Re: nios2: Remove binutils support for Nios II target
[binutils-gdb.git] / gdb / iq2000-tdep.c
blob5776c66f78ad76403dd44cb6558ecf249f8d6e20
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
4 Copyright (C) 2000-2024 Free Software Foundation, Inc.
6 Contributed by Red Hat.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "extract-store-integer.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2/frame.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "osabi.h"
34 #include "gdbcore.h"
36 enum gdb_regnum
38 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
39 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
40 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
41 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
42 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
43 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
44 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
45 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
46 E_PC_REGNUM,
47 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
48 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
49 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
50 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
51 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
52 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
53 E_NUM_REGS = E_PC_REGNUM + 1
56 /* Use an invalid address value as 'not available' marker. */
57 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
59 struct iq2000_frame_cache
61 /* Base address. */
62 CORE_ADDR base;
63 CORE_ADDR pc;
64 LONGEST framesize;
65 int using_fp;
66 CORE_ADDR saved_sp;
67 CORE_ADDR saved_regs [E_NUM_REGS];
70 /* Harvard methods: */
72 static CORE_ADDR
73 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
75 return addr & 0x7fffffffL;
78 static CORE_ADDR
79 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
81 return (ptr & 0x7fffffffL) | 0x80000000L;
84 /* Function: pointer_to_address
85 Convert a target pointer to an address in host (CORE_ADDR) format. */
87 static CORE_ADDR
88 iq2000_pointer_to_address (struct gdbarch *gdbarch,
89 struct type * type, const gdb_byte * buf)
91 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
92 enum type_code target = type->target_type ()->code ();
93 CORE_ADDR addr
94 = extract_unsigned_integer (buf, type->length (), byte_order);
96 if (target == TYPE_CODE_FUNC
97 || target == TYPE_CODE_METHOD
98 || TYPE_CODE_SPACE (type->target_type ()))
99 addr = insn_addr_from_ptr (addr);
101 return addr;
104 /* Function: address_to_pointer
105 Convert a host-format address (CORE_ADDR) into a target pointer. */
107 static void
108 iq2000_address_to_pointer (struct gdbarch *gdbarch,
109 struct type *type, gdb_byte *buf, CORE_ADDR addr)
111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
112 enum type_code target = type->target_type ()->code ();
114 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
115 addr = insn_ptr_from_addr (addr);
116 store_unsigned_integer (buf, type->length (), byte_order, addr);
119 /* Real register methods: */
121 /* Function: register_name
122 Returns the name of the iq2000 register number N. */
124 static const char *
125 iq2000_register_name (struct gdbarch *gdbarch, int regnum)
127 static const char * names[E_NUM_REGS] =
129 "r0", "r1", "r2", "r3", "r4",
130 "r5", "r6", "r7", "r8", "r9",
131 "r10", "r11", "r12", "r13", "r14",
132 "r15", "r16", "r17", "r18", "r19",
133 "r20", "r21", "r22", "r23", "r24",
134 "r25", "r26", "r27", "r28", "r29",
135 "r30", "r31",
136 "pc"
138 static_assert (ARRAY_SIZE (names) == E_NUM_REGS);
139 return names[regnum];
142 /* Prologue analysis methods: */
144 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
145 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
146 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
147 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
148 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
150 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
151 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
152 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
153 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
155 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
156 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
157 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
158 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
159 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
161 /* Function: find_last_line_symbol
163 Given an address range, first find a line symbol corresponding to
164 the starting address. Then find the last line symbol within the
165 range that has a line number less than or equal to the first line.
167 For optimized code with code motion, this finds the last address
168 for the lowest-numbered line within the address range. */
170 static struct symtab_and_line
171 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
173 struct symtab_and_line sal = find_pc_line (start, notcurrent);
174 struct symtab_and_line best_sal = sal;
176 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
177 return sal;
181 if (sal.line && sal.line <= best_sal.line)
182 best_sal = sal;
183 sal = find_pc_line (sal.end, notcurrent);
185 while (sal.pc && sal.pc < end);
187 return best_sal;
190 /* Function: scan_prologue
191 Decode the instructions within the given address range.
192 Decide when we must have reached the end of the function prologue.
193 If a frame_info pointer is provided, fill in its prologue information.
195 Returns the address of the first instruction after the prologue. */
197 static CORE_ADDR
198 iq2000_scan_prologue (struct gdbarch *gdbarch,
199 CORE_ADDR scan_start,
200 CORE_ADDR scan_end,
201 const frame_info_ptr &fi,
202 struct iq2000_frame_cache *cache)
204 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
205 struct symtab_and_line sal;
206 CORE_ADDR pc;
207 CORE_ADDR loop_end;
208 int srcreg;
209 int tgtreg;
210 signed short offset;
212 if (scan_end == (CORE_ADDR) 0)
214 loop_end = scan_start + 100;
215 sal.end = sal.pc = 0;
217 else
219 loop_end = scan_end;
220 if (fi)
221 sal = find_last_line_symbol (scan_start, scan_end, 0);
222 else
223 sal.end = 0; /* Avoid GCC false warning. */
226 /* Saved registers:
227 We first have to save the saved register's offset, and
228 only later do we compute its actual address. Since the
229 offset can be zero, we must first initialize all the
230 saved regs to minus one (so we can later distinguish
231 between one that's not saved, and one that's saved at zero). */
232 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
233 cache->saved_regs[srcreg] = -1;
234 cache->using_fp = 0;
235 cache->framesize = 0;
237 for (pc = scan_start; pc < loop_end; pc += 4)
239 LONGEST insn = read_memory_unsigned_integer (pc, 4, byte_order);
240 /* Skip any instructions writing to (sp) or decrementing the
241 SP. */
242 if ((insn & 0xffe00000) == 0xac200000)
244 /* sw using SP/%1 as base. */
245 /* LEGACY -- from assembly-only port. */
246 tgtreg = ((insn >> 16) & 0x1f);
247 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
248 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
250 continue;
253 if ((insn & 0xffff8000) == 0x20218000)
255 /* addi %1, %1, -N == addi %sp, %sp, -N */
256 /* LEGACY -- from assembly-only port. */
257 cache->framesize = -((signed short) (insn & 0xffff));
258 continue;
261 if (INSN_IS_ADDIU (insn))
263 srcreg = ADDIU_REG_SRC (insn);
264 tgtreg = ADDIU_REG_TGT (insn);
265 offset = ADDIU_IMMEDIATE (insn);
266 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
267 cache->framesize = -offset;
268 continue;
271 if (INSN_IS_STORE_WORD (insn))
273 srcreg = SW_REG_SRC (insn);
274 tgtreg = SW_REG_INDEX (insn);
275 offset = SW_OFFSET (insn);
277 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
279 /* "push" to stack (via SP or FP reg). */
280 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
281 cache->saved_regs[srcreg] = offset;
282 continue;
286 if (INSN_IS_MOVE (insn))
288 srcreg = MOVE_REG_SRC (insn);
289 tgtreg = MOVE_REG_TGT (insn);
291 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
293 /* Copy sp to fp. */
294 cache->using_fp = 1;
295 continue;
299 /* Unknown instruction encountered in frame. Bail out?
300 1) If we have a subsequent line symbol, we can keep going.
301 2) If not, we need to bail out and quit scanning instructions. */
303 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
304 continue;
305 else /* bail */
306 break;
309 return pc;
312 static void
313 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
315 int i;
317 cache->base = 0;
318 cache->framesize = 0;
319 cache->using_fp = 0;
320 cache->saved_sp = 0;
321 for (i = 0; i < E_NUM_REGS; i++)
322 cache->saved_regs[i] = -1;
325 /* Function: iq2000_skip_prologue
326 If the input address is in a function prologue,
327 returns the address of the end of the prologue;
328 else returns the input address.
330 Note: the input address is likely to be the function start,
331 since this function is mainly used for advancing a breakpoint
332 to the first line, or stepping to the first line when we have
333 stepped into a function call. */
335 static CORE_ADDR
336 iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
338 CORE_ADDR func_addr = 0 , func_end = 0;
340 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
342 struct symtab_and_line sal;
343 struct iq2000_frame_cache cache;
345 /* Found a function. */
346 sal = find_pc_line (func_addr, 0);
347 if (sal.end && sal.end < func_end)
348 /* Found a line number, use it as end of prologue. */
349 return sal.end;
351 /* No useable line symbol. Use prologue parsing method. */
352 iq2000_init_frame_cache (&cache);
353 return iq2000_scan_prologue (gdbarch, func_addr, func_end, NULL, &cache);
356 /* No function symbol -- just return the PC. */
357 return (CORE_ADDR) pc;
360 static struct iq2000_frame_cache *
361 iq2000_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
363 struct gdbarch *gdbarch = get_frame_arch (this_frame);
364 struct iq2000_frame_cache *cache;
365 CORE_ADDR current_pc;
366 int i;
368 if (*this_cache)
369 return (struct iq2000_frame_cache *) *this_cache;
371 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
372 iq2000_init_frame_cache (cache);
373 *this_cache = cache;
375 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
377 current_pc = get_frame_pc (this_frame);
378 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
379 if (cache->pc != 0)
380 iq2000_scan_prologue (gdbarch, cache->pc, current_pc, this_frame, cache);
381 if (!cache->using_fp)
382 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
384 cache->saved_sp = cache->base + cache->framesize;
386 for (i = 0; i < E_NUM_REGS; i++)
387 if (cache->saved_regs[i] != -1)
388 cache->saved_regs[i] += cache->base;
390 return cache;
393 static struct value *
394 iq2000_frame_prev_register (const frame_info_ptr &this_frame, void **this_cache,
395 int regnum)
397 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
398 this_cache);
400 if (regnum == E_SP_REGNUM && cache->saved_sp)
401 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
403 if (regnum == E_PC_REGNUM)
404 regnum = E_LR_REGNUM;
406 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
407 return frame_unwind_got_memory (this_frame, regnum,
408 cache->saved_regs[regnum]);
410 return frame_unwind_got_register (this_frame, regnum, regnum);
413 static void
414 iq2000_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
415 struct frame_id *this_id)
417 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
418 this_cache);
420 /* This marks the outermost frame. */
421 if (cache->base == 0)
422 return;
424 *this_id = frame_id_build (cache->saved_sp, cache->pc);
427 static const struct frame_unwind iq2000_frame_unwind = {
428 "iq2000 prologue",
429 NORMAL_FRAME,
430 default_frame_unwind_stop_reason,
431 iq2000_frame_this_id,
432 iq2000_frame_prev_register,
433 NULL,
434 default_frame_sniffer
437 static CORE_ADDR
438 iq2000_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
440 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
441 this_cache);
443 return cache->base;
446 static const struct frame_base iq2000_frame_base = {
447 &iq2000_frame_unwind,
448 iq2000_frame_base_address,
449 iq2000_frame_base_address,
450 iq2000_frame_base_address
453 static int
454 iq2000_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
456 if ((*pcptr & 3) != 0)
457 error (_("breakpoint_from_pc: invalid breakpoint address 0x%lx"),
458 (long) *pcptr);
460 return 4;
463 static const gdb_byte *
464 iq2000_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
466 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
467 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
468 *size = kind;
470 return (gdbarch_byte_order (gdbarch)
471 == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
474 /* Target function return value methods: */
476 /* Function: store_return_value
477 Copy the function return value from VALBUF into the
478 proper location for a function return. */
480 static void
481 iq2000_store_return_value (struct type *type, struct regcache *regcache,
482 const void *valbuf)
484 int len = type->length ();
485 int regno = E_FN_RETURN_REGNUM;
487 while (len > 0)
489 gdb_byte buf[4];
490 int size = len % 4 ?: 4;
492 memset (buf, 0, 4);
493 memcpy (buf + 4 - size, valbuf, size);
494 regcache->raw_write (regno++, buf);
495 len -= size;
496 valbuf = ((char *) valbuf) + size;
500 /* Function: use_struct_convention
501 Returns non-zero if the given struct type will be returned using
502 a special convention, rather than the normal function return method. */
504 static int
505 iq2000_use_struct_convention (struct type *type)
507 return ((type->code () == TYPE_CODE_STRUCT)
508 || (type->code () == TYPE_CODE_UNION))
509 && type->length () > 8;
512 /* Function: extract_return_value
513 Copy the function's return value into VALBUF.
514 This function is called only in the context of "target function calls",
515 ie. when the debugger forces a function to be called in the child, and
516 when the debugger forces a function to return prematurely via the
517 "return" command. */
519 static void
520 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
521 gdb_byte *valbuf)
523 struct gdbarch *gdbarch = regcache->arch ();
524 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
526 /* If the function's return value is 8 bytes or less, it is
527 returned in a register, and if larger than 8 bytes, it is
528 returned in a stack location which is pointed to by the same
529 register. */
530 int len = type->length ();
532 if (len <= (2 * 4))
534 int regno = E_FN_RETURN_REGNUM;
536 /* Return values of <= 8 bytes are returned in
537 FN_RETURN_REGNUM. */
538 while (len > 0)
540 ULONGEST tmp;
541 int size = len % 4 ?: 4;
543 /* By using store_unsigned_integer we avoid having to
544 do anything special for small big-endian values. */
545 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
546 store_unsigned_integer (valbuf, size, byte_order, tmp);
547 len -= size;
548 valbuf += size;
551 else
553 /* Return values > 8 bytes are returned in memory,
554 pointed to by FN_RETURN_REGNUM. */
555 ULONGEST return_buffer;
556 regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
557 &return_buffer);
558 read_memory (return_buffer, valbuf, type->length ());
562 static enum return_value_convention
563 iq2000_return_value (struct gdbarch *gdbarch, struct value *function,
564 struct type *type, struct regcache *regcache,
565 gdb_byte *readbuf, const gdb_byte *writebuf)
567 if (iq2000_use_struct_convention (type))
568 return RETURN_VALUE_STRUCT_CONVENTION;
569 if (writebuf)
570 iq2000_store_return_value (type, regcache, writebuf);
571 else if (readbuf)
572 iq2000_extract_return_value (type, regcache, readbuf);
573 return RETURN_VALUE_REGISTER_CONVENTION;
576 /* Function: register_virtual_type
577 Returns the default type for register N. */
579 static struct type *
580 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
582 return builtin_type (gdbarch)->builtin_int32;
585 static CORE_ADDR
586 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
588 /* This is the same frame alignment used by gcc. */
589 return ((sp + 7) & ~7);
592 /* Convenience function to check 8-byte types for being a scalar type
593 or a struct with only one long long or double member. */
594 static int
595 iq2000_pass_8bytetype_by_address (struct type *type)
597 struct type *ftype;
599 /* Skip typedefs. */
600 while (type->code () == TYPE_CODE_TYPEDEF)
601 type = type->target_type ();
602 /* Non-struct and non-union types are always passed by value. */
603 if (type->code () != TYPE_CODE_STRUCT
604 && type->code () != TYPE_CODE_UNION)
605 return 0;
606 /* Structs with more than 1 field are always passed by address. */
607 if (type->num_fields () != 1)
608 return 1;
609 /* Get field type. */
610 ftype = type->field (0).type ();
611 /* The field type must have size 8, otherwise pass by address. */
612 if (ftype->length () != 8)
613 return 1;
614 /* Skip typedefs of field type. */
615 while (ftype->code () == TYPE_CODE_TYPEDEF)
616 ftype = ftype->target_type ();
617 /* If field is int or float, pass by value. */
618 if (ftype->code () == TYPE_CODE_FLT
619 || ftype->code () == TYPE_CODE_INT)
620 return 0;
621 /* Everything else, pass by address. */
622 return 1;
625 static CORE_ADDR
626 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
627 struct regcache *regcache, CORE_ADDR bp_addr,
628 int nargs, struct value **args, CORE_ADDR sp,
629 function_call_return_method return_method,
630 CORE_ADDR struct_addr)
632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
633 const bfd_byte *val;
634 bfd_byte buf[4];
635 struct type *type;
636 int i, argreg, typelen, slacklen;
637 int stackspace = 0;
638 /* Used to copy struct arguments into the stack. */
639 CORE_ADDR struct_ptr;
641 /* First determine how much stack space we will need. */
642 for (i = 0, argreg = E_1ST_ARGREG + (return_method == return_method_struct);
643 i < nargs;
644 i++)
646 type = args[i]->type ();
647 typelen = type->length ();
648 if (typelen <= 4)
650 /* Scalars of up to 4 bytes,
651 structs of up to 4 bytes, and
652 pointers. */
653 if (argreg <= E_LAST_ARGREG)
654 argreg++;
655 else
656 stackspace += 4;
658 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
660 /* long long,
661 double, and possibly
662 structs with a single field of long long or double. */
663 if (argreg <= E_LAST_ARGREG - 1)
665 /* 8-byte arg goes into a register pair
666 (must start with an even-numbered reg). */
667 if (((argreg - E_1ST_ARGREG) % 2) != 0)
668 argreg ++;
669 argreg += 2;
671 else
673 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
674 /* 8-byte arg goes on stack, must be 8-byte aligned. */
675 stackspace = ((stackspace + 7) & ~7);
676 stackspace += 8;
679 else
681 /* Structs are passed as pointer to a copy of the struct.
682 So we need room on the stack for a copy of the struct
683 plus for the argument pointer. */
684 if (argreg <= E_LAST_ARGREG)
685 argreg++;
686 else
687 stackspace += 4;
688 /* Care for 8-byte alignment of structs saved on stack. */
689 stackspace += ((typelen + 7) & ~7);
693 /* Now copy params, in ascending order, into their assigned location
694 (either in a register or on the stack). */
696 sp -= (sp % 8); /* align */
697 struct_ptr = sp;
698 sp -= stackspace;
699 sp -= (sp % 8); /* align again */
700 stackspace = 0;
702 argreg = E_1ST_ARGREG;
703 if (return_method == return_method_struct)
705 /* A function that returns a struct will consume one argreg to do so.
707 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
710 for (i = 0; i < nargs; i++)
712 type = args[i]->type ();
713 typelen = type->length ();
714 val = args[i]->contents ().data ();
715 if (typelen <= 4)
717 /* Char, short, int, float, pointer, and structs <= four bytes. */
718 slacklen = (4 - (typelen % 4)) % 4;
719 memset (buf, 0, sizeof (buf));
720 memcpy (buf + slacklen, val, typelen);
721 if (argreg <= E_LAST_ARGREG)
723 /* Passed in a register. */
724 regcache->raw_write (argreg++, buf);
726 else
728 /* Passed on the stack. */
729 write_memory (sp + stackspace, buf, 4);
730 stackspace += 4;
733 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
735 /* (long long), (double), or struct consisting of
736 a single (long long) or (double). */
737 if (argreg <= E_LAST_ARGREG - 1)
739 /* 8-byte arg goes into a register pair
740 (must start with an even-numbered reg). */
741 if (((argreg - E_1ST_ARGREG) % 2) != 0)
742 argreg++;
743 regcache->raw_write (argreg++, val);
744 regcache->raw_write (argreg++, val + 4);
746 else
748 /* 8-byte arg goes on stack, must be 8-byte aligned. */
749 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
750 stackspace = ((stackspace + 7) & ~7);
751 write_memory (sp + stackspace, val, typelen);
752 stackspace += 8;
755 else
757 /* Store struct beginning at the upper end of the previously
758 computed stack space. Then store the address of the struct
759 using the usual rules for a 4 byte value. */
760 struct_ptr -= ((typelen + 7) & ~7);
761 write_memory (struct_ptr, val, typelen);
762 if (argreg <= E_LAST_ARGREG)
763 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
764 else
766 store_unsigned_integer (buf, 4, byte_order, struct_ptr);
767 write_memory (sp + stackspace, buf, 4);
768 stackspace += 4;
773 /* Store return address. */
774 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
776 /* Update stack pointer. */
777 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
779 /* And that should do it. Return the new stack pointer. */
780 return sp;
783 /* Function: gdbarch_init
784 Initializer function for the iq2000 gdbarch vector.
785 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
787 static struct gdbarch *
788 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
790 struct gdbarch *gdbarch;
792 /* Look up list for candidates - only one. */
793 arches = gdbarch_list_lookup_by_info (arches, &info);
794 if (arches != NULL)
795 return arches->gdbarch;
797 gdbarch = gdbarch_alloc (&info, NULL);
799 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
800 set_gdbarch_num_pseudo_regs (gdbarch, 0);
801 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
802 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
803 set_gdbarch_register_name (gdbarch, iq2000_register_name);
804 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
805 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
806 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
807 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
808 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
809 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
810 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
811 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
812 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
813 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
814 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
815 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
816 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
817 set_gdbarch_return_value (gdbarch, iq2000_return_value);
818 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
819 iq2000_breakpoint_kind_from_pc);
820 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
821 iq2000_sw_breakpoint_from_kind);
822 set_gdbarch_frame_args_skip (gdbarch, 0);
823 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
824 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
825 set_gdbarch_register_type (gdbarch, iq2000_register_type);
826 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
827 frame_base_set_default (gdbarch, &iq2000_frame_base);
828 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
830 gdbarch_init_osabi (info, gdbarch);
832 dwarf2_append_unwinders (gdbarch);
833 frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
835 return gdbarch;
838 /* Function: _initialize_iq2000_tdep
839 Initializer function for the iq2000 module.
840 Called by gdb at start-up. */
842 void _initialize_iq2000_tdep ();
843 void
844 _initialize_iq2000_tdep ()
846 gdbarch_register (bfd_arch_iq2000, iq2000_gdbarch_init);