1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
45 #include "target-debug.h"
47 #include "event-top.h"
49 #include "gdbsupport/byte-vector.h"
50 #include "gdbsupport/search.h"
52 #include <unordered_map>
53 #include "target-connection.h"
56 static void generic_tls_error (void) ATTRIBUTE_NORETURN
;
58 static void default_terminal_info (struct target_ops
*, const char *, int);
60 static int default_watchpoint_addr_within_range (struct target_ops
*,
61 CORE_ADDR
, CORE_ADDR
, int);
63 static int default_region_ok_for_hw_watchpoint (struct target_ops
*,
66 static void default_rcmd (struct target_ops
*, const char *, struct ui_file
*);
68 static ptid_t
default_get_ada_task_ptid (struct target_ops
*self
,
71 static void default_mourn_inferior (struct target_ops
*self
);
73 static int default_search_memory (struct target_ops
*ops
,
75 ULONGEST search_space_len
,
76 const gdb_byte
*pattern
,
78 CORE_ADDR
*found_addrp
);
80 static int default_verify_memory (struct target_ops
*self
,
82 CORE_ADDR memaddr
, ULONGEST size
);
84 static void tcomplain (void) ATTRIBUTE_NORETURN
;
86 static struct target_ops
*find_default_run_target (const char *);
88 static int dummy_find_memory_regions (struct target_ops
*self
,
89 find_memory_region_ftype ignore1
,
92 static gdb::unique_xmalloc_ptr
<char> dummy_make_corefile_notes
93 (struct target_ops
*self
, bfd
*ignore1
, int *ignore2
);
95 static std::string
default_pid_to_str (struct target_ops
*ops
, ptid_t ptid
);
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops
*self
);
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map
<const target_info
*, target_open_ftype
*>
109 /* The singleton debug target. */
111 static struct target_ops
*the_debug_target
;
113 /* Top of target stack. */
114 /* The target structure we are currently using to talk to a process
115 or file or whatever "inferior" we have. */
118 current_top_target ()
120 return current_inferior ()->top_target ();
123 /* Command list for target. */
125 static struct cmd_list_element
*targetlist
= NULL
;
127 /* True if we should trust readonly sections from the
128 executable when reading memory. */
130 static bool trust_readonly
= false;
132 /* Nonzero if we should show true memory content including
133 memory breakpoint inserted by gdb. */
135 static int show_memory_breakpoints
= 0;
137 /* These globals control whether GDB attempts to perform these
138 operations; they are useful for targets that need to prevent
139 inadvertent disruption, such as in non-stop mode. */
141 bool may_write_registers
= true;
143 bool may_write_memory
= true;
145 bool may_insert_breakpoints
= true;
147 bool may_insert_tracepoints
= true;
149 bool may_insert_fast_tracepoints
= true;
151 bool may_stop
= true;
153 /* Non-zero if we want to see trace of target level stuff. */
155 static unsigned int targetdebug
= 0;
158 set_targetdebug (const char *args
, int from_tty
, struct cmd_list_element
*c
)
161 push_target (the_debug_target
);
163 unpush_target (the_debug_target
);
167 show_targetdebug (struct ui_file
*file
, int from_tty
,
168 struct cmd_list_element
*c
, const char *value
)
170 fprintf_filtered (file
, _("Target debugging is %s.\n"), value
);
176 for (target_ops
*t
= current_top_target (); t
!= NULL
; t
= t
->beneath ())
177 if (t
->has_memory ())
186 for (target_ops
*t
= current_top_target (); t
!= NULL
; t
= t
->beneath ())
194 target_has_registers ()
196 for (target_ops
*t
= current_top_target (); t
!= NULL
; t
= t
->beneath ())
197 if (t
->has_registers ())
204 target_has_execution (inferior
*inf
)
207 inf
= current_inferior ();
209 for (target_ops
*t
= inf
->top_target ();
211 t
= inf
->find_target_beneath (t
))
212 if (t
->has_execution (inf
))
218 /* This is used to implement the various target commands. */
221 open_target (const char *args
, int from_tty
, struct cmd_list_element
*command
)
223 auto *ti
= static_cast<target_info
*> (get_cmd_context (command
));
224 target_open_ftype
*func
= target_factories
[ti
];
227 fprintf_unfiltered (gdb_stdlog
, "-> %s->open (...)\n",
230 func (args
, from_tty
);
233 fprintf_unfiltered (gdb_stdlog
, "<- %s->open (%s, %d)\n",
234 ti
->shortname
, args
, from_tty
);
240 add_target (const target_info
&t
, target_open_ftype
*func
,
241 completer_ftype
*completer
)
243 struct cmd_list_element
*c
;
245 auto &func_slot
= target_factories
[&t
];
246 if (func_slot
!= nullptr)
247 internal_error (__FILE__
, __LINE__
,
248 _("target already added (\"%s\")."), t
.shortname
);
251 if (targetlist
== NULL
)
252 add_basic_prefix_cmd ("target", class_run
, _("\
253 Connect to a target machine or process.\n\
254 The first argument is the type or protocol of the target machine.\n\
255 Remaining arguments are interpreted by the target protocol. For more\n\
256 information on the arguments for a particular protocol, type\n\
257 `help target ' followed by the protocol name."),
258 &targetlist
, "target ", 0, &cmdlist
);
259 c
= add_cmd (t
.shortname
, no_class
, t
.doc
, &targetlist
);
260 set_cmd_context (c
, (void *) &t
);
261 set_cmd_sfunc (c
, open_target
);
262 if (completer
!= NULL
)
263 set_cmd_completer (c
, completer
);
269 add_deprecated_target_alias (const target_info
&tinfo
, const char *alias
)
271 struct cmd_list_element
*c
;
274 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
276 c
= add_cmd (alias
, no_class
, tinfo
.doc
, &targetlist
);
277 set_cmd_sfunc (c
, open_target
);
278 set_cmd_context (c
, (void *) &tinfo
);
279 alt
= xstrprintf ("target %s", tinfo
.shortname
);
280 deprecate_cmd (c
, alt
);
288 current_top_target ()->kill ();
292 target_load (const char *arg
, int from_tty
)
294 target_dcache_invalidate ();
295 current_top_target ()->load (arg
, from_tty
);
300 target_terminal_state
target_terminal::m_terminal_state
301 = target_terminal_state::is_ours
;
303 /* See target/target.h. */
306 target_terminal::init (void)
308 current_top_target ()->terminal_init ();
310 m_terminal_state
= target_terminal_state::is_ours
;
313 /* See target/target.h. */
316 target_terminal::inferior (void)
318 struct ui
*ui
= current_ui
;
320 /* A background resume (``run&'') should leave GDB in control of the
322 if (ui
->prompt_state
!= PROMPT_BLOCKED
)
325 /* Since we always run the inferior in the main console (unless "set
326 inferior-tty" is in effect), when some UI other than the main one
327 calls target_terminal::inferior, then we leave the main UI's
328 terminal settings as is. */
332 /* If GDB is resuming the inferior in the foreground, install
333 inferior's terminal modes. */
335 struct inferior
*inf
= current_inferior ();
337 if (inf
->terminal_state
!= target_terminal_state::is_inferior
)
339 current_top_target ()->terminal_inferior ();
340 inf
->terminal_state
= target_terminal_state::is_inferior
;
343 m_terminal_state
= target_terminal_state::is_inferior
;
345 /* If the user hit C-c before, pretend that it was hit right
347 if (check_quit_flag ())
348 target_pass_ctrlc ();
351 /* See target/target.h. */
354 target_terminal::restore_inferior (void)
356 struct ui
*ui
= current_ui
;
358 /* See target_terminal::inferior(). */
359 if (ui
->prompt_state
!= PROMPT_BLOCKED
|| ui
!= main_ui
)
362 /* Restore the terminal settings of inferiors that were in the
363 foreground but are now ours_for_output due to a temporary
364 target_target::ours_for_output() call. */
367 scoped_restore_current_inferior restore_inferior
;
369 for (::inferior
*inf
: all_inferiors ())
371 if (inf
->terminal_state
== target_terminal_state::is_ours_for_output
)
373 set_current_inferior (inf
);
374 current_top_target ()->terminal_inferior ();
375 inf
->terminal_state
= target_terminal_state::is_inferior
;
380 m_terminal_state
= target_terminal_state::is_inferior
;
382 /* If the user hit C-c before, pretend that it was hit right
384 if (check_quit_flag ())
385 target_pass_ctrlc ();
388 /* Switch terminal state to DESIRED_STATE, either is_ours, or
389 is_ours_for_output. */
392 target_terminal_is_ours_kind (target_terminal_state desired_state
)
394 scoped_restore_current_inferior restore_inferior
;
396 /* Must do this in two passes. First, have all inferiors save the
397 current terminal settings. Then, after all inferiors have add a
398 chance to safely save the terminal settings, restore GDB's
399 terminal settings. */
401 for (inferior
*inf
: all_inferiors ())
403 if (inf
->terminal_state
== target_terminal_state::is_inferior
)
405 set_current_inferior (inf
);
406 current_top_target ()->terminal_save_inferior ();
410 for (inferior
*inf
: all_inferiors ())
412 /* Note we don't check is_inferior here like above because we
413 need to handle 'is_ours_for_output -> is_ours' too. Careful
414 to never transition from 'is_ours' to 'is_ours_for_output',
416 if (inf
->terminal_state
!= target_terminal_state::is_ours
417 && inf
->terminal_state
!= desired_state
)
419 set_current_inferior (inf
);
420 if (desired_state
== target_terminal_state::is_ours
)
421 current_top_target ()->terminal_ours ();
422 else if (desired_state
== target_terminal_state::is_ours_for_output
)
423 current_top_target ()->terminal_ours_for_output ();
425 gdb_assert_not_reached ("unhandled desired state");
426 inf
->terminal_state
= desired_state
;
431 /* See target/target.h. */
434 target_terminal::ours ()
436 struct ui
*ui
= current_ui
;
438 /* See target_terminal::inferior. */
442 if (m_terminal_state
== target_terminal_state::is_ours
)
445 target_terminal_is_ours_kind (target_terminal_state::is_ours
);
446 m_terminal_state
= target_terminal_state::is_ours
;
449 /* See target/target.h. */
452 target_terminal::ours_for_output ()
454 struct ui
*ui
= current_ui
;
456 /* See target_terminal::inferior. */
460 if (!target_terminal::is_inferior ())
463 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output
);
464 target_terminal::m_terminal_state
= target_terminal_state::is_ours_for_output
;
467 /* See target/target.h. */
470 target_terminal::info (const char *arg
, int from_tty
)
472 current_top_target ()->terminal_info (arg
, from_tty
);
478 target_supports_terminal_ours (void)
480 /* The current top target is the target at the top of the target
481 stack of the current inferior. While normally there's always an
482 inferior, we must check for nullptr here because we can get here
483 very early during startup, before the initial inferior is first
485 inferior
*inf
= current_inferior ();
489 return inf
->top_target ()->supports_terminal_ours ();
495 error (_("You can't do that when your target is `%s'"),
496 current_top_target ()->shortname ());
502 error (_("You can't do that without a process to debug."));
506 default_terminal_info (struct target_ops
*self
, const char *args
, int from_tty
)
508 printf_unfiltered (_("No saved terminal information.\n"));
511 /* A default implementation for the to_get_ada_task_ptid target method.
513 This function builds the PTID by using both LWP and TID as part of
514 the PTID lwp and tid elements. The pid used is the pid of the
518 default_get_ada_task_ptid (struct target_ops
*self
, long lwp
, long tid
)
520 return ptid_t (inferior_ptid
.pid (), lwp
, tid
);
523 static enum exec_direction_kind
524 default_execution_direction (struct target_ops
*self
)
526 if (!target_can_execute_reverse ())
528 else if (!target_can_async_p ())
531 gdb_assert_not_reached ("\
532 to_execution_direction must be implemented for reverse async");
538 decref_target (target_ops
*t
)
541 if (t
->refcount () == 0)
543 if (t
->stratum () == process_stratum
)
544 connection_list_remove (as_process_stratum_target (t
));
552 target_stack::push (target_ops
*t
)
556 strata stratum
= t
->stratum ();
558 if (stratum
== process_stratum
)
559 connection_list_add (as_process_stratum_target (t
));
561 /* If there's already a target at this stratum, remove it. */
563 if (m_stack
[stratum
] != NULL
)
564 unpush (m_stack
[stratum
]);
566 /* Now add the new one. */
567 m_stack
[stratum
] = t
;
576 push_target (struct target_ops
*t
)
578 current_inferior ()->push_target (t
);
584 push_target (target_ops_up
&&t
)
586 current_inferior ()->push_target (t
.get ());
593 unpush_target (struct target_ops
*t
)
595 return current_inferior ()->unpush_target (t
);
601 target_stack::unpush (target_ops
*t
)
603 gdb_assert (t
!= NULL
);
605 strata stratum
= t
->stratum ();
607 if (stratum
== dummy_stratum
)
608 internal_error (__FILE__
, __LINE__
,
609 _("Attempt to unpush the dummy target"));
611 /* Look for the specified target. Note that a target can only occur
612 once in the target stack. */
614 if (m_stack
[stratum
] != t
)
616 /* If T wasn't pushed, quit. Only open targets should be
621 /* Unchain the target. */
622 m_stack
[stratum
] = NULL
;
624 if (m_top
== stratum
)
625 m_top
= t
->beneath ()->stratum ();
627 /* Finally close the target, if there are no inferiors
628 referencing this target still. Note we do this after unchaining,
629 so any target method calls from within the target_close
630 implementation don't end up in T anymore. Do leave the target
631 open if we have are other inferiors referencing this target
638 /* Unpush TARGET and assert that it worked. */
641 unpush_target_and_assert (struct target_ops
*target
)
643 if (!unpush_target (target
))
645 fprintf_unfiltered (gdb_stderr
,
646 "pop_all_targets couldn't find target %s\n",
647 target
->shortname ());
648 internal_error (__FILE__
, __LINE__
,
649 _("failed internal consistency check"));
654 pop_all_targets_above (enum strata above_stratum
)
656 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum
)
657 unpush_target_and_assert (current_top_target ());
663 pop_all_targets_at_and_above (enum strata stratum
)
665 while ((int) (current_top_target ()->stratum ()) >= (int) stratum
)
666 unpush_target_and_assert (current_top_target ());
670 pop_all_targets (void)
672 pop_all_targets_above (dummy_stratum
);
675 /* Return true if T is now pushed in the current inferior's target
676 stack. Return false otherwise. */
679 target_is_pushed (target_ops
*t
)
681 return current_inferior ()->target_is_pushed (t
);
684 /* Default implementation of to_get_thread_local_address. */
687 generic_tls_error (void)
689 throw_error (TLS_GENERIC_ERROR
,
690 _("Cannot find thread-local variables on this target"));
693 /* Using the objfile specified in OBJFILE, find the address for the
694 current thread's thread-local storage with offset OFFSET. */
696 target_translate_tls_address (struct objfile
*objfile
, CORE_ADDR offset
)
698 volatile CORE_ADDR addr
= 0;
699 struct target_ops
*target
= current_top_target ();
700 struct gdbarch
*gdbarch
= target_gdbarch ();
702 if (gdbarch_fetch_tls_load_module_address_p (gdbarch
))
704 ptid_t ptid
= inferior_ptid
;
710 /* Fetch the load module address for this objfile. */
711 lm_addr
= gdbarch_fetch_tls_load_module_address (gdbarch
,
714 if (gdbarch_get_thread_local_address_p (gdbarch
))
715 addr
= gdbarch_get_thread_local_address (gdbarch
, ptid
, lm_addr
,
718 addr
= target
->get_thread_local_address (ptid
, lm_addr
, offset
);
720 /* If an error occurred, print TLS related messages here. Otherwise,
721 throw the error to some higher catcher. */
722 catch (const gdb_exception
&ex
)
724 int objfile_is_library
= (objfile
->flags
& OBJF_SHARED
);
728 case TLS_NO_LIBRARY_SUPPORT_ERROR
:
729 error (_("Cannot find thread-local variables "
730 "in this thread library."));
732 case TLS_LOAD_MODULE_NOT_FOUND_ERROR
:
733 if (objfile_is_library
)
734 error (_("Cannot find shared library `%s' in dynamic"
735 " linker's load module list"), objfile_name (objfile
));
737 error (_("Cannot find executable file `%s' in dynamic"
738 " linker's load module list"), objfile_name (objfile
));
740 case TLS_NOT_ALLOCATED_YET_ERROR
:
741 if (objfile_is_library
)
742 error (_("The inferior has not yet allocated storage for"
743 " thread-local variables in\n"
744 "the shared library `%s'\n"
746 objfile_name (objfile
),
747 target_pid_to_str (ptid
).c_str ());
749 error (_("The inferior has not yet allocated storage for"
750 " thread-local variables in\n"
751 "the executable `%s'\n"
753 objfile_name (objfile
),
754 target_pid_to_str (ptid
).c_str ());
756 case TLS_GENERIC_ERROR
:
757 if (objfile_is_library
)
758 error (_("Cannot find thread-local storage for %s, "
759 "shared library %s:\n%s"),
760 target_pid_to_str (ptid
).c_str (),
761 objfile_name (objfile
), ex
.what ());
763 error (_("Cannot find thread-local storage for %s, "
764 "executable file %s:\n%s"),
765 target_pid_to_str (ptid
).c_str (),
766 objfile_name (objfile
), ex
.what ());
775 error (_("Cannot find thread-local variables on this target"));
781 target_xfer_status_to_string (enum target_xfer_status status
)
783 #define CASE(X) case X: return #X
786 CASE(TARGET_XFER_E_IO
);
787 CASE(TARGET_XFER_UNAVAILABLE
);
797 gdb::unique_xmalloc_ptr
<char>
798 target_read_string (CORE_ADDR memaddr
, int len
, int *bytes_read
)
800 gdb::unique_xmalloc_ptr
<gdb_byte
> buffer
;
803 if (bytes_read
== nullptr)
804 bytes_read
= &ignore
;
806 /* Note that the endian-ness does not matter here. */
807 int errcode
= read_string (memaddr
, -1, 1, len
, BFD_ENDIAN_LITTLE
,
808 &buffer
, bytes_read
);
812 return gdb::unique_xmalloc_ptr
<char> ((char *) buffer
.release ());
815 target_section_table
*
816 target_get_section_table (struct target_ops
*target
)
818 return target
->get_section_table ();
821 /* Find a section containing ADDR. */
823 struct target_section
*
824 target_section_by_addr (struct target_ops
*target
, CORE_ADDR addr
)
826 target_section_table
*table
= target_get_section_table (target
);
831 for (target_section
&secp
: *table
)
833 if (addr
>= secp
.addr
&& addr
< secp
.endaddr
)
840 /* Helper for the memory xfer routines. Checks the attributes of the
841 memory region of MEMADDR against the read or write being attempted.
842 If the access is permitted returns true, otherwise returns false.
843 REGION_P is an optional output parameter. If not-NULL, it is
844 filled with a pointer to the memory region of MEMADDR. REG_LEN
845 returns LEN trimmed to the end of the region. This is how much the
846 caller can continue requesting, if the access is permitted. A
847 single xfer request must not straddle memory region boundaries. */
850 memory_xfer_check_region (gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
851 ULONGEST memaddr
, ULONGEST len
, ULONGEST
*reg_len
,
852 struct mem_region
**region_p
)
854 struct mem_region
*region
;
856 region
= lookup_mem_region (memaddr
);
858 if (region_p
!= NULL
)
861 switch (region
->attrib
.mode
)
864 if (writebuf
!= NULL
)
874 /* We only support writing to flash during "load" for now. */
875 if (writebuf
!= NULL
)
876 error (_("Writing to flash memory forbidden in this context"));
883 /* region->hi == 0 means there's no upper bound. */
884 if (memaddr
+ len
< region
->hi
|| region
->hi
== 0)
887 *reg_len
= region
->hi
- memaddr
;
892 /* Read memory from more than one valid target. A core file, for
893 instance, could have some of memory but delegate other bits to
894 the target below it. So, we must manually try all targets. */
896 enum target_xfer_status
897 raw_memory_xfer_partial (struct target_ops
*ops
, gdb_byte
*readbuf
,
898 const gdb_byte
*writebuf
, ULONGEST memaddr
, LONGEST len
,
899 ULONGEST
*xfered_len
)
901 enum target_xfer_status res
;
905 res
= ops
->xfer_partial (TARGET_OBJECT_MEMORY
, NULL
,
906 readbuf
, writebuf
, memaddr
, len
,
908 if (res
== TARGET_XFER_OK
)
911 /* Stop if the target reports that the memory is not available. */
912 if (res
== TARGET_XFER_UNAVAILABLE
)
915 /* Don't continue past targets which have all the memory.
916 At one time, this code was necessary to read data from
917 executables / shared libraries when data for the requested
918 addresses weren't available in the core file. But now the
919 core target handles this case itself. */
920 if (ops
->has_all_memory ())
923 ops
= ops
->beneath ();
927 /* The cache works at the raw memory level. Make sure the cache
928 gets updated with raw contents no matter what kind of memory
929 object was originally being written. Note we do write-through
930 first, so that if it fails, we don't write to the cache contents
931 that never made it to the target. */
933 && inferior_ptid
!= null_ptid
934 && target_dcache_init_p ()
935 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
937 DCACHE
*dcache
= target_dcache_get ();
939 /* Note that writing to an area of memory which wasn't present
940 in the cache doesn't cause it to be loaded in. */
941 dcache_update (dcache
, res
, memaddr
, writebuf
, *xfered_len
);
947 /* Perform a partial memory transfer.
948 For docs see target.h, to_xfer_partial. */
950 static enum target_xfer_status
951 memory_xfer_partial_1 (struct target_ops
*ops
, enum target_object object
,
952 gdb_byte
*readbuf
, const gdb_byte
*writebuf
, ULONGEST memaddr
,
953 ULONGEST len
, ULONGEST
*xfered_len
)
955 enum target_xfer_status res
;
957 struct mem_region
*region
;
958 struct inferior
*inf
;
960 /* For accesses to unmapped overlay sections, read directly from
961 files. Must do this first, as MEMADDR may need adjustment. */
962 if (readbuf
!= NULL
&& overlay_debugging
)
964 struct obj_section
*section
= find_pc_overlay (memaddr
);
966 if (pc_in_unmapped_range (memaddr
, section
))
968 target_section_table
*table
= target_get_section_table (ops
);
969 const char *section_name
= section
->the_bfd_section
->name
;
971 memaddr
= overlay_mapped_address (memaddr
, section
);
973 auto match_cb
= [=] (const struct target_section
*s
)
975 return (strcmp (section_name
, s
->the_bfd_section
->name
) == 0);
978 return section_table_xfer_memory_partial (readbuf
, writebuf
,
979 memaddr
, len
, xfered_len
,
984 /* Try the executable files, if "trust-readonly-sections" is set. */
985 if (readbuf
!= NULL
&& trust_readonly
)
987 struct target_section
*secp
;
989 secp
= target_section_by_addr (ops
, memaddr
);
991 && (bfd_section_flags (secp
->the_bfd_section
) & SEC_READONLY
))
993 target_section_table
*table
= target_get_section_table (ops
);
994 return section_table_xfer_memory_partial (readbuf
, writebuf
,
995 memaddr
, len
, xfered_len
,
1000 /* Try GDB's internal data cache. */
1002 if (!memory_xfer_check_region (readbuf
, writebuf
, memaddr
, len
, ®_len
,
1004 return TARGET_XFER_E_IO
;
1006 if (inferior_ptid
!= null_ptid
)
1007 inf
= current_inferior ();
1013 /* The dcache reads whole cache lines; that doesn't play well
1014 with reading from a trace buffer, because reading outside of
1015 the collected memory range fails. */
1016 && get_traceframe_number () == -1
1017 && (region
->attrib
.cache
1018 || (stack_cache_enabled_p () && object
== TARGET_OBJECT_STACK_MEMORY
)
1019 || (code_cache_enabled_p () && object
== TARGET_OBJECT_CODE_MEMORY
)))
1021 DCACHE
*dcache
= target_dcache_get_or_init ();
1023 return dcache_read_memory_partial (ops
, dcache
, memaddr
, readbuf
,
1024 reg_len
, xfered_len
);
1027 /* If none of those methods found the memory we wanted, fall back
1028 to a target partial transfer. Normally a single call to
1029 to_xfer_partial is enough; if it doesn't recognize an object
1030 it will call the to_xfer_partial of the next target down.
1031 But for memory this won't do. Memory is the only target
1032 object which can be read from more than one valid target.
1033 A core file, for instance, could have some of memory but
1034 delegate other bits to the target below it. So, we must
1035 manually try all targets. */
1037 res
= raw_memory_xfer_partial (ops
, readbuf
, writebuf
, memaddr
, reg_len
,
1040 /* If we still haven't got anything, return the last error. We
1045 /* Perform a partial memory transfer. For docs see target.h,
1048 static enum target_xfer_status
1049 memory_xfer_partial (struct target_ops
*ops
, enum target_object object
,
1050 gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
1051 ULONGEST memaddr
, ULONGEST len
, ULONGEST
*xfered_len
)
1053 enum target_xfer_status res
;
1055 /* Zero length requests are ok and require no work. */
1057 return TARGET_XFER_EOF
;
1059 memaddr
= address_significant (target_gdbarch (), memaddr
);
1061 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1062 breakpoint insns, thus hiding out from higher layers whether
1063 there are software breakpoints inserted in the code stream. */
1064 if (readbuf
!= NULL
)
1066 res
= memory_xfer_partial_1 (ops
, object
, readbuf
, NULL
, memaddr
, len
,
1069 if (res
== TARGET_XFER_OK
&& !show_memory_breakpoints
)
1070 breakpoint_xfer_memory (readbuf
, NULL
, NULL
, memaddr
, *xfered_len
);
1074 /* A large write request is likely to be partially satisfied
1075 by memory_xfer_partial_1. We will continually malloc
1076 and free a copy of the entire write request for breakpoint
1077 shadow handling even though we only end up writing a small
1078 subset of it. Cap writes to a limit specified by the target
1079 to mitigate this. */
1080 len
= std::min (ops
->get_memory_xfer_limit (), len
);
1082 gdb::byte_vector
buf (writebuf
, writebuf
+ len
);
1083 breakpoint_xfer_memory (NULL
, buf
.data (), writebuf
, memaddr
, len
);
1084 res
= memory_xfer_partial_1 (ops
, object
, NULL
, buf
.data (), memaddr
, len
,
1091 scoped_restore_tmpl
<int>
1092 make_scoped_restore_show_memory_breakpoints (int show
)
1094 return make_scoped_restore (&show_memory_breakpoints
, show
);
1097 /* For docs see target.h, to_xfer_partial. */
1099 enum target_xfer_status
1100 target_xfer_partial (struct target_ops
*ops
,
1101 enum target_object object
, const char *annex
,
1102 gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
1103 ULONGEST offset
, ULONGEST len
,
1104 ULONGEST
*xfered_len
)
1106 enum target_xfer_status retval
;
1108 /* Transfer is done when LEN is zero. */
1110 return TARGET_XFER_EOF
;
1112 if (writebuf
&& !may_write_memory
)
1113 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1114 core_addr_to_string_nz (offset
), plongest (len
));
1118 /* If this is a memory transfer, let the memory-specific code
1119 have a look at it instead. Memory transfers are more
1121 if (object
== TARGET_OBJECT_MEMORY
|| object
== TARGET_OBJECT_STACK_MEMORY
1122 || object
== TARGET_OBJECT_CODE_MEMORY
)
1123 retval
= memory_xfer_partial (ops
, object
, readbuf
,
1124 writebuf
, offset
, len
, xfered_len
);
1125 else if (object
== TARGET_OBJECT_RAW_MEMORY
)
1127 /* Skip/avoid accessing the target if the memory region
1128 attributes block the access. Check this here instead of in
1129 raw_memory_xfer_partial as otherwise we'd end up checking
1130 this twice in the case of the memory_xfer_partial path is
1131 taken; once before checking the dcache, and another in the
1132 tail call to raw_memory_xfer_partial. */
1133 if (!memory_xfer_check_region (readbuf
, writebuf
, offset
, len
, &len
,
1135 return TARGET_XFER_E_IO
;
1137 /* Request the normal memory object from other layers. */
1138 retval
= raw_memory_xfer_partial (ops
, readbuf
, writebuf
, offset
, len
,
1142 retval
= ops
->xfer_partial (object
, annex
, readbuf
,
1143 writebuf
, offset
, len
, xfered_len
);
1147 const unsigned char *myaddr
= NULL
;
1149 fprintf_unfiltered (gdb_stdlog
,
1150 "%s:target_xfer_partial "
1151 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1154 (annex
? annex
: "(null)"),
1155 host_address_to_string (readbuf
),
1156 host_address_to_string (writebuf
),
1157 core_addr_to_string_nz (offset
),
1158 pulongest (len
), retval
,
1159 pulongest (*xfered_len
));
1165 if (retval
== TARGET_XFER_OK
&& myaddr
!= NULL
)
1169 fputs_unfiltered (", bytes =", gdb_stdlog
);
1170 for (i
= 0; i
< *xfered_len
; i
++)
1172 if ((((intptr_t) &(myaddr
[i
])) & 0xf) == 0)
1174 if (targetdebug
< 2 && i
> 0)
1176 fprintf_unfiltered (gdb_stdlog
, " ...");
1179 fprintf_unfiltered (gdb_stdlog
, "\n");
1182 fprintf_unfiltered (gdb_stdlog
, " %02x", myaddr
[i
] & 0xff);
1186 fputc_unfiltered ('\n', gdb_stdlog
);
1189 /* Check implementations of to_xfer_partial update *XFERED_LEN
1190 properly. Do assertion after printing debug messages, so that we
1191 can find more clues on assertion failure from debugging messages. */
1192 if (retval
== TARGET_XFER_OK
|| retval
== TARGET_XFER_UNAVAILABLE
)
1193 gdb_assert (*xfered_len
> 0);
1198 /* Read LEN bytes of target memory at address MEMADDR, placing the
1199 results in GDB's memory at MYADDR. Returns either 0 for success or
1200 -1 if any error occurs.
1202 If an error occurs, no guarantee is made about the contents of the data at
1203 MYADDR. In particular, the caller should not depend upon partial reads
1204 filling the buffer with good data. There is no way for the caller to know
1205 how much good data might have been transfered anyway. Callers that can
1206 deal with partial reads should call target_read (which will retry until
1207 it makes no progress, and then return how much was transferred). */
1210 target_read_memory (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1212 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY
, NULL
,
1213 myaddr
, memaddr
, len
) == len
)
1219 /* See target/target.h. */
1222 target_read_uint32 (CORE_ADDR memaddr
, uint32_t *result
)
1227 r
= target_read_memory (memaddr
, buf
, sizeof buf
);
1230 *result
= extract_unsigned_integer (buf
, sizeof buf
,
1231 gdbarch_byte_order (target_gdbarch ()));
1235 /* Like target_read_memory, but specify explicitly that this is a read
1236 from the target's raw memory. That is, this read bypasses the
1237 dcache, breakpoint shadowing, etc. */
1240 target_read_raw_memory (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1242 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY
, NULL
,
1243 myaddr
, memaddr
, len
) == len
)
1249 /* Like target_read_memory, but specify explicitly that this is a read from
1250 the target's stack. This may trigger different cache behavior. */
1253 target_read_stack (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1255 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY
, NULL
,
1256 myaddr
, memaddr
, len
) == len
)
1262 /* Like target_read_memory, but specify explicitly that this is a read from
1263 the target's code. This may trigger different cache behavior. */
1266 target_read_code (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1268 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY
, NULL
,
1269 myaddr
, memaddr
, len
) == len
)
1275 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1276 Returns either 0 for success or -1 if any error occurs. If an
1277 error occurs, no guarantee is made about how much data got written.
1278 Callers that can deal with partial writes should call
1282 target_write_memory (CORE_ADDR memaddr
, const gdb_byte
*myaddr
, ssize_t len
)
1284 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY
, NULL
,
1285 myaddr
, memaddr
, len
) == len
)
1291 /* Write LEN bytes from MYADDR to target raw memory at address
1292 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1293 If an error occurs, no guarantee is made about how much data got
1294 written. Callers that can deal with partial writes should call
1298 target_write_raw_memory (CORE_ADDR memaddr
, const gdb_byte
*myaddr
, ssize_t len
)
1300 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY
, NULL
,
1301 myaddr
, memaddr
, len
) == len
)
1307 /* Fetch the target's memory map. */
1309 std::vector
<mem_region
>
1310 target_memory_map (void)
1312 std::vector
<mem_region
> result
= current_top_target ()->memory_map ();
1313 if (result
.empty ())
1316 std::sort (result
.begin (), result
.end ());
1318 /* Check that regions do not overlap. Simultaneously assign
1319 a numbering for the "mem" commands to use to refer to
1321 mem_region
*last_one
= NULL
;
1322 for (size_t ix
= 0; ix
< result
.size (); ix
++)
1324 mem_region
*this_one
= &result
[ix
];
1325 this_one
->number
= ix
;
1327 if (last_one
!= NULL
&& last_one
->hi
> this_one
->lo
)
1329 warning (_("Overlapping regions in memory map: ignoring"));
1330 return std::vector
<mem_region
> ();
1333 last_one
= this_one
;
1340 target_flash_erase (ULONGEST address
, LONGEST length
)
1342 current_top_target ()->flash_erase (address
, length
);
1346 target_flash_done (void)
1348 current_top_target ()->flash_done ();
1352 show_trust_readonly (struct ui_file
*file
, int from_tty
,
1353 struct cmd_list_element
*c
, const char *value
)
1355 fprintf_filtered (file
,
1356 _("Mode for reading from readonly sections is %s.\n"),
1360 /* Target vector read/write partial wrapper functions. */
1362 static enum target_xfer_status
1363 target_read_partial (struct target_ops
*ops
,
1364 enum target_object object
,
1365 const char *annex
, gdb_byte
*buf
,
1366 ULONGEST offset
, ULONGEST len
,
1367 ULONGEST
*xfered_len
)
1369 return target_xfer_partial (ops
, object
, annex
, buf
, NULL
, offset
, len
,
1373 static enum target_xfer_status
1374 target_write_partial (struct target_ops
*ops
,
1375 enum target_object object
,
1376 const char *annex
, const gdb_byte
*buf
,
1377 ULONGEST offset
, LONGEST len
, ULONGEST
*xfered_len
)
1379 return target_xfer_partial (ops
, object
, annex
, NULL
, buf
, offset
, len
,
1383 /* Wrappers to perform the full transfer. */
1385 /* For docs on target_read see target.h. */
1388 target_read (struct target_ops
*ops
,
1389 enum target_object object
,
1390 const char *annex
, gdb_byte
*buf
,
1391 ULONGEST offset
, LONGEST len
)
1393 LONGEST xfered_total
= 0;
1396 /* If we are reading from a memory object, find the length of an addressable
1397 unit for that architecture. */
1398 if (object
== TARGET_OBJECT_MEMORY
1399 || object
== TARGET_OBJECT_STACK_MEMORY
1400 || object
== TARGET_OBJECT_CODE_MEMORY
1401 || object
== TARGET_OBJECT_RAW_MEMORY
)
1402 unit_size
= gdbarch_addressable_memory_unit_size (target_gdbarch ());
1404 while (xfered_total
< len
)
1406 ULONGEST xfered_partial
;
1407 enum target_xfer_status status
;
1409 status
= target_read_partial (ops
, object
, annex
,
1410 buf
+ xfered_total
* unit_size
,
1411 offset
+ xfered_total
, len
- xfered_total
,
1414 /* Call an observer, notifying them of the xfer progress? */
1415 if (status
== TARGET_XFER_EOF
)
1416 return xfered_total
;
1417 else if (status
== TARGET_XFER_OK
)
1419 xfered_total
+= xfered_partial
;
1423 return TARGET_XFER_E_IO
;
1429 /* Assuming that the entire [begin, end) range of memory cannot be
1430 read, try to read whatever subrange is possible to read.
1432 The function returns, in RESULT, either zero or one memory block.
1433 If there's a readable subrange at the beginning, it is completely
1434 read and returned. Any further readable subrange will not be read.
1435 Otherwise, if there's a readable subrange at the end, it will be
1436 completely read and returned. Any readable subranges before it
1437 (obviously, not starting at the beginning), will be ignored. In
1438 other cases -- either no readable subrange, or readable subrange(s)
1439 that is neither at the beginning, or end, nothing is returned.
1441 The purpose of this function is to handle a read across a boundary
1442 of accessible memory in a case when memory map is not available.
1443 The above restrictions are fine for this case, but will give
1444 incorrect results if the memory is 'patchy'. However, supporting
1445 'patchy' memory would require trying to read every single byte,
1446 and it seems unacceptable solution. Explicit memory map is
1447 recommended for this case -- and target_read_memory_robust will
1448 take care of reading multiple ranges then. */
1451 read_whatever_is_readable (struct target_ops
*ops
,
1452 const ULONGEST begin
, const ULONGEST end
,
1454 std::vector
<memory_read_result
> *result
)
1456 ULONGEST current_begin
= begin
;
1457 ULONGEST current_end
= end
;
1459 ULONGEST xfered_len
;
1461 /* If we previously failed to read 1 byte, nothing can be done here. */
1462 if (end
- begin
<= 1)
1465 gdb::unique_xmalloc_ptr
<gdb_byte
> buf ((gdb_byte
*) xmalloc (end
- begin
));
1467 /* Check that either first or the last byte is readable, and give up
1468 if not. This heuristic is meant to permit reading accessible memory
1469 at the boundary of accessible region. */
1470 if (target_read_partial (ops
, TARGET_OBJECT_MEMORY
, NULL
,
1471 buf
.get (), begin
, 1, &xfered_len
) == TARGET_XFER_OK
)
1476 else if (target_read_partial (ops
, TARGET_OBJECT_MEMORY
, NULL
,
1477 buf
.get () + (end
- begin
) - 1, end
- 1, 1,
1478 &xfered_len
) == TARGET_XFER_OK
)
1486 /* Loop invariant is that the [current_begin, current_end) was previously
1487 found to be not readable as a whole.
1489 Note loop condition -- if the range has 1 byte, we can't divide the range
1490 so there's no point trying further. */
1491 while (current_end
- current_begin
> 1)
1493 ULONGEST first_half_begin
, first_half_end
;
1494 ULONGEST second_half_begin
, second_half_end
;
1496 ULONGEST middle
= current_begin
+ (current_end
- current_begin
) / 2;
1500 first_half_begin
= current_begin
;
1501 first_half_end
= middle
;
1502 second_half_begin
= middle
;
1503 second_half_end
= current_end
;
1507 first_half_begin
= middle
;
1508 first_half_end
= current_end
;
1509 second_half_begin
= current_begin
;
1510 second_half_end
= middle
;
1513 xfer
= target_read (ops
, TARGET_OBJECT_MEMORY
, NULL
,
1514 buf
.get () + (first_half_begin
- begin
) * unit_size
,
1516 first_half_end
- first_half_begin
);
1518 if (xfer
== first_half_end
- first_half_begin
)
1520 /* This half reads up fine. So, the error must be in the
1522 current_begin
= second_half_begin
;
1523 current_end
= second_half_end
;
1527 /* This half is not readable. Because we've tried one byte, we
1528 know some part of this half if actually readable. Go to the next
1529 iteration to divide again and try to read.
1531 We don't handle the other half, because this function only tries
1532 to read a single readable subrange. */
1533 current_begin
= first_half_begin
;
1534 current_end
= first_half_end
;
1540 /* The [begin, current_begin) range has been read. */
1541 result
->emplace_back (begin
, current_end
, std::move (buf
));
1545 /* The [current_end, end) range has been read. */
1546 LONGEST region_len
= end
- current_end
;
1548 gdb::unique_xmalloc_ptr
<gdb_byte
> data
1549 ((gdb_byte
*) xmalloc (region_len
* unit_size
));
1550 memcpy (data
.get (), buf
.get () + (current_end
- begin
) * unit_size
,
1551 region_len
* unit_size
);
1552 result
->emplace_back (current_end
, end
, std::move (data
));
1556 std::vector
<memory_read_result
>
1557 read_memory_robust (struct target_ops
*ops
,
1558 const ULONGEST offset
, const LONGEST len
)
1560 std::vector
<memory_read_result
> result
;
1561 int unit_size
= gdbarch_addressable_memory_unit_size (target_gdbarch ());
1563 LONGEST xfered_total
= 0;
1564 while (xfered_total
< len
)
1566 struct mem_region
*region
= lookup_mem_region (offset
+ xfered_total
);
1569 /* If there is no explicit region, a fake one should be created. */
1570 gdb_assert (region
);
1572 if (region
->hi
== 0)
1573 region_len
= len
- xfered_total
;
1575 region_len
= region
->hi
- offset
;
1577 if (region
->attrib
.mode
== MEM_NONE
|| region
->attrib
.mode
== MEM_WO
)
1579 /* Cannot read this region. Note that we can end up here only
1580 if the region is explicitly marked inaccessible, or
1581 'inaccessible-by-default' is in effect. */
1582 xfered_total
+= region_len
;
1586 LONGEST to_read
= std::min (len
- xfered_total
, region_len
);
1587 gdb::unique_xmalloc_ptr
<gdb_byte
> buffer
1588 ((gdb_byte
*) xmalloc (to_read
* unit_size
));
1590 LONGEST xfered_partial
=
1591 target_read (ops
, TARGET_OBJECT_MEMORY
, NULL
, buffer
.get (),
1592 offset
+ xfered_total
, to_read
);
1593 /* Call an observer, notifying them of the xfer progress? */
1594 if (xfered_partial
<= 0)
1596 /* Got an error reading full chunk. See if maybe we can read
1598 read_whatever_is_readable (ops
, offset
+ xfered_total
,
1599 offset
+ xfered_total
+ to_read
,
1600 unit_size
, &result
);
1601 xfered_total
+= to_read
;
1605 result
.emplace_back (offset
+ xfered_total
,
1606 offset
+ xfered_total
+ xfered_partial
,
1607 std::move (buffer
));
1608 xfered_total
+= xfered_partial
;
1618 /* An alternative to target_write with progress callbacks. */
1621 target_write_with_progress (struct target_ops
*ops
,
1622 enum target_object object
,
1623 const char *annex
, const gdb_byte
*buf
,
1624 ULONGEST offset
, LONGEST len
,
1625 void (*progress
) (ULONGEST
, void *), void *baton
)
1627 LONGEST xfered_total
= 0;
1630 /* If we are writing to a memory object, find the length of an addressable
1631 unit for that architecture. */
1632 if (object
== TARGET_OBJECT_MEMORY
1633 || object
== TARGET_OBJECT_STACK_MEMORY
1634 || object
== TARGET_OBJECT_CODE_MEMORY
1635 || object
== TARGET_OBJECT_RAW_MEMORY
)
1636 unit_size
= gdbarch_addressable_memory_unit_size (target_gdbarch ());
1638 /* Give the progress callback a chance to set up. */
1640 (*progress
) (0, baton
);
1642 while (xfered_total
< len
)
1644 ULONGEST xfered_partial
;
1645 enum target_xfer_status status
;
1647 status
= target_write_partial (ops
, object
, annex
,
1648 buf
+ xfered_total
* unit_size
,
1649 offset
+ xfered_total
, len
- xfered_total
,
1652 if (status
!= TARGET_XFER_OK
)
1653 return status
== TARGET_XFER_EOF
? xfered_total
: TARGET_XFER_E_IO
;
1656 (*progress
) (xfered_partial
, baton
);
1658 xfered_total
+= xfered_partial
;
1664 /* For docs on target_write see target.h. */
1667 target_write (struct target_ops
*ops
,
1668 enum target_object object
,
1669 const char *annex
, const gdb_byte
*buf
,
1670 ULONGEST offset
, LONGEST len
)
1672 return target_write_with_progress (ops
, object
, annex
, buf
, offset
, len
,
1676 /* Help for target_read_alloc and target_read_stralloc. See their comments
1679 template <typename T
>
1680 gdb::optional
<gdb::def_vector
<T
>>
1681 target_read_alloc_1 (struct target_ops
*ops
, enum target_object object
,
1684 gdb::def_vector
<T
> buf
;
1686 const int chunk
= 4096;
1688 /* This function does not have a length parameter; it reads the
1689 entire OBJECT). Also, it doesn't support objects fetched partly
1690 from one target and partly from another (in a different stratum,
1691 e.g. a core file and an executable). Both reasons make it
1692 unsuitable for reading memory. */
1693 gdb_assert (object
!= TARGET_OBJECT_MEMORY
);
1695 /* Start by reading up to 4K at a time. The target will throttle
1696 this number down if necessary. */
1699 ULONGEST xfered_len
;
1700 enum target_xfer_status status
;
1702 buf
.resize (buf_pos
+ chunk
);
1704 status
= target_read_partial (ops
, object
, annex
,
1705 (gdb_byte
*) &buf
[buf_pos
],
1709 if (status
== TARGET_XFER_EOF
)
1711 /* Read all there was. */
1712 buf
.resize (buf_pos
);
1715 else if (status
!= TARGET_XFER_OK
)
1717 /* An error occurred. */
1721 buf_pos
+= xfered_len
;
1729 gdb::optional
<gdb::byte_vector
>
1730 target_read_alloc (struct target_ops
*ops
, enum target_object object
,
1733 return target_read_alloc_1
<gdb_byte
> (ops
, object
, annex
);
1738 gdb::optional
<gdb::char_vector
>
1739 target_read_stralloc (struct target_ops
*ops
, enum target_object object
,
1742 gdb::optional
<gdb::char_vector
> buf
1743 = target_read_alloc_1
<char> (ops
, object
, annex
);
1748 if (buf
->empty () || buf
->back () != '\0')
1749 buf
->push_back ('\0');
1751 /* Check for embedded NUL bytes; but allow trailing NULs. */
1752 for (auto it
= std::find (buf
->begin (), buf
->end (), '\0');
1753 it
!= buf
->end (); it
++)
1756 warning (_("target object %d, annex %s, "
1757 "contained unexpected null characters"),
1758 (int) object
, annex
? annex
: "(none)");
1765 /* Memory transfer methods. */
1768 get_target_memory (struct target_ops
*ops
, CORE_ADDR addr
, gdb_byte
*buf
,
1771 /* This method is used to read from an alternate, non-current
1772 target. This read must bypass the overlay support (as symbols
1773 don't match this target), and GDB's internal cache (wrong cache
1774 for this target). */
1775 if (target_read (ops
, TARGET_OBJECT_RAW_MEMORY
, NULL
, buf
, addr
, len
)
1777 memory_error (TARGET_XFER_E_IO
, addr
);
1781 get_target_memory_unsigned (struct target_ops
*ops
, CORE_ADDR addr
,
1782 int len
, enum bfd_endian byte_order
)
1784 gdb_byte buf
[sizeof (ULONGEST
)];
1786 gdb_assert (len
<= sizeof (buf
));
1787 get_target_memory (ops
, addr
, buf
, len
);
1788 return extract_unsigned_integer (buf
, len
, byte_order
);
1794 target_insert_breakpoint (struct gdbarch
*gdbarch
,
1795 struct bp_target_info
*bp_tgt
)
1797 if (!may_insert_breakpoints
)
1799 warning (_("May not insert breakpoints"));
1803 return current_top_target ()->insert_breakpoint (gdbarch
, bp_tgt
);
1809 target_remove_breakpoint (struct gdbarch
*gdbarch
,
1810 struct bp_target_info
*bp_tgt
,
1811 enum remove_bp_reason reason
)
1813 /* This is kind of a weird case to handle, but the permission might
1814 have been changed after breakpoints were inserted - in which case
1815 we should just take the user literally and assume that any
1816 breakpoints should be left in place. */
1817 if (!may_insert_breakpoints
)
1819 warning (_("May not remove breakpoints"));
1823 return current_top_target ()->remove_breakpoint (gdbarch
, bp_tgt
, reason
);
1827 info_target_command (const char *args
, int from_tty
)
1829 int has_all_mem
= 0;
1831 if (current_program_space
->symfile_object_file
!= NULL
)
1833 objfile
*objf
= current_program_space
->symfile_object_file
;
1834 printf_unfiltered (_("Symbols from \"%s\".\n"),
1835 objfile_name (objf
));
1838 for (target_ops
*t
= current_top_target (); t
!= NULL
; t
= t
->beneath ())
1840 if (!t
->has_memory ())
1843 if ((int) (t
->stratum ()) <= (int) dummy_stratum
)
1846 printf_unfiltered (_("\tWhile running this, "
1847 "GDB does not access memory from...\n"));
1848 printf_unfiltered ("%s:\n", t
->longname ());
1850 has_all_mem
= t
->has_all_memory ();
1854 /* This function is called before any new inferior is created, e.g.
1855 by running a program, attaching, or connecting to a target.
1856 It cleans up any state from previous invocations which might
1857 change between runs. This is a subset of what target_preopen
1858 resets (things which might change between targets). */
1861 target_pre_inferior (int from_tty
)
1863 /* Clear out solib state. Otherwise the solib state of the previous
1864 inferior might have survived and is entirely wrong for the new
1865 target. This has been observed on GNU/Linux using glibc 2.3. How
1877 Cannot access memory at address 0xdeadbeef
1880 /* In some OSs, the shared library list is the same/global/shared
1881 across inferiors. If code is shared between processes, so are
1882 memory regions and features. */
1883 if (!gdbarch_has_global_solist (target_gdbarch ()))
1885 no_shared_libraries (NULL
, from_tty
);
1887 invalidate_target_mem_regions ();
1889 target_clear_description ();
1892 /* attach_flag may be set if the previous process associated with
1893 the inferior was attached to. */
1894 current_inferior ()->attach_flag
= 0;
1896 current_inferior ()->highest_thread_num
= 0;
1898 agent_capability_invalidate ();
1901 /* This is to be called by the open routine before it does
1905 target_preopen (int from_tty
)
1909 if (current_inferior ()->pid
!= 0)
1912 || !target_has_execution ()
1913 || query (_("A program is being debugged already. Kill it? ")))
1915 /* Core inferiors actually should be detached, not
1917 if (target_has_execution ())
1920 target_detach (current_inferior (), 0);
1923 error (_("Program not killed."));
1926 /* Calling target_kill may remove the target from the stack. But if
1927 it doesn't (which seems like a win for UDI), remove it now. */
1928 /* Leave the exec target, though. The user may be switching from a
1929 live process to a core of the same program. */
1930 pop_all_targets_above (file_stratum
);
1932 target_pre_inferior (from_tty
);
1938 target_detach (inferior
*inf
, int from_tty
)
1940 /* After we have detached, we will clear the register cache for this inferior
1941 by calling registers_changed_ptid. We must save the pid_ptid before
1942 detaching, as the target detach method will clear inf->pid. */
1943 ptid_t save_pid_ptid
= ptid_t (inf
->pid
);
1945 /* As long as some to_detach implementations rely on the current_inferior
1946 (either directly, or indirectly, like through target_gdbarch or by
1947 reading memory), INF needs to be the current inferior. When that
1948 requirement will become no longer true, then we can remove this
1950 gdb_assert (inf
== current_inferior ());
1952 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
1953 /* Don't remove global breakpoints here. They're removed on
1954 disconnection from the target. */
1957 /* If we're in breakpoints-always-inserted mode, have to remove
1958 breakpoints before detaching. */
1959 remove_breakpoints_inf (current_inferior ());
1961 prepare_for_detach ();
1963 /* Hold a strong reference because detaching may unpush the
1965 auto proc_target_ref
= target_ops_ref::new_reference (inf
->process_target ());
1967 current_top_target ()->detach (inf
, from_tty
);
1969 process_stratum_target
*proc_target
1970 = as_process_stratum_target (proc_target_ref
.get ());
1972 registers_changed_ptid (proc_target
, save_pid_ptid
);
1974 /* We have to ensure we have no frame cache left. Normally,
1975 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1976 inferior_ptid matches save_pid_ptid, but in our case, it does not
1977 call it, as inferior_ptid has been reset. */
1978 reinit_frame_cache ();
1982 target_disconnect (const char *args
, int from_tty
)
1984 /* If we're in breakpoints-always-inserted mode or if breakpoints
1985 are global across processes, we have to remove them before
1987 remove_breakpoints ();
1989 current_top_target ()->disconnect (args
, from_tty
);
1992 /* See target/target.h. */
1995 target_wait (ptid_t ptid
, struct target_waitstatus
*status
,
1996 target_wait_flags options
)
1998 target_ops
*target
= current_top_target ();
2000 if (!target
->can_async_p ())
2001 gdb_assert ((options
& TARGET_WNOHANG
) == 0);
2003 return target
->wait (ptid
, status
, options
);
2009 default_target_wait (struct target_ops
*ops
,
2010 ptid_t ptid
, struct target_waitstatus
*status
,
2011 target_wait_flags options
)
2013 status
->kind
= TARGET_WAITKIND_IGNORE
;
2014 return minus_one_ptid
;
2018 target_pid_to_str (ptid_t ptid
)
2020 return current_top_target ()->pid_to_str (ptid
);
2024 target_thread_name (struct thread_info
*info
)
2026 gdb_assert (info
->inf
== current_inferior ());
2028 return current_top_target ()->thread_name (info
);
2031 struct thread_info
*
2032 target_thread_handle_to_thread_info (const gdb_byte
*thread_handle
,
2034 struct inferior
*inf
)
2036 return current_top_target ()->thread_handle_to_thread_info (thread_handle
,
2043 target_thread_info_to_thread_handle (struct thread_info
*tip
)
2045 return current_top_target ()->thread_info_to_thread_handle (tip
);
2049 target_resume (ptid_t ptid
, int step
, enum gdb_signal signal
)
2051 process_stratum_target
*curr_target
= current_inferior ()->process_target ();
2053 target_dcache_invalidate ();
2055 current_top_target ()->resume (ptid
, step
, signal
);
2057 registers_changed_ptid (curr_target
, ptid
);
2058 /* We only set the internal executing state here. The user/frontend
2059 running state is set at a higher level. This also clears the
2060 thread's stop_pc as side effect. */
2061 set_executing (curr_target
, ptid
, true);
2062 clear_inline_frame_state (curr_target
, ptid
);
2065 /* If true, target_commit_resume is a nop. */
2066 static int defer_target_commit_resume
;
2071 target_commit_resume (void)
2073 if (defer_target_commit_resume
)
2076 current_top_target ()->commit_resume ();
2081 scoped_restore_tmpl
<int>
2082 make_scoped_defer_target_commit_resume ()
2084 return make_scoped_restore (&defer_target_commit_resume
, 1);
2088 target_pass_signals (gdb::array_view
<const unsigned char> pass_signals
)
2090 current_top_target ()->pass_signals (pass_signals
);
2094 target_program_signals (gdb::array_view
<const unsigned char> program_signals
)
2096 current_top_target ()->program_signals (program_signals
);
2100 default_follow_fork (struct target_ops
*self
, bool follow_child
,
2103 /* Some target returned a fork event, but did not know how to follow it. */
2104 internal_error (__FILE__
, __LINE__
,
2105 _("could not find a target to follow fork"));
2108 /* Look through the list of possible targets for a target that can
2112 target_follow_fork (bool follow_child
, bool detach_fork
)
2114 return current_top_target ()->follow_fork (follow_child
, detach_fork
);
2117 /* Target wrapper for follow exec hook. */
2120 target_follow_exec (struct inferior
*inf
, const char *execd_pathname
)
2122 current_top_target ()->follow_exec (inf
, execd_pathname
);
2126 default_mourn_inferior (struct target_ops
*self
)
2128 internal_error (__FILE__
, __LINE__
,
2129 _("could not find a target to follow mourn inferior"));
2133 target_mourn_inferior (ptid_t ptid
)
2135 gdb_assert (ptid
== inferior_ptid
);
2136 current_top_target ()->mourn_inferior ();
2138 /* We no longer need to keep handles on any of the object files.
2139 Make sure to release them to avoid unnecessarily locking any
2140 of them while we're not actually debugging. */
2141 bfd_cache_close_all ();
2144 /* Look for a target which can describe architectural features, starting
2145 from TARGET. If we find one, return its description. */
2147 const struct target_desc
*
2148 target_read_description (struct target_ops
*target
)
2150 return target
->read_description ();
2154 /* Default implementation of memory-searching. */
2157 default_search_memory (struct target_ops
*self
,
2158 CORE_ADDR start_addr
, ULONGEST search_space_len
,
2159 const gdb_byte
*pattern
, ULONGEST pattern_len
,
2160 CORE_ADDR
*found_addrp
)
2162 auto read_memory
= [=] (CORE_ADDR addr
, gdb_byte
*result
, size_t len
)
2164 return target_read (current_top_target (), TARGET_OBJECT_MEMORY
, NULL
,
2165 result
, addr
, len
) == len
;
2168 /* Start over from the top of the target stack. */
2169 return simple_search_memory (read_memory
, start_addr
, search_space_len
,
2170 pattern
, pattern_len
, found_addrp
);
2173 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2174 sequence of bytes in PATTERN with length PATTERN_LEN.
2176 The result is 1 if found, 0 if not found, and -1 if there was an error
2177 requiring halting of the search (e.g. memory read error).
2178 If the pattern is found the address is recorded in FOUND_ADDRP. */
2181 target_search_memory (CORE_ADDR start_addr
, ULONGEST search_space_len
,
2182 const gdb_byte
*pattern
, ULONGEST pattern_len
,
2183 CORE_ADDR
*found_addrp
)
2185 return current_top_target ()->search_memory (start_addr
, search_space_len
,
2186 pattern
, pattern_len
, found_addrp
);
2189 /* Look through the currently pushed targets. If none of them will
2190 be able to restart the currently running process, issue an error
2194 target_require_runnable (void)
2196 for (target_ops
*t
= current_top_target (); t
!= NULL
; t
= t
->beneath ())
2198 /* If this target knows how to create a new program, then
2199 assume we will still be able to after killing the current
2200 one. Either killing and mourning will not pop T, or else
2201 find_default_run_target will find it again. */
2202 if (t
->can_create_inferior ())
2205 /* Do not worry about targets at certain strata that can not
2206 create inferiors. Assume they will be pushed again if
2207 necessary, and continue to the process_stratum. */
2208 if (t
->stratum () > process_stratum
)
2211 error (_("The \"%s\" target does not support \"run\". "
2212 "Try \"help target\" or \"continue\"."),
2216 /* This function is only called if the target is running. In that
2217 case there should have been a process_stratum target and it
2218 should either know how to create inferiors, or not... */
2219 internal_error (__FILE__
, __LINE__
, _("No targets found"));
2222 /* Whether GDB is allowed to fall back to the default run target for
2223 "run", "attach", etc. when no target is connected yet. */
2224 static bool auto_connect_native_target
= true;
2227 show_auto_connect_native_target (struct ui_file
*file
, int from_tty
,
2228 struct cmd_list_element
*c
, const char *value
)
2230 fprintf_filtered (file
,
2231 _("Whether GDB may automatically connect to the "
2232 "native target is %s.\n"),
2236 /* A pointer to the target that can respond to "run" or "attach".
2237 Native targets are always singletons and instantiated early at GDB
2239 static target_ops
*the_native_target
;
2244 set_native_target (target_ops
*target
)
2246 if (the_native_target
!= NULL
)
2247 internal_error (__FILE__
, __LINE__
,
2248 _("native target already set (\"%s\")."),
2249 the_native_target
->longname ());
2251 the_native_target
= target
;
2257 get_native_target ()
2259 return the_native_target
;
2262 /* Look through the list of possible targets for a target that can
2263 execute a run or attach command without any other data. This is
2264 used to locate the default process stratum.
2266 If DO_MESG is not NULL, the result is always valid (error() is
2267 called for errors); else, return NULL on error. */
2269 static struct target_ops
*
2270 find_default_run_target (const char *do_mesg
)
2272 if (auto_connect_native_target
&& the_native_target
!= NULL
)
2273 return the_native_target
;
2275 if (do_mesg
!= NULL
)
2276 error (_("Don't know how to %s. Try \"help target\"."), do_mesg
);
2283 find_attach_target (void)
2285 /* If a target on the current stack can attach, use it. */
2286 for (target_ops
*t
= current_top_target (); t
!= NULL
; t
= t
->beneath ())
2288 if (t
->can_attach ())
2292 /* Otherwise, use the default run target for attaching. */
2293 return find_default_run_target ("attach");
2299 find_run_target (void)
2301 /* If a target on the current stack can run, use it. */
2302 for (target_ops
*t
= current_top_target (); t
!= NULL
; t
= t
->beneath ())
2304 if (t
->can_create_inferior ())
2308 /* Otherwise, use the default run target. */
2309 return find_default_run_target ("run");
2313 target_ops::info_proc (const char *args
, enum info_proc_what what
)
2318 /* Implement the "info proc" command. */
2321 target_info_proc (const char *args
, enum info_proc_what what
)
2323 struct target_ops
*t
;
2325 /* If we're already connected to something that can get us OS
2326 related data, use it. Otherwise, try using the native
2328 t
= find_target_at (process_stratum
);
2330 t
= find_default_run_target (NULL
);
2332 for (; t
!= NULL
; t
= t
->beneath ())
2334 if (t
->info_proc (args
, what
))
2337 fprintf_unfiltered (gdb_stdlog
,
2338 "target_info_proc (\"%s\", %d)\n", args
, what
);
2348 find_default_supports_disable_randomization (struct target_ops
*self
)
2350 struct target_ops
*t
;
2352 t
= find_default_run_target (NULL
);
2354 return t
->supports_disable_randomization ();
2359 target_supports_disable_randomization (void)
2361 return current_top_target ()->supports_disable_randomization ();
2364 /* See target/target.h. */
2367 target_supports_multi_process (void)
2369 return current_top_target ()->supports_multi_process ();
2374 gdb::optional
<gdb::char_vector
>
2375 target_get_osdata (const char *type
)
2377 struct target_ops
*t
;
2379 /* If we're already connected to something that can get us OS
2380 related data, use it. Otherwise, try using the native
2382 t
= find_target_at (process_stratum
);
2384 t
= find_default_run_target ("get OS data");
2389 return target_read_stralloc (t
, TARGET_OBJECT_OSDATA
, type
);
2392 /* Determine the current address space of thread PTID. */
2394 struct address_space
*
2395 target_thread_address_space (ptid_t ptid
)
2397 struct address_space
*aspace
;
2399 aspace
= current_top_target ()->thread_address_space (ptid
);
2400 gdb_assert (aspace
!= NULL
);
2408 target_ops::beneath () const
2410 return current_inferior ()->find_target_beneath (this);
2414 target_ops::close ()
2419 target_ops::can_attach ()
2425 target_ops::attach (const char *, int)
2427 gdb_assert_not_reached ("target_ops::attach called");
2431 target_ops::can_create_inferior ()
2437 target_ops::create_inferior (const char *, const std::string
&,
2440 gdb_assert_not_reached ("target_ops::create_inferior called");
2444 target_ops::can_run ()
2452 for (target_ops
*t
= current_top_target (); t
!= NULL
; t
= t
->beneath ())
2461 /* Target file operations. */
2463 static struct target_ops
*
2464 default_fileio_target (void)
2466 struct target_ops
*t
;
2468 /* If we're already connected to something that can perform
2469 file I/O, use it. Otherwise, try using the native target. */
2470 t
= find_target_at (process_stratum
);
2473 return find_default_run_target ("file I/O");
2476 /* File handle for target file operations. */
2480 /* The target on which this file is open. NULL if the target is
2481 meanwhile closed while the handle is open. */
2484 /* The file descriptor on the target. */
2487 /* Check whether this fileio_fh_t represents a closed file. */
2490 return target_fd
< 0;
2494 /* Vector of currently open file handles. The value returned by
2495 target_fileio_open and passed as the FD argument to other
2496 target_fileio_* functions is an index into this vector. This
2497 vector's entries are never freed; instead, files are marked as
2498 closed, and the handle becomes available for reuse. */
2499 static std::vector
<fileio_fh_t
> fileio_fhandles
;
2501 /* Index into fileio_fhandles of the lowest handle that might be
2502 closed. This permits handle reuse without searching the whole
2503 list each time a new file is opened. */
2504 static int lowest_closed_fd
;
2506 /* Invalidate the target associated with open handles that were open
2507 on target TARG, since we're about to close (and maybe destroy) the
2508 target. The handles remain open from the client's perspective, but
2509 trying to do anything with them other than closing them will fail
2513 fileio_handles_invalidate_target (target_ops
*targ
)
2515 for (fileio_fh_t
&fh
: fileio_fhandles
)
2516 if (fh
.target
== targ
)
2520 /* Acquire a target fileio file descriptor. */
2523 acquire_fileio_fd (target_ops
*target
, int target_fd
)
2525 /* Search for closed handles to reuse. */
2526 for (; lowest_closed_fd
< fileio_fhandles
.size (); lowest_closed_fd
++)
2528 fileio_fh_t
&fh
= fileio_fhandles
[lowest_closed_fd
];
2530 if (fh
.is_closed ())
2534 /* Push a new handle if no closed handles were found. */
2535 if (lowest_closed_fd
== fileio_fhandles
.size ())
2536 fileio_fhandles
.push_back (fileio_fh_t
{target
, target_fd
});
2538 fileio_fhandles
[lowest_closed_fd
] = {target
, target_fd
};
2540 /* Should no longer be marked closed. */
2541 gdb_assert (!fileio_fhandles
[lowest_closed_fd
].is_closed ());
2543 /* Return its index, and start the next lookup at
2545 return lowest_closed_fd
++;
2548 /* Release a target fileio file descriptor. */
2551 release_fileio_fd (int fd
, fileio_fh_t
*fh
)
2554 lowest_closed_fd
= std::min (lowest_closed_fd
, fd
);
2557 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2559 static fileio_fh_t
*
2560 fileio_fd_to_fh (int fd
)
2562 return &fileio_fhandles
[fd
];
2566 /* Default implementations of file i/o methods. We don't want these
2567 to delegate automatically, because we need to know which target
2568 supported the method, in order to call it directly from within
2569 pread/pwrite, etc. */
2572 target_ops::fileio_open (struct inferior
*inf
, const char *filename
,
2573 int flags
, int mode
, int warn_if_slow
,
2576 *target_errno
= FILEIO_ENOSYS
;
2581 target_ops::fileio_pwrite (int fd
, const gdb_byte
*write_buf
, int len
,
2582 ULONGEST offset
, int *target_errno
)
2584 *target_errno
= FILEIO_ENOSYS
;
2589 target_ops::fileio_pread (int fd
, gdb_byte
*read_buf
, int len
,
2590 ULONGEST offset
, int *target_errno
)
2592 *target_errno
= FILEIO_ENOSYS
;
2597 target_ops::fileio_fstat (int fd
, struct stat
*sb
, int *target_errno
)
2599 *target_errno
= FILEIO_ENOSYS
;
2604 target_ops::fileio_close (int fd
, int *target_errno
)
2606 *target_errno
= FILEIO_ENOSYS
;
2611 target_ops::fileio_unlink (struct inferior
*inf
, const char *filename
,
2614 *target_errno
= FILEIO_ENOSYS
;
2618 gdb::optional
<std::string
>
2619 target_ops::fileio_readlink (struct inferior
*inf
, const char *filename
,
2622 *target_errno
= FILEIO_ENOSYS
;
2629 target_fileio_open (struct inferior
*inf
, const char *filename
,
2630 int flags
, int mode
, bool warn_if_slow
, int *target_errno
)
2632 for (target_ops
*t
= default_fileio_target (); t
!= NULL
; t
= t
->beneath ())
2634 int fd
= t
->fileio_open (inf
, filename
, flags
, mode
,
2635 warn_if_slow
, target_errno
);
2637 if (fd
== -1 && *target_errno
== FILEIO_ENOSYS
)
2643 fd
= acquire_fileio_fd (t
, fd
);
2646 fprintf_unfiltered (gdb_stdlog
,
2647 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2649 inf
== NULL
? 0 : inf
->num
,
2650 filename
, flags
, mode
,
2652 fd
!= -1 ? 0 : *target_errno
);
2656 *target_errno
= FILEIO_ENOSYS
;
2663 target_fileio_pwrite (int fd
, const gdb_byte
*write_buf
, int len
,
2664 ULONGEST offset
, int *target_errno
)
2666 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
2669 if (fh
->is_closed ())
2670 *target_errno
= EBADF
;
2671 else if (fh
->target
== NULL
)
2672 *target_errno
= EIO
;
2674 ret
= fh
->target
->fileio_pwrite (fh
->target_fd
, write_buf
,
2675 len
, offset
, target_errno
);
2678 fprintf_unfiltered (gdb_stdlog
,
2679 "target_fileio_pwrite (%d,...,%d,%s) "
2681 fd
, len
, pulongest (offset
),
2682 ret
, ret
!= -1 ? 0 : *target_errno
);
2689 target_fileio_pread (int fd
, gdb_byte
*read_buf
, int len
,
2690 ULONGEST offset
, int *target_errno
)
2692 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
2695 if (fh
->is_closed ())
2696 *target_errno
= EBADF
;
2697 else if (fh
->target
== NULL
)
2698 *target_errno
= EIO
;
2700 ret
= fh
->target
->fileio_pread (fh
->target_fd
, read_buf
,
2701 len
, offset
, target_errno
);
2704 fprintf_unfiltered (gdb_stdlog
,
2705 "target_fileio_pread (%d,...,%d,%s) "
2707 fd
, len
, pulongest (offset
),
2708 ret
, ret
!= -1 ? 0 : *target_errno
);
2715 target_fileio_fstat (int fd
, struct stat
*sb
, int *target_errno
)
2717 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
2720 if (fh
->is_closed ())
2721 *target_errno
= EBADF
;
2722 else if (fh
->target
== NULL
)
2723 *target_errno
= EIO
;
2725 ret
= fh
->target
->fileio_fstat (fh
->target_fd
, sb
, target_errno
);
2728 fprintf_unfiltered (gdb_stdlog
,
2729 "target_fileio_fstat (%d) = %d (%d)\n",
2730 fd
, ret
, ret
!= -1 ? 0 : *target_errno
);
2737 target_fileio_close (int fd
, int *target_errno
)
2739 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
2742 if (fh
->is_closed ())
2743 *target_errno
= EBADF
;
2746 if (fh
->target
!= NULL
)
2747 ret
= fh
->target
->fileio_close (fh
->target_fd
,
2751 release_fileio_fd (fd
, fh
);
2755 fprintf_unfiltered (gdb_stdlog
,
2756 "target_fileio_close (%d) = %d (%d)\n",
2757 fd
, ret
, ret
!= -1 ? 0 : *target_errno
);
2764 target_fileio_unlink (struct inferior
*inf
, const char *filename
,
2767 for (target_ops
*t
= default_fileio_target (); t
!= NULL
; t
= t
->beneath ())
2769 int ret
= t
->fileio_unlink (inf
, filename
, target_errno
);
2771 if (ret
== -1 && *target_errno
== FILEIO_ENOSYS
)
2775 fprintf_unfiltered (gdb_stdlog
,
2776 "target_fileio_unlink (%d,%s)"
2778 inf
== NULL
? 0 : inf
->num
, filename
,
2779 ret
, ret
!= -1 ? 0 : *target_errno
);
2783 *target_errno
= FILEIO_ENOSYS
;
2789 gdb::optional
<std::string
>
2790 target_fileio_readlink (struct inferior
*inf
, const char *filename
,
2793 for (target_ops
*t
= default_fileio_target (); t
!= NULL
; t
= t
->beneath ())
2795 gdb::optional
<std::string
> ret
2796 = t
->fileio_readlink (inf
, filename
, target_errno
);
2798 if (!ret
.has_value () && *target_errno
== FILEIO_ENOSYS
)
2802 fprintf_unfiltered (gdb_stdlog
,
2803 "target_fileio_readlink (%d,%s)"
2805 inf
== NULL
? 0 : inf
->num
,
2806 filename
, ret
? ret
->c_str () : "(nil)",
2807 ret
? 0 : *target_errno
);
2811 *target_errno
= FILEIO_ENOSYS
;
2815 /* Like scoped_fd, but specific to target fileio. */
2817 class scoped_target_fd
2820 explicit scoped_target_fd (int fd
) noexcept
2825 ~scoped_target_fd ()
2831 target_fileio_close (m_fd
, &target_errno
);
2835 DISABLE_COPY_AND_ASSIGN (scoped_target_fd
);
2837 int get () const noexcept
2846 /* Read target file FILENAME, in the filesystem as seen by INF. If
2847 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2848 remote targets, the remote stub). Store the result in *BUF_P and
2849 return the size of the transferred data. PADDING additional bytes
2850 are available in *BUF_P. This is a helper function for
2851 target_fileio_read_alloc; see the declaration of that function for
2852 more information. */
2855 target_fileio_read_alloc_1 (struct inferior
*inf
, const char *filename
,
2856 gdb_byte
**buf_p
, int padding
)
2858 size_t buf_alloc
, buf_pos
;
2863 scoped_target_fd
fd (target_fileio_open (inf
, filename
, FILEIO_O_RDONLY
,
2864 0700, false, &target_errno
));
2865 if (fd
.get () == -1)
2868 /* Start by reading up to 4K at a time. The target will throttle
2869 this number down if necessary. */
2871 buf
= (gdb_byte
*) xmalloc (buf_alloc
);
2875 n
= target_fileio_pread (fd
.get (), &buf
[buf_pos
],
2876 buf_alloc
- buf_pos
- padding
, buf_pos
,
2880 /* An error occurred. */
2886 /* Read all there was. */
2896 /* If the buffer is filling up, expand it. */
2897 if (buf_alloc
< buf_pos
* 2)
2900 buf
= (gdb_byte
*) xrealloc (buf
, buf_alloc
);
2910 target_fileio_read_alloc (struct inferior
*inf
, const char *filename
,
2913 return target_fileio_read_alloc_1 (inf
, filename
, buf_p
, 0);
2918 gdb::unique_xmalloc_ptr
<char>
2919 target_fileio_read_stralloc (struct inferior
*inf
, const char *filename
)
2923 LONGEST i
, transferred
;
2925 transferred
= target_fileio_read_alloc_1 (inf
, filename
, &buffer
, 1);
2926 bufstr
= (char *) buffer
;
2928 if (transferred
< 0)
2929 return gdb::unique_xmalloc_ptr
<char> (nullptr);
2931 if (transferred
== 0)
2932 return make_unique_xstrdup ("");
2934 bufstr
[transferred
] = 0;
2936 /* Check for embedded NUL bytes; but allow trailing NULs. */
2937 for (i
= strlen (bufstr
); i
< transferred
; i
++)
2940 warning (_("target file %s "
2941 "contained unexpected null characters"),
2946 return gdb::unique_xmalloc_ptr
<char> (bufstr
);
2951 default_region_ok_for_hw_watchpoint (struct target_ops
*self
,
2952 CORE_ADDR addr
, int len
)
2954 return (len
<= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT
);
2958 default_watchpoint_addr_within_range (struct target_ops
*target
,
2960 CORE_ADDR start
, int length
)
2962 return addr
>= start
&& addr
< start
+ length
;
2968 target_stack::find_beneath (const target_ops
*t
) const
2970 /* Look for a non-empty slot at stratum levels beneath T's. */
2971 for (int stratum
= t
->stratum () - 1; stratum
>= 0; --stratum
)
2972 if (m_stack
[stratum
] != NULL
)
2973 return m_stack
[stratum
];
2981 find_target_at (enum strata stratum
)
2983 return current_inferior ()->target_at (stratum
);
2991 target_announce_detach (int from_tty
)
2994 const char *exec_file
;
2999 exec_file
= get_exec_file (0);
3000 if (exec_file
== NULL
)
3003 pid
= inferior_ptid
.pid ();
3004 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file
,
3005 target_pid_to_str (ptid_t (pid
)).c_str ());
3008 /* The inferior process has died. Long live the inferior! */
3011 generic_mourn_inferior (void)
3013 inferior
*inf
= current_inferior ();
3015 switch_to_no_thread ();
3017 /* Mark breakpoints uninserted in case something tries to delete a
3018 breakpoint while we delete the inferior's threads (which would
3019 fail, since the inferior is long gone). */
3020 mark_breakpoints_out ();
3023 exit_inferior (inf
);
3025 /* Note this wipes step-resume breakpoints, so needs to be done
3026 after exit_inferior, which ends up referencing the step-resume
3027 breakpoints through clear_thread_inferior_resources. */
3028 breakpoint_init_inferior (inf_exited
);
3030 registers_changed ();
3032 reopen_exec_file ();
3033 reinit_frame_cache ();
3035 if (deprecated_detach_hook
)
3036 deprecated_detach_hook ();
3039 /* Convert a normal process ID to a string. Returns the string in a
3043 normal_pid_to_str (ptid_t ptid
)
3045 return string_printf ("process %d", ptid
.pid ());
3049 default_pid_to_str (struct target_ops
*ops
, ptid_t ptid
)
3051 return normal_pid_to_str (ptid
);
3054 /* Error-catcher for target_find_memory_regions. */
3056 dummy_find_memory_regions (struct target_ops
*self
,
3057 find_memory_region_ftype ignore1
, void *ignore2
)
3059 error (_("Command not implemented for this target."));
3063 /* Error-catcher for target_make_corefile_notes. */
3064 static gdb::unique_xmalloc_ptr
<char>
3065 dummy_make_corefile_notes (struct target_ops
*self
,
3066 bfd
*ignore1
, int *ignore2
)
3068 error (_("Command not implemented for this target."));
3072 #include "target-delegates.c"
3074 /* The initial current target, so that there is always a semi-valid
3077 static dummy_target the_dummy_target
;
3084 return &the_dummy_target
;
3087 static const target_info dummy_target_info
= {
3094 dummy_target::stratum () const
3096 return dummy_stratum
;
3100 debug_target::stratum () const
3102 return debug_stratum
;
3106 dummy_target::info () const
3108 return dummy_target_info
;
3112 debug_target::info () const
3114 return beneath ()->info ();
3120 target_close (struct target_ops
*targ
)
3122 gdb_assert (!target_is_pushed (targ
));
3124 fileio_handles_invalidate_target (targ
);
3129 fprintf_unfiltered (gdb_stdlog
, "target_close ()\n");
3133 target_thread_alive (ptid_t ptid
)
3135 return current_top_target ()->thread_alive (ptid
);
3139 target_update_thread_list (void)
3141 current_top_target ()->update_thread_list ();
3145 target_stop (ptid_t ptid
)
3149 warning (_("May not interrupt or stop the target, ignoring attempt"));
3153 current_top_target ()->stop (ptid
);
3161 warning (_("May not interrupt or stop the target, ignoring attempt"));
3165 current_top_target ()->interrupt ();
3171 target_pass_ctrlc (void)
3173 /* Pass the Ctrl-C to the first target that has a thread
3175 for (inferior
*inf
: all_inferiors ())
3177 target_ops
*proc_target
= inf
->process_target ();
3178 if (proc_target
== NULL
)
3181 for (thread_info
*thr
: inf
->non_exited_threads ())
3183 /* A thread can be THREAD_STOPPED and executing, while
3184 running an infcall. */
3185 if (thr
->state
== THREAD_RUNNING
|| thr
->executing
)
3187 /* We can get here quite deep in target layers. Avoid
3188 switching thread context or anything that would
3189 communicate with the target (e.g., to fetch
3190 registers), or flushing e.g., the frame cache. We
3191 just switch inferior in order to be able to call
3192 through the target_stack. */
3193 scoped_restore_current_inferior restore_inferior
;
3194 set_current_inferior (inf
);
3195 current_top_target ()->pass_ctrlc ();
3205 default_target_pass_ctrlc (struct target_ops
*ops
)
3207 target_interrupt ();
3210 /* See target/target.h. */
3213 target_stop_and_wait (ptid_t ptid
)
3215 struct target_waitstatus status
;
3216 bool was_non_stop
= non_stop
;
3221 memset (&status
, 0, sizeof (status
));
3222 target_wait (ptid
, &status
, 0);
3224 non_stop
= was_non_stop
;
3227 /* See target/target.h. */
3230 target_continue_no_signal (ptid_t ptid
)
3232 target_resume (ptid
, 0, GDB_SIGNAL_0
);
3235 /* See target/target.h. */
3238 target_continue (ptid_t ptid
, enum gdb_signal signal
)
3240 target_resume (ptid
, 0, signal
);
3243 /* Concatenate ELEM to LIST, a comma-separated list. */
3246 str_comma_list_concat_elem (std::string
*list
, const char *elem
)
3248 if (!list
->empty ())
3249 list
->append (", ");
3251 list
->append (elem
);
3254 /* Helper for target_options_to_string. If OPT is present in
3255 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3256 OPT is removed from TARGET_OPTIONS. */
3259 do_option (target_wait_flags
*target_options
, std::string
*ret
,
3260 target_wait_flag opt
, const char *opt_str
)
3262 if ((*target_options
& opt
) != 0)
3264 str_comma_list_concat_elem (ret
, opt_str
);
3265 *target_options
&= ~opt
;
3272 target_options_to_string (target_wait_flags target_options
)
3276 #define DO_TARG_OPTION(OPT) \
3277 do_option (&target_options, &ret, OPT, #OPT)
3279 DO_TARG_OPTION (TARGET_WNOHANG
);
3281 if (target_options
!= 0)
3282 str_comma_list_concat_elem (&ret
, "unknown???");
3288 target_fetch_registers (struct regcache
*regcache
, int regno
)
3290 current_top_target ()->fetch_registers (regcache
, regno
);
3292 regcache
->debug_print_register ("target_fetch_registers", regno
);
3296 target_store_registers (struct regcache
*regcache
, int regno
)
3298 if (!may_write_registers
)
3299 error (_("Writing to registers is not allowed (regno %d)"), regno
);
3301 current_top_target ()->store_registers (regcache
, regno
);
3304 regcache
->debug_print_register ("target_store_registers", regno
);
3309 target_core_of_thread (ptid_t ptid
)
3311 return current_top_target ()->core_of_thread (ptid
);
3315 simple_verify_memory (struct target_ops
*ops
,
3316 const gdb_byte
*data
, CORE_ADDR lma
, ULONGEST size
)
3318 LONGEST total_xfered
= 0;
3320 while (total_xfered
< size
)
3322 ULONGEST xfered_len
;
3323 enum target_xfer_status status
;
3325 ULONGEST howmuch
= std::min
<ULONGEST
> (sizeof (buf
), size
- total_xfered
);
3327 status
= target_xfer_partial (ops
, TARGET_OBJECT_MEMORY
, NULL
,
3328 buf
, NULL
, lma
+ total_xfered
, howmuch
,
3330 if (status
== TARGET_XFER_OK
3331 && memcmp (data
+ total_xfered
, buf
, xfered_len
) == 0)
3333 total_xfered
+= xfered_len
;
3342 /* Default implementation of memory verification. */
3345 default_verify_memory (struct target_ops
*self
,
3346 const gdb_byte
*data
, CORE_ADDR memaddr
, ULONGEST size
)
3348 /* Start over from the top of the target stack. */
3349 return simple_verify_memory (current_top_target (),
3350 data
, memaddr
, size
);
3354 target_verify_memory (const gdb_byte
*data
, CORE_ADDR memaddr
, ULONGEST size
)
3356 return current_top_target ()->verify_memory (data
, memaddr
, size
);
3359 /* The documentation for this function is in its prototype declaration in
3363 target_insert_mask_watchpoint (CORE_ADDR addr
, CORE_ADDR mask
,
3364 enum target_hw_bp_type rw
)
3366 return current_top_target ()->insert_mask_watchpoint (addr
, mask
, rw
);
3369 /* The documentation for this function is in its prototype declaration in
3373 target_remove_mask_watchpoint (CORE_ADDR addr
, CORE_ADDR mask
,
3374 enum target_hw_bp_type rw
)
3376 return current_top_target ()->remove_mask_watchpoint (addr
, mask
, rw
);
3379 /* The documentation for this function is in its prototype declaration
3383 target_masked_watch_num_registers (CORE_ADDR addr
, CORE_ADDR mask
)
3385 return current_top_target ()->masked_watch_num_registers (addr
, mask
);
3388 /* The documentation for this function is in its prototype declaration
3392 target_ranged_break_num_registers (void)
3394 return current_top_target ()->ranged_break_num_registers ();
3399 struct btrace_target_info
*
3400 target_enable_btrace (ptid_t ptid
, const struct btrace_config
*conf
)
3402 return current_top_target ()->enable_btrace (ptid
, conf
);
3408 target_disable_btrace (struct btrace_target_info
*btinfo
)
3410 current_top_target ()->disable_btrace (btinfo
);
3416 target_teardown_btrace (struct btrace_target_info
*btinfo
)
3418 current_top_target ()->teardown_btrace (btinfo
);
3424 target_read_btrace (struct btrace_data
*btrace
,
3425 struct btrace_target_info
*btinfo
,
3426 enum btrace_read_type type
)
3428 return current_top_target ()->read_btrace (btrace
, btinfo
, type
);
3433 const struct btrace_config
*
3434 target_btrace_conf (const struct btrace_target_info
*btinfo
)
3436 return current_top_target ()->btrace_conf (btinfo
);
3442 target_stop_recording (void)
3444 current_top_target ()->stop_recording ();
3450 target_save_record (const char *filename
)
3452 current_top_target ()->save_record (filename
);
3458 target_supports_delete_record ()
3460 return current_top_target ()->supports_delete_record ();
3466 target_delete_record (void)
3468 current_top_target ()->delete_record ();
3474 target_record_method (ptid_t ptid
)
3476 return current_top_target ()->record_method (ptid
);
3482 target_record_is_replaying (ptid_t ptid
)
3484 return current_top_target ()->record_is_replaying (ptid
);
3490 target_record_will_replay (ptid_t ptid
, int dir
)
3492 return current_top_target ()->record_will_replay (ptid
, dir
);
3498 target_record_stop_replaying (void)
3500 current_top_target ()->record_stop_replaying ();
3506 target_goto_record_begin (void)
3508 current_top_target ()->goto_record_begin ();
3514 target_goto_record_end (void)
3516 current_top_target ()->goto_record_end ();
3522 target_goto_record (ULONGEST insn
)
3524 current_top_target ()->goto_record (insn
);
3530 target_insn_history (int size
, gdb_disassembly_flags flags
)
3532 current_top_target ()->insn_history (size
, flags
);
3538 target_insn_history_from (ULONGEST from
, int size
,
3539 gdb_disassembly_flags flags
)
3541 current_top_target ()->insn_history_from (from
, size
, flags
);
3547 target_insn_history_range (ULONGEST begin
, ULONGEST end
,
3548 gdb_disassembly_flags flags
)
3550 current_top_target ()->insn_history_range (begin
, end
, flags
);
3556 target_call_history (int size
, record_print_flags flags
)
3558 current_top_target ()->call_history (size
, flags
);
3564 target_call_history_from (ULONGEST begin
, int size
, record_print_flags flags
)
3566 current_top_target ()->call_history_from (begin
, size
, flags
);
3572 target_call_history_range (ULONGEST begin
, ULONGEST end
, record_print_flags flags
)
3574 current_top_target ()->call_history_range (begin
, end
, flags
);
3579 const struct frame_unwind
*
3580 target_get_unwinder (void)
3582 return current_top_target ()->get_unwinder ();
3587 const struct frame_unwind
*
3588 target_get_tailcall_unwinder (void)
3590 return current_top_target ()->get_tailcall_unwinder ();
3596 target_prepare_to_generate_core (void)
3598 current_top_target ()->prepare_to_generate_core ();
3604 target_done_generating_core (void)
3606 current_top_target ()->done_generating_core ();
3611 static char targ_desc
[] =
3612 "Names of targets and files being debugged.\nShows the entire \
3613 stack of targets currently in use (including the exec-file,\n\
3614 core-file, and process, if any), as well as the symbol file name.";
3617 default_rcmd (struct target_ops
*self
, const char *command
,
3618 struct ui_file
*output
)
3620 error (_("\"monitor\" command not supported by this target."));
3624 do_monitor_command (const char *cmd
, int from_tty
)
3626 target_rcmd (cmd
, gdb_stdtarg
);
3629 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3633 flash_erase_command (const char *cmd
, int from_tty
)
3635 /* Used to communicate termination of flash operations to the target. */
3636 bool found_flash_region
= false;
3637 struct gdbarch
*gdbarch
= target_gdbarch ();
3639 std::vector
<mem_region
> mem_regions
= target_memory_map ();
3641 /* Iterate over all memory regions. */
3642 for (const mem_region
&m
: mem_regions
)
3644 /* Is this a flash memory region? */
3645 if (m
.attrib
.mode
== MEM_FLASH
)
3647 found_flash_region
= true;
3648 target_flash_erase (m
.lo
, m
.hi
- m
.lo
);
3650 ui_out_emit_tuple
tuple_emitter (current_uiout
, "erased-regions");
3652 current_uiout
->message (_("Erasing flash memory region at address "));
3653 current_uiout
->field_core_addr ("address", gdbarch
, m
.lo
);
3654 current_uiout
->message (", size = ");
3655 current_uiout
->field_string ("size", hex_string (m
.hi
- m
.lo
));
3656 current_uiout
->message ("\n");
3660 /* Did we do any flash operations? If so, we need to finalize them. */
3661 if (found_flash_region
)
3662 target_flash_done ();
3664 current_uiout
->message (_("No flash memory regions found.\n"));
3667 /* Print the name of each layers of our target stack. */
3670 maintenance_print_target_stack (const char *cmd
, int from_tty
)
3672 printf_filtered (_("The current target stack is:\n"));
3674 for (target_ops
*t
= current_top_target (); t
!= NULL
; t
= t
->beneath ())
3676 if (t
->stratum () == debug_stratum
)
3678 printf_filtered (" - %s (%s)\n", t
->shortname (), t
->longname ());
3685 target_async (int enable
)
3687 infrun_async (enable
);
3688 current_top_target ()->async (enable
);
3694 target_thread_events (int enable
)
3696 current_top_target ()->thread_events (enable
);
3699 /* Controls if targets can report that they can/are async. This is
3700 just for maintainers to use when debugging gdb. */
3701 bool target_async_permitted
= true;
3703 /* The set command writes to this variable. If the inferior is
3704 executing, target_async_permitted is *not* updated. */
3705 static bool target_async_permitted_1
= true;
3708 maint_set_target_async_command (const char *args
, int from_tty
,
3709 struct cmd_list_element
*c
)
3711 if (have_live_inferiors ())
3713 target_async_permitted_1
= target_async_permitted
;
3714 error (_("Cannot change this setting while the inferior is running."));
3717 target_async_permitted
= target_async_permitted_1
;
3721 maint_show_target_async_command (struct ui_file
*file
, int from_tty
,
3722 struct cmd_list_element
*c
,
3725 fprintf_filtered (file
,
3726 _("Controlling the inferior in "
3727 "asynchronous mode is %s.\n"), value
);
3730 /* Return true if the target operates in non-stop mode even with "set
3734 target_always_non_stop_p (void)
3736 return current_top_target ()->always_non_stop_p ();
3742 target_is_non_stop_p (void)
3745 || target_non_stop_enabled
== AUTO_BOOLEAN_TRUE
3746 || (target_non_stop_enabled
== AUTO_BOOLEAN_AUTO
3747 && target_always_non_stop_p ()));
3753 exists_non_stop_target ()
3755 if (target_is_non_stop_p ())
3758 scoped_restore_current_thread restore_thread
;
3760 for (inferior
*inf
: all_inferiors ())
3762 switch_to_inferior_no_thread (inf
);
3763 if (target_is_non_stop_p ())
3770 /* Controls if targets can report that they always run in non-stop
3771 mode. This is just for maintainers to use when debugging gdb. */
3772 enum auto_boolean target_non_stop_enabled
= AUTO_BOOLEAN_AUTO
;
3774 /* The set command writes to this variable. If the inferior is
3775 executing, target_non_stop_enabled is *not* updated. */
3776 static enum auto_boolean target_non_stop_enabled_1
= AUTO_BOOLEAN_AUTO
;
3778 /* Implementation of "maint set target-non-stop". */
3781 maint_set_target_non_stop_command (const char *args
, int from_tty
,
3782 struct cmd_list_element
*c
)
3784 if (have_live_inferiors ())
3786 target_non_stop_enabled_1
= target_non_stop_enabled
;
3787 error (_("Cannot change this setting while the inferior is running."));
3790 target_non_stop_enabled
= target_non_stop_enabled_1
;
3793 /* Implementation of "maint show target-non-stop". */
3796 maint_show_target_non_stop_command (struct ui_file
*file
, int from_tty
,
3797 struct cmd_list_element
*c
,
3800 if (target_non_stop_enabled
== AUTO_BOOLEAN_AUTO
)
3801 fprintf_filtered (file
,
3802 _("Whether the target is always in non-stop mode "
3803 "is %s (currently %s).\n"), value
,
3804 target_always_non_stop_p () ? "on" : "off");
3806 fprintf_filtered (file
,
3807 _("Whether the target is always in non-stop mode "
3808 "is %s.\n"), value
);
3811 /* Temporary copies of permission settings. */
3813 static bool may_write_registers_1
= true;
3814 static bool may_write_memory_1
= true;
3815 static bool may_insert_breakpoints_1
= true;
3816 static bool may_insert_tracepoints_1
= true;
3817 static bool may_insert_fast_tracepoints_1
= true;
3818 static bool may_stop_1
= true;
3820 /* Make the user-set values match the real values again. */
3823 update_target_permissions (void)
3825 may_write_registers_1
= may_write_registers
;
3826 may_write_memory_1
= may_write_memory
;
3827 may_insert_breakpoints_1
= may_insert_breakpoints
;
3828 may_insert_tracepoints_1
= may_insert_tracepoints
;
3829 may_insert_fast_tracepoints_1
= may_insert_fast_tracepoints
;
3830 may_stop_1
= may_stop
;
3833 /* The one function handles (most of) the permission flags in the same
3837 set_target_permissions (const char *args
, int from_tty
,
3838 struct cmd_list_element
*c
)
3840 if (target_has_execution ())
3842 update_target_permissions ();
3843 error (_("Cannot change this setting while the inferior is running."));
3846 /* Make the real values match the user-changed values. */
3847 may_write_registers
= may_write_registers_1
;
3848 may_insert_breakpoints
= may_insert_breakpoints_1
;
3849 may_insert_tracepoints
= may_insert_tracepoints_1
;
3850 may_insert_fast_tracepoints
= may_insert_fast_tracepoints_1
;
3851 may_stop
= may_stop_1
;
3852 update_observer_mode ();
3855 /* Set memory write permission independently of observer mode. */
3858 set_write_memory_permission (const char *args
, int from_tty
,
3859 struct cmd_list_element
*c
)
3861 /* Make the real values match the user-changed values. */
3862 may_write_memory
= may_write_memory_1
;
3863 update_observer_mode ();
3866 void _initialize_target ();
3869 _initialize_target ()
3871 the_debug_target
= new debug_target ();
3873 add_info ("target", info_target_command
, targ_desc
);
3874 add_info ("files", info_target_command
, targ_desc
);
3876 add_setshow_zuinteger_cmd ("target", class_maintenance
, &targetdebug
, _("\
3877 Set target debugging."), _("\
3878 Show target debugging."), _("\
3879 When non-zero, target debugging is enabled. Higher numbers are more\n\
3883 &setdebuglist
, &showdebuglist
);
3885 add_setshow_boolean_cmd ("trust-readonly-sections", class_support
,
3886 &trust_readonly
, _("\
3887 Set mode for reading from readonly sections."), _("\
3888 Show mode for reading from readonly sections."), _("\
3889 When this mode is on, memory reads from readonly sections (such as .text)\n\
3890 will be read from the object file instead of from the target. This will\n\
3891 result in significant performance improvement for remote targets."),
3893 show_trust_readonly
,
3894 &setlist
, &showlist
);
3896 add_com ("monitor", class_obscure
, do_monitor_command
,
3897 _("Send a command to the remote monitor (remote targets only)."));
3899 add_cmd ("target-stack", class_maintenance
, maintenance_print_target_stack
,
3900 _("Print the name of each layer of the internal target stack."),
3901 &maintenanceprintlist
);
3903 add_setshow_boolean_cmd ("target-async", no_class
,
3904 &target_async_permitted_1
, _("\
3905 Set whether gdb controls the inferior in asynchronous mode."), _("\
3906 Show whether gdb controls the inferior in asynchronous mode."), _("\
3907 Tells gdb whether to control the inferior in asynchronous mode."),
3908 maint_set_target_async_command
,
3909 maint_show_target_async_command
,
3910 &maintenance_set_cmdlist
,
3911 &maintenance_show_cmdlist
);
3913 add_setshow_auto_boolean_cmd ("target-non-stop", no_class
,
3914 &target_non_stop_enabled_1
, _("\
3915 Set whether gdb always controls the inferior in non-stop mode."), _("\
3916 Show whether gdb always controls the inferior in non-stop mode."), _("\
3917 Tells gdb whether to control the inferior in non-stop mode."),
3918 maint_set_target_non_stop_command
,
3919 maint_show_target_non_stop_command
,
3920 &maintenance_set_cmdlist
,
3921 &maintenance_show_cmdlist
);
3923 add_setshow_boolean_cmd ("may-write-registers", class_support
,
3924 &may_write_registers_1
, _("\
3925 Set permission to write into registers."), _("\
3926 Show permission to write into registers."), _("\
3927 When this permission is on, GDB may write into the target's registers.\n\
3928 Otherwise, any sort of write attempt will result in an error."),
3929 set_target_permissions
, NULL
,
3930 &setlist
, &showlist
);
3932 add_setshow_boolean_cmd ("may-write-memory", class_support
,
3933 &may_write_memory_1
, _("\
3934 Set permission to write into target memory."), _("\
3935 Show permission to write into target memory."), _("\
3936 When this permission is on, GDB may write into the target's memory.\n\
3937 Otherwise, any sort of write attempt will result in an error."),
3938 set_write_memory_permission
, NULL
,
3939 &setlist
, &showlist
);
3941 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support
,
3942 &may_insert_breakpoints_1
, _("\
3943 Set permission to insert breakpoints in the target."), _("\
3944 Show permission to insert breakpoints in the target."), _("\
3945 When this permission is on, GDB may insert breakpoints in the program.\n\
3946 Otherwise, any sort of insertion attempt will result in an error."),
3947 set_target_permissions
, NULL
,
3948 &setlist
, &showlist
);
3950 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support
,
3951 &may_insert_tracepoints_1
, _("\
3952 Set permission to insert tracepoints in the target."), _("\
3953 Show permission to insert tracepoints in the target."), _("\
3954 When this permission is on, GDB may insert tracepoints in the program.\n\
3955 Otherwise, any sort of insertion attempt will result in an error."),
3956 set_target_permissions
, NULL
,
3957 &setlist
, &showlist
);
3959 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support
,
3960 &may_insert_fast_tracepoints_1
, _("\
3961 Set permission to insert fast tracepoints in the target."), _("\
3962 Show permission to insert fast tracepoints in the target."), _("\
3963 When this permission is on, GDB may insert fast tracepoints.\n\
3964 Otherwise, any sort of insertion attempt will result in an error."),
3965 set_target_permissions
, NULL
,
3966 &setlist
, &showlist
);
3968 add_setshow_boolean_cmd ("may-interrupt", class_support
,
3970 Set permission to interrupt or signal the target."), _("\
3971 Show permission to interrupt or signal the target."), _("\
3972 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3973 Otherwise, any attempt to interrupt or stop will be ignored."),
3974 set_target_permissions
, NULL
,
3975 &setlist
, &showlist
);
3977 add_com ("flash-erase", no_class
, flash_erase_command
,
3978 _("Erase all flash memory regions."));
3980 add_setshow_boolean_cmd ("auto-connect-native-target", class_support
,
3981 &auto_connect_native_target
, _("\
3982 Set whether GDB may automatically connect to the native target."), _("\
3983 Show whether GDB may automatically connect to the native target."), _("\
3984 When on, and GDB is not connected to a target yet, GDB\n\
3985 attempts \"run\" and other commands with the native target."),
3986 NULL
, show_auto_connect_native_target
,
3987 &setlist
, &showlist
);