, we must copy these
672 relocs into the output file. We create a reloc
673 section in dynobj and make room for the reloc. */
676 sreloc
= _bfd_elf_make_dynamic_reloc_section
677 (sec
, htab
->elf
.dynobj
, RISCV_ELF_LOG_WORD_BYTES
,
678 abfd
, /*rela?*/ TRUE
);
684 /* If this is a global symbol, we count the number of
685 relocations we need for this symbol. */
687 head
= &((struct riscv_elf_link_hash_entry
*) h
)->dyn_relocs
;
690 /* Track dynamic relocs needed for local syms too.
691 We really need local syms available to do this
696 Elf_Internal_Sym
*isym
;
698 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
703 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
707 vpp
= &elf_section_data (s
)->local_dynrel
;
708 head
= (struct elf_dyn_relocs
**) vpp
;
712 if (p
== NULL
|| p
->sec
!= sec
)
714 bfd_size_type amt
= sizeof *p
;
715 p
= ((struct elf_dyn_relocs
*)
716 bfd_alloc (htab
->elf
.dynobj
, amt
));
727 p
->pc_count
+= r
== NULL
? 0 : r
->pc_relative
;
732 case R_RISCV_GNU_VTINHERIT
:
733 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
737 case R_RISCV_GNU_VTENTRY
:
738 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
751 riscv_elf_gc_mark_hook (asection
*sec
,
752 struct bfd_link_info
*info
,
753 Elf_Internal_Rela
*rel
,
754 struct elf_link_hash_entry
*h
,
755 Elf_Internal_Sym
*sym
)
758 switch (ELFNN_R_TYPE (rel
->r_info
))
760 case R_RISCV_GNU_VTINHERIT
:
761 case R_RISCV_GNU_VTENTRY
:
765 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
768 /* Find dynamic relocs for H that apply to read-only sections. */
771 readonly_dynrelocs (struct elf_link_hash_entry
*h
)
773 struct elf_dyn_relocs
*p
;
775 for (p
= riscv_elf_hash_entry (h
)->dyn_relocs
; p
!= NULL
; p
= p
->next
)
777 asection
*s
= p
->sec
->output_section
;
779 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
785 /* Adjust a symbol defined by a dynamic object and referenced by a
786 regular object. The current definition is in some section of the
787 dynamic object, but we're not including those sections. We have to
788 change the definition to something the rest of the link can
792 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
793 struct elf_link_hash_entry
*h
)
795 struct riscv_elf_link_hash_table
*htab
;
796 struct riscv_elf_link_hash_entry
* eh
;
800 htab
= riscv_elf_hash_table (info
);
801 BFD_ASSERT (htab
!= NULL
);
803 dynobj
= htab
->elf
.dynobj
;
805 /* Make sure we know what is going on here. */
806 BFD_ASSERT (dynobj
!= NULL
808 || h
->type
== STT_GNU_IFUNC
812 && !h
->def_regular
)));
814 /* If this is a function, put it in the procedure linkage table. We
815 will fill in the contents of the procedure linkage table later
816 (although we could actually do it here). */
817 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
819 if (h
->plt
.refcount
<= 0
820 || SYMBOL_CALLS_LOCAL (info
, h
)
821 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
822 && h
->root
.type
== bfd_link_hash_undefweak
))
824 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
825 input file, but the symbol was never referred to by a dynamic
826 object, or if all references were garbage collected. In such
827 a case, we don't actually need to build a PLT entry. */
828 h
->plt
.offset
= (bfd_vma
) -1;
835 h
->plt
.offset
= (bfd_vma
) -1;
837 /* If this is a weak symbol, and there is a real definition, the
838 processor independent code will have arranged for us to see the
839 real definition first, and we can just use the same value. */
842 struct elf_link_hash_entry
*def
= weakdef (h
);
843 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
844 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
845 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
849 /* This is a reference to a symbol defined by a dynamic object which
850 is not a function. */
852 /* If we are creating a shared library, we must presume that the
853 only references to the symbol are via the global offset table.
854 For such cases we need not do anything here; the relocations will
855 be handled correctly by relocate_section. */
856 if (bfd_link_pic (info
))
859 /* If there are no references to this symbol that do not use the
860 GOT, we don't need to generate a copy reloc. */
864 /* If -z nocopyreloc was given, we won't generate them either. */
865 if (info
->nocopyreloc
)
871 /* If we don't find any dynamic relocs in read-only sections, then
872 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
873 if (!readonly_dynrelocs (h
))
879 /* We must allocate the symbol in our .dynbss section, which will
880 become part of the .bss section of the executable. There will be
881 an entry for this symbol in the .dynsym section. The dynamic
882 object will contain position independent code, so all references
883 from the dynamic object to this symbol will go through the global
884 offset table. The dynamic linker will use the .dynsym entry to
885 determine the address it must put in the global offset table, so
886 both the dynamic object and the regular object will refer to the
887 same memory location for the variable. */
889 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
890 to copy the initial value out of the dynamic object and into the
891 runtime process image. We need to remember the offset into the
892 .rel.bss section we are going to use. */
893 eh
= (struct riscv_elf_link_hash_entry
*) h
;
894 if (eh
->tls_type
& ~GOT_NORMAL
)
897 srel
= htab
->elf
.srelbss
;
899 else if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
901 s
= htab
->elf
.sdynrelro
;
902 srel
= htab
->elf
.sreldynrelro
;
906 s
= htab
->elf
.sdynbss
;
907 srel
= htab
->elf
.srelbss
;
909 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0 && h
->size
!= 0)
911 srel
->size
+= sizeof (ElfNN_External_Rela
);
915 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
918 /* Allocate space in .plt, .got and associated reloc sections for
922 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
924 struct bfd_link_info
*info
;
925 struct riscv_elf_link_hash_table
*htab
;
926 struct riscv_elf_link_hash_entry
*eh
;
927 struct elf_dyn_relocs
*p
;
929 if (h
->root
.type
== bfd_link_hash_indirect
)
932 info
= (struct bfd_link_info
*) inf
;
933 htab
= riscv_elf_hash_table (info
);
934 BFD_ASSERT (htab
!= NULL
);
936 if (htab
->elf
.dynamic_sections_created
937 && h
->plt
.refcount
> 0)
939 /* Make sure this symbol is output as a dynamic symbol.
940 Undefined weak syms won't yet be marked as dynamic. */
944 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
948 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info
), h
))
950 asection
*s
= htab
->elf
.splt
;
953 s
->size
= PLT_HEADER_SIZE
;
955 h
->plt
.offset
= s
->size
;
957 /* Make room for this entry. */
958 s
->size
+= PLT_ENTRY_SIZE
;
960 /* We also need to make an entry in the .got.plt section. */
961 htab
->elf
.sgotplt
->size
+= GOT_ENTRY_SIZE
;
963 /* We also need to make an entry in the .rela.plt section. */
964 htab
->elf
.srelplt
->size
+= sizeof (ElfNN_External_Rela
);
966 /* If this symbol is not defined in a regular file, and we are
967 not generating a shared library, then set the symbol to this
968 location in the .plt. This is required to make function
969 pointers compare as equal between the normal executable and
970 the shared library. */
971 if (! bfd_link_pic (info
)
974 h
->root
.u
.def
.section
= s
;
975 h
->root
.u
.def
.value
= h
->plt
.offset
;
980 h
->plt
.offset
= (bfd_vma
) -1;
986 h
->plt
.offset
= (bfd_vma
) -1;
990 if (h
->got
.refcount
> 0)
994 int tls_type
= riscv_elf_hash_entry (h
)->tls_type
;
996 /* Make sure this symbol is output as a dynamic symbol.
997 Undefined weak syms won't yet be marked as dynamic. */
1001 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1006 h
->got
.offset
= s
->size
;
1007 dyn
= htab
->elf
.dynamic_sections_created
;
1008 if (tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
))
1010 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1011 if (tls_type
& GOT_TLS_GD
)
1013 s
->size
+= 2 * RISCV_ELF_WORD_BYTES
;
1014 htab
->elf
.srelgot
->size
+= 2 * sizeof (ElfNN_External_Rela
);
1017 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1018 if (tls_type
& GOT_TLS_IE
)
1020 s
->size
+= RISCV_ELF_WORD_BYTES
;
1021 htab
->elf
.srelgot
->size
+= sizeof (ElfNN_External_Rela
);
1026 s
->size
+= RISCV_ELF_WORD_BYTES
;
1027 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), h
)
1028 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
1029 htab
->elf
.srelgot
->size
+= sizeof (ElfNN_External_Rela
);
1033 h
->got
.offset
= (bfd_vma
) -1;
1035 eh
= (struct riscv_elf_link_hash_entry
*) h
;
1036 if (eh
->dyn_relocs
== NULL
)
1039 /* In the shared -Bsymbolic case, discard space allocated for
1040 dynamic pc-relative relocs against symbols which turn out to be
1041 defined in regular objects. For the normal shared case, discard
1042 space for pc-relative relocs that have become local due to symbol
1043 visibility changes. */
1045 if (bfd_link_pic (info
))
1047 if (SYMBOL_CALLS_LOCAL (info
, h
))
1049 struct elf_dyn_relocs
**pp
;
1051 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
1053 p
->count
-= p
->pc_count
;
1062 /* Also discard relocs on undefined weak syms with non-default
1064 if (eh
->dyn_relocs
!= NULL
1065 && h
->root
.type
== bfd_link_hash_undefweak
)
1067 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1068 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
1069 eh
->dyn_relocs
= NULL
;
1071 /* Make sure undefined weak symbols are output as a dynamic
1073 else if (h
->dynindx
== -1
1074 && !h
->forced_local
)
1076 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1083 /* For the non-shared case, discard space for relocs against
1084 symbols which turn out to need copy relocs or are not
1090 || (htab
->elf
.dynamic_sections_created
1091 && (h
->root
.type
== bfd_link_hash_undefweak
1092 || h
->root
.type
== bfd_link_hash_undefined
))))
1094 /* Make sure this symbol is output as a dynamic symbol.
1095 Undefined weak syms won't yet be marked as dynamic. */
1096 if (h
->dynindx
== -1
1097 && !h
->forced_local
)
1099 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1103 /* If that succeeded, we know we'll be keeping all the
1105 if (h
->dynindx
!= -1)
1109 eh
->dyn_relocs
= NULL
;
1114 /* Finally, allocate space. */
1115 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1117 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
1118 sreloc
->size
+= p
->count
* sizeof (ElfNN_External_Rela
);
1124 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
1125 read-only sections. */
1128 maybe_set_textrel (struct elf_link_hash_entry
*h
, void *info_p
)
1132 if (h
->root
.type
== bfd_link_hash_indirect
)
1135 sec
= readonly_dynrelocs (h
);
1138 struct bfd_link_info
*info
= (struct bfd_link_info
*) info_p
;
1140 info
->flags
|= DF_TEXTREL
;
1141 info
->callbacks
->minfo
1142 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
1143 sec
->owner
, h
->root
.root
.string
, sec
);
1145 /* Not an error, just cut short the traversal. */
1152 riscv_elf_size_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
1154 struct riscv_elf_link_hash_table
*htab
;
1159 htab
= riscv_elf_hash_table (info
);
1160 BFD_ASSERT (htab
!= NULL
);
1161 dynobj
= htab
->elf
.dynobj
;
1162 BFD_ASSERT (dynobj
!= NULL
);
1164 if (elf_hash_table (info
)->dynamic_sections_created
)
1166 /* Set the contents of the .interp section to the interpreter. */
1167 if (bfd_link_executable (info
) && !info
->nointerp
)
1169 s
= bfd_get_linker_section (dynobj
, ".interp");
1170 BFD_ASSERT (s
!= NULL
);
1171 s
->size
= strlen (ELFNN_DYNAMIC_INTERPRETER
) + 1;
1172 s
->contents
= (unsigned char *) ELFNN_DYNAMIC_INTERPRETER
;
1176 /* Set up .got offsets for local syms, and space for local dynamic
1178 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
1180 bfd_signed_vma
*local_got
;
1181 bfd_signed_vma
*end_local_got
;
1182 char *local_tls_type
;
1183 bfd_size_type locsymcount
;
1184 Elf_Internal_Shdr
*symtab_hdr
;
1187 if (! is_riscv_elf (ibfd
))
1190 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
1192 struct elf_dyn_relocs
*p
;
1194 for (p
= elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
1196 if (!bfd_is_abs_section (p
->sec
)
1197 && bfd_is_abs_section (p
->sec
->output_section
))
1199 /* Input section has been discarded, either because
1200 it is a copy of a linkonce section or due to
1201 linker script /DISCARD/, so we'll be discarding
1204 else if (p
->count
!= 0)
1206 srel
= elf_section_data (p
->sec
)->sreloc
;
1207 srel
->size
+= p
->count
* sizeof (ElfNN_External_Rela
);
1208 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
1209 info
->flags
|= DF_TEXTREL
;
1214 local_got
= elf_local_got_refcounts (ibfd
);
1218 symtab_hdr
= &elf_symtab_hdr (ibfd
);
1219 locsymcount
= symtab_hdr
->sh_info
;
1220 end_local_got
= local_got
+ locsymcount
;
1221 local_tls_type
= _bfd_riscv_elf_local_got_tls_type (ibfd
);
1223 srel
= htab
->elf
.srelgot
;
1224 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
1228 *local_got
= s
->size
;
1229 s
->size
+= RISCV_ELF_WORD_BYTES
;
1230 if (*local_tls_type
& GOT_TLS_GD
)
1231 s
->size
+= RISCV_ELF_WORD_BYTES
;
1232 if (bfd_link_pic (info
)
1233 || (*local_tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)))
1234 srel
->size
+= sizeof (ElfNN_External_Rela
);
1237 *local_got
= (bfd_vma
) -1;
1241 /* Allocate global sym .plt and .got entries, and space for global
1242 sym dynamic relocs. */
1243 elf_link_hash_traverse (&htab
->elf
, allocate_dynrelocs
, info
);
1245 if (htab
->elf
.sgotplt
)
1247 struct elf_link_hash_entry
*got
;
1248 got
= elf_link_hash_lookup (elf_hash_table (info
),
1249 "_GLOBAL_OFFSET_TABLE_",
1250 FALSE
, FALSE
, FALSE
);
1252 /* Don't allocate .got.plt section if there are no GOT nor PLT
1253 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1255 || !got
->ref_regular_nonweak
)
1256 && (htab
->elf
.sgotplt
->size
== GOTPLT_HEADER_SIZE
)
1257 && (htab
->elf
.splt
== NULL
1258 || htab
->elf
.splt
->size
== 0)
1259 && (htab
->elf
.sgot
== NULL
1260 || (htab
->elf
.sgot
->size
1261 == get_elf_backend_data (output_bfd
)->got_header_size
)))
1262 htab
->elf
.sgotplt
->size
= 0;
1265 /* The check_relocs and adjust_dynamic_symbol entry points have
1266 determined the sizes of the various dynamic sections. Allocate
1268 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1270 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1273 if (s
== htab
->elf
.splt
1274 || s
== htab
->elf
.sgot
1275 || s
== htab
->elf
.sgotplt
1276 || s
== htab
->elf
.sdynbss
1277 || s
== htab
->elf
.sdynrelro
1278 || s
== htab
->sdyntdata
)
1280 /* Strip this section if we don't need it; see the
1283 else if (strncmp (s
->name
, ".rela", 5) == 0)
1287 /* We use the reloc_count field as a counter if we need
1288 to copy relocs into the output file. */
1294 /* It's not one of our sections. */
1300 /* If we don't need this section, strip it from the
1301 output file. This is mostly to handle .rela.bss and
1302 .rela.plt. We must create both sections in
1303 create_dynamic_sections, because they must be created
1304 before the linker maps input sections to output
1305 sections. The linker does that before
1306 adjust_dynamic_symbol is called, and it is that
1307 function which decides whether anything needs to go
1308 into these sections. */
1309 s
->flags
|= SEC_EXCLUDE
;
1313 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
1316 /* Allocate memory for the section contents. Zero the memory
1317 for the benefit of .rela.plt, which has 4 unused entries
1318 at the beginning, and we don't want garbage. */
1319 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1320 if (s
->contents
== NULL
)
1324 if (elf_hash_table (info
)->dynamic_sections_created
)
1326 /* Add some entries to the .dynamic section. We fill in the
1327 values later, in riscv_elf_finish_dynamic_sections, but we
1328 must add the entries now so that we get the correct size for
1329 the .dynamic section. The DT_DEBUG entry is filled in by the
1330 dynamic linker and used by the debugger. */
1331 #define add_dynamic_entry(TAG, VAL) \
1332 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1334 if (bfd_link_executable (info
))
1336 if (!add_dynamic_entry (DT_DEBUG
, 0))
1340 if (htab
->elf
.srelplt
->size
!= 0)
1342 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1343 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1344 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1345 || !add_dynamic_entry (DT_JMPREL
, 0))
1349 if (!add_dynamic_entry (DT_RELA
, 0)
1350 || !add_dynamic_entry (DT_RELASZ
, 0)
1351 || !add_dynamic_entry (DT_RELAENT
, sizeof (ElfNN_External_Rela
)))
1354 /* If any dynamic relocs apply to a read-only section,
1355 then we need a DT_TEXTREL entry. */
1356 if ((info
->flags
& DF_TEXTREL
) == 0)
1357 elf_link_hash_traverse (&htab
->elf
, maybe_set_textrel
, info
);
1359 if (info
->flags
& DF_TEXTREL
)
1361 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1365 #undef add_dynamic_entry
1371 #define DTP_OFFSET 0x800
1373 /* Return the relocation value for a TLS dtp-relative reloc. */
1376 dtpoff (struct bfd_link_info
*info
, bfd_vma address
)
1378 /* If tls_sec is NULL, we should have signalled an error already. */
1379 if (elf_hash_table (info
)->tls_sec
== NULL
)
1381 return address
- elf_hash_table (info
)->tls_sec
->vma
- DTP_OFFSET
;
1384 /* Return the relocation value for a static TLS tp-relative relocation. */
1387 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
1389 /* If tls_sec is NULL, we should have signalled an error already. */
1390 if (elf_hash_table (info
)->tls_sec
== NULL
)
1392 return address
- elf_hash_table (info
)->tls_sec
->vma
- TP_OFFSET
;
1395 /* Return the global pointer's value, or 0 if it is not in use. */
1398 riscv_global_pointer_value (struct bfd_link_info
*info
)
1400 struct bfd_link_hash_entry
*h
;
1402 h
= bfd_link_hash_lookup (info
->hash
, RISCV_GP_SYMBOL
, FALSE
, FALSE
, TRUE
);
1403 if (h
== NULL
|| h
->type
!= bfd_link_hash_defined
)
1406 return h
->u
.def
.value
+ sec_addr (h
->u
.def
.section
);
1409 /* Emplace a static relocation. */
1411 static bfd_reloc_status_type
1412 perform_relocation (const reloc_howto_type
*howto
,
1413 const Elf_Internal_Rela
*rel
,
1415 asection
*input_section
,
1419 if (howto
->pc_relative
)
1420 value
-= sec_addr (input_section
) + rel
->r_offset
;
1421 value
+= rel
->r_addend
;
1423 switch (ELFNN_R_TYPE (rel
->r_info
))
1426 case R_RISCV_TPREL_HI20
:
1427 case R_RISCV_PCREL_HI20
:
1428 case R_RISCV_GOT_HI20
:
1429 case R_RISCV_TLS_GOT_HI20
:
1430 case R_RISCV_TLS_GD_HI20
:
1431 if (ARCH_SIZE
> 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value
)))
1432 return bfd_reloc_overflow
;
1433 value
= ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value
));
1436 case R_RISCV_LO12_I
:
1437 case R_RISCV_GPREL_I
:
1438 case R_RISCV_TPREL_LO12_I
:
1439 case R_RISCV_TPREL_I
:
1440 case R_RISCV_PCREL_LO12_I
:
1441 value
= ENCODE_ITYPE_IMM (value
);
1444 case R_RISCV_LO12_S
:
1445 case R_RISCV_GPREL_S
:
1446 case R_RISCV_TPREL_LO12_S
:
1447 case R_RISCV_TPREL_S
:
1448 case R_RISCV_PCREL_LO12_S
:
1449 value
= ENCODE_STYPE_IMM (value
);
1453 case R_RISCV_CALL_PLT
:
1454 if (ARCH_SIZE
> 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value
)))
1455 return bfd_reloc_overflow
;
1456 value
= ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value
))
1457 | (ENCODE_ITYPE_IMM (value
) << 32);
1461 if (!VALID_UJTYPE_IMM (value
))
1462 return bfd_reloc_overflow
;
1463 value
= ENCODE_UJTYPE_IMM (value
);
1466 case R_RISCV_BRANCH
:
1467 if (!VALID_SBTYPE_IMM (value
))
1468 return bfd_reloc_overflow
;
1469 value
= ENCODE_SBTYPE_IMM (value
);
1472 case R_RISCV_RVC_BRANCH
:
1473 if (!VALID_RVC_B_IMM (value
))
1474 return bfd_reloc_overflow
;
1475 value
= ENCODE_RVC_B_IMM (value
);
1478 case R_RISCV_RVC_JUMP
:
1479 if (!VALID_RVC_J_IMM (value
))
1480 return bfd_reloc_overflow
;
1481 value
= ENCODE_RVC_J_IMM (value
);
1484 case R_RISCV_RVC_LUI
:
1485 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value
)))
1486 return bfd_reloc_overflow
;
1487 value
= ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value
));
1505 case R_RISCV_32_PCREL
:
1506 case R_RISCV_TLS_DTPREL32
:
1507 case R_RISCV_TLS_DTPREL64
:
1510 case R_RISCV_DELETE
:
1511 return bfd_reloc_ok
;
1514 return bfd_reloc_notsupported
;
1517 bfd_vma word
= bfd_get (howto
->bitsize
, input_bfd
, contents
+ rel
->r_offset
);
1518 word
= (word
& ~howto
->dst_mask
) | (value
& howto
->dst_mask
);
1519 bfd_put (howto
->bitsize
, input_bfd
, word
, contents
+ rel
->r_offset
);
1521 return bfd_reloc_ok
;
1524 /* Remember all PC-relative high-part relocs we've encountered to help us
1525 later resolve the corresponding low-part relocs. */
1531 } riscv_pcrel_hi_reloc
;
1533 typedef struct riscv_pcrel_lo_reloc
1535 asection
* input_section
;
1536 struct bfd_link_info
* info
;
1537 reloc_howto_type
* howto
;
1538 const Elf_Internal_Rela
* reloc
;
1541 bfd_byte
* contents
;
1542 struct riscv_pcrel_lo_reloc
* next
;
1543 } riscv_pcrel_lo_reloc
;
1548 riscv_pcrel_lo_reloc
*lo_relocs
;
1549 } riscv_pcrel_relocs
;
1552 riscv_pcrel_reloc_hash (const void *entry
)
1554 const riscv_pcrel_hi_reloc
*e
= entry
;
1555 return (hashval_t
)(e
->address
>> 2);
1559 riscv_pcrel_reloc_eq (const void *entry1
, const void *entry2
)
1561 const riscv_pcrel_hi_reloc
*e1
= entry1
, *e2
= entry2
;
1562 return e1
->address
== e2
->address
;
1566 riscv_init_pcrel_relocs (riscv_pcrel_relocs
*p
)
1569 p
->lo_relocs
= NULL
;
1570 p
->hi_relocs
= htab_create (1024, riscv_pcrel_reloc_hash
,
1571 riscv_pcrel_reloc_eq
, free
);
1572 return p
->hi_relocs
!= NULL
;
1576 riscv_free_pcrel_relocs (riscv_pcrel_relocs
*p
)
1578 riscv_pcrel_lo_reloc
*cur
= p
->lo_relocs
;
1582 riscv_pcrel_lo_reloc
*next
= cur
->next
;
1587 htab_delete (p
->hi_relocs
);
1591 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela
*rel
,
1592 struct bfd_link_info
*info
,
1596 const reloc_howto_type
*howto
,
1599 /* We may need to reference low addreses in PC-relative modes even when the
1600 * PC is far away from these addresses. For example, undefweak references
1601 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1602 * addresses that we can link PC-relative programs at, the linker can't
1603 * actually relocate references to those symbols. In order to allow these
1604 * programs to work we simply convert the PC-relative auipc sequences to
1605 * 0-relative lui sequences. */
1606 if (bfd_link_pic (info
))
1609 /* If it's possible to reference the symbol using auipc we do so, as that's
1610 * more in the spirit of the PC-relative relocations we're processing. */
1611 bfd_vma offset
= addr
- pc
;
1612 if (ARCH_SIZE
== 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset
)))
1615 /* If it's impossible to reference this with a LUI-based offset then don't
1616 * bother to convert it at all so users still see the PC-relative relocation
1617 * in the truncation message. */
1618 if (ARCH_SIZE
> 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr
)))
1621 rel
->r_info
= ELFNN_R_INFO(addr
, R_RISCV_HI20
);
1623 bfd_vma insn
= bfd_get(howto
->bitsize
, input_bfd
, contents
+ rel
->r_offset
);
1624 insn
= (insn
& ~MASK_AUIPC
) | MATCH_LUI
;
1625 bfd_put(howto
->bitsize
, input_bfd
, insn
, contents
+ rel
->r_offset
);
1630 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs
*p
, bfd_vma addr
,
1631 bfd_vma value
, bfd_boolean absolute
)
1633 bfd_vma offset
= absolute
? value
: value
- addr
;
1634 riscv_pcrel_hi_reloc entry
= {addr
, offset
};
1635 riscv_pcrel_hi_reloc
**slot
=
1636 (riscv_pcrel_hi_reloc
**) htab_find_slot (p
->hi_relocs
, &entry
, INSERT
);
1638 BFD_ASSERT (*slot
== NULL
);
1639 *slot
= (riscv_pcrel_hi_reloc
*) bfd_malloc (sizeof (riscv_pcrel_hi_reloc
));
1647 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs
*p
,
1648 asection
*input_section
,
1649 struct bfd_link_info
*info
,
1650 reloc_howto_type
*howto
,
1651 const Elf_Internal_Rela
*reloc
,
1656 riscv_pcrel_lo_reloc
*entry
;
1657 entry
= (riscv_pcrel_lo_reloc
*) bfd_malloc (sizeof (riscv_pcrel_lo_reloc
));
1660 *entry
= (riscv_pcrel_lo_reloc
) {input_section
, info
, howto
, reloc
, addr
,
1661 name
, contents
, p
->lo_relocs
};
1662 p
->lo_relocs
= entry
;
1667 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs
*p
)
1669 riscv_pcrel_lo_reloc
*r
;
1671 for (r
= p
->lo_relocs
; r
!= NULL
; r
= r
->next
)
1673 bfd
*input_bfd
= r
->input_section
->owner
;
1675 riscv_pcrel_hi_reloc search
= {r
->addr
, 0};
1676 riscv_pcrel_hi_reloc
*entry
= htab_find (p
->hi_relocs
, &search
);
1678 /* Check for overflow into bit 11 when adding reloc addend. */
1679 || (! (entry
->value
& 0x800)
1680 && ((entry
->value
+ r
->reloc
->r_addend
) & 0x800)))
1682 char *string
= (entry
== NULL
1683 ? "%pcrel_lo missing matching %pcrel_hi"
1684 : "%pcrel_lo overflow with an addend");
1685 (*r
->info
->callbacks
->reloc_dangerous
)
1686 (r
->info
, string
, input_bfd
, r
->input_section
, r
->reloc
->r_offset
);
1690 perform_relocation (r
->howto
, r
->reloc
, entry
->value
, r
->input_section
,
1691 input_bfd
, r
->contents
);
1697 /* Relocate a RISC-V ELF section.
1699 The RELOCATE_SECTION function is called by the new ELF backend linker
1700 to handle the relocations for a section.
1702 The relocs are always passed as Rela structures.
1704 This function is responsible for adjusting the section contents as
1705 necessary, and (if generating a relocatable output file) adjusting
1706 the reloc addend as necessary.
1708 This function does not have to worry about setting the reloc
1709 address or the reloc symbol index.
1711 LOCAL_SYMS is a pointer to the swapped in local symbols.
1713 LOCAL_SECTIONS is an array giving the section in the input file
1714 corresponding to the st_shndx field of each local symbol.
1716 The global hash table entry for the global symbols can be found
1717 via elf_sym_hashes (input_bfd).
1719 When generating relocatable output, this function must handle
1720 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1721 going to be the section symbol corresponding to the output
1722 section, which means that the addend must be adjusted
1726 riscv_elf_relocate_section (bfd
*output_bfd
,
1727 struct bfd_link_info
*info
,
1729 asection
*input_section
,
1731 Elf_Internal_Rela
*relocs
,
1732 Elf_Internal_Sym
*local_syms
,
1733 asection
**local_sections
)
1735 Elf_Internal_Rela
*rel
;
1736 Elf_Internal_Rela
*relend
;
1737 riscv_pcrel_relocs pcrel_relocs
;
1738 bfd_boolean ret
= FALSE
;
1739 asection
*sreloc
= elf_section_data (input_section
)->sreloc
;
1740 struct riscv_elf_link_hash_table
*htab
= riscv_elf_hash_table (info
);
1741 Elf_Internal_Shdr
*symtab_hdr
= &elf_symtab_hdr (input_bfd
);
1742 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (input_bfd
);
1743 bfd_vma
*local_got_offsets
= elf_local_got_offsets (input_bfd
);
1744 bfd_boolean absolute
;
1746 if (!riscv_init_pcrel_relocs (&pcrel_relocs
))
1749 relend
= relocs
+ input_section
->reloc_count
;
1750 for (rel
= relocs
; rel
< relend
; rel
++)
1752 unsigned long r_symndx
;
1753 struct elf_link_hash_entry
*h
;
1754 Elf_Internal_Sym
*sym
;
1757 bfd_reloc_status_type r
= bfd_reloc_ok
;
1759 bfd_vma off
, ie_off
;
1760 bfd_boolean unresolved_reloc
, is_ie
= FALSE
;
1761 bfd_vma pc
= sec_addr (input_section
) + rel
->r_offset
;
1762 int r_type
= ELFNN_R_TYPE (rel
->r_info
), tls_type
;
1763 reloc_howto_type
*howto
= riscv_elf_rtype_to_howto (input_bfd
, r_type
);
1764 const char *msg
= NULL
;
1765 bfd_boolean resolved_to_zero
;
1768 || r_type
== R_RISCV_GNU_VTINHERIT
|| r_type
== R_RISCV_GNU_VTENTRY
)
1771 /* This is a final link. */
1772 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
1776 unresolved_reloc
= FALSE
;
1777 if (r_symndx
< symtab_hdr
->sh_info
)
1779 sym
= local_syms
+ r_symndx
;
1780 sec
= local_sections
[r_symndx
];
1781 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
1785 bfd_boolean warned
, ignored
;
1787 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
1788 r_symndx
, symtab_hdr
, sym_hashes
,
1790 unresolved_reloc
, warned
, ignored
);
1793 /* To avoid generating warning messages about truncated
1794 relocations, set the relocation's address to be the same as
1795 the start of this section. */
1796 if (input_section
->output_section
!= NULL
)
1797 relocation
= input_section
->output_section
->vma
;
1803 if (sec
!= NULL
&& discarded_section (sec
))
1804 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
1805 rel
, 1, relend
, howto
, 0, contents
);
1807 if (bfd_link_relocatable (info
))
1811 name
= h
->root
.root
.string
;
1814 name
= (bfd_elf_string_from_elf_section
1815 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
1816 if (name
== NULL
|| *name
== '\0')
1817 name
= bfd_section_name (input_bfd
, sec
);
1820 resolved_to_zero
= (h
!= NULL
1821 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
));
1827 case R_RISCV_TPREL_ADD
:
1829 case R_RISCV_JUMP_SLOT
:
1830 case R_RISCV_RELATIVE
:
1831 /* These require nothing of us at all. */
1835 case R_RISCV_BRANCH
:
1836 case R_RISCV_RVC_BRANCH
:
1837 case R_RISCV_RVC_LUI
:
1838 case R_RISCV_LO12_I
:
1839 case R_RISCV_LO12_S
:
1844 case R_RISCV_32_PCREL
:
1845 case R_RISCV_DELETE
:
1846 /* These require no special handling beyond perform_relocation. */
1849 case R_RISCV_GOT_HI20
:
1852 bfd_boolean dyn
, pic
;
1854 off
= h
->got
.offset
;
1855 BFD_ASSERT (off
!= (bfd_vma
) -1);
1856 dyn
= elf_hash_table (info
)->dynamic_sections_created
;
1857 pic
= bfd_link_pic (info
);
1859 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, pic
, h
)
1860 || (pic
&& SYMBOL_REFERENCES_LOCAL (info
, h
)))
1862 /* This is actually a static link, or it is a
1863 -Bsymbolic link and the symbol is defined
1864 locally, or the symbol was forced to be local
1865 because of a version file. We must initialize
1866 this entry in the global offset table. Since the
1867 offset must always be a multiple of the word size,
1868 we use the least significant bit to record whether
1869 we have initialized it already.
1871 When doing a dynamic link, we create a .rela.got
1872 relocation entry to initialize the value. This
1873 is done in the finish_dynamic_symbol routine. */
1878 bfd_put_NN (output_bfd
, relocation
,
1879 htab
->elf
.sgot
->contents
+ off
);
1884 unresolved_reloc
= FALSE
;
1888 BFD_ASSERT (local_got_offsets
!= NULL
1889 && local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
1891 off
= local_got_offsets
[r_symndx
];
1893 /* The offset must always be a multiple of the word size.
1894 So, we can use the least significant bit to record
1895 whether we have already processed this entry. */
1900 if (bfd_link_pic (info
))
1903 Elf_Internal_Rela outrel
;
1905 /* We need to generate a R_RISCV_RELATIVE reloc
1906 for the dynamic linker. */
1907 s
= htab
->elf
.srelgot
;
1908 BFD_ASSERT (s
!= NULL
);
1910 outrel
.r_offset
= sec_addr (htab
->elf
.sgot
) + off
;
1912 ELFNN_R_INFO (0, R_RISCV_RELATIVE
);
1913 outrel
.r_addend
= relocation
;
1915 riscv_elf_append_rela (output_bfd
, s
, &outrel
);
1918 bfd_put_NN (output_bfd
, relocation
,
1919 htab
->elf
.sgot
->contents
+ off
);
1920 local_got_offsets
[r_symndx
] |= 1;
1923 relocation
= sec_addr (htab
->elf
.sgot
) + off
;
1924 absolute
= riscv_zero_pcrel_hi_reloc (rel
,
1931 r_type
= ELFNN_R_TYPE (rel
->r_info
);
1932 howto
= riscv_elf_rtype_to_howto (input_bfd
, r_type
);
1934 r
= bfd_reloc_notsupported
;
1935 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs
, pc
,
1936 relocation
, absolute
))
1937 r
= bfd_reloc_overflow
;
1945 bfd_vma old_value
= bfd_get (howto
->bitsize
, input_bfd
,
1946 contents
+ rel
->r_offset
);
1947 relocation
= old_value
+ relocation
;
1957 bfd_vma old_value
= bfd_get (howto
->bitsize
, input_bfd
,
1958 contents
+ rel
->r_offset
);
1959 relocation
= old_value
- relocation
;
1964 /* Handle a call to an undefined weak function. This won't be
1965 relaxed, so we have to handle it here. */
1966 if (h
!= NULL
&& h
->root
.type
== bfd_link_hash_undefweak
1967 && h
->plt
.offset
== MINUS_ONE
)
1969 /* We can use x0 as the base register. */
1970 bfd_vma insn
= bfd_get_32 (input_bfd
,
1971 contents
+ rel
->r_offset
+ 4);
1972 insn
&= ~(OP_MASK_RS1
<< OP_SH_RS1
);
1973 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
+ 4);
1974 /* Set the relocation value so that we get 0 after the pc
1975 relative adjustment. */
1976 relocation
= sec_addr (input_section
) + rel
->r_offset
;
1980 case R_RISCV_CALL_PLT
:
1982 case R_RISCV_RVC_JUMP
:
1983 if (bfd_link_pic (info
) && h
!= NULL
&& h
->plt
.offset
!= MINUS_ONE
)
1985 /* Refer to the PLT entry. */
1986 relocation
= sec_addr (htab
->elf
.splt
) + h
->plt
.offset
;
1987 unresolved_reloc
= FALSE
;
1991 case R_RISCV_TPREL_HI20
:
1992 relocation
= tpoff (info
, relocation
);
1995 case R_RISCV_TPREL_LO12_I
:
1996 case R_RISCV_TPREL_LO12_S
:
1997 relocation
= tpoff (info
, relocation
);
2000 case R_RISCV_TPREL_I
:
2001 case R_RISCV_TPREL_S
:
2002 relocation
= tpoff (info
, relocation
);
2003 if (VALID_ITYPE_IMM (relocation
+ rel
->r_addend
))
2005 /* We can use tp as the base register. */
2006 bfd_vma insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2007 insn
&= ~(OP_MASK_RS1
<< OP_SH_RS1
);
2008 insn
|= X_TP
<< OP_SH_RS1
;
2009 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
2012 r
= bfd_reloc_overflow
;
2015 case R_RISCV_GPREL_I
:
2016 case R_RISCV_GPREL_S
:
2018 bfd_vma gp
= riscv_global_pointer_value (info
);
2019 bfd_boolean x0_base
= VALID_ITYPE_IMM (relocation
+ rel
->r_addend
);
2020 if (x0_base
|| VALID_ITYPE_IMM (relocation
+ rel
->r_addend
- gp
))
2022 /* We can use x0 or gp as the base register. */
2023 bfd_vma insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2024 insn
&= ~(OP_MASK_RS1
<< OP_SH_RS1
);
2027 rel
->r_addend
-= gp
;
2028 insn
|= X_GP
<< OP_SH_RS1
;
2030 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
2033 r
= bfd_reloc_overflow
;
2037 case R_RISCV_PCREL_HI20
:
2038 absolute
= riscv_zero_pcrel_hi_reloc (rel
,
2045 r_type
= ELFNN_R_TYPE (rel
->r_info
);
2046 howto
= riscv_elf_rtype_to_howto (input_bfd
, r_type
);
2048 r
= bfd_reloc_notsupported
;
2049 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs
, pc
,
2050 relocation
+ rel
->r_addend
,
2052 r
= bfd_reloc_overflow
;
2055 case R_RISCV_PCREL_LO12_I
:
2056 case R_RISCV_PCREL_LO12_S
:
2057 /* We don't allow section symbols plus addends as the auipc address,
2058 because then riscv_relax_delete_bytes would have to search through
2059 all relocs to update these addends. This is also ambiguous, as
2060 we do allow offsets to be added to the target address, which are
2061 not to be used to find the auipc address. */
2062 if (((sym
!= NULL
&& (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
))
2063 || (h
!= NULL
&& h
->type
== STT_SECTION
))
2066 r
= bfd_reloc_dangerous
;
2070 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs
, input_section
, info
,
2071 howto
, rel
, relocation
, name
,
2074 r
= bfd_reloc_overflow
;
2077 case R_RISCV_TLS_DTPREL32
:
2078 case R_RISCV_TLS_DTPREL64
:
2079 relocation
= dtpoff (info
, relocation
);
2084 if ((input_section
->flags
& SEC_ALLOC
) == 0)
2087 if ((bfd_link_pic (info
)
2089 || (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2090 && !resolved_to_zero
)
2091 || h
->root
.type
!= bfd_link_hash_undefweak
)
2092 && (! howto
->pc_relative
2093 || !SYMBOL_CALLS_LOCAL (info
, h
)))
2094 || (!bfd_link_pic (info
)
2100 || h
->root
.type
== bfd_link_hash_undefweak
2101 || h
->root
.type
== bfd_link_hash_undefined
)))
2103 Elf_Internal_Rela outrel
;
2104 bfd_boolean skip_static_relocation
, skip_dynamic_relocation
;
2106 /* When generating a shared object, these relocations
2107 are copied into the output file to be resolved at run
2111 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2113 skip_static_relocation
= outrel
.r_offset
!= (bfd_vma
) -2;
2114 skip_dynamic_relocation
= outrel
.r_offset
>= (bfd_vma
) -2;
2115 outrel
.r_offset
+= sec_addr (input_section
);
2117 if (skip_dynamic_relocation
)
2118 memset (&outrel
, 0, sizeof outrel
);
2119 else if (h
!= NULL
&& h
->dynindx
!= -1
2120 && !(bfd_link_pic (info
)
2121 && SYMBOLIC_BIND (info
, h
)
2124 outrel
.r_info
= ELFNN_R_INFO (h
->dynindx
, r_type
);
2125 outrel
.r_addend
= rel
->r_addend
;
2129 outrel
.r_info
= ELFNN_R_INFO (0, R_RISCV_RELATIVE
);
2130 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2133 riscv_elf_append_rela (output_bfd
, sreloc
, &outrel
);
2134 if (skip_static_relocation
)
2139 case R_RISCV_TLS_GOT_HI20
:
2143 case R_RISCV_TLS_GD_HI20
:
2146 off
= h
->got
.offset
;
2151 off
= local_got_offsets
[r_symndx
];
2152 local_got_offsets
[r_symndx
] |= 1;
2155 tls_type
= _bfd_riscv_elf_tls_type (input_bfd
, h
, r_symndx
);
2156 BFD_ASSERT (tls_type
& (GOT_TLS_IE
| GOT_TLS_GD
));
2157 /* If this symbol is referenced by both GD and IE TLS, the IE
2158 reference's GOT slot follows the GD reference's slots. */
2160 if ((tls_type
& GOT_TLS_GD
) && (tls_type
& GOT_TLS_IE
))
2161 ie_off
= 2 * GOT_ENTRY_SIZE
;
2167 Elf_Internal_Rela outrel
;
2169 bfd_boolean need_relocs
= FALSE
;
2171 if (htab
->elf
.srelgot
== NULL
)
2176 bfd_boolean dyn
, pic
;
2177 dyn
= htab
->elf
.dynamic_sections_created
;
2178 pic
= bfd_link_pic (info
);
2180 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, pic
, h
)
2181 && (!pic
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2185 /* The GOT entries have not been initialized yet. Do it
2186 now, and emit any relocations. */
2187 if ((bfd_link_pic (info
) || indx
!= 0)
2189 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2190 || h
->root
.type
!= bfd_link_hash_undefweak
))
2193 if (tls_type
& GOT_TLS_GD
)
2197 outrel
.r_offset
= sec_addr (htab
->elf
.sgot
) + off
;
2198 outrel
.r_addend
= 0;
2199 outrel
.r_info
= ELFNN_R_INFO (indx
, R_RISCV_TLS_DTPMODNN
);
2200 bfd_put_NN (output_bfd
, 0,
2201 htab
->elf
.sgot
->contents
+ off
);
2202 riscv_elf_append_rela (output_bfd
, htab
->elf
.srelgot
, &outrel
);
2205 BFD_ASSERT (! unresolved_reloc
);
2206 bfd_put_NN (output_bfd
,
2207 dtpoff (info
, relocation
),
2208 (htab
->elf
.sgot
->contents
+ off
+
2209 RISCV_ELF_WORD_BYTES
));
2213 bfd_put_NN (output_bfd
, 0,
2214 (htab
->elf
.sgot
->contents
+ off
+
2215 RISCV_ELF_WORD_BYTES
));
2216 outrel
.r_info
= ELFNN_R_INFO (indx
, R_RISCV_TLS_DTPRELNN
);
2217 outrel
.r_offset
+= RISCV_ELF_WORD_BYTES
;
2218 riscv_elf_append_rela (output_bfd
, htab
->elf
.srelgot
, &outrel
);
2223 /* If we are not emitting relocations for a
2224 general dynamic reference, then we must be in a
2225 static link or an executable link with the
2226 symbol binding locally. Mark it as belonging
2227 to module 1, the executable. */
2228 bfd_put_NN (output_bfd
, 1,
2229 htab
->elf
.sgot
->contents
+ off
);
2230 bfd_put_NN (output_bfd
,
2231 dtpoff (info
, relocation
),
2232 (htab
->elf
.sgot
->contents
+ off
+
2233 RISCV_ELF_WORD_BYTES
));
2237 if (tls_type
& GOT_TLS_IE
)
2241 bfd_put_NN (output_bfd
, 0,
2242 htab
->elf
.sgot
->contents
+ off
+ ie_off
);
2243 outrel
.r_offset
= sec_addr (htab
->elf
.sgot
)
2245 outrel
.r_addend
= 0;
2247 outrel
.r_addend
= tpoff (info
, relocation
);
2248 outrel
.r_info
= ELFNN_R_INFO (indx
, R_RISCV_TLS_TPRELNN
);
2249 riscv_elf_append_rela (output_bfd
, htab
->elf
.srelgot
, &outrel
);
2253 bfd_put_NN (output_bfd
, tpoff (info
, relocation
),
2254 htab
->elf
.sgot
->contents
+ off
+ ie_off
);
2259 BFD_ASSERT (off
< (bfd_vma
) -2);
2260 relocation
= sec_addr (htab
->elf
.sgot
) + off
+ (is_ie
? ie_off
: 0);
2261 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs
, pc
,
2263 r
= bfd_reloc_overflow
;
2264 unresolved_reloc
= FALSE
;
2268 r
= bfd_reloc_notsupported
;
2271 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2272 because such sections are not SEC_ALLOC and thus ld.so will
2273 not process them. */
2274 if (unresolved_reloc
2275 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2277 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2278 rel
->r_offset
) != (bfd_vma
) -1)
2280 (*_bfd_error_handler
)
2281 (_("%pB(%pA+%#" PRIx64
"): "
2282 "unresolvable %s relocation against symbol `%s'"),
2285 (uint64_t) rel
->r_offset
,
2287 h
->root
.root
.string
);
2291 if (r
== bfd_reloc_ok
)
2292 r
= perform_relocation (howto
, rel
, relocation
, input_section
,
2293 input_bfd
, contents
);
2300 case bfd_reloc_overflow
:
2301 info
->callbacks
->reloc_overflow
2302 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
2303 (bfd_vma
) 0, input_bfd
, input_section
, rel
->r_offset
);
2306 case bfd_reloc_undefined
:
2307 info
->callbacks
->undefined_symbol
2308 (info
, name
, input_bfd
, input_section
, rel
->r_offset
,
2312 case bfd_reloc_outofrange
:
2313 msg
= _("%X%P: internal error: out of range error\n");
2316 case bfd_reloc_notsupported
:
2317 msg
= _("%X%P: internal error: unsupported relocation error\n");
2320 case bfd_reloc_dangerous
:
2321 info
->callbacks
->reloc_dangerous
2322 (info
, "%pcrel_lo section symbol with an addend", input_bfd
,
2323 input_section
, rel
->r_offset
);
2327 msg
= _("%X%P: internal error: unknown error\n");
2332 info
->callbacks
->einfo (msg
);
2334 /* We already reported the error via a callback, so don't try to report
2335 it again by returning false. That leads to spurious errors. */
2340 ret
= riscv_resolve_pcrel_lo_relocs (&pcrel_relocs
);
2342 riscv_free_pcrel_relocs (&pcrel_relocs
);
2346 /* Finish up dynamic symbol handling. We set the contents of various
2347 dynamic sections here. */
2350 riscv_elf_finish_dynamic_symbol (bfd
*output_bfd
,
2351 struct bfd_link_info
*info
,
2352 struct elf_link_hash_entry
*h
,
2353 Elf_Internal_Sym
*sym
)
2355 struct riscv_elf_link_hash_table
*htab
= riscv_elf_hash_table (info
);
2356 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
2358 if (h
->plt
.offset
!= (bfd_vma
) -1)
2360 /* We've decided to create a PLT entry for this symbol. */
2362 bfd_vma i
, header_address
, plt_idx
, got_address
;
2363 uint32_t plt_entry
[PLT_ENTRY_INSNS
];
2364 Elf_Internal_Rela rela
;
2366 BFD_ASSERT (h
->dynindx
!= -1);
2368 /* Calculate the address of the PLT header. */
2369 header_address
= sec_addr (htab
->elf
.splt
);
2371 /* Calculate the index of the entry. */
2372 plt_idx
= (h
->plt
.offset
- PLT_HEADER_SIZE
) / PLT_ENTRY_SIZE
;
2374 /* Calculate the address of the .got.plt entry. */
2375 got_address
= riscv_elf_got_plt_val (plt_idx
, info
);
2377 /* Find out where the .plt entry should go. */
2378 loc
= htab
->elf
.splt
->contents
+ h
->plt
.offset
;
2380 /* Fill in the PLT entry itself. */
2381 if (! riscv_make_plt_entry (output_bfd
, got_address
,
2382 header_address
+ h
->plt
.offset
,
2386 for (i
= 0; i
< PLT_ENTRY_INSNS
; i
++)
2387 bfd_put_32 (output_bfd
, plt_entry
[i
], loc
+ 4*i
);
2389 /* Fill in the initial value of the .got.plt entry. */
2390 loc
= htab
->elf
.sgotplt
->contents
2391 + (got_address
- sec_addr (htab
->elf
.sgotplt
));
2392 bfd_put_NN (output_bfd
, sec_addr (htab
->elf
.splt
), loc
);
2394 /* Fill in the entry in the .rela.plt section. */
2395 rela
.r_offset
= got_address
;
2397 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, R_RISCV_JUMP_SLOT
);
2399 loc
= htab
->elf
.srelplt
->contents
+ plt_idx
* sizeof (ElfNN_External_Rela
);
2400 bed
->s
->swap_reloca_out (output_bfd
, &rela
, loc
);
2402 if (!h
->def_regular
)
2404 /* Mark the symbol as undefined, rather than as defined in
2405 the .plt section. Leave the value alone. */
2406 sym
->st_shndx
= SHN_UNDEF
;
2407 /* If the symbol is weak, we do need to clear the value.
2408 Otherwise, the PLT entry would provide a definition for
2409 the symbol even if the symbol wasn't defined anywhere,
2410 and so the symbol would never be NULL. */
2411 if (!h
->ref_regular_nonweak
)
2416 if (h
->got
.offset
!= (bfd_vma
) -1
2417 && !(riscv_elf_hash_entry (h
)->tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
))
2418 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
2422 Elf_Internal_Rela rela
;
2424 /* This symbol has an entry in the GOT. Set it up. */
2426 sgot
= htab
->elf
.sgot
;
2427 srela
= htab
->elf
.srelgot
;
2428 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2430 rela
.r_offset
= sec_addr (sgot
) + (h
->got
.offset
&~ (bfd_vma
) 1);
2432 /* If this is a local symbol reference, we just want to emit a RELATIVE
2433 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or
2434 the symbol was forced to be local because of a version file.
2435 The entry in the global offset table will already have been
2436 initialized in the relocate_section function. */
2437 if (bfd_link_pic (info
)
2438 && SYMBOL_REFERENCES_LOCAL (info
, h
))
2440 BFD_ASSERT((h
->got
.offset
& 1) != 0);
2441 asection
*sec
= h
->root
.u
.def
.section
;
2442 rela
.r_info
= ELFNN_R_INFO (0, R_RISCV_RELATIVE
);
2443 rela
.r_addend
= (h
->root
.u
.def
.value
2444 + sec
->output_section
->vma
2445 + sec
->output_offset
);
2449 BFD_ASSERT((h
->got
.offset
& 1) == 0);
2450 BFD_ASSERT (h
->dynindx
!= -1);
2451 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, R_RISCV_NN
);
2455 bfd_put_NN (output_bfd
, 0,
2456 sgot
->contents
+ (h
->got
.offset
& ~(bfd_vma
) 1));
2457 riscv_elf_append_rela (output_bfd
, srela
, &rela
);
2462 Elf_Internal_Rela rela
;
2465 /* This symbols needs a copy reloc. Set it up. */
2466 BFD_ASSERT (h
->dynindx
!= -1);
2468 rela
.r_offset
= sec_addr (h
->root
.u
.def
.section
) + h
->root
.u
.def
.value
;
2469 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, R_RISCV_COPY
);
2471 if (h
->root
.u
.def
.section
== htab
->elf
.sdynrelro
)
2472 s
= htab
->elf
.sreldynrelro
;
2474 s
= htab
->elf
.srelbss
;
2475 riscv_elf_append_rela (output_bfd
, s
, &rela
);
2478 /* Mark some specially defined symbols as absolute. */
2479 if (h
== htab
->elf
.hdynamic
2480 || (h
== htab
->elf
.hgot
|| h
== htab
->elf
.hplt
))
2481 sym
->st_shndx
= SHN_ABS
;
2486 /* Finish up the dynamic sections. */
2489 riscv_finish_dyn (bfd
*output_bfd
, struct bfd_link_info
*info
,
2490 bfd
*dynobj
, asection
*sdyn
)
2492 struct riscv_elf_link_hash_table
*htab
= riscv_elf_hash_table (info
);
2493 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
2494 size_t dynsize
= bed
->s
->sizeof_dyn
;
2495 bfd_byte
*dyncon
, *dynconend
;
2497 dynconend
= sdyn
->contents
+ sdyn
->size
;
2498 for (dyncon
= sdyn
->contents
; dyncon
< dynconend
; dyncon
+= dynsize
)
2500 Elf_Internal_Dyn dyn
;
2503 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
2508 s
= htab
->elf
.sgotplt
;
2509 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2512 s
= htab
->elf
.srelplt
;
2513 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2516 s
= htab
->elf
.srelplt
;
2517 dyn
.d_un
.d_val
= s
->size
;
2523 bed
->s
->swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2529 riscv_elf_finish_dynamic_sections (bfd
*output_bfd
,
2530 struct bfd_link_info
*info
)
2534 struct riscv_elf_link_hash_table
*htab
;
2536 htab
= riscv_elf_hash_table (info
);
2537 BFD_ASSERT (htab
!= NULL
);
2538 dynobj
= htab
->elf
.dynobj
;
2540 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
2542 if (elf_hash_table (info
)->dynamic_sections_created
)
2547 splt
= htab
->elf
.splt
;
2548 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2550 ret
= riscv_finish_dyn (output_bfd
, info
, dynobj
, sdyn
);
2555 /* Fill in the head and tail entries in the procedure linkage table. */
2559 uint32_t plt_header
[PLT_HEADER_INSNS
];
2560 ret
= riscv_make_plt_header (output_bfd
,
2561 sec_addr (htab
->elf
.sgotplt
),
2562 sec_addr (splt
), plt_header
);
2566 for (i
= 0; i
< PLT_HEADER_INSNS
; i
++)
2567 bfd_put_32 (output_bfd
, plt_header
[i
], splt
->contents
+ 4*i
);
2569 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
2574 if (htab
->elf
.sgotplt
)
2576 asection
*output_section
= htab
->elf
.sgotplt
->output_section
;
2578 if (bfd_is_abs_section (output_section
))
2580 (*_bfd_error_handler
)
2581 (_("discarded output section: `%pA'"), htab
->elf
.sgotplt
);
2585 if (htab
->elf
.sgotplt
->size
> 0)
2587 /* Write the first two entries in .got.plt, needed for the dynamic
2589 bfd_put_NN (output_bfd
, (bfd_vma
) -1, htab
->elf
.sgotplt
->contents
);
2590 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
2591 htab
->elf
.sgotplt
->contents
+ GOT_ENTRY_SIZE
);
2594 elf_section_data (output_section
)->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
2599 asection
*output_section
= htab
->elf
.sgot
->output_section
;
2601 if (htab
->elf
.sgot
->size
> 0)
2603 /* Set the first entry in the global offset table to the address of
2604 the dynamic section. */
2605 bfd_vma val
= sdyn
? sec_addr (sdyn
) : 0;
2606 bfd_put_NN (output_bfd
, val
, htab
->elf
.sgot
->contents
);
2609 elf_section_data (output_section
)->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
2615 /* Return address for Ith PLT stub in section PLT, for relocation REL
2616 or (bfd_vma) -1 if it should not be included. */
2619 riscv_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
2620 const arelent
*rel ATTRIBUTE_UNUSED
)
2622 return plt
->vma
+ PLT_HEADER_SIZE
+ i
* PLT_ENTRY_SIZE
;
2625 static enum elf_reloc_type_class
2626 riscv_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2627 const asection
*rel_sec ATTRIBUTE_UNUSED
,
2628 const Elf_Internal_Rela
*rela
)
2630 switch (ELFNN_R_TYPE (rela
->r_info
))
2632 case R_RISCV_RELATIVE
:
2633 return reloc_class_relative
;
2634 case R_RISCV_JUMP_SLOT
:
2635 return reloc_class_plt
;
2637 return reloc_class_copy
;
2639 return reloc_class_normal
;
2643 /* Given the ELF header flags in FLAGS, it returns a string that describes the
2647 riscv_float_abi_string (flagword flags
)
2649 switch (flags
& EF_RISCV_FLOAT_ABI
)
2651 case EF_RISCV_FLOAT_ABI_SOFT
:
2652 return "soft-float";
2654 case EF_RISCV_FLOAT_ABI_SINGLE
:
2655 return "single-float";
2657 case EF_RISCV_FLOAT_ABI_DOUBLE
:
2658 return "double-float";
2660 case EF_RISCV_FLOAT_ABI_QUAD
:
2661 return "quad-float";
2668 /* The information of architecture attribute. */
2669 static riscv_subset_list_t in_subsets
;
2670 static riscv_subset_list_t out_subsets
;
2671 static riscv_subset_list_t merged_subsets
;
2673 /* Predicator for standard extension. */
2676 riscv_std_ext_p (const char *name
)
2678 return (strlen (name
) == 1) && (name
[0] != 'x') && (name
[0] != 's');
2681 /* Predicator for non-standard extension. */
2684 riscv_non_std_ext_p (const char *name
)
2686 return (strlen (name
) >= 2) && (name
[0] == 'x');
2689 /* Predicator for standard supervisor extension. */
2692 riscv_std_sv_ext_p (const char *name
)
2694 return (strlen (name
) >= 2) && (name
[0] == 's') && (name
[1] != 'x');
2697 /* Predicator for non-standard supervisor extension. */
2700 riscv_non_std_sv_ext_p (const char *name
)
2702 return (strlen (name
) >= 3) && (name
[0] == 's') && (name
[1] == 'x');
2705 /* Error handler when version mis-match. */
2708 riscv_version_mismatch (bfd
*ibfd
,
2709 struct riscv_subset_t
*in
,
2710 struct riscv_subset_t
*out
)
2713 (_("error: %pB: Mis-matched ISA version for '%s' extension. "
2716 in
->major_version
, in
->minor_version
,
2717 out
->major_version
, out
->minor_version
);
2720 /* Return true if subset is 'i' or 'e'. */
2723 riscv_i_or_e_p (bfd
*ibfd
,
2725 struct riscv_subset_t
*subset
)
2727 if ((strcasecmp (subset
->name
, "e") != 0)
2728 && (strcasecmp (subset
->name
, "i") != 0))
2731 (_("error: %pB: corrupted ISA string '%s'. "
2732 "First letter should be 'i' or 'e' but got '%s'."),
2733 ibfd
, arch
, subset
->name
);
2739 /* Merge standard extensions.
2742 Return FALSE if failed to merge.
2746 `in_arch`: Raw arch string for input object.
2747 `out_arch`: Raw arch string for output object.
2748 `pin`: subset list for input object, and it'll skip all merged subset after
2750 `pout`: Like `pin`, but for output object. */
2753 riscv_merge_std_ext (bfd
*ibfd
,
2754 const char *in_arch
,
2755 const char *out_arch
,
2756 struct riscv_subset_t
**pin
,
2757 struct riscv_subset_t
**pout
)
2759 const char *standard_exts
= riscv_supported_std_ext ();
2761 struct riscv_subset_t
*in
= *pin
;
2762 struct riscv_subset_t
*out
= *pout
;
2764 /* First letter should be 'i' or 'e'. */
2765 if (!riscv_i_or_e_p (ibfd
, in_arch
, in
))
2768 if (!riscv_i_or_e_p (ibfd
, out_arch
, out
))
2771 if (in
->name
[0] != out
->name
[0])
2773 /* TODO: We might allow merge 'i' with 'e'. */
2775 (_("error: %pB: Mis-matched ISA string to merge '%s' and '%s'."),
2776 ibfd
, in
->name
, out
->name
);
2779 else if ((in
->major_version
!= out
->major_version
) ||
2780 (in
->minor_version
!= out
->minor_version
))
2782 /* TODO: Allow different merge policy. */
2783 riscv_version_mismatch (ibfd
, in
, out
);
2787 riscv_add_subset (&merged_subsets
,
2788 in
->name
, in
->major_version
, in
->minor_version
);
2793 /* Handle standard extension first. */
2794 for (p
= standard_exts
; *p
; ++p
)
2796 char find_ext
[2] = {*p
, '\0'};
2797 struct riscv_subset_t
*find_in
=
2798 riscv_lookup_subset (&in_subsets
, find_ext
);
2799 struct riscv_subset_t
*find_out
=
2800 riscv_lookup_subset (&out_subsets
, find_ext
);
2802 if (find_in
== NULL
&& find_out
== NULL
)
2805 /* Check version is same or not. */
2806 /* TODO: Allow different merge policy. */
2807 if ((find_in
!= NULL
&& find_out
!= NULL
)
2808 && ((find_in
->major_version
!= find_out
->major_version
)
2809 || (find_in
->minor_version
!= find_out
->minor_version
)))
2811 riscv_version_mismatch (ibfd
, in
, out
);
2815 struct riscv_subset_t
*merged
= find_in
? find_in
: find_out
;
2816 riscv_add_subset (&merged_subsets
, merged
->name
,
2817 merged
->major_version
, merged
->minor_version
);
2820 /* Skip all standard extensions. */
2821 while ((in
!= NULL
) && riscv_std_ext_p (in
->name
)) in
= in
->next
;
2822 while ((out
!= NULL
) && riscv_std_ext_p (out
->name
)) out
= out
->next
;
2830 /* Merge non-standard and supervisor extensions.
2832 Return FALSE if failed to merge.
2836 `in_arch`: Raw arch string for input object.
2837 `out_arch`: Raw arch string for output object.
2838 `pin`: subset list for input object, and it'll skip all merged subset after
2840 `pout`: Like `pin`, but for output object. */
2843 riscv_merge_non_std_and_sv_ext (bfd
*ibfd
,
2844 riscv_subset_t
**pin
,
2845 riscv_subset_t
**pout
,
2846 bfd_boolean (*predicate_func
) (const char *))
2848 riscv_subset_t
*in
= *pin
;
2849 riscv_subset_t
*out
= *pout
;
2851 for (in
= *pin
; in
!= NULL
&& predicate_func (in
->name
); in
= in
->next
)
2852 riscv_add_subset (&merged_subsets
, in
->name
, in
->major_version
,
2855 for (out
= *pout
; out
!= NULL
&& predicate_func (out
->name
); out
= out
->next
)
2857 riscv_subset_t
*find_ext
=
2858 riscv_lookup_subset (&merged_subsets
, out
->name
);
2859 if (find_ext
!= NULL
)
2861 /* Check version is same or not. */
2862 /* TODO: Allow different merge policy. */
2863 if ((find_ext
->major_version
!= out
->major_version
)
2864 || (find_ext
->minor_version
!= out
->minor_version
))
2866 riscv_version_mismatch (ibfd
, find_ext
, out
);
2871 riscv_add_subset (&merged_subsets
, out
->name
,
2872 out
->major_version
, out
->minor_version
);
2880 /* Merge Tag_RISCV_arch attribute. */
2883 riscv_merge_arch_attr_info (bfd
*ibfd
, char *in_arch
, char *out_arch
)
2885 riscv_subset_t
*in
, *out
;
2886 char *merged_arch_str
;
2888 unsigned xlen_in
, xlen_out
;
2889 merged_subsets
.head
= NULL
;
2890 merged_subsets
.tail
= NULL
;
2892 riscv_parse_subset_t rpe_in
;
2893 riscv_parse_subset_t rpe_out
;
2895 rpe_in
.subset_list
= &in_subsets
;
2896 rpe_in
.error_handler
= _bfd_error_handler
;
2897 rpe_in
.xlen
= &xlen_in
;
2899 rpe_out
.subset_list
= &out_subsets
;
2900 rpe_out
.error_handler
= _bfd_error_handler
;
2901 rpe_out
.xlen
= &xlen_out
;
2903 if (in_arch
== NULL
&& out_arch
== NULL
)
2906 if (in_arch
== NULL
&& out_arch
!= NULL
)
2909 if (in_arch
!= NULL
&& out_arch
== NULL
)
2912 /* Parse subset from arch string. */
2913 if (!riscv_parse_subset (&rpe_in
, in_arch
))
2916 if (!riscv_parse_subset (&rpe_out
, out_arch
))
2919 /* Checking XLEN. */
2920 if (xlen_out
!= xlen_in
)
2923 (_("error: %pB: ISA string of input (%s) doesn't match "
2924 "output (%s)."), ibfd
, in_arch
, out_arch
);
2928 /* Merge subset list. */
2929 in
= in_subsets
.head
;
2930 out
= out_subsets
.head
;
2932 /* Merge standard extension. */
2933 if (!riscv_merge_std_ext (ibfd
, in_arch
, out_arch
, &in
, &out
))
2935 /* Merge non-standard extension. */
2936 if (!riscv_merge_non_std_and_sv_ext (ibfd
, &in
, &out
, riscv_non_std_ext_p
))
2938 /* Merge standard supervisor extension. */
2939 if (!riscv_merge_non_std_and_sv_ext (ibfd
, &in
, &out
, riscv_std_sv_ext_p
))
2941 /* Merge non-standard supervisor extension. */
2942 if (!riscv_merge_non_std_and_sv_ext (ibfd
, &in
, &out
, riscv_non_std_sv_ext_p
))
2945 if (xlen_in
!= xlen_out
)
2948 (_("error: %pB: XLEN of input (%u) doesn't match "
2949 "output (%u)."), ibfd
, xlen_in
, xlen_out
);
2953 if (xlen_in
!= ARCH_SIZE
)
2956 (_("error: %pB: Unsupported XLEN (%u), you might be "
2957 "using wrong emulation."), ibfd
, xlen_in
);
2961 merged_arch_str
= riscv_arch_str (ARCH_SIZE
, &merged_subsets
);
2963 /* Release the subset lists. */
2964 riscv_release_subset_list (&in_subsets
);
2965 riscv_release_subset_list (&out_subsets
);
2966 riscv_release_subset_list (&merged_subsets
);
2968 return merged_arch_str
;
2971 /* Merge object attributes from IBFD into output_bfd of INFO.
2972 Raise an error if there are conflicting attributes. */
2975 riscv_merge_attributes (bfd
*ibfd
, struct bfd_link_info
*info
)
2977 bfd
*obfd
= info
->output_bfd
;
2978 obj_attribute
*in_attr
;
2979 obj_attribute
*out_attr
;
2980 bfd_boolean result
= TRUE
;
2981 const char *sec_name
= get_elf_backend_data (ibfd
)->obj_attrs_section
;
2984 /* Skip linker created files. */
2985 if (ibfd
->flags
& BFD_LINKER_CREATED
)
2988 /* Skip any input that doesn't have an attribute section.
2989 This enables to link object files without attribute section with
2991 if (bfd_get_section_by_name (ibfd
, sec_name
) == NULL
)
2994 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
2996 /* This is the first object. Copy the attributes. */
2997 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
2999 out_attr
= elf_known_obj_attributes_proc (obfd
);
3001 /* Use the Tag_null value to indicate the attributes have been
3008 in_attr
= elf_known_obj_attributes_proc (ibfd
);
3009 out_attr
= elf_known_obj_attributes_proc (obfd
);
3011 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
3015 case Tag_RISCV_arch
:
3016 if (!out_attr
[Tag_RISCV_arch
].s
)
3017 out_attr
[Tag_RISCV_arch
].s
= in_attr
[Tag_RISCV_arch
].s
;
3018 else if (in_attr
[Tag_RISCV_arch
].s
3019 && out_attr
[Tag_RISCV_arch
].s
)
3021 /* Check arch compatible. */
3023 riscv_merge_arch_attr_info (ibfd
,
3024 in_attr
[Tag_RISCV_arch
].s
,
3025 out_attr
[Tag_RISCV_arch
].s
);
3026 if (merged_arch
== NULL
)
3029 out_attr
[Tag_RISCV_arch
].s
= "";
3032 out_attr
[Tag_RISCV_arch
].s
= merged_arch
;
3035 case Tag_RISCV_priv_spec
:
3036 case Tag_RISCV_priv_spec_minor
:
3037 case Tag_RISCV_priv_spec_revision
:
3038 if (out_attr
[i
].i
!= in_attr
[i
].i
)
3041 (_("error: %pB: conflicting priv spec version "
3042 "(major/minor/revision)."), ibfd
);
3046 case Tag_RISCV_unaligned_access
:
3047 out_attr
[i
].i
|= in_attr
[i
].i
;
3049 case Tag_RISCV_stack_align
:
3050 if (out_attr
[i
].i
== 0)
3051 out_attr
[i
].i
= in_attr
[i
].i
;
3052 else if (in_attr
[i
].i
!= 0
3053 && out_attr
[i
].i
!= 0
3054 && out_attr
[i
].i
!= in_attr
[i
].i
)
3057 (_("error: %pB use %u-byte stack aligned but the output "
3058 "use %u-byte stack aligned."),
3059 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
3064 result
&= _bfd_elf_merge_unknown_attribute_low (ibfd
, obfd
, i
);
3067 /* If out_attr was copied from in_attr then it won't have a type yet. */
3068 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
3069 out_attr
[i
].type
= in_attr
[i
].type
;
3072 /* Merge Tag_compatibility attributes and any common GNU ones. */
3073 if (!_bfd_elf_merge_object_attributes (ibfd
, info
))
3076 /* Check for any attributes not known on RISC-V. */
3077 result
&= _bfd_elf_merge_unknown_attribute_list (ibfd
, obfd
);
3082 /* Merge backend specific data from an object file to the output
3083 object file when linking. */
3086 _bfd_riscv_elf_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
3088 bfd
*obfd
= info
->output_bfd
;
3089 flagword new_flags
, old_flags
;
3091 if (!is_riscv_elf (ibfd
) || !is_riscv_elf (obfd
))
3094 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
3096 (*_bfd_error_handler
)
3097 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
3098 " target emulation `%s' does not match `%s'"),
3099 ibfd
, bfd_get_target (ibfd
), bfd_get_target (obfd
));
3103 if (!_bfd_elf_merge_object_attributes (ibfd
, info
))
3106 if (!riscv_merge_attributes (ibfd
, info
))
3109 new_flags
= elf_elfheader (ibfd
)->e_flags
;
3110 old_flags
= elf_elfheader (obfd
)->e_flags
;
3112 if (! elf_flags_init (obfd
))
3114 elf_flags_init (obfd
) = TRUE
;
3115 elf_elfheader (obfd
)->e_flags
= new_flags
;
3119 /* Check to see if the input BFD actually contains any sections. If not,
3120 its flags may not have been initialized either, but it cannot actually
3121 cause any incompatibility. Do not short-circuit dynamic objects; their
3122 section list may be emptied by elf_link_add_object_symbols.
3124 Also check to see if there are no code sections in the input. In this
3125 case, there is no need to check for code specific flags. */
3126 if (!(ibfd
->flags
& DYNAMIC
))
3128 bfd_boolean null_input_bfd
= TRUE
;
3129 bfd_boolean only_data_sections
= TRUE
;
3132 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3134 if ((bfd_get_section_flags (ibfd
, sec
)
3135 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
3136 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
3137 only_data_sections
= FALSE
;
3139 null_input_bfd
= FALSE
;
3143 if (null_input_bfd
|| only_data_sections
)
3147 /* Disallow linking different float ABIs. */
3148 if ((old_flags
^ new_flags
) & EF_RISCV_FLOAT_ABI
)
3150 (*_bfd_error_handler
)
3151 (_("%pB: can't link %s modules with %s modules"), ibfd
,
3152 riscv_float_abi_string (new_flags
),
3153 riscv_float_abi_string (old_flags
));
3157 /* Disallow linking RVE and non-RVE. */
3158 if ((old_flags
^ new_flags
) & EF_RISCV_RVE
)
3160 (*_bfd_error_handler
)
3161 (_("%pB: can't link RVE with other target"), ibfd
);
3165 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
3166 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_RISCV_RVC
;
3171 bfd_set_error (bfd_error_bad_value
);
3175 /* Delete some bytes from a section while relaxing. */
3178 riscv_relax_delete_bytes (bfd
*abfd
, asection
*sec
, bfd_vma addr
, size_t count
,
3179 struct bfd_link_info
*link_info
)
3181 unsigned int i
, symcount
;
3182 bfd_vma toaddr
= sec
->size
;
3183 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (abfd
);
3184 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3185 unsigned int sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
3186 struct bfd_elf_section_data
*data
= elf_section_data (sec
);
3187 bfd_byte
*contents
= data
->this_hdr
.contents
;
3189 /* Actually delete the bytes. */
3191 memmove (contents
+ addr
, contents
+ addr
+ count
, toaddr
- addr
- count
);
3193 /* Adjust the location of all of the relocs. Note that we need not
3194 adjust the addends, since all PC-relative references must be against
3195 symbols, which we will adjust below. */
3196 for (i
= 0; i
< sec
->reloc_count
; i
++)
3197 if (data
->relocs
[i
].r_offset
> addr
&& data
->relocs
[i
].r_offset
< toaddr
)
3198 data
->relocs
[i
].r_offset
-= count
;
3200 /* Adjust the local symbols defined in this section. */
3201 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
3203 Elf_Internal_Sym
*sym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
+ i
;
3204 if (sym
->st_shndx
== sec_shndx
)
3206 /* If the symbol is in the range of memory we just moved, we
3207 have to adjust its value. */
3208 if (sym
->st_value
> addr
&& sym
->st_value
<= toaddr
)
3209 sym
->st_value
-= count
;
3211 /* If the symbol *spans* the bytes we just deleted (i.e. its
3212 *end* is in the moved bytes but its *start* isn't), then we
3213 must adjust its size.
3215 This test needs to use the original value of st_value, otherwise
3216 we might accidentally decrease size when deleting bytes right
3217 before the symbol. But since deleted relocs can't span across
3218 symbols, we can't have both a st_value and a st_size decrease,
3219 so it is simpler to just use an else. */
3220 else if (sym
->st_value
<= addr
3221 && sym
->st_value
+ sym
->st_size
> addr
3222 && sym
->st_value
+ sym
->st_size
<= toaddr
)
3223 sym
->st_size
-= count
;
3227 /* Now adjust the global symbols defined in this section. */
3228 symcount
= ((symtab_hdr
->sh_size
/ sizeof (ElfNN_External_Sym
))
3229 - symtab_hdr
->sh_info
);
3231 for (i
= 0; i
< symcount
; i
++)
3233 struct elf_link_hash_entry
*sym_hash
= sym_hashes
[i
];
3235 /* The '--wrap SYMBOL' option is causing a pain when the object file,
3236 containing the definition of __wrap_SYMBOL, includes a direct
3237 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
3238 the same symbol (which is __wrap_SYMBOL), but still exist as two
3239 different symbols in 'sym_hashes', we don't want to adjust
3240 the global symbol __wrap_SYMBOL twice. */
3241 /* The same problem occurs with symbols that are versioned_hidden, as
3242 foo becomes an alias for foo@BAR, and hence they need the same
3244 if (link_info
->wrap_hash
!= NULL
3245 || sym_hash
->versioned
== versioned_hidden
)
3247 struct elf_link_hash_entry
**cur_sym_hashes
;
3249 /* Loop only over the symbols which have already been checked. */
3250 for (cur_sym_hashes
= sym_hashes
; cur_sym_hashes
< &sym_hashes
[i
];
3253 /* If the current symbol is identical to 'sym_hash', that means
3254 the symbol was already adjusted (or at least checked). */
3255 if (*cur_sym_hashes
== sym_hash
)
3258 /* Don't adjust the symbol again. */
3259 if (cur_sym_hashes
< &sym_hashes
[i
])
3263 if ((sym_hash
->root
.type
== bfd_link_hash_defined
3264 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
3265 && sym_hash
->root
.u
.def
.section
== sec
)
3267 /* As above, adjust the value if needed. */
3268 if (sym_hash
->root
.u
.def
.value
> addr
3269 && sym_hash
->root
.u
.def
.value
<= toaddr
)
3270 sym_hash
->root
.u
.def
.value
-= count
;
3272 /* As above, adjust the size if needed. */
3273 else if (sym_hash
->root
.u
.def
.value
<= addr
3274 && sym_hash
->root
.u
.def
.value
+ sym_hash
->size
> addr
3275 && sym_hash
->root
.u
.def
.value
+ sym_hash
->size
<= toaddr
)
3276 sym_hash
->size
-= count
;
3283 /* A second format for recording PC-relative hi relocations. This stores the
3284 information required to relax them to GP-relative addresses. */
3286 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc
;
3287 struct riscv_pcgp_hi_reloc
3294 riscv_pcgp_hi_reloc
*next
;
3297 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc
;
3298 struct riscv_pcgp_lo_reloc
3301 riscv_pcgp_lo_reloc
*next
;
3306 riscv_pcgp_hi_reloc
*hi
;
3307 riscv_pcgp_lo_reloc
*lo
;
3308 } riscv_pcgp_relocs
;
3310 /* Initialize the pcgp reloc info in P. */
3313 riscv_init_pcgp_relocs (riscv_pcgp_relocs
*p
)
3320 /* Free the pcgp reloc info in P. */
3323 riscv_free_pcgp_relocs (riscv_pcgp_relocs
*p
,
3324 bfd
*abfd ATTRIBUTE_UNUSED
,
3325 asection
*sec ATTRIBUTE_UNUSED
)
3327 riscv_pcgp_hi_reloc
*c
;
3328 riscv_pcgp_lo_reloc
*l
;
3330 for (c
= p
->hi
; c
!= NULL
;)
3332 riscv_pcgp_hi_reloc
*next
= c
->next
;
3337 for (l
= p
->lo
; l
!= NULL
;)
3339 riscv_pcgp_lo_reloc
*next
= l
->next
;
3345 /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
3346 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
3347 relax the corresponding lo part reloc. */
3350 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs
*p
, bfd_vma hi_sec_off
,
3351 bfd_vma hi_addend
, bfd_vma hi_addr
,
3352 unsigned hi_sym
, asection
*sym_sec
)
3354 riscv_pcgp_hi_reloc
*new = bfd_malloc (sizeof(*new));
3357 new->hi_sec_off
= hi_sec_off
;
3358 new->hi_addend
= hi_addend
;
3359 new->hi_addr
= hi_addr
;
3360 new->hi_sym
= hi_sym
;
3361 new->sym_sec
= sym_sec
;
3367 /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3368 This is used by a lo part reloc to find the corresponding hi part reloc. */
3370 static riscv_pcgp_hi_reloc
*
3371 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs
*p
, bfd_vma hi_sec_off
)
3373 riscv_pcgp_hi_reloc
*c
;
3375 for (c
= p
->hi
; c
!= NULL
; c
= c
->next
)
3376 if (c
->hi_sec_off
== hi_sec_off
)
3381 /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
3382 This is used to record relocs that can't be relaxed. */
3385 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs
*p
, bfd_vma hi_sec_off
)
3387 riscv_pcgp_lo_reloc
*new = bfd_malloc (sizeof(*new));
3390 new->hi_sec_off
= hi_sec_off
;
3396 /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3397 This is used by a hi part reloc to find the corresponding lo part reloc. */
3400 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs
*p
, bfd_vma hi_sec_off
)
3402 riscv_pcgp_lo_reloc
*c
;
3404 for (c
= p
->lo
; c
!= NULL
; c
= c
->next
)
3405 if (c
->hi_sec_off
== hi_sec_off
)
3410 typedef bfd_boolean (*relax_func_t
) (bfd
*, asection
*, asection
*,
3411 struct bfd_link_info
*,
3412 Elf_Internal_Rela
*,
3413 bfd_vma
, bfd_vma
, bfd_vma
, bfd_boolean
*,
3414 riscv_pcgp_relocs
*);
3416 /* Relax AUIPC + JALR into JAL. */
3419 _bfd_riscv_relax_call (bfd
*abfd
, asection
*sec
, asection
*sym_sec
,
3420 struct bfd_link_info
*link_info
,
3421 Elf_Internal_Rela
*rel
,
3423 bfd_vma max_alignment
,
3424 bfd_vma reserve_size ATTRIBUTE_UNUSED
,
3426 riscv_pcgp_relocs
*pcgp_relocs ATTRIBUTE_UNUSED
)
3428 bfd_byte
*contents
= elf_section_data (sec
)->this_hdr
.contents
;
3429 bfd_signed_vma foff
= symval
- (sec_addr (sec
) + rel
->r_offset
);
3430 bfd_boolean near_zero
= (symval
+ RISCV_IMM_REACH
/2) < RISCV_IMM_REACH
;
3431 bfd_vma auipc
, jalr
;
3432 int rd
, r_type
, len
= 4, rvc
= elf_elfheader (abfd
)->e_flags
& EF_RISCV_RVC
;
3434 /* If the call crosses section boundaries, an alignment directive could
3435 cause the PC-relative offset to later increase. */
3436 if (VALID_UJTYPE_IMM (foff
) && sym_sec
->output_section
!= sec
->output_section
)
3437 foff
+= (foff
< 0 ? -max_alignment
: max_alignment
);
3439 /* See if this function call can be shortened. */
3440 if (!VALID_UJTYPE_IMM (foff
) && !(!bfd_link_pic (link_info
) && near_zero
))
3443 /* Shorten the function call. */
3444 BFD_ASSERT (rel
->r_offset
+ 8 <= sec
->size
);
3446 auipc
= bfd_get_32 (abfd
, contents
+ rel
->r_offset
);
3447 jalr
= bfd_get_32 (abfd
, contents
+ rel
->r_offset
+ 4);
3448 rd
= (jalr
>> OP_SH_RD
) & OP_MASK_RD
;
3449 rvc
= rvc
&& VALID_RVC_J_IMM (foff
);
3451 /* C.J exists on RV32 and RV64, but C.JAL is RV32-only. */
3452 rvc
= rvc
&& (rd
== 0 || (rd
== X_RA
&& ARCH_SIZE
== 32));
3456 /* Relax to C.J[AL] rd, addr. */
3457 r_type
= R_RISCV_RVC_JUMP
;
3458 auipc
= rd
== 0 ? MATCH_C_J
: MATCH_C_JAL
;
3461 else if (VALID_UJTYPE_IMM (foff
))
3463 /* Relax to JAL rd, addr. */
3464 r_type
= R_RISCV_JAL
;
3465 auipc
= MATCH_JAL
| (rd
<< OP_SH_RD
);
3467 else /* near_zero */
3469 /* Relax to JALR rd, x0, addr. */
3470 r_type
= R_RISCV_LO12_I
;
3471 auipc
= MATCH_JALR
| (rd
<< OP_SH_RD
);
3474 /* Replace the R_RISCV_CALL reloc. */
3475 rel
->r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
), r_type
);
3476 /* Replace the AUIPC. */
3477 bfd_put (8 * len
, abfd
, auipc
, contents
+ rel
->r_offset
);
3479 /* Delete unnecessary JALR. */
3481 return riscv_relax_delete_bytes (abfd
, sec
, rel
->r_offset
+ len
, 8 - len
,
3485 /* Traverse all output sections and return the max alignment. */
3488 _bfd_riscv_get_max_alignment (asection
*sec
)
3490 unsigned int max_alignment_power
= 0;
3493 for (o
= sec
->output_section
->owner
->sections
; o
!= NULL
; o
= o
->next
)
3495 if (o
->alignment_power
> max_alignment_power
)
3496 max_alignment_power
= o
->alignment_power
;
3499 return (bfd_vma
) 1 << max_alignment_power
;
3502 /* Relax non-PIC global variable references. */
3505 _bfd_riscv_relax_lui (bfd
*abfd
,
3508 struct bfd_link_info
*link_info
,
3509 Elf_Internal_Rela
*rel
,
3511 bfd_vma max_alignment
,
3512 bfd_vma reserve_size
,
3514 riscv_pcgp_relocs
*pcgp_relocs ATTRIBUTE_UNUSED
)
3516 bfd_byte
*contents
= elf_section_data (sec
)->this_hdr
.contents
;
3517 bfd_vma gp
= riscv_global_pointer_value (link_info
);
3518 int use_rvc
= elf_elfheader (abfd
)->e_flags
& EF_RISCV_RVC
;
3520 /* Mergeable symbols and code might later move out of range. */
3521 if (sym_sec
->flags
& (SEC_MERGE
| SEC_CODE
))
3524 BFD_ASSERT (rel
->r_offset
+ 4 <= sec
->size
);
3528 /* If gp and the symbol are in the same output section, then
3529 consider only that section's alignment. */
3530 struct bfd_link_hash_entry
*h
=
3531 bfd_link_hash_lookup (link_info
->hash
, RISCV_GP_SYMBOL
, FALSE
, FALSE
,
3533 if (h
->u
.def
.section
->output_section
== sym_sec
->output_section
)
3534 max_alignment
= (bfd_vma
) 1 << sym_sec
->output_section
->alignment_power
;
3537 /* Is the reference in range of x0 or gp?
3538 Valid gp range conservatively because of alignment issue. */
3539 if (VALID_ITYPE_IMM (symval
)
3541 && VALID_ITYPE_IMM (symval
- gp
+ max_alignment
+ reserve_size
))
3543 && VALID_ITYPE_IMM (symval
- gp
- max_alignment
- reserve_size
)))
3545 unsigned sym
= ELFNN_R_SYM (rel
->r_info
);
3546 switch (ELFNN_R_TYPE (rel
->r_info
))
3548 case R_RISCV_LO12_I
:
3549 rel
->r_info
= ELFNN_R_INFO (sym
, R_RISCV_GPREL_I
);
3552 case R_RISCV_LO12_S
:
3553 rel
->r_info
= ELFNN_R_INFO (sym
, R_RISCV_GPREL_S
);
3557 /* We can delete the unnecessary LUI and reloc. */
3558 rel
->r_info
= ELFNN_R_INFO (0, R_RISCV_NONE
);
3560 return riscv_relax_delete_bytes (abfd
, sec
, rel
->r_offset
, 4,
3568 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3569 account for this assuming page alignment at worst. */
3571 && ELFNN_R_TYPE (rel
->r_info
) == R_RISCV_HI20
3572 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval
))
3573 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval
+ ELF_MAXPAGESIZE
)))
3575 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
3576 bfd_vma lui
= bfd_get_32 (abfd
, contents
+ rel
->r_offset
);
3577 unsigned rd
= ((unsigned)lui
>> OP_SH_RD
) & OP_MASK_RD
;
3578 if (rd
== 0 || rd
== X_SP
)
3581 lui
= (lui
& (OP_MASK_RD
<< OP_SH_RD
)) | MATCH_C_LUI
;
3582 bfd_put_32 (abfd
, lui
, contents
+ rel
->r_offset
);
3584 /* Replace the R_RISCV_HI20 reloc. */
3585 rel
->r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
), R_RISCV_RVC_LUI
);
3588 return riscv_relax_delete_bytes (abfd
, sec
, rel
->r_offset
+ 2, 2,
3595 /* Relax non-PIC TLS references. */
3598 _bfd_riscv_relax_tls_le (bfd
*abfd
,
3600 asection
*sym_sec ATTRIBUTE_UNUSED
,
3601 struct bfd_link_info
*link_info
,
3602 Elf_Internal_Rela
*rel
,
3604 bfd_vma max_alignment ATTRIBUTE_UNUSED
,
3605 bfd_vma reserve_size ATTRIBUTE_UNUSED
,
3607 riscv_pcgp_relocs
*prcel_relocs ATTRIBUTE_UNUSED
)
3609 /* See if this symbol is in range of tp. */
3610 if (RISCV_CONST_HIGH_PART (tpoff (link_info
, symval
)) != 0)
3613 BFD_ASSERT (rel
->r_offset
+ 4 <= sec
->size
);
3614 switch (ELFNN_R_TYPE (rel
->r_info
))
3616 case R_RISCV_TPREL_LO12_I
:
3617 rel
->r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
), R_RISCV_TPREL_I
);
3620 case R_RISCV_TPREL_LO12_S
:
3621 rel
->r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
), R_RISCV_TPREL_S
);
3624 case R_RISCV_TPREL_HI20
:
3625 case R_RISCV_TPREL_ADD
:
3626 /* We can delete the unnecessary instruction and reloc. */
3627 rel
->r_info
= ELFNN_R_INFO (0, R_RISCV_NONE
);
3629 return riscv_relax_delete_bytes (abfd
, sec
, rel
->r_offset
, 4, link_info
);
3636 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3639 _bfd_riscv_relax_align (bfd
*abfd
, asection
*sec
,
3641 struct bfd_link_info
*link_info
,
3642 Elf_Internal_Rela
*rel
,
3644 bfd_vma max_alignment ATTRIBUTE_UNUSED
,
3645 bfd_vma reserve_size ATTRIBUTE_UNUSED
,
3646 bfd_boolean
*again ATTRIBUTE_UNUSED
,
3647 riscv_pcgp_relocs
*pcrel_relocs ATTRIBUTE_UNUSED
)
3649 bfd_byte
*contents
= elf_section_data (sec
)->this_hdr
.contents
;
3650 bfd_vma alignment
= 1, pos
;
3651 while (alignment
<= rel
->r_addend
)
3654 symval
-= rel
->r_addend
;
3655 bfd_vma aligned_addr
= ((symval
- 1) & ~(alignment
- 1)) + alignment
;
3656 bfd_vma nop_bytes
= aligned_addr
- symval
;
3658 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3659 sec
->sec_flg0
= TRUE
;
3661 /* Make sure there are enough NOPs to actually achieve the alignment. */
3662 if (rel
->r_addend
< nop_bytes
)
3665 (_("%pB(%pA+%#" PRIx64
"): %" PRId64
" bytes required for alignment "
3666 "to %" PRId64
"-byte boundary, but only %" PRId64
" present"),
3667 abfd
, sym_sec
, (uint64_t) rel
->r_offset
,
3668 (int64_t) nop_bytes
, (int64_t) alignment
, (int64_t) rel
->r_addend
);
3669 bfd_set_error (bfd_error_bad_value
);
3673 /* Delete the reloc. */
3674 rel
->r_info
= ELFNN_R_INFO (0, R_RISCV_NONE
);
3676 /* If the number of NOPs is already correct, there's nothing to do. */
3677 if (nop_bytes
== rel
->r_addend
)
3680 /* Write as many RISC-V NOPs as we need. */
3681 for (pos
= 0; pos
< (nop_bytes
& -4); pos
+= 4)
3682 bfd_put_32 (abfd
, RISCV_NOP
, contents
+ rel
->r_offset
+ pos
);
3684 /* Write a final RVC NOP if need be. */
3685 if (nop_bytes
% 4 != 0)
3686 bfd_put_16 (abfd
, RVC_NOP
, contents
+ rel
->r_offset
+ pos
);
3688 /* Delete the excess bytes. */
3689 return riscv_relax_delete_bytes (abfd
, sec
, rel
->r_offset
+ nop_bytes
,
3690 rel
->r_addend
- nop_bytes
, link_info
);
3693 /* Relax PC-relative references to GP-relative references. */
3696 _bfd_riscv_relax_pc (bfd
*abfd ATTRIBUTE_UNUSED
,
3699 struct bfd_link_info
*link_info
,
3700 Elf_Internal_Rela
*rel
,
3702 bfd_vma max_alignment
,
3703 bfd_vma reserve_size
,
3704 bfd_boolean
*again ATTRIBUTE_UNUSED
,
3705 riscv_pcgp_relocs
*pcgp_relocs
)
3707 bfd_vma gp
= riscv_global_pointer_value (link_info
);
3709 BFD_ASSERT (rel
->r_offset
+ 4 <= sec
->size
);
3711 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3712 * actual target address. */
3713 riscv_pcgp_hi_reloc hi_reloc
;
3714 memset (&hi_reloc
, 0, sizeof (hi_reloc
));
3715 switch (ELFNN_R_TYPE (rel
->r_info
))
3717 case R_RISCV_PCREL_LO12_I
:
3718 case R_RISCV_PCREL_LO12_S
:
3720 /* If the %lo has an addend, it isn't for the label pointing at the
3721 hi part instruction, but rather for the symbol pointed at by the
3722 hi part instruction. So we must subtract it here for the lookup.
3723 It is still used below in the final symbol address. */
3724 bfd_vma hi_sec_off
= symval
- sec_addr (sym_sec
) - rel
->r_addend
;
3725 riscv_pcgp_hi_reloc
*hi
= riscv_find_pcgp_hi_reloc (pcgp_relocs
,
3729 riscv_record_pcgp_lo_reloc (pcgp_relocs
, hi_sec_off
);
3734 symval
= hi_reloc
.hi_addr
;
3735 sym_sec
= hi_reloc
.sym_sec
;
3739 case R_RISCV_PCREL_HI20
:
3740 /* Mergeable symbols and code might later move out of range. */
3741 if (sym_sec
->flags
& (SEC_MERGE
| SEC_CODE
))
3744 /* If the cooresponding lo relocation has already been seen then it's not
3745 * safe to relax this relocation. */
3746 if (riscv_find_pcgp_lo_reloc (pcgp_relocs
, rel
->r_offset
))
3757 /* If gp and the symbol are in the same output section, then
3758 consider only that section's alignment. */
3759 struct bfd_link_hash_entry
*h
=
3760 bfd_link_hash_lookup (link_info
->hash
, RISCV_GP_SYMBOL
, FALSE
, FALSE
, TRUE
);
3761 if (h
->u
.def
.section
->output_section
== sym_sec
->output_section
)
3762 max_alignment
= (bfd_vma
) 1 << sym_sec
->output_section
->alignment_power
;
3765 /* Is the reference in range of x0 or gp?
3766 Valid gp range conservatively because of alignment issue. */
3767 if (VALID_ITYPE_IMM (symval
)
3769 && VALID_ITYPE_IMM (symval
- gp
+ max_alignment
+ reserve_size
))
3771 && VALID_ITYPE_IMM (symval
- gp
- max_alignment
- reserve_size
)))
3773 unsigned sym
= hi_reloc
.hi_sym
;
3774 switch (ELFNN_R_TYPE (rel
->r_info
))
3776 case R_RISCV_PCREL_LO12_I
:
3777 rel
->r_info
= ELFNN_R_INFO (sym
, R_RISCV_GPREL_I
);
3778 rel
->r_addend
+= hi_reloc
.hi_addend
;
3781 case R_RISCV_PCREL_LO12_S
:
3782 rel
->r_info
= ELFNN_R_INFO (sym
, R_RISCV_GPREL_S
);
3783 rel
->r_addend
+= hi_reloc
.hi_addend
;
3786 case R_RISCV_PCREL_HI20
:
3787 riscv_record_pcgp_hi_reloc (pcgp_relocs
,
3791 ELFNN_R_SYM(rel
->r_info
),
3793 /* We can delete the unnecessary AUIPC and reloc. */
3794 rel
->r_info
= ELFNN_R_INFO (0, R_RISCV_DELETE
);
3806 /* Relax PC-relative references to GP-relative references. */
3809 _bfd_riscv_relax_delete (bfd
*abfd
,
3811 asection
*sym_sec ATTRIBUTE_UNUSED
,
3812 struct bfd_link_info
*link_info
,
3813 Elf_Internal_Rela
*rel
,
3814 bfd_vma symval ATTRIBUTE_UNUSED
,
3815 bfd_vma max_alignment ATTRIBUTE_UNUSED
,
3816 bfd_vma reserve_size ATTRIBUTE_UNUSED
,
3817 bfd_boolean
*again ATTRIBUTE_UNUSED
,
3818 riscv_pcgp_relocs
*pcgp_relocs ATTRIBUTE_UNUSED
)
3820 if (!riscv_relax_delete_bytes(abfd
, sec
, rel
->r_offset
, rel
->r_addend
,
3823 rel
->r_info
= ELFNN_R_INFO(0, R_RISCV_NONE
);
3827 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3828 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3829 disabled, handles code alignment directives. */
3832 _bfd_riscv_relax_section (bfd
*abfd
, asection
*sec
,
3833 struct bfd_link_info
*info
,
3836 Elf_Internal_Shdr
*symtab_hdr
= &elf_symtab_hdr (abfd
);
3837 struct riscv_elf_link_hash_table
*htab
= riscv_elf_hash_table (info
);
3838 struct bfd_elf_section_data
*data
= elf_section_data (sec
);
3839 Elf_Internal_Rela
*relocs
;
3840 bfd_boolean ret
= FALSE
;
3842 bfd_vma max_alignment
, reserve_size
= 0;
3843 riscv_pcgp_relocs pcgp_relocs
;
3847 if (bfd_link_relocatable (info
)
3849 || (sec
->flags
& SEC_RELOC
) == 0
3850 || sec
->reloc_count
== 0
3851 || (info
->disable_target_specific_optimizations
3852 && info
->relax_pass
== 0))
3855 riscv_init_pcgp_relocs (&pcgp_relocs
);
3857 /* Read this BFD's relocs if we haven't done so already. */
3859 relocs
= data
->relocs
;
3860 else if (!(relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
3861 info
->keep_memory
)))
3866 max_alignment
= htab
->max_alignment
;
3867 if (max_alignment
== (bfd_vma
) -1)
3869 max_alignment
= _bfd_riscv_get_max_alignment (sec
);
3870 htab
->max_alignment
= max_alignment
;
3874 max_alignment
= _bfd_riscv_get_max_alignment (sec
);
3876 /* Examine and consider relaxing each reloc. */
3877 for (i
= 0; i
< sec
->reloc_count
; i
++)
3880 Elf_Internal_Rela
*rel
= relocs
+ i
;
3881 relax_func_t relax_func
;
3882 int type
= ELFNN_R_TYPE (rel
->r_info
);
3886 if (info
->relax_pass
== 0)
3888 if (type
== R_RISCV_CALL
|| type
== R_RISCV_CALL_PLT
)
3889 relax_func
= _bfd_riscv_relax_call
;
3890 else if (type
== R_RISCV_HI20
3891 || type
== R_RISCV_LO12_I
3892 || type
== R_RISCV_LO12_S
)
3893 relax_func
= _bfd_riscv_relax_lui
;
3894 else if (!bfd_link_pic(info
)
3895 && (type
== R_RISCV_PCREL_HI20
3896 || type
== R_RISCV_PCREL_LO12_I
3897 || type
== R_RISCV_PCREL_LO12_S
))
3898 relax_func
= _bfd_riscv_relax_pc
;
3899 else if (type
== R_RISCV_TPREL_HI20
3900 || type
== R_RISCV_TPREL_ADD
3901 || type
== R_RISCV_TPREL_LO12_I
3902 || type
== R_RISCV_TPREL_LO12_S
)
3903 relax_func
= _bfd_riscv_relax_tls_le
;
3907 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3908 if (i
== sec
->reloc_count
- 1
3909 || ELFNN_R_TYPE ((rel
+ 1)->r_info
) != R_RISCV_RELAX
3910 || rel
->r_offset
!= (rel
+ 1)->r_offset
)
3913 /* Skip over the R_RISCV_RELAX. */
3916 else if (info
->relax_pass
== 1 && type
== R_RISCV_DELETE
)
3917 relax_func
= _bfd_riscv_relax_delete
;
3918 else if (info
->relax_pass
== 2 && type
== R_RISCV_ALIGN
)
3919 relax_func
= _bfd_riscv_relax_align
;
3923 data
->relocs
= relocs
;
3925 /* Read this BFD's contents if we haven't done so already. */
3926 if (!data
->this_hdr
.contents
3927 && !bfd_malloc_and_get_section (abfd
, sec
, &data
->this_hdr
.contents
))
3930 /* Read this BFD's symbols if we haven't done so already. */
3931 if (symtab_hdr
->sh_info
!= 0
3932 && !symtab_hdr
->contents
3933 && !(symtab_hdr
->contents
=
3934 (unsigned char *) bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
3935 symtab_hdr
->sh_info
,
3936 0, NULL
, NULL
, NULL
)))
3939 /* Get the value of the symbol referred to by the reloc. */
3940 if (ELFNN_R_SYM (rel
->r_info
) < symtab_hdr
->sh_info
)
3942 /* A local symbol. */
3943 Elf_Internal_Sym
*isym
= ((Elf_Internal_Sym
*) symtab_hdr
->contents
3944 + ELFNN_R_SYM (rel
->r_info
));
3945 reserve_size
= (isym
->st_size
- rel
->r_addend
) > isym
->st_size
3946 ? 0 : isym
->st_size
- rel
->r_addend
;
3948 if (isym
->st_shndx
== SHN_UNDEF
)
3949 sym_sec
= sec
, symval
= sec_addr (sec
) + rel
->r_offset
;
3952 BFD_ASSERT (isym
->st_shndx
< elf_numsections (abfd
));
3953 sym_sec
= elf_elfsections (abfd
)[isym
->st_shndx
]->bfd_section
;
3955 /* The purpose of this code is unknown. It breaks linker scripts
3956 for embedded development that place sections at address zero.
3957 This code is believed to be unnecessary. Disabling it but not
3958 yet removing it, in case something breaks. */
3959 if (sec_addr (sym_sec
) == 0)
3962 symval
= sec_addr (sym_sec
) + isym
->st_value
;
3968 struct elf_link_hash_entry
*h
;
3970 indx
= ELFNN_R_SYM (rel
->r_info
) - symtab_hdr
->sh_info
;
3971 h
= elf_sym_hashes (abfd
)[indx
];
3973 while (h
->root
.type
== bfd_link_hash_indirect
3974 || h
->root
.type
== bfd_link_hash_warning
)
3975 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3977 if (h
->plt
.offset
!= MINUS_ONE
)
3978 symval
= sec_addr (htab
->elf
.splt
) + h
->plt
.offset
;
3979 else if (h
->root
.u
.def
.section
->output_section
== NULL
3980 || (h
->root
.type
!= bfd_link_hash_defined
3981 && h
->root
.type
!= bfd_link_hash_defweak
))
3984 symval
= sec_addr (h
->root
.u
.def
.section
) + h
->root
.u
.def
.value
;
3986 if (h
->type
!= STT_FUNC
)
3988 (h
->size
- rel
->r_addend
) > h
->size
? 0 : h
->size
- rel
->r_addend
;
3989 sym_sec
= h
->root
.u
.def
.section
;
3992 symval
+= rel
->r_addend
;
3994 if (!relax_func (abfd
, sec
, sym_sec
, info
, rel
, symval
,
3995 max_alignment
, reserve_size
, again
,
4003 if (relocs
!= data
->relocs
)
4005 riscv_free_pcgp_relocs(&pcgp_relocs
, abfd
, sec
);
4011 # define PRSTATUS_SIZE 204
4012 # define PRSTATUS_OFFSET_PR_CURSIG 12
4013 # define PRSTATUS_OFFSET_PR_PID 24
4014 # define PRSTATUS_OFFSET_PR_REG 72
4015 # define ELF_GREGSET_T_SIZE 128
4016 # define PRPSINFO_SIZE 128
4017 # define PRPSINFO_OFFSET_PR_PID 16
4018 # define PRPSINFO_OFFSET_PR_FNAME 32
4019 # define PRPSINFO_OFFSET_PR_PSARGS 48
4021 # define PRSTATUS_SIZE 376
4022 # define PRSTATUS_OFFSET_PR_CURSIG 12
4023 # define PRSTATUS_OFFSET_PR_PID 32
4024 # define PRSTATUS_OFFSET_PR_REG 112
4025 # define ELF_GREGSET_T_SIZE 256
4026 # define PRPSINFO_SIZE 136
4027 # define PRPSINFO_OFFSET_PR_PID 24
4028 # define PRPSINFO_OFFSET_PR_FNAME 40
4029 # define PRPSINFO_OFFSET_PR_PSARGS 56
4032 /* Support for core dump NOTE sections. */
4035 riscv_elf_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
4037 switch (note
->descsz
)
4042 case PRSTATUS_SIZE
: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
4044 elf_tdata (abfd
)->core
->signal
4045 = bfd_get_16 (abfd
, note
->descdata
+ PRSTATUS_OFFSET_PR_CURSIG
);
4048 elf_tdata (abfd
)->core
->lwpid
4049 = bfd_get_32 (abfd
, note
->descdata
+ PRSTATUS_OFFSET_PR_PID
);
4053 /* Make a ".reg/999" section. */
4054 return _bfd_elfcore_make_pseudosection (abfd
, ".reg", ELF_GREGSET_T_SIZE
,
4055 note
->descpos
+ PRSTATUS_OFFSET_PR_REG
);
4059 riscv_elf_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
4061 switch (note
->descsz
)
4066 case PRPSINFO_SIZE
: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
4068 elf_tdata (abfd
)->core
->pid
4069 = bfd_get_32 (abfd
, note
->descdata
+ PRPSINFO_OFFSET_PR_PID
);
4072 elf_tdata (abfd
)->core
->program
= _bfd_elfcore_strndup
4073 (abfd
, note
->descdata
+ PRPSINFO_OFFSET_PR_FNAME
, 16);
4076 elf_tdata (abfd
)->core
->command
= _bfd_elfcore_strndup
4077 (abfd
, note
->descdata
+ PRPSINFO_OFFSET_PR_PSARGS
, 80);
4081 /* Note that for some reason, a spurious space is tacked
4082 onto the end of the args in some (at least one anyway)
4083 implementations, so strip it off if it exists. */
4086 char *command
= elf_tdata (abfd
)->core
->command
;
4087 int n
= strlen (command
);
4089 if (0 < n
&& command
[n
- 1] == ' ')
4090 command
[n
- 1] = '\0';
4096 /* Set the right mach type. */
4098 riscv_elf_object_p (bfd
*abfd
)
4100 /* There are only two mach types in RISCV currently. */
4101 if (strcmp (abfd
->xvec
->name
, "elf32-littleriscv") == 0)
4102 bfd_default_set_arch_mach (abfd
, bfd_arch_riscv
, bfd_mach_riscv32
);
4104 bfd_default_set_arch_mach (abfd
, bfd_arch_riscv
, bfd_mach_riscv64
);
4109 /* Determine whether an object attribute tag takes an integer, a
4113 riscv_elf_obj_attrs_arg_type (int tag
)
4115 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
4118 #define TARGET_LITTLE_SYM riscv_elfNN_vec
4119 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
4121 #define elf_backend_reloc_type_class riscv_reloc_type_class
4123 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
4124 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
4125 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
4126 #define bfd_elfNN_bfd_merge_private_bfd_data \
4127 _bfd_riscv_elf_merge_private_bfd_data
4129 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
4130 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
4131 #define elf_backend_check_relocs riscv_elf_check_relocs
4132 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
4133 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
4134 #define elf_backend_relocate_section riscv_elf_relocate_section
4135 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
4136 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
4137 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
4138 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
4139 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
4140 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
4141 #define elf_backend_object_p riscv_elf_object_p
4142 #define elf_info_to_howto_rel NULL
4143 #define elf_info_to_howto riscv_info_to_howto_rela
4144 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
4146 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4148 #define elf_backend_can_gc_sections 1
4149 #define elf_backend_can_refcount 1
4150 #define elf_backend_want_got_plt 1
4151 #define elf_backend_plt_readonly 1
4152 #define elf_backend_plt_alignment 4
4153 #define elf_backend_want_plt_sym 1
4154 #define elf_backend_got_header_size (ARCH_SIZE / 8)
4155 #define elf_backend_want_dynrelro 1
4156 #define elf_backend_rela_normal 1
4157 #define elf_backend_default_execstack 0
4159 #undef elf_backend_obj_attrs_vendor
4160 #define elf_backend_obj_attrs_vendor "riscv"
4161 #undef elf_backend_obj_attrs_arg_type
4162 #define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type
4163 #undef elf_backend_obj_attrs_section_type
4164 #define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES
4165 #undef elf_backend_obj_attrs_section
4166 #define elf_backend_obj_attrs_section ".riscv.attributes"
4168 #include "elfNN-target.h"