Support Intel SM4 AVX10.2 extension
[binutils-gdb.git] / gprof / gprof.texi
blob983872dd47363ecb4a334bb258135eb2d5480aad
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gprof.info
3 @c Copyright (C) 1988-2024 Free Software Foundation, Inc.
4 @settitle GNU gprof
5 @setchapternewpage odd
7 @c man begin INCLUDE
8 @include bfdver.texi
9 @c man end
11 @ifnottex
12 @c This is a dir.info fragment to support semi-automated addition of
13 @c manuals to an info tree.  zoo@cygnus.com is developing this facility.
14 @dircategory Software development
15 @direntry
16 * gprof: (gprof).                Profiling your program's execution
17 @end direntry
18 @end ifnottex
20 @copying
21 This file documents the gprof profiler of the GNU system.
23 @c man begin COPYRIGHT
24 Copyright @copyright{} 1988-2024 Free Software Foundation, Inc.
26 Permission is granted to copy, distribute and/or modify this document
27 under the terms of the GNU Free Documentation License, Version 1.3
28 or any later version published by the Free Software Foundation;
29 with no Invariant Sections, with no Front-Cover Texts, and with no
30 Back-Cover Texts.  A copy of the license is included in the
31 section entitled ``GNU Free Documentation License''.
33 @c man end
34 @end copying
36 @finalout
37 @smallbook
39 @titlepage
40 @title GNU gprof
41 @subtitle The @sc{gnu} Profiler
42 @ifset VERSION_PACKAGE
43 @subtitle @value{VERSION_PACKAGE}
44 @end ifset
45 @subtitle Version @value{VERSION}
46 @author Jay Fenlason and Richard Stallman
48 @page
50 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
51 can use it to determine which parts of a program are taking most of the
52 execution time.  We assume that you know how to write, compile, and
53 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
54 Eric S. Raymond made some minor corrections and additions in 2003.
56 @vskip 0pt plus 1filll
57 Copyright @copyright{} 1988-2024 Free Software Foundation, Inc.
59       Permission is granted to copy, distribute and/or modify this document
60       under the terms of the GNU Free Documentation License, Version 1.3
61       or any later version published by the Free Software Foundation;
62       with no Invariant Sections, with no Front-Cover Texts, and with no
63       Back-Cover Texts.  A copy of the license is included in the
64       section entitled ``GNU Free Documentation License''.
66 @end titlepage
67 @contents
69 @ifnottex
70 @node Top
71 @top Profiling a Program: Where Does It Spend Its Time?
73 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
74 can use it to determine which parts of a program are taking most of the
75 execution time.  We assume that you know how to write, compile, and
76 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
78 This manual is for @code{gprof}
79 @ifset VERSION_PACKAGE
80 @value{VERSION_PACKAGE}
81 @end ifset
82 version @value{VERSION}.
84 This document is distributed under the terms of the GNU Free
85 Documentation License version 1.3.  A copy of the license is included
86 in the section entitled ``GNU Free Documentation License''.
88 @menu
89 * Introduction::        What profiling means, and why it is useful.
91 * Compiling::           How to compile your program for profiling.
92 * Executing::           Executing your program to generate profile data
93 * Invoking::            How to run @code{gprof}, and its options
95 * Output::              Interpreting @code{gprof}'s output
97 * Inaccuracy::          Potential problems you should be aware of
98 * How do I?::           Answers to common questions
99 * Incompatibilities::   (between @sc{gnu} @code{gprof} and Unix @code{gprof}.)
100 * Details::             Details of how profiling is done
101 * GNU Free Documentation License::  GNU Free Documentation License
102 @end menu
103 @end ifnottex
105 @node Introduction
106 @chapter Introduction to Profiling
108 @ifset man
109 @c man title gprof display call graph profile data
111 @smallexample
112 @c man begin SYNOPSIS
113 gprof [ -[abcDhilLrsTvwxyz] ] [ -[ABCeEfFJnNOpPqQRStZ][@var{name}] ]
114  [ -I @var{dirs} ] [ -d[@var{num}] ] [ -k @var{from/to} ]
115  [ -m @var{min-count} ] [ -R @var{map_file} ] [ -t @var{table-length} ]
116  [ --[no-]annotated-source[=@var{name}] ]
117  [ --[no-]exec-counts[=@var{name}] ]
118  [ --[no-]flat-profile[=@var{name}] ] [ --[no-]graph[=@var{name}] ]
119  [ --[no-]time=@var{name}] [ --all-lines ] [ --brief ]
120  [ --debug[=@var{level}] ] [ --function-ordering ]
121  [ --file-ordering @var{map_file} ] [ --directory-path=@var{dirs} ]
122  [ --display-unused-functions ] [ --file-format=@var{name} ]
123  [ --file-info ] [ --help ] [ --line ] [ --inline-file-names ]
124  [ --min-count=@var{n} ] [ --no-static ] [ --print-path ]
125  [ --separate-files ] [ --static-call-graph ] [ --sum ]
126  [ --table-length=@var{len} ] [ --traditional ] [ --version ]
127  [ --width=@var{n} ] [ --ignore-non-functions ]
128  [ --demangle[=@var{STYLE}] ] [ --no-demangle ]
129  [--external-symbol-table=name]
130  [ @var{image-file} ] [ @var{profile-file} @dots{} ]
131 @c man end
132 @end smallexample
134 @c man begin DESCRIPTION
135 @code{gprof} produces an execution profile of C, Pascal, or Fortran77
136 programs.  The effect of called routines is incorporated in the profile
137 of each caller.  The profile data is taken from the call graph profile file
138 (@file{gmon.out} default) which is created by programs
139 that are compiled with the @samp{-pg} option of
140 @code{cc}, @code{pc}, and @code{f77}.
141 The @samp{-pg} option also links in versions of the library routines
142 that are compiled for profiling.  @code{Gprof} reads the given object
143 file (the default is @code{a.out}) and establishes the relation between
144 its symbol table and the call graph profile from @file{gmon.out}.
145 If more than one profile file is specified, the @code{gprof}
146 output shows the sum of the profile information in the given profile files.
148 @code{Gprof} calculates the amount of time spent in each routine.
149 Next, these times are propagated along the edges of the call graph.
150 Cycles are discovered, and calls into a cycle are made to share the time
151 of the cycle.
153 @c man end
155 @c man begin BUGS
156 The granularity of the sampling is shown, but remains
157 statistical at best.
158 We assume that the time for each execution of a function
159 can be expressed by the total time for the function divided
160 by the number of times the function is called.
161 Thus the time propagated along the call graph arcs to the function's
162 parents is directly proportional to the number of times that
163 arc is traversed.
165 Parents that are not themselves profiled will have the time of
166 their profiled children propagated to them, but they will appear
167 to be spontaneously invoked in the call graph listing, and will
168 not have their time propagated further.
169 Similarly, signal catchers, even though profiled, will appear
170 to be spontaneous (although for more obscure reasons).
171 Any profiled children of signal catchers should have their times
172 propagated properly, unless the signal catcher was invoked during
173 the execution of the profiling routine, in which case all is lost.
175 The profiled program must call @code{exit}(2)
176 or return normally for the profiling information to be saved
177 in the @file{gmon.out} file.
178 @c man end
180 @c man begin FILES
181 @table @code
182 @item @file{a.out}
183 the namelist and text space.
184 @item @file{gmon.out}
185 dynamic call graph and profile.
186 @item @file{gmon.sum}
187 summarized dynamic call graph and profile.
188 @end table
189 @c man end
191 @c man begin SEEALSO
192 monitor(3), profil(2), cc(1), prof(1), and the Info entry for @file{gprof}.
194 ``An Execution Profiler for Modular Programs'',
195 by S. Graham, P. Kessler, M. McKusick;
196 Software - Practice and Experience,
197 Vol. 13, pp. 671-685, 1983.
199 ``gprof: A Call Graph Execution Profiler'',
200 by S. Graham, P. Kessler, M. McKusick;
201 Proceedings of the SIGPLAN '82 Symposium on Compiler Construction,
202 SIGPLAN Notices, Vol. 17, No  6, pp. 120-126, June 1982.
203 @c man end
204 @end ifset
206 Profiling allows you to learn where your program spent its time and which
207 functions called which other functions while it was executing.  This
208 information can show you which pieces of your program are slower than you
209 expected, and might be candidates for rewriting to make your program
210 execute faster.  It can also tell you which functions are being called more
211 or less often than you expected.  This may help you spot bugs that had
212 otherwise been unnoticed.
214 Since the profiler uses information collected during the actual execution
215 of your program, it can be used on programs that are too large or too
216 complex to analyze by reading the source.  However, how your program is run
217 will affect the information that shows up in the profile data.  If you
218 don't use some feature of your program while it is being profiled, no
219 profile information will be generated for that feature.
221 Profiling has several steps:
223 @itemize @bullet
224 @item
225 You must compile and link your program with profiling enabled.
226 @xref{Compiling, ,Compiling a Program for Profiling}.
228 @item
229 You must execute your program to generate a profile data file.
230 @xref{Executing, ,Executing the Program}.
232 @item
233 You must run @code{gprof} to analyze the profile data.
234 @xref{Invoking, ,@code{gprof} Command Summary}.
235 @end itemize
237 The next three chapters explain these steps in greater detail.
239 @c man begin DESCRIPTION
241 Several forms of output are available from the analysis.
243 The @dfn{flat profile} shows how much time your program spent in each function,
244 and how many times that function was called.  If you simply want to know
245 which functions burn most of the cycles, it is stated concisely here.
246 @xref{Flat Profile, ,The Flat Profile}.
248 The @dfn{call graph} shows, for each function, which functions called it, which
249 other functions it called, and how many times.  There is also an estimate
250 of how much time was spent in the subroutines of each function.  This can
251 suggest places where you might try to eliminate function calls that use a
252 lot of time.  @xref{Call Graph, ,The Call Graph}.
254 The @dfn{annotated source} listing is a copy of the program's
255 source code, labeled with the number of times each line of the
256 program was executed.  @xref{Annotated Source, ,The Annotated Source
257 Listing}.
258 @c man end
260 To better understand how profiling works, you may wish to read
261 a description of its implementation.
262 @xref{Implementation, ,Implementation of Profiling}.
264 @node Compiling
265 @chapter Compiling a Program for Profiling
267 The first step in generating profile information for your program is
268 to compile and link it with profiling enabled.
270 To compile a source file for profiling, specify the @samp{-pg} option when
271 you run the compiler.  (This is in addition to the options you normally
272 use.)
274 To link the program for profiling, if you use a compiler such as @code{cc}
275 to do the linking, simply specify @samp{-pg} in addition to your usual
276 options.  The same option, @samp{-pg}, alters either compilation or linking
277 to do what is necessary for profiling.  Here are examples:
279 @example
280 cc -g -c myprog.c utils.c -pg
281 cc -o myprog myprog.o utils.o -pg
282 @end example
284 The @samp{-pg} option also works with a command that both compiles and links:
286 @example
287 cc -o myprog myprog.c utils.c -g -pg
288 @end example
290 Note: The @samp{-pg} option must be part of your compilation options
291 as well as your link options.  If it is not then no call-graph data
292 will be gathered and when you run @code{gprof} you will get an error
293 message like this:
295 @example
296 gprof: gmon.out file is missing call-graph data
297 @end example
299 If you add the @samp{-Q} switch to suppress the printing of the call
300 graph data you will still be able to see the time samples:
302 @example
303 Flat profile:
305 Each sample counts as 0.01 seconds.
306   %   cumulative   self              self     total
307  time   seconds   seconds    calls  Ts/call  Ts/call  name
308  44.12      0.07     0.07                             zazLoop
309  35.29      0.14     0.06                             main
310  20.59      0.17     0.04                             bazMillion
311 @end example
313 If you run the linker @code{ld} directly instead of through a compiler
314 such as @code{cc}, you may have to specify a profiling startup file
315 @file{gcrt0.o} as the first input file instead of the usual startup
316 file @file{crt0.o}.  In addition, you would probably want to
317 specify the profiling C library, @file{libc_p.a}, by writing
318 @samp{-lc_p} instead of the usual @samp{-lc}.  This is not absolutely
319 necessary, but doing this gives you number-of-calls information for
320 standard library functions such as @code{read} and @code{open}.  For
321 example:
323 @example
324 ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
325 @end example
327 If you are running the program on a system which supports shared
328 libraries you may run into problems with the profiling support code in
329 a shared library being called before that library has been fully
330 initialised.  This is usually detected by the program encountering a
331 segmentation fault as soon as it is run.  The solution is to link
332 against a static version of the library containing the profiling
333 support code, which for @code{gcc} users can be done via the
334 @samp{-static} or @samp{-static-libgcc} command-line option.  For
335 example:
337 @example
338 gcc -g -pg -static-libgcc myprog.c utils.c -o myprog
339 @end example
341 If you compile only some of the modules of the program with @samp{-pg}, you
342 can still profile the program, but you won't get complete information about
343 the modules that were compiled without @samp{-pg}.  The only information
344 you get for the functions in those modules is the total time spent in them;
345 there is no record of how many times they were called, or from where.  This
346 will not affect the flat profile (except that the @code{calls} field for
347 the functions will be blank), but will greatly reduce the usefulness of the
348 call graph.
350 If you wish to perform line-by-line profiling you should use the
351 @code{gcov} tool instead of @code{gprof}.  See that tool's manual or
352 info pages for more details of how to do this.
354 Note, older versions of @code{gcc} produce line-by-line profiling
355 information that works with @code{gprof} rather than @code{gcov} so
356 there is still support for displaying this kind of information in
357 @code{gprof}. @xref{Line-by-line, ,Line-by-line Profiling}.
359 It also worth noting that @code{gcc} implements a
360 @samp{-finstrument-functions} command-line option which will insert
361 calls to special user supplied instrumentation routines at the entry
362 and exit of every function in their program.  This can be used to
363 implement an alternative profiling scheme.
365 @node Executing
366 @chapter Executing the Program
368 Once the program is compiled for profiling, you must run it in order to
369 generate the information that @code{gprof} needs.  Simply run the program
370 as usual, using the normal arguments, file names, etc.  The program should
371 run normally, producing the same output as usual.  It will, however, run
372 somewhat slower than normal because of the time spent collecting and
373 writing the profile data.
375 The way you run the program---the arguments and input that you give
376 it---may have a dramatic effect on what the profile information shows.  The
377 profile data will describe the parts of the program that were activated for
378 the particular input you use.  For example, if the first command you give
379 to your program is to quit, the profile data will show the time used in
380 initialization and in cleanup, but not much else.
382 Your program will write the profile data into a file called @file{gmon.out}
383 just before exiting.  If there is already a file called @file{gmon.out},
384 its contents are overwritten.  You can rename the file afterwards if you
385 are concerned that it may be overwritten.  If your system libc allows you
386 may be able to write the profile data under a different name.  Set the
387 GMON_OUT_PREFIX environment variable; this name will be appended with
388 the PID of the running program.
390 In order to write the @file{gmon.out} file properly, your program must exit
391 normally: by returning from @code{main} or by calling @code{exit}.  Calling
392 the low-level function @code{_exit} does not write the profile data, and
393 neither does abnormal termination due to an unhandled signal.
395 The @file{gmon.out} file is written in the program's @emph{current working
396 directory} at the time it exits.  This means that if your program calls
397 @code{chdir}, the @file{gmon.out} file will be left in the last directory
398 your program @code{chdir}'d to.  If you don't have permission to write in
399 this directory, the file is not written, and you will get an error message.
401 Older versions of the @sc{gnu} profiling library may also write a file
402 called @file{bb.out}.  This file, if present, contains an human-readable
403 listing of the basic-block execution counts.  Unfortunately, the
404 appearance of a human-readable @file{bb.out} means the basic-block
405 counts didn't get written into @file{gmon.out}.
406 The Perl script @code{bbconv.pl}, included with the @code{gprof}
407 source distribution, will convert a @file{bb.out} file into
408 a format readable by @code{gprof}.  Invoke it like this:
410 @smallexample
411 bbconv.pl < bb.out > @var{bh-data}
412 @end smallexample
414 This translates the information in @file{bb.out} into a form that
415 @code{gprof} can understand.  But you still need to tell @code{gprof}
416 about the existence of this translated information.  To do that, include
417 @var{bb-data} on the @code{gprof} command line, @emph{along with
418 @file{gmon.out}}, like this:
420 @smallexample
421 gprof @var{options} @var{executable-file} gmon.out @var{bb-data} [@var{yet-more-profile-data-files}@dots{}] [> @var{outfile}]
422 @end smallexample
424 @node Invoking
425 @chapter @code{gprof} Command Summary
427 After you have a profile data file @file{gmon.out}, you can run @code{gprof}
428 to interpret the information in it.  The @code{gprof} program prints a
429 flat profile and a call graph on standard output.  Typically you would
430 redirect the output of @code{gprof} into a file with @samp{>}.
432 You run @code{gprof} like this:
434 @smallexample
435 gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
436 @end smallexample
438 @noindent
439 Here square-brackets indicate optional arguments.
441 If you omit the executable file name, the file @file{a.out} is used.  If
442 you give no profile data file name, the file @file{gmon.out} is used.  If
443 any file is not in the proper format, or if the profile data file does not
444 appear to belong to the executable file, an error message is printed.
446 You can give more than one profile data file by entering all their names
447 after the executable file name; then the statistics in all the data files
448 are summed together.
450 The order of these options does not matter.
452 @menu
453 * Output Options::      Controlling @code{gprof}'s output style
454 * Analysis Options::    Controlling how @code{gprof} analyzes its data
455 * Miscellaneous Options::
456 * Deprecated Options::  Options you no longer need to use, but which
457                             have been retained for compatibility
458 * Symspecs::            Specifying functions to include or exclude
459 @end menu
461 @node Output Options
462 @section Output Options
464 @c man begin OPTIONS
465 These options specify which of several output formats
466 @code{gprof} should produce.
468 Many of these options take an optional @dfn{symspec} to specify
469 functions to be included or excluded.  These options can be
470 specified multiple times, with different symspecs, to include
471 or exclude sets of symbols.  @xref{Symspecs, ,Symspecs}.
473 Specifying any of these options overrides the default (@samp{-p -q}),
474 which prints a flat profile and call graph analysis
475 for all functions.
477 @table @code
479 @item -A[@var{symspec}]
480 @itemx --annotated-source[=@var{symspec}]
481 The @samp{-A} option causes @code{gprof} to print annotated source code.
482 If @var{symspec} is specified, print output only for matching symbols.
483 @xref{Annotated Source, ,The Annotated Source Listing}.
485 @item -b
486 @itemx --brief
487 If the @samp{-b} option is given, @code{gprof} doesn't print the
488 verbose blurbs that try to explain the meaning of all of the fields in
489 the tables.  This is useful if you intend to print out the output, or
490 are tired of seeing the blurbs.
492 @item -B
493 The @samp{-B} option causes @code{gprof} to print the call graph analysis.
495 @item -C[@var{symspec}]
496 @itemx --exec-counts[=@var{symspec}]
497 The @samp{-C} option causes @code{gprof} to
498 print a tally of functions and the number of times each was called.
499 If @var{symspec} is specified, print tally only for matching symbols.
501 If the profile data file contains basic-block count records, specifying
502 the @samp{-l} option, along with @samp{-C}, will cause basic-block
503 execution counts to be tallied and displayed.
505 @item -i
506 @itemx --file-info
507 The @samp{-i} option causes @code{gprof} to display summary information
508 about the profile data file(s) and then exit.  The number of histogram,
509 call graph, and basic-block count records is displayed.
511 @item -I @var{dirs}
512 @itemx --directory-path=@var{dirs}
513 The @samp{-I} option specifies a list of search directories in
514 which to find source files.  Environment variable @var{GPROF_PATH}
515 can also be used to convey this information.
516 Used mostly for annotated source output.
518 @item -J[@var{symspec}]
519 @itemx --no-annotated-source[=@var{symspec}]
520 The @samp{-J} option causes @code{gprof} not to
521 print annotated source code.
522 If @var{symspec} is specified, @code{gprof} prints annotated source,
523 but excludes matching symbols.
525 @item -L
526 @itemx --print-path
527 Normally, source filenames are printed with the path
528 component suppressed.  The @samp{-L} option causes @code{gprof}
529 to print the full pathname of
530 source filenames, which is determined
531 from symbolic debugging information in the image file
532 and is relative to the directory in which the compiler
533 was invoked.
535 @item -p[@var{symspec}]
536 @itemx --flat-profile[=@var{symspec}]
537 The @samp{-p} option causes @code{gprof} to print a flat profile.
538 If @var{symspec} is specified, print flat profile only for matching symbols.
539 @xref{Flat Profile, ,The Flat Profile}.
541 @item -P[@var{symspec}]
542 @itemx --no-flat-profile[=@var{symspec}]
543 The @samp{-P} option causes @code{gprof} to suppress printing a flat profile.
544 If @var{symspec} is specified, @code{gprof} prints a flat profile,
545 but excludes matching symbols.
547 @item -q[@var{symspec}]
548 @itemx --graph[=@var{symspec}]
549 The @samp{-q} option causes @code{gprof} to print the call graph analysis.
550 If @var{symspec} is specified, print call graph only for matching symbols
551 and their children.
552 @xref{Call Graph, ,The Call Graph}.
554 @item -Q[@var{symspec}]
555 @itemx --no-graph[=@var{symspec}]
556 The @samp{-Q} option causes @code{gprof} to suppress printing the
557 call graph.
558 If @var{symspec} is specified, @code{gprof} prints a call graph,
559 but excludes matching symbols.
561 @item -t
562 @itemx --table-length=@var{num}
563 The @samp{-t} option causes the @var{num} most active source lines in
564 each source file to be listed when source annotation is enabled.  The
565 default is 10.
567 @item -y
568 @itemx --separate-files
569 This option affects annotated source output only.
570 Normally, @code{gprof} prints annotated source files
571 to standard-output.  If this option is specified,
572 annotated source for a file named @file{path/@var{filename}}
573 is generated in the file @file{@var{filename}-ann}.  If the underlying
574 file system would truncate @file{@var{filename}-ann} so that it
575 overwrites the original @file{@var{filename}}, @code{gprof} generates
576 annotated source in the file @file{@var{filename}.ann} instead (if the
577 original file name has an extension, that extension is @emph{replaced}
578 with @file{.ann}).
580 @item -Z[@var{symspec}]
581 @itemx --no-exec-counts[=@var{symspec}]
582 The @samp{-Z} option causes @code{gprof} not to
583 print a tally of functions and the number of times each was called.
584 If @var{symspec} is specified, print tally, but exclude matching symbols.
586 @item -r
587 @itemx --function-ordering
588 The @samp{--function-ordering} option causes @code{gprof} to print a
589 suggested function ordering for the program based on profiling data.
590 This option suggests an ordering which may improve paging, tlb and
591 cache behavior for the program on systems which support arbitrary
592 ordering of functions in an executable.
594 The exact details of how to force the linker to place functions
595 in a particular order is system dependent and out of the scope of this
596 manual.
598 @item -R @var{map_file}
599 @itemx --file-ordering @var{map_file}
600 The @samp{--file-ordering} option causes @code{gprof} to print a
601 suggested .o link line ordering for the program based on profiling data.
602 This option suggests an ordering which may improve paging, tlb and
603 cache behavior for the program on systems which do not support arbitrary
604 ordering of functions in an executable.
606 Use of the @samp{-a} argument is highly recommended with this option.
608 The @var{map_file} argument is a pathname to a file which provides
609 function name to object file mappings.  The format of the file is similar to
610 the output of the program @code{nm}.
612 @smallexample
613 @group
614 c-parse.o:00000000 T yyparse
615 c-parse.o:00000004 C yyerrflag
616 c-lang.o:00000000 T maybe_objc_method_name
617 c-lang.o:00000000 T print_lang_statistics
618 c-lang.o:00000000 T recognize_objc_keyword
619 c-decl.o:00000000 T print_lang_identifier
620 c-decl.o:00000000 T print_lang_type
621 @dots{}
623 @end group
624 @end smallexample
626 To create a @var{map_file} with @sc{gnu} @code{nm}, type a command like
627 @kbd{nm --extern-only --defined-only -v --print-file-name program-name}.
629 @item -T
630 @itemx --traditional
631 The @samp{-T} option causes @code{gprof} to print its output in
632 ``traditional'' BSD style.
634 @item -w @var{width}
635 @itemx --width=@var{width}
636 Sets width of output lines to @var{width}.
637 Currently only used when printing the function index at the bottom
638 of the call graph.
640 @item -x
641 @itemx --all-lines
642 This option affects annotated source output only.
643 By default, only the lines at the beginning of a basic-block
644 are annotated.  If this option is specified, every line in
645 a basic-block is annotated by repeating the annotation for the
646 first line.  This behavior is similar to @code{tcov}'s @samp{-a}.
648 @item --demangle[=@var{style}]
649 @itemx --no-demangle
650 These options control whether C++ symbol names should be demangled when
651 printing output.  The default is to demangle symbols.  The
652 @code{--no-demangle} option may be used to turn off demangling. Different
653 compilers have different mangling styles.  The optional demangling style
654 argument can be used to choose an appropriate demangling style for your
655 compiler.
656 @end table
658 @node Analysis Options
659 @section Analysis Options
661 @table @code
663 @item -a
664 @itemx --no-static
665 The @samp{-a} option causes @code{gprof} to suppress the printing of
666 statically declared (private) functions.  (These are functions whose
667 names are not listed as global, and which are not visible outside the
668 file/function/block where they were defined.)  Time spent in these
669 functions, calls to/from them, etc., will all be attributed to the
670 function that was loaded directly before it in the executable file.
671 @c This is compatible with Unix @code{gprof}, but a bad idea.
672 This option affects both the flat profile and the call graph.
674 @item -c
675 @itemx --static-call-graph
676 The @samp{-c} option causes the call graph of the program to be
677 augmented by a heuristic which examines the text space of the object
678 file and identifies function calls in the binary machine code.
679 Since normal call graph records are only generated when functions are
680 entered, this option identifies children that could have been called,
681 but never were.  Calls to functions that were not compiled with
682 profiling enabled are also identified, but only if symbol table
683 entries are present for them.
684 Calls to dynamic library routines are typically @emph{not} found
685 by this option.
686 Parents or children identified via this heuristic
687 are indicated in the call graph with call counts of @samp{0}.
689 @item -D
690 @itemx --ignore-non-functions
691 The @samp{-D} option causes @code{gprof} to ignore symbols which
692 are not known to be functions.  This option will give more accurate
693 profile data on systems where it is supported (Solaris and HPUX for
694 example).
696 @item -k @var{from}/@var{to}
697 The @samp{-k} option allows you to delete from the call graph any arcs from
698 symbols matching symspec @var{from} to those matching symspec @var{to}.
700 @item -l
701 @itemx --line
702 The @samp{-l} option enables line-by-line profiling, which causes
703 histogram hits to be charged to individual source code lines,
704 instead of functions.  This feature only works with programs compiled
705 by older versions of the @code{gcc} compiler.  Newer versions of
706 @code{gcc} are designed to work with the @code{gcov} tool instead.
708 If the program was compiled with basic-block counting enabled,
709 this option will also identify how many times each line of
710 code was executed.
711 While line-by-line profiling can help isolate where in a large function
712 a program is spending its time, it also significantly increases
713 the running time of @code{gprof}, and magnifies statistical
714 inaccuracies.
715 @xref{Sampling Error, ,Statistical Sampling Error}.
717 @item --inline-file-names
718 This option causes @code{gprof} to print the source file after each
719 symbol in both the flat profile and the call graph. The full path to the
720 file is printed if used with the @samp{-L} option.
722 @item -m @var{num}
723 @itemx --min-count=@var{num}
724 This option affects execution count output only.
725 Symbols that are executed less than @var{num} times are suppressed.
727 @item -n@var{symspec}
728 @itemx --time=@var{symspec}
729 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
730 to only propagate times for symbols matching @var{symspec}.
732 @item -N@var{symspec}
733 @itemx --no-time=@var{symspec}
734 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
735 not to propagate times for symbols matching @var{symspec}.
737 @item -S@var{filename}
738 @itemx --external-symbol-table=@var{filename}
739 The @samp{-S} option causes @code{gprof} to read an external symbol table
740 file, such as @file{/proc/kallsyms}, rather than read the symbol table
741 from the given object file (the default is @code{a.out}). This is useful
742 for profiling kernel modules.
744 @item -z
745 @itemx --display-unused-functions
746 If you give the @samp{-z} option, @code{gprof} will mention all
747 functions in the flat profile, even those that were never called, and
748 that had no time spent in them.  This is useful in conjunction with the
749 @samp{-c} option for discovering which routines were never called.
751 @end table
753 @node Miscellaneous Options
754 @section Miscellaneous Options
756 @table @code
758 @item -d[@var{num}]
759 @itemx --debug[=@var{num}]
760 The @samp{-d @var{num}} option specifies debugging options.
761 If @var{num} is not specified, enable all debugging.
762 @xref{Debugging, ,Debugging @code{gprof}}.
764 @item -h
765 @itemx --help
766 The @samp{-h} option prints command line usage.
768 @item -O@var{name}
769 @itemx --file-format=@var{name}
770 Selects the format of the profile data files.  Recognized formats are
771 @samp{auto} (the default), @samp{bsd}, @samp{4.4bsd}, @samp{magic}, and
772 @samp{prof} (not yet supported).
774 @item -s
775 @itemx --sum
776 The @samp{-s} option causes @code{gprof} to summarize the information
777 in the profile data files it read in, and write out a profile data
778 file called @file{gmon.sum}, which contains all the information from
779 the profile data files that @code{gprof} read in.  The file @file{gmon.sum}
780 may be one of the specified input files; the effect of this is to
781 merge the data in the other input files into @file{gmon.sum}.
783 Eventually you can run @code{gprof} again without @samp{-s} to analyze the
784 cumulative data in the file @file{gmon.sum}.
786 @item -v
787 @itemx --version
788 The @samp{-v} flag causes @code{gprof} to print the current version
789 number, and then exit.
791 @end table
793 @node Deprecated Options
794 @section Deprecated Options
796 These options have been replaced with newer versions that use symspecs.
798 @table @code
800 @item -e @var{function_name}
801 The @samp{-e @var{function}} option tells @code{gprof} to not print
802 information about the function @var{function_name} (and its
803 children@dots{}) in the call graph.  The function will still be listed
804 as a child of any functions that call it, but its index number will be
805 shown as @samp{[not printed]}.  More than one @samp{-e} option may be
806 given; only one @var{function_name} may be indicated with each @samp{-e}
807 option.
809 @item -E @var{function_name}
810 The @code{-E @var{function}} option works like the @code{-e} option, but
811 time spent in the function (and children who were not called from
812 anywhere else), will not be used to compute the percentages-of-time for
813 the call graph.  More than one @samp{-E} option may be given; only one
814 @var{function_name} may be indicated with each @samp{-E} option.
816 @item -f @var{function_name}
817 The @samp{-f @var{function}} option causes @code{gprof} to limit the
818 call graph to the function @var{function_name} and its children (and
819 their children@dots{}).  More than one @samp{-f} option may be given;
820 only one @var{function_name} may be indicated with each @samp{-f}
821 option.
823 @item -F @var{function_name}
824 The @samp{-F @var{function}} option works like the @code{-f} option, but
825 only time spent in the function and its children (and their
826 children@dots{}) will be used to determine total-time and
827 percentages-of-time for the call graph.  More than one @samp{-F} option
828 may be given; only one @var{function_name} may be indicated with each
829 @samp{-F} option.  The @samp{-F} option overrides the @samp{-E} option.
831 @end table
833 @c man end
835 Note that only one function can be specified with each @code{-e},
836 @code{-E}, @code{-f} or @code{-F} option.  To specify more than one
837 function, use multiple options.  For example, this command:
839 @example
840 gprof -e boring -f foo -f bar myprogram > gprof.output
841 @end example
843 @noindent
844 lists in the call graph all functions that were reached from either
845 @code{foo} or @code{bar} and were not reachable from @code{boring}.
847 @node Symspecs
848 @section Symspecs
850 Many of the output options allow functions to be included or excluded
851 using @dfn{symspecs} (symbol specifications), which observe the
852 following syntax:
854 @example
855   filename_containing_a_dot
856 | funcname_not_containing_a_dot
857 | linenumber
858 | ( [ any_filename ] `:' ( any_funcname | linenumber ) )
859 @end example
861 Here are some sample symspecs:
863 @table @samp
864 @item main.c
865 Selects everything in file @file{main.c}---the
866 dot in the string tells @code{gprof} to interpret
867 the string as a filename, rather than as
868 a function name.  To select a file whose
869 name does not contain a dot, a trailing colon
870 should be specified.  For example, @samp{odd:} is
871 interpreted as the file named @file{odd}.
873 @item main
874 Selects all functions named @samp{main}.
876 Note that there may be multiple instances of the same function name
877 because some of the definitions may be local (i.e., static).  Unless a
878 function name is unique in a program, you must use the colon notation
879 explained below to specify a function from a specific source file.
881 Sometimes, function names contain dots.  In such cases, it is necessary
882 to add a leading colon to the name.  For example, @samp{:.mul} selects
883 function @samp{.mul}.
885 In some object file formats, symbols have a leading underscore.
886 @code{gprof} will normally not print these underscores.  When you name a
887 symbol in a symspec, you should type it exactly as @code{gprof} prints
888 it in its output.  For example, if the compiler produces a symbol
889 @samp{_main} from your @code{main} function, @code{gprof} still prints
890 it as @samp{main} in its output, so you should use @samp{main} in
891 symspecs.
893 @item main.c:main
894 Selects function @samp{main} in file @file{main.c}.
896 @item main.c:134
897 Selects line 134 in file @file{main.c}.
898 @end table
900 @node Output
901 @chapter Interpreting @code{gprof}'s Output
903 @code{gprof} can produce several different output styles, the
904 most important of which are described below.  The simplest output
905 styles (file information, execution count, and function and file ordering)
906 are not described here, but are documented with the respective options
907 that trigger them.
908 @xref{Output Options, ,Output Options}.
910 @menu
911 * Flat Profile::        The flat profile shows how much time was spent
912                             executing directly in each function.
913 * Call Graph::          The call graph shows which functions called which
914                             others, and how much time each function used
915                             when its subroutine calls are included.
916 * Line-by-line::        @code{gprof} can analyze individual source code lines
917 * Annotated Source::    The annotated source listing displays source code
918                             labeled with execution counts
919 @end menu
922 @node Flat Profile
923 @section The Flat Profile
924 @cindex flat profile
926 The @dfn{flat profile} shows the total amount of time your program
927 spent executing each function.  Unless the @samp{-z} option is given,
928 functions with no apparent time spent in them, and no apparent calls
929 to them, are not mentioned.  Note that if a function was not compiled
930 for profiling, and didn't run long enough to show up on the program
931 counter histogram, it will be indistinguishable from a function that
932 was never called.
934 This is part of a flat profile for a small program:
936 @smallexample
937 @group
938 Flat profile:
940 Each sample counts as 0.01 seconds.
941   %   cumulative   self              self     total
942  time   seconds   seconds    calls  ms/call  ms/call  name
943  33.34      0.02     0.02     7208     0.00     0.00  open
944  16.67      0.03     0.01      244     0.04     0.12  offtime
945  16.67      0.04     0.01        8     1.25     1.25  memccpy
946  16.67      0.05     0.01        7     1.43     1.43  write
947  16.67      0.06     0.01                             mcount
948   0.00      0.06     0.00      236     0.00     0.00  tzset
949   0.00      0.06     0.00      192     0.00     0.00  tolower
950   0.00      0.06     0.00       47     0.00     0.00  strlen
951   0.00      0.06     0.00       45     0.00     0.00  strchr
952   0.00      0.06     0.00        1     0.00    50.00  main
953   0.00      0.06     0.00        1     0.00     0.00  memcpy
954   0.00      0.06     0.00        1     0.00    10.11  print
955   0.00      0.06     0.00        1     0.00     0.00  profil
956   0.00      0.06     0.00        1     0.00    50.00  report
957 @dots{}
958 @end group
959 @end smallexample
961 @noindent
962 The functions are sorted first by decreasing run-time spent in them,
963 then by decreasing number of calls, then alphabetically by name.  The
964 functions @samp{mcount} and @samp{profil} are part of the profiling
965 apparatus and appear in every flat profile; their time gives a measure of
966 the amount of overhead due to profiling.
968 Just before the column headers, a statement appears indicating
969 how much time each sample counted as.
970 This @dfn{sampling period} estimates the margin of error in each of the time
971 figures.  A time figure that is not much larger than this is not
972 reliable.  In this example, each sample counted as 0.01 seconds,
973 suggesting a 100 Hz sampling rate.
974 The program's total execution time was 0.06
975 seconds, as indicated by the @samp{cumulative seconds} field.  Since
976 each sample counted for 0.01 seconds, this means only six samples
977 were taken during the run.  Two of the samples occurred while the
978 program was in the @samp{open} function, as indicated by the
979 @samp{self seconds} field.  Each of the other four samples
980 occurred one each in @samp{offtime}, @samp{memccpy}, @samp{write},
981 and @samp{mcount}.
982 Since only six samples were taken, none of these values can
983 be regarded as particularly reliable.
984 In another run,
985 the @samp{self seconds} field for
986 @samp{mcount} might well be @samp{0.00} or @samp{0.02}.
987 @xref{Sampling Error, ,Statistical Sampling Error},
988 for a complete discussion.
990 The remaining functions in the listing (those whose
991 @samp{self seconds} field is @samp{0.00}) didn't appear
992 in the histogram samples at all.  However, the call graph
993 indicated that they were called, so therefore they are listed,
994 sorted in decreasing order by the @samp{calls} field.
995 Clearly some time was spent executing these functions,
996 but the paucity of histogram samples prevents any
997 determination of how much time each took.
999 Here is what the fields in each line mean:
1001 @table @code
1002 @item % time
1003 This is the percentage of the total execution time your program spent
1004 in this function.  These should all add up to 100%.
1006 @item cumulative seconds
1007 This is the cumulative total number of seconds the computer spent
1008 executing this functions, plus the time spent in all the functions
1009 above this one in this table.
1011 @item self seconds
1012 This is the number of seconds accounted for by this function alone.
1013 The flat profile listing is sorted first by this number.
1015 @item calls
1016 This is the total number of times the function was called.  If the
1017 function was never called, or the number of times it was called cannot
1018 be determined (probably because the function was not compiled with
1019 profiling enabled), the @dfn{calls} field is blank.
1021 @item self ms/call
1022 This represents the average number of milliseconds spent in this
1023 function per call, if this function is profiled.  Otherwise, this field
1024 is blank for this function.
1026 @item total ms/call
1027 This represents the average number of milliseconds spent in this
1028 function and its descendants per call, if this function is profiled.
1029 Otherwise, this field is blank for this function.
1030 This is the only field in the flat profile that uses call graph analysis.
1032 @item name
1033 This is the name of the function.   The flat profile is sorted by this
1034 field alphabetically after the @dfn{self seconds} and @dfn{calls}
1035 fields are sorted.
1036 @end table
1038 @node Call Graph
1039 @section The Call Graph
1040 @cindex call graph
1042 The @dfn{call graph} shows how much time was spent in each function
1043 and its children.  From this information, you can find functions that,
1044 while they themselves may not have used much time, called other
1045 functions that did use unusual amounts of time.
1047 Here is a sample call from a small program.  This call came from the
1048 same @code{gprof} run as the flat profile example in the previous
1049 section.
1051 @smallexample
1052 @group
1053 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
1055 index % time    self  children    called     name
1056                                                  <spontaneous>
1057 [1]    100.0    0.00    0.05                 start [1]
1058                 0.00    0.05       1/1           main [2]
1059                 0.00    0.00       1/2           on_exit [28]
1060                 0.00    0.00       1/1           exit [59]
1061 -----------------------------------------------
1062                 0.00    0.05       1/1           start [1]
1063 [2]    100.0    0.00    0.05       1         main [2]
1064                 0.00    0.05       1/1           report [3]
1065 -----------------------------------------------
1066                 0.00    0.05       1/1           main [2]
1067 [3]    100.0    0.00    0.05       1         report [3]
1068                 0.00    0.03       8/8           timelocal [6]
1069                 0.00    0.01       1/1           print [9]
1070                 0.00    0.01       9/9           fgets [12]
1071                 0.00    0.00      12/34          strncmp <cycle 1> [40]
1072                 0.00    0.00       8/8           lookup [20]
1073                 0.00    0.00       1/1           fopen [21]
1074                 0.00    0.00       8/8           chewtime [24]
1075                 0.00    0.00       8/16          skipspace [44]
1076 -----------------------------------------------
1077 [4]     59.8    0.01        0.02       8+472     <cycle 2 as a whole> [4]
1078                 0.01        0.02     244+260         offtime <cycle 2> [7]
1079                 0.00        0.00     236+1           tzset <cycle 2> [26]
1080 -----------------------------------------------
1081 @end group
1082 @end smallexample
1084 The lines full of dashes divide this table into @dfn{entries}, one for each
1085 function.  Each entry has one or more lines.
1087 In each entry, the primary line is the one that starts with an index number
1088 in square brackets.  The end of this line says which function the entry is
1089 for.  The preceding lines in the entry describe the callers of this
1090 function and the following lines describe its subroutines (also called
1091 @dfn{children} when we speak of the call graph).
1093 The entries are sorted by time spent in the function and its subroutines.
1095 The internal profiling function @code{mcount} (@pxref{Flat Profile, ,The
1096 Flat Profile}) is never mentioned in the call graph.
1098 @menu
1099 * Primary::       Details of the primary line's contents.
1100 * Callers::       Details of caller-lines' contents.
1101 * Subroutines::   Details of subroutine-lines' contents.
1102 * Cycles::        When there are cycles of recursion,
1103                    such as @code{a} calls @code{b} calls @code{a}@dots{}
1104 @end menu
1106 @node Primary
1107 @subsection The Primary Line
1109 The @dfn{primary line} in a call graph entry is the line that
1110 describes the function which the entry is about and gives the overall
1111 statistics for this function.
1113 For reference, we repeat the primary line from the entry for function
1114 @code{report} in our main example, together with the heading line that
1115 shows the names of the fields:
1117 @smallexample
1118 @group
1119 index  % time    self  children called     name
1120 @dots{}
1121 [3]    100.0    0.00    0.05       1         report [3]
1122 @end group
1123 @end smallexample
1125 Here is what the fields in the primary line mean:
1127 @table @code
1128 @item index
1129 Entries are numbered with consecutive integers.  Each function
1130 therefore has an index number, which appears at the beginning of its
1131 primary line.
1133 Each cross-reference to a function, as a caller or subroutine of
1134 another, gives its index number as well as its name.  The index number
1135 guides you if you wish to look for the entry for that function.
1137 @item % time
1138 This is the percentage of the total time that was spent in this
1139 function, including time spent in subroutines called from this
1140 function.
1142 The time spent in this function is counted again for the callers of
1143 this function.  Therefore, adding up these percentages is meaningless.
1145 @item self
1146 This is the total amount of time spent in this function.  This
1147 should be identical to the number printed in the @code{seconds} field
1148 for this function in the flat profile.
1150 @item children
1151 This is the total amount of time spent in the subroutine calls made by
1152 this function.  This should be equal to the sum of all the @code{self}
1153 and @code{children} entries of the children listed directly below this
1154 function.
1156 @item called
1157 This is the number of times the function was called.
1159 If the function called itself recursively, there are two numbers,
1160 separated by a @samp{+}.  The first number counts non-recursive calls,
1161 and the second counts recursive calls.
1163 In the example above, the function @code{report} was called once from
1164 @code{main}.
1166 @item name
1167 This is the name of the current function.  The index number is
1168 repeated after it.
1170 If the function is part of a cycle of recursion, the cycle number is
1171 printed between the function's name and the index number
1172 (@pxref{Cycles, ,How Mutually Recursive Functions Are Described}).
1173 For example, if function @code{gnurr} is part of
1174 cycle number one, and has index number twelve, its primary line would
1175 be end like this:
1177 @example
1178 gnurr <cycle 1> [12]
1179 @end example
1180 @end table
1182 @node Callers
1183 @subsection Lines for a Function's Callers
1185 A function's entry has a line for each function it was called by.
1186 These lines' fields correspond to the fields of the primary line, but
1187 their meanings are different because of the difference in context.
1189 For reference, we repeat two lines from the entry for the function
1190 @code{report}, the primary line and one caller-line preceding it, together
1191 with the heading line that shows the names of the fields:
1193 @smallexample
1194 index  % time    self  children called     name
1195 @dots{}
1196                 0.00    0.05       1/1           main [2]
1197 [3]    100.0    0.00    0.05       1         report [3]
1198 @end smallexample
1200 Here are the meanings of the fields in the caller-line for @code{report}
1201 called from @code{main}:
1203 @table @code
1204 @item self
1205 An estimate of the amount of time spent in @code{report} itself when it was
1206 called from @code{main}.
1208 @item children
1209 An estimate of the amount of time spent in subroutines of @code{report}
1210 when @code{report} was called from @code{main}.
1212 The sum of the @code{self} and @code{children} fields is an estimate
1213 of the amount of time spent within calls to @code{report} from @code{main}.
1215 @item called
1216 Two numbers: the number of times @code{report} was called from @code{main},
1217 followed by the total number of non-recursive calls to @code{report} from
1218 all its callers.
1220 @item name and index number
1221 The name of the caller of @code{report} to which this line applies,
1222 followed by the caller's index number.
1224 Not all functions have entries in the call graph; some
1225 options to @code{gprof} request the omission of certain functions.
1226 When a caller has no entry of its own, it still has caller-lines
1227 in the entries of the functions it calls.
1229 If the caller is part of a recursion cycle, the cycle number is
1230 printed between the name and the index number.
1231 @end table
1233 If the identity of the callers of a function cannot be determined, a
1234 dummy caller-line is printed which has @samp{<spontaneous>} as the
1235 ``caller's name'' and all other fields blank.  This can happen for
1236 signal handlers.
1237 @c What if some calls have determinable callers' names but not all?
1238 @c FIXME - still relevant?
1240 @node Subroutines
1241 @subsection Lines for a Function's Subroutines
1243 A function's entry has a line for each of its subroutines---in other
1244 words, a line for each other function that it called.  These lines'
1245 fields correspond to the fields of the primary line, but their meanings
1246 are different because of the difference in context.
1248 For reference, we repeat two lines from the entry for the function
1249 @code{main}, the primary line and a line for a subroutine, together
1250 with the heading line that shows the names of the fields:
1252 @smallexample
1253 index  % time    self  children called     name
1254 @dots{}
1255 [2]    100.0    0.00    0.05       1         main [2]
1256                 0.00    0.05       1/1           report [3]
1257 @end smallexample
1259 Here are the meanings of the fields in the subroutine-line for @code{main}
1260 calling @code{report}:
1262 @table @code
1263 @item self
1264 An estimate of the amount of time spent directly within @code{report}
1265 when @code{report} was called from @code{main}.
1267 @item children
1268 An estimate of the amount of time spent in subroutines of @code{report}
1269 when @code{report} was called from @code{main}.
1271 The sum of the @code{self} and @code{children} fields is an estimate
1272 of the total time spent in calls to @code{report} from @code{main}.
1274 @item called
1275 Two numbers, the number of calls to @code{report} from @code{main}
1276 followed by the total number of non-recursive calls to @code{report}.
1277 This ratio is used to determine how much of @code{report}'s @code{self}
1278 and @code{children} time gets credited to @code{main}.
1279 @xref{Assumptions, ,Estimating @code{children} Times}.
1281 @item name
1282 The name of the subroutine of @code{main} to which this line applies,
1283 followed by the subroutine's index number.
1285 If the caller is part of a recursion cycle, the cycle number is
1286 printed between the name and the index number.
1287 @end table
1289 @node Cycles
1290 @subsection How Mutually Recursive Functions Are Described
1291 @cindex cycle
1292 @cindex recursion cycle
1294 The graph may be complicated by the presence of @dfn{cycles of
1295 recursion} in the call graph.  A cycle exists if a function calls
1296 another function that (directly or indirectly) calls (or appears to
1297 call) the original function.  For example: if @code{a} calls @code{b},
1298 and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
1300 Whenever there are call paths both ways between a pair of functions, they
1301 belong to the same cycle.  If @code{a} and @code{b} call each other and
1302 @code{b} and @code{c} call each other, all three make one cycle.  Note that
1303 even if @code{b} only calls @code{a} if it was not called from @code{a},
1304 @code{gprof} cannot determine this, so @code{a} and @code{b} are still
1305 considered a cycle.
1307 The cycles are numbered with consecutive integers.  When a function
1308 belongs to a cycle, each time the function name appears in the call graph
1309 it is followed by @samp{<cycle @var{number}>}.
1311 The reason cycles matter is that they make the time values in the call
1312 graph paradoxical.  The ``time spent in children'' of @code{a} should
1313 include the time spent in its subroutine @code{b} and in @code{b}'s
1314 subroutines---but one of @code{b}'s subroutines is @code{a}!  How much of
1315 @code{a}'s time should be included in the children of @code{a}, when
1316 @code{a} is indirectly recursive?
1318 The way @code{gprof} resolves this paradox is by creating a single entry
1319 for the cycle as a whole.  The primary line of this entry describes the
1320 total time spent directly in the functions of the cycle.  The
1321 ``subroutines'' of the cycle are the individual functions of the cycle, and
1322 all other functions that were called directly by them.  The ``callers'' of
1323 the cycle are the functions, outside the cycle, that called functions in
1324 the cycle.
1326 Here is an example portion of a call graph which shows a cycle containing
1327 functions @code{a} and @code{b}.  The cycle was entered by a call to
1328 @code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
1330 @smallexample
1331 index  % time    self  children called     name
1332 ----------------------------------------
1333                  1.77        0    1/1        main [2]
1334 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1335                  1.02        0    3          b <cycle 1> [4]
1336                  0.75        0    2          a <cycle 1> [5]
1337 ----------------------------------------
1338                                   3          a <cycle 1> [5]
1339 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1340                                   2          a <cycle 1> [5]
1341                     0        0    3/6        c [6]
1342 ----------------------------------------
1343                  1.77        0    1/1        main [2]
1344                                   2          b <cycle 1> [4]
1345 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1346                                   3          b <cycle 1> [4]
1347                     0        0    3/6        c [6]
1348 ----------------------------------------
1349 @end smallexample
1351 @noindent
1352 (The entire call graph for this program contains in addition an entry for
1353 @code{main}, which calls @code{a}, and an entry for @code{c}, with callers
1354 @code{a} and @code{b}.)
1356 @smallexample
1357 index  % time    self  children called     name
1358                                              <spontaneous>
1359 [1]    100.00       0     1.93    0      start [1]
1360                  0.16     1.77    1/1        main [2]
1361 ----------------------------------------
1362                  0.16     1.77    1/1        start [1]
1363 [2]    100.00    0.16     1.77    1      main [2]
1364                  1.77        0    1/1        a <cycle 1> [5]
1365 ----------------------------------------
1366                  1.77        0    1/1        main [2]
1367 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1368                  1.02        0    3          b <cycle 1> [4]
1369                  0.75        0    2          a <cycle 1> [5]
1370                     0        0    6/6        c [6]
1371 ----------------------------------------
1372                                   3          a <cycle 1> [5]
1373 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1374                                   2          a <cycle 1> [5]
1375                     0        0    3/6        c [6]
1376 ----------------------------------------
1377                  1.77        0    1/1        main [2]
1378                                   2          b <cycle 1> [4]
1379 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1380                                   3          b <cycle 1> [4]
1381                     0        0    3/6        c [6]
1382 ----------------------------------------
1383                     0        0    3/6        b <cycle 1> [4]
1384                     0        0    3/6        a <cycle 1> [5]
1385 [6]      0.00       0        0    6      c [6]
1386 ----------------------------------------
1387 @end smallexample
1389 The @code{self} field of the cycle's primary line is the total time
1390 spent in all the functions of the cycle.  It equals the sum of the
1391 @code{self} fields for the individual functions in the cycle, found
1392 in the entry in the subroutine lines for these functions.
1394 The @code{children} fields of the cycle's primary line and subroutine lines
1395 count only subroutines outside the cycle.  Even though @code{a} calls
1396 @code{b}, the time spent in those calls to @code{b} is not counted in
1397 @code{a}'s @code{children} time.  Thus, we do not encounter the problem of
1398 what to do when the time in those calls to @code{b} includes indirect
1399 recursive calls back to @code{a}.
1401 The @code{children} field of a caller-line in the cycle's entry estimates
1402 the amount of time spent @emph{in the whole cycle}, and its other
1403 subroutines, on the times when that caller called a function in the cycle.
1405 The @code{called} field in the primary line for the cycle has two numbers:
1406 first, the number of times functions in the cycle were called by functions
1407 outside the cycle; second, the number of times they were called by
1408 functions in the cycle (including times when a function in the cycle calls
1409 itself).  This is a generalization of the usual split into non-recursive and
1410 recursive calls.
1412 The @code{called} field of a subroutine-line for a cycle member in the
1413 cycle's entry says how many time that function was called from functions in
1414 the cycle.  The total of all these is the second number in the primary line's
1415 @code{called} field.
1417 In the individual entry for a function in a cycle, the other functions in
1418 the same cycle can appear as subroutines and as callers.  These lines show
1419 how many times each function in the cycle called or was called from each other
1420 function in the cycle.  The @code{self} and @code{children} fields in these
1421 lines are blank because of the difficulty of defining meanings for them
1422 when recursion is going on.
1424 @node Line-by-line
1425 @section Line-by-line Profiling
1427 @code{gprof}'s @samp{-l} option causes the program to perform
1428 @dfn{line-by-line} profiling.  In this mode, histogram
1429 samples are assigned not to functions, but to individual
1430 lines of source code.  This only works with programs compiled with
1431 older versions of the @code{gcc} compiler.  Newer versions of @code{gcc}
1432 use a different program - @code{gcov} - to display line-by-line
1433 profiling information.
1435 With the older versions of @code{gcc} the program usually has to be
1436 compiled with a @samp{-g} option, in addition to @samp{-pg}, in order
1437 to generate debugging symbols for tracking source code lines.
1438 Note, in much older versions of @code{gcc} the program had to be
1439 compiled with the @samp{-a} command-line option as well.
1441 The flat profile is the most useful output table
1442 in line-by-line mode.
1443 The call graph isn't as useful as normal, since
1444 the current version of @code{gprof} does not propagate
1445 call graph arcs from source code lines to the enclosing function.
1446 The call graph does, however, show each line of code
1447 that called each function, along with a count.
1449 Here is a section of @code{gprof}'s output, without line-by-line profiling.
1450 Note that @code{ct_init} accounted for four histogram hits, and
1451 13327 calls to @code{init_block}.
1453 @smallexample
1454 Flat profile:
1456 Each sample counts as 0.01 seconds.
1457   %   cumulative   self              self     total
1458  time   seconds   seconds    calls  us/call  us/call  name
1459  30.77      0.13     0.04     6335     6.31     6.31  ct_init
1462                      Call graph (explanation follows)
1465 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1467 index % time    self  children    called     name
1469                 0.00    0.00       1/13496       name_too_long
1470                 0.00    0.00      40/13496       deflate
1471                 0.00    0.00     128/13496       deflate_fast
1472                 0.00    0.00   13327/13496       ct_init
1473 [7]      0.0    0.00    0.00   13496         init_block
1475 @end smallexample
1477 Now let's look at some of @code{gprof}'s output from the same program run,
1478 this time with line-by-line profiling enabled.  Note that @code{ct_init}'s
1479 four histogram hits are broken down into four lines of source code---one hit
1480 occurred on each of lines 349, 351, 382 and 385.  In the call graph,
1481 note how
1482 @code{ct_init}'s 13327 calls to @code{init_block} are broken down
1483 into one call from line 396, 3071 calls from line 384, 3730 calls
1484 from line 385, and 6525 calls from 387.
1486 @smallexample
1487 Flat profile:
1489 Each sample counts as 0.01 seconds.
1490   %   cumulative   self
1491  time   seconds   seconds    calls  name
1492   7.69      0.10     0.01           ct_init (trees.c:349)
1493   7.69      0.11     0.01           ct_init (trees.c:351)
1494   7.69      0.12     0.01           ct_init (trees.c:382)
1495   7.69      0.13     0.01           ct_init (trees.c:385)
1498                      Call graph (explanation follows)
1501 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1503   % time    self  children    called     name
1505             0.00    0.00       1/13496       name_too_long (gzip.c:1440)
1506             0.00    0.00       1/13496       deflate (deflate.c:763)
1507             0.00    0.00       1/13496       ct_init (trees.c:396)
1508             0.00    0.00       2/13496       deflate (deflate.c:727)
1509             0.00    0.00       4/13496       deflate (deflate.c:686)
1510             0.00    0.00       5/13496       deflate (deflate.c:675)
1511             0.00    0.00      12/13496       deflate (deflate.c:679)
1512             0.00    0.00      16/13496       deflate (deflate.c:730)
1513             0.00    0.00     128/13496       deflate_fast (deflate.c:654)
1514             0.00    0.00    3071/13496       ct_init (trees.c:384)
1515             0.00    0.00    3730/13496       ct_init (trees.c:385)
1516             0.00    0.00    6525/13496       ct_init (trees.c:387)
1517 [6]  0.0    0.00    0.00   13496         init_block (trees.c:408)
1519 @end smallexample
1522 @node Annotated Source
1523 @section The Annotated Source Listing
1525 @code{gprof}'s @samp{-A} option triggers an annotated source listing,
1526 which lists the program's source code, each function labeled with the
1527 number of times it was called.  You may also need to specify the
1528 @samp{-I} option, if @code{gprof} can't find the source code files.
1530 With older versions of @code{gcc} compiling with @samp{gcc @dots{} -g
1531 -pg -a} augments your program with basic-block counting code, in
1532 addition to function counting code.  This enables @code{gprof} to
1533 determine how many times each line of code was executed.  With newer
1534 versions of @code{gcc} support for displaying basic-block counts is
1535 provided by the @code{gcov} program.
1537 For example, consider the following function, taken from gzip,
1538 with line numbers added:
1540 @smallexample
1541  1 ulg updcrc(s, n)
1542  2     uch *s;
1543  3     unsigned n;
1544  4 @{
1545  5     register ulg c;
1547  7     static ulg crc = (ulg)0xffffffffL;
1549  9     if (s == NULL) @{
1550 10         c = 0xffffffffL;
1551 11     @} else @{
1552 12         c = crc;
1553 13         if (n) do @{
1554 14             c = crc_32_tab[...];
1555 15         @} while (--n);
1556 16     @}
1557 17     crc = c;
1558 18     return c ^ 0xffffffffL;
1559 19 @}
1561 @end smallexample
1563 @code{updcrc} has at least five basic-blocks.
1564 One is the function itself.  The
1565 @code{if} statement on line 9 generates two more basic-blocks, one
1566 for each branch of the @code{if}.  A fourth basic-block results from
1567 the @code{if} on line 13, and the contents of the @code{do} loop form
1568 the fifth basic-block.  The compiler may also generate additional
1569 basic-blocks to handle various special cases.
1571 A program augmented for basic-block counting can be analyzed with
1572 @samp{gprof -l -A}.
1573 The @samp{-x} option is also helpful,
1574 to ensure that each line of code is labeled at least once.
1575 Here is @code{updcrc}'s
1576 annotated source listing for a sample @code{gzip} run:
1578 @smallexample
1579                 ulg updcrc(s, n)
1580                     uch *s;
1581                     unsigned n;
1582             2 ->@{
1583                     register ulg c;
1585                     static ulg crc = (ulg)0xffffffffL;
1587             2 ->    if (s == NULL) @{
1588             1 ->        c = 0xffffffffL;
1589             1 ->    @} else @{
1590             1 ->        c = crc;
1591             1 ->        if (n) do @{
1592         26312 ->            c = crc_32_tab[...];
1593 26312,1,26311 ->        @} while (--n);
1594                     @}
1595             2 ->    crc = c;
1596             2 ->    return c ^ 0xffffffffL;
1597             2 ->@}
1598 @end smallexample
1600 In this example, the function was called twice, passing once through
1601 each branch of the @code{if} statement.  The body of the @code{do}
1602 loop was executed a total of 26312 times.  Note how the @code{while}
1603 statement is annotated.  It began execution 26312 times, once for
1604 each iteration through the loop.  One of those times (the last time)
1605 it exited, while it branched back to the beginning of the loop 26311 times.
1607 @node Inaccuracy
1608 @chapter Inaccuracy of @code{gprof} Output
1610 @menu
1611 * Sampling Error::      Statistical margins of error
1612 * Assumptions::         Estimating children times
1613 @end menu
1615 @node Sampling Error
1616 @section Statistical Sampling Error
1618 The run-time figures that @code{gprof} gives you are based on a sampling
1619 process, so they are subject to statistical inaccuracy.  If a function runs
1620 only a small amount of time, so that on the average the sampling process
1621 ought to catch that function in the act only once, there is a pretty good
1622 chance it will actually find that function zero times, or twice.
1624 By contrast, the number-of-calls and basic-block figures are derived
1625 by counting, not sampling.  They are completely accurate and will not
1626 vary from run to run if your program is deterministic and single
1627 threaded.  In multi-threaded applications, or single threaded
1628 applications that link with multi-threaded libraries, the counts are
1629 only deterministic if the counting function is thread-safe.  (Note:
1630 beware that the mcount counting function in glibc is @emph{not}
1631 thread-safe).  @xref{Implementation, ,Implementation of Profiling}.
1633 The @dfn{sampling period} that is printed at the beginning of the flat
1634 profile says how often samples are taken.  The rule of thumb is that a
1635 run-time figure is accurate if it is considerably bigger than the sampling
1636 period.
1638 The actual amount of error can be predicted.
1639 For @var{n} samples, the @emph{expected} error
1640 is the square-root of @var{n}.  For example,
1641 if the sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second,
1642 @var{n} is 100 samples (1 second/0.01 seconds), sqrt(@var{n}) is 10 samples, so
1643 the expected error in @code{foo}'s run-time is 0.1 seconds (10*0.01 seconds),
1644 or ten percent of the observed value.
1645 Again, if the sampling period is 0.01 seconds and @code{bar}'s run-time is
1646 100 seconds, @var{n} is 10000 samples, sqrt(@var{n}) is 100 samples, so
1647 the expected error in @code{bar}'s run-time is 1 second,
1648 or one percent of the observed value.
1649 It is likely to
1650 vary this much @emph{on the average} from one profiling run to the next.
1651 (@emph{Sometimes} it will vary more.)
1653 This does not mean that a small run-time figure is devoid of information.
1654 If the program's @emph{total} run-time is large, a small run-time for one
1655 function does tell you that that function used an insignificant fraction of
1656 the whole program's time.  Usually this means it is not worth optimizing.
1658 One way to get more accuracy is to give your program more (but similar)
1659 input data so it will take longer.  Another way is to combine the data from
1660 several runs, using the @samp{-s} option of @code{gprof}.  Here is how:
1662 @enumerate
1663 @item
1664 Run your program once.
1666 @item
1667 Issue the command @samp{mv gmon.out gmon.sum}.
1669 @item
1670 Run your program again, the same as before.
1672 @item
1673 Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
1675 @example
1676 gprof -s @var{executable-file} gmon.out gmon.sum
1677 @end example
1679 @item
1680 Repeat the last two steps as often as you wish.
1682 @item
1683 Analyze the cumulative data using this command:
1685 @example
1686 gprof @var{executable-file} gmon.sum > @var{output-file}
1687 @end example
1688 @end enumerate
1690 @node Assumptions
1691 @section Estimating @code{children} Times
1693 Some of the figures in the call graph are estimates---for example, the
1694 @code{children} time values and all the time figures in caller and
1695 subroutine lines.
1697 There is no direct information about these measurements in the profile
1698 data itself.  Instead, @code{gprof} estimates them by making an assumption
1699 about your program that might or might not be true.
1701 The assumption made is that the average time spent in each call to any
1702 function @code{foo} is not correlated with who called @code{foo}.  If
1703 @code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
1704 from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
1705 @code{children} time, by assumption.
1707 This assumption is usually true enough, but for some programs it is far
1708 from true.  Suppose that @code{foo} returns very quickly when its argument
1709 is zero; suppose that @code{a} always passes zero as an argument, while
1710 other callers of @code{foo} pass other arguments.  In this program, all the
1711 time spent in @code{foo} is in the calls from callers other than @code{a}.
1712 But @code{gprof} has no way of knowing this; it will blindly and
1713 incorrectly charge 2 seconds of time in @code{foo} to the children of
1714 @code{a}.
1716 @c FIXME - has this been fixed?
1717 We hope some day to put more complete data into @file{gmon.out}, so that
1718 this assumption is no longer needed, if we can figure out how.  For the
1719 novice, the estimated figures are usually more useful than misleading.
1721 @node How do I?
1722 @chapter Answers to Common Questions
1724 @table @asis
1725 @item How can I get more exact information about hot spots in my program?
1727 Looking at the per-line call counts only tells part of the story.
1728 Because @code{gprof} can only report call times and counts by function,
1729 the best way to get finer-grained information on where the program
1730 is spending its time is to re-factor large functions into sequences
1731 of calls to smaller ones.  Beware however that this can introduce
1732 artificial hot spots since compiling with @samp{-pg} adds a significant
1733 overhead to function calls.  An alternative solution is to use a
1734 non-intrusive profiler, e.g.@: oprofile.
1736 @item How do I find which lines in my program were executed the most times?
1738 Use the @code{gcov} program.
1740 @item How do I find which lines in my program called a particular function?
1742 Use @samp{gprof -l} and lookup the function in the call graph.
1743 The callers will be broken down by function and line number.
1745 @item How do I analyze a program that runs for less than a second?
1747 Try using a shell script like this one:
1749 @example
1750 for i in `seq 1 100`; do
1751   fastprog
1752   mv gmon.out gmon.out.$i
1753 done
1755 gprof -s fastprog gmon.out.*
1757 gprof fastprog gmon.sum
1758 @end example
1760 If your program is completely deterministic, all the call counts
1761 will be simple multiples of 100 (i.e., a function called once in
1762 each run will appear with a call count of 100).
1764 @end table
1766 @node Incompatibilities
1767 @chapter Incompatibilities with Unix @code{gprof}
1769 @sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
1770 file @file{gmon.out}, and provide essentially the same information.  But
1771 there are a few differences.
1773 @itemize @bullet
1774 @item
1775 @sc{gnu} @code{gprof} uses a new, generalized file format with support
1776 for basic-block execution counts and non-realtime histograms.  A magic
1777 cookie and version number allows @code{gprof} to easily identify
1778 new style files.  Old BSD-style files can still be read.
1779 @xref{File Format, ,Profiling Data File Format}.
1781 @item
1782 For a recursive function, Unix @code{gprof} lists the function as a
1783 parent and as a child, with a @code{calls} field that lists the number
1784 of recursive calls.  @sc{gnu} @code{gprof} omits these lines and puts
1785 the number of recursive calls in the primary line.
1787 @item
1788 When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
1789 @code{gprof} still lists it as a subroutine of functions that call it.
1791 @item
1792 @sc{gnu} @code{gprof} accepts the @samp{-k} with its argument
1793 in the form @samp{from/to}, instead of @samp{from to}.
1795 @item
1796 In the annotated source listing,
1797 if there are multiple basic blocks on the same line,
1798 @sc{gnu} @code{gprof} prints all of their counts, separated by commas.
1800 @ignore - it does this now
1801 @item
1802 The function names printed in @sc{gnu} @code{gprof} output do not include
1803 the leading underscores that are added internally to the front of all
1804 C identifiers on many operating systems.
1805 @end ignore
1807 @item
1808 The blurbs, field widths, and output formats are different.  @sc{gnu}
1809 @code{gprof} prints blurbs after the tables, so that you can see the
1810 tables without skipping the blurbs.
1811 @end itemize
1813 @node Details
1814 @chapter Details of Profiling
1816 @menu
1817 * Implementation::      How a program collects profiling information
1818 * File Format::         Format of @samp{gmon.out} files
1819 * Internals::           @code{gprof}'s internal operation
1820 * Debugging::           Using @code{gprof}'s @samp{-d} option
1821 @end menu
1823 @node Implementation
1824 @section Implementation of Profiling
1826 Profiling works by changing how every function in your program is compiled
1827 so that when it is called, it will stash away some information about where
1828 it was called from.  From this, the profiler can figure out what function
1829 called it, and can count how many times it was called.  This change is made
1830 by the compiler when your program is compiled with the @samp{-pg} option,
1831 which causes every function to call @code{mcount}
1832 (or @code{_mcount}, or @code{__mcount}, depending on the OS and compiler)
1833 as one of its first operations.
1835 The @code{mcount} routine, included in the profiling library,
1836 is responsible for recording in an in-memory call graph table
1837 both its parent routine (the child) and its parent's parent.  This is
1838 typically done by examining the stack frame to find both
1839 the address of the child, and the return address in the original parent.
1840 Since this is a very machine-dependent operation, @code{mcount}
1841 itself is typically a short assembly-language stub routine
1842 that extracts the required
1843 information, and then calls @code{__mcount_internal}
1844 (a normal C function) with two arguments---@code{frompc} and @code{selfpc}.
1845 @code{__mcount_internal} is responsible for maintaining
1846 the in-memory call graph, which records @code{frompc}, @code{selfpc},
1847 and the number of times each of these call arcs was traversed.
1849 GCC Version 2 provides a magical function (@code{__builtin_return_address}),
1850 which allows a generic @code{mcount} function to extract the
1851 required information from the stack frame.  However, on some
1852 architectures, most notably the SPARC, using this builtin can be
1853 very computationally expensive, and an assembly language version
1854 of @code{mcount} is used for performance reasons.
1856 Number-of-calls information for library routines is collected by using a
1857 special version of the C library.  The programs in it are the same as in
1858 the usual C library, but they were compiled with @samp{-pg}.  If you
1859 link your program with @samp{gcc @dots{} -pg}, it automatically uses the
1860 profiling version of the library.
1862 Profiling also involves watching your program as it runs, and keeping a
1863 histogram of where the program counter happens to be every now and then.
1864 Typically the program counter is looked at around 100 times per second of
1865 run time, but the exact frequency may vary from system to system.
1867 This is done is one of two ways.  Most UNIX-like operating systems
1868 provide a @code{profil()} system call, which registers a memory
1869 array with the kernel, along with a scale
1870 factor that determines how the program's address space maps
1871 into the array.
1872 Typical scaling values cause every 2 to 8 bytes of address space
1873 to map into a single array slot.
1874 On every tick of the system clock
1875 (assuming the profiled program is running), the value of the
1876 program counter is examined and the corresponding slot in
1877 the memory array is incremented.  Since this is done in the kernel,
1878 which had to interrupt the process anyway to handle the clock
1879 interrupt, very little additional system overhead is required.
1881 However, some operating systems, most notably Linux 2.0 (and earlier),
1882 do not provide a @code{profil()} system call.  On such a system,
1883 arrangements are made for the kernel to periodically deliver
1884 a signal to the process (typically via @code{setitimer()}),
1885 which then performs the same operation of examining the
1886 program counter and incrementing a slot in the memory array.
1887 Since this method requires a signal to be delivered to
1888 user space every time a sample is taken, it uses considerably
1889 more overhead than kernel-based profiling.  Also, due to the
1890 added delay required to deliver the signal, this method is
1891 less accurate as well.
1893 A special startup routine allocates memory for the histogram and
1894 either calls @code{profil()} or sets up
1895 a clock signal handler.
1896 This routine (@code{monstartup}) can be invoked in several ways.
1897 On Linux systems, a special profiling startup file @code{gcrt0.o},
1898 which invokes @code{monstartup} before @code{main},
1899 is used instead of the default @code{crt0.o}.
1900 Use of this special startup file is one of the effects
1901 of using @samp{gcc @dots{} -pg} to link.
1902 On SPARC systems, no special startup files are used.
1903 Rather, the @code{mcount} routine, when it is invoked for
1904 the first time (typically when @code{main} is called),
1905 calls @code{monstartup}.
1907 If the compiler's @samp{-a} option was used, basic-block counting
1908 is also enabled.  Each object file is then compiled with a static array
1909 of counts, initially zero.
1910 In the executable code, every time a new basic-block begins
1911 (i.e., when an @code{if} statement appears), an extra instruction
1912 is inserted to increment the corresponding count in the array.
1913 At compile time, a paired array was constructed that recorded
1914 the starting address of each basic-block.  Taken together,
1915 the two arrays record the starting address of every basic-block,
1916 along with the number of times it was executed.
1918 The profiling library also includes a function (@code{mcleanup}) which is
1919 typically registered using @code{atexit()} to be called as the
1920 program exits, and is responsible for writing the file @file{gmon.out}.
1921 Profiling is turned off, various headers are output, and the histogram
1922 is written, followed by the call-graph arcs and the basic-block counts.
1924 The output from @code{gprof} gives no indication of parts of your program that
1925 are limited by I/O or swapping bandwidth.  This is because samples of the
1926 program counter are taken at fixed intervals of the program's run time.
1927 Therefore, the
1928 time measurements in @code{gprof} output say nothing about time that your
1929 program was not running.  For example, a part of the program that creates
1930 so much data that it cannot all fit in physical memory at once may run very
1931 slowly due to thrashing, but @code{gprof} will say it uses little time.  On
1932 the other hand, sampling by run time has the advantage that the amount of
1933 load due to other users won't directly affect the output you get.
1935 @node File Format
1936 @section Profiling Data File Format
1938 The old BSD-derived file format used for profile data does not contain a
1939 magic cookie that allows one to check whether a data file really is a
1940 @code{gprof} file.  Furthermore, it does not provide a version number, thus
1941 rendering changes to the file format almost impossible.  @sc{gnu} @code{gprof}
1942 uses a new file format that provides these features.  For backward
1943 compatibility, @sc{gnu} @code{gprof} continues to support the old BSD-derived
1944 format, but not all features are supported with it.  For example,
1945 basic-block execution counts cannot be accommodated by the old file
1946 format.
1948 The new file format is defined in header file @file{gmon_out.h}.  It
1949 consists of a header containing the magic cookie and a version number,
1950 as well as some spare bytes available for future extensions.  All data
1951 in a profile data file is in the native format of the target for which
1952 the profile was collected.  @sc{gnu} @code{gprof} adapts automatically
1953 to the byte-order in use.
1955 In the new file format, the header is followed by a sequence of
1956 records.  Currently, there are three different record types: histogram
1957 records, call-graph arc records, and basic-block execution count
1958 records.  Each file can contain any number of each record type.  When
1959 reading a file, @sc{gnu} @code{gprof} will ensure records of the same type are
1960 compatible with each other and compute the union of all records.  For
1961 example, for basic-block execution counts, the union is simply the sum
1962 of all execution counts for each basic-block.
1964 @subsection Histogram Records
1966 Histogram records consist of a header that is followed by an array of
1967 bins.  The header contains the text-segment range that the histogram
1968 spans, the size of the histogram in bytes (unlike in the old BSD
1969 format, this does not include the size of the header), the rate of the
1970 profiling clock, and the physical dimension that the bin counts
1971 represent after being scaled by the profiling clock rate.  The
1972 physical dimension is specified in two parts: a long name of up to 15
1973 characters and a single character abbreviation.  For example, a
1974 histogram representing real-time would specify the long name as
1975 ``seconds'' and the abbreviation as ``s''.  This feature is useful for
1976 architectures that support performance monitor hardware (which,
1977 fortunately, is becoming increasingly common).  For example, under DEC
1978 OSF/1, the ``uprofile'' command can be used to produce a histogram of,
1979 say, instruction cache misses.  In this case, the dimension in the
1980 histogram header could be set to ``i-cache misses'' and the abbreviation
1981 could be set to ``1'' (because it is simply a count, not a physical
1982 dimension).  Also, the profiling rate would have to be set to 1 in
1983 this case.
1985 Histogram bins are 16-bit numbers and each bin represent an equal
1986 amount of text-space.  For example, if the text-segment is one
1987 thousand bytes long and if there are ten bins in the histogram, each
1988 bin represents one hundred bytes.
1991 @subsection Call-Graph Records
1993 Call-graph records have a format that is identical to the one used in
1994 the BSD-derived file format.  It consists of an arc in the call graph
1995 and a count indicating the number of times the arc was traversed
1996 during program execution.  Arcs are specified by a pair of addresses:
1997 the first must be within caller's function and the second must be
1998 within the callee's function.  When performing profiling at the
1999 function level, these addresses can point anywhere within the
2000 respective function.  However, when profiling at the line-level, it is
2001 better if the addresses are as close to the call-site/entry-point as
2002 possible.  This will ensure that the line-level call-graph is able to
2003 identify exactly which line of source code performed calls to a
2004 function.
2006 @subsection Basic-Block Execution Count Records
2008 Basic-block execution count records consist of a header followed by a
2009 sequence of address/count pairs.  The header simply specifies the
2010 length of the sequence.  In an address/count pair, the address
2011 identifies a basic-block and the count specifies the number of times
2012 that basic-block was executed.  Any address within the basic-address can
2013 be used.
2015 @node Internals
2016 @section @code{gprof}'s Internal Operation
2018 Like most programs, @code{gprof} begins by processing its options.
2019 During this stage, it may building its symspec list
2020 (@code{sym_ids.c:@-sym_id_add}), if
2021 options are specified which use symspecs.
2022 @code{gprof} maintains a single linked list of symspecs,
2023 which will eventually get turned into 12 symbol tables,
2024 organized into six include/exclude pairs---one
2025 pair each for the flat profile (INCL_FLAT/EXCL_FLAT),
2026 the call graph arcs (INCL_ARCS/EXCL_ARCS),
2027 printing in the call graph (INCL_GRAPH/EXCL_GRAPH),
2028 timing propagation in the call graph (INCL_TIME/EXCL_TIME),
2029 the annotated source listing (INCL_ANNO/EXCL_ANNO),
2030 and the execution count listing (INCL_EXEC/EXCL_EXEC).
2032 After option processing, @code{gprof} finishes
2033 building the symspec list by adding all the symspecs in
2034 @code{default_excluded_list} to the exclude lists
2035 EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is specified,
2036 EXCL_FLAT as well.
2037 These default excludes are not added to EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
2039 Next, the BFD library is called to open the object file,
2040 verify that it is an object file,
2041 and read its symbol table (@code{core.c:@-core_init}),
2042 using @code{bfd_canonicalize_symtab} after mallocing
2043 an appropriately sized array of symbols.  At this point,
2044 function mappings are read (if the @samp{--file-ordering} option
2045 has been specified), and the core text space is read into
2046 memory (if the @samp{-c} option was given).
2048 @code{gprof}'s own symbol table, an array of Sym structures,
2049 is now built.
2050 This is done in one of two ways, by one of two routines, depending
2051 on whether line-by-line profiling (@samp{-l} option) has been
2052 enabled.
2053 For normal profiling, the BFD canonical symbol table is scanned.
2054 For line-by-line profiling, every
2055 text space address is examined, and a new symbol table entry
2056 gets created every time the line number changes.
2057 In either case, two passes are made through the symbol
2058 table---one to count the size of the symbol table required,
2059 and the other to actually read the symbols.  In between the
2060 two passes, a single array of type @code{Sym} is created of
2061 the appropriate length.
2062 Finally, @code{symtab.c:@-symtab_finalize}
2063 is called to sort the symbol table and remove duplicate entries
2064 (entries with the same memory address).
2066 The symbol table must be a contiguous array for two reasons.
2067 First, the @code{qsort} library function (which sorts an array)
2068 will be used to sort the symbol table.
2069 Also, the symbol lookup routine (@code{symtab.c:@-sym_lookup}),
2070 which finds symbols
2071 based on memory address, uses a binary search algorithm
2072 which requires the symbol table to be a sorted array.
2073 Function symbols are indicated with an @code{is_func} flag.
2074 Line number symbols have no special flags set.
2075 Additionally, a symbol can have an @code{is_static} flag
2076 to indicate that it is a local symbol.
2078 With the symbol table read, the symspecs can now be translated
2079 into Syms (@code{sym_ids.c:@-sym_id_parse}).  Remember that a single
2080 symspec can match multiple symbols.
2081 An array of symbol tables
2082 (@code{syms}) is created, each entry of which is a symbol table
2083 of Syms to be included or excluded from a particular listing.
2084 The master symbol table and the symspecs are examined by nested
2085 loops, and every symbol that matches a symspec is inserted
2086 into the appropriate syms table.  This is done twice, once to
2087 count the size of each required symbol table, and again to build
2088 the tables, which have been malloced between passes.
2089 From now on, to determine whether a symbol is on an include
2090 or exclude symspec list, @code{gprof} simply uses its
2091 standard symbol lookup routine on the appropriate table
2092 in the @code{syms} array.
2094 Now the profile data file(s) themselves are read
2095 (@code{gmon_io.c:@-gmon_out_read}),
2096 first by checking for a new-style @samp{gmon.out} header,
2097 then assuming this is an old-style BSD @samp{gmon.out}
2098 if the magic number test failed.
2100 New-style histogram records are read by @code{hist.c:@-hist_read_rec}.
2101 For the first histogram record, allocate a memory array to hold
2102 all the bins, and read them in.
2103 When multiple profile data files (or files with multiple histogram
2104 records) are read, the memory ranges of each pair of histogram records
2105 must be either equal, or non-overlapping.  For each pair of histogram
2106 records, the resolution (memory region size divided by the number of
2107 bins) must be the same.  The time unit must be the same for all
2108 histogram records. If the above containts are met, all histograms
2109 for the same memory range are merged.
2111 As each call graph record is read (@code{call_graph.c:@-cg_read_rec}),
2112 the parent and child addresses
2113 are matched to symbol table entries, and a call graph arc is
2114 created by @code{cg_arcs.c:@-arc_add}, unless the arc fails a symspec
2115 check against INCL_ARCS/EXCL_ARCS.  As each arc is added,
2116 a linked list is maintained of the parent's child arcs, and of the child's
2117 parent arcs.
2118 Both the child's call count and the arc's call count are
2119 incremented by the record's call count.
2121 Basic-block records are read (@code{basic_blocks.c:@-bb_read_rec}),
2122 but only if line-by-line profiling has been selected.
2123 Each basic-block address is matched to a corresponding line
2124 symbol in the symbol table, and an entry made in the symbol's
2125 bb_addr and bb_calls arrays.  Again, if multiple basic-block
2126 records are present for the same address, the call counts
2127 are cumulative.
2129 A gmon.sum file is dumped, if requested (@code{gmon_io.c:@-gmon_out_write}).
2131 If histograms were present in the data files, assign them to symbols
2132 (@code{hist.c:@-hist_assign_samples}) by iterating over all the sample
2133 bins and assigning them to symbols.  Since the symbol table
2134 is sorted in order of ascending memory addresses, we can
2135 simple follow along in the symbol table as we make our pass
2136 over the sample bins.
2137 This step includes a symspec check against INCL_FLAT/EXCL_FLAT.
2138 Depending on the histogram
2139 scale factor, a sample bin may span multiple symbols,
2140 in which case a fraction of the sample count is allocated
2141 to each symbol, proportional to the degree of overlap.
2142 This effect is rare for normal profiling, but overlaps
2143 are more common during line-by-line profiling, and can
2144 cause each of two adjacent lines to be credited with half
2145 a hit, for example.
2147 If call graph data is present, @code{cg_arcs.c:@-cg_assemble} is called.
2148 First, if @samp{-c} was specified, a machine-dependent
2149 routine (@code{find_call}) scans through each symbol's machine code,
2150 looking for subroutine call instructions, and adding them
2151 to the call graph with a zero call count.
2152 A topological sort is performed by depth-first numbering
2153 all the symbols (@code{cg_dfn.c:@-cg_dfn}), so that
2154 children are always numbered less than their parents,
2155 then making a array of pointers into the symbol table and sorting it into
2156 numerical order, which is reverse topological
2157 order (children appear before parents).
2158 Cycles are also detected at this point, all members
2159 of which are assigned the same topological number.
2160 Two passes are now made through this sorted array of symbol pointers.
2161 The first pass, from end to beginning (parents to children),
2162 computes the fraction of child time to propagate to each parent
2163 and a print flag.
2164 The print flag reflects symspec handling of INCL_GRAPH/EXCL_GRAPH,
2165 with a parent's include or exclude (print or no print) property
2166 being propagated to its children, unless they themselves explicitly appear
2167 in INCL_GRAPH or EXCL_GRAPH.
2168 A second pass, from beginning to end (children to parents) actually
2169 propagates the timings along the call graph, subject
2170 to a check against INCL_TIME/EXCL_TIME.
2171 With the print flag, fractions, and timings now stored in the symbol
2172 structures, the topological sort array is now discarded, and a
2173 new array of pointers is assembled, this time sorted by propagated time.
2175 Finally, print the various outputs the user requested, which is now fairly
2176 straightforward.  The call graph (@code{cg_print.c:@-cg_print}) and
2177 flat profile (@code{hist.c:@-hist_print}) are regurgitations of values
2178 already computed.  The annotated source listing
2179 (@code{basic_blocks.c:@-print_annotated_source}) uses basic-block
2180 information, if present, to label each line of code with call counts,
2181 otherwise only the function call counts are presented.
2183 The function ordering code is marginally well documented
2184 in the source code itself (@code{cg_print.c}).  Basically,
2185 the functions with the most use and the most parents are
2186 placed first, followed by other functions with the most use,
2187 followed by lower use functions, followed by unused functions
2188 at the end.
2190 @node Debugging
2191 @section Debugging @code{gprof}
2193 If @code{gprof} was compiled with debugging enabled,
2194 the @samp{-d} option triggers debugging output
2195 (to stdout) which can be helpful in understanding its operation.
2196 The debugging number specified is interpreted as a sum of the following
2197 options:
2199 @table @asis
2200 @item 2 - Topological sort
2201 Monitor depth-first numbering of symbols during call graph analysis
2202 @item 4 - Cycles
2203 Shows symbols as they are identified as cycle heads
2204 @item 16 - Tallying
2205 As the call graph arcs are read, show each arc and how
2206 the total calls to each function are tallied
2207 @item 32 - Call graph arc sorting
2208 Details sorting individual parents/children within each call graph entry
2209 @item 64 - Reading histogram and call graph records
2210 Shows address ranges of histograms as they are read, and each
2211 call graph arc
2212 @item 128 - Symbol table
2213 Reading, classifying, and sorting the symbol table from the object file.
2214 For line-by-line profiling (@samp{-l} option), also shows line numbers
2215 being assigned to memory addresses.
2216 @item 256 - Static call graph
2217 Trace operation of @samp{-c} option
2218 @item 512 - Symbol table and arc table lookups
2219 Detail operation of lookup routines
2220 @item 1024 - Call graph propagation
2221 Shows how function times are propagated along the call graph
2222 @item 2048 - Basic-blocks
2223 Shows basic-block records as they are read from profile data
2224 (only meaningful with @samp{-l} option)
2225 @item 4096 - Symspecs
2226 Shows symspec-to-symbol pattern matching operation
2227 @item 8192 - Annotate source
2228 Tracks operation of @samp{-A} option
2229 @end table
2231 @node GNU Free Documentation License
2232 @appendix GNU Free Documentation License
2233 @include fdl.texi
2235 @bye
2237 NEEDS AN INDEX
2239 -T - "traditional BSD style": How is it different?  Should the
2240 differences be documented?
2242 example flat file adds up to 100.01%...
2244 note: time estimates now only go out to one decimal place (0.0), where
2245 they used to extend two (78.67).