1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "elfxx-mips.h"
38 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type
{
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
60 (1) an absolute address
61 requires: abfd == NULL
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
77 /* One input bfd that needs the GOT entry. */
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
84 /* If abfd == NULL, an address that must be stored in the got. */
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry
*h
;
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type
;
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized
;
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
125 struct mips_elf_link_hash_entry
*h
;
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
134 struct mips_got_page_range
136 struct mips_got_page_range
*next
;
137 bfd_signed_vma min_addend
;
138 bfd_signed_vma max_addend
;
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
145 /* The section that these entries are based on. */
147 /* The ranges for this page entry. */
148 struct mips_got_page_range
*ranges
;
149 /* The maximum number of page entries needed for RANGES. */
153 /* This structure is used to hold .got information when linking. */
157 /* The number of global .got entries. */
158 unsigned int global_gotno
;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno
;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno
;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno
;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno
;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno
;
170 /* The number of relocations needed for the GOT entries. */
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno
;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno
;
176 /* A hash table holding members of the got. */
177 struct htab
*got_entries
;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab
*got_page_refs
;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab
*got_page_entries
;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info
*next
;
187 /* Structure passed when merging bfds' gots. */
189 struct mips_elf_got_per_bfd_arg
191 /* The output bfd. */
193 /* The link information. */
194 struct bfd_link_info
*info
;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 struct mips_got_info
*primary
;
199 /* A non-primary got we're trying to merge with other input bfd's
201 struct mips_got_info
*current
;
202 /* The maximum number of got entries that can be addressed with a
204 unsigned int max_count
;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages
;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
211 unsigned int global_count
;
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
217 struct mips_elf_traverse_got_arg
219 struct bfd_link_info
*info
;
220 struct mips_got_info
*g
;
224 struct _mips_elf_section_data
226 struct bfd_elf_section_data elf
;
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
259 #define GGA_RELOC_ONLY 1
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
266 addiu $25,$25,%lo(func)
268 immediately before a PIC function "func". The second is to add:
272 addiu $25,$25,%lo(func)
274 to a separate trampoline section.
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub
{
280 /* The generated section that contains this stub. */
281 asection
*stub_section
;
283 /* The offset of the stub from the start of STUB_SECTION. */
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry
*h
;
291 /* Macros for populating a mips_elf_la25_stub. */
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
306 struct mips_elf_hash_sort_data
308 /* The symbol in the global GOT with the lowest dynamic symbol table
310 struct elf_link_hash_entry
*low
;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx
;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx
;
318 /* The greatest dynamic symbol table index corresponding to a local
320 bfd_size_type max_local_dynindx
;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx
;
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
333 /* Traditional SVR4 stub offset, or -1 if none. */
336 /* Standard PLT entry offset, or -1 if none. */
339 /* Compressed PLT entry offset, or -1 if none. */
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index
;
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips
: 1;
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp
: 1;
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
355 struct mips_elf_link_hash_entry
357 struct elf_link_hash_entry root
;
359 /* External symbol information. */
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub
*la25_stub
;
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
367 unsigned int possibly_dynamic_relocs
;
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection
*call_fp_stub
;
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area
: 2;
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls
: 1;
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc
: 1;
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs
: 1;
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub
: 1;
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub
: 1;
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches
: 1;
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub
: 1;
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry
: 1;
421 /* MIPS ELF linker hash table. */
423 struct mips_elf_link_hash_table
425 struct elf_link_hash_table root
;
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count
;
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size
;
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head
;
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry
*rld_symbol
;
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen
;
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs
;
446 /* True if we can only use 32-bit microMIPS instructions. */
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa
;
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks
;
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported
;
458 /* True if we use the special `__gnu_absolute_zero' symbol. */
459 bfd_boolean use_absolute_zero
;
461 /* True if we have been configured for a GNU target. */
462 bfd_boolean gnu_target
;
464 /* Shortcuts to some dynamic sections, or NULL if they are not
469 /* The master GOT information. */
470 struct mips_got_info
*got_info
;
472 /* The global symbol in the GOT with the lowest index in the dynamic
474 struct elf_link_hash_entry
*global_gotsym
;
476 /* The size of the PLT header in bytes. */
477 bfd_vma plt_header_size
;
479 /* The size of a standard PLT entry in bytes. */
480 bfd_vma plt_mips_entry_size
;
482 /* The size of a compressed PLT entry in bytes. */
483 bfd_vma plt_comp_entry_size
;
485 /* The offset of the next standard PLT entry to create. */
486 bfd_vma plt_mips_offset
;
488 /* The offset of the next compressed PLT entry to create. */
489 bfd_vma plt_comp_offset
;
491 /* The index of the next .got.plt entry to create. */
492 bfd_vma plt_got_index
;
494 /* The number of functions that need a lazy-binding stub. */
495 bfd_vma lazy_stub_count
;
497 /* The size of a function stub entry in bytes. */
498 bfd_vma function_stub_size
;
500 /* The number of reserved entries at the beginning of the GOT. */
501 unsigned int reserved_gotno
;
503 /* The section used for mips_elf_la25_stub trampolines.
504 See the comment above that structure for details. */
505 asection
*strampoline
;
507 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
511 /* A function FN (NAME, IS, OS) that creates a new input section
512 called NAME and links it to output section OS. If IS is nonnull,
513 the new section should go immediately before it, otherwise it
514 should go at the (current) beginning of OS.
516 The function returns the new section on success, otherwise it
518 asection
*(*add_stub_section
) (const char *, asection
*, asection
*);
520 /* Small local sym cache. */
521 struct sym_cache sym_cache
;
523 /* Is the PLT header compressed? */
524 unsigned int plt_header_is_comp
: 1;
527 /* Get the MIPS ELF linker hash table from a link_info structure. */
529 #define mips_elf_hash_table(p) \
530 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
531 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
533 /* A structure used to communicate with htab_traverse callbacks. */
534 struct mips_htab_traverse_info
536 /* The usual link-wide information. */
537 struct bfd_link_info
*info
;
540 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
544 /* MIPS ELF private object data. */
546 struct mips_elf_obj_tdata
548 /* Generic ELF private object data. */
549 struct elf_obj_tdata root
;
551 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
554 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
557 /* The abiflags for this object. */
558 Elf_Internal_ABIFlags_v0 abiflags
;
559 bfd_boolean abiflags_valid
;
561 /* The GOT requirements of input bfds. */
562 struct mips_got_info
*got
;
564 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
565 included directly in this one, but there's no point to wasting
566 the memory just for the infrequently called find_nearest_line. */
567 struct mips_elf_find_line
*find_line_info
;
569 /* An array of stub sections indexed by symbol number. */
570 asection
**local_stubs
;
571 asection
**local_call_stubs
;
573 /* The Irix 5 support uses two virtual sections, which represent
574 text/data symbols defined in dynamic objects. */
575 asymbol
*elf_data_symbol
;
576 asymbol
*elf_text_symbol
;
577 asection
*elf_data_section
;
578 asection
*elf_text_section
;
581 /* Get MIPS ELF private object data from BFD's tdata. */
583 #define mips_elf_tdata(bfd) \
584 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
586 #define TLS_RELOC_P(r_type) \
587 (r_type == R_MIPS_TLS_DTPMOD32 \
588 || r_type == R_MIPS_TLS_DTPMOD64 \
589 || r_type == R_MIPS_TLS_DTPREL32 \
590 || r_type == R_MIPS_TLS_DTPREL64 \
591 || r_type == R_MIPS_TLS_GD \
592 || r_type == R_MIPS_TLS_LDM \
593 || r_type == R_MIPS_TLS_DTPREL_HI16 \
594 || r_type == R_MIPS_TLS_DTPREL_LO16 \
595 || r_type == R_MIPS_TLS_GOTTPREL \
596 || r_type == R_MIPS_TLS_TPREL32 \
597 || r_type == R_MIPS_TLS_TPREL64 \
598 || r_type == R_MIPS_TLS_TPREL_HI16 \
599 || r_type == R_MIPS_TLS_TPREL_LO16 \
600 || r_type == R_MIPS16_TLS_GD \
601 || r_type == R_MIPS16_TLS_LDM \
602 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
603 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
604 || r_type == R_MIPS16_TLS_GOTTPREL \
605 || r_type == R_MIPS16_TLS_TPREL_HI16 \
606 || r_type == R_MIPS16_TLS_TPREL_LO16 \
607 || r_type == R_MICROMIPS_TLS_GD \
608 || r_type == R_MICROMIPS_TLS_LDM \
609 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
610 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
611 || r_type == R_MICROMIPS_TLS_GOTTPREL \
612 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
613 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
615 /* Structure used to pass information to mips_elf_output_extsym. */
620 struct bfd_link_info
*info
;
621 struct ecoff_debug_info
*debug
;
622 const struct ecoff_debug_swap
*swap
;
626 /* The names of the runtime procedure table symbols used on IRIX5. */
628 static const char * const mips_elf_dynsym_rtproc_names
[] =
631 "_procedure_string_table",
632 "_procedure_table_size",
636 /* These structures are used to generate the .compact_rel section on
641 unsigned long id1
; /* Always one? */
642 unsigned long num
; /* Number of compact relocation entries. */
643 unsigned long id2
; /* Always two? */
644 unsigned long offset
; /* The file offset of the first relocation. */
645 unsigned long reserved0
; /* Zero? */
646 unsigned long reserved1
; /* Zero? */
655 bfd_byte reserved0
[4];
656 bfd_byte reserved1
[4];
657 } Elf32_External_compact_rel
;
661 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
662 unsigned int rtype
: 4; /* Relocation types. See below. */
663 unsigned int dist2to
: 8;
664 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
665 unsigned long konst
; /* KONST field. See below. */
666 unsigned long vaddr
; /* VADDR to be relocated. */
671 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
672 unsigned int rtype
: 4; /* Relocation types. See below. */
673 unsigned int dist2to
: 8;
674 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
675 unsigned long konst
; /* KONST field. See below. */
683 } Elf32_External_crinfo
;
689 } Elf32_External_crinfo2
;
691 /* These are the constants used to swap the bitfields in a crinfo. */
693 #define CRINFO_CTYPE (0x1)
694 #define CRINFO_CTYPE_SH (31)
695 #define CRINFO_RTYPE (0xf)
696 #define CRINFO_RTYPE_SH (27)
697 #define CRINFO_DIST2TO (0xff)
698 #define CRINFO_DIST2TO_SH (19)
699 #define CRINFO_RELVADDR (0x7ffff)
700 #define CRINFO_RELVADDR_SH (0)
702 /* A compact relocation info has long (3 words) or short (2 words)
703 formats. A short format doesn't have VADDR field and relvaddr
704 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
705 #define CRF_MIPS_LONG 1
706 #define CRF_MIPS_SHORT 0
708 /* There are 4 types of compact relocation at least. The value KONST
709 has different meaning for each type:
712 CT_MIPS_REL32 Address in data
713 CT_MIPS_WORD Address in word (XXX)
714 CT_MIPS_GPHI_LO GP - vaddr
715 CT_MIPS_JMPAD Address to jump
718 #define CRT_MIPS_REL32 0xa
719 #define CRT_MIPS_WORD 0xb
720 #define CRT_MIPS_GPHI_LO 0xc
721 #define CRT_MIPS_JMPAD 0xd
723 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
724 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
725 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
726 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
728 /* The structure of the runtime procedure descriptor created by the
729 loader for use by the static exception system. */
731 typedef struct runtime_pdr
{
732 bfd_vma adr
; /* Memory address of start of procedure. */
733 long regmask
; /* Save register mask. */
734 long regoffset
; /* Save register offset. */
735 long fregmask
; /* Save floating point register mask. */
736 long fregoffset
; /* Save floating point register offset. */
737 long frameoffset
; /* Frame size. */
738 short framereg
; /* Frame pointer register. */
739 short pcreg
; /* Offset or reg of return pc. */
740 long irpss
; /* Index into the runtime string table. */
742 struct exception_info
*exception_info
;/* Pointer to exception array. */
744 #define cbRPDR sizeof (RPDR)
745 #define rpdNil ((pRPDR) 0)
747 static struct mips_got_entry
*mips_elf_create_local_got_entry
748 (bfd
*, struct bfd_link_info
*, bfd
*, bfd_vma
, unsigned long,
749 struct mips_elf_link_hash_entry
*, int);
750 static bfd_boolean mips_elf_sort_hash_table_f
751 (struct mips_elf_link_hash_entry
*, void *);
752 static bfd_vma mips_elf_high
754 static bfd_boolean mips_elf_create_dynamic_relocation
755 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
756 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
757 bfd_vma
*, asection
*);
758 static bfd_vma mips_elf_adjust_gp
759 (bfd
*, struct mips_got_info
*, bfd
*);
761 /* This will be used when we sort the dynamic relocation records. */
762 static bfd
*reldyn_sorting_bfd
;
764 /* True if ABFD is for CPUs with load interlocking that include
765 non-MIPS1 CPUs and R3900. */
766 #define LOAD_INTERLOCKS_P(abfd) \
767 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
768 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
770 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
771 This should be safe for all architectures. We enable this predicate
772 for RM9000 for now. */
773 #define JAL_TO_BAL_P(abfd) \
774 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
776 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
777 This should be safe for all architectures. We enable this predicate for
779 #define JALR_TO_BAL_P(abfd) 1
781 /* True if ABFD is for CPUs that are faster if JR is converted to B.
782 This should be safe for all architectures. We enable this predicate for
784 #define JR_TO_B_P(abfd) 1
786 /* True if ABFD is a PIC object. */
787 #define PIC_OBJECT_P(abfd) \
788 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
790 /* Nonzero if ABFD is using the O32 ABI. */
791 #define ABI_O32_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
794 /* Nonzero if ABFD is using the N32 ABI. */
795 #define ABI_N32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
798 /* Nonzero if ABFD is using the N64 ABI. */
799 #define ABI_64_P(abfd) \
800 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
802 /* Nonzero if ABFD is using NewABI conventions. */
803 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
805 /* Nonzero if ABFD has microMIPS code. */
806 #define MICROMIPS_P(abfd) \
807 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
809 /* Nonzero if ABFD is MIPS R6. */
810 #define MIPSR6_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
812 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
814 /* The IRIX compatibility level we are striving for. */
815 #define IRIX_COMPAT(abfd) \
816 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
818 /* Whether we are trying to be compatible with IRIX at all. */
819 #define SGI_COMPAT(abfd) \
820 (IRIX_COMPAT (abfd) != ict_none)
822 /* The name of the options section. */
823 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
824 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
826 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
827 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
828 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
829 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
831 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
832 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.abiflags") == 0)
835 /* Whether the section is readonly. */
836 #define MIPS_ELF_READONLY_SECTION(sec) \
837 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
838 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
840 /* The name of the stub section. */
841 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
843 /* The size of an external REL relocation. */
844 #define MIPS_ELF_REL_SIZE(abfd) \
845 (get_elf_backend_data (abfd)->s->sizeof_rel)
847 /* The size of an external RELA relocation. */
848 #define MIPS_ELF_RELA_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rela)
851 /* The size of an external dynamic table entry. */
852 #define MIPS_ELF_DYN_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_dyn)
855 /* The size of a GOT entry. */
856 #define MIPS_ELF_GOT_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->arch_size / 8)
859 /* The size of the .rld_map section. */
860 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
863 /* The size of a symbol-table entry. */
864 #define MIPS_ELF_SYM_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->sizeof_sym)
867 /* The default alignment for sections, as a power of two. */
868 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
869 (get_elf_backend_data (abfd)->s->log_file_align)
871 /* Get word-sized data. */
872 #define MIPS_ELF_GET_WORD(abfd, ptr) \
873 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
875 /* Put out word-sized data. */
876 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
878 ? bfd_put_64 (abfd, val, ptr) \
879 : bfd_put_32 (abfd, val, ptr))
881 /* The opcode for word-sized loads (LW or LD). */
882 #define MIPS_ELF_LOAD_WORD(abfd) \
883 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
885 /* Add a dynamic symbol table-entry. */
886 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
887 _bfd_elf_add_dynamic_entry (info, tag, val)
889 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
890 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
892 /* The name of the dynamic relocation section. */
893 #define MIPS_ELF_REL_DYN_NAME(INFO) \
894 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
896 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
897 from smaller values. Start with zero, widen, *then* decrement. */
898 #define MINUS_ONE (((bfd_vma)0) - 1)
899 #define MINUS_TWO (((bfd_vma)0) - 2)
901 /* The value to write into got[1] for SVR4 targets, to identify it is
902 a GNU object. The dynamic linker can then use got[1] to store the
904 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
905 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
907 /* The offset of $gp from the beginning of the .got section. */
908 #define ELF_MIPS_GP_OFFSET(INFO) \
909 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
911 /* The maximum size of the GOT for it to be addressable using 16-bit
913 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
915 /* Instructions which appear in a stub. */
916 #define STUB_LW(abfd) \
918 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
919 : 0x8f998010)) /* lw t9,0x8010(gp) */
920 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
921 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
922 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
923 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
924 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
925 #define STUB_LI16S(abfd, VAL) \
927 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
928 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
930 /* Likewise for the microMIPS ASE. */
931 #define STUB_LW_MICROMIPS(abfd) \
933 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
934 : 0xff3c8010) /* lw t9,0x8010(gp) */
935 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
936 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
937 #define STUB_LUI_MICROMIPS(VAL) \
938 (0x41b80000 + (VAL)) /* lui t8,VAL */
939 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
940 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
941 #define STUB_ORI_MICROMIPS(VAL) \
942 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
943 #define STUB_LI16U_MICROMIPS(VAL) \
944 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
945 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
947 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
948 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
950 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
951 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
952 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
953 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
954 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
955 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
957 /* The name of the dynamic interpreter. This is put in the .interp
960 #define ELF_DYNAMIC_INTERPRETER(abfd) \
961 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
962 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
963 : "/usr/lib/libc.so.1")
966 #define MNAME(bfd,pre,pos) \
967 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
968 #define ELF_R_SYM(bfd, i) \
969 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
970 #define ELF_R_TYPE(bfd, i) \
971 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
972 #define ELF_R_INFO(bfd, s, t) \
973 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
975 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
976 #define ELF_R_SYM(bfd, i) \
978 #define ELF_R_TYPE(bfd, i) \
980 #define ELF_R_INFO(bfd, s, t) \
981 (ELF32_R_INFO (s, t))
984 /* The mips16 compiler uses a couple of special sections to handle
985 floating point arguments.
987 Section names that look like .mips16.fn.FNNAME contain stubs that
988 copy floating point arguments from the fp regs to the gp regs and
989 then jump to FNNAME. If any 32 bit function calls FNNAME, the
990 call should be redirected to the stub instead. If no 32 bit
991 function calls FNNAME, the stub should be discarded. We need to
992 consider any reference to the function, not just a call, because
993 if the address of the function is taken we will need the stub,
994 since the address might be passed to a 32 bit function.
996 Section names that look like .mips16.call.FNNAME contain stubs
997 that copy floating point arguments from the gp regs to the fp
998 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
999 then any 16 bit function that calls FNNAME should be redirected
1000 to the stub instead. If FNNAME is not a 32 bit function, the
1001 stub should be discarded.
1003 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1004 which call FNNAME and then copy the return value from the fp regs
1005 to the gp regs. These stubs store the return value in $18 while
1006 calling FNNAME; any function which might call one of these stubs
1007 must arrange to save $18 around the call. (This case is not
1008 needed for 32 bit functions that call 16 bit functions, because
1009 16 bit functions always return floating point values in both
1012 Note that in all cases FNNAME might be defined statically.
1013 Therefore, FNNAME is not used literally. Instead, the relocation
1014 information will indicate which symbol the section is for.
1016 We record any stubs that we find in the symbol table. */
1018 #define FN_STUB ".mips16.fn."
1019 #define CALL_STUB ".mips16.call."
1020 #define CALL_FP_STUB ".mips16.call.fp."
1022 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1023 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1024 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1026 /* The format of the first PLT entry in an O32 executable. */
1027 static const bfd_vma mips_o32_exec_plt0_entry
[] =
1029 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1030 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1031 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1032 0x031cc023, /* subu $24, $24, $28 */
1033 0x03e07825, /* or t7, ra, zero */
1034 0x0018c082, /* srl $24, $24, 2 */
1035 0x0320f809, /* jalr $25 */
1036 0x2718fffe /* subu $24, $24, 2 */
1039 /* The format of the first PLT entry in an N32 executable. Different
1040 because gp ($28) is not available; we use t2 ($14) instead. */
1041 static const bfd_vma mips_n32_exec_plt0_entry
[] =
1043 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1044 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1045 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1046 0x030ec023, /* subu $24, $24, $14 */
1047 0x03e07825, /* or t7, ra, zero */
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1053 /* The format of the first PLT entry in an N64 executable. Different
1054 from N32 because of the increased size of GOT entries. */
1055 static const bfd_vma mips_n64_exec_plt0_entry
[] =
1057 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1058 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1059 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1060 0x030ec023, /* subu $24, $24, $14 */
1061 0x03e07825, /* or t7, ra, zero */
1062 0x0018c0c2, /* srl $24, $24, 3 */
1063 0x0320f809, /* jalr $25 */
1064 0x2718fffe /* subu $24, $24, 2 */
1067 /* The format of the microMIPS first PLT entry in an O32 executable.
1068 We rely on v0 ($2) rather than t8 ($24) to contain the address
1069 of the GOTPLT entry handled, so this stub may only be used when
1070 all the subsequent PLT entries are microMIPS code too.
1072 The trailing NOP is for alignment and correct disassembly only. */
1073 static const bfd_vma micromips_o32_exec_plt0_entry
[] =
1075 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1076 0xff23, 0x0000, /* lw $25, 0($3) */
1077 0x0535, /* subu $2, $2, $3 */
1078 0x2525, /* srl $2, $2, 2 */
1079 0x3302, 0xfffe, /* subu $24, $2, 2 */
1080 0x0dff, /* move $15, $31 */
1081 0x45f9, /* jalrs $25 */
1082 0x0f83, /* move $28, $3 */
1086 /* The format of the microMIPS first PLT entry in an O32 executable
1087 in the insn32 mode. */
1088 static const bfd_vma micromips_insn32_o32_exec_plt0_entry
[] =
1090 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1091 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1092 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1093 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1094 0x001f, 0x7a90, /* or $15, $31, zero */
1095 0x0318, 0x1040, /* srl $24, $24, 2 */
1096 0x03f9, 0x0f3c, /* jalr $25 */
1097 0x3318, 0xfffe /* subu $24, $24, 2 */
1100 /* The format of subsequent standard PLT entries. */
1101 static const bfd_vma mips_exec_plt_entry
[] =
1103 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1104 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1105 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1106 0x03200008 /* jr $25 */
1109 /* In the following PLT entry the JR and ADDIU instructions will
1110 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1111 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1112 static const bfd_vma mipsr6_exec_plt_entry
[] =
1114 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1115 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1116 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1117 0x03200009 /* jr $25 */
1120 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1121 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1122 directly addressable. */
1123 static const bfd_vma mips16_o32_exec_plt_entry
[] =
1125 0xb203, /* lw $2, 12($pc) */
1126 0x9a60, /* lw $3, 0($2) */
1127 0x651a, /* move $24, $2 */
1129 0x653b, /* move $25, $3 */
1131 0x0000, 0x0000 /* .word (.got.plt entry) */
1134 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1135 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1136 static const bfd_vma micromips_o32_exec_plt_entry
[] =
1138 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1139 0xff22, 0x0000, /* lw $25, 0($2) */
1140 0x4599, /* jr $25 */
1141 0x0f02 /* move $24, $2 */
1144 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1145 static const bfd_vma micromips_insn32_o32_exec_plt_entry
[] =
1147 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1148 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1149 0x0019, 0x0f3c, /* jr $25 */
1150 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1153 /* The format of the first PLT entry in a VxWorks executable. */
1154 static const bfd_vma mips_vxworks_exec_plt0_entry
[] =
1156 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1157 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1158 0x8f390008, /* lw t9, 8(t9) */
1159 0x00000000, /* nop */
1160 0x03200008, /* jr t9 */
1161 0x00000000 /* nop */
1164 /* The format of subsequent PLT entries. */
1165 static const bfd_vma mips_vxworks_exec_plt_entry
[] =
1167 0x10000000, /* b .PLT_resolver */
1168 0x24180000, /* li t8, <pltindex> */
1169 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1170 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1171 0x8f390000, /* lw t9, 0(t9) */
1172 0x00000000, /* nop */
1173 0x03200008, /* jr t9 */
1174 0x00000000 /* nop */
1177 /* The format of the first PLT entry in a VxWorks shared object. */
1178 static const bfd_vma mips_vxworks_shared_plt0_entry
[] =
1180 0x8f990008, /* lw t9, 8(gp) */
1181 0x00000000, /* nop */
1182 0x03200008, /* jr t9 */
1183 0x00000000, /* nop */
1184 0x00000000, /* nop */
1185 0x00000000 /* nop */
1188 /* The format of subsequent PLT entries. */
1189 static const bfd_vma mips_vxworks_shared_plt_entry
[] =
1191 0x10000000, /* b .PLT_resolver */
1192 0x24180000 /* li t8, <pltindex> */
1195 /* microMIPS 32-bit opcode helper installer. */
1198 bfd_put_micromips_32 (const bfd
*abfd
, bfd_vma opcode
, bfd_byte
*ptr
)
1200 bfd_put_16 (abfd
, (opcode
>> 16) & 0xffff, ptr
);
1201 bfd_put_16 (abfd
, opcode
& 0xffff, ptr
+ 2);
1204 /* microMIPS 32-bit opcode helper retriever. */
1207 bfd_get_micromips_32 (const bfd
*abfd
, const bfd_byte
*ptr
)
1209 return (bfd_get_16 (abfd
, ptr
) << 16) | bfd_get_16 (abfd
, ptr
+ 2);
1212 /* Look up an entry in a MIPS ELF linker hash table. */
1214 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1215 ((struct mips_elf_link_hash_entry *) \
1216 elf_link_hash_lookup (&(table)->root, (string), (create), \
1219 /* Traverse a MIPS ELF linker hash table. */
1221 #define mips_elf_link_hash_traverse(table, func, info) \
1222 (elf_link_hash_traverse \
1224 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1227 /* Find the base offsets for thread-local storage in this object,
1228 for GD/LD and IE/LE respectively. */
1230 #define TP_OFFSET 0x7000
1231 #define DTP_OFFSET 0x8000
1234 dtprel_base (struct bfd_link_info
*info
)
1236 /* If tls_sec is NULL, we should have signalled an error already. */
1237 if (elf_hash_table (info
)->tls_sec
== NULL
)
1239 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
1243 tprel_base (struct bfd_link_info
*info
)
1245 /* If tls_sec is NULL, we should have signalled an error already. */
1246 if (elf_hash_table (info
)->tls_sec
== NULL
)
1248 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
1251 /* Create an entry in a MIPS ELF linker hash table. */
1253 static struct bfd_hash_entry
*
1254 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1255 struct bfd_hash_table
*table
, const char *string
)
1257 struct mips_elf_link_hash_entry
*ret
=
1258 (struct mips_elf_link_hash_entry
*) entry
;
1260 /* Allocate the structure if it has not already been allocated by a
1263 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
1265 return (struct bfd_hash_entry
*) ret
;
1267 /* Call the allocation method of the superclass. */
1268 ret
= ((struct mips_elf_link_hash_entry
*)
1269 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1273 /* Set local fields. */
1274 memset (&ret
->esym
, 0, sizeof (EXTR
));
1275 /* We use -2 as a marker to indicate that the information has
1276 not been set. -1 means there is no associated ifd. */
1279 ret
->possibly_dynamic_relocs
= 0;
1280 ret
->fn_stub
= NULL
;
1281 ret
->call_stub
= NULL
;
1282 ret
->call_fp_stub
= NULL
;
1283 ret
->global_got_area
= GGA_NONE
;
1284 ret
->got_only_for_calls
= TRUE
;
1285 ret
->readonly_reloc
= FALSE
;
1286 ret
->has_static_relocs
= FALSE
;
1287 ret
->no_fn_stub
= FALSE
;
1288 ret
->need_fn_stub
= FALSE
;
1289 ret
->has_nonpic_branches
= FALSE
;
1290 ret
->needs_lazy_stub
= FALSE
;
1291 ret
->use_plt_entry
= FALSE
;
1294 return (struct bfd_hash_entry
*) ret
;
1297 /* Allocate MIPS ELF private object data. */
1300 _bfd_mips_elf_mkobject (bfd
*abfd
)
1302 return bfd_elf_allocate_object (abfd
, sizeof (struct mips_elf_obj_tdata
),
1307 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
1309 if (!sec
->used_by_bfd
)
1311 struct _mips_elf_section_data
*sdata
;
1312 bfd_size_type amt
= sizeof (*sdata
);
1314 sdata
= bfd_zalloc (abfd
, amt
);
1317 sec
->used_by_bfd
= sdata
;
1320 return _bfd_elf_new_section_hook (abfd
, sec
);
1323 /* Read ECOFF debugging information from a .mdebug section into a
1324 ecoff_debug_info structure. */
1327 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
1328 struct ecoff_debug_info
*debug
)
1331 const struct ecoff_debug_swap
*swap
;
1334 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1335 memset (debug
, 0, sizeof (*debug
));
1337 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
1338 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
1341 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
1342 swap
->external_hdr_size
))
1345 symhdr
= &debug
->symbolic_header
;
1346 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
1348 /* The symbolic header contains absolute file offsets and sizes to
1350 #define READ(ptr, offset, count, size, type) \
1351 if (symhdr->count == 0) \
1352 debug->ptr = NULL; \
1355 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1356 debug->ptr = bfd_malloc (amt); \
1357 if (debug->ptr == NULL) \
1358 goto error_return; \
1359 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1360 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1361 goto error_return; \
1364 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
1365 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
1366 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
1367 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
1368 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
1369 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
1371 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
1372 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
1373 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
1374 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
1375 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
1383 if (ext_hdr
!= NULL
)
1385 if (debug
->line
!= NULL
)
1387 if (debug
->external_dnr
!= NULL
)
1388 free (debug
->external_dnr
);
1389 if (debug
->external_pdr
!= NULL
)
1390 free (debug
->external_pdr
);
1391 if (debug
->external_sym
!= NULL
)
1392 free (debug
->external_sym
);
1393 if (debug
->external_opt
!= NULL
)
1394 free (debug
->external_opt
);
1395 if (debug
->external_aux
!= NULL
)
1396 free (debug
->external_aux
);
1397 if (debug
->ss
!= NULL
)
1399 if (debug
->ssext
!= NULL
)
1400 free (debug
->ssext
);
1401 if (debug
->external_fdr
!= NULL
)
1402 free (debug
->external_fdr
);
1403 if (debug
->external_rfd
!= NULL
)
1404 free (debug
->external_rfd
);
1405 if (debug
->external_ext
!= NULL
)
1406 free (debug
->external_ext
);
1410 /* Swap RPDR (runtime procedure table entry) for output. */
1413 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
1415 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
1416 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
1417 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
1418 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
1419 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
1420 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
1422 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
1423 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
1425 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
1428 /* Create a runtime procedure table from the .mdebug section. */
1431 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
1432 struct bfd_link_info
*info
, asection
*s
,
1433 struct ecoff_debug_info
*debug
)
1435 const struct ecoff_debug_swap
*swap
;
1436 HDRR
*hdr
= &debug
->symbolic_header
;
1438 struct rpdr_ext
*erp
;
1440 struct pdr_ext
*epdr
;
1441 struct sym_ext
*esym
;
1445 bfd_size_type count
;
1446 unsigned long sindex
;
1450 const char *no_name_func
= _("static procedure (no name)");
1458 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1460 sindex
= strlen (no_name_func
) + 1;
1461 count
= hdr
->ipdMax
;
1464 size
= swap
->external_pdr_size
;
1466 epdr
= bfd_malloc (size
* count
);
1470 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1473 size
= sizeof (RPDR
);
1474 rp
= rpdr
= bfd_malloc (size
* count
);
1478 size
= sizeof (char *);
1479 sv
= bfd_malloc (size
* count
);
1483 count
= hdr
->isymMax
;
1484 size
= swap
->external_sym_size
;
1485 esym
= bfd_malloc (size
* count
);
1489 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1492 count
= hdr
->issMax
;
1493 ss
= bfd_malloc (count
);
1496 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1499 count
= hdr
->ipdMax
;
1500 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1502 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1503 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1504 rp
->adr
= sym
.value
;
1505 rp
->regmask
= pdr
.regmask
;
1506 rp
->regoffset
= pdr
.regoffset
;
1507 rp
->fregmask
= pdr
.fregmask
;
1508 rp
->fregoffset
= pdr
.fregoffset
;
1509 rp
->frameoffset
= pdr
.frameoffset
;
1510 rp
->framereg
= pdr
.framereg
;
1511 rp
->pcreg
= pdr
.pcreg
;
1513 sv
[i
] = ss
+ sym
.iss
;
1514 sindex
+= strlen (sv
[i
]) + 1;
1518 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1519 size
= BFD_ALIGN (size
, 16);
1520 rtproc
= bfd_alloc (abfd
, size
);
1523 mips_elf_hash_table (info
)->procedure_count
= 0;
1527 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1530 memset (erp
, 0, sizeof (struct rpdr_ext
));
1532 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1533 strcpy (str
, no_name_func
);
1534 str
+= strlen (no_name_func
) + 1;
1535 for (i
= 0; i
< count
; i
++)
1537 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1538 strcpy (str
, sv
[i
]);
1539 str
+= strlen (sv
[i
]) + 1;
1541 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1543 /* Set the size and contents of .rtproc section. */
1545 s
->contents
= rtproc
;
1547 /* Skip this section later on (I don't think this currently
1548 matters, but someday it might). */
1549 s
->map_head
.link_order
= NULL
;
1578 /* We're going to create a stub for H. Create a symbol for the stub's
1579 value and size, to help make the disassembly easier to read. */
1582 mips_elf_create_stub_symbol (struct bfd_link_info
*info
,
1583 struct mips_elf_link_hash_entry
*h
,
1584 const char *prefix
, asection
*s
, bfd_vma value
,
1587 bfd_boolean micromips_p
= ELF_ST_IS_MICROMIPS (h
->root
.other
);
1588 struct bfd_link_hash_entry
*bh
;
1589 struct elf_link_hash_entry
*elfh
;
1596 /* Create a new symbol. */
1597 name
= concat (prefix
, h
->root
.root
.root
.string
, NULL
);
1599 res
= _bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1600 BSF_LOCAL
, s
, value
, NULL
,
1606 /* Make it a local function. */
1607 elfh
= (struct elf_link_hash_entry
*) bh
;
1608 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
1610 elfh
->forced_local
= 1;
1612 elfh
->other
= ELF_ST_SET_MICROMIPS (elfh
->other
);
1616 /* We're about to redefine H. Create a symbol to represent H's
1617 current value and size, to help make the disassembly easier
1621 mips_elf_create_shadow_symbol (struct bfd_link_info
*info
,
1622 struct mips_elf_link_hash_entry
*h
,
1625 struct bfd_link_hash_entry
*bh
;
1626 struct elf_link_hash_entry
*elfh
;
1632 /* Read the symbol's value. */
1633 BFD_ASSERT (h
->root
.root
.type
== bfd_link_hash_defined
1634 || h
->root
.root
.type
== bfd_link_hash_defweak
);
1635 s
= h
->root
.root
.u
.def
.section
;
1636 value
= h
->root
.root
.u
.def
.value
;
1638 /* Create a new symbol. */
1639 name
= concat (prefix
, h
->root
.root
.root
.string
, NULL
);
1641 res
= _bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1642 BSF_LOCAL
, s
, value
, NULL
,
1648 /* Make it local and copy the other attributes from H. */
1649 elfh
= (struct elf_link_hash_entry
*) bh
;
1650 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (h
->root
.type
));
1651 elfh
->other
= h
->root
.other
;
1652 elfh
->size
= h
->root
.size
;
1653 elfh
->forced_local
= 1;
1657 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1658 function rather than to a hard-float stub. */
1661 section_allows_mips16_refs_p (asection
*section
)
1665 name
= bfd_get_section_name (section
->owner
, section
);
1666 return (FN_STUB_P (name
)
1667 || CALL_STUB_P (name
)
1668 || CALL_FP_STUB_P (name
)
1669 || strcmp (name
, ".pdr") == 0);
1672 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1673 stub section of some kind. Return the R_SYMNDX of the target
1674 function, or 0 if we can't decide which function that is. */
1676 static unsigned long
1677 mips16_stub_symndx (const struct elf_backend_data
*bed
,
1678 asection
*sec ATTRIBUTE_UNUSED
,
1679 const Elf_Internal_Rela
*relocs
,
1680 const Elf_Internal_Rela
*relend
)
1682 int int_rels_per_ext_rel
= bed
->s
->int_rels_per_ext_rel
;
1683 const Elf_Internal_Rela
*rel
;
1685 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1686 one in a compound relocation. */
1687 for (rel
= relocs
; rel
< relend
; rel
+= int_rels_per_ext_rel
)
1688 if (ELF_R_TYPE (sec
->owner
, rel
->r_info
) == R_MIPS_NONE
)
1689 return ELF_R_SYM (sec
->owner
, rel
->r_info
);
1691 /* Otherwise trust the first relocation, whatever its kind. This is
1692 the traditional behavior. */
1693 if (relocs
< relend
)
1694 return ELF_R_SYM (sec
->owner
, relocs
->r_info
);
1699 /* Check the mips16 stubs for a particular symbol, and see if we can
1703 mips_elf_check_mips16_stubs (struct bfd_link_info
*info
,
1704 struct mips_elf_link_hash_entry
*h
)
1706 /* Dynamic symbols must use the standard call interface, in case other
1707 objects try to call them. */
1708 if (h
->fn_stub
!= NULL
1709 && h
->root
.dynindx
!= -1)
1711 mips_elf_create_shadow_symbol (info
, h
, ".mips16.");
1712 h
->need_fn_stub
= TRUE
;
1715 if (h
->fn_stub
!= NULL
1716 && ! h
->need_fn_stub
)
1718 /* We don't need the fn_stub; the only references to this symbol
1719 are 16 bit calls. Clobber the size to 0 to prevent it from
1720 being included in the link. */
1721 h
->fn_stub
->size
= 0;
1722 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1723 h
->fn_stub
->reloc_count
= 0;
1724 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1725 h
->fn_stub
->output_section
= bfd_abs_section_ptr
;
1728 if (h
->call_stub
!= NULL
1729 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1731 /* We don't need the call_stub; this is a 16 bit function, so
1732 calls from other 16 bit functions are OK. Clobber the size
1733 to 0 to prevent it from being included in the link. */
1734 h
->call_stub
->size
= 0;
1735 h
->call_stub
->flags
&= ~SEC_RELOC
;
1736 h
->call_stub
->reloc_count
= 0;
1737 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1738 h
->call_stub
->output_section
= bfd_abs_section_ptr
;
1741 if (h
->call_fp_stub
!= NULL
1742 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1744 /* We don't need the call_stub; this is a 16 bit function, so
1745 calls from other 16 bit functions are OK. Clobber the size
1746 to 0 to prevent it from being included in the link. */
1747 h
->call_fp_stub
->size
= 0;
1748 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1749 h
->call_fp_stub
->reloc_count
= 0;
1750 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1751 h
->call_fp_stub
->output_section
= bfd_abs_section_ptr
;
1755 /* Hashtable callbacks for mips_elf_la25_stubs. */
1758 mips_elf_la25_stub_hash (const void *entry_
)
1760 const struct mips_elf_la25_stub
*entry
;
1762 entry
= (struct mips_elf_la25_stub
*) entry_
;
1763 return entry
->h
->root
.root
.u
.def
.section
->id
1764 + entry
->h
->root
.root
.u
.def
.value
;
1768 mips_elf_la25_stub_eq (const void *entry1_
, const void *entry2_
)
1770 const struct mips_elf_la25_stub
*entry1
, *entry2
;
1772 entry1
= (struct mips_elf_la25_stub
*) entry1_
;
1773 entry2
= (struct mips_elf_la25_stub
*) entry2_
;
1774 return ((entry1
->h
->root
.root
.u
.def
.section
1775 == entry2
->h
->root
.root
.u
.def
.section
)
1776 && (entry1
->h
->root
.root
.u
.def
.value
1777 == entry2
->h
->root
.root
.u
.def
.value
));
1780 /* Called by the linker to set up the la25 stub-creation code. FN is
1781 the linker's implementation of add_stub_function. Return true on
1785 _bfd_mips_elf_init_stubs (struct bfd_link_info
*info
,
1786 asection
*(*fn
) (const char *, asection
*,
1789 struct mips_elf_link_hash_table
*htab
;
1791 htab
= mips_elf_hash_table (info
);
1795 htab
->add_stub_section
= fn
;
1796 htab
->la25_stubs
= htab_try_create (1, mips_elf_la25_stub_hash
,
1797 mips_elf_la25_stub_eq
, NULL
);
1798 if (htab
->la25_stubs
== NULL
)
1804 /* Return true if H is a locally-defined PIC function, in the sense
1805 that it or its fn_stub might need $25 to be valid on entry.
1806 Note that MIPS16 functions set up $gp using PC-relative instructions,
1807 so they themselves never need $25 to be valid. Only non-MIPS16
1808 entry points are of interest here. */
1811 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry
*h
)
1813 return ((h
->root
.root
.type
== bfd_link_hash_defined
1814 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1815 && h
->root
.def_regular
1816 && !bfd_is_abs_section (h
->root
.root
.u
.def
.section
)
1817 && !bfd_is_und_section (h
->root
.root
.u
.def
.section
)
1818 && (!ELF_ST_IS_MIPS16 (h
->root
.other
)
1819 || (h
->fn_stub
&& h
->need_fn_stub
))
1820 && (PIC_OBJECT_P (h
->root
.root
.u
.def
.section
->owner
)
1821 || ELF_ST_IS_MIPS_PIC (h
->root
.other
)));
1824 /* Set *SEC to the input section that contains the target of STUB.
1825 Return the offset of the target from the start of that section. */
1828 mips_elf_get_la25_target (struct mips_elf_la25_stub
*stub
,
1831 if (ELF_ST_IS_MIPS16 (stub
->h
->root
.other
))
1833 BFD_ASSERT (stub
->h
->need_fn_stub
);
1834 *sec
= stub
->h
->fn_stub
;
1839 *sec
= stub
->h
->root
.root
.u
.def
.section
;
1840 return stub
->h
->root
.root
.u
.def
.value
;
1844 /* STUB describes an la25 stub that we have decided to implement
1845 by inserting an LUI/ADDIU pair before the target function.
1846 Create the section and redirect the function symbol to it. */
1849 mips_elf_add_la25_intro (struct mips_elf_la25_stub
*stub
,
1850 struct bfd_link_info
*info
)
1852 struct mips_elf_link_hash_table
*htab
;
1854 asection
*s
, *input_section
;
1857 htab
= mips_elf_hash_table (info
);
1861 /* Create a unique name for the new section. */
1862 name
= bfd_malloc (11 + sizeof (".text.stub."));
1865 sprintf (name
, ".text.stub.%d", (int) htab_elements (htab
->la25_stubs
));
1867 /* Create the section. */
1868 mips_elf_get_la25_target (stub
, &input_section
);
1869 s
= htab
->add_stub_section (name
, input_section
,
1870 input_section
->output_section
);
1874 /* Make sure that any padding goes before the stub. */
1875 align
= input_section
->alignment_power
;
1876 if (!bfd_set_section_alignment (s
->owner
, s
, align
))
1879 s
->size
= (1 << align
) - 8;
1881 /* Create a symbol for the stub. */
1882 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 8);
1883 stub
->stub_section
= s
;
1884 stub
->offset
= s
->size
;
1886 /* Allocate room for it. */
1891 /* STUB describes an la25 stub that we have decided to implement
1892 with a separate trampoline. Allocate room for it and redirect
1893 the function symbol to it. */
1896 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub
*stub
,
1897 struct bfd_link_info
*info
)
1899 struct mips_elf_link_hash_table
*htab
;
1902 htab
= mips_elf_hash_table (info
);
1906 /* Create a trampoline section, if we haven't already. */
1907 s
= htab
->strampoline
;
1910 asection
*input_section
= stub
->h
->root
.root
.u
.def
.section
;
1911 s
= htab
->add_stub_section (".text", NULL
,
1912 input_section
->output_section
);
1913 if (s
== NULL
|| !bfd_set_section_alignment (s
->owner
, s
, 4))
1915 htab
->strampoline
= s
;
1918 /* Create a symbol for the stub. */
1919 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 16);
1920 stub
->stub_section
= s
;
1921 stub
->offset
= s
->size
;
1923 /* Allocate room for it. */
1928 /* H describes a symbol that needs an la25 stub. Make sure that an
1929 appropriate stub exists and point H at it. */
1932 mips_elf_add_la25_stub (struct bfd_link_info
*info
,
1933 struct mips_elf_link_hash_entry
*h
)
1935 struct mips_elf_link_hash_table
*htab
;
1936 struct mips_elf_la25_stub search
, *stub
;
1937 bfd_boolean use_trampoline_p
;
1942 /* Describe the stub we want. */
1943 search
.stub_section
= NULL
;
1947 /* See if we've already created an equivalent stub. */
1948 htab
= mips_elf_hash_table (info
);
1952 slot
= htab_find_slot (htab
->la25_stubs
, &search
, INSERT
);
1956 stub
= (struct mips_elf_la25_stub
*) *slot
;
1959 /* We can reuse the existing stub. */
1960 h
->la25_stub
= stub
;
1964 /* Create a permanent copy of ENTRY and add it to the hash table. */
1965 stub
= bfd_malloc (sizeof (search
));
1971 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1972 of the section and if we would need no more than 2 nops. */
1973 value
= mips_elf_get_la25_target (stub
, &s
);
1974 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
1976 use_trampoline_p
= (value
!= 0 || s
->alignment_power
> 4);
1978 h
->la25_stub
= stub
;
1979 return (use_trampoline_p
1980 ? mips_elf_add_la25_trampoline (stub
, info
)
1981 : mips_elf_add_la25_intro (stub
, info
));
1984 /* A mips_elf_link_hash_traverse callback that is called before sizing
1985 sections. DATA points to a mips_htab_traverse_info structure. */
1988 mips_elf_check_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
1990 struct mips_htab_traverse_info
*hti
;
1992 hti
= (struct mips_htab_traverse_info
*) data
;
1993 if (!bfd_link_relocatable (hti
->info
))
1994 mips_elf_check_mips16_stubs (hti
->info
, h
);
1996 if (mips_elf_local_pic_function_p (h
))
1998 /* PR 12845: If H is in a section that has been garbage
1999 collected it will have its output section set to *ABS*. */
2000 if (bfd_is_abs_section (h
->root
.root
.u
.def
.section
->output_section
))
2003 /* H is a function that might need $25 to be valid on entry.
2004 If we're creating a non-PIC relocatable object, mark H as
2005 being PIC. If we're creating a non-relocatable object with
2006 non-PIC branches and jumps to H, make sure that H has an la25
2008 if (bfd_link_relocatable (hti
->info
))
2010 if (!PIC_OBJECT_P (hti
->output_bfd
))
2011 h
->root
.other
= ELF_ST_SET_MIPS_PIC (h
->root
.other
);
2013 else if (h
->has_nonpic_branches
&& !mips_elf_add_la25_stub (hti
->info
, h
))
2022 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2023 Most mips16 instructions are 16 bits, but these instructions
2026 The format of these instructions is:
2028 +--------------+--------------------------------+
2029 | JALX | X| Imm 20:16 | Imm 25:21 |
2030 +--------------+--------------------------------+
2032 +-----------------------------------------------+
2034 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2035 Note that the immediate value in the first word is swapped.
2037 When producing a relocatable object file, R_MIPS16_26 is
2038 handled mostly like R_MIPS_26. In particular, the addend is
2039 stored as a straight 26-bit value in a 32-bit instruction.
2040 (gas makes life simpler for itself by never adjusting a
2041 R_MIPS16_26 reloc to be against a section, so the addend is
2042 always zero). However, the 32 bit instruction is stored as 2
2043 16-bit values, rather than a single 32-bit value. In a
2044 big-endian file, the result is the same; in a little-endian
2045 file, the two 16-bit halves of the 32 bit value are swapped.
2046 This is so that a disassembler can recognize the jal
2049 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2050 instruction stored as two 16-bit values. The addend A is the
2051 contents of the targ26 field. The calculation is the same as
2052 R_MIPS_26. When storing the calculated value, reorder the
2053 immediate value as shown above, and don't forget to store the
2054 value as two 16-bit values.
2056 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2060 +--------+----------------------+
2064 +--------+----------------------+
2067 +----------+------+-------------+
2071 +----------+--------------------+
2072 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2073 ((sub1 << 16) | sub2)).
2075 When producing a relocatable object file, the calculation is
2076 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2077 When producing a fully linked file, the calculation is
2078 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2079 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2081 The table below lists the other MIPS16 instruction relocations.
2082 Each one is calculated in the same way as the non-MIPS16 relocation
2083 given on the right, but using the extended MIPS16 layout of 16-bit
2086 R_MIPS16_GPREL R_MIPS_GPREL16
2087 R_MIPS16_GOT16 R_MIPS_GOT16
2088 R_MIPS16_CALL16 R_MIPS_CALL16
2089 R_MIPS16_HI16 R_MIPS_HI16
2090 R_MIPS16_LO16 R_MIPS_LO16
2092 A typical instruction will have a format like this:
2094 +--------------+--------------------------------+
2095 | EXTEND | Imm 10:5 | Imm 15:11 |
2096 +--------------+--------------------------------+
2097 | Major | rx | ry | Imm 4:0 |
2098 +--------------+--------------------------------+
2100 EXTEND is the five bit value 11110. Major is the instruction
2103 All we need to do here is shuffle the bits appropriately.
2104 As above, the two 16-bit halves must be swapped on a
2105 little-endian system.
2107 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2108 relocatable field is shifted by 1 rather than 2 and the same bit
2109 shuffling is done as with the relocations above. */
2111 static inline bfd_boolean
2112 mips16_reloc_p (int r_type
)
2117 case R_MIPS16_GPREL
:
2118 case R_MIPS16_GOT16
:
2119 case R_MIPS16_CALL16
:
2122 case R_MIPS16_TLS_GD
:
2123 case R_MIPS16_TLS_LDM
:
2124 case R_MIPS16_TLS_DTPREL_HI16
:
2125 case R_MIPS16_TLS_DTPREL_LO16
:
2126 case R_MIPS16_TLS_GOTTPREL
:
2127 case R_MIPS16_TLS_TPREL_HI16
:
2128 case R_MIPS16_TLS_TPREL_LO16
:
2129 case R_MIPS16_PC16_S1
:
2137 /* Check if a microMIPS reloc. */
2139 static inline bfd_boolean
2140 micromips_reloc_p (unsigned int r_type
)
2142 return r_type
>= R_MICROMIPS_min
&& r_type
< R_MICROMIPS_max
;
2145 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2146 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2147 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2149 static inline bfd_boolean
2150 micromips_reloc_shuffle_p (unsigned int r_type
)
2152 return (micromips_reloc_p (r_type
)
2153 && r_type
!= R_MICROMIPS_PC7_S1
2154 && r_type
!= R_MICROMIPS_PC10_S1
);
2157 static inline bfd_boolean
2158 got16_reloc_p (int r_type
)
2160 return (r_type
== R_MIPS_GOT16
2161 || r_type
== R_MIPS16_GOT16
2162 || r_type
== R_MICROMIPS_GOT16
);
2165 static inline bfd_boolean
2166 call16_reloc_p (int r_type
)
2168 return (r_type
== R_MIPS_CALL16
2169 || r_type
== R_MIPS16_CALL16
2170 || r_type
== R_MICROMIPS_CALL16
);
2173 static inline bfd_boolean
2174 got_disp_reloc_p (unsigned int r_type
)
2176 return r_type
== R_MIPS_GOT_DISP
|| r_type
== R_MICROMIPS_GOT_DISP
;
2179 static inline bfd_boolean
2180 got_page_reloc_p (unsigned int r_type
)
2182 return r_type
== R_MIPS_GOT_PAGE
|| r_type
== R_MICROMIPS_GOT_PAGE
;
2185 static inline bfd_boolean
2186 got_lo16_reloc_p (unsigned int r_type
)
2188 return r_type
== R_MIPS_GOT_LO16
|| r_type
== R_MICROMIPS_GOT_LO16
;
2191 static inline bfd_boolean
2192 call_hi16_reloc_p (unsigned int r_type
)
2194 return r_type
== R_MIPS_CALL_HI16
|| r_type
== R_MICROMIPS_CALL_HI16
;
2197 static inline bfd_boolean
2198 call_lo16_reloc_p (unsigned int r_type
)
2200 return r_type
== R_MIPS_CALL_LO16
|| r_type
== R_MICROMIPS_CALL_LO16
;
2203 static inline bfd_boolean
2204 hi16_reloc_p (int r_type
)
2206 return (r_type
== R_MIPS_HI16
2207 || r_type
== R_MIPS16_HI16
2208 || r_type
== R_MICROMIPS_HI16
2209 || r_type
== R_MIPS_PCHI16
);
2212 static inline bfd_boolean
2213 lo16_reloc_p (int r_type
)
2215 return (r_type
== R_MIPS_LO16
2216 || r_type
== R_MIPS16_LO16
2217 || r_type
== R_MICROMIPS_LO16
2218 || r_type
== R_MIPS_PCLO16
);
2221 static inline bfd_boolean
2222 mips16_call_reloc_p (int r_type
)
2224 return r_type
== R_MIPS16_26
|| r_type
== R_MIPS16_CALL16
;
2227 static inline bfd_boolean
2228 jal_reloc_p (int r_type
)
2230 return (r_type
== R_MIPS_26
2231 || r_type
== R_MIPS16_26
2232 || r_type
== R_MICROMIPS_26_S1
);
2235 static inline bfd_boolean
2236 b_reloc_p (int r_type
)
2238 return (r_type
== R_MIPS_PC26_S2
2239 || r_type
== R_MIPS_PC21_S2
2240 || r_type
== R_MIPS_PC16
2241 || r_type
== R_MIPS_GNU_REL16_S2
2242 || r_type
== R_MIPS16_PC16_S1
2243 || r_type
== R_MICROMIPS_PC16_S1
2244 || r_type
== R_MICROMIPS_PC10_S1
2245 || r_type
== R_MICROMIPS_PC7_S1
);
2248 static inline bfd_boolean
2249 aligned_pcrel_reloc_p (int r_type
)
2251 return (r_type
== R_MIPS_PC18_S3
2252 || r_type
== R_MIPS_PC19_S2
);
2255 static inline bfd_boolean
2256 branch_reloc_p (int r_type
)
2258 return (r_type
== R_MIPS_26
2259 || r_type
== R_MIPS_PC26_S2
2260 || r_type
== R_MIPS_PC21_S2
2261 || r_type
== R_MIPS_PC16
2262 || r_type
== R_MIPS_GNU_REL16_S2
);
2265 static inline bfd_boolean
2266 mips16_branch_reloc_p (int r_type
)
2268 return (r_type
== R_MIPS16_26
2269 || r_type
== R_MIPS16_PC16_S1
);
2272 static inline bfd_boolean
2273 micromips_branch_reloc_p (int r_type
)
2275 return (r_type
== R_MICROMIPS_26_S1
2276 || r_type
== R_MICROMIPS_PC16_S1
2277 || r_type
== R_MICROMIPS_PC10_S1
2278 || r_type
== R_MICROMIPS_PC7_S1
);
2281 static inline bfd_boolean
2282 tls_gd_reloc_p (unsigned int r_type
)
2284 return (r_type
== R_MIPS_TLS_GD
2285 || r_type
== R_MIPS16_TLS_GD
2286 || r_type
== R_MICROMIPS_TLS_GD
);
2289 static inline bfd_boolean
2290 tls_ldm_reloc_p (unsigned int r_type
)
2292 return (r_type
== R_MIPS_TLS_LDM
2293 || r_type
== R_MIPS16_TLS_LDM
2294 || r_type
== R_MICROMIPS_TLS_LDM
);
2297 static inline bfd_boolean
2298 tls_gottprel_reloc_p (unsigned int r_type
)
2300 return (r_type
== R_MIPS_TLS_GOTTPREL
2301 || r_type
== R_MIPS16_TLS_GOTTPREL
2302 || r_type
== R_MICROMIPS_TLS_GOTTPREL
);
2306 _bfd_mips_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
2307 bfd_boolean jal_shuffle
, bfd_byte
*data
)
2309 bfd_vma first
, second
, val
;
2311 if (!mips16_reloc_p (r_type
) && !micromips_reloc_shuffle_p (r_type
))
2314 /* Pick up the first and second halfwords of the instruction. */
2315 first
= bfd_get_16 (abfd
, data
);
2316 second
= bfd_get_16 (abfd
, data
+ 2);
2317 if (micromips_reloc_p (r_type
) || (r_type
== R_MIPS16_26
&& !jal_shuffle
))
2318 val
= first
<< 16 | second
;
2319 else if (r_type
!= R_MIPS16_26
)
2320 val
= (((first
& 0xf800) << 16) | ((second
& 0xffe0) << 11)
2321 | ((first
& 0x1f) << 11) | (first
& 0x7e0) | (second
& 0x1f));
2323 val
= (((first
& 0xfc00) << 16) | ((first
& 0x3e0) << 11)
2324 | ((first
& 0x1f) << 21) | second
);
2325 bfd_put_32 (abfd
, val
, data
);
2329 _bfd_mips_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
2330 bfd_boolean jal_shuffle
, bfd_byte
*data
)
2332 bfd_vma first
, second
, val
;
2334 if (!mips16_reloc_p (r_type
) && !micromips_reloc_shuffle_p (r_type
))
2337 val
= bfd_get_32 (abfd
, data
);
2338 if (micromips_reloc_p (r_type
) || (r_type
== R_MIPS16_26
&& !jal_shuffle
))
2340 second
= val
& 0xffff;
2343 else if (r_type
!= R_MIPS16_26
)
2345 second
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
2346 first
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
2350 second
= val
& 0xffff;
2351 first
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
2352 | ((val
>> 21) & 0x1f);
2354 bfd_put_16 (abfd
, second
, data
+ 2);
2355 bfd_put_16 (abfd
, first
, data
);
2358 bfd_reloc_status_type
2359 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
2360 arelent
*reloc_entry
, asection
*input_section
,
2361 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
2365 bfd_reloc_status_type status
;
2367 if (bfd_is_com_section (symbol
->section
))
2370 relocation
= symbol
->value
;
2372 relocation
+= symbol
->section
->output_section
->vma
;
2373 relocation
+= symbol
->section
->output_offset
;
2375 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2376 return bfd_reloc_outofrange
;
2378 /* Set val to the offset into the section or symbol. */
2379 val
= reloc_entry
->addend
;
2381 _bfd_mips_elf_sign_extend (val
, 16);
2383 /* Adjust val for the final section location and GP value. If we
2384 are producing relocatable output, we don't want to do this for
2385 an external symbol. */
2387 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2388 val
+= relocation
- gp
;
2390 if (reloc_entry
->howto
->partial_inplace
)
2392 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2394 + reloc_entry
->address
);
2395 if (status
!= bfd_reloc_ok
)
2399 reloc_entry
->addend
= val
;
2402 reloc_entry
->address
+= input_section
->output_offset
;
2404 return bfd_reloc_ok
;
2407 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2408 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2409 that contains the relocation field and DATA points to the start of
2414 struct mips_hi16
*next
;
2416 asection
*input_section
;
2420 /* FIXME: This should not be a static variable. */
2422 static struct mips_hi16
*mips_hi16_list
;
2424 /* A howto special_function for REL *HI16 relocations. We can only
2425 calculate the correct value once we've seen the partnering
2426 *LO16 relocation, so just save the information for later.
2428 The ABI requires that the *LO16 immediately follow the *HI16.
2429 However, as a GNU extension, we permit an arbitrary number of
2430 *HI16s to be associated with a single *LO16. This significantly
2431 simplies the relocation handling in gcc. */
2433 bfd_reloc_status_type
2434 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2435 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
2436 asection
*input_section
, bfd
*output_bfd
,
2437 char **error_message ATTRIBUTE_UNUSED
)
2439 struct mips_hi16
*n
;
2441 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2442 return bfd_reloc_outofrange
;
2444 n
= bfd_malloc (sizeof *n
);
2446 return bfd_reloc_outofrange
;
2448 n
->next
= mips_hi16_list
;
2450 n
->input_section
= input_section
;
2451 n
->rel
= *reloc_entry
;
2454 if (output_bfd
!= NULL
)
2455 reloc_entry
->address
+= input_section
->output_offset
;
2457 return bfd_reloc_ok
;
2460 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2461 like any other 16-bit relocation when applied to global symbols, but is
2462 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2464 bfd_reloc_status_type
2465 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2466 void *data
, asection
*input_section
,
2467 bfd
*output_bfd
, char **error_message
)
2469 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2470 || bfd_is_und_section (bfd_get_section (symbol
))
2471 || bfd_is_com_section (bfd_get_section (symbol
)))
2472 /* The relocation is against a global symbol. */
2473 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2474 input_section
, output_bfd
,
2477 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
2478 input_section
, output_bfd
, error_message
);
2481 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2482 is a straightforward 16 bit inplace relocation, but we must deal with
2483 any partnering high-part relocations as well. */
2485 bfd_reloc_status_type
2486 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2487 void *data
, asection
*input_section
,
2488 bfd
*output_bfd
, char **error_message
)
2491 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2493 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2494 return bfd_reloc_outofrange
;
2496 _bfd_mips_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2498 vallo
= bfd_get_32 (abfd
, location
);
2499 _bfd_mips_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2502 while (mips_hi16_list
!= NULL
)
2504 bfd_reloc_status_type ret
;
2505 struct mips_hi16
*hi
;
2507 hi
= mips_hi16_list
;
2509 /* R_MIPS*_GOT16 relocations are something of a special case. We
2510 want to install the addend in the same way as for a R_MIPS*_HI16
2511 relocation (with a rightshift of 16). However, since GOT16
2512 relocations can also be used with global symbols, their howto
2513 has a rightshift of 0. */
2514 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
2515 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
2516 else if (hi
->rel
.howto
->type
== R_MIPS16_GOT16
)
2517 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS16_HI16
, FALSE
);
2518 else if (hi
->rel
.howto
->type
== R_MICROMIPS_GOT16
)
2519 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MICROMIPS_HI16
, FALSE
);
2521 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2522 carry or borrow will induce a change of +1 or -1 in the high part. */
2523 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
2525 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
2526 hi
->input_section
, output_bfd
,
2528 if (ret
!= bfd_reloc_ok
)
2531 mips_hi16_list
= hi
->next
;
2535 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2536 input_section
, output_bfd
,
2540 /* A generic howto special_function. This calculates and installs the
2541 relocation itself, thus avoiding the oft-discussed problems in
2542 bfd_perform_relocation and bfd_install_relocation. */
2544 bfd_reloc_status_type
2545 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2546 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
2547 asection
*input_section
, bfd
*output_bfd
,
2548 char **error_message ATTRIBUTE_UNUSED
)
2551 bfd_reloc_status_type status
;
2552 bfd_boolean relocatable
;
2554 relocatable
= (output_bfd
!= NULL
);
2556 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2557 return bfd_reloc_outofrange
;
2559 /* Build up the field adjustment in VAL. */
2561 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2563 /* Either we're calculating the final field value or we have a
2564 relocation against a section symbol. Add in the section's
2565 offset or address. */
2566 val
+= symbol
->section
->output_section
->vma
;
2567 val
+= symbol
->section
->output_offset
;
2572 /* We're calculating the final field value. Add in the symbol's value
2573 and, if pc-relative, subtract the address of the field itself. */
2574 val
+= symbol
->value
;
2575 if (reloc_entry
->howto
->pc_relative
)
2577 val
-= input_section
->output_section
->vma
;
2578 val
-= input_section
->output_offset
;
2579 val
-= reloc_entry
->address
;
2583 /* VAL is now the final adjustment. If we're keeping this relocation
2584 in the output file, and if the relocation uses a separate addend,
2585 we just need to add VAL to that addend. Otherwise we need to add
2586 VAL to the relocation field itself. */
2587 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
2588 reloc_entry
->addend
+= val
;
2591 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2593 /* Add in the separate addend, if any. */
2594 val
+= reloc_entry
->addend
;
2596 /* Add VAL to the relocation field. */
2597 _bfd_mips_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2599 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2601 _bfd_mips_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2604 if (status
!= bfd_reloc_ok
)
2609 reloc_entry
->address
+= input_section
->output_offset
;
2611 return bfd_reloc_ok
;
2614 /* Swap an entry in a .gptab section. Note that these routines rely
2615 on the equivalence of the two elements of the union. */
2618 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
2621 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2622 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2626 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
2627 Elf32_External_gptab
*ex
)
2629 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2630 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2634 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
2635 Elf32_External_compact_rel
*ex
)
2637 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2638 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2639 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2640 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2641 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2642 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2646 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
2647 Elf32_External_crinfo
*ex
)
2651 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2652 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2653 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2654 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2655 H_PUT_32 (abfd
, l
, ex
->info
);
2656 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2657 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2660 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2661 routines swap this structure in and out. They are used outside of
2662 BFD, so they are globally visible. */
2665 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
2668 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2669 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2670 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2671 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2672 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2673 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2677 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
2678 Elf32_External_RegInfo
*ex
)
2680 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2681 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2682 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2683 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2684 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2685 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2688 /* In the 64 bit ABI, the .MIPS.options section holds register
2689 information in an Elf64_Reginfo structure. These routines swap
2690 them in and out. They are globally visible because they are used
2691 outside of BFD. These routines are here so that gas can call them
2692 without worrying about whether the 64 bit ABI has been included. */
2695 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
2696 Elf64_Internal_RegInfo
*in
)
2698 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2699 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2700 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2701 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2702 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2703 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2704 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2708 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
2709 Elf64_External_RegInfo
*ex
)
2711 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2712 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2713 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2714 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2715 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2716 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2717 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2720 /* Swap in an options header. */
2723 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
2724 Elf_Internal_Options
*in
)
2726 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2727 in
->size
= H_GET_8 (abfd
, ex
->size
);
2728 in
->section
= H_GET_16 (abfd
, ex
->section
);
2729 in
->info
= H_GET_32 (abfd
, ex
->info
);
2732 /* Swap out an options header. */
2735 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
2736 Elf_External_Options
*ex
)
2738 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2739 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2740 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2741 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2744 /* Swap in an abiflags structure. */
2747 bfd_mips_elf_swap_abiflags_v0_in (bfd
*abfd
,
2748 const Elf_External_ABIFlags_v0
*ex
,
2749 Elf_Internal_ABIFlags_v0
*in
)
2751 in
->version
= H_GET_16 (abfd
, ex
->version
);
2752 in
->isa_level
= H_GET_8 (abfd
, ex
->isa_level
);
2753 in
->isa_rev
= H_GET_8 (abfd
, ex
->isa_rev
);
2754 in
->gpr_size
= H_GET_8 (abfd
, ex
->gpr_size
);
2755 in
->cpr1_size
= H_GET_8 (abfd
, ex
->cpr1_size
);
2756 in
->cpr2_size
= H_GET_8 (abfd
, ex
->cpr2_size
);
2757 in
->fp_abi
= H_GET_8 (abfd
, ex
->fp_abi
);
2758 in
->isa_ext
= H_GET_32 (abfd
, ex
->isa_ext
);
2759 in
->ases
= H_GET_32 (abfd
, ex
->ases
);
2760 in
->flags1
= H_GET_32 (abfd
, ex
->flags1
);
2761 in
->flags2
= H_GET_32 (abfd
, ex
->flags2
);
2764 /* Swap out an abiflags structure. */
2767 bfd_mips_elf_swap_abiflags_v0_out (bfd
*abfd
,
2768 const Elf_Internal_ABIFlags_v0
*in
,
2769 Elf_External_ABIFlags_v0
*ex
)
2771 H_PUT_16 (abfd
, in
->version
, ex
->version
);
2772 H_PUT_8 (abfd
, in
->isa_level
, ex
->isa_level
);
2773 H_PUT_8 (abfd
, in
->isa_rev
, ex
->isa_rev
);
2774 H_PUT_8 (abfd
, in
->gpr_size
, ex
->gpr_size
);
2775 H_PUT_8 (abfd
, in
->cpr1_size
, ex
->cpr1_size
);
2776 H_PUT_8 (abfd
, in
->cpr2_size
, ex
->cpr2_size
);
2777 H_PUT_8 (abfd
, in
->fp_abi
, ex
->fp_abi
);
2778 H_PUT_32 (abfd
, in
->isa_ext
, ex
->isa_ext
);
2779 H_PUT_32 (abfd
, in
->ases
, ex
->ases
);
2780 H_PUT_32 (abfd
, in
->flags1
, ex
->flags1
);
2781 H_PUT_32 (abfd
, in
->flags2
, ex
->flags2
);
2784 /* This function is called via qsort() to sort the dynamic relocation
2785 entries by increasing r_symndx value. */
2788 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
2790 Elf_Internal_Rela int_reloc1
;
2791 Elf_Internal_Rela int_reloc2
;
2794 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
2795 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
2797 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
2801 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
2803 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
2808 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2811 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
2812 const void *arg2 ATTRIBUTE_UNUSED
)
2815 Elf_Internal_Rela int_reloc1
[3];
2816 Elf_Internal_Rela int_reloc2
[3];
2818 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2819 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
2820 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2821 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
2823 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
2825 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
2828 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
2830 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
2839 /* This routine is used to write out ECOFF debugging external symbol
2840 information. It is called via mips_elf_link_hash_traverse. The
2841 ECOFF external symbol information must match the ELF external
2842 symbol information. Unfortunately, at this point we don't know
2843 whether a symbol is required by reloc information, so the two
2844 tables may wind up being different. We must sort out the external
2845 symbol information before we can set the final size of the .mdebug
2846 section, and we must set the size of the .mdebug section before we
2847 can relocate any sections, and we can't know which symbols are
2848 required by relocation until we relocate the sections.
2849 Fortunately, it is relatively unlikely that any symbol will be
2850 stripped but required by a reloc. In particular, it can not happen
2851 when generating a final executable. */
2854 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
2856 struct extsym_info
*einfo
= data
;
2858 asection
*sec
, *output_section
;
2860 if (h
->root
.indx
== -2)
2862 else if ((h
->root
.def_dynamic
2863 || h
->root
.ref_dynamic
2864 || h
->root
.type
== bfd_link_hash_new
)
2865 && !h
->root
.def_regular
2866 && !h
->root
.ref_regular
)
2868 else if (einfo
->info
->strip
== strip_all
2869 || (einfo
->info
->strip
== strip_some
2870 && bfd_hash_lookup (einfo
->info
->keep_hash
,
2871 h
->root
.root
.root
.string
,
2872 FALSE
, FALSE
) == NULL
))
2880 if (h
->esym
.ifd
== -2)
2883 h
->esym
.cobol_main
= 0;
2884 h
->esym
.weakext
= 0;
2885 h
->esym
.reserved
= 0;
2886 h
->esym
.ifd
= ifdNil
;
2887 h
->esym
.asym
.value
= 0;
2888 h
->esym
.asym
.st
= stGlobal
;
2890 if (h
->root
.root
.type
== bfd_link_hash_undefined
2891 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
2895 /* Use undefined class. Also, set class and type for some
2897 name
= h
->root
.root
.root
.string
;
2898 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
2899 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
2901 h
->esym
.asym
.sc
= scData
;
2902 h
->esym
.asym
.st
= stLabel
;
2903 h
->esym
.asym
.value
= 0;
2905 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
2907 h
->esym
.asym
.sc
= scAbs
;
2908 h
->esym
.asym
.st
= stLabel
;
2909 h
->esym
.asym
.value
=
2910 mips_elf_hash_table (einfo
->info
)->procedure_count
;
2913 h
->esym
.asym
.sc
= scUndefined
;
2915 else if (h
->root
.root
.type
!= bfd_link_hash_defined
2916 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
2917 h
->esym
.asym
.sc
= scAbs
;
2922 sec
= h
->root
.root
.u
.def
.section
;
2923 output_section
= sec
->output_section
;
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section
== NULL
)
2928 h
->esym
.asym
.sc
= scUndefined
;
2931 name
= bfd_section_name (output_section
->owner
, output_section
);
2933 if (strcmp (name
, ".text") == 0)
2934 h
->esym
.asym
.sc
= scText
;
2935 else if (strcmp (name
, ".data") == 0)
2936 h
->esym
.asym
.sc
= scData
;
2937 else if (strcmp (name
, ".sdata") == 0)
2938 h
->esym
.asym
.sc
= scSData
;
2939 else if (strcmp (name
, ".rodata") == 0
2940 || strcmp (name
, ".rdata") == 0)
2941 h
->esym
.asym
.sc
= scRData
;
2942 else if (strcmp (name
, ".bss") == 0)
2943 h
->esym
.asym
.sc
= scBss
;
2944 else if (strcmp (name
, ".sbss") == 0)
2945 h
->esym
.asym
.sc
= scSBss
;
2946 else if (strcmp (name
, ".init") == 0)
2947 h
->esym
.asym
.sc
= scInit
;
2948 else if (strcmp (name
, ".fini") == 0)
2949 h
->esym
.asym
.sc
= scFini
;
2951 h
->esym
.asym
.sc
= scAbs
;
2955 h
->esym
.asym
.reserved
= 0;
2956 h
->esym
.asym
.index
= indexNil
;
2959 if (h
->root
.root
.type
== bfd_link_hash_common
)
2960 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
2961 else if (h
->root
.root
.type
== bfd_link_hash_defined
2962 || h
->root
.root
.type
== bfd_link_hash_defweak
)
2964 if (h
->esym
.asym
.sc
== scCommon
)
2965 h
->esym
.asym
.sc
= scBss
;
2966 else if (h
->esym
.asym
.sc
== scSCommon
)
2967 h
->esym
.asym
.sc
= scSBss
;
2969 sec
= h
->root
.root
.u
.def
.section
;
2970 output_section
= sec
->output_section
;
2971 if (output_section
!= NULL
)
2972 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
2973 + sec
->output_offset
2974 + output_section
->vma
);
2976 h
->esym
.asym
.value
= 0;
2980 struct mips_elf_link_hash_entry
*hd
= h
;
2982 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
2983 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
2985 if (hd
->needs_lazy_stub
)
2987 BFD_ASSERT (hd
->root
.plt
.plist
!= NULL
);
2988 BFD_ASSERT (hd
->root
.plt
.plist
->stub_offset
!= MINUS_ONE
);
2989 /* Set type and value for a symbol with a function stub. */
2990 h
->esym
.asym
.st
= stProc
;
2991 sec
= hd
->root
.root
.u
.def
.section
;
2993 h
->esym
.asym
.value
= 0;
2996 output_section
= sec
->output_section
;
2997 if (output_section
!= NULL
)
2998 h
->esym
.asym
.value
= (hd
->root
.plt
.plist
->stub_offset
2999 + sec
->output_offset
3000 + output_section
->vma
);
3002 h
->esym
.asym
.value
= 0;
3007 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
3008 h
->root
.root
.root
.string
,
3011 einfo
->failed
= TRUE
;
3018 /* A comparison routine used to sort .gptab entries. */
3021 gptab_compare (const void *p1
, const void *p2
)
3023 const Elf32_gptab
*a1
= p1
;
3024 const Elf32_gptab
*a2
= p2
;
3026 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
3029 /* Functions to manage the got entry hash table. */
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr
)
3038 return addr
+ (addr
>> 32);
3045 mips_elf_got_entry_hash (const void *entry_
)
3047 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
3049 return (entry
->symndx
3050 + ((entry
->tls_type
== GOT_TLS_LDM
) << 18)
3051 + (entry
->tls_type
== GOT_TLS_LDM
? 0
3052 : !entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
3053 : entry
->symndx
>= 0 ? (entry
->abfd
->id
3054 + mips_elf_hash_bfd_vma (entry
->d
.addend
))
3055 : entry
->d
.h
->root
.root
.root
.hash
));
3059 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
3061 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
3062 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
3064 return (e1
->symndx
== e2
->symndx
3065 && e1
->tls_type
== e2
->tls_type
3066 && (e1
->tls_type
== GOT_TLS_LDM
? TRUE
3067 : !e1
->abfd
? !e2
->abfd
&& e1
->d
.address
== e2
->d
.address
3068 : e1
->symndx
>= 0 ? (e1
->abfd
== e2
->abfd
3069 && e1
->d
.addend
== e2
->d
.addend
)
3070 : e2
->abfd
&& e1
->d
.h
== e2
->d
.h
));
3074 mips_got_page_ref_hash (const void *ref_
)
3076 const struct mips_got_page_ref
*ref
;
3078 ref
= (const struct mips_got_page_ref
*) ref_
;
3079 return ((ref
->symndx
>= 0
3080 ? (hashval_t
) (ref
->u
.abfd
->id
+ ref
->symndx
)
3081 : ref
->u
.h
->root
.root
.root
.hash
)
3082 + mips_elf_hash_bfd_vma (ref
->addend
));
3086 mips_got_page_ref_eq (const void *ref1_
, const void *ref2_
)
3088 const struct mips_got_page_ref
*ref1
, *ref2
;
3090 ref1
= (const struct mips_got_page_ref
*) ref1_
;
3091 ref2
= (const struct mips_got_page_ref
*) ref2_
;
3092 return (ref1
->symndx
== ref2
->symndx
3093 && (ref1
->symndx
< 0
3094 ? ref1
->u
.h
== ref2
->u
.h
3095 : ref1
->u
.abfd
== ref2
->u
.abfd
)
3096 && ref1
->addend
== ref2
->addend
);
3100 mips_got_page_entry_hash (const void *entry_
)
3102 const struct mips_got_page_entry
*entry
;
3104 entry
= (const struct mips_got_page_entry
*) entry_
;
3105 return entry
->sec
->id
;
3109 mips_got_page_entry_eq (const void *entry1_
, const void *entry2_
)
3111 const struct mips_got_page_entry
*entry1
, *entry2
;
3113 entry1
= (const struct mips_got_page_entry
*) entry1_
;
3114 entry2
= (const struct mips_got_page_entry
*) entry2_
;
3115 return entry1
->sec
== entry2
->sec
;
3118 /* Create and return a new mips_got_info structure. */
3120 static struct mips_got_info
*
3121 mips_elf_create_got_info (bfd
*abfd
)
3123 struct mips_got_info
*g
;
3125 g
= bfd_zalloc (abfd
, sizeof (struct mips_got_info
));
3129 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
3130 mips_elf_got_entry_eq
, NULL
);
3131 if (g
->got_entries
== NULL
)
3134 g
->got_page_refs
= htab_try_create (1, mips_got_page_ref_hash
,
3135 mips_got_page_ref_eq
, NULL
);
3136 if (g
->got_page_refs
== NULL
)
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3145 static struct mips_got_info
*
3146 mips_elf_bfd_got (bfd
*abfd
, bfd_boolean create_p
)
3148 struct mips_elf_obj_tdata
*tdata
;
3150 if (!is_mips_elf (abfd
))
3153 tdata
= mips_elf_tdata (abfd
);
3154 if (!tdata
->got
&& create_p
)
3155 tdata
->got
= mips_elf_create_got_info (abfd
);
3159 /* Record that ABFD should use output GOT G. */
3162 mips_elf_replace_bfd_got (bfd
*abfd
, struct mips_got_info
*g
)
3164 struct mips_elf_obj_tdata
*tdata
;
3166 BFD_ASSERT (is_mips_elf (abfd
));
3167 tdata
= mips_elf_tdata (abfd
);
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata
->got
->got_entries
);
3173 htab_delete (tdata
->got
->got_page_refs
);
3174 if (tdata
->got
->got_page_entries
)
3175 htab_delete (tdata
->got
->got_page_entries
);
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3185 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
3191 dname
= MIPS_ELF_REL_DYN_NAME (info
);
3192 dynobj
= elf_hash_table (info
)->dynobj
;
3193 sreloc
= bfd_get_linker_section (dynobj
, dname
);
3194 if (sreloc
== NULL
&& create_p
)
3196 sreloc
= bfd_make_section_anyway_with_flags (dynobj
, dname
,
3201 | SEC_LINKER_CREATED
3204 || ! bfd_set_section_alignment (dynobj
, sreloc
,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3214 mips_elf_reloc_tls_type (unsigned int r_type
)
3216 if (tls_gd_reloc_p (r_type
))
3219 if (tls_ldm_reloc_p (r_type
))
3222 if (tls_gottprel_reloc_p (r_type
))
3225 return GOT_TLS_NONE
;
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3231 mips_tls_got_entries (unsigned int type
)
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3253 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
3254 struct elf_link_hash_entry
*h
)
3257 bfd_boolean need_relocs
= FALSE
;
3258 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
3262 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), h
)
3263 && (bfd_link_dll (info
) || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
3266 if ((bfd_link_dll (info
) || indx
!= 0)
3268 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3269 || h
->root
.type
!= bfd_link_hash_undefweak
))
3278 return indx
!= 0 ? 2 : 1;
3284 return bfd_link_dll (info
) ? 1 : 0;
3291 /* Add the number of GOT entries and TLS relocations required by ENTRY
3295 mips_elf_count_got_entry (struct bfd_link_info
*info
,
3296 struct mips_got_info
*g
,
3297 struct mips_got_entry
*entry
)
3299 if (entry
->tls_type
)
3301 g
->tls_gotno
+= mips_tls_got_entries (entry
->tls_type
);
3302 g
->relocs
+= mips_tls_got_relocs (info
, entry
->tls_type
,
3304 ? &entry
->d
.h
->root
: NULL
);
3306 else if (entry
->symndx
>= 0 || entry
->d
.h
->global_got_area
== GGA_NONE
)
3307 g
->local_gotno
+= 1;
3309 g
->global_gotno
+= 1;
3312 /* Output a simple dynamic relocation into SRELOC. */
3315 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
3317 unsigned long reloc_index
,
3322 Elf_Internal_Rela rel
[3];
3324 memset (rel
, 0, sizeof (rel
));
3326 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
3327 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
3329 if (ABI_64_P (output_bfd
))
3331 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
3332 (output_bfd
, &rel
[0],
3334 + reloc_index
* sizeof (Elf64_Mips_External_Rel
)));
3337 bfd_elf32_swap_reloc_out
3338 (output_bfd
, &rel
[0],
3340 + reloc_index
* sizeof (Elf32_External_Rel
)));
3343 /* Initialize a set of TLS GOT entries for one symbol. */
3346 mips_elf_initialize_tls_slots (bfd
*abfd
, struct bfd_link_info
*info
,
3347 struct mips_got_entry
*entry
,
3348 struct mips_elf_link_hash_entry
*h
,
3351 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
3352 struct mips_elf_link_hash_table
*htab
;
3354 asection
*sreloc
, *sgot
;
3355 bfd_vma got_offset
, got_offset2
;
3356 bfd_boolean need_relocs
= FALSE
;
3358 htab
= mips_elf_hash_table (info
);
3362 sgot
= htab
->root
.sgot
;
3366 && h
->root
.dynindx
!= -1
3367 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), &h
->root
)
3368 && (bfd_link_dll (info
) || !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
3369 indx
= h
->root
.dynindx
;
3371 if (entry
->tls_initialized
)
3374 if ((bfd_link_dll (info
) || indx
!= 0)
3376 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
3377 || h
->root
.type
!= bfd_link_hash_undefweak
))
3380 /* MINUS_ONE means the symbol is not defined in this object. It may not
3381 be defined at all; assume that the value doesn't matter in that
3382 case. Otherwise complain if we would use the value. */
3383 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
3384 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
3386 /* Emit necessary relocations. */
3387 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
3388 got_offset
= entry
->gotidx
;
3390 switch (entry
->tls_type
)
3393 /* General Dynamic. */
3394 got_offset2
= got_offset
+ MIPS_ELF_GOT_SIZE (abfd
);
3398 mips_elf_output_dynamic_relocation
3399 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3400 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
3401 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3404 mips_elf_output_dynamic_relocation
3405 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3406 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
3407 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset2
);
3409 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
3410 sgot
->contents
+ got_offset2
);
3414 MIPS_ELF_PUT_WORD (abfd
, 1,
3415 sgot
->contents
+ got_offset
);
3416 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
3417 sgot
->contents
+ got_offset2
);
3422 /* Initial Exec model. */
3426 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
3427 sgot
->contents
+ got_offset
);
3429 MIPS_ELF_PUT_WORD (abfd
, 0,
3430 sgot
->contents
+ got_offset
);
3432 mips_elf_output_dynamic_relocation
3433 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3434 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
3435 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3438 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
3439 sgot
->contents
+ got_offset
);
3443 /* The initial offset is zero, and the LD offsets will include the
3444 bias by DTP_OFFSET. */
3445 MIPS_ELF_PUT_WORD (abfd
, 0,
3446 sgot
->contents
+ got_offset
3447 + MIPS_ELF_GOT_SIZE (abfd
));
3449 if (!bfd_link_dll (info
))
3450 MIPS_ELF_PUT_WORD (abfd
, 1,
3451 sgot
->contents
+ got_offset
);
3453 mips_elf_output_dynamic_relocation
3454 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3455 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
3456 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3463 entry
->tls_initialized
= TRUE
;
3466 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3467 for global symbol H. .got.plt comes before the GOT, so the offset
3468 will be negative. */
3471 mips_elf_gotplt_index (struct bfd_link_info
*info
,
3472 struct elf_link_hash_entry
*h
)
3474 bfd_vma got_address
, got_value
;
3475 struct mips_elf_link_hash_table
*htab
;
3477 htab
= mips_elf_hash_table (info
);
3478 BFD_ASSERT (htab
!= NULL
);
3480 BFD_ASSERT (h
->plt
.plist
!= NULL
);
3481 BFD_ASSERT (h
->plt
.plist
->gotplt_index
!= MINUS_ONE
);
3483 /* Calculate the address of the associated .got.plt entry. */
3484 got_address
= (htab
->root
.sgotplt
->output_section
->vma
3485 + htab
->root
.sgotplt
->output_offset
3486 + (h
->plt
.plist
->gotplt_index
3487 * MIPS_ELF_GOT_SIZE (info
->output_bfd
)));
3489 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3490 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
3491 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
3492 + htab
->root
.hgot
->root
.u
.def
.value
);
3494 return got_address
- got_value
;
3497 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3498 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3499 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3500 offset can be found. */
3503 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3504 bfd_vma value
, unsigned long r_symndx
,
3505 struct mips_elf_link_hash_entry
*h
, int r_type
)
3507 struct mips_elf_link_hash_table
*htab
;
3508 struct mips_got_entry
*entry
;
3510 htab
= mips_elf_hash_table (info
);
3511 BFD_ASSERT (htab
!= NULL
);
3513 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
,
3514 r_symndx
, h
, r_type
);
3518 if (entry
->tls_type
)
3519 mips_elf_initialize_tls_slots (abfd
, info
, entry
, h
, value
);
3520 return entry
->gotidx
;
3523 /* Return the GOT index of global symbol H in the primary GOT. */
3526 mips_elf_primary_global_got_index (bfd
*obfd
, struct bfd_link_info
*info
,
3527 struct elf_link_hash_entry
*h
)
3529 struct mips_elf_link_hash_table
*htab
;
3530 long global_got_dynindx
;
3531 struct mips_got_info
*g
;
3534 htab
= mips_elf_hash_table (info
);
3535 BFD_ASSERT (htab
!= NULL
);
3537 global_got_dynindx
= 0;
3538 if (htab
->global_gotsym
!= NULL
)
3539 global_got_dynindx
= htab
->global_gotsym
->dynindx
;
3541 /* Once we determine the global GOT entry with the lowest dynamic
3542 symbol table index, we must put all dynamic symbols with greater
3543 indices into the primary GOT. That makes it easy to calculate the
3545 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
3546 g
= mips_elf_bfd_got (obfd
, FALSE
);
3547 got_index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
3548 * MIPS_ELF_GOT_SIZE (obfd
));
3549 BFD_ASSERT (got_index
< htab
->root
.sgot
->size
);
3554 /* Return the GOT index for the global symbol indicated by H, which is
3555 referenced by a relocation of type R_TYPE in IBFD. */
3558 mips_elf_global_got_index (bfd
*obfd
, struct bfd_link_info
*info
, bfd
*ibfd
,
3559 struct elf_link_hash_entry
*h
, int r_type
)
3561 struct mips_elf_link_hash_table
*htab
;
3562 struct mips_got_info
*g
;
3563 struct mips_got_entry lookup
, *entry
;
3566 htab
= mips_elf_hash_table (info
);
3567 BFD_ASSERT (htab
!= NULL
);
3569 g
= mips_elf_bfd_got (ibfd
, FALSE
);
3572 lookup
.tls_type
= mips_elf_reloc_tls_type (r_type
);
3573 if (!lookup
.tls_type
&& g
== mips_elf_bfd_got (obfd
, FALSE
))
3574 return mips_elf_primary_global_got_index (obfd
, info
, h
);
3578 lookup
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
3579 entry
= htab_find (g
->got_entries
, &lookup
);
3582 gotidx
= entry
->gotidx
;
3583 BFD_ASSERT (gotidx
> 0 && gotidx
< htab
->root
.sgot
->size
);
3585 if (lookup
.tls_type
)
3587 bfd_vma value
= MINUS_ONE
;
3589 if ((h
->root
.type
== bfd_link_hash_defined
3590 || h
->root
.type
== bfd_link_hash_defweak
)
3591 && h
->root
.u
.def
.section
->output_section
)
3592 value
= (h
->root
.u
.def
.value
3593 + h
->root
.u
.def
.section
->output_offset
3594 + h
->root
.u
.def
.section
->output_section
->vma
);
3596 mips_elf_initialize_tls_slots (obfd
, info
, entry
, lookup
.d
.h
, value
);
3601 /* Find a GOT page entry that points to within 32KB of VALUE. These
3602 entries are supposed to be placed at small offsets in the GOT, i.e.,
3603 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3604 entry could be created. If OFFSETP is nonnull, use it to return the
3605 offset of the GOT entry from VALUE. */
3608 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3609 bfd_vma value
, bfd_vma
*offsetp
)
3611 bfd_vma page
, got_index
;
3612 struct mips_got_entry
*entry
;
3614 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
3615 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, page
, 0,
3616 NULL
, R_MIPS_GOT_PAGE
);
3621 got_index
= entry
->gotidx
;
3624 *offsetp
= value
- entry
->d
.address
;
3629 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3630 EXTERNAL is true if the relocation was originally against a global
3631 symbol that binds locally. */
3634 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3635 bfd_vma value
, bfd_boolean external
)
3637 struct mips_got_entry
*entry
;
3639 /* GOT16 relocations against local symbols are followed by a LO16
3640 relocation; those against global symbols are not. Thus if the
3641 symbol was originally local, the GOT16 relocation should load the
3642 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3644 value
= mips_elf_high (value
) << 16;
3646 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3647 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3648 same in all cases. */
3649 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
, 0,
3650 NULL
, R_MIPS_GOT16
);
3652 return entry
->gotidx
;
3657 /* Returns the offset for the entry at the INDEXth position
3661 mips_elf_got_offset_from_index (struct bfd_link_info
*info
, bfd
*output_bfd
,
3662 bfd
*input_bfd
, bfd_vma got_index
)
3664 struct mips_elf_link_hash_table
*htab
;
3668 htab
= mips_elf_hash_table (info
);
3669 BFD_ASSERT (htab
!= NULL
);
3671 sgot
= htab
->root
.sgot
;
3672 gp
= _bfd_get_gp_value (output_bfd
)
3673 + mips_elf_adjust_gp (output_bfd
, htab
->got_info
, input_bfd
);
3675 return sgot
->output_section
->vma
+ sgot
->output_offset
+ got_index
- gp
;
3678 /* Create and return a local GOT entry for VALUE, which was calculated
3679 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3680 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 static struct mips_got_entry
*
3684 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
3685 bfd
*ibfd
, bfd_vma value
,
3686 unsigned long r_symndx
,
3687 struct mips_elf_link_hash_entry
*h
,
3690 struct mips_got_entry lookup
, *entry
;
3692 struct mips_got_info
*g
;
3693 struct mips_elf_link_hash_table
*htab
;
3696 htab
= mips_elf_hash_table (info
);
3697 BFD_ASSERT (htab
!= NULL
);
3699 g
= mips_elf_bfd_got (ibfd
, FALSE
);
3702 g
= mips_elf_bfd_got (abfd
, FALSE
);
3703 BFD_ASSERT (g
!= NULL
);
3706 /* This function shouldn't be called for symbols that live in the global
3708 BFD_ASSERT (h
== NULL
|| h
->global_got_area
== GGA_NONE
);
3710 lookup
.tls_type
= mips_elf_reloc_tls_type (r_type
);
3711 if (lookup
.tls_type
)
3714 if (tls_ldm_reloc_p (r_type
))
3717 lookup
.d
.addend
= 0;
3721 lookup
.symndx
= r_symndx
;
3722 lookup
.d
.addend
= 0;
3730 entry
= (struct mips_got_entry
*) htab_find (g
->got_entries
, &lookup
);
3733 gotidx
= entry
->gotidx
;
3734 BFD_ASSERT (gotidx
> 0 && gotidx
< htab
->root
.sgot
->size
);
3741 lookup
.d
.address
= value
;
3742 loc
= htab_find_slot (g
->got_entries
, &lookup
, INSERT
);
3746 entry
= (struct mips_got_entry
*) *loc
;
3750 if (g
->assigned_low_gotno
> g
->assigned_high_gotno
)
3752 /* We didn't allocate enough space in the GOT. */
3754 (_("not enough GOT space for local GOT entries"));
3755 bfd_set_error (bfd_error_bad_value
);
3759 entry
= (struct mips_got_entry
*) bfd_alloc (abfd
, sizeof (*entry
));
3763 if (got16_reloc_p (r_type
)
3764 || call16_reloc_p (r_type
)
3765 || got_page_reloc_p (r_type
)
3766 || got_disp_reloc_p (r_type
))
3767 lookup
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_low_gotno
++;
3769 lookup
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_high_gotno
--;
3774 MIPS_ELF_PUT_WORD (abfd
, value
, htab
->root
.sgot
->contents
+ entry
->gotidx
);
3776 /* These GOT entries need a dynamic relocation on VxWorks. */
3777 if (htab
->is_vxworks
)
3779 Elf_Internal_Rela outrel
;
3782 bfd_vma got_address
;
3784 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3785 got_address
= (htab
->root
.sgot
->output_section
->vma
3786 + htab
->root
.sgot
->output_offset
3789 rloc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3790 outrel
.r_offset
= got_address
;
3791 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
3792 outrel
.r_addend
= value
;
3793 bfd_elf32_swap_reloca_out (abfd
, &outrel
, rloc
);
3799 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3800 The number might be exact or a worst-case estimate, depending on how
3801 much information is available to elf_backend_omit_section_dynsym at
3802 the current linking stage. */
3804 static bfd_size_type
3805 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
3807 bfd_size_type count
;
3810 if (bfd_link_pic (info
)
3811 || elf_hash_table (info
)->is_relocatable_executable
)
3814 const struct elf_backend_data
*bed
;
3816 bed
= get_elf_backend_data (output_bfd
);
3817 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
3818 if ((p
->flags
& SEC_EXCLUDE
) == 0
3819 && (p
->flags
& SEC_ALLOC
) != 0
3820 && elf_hash_table (info
)->dynamic_relocs
3821 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
3827 /* Sort the dynamic symbol table so that symbols that need GOT entries
3828 appear towards the end. */
3831 mips_elf_sort_hash_table (bfd
*abfd
, struct bfd_link_info
*info
)
3833 struct mips_elf_link_hash_table
*htab
;
3834 struct mips_elf_hash_sort_data hsd
;
3835 struct mips_got_info
*g
;
3837 htab
= mips_elf_hash_table (info
);
3838 BFD_ASSERT (htab
!= NULL
);
3840 if (htab
->root
.dynsymcount
== 0)
3848 hsd
.max_unref_got_dynindx
3849 = hsd
.min_got_dynindx
3850 = (htab
->root
.dynsymcount
- g
->reloc_only_gotno
);
3851 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3852 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3853 hsd
.max_local_dynindx
= count_section_dynsyms (abfd
, info
) + 1;
3854 hsd
.max_non_got_dynindx
= htab
->root
.local_dynsymcount
+ 1;
3855 mips_elf_link_hash_traverse (htab
, mips_elf_sort_hash_table_f
, &hsd
);
3857 /* There should have been enough room in the symbol table to
3858 accommodate both the GOT and non-GOT symbols. */
3859 BFD_ASSERT (hsd
.max_local_dynindx
<= htab
->root
.local_dynsymcount
+ 1);
3860 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
3861 BFD_ASSERT (hsd
.max_unref_got_dynindx
== htab
->root
.dynsymcount
);
3862 BFD_ASSERT (htab
->root
.dynsymcount
- hsd
.min_got_dynindx
== g
->global_gotno
);
3864 /* Now we know which dynamic symbol has the lowest dynamic symbol
3865 table index in the GOT. */
3866 htab
->global_gotsym
= hsd
.low
;
3871 /* If H needs a GOT entry, assign it the highest available dynamic
3872 index. Otherwise, assign it the lowest available dynamic
3876 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
3878 struct mips_elf_hash_sort_data
*hsd
= data
;
3880 /* Symbols without dynamic symbol table entries aren't interesting
3882 if (h
->root
.dynindx
== -1)
3885 switch (h
->global_got_area
)
3888 if (h
->root
.forced_local
)
3889 h
->root
.dynindx
= hsd
->max_local_dynindx
++;
3891 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
3895 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
3896 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3899 case GGA_RELOC_ONLY
:
3900 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
3901 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3902 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
3909 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3910 (which is owned by the caller and shouldn't be added to the
3911 hash table directly). */
3914 mips_elf_record_got_entry (struct bfd_link_info
*info
, bfd
*abfd
,
3915 struct mips_got_entry
*lookup
)
3917 struct mips_elf_link_hash_table
*htab
;
3918 struct mips_got_entry
*entry
;
3919 struct mips_got_info
*g
;
3920 void **loc
, **bfd_loc
;
3922 /* Make sure there's a slot for this entry in the master GOT. */
3923 htab
= mips_elf_hash_table (info
);
3925 loc
= htab_find_slot (g
->got_entries
, lookup
, INSERT
);
3929 /* Populate the entry if it isn't already. */
3930 entry
= (struct mips_got_entry
*) *loc
;
3933 entry
= (struct mips_got_entry
*) bfd_alloc (abfd
, sizeof (*entry
));
3937 lookup
->tls_initialized
= FALSE
;
3938 lookup
->gotidx
= -1;
3943 /* Reuse the same GOT entry for the BFD's GOT. */
3944 g
= mips_elf_bfd_got (abfd
, TRUE
);
3948 bfd_loc
= htab_find_slot (g
->got_entries
, lookup
, INSERT
);
3957 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3958 entry for it. FOR_CALL is true if the caller is only interested in
3959 using the GOT entry for calls. */
3962 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
3963 bfd
*abfd
, struct bfd_link_info
*info
,
3964 bfd_boolean for_call
, int r_type
)
3966 struct mips_elf_link_hash_table
*htab
;
3967 struct mips_elf_link_hash_entry
*hmips
;
3968 struct mips_got_entry entry
;
3969 unsigned char tls_type
;
3971 htab
= mips_elf_hash_table (info
);
3972 BFD_ASSERT (htab
!= NULL
);
3974 hmips
= (struct mips_elf_link_hash_entry
*) h
;
3976 hmips
->got_only_for_calls
= FALSE
;
3978 /* A global symbol in the GOT must also be in the dynamic symbol
3980 if (h
->dynindx
== -1)
3982 switch (ELF_ST_VISIBILITY (h
->other
))
3986 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
3989 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
3993 tls_type
= mips_elf_reloc_tls_type (r_type
);
3994 if (tls_type
== GOT_TLS_NONE
&& hmips
->global_got_area
> GGA_NORMAL
)
3995 hmips
->global_got_area
= GGA_NORMAL
;
3999 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
4000 entry
.tls_type
= tls_type
;
4001 return mips_elf_record_got_entry (info
, abfd
, &entry
);
4004 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4005 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4008 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
4009 struct bfd_link_info
*info
, int r_type
)
4011 struct mips_elf_link_hash_table
*htab
;
4012 struct mips_got_info
*g
;
4013 struct mips_got_entry entry
;
4015 htab
= mips_elf_hash_table (info
);
4016 BFD_ASSERT (htab
!= NULL
);
4019 BFD_ASSERT (g
!= NULL
);
4022 entry
.symndx
= symndx
;
4023 entry
.d
.addend
= addend
;
4024 entry
.tls_type
= mips_elf_reloc_tls_type (r_type
);
4025 return mips_elf_record_got_entry (info
, abfd
, &entry
);
4028 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4029 H is the symbol's hash table entry, or null if SYMNDX is local
4033 mips_elf_record_got_page_ref (struct bfd_link_info
*info
, bfd
*abfd
,
4034 long symndx
, struct elf_link_hash_entry
*h
,
4035 bfd_signed_vma addend
)
4037 struct mips_elf_link_hash_table
*htab
;
4038 struct mips_got_info
*g1
, *g2
;
4039 struct mips_got_page_ref lookup
, *entry
;
4040 void **loc
, **bfd_loc
;
4042 htab
= mips_elf_hash_table (info
);
4043 BFD_ASSERT (htab
!= NULL
);
4045 g1
= htab
->got_info
;
4046 BFD_ASSERT (g1
!= NULL
);
4051 lookup
.u
.h
= (struct mips_elf_link_hash_entry
*) h
;
4055 lookup
.symndx
= symndx
;
4056 lookup
.u
.abfd
= abfd
;
4058 lookup
.addend
= addend
;
4059 loc
= htab_find_slot (g1
->got_page_refs
, &lookup
, INSERT
);
4063 entry
= (struct mips_got_page_ref
*) *loc
;
4066 entry
= bfd_alloc (abfd
, sizeof (*entry
));
4074 /* Add the same entry to the BFD's GOT. */
4075 g2
= mips_elf_bfd_got (abfd
, TRUE
);
4079 bfd_loc
= htab_find_slot (g2
->got_page_refs
, &lookup
, INSERT
);
4089 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4092 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
4096 struct mips_elf_link_hash_table
*htab
;
4098 htab
= mips_elf_hash_table (info
);
4099 BFD_ASSERT (htab
!= NULL
);
4101 s
= mips_elf_rel_dyn_section (info
, FALSE
);
4102 BFD_ASSERT (s
!= NULL
);
4104 if (htab
->is_vxworks
)
4105 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
4110 /* Make room for a null element. */
4111 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
4114 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
4118 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4119 mips_elf_traverse_got_arg structure. Count the number of GOT
4120 entries and TLS relocs. Set DATA->value to true if we need
4121 to resolve indirect or warning symbols and then recreate the GOT. */
4124 mips_elf_check_recreate_got (void **entryp
, void *data
)
4126 struct mips_got_entry
*entry
;
4127 struct mips_elf_traverse_got_arg
*arg
;
4129 entry
= (struct mips_got_entry
*) *entryp
;
4130 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4131 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
4133 struct mips_elf_link_hash_entry
*h
;
4136 if (h
->root
.root
.type
== bfd_link_hash_indirect
4137 || h
->root
.root
.type
== bfd_link_hash_warning
)
4143 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4147 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4148 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4149 converting entries for indirect and warning symbols into entries
4150 for the target symbol. Set DATA->g to null on error. */
4153 mips_elf_recreate_got (void **entryp
, void *data
)
4155 struct mips_got_entry new_entry
, *entry
;
4156 struct mips_elf_traverse_got_arg
*arg
;
4159 entry
= (struct mips_got_entry
*) *entryp
;
4160 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4161 if (entry
->abfd
!= NULL
4162 && entry
->symndx
== -1
4163 && (entry
->d
.h
->root
.root
.type
== bfd_link_hash_indirect
4164 || entry
->d
.h
->root
.root
.type
== bfd_link_hash_warning
))
4166 struct mips_elf_link_hash_entry
*h
;
4173 BFD_ASSERT (h
->global_got_area
== GGA_NONE
);
4174 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4176 while (h
->root
.root
.type
== bfd_link_hash_indirect
4177 || h
->root
.root
.type
== bfd_link_hash_warning
);
4180 slot
= htab_find_slot (arg
->g
->got_entries
, entry
, INSERT
);
4188 if (entry
== &new_entry
)
4190 entry
= bfd_alloc (entry
->abfd
, sizeof (*entry
));
4199 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4204 /* Return the maximum number of GOT page entries required for RANGE. */
4207 mips_elf_pages_for_range (const struct mips_got_page_range
*range
)
4209 return (range
->max_addend
- range
->min_addend
+ 0x1ffff) >> 16;
4212 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4215 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg
*arg
,
4216 asection
*sec
, bfd_signed_vma addend
)
4218 struct mips_got_info
*g
= arg
->g
;
4219 struct mips_got_page_entry lookup
, *entry
;
4220 struct mips_got_page_range
**range_ptr
, *range
;
4221 bfd_vma old_pages
, new_pages
;
4224 /* Find the mips_got_page_entry hash table entry for this section. */
4226 loc
= htab_find_slot (g
->got_page_entries
, &lookup
, INSERT
);
4230 /* Create a mips_got_page_entry if this is the first time we've
4231 seen the section. */
4232 entry
= (struct mips_got_page_entry
*) *loc
;
4235 entry
= bfd_zalloc (arg
->info
->output_bfd
, sizeof (*entry
));
4243 /* Skip over ranges whose maximum extent cannot share a page entry
4245 range_ptr
= &entry
->ranges
;
4246 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
4247 range_ptr
= &(*range_ptr
)->next
;
4249 /* If we scanned to the end of the list, or found a range whose
4250 minimum extent cannot share a page entry with ADDEND, create
4251 a new singleton range. */
4253 if (!range
|| addend
< range
->min_addend
- 0xffff)
4255 range
= bfd_zalloc (arg
->info
->output_bfd
, sizeof (*range
));
4259 range
->next
= *range_ptr
;
4260 range
->min_addend
= addend
;
4261 range
->max_addend
= addend
;
4269 /* Remember how many pages the old range contributed. */
4270 old_pages
= mips_elf_pages_for_range (range
);
4272 /* Update the ranges. */
4273 if (addend
< range
->min_addend
)
4274 range
->min_addend
= addend
;
4275 else if (addend
> range
->max_addend
)
4277 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
4279 old_pages
+= mips_elf_pages_for_range (range
->next
);
4280 range
->max_addend
= range
->next
->max_addend
;
4281 range
->next
= range
->next
->next
;
4284 range
->max_addend
= addend
;
4287 /* Record any change in the total estimate. */
4288 new_pages
= mips_elf_pages_for_range (range
);
4289 if (old_pages
!= new_pages
)
4291 entry
->num_pages
+= new_pages
- old_pages
;
4292 g
->page_gotno
+= new_pages
- old_pages
;
4298 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4299 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4300 whether the page reference described by *REFP needs a GOT page entry,
4301 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4304 mips_elf_resolve_got_page_ref (void **refp
, void *data
)
4306 struct mips_got_page_ref
*ref
;
4307 struct mips_elf_traverse_got_arg
*arg
;
4308 struct mips_elf_link_hash_table
*htab
;
4312 ref
= (struct mips_got_page_ref
*) *refp
;
4313 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4314 htab
= mips_elf_hash_table (arg
->info
);
4316 if (ref
->symndx
< 0)
4318 struct mips_elf_link_hash_entry
*h
;
4320 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 if (!SYMBOL_REFERENCES_LOCAL (arg
->info
, &h
->root
))
4325 /* Ignore undefined symbols; we'll issue an error later if
4327 if (!((h
->root
.root
.type
== bfd_link_hash_defined
4328 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4329 && h
->root
.root
.u
.def
.section
))
4332 sec
= h
->root
.root
.u
.def
.section
;
4333 addend
= h
->root
.root
.u
.def
.value
+ ref
->addend
;
4337 Elf_Internal_Sym
*isym
;
4339 /* Read in the symbol. */
4340 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
, ref
->u
.abfd
,
4348 /* Get the associated input section. */
4349 sec
= bfd_section_from_elf_index (ref
->u
.abfd
, isym
->st_shndx
);
4356 /* If this is a mergable section, work out the section and offset
4357 of the merged data. For section symbols, the addend specifies
4358 of the offset _of_ the first byte in the data, otherwise it
4359 specifies the offset _from_ the first byte. */
4360 if (sec
->flags
& SEC_MERGE
)
4364 secinfo
= elf_section_data (sec
)->sec_info
;
4365 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
4366 addend
= _bfd_merged_section_offset (ref
->u
.abfd
, &sec
, secinfo
,
4367 isym
->st_value
+ ref
->addend
);
4369 addend
= _bfd_merged_section_offset (ref
->u
.abfd
, &sec
, secinfo
,
4370 isym
->st_value
) + ref
->addend
;
4373 addend
= isym
->st_value
+ ref
->addend
;
4375 if (!mips_elf_record_got_page_entry (arg
, sec
, addend
))
4383 /* If any entries in G->got_entries are for indirect or warning symbols,
4384 replace them with entries for the target symbol. Convert g->got_page_refs
4385 into got_page_entry structures and estimate the number of page entries
4386 that they require. */
4389 mips_elf_resolve_final_got_entries (struct bfd_link_info
*info
,
4390 struct mips_got_info
*g
)
4392 struct mips_elf_traverse_got_arg tga
;
4393 struct mips_got_info oldg
;
4400 htab_traverse (g
->got_entries
, mips_elf_check_recreate_got
, &tga
);
4404 g
->got_entries
= htab_create (htab_size (oldg
.got_entries
),
4405 mips_elf_got_entry_hash
,
4406 mips_elf_got_entry_eq
, NULL
);
4407 if (!g
->got_entries
)
4410 htab_traverse (oldg
.got_entries
, mips_elf_recreate_got
, &tga
);
4414 htab_delete (oldg
.got_entries
);
4417 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4418 mips_got_page_entry_eq
, NULL
);
4419 if (g
->got_page_entries
== NULL
)
4424 htab_traverse (g
->got_page_refs
, mips_elf_resolve_got_page_ref
, &tga
);
4429 /* Return true if a GOT entry for H should live in the local rather than
4433 mips_use_local_got_p (struct bfd_link_info
*info
,
4434 struct mips_elf_link_hash_entry
*h
)
4436 /* Symbols that aren't in the dynamic symbol table must live in the
4437 local GOT. This includes symbols that are completely undefined
4438 and which therefore don't bind locally. We'll report undefined
4439 symbols later if appropriate. */
4440 if (h
->root
.dynindx
== -1)
4443 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4444 to the local GOT, as they would be implicitly relocated by the
4445 base address by the dynamic loader. */
4446 if (bfd_is_abs_symbol (&h
->root
.root
))
4449 /* Symbols that bind locally can (and in the case of forced-local
4450 symbols, must) live in the local GOT. */
4451 if (h
->got_only_for_calls
4452 ? SYMBOL_CALLS_LOCAL (info
, &h
->root
)
4453 : SYMBOL_REFERENCES_LOCAL (info
, &h
->root
))
4456 /* If this is an executable that must provide a definition of the symbol,
4457 either though PLTs or copy relocations, then that address should go in
4458 the local rather than global GOT. */
4459 if (bfd_link_executable (info
) && h
->has_static_relocs
)
4465 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4466 link_info structure. Decide whether the hash entry needs an entry in
4467 the global part of the primary GOT, setting global_got_area accordingly.
4468 Count the number of global symbols that are in the primary GOT only
4469 because they have relocations against them (reloc_only_gotno). */
4472 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
4474 struct bfd_link_info
*info
;
4475 struct mips_elf_link_hash_table
*htab
;
4476 struct mips_got_info
*g
;
4478 info
= (struct bfd_link_info
*) data
;
4479 htab
= mips_elf_hash_table (info
);
4481 if (h
->global_got_area
!= GGA_NONE
)
4483 /* Make a final decision about whether the symbol belongs in the
4484 local or global GOT. */
4485 if (mips_use_local_got_p (info
, h
))
4486 /* The symbol belongs in the local GOT. We no longer need this
4487 entry if it was only used for relocations; those relocations
4488 will be against the null or section symbol instead of H. */
4489 h
->global_got_area
= GGA_NONE
;
4490 else if (htab
->is_vxworks
4491 && h
->got_only_for_calls
4492 && h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
4493 /* On VxWorks, calls can refer directly to the .got.plt entry;
4494 they don't need entries in the regular GOT. .got.plt entries
4495 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4496 h
->global_got_area
= GGA_NONE
;
4497 else if (h
->global_got_area
== GGA_RELOC_ONLY
)
4499 g
->reloc_only_gotno
++;
4506 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4507 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4510 mips_elf_add_got_entry (void **entryp
, void *data
)
4512 struct mips_got_entry
*entry
;
4513 struct mips_elf_traverse_got_arg
*arg
;
4516 entry
= (struct mips_got_entry
*) *entryp
;
4517 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4518 slot
= htab_find_slot (arg
->g
->got_entries
, entry
, INSERT
);
4527 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4532 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4533 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4536 mips_elf_add_got_page_entry (void **entryp
, void *data
)
4538 struct mips_got_page_entry
*entry
;
4539 struct mips_elf_traverse_got_arg
*arg
;
4542 entry
= (struct mips_got_page_entry
*) *entryp
;
4543 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4544 slot
= htab_find_slot (arg
->g
->got_page_entries
, entry
, INSERT
);
4553 arg
->g
->page_gotno
+= entry
->num_pages
;
4558 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4559 this would lead to overflow, 1 if they were merged successfully,
4560 and 0 if a merge failed due to lack of memory. (These values are chosen
4561 so that nonnegative return values can be returned by a htab_traverse
4565 mips_elf_merge_got_with (bfd
*abfd
, struct mips_got_info
*from
,
4566 struct mips_got_info
*to
,
4567 struct mips_elf_got_per_bfd_arg
*arg
)
4569 struct mips_elf_traverse_got_arg tga
;
4570 unsigned int estimate
;
4572 /* Work out how many page entries we would need for the combined GOT. */
4573 estimate
= arg
->max_pages
;
4574 if (estimate
>= from
->page_gotno
+ to
->page_gotno
)
4575 estimate
= from
->page_gotno
+ to
->page_gotno
;
4577 /* And conservatively estimate how many local and TLS entries
4579 estimate
+= from
->local_gotno
+ to
->local_gotno
;
4580 estimate
+= from
->tls_gotno
+ to
->tls_gotno
;
4582 /* If we're merging with the primary got, any TLS relocations will
4583 come after the full set of global entries. Otherwise estimate those
4584 conservatively as well. */
4585 if (to
== arg
->primary
&& from
->tls_gotno
+ to
->tls_gotno
)
4586 estimate
+= arg
->global_count
;
4588 estimate
+= from
->global_gotno
+ to
->global_gotno
;
4590 /* Bail out if the combined GOT might be too big. */
4591 if (estimate
> arg
->max_count
)
4594 /* Transfer the bfd's got information from FROM to TO. */
4595 tga
.info
= arg
->info
;
4597 htab_traverse (from
->got_entries
, mips_elf_add_got_entry
, &tga
);
4601 htab_traverse (from
->got_page_entries
, mips_elf_add_got_page_entry
, &tga
);
4605 mips_elf_replace_bfd_got (abfd
, to
);
4609 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4610 as possible of the primary got, since it doesn't require explicit
4611 dynamic relocations, but don't use bfds that would reference global
4612 symbols out of the addressable range. Failing the primary got,
4613 attempt to merge with the current got, or finish the current got
4614 and then make make the new got current. */
4617 mips_elf_merge_got (bfd
*abfd
, struct mips_got_info
*g
,
4618 struct mips_elf_got_per_bfd_arg
*arg
)
4620 unsigned int estimate
;
4623 if (!mips_elf_resolve_final_got_entries (arg
->info
, g
))
4626 /* Work out the number of page, local and TLS entries. */
4627 estimate
= arg
->max_pages
;
4628 if (estimate
> g
->page_gotno
)
4629 estimate
= g
->page_gotno
;
4630 estimate
+= g
->local_gotno
+ g
->tls_gotno
;
4632 /* We place TLS GOT entries after both locals and globals. The globals
4633 for the primary GOT may overflow the normal GOT size limit, so be
4634 sure not to merge a GOT which requires TLS with the primary GOT in that
4635 case. This doesn't affect non-primary GOTs. */
4636 estimate
+= (g
->tls_gotno
> 0 ? arg
->global_count
: g
->global_gotno
);
4638 if (estimate
<= arg
->max_count
)
4640 /* If we don't have a primary GOT, use it as
4641 a starting point for the primary GOT. */
4648 /* Try merging with the primary GOT. */
4649 result
= mips_elf_merge_got_with (abfd
, g
, arg
->primary
, arg
);
4654 /* If we can merge with the last-created got, do it. */
4657 result
= mips_elf_merge_got_with (abfd
, g
, arg
->current
, arg
);
4662 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4663 fits; if it turns out that it doesn't, we'll get relocation
4664 overflows anyway. */
4665 g
->next
= arg
->current
;
4671 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4672 to GOTIDX, duplicating the entry if it has already been assigned
4673 an index in a different GOT. */
4676 mips_elf_set_gotidx (void **entryp
, long gotidx
)
4678 struct mips_got_entry
*entry
;
4680 entry
= (struct mips_got_entry
*) *entryp
;
4681 if (entry
->gotidx
> 0)
4683 struct mips_got_entry
*new_entry
;
4685 new_entry
= bfd_alloc (entry
->abfd
, sizeof (*entry
));
4689 *new_entry
= *entry
;
4690 *entryp
= new_entry
;
4693 entry
->gotidx
= gotidx
;
4697 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4698 mips_elf_traverse_got_arg in which DATA->value is the size of one
4699 GOT entry. Set DATA->g to null on failure. */
4702 mips_elf_initialize_tls_index (void **entryp
, void *data
)
4704 struct mips_got_entry
*entry
;
4705 struct mips_elf_traverse_got_arg
*arg
;
4707 /* We're only interested in TLS symbols. */
4708 entry
= (struct mips_got_entry
*) *entryp
;
4709 if (entry
->tls_type
== GOT_TLS_NONE
)
4712 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4713 if (!mips_elf_set_gotidx (entryp
, arg
->value
* arg
->g
->tls_assigned_gotno
))
4719 /* Account for the entries we've just allocated. */
4720 arg
->g
->tls_assigned_gotno
+= mips_tls_got_entries (entry
->tls_type
);
4724 /* A htab_traverse callback for GOT entries, where DATA points to a
4725 mips_elf_traverse_got_arg. Set the global_got_area of each global
4726 symbol to DATA->value. */
4729 mips_elf_set_global_got_area (void **entryp
, void *data
)
4731 struct mips_got_entry
*entry
;
4732 struct mips_elf_traverse_got_arg
*arg
;
4734 entry
= (struct mips_got_entry
*) *entryp
;
4735 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4736 if (entry
->abfd
!= NULL
4737 && entry
->symndx
== -1
4738 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4739 entry
->d
.h
->global_got_area
= arg
->value
;
4743 /* A htab_traverse callback for secondary GOT entries, where DATA points
4744 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4745 and record the number of relocations they require. DATA->value is
4746 the size of one GOT entry. Set DATA->g to null on failure. */
4749 mips_elf_set_global_gotidx (void **entryp
, void *data
)
4751 struct mips_got_entry
*entry
;
4752 struct mips_elf_traverse_got_arg
*arg
;
4754 entry
= (struct mips_got_entry
*) *entryp
;
4755 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4756 if (entry
->abfd
!= NULL
4757 && entry
->symndx
== -1
4758 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4760 if (!mips_elf_set_gotidx (entryp
, arg
->value
* arg
->g
->assigned_low_gotno
))
4765 arg
->g
->assigned_low_gotno
+= 1;
4767 if (bfd_link_pic (arg
->info
)
4768 || (elf_hash_table (arg
->info
)->dynamic_sections_created
4769 && entry
->d
.h
->root
.def_dynamic
4770 && !entry
->d
.h
->root
.def_regular
))
4771 arg
->g
->relocs
+= 1;
4777 /* A htab_traverse callback for GOT entries for which DATA is the
4778 bfd_link_info. Forbid any global symbols from having traditional
4779 lazy-binding stubs. */
4782 mips_elf_forbid_lazy_stubs (void **entryp
, void *data
)
4784 struct bfd_link_info
*info
;
4785 struct mips_elf_link_hash_table
*htab
;
4786 struct mips_got_entry
*entry
;
4788 entry
= (struct mips_got_entry
*) *entryp
;
4789 info
= (struct bfd_link_info
*) data
;
4790 htab
= mips_elf_hash_table (info
);
4791 BFD_ASSERT (htab
!= NULL
);
4793 if (entry
->abfd
!= NULL
4794 && entry
->symndx
== -1
4795 && entry
->d
.h
->needs_lazy_stub
)
4797 entry
->d
.h
->needs_lazy_stub
= FALSE
;
4798 htab
->lazy_stub_count
--;
4804 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4807 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
4812 g
= mips_elf_bfd_got (ibfd
, FALSE
);
4816 BFD_ASSERT (g
->next
);
4820 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
4821 * MIPS_ELF_GOT_SIZE (abfd
);
4824 /* Turn a single GOT that is too big for 16-bit addressing into
4825 a sequence of GOTs, each one 16-bit addressable. */
4828 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
4829 asection
*got
, bfd_size_type pages
)
4831 struct mips_elf_link_hash_table
*htab
;
4832 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
4833 struct mips_elf_traverse_got_arg tga
;
4834 struct mips_got_info
*g
, *gg
;
4835 unsigned int assign
, needed_relocs
;
4838 dynobj
= elf_hash_table (info
)->dynobj
;
4839 htab
= mips_elf_hash_table (info
);
4840 BFD_ASSERT (htab
!= NULL
);
4844 got_per_bfd_arg
.obfd
= abfd
;
4845 got_per_bfd_arg
.info
= info
;
4846 got_per_bfd_arg
.current
= NULL
;
4847 got_per_bfd_arg
.primary
= NULL
;
4848 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
4849 / MIPS_ELF_GOT_SIZE (abfd
))
4850 - htab
->reserved_gotno
);
4851 got_per_bfd_arg
.max_pages
= pages
;
4852 /* The number of globals that will be included in the primary GOT.
4853 See the calls to mips_elf_set_global_got_area below for more
4855 got_per_bfd_arg
.global_count
= g
->global_gotno
;
4857 /* Try to merge the GOTs of input bfds together, as long as they
4858 don't seem to exceed the maximum GOT size, choosing one of them
4859 to be the primary GOT. */
4860 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
4862 gg
= mips_elf_bfd_got (ibfd
, FALSE
);
4863 if (gg
&& !mips_elf_merge_got (ibfd
, gg
, &got_per_bfd_arg
))
4867 /* If we do not find any suitable primary GOT, create an empty one. */
4868 if (got_per_bfd_arg
.primary
== NULL
)
4869 g
->next
= mips_elf_create_got_info (abfd
);
4871 g
->next
= got_per_bfd_arg
.primary
;
4872 g
->next
->next
= got_per_bfd_arg
.current
;
4874 /* GG is now the master GOT, and G is the primary GOT. */
4878 /* Map the output bfd to the primary got. That's what we're going
4879 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4880 didn't mark in check_relocs, and we want a quick way to find it.
4881 We can't just use gg->next because we're going to reverse the
4883 mips_elf_replace_bfd_got (abfd
, g
);
4885 /* Every symbol that is referenced in a dynamic relocation must be
4886 present in the primary GOT, so arrange for them to appear after
4887 those that are actually referenced. */
4888 gg
->reloc_only_gotno
= gg
->global_gotno
- g
->global_gotno
;
4889 g
->global_gotno
= gg
->global_gotno
;
4892 tga
.value
= GGA_RELOC_ONLY
;
4893 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_area
, &tga
);
4894 tga
.value
= GGA_NORMAL
;
4895 htab_traverse (g
->got_entries
, mips_elf_set_global_got_area
, &tga
);
4897 /* Now go through the GOTs assigning them offset ranges.
4898 [assigned_low_gotno, local_gotno[ will be set to the range of local
4899 entries in each GOT. We can then compute the end of a GOT by
4900 adding local_gotno to global_gotno. We reverse the list and make
4901 it circular since then we'll be able to quickly compute the
4902 beginning of a GOT, by computing the end of its predecessor. To
4903 avoid special cases for the primary GOT, while still preserving
4904 assertions that are valid for both single- and multi-got links,
4905 we arrange for the main got struct to have the right number of
4906 global entries, but set its local_gotno such that the initial
4907 offset of the primary GOT is zero. Remember that the primary GOT
4908 will become the last item in the circular linked list, so it
4909 points back to the master GOT. */
4910 gg
->local_gotno
= -g
->global_gotno
;
4911 gg
->global_gotno
= g
->global_gotno
;
4918 struct mips_got_info
*gn
;
4920 assign
+= htab
->reserved_gotno
;
4921 g
->assigned_low_gotno
= assign
;
4922 g
->local_gotno
+= assign
;
4923 g
->local_gotno
+= (pages
< g
->page_gotno
? pages
: g
->page_gotno
);
4924 g
->assigned_high_gotno
= g
->local_gotno
- 1;
4925 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
4927 /* Take g out of the direct list, and push it onto the reversed
4928 list that gg points to. g->next is guaranteed to be nonnull after
4929 this operation, as required by mips_elf_initialize_tls_index. */
4934 /* Set up any TLS entries. We always place the TLS entries after
4935 all non-TLS entries. */
4936 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
4938 tga
.value
= MIPS_ELF_GOT_SIZE (abfd
);
4939 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, &tga
);
4942 BFD_ASSERT (g
->tls_assigned_gotno
== assign
);
4944 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4947 /* Forbid global symbols in every non-primary GOT from having
4948 lazy-binding stubs. */
4950 htab_traverse (g
->got_entries
, mips_elf_forbid_lazy_stubs
, info
);
4954 got
->size
= assign
* MIPS_ELF_GOT_SIZE (abfd
);
4957 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
4959 unsigned int save_assign
;
4961 /* Assign offsets to global GOT entries and count how many
4962 relocations they need. */
4963 save_assign
= g
->assigned_low_gotno
;
4964 g
->assigned_low_gotno
= g
->local_gotno
;
4966 tga
.value
= MIPS_ELF_GOT_SIZE (abfd
);
4968 htab_traverse (g
->got_entries
, mips_elf_set_global_gotidx
, &tga
);
4971 BFD_ASSERT (g
->assigned_low_gotno
== g
->local_gotno
+ g
->global_gotno
);
4972 g
->assigned_low_gotno
= save_assign
;
4974 if (bfd_link_pic (info
))
4976 g
->relocs
+= g
->local_gotno
- g
->assigned_low_gotno
;
4977 BFD_ASSERT (g
->assigned_low_gotno
== g
->next
->local_gotno
4978 + g
->next
->global_gotno
4979 + g
->next
->tls_gotno
4980 + htab
->reserved_gotno
);
4982 needed_relocs
+= g
->relocs
;
4984 needed_relocs
+= g
->relocs
;
4987 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
4994 /* Returns the first relocation of type r_type found, beginning with
4995 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4997 static const Elf_Internal_Rela
*
4998 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
4999 const Elf_Internal_Rela
*relocation
,
5000 const Elf_Internal_Rela
*relend
)
5002 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
5004 while (relocation
< relend
)
5006 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
5007 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
5013 /* We didn't find it. */
5017 /* Return whether an input relocation is against a local symbol. */
5020 mips_elf_local_relocation_p (bfd
*input_bfd
,
5021 const Elf_Internal_Rela
*relocation
,
5022 asection
**local_sections
)
5024 unsigned long r_symndx
;
5025 Elf_Internal_Shdr
*symtab_hdr
;
5028 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
5029 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5030 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
5032 if (r_symndx
< extsymoff
)
5034 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
5040 /* Sign-extend VALUE, which has the indicated number of BITS. */
5043 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
5045 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
5046 /* VALUE is negative. */
5047 value
|= ((bfd_vma
) - 1) << bits
;
5052 /* Return non-zero if the indicated VALUE has overflowed the maximum
5053 range expressible by a signed number with the indicated number of
5057 mips_elf_overflow_p (bfd_vma value
, int bits
)
5059 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
5061 if (svalue
> (1 << (bits
- 1)) - 1)
5062 /* The value is too big. */
5064 else if (svalue
< -(1 << (bits
- 1)))
5065 /* The value is too small. */
5072 /* Calculate the %high function. */
5075 mips_elf_high (bfd_vma value
)
5077 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
5080 /* Calculate the %higher function. */
5083 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
5086 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
5093 /* Calculate the %highest function. */
5096 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
5099 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5106 /* Create the .compact_rel section. */
5109 mips_elf_create_compact_rel_section
5110 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
5113 register asection
*s
;
5115 if (bfd_get_linker_section (abfd
, ".compact_rel") == NULL
)
5117 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
5120 s
= bfd_make_section_anyway_with_flags (abfd
, ".compact_rel", flags
);
5122 || ! bfd_set_section_alignment (abfd
, s
,
5123 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5126 s
->size
= sizeof (Elf32_External_compact_rel
);
5132 /* Create the .got section to hold the global offset table. */
5135 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
5138 register asection
*s
;
5139 struct elf_link_hash_entry
*h
;
5140 struct bfd_link_hash_entry
*bh
;
5141 struct mips_elf_link_hash_table
*htab
;
5143 htab
= mips_elf_hash_table (info
);
5144 BFD_ASSERT (htab
!= NULL
);
5146 /* This function may be called more than once. */
5147 if (htab
->root
.sgot
)
5150 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
5151 | SEC_LINKER_CREATED
);
5153 /* We have to use an alignment of 2**4 here because this is hardcoded
5154 in the function stub generation and in the linker script. */
5155 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
5157 || ! bfd_set_section_alignment (abfd
, s
, 4))
5159 htab
->root
.sgot
= s
;
5161 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5162 linker script because we don't want to define the symbol if we
5163 are not creating a global offset table. */
5165 if (! (_bfd_generic_link_add_one_symbol
5166 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
5167 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5170 h
= (struct elf_link_hash_entry
*) bh
;
5173 h
->type
= STT_OBJECT
;
5174 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
5175 elf_hash_table (info
)->hgot
= h
;
5177 if (bfd_link_pic (info
)
5178 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
5181 htab
->got_info
= mips_elf_create_got_info (abfd
);
5182 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
5183 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5185 /* We also need a .got.plt section when generating PLTs. */
5186 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt",
5187 SEC_ALLOC
| SEC_LOAD
5190 | SEC_LINKER_CREATED
);
5193 htab
->root
.sgotplt
= s
;
5198 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5199 __GOTT_INDEX__ symbols. These symbols are only special for
5200 shared objects; they are not used in executables. */
5203 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
5205 return (mips_elf_hash_table (info
)->is_vxworks
5206 && bfd_link_pic (info
)
5207 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
5208 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
5211 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5212 require an la25 stub. See also mips_elf_local_pic_function_p,
5213 which determines whether the destination function ever requires a
5217 mips_elf_relocation_needs_la25_stub (bfd
*input_bfd
, int r_type
,
5218 bfd_boolean target_is_16_bit_code_p
)
5220 /* We specifically ignore branches and jumps from EF_PIC objects,
5221 where the onus is on the compiler or programmer to perform any
5222 necessary initialization of $25. Sometimes such initialization
5223 is unnecessary; for example, -mno-shared functions do not use
5224 the incoming value of $25, and may therefore be called directly. */
5225 if (PIC_OBJECT_P (input_bfd
))
5232 case R_MIPS_PC21_S2
:
5233 case R_MIPS_PC26_S2
:
5234 case R_MICROMIPS_26_S1
:
5235 case R_MICROMIPS_PC7_S1
:
5236 case R_MICROMIPS_PC10_S1
:
5237 case R_MICROMIPS_PC16_S1
:
5238 case R_MICROMIPS_PC23_S2
:
5242 return !target_is_16_bit_code_p
;
5249 /* Obtain the field relocated by RELOCATION. */
5252 mips_elf_obtain_contents (reloc_howto_type
*howto
,
5253 const Elf_Internal_Rela
*relocation
,
5254 bfd
*input_bfd
, bfd_byte
*contents
)
5257 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5258 unsigned int size
= bfd_get_reloc_size (howto
);
5260 /* Obtain the bytes. */
5262 x
= bfd_get (8 * size
, input_bfd
, location
);
5267 /* Store the field relocated by RELOCATION. */
5270 mips_elf_store_contents (reloc_howto_type
*howto
,
5271 const Elf_Internal_Rela
*relocation
,
5272 bfd
*input_bfd
, bfd_byte
*contents
, bfd_vma x
)
5274 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5275 unsigned int size
= bfd_get_reloc_size (howto
);
5277 /* Put the value into the output. */
5279 bfd_put (8 * size
, input_bfd
, x
, location
);
5282 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5283 RELOCATION described by HOWTO, with a move of 0 to the load target
5284 register, returning TRUE if that is successful and FALSE otherwise.
5285 If DOIT is FALSE, then only determine it patching is possible and
5286 return status without actually changing CONTENTS.
5290 mips_elf_nullify_got_load (bfd
*input_bfd
, bfd_byte
*contents
,
5291 const Elf_Internal_Rela
*relocation
,
5292 reloc_howto_type
*howto
, bfd_boolean doit
)
5294 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5295 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5296 bfd_boolean nullified
= TRUE
;
5299 _bfd_mips_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
5301 /* Obtain the current value. */
5302 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
5304 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5305 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5306 if (mips16_reloc_p (r_type
)
5307 && (((x
>> 22) & 0x3ff) == 0x3d3 /* LW */
5308 || ((x
>> 22) & 0x3ff) == 0x3c7)) /* LD */
5309 x
= (0x3cd << 22) | (x
& (7 << 16)) << 3; /* LI */
5310 else if (micromips_reloc_p (r_type
)
5311 && ((x
>> 26) & 0x37) == 0x37) /* LW/LD */
5312 x
= (0xc << 26) | (x
& (0x1f << 21)); /* ADDIU */
5313 else if (((x
>> 26) & 0x3f) == 0x23 /* LW */
5314 || ((x
>> 26) & 0x3f) == 0x37) /* LD */
5315 x
= (0x9 << 26) | (x
& (0x1f << 16)); /* ADDIU */
5319 /* Put the value into the output. */
5320 if (doit
&& nullified
)
5321 mips_elf_store_contents (howto
, relocation
, input_bfd
, contents
, x
);
5323 _bfd_mips_elf_reloc_shuffle (input_bfd
, r_type
, FALSE
, location
);
5328 /* Calculate the value produced by the RELOCATION (which comes from
5329 the INPUT_BFD). The ADDEND is the addend to use for this
5330 RELOCATION; RELOCATION->R_ADDEND is ignored.
5332 The result of the relocation calculation is stored in VALUEP.
5333 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5334 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5336 This function returns bfd_reloc_continue if the caller need take no
5337 further action regarding this relocation, bfd_reloc_notsupported if
5338 something goes dramatically wrong, bfd_reloc_overflow if an
5339 overflow occurs, and bfd_reloc_ok to indicate success. */
5341 static bfd_reloc_status_type
5342 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
5343 asection
*input_section
, bfd_byte
*contents
,
5344 struct bfd_link_info
*info
,
5345 const Elf_Internal_Rela
*relocation
,
5346 bfd_vma addend
, reloc_howto_type
*howto
,
5347 Elf_Internal_Sym
*local_syms
,
5348 asection
**local_sections
, bfd_vma
*valuep
,
5350 bfd_boolean
*cross_mode_jump_p
,
5351 bfd_boolean save_addend
)
5353 /* The eventual value we will return. */
5355 /* The address of the symbol against which the relocation is
5358 /* The final GP value to be used for the relocatable, executable, or
5359 shared object file being produced. */
5361 /* The place (section offset or address) of the storage unit being
5364 /* The value of GP used to create the relocatable object. */
5366 /* The offset into the global offset table at which the address of
5367 the relocation entry symbol, adjusted by the addend, resides
5368 during execution. */
5369 bfd_vma g
= MINUS_ONE
;
5370 /* The section in which the symbol referenced by the relocation is
5372 asection
*sec
= NULL
;
5373 struct mips_elf_link_hash_entry
*h
= NULL
;
5374 /* TRUE if the symbol referred to by this relocation is a local
5376 bfd_boolean local_p
, was_local_p
;
5377 /* TRUE if the symbol referred to by this relocation is a section
5379 bfd_boolean section_p
= FALSE
;
5380 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5381 bfd_boolean gp_disp_p
= FALSE
;
5382 /* TRUE if the symbol referred to by this relocation is
5383 "__gnu_local_gp". */
5384 bfd_boolean gnu_local_gp_p
= FALSE
;
5385 Elf_Internal_Shdr
*symtab_hdr
;
5387 unsigned long r_symndx
;
5389 /* TRUE if overflow occurred during the calculation of the
5390 relocation value. */
5391 bfd_boolean overflowed_p
;
5392 /* TRUE if this relocation refers to a MIPS16 function. */
5393 bfd_boolean target_is_16_bit_code_p
= FALSE
;
5394 bfd_boolean target_is_micromips_code_p
= FALSE
;
5395 struct mips_elf_link_hash_table
*htab
;
5397 bfd_boolean resolved_to_zero
;
5399 dynobj
= elf_hash_table (info
)->dynobj
;
5400 htab
= mips_elf_hash_table (info
);
5401 BFD_ASSERT (htab
!= NULL
);
5403 /* Parse the relocation. */
5404 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
5405 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5406 p
= (input_section
->output_section
->vma
5407 + input_section
->output_offset
5408 + relocation
->r_offset
);
5410 /* Assume that there will be no overflow. */
5411 overflowed_p
= FALSE
;
5413 /* Figure out whether or not the symbol is local, and get the offset
5414 used in the array of hash table entries. */
5415 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5416 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
5418 was_local_p
= local_p
;
5419 if (! elf_bad_symtab (input_bfd
))
5420 extsymoff
= symtab_hdr
->sh_info
;
5423 /* The symbol table does not follow the rule that local symbols
5424 must come before globals. */
5428 /* Figure out the value of the symbol. */
5431 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
5432 Elf_Internal_Sym
*sym
;
5434 sym
= local_syms
+ r_symndx
;
5435 sec
= local_sections
[r_symndx
];
5437 section_p
= ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
;
5439 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5440 if (!section_p
|| (sec
->flags
& SEC_MERGE
))
5441 symbol
+= sym
->st_value
;
5442 if ((sec
->flags
& SEC_MERGE
) && section_p
)
5444 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
5446 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
5449 /* MIPS16/microMIPS text labels should be treated as odd. */
5450 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
5453 /* Record the name of this symbol, for our caller. */
5454 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
5455 symtab_hdr
->sh_link
,
5457 if (*namep
== NULL
|| **namep
== '\0')
5458 *namep
= bfd_section_name (input_bfd
, sec
);
5460 /* For relocations against a section symbol and ones against no
5461 symbol (absolute relocations) infer the ISA mode from the addend. */
5462 if (section_p
|| r_symndx
== STN_UNDEF
)
5464 target_is_16_bit_code_p
= (addend
& 1) && !micromips_p
;
5465 target_is_micromips_code_p
= (addend
& 1) && micromips_p
;
5467 /* For relocations against an absolute symbol infer the ISA mode
5468 from the value of the symbol plus addend. */
5469 else if (bfd_is_abs_section (sec
))
5471 target_is_16_bit_code_p
= ((symbol
+ addend
) & 1) && !micromips_p
;
5472 target_is_micromips_code_p
= ((symbol
+ addend
) & 1) && micromips_p
;
5474 /* Otherwise just use the regular symbol annotation available. */
5477 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (sym
->st_other
);
5478 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (sym
->st_other
);
5483 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5485 /* For global symbols we look up the symbol in the hash-table. */
5486 h
= ((struct mips_elf_link_hash_entry
*)
5487 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
5488 /* Find the real hash-table entry for this symbol. */
5489 while (h
->root
.root
.type
== bfd_link_hash_indirect
5490 || h
->root
.root
.type
== bfd_link_hash_warning
)
5491 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5493 /* Record the name of this symbol, for our caller. */
5494 *namep
= h
->root
.root
.root
.string
;
5496 /* See if this is the special _gp_disp symbol. Note that such a
5497 symbol must always be a global symbol. */
5498 if (strcmp (*namep
, "_gp_disp") == 0
5499 && ! NEWABI_P (input_bfd
))
5501 /* Relocations against _gp_disp are permitted only with
5502 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5503 if (!hi16_reloc_p (r_type
) && !lo16_reloc_p (r_type
))
5504 return bfd_reloc_notsupported
;
5508 /* See if this is the special _gp symbol. Note that such a
5509 symbol must always be a global symbol. */
5510 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
5511 gnu_local_gp_p
= TRUE
;
5514 /* If this symbol is defined, calculate its address. Note that
5515 _gp_disp is a magic symbol, always implicitly defined by the
5516 linker, so it's inappropriate to check to see whether or not
5518 else if ((h
->root
.root
.type
== bfd_link_hash_defined
5519 || h
->root
.root
.type
== bfd_link_hash_defweak
)
5520 && h
->root
.root
.u
.def
.section
)
5522 sec
= h
->root
.root
.u
.def
.section
;
5523 if (sec
->output_section
)
5524 symbol
= (h
->root
.root
.u
.def
.value
5525 + sec
->output_section
->vma
5526 + sec
->output_offset
);
5528 symbol
= h
->root
.root
.u
.def
.value
;
5530 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
5531 /* We allow relocations against undefined weak symbols, giving
5532 it the value zero, so that you can undefined weak functions
5533 and check to see if they exist by looking at their
5536 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
5537 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5539 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
5540 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5542 /* If this is a dynamic link, we should have created a
5543 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5544 in _bfd_mips_elf_create_dynamic_sections.
5545 Otherwise, we should define the symbol with a value of 0.
5546 FIXME: It should probably get into the symbol table
5548 BFD_ASSERT (! bfd_link_pic (info
));
5549 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
5552 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
5554 /* This is an optional symbol - an Irix specific extension to the
5555 ELF spec. Ignore it for now.
5556 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5557 than simply ignoring them, but we do not handle this for now.
5558 For information see the "64-bit ELF Object File Specification"
5559 which is available from here:
5560 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5565 bfd_boolean reject_undefined
5566 = (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
5567 || ELF_ST_VISIBILITY (h
->root
.other
) != STV_DEFAULT
);
5569 (*info
->callbacks
->undefined_symbol
)
5570 (info
, h
->root
.root
.root
.string
, input_bfd
,
5571 input_section
, relocation
->r_offset
, reject_undefined
);
5573 if (reject_undefined
)
5574 return bfd_reloc_undefined
;
5579 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (h
->root
.other
);
5580 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (h
->root
.other
);
5583 /* If this is a reference to a 16-bit function with a stub, we need
5584 to redirect the relocation to the stub unless:
5586 (a) the relocation is for a MIPS16 JAL;
5588 (b) the relocation is for a MIPS16 PIC call, and there are no
5589 non-MIPS16 uses of the GOT slot; or
5591 (c) the section allows direct references to MIPS16 functions. */
5592 if (r_type
!= R_MIPS16_26
5593 && !bfd_link_relocatable (info
)
5595 && h
->fn_stub
!= NULL
5596 && (r_type
!= R_MIPS16_CALL16
|| h
->need_fn_stub
))
5598 && mips_elf_tdata (input_bfd
)->local_stubs
!= NULL
5599 && mips_elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
5600 && !section_allows_mips16_refs_p (input_section
))
5602 /* This is a 32- or 64-bit call to a 16-bit function. We should
5603 have already noticed that we were going to need the
5607 sec
= mips_elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
5612 BFD_ASSERT (h
->need_fn_stub
);
5615 /* If a LA25 header for the stub itself exists, point to the
5616 prepended LUI/ADDIU sequence. */
5617 sec
= h
->la25_stub
->stub_section
;
5618 value
= h
->la25_stub
->offset
;
5627 symbol
= sec
->output_section
->vma
+ sec
->output_offset
+ value
;
5628 /* The target is 16-bit, but the stub isn't. */
5629 target_is_16_bit_code_p
= FALSE
;
5631 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5632 to a standard MIPS function, we need to redirect the call to the stub.
5633 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5634 indirect calls should use an indirect stub instead. */
5635 else if (r_type
== R_MIPS16_26
&& !bfd_link_relocatable (info
)
5636 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
5638 && mips_elf_tdata (input_bfd
)->local_call_stubs
!= NULL
5639 && mips_elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
5640 && ((h
!= NULL
&& h
->use_plt_entry
) || !target_is_16_bit_code_p
))
5643 sec
= mips_elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
5646 /* If both call_stub and call_fp_stub are defined, we can figure
5647 out which one to use by checking which one appears in the input
5649 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5654 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5656 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd
, o
)))
5658 sec
= h
->call_fp_stub
;
5665 else if (h
->call_stub
!= NULL
)
5668 sec
= h
->call_fp_stub
;
5671 BFD_ASSERT (sec
->size
> 0);
5672 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5674 /* If this is a direct call to a PIC function, redirect to the
5676 else if (h
!= NULL
&& h
->la25_stub
5677 && mips_elf_relocation_needs_la25_stub (input_bfd
, r_type
,
5678 target_is_16_bit_code_p
))
5680 symbol
= (h
->la25_stub
->stub_section
->output_section
->vma
5681 + h
->la25_stub
->stub_section
->output_offset
5682 + h
->la25_stub
->offset
);
5683 if (ELF_ST_IS_MICROMIPS (h
->root
.other
))
5686 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5687 entry is used if a standard PLT entry has also been made. In this
5688 case the symbol will have been set by mips_elf_set_plt_sym_value
5689 to point to the standard PLT entry, so redirect to the compressed
5691 else if ((mips16_branch_reloc_p (r_type
)
5692 || micromips_branch_reloc_p (r_type
))
5693 && !bfd_link_relocatable (info
)
5696 && h
->root
.plt
.plist
->comp_offset
!= MINUS_ONE
5697 && h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
5699 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
5701 sec
= htab
->root
.splt
;
5702 symbol
= (sec
->output_section
->vma
5703 + sec
->output_offset
5704 + htab
->plt_header_size
5705 + htab
->plt_mips_offset
5706 + h
->root
.plt
.plist
->comp_offset
5709 target_is_16_bit_code_p
= !micromips_p
;
5710 target_is_micromips_code_p
= micromips_p
;
5713 /* Make sure MIPS16 and microMIPS are not used together. */
5714 if ((mips16_branch_reloc_p (r_type
) && target_is_micromips_code_p
)
5715 || (micromips_branch_reloc_p (r_type
) && target_is_16_bit_code_p
))
5718 (_("MIPS16 and microMIPS functions cannot call each other"));
5719 return bfd_reloc_notsupported
;
5722 /* Calls from 16-bit code to 32-bit code and vice versa require the
5723 mode change. However, we can ignore calls to undefined weak symbols,
5724 which should never be executed at runtime. This exception is important
5725 because the assembly writer may have "known" that any definition of the
5726 symbol would be 16-bit code, and that direct jumps were therefore
5728 *cross_mode_jump_p
= (!bfd_link_relocatable (info
)
5729 && !(h
&& h
->root
.root
.type
== bfd_link_hash_undefweak
)
5730 && ((mips16_branch_reloc_p (r_type
)
5731 && !target_is_16_bit_code_p
)
5732 || (micromips_branch_reloc_p (r_type
)
5733 && !target_is_micromips_code_p
)
5734 || ((branch_reloc_p (r_type
)
5735 || r_type
== R_MIPS_JALR
)
5736 && (target_is_16_bit_code_p
5737 || target_is_micromips_code_p
))));
5739 resolved_to_zero
= (h
!= NULL
5740 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, &h
->root
));
5744 case R_MIPS16_CALL16
:
5745 case R_MIPS16_GOT16
:
5748 case R_MIPS_GOT_PAGE
:
5749 case R_MIPS_GOT_DISP
:
5750 case R_MIPS_GOT_LO16
:
5751 case R_MIPS_CALL_LO16
:
5752 case R_MICROMIPS_CALL16
:
5753 case R_MICROMIPS_GOT16
:
5754 case R_MICROMIPS_GOT_PAGE
:
5755 case R_MICROMIPS_GOT_DISP
:
5756 case R_MICROMIPS_GOT_LO16
:
5757 case R_MICROMIPS_CALL_LO16
:
5758 if (resolved_to_zero
5759 && !bfd_link_relocatable (info
)
5760 && mips_elf_nullify_got_load (input_bfd
, contents
,
5761 relocation
, howto
, TRUE
))
5762 return bfd_reloc_continue
;
5765 case R_MIPS_GOT_HI16
:
5766 case R_MIPS_CALL_HI16
:
5767 case R_MICROMIPS_GOT_HI16
:
5768 case R_MICROMIPS_CALL_HI16
:
5769 if (resolved_to_zero
5770 && htab
->use_absolute_zero
5771 && bfd_link_pic (info
))
5773 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5774 h
= mips_elf_link_hash_lookup (htab
, "__gnu_absolute_zero",
5775 FALSE
, FALSE
, FALSE
);
5776 BFD_ASSERT (h
!= NULL
);
5781 local_p
= (h
== NULL
|| mips_use_local_got_p (info
, h
));
5783 gp0
= _bfd_get_gp_value (input_bfd
);
5784 gp
= _bfd_get_gp_value (abfd
);
5786 gp
+= mips_elf_adjust_gp (abfd
, htab
->got_info
, input_bfd
);
5791 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5792 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5793 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5794 if (got_page_reloc_p (r_type
) && !local_p
)
5796 r_type
= (micromips_reloc_p (r_type
)
5797 ? R_MICROMIPS_GOT_DISP
: R_MIPS_GOT_DISP
);
5801 /* If we haven't already determined the GOT offset, and we're going
5802 to need it, get it now. */
5805 case R_MIPS16_CALL16
:
5806 case R_MIPS16_GOT16
:
5809 case R_MIPS_GOT_DISP
:
5810 case R_MIPS_GOT_HI16
:
5811 case R_MIPS_CALL_HI16
:
5812 case R_MIPS_GOT_LO16
:
5813 case R_MIPS_CALL_LO16
:
5814 case R_MICROMIPS_CALL16
:
5815 case R_MICROMIPS_GOT16
:
5816 case R_MICROMIPS_GOT_DISP
:
5817 case R_MICROMIPS_GOT_HI16
:
5818 case R_MICROMIPS_CALL_HI16
:
5819 case R_MICROMIPS_GOT_LO16
:
5820 case R_MICROMIPS_CALL_LO16
:
5822 case R_MIPS_TLS_GOTTPREL
:
5823 case R_MIPS_TLS_LDM
:
5824 case R_MIPS16_TLS_GD
:
5825 case R_MIPS16_TLS_GOTTPREL
:
5826 case R_MIPS16_TLS_LDM
:
5827 case R_MICROMIPS_TLS_GD
:
5828 case R_MICROMIPS_TLS_GOTTPREL
:
5829 case R_MICROMIPS_TLS_LDM
:
5830 /* Find the index into the GOT where this value is located. */
5831 if (tls_ldm_reloc_p (r_type
))
5833 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5834 0, 0, NULL
, r_type
);
5836 return bfd_reloc_outofrange
;
5840 /* On VxWorks, CALL relocations should refer to the .got.plt
5841 entry, which is initialized to point at the PLT stub. */
5842 if (htab
->is_vxworks
5843 && (call_hi16_reloc_p (r_type
)
5844 || call_lo16_reloc_p (r_type
)
5845 || call16_reloc_p (r_type
)))
5847 BFD_ASSERT (addend
== 0);
5848 BFD_ASSERT (h
->root
.needs_plt
);
5849 g
= mips_elf_gotplt_index (info
, &h
->root
);
5853 BFD_ASSERT (addend
== 0);
5854 g
= mips_elf_global_got_index (abfd
, info
, input_bfd
,
5856 if (!TLS_RELOC_P (r_type
)
5857 && !elf_hash_table (info
)->dynamic_sections_created
)
5858 /* This is a static link. We must initialize the GOT entry. */
5859 MIPS_ELF_PUT_WORD (dynobj
, symbol
, htab
->root
.sgot
->contents
+ g
);
5862 else if (!htab
->is_vxworks
5863 && (call16_reloc_p (r_type
) || got16_reloc_p (r_type
)))
5864 /* The calculation below does not involve "g". */
5868 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5869 symbol
+ addend
, r_symndx
, h
, r_type
);
5871 return bfd_reloc_outofrange
;
5874 /* Convert GOT indices to actual offsets. */
5875 g
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, g
);
5879 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5880 symbols are resolved by the loader. Add them to .rela.dyn. */
5881 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
5883 Elf_Internal_Rela outrel
;
5887 s
= mips_elf_rel_dyn_section (info
, FALSE
);
5888 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
5890 outrel
.r_offset
= (input_section
->output_section
->vma
5891 + input_section
->output_offset
5892 + relocation
->r_offset
);
5893 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
5894 outrel
.r_addend
= addend
;
5895 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
5897 /* If we've written this relocation for a readonly section,
5898 we need to set DF_TEXTREL again, so that we do not delete the
5900 if (MIPS_ELF_READONLY_SECTION (input_section
))
5901 info
->flags
|= DF_TEXTREL
;
5904 return bfd_reloc_ok
;
5907 /* Figure out what kind of relocation is being performed. */
5911 return bfd_reloc_continue
;
5914 if (howto
->partial_inplace
)
5915 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
5916 value
= symbol
+ addend
;
5917 overflowed_p
= mips_elf_overflow_p (value
, 16);
5923 if ((bfd_link_pic (info
)
5924 || (htab
->root
.dynamic_sections_created
5926 && h
->root
.def_dynamic
5927 && !h
->root
.def_regular
5928 && !h
->has_static_relocs
))
5929 && r_symndx
!= STN_UNDEF
5931 || h
->root
.root
.type
!= bfd_link_hash_undefweak
5932 || (ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
5933 && !resolved_to_zero
))
5934 && (input_section
->flags
& SEC_ALLOC
) != 0)
5936 /* If we're creating a shared library, then we can't know
5937 where the symbol will end up. So, we create a relocation
5938 record in the output, and leave the job up to the dynamic
5939 linker. We must do the same for executable references to
5940 shared library symbols, unless we've decided to use copy
5941 relocs or PLTs instead. */
5943 if (!mips_elf_create_dynamic_relocation (abfd
,
5951 return bfd_reloc_undefined
;
5955 if (r_type
!= R_MIPS_REL32
)
5956 value
= symbol
+ addend
;
5960 value
&= howto
->dst_mask
;
5964 value
= symbol
+ addend
- p
;
5965 value
&= howto
->dst_mask
;
5969 /* The calculation for R_MIPS16_26 is just the same as for an
5970 R_MIPS_26. It's only the storage of the relocated field into
5971 the output file that's different. That's handled in
5972 mips_elf_perform_relocation. So, we just fall through to the
5973 R_MIPS_26 case here. */
5975 case R_MICROMIPS_26_S1
:
5979 /* Shift is 2, unusually, for microMIPS JALX. */
5980 shift
= (!*cross_mode_jump_p
&& r_type
== R_MICROMIPS_26_S1
) ? 1 : 2;
5982 if (howto
->partial_inplace
&& !section_p
)
5983 value
= _bfd_mips_elf_sign_extend (addend
, 26 + shift
);
5988 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5989 be the correct ISA mode selector except for weak undefined
5991 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
5992 && (*cross_mode_jump_p
5993 ? (value
& 3) != (r_type
== R_MIPS_26
)
5994 : (value
& ((1 << shift
) - 1)) != (r_type
!= R_MIPS_26
)))
5995 return bfd_reloc_outofrange
;
5998 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
5999 overflowed_p
= (value
>> 26) != ((p
+ 4) >> (26 + shift
));
6000 value
&= howto
->dst_mask
;
6004 case R_MIPS_TLS_DTPREL_HI16
:
6005 case R_MIPS16_TLS_DTPREL_HI16
:
6006 case R_MICROMIPS_TLS_DTPREL_HI16
:
6007 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
6011 case R_MIPS_TLS_DTPREL_LO16
:
6012 case R_MIPS_TLS_DTPREL32
:
6013 case R_MIPS_TLS_DTPREL64
:
6014 case R_MIPS16_TLS_DTPREL_LO16
:
6015 case R_MICROMIPS_TLS_DTPREL_LO16
:
6016 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
6019 case R_MIPS_TLS_TPREL_HI16
:
6020 case R_MIPS16_TLS_TPREL_HI16
:
6021 case R_MICROMIPS_TLS_TPREL_HI16
:
6022 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
6026 case R_MIPS_TLS_TPREL_LO16
:
6027 case R_MIPS_TLS_TPREL32
:
6028 case R_MIPS_TLS_TPREL64
:
6029 case R_MIPS16_TLS_TPREL_LO16
:
6030 case R_MICROMIPS_TLS_TPREL_LO16
:
6031 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
6036 case R_MICROMIPS_HI16
:
6039 value
= mips_elf_high (addend
+ symbol
);
6040 value
&= howto
->dst_mask
;
6044 /* For MIPS16 ABI code we generate this sequence
6045 0: li $v0,%hi(_gp_disp)
6046 4: addiupc $v1,%lo(_gp_disp)
6050 So the offsets of hi and lo relocs are the same, but the
6051 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6052 ADDIUPC clears the low two bits of the instruction address,
6053 so the base is ($t9 + 4) & ~3. */
6054 if (r_type
== R_MIPS16_HI16
)
6055 value
= mips_elf_high (addend
+ gp
- ((p
+ 4) & ~(bfd_vma
) 0x3));
6056 /* The microMIPS .cpload sequence uses the same assembly
6057 instructions as the traditional psABI version, but the
6058 incoming $t9 has the low bit set. */
6059 else if (r_type
== R_MICROMIPS_HI16
)
6060 value
= mips_elf_high (addend
+ gp
- p
- 1);
6062 value
= mips_elf_high (addend
+ gp
- p
);
6068 case R_MICROMIPS_LO16
:
6069 case R_MICROMIPS_HI0_LO16
:
6071 value
= (symbol
+ addend
) & howto
->dst_mask
;
6074 /* See the comment for R_MIPS16_HI16 above for the reason
6075 for this conditional. */
6076 if (r_type
== R_MIPS16_LO16
)
6077 value
= addend
+ gp
- (p
& ~(bfd_vma
) 0x3);
6078 else if (r_type
== R_MICROMIPS_LO16
6079 || r_type
== R_MICROMIPS_HI0_LO16
)
6080 value
= addend
+ gp
- p
+ 3;
6082 value
= addend
+ gp
- p
+ 4;
6083 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6084 for overflow. But, on, say, IRIX5, relocations against
6085 _gp_disp are normally generated from the .cpload
6086 pseudo-op. It generates code that normally looks like
6089 lui $gp,%hi(_gp_disp)
6090 addiu $gp,$gp,%lo(_gp_disp)
6093 Here $t9 holds the address of the function being called,
6094 as required by the MIPS ELF ABI. The R_MIPS_LO16
6095 relocation can easily overflow in this situation, but the
6096 R_MIPS_HI16 relocation will handle the overflow.
6097 Therefore, we consider this a bug in the MIPS ABI, and do
6098 not check for overflow here. */
6102 case R_MIPS_LITERAL
:
6103 case R_MICROMIPS_LITERAL
:
6104 /* Because we don't merge literal sections, we can handle this
6105 just like R_MIPS_GPREL16. In the long run, we should merge
6106 shared literals, and then we will need to additional work
6111 case R_MIPS16_GPREL
:
6112 /* The R_MIPS16_GPREL performs the same calculation as
6113 R_MIPS_GPREL16, but stores the relocated bits in a different
6114 order. We don't need to do anything special here; the
6115 differences are handled in mips_elf_perform_relocation. */
6116 case R_MIPS_GPREL16
:
6117 case R_MICROMIPS_GPREL7_S2
:
6118 case R_MICROMIPS_GPREL16
:
6119 /* Only sign-extend the addend if it was extracted from the
6120 instruction. If the addend was separate, leave it alone,
6121 otherwise we may lose significant bits. */
6122 if (howto
->partial_inplace
)
6123 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
6124 value
= symbol
+ addend
- gp
;
6125 /* If the symbol was local, any earlier relocatable links will
6126 have adjusted its addend with the gp offset, so compensate
6127 for that now. Don't do it for symbols forced local in this
6128 link, though, since they won't have had the gp offset applied
6132 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6133 overflowed_p
= mips_elf_overflow_p (value
, 16);
6136 case R_MIPS16_GOT16
:
6137 case R_MIPS16_CALL16
:
6140 case R_MICROMIPS_GOT16
:
6141 case R_MICROMIPS_CALL16
:
6142 /* VxWorks does not have separate local and global semantics for
6143 R_MIPS*_GOT16; every relocation evaluates to "G". */
6144 if (!htab
->is_vxworks
&& local_p
)
6146 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
6147 symbol
+ addend
, !was_local_p
);
6148 if (value
== MINUS_ONE
)
6149 return bfd_reloc_outofrange
;
6151 = mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
6152 overflowed_p
= mips_elf_overflow_p (value
, 16);
6159 case R_MIPS_TLS_GOTTPREL
:
6160 case R_MIPS_TLS_LDM
:
6161 case R_MIPS_GOT_DISP
:
6162 case R_MIPS16_TLS_GD
:
6163 case R_MIPS16_TLS_GOTTPREL
:
6164 case R_MIPS16_TLS_LDM
:
6165 case R_MICROMIPS_TLS_GD
:
6166 case R_MICROMIPS_TLS_GOTTPREL
:
6167 case R_MICROMIPS_TLS_LDM
:
6168 case R_MICROMIPS_GOT_DISP
:
6170 overflowed_p
= mips_elf_overflow_p (value
, 16);
6173 case R_MIPS_GPREL32
:
6174 value
= (addend
+ symbol
+ gp0
- gp
);
6176 value
&= howto
->dst_mask
;
6180 case R_MIPS_GNU_REL16_S2
:
6181 if (howto
->partial_inplace
)
6182 addend
= _bfd_mips_elf_sign_extend (addend
, 18);
6184 /* No need to exclude weak undefined symbols here as they resolve
6185 to 0 and never set `*cross_mode_jump_p', so this alignment check
6186 will never trigger for them. */
6187 if (*cross_mode_jump_p
6188 ? ((symbol
+ addend
) & 3) != 1
6189 : ((symbol
+ addend
) & 3) != 0)
6190 return bfd_reloc_outofrange
;
6192 value
= symbol
+ addend
- p
;
6193 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6194 overflowed_p
= mips_elf_overflow_p (value
, 18);
6195 value
>>= howto
->rightshift
;
6196 value
&= howto
->dst_mask
;
6199 case R_MIPS16_PC16_S1
:
6200 if (howto
->partial_inplace
)
6201 addend
= _bfd_mips_elf_sign_extend (addend
, 17);
6203 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6204 && (*cross_mode_jump_p
6205 ? ((symbol
+ addend
) & 3) != 0
6206 : ((symbol
+ addend
) & 1) == 0))
6207 return bfd_reloc_outofrange
;
6209 value
= symbol
+ addend
- p
;
6210 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6211 overflowed_p
= mips_elf_overflow_p (value
, 17);
6212 value
>>= howto
->rightshift
;
6213 value
&= howto
->dst_mask
;
6216 case R_MIPS_PC21_S2
:
6217 if (howto
->partial_inplace
)
6218 addend
= _bfd_mips_elf_sign_extend (addend
, 23);
6220 if ((symbol
+ addend
) & 3)
6221 return bfd_reloc_outofrange
;
6223 value
= symbol
+ addend
- p
;
6224 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6225 overflowed_p
= mips_elf_overflow_p (value
, 23);
6226 value
>>= howto
->rightshift
;
6227 value
&= howto
->dst_mask
;
6230 case R_MIPS_PC26_S2
:
6231 if (howto
->partial_inplace
)
6232 addend
= _bfd_mips_elf_sign_extend (addend
, 28);
6234 if ((symbol
+ addend
) & 3)
6235 return bfd_reloc_outofrange
;
6237 value
= symbol
+ addend
- p
;
6238 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6239 overflowed_p
= mips_elf_overflow_p (value
, 28);
6240 value
>>= howto
->rightshift
;
6241 value
&= howto
->dst_mask
;
6244 case R_MIPS_PC18_S3
:
6245 if (howto
->partial_inplace
)
6246 addend
= _bfd_mips_elf_sign_extend (addend
, 21);
6248 if ((symbol
+ addend
) & 7)
6249 return bfd_reloc_outofrange
;
6251 value
= symbol
+ addend
- ((p
| 7) ^ 7);
6252 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6253 overflowed_p
= mips_elf_overflow_p (value
, 21);
6254 value
>>= howto
->rightshift
;
6255 value
&= howto
->dst_mask
;
6258 case R_MIPS_PC19_S2
:
6259 if (howto
->partial_inplace
)
6260 addend
= _bfd_mips_elf_sign_extend (addend
, 21);
6262 if ((symbol
+ addend
) & 3)
6263 return bfd_reloc_outofrange
;
6265 value
= symbol
+ addend
- p
;
6266 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6267 overflowed_p
= mips_elf_overflow_p (value
, 21);
6268 value
>>= howto
->rightshift
;
6269 value
&= howto
->dst_mask
;
6273 value
= mips_elf_high (symbol
+ addend
- p
);
6274 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6275 overflowed_p
= mips_elf_overflow_p (value
, 16);
6276 value
&= howto
->dst_mask
;
6280 if (howto
->partial_inplace
)
6281 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
6282 value
= symbol
+ addend
- p
;
6283 value
&= howto
->dst_mask
;
6286 case R_MICROMIPS_PC7_S1
:
6287 if (howto
->partial_inplace
)
6288 addend
= _bfd_mips_elf_sign_extend (addend
, 8);
6290 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6291 && (*cross_mode_jump_p
6292 ? ((symbol
+ addend
+ 2) & 3) != 0
6293 : ((symbol
+ addend
+ 2) & 1) == 0))
6294 return bfd_reloc_outofrange
;
6296 value
= symbol
+ addend
- p
;
6297 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6298 overflowed_p
= mips_elf_overflow_p (value
, 8);
6299 value
>>= howto
->rightshift
;
6300 value
&= howto
->dst_mask
;
6303 case R_MICROMIPS_PC10_S1
:
6304 if (howto
->partial_inplace
)
6305 addend
= _bfd_mips_elf_sign_extend (addend
, 11);
6307 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6308 && (*cross_mode_jump_p
6309 ? ((symbol
+ addend
+ 2) & 3) != 0
6310 : ((symbol
+ addend
+ 2) & 1) == 0))
6311 return bfd_reloc_outofrange
;
6313 value
= symbol
+ addend
- p
;
6314 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6315 overflowed_p
= mips_elf_overflow_p (value
, 11);
6316 value
>>= howto
->rightshift
;
6317 value
&= howto
->dst_mask
;
6320 case R_MICROMIPS_PC16_S1
:
6321 if (howto
->partial_inplace
)
6322 addend
= _bfd_mips_elf_sign_extend (addend
, 17);
6324 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6325 && (*cross_mode_jump_p
6326 ? ((symbol
+ addend
) & 3) != 0
6327 : ((symbol
+ addend
) & 1) == 0))
6328 return bfd_reloc_outofrange
;
6330 value
= symbol
+ addend
- p
;
6331 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6332 overflowed_p
= mips_elf_overflow_p (value
, 17);
6333 value
>>= howto
->rightshift
;
6334 value
&= howto
->dst_mask
;
6337 case R_MICROMIPS_PC23_S2
:
6338 if (howto
->partial_inplace
)
6339 addend
= _bfd_mips_elf_sign_extend (addend
, 25);
6340 value
= symbol
+ addend
- ((p
| 3) ^ 3);
6341 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6342 overflowed_p
= mips_elf_overflow_p (value
, 25);
6343 value
>>= howto
->rightshift
;
6344 value
&= howto
->dst_mask
;
6347 case R_MIPS_GOT_HI16
:
6348 case R_MIPS_CALL_HI16
:
6349 case R_MICROMIPS_GOT_HI16
:
6350 case R_MICROMIPS_CALL_HI16
:
6351 /* We're allowed to handle these two relocations identically.
6352 The dynamic linker is allowed to handle the CALL relocations
6353 differently by creating a lazy evaluation stub. */
6355 value
= mips_elf_high (value
);
6356 value
&= howto
->dst_mask
;
6359 case R_MIPS_GOT_LO16
:
6360 case R_MIPS_CALL_LO16
:
6361 case R_MICROMIPS_GOT_LO16
:
6362 case R_MICROMIPS_CALL_LO16
:
6363 value
= g
& howto
->dst_mask
;
6366 case R_MIPS_GOT_PAGE
:
6367 case R_MICROMIPS_GOT_PAGE
:
6368 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
6369 if (value
== MINUS_ONE
)
6370 return bfd_reloc_outofrange
;
6371 value
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
6372 overflowed_p
= mips_elf_overflow_p (value
, 16);
6375 case R_MIPS_GOT_OFST
:
6376 case R_MICROMIPS_GOT_OFST
:
6378 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
6381 overflowed_p
= mips_elf_overflow_p (value
, 16);
6385 case R_MICROMIPS_SUB
:
6386 value
= symbol
- addend
;
6387 value
&= howto
->dst_mask
;
6391 case R_MICROMIPS_HIGHER
:
6392 value
= mips_elf_higher (addend
+ symbol
);
6393 value
&= howto
->dst_mask
;
6396 case R_MIPS_HIGHEST
:
6397 case R_MICROMIPS_HIGHEST
:
6398 value
= mips_elf_highest (addend
+ symbol
);
6399 value
&= howto
->dst_mask
;
6402 case R_MIPS_SCN_DISP
:
6403 case R_MICROMIPS_SCN_DISP
:
6404 value
= symbol
+ addend
- sec
->output_offset
;
6405 value
&= howto
->dst_mask
;
6409 case R_MICROMIPS_JALR
:
6410 /* This relocation is only a hint. In some cases, we optimize
6411 it into a bal instruction. But we don't try to optimize
6412 when the symbol does not resolve locally. */
6413 if (h
!= NULL
&& !SYMBOL_CALLS_LOCAL (info
, &h
->root
))
6414 return bfd_reloc_continue
;
6415 /* We can't optimize cross-mode jumps either. */
6416 if (*cross_mode_jump_p
)
6417 return bfd_reloc_continue
;
6418 value
= symbol
+ addend
;
6419 /* Neither we can non-instruction-aligned targets. */
6420 if (r_type
== R_MIPS_JALR
? (value
& 3) != 0 : (value
& 1) == 0)
6421 return bfd_reloc_continue
;
6425 case R_MIPS_GNU_VTINHERIT
:
6426 case R_MIPS_GNU_VTENTRY
:
6427 /* We don't do anything with these at present. */
6428 return bfd_reloc_continue
;
6431 /* An unrecognized relocation type. */
6432 return bfd_reloc_notsupported
;
6435 /* Store the VALUE for our caller. */
6437 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
6440 /* It has been determined that the result of the RELOCATION is the
6441 VALUE. Use HOWTO to place VALUE into the output file at the
6442 appropriate position. The SECTION is the section to which the
6444 CROSS_MODE_JUMP_P is true if the relocation field
6445 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6447 Returns FALSE if anything goes wrong. */
6450 mips_elf_perform_relocation (struct bfd_link_info
*info
,
6451 reloc_howto_type
*howto
,
6452 const Elf_Internal_Rela
*relocation
,
6453 bfd_vma value
, bfd
*input_bfd
,
6454 asection
*input_section
, bfd_byte
*contents
,
6455 bfd_boolean cross_mode_jump_p
)
6459 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
6461 /* Figure out where the relocation is occurring. */
6462 location
= contents
+ relocation
->r_offset
;
6464 _bfd_mips_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
6466 /* Obtain the current value. */
6467 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
6469 /* Clear the field we are setting. */
6470 x
&= ~howto
->dst_mask
;
6472 /* Set the field. */
6473 x
|= (value
& howto
->dst_mask
);
6475 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6476 if (!cross_mode_jump_p
&& jal_reloc_p (r_type
))
6478 bfd_vma opcode
= x
>> 26;
6480 if (r_type
== R_MIPS16_26
? opcode
== 0x7
6481 : r_type
== R_MICROMIPS_26_S1
? opcode
== 0x3c
6484 info
->callbacks
->einfo
6485 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6486 input_bfd
, input_section
, relocation
->r_offset
);
6490 if (cross_mode_jump_p
&& jal_reloc_p (r_type
))
6493 bfd_vma opcode
= x
>> 26;
6494 bfd_vma jalx_opcode
;
6496 /* Check to see if the opcode is already JAL or JALX. */
6497 if (r_type
== R_MIPS16_26
)
6499 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
6502 else if (r_type
== R_MICROMIPS_26_S1
)
6504 ok
= ((opcode
== 0x3d) || (opcode
== 0x3c));
6509 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
6513 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6514 convert J or JALS to JALX. */
6517 info
->callbacks
->einfo
6518 (_("%X%H: unsupported jump between ISA modes; "
6519 "consider recompiling with interlinking enabled\n"),
6520 input_bfd
, input_section
, relocation
->r_offset
);
6524 /* Make this the JALX opcode. */
6525 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
6527 else if (cross_mode_jump_p
&& b_reloc_p (r_type
))
6529 bfd_boolean ok
= FALSE
;
6530 bfd_vma opcode
= x
>> 16;
6531 bfd_vma jalx_opcode
= 0;
6532 bfd_vma sign_bit
= 0;
6536 if (r_type
== R_MICROMIPS_PC16_S1
)
6538 ok
= opcode
== 0x4060;
6543 else if (r_type
== R_MIPS_PC16
|| r_type
== R_MIPS_GNU_REL16_S2
)
6545 ok
= opcode
== 0x411;
6551 if (ok
&& !bfd_link_pic (info
))
6553 addr
= (input_section
->output_section
->vma
6554 + input_section
->output_offset
6555 + relocation
->r_offset
6558 + (((value
& ((sign_bit
<< 1) - 1)) ^ sign_bit
) - sign_bit
));
6560 if ((addr
>> 28) << 28 != (dest
>> 28) << 28)
6562 info
->callbacks
->einfo
6563 (_("%X%H: cannot convert branch between ISA modes "
6564 "to JALX: relocation out of range\n"),
6565 input_bfd
, input_section
, relocation
->r_offset
);
6569 /* Make this the JALX opcode. */
6570 x
= ((dest
>> 2) & 0x3ffffff) | jalx_opcode
<< 26;
6572 else if (!mips_elf_hash_table (info
)->ignore_branch_isa
)
6574 info
->callbacks
->einfo
6575 (_("%X%H: unsupported branch between ISA modes\n"),
6576 input_bfd
, input_section
, relocation
->r_offset
);
6581 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6583 if (!bfd_link_relocatable (info
)
6584 && !cross_mode_jump_p
6585 && ((JAL_TO_BAL_P (input_bfd
)
6586 && r_type
== R_MIPS_26
6587 && (x
>> 26) == 0x3) /* jal addr */
6588 || (JALR_TO_BAL_P (input_bfd
)
6589 && r_type
== R_MIPS_JALR
6590 && x
== 0x0320f809) /* jalr t9 */
6591 || (JR_TO_B_P (input_bfd
)
6592 && r_type
== R_MIPS_JALR
6593 && (x
& ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6599 addr
= (input_section
->output_section
->vma
6600 + input_section
->output_offset
6601 + relocation
->r_offset
6603 if (r_type
== R_MIPS_26
)
6604 dest
= (value
<< 2) | ((addr
>> 28) << 28);
6608 if (off
<= 0x1ffff && off
>= -0x20000)
6610 if ((x
& ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6611 x
= 0x10000000 | (((bfd_vma
) off
>> 2) & 0xffff); /* b addr */
6613 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
6617 /* Put the value into the output. */
6618 mips_elf_store_contents (howto
, relocation
, input_bfd
, contents
, x
);
6620 _bfd_mips_elf_reloc_shuffle (input_bfd
, r_type
, !bfd_link_relocatable (info
),
6626 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6627 is the original relocation, which is now being transformed into a
6628 dynamic relocation. The ADDENDP is adjusted if necessary; the
6629 caller should store the result in place of the original addend. */
6632 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
6633 struct bfd_link_info
*info
,
6634 const Elf_Internal_Rela
*rel
,
6635 struct mips_elf_link_hash_entry
*h
,
6636 asection
*sec
, bfd_vma symbol
,
6637 bfd_vma
*addendp
, asection
*input_section
)
6639 Elf_Internal_Rela outrel
[3];
6644 bfd_boolean defined_p
;
6645 struct mips_elf_link_hash_table
*htab
;
6647 htab
= mips_elf_hash_table (info
);
6648 BFD_ASSERT (htab
!= NULL
);
6650 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
6651 dynobj
= elf_hash_table (info
)->dynobj
;
6652 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
6653 BFD_ASSERT (sreloc
!= NULL
);
6654 BFD_ASSERT (sreloc
->contents
!= NULL
);
6655 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
6658 outrel
[0].r_offset
=
6659 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
6660 if (ABI_64_P (output_bfd
))
6662 outrel
[1].r_offset
=
6663 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
6664 outrel
[2].r_offset
=
6665 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
6668 if (outrel
[0].r_offset
== MINUS_ONE
)
6669 /* The relocation field has been deleted. */
6672 if (outrel
[0].r_offset
== MINUS_TWO
)
6674 /* The relocation field has been converted into a relative value of
6675 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6676 the field to be fully relocated, so add in the symbol's value. */
6681 /* We must now calculate the dynamic symbol table index to use
6682 in the relocation. */
6683 if (h
!= NULL
&& ! SYMBOL_REFERENCES_LOCAL (info
, &h
->root
))
6685 BFD_ASSERT (htab
->is_vxworks
|| h
->global_got_area
!= GGA_NONE
);
6686 indx
= h
->root
.dynindx
;
6687 if (SGI_COMPAT (output_bfd
))
6688 defined_p
= h
->root
.def_regular
;
6690 /* ??? glibc's ld.so just adds the final GOT entry to the
6691 relocation field. It therefore treats relocs against
6692 defined symbols in the same way as relocs against
6693 undefined symbols. */
6698 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
6700 else if (sec
== NULL
|| sec
->owner
== NULL
)
6702 bfd_set_error (bfd_error_bad_value
);
6707 indx
= elf_section_data (sec
->output_section
)->dynindx
;
6710 asection
*osec
= htab
->root
.text_index_section
;
6711 indx
= elf_section_data (osec
)->dynindx
;
6717 /* Instead of generating a relocation using the section
6718 symbol, we may as well make it a fully relative
6719 relocation. We want to avoid generating relocations to
6720 local symbols because we used to generate them
6721 incorrectly, without adding the original symbol value,
6722 which is mandated by the ABI for section symbols. In
6723 order to give dynamic loaders and applications time to
6724 phase out the incorrect use, we refrain from emitting
6725 section-relative relocations. It's not like they're
6726 useful, after all. This should be a bit more efficient
6728 /* ??? Although this behavior is compatible with glibc's ld.so,
6729 the ABI says that relocations against STN_UNDEF should have
6730 a symbol value of 0. Irix rld honors this, so relocations
6731 against STN_UNDEF have no effect. */
6732 if (!SGI_COMPAT (output_bfd
))
6737 /* If the relocation was previously an absolute relocation and
6738 this symbol will not be referred to by the relocation, we must
6739 adjust it by the value we give it in the dynamic symbol table.
6740 Otherwise leave the job up to the dynamic linker. */
6741 if (defined_p
&& r_type
!= R_MIPS_REL32
)
6744 if (htab
->is_vxworks
)
6745 /* VxWorks uses non-relative relocations for this. */
6746 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
6748 /* The relocation is always an REL32 relocation because we don't
6749 know where the shared library will wind up at load-time. */
6750 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
6753 /* For strict adherence to the ABI specification, we should
6754 generate a R_MIPS_64 relocation record by itself before the
6755 _REL32/_64 record as well, such that the addend is read in as
6756 a 64-bit value (REL32 is a 32-bit relocation, after all).
6757 However, since none of the existing ELF64 MIPS dynamic
6758 loaders seems to care, we don't waste space with these
6759 artificial relocations. If this turns out to not be true,
6760 mips_elf_allocate_dynamic_relocation() should be tweaked so
6761 as to make room for a pair of dynamic relocations per
6762 invocation if ABI_64_P, and here we should generate an
6763 additional relocation record with R_MIPS_64 by itself for a
6764 NULL symbol before this relocation record. */
6765 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
6766 ABI_64_P (output_bfd
)
6769 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
6771 /* Adjust the output offset of the relocation to reference the
6772 correct location in the output file. */
6773 outrel
[0].r_offset
+= (input_section
->output_section
->vma
6774 + input_section
->output_offset
);
6775 outrel
[1].r_offset
+= (input_section
->output_section
->vma
6776 + input_section
->output_offset
);
6777 outrel
[2].r_offset
+= (input_section
->output_section
->vma
6778 + input_section
->output_offset
);
6780 /* Put the relocation back out. We have to use the special
6781 relocation outputter in the 64-bit case since the 64-bit
6782 relocation format is non-standard. */
6783 if (ABI_64_P (output_bfd
))
6785 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
6786 (output_bfd
, &outrel
[0],
6788 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
6790 else if (htab
->is_vxworks
)
6792 /* VxWorks uses RELA rather than REL dynamic relocations. */
6793 outrel
[0].r_addend
= *addendp
;
6794 bfd_elf32_swap_reloca_out
6795 (output_bfd
, &outrel
[0],
6797 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
6800 bfd_elf32_swap_reloc_out
6801 (output_bfd
, &outrel
[0],
6802 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
6804 /* We've now added another relocation. */
6805 ++sreloc
->reloc_count
;
6807 /* Make sure the output section is writable. The dynamic linker
6808 will be writing to it. */
6809 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
6812 /* On IRIX5, make an entry of compact relocation info. */
6813 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
6815 asection
*scpt
= bfd_get_linker_section (dynobj
, ".compact_rel");
6820 Elf32_crinfo cptrel
;
6822 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
6823 cptrel
.vaddr
= (rel
->r_offset
6824 + input_section
->output_section
->vma
6825 + input_section
->output_offset
);
6826 if (r_type
== R_MIPS_REL32
)
6827 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
6829 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
6830 mips_elf_set_cr_dist2to (cptrel
, 0);
6831 cptrel
.konst
= *addendp
;
6833 cr
= (scpt
->contents
6834 + sizeof (Elf32_External_compact_rel
));
6835 mips_elf_set_cr_relvaddr (cptrel
, 0);
6836 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
6837 ((Elf32_External_crinfo
*) cr
6838 + scpt
->reloc_count
));
6839 ++scpt
->reloc_count
;
6843 /* If we've written this relocation for a readonly section,
6844 we need to set DF_TEXTREL again, so that we do not delete the
6846 if (MIPS_ELF_READONLY_SECTION (input_section
))
6847 info
->flags
|= DF_TEXTREL
;
6852 /* Return the MACH for a MIPS e_flags value. */
6855 _bfd_elf_mips_mach (flagword flags
)
6857 switch (flags
& EF_MIPS_MACH
)
6859 case E_MIPS_MACH_3900
:
6860 return bfd_mach_mips3900
;
6862 case E_MIPS_MACH_4010
:
6863 return bfd_mach_mips4010
;
6865 case E_MIPS_MACH_4100
:
6866 return bfd_mach_mips4100
;
6868 case E_MIPS_MACH_4111
:
6869 return bfd_mach_mips4111
;
6871 case E_MIPS_MACH_4120
:
6872 return bfd_mach_mips4120
;
6874 case E_MIPS_MACH_4650
:
6875 return bfd_mach_mips4650
;
6877 case E_MIPS_MACH_5400
:
6878 return bfd_mach_mips5400
;
6880 case E_MIPS_MACH_5500
:
6881 return bfd_mach_mips5500
;
6883 case E_MIPS_MACH_5900
:
6884 return bfd_mach_mips5900
;
6886 case E_MIPS_MACH_9000
:
6887 return bfd_mach_mips9000
;
6889 case E_MIPS_MACH_SB1
:
6890 return bfd_mach_mips_sb1
;
6892 case E_MIPS_MACH_LS2E
:
6893 return bfd_mach_mips_loongson_2e
;
6895 case E_MIPS_MACH_LS2F
:
6896 return bfd_mach_mips_loongson_2f
;
6898 case E_MIPS_MACH_GS464
:
6899 return bfd_mach_mips_gs464
;
6901 case E_MIPS_MACH_GS464E
:
6902 return bfd_mach_mips_gs464e
;
6904 case E_MIPS_MACH_GS264E
:
6905 return bfd_mach_mips_gs264e
;
6907 case E_MIPS_MACH_OCTEON3
:
6908 return bfd_mach_mips_octeon3
;
6910 case E_MIPS_MACH_OCTEON2
:
6911 return bfd_mach_mips_octeon2
;
6913 case E_MIPS_MACH_OCTEON
:
6914 return bfd_mach_mips_octeon
;
6916 case E_MIPS_MACH_XLR
:
6917 return bfd_mach_mips_xlr
;
6919 case E_MIPS_MACH_IAMR2
:
6920 return bfd_mach_mips_interaptiv_mr2
;
6923 switch (flags
& EF_MIPS_ARCH
)
6927 return bfd_mach_mips3000
;
6930 return bfd_mach_mips6000
;
6933 return bfd_mach_mips4000
;
6936 return bfd_mach_mips8000
;
6939 return bfd_mach_mips5
;
6941 case E_MIPS_ARCH_32
:
6942 return bfd_mach_mipsisa32
;
6944 case E_MIPS_ARCH_64
:
6945 return bfd_mach_mipsisa64
;
6947 case E_MIPS_ARCH_32R2
:
6948 return bfd_mach_mipsisa32r2
;
6950 case E_MIPS_ARCH_64R2
:
6951 return bfd_mach_mipsisa64r2
;
6953 case E_MIPS_ARCH_32R6
:
6954 return bfd_mach_mipsisa32r6
;
6956 case E_MIPS_ARCH_64R6
:
6957 return bfd_mach_mipsisa64r6
;
6964 /* Return printable name for ABI. */
6966 static INLINE
char *
6967 elf_mips_abi_name (bfd
*abfd
)
6971 flags
= elf_elfheader (abfd
)->e_flags
;
6972 switch (flags
& EF_MIPS_ABI
)
6975 if (ABI_N32_P (abfd
))
6977 else if (ABI_64_P (abfd
))
6981 case E_MIPS_ABI_O32
:
6983 case E_MIPS_ABI_O64
:
6985 case E_MIPS_ABI_EABI32
:
6987 case E_MIPS_ABI_EABI64
:
6990 return "unknown abi";
6994 /* MIPS ELF uses two common sections. One is the usual one, and the
6995 other is for small objects. All the small objects are kept
6996 together, and then referenced via the gp pointer, which yields
6997 faster assembler code. This is what we use for the small common
6998 section. This approach is copied from ecoff.c. */
6999 static asection mips_elf_scom_section
;
7000 static asymbol mips_elf_scom_symbol
;
7001 static asymbol
*mips_elf_scom_symbol_ptr
;
7003 /* MIPS ELF also uses an acommon section, which represents an
7004 allocated common symbol which may be overridden by a
7005 definition in a shared library. */
7006 static asection mips_elf_acom_section
;
7007 static asymbol mips_elf_acom_symbol
;
7008 static asymbol
*mips_elf_acom_symbol_ptr
;
7010 /* This is used for both the 32-bit and the 64-bit ABI. */
7013 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
7015 elf_symbol_type
*elfsym
;
7017 /* Handle the special MIPS section numbers that a symbol may use. */
7018 elfsym
= (elf_symbol_type
*) asym
;
7019 switch (elfsym
->internal_elf_sym
.st_shndx
)
7021 case SHN_MIPS_ACOMMON
:
7022 /* This section is used in a dynamically linked executable file.
7023 It is an allocated common section. The dynamic linker can
7024 either resolve these symbols to something in a shared
7025 library, or it can just leave them here. For our purposes,
7026 we can consider these symbols to be in a new section. */
7027 if (mips_elf_acom_section
.name
== NULL
)
7029 /* Initialize the acommon section. */
7030 mips_elf_acom_section
.name
= ".acommon";
7031 mips_elf_acom_section
.flags
= SEC_ALLOC
;
7032 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
7033 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
7034 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
7035 mips_elf_acom_symbol
.name
= ".acommon";
7036 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
7037 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
7038 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
7040 asym
->section
= &mips_elf_acom_section
;
7044 /* Common symbols less than the GP size are automatically
7045 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7046 if (asym
->value
> elf_gp_size (abfd
)
7047 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
7048 || IRIX_COMPAT (abfd
) == ict_irix6
)
7051 case SHN_MIPS_SCOMMON
:
7052 if (mips_elf_scom_section
.name
== NULL
)
7054 /* Initialize the small common section. */
7055 mips_elf_scom_section
.name
= ".scommon";
7056 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
7057 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
7058 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
7059 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
7060 mips_elf_scom_symbol
.name
= ".scommon";
7061 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
7062 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
7063 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
7065 asym
->section
= &mips_elf_scom_section
;
7066 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
7069 case SHN_MIPS_SUNDEFINED
:
7070 asym
->section
= bfd_und_section_ptr
;
7075 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
7077 if (section
!= NULL
)
7079 asym
->section
= section
;
7080 /* MIPS_TEXT is a bit special, the address is not an offset
7081 to the base of the .text section. So subtract the section
7082 base address to make it an offset. */
7083 asym
->value
-= section
->vma
;
7090 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
7092 if (section
!= NULL
)
7094 asym
->section
= section
;
7095 /* MIPS_DATA is a bit special, the address is not an offset
7096 to the base of the .data section. So subtract the section
7097 base address to make it an offset. */
7098 asym
->value
-= section
->vma
;
7104 /* If this is an odd-valued function symbol, assume it's a MIPS16
7105 or microMIPS one. */
7106 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_FUNC
7107 && (asym
->value
& 1) != 0)
7110 if (MICROMIPS_P (abfd
))
7111 elfsym
->internal_elf_sym
.st_other
7112 = ELF_ST_SET_MICROMIPS (elfsym
->internal_elf_sym
.st_other
);
7114 elfsym
->internal_elf_sym
.st_other
7115 = ELF_ST_SET_MIPS16 (elfsym
->internal_elf_sym
.st_other
);
7119 /* Implement elf_backend_eh_frame_address_size. This differs from
7120 the default in the way it handles EABI64.
7122 EABI64 was originally specified as an LP64 ABI, and that is what
7123 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7124 historically accepted the combination of -mabi=eabi and -mlong32,
7125 and this ILP32 variation has become semi-official over time.
7126 Both forms use elf32 and have pointer-sized FDE addresses.
7128 If an EABI object was generated by GCC 4.0 or above, it will have
7129 an empty .gcc_compiled_longXX section, where XX is the size of longs
7130 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7131 have no special marking to distinguish them from LP64 objects.
7133 We don't want users of the official LP64 ABI to be punished for the
7134 existence of the ILP32 variant, but at the same time, we don't want
7135 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7136 We therefore take the following approach:
7138 - If ABFD contains a .gcc_compiled_longXX section, use it to
7139 determine the pointer size.
7141 - Otherwise check the type of the first relocation. Assume that
7142 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7146 The second check is enough to detect LP64 objects generated by pre-4.0
7147 compilers because, in the kind of output generated by those compilers,
7148 the first relocation will be associated with either a CIE personality
7149 routine or an FDE start address. Furthermore, the compilers never
7150 used a special (non-pointer) encoding for this ABI.
7152 Checking the relocation type should also be safe because there is no
7153 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7157 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, const asection
*sec
)
7159 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
7161 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
7163 bfd_boolean long32_p
, long64_p
;
7165 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
7166 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
7167 if (long32_p
&& long64_p
)
7174 if (sec
->reloc_count
> 0
7175 && elf_section_data (sec
)->relocs
!= NULL
7176 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
7185 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7186 relocations against two unnamed section symbols to resolve to the
7187 same address. For example, if we have code like:
7189 lw $4,%got_disp(.data)($gp)
7190 lw $25,%got_disp(.text)($gp)
7193 then the linker will resolve both relocations to .data and the program
7194 will jump there rather than to .text.
7196 We can work around this problem by giving names to local section symbols.
7197 This is also what the MIPSpro tools do. */
7200 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
7202 return SGI_COMPAT (abfd
);
7205 /* Work over a section just before writing it out. This routine is
7206 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7207 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7211 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
7213 if (hdr
->sh_type
== SHT_MIPS_REGINFO
7214 && hdr
->sh_size
> 0)
7218 BFD_ASSERT (hdr
->contents
== NULL
);
7220 if (hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
7223 (_("%pB: incorrect `.reginfo' section size; "
7224 "expected %" PRIu64
", got %" PRIu64
),
7225 abfd
, (uint64_t) sizeof (Elf32_External_RegInfo
),
7226 (uint64_t) hdr
->sh_size
);
7227 bfd_set_error (bfd_error_bad_value
);
7232 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
7235 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
7236 if (bfd_bwrite (buf
, 4, abfd
) != 4)
7240 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
7241 && hdr
->bfd_section
!= NULL
7242 && mips_elf_section_data (hdr
->bfd_section
) != NULL
7243 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
7245 bfd_byte
*contents
, *l
, *lend
;
7247 /* We stored the section contents in the tdata field in the
7248 set_section_contents routine. We save the section contents
7249 so that we don't have to read them again.
7250 At this point we know that elf_gp is set, so we can look
7251 through the section contents to see if there is an
7252 ODK_REGINFO structure. */
7254 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
7256 lend
= contents
+ hdr
->sh_size
;
7257 while (l
+ sizeof (Elf_External_Options
) <= lend
)
7259 Elf_Internal_Options intopt
;
7261 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
7263 if (intopt
.size
< sizeof (Elf_External_Options
))
7266 /* xgettext:c-format */
7267 (_("%pB: warning: bad `%s' option size %u smaller than"
7269 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
7272 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
7279 + sizeof (Elf_External_Options
)
7280 + (sizeof (Elf64_External_RegInfo
) - 8)),
7283 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
7284 if (bfd_bwrite (buf
, 8, abfd
) != 8)
7287 else if (intopt
.kind
== ODK_REGINFO
)
7294 + sizeof (Elf_External_Options
)
7295 + (sizeof (Elf32_External_RegInfo
) - 4)),
7298 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
7299 if (bfd_bwrite (buf
, 4, abfd
) != 4)
7306 if (hdr
->bfd_section
!= NULL
)
7308 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
7310 /* .sbss is not handled specially here because the GNU/Linux
7311 prelinker can convert .sbss from NOBITS to PROGBITS and
7312 changing it back to NOBITS breaks the binary. The entry in
7313 _bfd_mips_elf_special_sections will ensure the correct flags
7314 are set on .sbss if BFD creates it without reading it from an
7315 input file, and without special handling here the flags set
7316 on it in an input file will be followed. */
7317 if (strcmp (name
, ".sdata") == 0
7318 || strcmp (name
, ".lit8") == 0
7319 || strcmp (name
, ".lit4") == 0)
7320 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
7321 else if (strcmp (name
, ".srdata") == 0)
7322 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
7323 else if (strcmp (name
, ".compact_rel") == 0)
7325 else if (strcmp (name
, ".rtproc") == 0)
7327 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
7329 unsigned int adjust
;
7331 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
7333 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
7341 /* Handle a MIPS specific section when reading an object file. This
7342 is called when elfcode.h finds a section with an unknown type.
7343 This routine supports both the 32-bit and 64-bit ELF ABI.
7345 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7349 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
7350 Elf_Internal_Shdr
*hdr
,
7356 /* There ought to be a place to keep ELF backend specific flags, but
7357 at the moment there isn't one. We just keep track of the
7358 sections by their name, instead. Fortunately, the ABI gives
7359 suggested names for all the MIPS specific sections, so we will
7360 probably get away with this. */
7361 switch (hdr
->sh_type
)
7363 case SHT_MIPS_LIBLIST
:
7364 if (strcmp (name
, ".liblist") != 0)
7368 if (strcmp (name
, ".msym") != 0)
7371 case SHT_MIPS_CONFLICT
:
7372 if (strcmp (name
, ".conflict") != 0)
7375 case SHT_MIPS_GPTAB
:
7376 if (! CONST_STRNEQ (name
, ".gptab."))
7379 case SHT_MIPS_UCODE
:
7380 if (strcmp (name
, ".ucode") != 0)
7383 case SHT_MIPS_DEBUG
:
7384 if (strcmp (name
, ".mdebug") != 0)
7386 flags
= SEC_DEBUGGING
;
7388 case SHT_MIPS_REGINFO
:
7389 if (strcmp (name
, ".reginfo") != 0
7390 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
7392 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
7394 case SHT_MIPS_IFACE
:
7395 if (strcmp (name
, ".MIPS.interfaces") != 0)
7398 case SHT_MIPS_CONTENT
:
7399 if (! CONST_STRNEQ (name
, ".MIPS.content"))
7402 case SHT_MIPS_OPTIONS
:
7403 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
7406 case SHT_MIPS_ABIFLAGS
:
7407 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name
))
7409 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
7411 case SHT_MIPS_DWARF
:
7412 if (! CONST_STRNEQ (name
, ".debug_")
7413 && ! CONST_STRNEQ (name
, ".zdebug_"))
7416 case SHT_MIPS_SYMBOL_LIB
:
7417 if (strcmp (name
, ".MIPS.symlib") != 0)
7420 case SHT_MIPS_EVENTS
:
7421 if (! CONST_STRNEQ (name
, ".MIPS.events")
7422 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
7429 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
7434 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
7435 (bfd_get_section_flags (abfd
,
7441 if (hdr
->sh_type
== SHT_MIPS_ABIFLAGS
)
7443 Elf_External_ABIFlags_v0 ext
;
7445 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
7446 &ext
, 0, sizeof ext
))
7448 bfd_mips_elf_swap_abiflags_v0_in (abfd
, &ext
,
7449 &mips_elf_tdata (abfd
)->abiflags
);
7450 if (mips_elf_tdata (abfd
)->abiflags
.version
!= 0)
7452 mips_elf_tdata (abfd
)->abiflags_valid
= TRUE
;
7455 /* FIXME: We should record sh_info for a .gptab section. */
7457 /* For a .reginfo section, set the gp value in the tdata information
7458 from the contents of this section. We need the gp value while
7459 processing relocs, so we just get it now. The .reginfo section
7460 is not used in the 64-bit MIPS ELF ABI. */
7461 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
7463 Elf32_External_RegInfo ext
;
7466 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
7467 &ext
, 0, sizeof ext
))
7469 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
7470 elf_gp (abfd
) = s
.ri_gp_value
;
7473 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7474 set the gp value based on what we find. We may see both
7475 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7476 they should agree. */
7477 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
7479 bfd_byte
*contents
, *l
, *lend
;
7481 contents
= bfd_malloc (hdr
->sh_size
);
7482 if (contents
== NULL
)
7484 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
7491 lend
= contents
+ hdr
->sh_size
;
7492 while (l
+ sizeof (Elf_External_Options
) <= lend
)
7494 Elf_Internal_Options intopt
;
7496 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
7498 if (intopt
.size
< sizeof (Elf_External_Options
))
7501 /* xgettext:c-format */
7502 (_("%pB: warning: bad `%s' option size %u smaller than"
7504 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
7507 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
7509 Elf64_Internal_RegInfo intreg
;
7511 bfd_mips_elf64_swap_reginfo_in
7513 ((Elf64_External_RegInfo
*)
7514 (l
+ sizeof (Elf_External_Options
))),
7516 elf_gp (abfd
) = intreg
.ri_gp_value
;
7518 else if (intopt
.kind
== ODK_REGINFO
)
7520 Elf32_RegInfo intreg
;
7522 bfd_mips_elf32_swap_reginfo_in
7524 ((Elf32_External_RegInfo
*)
7525 (l
+ sizeof (Elf_External_Options
))),
7527 elf_gp (abfd
) = intreg
.ri_gp_value
;
7537 /* Set the correct type for a MIPS ELF section. We do this by the
7538 section name, which is a hack, but ought to work. This routine is
7539 used by both the 32-bit and the 64-bit ABI. */
7542 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
7544 const char *name
= bfd_get_section_name (abfd
, sec
);
7546 if (strcmp (name
, ".liblist") == 0)
7548 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
7549 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
7550 /* The sh_link field is set in final_write_processing. */
7552 else if (strcmp (name
, ".conflict") == 0)
7553 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
7554 else if (CONST_STRNEQ (name
, ".gptab."))
7556 hdr
->sh_type
= SHT_MIPS_GPTAB
;
7557 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
7558 /* The sh_info field is set in final_write_processing. */
7560 else if (strcmp (name
, ".ucode") == 0)
7561 hdr
->sh_type
= SHT_MIPS_UCODE
;
7562 else if (strcmp (name
, ".mdebug") == 0)
7564 hdr
->sh_type
= SHT_MIPS_DEBUG
;
7565 /* In a shared object on IRIX 5.3, the .mdebug section has an
7566 entsize of 0. FIXME: Does this matter? */
7567 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
7568 hdr
->sh_entsize
= 0;
7570 hdr
->sh_entsize
= 1;
7572 else if (strcmp (name
, ".reginfo") == 0)
7574 hdr
->sh_type
= SHT_MIPS_REGINFO
;
7575 /* In a shared object on IRIX 5.3, the .reginfo section has an
7576 entsize of 0x18. FIXME: Does this matter? */
7577 if (SGI_COMPAT (abfd
))
7579 if ((abfd
->flags
& DYNAMIC
) != 0)
7580 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
7582 hdr
->sh_entsize
= 1;
7585 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
7587 else if (SGI_COMPAT (abfd
)
7588 && (strcmp (name
, ".hash") == 0
7589 || strcmp (name
, ".dynamic") == 0
7590 || strcmp (name
, ".dynstr") == 0))
7592 if (SGI_COMPAT (abfd
))
7593 hdr
->sh_entsize
= 0;
7595 /* This isn't how the IRIX6 linker behaves. */
7596 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
7599 else if (strcmp (name
, ".got") == 0
7600 || strcmp (name
, ".srdata") == 0
7601 || strcmp (name
, ".sdata") == 0
7602 || strcmp (name
, ".sbss") == 0
7603 || strcmp (name
, ".lit4") == 0
7604 || strcmp (name
, ".lit8") == 0)
7605 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
7606 else if (strcmp (name
, ".MIPS.interfaces") == 0)
7608 hdr
->sh_type
= SHT_MIPS_IFACE
;
7609 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7611 else if (CONST_STRNEQ (name
, ".MIPS.content"))
7613 hdr
->sh_type
= SHT_MIPS_CONTENT
;
7614 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7615 /* The sh_info field is set in final_write_processing. */
7617 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
7619 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
7620 hdr
->sh_entsize
= 1;
7621 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7623 else if (CONST_STRNEQ (name
, ".MIPS.abiflags"))
7625 hdr
->sh_type
= SHT_MIPS_ABIFLAGS
;
7626 hdr
->sh_entsize
= sizeof (Elf_External_ABIFlags_v0
);
7628 else if (CONST_STRNEQ (name
, ".debug_")
7629 || CONST_STRNEQ (name
, ".zdebug_"))
7631 hdr
->sh_type
= SHT_MIPS_DWARF
;
7633 /* Irix facilities such as libexc expect a single .debug_frame
7634 per executable, the system ones have NOSTRIP set and the linker
7635 doesn't merge sections with different flags so ... */
7636 if (SGI_COMPAT (abfd
) && CONST_STRNEQ (name
, ".debug_frame"))
7637 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7639 else if (strcmp (name
, ".MIPS.symlib") == 0)
7641 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
7642 /* The sh_link and sh_info fields are set in
7643 final_write_processing. */
7645 else if (CONST_STRNEQ (name
, ".MIPS.events")
7646 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
7648 hdr
->sh_type
= SHT_MIPS_EVENTS
;
7649 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7650 /* The sh_link field is set in final_write_processing. */
7652 else if (strcmp (name
, ".msym") == 0)
7654 hdr
->sh_type
= SHT_MIPS_MSYM
;
7655 hdr
->sh_flags
|= SHF_ALLOC
;
7656 hdr
->sh_entsize
= 8;
7659 /* The generic elf_fake_sections will set up REL_HDR using the default
7660 kind of relocations. We used to set up a second header for the
7661 non-default kind of relocations here, but only NewABI would use
7662 these, and the IRIX ld doesn't like resulting empty RELA sections.
7663 Thus we create those header only on demand now. */
7668 /* Given a BFD section, try to locate the corresponding ELF section
7669 index. This is used by both the 32-bit and the 64-bit ABI.
7670 Actually, it's not clear to me that the 64-bit ABI supports these,
7671 but for non-PIC objects we will certainly want support for at least
7672 the .scommon section. */
7675 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
7676 asection
*sec
, int *retval
)
7678 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
7680 *retval
= SHN_MIPS_SCOMMON
;
7683 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
7685 *retval
= SHN_MIPS_ACOMMON
;
7691 /* Hook called by the linker routine which adds symbols from an object
7692 file. We must handle the special MIPS section numbers here. */
7695 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
7696 Elf_Internal_Sym
*sym
, const char **namep
,
7697 flagword
*flagsp ATTRIBUTE_UNUSED
,
7698 asection
**secp
, bfd_vma
*valp
)
7700 if (SGI_COMPAT (abfd
)
7701 && (abfd
->flags
& DYNAMIC
) != 0
7702 && strcmp (*namep
, "_rld_new_interface") == 0)
7704 /* Skip IRIX5 rld entry name. */
7709 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7710 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7711 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7712 a magic symbol resolved by the linker, we ignore this bogus definition
7713 of _gp_disp. New ABI objects do not suffer from this problem so this
7714 is not done for them. */
7716 && (sym
->st_shndx
== SHN_ABS
)
7717 && (strcmp (*namep
, "_gp_disp") == 0))
7723 switch (sym
->st_shndx
)
7726 /* Common symbols less than the GP size are automatically
7727 treated as SHN_MIPS_SCOMMON symbols. */
7728 if (sym
->st_size
> elf_gp_size (abfd
)
7729 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
7730 || IRIX_COMPAT (abfd
) == ict_irix6
)
7733 case SHN_MIPS_SCOMMON
:
7734 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
7735 (*secp
)->flags
|= SEC_IS_COMMON
;
7736 *valp
= sym
->st_size
;
7740 /* This section is used in a shared object. */
7741 if (mips_elf_tdata (abfd
)->elf_text_section
== NULL
)
7743 asymbol
*elf_text_symbol
;
7744 asection
*elf_text_section
;
7745 bfd_size_type amt
= sizeof (asection
);
7747 elf_text_section
= bfd_zalloc (abfd
, amt
);
7748 if (elf_text_section
== NULL
)
7751 amt
= sizeof (asymbol
);
7752 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
7753 if (elf_text_symbol
== NULL
)
7756 /* Initialize the section. */
7758 mips_elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
7759 mips_elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
7761 elf_text_section
->symbol
= elf_text_symbol
;
7762 elf_text_section
->symbol_ptr_ptr
= &mips_elf_tdata (abfd
)->elf_text_symbol
;
7764 elf_text_section
->name
= ".text";
7765 elf_text_section
->flags
= SEC_NO_FLAGS
;
7766 elf_text_section
->output_section
= NULL
;
7767 elf_text_section
->owner
= abfd
;
7768 elf_text_symbol
->name
= ".text";
7769 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
7770 elf_text_symbol
->section
= elf_text_section
;
7772 /* This code used to do *secp = bfd_und_section_ptr if
7773 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7774 so I took it out. */
7775 *secp
= mips_elf_tdata (abfd
)->elf_text_section
;
7778 case SHN_MIPS_ACOMMON
:
7779 /* Fall through. XXX Can we treat this as allocated data? */
7781 /* This section is used in a shared object. */
7782 if (mips_elf_tdata (abfd
)->elf_data_section
== NULL
)
7784 asymbol
*elf_data_symbol
;
7785 asection
*elf_data_section
;
7786 bfd_size_type amt
= sizeof (asection
);
7788 elf_data_section
= bfd_zalloc (abfd
, amt
);
7789 if (elf_data_section
== NULL
)
7792 amt
= sizeof (asymbol
);
7793 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
7794 if (elf_data_symbol
== NULL
)
7797 /* Initialize the section. */
7799 mips_elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
7800 mips_elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
7802 elf_data_section
->symbol
= elf_data_symbol
;
7803 elf_data_section
->symbol_ptr_ptr
= &mips_elf_tdata (abfd
)->elf_data_symbol
;
7805 elf_data_section
->name
= ".data";
7806 elf_data_section
->flags
= SEC_NO_FLAGS
;
7807 elf_data_section
->output_section
= NULL
;
7808 elf_data_section
->owner
= abfd
;
7809 elf_data_symbol
->name
= ".data";
7810 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
7811 elf_data_symbol
->section
= elf_data_section
;
7813 /* This code used to do *secp = bfd_und_section_ptr if
7814 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7815 so I took it out. */
7816 *secp
= mips_elf_tdata (abfd
)->elf_data_section
;
7819 case SHN_MIPS_SUNDEFINED
:
7820 *secp
= bfd_und_section_ptr
;
7824 if (SGI_COMPAT (abfd
)
7825 && ! bfd_link_pic (info
)
7826 && info
->output_bfd
->xvec
== abfd
->xvec
7827 && strcmp (*namep
, "__rld_obj_head") == 0)
7829 struct elf_link_hash_entry
*h
;
7830 struct bfd_link_hash_entry
*bh
;
7832 /* Mark __rld_obj_head as dynamic. */
7834 if (! (_bfd_generic_link_add_one_symbol
7835 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
7836 get_elf_backend_data (abfd
)->collect
, &bh
)))
7839 h
= (struct elf_link_hash_entry
*) bh
;
7842 h
->type
= STT_OBJECT
;
7844 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7847 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
7848 mips_elf_hash_table (info
)->rld_symbol
= h
;
7851 /* If this is a mips16 text symbol, add 1 to the value to make it
7852 odd. This will cause something like .word SYM to come up with
7853 the right value when it is loaded into the PC. */
7854 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
7860 /* This hook function is called before the linker writes out a global
7861 symbol. We mark symbols as small common if appropriate. This is
7862 also where we undo the increment of the value for a mips16 symbol. */
7865 _bfd_mips_elf_link_output_symbol_hook
7866 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
7867 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
7868 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
7870 /* If we see a common symbol, which implies a relocatable link, then
7871 if a symbol was small common in an input file, mark it as small
7872 common in the output file. */
7873 if (sym
->st_shndx
== SHN_COMMON
7874 && strcmp (input_sec
->name
, ".scommon") == 0)
7875 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
7877 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
7878 sym
->st_value
&= ~1;
7883 /* Functions for the dynamic linker. */
7885 /* Create dynamic sections when linking against a dynamic object. */
7888 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
7890 struct elf_link_hash_entry
*h
;
7891 struct bfd_link_hash_entry
*bh
;
7893 register asection
*s
;
7894 const char * const *namep
;
7895 struct mips_elf_link_hash_table
*htab
;
7897 htab
= mips_elf_hash_table (info
);
7898 BFD_ASSERT (htab
!= NULL
);
7900 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
7901 | SEC_LINKER_CREATED
| SEC_READONLY
);
7903 /* The psABI requires a read-only .dynamic section, but the VxWorks
7905 if (!htab
->is_vxworks
)
7907 s
= bfd_get_linker_section (abfd
, ".dynamic");
7910 if (! bfd_set_section_flags (abfd
, s
, flags
))
7915 /* We need to create .got section. */
7916 if (!mips_elf_create_got_section (abfd
, info
))
7919 if (! mips_elf_rel_dyn_section (info
, TRUE
))
7922 /* Create .stub section. */
7923 s
= bfd_make_section_anyway_with_flags (abfd
,
7924 MIPS_ELF_STUB_SECTION_NAME (abfd
),
7927 || ! bfd_set_section_alignment (abfd
, s
,
7928 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7932 if (!mips_elf_hash_table (info
)->use_rld_obj_head
7933 && bfd_link_executable (info
)
7934 && bfd_get_linker_section (abfd
, ".rld_map") == NULL
)
7936 s
= bfd_make_section_anyway_with_flags (abfd
, ".rld_map",
7937 flags
&~ (flagword
) SEC_READONLY
);
7939 || ! bfd_set_section_alignment (abfd
, s
,
7940 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7944 /* On IRIX5, we adjust add some additional symbols and change the
7945 alignments of several sections. There is no ABI documentation
7946 indicating that this is necessary on IRIX6, nor any evidence that
7947 the linker takes such action. */
7948 if (IRIX_COMPAT (abfd
) == ict_irix5
)
7950 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
7953 if (! (_bfd_generic_link_add_one_symbol
7954 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
7955 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
7958 h
= (struct elf_link_hash_entry
*) bh
;
7962 h
->type
= STT_SECTION
;
7964 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7968 /* We need to create a .compact_rel section. */
7969 if (SGI_COMPAT (abfd
))
7971 if (!mips_elf_create_compact_rel_section (abfd
, info
))
7975 /* Change alignments of some sections. */
7976 s
= bfd_get_linker_section (abfd
, ".hash");
7978 (void) bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
7980 s
= bfd_get_linker_section (abfd
, ".dynsym");
7982 (void) bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
7984 s
= bfd_get_linker_section (abfd
, ".dynstr");
7986 (void) bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
7989 s
= bfd_get_section_by_name (abfd
, ".reginfo");
7991 (void) bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
7993 s
= bfd_get_linker_section (abfd
, ".dynamic");
7995 (void) bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
7998 if (bfd_link_executable (info
))
8002 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8004 if (!(_bfd_generic_link_add_one_symbol
8005 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
8006 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
8009 h
= (struct elf_link_hash_entry
*) bh
;
8012 h
->type
= STT_SECTION
;
8014 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8017 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
8019 /* __rld_map is a four byte word located in the .data section
8020 and is filled in by the rtld to contain a pointer to
8021 the _r_debug structure. Its symbol value will be set in
8022 _bfd_mips_elf_finish_dynamic_symbol. */
8023 s
= bfd_get_linker_section (abfd
, ".rld_map");
8024 BFD_ASSERT (s
!= NULL
);
8026 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
8028 if (!(_bfd_generic_link_add_one_symbol
8029 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
8030 get_elf_backend_data (abfd
)->collect
, &bh
)))
8033 h
= (struct elf_link_hash_entry
*) bh
;
8036 h
->type
= STT_OBJECT
;
8038 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8040 mips_elf_hash_table (info
)->rld_symbol
= h
;
8044 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8045 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8046 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
8049 /* Do the usual VxWorks handling. */
8050 if (htab
->is_vxworks
8051 && !elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
8057 /* Return true if relocation REL against section SEC is a REL rather than
8058 RELA relocation. RELOCS is the first relocation in the section and
8059 ABFD is the bfd that contains SEC. */
8062 mips_elf_rel_relocation_p (bfd
*abfd
, asection
*sec
,
8063 const Elf_Internal_Rela
*relocs
,
8064 const Elf_Internal_Rela
*rel
)
8066 Elf_Internal_Shdr
*rel_hdr
;
8067 const struct elf_backend_data
*bed
;
8069 /* To determine which flavor of relocation this is, we depend on the
8070 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8071 rel_hdr
= elf_section_data (sec
)->rel
.hdr
;
8072 if (rel_hdr
== NULL
)
8074 bed
= get_elf_backend_data (abfd
);
8075 return ((size_t) (rel
- relocs
)
8076 < NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
);
8079 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8080 HOWTO is the relocation's howto and CONTENTS points to the contents
8081 of the section that REL is against. */
8084 mips_elf_read_rel_addend (bfd
*abfd
, const Elf_Internal_Rela
*rel
,
8085 reloc_howto_type
*howto
, bfd_byte
*contents
)
8088 unsigned int r_type
;
8092 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8093 location
= contents
+ rel
->r_offset
;
8095 /* Get the addend, which is stored in the input file. */
8096 _bfd_mips_elf_reloc_unshuffle (abfd
, r_type
, FALSE
, location
);
8097 bytes
= mips_elf_obtain_contents (howto
, rel
, abfd
, contents
);
8098 _bfd_mips_elf_reloc_shuffle (abfd
, r_type
, FALSE
, location
);
8100 addend
= bytes
& howto
->src_mask
;
8102 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8104 if (r_type
== R_MICROMIPS_26_S1
&& (bytes
>> 26) == 0x3c)
8110 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8111 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8112 and update *ADDEND with the final addend. Return true on success
8113 or false if the LO16 could not be found. RELEND is the exclusive
8114 upper bound on the relocations for REL's section. */
8117 mips_elf_add_lo16_rel_addend (bfd
*abfd
,
8118 const Elf_Internal_Rela
*rel
,
8119 const Elf_Internal_Rela
*relend
,
8120 bfd_byte
*contents
, bfd_vma
*addend
)
8122 unsigned int r_type
, lo16_type
;
8123 const Elf_Internal_Rela
*lo16_relocation
;
8124 reloc_howto_type
*lo16_howto
;
8127 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8128 if (mips16_reloc_p (r_type
))
8129 lo16_type
= R_MIPS16_LO16
;
8130 else if (micromips_reloc_p (r_type
))
8131 lo16_type
= R_MICROMIPS_LO16
;
8132 else if (r_type
== R_MIPS_PCHI16
)
8133 lo16_type
= R_MIPS_PCLO16
;
8135 lo16_type
= R_MIPS_LO16
;
8137 /* The combined value is the sum of the HI16 addend, left-shifted by
8138 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8139 code does a `lui' of the HI16 value, and then an `addiu' of the
8142 Scan ahead to find a matching LO16 relocation.
8144 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8145 be immediately following. However, for the IRIX6 ABI, the next
8146 relocation may be a composed relocation consisting of several
8147 relocations for the same address. In that case, the R_MIPS_LO16
8148 relocation may occur as one of these. We permit a similar
8149 extension in general, as that is useful for GCC.
8151 In some cases GCC dead code elimination removes the LO16 but keeps
8152 the corresponding HI16. This is strictly speaking a violation of
8153 the ABI but not immediately harmful. */
8154 lo16_relocation
= mips_elf_next_relocation (abfd
, lo16_type
, rel
, relend
);
8155 if (lo16_relocation
== NULL
)
8158 /* Obtain the addend kept there. */
8159 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, lo16_type
, FALSE
);
8160 l
= mips_elf_read_rel_addend (abfd
, lo16_relocation
, lo16_howto
, contents
);
8162 l
<<= lo16_howto
->rightshift
;
8163 l
= _bfd_mips_elf_sign_extend (l
, 16);
8170 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8171 store the contents in *CONTENTS on success. Assume that *CONTENTS
8172 already holds the contents if it is nonull on entry. */
8175 mips_elf_get_section_contents (bfd
*abfd
, asection
*sec
, bfd_byte
**contents
)
8180 /* Get cached copy if it exists. */
8181 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
8183 *contents
= elf_section_data (sec
)->this_hdr
.contents
;
8187 return bfd_malloc_and_get_section (abfd
, sec
, contents
);
8190 /* Make a new PLT record to keep internal data. */
8192 static struct plt_entry
*
8193 mips_elf_make_plt_record (bfd
*abfd
)
8195 struct plt_entry
*entry
;
8197 entry
= bfd_zalloc (abfd
, sizeof (*entry
));
8201 entry
->stub_offset
= MINUS_ONE
;
8202 entry
->mips_offset
= MINUS_ONE
;
8203 entry
->comp_offset
= MINUS_ONE
;
8204 entry
->gotplt_index
= MINUS_ONE
;
8208 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8209 for PIC code, as otherwise there is no load-time relocation involved
8210 and local GOT entries whose value is zero at static link time will
8211 retain their value at load time. */
8214 mips_elf_define_absolute_zero (bfd
*abfd
, struct bfd_link_info
*info
,
8215 struct mips_elf_link_hash_table
*htab
,
8216 unsigned int r_type
)
8220 struct elf_link_hash_entry
*eh
;
8221 struct bfd_link_hash_entry
*bh
;
8225 BFD_ASSERT (!htab
->use_absolute_zero
);
8226 BFD_ASSERT (bfd_link_pic (info
));
8229 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, "__gnu_absolute_zero",
8230 BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
8231 NULL
, FALSE
, FALSE
, &hzero
.bh
))
8234 BFD_ASSERT (hzero
.bh
!= NULL
);
8236 hzero
.eh
->type
= STT_NOTYPE
;
8237 hzero
.eh
->other
= STV_PROTECTED
;
8238 hzero
.eh
->def_regular
= 1;
8239 hzero
.eh
->non_elf
= 0;
8241 if (!mips_elf_record_global_got_symbol (hzero
.eh
, abfd
, info
, TRUE
, r_type
))
8244 htab
->use_absolute_zero
= TRUE
;
8249 /* Look through the relocs for a section during the first phase, and
8250 allocate space in the global offset table and record the need for
8251 standard MIPS and compressed procedure linkage table entries. */
8254 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
8255 asection
*sec
, const Elf_Internal_Rela
*relocs
)
8259 Elf_Internal_Shdr
*symtab_hdr
;
8260 struct elf_link_hash_entry
**sym_hashes
;
8262 const Elf_Internal_Rela
*rel
;
8263 const Elf_Internal_Rela
*rel_end
;
8265 const struct elf_backend_data
*bed
;
8266 struct mips_elf_link_hash_table
*htab
;
8269 reloc_howto_type
*howto
;
8271 if (bfd_link_relocatable (info
))
8274 htab
= mips_elf_hash_table (info
);
8275 BFD_ASSERT (htab
!= NULL
);
8277 dynobj
= elf_hash_table (info
)->dynobj
;
8278 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8279 sym_hashes
= elf_sym_hashes (abfd
);
8280 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
8282 bed
= get_elf_backend_data (abfd
);
8283 rel_end
= relocs
+ sec
->reloc_count
;
8285 /* Check for the mips16 stub sections. */
8287 name
= bfd_get_section_name (abfd
, sec
);
8288 if (FN_STUB_P (name
))
8290 unsigned long r_symndx
;
8292 /* Look at the relocation information to figure out which symbol
8295 r_symndx
= mips16_stub_symndx (bed
, sec
, relocs
, rel_end
);
8299 /* xgettext:c-format */
8300 (_("%pB: warning: cannot determine the target function for"
8301 " stub section `%s'"),
8303 bfd_set_error (bfd_error_bad_value
);
8307 if (r_symndx
< extsymoff
8308 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
8312 /* This stub is for a local symbol. This stub will only be
8313 needed if there is some relocation in this BFD, other
8314 than a 16 bit function call, which refers to this symbol. */
8315 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8317 Elf_Internal_Rela
*sec_relocs
;
8318 const Elf_Internal_Rela
*r
, *rend
;
8320 /* We can ignore stub sections when looking for relocs. */
8321 if ((o
->flags
& SEC_RELOC
) == 0
8322 || o
->reloc_count
== 0
8323 || section_allows_mips16_refs_p (o
))
8327 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
8329 if (sec_relocs
== NULL
)
8332 rend
= sec_relocs
+ o
->reloc_count
;
8333 for (r
= sec_relocs
; r
< rend
; r
++)
8334 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
8335 && !mips16_call_reloc_p (ELF_R_TYPE (abfd
, r
->r_info
)))
8338 if (elf_section_data (o
)->relocs
!= sec_relocs
)
8347 /* There is no non-call reloc for this stub, so we do
8348 not need it. Since this function is called before
8349 the linker maps input sections to output sections, we
8350 can easily discard it by setting the SEC_EXCLUDE
8352 sec
->flags
|= SEC_EXCLUDE
;
8356 /* Record this stub in an array of local symbol stubs for
8358 if (mips_elf_tdata (abfd
)->local_stubs
== NULL
)
8360 unsigned long symcount
;
8364 if (elf_bad_symtab (abfd
))
8365 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
8367 symcount
= symtab_hdr
->sh_info
;
8368 amt
= symcount
* sizeof (asection
*);
8369 n
= bfd_zalloc (abfd
, amt
);
8372 mips_elf_tdata (abfd
)->local_stubs
= n
;
8375 sec
->flags
|= SEC_KEEP
;
8376 mips_elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
8378 /* We don't need to set mips16_stubs_seen in this case.
8379 That flag is used to see whether we need to look through
8380 the global symbol table for stubs. We don't need to set
8381 it here, because we just have a local stub. */
8385 struct mips_elf_link_hash_entry
*h
;
8387 h
= ((struct mips_elf_link_hash_entry
*)
8388 sym_hashes
[r_symndx
- extsymoff
]);
8390 while (h
->root
.root
.type
== bfd_link_hash_indirect
8391 || h
->root
.root
.type
== bfd_link_hash_warning
)
8392 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
8394 /* H is the symbol this stub is for. */
8396 /* If we already have an appropriate stub for this function, we
8397 don't need another one, so we can discard this one. Since
8398 this function is called before the linker maps input sections
8399 to output sections, we can easily discard it by setting the
8400 SEC_EXCLUDE flag. */
8401 if (h
->fn_stub
!= NULL
)
8403 sec
->flags
|= SEC_EXCLUDE
;
8407 sec
->flags
|= SEC_KEEP
;
8409 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
8412 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
8414 unsigned long r_symndx
;
8415 struct mips_elf_link_hash_entry
*h
;
8418 /* Look at the relocation information to figure out which symbol
8421 r_symndx
= mips16_stub_symndx (bed
, sec
, relocs
, rel_end
);
8425 /* xgettext:c-format */
8426 (_("%pB: warning: cannot determine the target function for"
8427 " stub section `%s'"),
8429 bfd_set_error (bfd_error_bad_value
);
8433 if (r_symndx
< extsymoff
8434 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
8438 /* This stub is for a local symbol. This stub will only be
8439 needed if there is some relocation (R_MIPS16_26) in this BFD
8440 that refers to this symbol. */
8441 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8443 Elf_Internal_Rela
*sec_relocs
;
8444 const Elf_Internal_Rela
*r
, *rend
;
8446 /* We can ignore stub sections when looking for relocs. */
8447 if ((o
->flags
& SEC_RELOC
) == 0
8448 || o
->reloc_count
== 0
8449 || section_allows_mips16_refs_p (o
))
8453 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
8455 if (sec_relocs
== NULL
)
8458 rend
= sec_relocs
+ o
->reloc_count
;
8459 for (r
= sec_relocs
; r
< rend
; r
++)
8460 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
8461 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
8464 if (elf_section_data (o
)->relocs
!= sec_relocs
)
8473 /* There is no non-call reloc for this stub, so we do
8474 not need it. Since this function is called before
8475 the linker maps input sections to output sections, we
8476 can easily discard it by setting the SEC_EXCLUDE
8478 sec
->flags
|= SEC_EXCLUDE
;
8482 /* Record this stub in an array of local symbol call_stubs for
8484 if (mips_elf_tdata (abfd
)->local_call_stubs
== NULL
)
8486 unsigned long symcount
;
8490 if (elf_bad_symtab (abfd
))
8491 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
8493 symcount
= symtab_hdr
->sh_info
;
8494 amt
= symcount
* sizeof (asection
*);
8495 n
= bfd_zalloc (abfd
, amt
);
8498 mips_elf_tdata (abfd
)->local_call_stubs
= n
;
8501 sec
->flags
|= SEC_KEEP
;
8502 mips_elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
8504 /* We don't need to set mips16_stubs_seen in this case.
8505 That flag is used to see whether we need to look through
8506 the global symbol table for stubs. We don't need to set
8507 it here, because we just have a local stub. */
8511 h
= ((struct mips_elf_link_hash_entry
*)
8512 sym_hashes
[r_symndx
- extsymoff
]);
8514 /* H is the symbol this stub is for. */
8516 if (CALL_FP_STUB_P (name
))
8517 loc
= &h
->call_fp_stub
;
8519 loc
= &h
->call_stub
;
8521 /* If we already have an appropriate stub for this function, we
8522 don't need another one, so we can discard this one. Since
8523 this function is called before the linker maps input sections
8524 to output sections, we can easily discard it by setting the
8525 SEC_EXCLUDE flag. */
8528 sec
->flags
|= SEC_EXCLUDE
;
8532 sec
->flags
|= SEC_KEEP
;
8534 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
8540 for (rel
= relocs
; rel
< rel_end
; ++rel
)
8542 unsigned long r_symndx
;
8543 unsigned int r_type
;
8544 struct elf_link_hash_entry
*h
;
8545 bfd_boolean can_make_dynamic_p
;
8546 bfd_boolean call_reloc_p
;
8547 bfd_boolean constrain_symbol_p
;
8549 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
8550 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8552 if (r_symndx
< extsymoff
)
8554 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
8557 /* xgettext:c-format */
8558 (_("%pB: malformed reloc detected for section %s"),
8560 bfd_set_error (bfd_error_bad_value
);
8565 h
= sym_hashes
[r_symndx
- extsymoff
];
8568 while (h
->root
.type
== bfd_link_hash_indirect
8569 || h
->root
.type
== bfd_link_hash_warning
)
8570 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8574 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8575 relocation into a dynamic one. */
8576 can_make_dynamic_p
= FALSE
;
8578 /* Set CALL_RELOC_P to true if the relocation is for a call,
8579 and if pointer equality therefore doesn't matter. */
8580 call_reloc_p
= FALSE
;
8582 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8583 into account when deciding how to define the symbol.
8584 Relocations in nonallocatable sections such as .pdr and
8585 .debug* should have no effect. */
8586 constrain_symbol_p
= ((sec
->flags
& SEC_ALLOC
) != 0);
8591 case R_MIPS_CALL_HI16
:
8592 case R_MIPS_CALL_LO16
:
8593 case R_MIPS16_CALL16
:
8594 case R_MICROMIPS_CALL16
:
8595 case R_MICROMIPS_CALL_HI16
:
8596 case R_MICROMIPS_CALL_LO16
:
8597 call_reloc_p
= TRUE
;
8601 case R_MIPS_GOT_LO16
:
8602 case R_MIPS_GOT_PAGE
:
8603 case R_MIPS_GOT_DISP
:
8604 case R_MIPS16_GOT16
:
8605 case R_MICROMIPS_GOT16
:
8606 case R_MICROMIPS_GOT_LO16
:
8607 case R_MICROMIPS_GOT_PAGE
:
8608 case R_MICROMIPS_GOT_DISP
:
8609 /* If we have a symbol that will resolve to zero at static link
8610 time and it is used by a GOT relocation applied to code we
8611 cannot relax to an immediate zero load, then we will be using
8612 the special `__gnu_absolute_zero' symbol whose value is zero
8613 at dynamic load time. We ignore HI16-type GOT relocations at
8614 this stage, because their handling will depend entirely on
8615 the corresponding LO16-type GOT relocation. */
8616 if (!call_hi16_reloc_p (r_type
)
8618 && bfd_link_pic (info
)
8619 && !htab
->use_absolute_zero
8620 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
8622 bfd_boolean rel_reloc
;
8624 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8627 rel_reloc
= mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
);
8628 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, !rel_reloc
);
8630 if (!mips_elf_nullify_got_load (abfd
, contents
, rel
, howto
,
8632 if (!mips_elf_define_absolute_zero (abfd
, info
, htab
, r_type
))
8637 case R_MIPS_GOT_HI16
:
8638 case R_MIPS_GOT_OFST
:
8639 case R_MIPS_TLS_GOTTPREL
:
8641 case R_MIPS_TLS_LDM
:
8642 case R_MIPS16_TLS_GOTTPREL
:
8643 case R_MIPS16_TLS_GD
:
8644 case R_MIPS16_TLS_LDM
:
8645 case R_MICROMIPS_GOT_HI16
:
8646 case R_MICROMIPS_GOT_OFST
:
8647 case R_MICROMIPS_TLS_GOTTPREL
:
8648 case R_MICROMIPS_TLS_GD
:
8649 case R_MICROMIPS_TLS_LDM
:
8651 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
8652 if (!mips_elf_create_got_section (dynobj
, info
))
8654 if (htab
->is_vxworks
&& !bfd_link_pic (info
))
8657 /* xgettext:c-format */
8658 (_("%pB: GOT reloc at %#" PRIx64
" not expected in executables"),
8659 abfd
, (uint64_t) rel
->r_offset
);
8660 bfd_set_error (bfd_error_bad_value
);
8663 can_make_dynamic_p
= TRUE
;
8668 case R_MICROMIPS_JALR
:
8669 /* These relocations have empty fields and are purely there to
8670 provide link information. The symbol value doesn't matter. */
8671 constrain_symbol_p
= FALSE
;
8674 case R_MIPS_GPREL16
:
8675 case R_MIPS_GPREL32
:
8676 case R_MIPS16_GPREL
:
8677 case R_MICROMIPS_GPREL16
:
8678 /* GP-relative relocations always resolve to a definition in a
8679 regular input file, ignoring the one-definition rule. This is
8680 important for the GP setup sequence in NewABI code, which
8681 always resolves to a local function even if other relocations
8682 against the symbol wouldn't. */
8683 constrain_symbol_p
= FALSE
;
8689 /* In VxWorks executables, references to external symbols
8690 must be handled using copy relocs or PLT entries; it is not
8691 possible to convert this relocation into a dynamic one.
8693 For executables that use PLTs and copy-relocs, we have a
8694 choice between converting the relocation into a dynamic
8695 one or using copy relocations or PLT entries. It is
8696 usually better to do the former, unless the relocation is
8697 against a read-only section. */
8698 if ((bfd_link_pic (info
)
8700 && !htab
->is_vxworks
8701 && strcmp (h
->root
.root
.string
, "__gnu_local_gp") != 0
8702 && !(!info
->nocopyreloc
8703 && !PIC_OBJECT_P (abfd
)
8704 && MIPS_ELF_READONLY_SECTION (sec
))))
8705 && (sec
->flags
& SEC_ALLOC
) != 0)
8707 can_make_dynamic_p
= TRUE
;
8709 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
8715 case R_MIPS_PC21_S2
:
8716 case R_MIPS_PC26_S2
:
8718 case R_MIPS16_PC16_S1
:
8719 case R_MICROMIPS_26_S1
:
8720 case R_MICROMIPS_PC7_S1
:
8721 case R_MICROMIPS_PC10_S1
:
8722 case R_MICROMIPS_PC16_S1
:
8723 case R_MICROMIPS_PC23_S2
:
8724 call_reloc_p
= TRUE
;
8730 if (constrain_symbol_p
)
8732 if (!can_make_dynamic_p
)
8733 ((struct mips_elf_link_hash_entry
*) h
)->has_static_relocs
= 1;
8736 h
->pointer_equality_needed
= 1;
8738 /* We must not create a stub for a symbol that has
8739 relocations related to taking the function's address.
8740 This doesn't apply to VxWorks, where CALL relocs refer
8741 to a .got.plt entry instead of a normal .got entry. */
8742 if (!htab
->is_vxworks
&& (!can_make_dynamic_p
|| !call_reloc_p
))
8743 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
8746 /* Relocations against the special VxWorks __GOTT_BASE__ and
8747 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8748 room for them in .rela.dyn. */
8749 if (is_gott_symbol (info
, h
))
8753 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
8757 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8758 if (MIPS_ELF_READONLY_SECTION (sec
))
8759 /* We tell the dynamic linker that there are
8760 relocations against the text segment. */
8761 info
->flags
|= DF_TEXTREL
;
8764 else if (call_lo16_reloc_p (r_type
)
8765 || got_lo16_reloc_p (r_type
)
8766 || got_disp_reloc_p (r_type
)
8767 || (got16_reloc_p (r_type
) && htab
->is_vxworks
))
8769 /* We may need a local GOT entry for this relocation. We
8770 don't count R_MIPS_GOT_PAGE because we can estimate the
8771 maximum number of pages needed by looking at the size of
8772 the segment. Similar comments apply to R_MIPS*_GOT16 and
8773 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8774 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8775 R_MIPS_CALL_HI16 because these are always followed by an
8776 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8777 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
8778 rel
->r_addend
, info
, r_type
))
8783 && mips_elf_relocation_needs_la25_stub (abfd
, r_type
,
8784 ELF_ST_IS_MIPS16 (h
->other
)))
8785 ((struct mips_elf_link_hash_entry
*) h
)->has_nonpic_branches
= TRUE
;
8790 case R_MIPS16_CALL16
:
8791 case R_MICROMIPS_CALL16
:
8795 /* xgettext:c-format */
8796 (_("%pB: CALL16 reloc at %#" PRIx64
" not against global symbol"),
8797 abfd
, (uint64_t) rel
->r_offset
);
8798 bfd_set_error (bfd_error_bad_value
);
8803 case R_MIPS_CALL_HI16
:
8804 case R_MIPS_CALL_LO16
:
8805 case R_MICROMIPS_CALL_HI16
:
8806 case R_MICROMIPS_CALL_LO16
:
8809 /* Make sure there is room in the regular GOT to hold the
8810 function's address. We may eliminate it in favour of
8811 a .got.plt entry later; see mips_elf_count_got_symbols. */
8812 if (!mips_elf_record_global_got_symbol (h
, abfd
, info
, TRUE
,
8816 /* We need a stub, not a plt entry for the undefined
8817 function. But we record it as if it needs plt. See
8818 _bfd_elf_adjust_dynamic_symbol. */
8824 case R_MIPS_GOT_PAGE
:
8825 case R_MICROMIPS_GOT_PAGE
:
8826 case R_MIPS16_GOT16
:
8828 case R_MIPS_GOT_HI16
:
8829 case R_MIPS_GOT_LO16
:
8830 case R_MICROMIPS_GOT16
:
8831 case R_MICROMIPS_GOT_HI16
:
8832 case R_MICROMIPS_GOT_LO16
:
8833 if (!h
|| got_page_reloc_p (r_type
))
8835 /* This relocation needs (or may need, if h != NULL) a
8836 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8837 know for sure until we know whether the symbol is
8839 if (mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
))
8841 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8843 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
8844 addend
= mips_elf_read_rel_addend (abfd
, rel
,
8846 if (got16_reloc_p (r_type
))
8847 mips_elf_add_lo16_rel_addend (abfd
, rel
, rel_end
,
8850 addend
<<= howto
->rightshift
;
8853 addend
= rel
->r_addend
;
8854 if (!mips_elf_record_got_page_ref (info
, abfd
, r_symndx
,
8860 struct mips_elf_link_hash_entry
*hmips
=
8861 (struct mips_elf_link_hash_entry
*) h
;
8863 /* This symbol is definitely not overridable. */
8864 if (hmips
->root
.def_regular
8865 && ! (bfd_link_pic (info
) && ! info
->symbolic
8866 && ! hmips
->root
.forced_local
))
8870 /* If this is a global, overridable symbol, GOT_PAGE will
8871 decay to GOT_DISP, so we'll need a GOT entry for it. */
8874 case R_MIPS_GOT_DISP
:
8875 case R_MICROMIPS_GOT_DISP
:
8876 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
,
8881 case R_MIPS_TLS_GOTTPREL
:
8882 case R_MIPS16_TLS_GOTTPREL
:
8883 case R_MICROMIPS_TLS_GOTTPREL
:
8884 if (bfd_link_pic (info
))
8885 info
->flags
|= DF_STATIC_TLS
;
8888 case R_MIPS_TLS_LDM
:
8889 case R_MIPS16_TLS_LDM
:
8890 case R_MICROMIPS_TLS_LDM
:
8891 if (tls_ldm_reloc_p (r_type
))
8893 r_symndx
= STN_UNDEF
;
8899 case R_MIPS16_TLS_GD
:
8900 case R_MICROMIPS_TLS_GD
:
8901 /* This symbol requires a global offset table entry, or two
8902 for TLS GD relocations. */
8905 if (!mips_elf_record_global_got_symbol (h
, abfd
, info
,
8911 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
8921 /* In VxWorks executables, references to external symbols
8922 are handled using copy relocs or PLT stubs, so there's
8923 no need to add a .rela.dyn entry for this relocation. */
8924 if (can_make_dynamic_p
)
8928 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
8932 if (bfd_link_pic (info
) && h
== NULL
)
8934 /* When creating a shared object, we must copy these
8935 reloc types into the output file as R_MIPS_REL32
8936 relocs. Make room for this reloc in .rel(a).dyn. */
8937 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8938 if (MIPS_ELF_READONLY_SECTION (sec
))
8939 /* We tell the dynamic linker that there are
8940 relocations against the text segment. */
8941 info
->flags
|= DF_TEXTREL
;
8945 struct mips_elf_link_hash_entry
*hmips
;
8947 /* For a shared object, we must copy this relocation
8948 unless the symbol turns out to be undefined and
8949 weak with non-default visibility, in which case
8950 it will be left as zero.
8952 We could elide R_MIPS_REL32 for locally binding symbols
8953 in shared libraries, but do not yet do so.
8955 For an executable, we only need to copy this
8956 reloc if the symbol is defined in a dynamic
8958 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8959 ++hmips
->possibly_dynamic_relocs
;
8960 if (MIPS_ELF_READONLY_SECTION (sec
))
8961 /* We need it to tell the dynamic linker if there
8962 are relocations against the text segment. */
8963 hmips
->readonly_reloc
= TRUE
;
8967 if (SGI_COMPAT (abfd
))
8968 mips_elf_hash_table (info
)->compact_rel_size
+=
8969 sizeof (Elf32_External_crinfo
);
8973 case R_MIPS_GPREL16
:
8974 case R_MIPS_LITERAL
:
8975 case R_MIPS_GPREL32
:
8976 case R_MICROMIPS_26_S1
:
8977 case R_MICROMIPS_GPREL16
:
8978 case R_MICROMIPS_LITERAL
:
8979 case R_MICROMIPS_GPREL7_S2
:
8980 if (SGI_COMPAT (abfd
))
8981 mips_elf_hash_table (info
)->compact_rel_size
+=
8982 sizeof (Elf32_External_crinfo
);
8985 /* This relocation describes the C++ object vtable hierarchy.
8986 Reconstruct it for later use during GC. */
8987 case R_MIPS_GNU_VTINHERIT
:
8988 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
8992 /* This relocation describes which C++ vtable entries are actually
8993 used. Record for later use during GC. */
8994 case R_MIPS_GNU_VTENTRY
:
8995 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
9003 /* Record the need for a PLT entry. At this point we don't know
9004 yet if we are going to create a PLT in the first place, but
9005 we only record whether the relocation requires a standard MIPS
9006 or a compressed code entry anyway. If we don't make a PLT after
9007 all, then we'll just ignore these arrangements. Likewise if
9008 a PLT entry is not created because the symbol is satisfied
9011 && (branch_reloc_p (r_type
)
9012 || mips16_branch_reloc_p (r_type
)
9013 || micromips_branch_reloc_p (r_type
))
9014 && !SYMBOL_CALLS_LOCAL (info
, h
))
9016 if (h
->plt
.plist
== NULL
)
9017 h
->plt
.plist
= mips_elf_make_plt_record (abfd
);
9018 if (h
->plt
.plist
== NULL
)
9021 if (branch_reloc_p (r_type
))
9022 h
->plt
.plist
->need_mips
= TRUE
;
9024 h
->plt
.plist
->need_comp
= TRUE
;
9027 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9028 if there is one. We only need to handle global symbols here;
9029 we decide whether to keep or delete stubs for local symbols
9030 when processing the stub's relocations. */
9032 && !mips16_call_reloc_p (r_type
)
9033 && !section_allows_mips16_refs_p (sec
))
9035 struct mips_elf_link_hash_entry
*mh
;
9037 mh
= (struct mips_elf_link_hash_entry
*) h
;
9038 mh
->need_fn_stub
= TRUE
;
9041 /* Refuse some position-dependent relocations when creating a
9042 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9043 not PIC, but we can create dynamic relocations and the result
9044 will be fine. Also do not refuse R_MIPS_LO16, which can be
9045 combined with R_MIPS_GOT16. */
9046 if (bfd_link_pic (info
))
9053 case R_MIPS_HIGHEST
:
9054 case R_MICROMIPS_HI16
:
9055 case R_MICROMIPS_HIGHER
:
9056 case R_MICROMIPS_HIGHEST
:
9057 /* Don't refuse a high part relocation if it's against
9058 no symbol (e.g. part of a compound relocation). */
9059 if (r_symndx
== STN_UNDEF
)
9062 /* Likewise an absolute symbol. */
9063 if (bfd_is_abs_symbol (&h
->root
))
9066 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9067 and has a special meaning. */
9068 if (!NEWABI_P (abfd
) && h
!= NULL
9069 && strcmp (h
->root
.root
.string
, "_gp_disp") == 0)
9072 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9073 if (is_gott_symbol (info
, h
))
9080 case R_MICROMIPS_26_S1
:
9081 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
9082 info
->callbacks
->einfo
9083 /* xgettext:c-format */
9084 (_("%X%H: relocation %s against `%s' cannot be used"
9085 " when making a shared object; recompile with -fPIC\n"),
9086 abfd
, sec
, rel
->r_offset
, howto
->name
,
9087 (h
) ? h
->root
.root
.string
: "a local symbol");
9098 /* Allocate space for global sym dynamic relocs. */
9101 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
9103 struct bfd_link_info
*info
= inf
;
9105 struct mips_elf_link_hash_entry
*hmips
;
9106 struct mips_elf_link_hash_table
*htab
;
9108 htab
= mips_elf_hash_table (info
);
9109 BFD_ASSERT (htab
!= NULL
);
9111 dynobj
= elf_hash_table (info
)->dynobj
;
9112 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9114 /* VxWorks executables are handled elsewhere; we only need to
9115 allocate relocations in shared objects. */
9116 if (htab
->is_vxworks
&& !bfd_link_pic (info
))
9119 /* Ignore indirect symbols. All relocations against such symbols
9120 will be redirected to the target symbol. */
9121 if (h
->root
.type
== bfd_link_hash_indirect
)
9124 /* If this symbol is defined in a dynamic object, or we are creating
9125 a shared library, we will need to copy any R_MIPS_32 or
9126 R_MIPS_REL32 relocs against it into the output file. */
9127 if (! bfd_link_relocatable (info
)
9128 && hmips
->possibly_dynamic_relocs
!= 0
9129 && (h
->root
.type
== bfd_link_hash_defweak
9130 || (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
9131 || bfd_link_pic (info
)))
9133 bfd_boolean do_copy
= TRUE
;
9135 if (h
->root
.type
== bfd_link_hash_undefweak
)
9137 /* Do not copy relocations for undefined weak symbols that
9138 we are not going to export. */
9139 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
9142 /* Make sure undefined weak symbols are output as a dynamic
9144 else if (h
->dynindx
== -1 && !h
->forced_local
)
9146 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9153 /* Even though we don't directly need a GOT entry for this symbol,
9154 the SVR4 psABI requires it to have a dynamic symbol table
9155 index greater that DT_MIPS_GOTSYM if there are dynamic
9156 relocations against it.
9158 VxWorks does not enforce the same mapping between the GOT
9159 and the symbol table, so the same requirement does not
9161 if (!htab
->is_vxworks
)
9163 if (hmips
->global_got_area
> GGA_RELOC_ONLY
)
9164 hmips
->global_got_area
= GGA_RELOC_ONLY
;
9165 hmips
->got_only_for_calls
= FALSE
;
9168 mips_elf_allocate_dynamic_relocations
9169 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
9170 if (hmips
->readonly_reloc
)
9171 /* We tell the dynamic linker that there are relocations
9172 against the text segment. */
9173 info
->flags
|= DF_TEXTREL
;
9180 /* Adjust a symbol defined by a dynamic object and referenced by a
9181 regular object. The current definition is in some section of the
9182 dynamic object, but we're not including those sections. We have to
9183 change the definition to something the rest of the link can
9187 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
9188 struct elf_link_hash_entry
*h
)
9191 struct mips_elf_link_hash_entry
*hmips
;
9192 struct mips_elf_link_hash_table
*htab
;
9195 htab
= mips_elf_hash_table (info
);
9196 BFD_ASSERT (htab
!= NULL
);
9198 dynobj
= elf_hash_table (info
)->dynobj
;
9199 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9201 /* Make sure we know what is going on here. */
9202 BFD_ASSERT (dynobj
!= NULL
9207 && !h
->def_regular
)));
9209 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9211 /* If there are call relocations against an externally-defined symbol,
9212 see whether we can create a MIPS lazy-binding stub for it. We can
9213 only do this if all references to the function are through call
9214 relocations, and in that case, the traditional lazy-binding stubs
9215 are much more efficient than PLT entries.
9217 Traditional stubs are only available on SVR4 psABI-based systems;
9218 VxWorks always uses PLTs instead. */
9219 if (!htab
->is_vxworks
&& h
->needs_plt
&& !hmips
->no_fn_stub
)
9221 if (! elf_hash_table (info
)->dynamic_sections_created
)
9224 /* If this symbol is not defined in a regular file, then set
9225 the symbol to the stub location. This is required to make
9226 function pointers compare as equal between the normal
9227 executable and the shared library. */
9229 && !bfd_is_abs_section (htab
->sstubs
->output_section
))
9231 hmips
->needs_lazy_stub
= TRUE
;
9232 htab
->lazy_stub_count
++;
9236 /* As above, VxWorks requires PLT entries for externally-defined
9237 functions that are only accessed through call relocations.
9239 Both VxWorks and non-VxWorks targets also need PLT entries if there
9240 are static-only relocations against an externally-defined function.
9241 This can technically occur for shared libraries if there are
9242 branches to the symbol, although it is unlikely that this will be
9243 used in practice due to the short ranges involved. It can occur
9244 for any relative or absolute relocation in executables; in that
9245 case, the PLT entry becomes the function's canonical address. */
9246 else if (((h
->needs_plt
&& !hmips
->no_fn_stub
)
9247 || (h
->type
== STT_FUNC
&& hmips
->has_static_relocs
))
9248 && htab
->use_plts_and_copy_relocs
9249 && !SYMBOL_CALLS_LOCAL (info
, h
)
9250 && !(ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
9251 && h
->root
.type
== bfd_link_hash_undefweak
))
9253 bfd_boolean micromips_p
= MICROMIPS_P (info
->output_bfd
);
9254 bfd_boolean newabi_p
= NEWABI_P (info
->output_bfd
);
9256 /* If this is the first symbol to need a PLT entry, then make some
9257 basic setup. Also work out PLT entry sizes. We'll need them
9258 for PLT offset calculations. */
9259 if (htab
->plt_mips_offset
+ htab
->plt_comp_offset
== 0)
9261 BFD_ASSERT (htab
->root
.sgotplt
->size
== 0);
9262 BFD_ASSERT (htab
->plt_got_index
== 0);
9264 /* If we're using the PLT additions to the psABI, each PLT
9265 entry is 16 bytes and the PLT0 entry is 32 bytes.
9266 Encourage better cache usage by aligning. We do this
9267 lazily to avoid pessimizing traditional objects. */
9268 if (!htab
->is_vxworks
9269 && !bfd_set_section_alignment (dynobj
, htab
->root
.splt
, 5))
9272 /* Make sure that .got.plt is word-aligned. We do this lazily
9273 for the same reason as above. */
9274 if (!bfd_set_section_alignment (dynobj
, htab
->root
.sgotplt
,
9275 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
9278 /* On non-VxWorks targets, the first two entries in .got.plt
9280 if (!htab
->is_vxworks
)
9282 += (get_elf_backend_data (dynobj
)->got_header_size
9283 / MIPS_ELF_GOT_SIZE (dynobj
));
9285 /* On VxWorks, also allocate room for the header's
9286 .rela.plt.unloaded entries. */
9287 if (htab
->is_vxworks
&& !bfd_link_pic (info
))
9288 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
9290 /* Now work out the sizes of individual PLT entries. */
9291 if (htab
->is_vxworks
&& bfd_link_pic (info
))
9292 htab
->plt_mips_entry_size
9293 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
9294 else if (htab
->is_vxworks
)
9295 htab
->plt_mips_entry_size
9296 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
9298 htab
->plt_mips_entry_size
9299 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9300 else if (!micromips_p
)
9302 htab
->plt_mips_entry_size
9303 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9304 htab
->plt_comp_entry_size
9305 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry
);
9307 else if (htab
->insn32
)
9309 htab
->plt_mips_entry_size
9310 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9311 htab
->plt_comp_entry_size
9312 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry
);
9316 htab
->plt_mips_entry_size
9317 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9318 htab
->plt_comp_entry_size
9319 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry
);
9323 if (h
->plt
.plist
== NULL
)
9324 h
->plt
.plist
= mips_elf_make_plt_record (dynobj
);
9325 if (h
->plt
.plist
== NULL
)
9328 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9329 n32 or n64, so always use a standard entry there.
9331 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9332 all MIPS16 calls will go via that stub, and there is no benefit
9333 to having a MIPS16 entry. And in the case of call_stub a
9334 standard entry actually has to be used as the stub ends with a J
9339 || hmips
->call_fp_stub
)
9341 h
->plt
.plist
->need_mips
= TRUE
;
9342 h
->plt
.plist
->need_comp
= FALSE
;
9345 /* Otherwise, if there are no direct calls to the function, we
9346 have a free choice of whether to use standard or compressed
9347 entries. Prefer microMIPS entries if the object is known to
9348 contain microMIPS code, so that it becomes possible to create
9349 pure microMIPS binaries. Prefer standard entries otherwise,
9350 because MIPS16 ones are no smaller and are usually slower. */
9351 if (!h
->plt
.plist
->need_mips
&& !h
->plt
.plist
->need_comp
)
9354 h
->plt
.plist
->need_comp
= TRUE
;
9356 h
->plt
.plist
->need_mips
= TRUE
;
9359 if (h
->plt
.plist
->need_mips
)
9361 h
->plt
.plist
->mips_offset
= htab
->plt_mips_offset
;
9362 htab
->plt_mips_offset
+= htab
->plt_mips_entry_size
;
9364 if (h
->plt
.plist
->need_comp
)
9366 h
->plt
.plist
->comp_offset
= htab
->plt_comp_offset
;
9367 htab
->plt_comp_offset
+= htab
->plt_comp_entry_size
;
9370 /* Reserve the corresponding .got.plt entry now too. */
9371 h
->plt
.plist
->gotplt_index
= htab
->plt_got_index
++;
9373 /* If the output file has no definition of the symbol, set the
9374 symbol's value to the address of the stub. */
9375 if (!bfd_link_pic (info
) && !h
->def_regular
)
9376 hmips
->use_plt_entry
= TRUE
;
9378 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9379 htab
->root
.srelplt
->size
+= (htab
->is_vxworks
9380 ? MIPS_ELF_RELA_SIZE (dynobj
)
9381 : MIPS_ELF_REL_SIZE (dynobj
));
9383 /* Make room for the .rela.plt.unloaded relocations. */
9384 if (htab
->is_vxworks
&& !bfd_link_pic (info
))
9385 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
9387 /* All relocations against this symbol that could have been made
9388 dynamic will now refer to the PLT entry instead. */
9389 hmips
->possibly_dynamic_relocs
= 0;
9394 /* If this is a weak symbol, and there is a real definition, the
9395 processor independent code will have arranged for us to see the
9396 real definition first, and we can just use the same value. */
9397 if (h
->is_weakalias
)
9399 struct elf_link_hash_entry
*def
= weakdef (h
);
9400 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
9401 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
9402 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
9406 /* Otherwise, there is nothing further to do for symbols defined
9407 in regular objects. */
9411 /* There's also nothing more to do if we'll convert all relocations
9412 against this symbol into dynamic relocations. */
9413 if (!hmips
->has_static_relocs
)
9416 /* We're now relying on copy relocations. Complain if we have
9417 some that we can't convert. */
9418 if (!htab
->use_plts_and_copy_relocs
|| bfd_link_pic (info
))
9420 _bfd_error_handler (_("non-dynamic relocations refer to "
9421 "dynamic symbol %s"),
9422 h
->root
.root
.string
);
9423 bfd_set_error (bfd_error_bad_value
);
9427 /* We must allocate the symbol in our .dynbss section, which will
9428 become part of the .bss section of the executable. There will be
9429 an entry for this symbol in the .dynsym section. The dynamic
9430 object will contain position independent code, so all references
9431 from the dynamic object to this symbol will go through the global
9432 offset table. The dynamic linker will use the .dynsym entry to
9433 determine the address it must put in the global offset table, so
9434 both the dynamic object and the regular object will refer to the
9435 same memory location for the variable. */
9437 if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
9439 s
= htab
->root
.sdynrelro
;
9440 srel
= htab
->root
.sreldynrelro
;
9444 s
= htab
->root
.sdynbss
;
9445 srel
= htab
->root
.srelbss
;
9447 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
9449 if (htab
->is_vxworks
)
9450 srel
->size
+= sizeof (Elf32_External_Rela
);
9452 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
9456 /* All relocations against this symbol that could have been made
9457 dynamic will now refer to the local copy instead. */
9458 hmips
->possibly_dynamic_relocs
= 0;
9460 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
9463 /* This function is called after all the input files have been read,
9464 and the input sections have been assigned to output sections. We
9465 check for any mips16 stub sections that we can discard. */
9468 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
9469 struct bfd_link_info
*info
)
9472 struct mips_elf_link_hash_table
*htab
;
9473 struct mips_htab_traverse_info hti
;
9475 htab
= mips_elf_hash_table (info
);
9476 BFD_ASSERT (htab
!= NULL
);
9478 /* The .reginfo section has a fixed size. */
9479 sect
= bfd_get_section_by_name (output_bfd
, ".reginfo");
9482 bfd_set_section_size (output_bfd
, sect
, sizeof (Elf32_External_RegInfo
));
9483 sect
->flags
|= SEC_FIXED_SIZE
| SEC_HAS_CONTENTS
;
9486 /* The .MIPS.abiflags section has a fixed size. */
9487 sect
= bfd_get_section_by_name (output_bfd
, ".MIPS.abiflags");
9490 bfd_set_section_size (output_bfd
, sect
,
9491 sizeof (Elf_External_ABIFlags_v0
));
9492 sect
->flags
|= SEC_FIXED_SIZE
| SEC_HAS_CONTENTS
;
9496 hti
.output_bfd
= output_bfd
;
9498 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
9499 mips_elf_check_symbols
, &hti
);
9506 /* If the link uses a GOT, lay it out and work out its size. */
9509 mips_elf_lay_out_got (bfd
*output_bfd
, struct bfd_link_info
*info
)
9513 struct mips_got_info
*g
;
9514 bfd_size_type loadable_size
= 0;
9515 bfd_size_type page_gotno
;
9517 struct mips_elf_traverse_got_arg tga
;
9518 struct mips_elf_link_hash_table
*htab
;
9520 htab
= mips_elf_hash_table (info
);
9521 BFD_ASSERT (htab
!= NULL
);
9523 s
= htab
->root
.sgot
;
9527 dynobj
= elf_hash_table (info
)->dynobj
;
9530 /* Allocate room for the reserved entries. VxWorks always reserves
9531 3 entries; other objects only reserve 2 entries. */
9532 BFD_ASSERT (g
->assigned_low_gotno
== 0);
9533 if (htab
->is_vxworks
)
9534 htab
->reserved_gotno
= 3;
9536 htab
->reserved_gotno
= 2;
9537 g
->local_gotno
+= htab
->reserved_gotno
;
9538 g
->assigned_low_gotno
= htab
->reserved_gotno
;
9540 /* Decide which symbols need to go in the global part of the GOT and
9541 count the number of reloc-only GOT symbols. */
9542 mips_elf_link_hash_traverse (htab
, mips_elf_count_got_symbols
, info
);
9544 if (!mips_elf_resolve_final_got_entries (info
, g
))
9547 /* Calculate the total loadable size of the output. That
9548 will give us the maximum number of GOT_PAGE entries
9550 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
9552 asection
*subsection
;
9554 for (subsection
= ibfd
->sections
;
9556 subsection
= subsection
->next
)
9558 if ((subsection
->flags
& SEC_ALLOC
) == 0)
9560 loadable_size
+= ((subsection
->size
+ 0xf)
9561 &~ (bfd_size_type
) 0xf);
9565 if (htab
->is_vxworks
)
9566 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9567 relocations against local symbols evaluate to "G", and the EABI does
9568 not include R_MIPS_GOT_PAGE. */
9571 /* Assume there are two loadable segments consisting of contiguous
9572 sections. Is 5 enough? */
9573 page_gotno
= (loadable_size
>> 16) + 5;
9575 /* Choose the smaller of the two page estimates; both are intended to be
9577 if (page_gotno
> g
->page_gotno
)
9578 page_gotno
= g
->page_gotno
;
9580 g
->local_gotno
+= page_gotno
;
9581 g
->assigned_high_gotno
= g
->local_gotno
- 1;
9583 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9584 s
->size
+= g
->global_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9585 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9587 /* VxWorks does not support multiple GOTs. It initializes $gp to
9588 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9590 if (!htab
->is_vxworks
&& s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
9592 if (!mips_elf_multi_got (output_bfd
, info
, s
, page_gotno
))
9597 /* Record that all bfds use G. This also has the effect of freeing
9598 the per-bfd GOTs, which we no longer need. */
9599 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
9600 if (mips_elf_bfd_got (ibfd
, FALSE
))
9601 mips_elf_replace_bfd_got (ibfd
, g
);
9602 mips_elf_replace_bfd_got (output_bfd
, g
);
9604 /* Set up TLS entries. */
9605 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
9608 tga
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
9609 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, &tga
);
9612 BFD_ASSERT (g
->tls_assigned_gotno
9613 == g
->global_gotno
+ g
->local_gotno
+ g
->tls_gotno
);
9615 /* Each VxWorks GOT entry needs an explicit relocation. */
9616 if (htab
->is_vxworks
&& bfd_link_pic (info
))
9617 g
->relocs
+= g
->global_gotno
+ g
->local_gotno
- htab
->reserved_gotno
;
9619 /* Allocate room for the TLS relocations. */
9621 mips_elf_allocate_dynamic_relocations (dynobj
, info
, g
->relocs
);
9627 /* Estimate the size of the .MIPS.stubs section. */
9630 mips_elf_estimate_stub_size (bfd
*output_bfd
, struct bfd_link_info
*info
)
9632 struct mips_elf_link_hash_table
*htab
;
9633 bfd_size_type dynsymcount
;
9635 htab
= mips_elf_hash_table (info
);
9636 BFD_ASSERT (htab
!= NULL
);
9638 if (htab
->lazy_stub_count
== 0)
9641 /* IRIX rld assumes that a function stub isn't at the end of the .text
9642 section, so add a dummy entry to the end. */
9643 htab
->lazy_stub_count
++;
9645 /* Get a worst-case estimate of the number of dynamic symbols needed.
9646 At this point, dynsymcount does not account for section symbols
9647 and count_section_dynsyms may overestimate the number that will
9649 dynsymcount
= (elf_hash_table (info
)->dynsymcount
9650 + count_section_dynsyms (output_bfd
, info
));
9652 /* Determine the size of one stub entry. There's no disadvantage
9653 from using microMIPS code here, so for the sake of pure-microMIPS
9654 binaries we prefer it whenever there's any microMIPS code in
9655 output produced at all. This has a benefit of stubs being
9656 shorter by 4 bytes each too, unless in the insn32 mode. */
9657 if (!MICROMIPS_P (output_bfd
))
9658 htab
->function_stub_size
= (dynsymcount
> 0x10000
9659 ? MIPS_FUNCTION_STUB_BIG_SIZE
9660 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
9661 else if (htab
->insn32
)
9662 htab
->function_stub_size
= (dynsymcount
> 0x10000
9663 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9664 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE
);
9666 htab
->function_stub_size
= (dynsymcount
> 0x10000
9667 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9668 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE
);
9670 htab
->sstubs
->size
= htab
->lazy_stub_count
* htab
->function_stub_size
;
9673 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9674 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9675 stub, allocate an entry in the stubs section. */
9678 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry
*h
, void *data
)
9680 struct mips_htab_traverse_info
*hti
= data
;
9681 struct mips_elf_link_hash_table
*htab
;
9682 struct bfd_link_info
*info
;
9686 output_bfd
= hti
->output_bfd
;
9687 htab
= mips_elf_hash_table (info
);
9688 BFD_ASSERT (htab
!= NULL
);
9690 if (h
->needs_lazy_stub
)
9692 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
9693 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9694 bfd_vma isa_bit
= micromips_p
;
9696 BFD_ASSERT (htab
->root
.dynobj
!= NULL
);
9697 if (h
->root
.plt
.plist
== NULL
)
9698 h
->root
.plt
.plist
= mips_elf_make_plt_record (htab
->sstubs
->owner
);
9699 if (h
->root
.plt
.plist
== NULL
)
9704 h
->root
.root
.u
.def
.section
= htab
->sstubs
;
9705 h
->root
.root
.u
.def
.value
= htab
->sstubs
->size
+ isa_bit
;
9706 h
->root
.plt
.plist
->stub_offset
= htab
->sstubs
->size
;
9707 h
->root
.other
= other
;
9708 htab
->sstubs
->size
+= htab
->function_stub_size
;
9713 /* Allocate offsets in the stubs section to each symbol that needs one.
9714 Set the final size of the .MIPS.stub section. */
9717 mips_elf_lay_out_lazy_stubs (struct bfd_link_info
*info
)
9719 bfd
*output_bfd
= info
->output_bfd
;
9720 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
9721 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9722 bfd_vma isa_bit
= micromips_p
;
9723 struct mips_elf_link_hash_table
*htab
;
9724 struct mips_htab_traverse_info hti
;
9725 struct elf_link_hash_entry
*h
;
9728 htab
= mips_elf_hash_table (info
);
9729 BFD_ASSERT (htab
!= NULL
);
9731 if (htab
->lazy_stub_count
== 0)
9734 htab
->sstubs
->size
= 0;
9736 hti
.output_bfd
= output_bfd
;
9738 mips_elf_link_hash_traverse (htab
, mips_elf_allocate_lazy_stub
, &hti
);
9741 htab
->sstubs
->size
+= htab
->function_stub_size
;
9742 BFD_ASSERT (htab
->sstubs
->size
9743 == htab
->lazy_stub_count
* htab
->function_stub_size
);
9745 dynobj
= elf_hash_table (info
)->dynobj
;
9746 BFD_ASSERT (dynobj
!= NULL
);
9747 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->sstubs
, "_MIPS_STUBS_");
9750 h
->root
.u
.def
.value
= isa_bit
;
9757 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9758 bfd_link_info. If H uses the address of a PLT entry as the value
9759 of the symbol, then set the entry in the symbol table now. Prefer
9760 a standard MIPS PLT entry. */
9763 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry
*h
, void *data
)
9765 struct bfd_link_info
*info
= data
;
9766 bfd_boolean micromips_p
= MICROMIPS_P (info
->output_bfd
);
9767 struct mips_elf_link_hash_table
*htab
;
9772 htab
= mips_elf_hash_table (info
);
9773 BFD_ASSERT (htab
!= NULL
);
9775 if (h
->use_plt_entry
)
9777 BFD_ASSERT (h
->root
.plt
.plist
!= NULL
);
9778 BFD_ASSERT (h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
9779 || h
->root
.plt
.plist
->comp_offset
!= MINUS_ONE
);
9781 val
= htab
->plt_header_size
;
9782 if (h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
9785 val
+= h
->root
.plt
.plist
->mips_offset
;
9791 val
+= htab
->plt_mips_offset
+ h
->root
.plt
.plist
->comp_offset
;
9792 other
= micromips_p
? STO_MICROMIPS
: STO_MIPS16
;
9795 /* For VxWorks, point at the PLT load stub rather than the lazy
9796 resolution stub; this stub will become the canonical function
9798 if (htab
->is_vxworks
)
9801 h
->root
.root
.u
.def
.section
= htab
->root
.splt
;
9802 h
->root
.root
.u
.def
.value
= val
;
9803 h
->root
.other
= other
;
9809 /* Set the sizes of the dynamic sections. */
9812 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
9813 struct bfd_link_info
*info
)
9816 asection
*s
, *sreldyn
;
9817 bfd_boolean reltext
;
9818 struct mips_elf_link_hash_table
*htab
;
9820 htab
= mips_elf_hash_table (info
);
9821 BFD_ASSERT (htab
!= NULL
);
9822 dynobj
= elf_hash_table (info
)->dynobj
;
9823 BFD_ASSERT (dynobj
!= NULL
);
9825 if (elf_hash_table (info
)->dynamic_sections_created
)
9827 /* Set the contents of the .interp section to the interpreter. */
9828 if (bfd_link_executable (info
) && !info
->nointerp
)
9830 s
= bfd_get_linker_section (dynobj
, ".interp");
9831 BFD_ASSERT (s
!= NULL
);
9833 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
9835 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
9838 /* Figure out the size of the PLT header if we know that we
9839 are using it. For the sake of cache alignment always use
9840 a standard header whenever any standard entries are present
9841 even if microMIPS entries are present as well. This also
9842 lets the microMIPS header rely on the value of $v0 only set
9843 by microMIPS entries, for a small size reduction.
9845 Set symbol table entry values for symbols that use the
9846 address of their PLT entry now that we can calculate it.
9848 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9849 haven't already in _bfd_elf_create_dynamic_sections. */
9850 if (htab
->root
.splt
&& htab
->plt_mips_offset
+ htab
->plt_comp_offset
!= 0)
9852 bfd_boolean micromips_p
= (MICROMIPS_P (output_bfd
)
9853 && !htab
->plt_mips_offset
);
9854 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9855 bfd_vma isa_bit
= micromips_p
;
9856 struct elf_link_hash_entry
*h
;
9859 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9860 BFD_ASSERT (htab
->root
.sgotplt
->size
== 0);
9861 BFD_ASSERT (htab
->root
.splt
->size
== 0);
9863 if (htab
->is_vxworks
&& bfd_link_pic (info
))
9864 size
= 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
9865 else if (htab
->is_vxworks
)
9866 size
= 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
9867 else if (ABI_64_P (output_bfd
))
9868 size
= 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry
);
9869 else if (ABI_N32_P (output_bfd
))
9870 size
= 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry
);
9871 else if (!micromips_p
)
9872 size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
9873 else if (htab
->insn32
)
9874 size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
);
9876 size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry
);
9878 htab
->plt_header_is_comp
= micromips_p
;
9879 htab
->plt_header_size
= size
;
9880 htab
->root
.splt
->size
= (size
9881 + htab
->plt_mips_offset
9882 + htab
->plt_comp_offset
);
9883 htab
->root
.sgotplt
->size
= (htab
->plt_got_index
9884 * MIPS_ELF_GOT_SIZE (dynobj
));
9886 mips_elf_link_hash_traverse (htab
, mips_elf_set_plt_sym_value
, info
);
9888 if (htab
->root
.hplt
== NULL
)
9890 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->root
.splt
,
9891 "_PROCEDURE_LINKAGE_TABLE_");
9892 htab
->root
.hplt
= h
;
9897 h
= htab
->root
.hplt
;
9898 h
->root
.u
.def
.value
= isa_bit
;
9904 /* Allocate space for global sym dynamic relocs. */
9905 elf_link_hash_traverse (&htab
->root
, allocate_dynrelocs
, info
);
9907 mips_elf_estimate_stub_size (output_bfd
, info
);
9909 if (!mips_elf_lay_out_got (output_bfd
, info
))
9912 mips_elf_lay_out_lazy_stubs (info
);
9914 /* The check_relocs and adjust_dynamic_symbol entry points have
9915 determined the sizes of the various dynamic sections. Allocate
9918 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
9922 /* It's OK to base decisions on the section name, because none
9923 of the dynobj section names depend upon the input files. */
9924 name
= bfd_get_section_name (dynobj
, s
);
9926 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
9929 if (CONST_STRNEQ (name
, ".rel"))
9933 const char *outname
;
9936 /* If this relocation section applies to a read only
9937 section, then we probably need a DT_TEXTREL entry.
9938 If the relocation section is .rel(a).dyn, we always
9939 assert a DT_TEXTREL entry rather than testing whether
9940 there exists a relocation to a read only section or
9942 outname
= bfd_get_section_name (output_bfd
,
9944 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
9946 && (target
->flags
& SEC_READONLY
) != 0
9947 && (target
->flags
& SEC_ALLOC
) != 0)
9948 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
9951 /* We use the reloc_count field as a counter if we need
9952 to copy relocs into the output file. */
9953 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
9956 /* If combreloc is enabled, elf_link_sort_relocs() will
9957 sort relocations, but in a different way than we do,
9958 and before we're done creating relocations. Also, it
9959 will move them around between input sections'
9960 relocation's contents, so our sorting would be
9961 broken, so don't let it run. */
9962 info
->combreloc
= 0;
9965 else if (bfd_link_executable (info
)
9966 && ! mips_elf_hash_table (info
)->use_rld_obj_head
9967 && CONST_STRNEQ (name
, ".rld_map"))
9969 /* We add a room for __rld_map. It will be filled in by the
9970 rtld to contain a pointer to the _r_debug structure. */
9971 s
->size
+= MIPS_ELF_RLD_MAP_SIZE (output_bfd
);
9973 else if (SGI_COMPAT (output_bfd
)
9974 && CONST_STRNEQ (name
, ".compact_rel"))
9975 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
9976 else if (s
== htab
->root
.splt
)
9978 /* If the last PLT entry has a branch delay slot, allocate
9979 room for an extra nop to fill the delay slot. This is
9980 for CPUs without load interlocking. */
9981 if (! LOAD_INTERLOCKS_P (output_bfd
)
9982 && ! htab
->is_vxworks
&& s
->size
> 0)
9985 else if (! CONST_STRNEQ (name
, ".init")
9986 && s
!= htab
->root
.sgot
9987 && s
!= htab
->root
.sgotplt
9988 && s
!= htab
->sstubs
9989 && s
!= htab
->root
.sdynbss
9990 && s
!= htab
->root
.sdynrelro
)
9992 /* It's not one of our sections, so don't allocate space. */
9998 s
->flags
|= SEC_EXCLUDE
;
10002 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
10005 /* Allocate memory for the section contents. */
10006 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
10007 if (s
->contents
== NULL
)
10009 bfd_set_error (bfd_error_no_memory
);
10014 if (elf_hash_table (info
)->dynamic_sections_created
)
10016 /* Add some entries to the .dynamic section. We fill in the
10017 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10018 must add the entries now so that we get the correct size for
10019 the .dynamic section. */
10021 /* SGI object has the equivalence of DT_DEBUG in the
10022 DT_MIPS_RLD_MAP entry. This must come first because glibc
10023 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10024 may only look at the first one they see. */
10025 if (!bfd_link_pic (info
)
10026 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
10029 if (bfd_link_executable (info
)
10030 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP_REL
, 0))
10033 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10034 used by the debugger. */
10035 if (bfd_link_executable (info
)
10036 && !SGI_COMPAT (output_bfd
)
10037 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
10040 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
10041 info
->flags
|= DF_TEXTREL
;
10043 if ((info
->flags
& DF_TEXTREL
) != 0)
10045 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
10048 /* Clear the DF_TEXTREL flag. It will be set again if we
10049 write out an actual text relocation; we may not, because
10050 at this point we do not know whether e.g. any .eh_frame
10051 absolute relocations have been converted to PC-relative. */
10052 info
->flags
&= ~DF_TEXTREL
;
10055 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
10058 sreldyn
= mips_elf_rel_dyn_section (info
, FALSE
);
10059 if (htab
->is_vxworks
)
10061 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10062 use any of the DT_MIPS_* tags. */
10063 if (sreldyn
&& sreldyn
->size
> 0)
10065 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
10068 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
10071 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
10077 if (sreldyn
&& sreldyn
->size
> 0
10078 && !bfd_is_abs_section (sreldyn
->output_section
))
10080 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
10083 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
10086 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
10090 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
10093 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
10096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
10099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
10102 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
10105 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
10108 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
10111 if (IRIX_COMPAT (dynobj
) == ict_irix5
10112 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
10115 if (IRIX_COMPAT (dynobj
) == ict_irix6
10116 && (bfd_get_section_by_name
10117 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
10118 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
10121 if (htab
->root
.splt
->size
> 0)
10123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
10126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
10129 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
10132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_PLTGOT
, 0))
10135 if (htab
->is_vxworks
10136 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
10143 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10144 Adjust its R_ADDEND field so that it is correct for the output file.
10145 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10146 and sections respectively; both use symbol indexes. */
10149 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
10150 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
10151 asection
**local_sections
, Elf_Internal_Rela
*rel
)
10153 unsigned int r_type
, r_symndx
;
10154 Elf_Internal_Sym
*sym
;
10157 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
10159 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
10160 if (gprel16_reloc_p (r_type
)
10161 || r_type
== R_MIPS_GPREL32
10162 || literal_reloc_p (r_type
))
10164 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
10165 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
10168 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
10169 sym
= local_syms
+ r_symndx
;
10171 /* Adjust REL's addend to account for section merging. */
10172 if (!bfd_link_relocatable (info
))
10174 sec
= local_sections
[r_symndx
];
10175 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
10178 /* This would normally be done by the rela_normal code in elflink.c. */
10179 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10180 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
10184 /* Handle relocations against symbols from removed linkonce sections,
10185 or sections discarded by a linker script. We use this wrapper around
10186 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10187 on 64-bit ELF targets. In this case for any relocation handled, which
10188 always be the first in a triplet, the remaining two have to be processed
10189 together with the first, even if they are R_MIPS_NONE. It is the symbol
10190 index referred by the first reloc that applies to all the three and the
10191 remaining two never refer to an object symbol. And it is the final
10192 relocation (the last non-null one) that determines the output field of
10193 the whole relocation so retrieve the corresponding howto structure for
10194 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10196 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10197 and therefore requires to be pasted in a loop. It also defines a block
10198 and does not protect any of its arguments, hence the extra brackets. */
10201 mips_reloc_against_discarded_section (bfd
*output_bfd
,
10202 struct bfd_link_info
*info
,
10203 bfd
*input_bfd
, asection
*input_section
,
10204 Elf_Internal_Rela
**rel
,
10205 const Elf_Internal_Rela
**relend
,
10206 bfd_boolean rel_reloc
,
10207 reloc_howto_type
*howto
,
10208 bfd_byte
*contents
)
10210 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
10211 int count
= bed
->s
->int_rels_per_ext_rel
;
10212 unsigned int r_type
;
10215 for (i
= count
- 1; i
> 0; i
--)
10217 r_type
= ELF_R_TYPE (output_bfd
, (*rel
)[i
].r_info
);
10218 if (r_type
!= R_MIPS_NONE
)
10220 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
, !rel_reloc
);
10226 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
10227 (*rel
), count
, (*relend
),
10228 howto
, i
, contents
);
10233 /* Relocate a MIPS ELF section. */
10236 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
10237 bfd
*input_bfd
, asection
*input_section
,
10238 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
10239 Elf_Internal_Sym
*local_syms
,
10240 asection
**local_sections
)
10242 Elf_Internal_Rela
*rel
;
10243 const Elf_Internal_Rela
*relend
;
10244 bfd_vma addend
= 0;
10245 bfd_boolean use_saved_addend_p
= FALSE
;
10247 relend
= relocs
+ input_section
->reloc_count
;
10248 for (rel
= relocs
; rel
< relend
; ++rel
)
10252 reloc_howto_type
*howto
;
10253 bfd_boolean cross_mode_jump_p
= FALSE
;
10254 /* TRUE if the relocation is a RELA relocation, rather than a
10256 bfd_boolean rela_relocation_p
= TRUE
;
10257 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
10259 unsigned long r_symndx
;
10261 Elf_Internal_Shdr
*symtab_hdr
;
10262 struct elf_link_hash_entry
*h
;
10263 bfd_boolean rel_reloc
;
10265 rel_reloc
= (NEWABI_P (input_bfd
)
10266 && mips_elf_rel_relocation_p (input_bfd
, input_section
,
10268 /* Find the relocation howto for this relocation. */
10269 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
, !rel_reloc
);
10271 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
10272 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
10273 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
10275 sec
= local_sections
[r_symndx
];
10280 unsigned long extsymoff
;
10283 if (!elf_bad_symtab (input_bfd
))
10284 extsymoff
= symtab_hdr
->sh_info
;
10285 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
10286 while (h
->root
.type
== bfd_link_hash_indirect
10287 || h
->root
.type
== bfd_link_hash_warning
)
10288 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10291 if (h
->root
.type
== bfd_link_hash_defined
10292 || h
->root
.type
== bfd_link_hash_defweak
)
10293 sec
= h
->root
.u
.def
.section
;
10296 if (sec
!= NULL
&& discarded_section (sec
))
10298 mips_reloc_against_discarded_section (output_bfd
, info
, input_bfd
,
10299 input_section
, &rel
, &relend
,
10300 rel_reloc
, howto
, contents
);
10304 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
10306 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10307 64-bit code, but make sure all their addresses are in the
10308 lowermost or uppermost 32-bit section of the 64-bit address
10309 space. Thus, when they use an R_MIPS_64 they mean what is
10310 usually meant by R_MIPS_32, with the exception that the
10311 stored value is sign-extended to 64 bits. */
10312 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
10314 /* On big-endian systems, we need to lie about the position
10316 if (bfd_big_endian (input_bfd
))
10317 rel
->r_offset
+= 4;
10320 if (!use_saved_addend_p
)
10322 /* If these relocations were originally of the REL variety,
10323 we must pull the addend out of the field that will be
10324 relocated. Otherwise, we simply use the contents of the
10325 RELA relocation. */
10326 if (mips_elf_rel_relocation_p (input_bfd
, input_section
,
10329 rela_relocation_p
= FALSE
;
10330 addend
= mips_elf_read_rel_addend (input_bfd
, rel
,
10332 if (hi16_reloc_p (r_type
)
10333 || (got16_reloc_p (r_type
)
10334 && mips_elf_local_relocation_p (input_bfd
, rel
,
10337 if (!mips_elf_add_lo16_rel_addend (input_bfd
, rel
, relend
,
10338 contents
, &addend
))
10341 name
= h
->root
.root
.string
;
10343 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
10344 local_syms
+ r_symndx
,
10347 /* xgettext:c-format */
10348 (_("%pB: can't find matching LO16 reloc against `%s'"
10349 " for %s at %#" PRIx64
" in section `%pA'"),
10351 howto
->name
, (uint64_t) rel
->r_offset
, input_section
);
10355 addend
<<= howto
->rightshift
;
10358 addend
= rel
->r_addend
;
10359 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
10360 local_syms
, local_sections
, rel
);
10363 if (bfd_link_relocatable (info
))
10365 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
10366 && bfd_big_endian (input_bfd
))
10367 rel
->r_offset
-= 4;
10369 if (!rela_relocation_p
&& rel
->r_addend
)
10371 addend
+= rel
->r_addend
;
10372 if (hi16_reloc_p (r_type
) || got16_reloc_p (r_type
))
10373 addend
= mips_elf_high (addend
);
10374 else if (r_type
== R_MIPS_HIGHER
)
10375 addend
= mips_elf_higher (addend
);
10376 else if (r_type
== R_MIPS_HIGHEST
)
10377 addend
= mips_elf_highest (addend
);
10379 addend
>>= howto
->rightshift
;
10381 /* We use the source mask, rather than the destination
10382 mask because the place to which we are writing will be
10383 source of the addend in the final link. */
10384 addend
&= howto
->src_mask
;
10386 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
10387 /* See the comment above about using R_MIPS_64 in the 32-bit
10388 ABI. Here, we need to update the addend. It would be
10389 possible to get away with just using the R_MIPS_32 reloc
10390 but for endianness. */
10396 if (addend
& ((bfd_vma
) 1 << 31))
10398 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
10405 /* If we don't know that we have a 64-bit type,
10406 do two separate stores. */
10407 if (bfd_big_endian (input_bfd
))
10409 /* Store the sign-bits (which are most significant)
10411 low_bits
= sign_bits
;
10412 high_bits
= addend
;
10417 high_bits
= sign_bits
;
10419 bfd_put_32 (input_bfd
, low_bits
,
10420 contents
+ rel
->r_offset
);
10421 bfd_put_32 (input_bfd
, high_bits
,
10422 contents
+ rel
->r_offset
+ 4);
10426 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
10427 input_bfd
, input_section
,
10432 /* Go on to the next relocation. */
10436 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10437 relocations for the same offset. In that case we are
10438 supposed to treat the output of each relocation as the addend
10440 if (rel
+ 1 < relend
10441 && rel
->r_offset
== rel
[1].r_offset
10442 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
10443 use_saved_addend_p
= TRUE
;
10445 use_saved_addend_p
= FALSE
;
10447 /* Figure out what value we are supposed to relocate. */
10448 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
10449 input_section
, contents
,
10450 info
, rel
, addend
, howto
,
10451 local_syms
, local_sections
,
10452 &value
, &name
, &cross_mode_jump_p
,
10453 use_saved_addend_p
))
10455 case bfd_reloc_continue
:
10456 /* There's nothing to do. */
10459 case bfd_reloc_undefined
:
10460 /* mips_elf_calculate_relocation already called the
10461 undefined_symbol callback. There's no real point in
10462 trying to perform the relocation at this point, so we
10463 just skip ahead to the next relocation. */
10466 case bfd_reloc_notsupported
:
10467 msg
= _("internal error: unsupported relocation error");
10468 info
->callbacks
->warning
10469 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
10472 case bfd_reloc_overflow
:
10473 if (use_saved_addend_p
)
10474 /* Ignore overflow until we reach the last relocation for
10475 a given location. */
10479 struct mips_elf_link_hash_table
*htab
;
10481 htab
= mips_elf_hash_table (info
);
10482 BFD_ASSERT (htab
!= NULL
);
10483 BFD_ASSERT (name
!= NULL
);
10484 if (!htab
->small_data_overflow_reported
10485 && (gprel16_reloc_p (howto
->type
)
10486 || literal_reloc_p (howto
->type
)))
10488 msg
= _("small-data section exceeds 64KB;"
10489 " lower small-data size limit (see option -G)");
10491 htab
->small_data_overflow_reported
= TRUE
;
10492 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
10494 (*info
->callbacks
->reloc_overflow
)
10495 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
10496 input_bfd
, input_section
, rel
->r_offset
);
10503 case bfd_reloc_outofrange
:
10505 if (jal_reloc_p (howto
->type
))
10506 msg
= (cross_mode_jump_p
10507 ? _("cannot convert a jump to JALX "
10508 "for a non-word-aligned address")
10509 : (howto
->type
== R_MIPS16_26
10510 ? _("jump to a non-word-aligned address")
10511 : _("jump to a non-instruction-aligned address")));
10512 else if (b_reloc_p (howto
->type
))
10513 msg
= (cross_mode_jump_p
10514 ? _("cannot convert a branch to JALX "
10515 "for a non-word-aligned address")
10516 : _("branch to a non-instruction-aligned address"));
10517 else if (aligned_pcrel_reloc_p (howto
->type
))
10518 msg
= _("PC-relative load from unaligned address");
10521 info
->callbacks
->einfo
10522 ("%X%H: %s\n", input_bfd
, input_section
, rel
->r_offset
, msg
);
10525 /* Fall through. */
10532 /* If we've got another relocation for the address, keep going
10533 until we reach the last one. */
10534 if (use_saved_addend_p
)
10540 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
10541 /* See the comment above about using R_MIPS_64 in the 32-bit
10542 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10543 that calculated the right value. Now, however, we
10544 sign-extend the 32-bit result to 64-bits, and store it as a
10545 64-bit value. We are especially generous here in that we
10546 go to extreme lengths to support this usage on systems with
10547 only a 32-bit VMA. */
10553 if (value
& ((bfd_vma
) 1 << 31))
10555 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
10562 /* If we don't know that we have a 64-bit type,
10563 do two separate stores. */
10564 if (bfd_big_endian (input_bfd
))
10566 /* Undo what we did above. */
10567 rel
->r_offset
-= 4;
10568 /* Store the sign-bits (which are most significant)
10570 low_bits
= sign_bits
;
10576 high_bits
= sign_bits
;
10578 bfd_put_32 (input_bfd
, low_bits
,
10579 contents
+ rel
->r_offset
);
10580 bfd_put_32 (input_bfd
, high_bits
,
10581 contents
+ rel
->r_offset
+ 4);
10585 /* Actually perform the relocation. */
10586 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
10587 input_bfd
, input_section
,
10588 contents
, cross_mode_jump_p
))
10595 /* A function that iterates over each entry in la25_stubs and fills
10596 in the code for each one. DATA points to a mips_htab_traverse_info. */
10599 mips_elf_create_la25_stub (void **slot
, void *data
)
10601 struct mips_htab_traverse_info
*hti
;
10602 struct mips_elf_link_hash_table
*htab
;
10603 struct mips_elf_la25_stub
*stub
;
10606 bfd_vma offset
, target
, target_high
, target_low
;
10608 stub
= (struct mips_elf_la25_stub
*) *slot
;
10609 hti
= (struct mips_htab_traverse_info
*) data
;
10610 htab
= mips_elf_hash_table (hti
->info
);
10611 BFD_ASSERT (htab
!= NULL
);
10613 /* Create the section contents, if we haven't already. */
10614 s
= stub
->stub_section
;
10618 loc
= bfd_malloc (s
->size
);
10627 /* Work out where in the section this stub should go. */
10628 offset
= stub
->offset
;
10630 /* Work out the target address. */
10631 target
= mips_elf_get_la25_target (stub
, &s
);
10632 target
+= s
->output_section
->vma
+ s
->output_offset
;
10634 target_high
= ((target
+ 0x8000) >> 16) & 0xffff;
10635 target_low
= (target
& 0xffff);
10637 if (stub
->stub_section
!= htab
->strampoline
)
10639 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10640 of the section and write the two instructions at the end. */
10641 memset (loc
, 0, offset
);
10643 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
10645 bfd_put_micromips_32 (hti
->output_bfd
,
10646 LA25_LUI_MICROMIPS (target_high
),
10648 bfd_put_micromips_32 (hti
->output_bfd
,
10649 LA25_ADDIU_MICROMIPS (target_low
),
10654 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
10655 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
10660 /* This is trampoline. */
10662 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
10664 bfd_put_micromips_32 (hti
->output_bfd
,
10665 LA25_LUI_MICROMIPS (target_high
), loc
);
10666 bfd_put_micromips_32 (hti
->output_bfd
,
10667 LA25_J_MICROMIPS (target
), loc
+ 4);
10668 bfd_put_micromips_32 (hti
->output_bfd
,
10669 LA25_ADDIU_MICROMIPS (target_low
), loc
+ 8);
10670 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
10674 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
10675 bfd_put_32 (hti
->output_bfd
, LA25_J (target
), loc
+ 4);
10676 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 8);
10677 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
10683 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10684 adjust it appropriately now. */
10687 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
10688 const char *name
, Elf_Internal_Sym
*sym
)
10690 /* The linker script takes care of providing names and values for
10691 these, but we must place them into the right sections. */
10692 static const char* const text_section_symbols
[] = {
10695 "__dso_displacement",
10697 "__program_header_table",
10701 static const char* const data_section_symbols
[] = {
10709 const char* const *p
;
10712 for (i
= 0; i
< 2; ++i
)
10713 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
10716 if (strcmp (*p
, name
) == 0)
10718 /* All of these symbols are given type STT_SECTION by the
10720 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
10721 sym
->st_other
= STO_PROTECTED
;
10723 /* The IRIX linker puts these symbols in special sections. */
10725 sym
->st_shndx
= SHN_MIPS_TEXT
;
10727 sym
->st_shndx
= SHN_MIPS_DATA
;
10733 /* Finish up dynamic symbol handling. We set the contents of various
10734 dynamic sections here. */
10737 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
10738 struct bfd_link_info
*info
,
10739 struct elf_link_hash_entry
*h
,
10740 Elf_Internal_Sym
*sym
)
10744 struct mips_got_info
*g
, *gg
;
10747 struct mips_elf_link_hash_table
*htab
;
10748 struct mips_elf_link_hash_entry
*hmips
;
10750 htab
= mips_elf_hash_table (info
);
10751 BFD_ASSERT (htab
!= NULL
);
10752 dynobj
= elf_hash_table (info
)->dynobj
;
10753 hmips
= (struct mips_elf_link_hash_entry
*) h
;
10755 BFD_ASSERT (!htab
->is_vxworks
);
10757 if (h
->plt
.plist
!= NULL
10758 && (h
->plt
.plist
->mips_offset
!= MINUS_ONE
10759 || h
->plt
.plist
->comp_offset
!= MINUS_ONE
))
10761 /* We've decided to create a PLT entry for this symbol. */
10763 bfd_vma header_address
, got_address
;
10764 bfd_vma got_address_high
, got_address_low
, load
;
10768 got_index
= h
->plt
.plist
->gotplt_index
;
10770 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10771 BFD_ASSERT (h
->dynindx
!= -1);
10772 BFD_ASSERT (htab
->root
.splt
!= NULL
);
10773 BFD_ASSERT (got_index
!= MINUS_ONE
);
10774 BFD_ASSERT (!h
->def_regular
);
10776 /* Calculate the address of the PLT header. */
10777 isa_bit
= htab
->plt_header_is_comp
;
10778 header_address
= (htab
->root
.splt
->output_section
->vma
10779 + htab
->root
.splt
->output_offset
+ isa_bit
);
10781 /* Calculate the address of the .got.plt entry. */
10782 got_address
= (htab
->root
.sgotplt
->output_section
->vma
10783 + htab
->root
.sgotplt
->output_offset
10784 + got_index
* MIPS_ELF_GOT_SIZE (dynobj
));
10786 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
10787 got_address_low
= got_address
& 0xffff;
10789 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10790 cannot be loaded in two instructions. */
10791 if (ABI_64_P (output_bfd
)
10792 && ((got_address
+ 0x80008000) & ~(bfd_vma
) 0xffffffff) != 0)
10795 /* xgettext:c-format */
10796 (_("%pB: `%pA' entry VMA of %#" PRIx64
" outside the 32-bit range "
10797 "supported; consider using `-Ttext-segment=...'"),
10799 htab
->root
.sgotplt
->output_section
,
10800 (int64_t) got_address
);
10801 bfd_set_error (bfd_error_no_error
);
10805 /* Initially point the .got.plt entry at the PLT header. */
10806 loc
= (htab
->root
.sgotplt
->contents
10807 + got_index
* MIPS_ELF_GOT_SIZE (dynobj
));
10808 if (ABI_64_P (output_bfd
))
10809 bfd_put_64 (output_bfd
, header_address
, loc
);
10811 bfd_put_32 (output_bfd
, header_address
, loc
);
10813 /* Now handle the PLT itself. First the standard entry (the order
10814 does not matter, we just have to pick one). */
10815 if (h
->plt
.plist
->mips_offset
!= MINUS_ONE
)
10817 const bfd_vma
*plt_entry
;
10818 bfd_vma plt_offset
;
10820 plt_offset
= htab
->plt_header_size
+ h
->plt
.plist
->mips_offset
;
10822 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
10824 /* Find out where the .plt entry should go. */
10825 loc
= htab
->root
.splt
->contents
+ plt_offset
;
10827 /* Pick the load opcode. */
10828 load
= MIPS_ELF_LOAD_WORD (output_bfd
);
10830 /* Fill in the PLT entry itself. */
10832 if (MIPSR6_P (output_bfd
))
10833 plt_entry
= mipsr6_exec_plt_entry
;
10835 plt_entry
= mips_exec_plt_entry
;
10836 bfd_put_32 (output_bfd
, plt_entry
[0] | got_address_high
, loc
);
10837 bfd_put_32 (output_bfd
, plt_entry
[1] | got_address_low
| load
,
10840 if (! LOAD_INTERLOCKS_P (output_bfd
))
10842 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 8);
10843 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
10847 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 8);
10848 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
,
10853 /* Now the compressed entry. They come after any standard ones. */
10854 if (h
->plt
.plist
->comp_offset
!= MINUS_ONE
)
10856 bfd_vma plt_offset
;
10858 plt_offset
= (htab
->plt_header_size
+ htab
->plt_mips_offset
10859 + h
->plt
.plist
->comp_offset
);
10861 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
10863 /* Find out where the .plt entry should go. */
10864 loc
= htab
->root
.splt
->contents
+ plt_offset
;
10866 /* Fill in the PLT entry itself. */
10867 if (!MICROMIPS_P (output_bfd
))
10869 const bfd_vma
*plt_entry
= mips16_o32_exec_plt_entry
;
10871 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
10872 bfd_put_16 (output_bfd
, plt_entry
[1], loc
+ 2);
10873 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
10874 bfd_put_16 (output_bfd
, plt_entry
[3], loc
+ 6);
10875 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
10876 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
10877 bfd_put_32 (output_bfd
, got_address
, loc
+ 12);
10879 else if (htab
->insn32
)
10881 const bfd_vma
*plt_entry
= micromips_insn32_o32_exec_plt_entry
;
10883 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
10884 bfd_put_16 (output_bfd
, got_address_high
, loc
+ 2);
10885 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
10886 bfd_put_16 (output_bfd
, got_address_low
, loc
+ 6);
10887 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
10888 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
10889 bfd_put_16 (output_bfd
, plt_entry
[6], loc
+ 12);
10890 bfd_put_16 (output_bfd
, got_address_low
, loc
+ 14);
10894 const bfd_vma
*plt_entry
= micromips_o32_exec_plt_entry
;
10895 bfd_signed_vma gotpc_offset
;
10896 bfd_vma loc_address
;
10898 BFD_ASSERT (got_address
% 4 == 0);
10900 loc_address
= (htab
->root
.splt
->output_section
->vma
10901 + htab
->root
.splt
->output_offset
+ plt_offset
);
10902 gotpc_offset
= got_address
- ((loc_address
| 3) ^ 3);
10904 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10905 if (gotpc_offset
+ 0x1000000 >= 0x2000000)
10908 /* xgettext:c-format */
10909 (_("%pB: `%pA' offset of %" PRId64
" from `%pA' "
10910 "beyond the range of ADDIUPC"),
10912 htab
->root
.sgotplt
->output_section
,
10913 (int64_t) gotpc_offset
,
10914 htab
->root
.splt
->output_section
);
10915 bfd_set_error (bfd_error_no_error
);
10918 bfd_put_16 (output_bfd
,
10919 plt_entry
[0] | ((gotpc_offset
>> 18) & 0x7f), loc
);
10920 bfd_put_16 (output_bfd
, (gotpc_offset
>> 2) & 0xffff, loc
+ 2);
10921 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
10922 bfd_put_16 (output_bfd
, plt_entry
[3], loc
+ 6);
10923 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
10924 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
10928 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10929 mips_elf_output_dynamic_relocation (output_bfd
, htab
->root
.srelplt
,
10930 got_index
- 2, h
->dynindx
,
10931 R_MIPS_JUMP_SLOT
, got_address
);
10933 /* We distinguish between PLT entries and lazy-binding stubs by
10934 giving the former an st_other value of STO_MIPS_PLT. Set the
10935 flag and leave the value if there are any relocations in the
10936 binary where pointer equality matters. */
10937 sym
->st_shndx
= SHN_UNDEF
;
10938 if (h
->pointer_equality_needed
)
10939 sym
->st_other
= ELF_ST_SET_MIPS_PLT (sym
->st_other
);
10947 if (h
->plt
.plist
!= NULL
&& h
->plt
.plist
->stub_offset
!= MINUS_ONE
)
10949 /* We've decided to create a lazy-binding stub. */
10950 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
10951 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
10952 bfd_vma stub_size
= htab
->function_stub_size
;
10953 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
10954 bfd_vma isa_bit
= micromips_p
;
10955 bfd_vma stub_big_size
;
10958 stub_big_size
= MIPS_FUNCTION_STUB_BIG_SIZE
;
10959 else if (htab
->insn32
)
10960 stub_big_size
= MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
;
10962 stub_big_size
= MICROMIPS_FUNCTION_STUB_BIG_SIZE
;
10964 /* This symbol has a stub. Set it up. */
10966 BFD_ASSERT (h
->dynindx
!= -1);
10968 BFD_ASSERT (stub_size
== stub_big_size
|| h
->dynindx
<= 0xffff);
10970 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10971 sign extension at runtime in the stub, resulting in a negative
10973 if (h
->dynindx
& ~0x7fffffff)
10976 /* Fill the stub. */
10980 bfd_put_micromips_32 (output_bfd
, STUB_LW_MICROMIPS (output_bfd
),
10985 bfd_put_micromips_32 (output_bfd
,
10986 STUB_MOVE32_MICROMIPS
, stub
+ idx
);
10991 bfd_put_16 (output_bfd
, STUB_MOVE_MICROMIPS
, stub
+ idx
);
10994 if (stub_size
== stub_big_size
)
10996 long dynindx_hi
= (h
->dynindx
>> 16) & 0x7fff;
10998 bfd_put_micromips_32 (output_bfd
,
10999 STUB_LUI_MICROMIPS (dynindx_hi
),
11005 bfd_put_micromips_32 (output_bfd
, STUB_JALR32_MICROMIPS
,
11011 bfd_put_16 (output_bfd
, STUB_JALR_MICROMIPS
, stub
+ idx
);
11015 /* If a large stub is not required and sign extension is not a
11016 problem, then use legacy code in the stub. */
11017 if (stub_size
== stub_big_size
)
11018 bfd_put_micromips_32 (output_bfd
,
11019 STUB_ORI_MICROMIPS (h
->dynindx
& 0xffff),
11021 else if (h
->dynindx
& ~0x7fff)
11022 bfd_put_micromips_32 (output_bfd
,
11023 STUB_LI16U_MICROMIPS (h
->dynindx
& 0xffff),
11026 bfd_put_micromips_32 (output_bfd
,
11027 STUB_LI16S_MICROMIPS (output_bfd
,
11034 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
11036 bfd_put_32 (output_bfd
, STUB_MOVE
, stub
+ idx
);
11038 if (stub_size
== stub_big_size
)
11040 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
11044 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
11047 /* If a large stub is not required and sign extension is not a
11048 problem, then use legacy code in the stub. */
11049 if (stub_size
== stub_big_size
)
11050 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff),
11052 else if (h
->dynindx
& ~0x7fff)
11053 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff),
11056 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
11060 BFD_ASSERT (h
->plt
.plist
->stub_offset
<= htab
->sstubs
->size
);
11061 memcpy (htab
->sstubs
->contents
+ h
->plt
.plist
->stub_offset
,
11064 /* Mark the symbol as undefined. stub_offset != -1 occurs
11065 only for the referenced symbol. */
11066 sym
->st_shndx
= SHN_UNDEF
;
11068 /* The run-time linker uses the st_value field of the symbol
11069 to reset the global offset table entry for this external
11070 to its stub address when unlinking a shared object. */
11071 sym
->st_value
= (htab
->sstubs
->output_section
->vma
11072 + htab
->sstubs
->output_offset
11073 + h
->plt
.plist
->stub_offset
11075 sym
->st_other
= other
;
11078 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11079 refer to the stub, since only the stub uses the standard calling
11081 if (h
->dynindx
!= -1 && hmips
->fn_stub
!= NULL
)
11083 BFD_ASSERT (hmips
->need_fn_stub
);
11084 sym
->st_value
= (hmips
->fn_stub
->output_section
->vma
11085 + hmips
->fn_stub
->output_offset
);
11086 sym
->st_size
= hmips
->fn_stub
->size
;
11087 sym
->st_other
= ELF_ST_VISIBILITY (sym
->st_other
);
11090 BFD_ASSERT (h
->dynindx
!= -1
11091 || h
->forced_local
);
11093 sgot
= htab
->root
.sgot
;
11094 g
= htab
->got_info
;
11095 BFD_ASSERT (g
!= NULL
);
11097 /* Run through the global symbol table, creating GOT entries for all
11098 the symbols that need them. */
11099 if (hmips
->global_got_area
!= GGA_NONE
)
11104 value
= sym
->st_value
;
11105 offset
= mips_elf_primary_global_got_index (output_bfd
, info
, h
);
11106 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
11109 if (hmips
->global_got_area
!= GGA_NONE
&& g
->next
)
11111 struct mips_got_entry e
, *p
;
11117 e
.abfd
= output_bfd
;
11120 e
.tls_type
= GOT_TLS_NONE
;
11122 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
11125 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
11128 offset
= p
->gotidx
;
11129 BFD_ASSERT (offset
> 0 && offset
< htab
->root
.sgot
->size
);
11130 if (bfd_link_pic (info
)
11131 || (elf_hash_table (info
)->dynamic_sections_created
11133 && p
->d
.h
->root
.def_dynamic
11134 && !p
->d
.h
->root
.def_regular
))
11136 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11137 the various compatibility problems, it's easier to mock
11138 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11139 mips_elf_create_dynamic_relocation to calculate the
11140 appropriate addend. */
11141 Elf_Internal_Rela rel
[3];
11143 memset (rel
, 0, sizeof (rel
));
11144 if (ABI_64_P (output_bfd
))
11145 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
11147 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
11148 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
11151 if (! (mips_elf_create_dynamic_relocation
11152 (output_bfd
, info
, rel
,
11153 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
11157 entry
= sym
->st_value
;
11158 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
11163 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11164 name
= h
->root
.root
.string
;
11165 if (h
== elf_hash_table (info
)->hdynamic
11166 || h
== elf_hash_table (info
)->hgot
)
11167 sym
->st_shndx
= SHN_ABS
;
11168 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
11169 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
11171 sym
->st_shndx
= SHN_ABS
;
11172 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11175 else if (SGI_COMPAT (output_bfd
))
11177 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
11178 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
11180 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11181 sym
->st_other
= STO_PROTECTED
;
11183 sym
->st_shndx
= SHN_MIPS_DATA
;
11185 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
11187 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11188 sym
->st_other
= STO_PROTECTED
;
11189 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
11190 sym
->st_shndx
= SHN_ABS
;
11192 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
11194 if (h
->type
== STT_FUNC
)
11195 sym
->st_shndx
= SHN_MIPS_TEXT
;
11196 else if (h
->type
== STT_OBJECT
)
11197 sym
->st_shndx
= SHN_MIPS_DATA
;
11201 /* Emit a copy reloc, if needed. */
11207 BFD_ASSERT (h
->dynindx
!= -1);
11208 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11210 s
= mips_elf_rel_dyn_section (info
, FALSE
);
11211 symval
= (h
->root
.u
.def
.section
->output_section
->vma
11212 + h
->root
.u
.def
.section
->output_offset
11213 + h
->root
.u
.def
.value
);
11214 mips_elf_output_dynamic_relocation (output_bfd
, s
, s
->reloc_count
++,
11215 h
->dynindx
, R_MIPS_COPY
, symval
);
11218 /* Handle the IRIX6-specific symbols. */
11219 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
11220 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
11222 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11223 to treat compressed symbols like any other. */
11224 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
11226 BFD_ASSERT (sym
->st_value
& 1);
11227 sym
->st_other
-= STO_MIPS16
;
11229 else if (ELF_ST_IS_MICROMIPS (sym
->st_other
))
11231 BFD_ASSERT (sym
->st_value
& 1);
11232 sym
->st_other
-= STO_MICROMIPS
;
11238 /* Likewise, for VxWorks. */
11241 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
11242 struct bfd_link_info
*info
,
11243 struct elf_link_hash_entry
*h
,
11244 Elf_Internal_Sym
*sym
)
11248 struct mips_got_info
*g
;
11249 struct mips_elf_link_hash_table
*htab
;
11250 struct mips_elf_link_hash_entry
*hmips
;
11252 htab
= mips_elf_hash_table (info
);
11253 BFD_ASSERT (htab
!= NULL
);
11254 dynobj
= elf_hash_table (info
)->dynobj
;
11255 hmips
= (struct mips_elf_link_hash_entry
*) h
;
11257 if (h
->plt
.plist
!= NULL
&& h
->plt
.plist
->mips_offset
!= MINUS_ONE
)
11260 bfd_vma plt_address
, got_address
, got_offset
, branch_offset
;
11261 Elf_Internal_Rela rel
;
11262 static const bfd_vma
*plt_entry
;
11263 bfd_vma gotplt_index
;
11264 bfd_vma plt_offset
;
11266 plt_offset
= htab
->plt_header_size
+ h
->plt
.plist
->mips_offset
;
11267 gotplt_index
= h
->plt
.plist
->gotplt_index
;
11269 BFD_ASSERT (h
->dynindx
!= -1);
11270 BFD_ASSERT (htab
->root
.splt
!= NULL
);
11271 BFD_ASSERT (gotplt_index
!= MINUS_ONE
);
11272 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
11274 /* Calculate the address of the .plt entry. */
11275 plt_address
= (htab
->root
.splt
->output_section
->vma
11276 + htab
->root
.splt
->output_offset
11279 /* Calculate the address of the .got.plt entry. */
11280 got_address
= (htab
->root
.sgotplt
->output_section
->vma
11281 + htab
->root
.sgotplt
->output_offset
11282 + gotplt_index
* MIPS_ELF_GOT_SIZE (output_bfd
));
11284 /* Calculate the offset of the .got.plt entry from
11285 _GLOBAL_OFFSET_TABLE_. */
11286 got_offset
= mips_elf_gotplt_index (info
, h
);
11288 /* Calculate the offset for the branch at the start of the PLT
11289 entry. The branch jumps to the beginning of .plt. */
11290 branch_offset
= -(plt_offset
/ 4 + 1) & 0xffff;
11292 /* Fill in the initial value of the .got.plt entry. */
11293 bfd_put_32 (output_bfd
, plt_address
,
11294 (htab
->root
.sgotplt
->contents
11295 + gotplt_index
* MIPS_ELF_GOT_SIZE (output_bfd
)));
11297 /* Find out where the .plt entry should go. */
11298 loc
= htab
->root
.splt
->contents
+ plt_offset
;
11300 if (bfd_link_pic (info
))
11302 plt_entry
= mips_vxworks_shared_plt_entry
;
11303 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
11304 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_index
, loc
+ 4);
11308 bfd_vma got_address_high
, got_address_low
;
11310 plt_entry
= mips_vxworks_exec_plt_entry
;
11311 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
11312 got_address_low
= got_address
& 0xffff;
11314 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
11315 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_index
, loc
+ 4);
11316 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
11317 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
11318 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11319 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11320 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
11321 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
11323 loc
= (htab
->srelplt2
->contents
11324 + (gotplt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
11326 /* Emit a relocation for the .got.plt entry. */
11327 rel
.r_offset
= got_address
;
11328 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
11329 rel
.r_addend
= plt_offset
;
11330 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11332 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11333 loc
+= sizeof (Elf32_External_Rela
);
11334 rel
.r_offset
= plt_address
+ 8;
11335 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11336 rel
.r_addend
= got_offset
;
11337 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11339 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11340 loc
+= sizeof (Elf32_External_Rela
);
11342 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11343 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11346 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11347 loc
= (htab
->root
.srelplt
->contents
11348 + gotplt_index
* sizeof (Elf32_External_Rela
));
11349 rel
.r_offset
= got_address
;
11350 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
11352 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11354 if (!h
->def_regular
)
11355 sym
->st_shndx
= SHN_UNDEF
;
11358 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
11360 sgot
= htab
->root
.sgot
;
11361 g
= htab
->got_info
;
11362 BFD_ASSERT (g
!= NULL
);
11364 /* See if this symbol has an entry in the GOT. */
11365 if (hmips
->global_got_area
!= GGA_NONE
)
11368 Elf_Internal_Rela outrel
;
11372 /* Install the symbol value in the GOT. */
11373 offset
= mips_elf_primary_global_got_index (output_bfd
, info
, h
);
11374 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
11376 /* Add a dynamic relocation for it. */
11377 s
= mips_elf_rel_dyn_section (info
, FALSE
);
11378 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
11379 outrel
.r_offset
= (sgot
->output_section
->vma
11380 + sgot
->output_offset
11382 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
11383 outrel
.r_addend
= 0;
11384 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
11387 /* Emit a copy reloc, if needed. */
11390 Elf_Internal_Rela rel
;
11394 BFD_ASSERT (h
->dynindx
!= -1);
11396 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
11397 + h
->root
.u
.def
.section
->output_offset
11398 + h
->root
.u
.def
.value
);
11399 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
11401 if (h
->root
.u
.def
.section
== htab
->root
.sdynrelro
)
11402 srel
= htab
->root
.sreldynrelro
;
11404 srel
= htab
->root
.srelbss
;
11405 loc
= srel
->contents
+ srel
->reloc_count
* sizeof (Elf32_External_Rela
);
11406 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11407 ++srel
->reloc_count
;
11410 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11411 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
11412 sym
->st_value
&= ~1;
11417 /* Write out a plt0 entry to the beginning of .plt. */
11420 mips_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11423 bfd_vma gotplt_value
, gotplt_value_high
, gotplt_value_low
;
11424 static const bfd_vma
*plt_entry
;
11425 struct mips_elf_link_hash_table
*htab
;
11427 htab
= mips_elf_hash_table (info
);
11428 BFD_ASSERT (htab
!= NULL
);
11430 if (ABI_64_P (output_bfd
))
11431 plt_entry
= mips_n64_exec_plt0_entry
;
11432 else if (ABI_N32_P (output_bfd
))
11433 plt_entry
= mips_n32_exec_plt0_entry
;
11434 else if (!htab
->plt_header_is_comp
)
11435 plt_entry
= mips_o32_exec_plt0_entry
;
11436 else if (htab
->insn32
)
11437 plt_entry
= micromips_insn32_o32_exec_plt0_entry
;
11439 plt_entry
= micromips_o32_exec_plt0_entry
;
11441 /* Calculate the value of .got.plt. */
11442 gotplt_value
= (htab
->root
.sgotplt
->output_section
->vma
11443 + htab
->root
.sgotplt
->output_offset
);
11444 gotplt_value_high
= ((gotplt_value
+ 0x8000) >> 16) & 0xffff;
11445 gotplt_value_low
= gotplt_value
& 0xffff;
11447 /* The PLT sequence is not safe for N64 if .got.plt's address can
11448 not be loaded in two instructions. */
11449 if (ABI_64_P (output_bfd
)
11450 && ((gotplt_value
+ 0x80008000) & ~(bfd_vma
) 0xffffffff) != 0)
11453 /* xgettext:c-format */
11454 (_("%pB: `%pA' start VMA of %#" PRIx64
" outside the 32-bit range "
11455 "supported; consider using `-Ttext-segment=...'"),
11457 htab
->root
.sgotplt
->output_section
,
11458 (int64_t) gotplt_value
);
11459 bfd_set_error (bfd_error_no_error
);
11463 /* Install the PLT header. */
11464 loc
= htab
->root
.splt
->contents
;
11465 if (plt_entry
== micromips_o32_exec_plt0_entry
)
11467 bfd_vma gotpc_offset
;
11468 bfd_vma loc_address
;
11471 BFD_ASSERT (gotplt_value
% 4 == 0);
11473 loc_address
= (htab
->root
.splt
->output_section
->vma
11474 + htab
->root
.splt
->output_offset
);
11475 gotpc_offset
= gotplt_value
- ((loc_address
| 3) ^ 3);
11477 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11478 if (gotpc_offset
+ 0x1000000 >= 0x2000000)
11481 /* xgettext:c-format */
11482 (_("%pB: `%pA' offset of %" PRId64
" from `%pA' "
11483 "beyond the range of ADDIUPC"),
11485 htab
->root
.sgotplt
->output_section
,
11486 (int64_t) gotpc_offset
,
11487 htab
->root
.splt
->output_section
);
11488 bfd_set_error (bfd_error_no_error
);
11491 bfd_put_16 (output_bfd
,
11492 plt_entry
[0] | ((gotpc_offset
>> 18) & 0x7f), loc
);
11493 bfd_put_16 (output_bfd
, (gotpc_offset
>> 2) & 0xffff, loc
+ 2);
11494 for (i
= 2; i
< ARRAY_SIZE (micromips_o32_exec_plt0_entry
); i
++)
11495 bfd_put_16 (output_bfd
, plt_entry
[i
], loc
+ (i
* 2));
11497 else if (plt_entry
== micromips_insn32_o32_exec_plt0_entry
)
11501 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
11502 bfd_put_16 (output_bfd
, gotplt_value_high
, loc
+ 2);
11503 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11504 bfd_put_16 (output_bfd
, gotplt_value_low
, loc
+ 6);
11505 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11506 bfd_put_16 (output_bfd
, gotplt_value_low
, loc
+ 10);
11507 for (i
= 6; i
< ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
); i
++)
11508 bfd_put_16 (output_bfd
, plt_entry
[i
], loc
+ (i
* 2));
11512 bfd_put_32 (output_bfd
, plt_entry
[0] | gotplt_value_high
, loc
);
11513 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_value_low
, loc
+ 4);
11514 bfd_put_32 (output_bfd
, plt_entry
[2] | gotplt_value_low
, loc
+ 8);
11515 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
11516 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11517 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11518 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
11519 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
11525 /* Install the PLT header for a VxWorks executable and finalize the
11526 contents of .rela.plt.unloaded. */
11529 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11531 Elf_Internal_Rela rela
;
11533 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
11534 static const bfd_vma
*plt_entry
;
11535 struct mips_elf_link_hash_table
*htab
;
11537 htab
= mips_elf_hash_table (info
);
11538 BFD_ASSERT (htab
!= NULL
);
11540 plt_entry
= mips_vxworks_exec_plt0_entry
;
11542 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11543 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
11544 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
11545 + htab
->root
.hgot
->root
.u
.def
.value
);
11547 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
11548 got_value_low
= got_value
& 0xffff;
11550 /* Calculate the address of the PLT header. */
11551 plt_address
= (htab
->root
.splt
->output_section
->vma
11552 + htab
->root
.splt
->output_offset
);
11554 /* Install the PLT header. */
11555 loc
= htab
->root
.splt
->contents
;
11556 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
11557 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
11558 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
11559 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
11560 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11561 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11563 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11564 loc
= htab
->srelplt2
->contents
;
11565 rela
.r_offset
= plt_address
;
11566 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11568 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
11569 loc
+= sizeof (Elf32_External_Rela
);
11571 /* Output the relocation for the following addiu of
11572 %lo(_GLOBAL_OFFSET_TABLE_). */
11573 rela
.r_offset
+= 4;
11574 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11575 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
11576 loc
+= sizeof (Elf32_External_Rela
);
11578 /* Fix up the remaining relocations. They may have the wrong
11579 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11580 in which symbols were output. */
11581 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
11583 Elf_Internal_Rela rel
;
11585 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11586 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
11587 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11588 loc
+= sizeof (Elf32_External_Rela
);
11590 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11591 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11592 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11593 loc
+= sizeof (Elf32_External_Rela
);
11595 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11596 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11597 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11598 loc
+= sizeof (Elf32_External_Rela
);
11602 /* Install the PLT header for a VxWorks shared library. */
11605 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11608 struct mips_elf_link_hash_table
*htab
;
11610 htab
= mips_elf_hash_table (info
);
11611 BFD_ASSERT (htab
!= NULL
);
11613 /* We just need to copy the entry byte-by-byte. */
11614 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
11615 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
11616 htab
->root
.splt
->contents
+ i
* 4);
11619 /* Finish up the dynamic sections. */
11622 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
11623 struct bfd_link_info
*info
)
11628 struct mips_got_info
*gg
, *g
;
11629 struct mips_elf_link_hash_table
*htab
;
11631 htab
= mips_elf_hash_table (info
);
11632 BFD_ASSERT (htab
!= NULL
);
11634 dynobj
= elf_hash_table (info
)->dynobj
;
11636 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
11638 sgot
= htab
->root
.sgot
;
11639 gg
= htab
->got_info
;
11641 if (elf_hash_table (info
)->dynamic_sections_created
)
11644 int dyn_to_skip
= 0, dyn_skipped
= 0;
11646 BFD_ASSERT (sdyn
!= NULL
);
11647 BFD_ASSERT (gg
!= NULL
);
11649 g
= mips_elf_bfd_got (output_bfd
, FALSE
);
11650 BFD_ASSERT (g
!= NULL
);
11652 for (b
= sdyn
->contents
;
11653 b
< sdyn
->contents
+ sdyn
->size
;
11654 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
11656 Elf_Internal_Dyn dyn
;
11660 bfd_boolean swap_out_p
;
11662 /* Read in the current dynamic entry. */
11663 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
11665 /* Assume that we're going to modify it and write it out. */
11671 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
11675 BFD_ASSERT (htab
->is_vxworks
);
11676 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
11680 /* Rewrite DT_STRSZ. */
11682 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
11686 s
= htab
->root
.sgot
;
11687 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
11690 case DT_MIPS_PLTGOT
:
11691 s
= htab
->root
.sgotplt
;
11692 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
11695 case DT_MIPS_RLD_VERSION
:
11696 dyn
.d_un
.d_val
= 1; /* XXX */
11699 case DT_MIPS_FLAGS
:
11700 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
11703 case DT_MIPS_TIME_STAMP
:
11707 dyn
.d_un
.d_val
= t
;
11711 case DT_MIPS_ICHECKSUM
:
11713 swap_out_p
= FALSE
;
11716 case DT_MIPS_IVERSION
:
11718 swap_out_p
= FALSE
;
11721 case DT_MIPS_BASE_ADDRESS
:
11722 s
= output_bfd
->sections
;
11723 BFD_ASSERT (s
!= NULL
);
11724 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
11727 case DT_MIPS_LOCAL_GOTNO
:
11728 dyn
.d_un
.d_val
= g
->local_gotno
;
11731 case DT_MIPS_UNREFEXTNO
:
11732 /* The index into the dynamic symbol table which is the
11733 entry of the first external symbol that is not
11734 referenced within the same object. */
11735 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
11738 case DT_MIPS_GOTSYM
:
11739 if (htab
->global_gotsym
)
11741 dyn
.d_un
.d_val
= htab
->global_gotsym
->dynindx
;
11744 /* In case if we don't have global got symbols we default
11745 to setting DT_MIPS_GOTSYM to the same value as
11746 DT_MIPS_SYMTABNO. */
11747 /* Fall through. */
11749 case DT_MIPS_SYMTABNO
:
11751 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
11752 s
= bfd_get_linker_section (dynobj
, name
);
11755 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
11757 dyn
.d_un
.d_val
= 0;
11760 case DT_MIPS_HIPAGENO
:
11761 dyn
.d_un
.d_val
= g
->local_gotno
- htab
->reserved_gotno
;
11764 case DT_MIPS_RLD_MAP
:
11766 struct elf_link_hash_entry
*h
;
11767 h
= mips_elf_hash_table (info
)->rld_symbol
;
11770 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11771 swap_out_p
= FALSE
;
11774 s
= h
->root
.u
.def
.section
;
11776 /* The MIPS_RLD_MAP tag stores the absolute address of the
11778 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
11779 + h
->root
.u
.def
.value
);
11783 case DT_MIPS_RLD_MAP_REL
:
11785 struct elf_link_hash_entry
*h
;
11786 bfd_vma dt_addr
, rld_addr
;
11787 h
= mips_elf_hash_table (info
)->rld_symbol
;
11790 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11791 swap_out_p
= FALSE
;
11794 s
= h
->root
.u
.def
.section
;
11796 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11797 pointer, relative to the address of the tag. */
11798 dt_addr
= (sdyn
->output_section
->vma
+ sdyn
->output_offset
11799 + (b
- sdyn
->contents
));
11800 rld_addr
= (s
->output_section
->vma
+ s
->output_offset
11801 + h
->root
.u
.def
.value
);
11802 dyn
.d_un
.d_ptr
= rld_addr
- dt_addr
;
11806 case DT_MIPS_OPTIONS
:
11807 s
= (bfd_get_section_by_name
11808 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
11809 dyn
.d_un
.d_ptr
= s
->vma
;
11813 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11814 if (htab
->is_vxworks
)
11815 dyn
.d_un
.d_val
= DT_RELA
;
11817 dyn
.d_un
.d_val
= DT_REL
;
11821 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11822 dyn
.d_un
.d_val
= htab
->root
.srelplt
->size
;
11826 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11827 dyn
.d_un
.d_ptr
= (htab
->root
.srelplt
->output_section
->vma
11828 + htab
->root
.srelplt
->output_offset
);
11832 /* If we didn't need any text relocations after all, delete
11833 the dynamic tag. */
11834 if (!(info
->flags
& DF_TEXTREL
))
11836 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11837 swap_out_p
= FALSE
;
11842 /* If we didn't need any text relocations after all, clear
11843 DF_TEXTREL from DT_FLAGS. */
11844 if (!(info
->flags
& DF_TEXTREL
))
11845 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
11847 swap_out_p
= FALSE
;
11851 swap_out_p
= FALSE
;
11852 if (htab
->is_vxworks
11853 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
11858 if (swap_out_p
|| dyn_skipped
)
11859 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
11860 (dynobj
, &dyn
, b
- dyn_skipped
);
11864 dyn_skipped
+= dyn_to_skip
;
11869 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11870 if (dyn_skipped
> 0)
11871 memset (b
- dyn_skipped
, 0, dyn_skipped
);
11874 if (sgot
!= NULL
&& sgot
->size
> 0
11875 && !bfd_is_abs_section (sgot
->output_section
))
11877 if (htab
->is_vxworks
)
11879 /* The first entry of the global offset table points to the
11880 ".dynamic" section. The second is initialized by the
11881 loader and contains the shared library identifier.
11882 The third is also initialized by the loader and points
11883 to the lazy resolution stub. */
11884 MIPS_ELF_PUT_WORD (output_bfd
,
11885 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
11887 MIPS_ELF_PUT_WORD (output_bfd
, 0,
11888 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
11889 MIPS_ELF_PUT_WORD (output_bfd
, 0,
11891 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
11895 /* The first entry of the global offset table will be filled at
11896 runtime. The second entry will be used by some runtime loaders.
11897 This isn't the case of IRIX rld. */
11898 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
11899 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
11900 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
11903 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
11904 = MIPS_ELF_GOT_SIZE (output_bfd
);
11907 /* Generate dynamic relocations for the non-primary gots. */
11908 if (gg
!= NULL
&& gg
->next
)
11910 Elf_Internal_Rela rel
[3];
11911 bfd_vma addend
= 0;
11913 memset (rel
, 0, sizeof (rel
));
11914 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
11916 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
11918 bfd_vma got_index
= g
->next
->local_gotno
+ g
->next
->global_gotno
11919 + g
->next
->tls_gotno
;
11921 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
11922 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
11923 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
11925 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
11927 if (! bfd_link_pic (info
))
11930 for (; got_index
< g
->local_gotno
; got_index
++)
11932 if (got_index
>= g
->assigned_low_gotno
11933 && got_index
<= g
->assigned_high_gotno
)
11936 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
11937 = got_index
* MIPS_ELF_GOT_SIZE (output_bfd
);
11938 if (!(mips_elf_create_dynamic_relocation
11939 (output_bfd
, info
, rel
, NULL
,
11940 bfd_abs_section_ptr
,
11941 0, &addend
, sgot
)))
11943 BFD_ASSERT (addend
== 0);
11948 /* The generation of dynamic relocations for the non-primary gots
11949 adds more dynamic relocations. We cannot count them until
11952 if (elf_hash_table (info
)->dynamic_sections_created
)
11955 bfd_boolean swap_out_p
;
11957 BFD_ASSERT (sdyn
!= NULL
);
11959 for (b
= sdyn
->contents
;
11960 b
< sdyn
->contents
+ sdyn
->size
;
11961 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
11963 Elf_Internal_Dyn dyn
;
11966 /* Read in the current dynamic entry. */
11967 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
11969 /* Assume that we're going to modify it and write it out. */
11975 /* Reduce DT_RELSZ to account for any relocations we
11976 decided not to make. This is for the n64 irix rld,
11977 which doesn't seem to apply any relocations if there
11978 are trailing null entries. */
11979 s
= mips_elf_rel_dyn_section (info
, FALSE
);
11980 dyn
.d_un
.d_val
= (s
->reloc_count
11981 * (ABI_64_P (output_bfd
)
11982 ? sizeof (Elf64_Mips_External_Rel
)
11983 : sizeof (Elf32_External_Rel
)));
11984 /* Adjust the section size too. Tools like the prelinker
11985 can reasonably expect the values to the same. */
11986 BFD_ASSERT (!bfd_is_abs_section (s
->output_section
));
11987 elf_section_data (s
->output_section
)->this_hdr
.sh_size
11992 swap_out_p
= FALSE
;
11997 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
12004 Elf32_compact_rel cpt
;
12006 if (SGI_COMPAT (output_bfd
))
12008 /* Write .compact_rel section out. */
12009 s
= bfd_get_linker_section (dynobj
, ".compact_rel");
12013 cpt
.num
= s
->reloc_count
;
12015 cpt
.offset
= (s
->output_section
->filepos
12016 + sizeof (Elf32_External_compact_rel
));
12019 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
12020 ((Elf32_External_compact_rel
*)
12023 /* Clean up a dummy stub function entry in .text. */
12024 if (htab
->sstubs
!= NULL
)
12026 file_ptr dummy_offset
;
12028 BFD_ASSERT (htab
->sstubs
->size
>= htab
->function_stub_size
);
12029 dummy_offset
= htab
->sstubs
->size
- htab
->function_stub_size
;
12030 memset (htab
->sstubs
->contents
+ dummy_offset
, 0,
12031 htab
->function_stub_size
);
12036 /* The psABI says that the dynamic relocations must be sorted in
12037 increasing order of r_symndx. The VxWorks EABI doesn't require
12038 this, and because the code below handles REL rather than RELA
12039 relocations, using it for VxWorks would be outright harmful. */
12040 if (!htab
->is_vxworks
)
12042 s
= mips_elf_rel_dyn_section (info
, FALSE
);
12044 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
12046 reldyn_sorting_bfd
= output_bfd
;
12048 if (ABI_64_P (output_bfd
))
12049 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
12050 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
12051 sort_dynamic_relocs_64
);
12053 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
12054 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
12055 sort_dynamic_relocs
);
12060 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
12062 if (htab
->is_vxworks
)
12064 if (bfd_link_pic (info
))
12065 mips_vxworks_finish_shared_plt (output_bfd
, info
);
12067 mips_vxworks_finish_exec_plt (output_bfd
, info
);
12071 BFD_ASSERT (!bfd_link_pic (info
));
12072 if (!mips_finish_exec_plt (output_bfd
, info
))
12080 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12083 mips_set_isa_flags (bfd
*abfd
)
12087 switch (bfd_get_mach (abfd
))
12090 case bfd_mach_mips3000
:
12091 val
= E_MIPS_ARCH_1
;
12094 case bfd_mach_mips3900
:
12095 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
12098 case bfd_mach_mips6000
:
12099 val
= E_MIPS_ARCH_2
;
12102 case bfd_mach_mips4010
:
12103 val
= E_MIPS_ARCH_2
| E_MIPS_MACH_4010
;
12106 case bfd_mach_mips4000
:
12107 case bfd_mach_mips4300
:
12108 case bfd_mach_mips4400
:
12109 case bfd_mach_mips4600
:
12110 val
= E_MIPS_ARCH_3
;
12113 case bfd_mach_mips4100
:
12114 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
12117 case bfd_mach_mips4111
:
12118 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
12121 case bfd_mach_mips4120
:
12122 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
12125 case bfd_mach_mips4650
:
12126 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
12129 case bfd_mach_mips5400
:
12130 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
12133 case bfd_mach_mips5500
:
12134 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
12137 case bfd_mach_mips5900
:
12138 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_5900
;
12141 case bfd_mach_mips9000
:
12142 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
12145 case bfd_mach_mips5000
:
12146 case bfd_mach_mips7000
:
12147 case bfd_mach_mips8000
:
12148 case bfd_mach_mips10000
:
12149 case bfd_mach_mips12000
:
12150 case bfd_mach_mips14000
:
12151 case bfd_mach_mips16000
:
12152 val
= E_MIPS_ARCH_4
;
12155 case bfd_mach_mips5
:
12156 val
= E_MIPS_ARCH_5
;
12159 case bfd_mach_mips_loongson_2e
:
12160 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2E
;
12163 case bfd_mach_mips_loongson_2f
:
12164 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2F
;
12167 case bfd_mach_mips_sb1
:
12168 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
12171 case bfd_mach_mips_gs464
:
12172 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS464
;
12175 case bfd_mach_mips_gs464e
:
12176 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS464E
;
12179 case bfd_mach_mips_gs264e
:
12180 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS264E
;
12183 case bfd_mach_mips_octeon
:
12184 case bfd_mach_mips_octeonp
:
12185 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON
;
12188 case bfd_mach_mips_octeon3
:
12189 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON3
;
12192 case bfd_mach_mips_xlr
:
12193 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_XLR
;
12196 case bfd_mach_mips_octeon2
:
12197 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON2
;
12200 case bfd_mach_mipsisa32
:
12201 val
= E_MIPS_ARCH_32
;
12204 case bfd_mach_mipsisa64
:
12205 val
= E_MIPS_ARCH_64
;
12208 case bfd_mach_mipsisa32r2
:
12209 case bfd_mach_mipsisa32r3
:
12210 case bfd_mach_mipsisa32r5
:
12211 val
= E_MIPS_ARCH_32R2
;
12214 case bfd_mach_mips_interaptiv_mr2
:
12215 val
= E_MIPS_ARCH_32R2
| E_MIPS_MACH_IAMR2
;
12218 case bfd_mach_mipsisa64r2
:
12219 case bfd_mach_mipsisa64r3
:
12220 case bfd_mach_mipsisa64r5
:
12221 val
= E_MIPS_ARCH_64R2
;
12224 case bfd_mach_mipsisa32r6
:
12225 val
= E_MIPS_ARCH_32R6
;
12228 case bfd_mach_mipsisa64r6
:
12229 val
= E_MIPS_ARCH_64R6
;
12232 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
12233 elf_elfheader (abfd
)->e_flags
|= val
;
12238 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12239 Don't do so for code sections. We want to keep ordering of HI16/LO16
12240 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12241 relocs to be sorted. */
12244 _bfd_mips_elf_sort_relocs_p (asection
*sec
)
12246 return (sec
->flags
& SEC_CODE
) == 0;
12250 /* The final processing done just before writing out a MIPS ELF object
12251 file. This gets the MIPS architecture right based on the machine
12252 number. This is used by both the 32-bit and the 64-bit ABI. */
12255 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
12256 bfd_boolean linker ATTRIBUTE_UNUSED
)
12259 Elf_Internal_Shdr
**hdrpp
;
12263 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12264 is nonzero. This is for compatibility with old objects, which used
12265 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12266 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
12267 mips_set_isa_flags (abfd
);
12269 /* Set the sh_info field for .gptab sections and other appropriate
12270 info for each special section. */
12271 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
12272 i
< elf_numsections (abfd
);
12275 switch ((*hdrpp
)->sh_type
)
12277 case SHT_MIPS_MSYM
:
12278 case SHT_MIPS_LIBLIST
:
12279 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
12281 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12284 case SHT_MIPS_GPTAB
:
12285 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12286 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
12287 BFD_ASSERT (name
!= NULL
12288 && CONST_STRNEQ (name
, ".gptab."));
12289 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
12290 BFD_ASSERT (sec
!= NULL
);
12291 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
12294 case SHT_MIPS_CONTENT
:
12295 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12296 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
12297 BFD_ASSERT (name
!= NULL
12298 && CONST_STRNEQ (name
, ".MIPS.content"));
12299 sec
= bfd_get_section_by_name (abfd
,
12300 name
+ sizeof ".MIPS.content" - 1);
12301 BFD_ASSERT (sec
!= NULL
);
12302 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12305 case SHT_MIPS_SYMBOL_LIB
:
12306 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
12308 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12309 sec
= bfd_get_section_by_name (abfd
, ".liblist");
12311 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
12314 case SHT_MIPS_EVENTS
:
12315 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12316 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
12317 BFD_ASSERT (name
!= NULL
);
12318 if (CONST_STRNEQ (name
, ".MIPS.events"))
12319 sec
= bfd_get_section_by_name (abfd
,
12320 name
+ sizeof ".MIPS.events" - 1);
12323 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
12324 sec
= bfd_get_section_by_name (abfd
,
12326 + sizeof ".MIPS.post_rel" - 1));
12328 BFD_ASSERT (sec
!= NULL
);
12329 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12336 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12340 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
12341 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
12346 /* See if we need a PT_MIPS_REGINFO segment. */
12347 s
= bfd_get_section_by_name (abfd
, ".reginfo");
12348 if (s
&& (s
->flags
& SEC_LOAD
))
12351 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12352 if (bfd_get_section_by_name (abfd
, ".MIPS.abiflags"))
12355 /* See if we need a PT_MIPS_OPTIONS segment. */
12356 if (IRIX_COMPAT (abfd
) == ict_irix6
12357 && bfd_get_section_by_name (abfd
,
12358 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
12361 /* See if we need a PT_MIPS_RTPROC segment. */
12362 if (IRIX_COMPAT (abfd
) == ict_irix5
12363 && bfd_get_section_by_name (abfd
, ".dynamic")
12364 && bfd_get_section_by_name (abfd
, ".mdebug"))
12367 /* Allocate a PT_NULL header in dynamic objects. See
12368 _bfd_mips_elf_modify_segment_map for details. */
12369 if (!SGI_COMPAT (abfd
)
12370 && bfd_get_section_by_name (abfd
, ".dynamic"))
12376 /* Modify the segment map for an IRIX5 executable. */
12379 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
12380 struct bfd_link_info
*info
)
12383 struct elf_segment_map
*m
, **pm
;
12386 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12388 s
= bfd_get_section_by_name (abfd
, ".reginfo");
12389 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12391 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12392 if (m
->p_type
== PT_MIPS_REGINFO
)
12397 m
= bfd_zalloc (abfd
, amt
);
12401 m
->p_type
= PT_MIPS_REGINFO
;
12403 m
->sections
[0] = s
;
12405 /* We want to put it after the PHDR and INTERP segments. */
12406 pm
= &elf_seg_map (abfd
);
12408 && ((*pm
)->p_type
== PT_PHDR
12409 || (*pm
)->p_type
== PT_INTERP
))
12417 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12419 s
= bfd_get_section_by_name (abfd
, ".MIPS.abiflags");
12420 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12422 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12423 if (m
->p_type
== PT_MIPS_ABIFLAGS
)
12428 m
= bfd_zalloc (abfd
, amt
);
12432 m
->p_type
= PT_MIPS_ABIFLAGS
;
12434 m
->sections
[0] = s
;
12436 /* We want to put it after the PHDR and INTERP segments. */
12437 pm
= &elf_seg_map (abfd
);
12439 && ((*pm
)->p_type
== PT_PHDR
12440 || (*pm
)->p_type
== PT_INTERP
))
12448 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12449 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12450 PT_MIPS_OPTIONS segment immediately following the program header
12452 if (NEWABI_P (abfd
)
12453 /* On non-IRIX6 new abi, we'll have already created a segment
12454 for this section, so don't create another. I'm not sure this
12455 is not also the case for IRIX 6, but I can't test it right
12457 && IRIX_COMPAT (abfd
) == ict_irix6
)
12459 for (s
= abfd
->sections
; s
; s
= s
->next
)
12460 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
12465 struct elf_segment_map
*options_segment
;
12467 pm
= &elf_seg_map (abfd
);
12469 && ((*pm
)->p_type
== PT_PHDR
12470 || (*pm
)->p_type
== PT_INTERP
))
12473 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
12475 amt
= sizeof (struct elf_segment_map
);
12476 options_segment
= bfd_zalloc (abfd
, amt
);
12477 options_segment
->next
= *pm
;
12478 options_segment
->p_type
= PT_MIPS_OPTIONS
;
12479 options_segment
->p_flags
= PF_R
;
12480 options_segment
->p_flags_valid
= TRUE
;
12481 options_segment
->count
= 1;
12482 options_segment
->sections
[0] = s
;
12483 *pm
= options_segment
;
12489 if (IRIX_COMPAT (abfd
) == ict_irix5
)
12491 /* If there are .dynamic and .mdebug sections, we make a room
12492 for the RTPROC header. FIXME: Rewrite without section names. */
12493 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
12494 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
12495 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
12497 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12498 if (m
->p_type
== PT_MIPS_RTPROC
)
12503 m
= bfd_zalloc (abfd
, amt
);
12507 m
->p_type
= PT_MIPS_RTPROC
;
12509 s
= bfd_get_section_by_name (abfd
, ".rtproc");
12514 m
->p_flags_valid
= 1;
12519 m
->sections
[0] = s
;
12522 /* We want to put it after the DYNAMIC segment. */
12523 pm
= &elf_seg_map (abfd
);
12524 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
12534 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12535 .dynstr, .dynsym, and .hash sections, and everything in
12537 for (pm
= &elf_seg_map (abfd
); *pm
!= NULL
;
12539 if ((*pm
)->p_type
== PT_DYNAMIC
)
12542 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12543 glibc's dynamic linker has traditionally derived the number of
12544 tags from the p_filesz field, and sometimes allocates stack
12545 arrays of that size. An overly-big PT_DYNAMIC segment can
12546 be actively harmful in such cases. Making PT_DYNAMIC contain
12547 other sections can also make life hard for the prelinker,
12548 which might move one of the other sections to a different
12549 PT_LOAD segment. */
12550 if (SGI_COMPAT (abfd
)
12553 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
12555 static const char *sec_names
[] =
12557 ".dynamic", ".dynstr", ".dynsym", ".hash"
12561 struct elf_segment_map
*n
;
12563 low
= ~(bfd_vma
) 0;
12565 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
12567 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
12568 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12575 if (high
< s
->vma
+ sz
)
12576 high
= s
->vma
+ sz
;
12581 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
12582 if ((s
->flags
& SEC_LOAD
) != 0
12584 && s
->vma
+ s
->size
<= high
)
12587 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
12588 n
= bfd_zalloc (abfd
, amt
);
12595 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
12597 if ((s
->flags
& SEC_LOAD
) != 0
12599 && s
->vma
+ s
->size
<= high
)
12601 n
->sections
[i
] = s
;
12610 /* Allocate a spare program header in dynamic objects so that tools
12611 like the prelinker can add an extra PT_LOAD entry.
12613 If the prelinker needs to make room for a new PT_LOAD entry, its
12614 standard procedure is to move the first (read-only) sections into
12615 the new (writable) segment. However, the MIPS ABI requires
12616 .dynamic to be in a read-only segment, and the section will often
12617 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12619 Although the prelinker could in principle move .dynamic to a
12620 writable segment, it seems better to allocate a spare program
12621 header instead, and avoid the need to move any sections.
12622 There is a long tradition of allocating spare dynamic tags,
12623 so allocating a spare program header seems like a natural
12626 If INFO is NULL, we may be copying an already prelinked binary
12627 with objcopy or strip, so do not add this header. */
12629 && !SGI_COMPAT (abfd
)
12630 && bfd_get_section_by_name (abfd
, ".dynamic"))
12632 for (pm
= &elf_seg_map (abfd
); *pm
!= NULL
; pm
= &(*pm
)->next
)
12633 if ((*pm
)->p_type
== PT_NULL
)
12637 m
= bfd_zalloc (abfd
, sizeof (*m
));
12641 m
->p_type
= PT_NULL
;
12649 /* Return the section that should be marked against GC for a given
12653 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
12654 struct bfd_link_info
*info
,
12655 Elf_Internal_Rela
*rel
,
12656 struct elf_link_hash_entry
*h
,
12657 Elf_Internal_Sym
*sym
)
12659 /* ??? Do mips16 stub sections need to be handled special? */
12662 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
12664 case R_MIPS_GNU_VTINHERIT
:
12665 case R_MIPS_GNU_VTENTRY
:
12669 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
12672 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12675 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info
*info
,
12676 elf_gc_mark_hook_fn gc_mark_hook
)
12680 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
12682 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
12686 if (! is_mips_elf (sub
))
12689 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12691 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12692 (bfd_get_section_name (sub
, o
)))
12694 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12702 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12703 hiding the old indirect symbol. Process additional relocation
12704 information. Also called for weakdefs, in which case we just let
12705 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12708 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
12709 struct elf_link_hash_entry
*dir
,
12710 struct elf_link_hash_entry
*ind
)
12712 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
12714 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
12716 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
12717 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
12718 /* Any absolute non-dynamic relocations against an indirect or weak
12719 definition will be against the target symbol. */
12720 if (indmips
->has_static_relocs
)
12721 dirmips
->has_static_relocs
= TRUE
;
12723 if (ind
->root
.type
!= bfd_link_hash_indirect
)
12726 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
12727 if (indmips
->readonly_reloc
)
12728 dirmips
->readonly_reloc
= TRUE
;
12729 if (indmips
->no_fn_stub
)
12730 dirmips
->no_fn_stub
= TRUE
;
12731 if (indmips
->fn_stub
)
12733 dirmips
->fn_stub
= indmips
->fn_stub
;
12734 indmips
->fn_stub
= NULL
;
12736 if (indmips
->need_fn_stub
)
12738 dirmips
->need_fn_stub
= TRUE
;
12739 indmips
->need_fn_stub
= FALSE
;
12741 if (indmips
->call_stub
)
12743 dirmips
->call_stub
= indmips
->call_stub
;
12744 indmips
->call_stub
= NULL
;
12746 if (indmips
->call_fp_stub
)
12748 dirmips
->call_fp_stub
= indmips
->call_fp_stub
;
12749 indmips
->call_fp_stub
= NULL
;
12751 if (indmips
->global_got_area
< dirmips
->global_got_area
)
12752 dirmips
->global_got_area
= indmips
->global_got_area
;
12753 if (indmips
->global_got_area
< GGA_NONE
)
12754 indmips
->global_got_area
= GGA_NONE
;
12755 if (indmips
->has_nonpic_branches
)
12756 dirmips
->has_nonpic_branches
= TRUE
;
12759 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12760 to hide it. It has to remain global (it will also be protected) so as to
12761 be assigned a global GOT entry, which will then remain unchanged at load
12765 _bfd_mips_elf_hide_symbol (struct bfd_link_info
*info
,
12766 struct elf_link_hash_entry
*entry
,
12767 bfd_boolean force_local
)
12769 struct mips_elf_link_hash_table
*htab
;
12771 htab
= mips_elf_hash_table (info
);
12772 BFD_ASSERT (htab
!= NULL
);
12773 if (htab
->use_absolute_zero
12774 && strcmp (entry
->root
.root
.string
, "__gnu_absolute_zero") == 0)
12777 _bfd_elf_link_hash_hide_symbol (info
, entry
, force_local
);
12780 #define PDR_SIZE 32
12783 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
12784 struct bfd_link_info
*info
)
12787 bfd_boolean ret
= FALSE
;
12788 unsigned char *tdata
;
12791 o
= bfd_get_section_by_name (abfd
, ".pdr");
12796 if (o
->size
% PDR_SIZE
!= 0)
12798 if (o
->output_section
!= NULL
12799 && bfd_is_abs_section (o
->output_section
))
12802 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
12806 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
12807 info
->keep_memory
);
12814 cookie
->rel
= cookie
->rels
;
12815 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
12817 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
12819 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
12828 mips_elf_section_data (o
)->u
.tdata
= tdata
;
12829 if (o
->rawsize
== 0)
12830 o
->rawsize
= o
->size
;
12831 o
->size
-= skip
* PDR_SIZE
;
12837 if (! info
->keep_memory
)
12838 free (cookie
->rels
);
12844 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
12846 if (strcmp (sec
->name
, ".pdr") == 0)
12852 _bfd_mips_elf_write_section (bfd
*output_bfd
,
12853 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
12854 asection
*sec
, bfd_byte
*contents
)
12856 bfd_byte
*to
, *from
, *end
;
12859 if (strcmp (sec
->name
, ".pdr") != 0)
12862 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
12866 end
= contents
+ sec
->size
;
12867 for (from
= contents
, i
= 0;
12869 from
+= PDR_SIZE
, i
++)
12871 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
12874 memcpy (to
, from
, PDR_SIZE
);
12877 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
12878 sec
->output_offset
, sec
->size
);
12882 /* microMIPS code retains local labels for linker relaxation. Omit them
12883 from output by default for clarity. */
12886 _bfd_mips_elf_is_target_special_symbol (bfd
*abfd
, asymbol
*sym
)
12888 return _bfd_elf_is_local_label_name (abfd
, sym
->name
);
12891 /* MIPS ELF uses a special find_nearest_line routine in order the
12892 handle the ECOFF debugging information. */
12894 struct mips_elf_find_line
12896 struct ecoff_debug_info d
;
12897 struct ecoff_find_line i
;
12901 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asymbol
**symbols
,
12902 asection
*section
, bfd_vma offset
,
12903 const char **filename_ptr
,
12904 const char **functionname_ptr
,
12905 unsigned int *line_ptr
,
12906 unsigned int *discriminator_ptr
)
12910 if (_bfd_dwarf2_find_nearest_line (abfd
, symbols
, NULL
, section
, offset
,
12911 filename_ptr
, functionname_ptr
,
12912 line_ptr
, discriminator_ptr
,
12913 dwarf_debug_sections
,
12914 ABI_64_P (abfd
) ? 8 : 0,
12915 &elf_tdata (abfd
)->dwarf2_find_line_info
)
12916 || _bfd_dwarf1_find_nearest_line (abfd
, symbols
, section
, offset
,
12917 filename_ptr
, functionname_ptr
,
12920 /* PR 22789: If the function name or filename was not found through
12921 the debug information, then try an ordinary lookup instead. */
12922 if ((functionname_ptr
!= NULL
&& *functionname_ptr
== NULL
)
12923 || (filename_ptr
!= NULL
&& *filename_ptr
== NULL
))
12925 /* Do not override already discovered names. */
12926 if (functionname_ptr
!= NULL
&& *functionname_ptr
!= NULL
)
12927 functionname_ptr
= NULL
;
12929 if (filename_ptr
!= NULL
&& *filename_ptr
!= NULL
)
12930 filename_ptr
= NULL
;
12932 _bfd_elf_find_function (abfd
, symbols
, section
, offset
,
12933 filename_ptr
, functionname_ptr
);
12939 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
12942 flagword origflags
;
12943 struct mips_elf_find_line
*fi
;
12944 const struct ecoff_debug_swap
* const swap
=
12945 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
12947 /* If we are called during a link, mips_elf_final_link may have
12948 cleared the SEC_HAS_CONTENTS field. We force it back on here
12949 if appropriate (which it normally will be). */
12950 origflags
= msec
->flags
;
12951 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
12952 msec
->flags
|= SEC_HAS_CONTENTS
;
12954 fi
= mips_elf_tdata (abfd
)->find_line_info
;
12957 bfd_size_type external_fdr_size
;
12960 struct fdr
*fdr_ptr
;
12961 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
12963 fi
= bfd_zalloc (abfd
, amt
);
12966 msec
->flags
= origflags
;
12970 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
12972 msec
->flags
= origflags
;
12976 /* Swap in the FDR information. */
12977 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
12978 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
12979 if (fi
->d
.fdr
== NULL
)
12981 msec
->flags
= origflags
;
12984 external_fdr_size
= swap
->external_fdr_size
;
12985 fdr_ptr
= fi
->d
.fdr
;
12986 fraw_src
= (char *) fi
->d
.external_fdr
;
12987 fraw_end
= (fraw_src
12988 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
12989 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
12990 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
12992 mips_elf_tdata (abfd
)->find_line_info
= fi
;
12994 /* Note that we don't bother to ever free this information.
12995 find_nearest_line is either called all the time, as in
12996 objdump -l, so the information should be saved, or it is
12997 rarely called, as in ld error messages, so the memory
12998 wasted is unimportant. Still, it would probably be a
12999 good idea for free_cached_info to throw it away. */
13002 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
13003 &fi
->i
, filename_ptr
, functionname_ptr
,
13006 msec
->flags
= origflags
;
13010 msec
->flags
= origflags
;
13013 /* Fall back on the generic ELF find_nearest_line routine. */
13015 return _bfd_elf_find_nearest_line (abfd
, symbols
, section
, offset
,
13016 filename_ptr
, functionname_ptr
,
13017 line_ptr
, discriminator_ptr
);
13021 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
13022 const char **filename_ptr
,
13023 const char **functionname_ptr
,
13024 unsigned int *line_ptr
)
13027 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
13028 functionname_ptr
, line_ptr
,
13029 & elf_tdata (abfd
)->dwarf2_find_line_info
);
13034 /* When are writing out the .options or .MIPS.options section,
13035 remember the bytes we are writing out, so that we can install the
13036 GP value in the section_processing routine. */
13039 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
13040 const void *location
,
13041 file_ptr offset
, bfd_size_type count
)
13043 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
13047 if (elf_section_data (section
) == NULL
)
13049 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
13050 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
13051 if (elf_section_data (section
) == NULL
)
13054 c
= mips_elf_section_data (section
)->u
.tdata
;
13057 c
= bfd_zalloc (abfd
, section
->size
);
13060 mips_elf_section_data (section
)->u
.tdata
= c
;
13063 memcpy (c
+ offset
, location
, count
);
13066 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
13070 /* This is almost identical to bfd_generic_get_... except that some
13071 MIPS relocations need to be handled specially. Sigh. */
13074 _bfd_elf_mips_get_relocated_section_contents
13076 struct bfd_link_info
*link_info
,
13077 struct bfd_link_order
*link_order
,
13079 bfd_boolean relocatable
,
13082 /* Get enough memory to hold the stuff */
13083 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
13084 asection
*input_section
= link_order
->u
.indirect
.section
;
13087 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
13088 arelent
**reloc_vector
= NULL
;
13091 if (reloc_size
< 0)
13094 reloc_vector
= bfd_malloc (reloc_size
);
13095 if (reloc_vector
== NULL
&& reloc_size
!= 0)
13098 /* read in the section */
13099 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
13100 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
13103 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
13107 if (reloc_count
< 0)
13110 if (reloc_count
> 0)
13115 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
13118 struct bfd_hash_entry
*h
;
13119 struct bfd_link_hash_entry
*lh
;
13120 /* Skip all this stuff if we aren't mixing formats. */
13121 if (abfd
&& input_bfd
13122 && abfd
->xvec
== input_bfd
->xvec
)
13126 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
13127 lh
= (struct bfd_link_hash_entry
*) h
;
13134 case bfd_link_hash_undefined
:
13135 case bfd_link_hash_undefweak
:
13136 case bfd_link_hash_common
:
13139 case bfd_link_hash_defined
:
13140 case bfd_link_hash_defweak
:
13142 gp
= lh
->u
.def
.value
;
13144 case bfd_link_hash_indirect
:
13145 case bfd_link_hash_warning
:
13147 /* @@FIXME ignoring warning for now */
13149 case bfd_link_hash_new
:
13158 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
13160 char *error_message
= NULL
;
13161 bfd_reloc_status_type r
;
13163 /* Specific to MIPS: Deal with relocation types that require
13164 knowing the gp of the output bfd. */
13165 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
13167 /* If we've managed to find the gp and have a special
13168 function for the relocation then go ahead, else default
13169 to the generic handling. */
13171 && (*parent
)->howto
->special_function
13172 == _bfd_mips_elf32_gprel16_reloc
)
13173 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
13174 input_section
, relocatable
,
13177 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
13179 relocatable
? abfd
: NULL
,
13184 asection
*os
= input_section
->output_section
;
13186 /* A partial link, so keep the relocs */
13187 os
->orelocation
[os
->reloc_count
] = *parent
;
13191 if (r
!= bfd_reloc_ok
)
13195 case bfd_reloc_undefined
:
13196 (*link_info
->callbacks
->undefined_symbol
)
13197 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
13198 input_bfd
, input_section
, (*parent
)->address
, TRUE
);
13200 case bfd_reloc_dangerous
:
13201 BFD_ASSERT (error_message
!= NULL
);
13202 (*link_info
->callbacks
->reloc_dangerous
)
13203 (link_info
, error_message
,
13204 input_bfd
, input_section
, (*parent
)->address
);
13206 case bfd_reloc_overflow
:
13207 (*link_info
->callbacks
->reloc_overflow
)
13209 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
13210 (*parent
)->howto
->name
, (*parent
)->addend
,
13211 input_bfd
, input_section
, (*parent
)->address
);
13213 case bfd_reloc_outofrange
:
13222 if (reloc_vector
!= NULL
)
13223 free (reloc_vector
);
13227 if (reloc_vector
!= NULL
)
13228 free (reloc_vector
);
13233 mips_elf_relax_delete_bytes (bfd
*abfd
,
13234 asection
*sec
, bfd_vma addr
, int count
)
13236 Elf_Internal_Shdr
*symtab_hdr
;
13237 unsigned int sec_shndx
;
13238 bfd_byte
*contents
;
13239 Elf_Internal_Rela
*irel
, *irelend
;
13240 Elf_Internal_Sym
*isym
;
13241 Elf_Internal_Sym
*isymend
;
13242 struct elf_link_hash_entry
**sym_hashes
;
13243 struct elf_link_hash_entry
**end_hashes
;
13244 struct elf_link_hash_entry
**start_hashes
;
13245 unsigned int symcount
;
13247 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
13248 contents
= elf_section_data (sec
)->this_hdr
.contents
;
13250 irel
= elf_section_data (sec
)->relocs
;
13251 irelend
= irel
+ sec
->reloc_count
;
13253 /* Actually delete the bytes. */
13254 memmove (contents
+ addr
, contents
+ addr
+ count
,
13255 (size_t) (sec
->size
- addr
- count
));
13256 sec
->size
-= count
;
13258 /* Adjust all the relocs. */
13259 for (irel
= elf_section_data (sec
)->relocs
; irel
< irelend
; irel
++)
13261 /* Get the new reloc address. */
13262 if (irel
->r_offset
> addr
)
13263 irel
->r_offset
-= count
;
13266 BFD_ASSERT (addr
% 2 == 0);
13267 BFD_ASSERT (count
% 2 == 0);
13269 /* Adjust the local symbols defined in this section. */
13270 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
13271 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
13272 for (isymend
= isym
+ symtab_hdr
->sh_info
; isym
< isymend
; isym
++)
13273 if (isym
->st_shndx
== sec_shndx
&& isym
->st_value
> addr
)
13274 isym
->st_value
-= count
;
13276 /* Now adjust the global symbols defined in this section. */
13277 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
13278 - symtab_hdr
->sh_info
);
13279 sym_hashes
= start_hashes
= elf_sym_hashes (abfd
);
13280 end_hashes
= sym_hashes
+ symcount
;
13282 for (; sym_hashes
< end_hashes
; sym_hashes
++)
13284 struct elf_link_hash_entry
*sym_hash
= *sym_hashes
;
13286 if ((sym_hash
->root
.type
== bfd_link_hash_defined
13287 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
13288 && sym_hash
->root
.u
.def
.section
== sec
)
13290 bfd_vma value
= sym_hash
->root
.u
.def
.value
;
13292 if (ELF_ST_IS_MICROMIPS (sym_hash
->other
))
13293 value
&= MINUS_TWO
;
13295 sym_hash
->root
.u
.def
.value
-= count
;
13303 /* Opcodes needed for microMIPS relaxation as found in
13304 opcodes/micromips-opc.c. */
13306 struct opcode_descriptor
{
13307 unsigned long match
;
13308 unsigned long mask
;
13311 /* The $ra register aka $31. */
13315 /* 32-bit instruction format register fields. */
13317 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13318 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13320 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13322 #define OP16_VALID_REG(r) \
13323 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13326 /* 32-bit and 16-bit branches. */
13328 static const struct opcode_descriptor b_insns_32
[] = {
13329 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13330 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13331 { 0, 0 } /* End marker for find_match(). */
13334 static const struct opcode_descriptor bc_insn_32
=
13335 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13337 static const struct opcode_descriptor bz_insn_32
=
13338 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13340 static const struct opcode_descriptor bzal_insn_32
=
13341 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13343 static const struct opcode_descriptor beq_insn_32
=
13344 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13346 static const struct opcode_descriptor b_insn_16
=
13347 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13349 static const struct opcode_descriptor bz_insn_16
=
13350 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13353 /* 32-bit and 16-bit branch EQ and NE zero. */
13355 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13356 eq and second the ne. This convention is used when replacing a
13357 32-bit BEQ/BNE with the 16-bit version. */
13359 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13361 static const struct opcode_descriptor bz_rs_insns_32
[] = {
13362 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13363 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13364 { 0, 0 } /* End marker for find_match(). */
13367 static const struct opcode_descriptor bz_rt_insns_32
[] = {
13368 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13369 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13370 { 0, 0 } /* End marker for find_match(). */
13373 static const struct opcode_descriptor bzc_insns_32
[] = {
13374 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13375 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13376 { 0, 0 } /* End marker for find_match(). */
13379 static const struct opcode_descriptor bz_insns_16
[] = {
13380 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13381 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13382 { 0, 0 } /* End marker for find_match(). */
13385 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13387 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13388 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13391 /* 32-bit instructions with a delay slot. */
13393 static const struct opcode_descriptor jal_insn_32_bd16
=
13394 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13396 static const struct opcode_descriptor jal_insn_32_bd32
=
13397 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13399 static const struct opcode_descriptor jal_x_insn_32_bd32
=
13400 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13402 static const struct opcode_descriptor j_insn_32
=
13403 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13405 static const struct opcode_descriptor jalr_insn_32
=
13406 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13408 /* This table can be compacted, because no opcode replacement is made. */
13410 static const struct opcode_descriptor ds_insns_32_bd16
[] = {
13411 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13413 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13414 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13416 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13417 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13418 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13419 { 0, 0 } /* End marker for find_match(). */
13422 /* This table can be compacted, because no opcode replacement is made. */
13424 static const struct opcode_descriptor ds_insns_32_bd32
[] = {
13425 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13427 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13428 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13429 { 0, 0 } /* End marker for find_match(). */
13433 /* 16-bit instructions with a delay slot. */
13435 static const struct opcode_descriptor jalr_insn_16_bd16
=
13436 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13438 static const struct opcode_descriptor jalr_insn_16_bd32
=
13439 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13441 static const struct opcode_descriptor jr_insn_16
=
13442 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13444 #define JR16_REG(opcode) ((opcode) & 0x1f)
13446 /* This table can be compacted, because no opcode replacement is made. */
13448 static const struct opcode_descriptor ds_insns_16_bd16
[] = {
13449 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13451 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13452 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13453 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13454 { 0, 0 } /* End marker for find_match(). */
13458 /* LUI instruction. */
13460 static const struct opcode_descriptor lui_insn
=
13461 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13464 /* ADDIU instruction. */
13466 static const struct opcode_descriptor addiu_insn
=
13467 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13469 static const struct opcode_descriptor addiupc_insn
=
13470 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13472 #define ADDIUPC_REG_FIELD(r) \
13473 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13476 /* Relaxable instructions in a JAL delay slot: MOVE. */
13478 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13479 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13480 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13481 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13483 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13484 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13486 static const struct opcode_descriptor move_insns_32
[] = {
13487 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13488 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13489 { 0, 0 } /* End marker for find_match(). */
13492 static const struct opcode_descriptor move_insn_16
=
13493 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13496 /* NOP instructions. */
13498 static const struct opcode_descriptor nop_insn_32
=
13499 { /* "nop", "", */ 0x00000000, 0xffffffff };
13501 static const struct opcode_descriptor nop_insn_16
=
13502 { /* "nop", "", */ 0x0c00, 0xffff };
13505 /* Instruction match support. */
13507 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13510 find_match (unsigned long opcode
, const struct opcode_descriptor insn
[])
13512 unsigned long indx
;
13514 for (indx
= 0; insn
[indx
].mask
!= 0; indx
++)
13515 if (MATCH (opcode
, insn
[indx
]))
13522 /* Branch and delay slot decoding support. */
13524 /* If PTR points to what *might* be a 16-bit branch or jump, then
13525 return the minimum length of its delay slot, otherwise return 0.
13526 Non-zero results are not definitive as we might be checking against
13527 the second half of another instruction. */
13530 check_br16_dslot (bfd
*abfd
, bfd_byte
*ptr
)
13532 unsigned long opcode
;
13535 opcode
= bfd_get_16 (abfd
, ptr
);
13536 if (MATCH (opcode
, jalr_insn_16_bd32
) != 0)
13537 /* 16-bit branch/jump with a 32-bit delay slot. */
13539 else if (MATCH (opcode
, jalr_insn_16_bd16
) != 0
13540 || find_match (opcode
, ds_insns_16_bd16
) >= 0)
13541 /* 16-bit branch/jump with a 16-bit delay slot. */
13544 /* No delay slot. */
13550 /* If PTR points to what *might* be a 32-bit branch or jump, then
13551 return the minimum length of its delay slot, otherwise return 0.
13552 Non-zero results are not definitive as we might be checking against
13553 the second half of another instruction. */
13556 check_br32_dslot (bfd
*abfd
, bfd_byte
*ptr
)
13558 unsigned long opcode
;
13561 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13562 if (find_match (opcode
, ds_insns_32_bd32
) >= 0)
13563 /* 32-bit branch/jump with a 32-bit delay slot. */
13565 else if (find_match (opcode
, ds_insns_32_bd16
) >= 0)
13566 /* 32-bit branch/jump with a 16-bit delay slot. */
13569 /* No delay slot. */
13575 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13576 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13579 check_br16 (bfd
*abfd
, bfd_byte
*ptr
, unsigned long reg
)
13581 unsigned long opcode
;
13583 opcode
= bfd_get_16 (abfd
, ptr
);
13584 if (MATCH (opcode
, b_insn_16
)
13586 || (MATCH (opcode
, jr_insn_16
) && reg
!= JR16_REG (opcode
))
13588 || (MATCH (opcode
, bz_insn_16
) && reg
!= BZ16_REG (opcode
))
13589 /* BEQZ16, BNEZ16 */
13590 || (MATCH (opcode
, jalr_insn_16_bd32
)
13592 && reg
!= JR16_REG (opcode
) && reg
!= RA
))
13598 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13599 then return TRUE, otherwise FALSE. */
13602 check_br32 (bfd
*abfd
, bfd_byte
*ptr
, unsigned long reg
)
13604 unsigned long opcode
;
13606 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13607 if (MATCH (opcode
, j_insn_32
)
13609 || MATCH (opcode
, bc_insn_32
)
13610 /* BC1F, BC1T, BC2F, BC2T */
13611 || (MATCH (opcode
, jal_x_insn_32_bd32
) && reg
!= RA
)
13613 || (MATCH (opcode
, bz_insn_32
) && reg
!= OP32_SREG (opcode
))
13614 /* BGEZ, BGTZ, BLEZ, BLTZ */
13615 || (MATCH (opcode
, bzal_insn_32
)
13616 /* BGEZAL, BLTZAL */
13617 && reg
!= OP32_SREG (opcode
) && reg
!= RA
)
13618 || ((MATCH (opcode
, jalr_insn_32
) || MATCH (opcode
, beq_insn_32
))
13619 /* JALR, JALR.HB, BEQ, BNE */
13620 && reg
!= OP32_SREG (opcode
) && reg
!= OP32_TREG (opcode
)))
13626 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13627 IRELEND) at OFFSET indicate that there must be a compact branch there,
13628 then return TRUE, otherwise FALSE. */
13631 check_relocated_bzc (bfd
*abfd
, const bfd_byte
*ptr
, bfd_vma offset
,
13632 const Elf_Internal_Rela
*internal_relocs
,
13633 const Elf_Internal_Rela
*irelend
)
13635 const Elf_Internal_Rela
*irel
;
13636 unsigned long opcode
;
13638 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13639 if (find_match (opcode
, bzc_insns_32
) < 0)
13642 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
13643 if (irel
->r_offset
== offset
13644 && ELF32_R_TYPE (irel
->r_info
) == R_MICROMIPS_PC16_S1
)
13650 /* Bitsize checking. */
13651 #define IS_BITSIZE(val, N) \
13652 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13653 - (1ULL << ((N) - 1))) == (val))
13657 _bfd_mips_elf_relax_section (bfd
*abfd
, asection
*sec
,
13658 struct bfd_link_info
*link_info
,
13659 bfd_boolean
*again
)
13661 bfd_boolean insn32
= mips_elf_hash_table (link_info
)->insn32
;
13662 Elf_Internal_Shdr
*symtab_hdr
;
13663 Elf_Internal_Rela
*internal_relocs
;
13664 Elf_Internal_Rela
*irel
, *irelend
;
13665 bfd_byte
*contents
= NULL
;
13666 Elf_Internal_Sym
*isymbuf
= NULL
;
13668 /* Assume nothing changes. */
13671 /* We don't have to do anything for a relocatable link, if
13672 this section does not have relocs, or if this is not a
13675 if (bfd_link_relocatable (link_info
)
13676 || (sec
->flags
& SEC_RELOC
) == 0
13677 || sec
->reloc_count
== 0
13678 || (sec
->flags
& SEC_CODE
) == 0)
13681 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
13683 /* Get a copy of the native relocations. */
13684 internal_relocs
= (_bfd_elf_link_read_relocs
13685 (abfd
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
13686 link_info
->keep_memory
));
13687 if (internal_relocs
== NULL
)
13690 /* Walk through them looking for relaxing opportunities. */
13691 irelend
= internal_relocs
+ sec
->reloc_count
;
13692 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
13694 unsigned long r_symndx
= ELF32_R_SYM (irel
->r_info
);
13695 unsigned int r_type
= ELF32_R_TYPE (irel
->r_info
);
13696 bfd_boolean target_is_micromips_code_p
;
13697 unsigned long opcode
;
13703 /* The number of bytes to delete for relaxation and from where
13704 to delete these bytes starting at irel->r_offset. */
13708 /* If this isn't something that can be relaxed, then ignore
13710 if (r_type
!= R_MICROMIPS_HI16
13711 && r_type
!= R_MICROMIPS_PC16_S1
13712 && r_type
!= R_MICROMIPS_26_S1
)
13715 /* Get the section contents if we haven't done so already. */
13716 if (contents
== NULL
)
13718 /* Get cached copy if it exists. */
13719 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
13720 contents
= elf_section_data (sec
)->this_hdr
.contents
;
13721 /* Go get them off disk. */
13722 else if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
13725 ptr
= contents
+ irel
->r_offset
;
13727 /* Read this BFD's local symbols if we haven't done so already. */
13728 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
13730 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
13731 if (isymbuf
== NULL
)
13732 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
13733 symtab_hdr
->sh_info
, 0,
13735 if (isymbuf
== NULL
)
13739 /* Get the value of the symbol referred to by the reloc. */
13740 if (r_symndx
< symtab_hdr
->sh_info
)
13742 /* A local symbol. */
13743 Elf_Internal_Sym
*isym
;
13746 isym
= isymbuf
+ r_symndx
;
13747 if (isym
->st_shndx
== SHN_UNDEF
)
13748 sym_sec
= bfd_und_section_ptr
;
13749 else if (isym
->st_shndx
== SHN_ABS
)
13750 sym_sec
= bfd_abs_section_ptr
;
13751 else if (isym
->st_shndx
== SHN_COMMON
)
13752 sym_sec
= bfd_com_section_ptr
;
13754 sym_sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
13755 symval
= (isym
->st_value
13756 + sym_sec
->output_section
->vma
13757 + sym_sec
->output_offset
);
13758 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (isym
->st_other
);
13762 unsigned long indx
;
13763 struct elf_link_hash_entry
*h
;
13765 /* An external symbol. */
13766 indx
= r_symndx
- symtab_hdr
->sh_info
;
13767 h
= elf_sym_hashes (abfd
)[indx
];
13768 BFD_ASSERT (h
!= NULL
);
13770 if (h
->root
.type
!= bfd_link_hash_defined
13771 && h
->root
.type
!= bfd_link_hash_defweak
)
13772 /* This appears to be a reference to an undefined
13773 symbol. Just ignore it -- it will be caught by the
13774 regular reloc processing. */
13777 symval
= (h
->root
.u
.def
.value
13778 + h
->root
.u
.def
.section
->output_section
->vma
13779 + h
->root
.u
.def
.section
->output_offset
);
13780 target_is_micromips_code_p
= (!h
->needs_plt
13781 && ELF_ST_IS_MICROMIPS (h
->other
));
13785 /* For simplicity of coding, we are going to modify the
13786 section contents, the section relocs, and the BFD symbol
13787 table. We must tell the rest of the code not to free up this
13788 information. It would be possible to instead create a table
13789 of changes which have to be made, as is done in coff-mips.c;
13790 that would be more work, but would require less memory when
13791 the linker is run. */
13793 /* Only 32-bit instructions relaxed. */
13794 if (irel
->r_offset
+ 4 > sec
->size
)
13797 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13799 /* This is the pc-relative distance from the instruction the
13800 relocation is applied to, to the symbol referred. */
13802 - (sec
->output_section
->vma
+ sec
->output_offset
)
13805 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13806 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13807 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13809 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13811 where pcrval has first to be adjusted to apply against the LO16
13812 location (we make the adjustment later on, when we have figured
13813 out the offset). */
13814 if (r_type
== R_MICROMIPS_HI16
&& MATCH (opcode
, lui_insn
))
13816 bfd_boolean bzc
= FALSE
;
13817 unsigned long nextopc
;
13821 /* Give up if the previous reloc was a HI16 against this symbol
13823 if (irel
> internal_relocs
13824 && ELF32_R_TYPE (irel
[-1].r_info
) == R_MICROMIPS_HI16
13825 && ELF32_R_SYM (irel
[-1].r_info
) == r_symndx
)
13828 /* Or if the next reloc is not a LO16 against this symbol. */
13829 if (irel
+ 1 >= irelend
13830 || ELF32_R_TYPE (irel
[1].r_info
) != R_MICROMIPS_LO16
13831 || ELF32_R_SYM (irel
[1].r_info
) != r_symndx
)
13834 /* Or if the second next reloc is a LO16 against this symbol too. */
13835 if (irel
+ 2 >= irelend
13836 && ELF32_R_TYPE (irel
[2].r_info
) == R_MICROMIPS_LO16
13837 && ELF32_R_SYM (irel
[2].r_info
) == r_symndx
)
13840 /* See if the LUI instruction *might* be in a branch delay slot.
13841 We check whether what looks like a 16-bit branch or jump is
13842 actually an immediate argument to a compact branch, and let
13843 it through if so. */
13844 if (irel
->r_offset
>= 2
13845 && check_br16_dslot (abfd
, ptr
- 2)
13846 && !(irel
->r_offset
>= 4
13847 && (bzc
= check_relocated_bzc (abfd
,
13848 ptr
- 4, irel
->r_offset
- 4,
13849 internal_relocs
, irelend
))))
13851 if (irel
->r_offset
>= 4
13853 && check_br32_dslot (abfd
, ptr
- 4))
13856 reg
= OP32_SREG (opcode
);
13858 /* We only relax adjacent instructions or ones separated with
13859 a branch or jump that has a delay slot. The branch or jump
13860 must not fiddle with the register used to hold the address.
13861 Subtract 4 for the LUI itself. */
13862 offset
= irel
[1].r_offset
- irel
[0].r_offset
;
13863 switch (offset
- 4)
13868 if (check_br16 (abfd
, ptr
+ 4, reg
))
13872 if (check_br32 (abfd
, ptr
+ 4, reg
))
13879 nextopc
= bfd_get_micromips_32 (abfd
, contents
+ irel
[1].r_offset
);
13881 /* Give up unless the same register is used with both
13883 if (OP32_SREG (nextopc
) != reg
)
13886 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13887 and rounding up to take masking of the two LSBs into account. */
13888 pcrval
= ((pcrval
- offset
+ 3) | 3) ^ 3;
13890 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13891 if (IS_BITSIZE (symval
, 16))
13893 /* Fix the relocation's type. */
13894 irel
[1].r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_HI0_LO16
);
13896 /* Instructions using R_MICROMIPS_LO16 have the base or
13897 source register in bits 20:16. This register becomes $0
13898 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13899 nextopc
&= ~0x001f0000;
13900 bfd_put_16 (abfd
, (nextopc
>> 16) & 0xffff,
13901 contents
+ irel
[1].r_offset
);
13904 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13905 We add 4 to take LUI deletion into account while checking
13906 the PC-relative distance. */
13907 else if (symval
% 4 == 0
13908 && IS_BITSIZE (pcrval
+ 4, 25)
13909 && MATCH (nextopc
, addiu_insn
)
13910 && OP32_TREG (nextopc
) == OP32_SREG (nextopc
)
13911 && OP16_VALID_REG (OP32_TREG (nextopc
)))
13913 /* Fix the relocation's type. */
13914 irel
[1].r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC23_S2
);
13916 /* Replace ADDIU with the ADDIUPC version. */
13917 nextopc
= (addiupc_insn
.match
13918 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc
)));
13920 bfd_put_micromips_32 (abfd
, nextopc
,
13921 contents
+ irel
[1].r_offset
);
13924 /* Can't do anything, give up, sigh... */
13928 /* Fix the relocation's type. */
13929 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MIPS_NONE
);
13931 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13936 /* Compact branch relaxation -- due to the multitude of macros
13937 employed by the compiler/assembler, compact branches are not
13938 always generated. Obviously, this can/will be fixed elsewhere,
13939 but there is no drawback in double checking it here. */
13940 else if (r_type
== R_MICROMIPS_PC16_S1
13941 && irel
->r_offset
+ 5 < sec
->size
13942 && ((fndopc
= find_match (opcode
, bz_rs_insns_32
)) >= 0
13943 || (fndopc
= find_match (opcode
, bz_rt_insns_32
)) >= 0)
13945 && (delcnt
= MATCH (bfd_get_16 (abfd
, ptr
+ 4),
13946 nop_insn_16
) ? 2 : 0))
13947 || (irel
->r_offset
+ 7 < sec
->size
13948 && (delcnt
= MATCH (bfd_get_micromips_32 (abfd
,
13950 nop_insn_32
) ? 4 : 0))))
13954 reg
= OP32_SREG (opcode
) ? OP32_SREG (opcode
) : OP32_TREG (opcode
);
13956 /* Replace BEQZ/BNEZ with the compact version. */
13957 opcode
= (bzc_insns_32
[fndopc
].match
13958 | BZC32_REG_FIELD (reg
)
13959 | (opcode
& 0xffff)); /* Addend value. */
13961 bfd_put_micromips_32 (abfd
, opcode
, ptr
);
13963 /* Delete the delay slot NOP: two or four bytes from
13964 irel->offset + 4; delcnt has already been set above. */
13968 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13969 to check the distance from the next instruction, so subtract 2. */
13971 && r_type
== R_MICROMIPS_PC16_S1
13972 && IS_BITSIZE (pcrval
- 2, 11)
13973 && find_match (opcode
, b_insns_32
) >= 0)
13975 /* Fix the relocation's type. */
13976 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC10_S1
);
13978 /* Replace the 32-bit opcode with a 16-bit opcode. */
13981 | (opcode
& 0x3ff)), /* Addend value. */
13984 /* Delete 2 bytes from irel->r_offset + 2. */
13989 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13990 to check the distance from the next instruction, so subtract 2. */
13992 && r_type
== R_MICROMIPS_PC16_S1
13993 && IS_BITSIZE (pcrval
- 2, 8)
13994 && (((fndopc
= find_match (opcode
, bz_rs_insns_32
)) >= 0
13995 && OP16_VALID_REG (OP32_SREG (opcode
)))
13996 || ((fndopc
= find_match (opcode
, bz_rt_insns_32
)) >= 0
13997 && OP16_VALID_REG (OP32_TREG (opcode
)))))
14001 reg
= OP32_SREG (opcode
) ? OP32_SREG (opcode
) : OP32_TREG (opcode
);
14003 /* Fix the relocation's type. */
14004 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC7_S1
);
14006 /* Replace the 32-bit opcode with a 16-bit opcode. */
14008 (bz_insns_16
[fndopc
].match
14009 | BZ16_REG_FIELD (reg
)
14010 | (opcode
& 0x7f)), /* Addend value. */
14013 /* Delete 2 bytes from irel->r_offset + 2. */
14018 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14020 && r_type
== R_MICROMIPS_26_S1
14021 && target_is_micromips_code_p
14022 && irel
->r_offset
+ 7 < sec
->size
14023 && MATCH (opcode
, jal_insn_32_bd32
))
14025 unsigned long n32opc
;
14026 bfd_boolean relaxed
= FALSE
;
14028 n32opc
= bfd_get_micromips_32 (abfd
, ptr
+ 4);
14030 if (MATCH (n32opc
, nop_insn_32
))
14032 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14033 bfd_put_16 (abfd
, nop_insn_16
.match
, ptr
+ 4);
14037 else if (find_match (n32opc
, move_insns_32
) >= 0)
14039 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14041 (move_insn_16
.match
14042 | MOVE16_RD_FIELD (MOVE32_RD (n32opc
))
14043 | MOVE16_RS_FIELD (MOVE32_RS (n32opc
))),
14048 /* Other 32-bit instructions relaxable to 16-bit
14049 instructions will be handled here later. */
14053 /* JAL with 32-bit delay slot that is changed to a JALS
14054 with 16-bit delay slot. */
14055 bfd_put_micromips_32 (abfd
, jal_insn_32_bd16
.match
, ptr
);
14057 /* Delete 2 bytes from irel->r_offset + 6. */
14065 /* Note that we've changed the relocs, section contents, etc. */
14066 elf_section_data (sec
)->relocs
= internal_relocs
;
14067 elf_section_data (sec
)->this_hdr
.contents
= contents
;
14068 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
14070 /* Delete bytes depending on the delcnt and deloff. */
14071 if (!mips_elf_relax_delete_bytes (abfd
, sec
,
14072 irel
->r_offset
+ deloff
, delcnt
))
14075 /* That will change things, so we should relax again.
14076 Note that this is not required, and it may be slow. */
14081 if (isymbuf
!= NULL
14082 && symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
14084 if (! link_info
->keep_memory
)
14088 /* Cache the symbols for elf_link_input_bfd. */
14089 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
14093 if (contents
!= NULL
14094 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
14096 if (! link_info
->keep_memory
)
14100 /* Cache the section contents for elf_link_input_bfd. */
14101 elf_section_data (sec
)->this_hdr
.contents
= contents
;
14105 if (internal_relocs
!= NULL
14106 && elf_section_data (sec
)->relocs
!= internal_relocs
)
14107 free (internal_relocs
);
14112 if (isymbuf
!= NULL
14113 && symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
14115 if (contents
!= NULL
14116 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
14118 if (internal_relocs
!= NULL
14119 && elf_section_data (sec
)->relocs
!= internal_relocs
)
14120 free (internal_relocs
);
14125 /* Create a MIPS ELF linker hash table. */
14127 struct bfd_link_hash_table
*
14128 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
14130 struct mips_elf_link_hash_table
*ret
;
14131 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
14133 ret
= bfd_zmalloc (amt
);
14137 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
14138 mips_elf_link_hash_newfunc
,
14139 sizeof (struct mips_elf_link_hash_entry
),
14145 ret
->root
.init_plt_refcount
.plist
= NULL
;
14146 ret
->root
.init_plt_offset
.plist
= NULL
;
14148 return &ret
->root
.root
;
14151 /* Likewise, but indicate that the target is VxWorks. */
14153 struct bfd_link_hash_table
*
14154 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
14156 struct bfd_link_hash_table
*ret
;
14158 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
14161 struct mips_elf_link_hash_table
*htab
;
14163 htab
= (struct mips_elf_link_hash_table
*) ret
;
14164 htab
->use_plts_and_copy_relocs
= TRUE
;
14165 htab
->is_vxworks
= TRUE
;
14170 /* A function that the linker calls if we are allowed to use PLTs
14171 and copy relocs. */
14174 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info
*info
)
14176 mips_elf_hash_table (info
)->use_plts_and_copy_relocs
= TRUE
;
14179 /* A function that the linker calls to select between all or only
14180 32-bit microMIPS instructions, and between making or ignoring
14181 branch relocation checks for invalid transitions between ISA modes.
14182 Also record whether we have been configured for a GNU target. */
14185 _bfd_mips_elf_linker_flags (struct bfd_link_info
*info
, bfd_boolean insn32
,
14186 bfd_boolean ignore_branch_isa
,
14187 bfd_boolean gnu_target
)
14189 mips_elf_hash_table (info
)->insn32
= insn32
;
14190 mips_elf_hash_table (info
)->ignore_branch_isa
= ignore_branch_isa
;
14191 mips_elf_hash_table (info
)->gnu_target
= gnu_target
;
14194 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14196 struct mips_mach_extension
14198 unsigned long extension
, base
;
14202 /* An array describing how BFD machines relate to one another. The entries
14203 are ordered topologically with MIPS I extensions listed last. */
14205 static const struct mips_mach_extension mips_mach_extensions
[] =
14207 /* MIPS64r2 extensions. */
14208 { bfd_mach_mips_octeon3
, bfd_mach_mips_octeon2
},
14209 { bfd_mach_mips_octeon2
, bfd_mach_mips_octeonp
},
14210 { bfd_mach_mips_octeonp
, bfd_mach_mips_octeon
},
14211 { bfd_mach_mips_octeon
, bfd_mach_mipsisa64r2
},
14212 { bfd_mach_mips_gs264e
, bfd_mach_mips_gs464e
},
14213 { bfd_mach_mips_gs464e
, bfd_mach_mips_gs464
},
14214 { bfd_mach_mips_gs464
, bfd_mach_mipsisa64r2
},
14216 /* MIPS64 extensions. */
14217 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
14218 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
14219 { bfd_mach_mips_xlr
, bfd_mach_mipsisa64
},
14221 /* MIPS V extensions. */
14222 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
14224 /* R10000 extensions. */
14225 { bfd_mach_mips12000
, bfd_mach_mips10000
},
14226 { bfd_mach_mips14000
, bfd_mach_mips10000
},
14227 { bfd_mach_mips16000
, bfd_mach_mips10000
},
14229 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14230 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14231 better to allow vr5400 and vr5500 code to be merged anyway, since
14232 many libraries will just use the core ISA. Perhaps we could add
14233 some sort of ASE flag if this ever proves a problem. */
14234 { bfd_mach_mips5500
, bfd_mach_mips5400
},
14235 { bfd_mach_mips5400
, bfd_mach_mips5000
},
14237 /* MIPS IV extensions. */
14238 { bfd_mach_mips5
, bfd_mach_mips8000
},
14239 { bfd_mach_mips10000
, bfd_mach_mips8000
},
14240 { bfd_mach_mips5000
, bfd_mach_mips8000
},
14241 { bfd_mach_mips7000
, bfd_mach_mips8000
},
14242 { bfd_mach_mips9000
, bfd_mach_mips8000
},
14244 /* VR4100 extensions. */
14245 { bfd_mach_mips4120
, bfd_mach_mips4100
},
14246 { bfd_mach_mips4111
, bfd_mach_mips4100
},
14248 /* MIPS III extensions. */
14249 { bfd_mach_mips_loongson_2e
, bfd_mach_mips4000
},
14250 { bfd_mach_mips_loongson_2f
, bfd_mach_mips4000
},
14251 { bfd_mach_mips8000
, bfd_mach_mips4000
},
14252 { bfd_mach_mips4650
, bfd_mach_mips4000
},
14253 { bfd_mach_mips4600
, bfd_mach_mips4000
},
14254 { bfd_mach_mips4400
, bfd_mach_mips4000
},
14255 { bfd_mach_mips4300
, bfd_mach_mips4000
},
14256 { bfd_mach_mips4100
, bfd_mach_mips4000
},
14257 { bfd_mach_mips5900
, bfd_mach_mips4000
},
14259 /* MIPS32r3 extensions. */
14260 { bfd_mach_mips_interaptiv_mr2
, bfd_mach_mipsisa32r3
},
14262 /* MIPS32r2 extensions. */
14263 { bfd_mach_mipsisa32r3
, bfd_mach_mipsisa32r2
},
14265 /* MIPS32 extensions. */
14266 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
14268 /* MIPS II extensions. */
14269 { bfd_mach_mips4000
, bfd_mach_mips6000
},
14270 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
14271 { bfd_mach_mips4010
, bfd_mach_mips6000
},
14273 /* MIPS I extensions. */
14274 { bfd_mach_mips6000
, bfd_mach_mips3000
},
14275 { bfd_mach_mips3900
, bfd_mach_mips3000
}
14278 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14281 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
14285 if (extension
== base
)
14288 if (base
== bfd_mach_mipsisa32
14289 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
14292 if (base
== bfd_mach_mipsisa32r2
14293 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
14296 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
14297 if (extension
== mips_mach_extensions
[i
].extension
)
14299 extension
= mips_mach_extensions
[i
].base
;
14300 if (extension
== base
)
14307 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14309 static unsigned long
14310 bfd_mips_isa_ext_mach (unsigned int isa_ext
)
14314 case AFL_EXT_3900
: return bfd_mach_mips3900
;
14315 case AFL_EXT_4010
: return bfd_mach_mips4010
;
14316 case AFL_EXT_4100
: return bfd_mach_mips4100
;
14317 case AFL_EXT_4111
: return bfd_mach_mips4111
;
14318 case AFL_EXT_4120
: return bfd_mach_mips4120
;
14319 case AFL_EXT_4650
: return bfd_mach_mips4650
;
14320 case AFL_EXT_5400
: return bfd_mach_mips5400
;
14321 case AFL_EXT_5500
: return bfd_mach_mips5500
;
14322 case AFL_EXT_5900
: return bfd_mach_mips5900
;
14323 case AFL_EXT_10000
: return bfd_mach_mips10000
;
14324 case AFL_EXT_LOONGSON_2E
: return bfd_mach_mips_loongson_2e
;
14325 case AFL_EXT_LOONGSON_2F
: return bfd_mach_mips_loongson_2f
;
14326 case AFL_EXT_SB1
: return bfd_mach_mips_sb1
;
14327 case AFL_EXT_OCTEON
: return bfd_mach_mips_octeon
;
14328 case AFL_EXT_OCTEONP
: return bfd_mach_mips_octeonp
;
14329 case AFL_EXT_OCTEON2
: return bfd_mach_mips_octeon2
;
14330 case AFL_EXT_XLR
: return bfd_mach_mips_xlr
;
14331 default: return bfd_mach_mips3000
;
14335 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14338 bfd_mips_isa_ext (bfd
*abfd
)
14340 switch (bfd_get_mach (abfd
))
14342 case bfd_mach_mips3900
: return AFL_EXT_3900
;
14343 case bfd_mach_mips4010
: return AFL_EXT_4010
;
14344 case bfd_mach_mips4100
: return AFL_EXT_4100
;
14345 case bfd_mach_mips4111
: return AFL_EXT_4111
;
14346 case bfd_mach_mips4120
: return AFL_EXT_4120
;
14347 case bfd_mach_mips4650
: return AFL_EXT_4650
;
14348 case bfd_mach_mips5400
: return AFL_EXT_5400
;
14349 case bfd_mach_mips5500
: return AFL_EXT_5500
;
14350 case bfd_mach_mips5900
: return AFL_EXT_5900
;
14351 case bfd_mach_mips10000
: return AFL_EXT_10000
;
14352 case bfd_mach_mips_loongson_2e
: return AFL_EXT_LOONGSON_2E
;
14353 case bfd_mach_mips_loongson_2f
: return AFL_EXT_LOONGSON_2F
;
14354 case bfd_mach_mips_sb1
: return AFL_EXT_SB1
;
14355 case bfd_mach_mips_octeon
: return AFL_EXT_OCTEON
;
14356 case bfd_mach_mips_octeonp
: return AFL_EXT_OCTEONP
;
14357 case bfd_mach_mips_octeon3
: return AFL_EXT_OCTEON3
;
14358 case bfd_mach_mips_octeon2
: return AFL_EXT_OCTEON2
;
14359 case bfd_mach_mips_xlr
: return AFL_EXT_XLR
;
14360 case bfd_mach_mips_interaptiv_mr2
:
14361 return AFL_EXT_INTERAPTIV_MR2
;
14366 /* Encode ISA level and revision as a single value. */
14367 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14369 /* Decode a single value into level and revision. */
14370 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14371 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14373 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14376 update_mips_abiflags_isa (bfd
*abfd
, Elf_Internal_ABIFlags_v0
*abiflags
)
14379 switch (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
)
14381 case E_MIPS_ARCH_1
: new_isa
= LEVEL_REV (1, 0); break;
14382 case E_MIPS_ARCH_2
: new_isa
= LEVEL_REV (2, 0); break;
14383 case E_MIPS_ARCH_3
: new_isa
= LEVEL_REV (3, 0); break;
14384 case E_MIPS_ARCH_4
: new_isa
= LEVEL_REV (4, 0); break;
14385 case E_MIPS_ARCH_5
: new_isa
= LEVEL_REV (5, 0); break;
14386 case E_MIPS_ARCH_32
: new_isa
= LEVEL_REV (32, 1); break;
14387 case E_MIPS_ARCH_32R2
: new_isa
= LEVEL_REV (32, 2); break;
14388 case E_MIPS_ARCH_32R6
: new_isa
= LEVEL_REV (32, 6); break;
14389 case E_MIPS_ARCH_64
: new_isa
= LEVEL_REV (64, 1); break;
14390 case E_MIPS_ARCH_64R2
: new_isa
= LEVEL_REV (64, 2); break;
14391 case E_MIPS_ARCH_64R6
: new_isa
= LEVEL_REV (64, 6); break;
14394 /* xgettext:c-format */
14395 (_("%pB: unknown architecture %s"),
14396 abfd
, bfd_printable_name (abfd
));
14399 if (new_isa
> LEVEL_REV (abiflags
->isa_level
, abiflags
->isa_rev
))
14401 abiflags
->isa_level
= ISA_LEVEL (new_isa
);
14402 abiflags
->isa_rev
= ISA_REV (new_isa
);
14405 /* Update the isa_ext if ABFD describes a further extension. */
14406 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags
->isa_ext
),
14407 bfd_get_mach (abfd
)))
14408 abiflags
->isa_ext
= bfd_mips_isa_ext (abfd
);
14411 /* Return true if the given ELF header flags describe a 32-bit binary. */
14414 mips_32bit_flags_p (flagword flags
)
14416 return ((flags
& EF_MIPS_32BITMODE
) != 0
14417 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
14418 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
14419 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
14420 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
14421 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
14422 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
14423 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R6
);
14426 /* Infer the content of the ABI flags based on the elf header. */
14429 infer_mips_abiflags (bfd
*abfd
, Elf_Internal_ABIFlags_v0
* abiflags
)
14431 obj_attribute
*in_attr
;
14433 memset (abiflags
, 0, sizeof (Elf_Internal_ABIFlags_v0
));
14434 update_mips_abiflags_isa (abfd
, abiflags
);
14436 if (mips_32bit_flags_p (elf_elfheader (abfd
)->e_flags
))
14437 abiflags
->gpr_size
= AFL_REG_32
;
14439 abiflags
->gpr_size
= AFL_REG_64
;
14441 abiflags
->cpr1_size
= AFL_REG_NONE
;
14443 in_attr
= elf_known_obj_attributes (abfd
)[OBJ_ATTR_GNU
];
14444 abiflags
->fp_abi
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
14446 if (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_SINGLE
14447 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_XX
14448 || (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_DOUBLE
14449 && abiflags
->gpr_size
== AFL_REG_32
))
14450 abiflags
->cpr1_size
= AFL_REG_32
;
14451 else if (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_DOUBLE
14452 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_64
14453 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_64A
)
14454 abiflags
->cpr1_size
= AFL_REG_64
;
14456 abiflags
->cpr2_size
= AFL_REG_NONE
;
14458 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
14459 abiflags
->ases
|= AFL_ASE_MDMX
;
14460 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
14461 abiflags
->ases
|= AFL_ASE_MIPS16
;
14462 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
)
14463 abiflags
->ases
|= AFL_ASE_MICROMIPS
;
14465 if (abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_ANY
14466 && abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_SOFT
14467 && abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_64A
14468 && abiflags
->isa_level
>= 32
14469 && abiflags
->ases
!= AFL_ASE_LOONGSON_EXT
)
14470 abiflags
->flags1
|= AFL_FLAGS1_ODDSPREG
;
14473 /* We need to use a special link routine to handle the .reginfo and
14474 the .mdebug sections. We need to merge all instances of these
14475 sections together, not write them all out sequentially. */
14478 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
14481 struct bfd_link_order
*p
;
14482 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
14483 asection
*rtproc_sec
, *abiflags_sec
;
14484 Elf32_RegInfo reginfo
;
14485 struct ecoff_debug_info debug
;
14486 struct mips_htab_traverse_info hti
;
14487 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14488 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
14489 HDRR
*symhdr
= &debug
.symbolic_header
;
14490 void *mdebug_handle
= NULL
;
14495 struct mips_elf_link_hash_table
*htab
;
14497 static const char * const secname
[] =
14499 ".text", ".init", ".fini", ".data",
14500 ".rodata", ".sdata", ".sbss", ".bss"
14502 static const int sc
[] =
14504 scText
, scInit
, scFini
, scData
,
14505 scRData
, scSData
, scSBss
, scBss
14508 htab
= mips_elf_hash_table (info
);
14509 BFD_ASSERT (htab
!= NULL
);
14511 /* Sort the dynamic symbols so that those with GOT entries come after
14513 if (!mips_elf_sort_hash_table (abfd
, info
))
14516 /* Create any scheduled LA25 stubs. */
14518 hti
.output_bfd
= abfd
;
14520 htab_traverse (htab
->la25_stubs
, mips_elf_create_la25_stub
, &hti
);
14524 /* Get a value for the GP register. */
14525 if (elf_gp (abfd
) == 0)
14527 struct bfd_link_hash_entry
*h
;
14529 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
14530 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
14531 elf_gp (abfd
) = (h
->u
.def
.value
14532 + h
->u
.def
.section
->output_section
->vma
14533 + h
->u
.def
.section
->output_offset
);
14534 else if (htab
->is_vxworks
14535 && (h
= bfd_link_hash_lookup (info
->hash
,
14536 "_GLOBAL_OFFSET_TABLE_",
14537 FALSE
, FALSE
, TRUE
))
14538 && h
->type
== bfd_link_hash_defined
)
14539 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
14540 + h
->u
.def
.section
->output_offset
14542 else if (bfd_link_relocatable (info
))
14544 bfd_vma lo
= MINUS_ONE
;
14546 /* Find the GP-relative section with the lowest offset. */
14547 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
14549 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
14552 /* And calculate GP relative to that. */
14553 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
14557 /* If the relocate_section function needs to do a reloc
14558 involving the GP value, it should make a reloc_dangerous
14559 callback to warn that GP is not defined. */
14563 /* Go through the sections and collect the .reginfo and .mdebug
14565 abiflags_sec
= NULL
;
14566 reginfo_sec
= NULL
;
14568 gptab_data_sec
= NULL
;
14569 gptab_bss_sec
= NULL
;
14570 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
14572 if (strcmp (o
->name
, ".MIPS.abiflags") == 0)
14574 /* We have found the .MIPS.abiflags section in the output file.
14575 Look through all the link_orders comprising it and remove them.
14576 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14577 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14579 asection
*input_section
;
14581 if (p
->type
!= bfd_indirect_link_order
)
14583 if (p
->type
== bfd_data_link_order
)
14588 input_section
= p
->u
.indirect
.section
;
14590 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14591 elf_link_input_bfd ignores this section. */
14592 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14595 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14596 BFD_ASSERT(o
->size
== sizeof (Elf_External_ABIFlags_v0
));
14598 /* Skip this section later on (I don't think this currently
14599 matters, but someday it might). */
14600 o
->map_head
.link_order
= NULL
;
14605 if (strcmp (o
->name
, ".reginfo") == 0)
14607 memset (®info
, 0, sizeof reginfo
);
14609 /* We have found the .reginfo section in the output file.
14610 Look through all the link_orders comprising it and merge
14611 the information together. */
14612 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14614 asection
*input_section
;
14616 Elf32_External_RegInfo ext
;
14620 if (p
->type
!= bfd_indirect_link_order
)
14622 if (p
->type
== bfd_data_link_order
)
14627 input_section
= p
->u
.indirect
.section
;
14628 input_bfd
= input_section
->owner
;
14630 sz
= (input_section
->size
< sizeof (ext
)
14631 ? input_section
->size
: sizeof (ext
));
14632 memset (&ext
, 0, sizeof (ext
));
14633 if (! bfd_get_section_contents (input_bfd
, input_section
,
14637 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
14639 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
14640 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
14641 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
14642 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
14643 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
14645 /* ri_gp_value is set by the function
14646 `_bfd_mips_elf_section_processing' when the section is
14647 finally written out. */
14649 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14650 elf_link_input_bfd ignores this section. */
14651 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14654 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14655 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
14657 /* Skip this section later on (I don't think this currently
14658 matters, but someday it might). */
14659 o
->map_head
.link_order
= NULL
;
14664 if (strcmp (o
->name
, ".mdebug") == 0)
14666 struct extsym_info einfo
;
14669 /* We have found the .mdebug section in the output file.
14670 Look through all the link_orders comprising it and merge
14671 the information together. */
14672 symhdr
->magic
= swap
->sym_magic
;
14673 /* FIXME: What should the version stamp be? */
14674 symhdr
->vstamp
= 0;
14675 symhdr
->ilineMax
= 0;
14676 symhdr
->cbLine
= 0;
14677 symhdr
->idnMax
= 0;
14678 symhdr
->ipdMax
= 0;
14679 symhdr
->isymMax
= 0;
14680 symhdr
->ioptMax
= 0;
14681 symhdr
->iauxMax
= 0;
14682 symhdr
->issMax
= 0;
14683 symhdr
->issExtMax
= 0;
14684 symhdr
->ifdMax
= 0;
14686 symhdr
->iextMax
= 0;
14688 /* We accumulate the debugging information itself in the
14689 debug_info structure. */
14691 debug
.external_dnr
= NULL
;
14692 debug
.external_pdr
= NULL
;
14693 debug
.external_sym
= NULL
;
14694 debug
.external_opt
= NULL
;
14695 debug
.external_aux
= NULL
;
14697 debug
.ssext
= debug
.ssext_end
= NULL
;
14698 debug
.external_fdr
= NULL
;
14699 debug
.external_rfd
= NULL
;
14700 debug
.external_ext
= debug
.external_ext_end
= NULL
;
14702 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
14703 if (mdebug_handle
== NULL
)
14707 esym
.cobol_main
= 0;
14711 esym
.asym
.iss
= issNil
;
14712 esym
.asym
.st
= stLocal
;
14713 esym
.asym
.reserved
= 0;
14714 esym
.asym
.index
= indexNil
;
14716 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
14718 esym
.asym
.sc
= sc
[i
];
14719 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
14722 esym
.asym
.value
= s
->vma
;
14723 last
= s
->vma
+ s
->size
;
14726 esym
.asym
.value
= last
;
14727 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
14728 secname
[i
], &esym
))
14732 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14734 asection
*input_section
;
14736 const struct ecoff_debug_swap
*input_swap
;
14737 struct ecoff_debug_info input_debug
;
14741 if (p
->type
!= bfd_indirect_link_order
)
14743 if (p
->type
== bfd_data_link_order
)
14748 input_section
= p
->u
.indirect
.section
;
14749 input_bfd
= input_section
->owner
;
14751 if (!is_mips_elf (input_bfd
))
14753 /* I don't know what a non MIPS ELF bfd would be
14754 doing with a .mdebug section, but I don't really
14755 want to deal with it. */
14759 input_swap
= (get_elf_backend_data (input_bfd
)
14760 ->elf_backend_ecoff_debug_swap
);
14762 BFD_ASSERT (p
->size
== input_section
->size
);
14764 /* The ECOFF linking code expects that we have already
14765 read in the debugging information and set up an
14766 ecoff_debug_info structure, so we do that now. */
14767 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
14771 if (! (bfd_ecoff_debug_accumulate
14772 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
14773 &input_debug
, input_swap
, info
)))
14776 /* Loop through the external symbols. For each one with
14777 interesting information, try to find the symbol in
14778 the linker global hash table and save the information
14779 for the output external symbols. */
14780 eraw_src
= input_debug
.external_ext
;
14781 eraw_end
= (eraw_src
14782 + (input_debug
.symbolic_header
.iextMax
14783 * input_swap
->external_ext_size
));
14785 eraw_src
< eraw_end
;
14786 eraw_src
+= input_swap
->external_ext_size
)
14790 struct mips_elf_link_hash_entry
*h
;
14792 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
14793 if (ext
.asym
.sc
== scNil
14794 || ext
.asym
.sc
== scUndefined
14795 || ext
.asym
.sc
== scSUndefined
)
14798 name
= input_debug
.ssext
+ ext
.asym
.iss
;
14799 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
14800 name
, FALSE
, FALSE
, TRUE
);
14801 if (h
== NULL
|| h
->esym
.ifd
!= -2)
14806 BFD_ASSERT (ext
.ifd
14807 < input_debug
.symbolic_header
.ifdMax
);
14808 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
14814 /* Free up the information we just read. */
14815 free (input_debug
.line
);
14816 free (input_debug
.external_dnr
);
14817 free (input_debug
.external_pdr
);
14818 free (input_debug
.external_sym
);
14819 free (input_debug
.external_opt
);
14820 free (input_debug
.external_aux
);
14821 free (input_debug
.ss
);
14822 free (input_debug
.ssext
);
14823 free (input_debug
.external_fdr
);
14824 free (input_debug
.external_rfd
);
14825 free (input_debug
.external_ext
);
14827 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14828 elf_link_input_bfd ignores this section. */
14829 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14832 if (SGI_COMPAT (abfd
) && bfd_link_pic (info
))
14834 /* Create .rtproc section. */
14835 rtproc_sec
= bfd_get_linker_section (abfd
, ".rtproc");
14836 if (rtproc_sec
== NULL
)
14838 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
14839 | SEC_LINKER_CREATED
| SEC_READONLY
);
14841 rtproc_sec
= bfd_make_section_anyway_with_flags (abfd
,
14844 if (rtproc_sec
== NULL
14845 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
14849 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
14855 /* Build the external symbol information. */
14858 einfo
.debug
= &debug
;
14860 einfo
.failed
= FALSE
;
14861 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
14862 mips_elf_output_extsym
, &einfo
);
14866 /* Set the size of the .mdebug section. */
14867 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
14869 /* Skip this section later on (I don't think this currently
14870 matters, but someday it might). */
14871 o
->map_head
.link_order
= NULL
;
14876 if (CONST_STRNEQ (o
->name
, ".gptab."))
14878 const char *subname
;
14881 Elf32_External_gptab
*ext_tab
;
14884 /* The .gptab.sdata and .gptab.sbss sections hold
14885 information describing how the small data area would
14886 change depending upon the -G switch. These sections
14887 not used in executables files. */
14888 if (! bfd_link_relocatable (info
))
14890 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14892 asection
*input_section
;
14894 if (p
->type
!= bfd_indirect_link_order
)
14896 if (p
->type
== bfd_data_link_order
)
14901 input_section
= p
->u
.indirect
.section
;
14903 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14904 elf_link_input_bfd ignores this section. */
14905 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14908 /* Skip this section later on (I don't think this
14909 currently matters, but someday it might). */
14910 o
->map_head
.link_order
= NULL
;
14912 /* Really remove the section. */
14913 bfd_section_list_remove (abfd
, o
);
14914 --abfd
->section_count
;
14919 /* There is one gptab for initialized data, and one for
14920 uninitialized data. */
14921 if (strcmp (o
->name
, ".gptab.sdata") == 0)
14922 gptab_data_sec
= o
;
14923 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
14928 /* xgettext:c-format */
14929 (_("%pB: illegal section name `%pA'"), abfd
, o
);
14930 bfd_set_error (bfd_error_nonrepresentable_section
);
14934 /* The linker script always combines .gptab.data and
14935 .gptab.sdata into .gptab.sdata, and likewise for
14936 .gptab.bss and .gptab.sbss. It is possible that there is
14937 no .sdata or .sbss section in the output file, in which
14938 case we must change the name of the output section. */
14939 subname
= o
->name
+ sizeof ".gptab" - 1;
14940 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
14942 if (o
== gptab_data_sec
)
14943 o
->name
= ".gptab.data";
14945 o
->name
= ".gptab.bss";
14946 subname
= o
->name
+ sizeof ".gptab" - 1;
14947 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
14950 /* Set up the first entry. */
14952 amt
= c
* sizeof (Elf32_gptab
);
14953 tab
= bfd_malloc (amt
);
14956 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
14957 tab
[0].gt_header
.gt_unused
= 0;
14959 /* Combine the input sections. */
14960 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14962 asection
*input_section
;
14964 bfd_size_type size
;
14965 unsigned long last
;
14966 bfd_size_type gpentry
;
14968 if (p
->type
!= bfd_indirect_link_order
)
14970 if (p
->type
== bfd_data_link_order
)
14975 input_section
= p
->u
.indirect
.section
;
14976 input_bfd
= input_section
->owner
;
14978 /* Combine the gptab entries for this input section one
14979 by one. We know that the input gptab entries are
14980 sorted by ascending -G value. */
14981 size
= input_section
->size
;
14983 for (gpentry
= sizeof (Elf32_External_gptab
);
14985 gpentry
+= sizeof (Elf32_External_gptab
))
14987 Elf32_External_gptab ext_gptab
;
14988 Elf32_gptab int_gptab
;
14994 if (! (bfd_get_section_contents
14995 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
14996 sizeof (Elf32_External_gptab
))))
15002 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
15004 val
= int_gptab
.gt_entry
.gt_g_value
;
15005 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
15008 for (look
= 1; look
< c
; look
++)
15010 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
15011 tab
[look
].gt_entry
.gt_bytes
+= add
;
15013 if (tab
[look
].gt_entry
.gt_g_value
== val
)
15019 Elf32_gptab
*new_tab
;
15022 /* We need a new table entry. */
15023 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
15024 new_tab
= bfd_realloc (tab
, amt
);
15025 if (new_tab
== NULL
)
15031 tab
[c
].gt_entry
.gt_g_value
= val
;
15032 tab
[c
].gt_entry
.gt_bytes
= add
;
15034 /* Merge in the size for the next smallest -G
15035 value, since that will be implied by this new
15038 for (look
= 1; look
< c
; look
++)
15040 if (tab
[look
].gt_entry
.gt_g_value
< val
15042 || (tab
[look
].gt_entry
.gt_g_value
15043 > tab
[max
].gt_entry
.gt_g_value
)))
15047 tab
[c
].gt_entry
.gt_bytes
+=
15048 tab
[max
].gt_entry
.gt_bytes
;
15053 last
= int_gptab
.gt_entry
.gt_bytes
;
15056 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15057 elf_link_input_bfd ignores this section. */
15058 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
15061 /* The table must be sorted by -G value. */
15063 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
15065 /* Swap out the table. */
15066 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
15067 ext_tab
= bfd_alloc (abfd
, amt
);
15068 if (ext_tab
== NULL
)
15074 for (j
= 0; j
< c
; j
++)
15075 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
15078 o
->size
= c
* sizeof (Elf32_External_gptab
);
15079 o
->contents
= (bfd_byte
*) ext_tab
;
15081 /* Skip this section later on (I don't think this currently
15082 matters, but someday it might). */
15083 o
->map_head
.link_order
= NULL
;
15087 /* Invoke the regular ELF backend linker to do all the work. */
15088 if (!bfd_elf_final_link (abfd
, info
))
15091 /* Now write out the computed sections. */
15093 if (abiflags_sec
!= NULL
)
15095 Elf_External_ABIFlags_v0 ext
;
15096 Elf_Internal_ABIFlags_v0
*abiflags
;
15098 abiflags
= &mips_elf_tdata (abfd
)->abiflags
;
15100 /* Set up the abiflags if no valid input sections were found. */
15101 if (!mips_elf_tdata (abfd
)->abiflags_valid
)
15103 infer_mips_abiflags (abfd
, abiflags
);
15104 mips_elf_tdata (abfd
)->abiflags_valid
= TRUE
;
15106 bfd_mips_elf_swap_abiflags_v0_out (abfd
, abiflags
, &ext
);
15107 if (! bfd_set_section_contents (abfd
, abiflags_sec
, &ext
, 0, sizeof ext
))
15111 if (reginfo_sec
!= NULL
)
15113 Elf32_External_RegInfo ext
;
15115 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
15116 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
15120 if (mdebug_sec
!= NULL
)
15122 BFD_ASSERT (abfd
->output_has_begun
);
15123 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
15125 mdebug_sec
->filepos
))
15128 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
15131 if (gptab_data_sec
!= NULL
)
15133 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
15134 gptab_data_sec
->contents
,
15135 0, gptab_data_sec
->size
))
15139 if (gptab_bss_sec
!= NULL
)
15141 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
15142 gptab_bss_sec
->contents
,
15143 0, gptab_bss_sec
->size
))
15147 if (SGI_COMPAT (abfd
))
15149 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
15150 if (rtproc_sec
!= NULL
)
15152 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
15153 rtproc_sec
->contents
,
15154 0, rtproc_sec
->size
))
15162 /* Merge object file header flags from IBFD into OBFD. Raise an error
15163 if there are conflicting settings. */
15166 mips_elf_merge_obj_e_flags (bfd
*ibfd
, struct bfd_link_info
*info
)
15168 bfd
*obfd
= info
->output_bfd
;
15169 struct mips_elf_obj_tdata
*out_tdata
= mips_elf_tdata (obfd
);
15170 flagword old_flags
;
15171 flagword new_flags
;
15174 new_flags
= elf_elfheader (ibfd
)->e_flags
;
15175 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
15176 old_flags
= elf_elfheader (obfd
)->e_flags
;
15178 /* Check flag compatibility. */
15180 new_flags
&= ~EF_MIPS_NOREORDER
;
15181 old_flags
&= ~EF_MIPS_NOREORDER
;
15183 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15184 doesn't seem to matter. */
15185 new_flags
&= ~EF_MIPS_XGOT
;
15186 old_flags
&= ~EF_MIPS_XGOT
;
15188 /* MIPSpro generates ucode info in n64 objects. Again, we should
15189 just be able to ignore this. */
15190 new_flags
&= ~EF_MIPS_UCODE
;
15191 old_flags
&= ~EF_MIPS_UCODE
;
15193 /* DSOs should only be linked with CPIC code. */
15194 if ((ibfd
->flags
& DYNAMIC
) != 0)
15195 new_flags
|= EF_MIPS_PIC
| EF_MIPS_CPIC
;
15197 if (new_flags
== old_flags
)
15202 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
15203 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
15206 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15211 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
15212 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
15213 if (! (new_flags
& EF_MIPS_PIC
))
15214 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
15216 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
15217 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
15219 /* Compare the ISAs. */
15220 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
15223 (_("%pB: linking 32-bit code with 64-bit code"),
15227 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
15229 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15230 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
15232 /* Copy the architecture info from IBFD to OBFD. Also copy
15233 the 32-bit flag (if set) so that we continue to recognise
15234 OBFD as a 32-bit binary. */
15235 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
15236 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
15237 elf_elfheader (obfd
)->e_flags
15238 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15240 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15241 update_mips_abiflags_isa (obfd
, &out_tdata
->abiflags
);
15243 /* Copy across the ABI flags if OBFD doesn't use them
15244 and if that was what caused us to treat IBFD as 32-bit. */
15245 if ((old_flags
& EF_MIPS_ABI
) == 0
15246 && mips_32bit_flags_p (new_flags
)
15247 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
15248 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
15252 /* The ISAs aren't compatible. */
15254 /* xgettext:c-format */
15255 (_("%pB: linking %s module with previous %s modules"),
15257 bfd_printable_name (ibfd
),
15258 bfd_printable_name (obfd
));
15263 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15264 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15266 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15267 does set EI_CLASS differently from any 32-bit ABI. */
15268 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
15269 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
15270 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
15272 /* Only error if both are set (to different values). */
15273 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
15274 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
15275 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
15278 /* xgettext:c-format */
15279 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15281 elf_mips_abi_name (ibfd
),
15282 elf_mips_abi_name (obfd
));
15285 new_flags
&= ~EF_MIPS_ABI
;
15286 old_flags
&= ~EF_MIPS_ABI
;
15289 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15290 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15291 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
15293 int old_micro
= old_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
;
15294 int new_micro
= new_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
;
15295 int old_m16
= old_flags
& EF_MIPS_ARCH_ASE_M16
;
15296 int new_m16
= new_flags
& EF_MIPS_ARCH_ASE_M16
;
15297 int micro_mis
= old_m16
&& new_micro
;
15298 int m16_mis
= old_micro
&& new_m16
;
15300 if (m16_mis
|| micro_mis
)
15303 /* xgettext:c-format */
15304 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15306 m16_mis
? "MIPS16" : "microMIPS",
15307 m16_mis
? "microMIPS" : "MIPS16");
15311 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
15313 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
15314 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
15317 /* Compare NaN encodings. */
15318 if ((new_flags
& EF_MIPS_NAN2008
) != (old_flags
& EF_MIPS_NAN2008
))
15320 /* xgettext:c-format */
15321 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15323 (new_flags
& EF_MIPS_NAN2008
15324 ? "-mnan=2008" : "-mnan=legacy"),
15325 (old_flags
& EF_MIPS_NAN2008
15326 ? "-mnan=2008" : "-mnan=legacy"));
15328 new_flags
&= ~EF_MIPS_NAN2008
;
15329 old_flags
&= ~EF_MIPS_NAN2008
;
15332 /* Compare FP64 state. */
15333 if ((new_flags
& EF_MIPS_FP64
) != (old_flags
& EF_MIPS_FP64
))
15335 /* xgettext:c-format */
15336 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15338 (new_flags
& EF_MIPS_FP64
15339 ? "-mfp64" : "-mfp32"),
15340 (old_flags
& EF_MIPS_FP64
15341 ? "-mfp64" : "-mfp32"));
15343 new_flags
&= ~EF_MIPS_FP64
;
15344 old_flags
&= ~EF_MIPS_FP64
;
15347 /* Warn about any other mismatches */
15348 if (new_flags
!= old_flags
)
15350 /* xgettext:c-format */
15352 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15354 ibfd
, new_flags
, old_flags
);
15361 /* Merge object attributes from IBFD into OBFD. Raise an error if
15362 there are conflicting attributes. */
15364 mips_elf_merge_obj_attributes (bfd
*ibfd
, struct bfd_link_info
*info
)
15366 bfd
*obfd
= info
->output_bfd
;
15367 obj_attribute
*in_attr
;
15368 obj_attribute
*out_attr
;
15372 abi_fp_bfd
= mips_elf_tdata (obfd
)->abi_fp_bfd
;
15373 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
15374 if (!abi_fp_bfd
&& in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= Val_GNU_MIPS_ABI_FP_ANY
)
15375 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15377 abi_msa_bfd
= mips_elf_tdata (obfd
)->abi_msa_bfd
;
15379 && in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= Val_GNU_MIPS_ABI_MSA_ANY
)
15380 mips_elf_tdata (obfd
)->abi_msa_bfd
= ibfd
;
15382 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
15384 /* This is the first object. Copy the attributes. */
15385 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
15387 /* Use the Tag_null value to indicate the attributes have been
15389 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
15394 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15395 non-conflicting ones. */
15396 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
15397 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
15401 out_fp
= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15402 in_fp
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15403 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
15404 if (out_fp
== Val_GNU_MIPS_ABI_FP_ANY
)
15405 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_fp
;
15406 else if (out_fp
== Val_GNU_MIPS_ABI_FP_XX
15407 && (in_fp
== Val_GNU_MIPS_ABI_FP_DOUBLE
15408 || in_fp
== Val_GNU_MIPS_ABI_FP_64
15409 || in_fp
== Val_GNU_MIPS_ABI_FP_64A
))
15411 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15412 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15414 else if (in_fp
== Val_GNU_MIPS_ABI_FP_XX
15415 && (out_fp
== Val_GNU_MIPS_ABI_FP_DOUBLE
15416 || out_fp
== Val_GNU_MIPS_ABI_FP_64
15417 || out_fp
== Val_GNU_MIPS_ABI_FP_64A
))
15418 /* Keep the current setting. */;
15419 else if (out_fp
== Val_GNU_MIPS_ABI_FP_64A
15420 && in_fp
== Val_GNU_MIPS_ABI_FP_64
)
15422 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15423 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15425 else if (in_fp
== Val_GNU_MIPS_ABI_FP_64A
15426 && out_fp
== Val_GNU_MIPS_ABI_FP_64
)
15427 /* Keep the current setting. */;
15428 else if (in_fp
!= Val_GNU_MIPS_ABI_FP_ANY
)
15430 const char *out_string
, *in_string
;
15432 out_string
= _bfd_mips_fp_abi_string (out_fp
);
15433 in_string
= _bfd_mips_fp_abi_string (in_fp
);
15434 /* First warn about cases involving unrecognised ABIs. */
15435 if (!out_string
&& !in_string
)
15436 /* xgettext:c-format */
15438 (_("warning: %pB uses unknown floating point ABI %d "
15439 "(set by %pB), %pB uses unknown floating point ABI %d"),
15440 obfd
, out_fp
, abi_fp_bfd
, ibfd
, in_fp
);
15441 else if (!out_string
)
15443 /* xgettext:c-format */
15444 (_("warning: %pB uses unknown floating point ABI %d "
15445 "(set by %pB), %pB uses %s"),
15446 obfd
, out_fp
, abi_fp_bfd
, ibfd
, in_string
);
15447 else if (!in_string
)
15449 /* xgettext:c-format */
15450 (_("warning: %pB uses %s (set by %pB), "
15451 "%pB uses unknown floating point ABI %d"),
15452 obfd
, out_string
, abi_fp_bfd
, ibfd
, in_fp
);
15455 /* If one of the bfds is soft-float, the other must be
15456 hard-float. The exact choice of hard-float ABI isn't
15457 really relevant to the error message. */
15458 if (in_fp
== Val_GNU_MIPS_ABI_FP_SOFT
)
15459 out_string
= "-mhard-float";
15460 else if (out_fp
== Val_GNU_MIPS_ABI_FP_SOFT
)
15461 in_string
= "-mhard-float";
15463 /* xgettext:c-format */
15464 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15465 obfd
, out_string
, abi_fp_bfd
, ibfd
, in_string
);
15470 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15471 non-conflicting ones. */
15472 if (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15474 out_attr
[Tag_GNU_MIPS_ABI_MSA
].type
= 1;
15475 if (out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
== Val_GNU_MIPS_ABI_MSA_ANY
)
15476 out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
= in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
;
15477 else if (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= Val_GNU_MIPS_ABI_MSA_ANY
)
15478 switch (out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15480 case Val_GNU_MIPS_ABI_MSA_128
:
15482 /* xgettext:c-format */
15483 (_("warning: %pB uses %s (set by %pB), "
15484 "%pB uses unknown MSA ABI %d"),
15485 obfd
, "-mmsa", abi_msa_bfd
,
15486 ibfd
, in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
);
15490 switch (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15492 case Val_GNU_MIPS_ABI_MSA_128
:
15494 /* xgettext:c-format */
15495 (_("warning: %pB uses unknown MSA ABI %d "
15496 "(set by %pB), %pB uses %s"),
15497 obfd
, out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
,
15498 abi_msa_bfd
, ibfd
, "-mmsa");
15503 /* xgettext:c-format */
15504 (_("warning: %pB uses unknown MSA ABI %d "
15505 "(set by %pB), %pB uses unknown MSA ABI %d"),
15506 obfd
, out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
,
15507 abi_msa_bfd
, ibfd
, in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
);
15513 /* Merge Tag_compatibility attributes and any common GNU ones. */
15514 return _bfd_elf_merge_object_attributes (ibfd
, info
);
15517 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15518 there are conflicting settings. */
15521 mips_elf_merge_obj_abiflags (bfd
*ibfd
, bfd
*obfd
)
15523 obj_attribute
*out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
15524 struct mips_elf_obj_tdata
*out_tdata
= mips_elf_tdata (obfd
);
15525 struct mips_elf_obj_tdata
*in_tdata
= mips_elf_tdata (ibfd
);
15527 /* Update the output abiflags fp_abi using the computed fp_abi. */
15528 out_tdata
->abiflags
.fp_abi
= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15530 #define max(a, b) ((a) > (b) ? (a) : (b))
15531 /* Merge abiflags. */
15532 out_tdata
->abiflags
.isa_level
= max (out_tdata
->abiflags
.isa_level
,
15533 in_tdata
->abiflags
.isa_level
);
15534 out_tdata
->abiflags
.isa_rev
= max (out_tdata
->abiflags
.isa_rev
,
15535 in_tdata
->abiflags
.isa_rev
);
15536 out_tdata
->abiflags
.gpr_size
= max (out_tdata
->abiflags
.gpr_size
,
15537 in_tdata
->abiflags
.gpr_size
);
15538 out_tdata
->abiflags
.cpr1_size
= max (out_tdata
->abiflags
.cpr1_size
,
15539 in_tdata
->abiflags
.cpr1_size
);
15540 out_tdata
->abiflags
.cpr2_size
= max (out_tdata
->abiflags
.cpr2_size
,
15541 in_tdata
->abiflags
.cpr2_size
);
15543 out_tdata
->abiflags
.ases
|= in_tdata
->abiflags
.ases
;
15544 out_tdata
->abiflags
.flags1
|= in_tdata
->abiflags
.flags1
;
15549 /* Merge backend specific data from an object file to the output
15550 object file when linking. */
15553 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
15555 bfd
*obfd
= info
->output_bfd
;
15556 struct mips_elf_obj_tdata
*out_tdata
;
15557 struct mips_elf_obj_tdata
*in_tdata
;
15558 bfd_boolean null_input_bfd
= TRUE
;
15562 /* Check if we have the same endianness. */
15563 if (! _bfd_generic_verify_endian_match (ibfd
, info
))
15566 (_("%pB: endianness incompatible with that of the selected emulation"),
15571 if (!is_mips_elf (ibfd
) || !is_mips_elf (obfd
))
15574 in_tdata
= mips_elf_tdata (ibfd
);
15575 out_tdata
= mips_elf_tdata (obfd
);
15577 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
15580 (_("%pB: ABI is incompatible with that of the selected emulation"),
15585 /* Check to see if the input BFD actually contains any sections. If not,
15586 then it has no attributes, and its flags may not have been initialized
15587 either, but it cannot actually cause any incompatibility. */
15588 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
15590 /* Ignore synthetic sections and empty .text, .data and .bss sections
15591 which are automatically generated by gas. Also ignore fake
15592 (s)common sections, since merely defining a common symbol does
15593 not affect compatibility. */
15594 if ((sec
->flags
& SEC_IS_COMMON
) == 0
15595 && strcmp (sec
->name
, ".reginfo")
15596 && strcmp (sec
->name
, ".mdebug")
15598 || (strcmp (sec
->name
, ".text")
15599 && strcmp (sec
->name
, ".data")
15600 && strcmp (sec
->name
, ".bss"))))
15602 null_input_bfd
= FALSE
;
15606 if (null_input_bfd
)
15609 /* Populate abiflags using existing information. */
15610 if (in_tdata
->abiflags_valid
)
15612 obj_attribute
*in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
15613 Elf_Internal_ABIFlags_v0 in_abiflags
;
15614 Elf_Internal_ABIFlags_v0 abiflags
;
15616 /* Set up the FP ABI attribute from the abiflags if it is not already
15618 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== Val_GNU_MIPS_ABI_FP_ANY
)
15619 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_tdata
->abiflags
.fp_abi
;
15621 infer_mips_abiflags (ibfd
, &abiflags
);
15622 in_abiflags
= in_tdata
->abiflags
;
15624 /* It is not possible to infer the correct ISA revision
15625 for R3 or R5 so drop down to R2 for the checks. */
15626 if (in_abiflags
.isa_rev
== 3 || in_abiflags
.isa_rev
== 5)
15627 in_abiflags
.isa_rev
= 2;
15629 if (LEVEL_REV (in_abiflags
.isa_level
, in_abiflags
.isa_rev
)
15630 < LEVEL_REV (abiflags
.isa_level
, abiflags
.isa_rev
))
15632 (_("%pB: warning: inconsistent ISA between e_flags and "
15633 ".MIPS.abiflags"), ibfd
);
15634 if (abiflags
.fp_abi
!= Val_GNU_MIPS_ABI_FP_ANY
15635 && in_abiflags
.fp_abi
!= abiflags
.fp_abi
)
15637 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15638 ".MIPS.abiflags"), ibfd
);
15639 if ((in_abiflags
.ases
& abiflags
.ases
) != abiflags
.ases
)
15641 (_("%pB: warning: inconsistent ASEs between e_flags and "
15642 ".MIPS.abiflags"), ibfd
);
15643 /* The isa_ext is allowed to be an extension of what can be inferred
15645 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags
.isa_ext
),
15646 bfd_mips_isa_ext_mach (in_abiflags
.isa_ext
)))
15648 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15649 ".MIPS.abiflags"), ibfd
);
15650 if (in_abiflags
.flags2
!= 0)
15652 (_("%pB: warning: unexpected flag in the flags2 field of "
15653 ".MIPS.abiflags (0x%lx)"), ibfd
,
15654 in_abiflags
.flags2
);
15658 infer_mips_abiflags (ibfd
, &in_tdata
->abiflags
);
15659 in_tdata
->abiflags_valid
= TRUE
;
15662 if (!out_tdata
->abiflags_valid
)
15664 /* Copy input abiflags if output abiflags are not already valid. */
15665 out_tdata
->abiflags
= in_tdata
->abiflags
;
15666 out_tdata
->abiflags_valid
= TRUE
;
15669 if (! elf_flags_init (obfd
))
15671 elf_flags_init (obfd
) = TRUE
;
15672 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
15673 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
15674 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
15676 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
15677 && (bfd_get_arch_info (obfd
)->the_default
15678 || mips_mach_extends_p (bfd_get_mach (obfd
),
15679 bfd_get_mach (ibfd
))))
15681 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
15682 bfd_get_mach (ibfd
)))
15685 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15686 update_mips_abiflags_isa (obfd
, &out_tdata
->abiflags
);
15692 ok
= mips_elf_merge_obj_e_flags (ibfd
, info
);
15694 ok
= mips_elf_merge_obj_attributes (ibfd
, info
) && ok
;
15696 ok
= mips_elf_merge_obj_abiflags (ibfd
, obfd
) && ok
;
15700 bfd_set_error (bfd_error_bad_value
);
15707 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15710 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
15712 BFD_ASSERT (!elf_flags_init (abfd
)
15713 || elf_elfheader (abfd
)->e_flags
== flags
);
15715 elf_elfheader (abfd
)->e_flags
= flags
;
15716 elf_flags_init (abfd
) = TRUE
;
15721 _bfd_mips_elf_get_target_dtag (bfd_vma dtag
)
15725 default: return "";
15726 case DT_MIPS_RLD_VERSION
:
15727 return "MIPS_RLD_VERSION";
15728 case DT_MIPS_TIME_STAMP
:
15729 return "MIPS_TIME_STAMP";
15730 case DT_MIPS_ICHECKSUM
:
15731 return "MIPS_ICHECKSUM";
15732 case DT_MIPS_IVERSION
:
15733 return "MIPS_IVERSION";
15734 case DT_MIPS_FLAGS
:
15735 return "MIPS_FLAGS";
15736 case DT_MIPS_BASE_ADDRESS
:
15737 return "MIPS_BASE_ADDRESS";
15739 return "MIPS_MSYM";
15740 case DT_MIPS_CONFLICT
:
15741 return "MIPS_CONFLICT";
15742 case DT_MIPS_LIBLIST
:
15743 return "MIPS_LIBLIST";
15744 case DT_MIPS_LOCAL_GOTNO
:
15745 return "MIPS_LOCAL_GOTNO";
15746 case DT_MIPS_CONFLICTNO
:
15747 return "MIPS_CONFLICTNO";
15748 case DT_MIPS_LIBLISTNO
:
15749 return "MIPS_LIBLISTNO";
15750 case DT_MIPS_SYMTABNO
:
15751 return "MIPS_SYMTABNO";
15752 case DT_MIPS_UNREFEXTNO
:
15753 return "MIPS_UNREFEXTNO";
15754 case DT_MIPS_GOTSYM
:
15755 return "MIPS_GOTSYM";
15756 case DT_MIPS_HIPAGENO
:
15757 return "MIPS_HIPAGENO";
15758 case DT_MIPS_RLD_MAP
:
15759 return "MIPS_RLD_MAP";
15760 case DT_MIPS_RLD_MAP_REL
:
15761 return "MIPS_RLD_MAP_REL";
15762 case DT_MIPS_DELTA_CLASS
:
15763 return "MIPS_DELTA_CLASS";
15764 case DT_MIPS_DELTA_CLASS_NO
:
15765 return "MIPS_DELTA_CLASS_NO";
15766 case DT_MIPS_DELTA_INSTANCE
:
15767 return "MIPS_DELTA_INSTANCE";
15768 case DT_MIPS_DELTA_INSTANCE_NO
:
15769 return "MIPS_DELTA_INSTANCE_NO";
15770 case DT_MIPS_DELTA_RELOC
:
15771 return "MIPS_DELTA_RELOC";
15772 case DT_MIPS_DELTA_RELOC_NO
:
15773 return "MIPS_DELTA_RELOC_NO";
15774 case DT_MIPS_DELTA_SYM
:
15775 return "MIPS_DELTA_SYM";
15776 case DT_MIPS_DELTA_SYM_NO
:
15777 return "MIPS_DELTA_SYM_NO";
15778 case DT_MIPS_DELTA_CLASSSYM
:
15779 return "MIPS_DELTA_CLASSSYM";
15780 case DT_MIPS_DELTA_CLASSSYM_NO
:
15781 return "MIPS_DELTA_CLASSSYM_NO";
15782 case DT_MIPS_CXX_FLAGS
:
15783 return "MIPS_CXX_FLAGS";
15784 case DT_MIPS_PIXIE_INIT
:
15785 return "MIPS_PIXIE_INIT";
15786 case DT_MIPS_SYMBOL_LIB
:
15787 return "MIPS_SYMBOL_LIB";
15788 case DT_MIPS_LOCALPAGE_GOTIDX
:
15789 return "MIPS_LOCALPAGE_GOTIDX";
15790 case DT_MIPS_LOCAL_GOTIDX
:
15791 return "MIPS_LOCAL_GOTIDX";
15792 case DT_MIPS_HIDDEN_GOTIDX
:
15793 return "MIPS_HIDDEN_GOTIDX";
15794 case DT_MIPS_PROTECTED_GOTIDX
:
15795 return "MIPS_PROTECTED_GOT_IDX";
15796 case DT_MIPS_OPTIONS
:
15797 return "MIPS_OPTIONS";
15798 case DT_MIPS_INTERFACE
:
15799 return "MIPS_INTERFACE";
15800 case DT_MIPS_DYNSTR_ALIGN
:
15801 return "DT_MIPS_DYNSTR_ALIGN";
15802 case DT_MIPS_INTERFACE_SIZE
:
15803 return "DT_MIPS_INTERFACE_SIZE";
15804 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
15805 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15806 case DT_MIPS_PERF_SUFFIX
:
15807 return "DT_MIPS_PERF_SUFFIX";
15808 case DT_MIPS_COMPACT_SIZE
:
15809 return "DT_MIPS_COMPACT_SIZE";
15810 case DT_MIPS_GP_VALUE
:
15811 return "DT_MIPS_GP_VALUE";
15812 case DT_MIPS_AUX_DYNAMIC
:
15813 return "DT_MIPS_AUX_DYNAMIC";
15814 case DT_MIPS_PLTGOT
:
15815 return "DT_MIPS_PLTGOT";
15816 case DT_MIPS_RWPLT
:
15817 return "DT_MIPS_RWPLT";
15821 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15825 _bfd_mips_fp_abi_string (int fp
)
15829 /* These strings aren't translated because they're simply
15831 case Val_GNU_MIPS_ABI_FP_DOUBLE
:
15832 return "-mdouble-float";
15834 case Val_GNU_MIPS_ABI_FP_SINGLE
:
15835 return "-msingle-float";
15837 case Val_GNU_MIPS_ABI_FP_SOFT
:
15838 return "-msoft-float";
15840 case Val_GNU_MIPS_ABI_FP_OLD_64
:
15841 return _("-mips32r2 -mfp64 (12 callee-saved)");
15843 case Val_GNU_MIPS_ABI_FP_XX
:
15846 case Val_GNU_MIPS_ABI_FP_64
:
15847 return "-mgp32 -mfp64";
15849 case Val_GNU_MIPS_ABI_FP_64A
:
15850 return "-mgp32 -mfp64 -mno-odd-spreg";
15858 print_mips_ases (FILE *file
, unsigned int mask
)
15860 if (mask
& AFL_ASE_DSP
)
15861 fputs ("\n\tDSP ASE", file
);
15862 if (mask
& AFL_ASE_DSPR2
)
15863 fputs ("\n\tDSP R2 ASE", file
);
15864 if (mask
& AFL_ASE_DSPR3
)
15865 fputs ("\n\tDSP R3 ASE", file
);
15866 if (mask
& AFL_ASE_EVA
)
15867 fputs ("\n\tEnhanced VA Scheme", file
);
15868 if (mask
& AFL_ASE_MCU
)
15869 fputs ("\n\tMCU (MicroController) ASE", file
);
15870 if (mask
& AFL_ASE_MDMX
)
15871 fputs ("\n\tMDMX ASE", file
);
15872 if (mask
& AFL_ASE_MIPS3D
)
15873 fputs ("\n\tMIPS-3D ASE", file
);
15874 if (mask
& AFL_ASE_MT
)
15875 fputs ("\n\tMT ASE", file
);
15876 if (mask
& AFL_ASE_SMARTMIPS
)
15877 fputs ("\n\tSmartMIPS ASE", file
);
15878 if (mask
& AFL_ASE_VIRT
)
15879 fputs ("\n\tVZ ASE", file
);
15880 if (mask
& AFL_ASE_MSA
)
15881 fputs ("\n\tMSA ASE", file
);
15882 if (mask
& AFL_ASE_MIPS16
)
15883 fputs ("\n\tMIPS16 ASE", file
);
15884 if (mask
& AFL_ASE_MICROMIPS
)
15885 fputs ("\n\tMICROMIPS ASE", file
);
15886 if (mask
& AFL_ASE_XPA
)
15887 fputs ("\n\tXPA ASE", file
);
15888 if (mask
& AFL_ASE_MIPS16E2
)
15889 fputs ("\n\tMIPS16e2 ASE", file
);
15890 if (mask
& AFL_ASE_CRC
)
15891 fputs ("\n\tCRC ASE", file
);
15892 if (mask
& AFL_ASE_GINV
)
15893 fputs ("\n\tGINV ASE", file
);
15894 if (mask
& AFL_ASE_LOONGSON_MMI
)
15895 fputs ("\n\tLoongson MMI ASE", file
);
15896 if (mask
& AFL_ASE_LOONGSON_CAM
)
15897 fputs ("\n\tLoongson CAM ASE", file
);
15898 if (mask
& AFL_ASE_LOONGSON_EXT
)
15899 fputs ("\n\tLoongson EXT ASE", file
);
15900 if (mask
& AFL_ASE_LOONGSON_EXT2
)
15901 fputs ("\n\tLoongson EXT2 ASE", file
);
15903 fprintf (file
, "\n\t%s", _("None"));
15904 else if ((mask
& ~AFL_ASE_MASK
) != 0)
15905 fprintf (stdout
, "\n\t%s (%x)", _("Unknown"), mask
& ~AFL_ASE_MASK
);
15909 print_mips_isa_ext (FILE *file
, unsigned int isa_ext
)
15914 fputs (_("None"), file
);
15917 fputs ("RMI XLR", file
);
15919 case AFL_EXT_OCTEON3
:
15920 fputs ("Cavium Networks Octeon3", file
);
15922 case AFL_EXT_OCTEON2
:
15923 fputs ("Cavium Networks Octeon2", file
);
15925 case AFL_EXT_OCTEONP
:
15926 fputs ("Cavium Networks OcteonP", file
);
15928 case AFL_EXT_OCTEON
:
15929 fputs ("Cavium Networks Octeon", file
);
15932 fputs ("Toshiba R5900", file
);
15935 fputs ("MIPS R4650", file
);
15938 fputs ("LSI R4010", file
);
15941 fputs ("NEC VR4100", file
);
15944 fputs ("Toshiba R3900", file
);
15946 case AFL_EXT_10000
:
15947 fputs ("MIPS R10000", file
);
15950 fputs ("Broadcom SB-1", file
);
15953 fputs ("NEC VR4111/VR4181", file
);
15956 fputs ("NEC VR4120", file
);
15959 fputs ("NEC VR5400", file
);
15962 fputs ("NEC VR5500", file
);
15964 case AFL_EXT_LOONGSON_2E
:
15965 fputs ("ST Microelectronics Loongson 2E", file
);
15967 case AFL_EXT_LOONGSON_2F
:
15968 fputs ("ST Microelectronics Loongson 2F", file
);
15970 case AFL_EXT_INTERAPTIV_MR2
:
15971 fputs ("Imagination interAptiv MR2", file
);
15974 fprintf (file
, "%s (%d)", _("Unknown"), isa_ext
);
15980 print_mips_fp_abi_value (FILE *file
, int val
)
15984 case Val_GNU_MIPS_ABI_FP_ANY
:
15985 fprintf (file
, _("Hard or soft float\n"));
15987 case Val_GNU_MIPS_ABI_FP_DOUBLE
:
15988 fprintf (file
, _("Hard float (double precision)\n"));
15990 case Val_GNU_MIPS_ABI_FP_SINGLE
:
15991 fprintf (file
, _("Hard float (single precision)\n"));
15993 case Val_GNU_MIPS_ABI_FP_SOFT
:
15994 fprintf (file
, _("Soft float\n"));
15996 case Val_GNU_MIPS_ABI_FP_OLD_64
:
15997 fprintf (file
, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15999 case Val_GNU_MIPS_ABI_FP_XX
:
16000 fprintf (file
, _("Hard float (32-bit CPU, Any FPU)\n"));
16002 case Val_GNU_MIPS_ABI_FP_64
:
16003 fprintf (file
, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16005 case Val_GNU_MIPS_ABI_FP_64A
:
16006 fprintf (file
, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16009 fprintf (file
, "??? (%d)\n", val
);
16015 get_mips_reg_size (int reg_size
)
16017 return (reg_size
== AFL_REG_NONE
) ? 0
16018 : (reg_size
== AFL_REG_32
) ? 32
16019 : (reg_size
== AFL_REG_64
) ? 64
16020 : (reg_size
== AFL_REG_128
) ? 128
16025 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
16029 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
16031 /* Print normal ELF private data. */
16032 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
16034 /* xgettext:c-format */
16035 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
16037 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
16038 fprintf (file
, _(" [abi=O32]"));
16039 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
16040 fprintf (file
, _(" [abi=O64]"));
16041 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
16042 fprintf (file
, _(" [abi=EABI32]"));
16043 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
16044 fprintf (file
, _(" [abi=EABI64]"));
16045 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
16046 fprintf (file
, _(" [abi unknown]"));
16047 else if (ABI_N32_P (abfd
))
16048 fprintf (file
, _(" [abi=N32]"));
16049 else if (ABI_64_P (abfd
))
16050 fprintf (file
, _(" [abi=64]"));
16052 fprintf (file
, _(" [no abi set]"));
16054 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
16055 fprintf (file
, " [mips1]");
16056 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
16057 fprintf (file
, " [mips2]");
16058 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
16059 fprintf (file
, " [mips3]");
16060 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
16061 fprintf (file
, " [mips4]");
16062 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
16063 fprintf (file
, " [mips5]");
16064 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
16065 fprintf (file
, " [mips32]");
16066 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
16067 fprintf (file
, " [mips64]");
16068 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
16069 fprintf (file
, " [mips32r2]");
16070 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
16071 fprintf (file
, " [mips64r2]");
16072 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R6
)
16073 fprintf (file
, " [mips32r6]");
16074 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R6
)
16075 fprintf (file
, " [mips64r6]");
16077 fprintf (file
, _(" [unknown ISA]"));
16079 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
16080 fprintf (file
, " [mdmx]");
16082 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
16083 fprintf (file
, " [mips16]");
16085 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
)
16086 fprintf (file
, " [micromips]");
16088 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NAN2008
)
16089 fprintf (file
, " [nan2008]");
16091 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_FP64
)
16092 fprintf (file
, " [old fp64]");
16094 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
16095 fprintf (file
, " [32bitmode]");
16097 fprintf (file
, _(" [not 32bitmode]"));
16099 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
16100 fprintf (file
, " [noreorder]");
16102 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
16103 fprintf (file
, " [PIC]");
16105 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
16106 fprintf (file
, " [CPIC]");
16108 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
16109 fprintf (file
, " [XGOT]");
16111 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
16112 fprintf (file
, " [UCODE]");
16114 fputc ('\n', file
);
16116 if (mips_elf_tdata (abfd
)->abiflags_valid
)
16118 Elf_Internal_ABIFlags_v0
*abiflags
= &mips_elf_tdata (abfd
)->abiflags
;
16119 fprintf (file
, "\nMIPS ABI Flags Version: %d\n", abiflags
->version
);
16120 fprintf (file
, "\nISA: MIPS%d", abiflags
->isa_level
);
16121 if (abiflags
->isa_rev
> 1)
16122 fprintf (file
, "r%d", abiflags
->isa_rev
);
16123 fprintf (file
, "\nGPR size: %d",
16124 get_mips_reg_size (abiflags
->gpr_size
));
16125 fprintf (file
, "\nCPR1 size: %d",
16126 get_mips_reg_size (abiflags
->cpr1_size
));
16127 fprintf (file
, "\nCPR2 size: %d",
16128 get_mips_reg_size (abiflags
->cpr2_size
));
16129 fputs ("\nFP ABI: ", file
);
16130 print_mips_fp_abi_value (file
, abiflags
->fp_abi
);
16131 fputs ("ISA Extension: ", file
);
16132 print_mips_isa_ext (file
, abiflags
->isa_ext
);
16133 fputs ("\nASEs:", file
);
16134 print_mips_ases (file
, abiflags
->ases
);
16135 fprintf (file
, "\nFLAGS 1: %8.8lx", abiflags
->flags1
);
16136 fprintf (file
, "\nFLAGS 2: %8.8lx", abiflags
->flags2
);
16137 fputc ('\n', file
);
16143 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
16145 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16146 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16147 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
16148 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16149 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16150 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
16151 { NULL
, 0, 0, 0, 0 }
16154 /* Merge non visibility st_other attributes. Ensure that the
16155 STO_OPTIONAL flag is copied into h->other, even if this is not a
16156 definiton of the symbol. */
16158 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
16159 const Elf_Internal_Sym
*isym
,
16160 bfd_boolean definition
,
16161 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
16163 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
16165 unsigned char other
;
16167 other
= (definition
? isym
->st_other
: h
->other
);
16168 other
&= ~ELF_ST_VISIBILITY (-1);
16169 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
16173 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
16174 h
->other
|= STO_OPTIONAL
;
16177 /* Decide whether an undefined symbol is special and can be ignored.
16178 This is the case for OPTIONAL symbols on IRIX. */
16180 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
16182 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
16186 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
16188 return (sym
->st_shndx
== SHN_COMMON
16189 || sym
->st_shndx
== SHN_MIPS_ACOMMON
16190 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);
16193 /* Return address for Ith PLT stub in section PLT, for relocation REL
16194 or (bfd_vma) -1 if it should not be included. */
16197 _bfd_mips_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
16198 const arelent
*rel ATTRIBUTE_UNUSED
)
16201 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
)
16202 + i
* 4 * ARRAY_SIZE (mips_exec_plt_entry
));
16205 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16206 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16207 and .got.plt and also the slots may be of a different size each we walk
16208 the PLT manually fetching instructions and matching them against known
16209 patterns. To make things easier standard MIPS slots, if any, always come
16210 first. As we don't create proper ELF symbols we use the UDATA.I member
16211 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16212 with the ST_OTHER member of the ELF symbol. */
16215 _bfd_mips_elf_get_synthetic_symtab (bfd
*abfd
,
16216 long symcount ATTRIBUTE_UNUSED
,
16217 asymbol
**syms ATTRIBUTE_UNUSED
,
16218 long dynsymcount
, asymbol
**dynsyms
,
16221 static const char pltname
[] = "_PROCEDURE_LINKAGE_TABLE_";
16222 static const char microsuffix
[] = "@micromipsplt";
16223 static const char m16suffix
[] = "@mips16plt";
16224 static const char mipssuffix
[] = "@plt";
16226 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
16227 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
16228 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
16229 Elf_Internal_Shdr
*hdr
;
16230 bfd_byte
*plt_data
;
16231 bfd_vma plt_offset
;
16232 unsigned int other
;
16233 bfd_vma entry_size
;
16252 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0 || dynsymcount
<= 0)
16255 relplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
16256 if (relplt
== NULL
)
16259 hdr
= &elf_section_data (relplt
)->this_hdr
;
16260 if (hdr
->sh_link
!= elf_dynsymtab (abfd
) || hdr
->sh_type
!= SHT_REL
)
16263 plt
= bfd_get_section_by_name (abfd
, ".plt");
16267 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
16268 if (!(*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
16270 p
= relplt
->relocation
;
16272 /* Calculating the exact amount of space required for symbols would
16273 require two passes over the PLT, so just pessimise assuming two
16274 PLT slots per relocation. */
16275 count
= relplt
->size
/ hdr
->sh_entsize
;
16276 counti
= count
* bed
->s
->int_rels_per_ext_rel
;
16277 size
= 2 * count
* sizeof (asymbol
);
16278 size
+= count
* (sizeof (mipssuffix
) +
16279 (micromips_p
? sizeof (microsuffix
) : sizeof (m16suffix
)));
16280 for (pi
= 0; pi
< counti
; pi
+= bed
->s
->int_rels_per_ext_rel
)
16281 size
+= 2 * strlen ((*p
[pi
].sym_ptr_ptr
)->name
);
16283 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16284 size
+= sizeof (asymbol
) + sizeof (pltname
);
16286 if (!bfd_malloc_and_get_section (abfd
, plt
, &plt_data
))
16289 if (plt
->size
< 16)
16292 s
= *ret
= bfd_malloc (size
);
16295 send
= s
+ 2 * count
+ 1;
16297 names
= (char *) send
;
16298 nend
= (char *) s
+ size
;
16301 opcode
= bfd_get_micromips_32 (abfd
, plt_data
+ 12);
16302 if (opcode
== 0x3302fffe)
16306 plt0_size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry
);
16307 other
= STO_MICROMIPS
;
16309 else if (opcode
== 0x0398c1d0)
16313 plt0_size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
);
16314 other
= STO_MICROMIPS
;
16318 plt0_size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
16323 s
->flags
= BSF_SYNTHETIC
| BSF_FUNCTION
| BSF_LOCAL
;
16327 s
->udata
.i
= other
;
16328 memcpy (names
, pltname
, sizeof (pltname
));
16329 names
+= sizeof (pltname
);
16333 for (plt_offset
= plt0_size
;
16334 plt_offset
+ 8 <= plt
->size
&& s
< send
;
16335 plt_offset
+= entry_size
)
16337 bfd_vma gotplt_addr
;
16338 const char *suffix
;
16343 opcode
= bfd_get_micromips_32 (abfd
, plt_data
+ plt_offset
+ 4);
16345 /* Check if the second word matches the expected MIPS16 instruction. */
16346 if (opcode
== 0x651aeb00)
16350 /* Truncated table??? */
16351 if (plt_offset
+ 16 > plt
->size
)
16353 gotplt_addr
= bfd_get_32 (abfd
, plt_data
+ plt_offset
+ 12);
16354 entry_size
= 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry
);
16355 suffixlen
= sizeof (m16suffix
);
16356 suffix
= m16suffix
;
16357 other
= STO_MIPS16
;
16359 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16360 else if (opcode
== 0xff220000)
16364 gotplt_hi
= bfd_get_16 (abfd
, plt_data
+ plt_offset
) & 0x7f;
16365 gotplt_lo
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 2) & 0xffff;
16366 gotplt_hi
= ((gotplt_hi
^ 0x40) - 0x40) << 18;
16368 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16369 gotplt_addr
+= ((plt
->vma
+ plt_offset
) | 3) ^ 3;
16370 entry_size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry
);
16371 suffixlen
= sizeof (microsuffix
);
16372 suffix
= microsuffix
;
16373 other
= STO_MICROMIPS
;
16375 /* Likewise the expected microMIPS instruction (insn32 mode). */
16376 else if ((opcode
& 0xffff0000) == 0xff2f0000)
16378 gotplt_hi
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 2) & 0xffff;
16379 gotplt_lo
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 6) & 0xffff;
16380 gotplt_hi
= ((gotplt_hi
^ 0x8000) - 0x8000) << 16;
16381 gotplt_lo
= (gotplt_lo
^ 0x8000) - 0x8000;
16382 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16383 entry_size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry
);
16384 suffixlen
= sizeof (microsuffix
);
16385 suffix
= microsuffix
;
16386 other
= STO_MICROMIPS
;
16388 /* Otherwise assume standard MIPS code. */
16391 gotplt_hi
= bfd_get_32 (abfd
, plt_data
+ plt_offset
) & 0xffff;
16392 gotplt_lo
= bfd_get_32 (abfd
, plt_data
+ plt_offset
+ 4) & 0xffff;
16393 gotplt_hi
= ((gotplt_hi
^ 0x8000) - 0x8000) << 16;
16394 gotplt_lo
= (gotplt_lo
^ 0x8000) - 0x8000;
16395 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16396 entry_size
= 4 * ARRAY_SIZE (mips_exec_plt_entry
);
16397 suffixlen
= sizeof (mipssuffix
);
16398 suffix
= mipssuffix
;
16401 /* Truncated table??? */
16402 if (plt_offset
+ entry_size
> plt
->size
)
16406 i
< count
&& p
[pi
].address
!= gotplt_addr
;
16407 i
++, pi
= (pi
+ bed
->s
->int_rels_per_ext_rel
) % counti
);
16414 *s
= **p
[pi
].sym_ptr_ptr
;
16415 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16416 we are defining a symbol, ensure one of them is set. */
16417 if ((s
->flags
& BSF_LOCAL
) == 0)
16418 s
->flags
|= BSF_GLOBAL
;
16419 s
->flags
|= BSF_SYNTHETIC
;
16421 s
->value
= plt_offset
;
16423 s
->udata
.i
= other
;
16425 len
= strlen ((*p
[pi
].sym_ptr_ptr
)->name
);
16426 namelen
= len
+ suffixlen
;
16427 if (names
+ namelen
> nend
)
16430 memcpy (names
, (*p
[pi
].sym_ptr_ptr
)->name
, len
);
16432 memcpy (names
, suffix
, suffixlen
);
16433 names
+= suffixlen
;
16436 pi
= (pi
+ bed
->s
->int_rels_per_ext_rel
) % counti
;
16445 /* Return the ABI flags associated with ABFD if available. */
16447 Elf_Internal_ABIFlags_v0
*
16448 bfd_mips_elf_get_abiflags (bfd
*abfd
)
16450 struct mips_elf_obj_tdata
*tdata
= mips_elf_tdata (abfd
);
16452 return tdata
->abiflags_valid
? &tdata
->abiflags
: NULL
;
16455 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16456 field. Taken from `libc-abis.h' generated at GNU libc build time.
16457 Using a MIPS_ prefix as other libc targets use different values. */
16460 MIPS_LIBC_ABI_DEFAULT
= 0,
16461 MIPS_LIBC_ABI_MIPS_PLT
,
16462 MIPS_LIBC_ABI_UNIQUE
,
16463 MIPS_LIBC_ABI_MIPS_O32_FP64
,
16464 MIPS_LIBC_ABI_ABSOLUTE
,
16469 _bfd_mips_post_process_headers (bfd
*abfd
, struct bfd_link_info
*link_info
)
16471 struct mips_elf_link_hash_table
*htab
= NULL
;
16472 Elf_Internal_Ehdr
*i_ehdrp
;
16474 i_ehdrp
= elf_elfheader (abfd
);
16477 htab
= mips_elf_hash_table (link_info
);
16478 BFD_ASSERT (htab
!= NULL
);
16481 if (htab
!= NULL
&& htab
->use_plts_and_copy_relocs
&& !htab
->is_vxworks
)
16482 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_MIPS_PLT
;
16484 if (mips_elf_tdata (abfd
)->abiflags
.fp_abi
== Val_GNU_MIPS_ABI_FP_64
16485 || mips_elf_tdata (abfd
)->abiflags
.fp_abi
== Val_GNU_MIPS_ABI_FP_64A
)
16486 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_MIPS_O32_FP64
;
16488 /* Mark that we need support for absolute symbols in the dynamic loader. */
16489 if (htab
!= NULL
&& htab
->use_absolute_zero
&& htab
->gnu_target
)
16490 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_ABSOLUTE
;
16492 _bfd_elf_post_process_headers (abfd
, link_info
);
16496 _bfd_mips_elf_compact_eh_encoding
16497 (struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
)
16499 return DW_EH_PE_pcrel
| DW_EH_PE_sdata4
;
16502 /* Return the opcode for can't unwind. */
16505 _bfd_mips_elf_cant_unwind_opcode
16506 (struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
)
16508 return COMPACT_EH_CANT_UNWIND_OPCODE
;