1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
4 Copyright (C) 2001-2022 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "cp-support.h"
30 #include "typeprint.h"
32 #include "cli/cli-style.h"
33 #include "dwarf2/loc.h"
36 static struct cp_abi_ops gnu_v3_abi_ops
;
38 /* A gdbarch key for std::type_info, in the event that it can't be
39 found in the debug info. */
41 static struct gdbarch_data
*std_type_info_gdbarch_data
;
45 gnuv3_is_vtable_name (const char *name
)
47 return startswith (name
, "_ZTV");
51 gnuv3_is_operator_name (const char *name
)
53 return startswith (name
, CP_OPERATOR_STR
);
57 /* To help us find the components of a vtable, we build ourselves a
58 GDB type object representing the vtable structure. Following the
59 V3 ABI, it goes something like this:
61 struct gdb_gnu_v3_abi_vtable {
63 / * An array of virtual call and virtual base offsets. The real
64 length of this array depends on the class hierarchy; we use
65 negative subscripts to access the elements. Yucky, but
66 better than the alternatives. * /
67 ptrdiff_t vcall_and_vbase_offsets[0];
69 / * The offset from a virtual pointer referring to this table
70 to the top of the complete object. * /
71 ptrdiff_t offset_to_top;
73 / * The type_info pointer for this class. This is really a
74 std::type_info *, but GDB doesn't really look at the
75 type_info object itself, so we don't bother to get the type
79 / * Virtual table pointers in objects point here. * /
81 / * Virtual function pointers. Like the vcall/vbase array, the
82 real length of this table depends on the class hierarchy. * /
83 void (*virtual_functions[0]) ();
87 The catch, of course, is that the exact layout of this table
88 depends on the ABI --- word size, endianness, alignment, etc. So
89 the GDB type object is actually a per-architecture kind of thing.
91 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
92 which refers to the struct type * for this structure, laid out
93 appropriately for the architecture. */
94 static struct gdbarch_data
*vtable_type_gdbarch_data
;
97 /* Human-readable names for the numbers of the fields above. */
99 vtable_field_vcall_and_vbase_offsets
,
100 vtable_field_offset_to_top
,
101 vtable_field_type_info
,
102 vtable_field_virtual_functions
106 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
107 described above, laid out appropriately for ARCH.
109 We use this function as the gdbarch per-architecture data
110 initialization function. */
112 build_gdb_vtable_type (struct gdbarch
*arch
)
115 struct field
*field_list
, *field
;
118 struct type
*void_ptr_type
119 = builtin_type (arch
)->builtin_data_ptr
;
120 struct type
*ptr_to_void_fn_type
121 = builtin_type (arch
)->builtin_func_ptr
;
123 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
124 struct type
*ptrdiff_type
125 = arch_integer_type (arch
, gdbarch_ptr_bit (arch
), 0, "ptrdiff_t");
127 /* We assume no padding is necessary, since GDB doesn't know
128 anything about alignment at the moment. If this assumption bites
129 us, we should add a gdbarch method which, given a type, returns
130 the alignment that type requires, and then use that here. */
132 /* Build the field list. */
133 field_list
= XCNEWVEC (struct field
, 4);
134 field
= &field_list
[0];
137 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
138 field
->set_name ("vcall_and_vbase_offsets");
139 field
->set_type (lookup_array_range_type (ptrdiff_type
, 0, -1));
140 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
141 offset
+= TYPE_LENGTH (field
->type ());
144 /* ptrdiff_t offset_to_top; */
145 field
->set_name ("offset_to_top");
146 field
->set_type (ptrdiff_type
);
147 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
148 offset
+= TYPE_LENGTH (field
->type ());
151 /* void *type_info; */
152 field
->set_name ("type_info");
153 field
->set_type (void_ptr_type
);
154 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
155 offset
+= TYPE_LENGTH (field
->type ());
158 /* void (*virtual_functions[0]) (); */
159 field
->set_name ("virtual_functions");
160 field
->set_type (lookup_array_range_type (ptr_to_void_fn_type
, 0, -1));
161 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
162 offset
+= TYPE_LENGTH (field
->type ());
165 /* We assumed in the allocation above that there were four fields. */
166 gdb_assert (field
== (field_list
+ 4));
168 t
= arch_type (arch
, TYPE_CODE_STRUCT
, offset
* TARGET_CHAR_BIT
, NULL
);
169 t
->set_num_fields (field
- field_list
);
170 t
->set_fields (field_list
);
171 t
->set_name ("gdb_gnu_v3_abi_vtable");
172 INIT_CPLUS_SPECIFIC (t
);
174 return make_type_with_address_space (t
, TYPE_INSTANCE_FLAG_CODE_SPACE
);
178 /* Return the ptrdiff_t type used in the vtable type. */
180 vtable_ptrdiff_type (struct gdbarch
*gdbarch
)
182 struct type
*vtable_type
183 = (struct type
*) gdbarch_data (gdbarch
, vtable_type_gdbarch_data
);
185 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
186 return vtable_type
->field (vtable_field_offset_to_top
).type ();
189 /* Return the offset from the start of the imaginary `struct
190 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
191 (i.e., where objects' virtual table pointers point). */
193 vtable_address_point_offset (struct gdbarch
*gdbarch
)
195 struct type
*vtable_type
196 = (struct type
*) gdbarch_data (gdbarch
, vtable_type_gdbarch_data
);
198 return (vtable_type
->field (vtable_field_virtual_functions
).loc_bitpos ()
203 /* Determine whether structure TYPE is a dynamic class. Cache the
207 gnuv3_dynamic_class (struct type
*type
)
209 int fieldnum
, fieldelem
;
211 type
= check_typedef (type
);
212 gdb_assert (type
->code () == TYPE_CODE_STRUCT
213 || type
->code () == TYPE_CODE_UNION
);
215 if (type
->code () == TYPE_CODE_UNION
)
218 if (TYPE_CPLUS_DYNAMIC (type
))
219 return TYPE_CPLUS_DYNAMIC (type
) == 1;
221 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
223 for (fieldnum
= 0; fieldnum
< TYPE_N_BASECLASSES (type
); fieldnum
++)
224 if (BASETYPE_VIA_VIRTUAL (type
, fieldnum
)
225 || gnuv3_dynamic_class (type
->field (fieldnum
).type ()))
227 TYPE_CPLUS_DYNAMIC (type
) = 1;
231 for (fieldnum
= 0; fieldnum
< TYPE_NFN_FIELDS (type
); fieldnum
++)
232 for (fieldelem
= 0; fieldelem
< TYPE_FN_FIELDLIST_LENGTH (type
, fieldnum
);
235 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, fieldnum
);
237 if (TYPE_FN_FIELD_VIRTUAL_P (f
, fieldelem
))
239 TYPE_CPLUS_DYNAMIC (type
) = 1;
244 TYPE_CPLUS_DYNAMIC (type
) = -1;
248 /* Find the vtable for a value of CONTAINER_TYPE located at
249 CONTAINER_ADDR. Return a value of the correct vtable type for this
250 architecture, or NULL if CONTAINER does not have a vtable. */
252 static struct value
*
253 gnuv3_get_vtable (struct gdbarch
*gdbarch
,
254 struct type
*container_type
, CORE_ADDR container_addr
)
256 struct type
*vtable_type
257 = (struct type
*) gdbarch_data (gdbarch
, vtable_type_gdbarch_data
);
258 struct type
*vtable_pointer_type
;
259 struct value
*vtable_pointer
;
260 CORE_ADDR vtable_address
;
262 container_type
= check_typedef (container_type
);
263 gdb_assert (container_type
->code () == TYPE_CODE_STRUCT
);
265 /* If this type does not have a virtual table, don't read the first
267 if (!gnuv3_dynamic_class (container_type
))
270 /* We do not consult the debug information to find the virtual table.
271 The ABI specifies that it is always at offset zero in any class,
272 and debug information may not represent it.
274 We avoid using value_contents on principle, because the object might
277 /* Find the type "pointer to virtual table". */
278 vtable_pointer_type
= lookup_pointer_type (vtable_type
);
280 /* Load it from the start of the class. */
281 vtable_pointer
= value_at (vtable_pointer_type
, container_addr
);
282 vtable_address
= value_as_address (vtable_pointer
);
284 /* Correct it to point at the start of the virtual table, rather
285 than the address point. */
286 return value_at_lazy (vtable_type
,
288 - vtable_address_point_offset (gdbarch
));
293 gnuv3_rtti_type (struct value
*value
,
294 int *full_p
, LONGEST
*top_p
, int *using_enc_p
)
296 struct gdbarch
*gdbarch
;
297 struct type
*values_type
= check_typedef (value_type (value
));
298 struct value
*vtable
;
299 struct minimal_symbol
*vtable_symbol
;
300 const char *vtable_symbol_name
;
301 const char *class_name
;
302 struct type
*run_time_type
;
303 LONGEST offset_to_top
;
306 /* We only have RTTI for dynamic class objects. */
307 if (values_type
->code () != TYPE_CODE_STRUCT
308 || !gnuv3_dynamic_class (values_type
))
311 /* Determine architecture. */
312 gdbarch
= values_type
->arch ();
317 vtable
= gnuv3_get_vtable (gdbarch
, values_type
,
318 value_as_address (value_addr (value
)));
322 /* Find the linker symbol for this vtable. */
324 = lookup_minimal_symbol_by_pc (value_address (vtable
)
325 + value_embedded_offset (vtable
)).minsym
;
329 /* The symbol's demangled name should be something like "vtable for
330 CLASS", where CLASS is the name of the run-time type of VALUE.
331 If we didn't like this approach, we could instead look in the
332 type_info object itself to get the class name. But this way
333 should work just as well, and doesn't read target memory. */
334 vtable_symbol_name
= vtable_symbol
->demangled_name ();
335 if (vtable_symbol_name
== NULL
336 || !startswith (vtable_symbol_name
, "vtable for "))
338 warning (_("can't find linker symbol for virtual table for `%s' value"),
339 TYPE_SAFE_NAME (values_type
));
340 if (vtable_symbol_name
)
341 warning (_(" found `%s' instead"), vtable_symbol_name
);
344 class_name
= vtable_symbol_name
+ 11;
346 /* Strip off @plt and version suffixes. */
347 atsign
= strchr (class_name
, '@');
352 copy
= (char *) alloca (atsign
- class_name
+ 1);
353 memcpy (copy
, class_name
, atsign
- class_name
);
354 copy
[atsign
- class_name
] = '\0';
358 /* Try to look up the class name as a type name. */
359 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
360 run_time_type
= cp_lookup_rtti_type (class_name
, NULL
);
361 if (run_time_type
== NULL
)
364 /* Get the offset from VALUE to the top of the complete object.
365 NOTE: this is the reverse of the meaning of *TOP_P. */
367 = value_as_long (value_field (vtable
, vtable_field_offset_to_top
));
370 *full_p
= (- offset_to_top
== value_embedded_offset (value
)
371 && (TYPE_LENGTH (value_enclosing_type (value
))
372 >= TYPE_LENGTH (run_time_type
)));
374 *top_p
= - offset_to_top
;
375 return run_time_type
;
378 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
379 function, of type FNTYPE. */
381 static struct value
*
382 gnuv3_get_virtual_fn (struct gdbarch
*gdbarch
, struct value
*container
,
383 struct type
*fntype
, int vtable_index
)
385 struct value
*vtable
, *vfn
;
387 /* Every class with virtual functions must have a vtable. */
388 vtable
= gnuv3_get_vtable (gdbarch
, value_type (container
),
389 value_as_address (value_addr (container
)));
390 gdb_assert (vtable
!= NULL
);
392 /* Fetch the appropriate function pointer from the vtable. */
393 vfn
= value_subscript (value_field (vtable
, vtable_field_virtual_functions
),
396 /* If this architecture uses function descriptors directly in the vtable,
397 then the address of the vtable entry is actually a "function pointer"
398 (i.e. points to the descriptor). We don't need to scale the index
399 by the size of a function descriptor; GCC does that before outputting
400 debug information. */
401 if (gdbarch_vtable_function_descriptors (gdbarch
))
402 vfn
= value_addr (vfn
);
404 /* Cast the function pointer to the appropriate type. */
405 vfn
= value_cast (lookup_pointer_type (fntype
), vfn
);
410 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
411 for a description of the arguments. */
413 static struct value
*
414 gnuv3_virtual_fn_field (struct value
**value_p
,
415 struct fn_field
*f
, int j
,
416 struct type
*vfn_base
, int offset
)
418 struct type
*values_type
= check_typedef (value_type (*value_p
));
419 struct gdbarch
*gdbarch
;
421 /* Some simple sanity checks. */
422 if (values_type
->code () != TYPE_CODE_STRUCT
)
423 error (_("Only classes can have virtual functions."));
425 /* Determine architecture. */
426 gdbarch
= values_type
->arch ();
428 /* Cast our value to the base class which defines this virtual
429 function. This takes care of any necessary `this'
431 if (vfn_base
!= values_type
)
432 *value_p
= value_cast (vfn_base
, *value_p
);
434 return gnuv3_get_virtual_fn (gdbarch
, *value_p
, TYPE_FN_FIELD_TYPE (f
, j
),
435 TYPE_FN_FIELD_VOFFSET (f
, j
));
438 /* Compute the offset of the baseclass which is
439 the INDEXth baseclass of class TYPE,
440 for value at VALADDR (in host) at ADDRESS (in target).
441 The result is the offset of the baseclass value relative
442 to (the address of)(ARG) + OFFSET.
444 -1 is returned on error. */
447 gnuv3_baseclass_offset (struct type
*type
, int index
,
448 const bfd_byte
*valaddr
, LONGEST embedded_offset
,
449 CORE_ADDR address
, const struct value
*val
)
451 struct gdbarch
*gdbarch
;
452 struct type
*ptr_type
;
453 struct value
*vtable
;
454 struct value
*vbase_array
;
455 long int cur_base_offset
, base_offset
;
457 /* Determine architecture. */
458 gdbarch
= type
->arch ();
459 ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
461 /* If it isn't a virtual base, this is easy. The offset is in the
463 if (!BASETYPE_VIA_VIRTUAL (type
, index
))
464 return TYPE_BASECLASS_BITPOS (type
, index
) / 8;
466 /* If we have a DWARF expression for the offset, evaluate it. */
467 if (type
->field (index
).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK
)
469 struct dwarf2_property_baton baton
;
471 = lookup_pointer_type (type
->field (index
).type ());
472 baton
.locexpr
= *type
->field (index
).loc_dwarf_block ();
474 struct dynamic_prop prop
;
475 prop
.set_locexpr (&baton
);
477 struct property_addr_info addr_stack
;
478 addr_stack
.type
= type
;
479 /* Note that we don't set "valaddr" here. Doing so causes
480 regressions. FIXME. */
481 addr_stack
.addr
= address
+ embedded_offset
;
482 addr_stack
.next
= nullptr;
485 if (dwarf2_evaluate_property (&prop
, nullptr, &addr_stack
, &result
,
487 return (int) (result
- addr_stack
.addr
);
490 /* To access a virtual base, we need to use the vbase offset stored in
491 our vtable. Recent GCC versions provide this information. If it isn't
492 available, we could get what we needed from RTTI, or from drawing the
493 complete inheritance graph based on the debug info. Neither is
495 cur_base_offset
= TYPE_BASECLASS_BITPOS (type
, index
) / 8;
496 if (cur_base_offset
>= - vtable_address_point_offset (gdbarch
))
497 error (_("Expected a negative vbase offset (old compiler?)"));
499 cur_base_offset
= cur_base_offset
+ vtable_address_point_offset (gdbarch
);
500 if ((- cur_base_offset
) % TYPE_LENGTH (ptr_type
) != 0)
501 error (_("Misaligned vbase offset."));
502 cur_base_offset
= cur_base_offset
/ ((int) TYPE_LENGTH (ptr_type
));
504 vtable
= gnuv3_get_vtable (gdbarch
, type
, address
+ embedded_offset
);
505 gdb_assert (vtable
!= NULL
);
506 vbase_array
= value_field (vtable
, vtable_field_vcall_and_vbase_offsets
);
507 base_offset
= value_as_long (value_subscript (vbase_array
, cur_base_offset
));
511 /* Locate a virtual method in DOMAIN or its non-virtual base classes
512 which has virtual table index VOFFSET. The method has an associated
513 "this" adjustment of ADJUSTMENT bytes. */
516 gnuv3_find_method_in (struct type
*domain
, CORE_ADDR voffset
,
521 /* Search this class first. */
526 len
= TYPE_NFN_FIELDS (domain
);
527 for (i
= 0; i
< len
; i
++)
532 f
= TYPE_FN_FIELDLIST1 (domain
, i
);
533 len2
= TYPE_FN_FIELDLIST_LENGTH (domain
, i
);
535 check_stub_method_group (domain
, i
);
536 for (j
= 0; j
< len2
; j
++)
537 if (TYPE_FN_FIELD_VOFFSET (f
, j
) == voffset
)
538 return TYPE_FN_FIELD_PHYSNAME (f
, j
);
542 /* Next search non-virtual bases. If it's in a virtual base,
543 we're out of luck. */
544 for (i
= 0; i
< TYPE_N_BASECLASSES (domain
); i
++)
547 struct type
*basetype
;
549 if (BASETYPE_VIA_VIRTUAL (domain
, i
))
552 pos
= TYPE_BASECLASS_BITPOS (domain
, i
) / 8;
553 basetype
= domain
->field (i
).type ();
554 /* Recurse with a modified adjustment. We don't need to adjust
556 if (adjustment
>= pos
&& adjustment
< pos
+ TYPE_LENGTH (basetype
))
557 return gnuv3_find_method_in (basetype
, voffset
, adjustment
- pos
);
563 /* Decode GNU v3 method pointer. */
566 gnuv3_decode_method_ptr (struct gdbarch
*gdbarch
,
567 const gdb_byte
*contents
,
569 LONGEST
*adjustment_p
)
571 struct type
*funcptr_type
= builtin_type (gdbarch
)->builtin_func_ptr
;
572 struct type
*offset_type
= vtable_ptrdiff_type (gdbarch
);
573 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
575 LONGEST voffset
, adjustment
;
578 /* Extract the pointer to member. The first element is either a pointer
579 or a vtable offset. For pointers, we need to use extract_typed_address
580 to allow the back-end to convert the pointer to a GDB address -- but
581 vtable offsets we must handle as integers. At this point, we do not
582 yet know which case we have, so we extract the value under both
583 interpretations and choose the right one later on. */
584 ptr_value
= extract_typed_address (contents
, funcptr_type
);
585 voffset
= extract_signed_integer (contents
,
586 TYPE_LENGTH (funcptr_type
), byte_order
);
587 contents
+= TYPE_LENGTH (funcptr_type
);
588 adjustment
= extract_signed_integer (contents
,
589 TYPE_LENGTH (offset_type
), byte_order
);
591 if (!gdbarch_vbit_in_delta (gdbarch
))
594 voffset
= voffset
^ vbit
;
598 vbit
= adjustment
& 1;
599 adjustment
= adjustment
>> 1;
602 *value_p
= vbit
? voffset
: ptr_value
;
603 *adjustment_p
= adjustment
;
607 /* GNU v3 implementation of cplus_print_method_ptr. */
610 gnuv3_print_method_ptr (const gdb_byte
*contents
,
612 struct ui_file
*stream
)
614 struct type
*self_type
= TYPE_SELF_TYPE (type
);
615 struct gdbarch
*gdbarch
= self_type
->arch ();
620 /* Extract the pointer to member. */
621 vbit
= gnuv3_decode_method_ptr (gdbarch
, contents
, &ptr_value
, &adjustment
);
623 /* Check for NULL. */
624 if (ptr_value
== 0 && vbit
== 0)
626 gdb_printf (stream
, "NULL");
630 /* Search for a virtual method. */
634 const char *physname
;
636 /* It's a virtual table offset, maybe in this class. Search
637 for a field with the correct vtable offset. First convert it
638 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
639 voffset
= ptr_value
/ TYPE_LENGTH (vtable_ptrdiff_type (gdbarch
));
641 physname
= gnuv3_find_method_in (self_type
, voffset
, adjustment
);
643 /* If we found a method, print that. We don't bother to disambiguate
644 possible paths to the method based on the adjustment. */
647 gdb::unique_xmalloc_ptr
<char> demangled_name
648 = gdb_demangle (physname
, DMGL_ANSI
| DMGL_PARAMS
);
650 gdb_printf (stream
, "&virtual ");
651 if (demangled_name
== NULL
)
652 gdb_puts (physname
, stream
);
654 gdb_puts (demangled_name
.get (), stream
);
658 else if (ptr_value
!= 0)
660 /* Found a non-virtual function: print out the type. */
661 gdb_puts ("(", stream
);
662 c_print_type (type
, "", stream
, -1, 0, current_language
->la_language
,
663 &type_print_raw_options
);
664 gdb_puts (") ", stream
);
667 /* We didn't find it; print the raw data. */
670 gdb_printf (stream
, "&virtual table offset ");
671 print_longest (stream
, 'd', 1, ptr_value
);
675 struct value_print_options opts
;
677 get_user_print_options (&opts
);
678 print_address_demangle (&opts
, gdbarch
, ptr_value
, stream
, demangle
);
683 gdb_printf (stream
, ", this adjustment ");
684 print_longest (stream
, 'd', 1, adjustment
);
688 /* GNU v3 implementation of cplus_method_ptr_size. */
691 gnuv3_method_ptr_size (struct type
*type
)
693 return 2 * TYPE_LENGTH (builtin_type (type
->arch ())->builtin_data_ptr
);
696 /* GNU v3 implementation of cplus_make_method_ptr. */
699 gnuv3_make_method_ptr (struct type
*type
, gdb_byte
*contents
,
700 CORE_ADDR value
, int is_virtual
)
702 struct gdbarch
*gdbarch
= type
->arch ();
703 int size
= TYPE_LENGTH (builtin_type (gdbarch
)->builtin_data_ptr
);
704 enum bfd_endian byte_order
= type_byte_order (type
);
706 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
707 always zero, since the method pointer is of the correct type.
708 But if the method pointer came from a base class, this is
709 incorrect - it should be the offset to the base. The best
710 fix might be to create the pointer to member pointing at the
711 base class and cast it to the derived class, but that requires
712 support for adjusting pointers to members when casting them -
713 not currently supported by GDB. */
715 if (!gdbarch_vbit_in_delta (gdbarch
))
717 store_unsigned_integer (contents
, size
, byte_order
, value
| is_virtual
);
718 store_unsigned_integer (contents
+ size
, size
, byte_order
, 0);
722 store_unsigned_integer (contents
, size
, byte_order
, value
);
723 store_unsigned_integer (contents
+ size
, size
, byte_order
, is_virtual
);
727 /* GNU v3 implementation of cplus_method_ptr_to_value. */
729 static struct value
*
730 gnuv3_method_ptr_to_value (struct value
**this_p
, struct value
*method_ptr
)
732 struct gdbarch
*gdbarch
;
733 const gdb_byte
*contents
= value_contents (method_ptr
).data ();
735 struct type
*self_type
, *final_type
, *method_type
;
739 self_type
= TYPE_SELF_TYPE (check_typedef (value_type (method_ptr
)));
740 final_type
= lookup_pointer_type (self_type
);
742 method_type
= TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr
)));
744 /* Extract the pointer to member. */
745 gdbarch
= self_type
->arch ();
746 vbit
= gnuv3_decode_method_ptr (gdbarch
, contents
, &ptr_value
, &adjustment
);
748 /* First convert THIS to match the containing type of the pointer to
749 member. This cast may adjust the value of THIS. */
750 *this_p
= value_cast (final_type
, *this_p
);
752 /* Then apply whatever adjustment is necessary. This creates a somewhat
753 strange pointer: it claims to have type FINAL_TYPE, but in fact it
754 might not be a valid FINAL_TYPE. For instance, it might be a
755 base class of FINAL_TYPE. And if it's not the primary base class,
756 then printing it out as a FINAL_TYPE object would produce some pretty
759 But we don't really know the type of the first argument in
760 METHOD_TYPE either, which is why this happens. We can't
761 dereference this later as a FINAL_TYPE, but once we arrive in the
762 called method we'll have debugging information for the type of
763 "this" - and that'll match the value we produce here.
765 You can provoke this case by casting a Base::* to a Derived::*, for
767 *this_p
= value_cast (builtin_type (gdbarch
)->builtin_data_ptr
, *this_p
);
768 *this_p
= value_ptradd (*this_p
, adjustment
);
769 *this_p
= value_cast (final_type
, *this_p
);
775 voffset
= ptr_value
/ TYPE_LENGTH (vtable_ptrdiff_type (gdbarch
));
776 return gnuv3_get_virtual_fn (gdbarch
, value_ind (*this_p
),
777 method_type
, voffset
);
780 return value_from_pointer (lookup_pointer_type (method_type
), ptr_value
);
783 /* Objects of this type are stored in a hash table and a vector when
784 printing the vtables for a class. */
786 struct value_and_voffset
788 /* The value representing the object. */
791 /* The maximum vtable offset we've found for any object at this
792 offset in the outermost object. */
796 /* Hash function for value_and_voffset. */
799 hash_value_and_voffset (const void *p
)
801 const struct value_and_voffset
*o
= (const struct value_and_voffset
*) p
;
803 return value_address (o
->value
) + value_embedded_offset (o
->value
);
806 /* Equality function for value_and_voffset. */
809 eq_value_and_voffset (const void *a
, const void *b
)
811 const struct value_and_voffset
*ova
= (const struct value_and_voffset
*) a
;
812 const struct value_and_voffset
*ovb
= (const struct value_and_voffset
*) b
;
814 return (value_address (ova
->value
) + value_embedded_offset (ova
->value
)
815 == value_address (ovb
->value
) + value_embedded_offset (ovb
->value
));
818 /* Comparison function for value_and_voffset. */
821 compare_value_and_voffset (const struct value_and_voffset
*va
,
822 const struct value_and_voffset
*vb
)
824 CORE_ADDR addra
= (value_address (va
->value
)
825 + value_embedded_offset (va
->value
));
826 CORE_ADDR addrb
= (value_address (vb
->value
)
827 + value_embedded_offset (vb
->value
));
829 return addra
< addrb
;
832 /* A helper function used when printing vtables. This determines the
833 key (most derived) sub-object at each address and also computes the
834 maximum vtable offset seen for the corresponding vtable. Updates
835 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
836 needed. VALUE is the object to examine. */
839 compute_vtable_size (htab_t offset_hash
,
840 std::vector
<value_and_voffset
*> *offset_vec
,
844 struct type
*type
= check_typedef (value_type (value
));
846 struct value_and_voffset search_vo
, *current_vo
;
848 gdb_assert (type
->code () == TYPE_CODE_STRUCT
);
850 /* If the object is not dynamic, then we are done; as it cannot have
851 dynamic base types either. */
852 if (!gnuv3_dynamic_class (type
))
855 /* Update the hash and the vec, if needed. */
856 search_vo
.value
= value
;
857 slot
= htab_find_slot (offset_hash
, &search_vo
, INSERT
);
859 current_vo
= (struct value_and_voffset
*) *slot
;
862 current_vo
= XNEW (struct value_and_voffset
);
863 current_vo
->value
= value
;
864 current_vo
->max_voffset
= -1;
866 offset_vec
->push_back (current_vo
);
869 /* Update the value_and_voffset object with the highest vtable
870 offset from this class. */
871 for (i
= 0; i
< TYPE_NFN_FIELDS (type
); ++i
)
874 struct fn_field
*fn
= TYPE_FN_FIELDLIST1 (type
, i
);
876 for (j
= 0; j
< TYPE_FN_FIELDLIST_LENGTH (type
, i
); ++j
)
878 if (TYPE_FN_FIELD_VIRTUAL_P (fn
, j
))
880 int voffset
= TYPE_FN_FIELD_VOFFSET (fn
, j
);
882 if (voffset
> current_vo
->max_voffset
)
883 current_vo
->max_voffset
= voffset
;
888 /* Recurse into base classes. */
889 for (i
= 0; i
< TYPE_N_BASECLASSES (type
); ++i
)
890 compute_vtable_size (offset_hash
, offset_vec
, value_field (value
, i
));
893 /* Helper for gnuv3_print_vtable that prints a single vtable. */
896 print_one_vtable (struct gdbarch
*gdbarch
, struct value
*value
,
898 struct value_print_options
*opts
)
901 struct type
*type
= check_typedef (value_type (value
));
902 struct value
*vtable
;
905 vtable
= gnuv3_get_vtable (gdbarch
, type
,
906 value_address (value
)
907 + value_embedded_offset (value
));
908 vt_addr
= value_address (value_field (vtable
,
909 vtable_field_virtual_functions
));
911 gdb_printf (_("vtable for '%s' @ %s (subobject @ %s):\n"),
912 TYPE_SAFE_NAME (type
),
913 paddress (gdbarch
, vt_addr
),
914 paddress (gdbarch
, (value_address (value
)
915 + value_embedded_offset (value
))));
917 for (i
= 0; i
<= max_voffset
; ++i
)
919 /* Initialize it just to avoid a GCC false warning. */
924 gdb_printf ("[%d]: ", i
);
926 vfn
= value_subscript (value_field (vtable
,
927 vtable_field_virtual_functions
),
930 if (gdbarch_vtable_function_descriptors (gdbarch
))
931 vfn
= value_addr (vfn
);
935 addr
= value_as_address (vfn
);
937 catch (const gdb_exception_error
&ex
)
939 fprintf_styled (gdb_stdout
, metadata_style
.style (),
940 _("<error: %s>"), ex
.what ());
945 print_function_pointer_address (opts
, gdbarch
, addr
, gdb_stdout
);
950 /* Implementation of the print_vtable method. */
953 gnuv3_print_vtable (struct value
*value
)
955 struct gdbarch
*gdbarch
;
957 struct value
*vtable
;
958 struct value_print_options opts
;
961 value
= coerce_ref (value
);
962 type
= check_typedef (value_type (value
));
963 if (type
->code () == TYPE_CODE_PTR
)
965 value
= value_ind (value
);
966 type
= check_typedef (value_type (value
));
969 get_user_print_options (&opts
);
971 /* Respect 'set print object'. */
972 if (opts
.objectprint
)
974 value
= value_full_object (value
, NULL
, 0, 0, 0);
975 type
= check_typedef (value_type (value
));
978 gdbarch
= type
->arch ();
981 if (type
->code () == TYPE_CODE_STRUCT
)
982 vtable
= gnuv3_get_vtable (gdbarch
, type
,
983 value_as_address (value_addr (value
)));
987 gdb_printf (_("This object does not have a virtual function table\n"));
991 htab_up
offset_hash (htab_create_alloc (1, hash_value_and_voffset
,
992 eq_value_and_voffset
,
993 xfree
, xcalloc
, xfree
));
994 std::vector
<value_and_voffset
*> result_vec
;
996 compute_vtable_size (offset_hash
.get (), &result_vec
, value
);
997 std::sort (result_vec
.begin (), result_vec
.end (),
998 compare_value_and_voffset
);
1001 for (value_and_voffset
*iter
: result_vec
)
1003 if (iter
->max_voffset
>= 0)
1007 print_one_vtable (gdbarch
, iter
->value
, iter
->max_voffset
, &opts
);
1013 /* Return a GDB type representing `struct std::type_info', laid out
1014 appropriately for ARCH.
1016 We use this function as the gdbarch per-architecture data
1017 initialization function. */
1020 build_std_type_info_type (struct gdbarch
*arch
)
1023 struct field
*field_list
, *field
;
1025 struct type
*void_ptr_type
1026 = builtin_type (arch
)->builtin_data_ptr
;
1027 struct type
*char_type
1028 = builtin_type (arch
)->builtin_char
;
1029 struct type
*char_ptr_type
1030 = make_pointer_type (make_cv_type (1, 0, char_type
, NULL
), NULL
);
1032 field_list
= XCNEWVEC (struct field
, 2);
1033 field
= &field_list
[0];
1037 field
->set_name ("_vptr.type_info");
1038 field
->set_type (void_ptr_type
);
1039 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
1040 offset
+= TYPE_LENGTH (field
->type ());
1044 field
->set_name ("__name");
1045 field
->set_type (char_ptr_type
);
1046 field
->set_loc_bitpos (offset
* TARGET_CHAR_BIT
);
1047 offset
+= TYPE_LENGTH (field
->type ());
1050 gdb_assert (field
== (field_list
+ 2));
1052 t
= arch_type (arch
, TYPE_CODE_STRUCT
, offset
* TARGET_CHAR_BIT
, NULL
);
1053 t
->set_num_fields (field
- field_list
);
1054 t
->set_fields (field_list
);
1055 t
->set_name ("gdb_gnu_v3_type_info");
1056 INIT_CPLUS_SPECIFIC (t
);
1061 /* Implement the 'get_typeid_type' method. */
1063 static struct type
*
1064 gnuv3_get_typeid_type (struct gdbarch
*gdbarch
)
1066 struct symbol
*typeinfo
;
1067 struct type
*typeinfo_type
;
1069 typeinfo
= lookup_symbol ("std::type_info", NULL
, STRUCT_DOMAIN
,
1071 if (typeinfo
== NULL
)
1073 = (struct type
*) gdbarch_data (gdbarch
, std_type_info_gdbarch_data
);
1075 typeinfo_type
= typeinfo
->type ();
1077 return typeinfo_type
;
1080 /* Implement the 'get_typeid' method. */
1082 static struct value
*
1083 gnuv3_get_typeid (struct value
*value
)
1085 struct type
*typeinfo_type
;
1087 struct gdbarch
*gdbarch
;
1088 struct value
*result
;
1089 std::string type_name
;
1090 gdb::unique_xmalloc_ptr
<char> canonical
;
1092 /* We have to handle values a bit trickily here, to allow this code
1093 to work properly with non_lvalue values that are really just
1095 if (value_lval_const (value
) == lval_memory
)
1096 value
= coerce_ref (value
);
1098 type
= check_typedef (value_type (value
));
1100 /* In the non_lvalue case, a reference might have slipped through
1102 if (type
->code () == TYPE_CODE_REF
)
1103 type
= check_typedef (TYPE_TARGET_TYPE (type
));
1105 /* Ignore top-level cv-qualifiers. */
1106 type
= make_cv_type (0, 0, type
, NULL
);
1107 gdbarch
= type
->arch ();
1109 type_name
= type_to_string (type
);
1110 if (type_name
.empty ())
1111 error (_("cannot find typeinfo for unnamed type"));
1113 /* We need to canonicalize the type name here, because we do lookups
1114 using the demangled name, and so we must match the format it
1115 uses. E.g., GDB tends to use "const char *" as a type name, but
1116 the demangler uses "char const *". */
1117 canonical
= cp_canonicalize_string (type_name
.c_str ());
1118 const char *name
= (canonical
== nullptr
1119 ? type_name
.c_str ()
1120 : canonical
.get ());
1122 typeinfo_type
= gnuv3_get_typeid_type (gdbarch
);
1124 /* We check for lval_memory because in the "typeid (type-id)" case,
1125 the type is passed via a not_lval value object. */
1126 if (type
->code () == TYPE_CODE_STRUCT
1127 && value_lval_const (value
) == lval_memory
1128 && gnuv3_dynamic_class (type
))
1130 struct value
*vtable
, *typeinfo_value
;
1131 CORE_ADDR address
= value_address (value
) + value_embedded_offset (value
);
1133 vtable
= gnuv3_get_vtable (gdbarch
, type
, address
);
1135 error (_("cannot find typeinfo for object of type '%s'"),
1137 typeinfo_value
= value_field (vtable
, vtable_field_type_info
);
1138 result
= value_ind (value_cast (make_pointer_type (typeinfo_type
, NULL
),
1143 std::string sym_name
= std::string ("typeinfo for ") + name
;
1144 bound_minimal_symbol minsym
1145 = lookup_minimal_symbol (sym_name
.c_str (), NULL
, NULL
);
1147 if (minsym
.minsym
== NULL
)
1148 error (_("could not find typeinfo symbol for '%s'"), name
);
1150 result
= value_at_lazy (typeinfo_type
, minsym
.value_address ());
1156 /* Implement the 'get_typename_from_type_info' method. */
1159 gnuv3_get_typename_from_type_info (struct value
*type_info_ptr
)
1161 struct gdbarch
*gdbarch
= value_type (type_info_ptr
)->arch ();
1162 struct bound_minimal_symbol typeinfo_sym
;
1164 const char *symname
;
1165 const char *class_name
;
1168 addr
= value_as_address (type_info_ptr
);
1169 typeinfo_sym
= lookup_minimal_symbol_by_pc (addr
);
1170 if (typeinfo_sym
.minsym
== NULL
)
1171 error (_("could not find minimal symbol for typeinfo address %s"),
1172 paddress (gdbarch
, addr
));
1174 #define TYPEINFO_PREFIX "typeinfo for "
1175 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1176 symname
= typeinfo_sym
.minsym
->demangled_name ();
1177 if (symname
== NULL
|| strncmp (symname
, TYPEINFO_PREFIX
,
1178 TYPEINFO_PREFIX_LEN
))
1179 error (_("typeinfo symbol '%s' has unexpected name"),
1180 typeinfo_sym
.minsym
->linkage_name ());
1181 class_name
= symname
+ TYPEINFO_PREFIX_LEN
;
1183 /* Strip off @plt and version suffixes. */
1184 atsign
= strchr (class_name
, '@');
1186 return std::string (class_name
, atsign
- class_name
);
1190 /* Implement the 'get_type_from_type_info' method. */
1192 static struct type
*
1193 gnuv3_get_type_from_type_info (struct value
*type_info_ptr
)
1195 /* We have to parse the type name, since in general there is not a
1196 symbol for a type. This is somewhat bogus since there may be a
1197 mis-parse. Another approach might be to re-use the demangler's
1198 internal form to reconstruct the type somehow. */
1199 std::string type_name
= gnuv3_get_typename_from_type_info (type_info_ptr
);
1200 expression_up
expr (parse_expression (type_name
.c_str ()));
1201 struct value
*type_val
= evaluate_type (expr
.get ());
1202 return value_type (type_val
);
1205 /* Determine if we are currently in a C++ thunk. If so, get the address
1206 of the routine we are thunking to and continue to there instead. */
1209 gnuv3_skip_trampoline (struct frame_info
*frame
, CORE_ADDR stop_pc
)
1211 CORE_ADDR real_stop_pc
, method_stop_pc
, func_addr
;
1212 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1213 struct bound_minimal_symbol thunk_sym
, fn_sym
;
1214 struct obj_section
*section
;
1215 const char *thunk_name
, *fn_name
;
1217 real_stop_pc
= gdbarch_skip_trampoline_code (gdbarch
, frame
, stop_pc
);
1218 if (real_stop_pc
== 0)
1219 real_stop_pc
= stop_pc
;
1221 /* Find the linker symbol for this potential thunk. */
1222 thunk_sym
= lookup_minimal_symbol_by_pc (real_stop_pc
);
1223 section
= find_pc_section (real_stop_pc
);
1224 if (thunk_sym
.minsym
== NULL
|| section
== NULL
)
1227 /* The symbol's demangled name should be something like "virtual
1228 thunk to FUNCTION", where FUNCTION is the name of the function
1229 being thunked to. */
1230 thunk_name
= thunk_sym
.minsym
->demangled_name ();
1231 if (thunk_name
== NULL
|| strstr (thunk_name
, " thunk to ") == NULL
)
1234 fn_name
= strstr (thunk_name
, " thunk to ") + strlen (" thunk to ");
1235 fn_sym
= lookup_minimal_symbol (fn_name
, NULL
, section
->objfile
);
1236 if (fn_sym
.minsym
== NULL
)
1239 method_stop_pc
= fn_sym
.value_address ();
1241 /* Some targets have minimal symbols pointing to function descriptors
1242 (powerpc 64 for example). Make sure to retrieve the address
1243 of the real function from the function descriptor before passing on
1244 the address to other layers of GDB. */
1245 func_addr
= gdbarch_convert_from_func_ptr_addr
1246 (gdbarch
, method_stop_pc
, current_inferior ()->top_target ());
1248 method_stop_pc
= func_addr
;
1250 real_stop_pc
= gdbarch_skip_trampoline_code
1251 (gdbarch
, frame
, method_stop_pc
);
1252 if (real_stop_pc
== 0)
1253 real_stop_pc
= method_stop_pc
;
1255 return real_stop_pc
;
1258 /* A member function is in one these states. */
1260 enum definition_style
1262 DOES_NOT_EXIST_IN_SOURCE
,
1269 /* Return how the given field is defined. */
1271 static definition_style
1272 get_def_style (struct fn_field
*fn
, int fieldelem
)
1274 if (TYPE_FN_FIELD_DELETED (fn
, fieldelem
))
1277 if (TYPE_FN_FIELD_ARTIFICIAL (fn
, fieldelem
))
1278 return DOES_NOT_EXIST_IN_SOURCE
;
1280 switch (TYPE_FN_FIELD_DEFAULTED (fn
, fieldelem
))
1282 case DW_DEFAULTED_no
:
1284 case DW_DEFAULTED_in_class
:
1285 return DEFAULTED_INSIDE
;
1286 case DW_DEFAULTED_out_of_class
:
1287 return DEFAULTED_OUTSIDE
;
1295 /* Helper functions to determine whether the given definition style
1296 denotes that the definition is user-provided or implicit.
1297 Being defaulted outside the class decl counts as an explicit
1298 user-definition, while being defaulted inside is implicit. */
1301 is_user_provided_def (definition_style def
)
1303 return def
== EXPLICIT
|| def
== DEFAULTED_OUTSIDE
;
1307 is_implicit_def (definition_style def
)
1309 return def
== DOES_NOT_EXIST_IN_SOURCE
|| def
== DEFAULTED_INSIDE
;
1312 /* Helper function to decide if METHOD_TYPE is a copy/move
1313 constructor type for CLASS_TYPE. EXPECTED is the expected
1314 type code for the "right-hand-side" argument.
1315 This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
1316 and IS_MOVE_CONSTRUCTOR_TYPE functions below. Normally, you should
1317 not need to call this directly. */
1320 is_copy_or_move_constructor_type (struct type
*class_type
,
1321 struct type
*method_type
,
1324 /* The method should take at least two arguments... */
1325 if (method_type
->num_fields () < 2)
1328 /* ...and the second argument should be the same as the class
1329 type, with the expected type code... */
1330 struct type
*arg_type
= method_type
->field (1).type ();
1332 if (arg_type
->code () != expected
)
1335 struct type
*target
= check_typedef (TYPE_TARGET_TYPE (arg_type
));
1336 if (!(class_types_same_p (target
, class_type
)))
1339 /* ...and if any of the remaining arguments don't have a default value
1340 then this is not a copy or move constructor, but just a
1342 for (int i
= 2; i
< method_type
->num_fields (); i
++)
1344 arg_type
= method_type
->field (i
).type ();
1345 /* FIXME aktemur/2019-10-31: As of this date, neither
1346 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
1347 attribute. GDB is also not set to read this attribute, yet.
1348 Hence, we immediately return false if there are more than
1351 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
1359 /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE. */
1362 is_copy_constructor_type (struct type
*class_type
,
1363 struct type
*method_type
)
1365 return is_copy_or_move_constructor_type (class_type
, method_type
,
1369 /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE. */
1372 is_move_constructor_type (struct type
*class_type
,
1373 struct type
*method_type
)
1375 return is_copy_or_move_constructor_type (class_type
, method_type
,
1376 TYPE_CODE_RVALUE_REF
);
1379 /* Return pass-by-reference information for the given TYPE.
1381 The rule in the v3 ABI document comes from section 3.1.1. If the
1382 type has a non-trivial copy constructor or destructor, then the
1383 caller must make a copy (by calling the copy constructor if there
1384 is one or perform the copy itself otherwise), pass the address of
1385 the copy, and then destroy the temporary (if necessary).
1387 For return values with non-trivial copy/move constructors or
1388 destructors, space will be allocated in the caller, and a pointer
1389 will be passed as the first argument (preceding "this").
1391 We don't have a bulletproof mechanism for determining whether a
1392 constructor or destructor is trivial. For GCC and DWARF5 debug
1393 information, we can check the calling_convention attribute,
1394 the 'artificial' flag, the 'defaulted' attribute, and the
1395 'deleted' attribute. */
1397 static struct language_pass_by_ref_info
1398 gnuv3_pass_by_reference (struct type
*type
)
1400 int fieldnum
, fieldelem
;
1402 type
= check_typedef (type
);
1404 /* Start with the default values. */
1405 struct language_pass_by_ref_info info
;
1407 bool has_cc_attr
= false;
1408 bool is_pass_by_value
= false;
1409 bool is_dynamic
= false;
1410 definition_style cctor_def
= DOES_NOT_EXIST_IN_SOURCE
;
1411 definition_style dtor_def
= DOES_NOT_EXIST_IN_SOURCE
;
1412 definition_style mctor_def
= DOES_NOT_EXIST_IN_SOURCE
;
1414 /* We're only interested in things that can have methods. */
1415 if (type
->code () != TYPE_CODE_STRUCT
1416 && type
->code () != TYPE_CODE_UNION
)
1419 /* The compiler may have emitted the calling convention attribute.
1420 Note: GCC does not produce this attribute as of version 9.2.1.
1421 Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418 */
1422 if (TYPE_CPLUS_CALLING_CONVENTION (type
) == DW_CC_pass_by_value
)
1425 is_pass_by_value
= true;
1426 /* Do not return immediately. We have to find out if this type
1427 is copy_constructible and destructible. */
1430 if (TYPE_CPLUS_CALLING_CONVENTION (type
) == DW_CC_pass_by_reference
)
1433 is_pass_by_value
= false;
1436 /* A dynamic class has a non-trivial copy constructor.
1437 See c++98 section 12.8 Copying class objects [class.copy]. */
1438 if (gnuv3_dynamic_class (type
))
1441 for (fieldnum
= 0; fieldnum
< TYPE_NFN_FIELDS (type
); fieldnum
++)
1442 for (fieldelem
= 0; fieldelem
< TYPE_FN_FIELDLIST_LENGTH (type
, fieldnum
);
1445 struct fn_field
*fn
= TYPE_FN_FIELDLIST1 (type
, fieldnum
);
1446 const char *name
= TYPE_FN_FIELDLIST_NAME (type
, fieldnum
);
1447 struct type
*fieldtype
= TYPE_FN_FIELD_TYPE (fn
, fieldelem
);
1451 /* We've found a destructor.
1452 There should be at most one dtor definition. */
1453 gdb_assert (dtor_def
== DOES_NOT_EXIST_IN_SOURCE
);
1454 dtor_def
= get_def_style (fn
, fieldelem
);
1456 else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn
, fieldelem
))
1457 || TYPE_FN_FIELD_CONSTRUCTOR (fn
, fieldelem
))
1459 /* FIXME drow/2007-09-23: We could do this using the name of
1460 the method and the name of the class instead of dealing
1461 with the mangled name. We don't have a convenient function
1462 to strip off both leading scope qualifiers and trailing
1463 template arguments yet. */
1464 if (is_copy_constructor_type (type
, fieldtype
))
1466 /* There may be more than one cctors. E.g.: one that
1467 take a const parameter and another that takes a
1468 non-const parameter. Such as:
1475 It is sufficient for the type to be non-trivial
1476 even only one of the cctors is explicit.
1477 Therefore, update the cctor_def value in the
1478 implicit -> explicit direction, not backwards. */
1480 if (is_implicit_def (cctor_def
))
1481 cctor_def
= get_def_style (fn
, fieldelem
);
1483 else if (is_move_constructor_type (type
, fieldtype
))
1485 /* Again, there may be multiple move ctors. Update the
1486 mctor_def value if we found an explicit def and the
1487 existing one is not explicit. Otherwise retain the
1489 if (is_implicit_def (mctor_def
))
1490 mctor_def
= get_def_style (fn
, fieldelem
);
1495 bool cctor_implicitly_deleted
1496 = (mctor_def
!= DOES_NOT_EXIST_IN_SOURCE
1497 && cctor_def
== DOES_NOT_EXIST_IN_SOURCE
);
1499 bool cctor_explicitly_deleted
= (cctor_def
== DELETED
);
1501 if (cctor_implicitly_deleted
|| cctor_explicitly_deleted
)
1502 info
.copy_constructible
= false;
1504 if (dtor_def
== DELETED
)
1505 info
.destructible
= false;
1507 info
.trivially_destructible
= is_implicit_def (dtor_def
);
1509 info
.trivially_copy_constructible
1510 = (is_implicit_def (cctor_def
)
1513 info
.trivially_copyable
1514 = (info
.trivially_copy_constructible
1515 && info
.trivially_destructible
1516 && !is_user_provided_def (mctor_def
));
1518 /* Even if all the constructors and destructors were artificial, one
1519 of them may have invoked a non-artificial constructor or
1520 destructor in a base class. If any base class needs to be passed
1521 by reference, so does this class. Similarly for members, which
1522 are constructed whenever this class is. We do not need to worry
1523 about recursive loops here, since we are only looking at members
1524 of complete class type. Also ignore any static members. */
1525 for (fieldnum
= 0; fieldnum
< type
->num_fields (); fieldnum
++)
1526 if (!field_is_static (&type
->field (fieldnum
)))
1528 struct type
*field_type
= type
->field (fieldnum
).type ();
1530 /* For arrays, make the decision based on the element type. */
1531 if (field_type
->code () == TYPE_CODE_ARRAY
)
1532 field_type
= check_typedef (TYPE_TARGET_TYPE (field_type
));
1534 struct language_pass_by_ref_info field_info
1535 = gnuv3_pass_by_reference (field_type
);
1537 if (!field_info
.copy_constructible
)
1538 info
.copy_constructible
= false;
1539 if (!field_info
.destructible
)
1540 info
.destructible
= false;
1541 if (!field_info
.trivially_copyable
)
1542 info
.trivially_copyable
= false;
1543 if (!field_info
.trivially_copy_constructible
)
1544 info
.trivially_copy_constructible
= false;
1545 if (!field_info
.trivially_destructible
)
1546 info
.trivially_destructible
= false;
1549 /* Consistency check. */
1550 if (has_cc_attr
&& info
.trivially_copyable
!= is_pass_by_value
)
1552 /* DWARF CC attribute is not the same as the inferred value;
1553 use the DWARF attribute. */
1554 info
.trivially_copyable
= is_pass_by_value
;
1561 init_gnuv3_ops (void)
1563 vtable_type_gdbarch_data
1564 = gdbarch_data_register_post_init (build_gdb_vtable_type
);
1565 std_type_info_gdbarch_data
1566 = gdbarch_data_register_post_init (build_std_type_info_type
);
1568 gnu_v3_abi_ops
.shortname
= "gnu-v3";
1569 gnu_v3_abi_ops
.longname
= "GNU G++ Version 3 ABI";
1570 gnu_v3_abi_ops
.doc
= "G++ Version 3 ABI";
1571 gnu_v3_abi_ops
.is_destructor_name
=
1572 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor
;
1573 gnu_v3_abi_ops
.is_constructor_name
=
1574 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor
;
1575 gnu_v3_abi_ops
.is_vtable_name
= gnuv3_is_vtable_name
;
1576 gnu_v3_abi_ops
.is_operator_name
= gnuv3_is_operator_name
;
1577 gnu_v3_abi_ops
.rtti_type
= gnuv3_rtti_type
;
1578 gnu_v3_abi_ops
.virtual_fn_field
= gnuv3_virtual_fn_field
;
1579 gnu_v3_abi_ops
.baseclass_offset
= gnuv3_baseclass_offset
;
1580 gnu_v3_abi_ops
.print_method_ptr
= gnuv3_print_method_ptr
;
1581 gnu_v3_abi_ops
.method_ptr_size
= gnuv3_method_ptr_size
;
1582 gnu_v3_abi_ops
.make_method_ptr
= gnuv3_make_method_ptr
;
1583 gnu_v3_abi_ops
.method_ptr_to_value
= gnuv3_method_ptr_to_value
;
1584 gnu_v3_abi_ops
.print_vtable
= gnuv3_print_vtable
;
1585 gnu_v3_abi_ops
.get_typeid
= gnuv3_get_typeid
;
1586 gnu_v3_abi_ops
.get_typeid_type
= gnuv3_get_typeid_type
;
1587 gnu_v3_abi_ops
.get_type_from_type_info
= gnuv3_get_type_from_type_info
;
1588 gnu_v3_abi_ops
.get_typename_from_type_info
1589 = gnuv3_get_typename_from_type_info
;
1590 gnu_v3_abi_ops
.skip_trampoline
= gnuv3_skip_trampoline
;
1591 gnu_v3_abi_ops
.pass_by_reference
= gnuv3_pass_by_reference
;
1594 void _initialize_gnu_v3_abi ();
1596 _initialize_gnu_v3_abi ()
1600 register_cp_abi (&gnu_v3_abi_ops
);
1601 set_cp_abi_as_auto_default (gnu_v3_abi_ops
.shortname
);