1 /* Target-dependent code for the Renesas RX for GDB, the GNU debugger.
3 Copyright (C) 2008-2022 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
24 #include "prologue-value.h"
27 #include "opcode/rx.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2/frame.h"
37 #include "target-descriptions.h"
44 #include "features/rx.c"
46 /* Certain important register numbers. */
67 RX_FRAME_TYPE_EXCEPTION
,
68 RX_FRAME_TYPE_FAST_INTERRUPT
71 /* Architecture specific data. */
72 struct rx_gdbarch_tdep
: gdbarch_tdep
74 /* The ELF header flags specify the multilib used. */
77 /* Type of PSW and BPSW. */
78 struct type
*rx_psw_type
= nullptr;
81 struct type
*rx_fpsw_type
= nullptr;
84 /* This structure holds the results of a prologue analysis. */
87 /* Frame type, either a normal frame or one of two types of exception
89 enum rx_frame_type frame_type
;
91 /* The offset from the frame base to the stack pointer --- always
94 Calling this a "size" is a bit misleading, but given that the
95 stack grows downwards, using offsets for everything keeps one
96 from going completely sign-crazy: you never change anything's
97 sign for an ADD instruction; always change the second operand's
98 sign for a SUB instruction; and everything takes care of
102 /* Non-zero if this function has initialized the frame pointer from
103 the stack pointer, zero otherwise. */
106 /* If has_frame_ptr is non-zero, this is the offset from the frame
107 base to where the frame pointer points. This is always zero or
109 int frame_ptr_offset
;
111 /* The address of the first instruction at which the frame has been
112 set up and the arguments are where the debug info says they are
113 --- as best as we can tell. */
114 CORE_ADDR prologue_end
;
116 /* reg_offset[R] is the offset from the CFA at which register R is
117 saved, or 1 if register R has not been saved. (Real values are
118 always zero or negative.) */
119 int reg_offset
[RX_NUM_REGS
];
122 /* RX register names */
123 static const char *const rx_register_names
[] = {
124 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
125 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
126 "usp", "isp", "psw", "pc", "intb", "bpsw","bpc","fintv",
131 /* Function for finding saved registers in a 'struct pv_area'; this
132 function is passed to pv_area::scan.
134 If VALUE is a saved register, ADDR says it was saved at a constant
135 offset from the frame base, and SIZE indicates that the whole
136 register was saved, record its offset. */
138 check_for_saved (void *result_untyped
, pv_t addr
, CORE_ADDR size
, pv_t value
)
140 struct rx_prologue
*result
= (struct rx_prologue
*) result_untyped
;
142 if (value
.kind
== pvk_register
144 && pv_is_register (addr
, RX_SP_REGNUM
)
145 && size
== register_size (target_gdbarch (), value
.reg
))
146 result
->reg_offset
[value
.reg
] = addr
.k
;
149 /* Define a "handle" struct for fetching the next opcode. */
150 struct rx_get_opcode_byte_handle
155 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
156 the memory address of the next byte to fetch. If successful,
157 the address in the handle is updated and the byte fetched is
158 returned as the value of the function. If not successful, -1
161 rx_get_opcode_byte (void *handle
)
163 struct rx_get_opcode_byte_handle
*opcdata
164 = (struct rx_get_opcode_byte_handle
*) handle
;
168 status
= target_read_code (opcdata
->pc
, &byte
, 1);
178 /* Analyze a prologue starting at START_PC, going no further than
179 LIMIT_PC. Fill in RESULT as appropriate. */
182 rx_analyze_prologue (CORE_ADDR start_pc
, CORE_ADDR limit_pc
,
183 enum rx_frame_type frame_type
,
184 struct rx_prologue
*result
)
186 CORE_ADDR pc
, next_pc
;
188 pv_t reg
[RX_NUM_REGS
];
189 CORE_ADDR after_last_frame_setup_insn
= start_pc
;
191 memset (result
, 0, sizeof (*result
));
193 result
->frame_type
= frame_type
;
195 for (rn
= 0; rn
< RX_NUM_REGS
; rn
++)
197 reg
[rn
] = pv_register (rn
, 0);
198 result
->reg_offset
[rn
] = 1;
201 pv_area
stack (RX_SP_REGNUM
, gdbarch_addr_bit (target_gdbarch ()));
203 if (frame_type
== RX_FRAME_TYPE_FAST_INTERRUPT
)
205 /* This code won't do anything useful at present, but this is
206 what happens for fast interrupts. */
207 reg
[RX_BPSW_REGNUM
] = reg
[RX_PSW_REGNUM
];
208 reg
[RX_BPC_REGNUM
] = reg
[RX_PC_REGNUM
];
212 /* When an exception occurs, the PSW is saved to the interrupt stack
214 if (frame_type
== RX_FRAME_TYPE_EXCEPTION
)
216 reg
[RX_SP_REGNUM
] = pv_add_constant (reg
[RX_SP_REGNUM
], -4);
217 stack
.store (reg
[RX_SP_REGNUM
], 4, reg
[RX_PSW_REGNUM
]);
220 /* The call instruction (or an exception/interrupt) has saved the return
221 address on the stack. */
222 reg
[RX_SP_REGNUM
] = pv_add_constant (reg
[RX_SP_REGNUM
], -4);
223 stack
.store (reg
[RX_SP_REGNUM
], 4, reg
[RX_PC_REGNUM
]);
229 while (pc
< limit_pc
)
232 struct rx_get_opcode_byte_handle opcode_handle
;
233 RX_Opcode_Decoded opc
;
235 opcode_handle
.pc
= pc
;
236 bytes_read
= rx_decode_opcode (pc
, &opc
, rx_get_opcode_byte
,
238 next_pc
= pc
+ bytes_read
;
240 if (opc
.id
== RXO_pushm
/* pushm r1, r2 */
241 && opc
.op
[1].type
== RX_Operand_Register
242 && opc
.op
[2].type
== RX_Operand_Register
)
249 for (r
= r2
; r
>= r1
; r
--)
251 reg
[RX_SP_REGNUM
] = pv_add_constant (reg
[RX_SP_REGNUM
], -4);
252 stack
.store (reg
[RX_SP_REGNUM
], 4, reg
[r
]);
254 after_last_frame_setup_insn
= next_pc
;
256 else if (opc
.id
== RXO_mov
/* mov.l rdst, rsrc */
257 && opc
.op
[0].type
== RX_Operand_Register
258 && opc
.op
[1].type
== RX_Operand_Register
259 && opc
.size
== RX_Long
)
263 rdst
= opc
.op
[0].reg
;
264 rsrc
= opc
.op
[1].reg
;
265 reg
[rdst
] = reg
[rsrc
];
266 if (rdst
== RX_FP_REGNUM
&& rsrc
== RX_SP_REGNUM
)
267 after_last_frame_setup_insn
= next_pc
;
269 else if (opc
.id
== RXO_mov
/* mov.l rsrc, [-SP] */
270 && opc
.op
[0].type
== RX_Operand_Predec
271 && opc
.op
[0].reg
== RX_SP_REGNUM
272 && opc
.op
[1].type
== RX_Operand_Register
273 && opc
.size
== RX_Long
)
277 rsrc
= opc
.op
[1].reg
;
278 reg
[RX_SP_REGNUM
] = pv_add_constant (reg
[RX_SP_REGNUM
], -4);
279 stack
.store (reg
[RX_SP_REGNUM
], 4, reg
[rsrc
]);
280 after_last_frame_setup_insn
= next_pc
;
282 else if (opc
.id
== RXO_add
/* add #const, rsrc, rdst */
283 && opc
.op
[0].type
== RX_Operand_Register
284 && opc
.op
[1].type
== RX_Operand_Immediate
285 && opc
.op
[2].type
== RX_Operand_Register
)
287 int rdst
= opc
.op
[0].reg
;
288 int addend
= opc
.op
[1].addend
;
289 int rsrc
= opc
.op
[2].reg
;
290 reg
[rdst
] = pv_add_constant (reg
[rsrc
], addend
);
291 /* Negative adjustments to the stack pointer or frame pointer
292 are (most likely) part of the prologue. */
293 if ((rdst
== RX_SP_REGNUM
|| rdst
== RX_FP_REGNUM
) && addend
< 0)
294 after_last_frame_setup_insn
= next_pc
;
296 else if (opc
.id
== RXO_mov
297 && opc
.op
[0].type
== RX_Operand_Indirect
298 && opc
.op
[1].type
== RX_Operand_Register
299 && opc
.size
== RX_Long
300 && (opc
.op
[0].reg
== RX_SP_REGNUM
301 || opc
.op
[0].reg
== RX_FP_REGNUM
)
302 && (RX_R1_REGNUM
<= opc
.op
[1].reg
303 && opc
.op
[1].reg
<= RX_R4_REGNUM
))
305 /* This moves an argument register to the stack. Don't
306 record it, but allow it to be a part of the prologue. */
308 else if (opc
.id
== RXO_branch
309 && opc
.op
[0].type
== RX_Operand_Immediate
310 && next_pc
< opc
.op
[0].addend
)
312 /* When a loop appears as the first statement of a function
313 body, gcc 4.x will use a BRA instruction to branch to the
314 loop condition checking code. This BRA instruction is
315 marked as part of the prologue. We therefore set next_pc
316 to this branch target and also stop the prologue scan.
317 The instructions at and beyond the branch target should
318 no longer be associated with the prologue.
320 Note that we only consider forward branches here. We
321 presume that a forward branch is being used to skip over
324 A backwards branch is covered by the default case below.
325 If we were to encounter a backwards branch, that would
326 most likely mean that we've scanned through a loop body.
327 We definitely want to stop the prologue scan when this
328 happens and that is precisely what is done by the default
331 after_last_frame_setup_insn
= opc
.op
[0].addend
;
332 break; /* Scan no further if we hit this case. */
336 /* Terminate the prologue scan. */
343 /* Is the frame size (offset, really) a known constant? */
344 if (pv_is_register (reg
[RX_SP_REGNUM
], RX_SP_REGNUM
))
345 result
->frame_size
= reg
[RX_SP_REGNUM
].k
;
347 /* Was the frame pointer initialized? */
348 if (pv_is_register (reg
[RX_FP_REGNUM
], RX_SP_REGNUM
))
350 result
->has_frame_ptr
= 1;
351 result
->frame_ptr_offset
= reg
[RX_FP_REGNUM
].k
;
354 /* Record where all the registers were saved. */
355 stack
.scan (check_for_saved
, (void *) result
);
357 result
->prologue_end
= after_last_frame_setup_insn
;
361 /* Implement the "skip_prologue" gdbarch method. */
363 rx_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
366 CORE_ADDR func_addr
, func_end
;
367 struct rx_prologue p
;
369 /* Try to find the extent of the function that contains PC. */
370 if (!find_pc_partial_function (pc
, &name
, &func_addr
, &func_end
))
373 /* The frame type doesn't matter here, since we only care about
374 where the prologue ends. We'll use RX_FRAME_TYPE_NORMAL. */
375 rx_analyze_prologue (pc
, func_end
, RX_FRAME_TYPE_NORMAL
, &p
);
376 return p
.prologue_end
;
379 /* Given a frame described by THIS_FRAME, decode the prologue of its
380 associated function if there is not cache entry as specified by
381 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
382 return that struct as the value of this function. */
384 static struct rx_prologue
*
385 rx_analyze_frame_prologue (struct frame_info
*this_frame
,
386 enum rx_frame_type frame_type
,
387 void **this_prologue_cache
)
389 if (!*this_prologue_cache
)
391 CORE_ADDR func_start
, stop_addr
;
393 *this_prologue_cache
= FRAME_OBSTACK_ZALLOC (struct rx_prologue
);
395 func_start
= get_frame_func (this_frame
);
396 stop_addr
= get_frame_pc (this_frame
);
398 /* If we couldn't find any function containing the PC, then
399 just initialize the prologue cache, but don't do anything. */
401 stop_addr
= func_start
;
403 rx_analyze_prologue (func_start
, stop_addr
, frame_type
,
404 (struct rx_prologue
*) *this_prologue_cache
);
407 return (struct rx_prologue
*) *this_prologue_cache
;
410 /* Determine type of frame by scanning the function for a return
413 static enum rx_frame_type
414 rx_frame_type (struct frame_info
*this_frame
, void **this_cache
)
417 CORE_ADDR pc
, start_pc
, lim_pc
;
419 struct rx_get_opcode_byte_handle opcode_handle
;
420 RX_Opcode_Decoded opc
;
422 gdb_assert (this_cache
!= NULL
);
424 /* If we have a cached value, return it. */
426 if (*this_cache
!= NULL
)
428 struct rx_prologue
*p
= (struct rx_prologue
*) *this_cache
;
430 return p
->frame_type
;
433 /* No cached value; scan the function. The frame type is cached in
434 rx_analyze_prologue / rx_analyze_frame_prologue. */
436 pc
= get_frame_pc (this_frame
);
438 /* Attempt to find the last address in the function. If it cannot
439 be determined, set the limit to be a short ways past the frame's
441 if (!find_pc_partial_function (pc
, &name
, &start_pc
, &lim_pc
))
446 opcode_handle
.pc
= pc
;
447 bytes_read
= rx_decode_opcode (pc
, &opc
, rx_get_opcode_byte
,
450 if (bytes_read
<= 0 || opc
.id
== RXO_rts
)
451 return RX_FRAME_TYPE_NORMAL
;
452 else if (opc
.id
== RXO_rtfi
)
453 return RX_FRAME_TYPE_FAST_INTERRUPT
;
454 else if (opc
.id
== RXO_rte
)
455 return RX_FRAME_TYPE_EXCEPTION
;
460 return RX_FRAME_TYPE_NORMAL
;
464 /* Given the next frame and a prologue cache, return this frame's
468 rx_frame_base (struct frame_info
*this_frame
, void **this_cache
)
470 enum rx_frame_type frame_type
= rx_frame_type (this_frame
, this_cache
);
471 struct rx_prologue
*p
472 = rx_analyze_frame_prologue (this_frame
, frame_type
, this_cache
);
474 /* In functions that use alloca, the distance between the stack
475 pointer and the frame base varies dynamically, so we can't use
476 the SP plus static information like prologue analysis to find the
477 frame base. However, such functions must have a frame pointer,
478 to be able to restore the SP on exit. So whenever we do have a
479 frame pointer, use that to find the base. */
480 if (p
->has_frame_ptr
)
482 CORE_ADDR fp
= get_frame_register_unsigned (this_frame
, RX_FP_REGNUM
);
483 return fp
- p
->frame_ptr_offset
;
487 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, RX_SP_REGNUM
);
488 return sp
- p
->frame_size
;
492 /* Implement the "frame_this_id" method for unwinding frames. */
495 rx_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
496 struct frame_id
*this_id
)
498 *this_id
= frame_id_build (rx_frame_base (this_frame
, this_cache
),
499 get_frame_func (this_frame
));
502 /* Implement the "frame_prev_register" method for unwinding frames. */
504 static struct value
*
505 rx_frame_prev_register (struct frame_info
*this_frame
, void **this_cache
,
508 enum rx_frame_type frame_type
= rx_frame_type (this_frame
, this_cache
);
509 struct rx_prologue
*p
510 = rx_analyze_frame_prologue (this_frame
, frame_type
, this_cache
);
511 CORE_ADDR frame_base
= rx_frame_base (this_frame
, this_cache
);
513 if (regnum
== RX_SP_REGNUM
)
515 if (frame_type
== RX_FRAME_TYPE_EXCEPTION
)
517 struct value
*psw_val
;
520 psw_val
= rx_frame_prev_register (this_frame
, this_cache
,
522 psw
= extract_unsigned_integer
523 (value_contents_all (psw_val
).data (), 4,
524 gdbarch_byte_order (get_frame_arch (this_frame
)));
526 if ((psw
& 0x20000 /* U bit */) != 0)
527 return rx_frame_prev_register (this_frame
, this_cache
,
530 /* Fall through for the case where U bit is zero. */
533 return frame_unwind_got_constant (this_frame
, regnum
, frame_base
);
536 if (frame_type
== RX_FRAME_TYPE_FAST_INTERRUPT
)
538 if (regnum
== RX_PC_REGNUM
)
539 return rx_frame_prev_register (this_frame
, this_cache
,
541 if (regnum
== RX_PSW_REGNUM
)
542 return rx_frame_prev_register (this_frame
, this_cache
,
546 /* If prologue analysis says we saved this register somewhere,
547 return a description of the stack slot holding it. */
548 if (p
->reg_offset
[regnum
] != 1)
549 return frame_unwind_got_memory (this_frame
, regnum
,
550 frame_base
+ p
->reg_offset
[regnum
]);
552 /* Otherwise, presume we haven't changed the value of this
553 register, and get it from the next frame. */
554 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
557 /* Return TRUE if the frame indicated by FRAME_TYPE is a normal frame. */
560 normal_frame_p (enum rx_frame_type frame_type
)
562 return (frame_type
== RX_FRAME_TYPE_NORMAL
);
565 /* Return TRUE if the frame indicated by FRAME_TYPE is an exception
569 exception_frame_p (enum rx_frame_type frame_type
)
571 return (frame_type
== RX_FRAME_TYPE_EXCEPTION
572 || frame_type
== RX_FRAME_TYPE_FAST_INTERRUPT
);
575 /* Common code used by both normal and exception frame sniffers. */
578 rx_frame_sniffer_common (const struct frame_unwind
*self
,
579 struct frame_info
*this_frame
,
581 int (*sniff_p
)(enum rx_frame_type
) )
583 gdb_assert (this_cache
!= NULL
);
585 if (*this_cache
== NULL
)
587 enum rx_frame_type frame_type
= rx_frame_type (this_frame
, this_cache
);
589 if (sniff_p (frame_type
))
591 /* The call below will fill in the cache, including the frame
593 (void) rx_analyze_frame_prologue (this_frame
, frame_type
, this_cache
);
602 struct rx_prologue
*p
= (struct rx_prologue
*) *this_cache
;
604 return sniff_p (p
->frame_type
);
608 /* Frame sniffer for normal (non-exception) frames. */
611 rx_frame_sniffer (const struct frame_unwind
*self
,
612 struct frame_info
*this_frame
,
615 return rx_frame_sniffer_common (self
, this_frame
, this_cache
,
619 /* Frame sniffer for exception frames. */
622 rx_exception_sniffer (const struct frame_unwind
*self
,
623 struct frame_info
*this_frame
,
626 return rx_frame_sniffer_common (self
, this_frame
, this_cache
,
630 /* Data structure for normal code using instruction-based prologue
633 static const struct frame_unwind rx_frame_unwind
= {
636 default_frame_unwind_stop_reason
,
638 rx_frame_prev_register
,
643 /* Data structure for exception code using instruction-based prologue
646 static const struct frame_unwind rx_exception_unwind
= {
648 /* SIGTRAMP_FRAME could be used here, but backtraces are less informative. */
650 default_frame_unwind_stop_reason
,
652 rx_frame_prev_register
,
657 /* Implement the "push_dummy_call" gdbarch method. */
659 rx_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
660 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
661 struct value
**args
, CORE_ADDR sp
,
662 function_call_return_method return_method
,
663 CORE_ADDR struct_addr
)
665 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
669 int num_register_candidate_args
;
671 struct type
*func_type
= value_type (function
);
673 /* Dereference function pointer types. */
674 while (func_type
->code () == TYPE_CODE_PTR
)
675 func_type
= TYPE_TARGET_TYPE (func_type
);
677 /* The end result had better be a function or a method. */
678 gdb_assert (func_type
->code () == TYPE_CODE_FUNC
679 || func_type
->code () == TYPE_CODE_METHOD
);
681 /* Functions with a variable number of arguments have all of their
682 variable arguments and the last non-variable argument passed
685 Otherwise, we can pass up to four arguments on the stack.
687 Once computed, we leave this value alone. I.e. we don't update
688 it in case of a struct return going in a register or an argument
689 requiring multiple registers, etc. We rely instead on the value
690 of the ``arg_reg'' variable to get these other details correct. */
692 if (func_type
->has_varargs ())
693 num_register_candidate_args
= func_type
->num_fields () - 1;
695 num_register_candidate_args
= 4;
697 /* We make two passes; the first does the stack allocation,
698 the second actually stores the arguments. */
699 for (write_pass
= 0; write_pass
<= 1; write_pass
++)
702 int arg_reg
= RX_R1_REGNUM
;
705 sp
= align_down (sp
- sp_off
, 4);
708 if (return_method
== return_method_struct
)
710 struct type
*return_type
= TYPE_TARGET_TYPE (func_type
);
712 gdb_assert (return_type
->code () == TYPE_CODE_STRUCT
713 || func_type
->code () == TYPE_CODE_UNION
);
715 if (TYPE_LENGTH (return_type
) > 16
716 || TYPE_LENGTH (return_type
) % 4 != 0)
719 regcache_cooked_write_unsigned (regcache
, RX_R15_REGNUM
,
724 /* Push the arguments. */
725 for (i
= 0; i
< nargs
; i
++)
727 struct value
*arg
= args
[i
];
728 const gdb_byte
*arg_bits
= value_contents_all (arg
).data ();
729 struct type
*arg_type
= check_typedef (value_type (arg
));
730 ULONGEST arg_size
= TYPE_LENGTH (arg_type
);
732 if (i
== 0 && struct_addr
!= 0
733 && return_method
!= return_method_struct
734 && arg_type
->code () == TYPE_CODE_PTR
735 && extract_unsigned_integer (arg_bits
, 4,
736 byte_order
) == struct_addr
)
738 /* This argument represents the address at which C++ (and
739 possibly other languages) store their return value.
740 Put this value in R15. */
742 regcache_cooked_write_unsigned (regcache
, RX_R15_REGNUM
,
745 else if (arg_type
->code () != TYPE_CODE_STRUCT
746 && arg_type
->code () != TYPE_CODE_UNION
749 /* Argument is a scalar. */
752 if (i
< num_register_candidate_args
753 && arg_reg
<= RX_R4_REGNUM
- 1)
755 /* If argument registers are going to be used to pass
756 an 8 byte scalar, the ABI specifies that two registers
757 must be available. */
760 regcache_cooked_write_unsigned (regcache
, arg_reg
,
761 extract_unsigned_integer
764 regcache_cooked_write_unsigned (regcache
,
766 extract_unsigned_integer
774 sp_off
= align_up (sp_off
, 4);
775 /* Otherwise, pass the 8 byte scalar on the stack. */
777 write_memory (sp
+ sp_off
, arg_bits
, 8);
785 gdb_assert (arg_size
<= 4);
788 extract_unsigned_integer (arg_bits
, arg_size
, byte_order
);
790 if (i
< num_register_candidate_args
791 && arg_reg
<= RX_R4_REGNUM
)
794 regcache_cooked_write_unsigned (regcache
, arg_reg
, u
);
801 if (func_type
->is_prototyped ()
802 && i
< func_type
->num_fields ())
804 struct type
*p_arg_type
=
805 func_type
->field (i
).type ();
806 p_arg_size
= TYPE_LENGTH (p_arg_type
);
809 sp_off
= align_up (sp_off
, p_arg_size
);
812 write_memory_unsigned_integer (sp
+ sp_off
,
813 p_arg_size
, byte_order
,
815 sp_off
+= p_arg_size
;
821 /* Argument is a struct or union. Pass as much of the struct
822 in registers, if possible. Pass the rest on the stack. */
825 if (i
< num_register_candidate_args
826 && arg_reg
<= RX_R4_REGNUM
827 && arg_size
<= 4 * (RX_R4_REGNUM
- arg_reg
+ 1)
828 && arg_size
% 4 == 0)
830 int len
= std::min (arg_size
, (ULONGEST
) 4);
833 regcache_cooked_write_unsigned (regcache
, arg_reg
,
834 extract_unsigned_integer
843 sp_off
= align_up (sp_off
, 4);
845 write_memory (sp
+ sp_off
, arg_bits
, arg_size
);
846 sp_off
+= align_up (arg_size
, 4);
854 /* Keep track of the stack address prior to pushing the return address.
855 This is the value that we'll return. */
858 /* Push the return address. */
860 write_memory_unsigned_integer (sp
, 4, byte_order
, bp_addr
);
862 /* Update the stack pointer. */
863 regcache_cooked_write_unsigned (regcache
, RX_SP_REGNUM
, sp
);
868 /* Implement the "return_value" gdbarch method. */
869 static enum return_value_convention
870 rx_return_value (struct gdbarch
*gdbarch
,
871 struct value
*function
,
872 struct type
*valtype
,
873 struct regcache
*regcache
,
874 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
876 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
877 ULONGEST valtype_len
= TYPE_LENGTH (valtype
);
879 if (TYPE_LENGTH (valtype
) > 16
880 || ((valtype
->code () == TYPE_CODE_STRUCT
881 || valtype
->code () == TYPE_CODE_UNION
)
882 && TYPE_LENGTH (valtype
) % 4 != 0))
883 return RETURN_VALUE_STRUCT_CONVENTION
;
888 int argreg
= RX_R1_REGNUM
;
891 while (valtype_len
> 0)
893 int len
= std::min (valtype_len
, (ULONGEST
) 4);
895 regcache_cooked_read_unsigned (regcache
, argreg
, &u
);
896 store_unsigned_integer (readbuf
+ offset
, len
, byte_order
, u
);
906 int argreg
= RX_R1_REGNUM
;
909 while (valtype_len
> 0)
911 int len
= std::min (valtype_len
, (ULONGEST
) 4);
913 u
= extract_unsigned_integer (writebuf
+ offset
, len
, byte_order
);
914 regcache_cooked_write_unsigned (regcache
, argreg
, u
);
921 return RETURN_VALUE_REGISTER_CONVENTION
;
924 constexpr gdb_byte rx_break_insn
[] = { 0x00 };
926 typedef BP_MANIPULATION (rx_break_insn
) rx_breakpoint
;
928 /* Implement the dwarf_reg_to_regnum" gdbarch method. */
931 rx_dwarf_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
933 if (0 <= reg
&& reg
<= 15)
936 return RX_PSW_REGNUM
;
943 /* Allocate and initialize a gdbarch object. */
944 static struct gdbarch
*
945 rx_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
947 struct gdbarch
*gdbarch
;
949 tdesc_arch_data_up tdesc_data
;
950 const struct target_desc
*tdesc
= info
.target_desc
;
952 /* Extract the elf_flags if available. */
953 if (info
.abfd
!= NULL
954 && bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
955 elf_flags
= elf_elfheader (info
.abfd
)->e_flags
;
960 /* Try to find the architecture in the list of already defined
962 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
964 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
966 rx_gdbarch_tdep
*tdep
967 = (rx_gdbarch_tdep
*) gdbarch_tdep (arches
->gdbarch
);
969 if (tdep
->elf_flags
!= elf_flags
)
972 return arches
->gdbarch
;
978 /* Check any target description for validity. */
979 if (tdesc_has_registers (tdesc
))
981 const struct tdesc_feature
*feature
;
984 feature
= tdesc_find_feature (tdesc
, "org.gnu.gdb.rx.core");
988 tdesc_data
= tdesc_data_alloc ();
989 for (int i
= 0; i
< RX_NUM_REGS
; i
++)
990 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
.get (), i
,
991 rx_register_names
[i
]);
998 gdb_assert(tdesc_data
!= NULL
);
1000 rx_gdbarch_tdep
*tdep
= new rx_gdbarch_tdep
;
1001 gdbarch
= gdbarch_alloc (&info
, tdep
);
1002 tdep
->elf_flags
= elf_flags
;
1004 set_gdbarch_num_regs (gdbarch
, RX_NUM_REGS
);
1005 tdesc_use_registers (gdbarch
, tdesc
, std::move (tdesc_data
));
1007 set_gdbarch_num_pseudo_regs (gdbarch
, 0);
1008 set_gdbarch_pc_regnum (gdbarch
, RX_PC_REGNUM
);
1009 set_gdbarch_sp_regnum (gdbarch
, RX_SP_REGNUM
);
1010 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1011 set_gdbarch_decr_pc_after_break (gdbarch
, 1);
1012 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, rx_breakpoint::kind_from_pc
);
1013 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, rx_breakpoint::bp_from_kind
);
1014 set_gdbarch_skip_prologue (gdbarch
, rx_skip_prologue
);
1016 /* Target builtin data types. */
1017 set_gdbarch_char_signed (gdbarch
, 0);
1018 set_gdbarch_short_bit (gdbarch
, 16);
1019 set_gdbarch_int_bit (gdbarch
, 32);
1020 set_gdbarch_long_bit (gdbarch
, 32);
1021 set_gdbarch_long_long_bit (gdbarch
, 64);
1022 set_gdbarch_ptr_bit (gdbarch
, 32);
1023 set_gdbarch_float_bit (gdbarch
, 32);
1024 set_gdbarch_float_format (gdbarch
, floatformats_ieee_single
);
1026 if (elf_flags
& E_FLAG_RX_64BIT_DOUBLES
)
1028 set_gdbarch_double_bit (gdbarch
, 64);
1029 set_gdbarch_long_double_bit (gdbarch
, 64);
1030 set_gdbarch_double_format (gdbarch
, floatformats_ieee_double
);
1031 set_gdbarch_long_double_format (gdbarch
, floatformats_ieee_double
);
1035 set_gdbarch_double_bit (gdbarch
, 32);
1036 set_gdbarch_long_double_bit (gdbarch
, 32);
1037 set_gdbarch_double_format (gdbarch
, floatformats_ieee_single
);
1038 set_gdbarch_long_double_format (gdbarch
, floatformats_ieee_single
);
1041 /* DWARF register mapping. */
1042 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, rx_dwarf_reg_to_regnum
);
1044 /* Frame unwinding. */
1045 frame_unwind_append_unwinder (gdbarch
, &rx_exception_unwind
);
1046 dwarf2_append_unwinders (gdbarch
);
1047 frame_unwind_append_unwinder (gdbarch
, &rx_frame_unwind
);
1049 /* Methods setting up a dummy call, and extracting the return value from
1051 set_gdbarch_push_dummy_call (gdbarch
, rx_push_dummy_call
);
1052 set_gdbarch_return_value (gdbarch
, rx_return_value
);
1054 /* Virtual tables. */
1055 set_gdbarch_vbit_in_delta (gdbarch
, 1);
1060 /* Register the above initialization routine. */
1062 void _initialize_rx_tdep ();
1064 _initialize_rx_tdep ()
1066 register_gdbarch_init (bfd_arch_rx
, rx_gdbarch_init
);
1067 initialize_tdesc_rx ();