1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
29 #include "gdbsupport/gdb_obstack.h"
32 #include "expression.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
42 #include "gdb-demangle.h"
44 #include "target-float.h"
47 #include "cp-support.h"
50 #include "stabsread.h"
52 /* See stabsread.h for these globals. */
54 const char *(*next_symbol_text_func
) (struct objfile
*);
55 unsigned char processing_gcc_compilation
;
57 struct symbol
*global_sym_chain
[HASHSIZE
];
58 struct pending_stabs
*global_stabs
;
59 int previous_stab_code
;
60 int *this_object_header_files
;
61 int n_this_object_header_files
;
62 int n_allocated_this_object_header_files
;
66 struct nextfield
*next
;
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
76 struct next_fnfieldlist
78 struct next_fnfieldlist
*next
;
79 struct fn_fieldlist fn_fieldlist
;
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
88 struct stab_field_info
90 struct nextfield
*list
= nullptr;
91 struct next_fnfieldlist
*fnlist
= nullptr;
97 read_one_struct_field (struct stab_field_info
*, const char **, const char *,
98 struct type
*, struct objfile
*);
100 static struct type
*dbx_alloc_type (int[2], struct objfile
*);
102 static long read_huge_number (const char **, int, int *, int);
104 static struct type
*error_type (const char **, struct objfile
*);
107 patch_block_stabs (struct pending
*, struct pending_stabs
*,
110 static void fix_common_block (struct symbol
*, CORE_ADDR
);
112 static int read_type_number (const char **, int *);
114 static struct type
*read_type (const char **, struct objfile
*);
116 static struct type
*read_range_type (const char **, int[2],
117 int, struct objfile
*);
119 static struct type
*read_sun_builtin_type (const char **,
120 int[2], struct objfile
*);
122 static struct type
*read_sun_floating_type (const char **, int[2],
125 static struct type
*read_enum_type (const char **, struct type
*, struct objfile
*);
127 static struct type
*rs6000_builtin_type (int, struct objfile
*);
130 read_member_functions (struct stab_field_info
*, const char **, struct type
*,
134 read_struct_fields (struct stab_field_info
*, const char **, struct type
*,
138 read_baseclasses (struct stab_field_info
*, const char **, struct type
*,
142 read_tilde_fields (struct stab_field_info
*, const char **, struct type
*,
145 static int attach_fn_fields_to_type (struct stab_field_info
*, struct type
*);
147 static int attach_fields_to_type (struct stab_field_info
*, struct type
*,
150 static struct type
*read_struct_type (const char **, struct type
*,
154 static struct type
*read_array_type (const char **, struct type
*,
157 static struct field
*read_args (const char **, int, struct objfile
*,
160 static void add_undefined_type (struct type
*, int[2]);
163 read_cpp_abbrev (struct stab_field_info
*, const char **, struct type
*,
166 static const char *find_name_end (const char *name
);
168 static int process_reference (const char **string
);
170 void stabsread_clear_cache (void);
172 static const char vptr_name
[] = "_vptr$";
173 static const char vb_name
[] = "_vb$";
176 invalid_cpp_abbrev_complaint (const char *arg1
)
178 complaint (_("invalid C++ abbreviation `%s'"), arg1
);
182 reg_value_complaint (int regnum
, int num_regs
, const char *sym
)
184 complaint (_("bad register number %d (max %d) in symbol %s"),
185 regnum
, num_regs
- 1, sym
);
189 stabs_general_complaint (const char *arg1
)
191 complaint ("%s", arg1
);
194 /* Make a list of forward references which haven't been defined. */
196 static struct type
**undef_types
;
197 static int undef_types_allocated
;
198 static int undef_types_length
;
199 static struct symbol
*current_symbol
= NULL
;
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
211 static struct nat
*noname_undefs
;
212 static int noname_undefs_allocated
;
213 static int noname_undefs_length
;
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
222 /* Vector of types defined so far, indexed by their type numbers.
223 (In newer sun systems, dbx uses a pair of numbers in parens,
224 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225 Then these numbers must be translated through the type_translations
226 hash table to get the index into the type vector.) */
228 static struct type
**type_vector
;
230 /* Number of elements allocated for type_vector currently. */
232 static int type_vector_length
;
234 /* Initial size of type vector. Is realloc'd larger if needed, and
235 realloc'd down to the size actually used, when completed. */
237 #define INITIAL_TYPE_VECTOR_LENGTH 160
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
247 static struct type
**
248 dbx_lookup_type (int typenums
[2], struct objfile
*objfile
)
250 int filenum
= typenums
[0];
251 int index
= typenums
[1];
254 struct header_file
*f
;
257 if (filenum
== -1) /* -1,-1 is for temporary types. */
260 if (filenum
< 0 || filenum
>= n_this_object_header_files
)
262 complaint (_("Invalid symbol data: type number "
263 "(%d,%d) out of range at symtab pos %d."),
264 filenum
, index
, symnum
);
272 /* Caller wants address of address of type. We think
273 that negative (rs6k builtin) types will never appear as
274 "lvalues", (nor should they), so we stuff the real type
275 pointer into a temp, and return its address. If referenced,
276 this will do the right thing. */
277 static struct type
*temp_type
;
279 temp_type
= rs6000_builtin_type (index
, objfile
);
283 /* Type is defined outside of header files.
284 Find it in this object file's type vector. */
285 if (index
>= type_vector_length
)
287 old_len
= type_vector_length
;
290 type_vector_length
= INITIAL_TYPE_VECTOR_LENGTH
;
291 type_vector
= XNEWVEC (struct type
*, type_vector_length
);
293 while (index
>= type_vector_length
)
295 type_vector_length
*= 2;
297 type_vector
= (struct type
**)
298 xrealloc ((char *) type_vector
,
299 (type_vector_length
* sizeof (struct type
*)));
300 memset (&type_vector
[old_len
], 0,
301 (type_vector_length
- old_len
) * sizeof (struct type
*));
303 return (&type_vector
[index
]);
307 real_filenum
= this_object_header_files
[filenum
];
309 if (real_filenum
>= N_HEADER_FILES (objfile
))
311 static struct type
*temp_type
;
313 warning (_("GDB internal error: bad real_filenum"));
316 temp_type
= objfile_type (objfile
)->builtin_error
;
320 f
= HEADER_FILES (objfile
) + real_filenum
;
322 f_orig_length
= f
->length
;
323 if (index
>= f_orig_length
)
325 while (index
>= f
->length
)
329 f
->vector
= (struct type
**)
330 xrealloc ((char *) f
->vector
, f
->length
* sizeof (struct type
*));
331 memset (&f
->vector
[f_orig_length
], 0,
332 (f
->length
- f_orig_length
) * sizeof (struct type
*));
334 return (&f
->vector
[index
]);
338 /* Make sure there is a type allocated for type numbers TYPENUMS
339 and return the type object.
340 This can create an empty (zeroed) type object.
341 TYPENUMS may be (-1, -1) to return a new type object that is not
342 put into the type vector, and so may not be referred to by number. */
345 dbx_alloc_type (int typenums
[2], struct objfile
*objfile
)
347 struct type
**type_addr
;
349 if (typenums
[0] == -1)
351 return (alloc_type (objfile
));
354 type_addr
= dbx_lookup_type (typenums
, objfile
);
356 /* If we are referring to a type not known at all yet,
357 allocate an empty type for it.
358 We will fill it in later if we find out how. */
361 *type_addr
= alloc_type (objfile
);
367 /* Allocate a floating-point type of size BITS. */
370 dbx_init_float_type (struct objfile
*objfile
, int bits
)
372 struct gdbarch
*gdbarch
= objfile
->arch ();
373 const struct floatformat
**format
;
376 format
= gdbarch_floatformat_for_type (gdbarch
, NULL
, bits
);
378 type
= init_float_type (objfile
, bits
, NULL
, format
);
380 type
= init_type (objfile
, TYPE_CODE_ERROR
, bits
, NULL
);
385 /* for all the stabs in a given stab vector, build appropriate types
386 and fix their symbols in given symbol vector. */
389 patch_block_stabs (struct pending
*symbols
, struct pending_stabs
*stabs
,
390 struct objfile
*objfile
)
399 /* for all the stab entries, find their corresponding symbols and
400 patch their types! */
402 for (ii
= 0; ii
< stabs
->count
; ++ii
)
404 name
= stabs
->stab
[ii
];
405 pp
= (char *) strchr (name
, ':');
406 gdb_assert (pp
); /* Must find a ':' or game's over. */
410 pp
= (char *) strchr (pp
, ':');
412 sym
= find_symbol_in_list (symbols
, name
, pp
- name
);
415 /* FIXME-maybe: it would be nice if we noticed whether
416 the variable was defined *anywhere*, not just whether
417 it is defined in this compilation unit. But neither
418 xlc or GCC seem to need such a definition, and until
419 we do psymtabs (so that the minimal symbols from all
420 compilation units are available now), I'm not sure
421 how to get the information. */
423 /* On xcoff, if a global is defined and never referenced,
424 ld will remove it from the executable. There is then
425 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
426 sym
= new (&objfile
->objfile_obstack
) symbol
;
427 sym
->set_domain (VAR_DOMAIN
);
428 sym
->set_aclass_index (LOC_OPTIMIZED_OUT
);
429 sym
->set_linkage_name
430 (obstack_strndup (&objfile
->objfile_obstack
, name
, pp
- name
));
432 if (*(pp
- 1) == 'F' || *(pp
- 1) == 'f')
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
438 (lookup_function_type (read_type (&pp
, objfile
)));
442 sym
->set_type (read_type (&pp
, objfile
));
444 add_symbol_to_list (sym
, get_global_symbols ());
449 if (*(pp
- 1) == 'F' || *(pp
- 1) == 'f')
452 (lookup_function_type (read_type (&pp
, objfile
)));
456 sym
->set_type (read_type (&pp
, objfile
));
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
470 Returns 0 for success, -1 for error. */
473 read_type_number (const char **pp
, int *typenums
)
480 typenums
[0] = read_huge_number (pp
, ',', &nbits
, 0);
483 typenums
[1] = read_huge_number (pp
, ')', &nbits
, 0);
490 typenums
[1] = read_huge_number (pp
, 0, &nbits
, 0);
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
517 static struct ref_map
*ref_map
;
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count
= 0;
522 /* Number of chunks malloced. */
523 static int ref_chunk
= 0;
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
529 stabsread_clear_cache (void)
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
540 ref_add (int refnum
, struct symbol
*sym
, const char *stabs
, CORE_ADDR value
)
544 if (refnum
>= ref_count
)
545 ref_count
= refnum
+ 1;
546 if (ref_count
> ref_chunk
* MAX_CHUNK_REFS
)
548 int new_slots
= ref_count
- ref_chunk
* MAX_CHUNK_REFS
;
549 int new_chunks
= new_slots
/ MAX_CHUNK_REFS
+ 1;
551 ref_map
= (struct ref_map
*)
552 xrealloc (ref_map
, REF_MAP_SIZE (ref_chunk
+ new_chunks
));
553 memset (ref_map
+ ref_chunk
* MAX_CHUNK_REFS
, 0,
554 new_chunks
* REF_CHUNK_SIZE
);
555 ref_chunk
+= new_chunks
;
557 ref_map
[refnum
].stabs
= stabs
;
558 ref_map
[refnum
].sym
= sym
;
559 ref_map
[refnum
].value
= value
;
562 /* Return defined sym for the reference REFNUM. */
564 ref_search (int refnum
)
566 if (refnum
< 0 || refnum
> ref_count
)
568 return ref_map
[refnum
].sym
;
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
575 process_reference (const char **string
)
583 /* Advance beyond the initial '#'. */
586 /* Read number as reference id. */
587 while (*p
&& isdigit (*p
))
589 refnum
= refnum
* 10 + *p
- '0';
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
600 symbol_reference_defined (const char **string
)
602 const char *p
= *string
;
605 refnum
= process_reference (&p
);
607 /* Defining symbols end in '='. */
610 /* Symbol is being defined here. */
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
624 stab_reg_to_regnum (struct symbol
*sym
, struct gdbarch
*gdbarch
)
626 int regno
= gdbarch_stab_reg_to_regnum (gdbarch
, sym
->value_longest ());
628 if (regno
< 0 || regno
>= gdbarch_num_cooked_regs (gdbarch
))
630 reg_value_complaint (regno
, gdbarch_num_cooked_regs (gdbarch
),
633 regno
= gdbarch_sp_regnum (gdbarch
); /* Known safe, though useless. */
639 static const struct symbol_register_ops stab_register_funcs
= {
643 /* The "aclass" indices for computed symbols. */
645 static int stab_register_index
;
646 static int stab_regparm_index
;
649 define_symbol (CORE_ADDR valu
, const char *string
, int desc
, int type
,
650 struct objfile
*objfile
)
652 struct gdbarch
*gdbarch
= objfile
->arch ();
654 const char *p
= find_name_end (string
);
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
666 /* Ignore syms with empty names. */
670 /* Ignore old-style symbols from cc -go. */
681 _("Bad stabs string '%s'"), string
);
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless
= (p
== string
|| ((string
[0] == ' ') && (string
[1] == ':')));
690 current_symbol
= sym
= new (&objfile
->objfile_obstack
) symbol
;
692 if (processing_gcc_compilation
)
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 sym
->set_line (desc
);
700 sym
->set_line (0); /* unknown */
703 sym
->set_language (get_current_subfile ()->language
,
704 &objfile
->objfile_obstack
);
706 if (is_cplus_marker (string
[0]))
708 /* Special GNU C++ names. */
712 sym
->set_linkage_name ("this");
715 case 'v': /* $vtbl_ptr_type */
719 sym
->set_linkage_name ("eh_throw");
723 /* This was an anonymous type that was never fixed up. */
727 complaint (_("Unknown C++ symbol name `%s'"),
729 goto normal
; /* Do *something* with it. */
735 gdb::unique_xmalloc_ptr
<char> new_name
;
737 if (sym
->language () == language_cplus
)
739 char *name
= (char *) alloca (p
- string
+ 1);
741 memcpy (name
, string
, p
- string
);
742 name
[p
- string
] = '\0';
743 new_name
= cp_canonicalize_string (name
);
745 if (new_name
!= nullptr)
746 sym
->compute_and_set_names (new_name
.get (), true, objfile
->per_bfd
);
748 sym
->compute_and_set_names (gdb::string_view (string
, p
- string
), true,
751 if (sym
->language () == language_cplus
)
752 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym
,
758 /* Determine the type of name being defined. */
760 /* Getting GDB to correctly skip the symbol on an undefined symbol
761 descriptor and not ever dump core is a very dodgy proposition if
762 we do things this way. I say the acorn RISC machine can just
763 fix their compiler. */
764 /* The Acorn RISC machine's compiler can put out locals that don't
765 start with "234=" or "(3,4)=", so assume anything other than the
766 deftypes we know how to handle is a local. */
767 if (!strchr ("cfFGpPrStTvVXCR", *p
))
769 if (isdigit (*p
) || *p
== '(' || *p
== '-')
778 /* c is a special case, not followed by a type-number.
779 SYMBOL:c=iVALUE for an integer constant symbol.
780 SYMBOL:c=rVALUE for a floating constant symbol.
781 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
782 e.g. "b:c=e6,0" for "const b = blob1"
783 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
786 sym
->set_aclass_index (LOC_CONST
);
787 sym
->set_type (error_type (&p
, objfile
));
788 sym
->set_domain (VAR_DOMAIN
);
789 add_symbol_to_list (sym
, get_file_symbols ());
798 struct type
*dbl_type
;
800 dbl_type
= objfile_type (objfile
)->builtin_double
;
802 = (gdb_byte
*) obstack_alloc (&objfile
->objfile_obstack
,
803 TYPE_LENGTH (dbl_type
));
805 target_float_from_string (dbl_valu
, dbl_type
, std::string (p
));
807 sym
->set_type (dbl_type
);
808 sym
->set_value_bytes (dbl_valu
);
809 sym
->set_aclass_index (LOC_CONST_BYTES
);
814 /* Defining integer constants this way is kind of silly,
815 since 'e' constants allows the compiler to give not
816 only the value, but the type as well. C has at least
817 int, long, unsigned int, and long long as constant
818 types; other languages probably should have at least
819 unsigned as well as signed constants. */
821 sym
->set_type (objfile_type (objfile
)->builtin_long
);
822 sym
->set_value_longest (atoi (p
));
823 sym
->set_aclass_index (LOC_CONST
);
829 sym
->set_type (objfile_type (objfile
)->builtin_char
);
830 sym
->set_value_longest (atoi (p
));
831 sym
->set_aclass_index (LOC_CONST
);
837 struct type
*range_type
;
840 gdb_byte
*string_local
= (gdb_byte
*) alloca (strlen (p
));
841 gdb_byte
*string_value
;
843 if (quote
!= '\'' && quote
!= '"')
845 sym
->set_aclass_index (LOC_CONST
);
846 sym
->set_type (error_type (&p
, objfile
));
847 sym
->set_domain (VAR_DOMAIN
);
848 add_symbol_to_list (sym
, get_file_symbols ());
852 /* Find matching quote, rejecting escaped quotes. */
853 while (*p
&& *p
!= quote
)
855 if (*p
== '\\' && p
[1] == quote
)
857 string_local
[ind
] = (gdb_byte
) quote
;
863 string_local
[ind
] = (gdb_byte
) (*p
);
870 sym
->set_aclass_index (LOC_CONST
);
871 sym
->set_type (error_type (&p
, objfile
));
872 sym
->set_domain (VAR_DOMAIN
);
873 add_symbol_to_list (sym
, get_file_symbols ());
877 /* NULL terminate the string. */
878 string_local
[ind
] = 0;
880 = create_static_range_type (NULL
,
881 objfile_type (objfile
)->builtin_int
,
884 (create_array_type (NULL
, objfile_type (objfile
)->builtin_char
,
887 = (gdb_byte
*) obstack_alloc (&objfile
->objfile_obstack
, ind
+ 1);
888 memcpy (string_value
, string_local
, ind
+ 1);
891 sym
->set_value_bytes (string_value
);
892 sym
->set_aclass_index (LOC_CONST_BYTES
);
897 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
898 can be represented as integral.
899 e.g. "b:c=e6,0" for "const b = blob1"
900 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
902 sym
->set_aclass_index (LOC_CONST
);
903 sym
->set_type (read_type (&p
, objfile
));
907 sym
->set_type (error_type (&p
, objfile
));
912 /* If the value is too big to fit in an int (perhaps because
913 it is unsigned), or something like that, we silently get
914 a bogus value. The type and everything else about it is
915 correct. Ideally, we should be using whatever we have
916 available for parsing unsigned and long long values,
918 sym
->set_value_longest (atoi (p
));
923 sym
->set_aclass_index (LOC_CONST
);
924 sym
->set_type (error_type (&p
, objfile
));
927 sym
->set_domain (VAR_DOMAIN
);
928 add_symbol_to_list (sym
, get_file_symbols ());
932 /* The name of a caught exception. */
933 sym
->set_type (read_type (&p
, objfile
));
934 sym
->set_aclass_index (LOC_LABEL
);
935 sym
->set_domain (VAR_DOMAIN
);
936 sym
->set_value_address (valu
);
937 add_symbol_to_list (sym
, get_local_symbols ());
941 /* A static function definition. */
942 sym
->set_type (read_type (&p
, objfile
));
943 sym
->set_aclass_index (LOC_BLOCK
);
944 sym
->set_domain (VAR_DOMAIN
);
945 add_symbol_to_list (sym
, get_file_symbols ());
946 /* fall into process_function_types. */
948 process_function_types
:
949 /* Function result types are described as the result type in stabs.
950 We need to convert this to the function-returning-type-X type
951 in GDB. E.g. "int" is converted to "function returning int". */
952 if (sym
->type ()->code () != TYPE_CODE_FUNC
)
953 sym
->set_type (lookup_function_type (sym
->type ()));
955 /* All functions in C++ have prototypes. Stabs does not offer an
956 explicit way to identify prototyped or unprototyped functions,
957 but both GCC and Sun CC emit stabs for the "call-as" type rather
958 than the "declared-as" type for unprototyped functions, so
959 we treat all functions as if they were prototyped. This is used
960 primarily for promotion when calling the function from GDB. */
961 sym
->type ()->set_is_prototyped (true);
963 /* fall into process_prototype_types. */
965 process_prototype_types
:
966 /* Sun acc puts declared types of arguments here. */
969 struct type
*ftype
= sym
->type ();
974 /* Obtain a worst case guess for the number of arguments
975 by counting the semicolons. */
982 /* Allocate parameter information fields and fill them in. */
985 TYPE_ALLOC (ftype
, nsemi
* sizeof (struct field
)));
990 /* A type number of zero indicates the start of varargs.
991 FIXME: GDB currently ignores vararg functions. */
992 if (p
[0] == '0' && p
[1] == '\0')
994 ptype
= read_type (&p
, objfile
);
996 /* The Sun compilers mark integer arguments, which should
997 be promoted to the width of the calling conventions, with
998 a type which references itself. This type is turned into
999 a TYPE_CODE_VOID type by read_type, and we have to turn
1000 it back into builtin_int here.
1001 FIXME: Do we need a new builtin_promoted_int_arg ? */
1002 if (ptype
->code () == TYPE_CODE_VOID
)
1003 ptype
= objfile_type (objfile
)->builtin_int
;
1004 ftype
->field (nparams
).set_type (ptype
);
1005 TYPE_FIELD_ARTIFICIAL (ftype
, nparams
++) = 0;
1007 ftype
->set_num_fields (nparams
);
1008 ftype
->set_is_prototyped (true);
1013 /* A global function definition. */
1014 sym
->set_type (read_type (&p
, objfile
));
1015 sym
->set_aclass_index (LOC_BLOCK
);
1016 sym
->set_domain (VAR_DOMAIN
);
1017 add_symbol_to_list (sym
, get_global_symbols ());
1018 goto process_function_types
;
1021 /* For a class G (global) symbol, it appears that the
1022 value is not correct. It is necessary to search for the
1023 corresponding linker definition to find the value.
1024 These definitions appear at the end of the namelist. */
1025 sym
->set_type (read_type (&p
, objfile
));
1026 sym
->set_aclass_index (LOC_STATIC
);
1027 sym
->set_domain (VAR_DOMAIN
);
1028 /* Don't add symbol references to global_sym_chain.
1029 Symbol references don't have valid names and wont't match up with
1030 minimal symbols when the global_sym_chain is relocated.
1031 We'll fixup symbol references when we fixup the defining symbol. */
1032 if (sym
->linkage_name () && sym
->linkage_name ()[0] != '#')
1034 i
= hashname (sym
->linkage_name ());
1035 sym
->set_value_chain (global_sym_chain
[i
]);
1036 global_sym_chain
[i
] = sym
;
1038 add_symbol_to_list (sym
, get_global_symbols ());
1041 /* This case is faked by a conditional above,
1042 when there is no code letter in the dbx data.
1043 Dbx data never actually contains 'l'. */
1046 sym
->set_type (read_type (&p
, objfile
));
1047 sym
->set_aclass_index (LOC_LOCAL
);
1048 sym
->set_value_longest (valu
);
1049 sym
->set_domain (VAR_DOMAIN
);
1050 add_symbol_to_list (sym
, get_local_symbols ());
1055 /* pF is a two-letter code that means a function parameter in Fortran.
1056 The type-number specifies the type of the return value.
1057 Translate it into a pointer-to-function type. */
1061 (lookup_pointer_type
1062 (lookup_function_type (read_type (&p
, objfile
))));
1065 sym
->set_type (read_type (&p
, objfile
));
1067 sym
->set_aclass_index (LOC_ARG
);
1068 sym
->set_value_longest (valu
);
1069 sym
->set_domain (VAR_DOMAIN
);
1070 sym
->set_is_argument (1);
1071 add_symbol_to_list (sym
, get_local_symbols ());
1073 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_BIG
)
1075 /* On little-endian machines, this crud is never necessary,
1076 and, if the extra bytes contain garbage, is harmful. */
1080 /* If it's gcc-compiled, if it says `short', believe it. */
1081 if (processing_gcc_compilation
1082 || gdbarch_believe_pcc_promotion (gdbarch
))
1085 if (!gdbarch_believe_pcc_promotion (gdbarch
))
1087 /* If PCC says a parameter is a short or a char, it is
1089 if (TYPE_LENGTH (sym
->type ())
1090 < gdbarch_int_bit (gdbarch
) / TARGET_CHAR_BIT
1091 && sym
->type ()->code () == TYPE_CODE_INT
)
1094 (sym
->type ()->is_unsigned ()
1095 ? objfile_type (objfile
)->builtin_unsigned_int
1096 : objfile_type (objfile
)->builtin_int
);
1103 /* acc seems to use P to declare the prototypes of functions that
1104 are referenced by this file. gdb is not prepared to deal
1105 with this extra information. FIXME, it ought to. */
1108 sym
->set_type (read_type (&p
, objfile
));
1109 goto process_prototype_types
;
1114 /* Parameter which is in a register. */
1115 sym
->set_type (read_type (&p
, objfile
));
1116 sym
->set_aclass_index (stab_register_index
);
1117 sym
->set_is_argument (1);
1118 sym
->set_value_longest (valu
);
1119 sym
->set_domain (VAR_DOMAIN
);
1120 add_symbol_to_list (sym
, get_local_symbols ());
1124 /* Register variable (either global or local). */
1125 sym
->set_type (read_type (&p
, objfile
));
1126 sym
->set_aclass_index (stab_register_index
);
1127 sym
->set_value_longest (valu
);
1128 sym
->set_domain (VAR_DOMAIN
);
1129 if (within_function
)
1131 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1132 the same name to represent an argument passed in a
1133 register. GCC uses 'P' for the same case. So if we find
1134 such a symbol pair we combine it into one 'P' symbol.
1135 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1136 the 'p' symbol even if it never saves the argument onto
1139 On most machines, we want to preserve both symbols, so
1140 that we can still get information about what is going on
1141 with the stack (VAX for computing args_printed, using
1142 stack slots instead of saved registers in backtraces,
1145 Note that this code illegally combines
1146 main(argc) struct foo argc; { register struct foo argc; }
1147 but this case is considered pathological and causes a warning
1148 from a decent compiler. */
1150 struct pending
*local_symbols
= *get_local_symbols ();
1152 && local_symbols
->nsyms
> 0
1153 && gdbarch_stabs_argument_has_addr (gdbarch
, sym
->type ()))
1155 struct symbol
*prev_sym
;
1157 prev_sym
= local_symbols
->symbol
[local_symbols
->nsyms
- 1];
1158 if ((prev_sym
->aclass () == LOC_REF_ARG
1159 || prev_sym
->aclass () == LOC_ARG
)
1160 && strcmp (prev_sym
->linkage_name (),
1161 sym
->linkage_name ()) == 0)
1163 prev_sym
->set_aclass_index (stab_register_index
);
1164 /* Use the type from the LOC_REGISTER; that is the type
1165 that is actually in that register. */
1166 prev_sym
->set_type (sym
->type ());
1167 prev_sym
->set_value_longest (sym
->value_longest ());
1172 add_symbol_to_list (sym
, get_local_symbols ());
1175 add_symbol_to_list (sym
, get_file_symbols ());
1179 /* Static symbol at top level of file. */
1180 sym
->set_type (read_type (&p
, objfile
));
1181 sym
->set_aclass_index (LOC_STATIC
);
1182 sym
->set_value_address (valu
);
1183 sym
->set_domain (VAR_DOMAIN
);
1184 add_symbol_to_list (sym
, get_file_symbols ());
1188 /* In Ada, there is no distinction between typedef and non-typedef;
1189 any type declaration implicitly has the equivalent of a typedef,
1190 and thus 't' is in fact equivalent to 'Tt'.
1192 Therefore, for Ada units, we check the character immediately
1193 before the 't', and if we do not find a 'T', then make sure to
1194 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1195 will be stored in the VAR_DOMAIN). If the symbol was indeed
1196 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1197 elsewhere, so we don't need to take care of that.
1199 This is important to do, because of forward references:
1200 The cleanup of undefined types stored in undef_types only uses
1201 STRUCT_DOMAIN symbols to perform the replacement. */
1202 synonym
= (sym
->language () == language_ada
&& p
[-2] != 'T');
1205 sym
->set_type (read_type (&p
, objfile
));
1207 /* For a nameless type, we don't want a create a symbol, thus we
1208 did not use `sym'. Return without further processing. */
1212 sym
->set_aclass_index (LOC_TYPEDEF
);
1213 sym
->set_value_longest (valu
);
1214 sym
->set_domain (VAR_DOMAIN
);
1215 /* C++ vagaries: we may have a type which is derived from
1216 a base type which did not have its name defined when the
1217 derived class was output. We fill in the derived class's
1218 base part member's name here in that case. */
1219 if (sym
->type ()->name () != NULL
)
1220 if ((sym
->type ()->code () == TYPE_CODE_STRUCT
1221 || sym
->type ()->code () == TYPE_CODE_UNION
)
1222 && TYPE_N_BASECLASSES (sym
->type ()))
1226 for (j
= TYPE_N_BASECLASSES (sym
->type ()) - 1; j
>= 0; j
--)
1227 if (TYPE_BASECLASS_NAME (sym
->type (), j
) == 0)
1228 sym
->type ()->field (j
).set_name
1229 (TYPE_BASECLASS (sym
->type (), j
)->name ());
1232 if (sym
->type ()->name () == NULL
)
1234 if ((sym
->type ()->code () == TYPE_CODE_PTR
1235 && strcmp (sym
->linkage_name (), vtbl_ptr_name
))
1236 || sym
->type ()->code () == TYPE_CODE_FUNC
)
1238 /* If we are giving a name to a type such as "pointer to
1239 foo" or "function returning foo", we better not set
1240 the TYPE_NAME. If the program contains "typedef char
1241 *caddr_t;", we don't want all variables of type char
1242 * to print as caddr_t. This is not just a
1243 consequence of GDB's type management; PCC and GCC (at
1244 least through version 2.4) both output variables of
1245 either type char * or caddr_t with the type number
1246 defined in the 't' symbol for caddr_t. If a future
1247 compiler cleans this up it GDB is not ready for it
1248 yet, but if it becomes ready we somehow need to
1249 disable this check (without breaking the PCC/GCC2.4
1254 Fortunately, this check seems not to be necessary
1255 for anything except pointers or functions. */
1256 /* ezannoni: 2000-10-26. This seems to apply for
1257 versions of gcc older than 2.8. This was the original
1258 problem: with the following code gdb would tell that
1259 the type for name1 is caddr_t, and func is char().
1261 typedef char *caddr_t;
1273 /* Pascal accepts names for pointer types. */
1274 if (get_current_subfile ()->language
== language_pascal
)
1275 sym
->type ()->set_name (sym
->linkage_name ());
1278 sym
->type ()->set_name (sym
->linkage_name ());
1281 add_symbol_to_list (sym
, get_file_symbols ());
1285 /* Create the STRUCT_DOMAIN clone. */
1286 struct symbol
*struct_sym
= new (&objfile
->objfile_obstack
) symbol
;
1289 struct_sym
->set_aclass_index (LOC_TYPEDEF
);
1290 struct_sym
->set_value_longest (valu
);
1291 struct_sym
->set_domain (STRUCT_DOMAIN
);
1292 if (sym
->type ()->name () == 0)
1293 sym
->type ()->set_name
1294 (obconcat (&objfile
->objfile_obstack
, sym
->linkage_name (),
1296 add_symbol_to_list (struct_sym
, get_file_symbols ());
1302 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1303 by 't' which means we are typedef'ing it as well. */
1304 synonym
= *p
== 't';
1309 sym
->set_type (read_type (&p
, objfile
));
1311 /* For a nameless type, we don't want a create a symbol, thus we
1312 did not use `sym'. Return without further processing. */
1316 sym
->set_aclass_index (LOC_TYPEDEF
);
1317 sym
->set_value_longest (valu
);
1318 sym
->set_domain (STRUCT_DOMAIN
);
1319 if (sym
->type ()->name () == 0)
1320 sym
->type ()->set_name
1321 (obconcat (&objfile
->objfile_obstack
, sym
->linkage_name (),
1323 add_symbol_to_list (sym
, get_file_symbols ());
1327 /* Clone the sym and then modify it. */
1328 struct symbol
*typedef_sym
= new (&objfile
->objfile_obstack
) symbol
;
1330 *typedef_sym
= *sym
;
1331 typedef_sym
->set_aclass_index (LOC_TYPEDEF
);
1332 typedef_sym
->set_value_longest (valu
);
1333 typedef_sym
->set_domain (VAR_DOMAIN
);
1334 if (sym
->type ()->name () == 0)
1335 sym
->type ()->set_name
1336 (obconcat (&objfile
->objfile_obstack
, sym
->linkage_name (),
1338 add_symbol_to_list (typedef_sym
, get_file_symbols ());
1343 /* Static symbol of local scope. */
1344 sym
->set_type (read_type (&p
, objfile
));
1345 sym
->set_aclass_index (LOC_STATIC
);
1346 sym
->set_value_address (valu
);
1347 sym
->set_domain (VAR_DOMAIN
);
1348 add_symbol_to_list (sym
, get_local_symbols ());
1352 /* Reference parameter */
1353 sym
->set_type (read_type (&p
, objfile
));
1354 sym
->set_aclass_index (LOC_REF_ARG
);
1355 sym
->set_is_argument (1);
1356 sym
->set_value_longest (valu
);
1357 sym
->set_domain (VAR_DOMAIN
);
1358 add_symbol_to_list (sym
, get_local_symbols ());
1362 /* Reference parameter which is in a register. */
1363 sym
->set_type (read_type (&p
, objfile
));
1364 sym
->set_aclass_index (stab_regparm_index
);
1365 sym
->set_is_argument (1);
1366 sym
->set_value_longest (valu
);
1367 sym
->set_domain (VAR_DOMAIN
);
1368 add_symbol_to_list (sym
, get_local_symbols ());
1372 /* This is used by Sun FORTRAN for "function result value".
1373 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1374 that Pascal uses it too, but when I tried it Pascal used
1375 "x:3" (local symbol) instead. */
1376 sym
->set_type (read_type (&p
, objfile
));
1377 sym
->set_aclass_index (LOC_LOCAL
);
1378 sym
->set_value_longest (valu
);
1379 sym
->set_domain (VAR_DOMAIN
);
1380 add_symbol_to_list (sym
, get_local_symbols ());
1384 sym
->set_type (error_type (&p
, objfile
));
1385 sym
->set_aclass_index (LOC_CONST
);
1386 sym
->set_value_longest (0);
1387 sym
->set_domain (VAR_DOMAIN
);
1388 add_symbol_to_list (sym
, get_file_symbols ());
1392 /* Some systems pass variables of certain types by reference instead
1393 of by value, i.e. they will pass the address of a structure (in a
1394 register or on the stack) instead of the structure itself. */
1396 if (gdbarch_stabs_argument_has_addr (gdbarch
, sym
->type ())
1397 && sym
->is_argument ())
1399 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1400 variables passed in a register). */
1401 if (sym
->aclass () == LOC_REGISTER
)
1402 sym
->set_aclass_index (LOC_REGPARM_ADDR
);
1403 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1404 and subsequent arguments on SPARC, for example). */
1405 else if (sym
->aclass () == LOC_ARG
)
1406 sym
->set_aclass_index (LOC_REF_ARG
);
1412 /* Skip rest of this symbol and return an error type.
1414 General notes on error recovery: error_type always skips to the
1415 end of the symbol (modulo cretinous dbx symbol name continuation).
1416 Thus code like this:
1418 if (*(*pp)++ != ';')
1419 return error_type (pp, objfile);
1421 is wrong because if *pp starts out pointing at '\0' (typically as the
1422 result of an earlier error), it will be incremented to point to the
1423 start of the next symbol, which might produce strange results, at least
1424 if you run off the end of the string table. Instead use
1427 return error_type (pp, objfile);
1433 foo = error_type (pp, objfile);
1437 And in case it isn't obvious, the point of all this hair is so the compiler
1438 can define new types and new syntaxes, and old versions of the
1439 debugger will be able to read the new symbol tables. */
1441 static struct type
*
1442 error_type (const char **pp
, struct objfile
*objfile
)
1444 complaint (_("couldn't parse type; debugger out of date?"));
1447 /* Skip to end of symbol. */
1448 while (**pp
!= '\0')
1453 /* Check for and handle cretinous dbx symbol name continuation! */
1454 if ((*pp
)[-1] == '\\' || (*pp
)[-1] == '?')
1456 *pp
= next_symbol_text (objfile
);
1463 return objfile_type (objfile
)->builtin_error
;
1467 /* Read type information or a type definition; return the type. Even
1468 though this routine accepts either type information or a type
1469 definition, the distinction is relevant--some parts of stabsread.c
1470 assume that type information starts with a digit, '-', or '(' in
1471 deciding whether to call read_type. */
1473 static struct type
*
1474 read_type (const char **pp
, struct objfile
*objfile
)
1476 struct type
*type
= 0;
1479 char type_descriptor
;
1481 /* Size in bits of type if specified by a type attribute, or -1 if
1482 there is no size attribute. */
1485 /* Used to distinguish string and bitstring from char-array and set. */
1488 /* Used to distinguish vector from array. */
1491 /* Read type number if present. The type number may be omitted.
1492 for instance in a two-dimensional array declared with type
1493 "ar1;1;10;ar1;1;10;4". */
1494 if ((**pp
>= '0' && **pp
<= '9')
1498 if (read_type_number (pp
, typenums
) != 0)
1499 return error_type (pp
, objfile
);
1503 /* Type is not being defined here. Either it already
1504 exists, or this is a forward reference to it.
1505 dbx_alloc_type handles both cases. */
1506 type
= dbx_alloc_type (typenums
, objfile
);
1508 /* If this is a forward reference, arrange to complain if it
1509 doesn't get patched up by the time we're done
1511 if (type
->code () == TYPE_CODE_UNDEF
)
1512 add_undefined_type (type
, typenums
);
1517 /* Type is being defined here. */
1519 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1524 /* 'typenums=' not present, type is anonymous. Read and return
1525 the definition, but don't put it in the type vector. */
1526 typenums
[0] = typenums
[1] = -1;
1531 type_descriptor
= (*pp
)[-1];
1532 switch (type_descriptor
)
1536 enum type_code code
;
1538 /* Used to index through file_symbols. */
1539 struct pending
*ppt
;
1542 /* Name including "struct", etc. */
1546 const char *from
, *p
, *q1
, *q2
;
1548 /* Set the type code according to the following letter. */
1552 code
= TYPE_CODE_STRUCT
;
1555 code
= TYPE_CODE_UNION
;
1558 code
= TYPE_CODE_ENUM
;
1562 /* Complain and keep going, so compilers can invent new
1563 cross-reference types. */
1564 complaint (_("Unrecognized cross-reference type `%c'"),
1566 code
= TYPE_CODE_STRUCT
;
1571 q1
= strchr (*pp
, '<');
1572 p
= strchr (*pp
, ':');
1574 return error_type (pp
, objfile
);
1575 if (q1
&& p
> q1
&& p
[1] == ':')
1577 int nesting_level
= 0;
1579 for (q2
= q1
; *q2
; q2
++)
1583 else if (*q2
== '>')
1585 else if (*q2
== ':' && nesting_level
== 0)
1590 return error_type (pp
, objfile
);
1593 if (get_current_subfile ()->language
== language_cplus
)
1595 char *name
= (char *) alloca (p
- *pp
+ 1);
1597 memcpy (name
, *pp
, p
- *pp
);
1598 name
[p
- *pp
] = '\0';
1600 gdb::unique_xmalloc_ptr
<char> new_name
= cp_canonicalize_string (name
);
1601 if (new_name
!= nullptr)
1602 type_name
= obstack_strdup (&objfile
->objfile_obstack
,
1605 if (type_name
== NULL
)
1607 char *to
= type_name
= (char *)
1608 obstack_alloc (&objfile
->objfile_obstack
, p
- *pp
+ 1);
1610 /* Copy the name. */
1617 /* Set the pointer ahead of the name which we just read, and
1622 /* If this type has already been declared, then reuse the same
1623 type, rather than allocating a new one. This saves some
1626 for (ppt
= *get_file_symbols (); ppt
; ppt
= ppt
->next
)
1627 for (i
= 0; i
< ppt
->nsyms
; i
++)
1629 struct symbol
*sym
= ppt
->symbol
[i
];
1631 if (sym
->aclass () == LOC_TYPEDEF
1632 && sym
->domain () == STRUCT_DOMAIN
1633 && (sym
->type ()->code () == code
)
1634 && strcmp (sym
->linkage_name (), type_name
) == 0)
1636 obstack_free (&objfile
->objfile_obstack
, type_name
);
1637 type
= sym
->type ();
1638 if (typenums
[0] != -1)
1639 *dbx_lookup_type (typenums
, objfile
) = type
;
1644 /* Didn't find the type to which this refers, so we must
1645 be dealing with a forward reference. Allocate a type
1646 structure for it, and keep track of it so we can
1647 fill in the rest of the fields when we get the full
1649 type
= dbx_alloc_type (typenums
, objfile
);
1650 type
->set_code (code
);
1651 type
->set_name (type_name
);
1652 INIT_CPLUS_SPECIFIC (type
);
1653 type
->set_is_stub (true);
1655 add_undefined_type (type
, typenums
);
1659 case '-': /* RS/6000 built-in type */
1673 /* We deal with something like t(1,2)=(3,4)=... which
1674 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1676 /* Allocate and enter the typedef type first.
1677 This handles recursive types. */
1678 type
= dbx_alloc_type (typenums
, objfile
);
1679 type
->set_code (TYPE_CODE_TYPEDEF
);
1681 struct type
*xtype
= read_type (pp
, objfile
);
1685 /* It's being defined as itself. That means it is "void". */
1686 type
->set_code (TYPE_CODE_VOID
);
1687 TYPE_LENGTH (type
) = 1;
1689 else if (type_size
>= 0 || is_string
)
1691 /* This is the absolute wrong way to construct types. Every
1692 other debug format has found a way around this problem and
1693 the related problems with unnecessarily stubbed types;
1694 someone motivated should attempt to clean up the issue
1695 here as well. Once a type pointed to has been created it
1696 should not be modified.
1698 Well, it's not *absolutely* wrong. Constructing recursive
1699 types (trees, linked lists) necessarily entails modifying
1700 types after creating them. Constructing any loop structure
1701 entails side effects. The Dwarf 2 reader does handle this
1702 more gracefully (it never constructs more than once
1703 instance of a type object, so it doesn't have to copy type
1704 objects wholesale), but it still mutates type objects after
1705 other folks have references to them.
1707 Keep in mind that this circularity/mutation issue shows up
1708 at the source language level, too: C's "incomplete types",
1709 for example. So the proper cleanup, I think, would be to
1710 limit GDB's type smashing to match exactly those required
1711 by the source language. So GDB could have a
1712 "complete_this_type" function, but never create unnecessary
1713 copies of a type otherwise. */
1714 replace_type (type
, xtype
);
1715 type
->set_name (NULL
);
1719 type
->set_target_is_stub (true);
1720 TYPE_TARGET_TYPE (type
) = xtype
;
1725 /* In the following types, we must be sure to overwrite any existing
1726 type that the typenums refer to, rather than allocating a new one
1727 and making the typenums point to the new one. This is because there
1728 may already be pointers to the existing type (if it had been
1729 forward-referenced), and we must change it to a pointer, function,
1730 reference, or whatever, *in-place*. */
1732 case '*': /* Pointer to another type */
1733 type1
= read_type (pp
, objfile
);
1734 type
= make_pointer_type (type1
, dbx_lookup_type (typenums
, objfile
));
1737 case '&': /* Reference to another type */
1738 type1
= read_type (pp
, objfile
);
1739 type
= make_reference_type (type1
, dbx_lookup_type (typenums
, objfile
),
1743 case 'f': /* Function returning another type */
1744 type1
= read_type (pp
, objfile
);
1745 type
= make_function_type (type1
, dbx_lookup_type (typenums
, objfile
));
1748 case 'g': /* Prototyped function. (Sun) */
1750 /* Unresolved questions:
1752 - According to Sun's ``STABS Interface Manual'', for 'f'
1753 and 'F' symbol descriptors, a `0' in the argument type list
1754 indicates a varargs function. But it doesn't say how 'g'
1755 type descriptors represent that info. Someone with access
1756 to Sun's toolchain should try it out.
1758 - According to the comment in define_symbol (search for
1759 `process_prototype_types:'), Sun emits integer arguments as
1760 types which ref themselves --- like `void' types. Do we
1761 have to deal with that here, too? Again, someone with
1762 access to Sun's toolchain should try it out and let us
1765 const char *type_start
= (*pp
) - 1;
1766 struct type
*return_type
= read_type (pp
, objfile
);
1767 struct type
*func_type
1768 = make_function_type (return_type
,
1769 dbx_lookup_type (typenums
, objfile
));
1772 struct type_list
*next
;
1776 while (**pp
&& **pp
!= '#')
1778 struct type
*arg_type
= read_type (pp
, objfile
);
1779 struct type_list
*newobj
= XALLOCA (struct type_list
);
1780 newobj
->type
= arg_type
;
1781 newobj
->next
= arg_types
;
1789 complaint (_("Prototyped function type didn't "
1790 "end arguments with `#':\n%s"),
1794 /* If there is just one argument whose type is `void', then
1795 that's just an empty argument list. */
1797 && ! arg_types
->next
1798 && arg_types
->type
->code () == TYPE_CODE_VOID
)
1801 func_type
->set_fields
1802 ((struct field
*) TYPE_ALLOC (func_type
,
1803 num_args
* sizeof (struct field
)));
1804 memset (func_type
->fields (), 0, num_args
* sizeof (struct field
));
1807 struct type_list
*t
;
1809 /* We stuck each argument type onto the front of the list
1810 when we read it, so the list is reversed. Build the
1811 fields array right-to-left. */
1812 for (t
= arg_types
, i
= num_args
- 1; t
; t
= t
->next
, i
--)
1813 func_type
->field (i
).set_type (t
->type
);
1815 func_type
->set_num_fields (num_args
);
1816 func_type
->set_is_prototyped (true);
1822 case 'k': /* Const qualifier on some type (Sun) */
1823 type
= read_type (pp
, objfile
);
1824 type
= make_cv_type (1, TYPE_VOLATILE (type
), type
,
1825 dbx_lookup_type (typenums
, objfile
));
1828 case 'B': /* Volatile qual on some type (Sun) */
1829 type
= read_type (pp
, objfile
);
1830 type
= make_cv_type (TYPE_CONST (type
), 1, type
,
1831 dbx_lookup_type (typenums
, objfile
));
1835 if (isdigit (**pp
) || **pp
== '(' || **pp
== '-')
1836 { /* Member (class & variable) type */
1837 /* FIXME -- we should be doing smash_to_XXX types here. */
1839 struct type
*domain
= read_type (pp
, objfile
);
1840 struct type
*memtype
;
1843 /* Invalid member type data format. */
1844 return error_type (pp
, objfile
);
1847 memtype
= read_type (pp
, objfile
);
1848 type
= dbx_alloc_type (typenums
, objfile
);
1849 smash_to_memberptr_type (type
, domain
, memtype
);
1852 /* type attribute */
1854 const char *attr
= *pp
;
1856 /* Skip to the semicolon. */
1857 while (**pp
!= ';' && **pp
!= '\0')
1860 return error_type (pp
, objfile
);
1862 ++ * pp
; /* Skip the semicolon. */
1866 case 's': /* Size attribute */
1867 type_size
= atoi (attr
+ 1);
1872 case 'S': /* String attribute */
1873 /* FIXME: check to see if following type is array? */
1877 case 'V': /* Vector attribute */
1878 /* FIXME: check to see if following type is array? */
1883 /* Ignore unrecognized type attributes, so future compilers
1884 can invent new ones. */
1892 case '#': /* Method (class & fn) type */
1893 if ((*pp
)[0] == '#')
1895 /* We'll get the parameter types from the name. */
1896 struct type
*return_type
;
1899 return_type
= read_type (pp
, objfile
);
1900 if (*(*pp
)++ != ';')
1901 complaint (_("invalid (minimal) member type "
1902 "data format at symtab pos %d."),
1904 type
= allocate_stub_method (return_type
);
1905 if (typenums
[0] != -1)
1906 *dbx_lookup_type (typenums
, objfile
) = type
;
1910 struct type
*domain
= read_type (pp
, objfile
);
1911 struct type
*return_type
;
1916 /* Invalid member type data format. */
1917 return error_type (pp
, objfile
);
1921 return_type
= read_type (pp
, objfile
);
1922 args
= read_args (pp
, ';', objfile
, &nargs
, &varargs
);
1924 return error_type (pp
, objfile
);
1925 type
= dbx_alloc_type (typenums
, objfile
);
1926 smash_to_method_type (type
, domain
, return_type
, args
,
1931 case 'r': /* Range type */
1932 type
= read_range_type (pp
, typenums
, type_size
, objfile
);
1933 if (typenums
[0] != -1)
1934 *dbx_lookup_type (typenums
, objfile
) = type
;
1939 /* Sun ACC builtin int type */
1940 type
= read_sun_builtin_type (pp
, typenums
, objfile
);
1941 if (typenums
[0] != -1)
1942 *dbx_lookup_type (typenums
, objfile
) = type
;
1946 case 'R': /* Sun ACC builtin float type */
1947 type
= read_sun_floating_type (pp
, typenums
, objfile
);
1948 if (typenums
[0] != -1)
1949 *dbx_lookup_type (typenums
, objfile
) = type
;
1952 case 'e': /* Enumeration type */
1953 type
= dbx_alloc_type (typenums
, objfile
);
1954 type
= read_enum_type (pp
, type
, objfile
);
1955 if (typenums
[0] != -1)
1956 *dbx_lookup_type (typenums
, objfile
) = type
;
1959 case 's': /* Struct type */
1960 case 'u': /* Union type */
1962 enum type_code type_code
= TYPE_CODE_UNDEF
;
1963 type
= dbx_alloc_type (typenums
, objfile
);
1964 switch (type_descriptor
)
1967 type_code
= TYPE_CODE_STRUCT
;
1970 type_code
= TYPE_CODE_UNION
;
1973 type
= read_struct_type (pp
, type
, type_code
, objfile
);
1977 case 'a': /* Array type */
1979 return error_type (pp
, objfile
);
1982 type
= dbx_alloc_type (typenums
, objfile
);
1983 type
= read_array_type (pp
, type
, objfile
);
1985 type
->set_code (TYPE_CODE_STRING
);
1987 make_vector_type (type
);
1990 case 'S': /* Set type */
1991 type1
= read_type (pp
, objfile
);
1992 type
= create_set_type (NULL
, type1
);
1993 if (typenums
[0] != -1)
1994 *dbx_lookup_type (typenums
, objfile
) = type
;
1998 --*pp
; /* Go back to the symbol in error. */
1999 /* Particularly important if it was \0! */
2000 return error_type (pp
, objfile
);
2005 warning (_("GDB internal error, type is NULL in stabsread.c."));
2006 return error_type (pp
, objfile
);
2009 /* Size specified in a type attribute overrides any other size. */
2010 if (type_size
!= -1)
2011 TYPE_LENGTH (type
) = (type_size
+ TARGET_CHAR_BIT
- 1) / TARGET_CHAR_BIT
;
2016 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2017 Return the proper type node for a given builtin type number. */
2019 static const struct objfile_key
<struct type
*,
2020 gdb::noop_deleter
<struct type
*>>
2021 rs6000_builtin_type_data
;
2023 static struct type
*
2024 rs6000_builtin_type (int typenum
, struct objfile
*objfile
)
2026 struct type
**negative_types
= rs6000_builtin_type_data
.get (objfile
);
2028 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2029 #define NUMBER_RECOGNIZED 34
2030 struct type
*rettype
= NULL
;
2032 if (typenum
>= 0 || typenum
< -NUMBER_RECOGNIZED
)
2034 complaint (_("Unknown builtin type %d"), typenum
);
2035 return objfile_type (objfile
)->builtin_error
;
2038 if (!negative_types
)
2040 /* This includes an empty slot for type number -0. */
2041 negative_types
= OBSTACK_CALLOC (&objfile
->objfile_obstack
,
2042 NUMBER_RECOGNIZED
+ 1, struct type
*);
2043 rs6000_builtin_type_data
.set (objfile
, negative_types
);
2046 if (negative_types
[-typenum
] != NULL
)
2047 return negative_types
[-typenum
];
2049 #if TARGET_CHAR_BIT != 8
2050 #error This code wrong for TARGET_CHAR_BIT not 8
2051 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2052 that if that ever becomes not true, the correct fix will be to
2053 make the size in the struct type to be in bits, not in units of
2060 /* The size of this and all the other types are fixed, defined
2061 by the debugging format. If there is a type called "int" which
2062 is other than 32 bits, then it should use a new negative type
2063 number (or avoid negative type numbers for that case).
2064 See stabs.texinfo. */
2065 rettype
= init_integer_type (objfile
, 32, 0, "int");
2068 rettype
= init_integer_type (objfile
, 8, 0, "char");
2069 rettype
->set_has_no_signedness (true);
2072 rettype
= init_integer_type (objfile
, 16, 0, "short");
2075 rettype
= init_integer_type (objfile
, 32, 0, "long");
2078 rettype
= init_integer_type (objfile
, 8, 1, "unsigned char");
2081 rettype
= init_integer_type (objfile
, 8, 0, "signed char");
2084 rettype
= init_integer_type (objfile
, 16, 1, "unsigned short");
2087 rettype
= init_integer_type (objfile
, 32, 1, "unsigned int");
2090 rettype
= init_integer_type (objfile
, 32, 1, "unsigned");
2093 rettype
= init_integer_type (objfile
, 32, 1, "unsigned long");
2096 rettype
= init_type (objfile
, TYPE_CODE_VOID
, TARGET_CHAR_BIT
, "void");
2099 /* IEEE single precision (32 bit). */
2100 rettype
= init_float_type (objfile
, 32, "float",
2101 floatformats_ieee_single
);
2104 /* IEEE double precision (64 bit). */
2105 rettype
= init_float_type (objfile
, 64, "double",
2106 floatformats_ieee_double
);
2109 /* This is an IEEE double on the RS/6000, and different machines with
2110 different sizes for "long double" should use different negative
2111 type numbers. See stabs.texinfo. */
2112 rettype
= init_float_type (objfile
, 64, "long double",
2113 floatformats_ieee_double
);
2116 rettype
= init_integer_type (objfile
, 32, 0, "integer");
2119 rettype
= init_boolean_type (objfile
, 32, 1, "boolean");
2122 rettype
= init_float_type (objfile
, 32, "short real",
2123 floatformats_ieee_single
);
2126 rettype
= init_float_type (objfile
, 64, "real",
2127 floatformats_ieee_double
);
2130 rettype
= init_type (objfile
, TYPE_CODE_ERROR
, 0, "stringptr");
2133 rettype
= init_character_type (objfile
, 8, 1, "character");
2136 rettype
= init_boolean_type (objfile
, 8, 1, "logical*1");
2139 rettype
= init_boolean_type (objfile
, 16, 1, "logical*2");
2142 rettype
= init_boolean_type (objfile
, 32, 1, "logical*4");
2145 rettype
= init_boolean_type (objfile
, 32, 1, "logical");
2148 /* Complex type consisting of two IEEE single precision values. */
2149 rettype
= init_complex_type ("complex",
2150 rs6000_builtin_type (12, objfile
));
2153 /* Complex type consisting of two IEEE double precision values. */
2154 rettype
= init_complex_type ("double complex",
2155 rs6000_builtin_type (13, objfile
));
2158 rettype
= init_integer_type (objfile
, 8, 0, "integer*1");
2161 rettype
= init_integer_type (objfile
, 16, 0, "integer*2");
2164 rettype
= init_integer_type (objfile
, 32, 0, "integer*4");
2167 rettype
= init_character_type (objfile
, 16, 0, "wchar");
2170 rettype
= init_integer_type (objfile
, 64, 0, "long long");
2173 rettype
= init_integer_type (objfile
, 64, 1, "unsigned long long");
2176 rettype
= init_integer_type (objfile
, 64, 1, "logical*8");
2179 rettype
= init_integer_type (objfile
, 64, 0, "integer*8");
2182 negative_types
[-typenum
] = rettype
;
2186 /* This page contains subroutines of read_type. */
2188 /* Wrapper around method_name_from_physname to flag a complaint
2189 if there is an error. */
2192 stabs_method_name_from_physname (const char *physname
)
2196 method_name
= method_name_from_physname (physname
);
2198 if (method_name
== NULL
)
2200 complaint (_("Method has bad physname %s\n"), physname
);
2207 /* Read member function stabs info for C++ classes. The form of each member
2210 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2212 An example with two member functions is:
2214 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2216 For the case of overloaded operators, the format is op$::*.funcs, where
2217 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2218 name (such as `+=') and `.' marks the end of the operator name.
2220 Returns 1 for success, 0 for failure. */
2223 read_member_functions (struct stab_field_info
*fip
, const char **pp
,
2224 struct type
*type
, struct objfile
*objfile
)
2231 struct next_fnfield
*next
;
2232 struct fn_field fn_field
;
2235 struct type
*look_ahead_type
;
2236 struct next_fnfieldlist
*new_fnlist
;
2237 struct next_fnfield
*new_sublist
;
2241 /* Process each list until we find something that is not a member function
2242 or find the end of the functions. */
2246 /* We should be positioned at the start of the function name.
2247 Scan forward to find the first ':' and if it is not the
2248 first of a "::" delimiter, then this is not a member function. */
2260 look_ahead_type
= NULL
;
2263 new_fnlist
= OBSTACK_ZALLOC (&fip
->obstack
, struct next_fnfieldlist
);
2265 if ((*pp
)[0] == 'o' && (*pp
)[1] == 'p' && is_cplus_marker ((*pp
)[2]))
2267 /* This is a completely wierd case. In order to stuff in the
2268 names that might contain colons (the usual name delimiter),
2269 Mike Tiemann defined a different name format which is
2270 signalled if the identifier is "op$". In that case, the
2271 format is "op$::XXXX." where XXXX is the name. This is
2272 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2273 /* This lets the user type "break operator+".
2274 We could just put in "+" as the name, but that wouldn't
2276 static char opname
[32] = "op$";
2277 char *o
= opname
+ 3;
2279 /* Skip past '::'. */
2282 STABS_CONTINUE (pp
, objfile
);
2288 main_fn_name
= savestring (opname
, o
- opname
);
2294 main_fn_name
= savestring (*pp
, p
- *pp
);
2295 /* Skip past '::'. */
2298 new_fnlist
->fn_fieldlist
.name
= main_fn_name
;
2302 new_sublist
= OBSTACK_ZALLOC (&fip
->obstack
, struct next_fnfield
);
2304 /* Check for and handle cretinous dbx symbol name continuation! */
2305 if (look_ahead_type
== NULL
)
2308 STABS_CONTINUE (pp
, objfile
);
2310 new_sublist
->fn_field
.type
= read_type (pp
, objfile
);
2313 /* Invalid symtab info for member function. */
2319 /* g++ version 1 kludge */
2320 new_sublist
->fn_field
.type
= look_ahead_type
;
2321 look_ahead_type
= NULL
;
2331 /* These are methods, not functions. */
2332 if (new_sublist
->fn_field
.type
->code () == TYPE_CODE_FUNC
)
2333 new_sublist
->fn_field
.type
->set_code (TYPE_CODE_METHOD
);
2335 /* If this is just a stub, then we don't have the real name here. */
2336 if (new_sublist
->fn_field
.type
->is_stub ())
2338 if (!TYPE_SELF_TYPE (new_sublist
->fn_field
.type
))
2339 set_type_self_type (new_sublist
->fn_field
.type
, type
);
2340 new_sublist
->fn_field
.is_stub
= 1;
2343 new_sublist
->fn_field
.physname
= savestring (*pp
, p
- *pp
);
2346 /* Set this member function's visibility fields. */
2349 case VISIBILITY_PRIVATE
:
2350 new_sublist
->fn_field
.is_private
= 1;
2352 case VISIBILITY_PROTECTED
:
2353 new_sublist
->fn_field
.is_protected
= 1;
2357 STABS_CONTINUE (pp
, objfile
);
2360 case 'A': /* Normal functions. */
2361 new_sublist
->fn_field
.is_const
= 0;
2362 new_sublist
->fn_field
.is_volatile
= 0;
2365 case 'B': /* `const' member functions. */
2366 new_sublist
->fn_field
.is_const
= 1;
2367 new_sublist
->fn_field
.is_volatile
= 0;
2370 case 'C': /* `volatile' member function. */
2371 new_sublist
->fn_field
.is_const
= 0;
2372 new_sublist
->fn_field
.is_volatile
= 1;
2375 case 'D': /* `const volatile' member function. */
2376 new_sublist
->fn_field
.is_const
= 1;
2377 new_sublist
->fn_field
.is_volatile
= 1;
2380 case '*': /* File compiled with g++ version 1 --
2386 complaint (_("const/volatile indicator missing, got '%c'"),
2396 /* virtual member function, followed by index.
2397 The sign bit is set to distinguish pointers-to-methods
2398 from virtual function indicies. Since the array is
2399 in words, the quantity must be shifted left by 1
2400 on 16 bit machine, and by 2 on 32 bit machine, forcing
2401 the sign bit out, and usable as a valid index into
2402 the array. Remove the sign bit here. */
2403 new_sublist
->fn_field
.voffset
=
2404 (0x7fffffff & read_huge_number (pp
, ';', &nbits
, 0)) + 2;
2408 STABS_CONTINUE (pp
, objfile
);
2409 if (**pp
== ';' || **pp
== '\0')
2411 /* Must be g++ version 1. */
2412 new_sublist
->fn_field
.fcontext
= 0;
2416 /* Figure out from whence this virtual function came.
2417 It may belong to virtual function table of
2418 one of its baseclasses. */
2419 look_ahead_type
= read_type (pp
, objfile
);
2422 /* g++ version 1 overloaded methods. */
2426 new_sublist
->fn_field
.fcontext
= look_ahead_type
;
2435 look_ahead_type
= NULL
;
2441 /* static member function. */
2443 int slen
= strlen (main_fn_name
);
2445 new_sublist
->fn_field
.voffset
= VOFFSET_STATIC
;
2447 /* For static member functions, we can't tell if they
2448 are stubbed, as they are put out as functions, and not as
2450 GCC v2 emits the fully mangled name if
2451 dbxout.c:flag_minimal_debug is not set, so we have to
2452 detect a fully mangled physname here and set is_stub
2453 accordingly. Fully mangled physnames in v2 start with
2454 the member function name, followed by two underscores.
2455 GCC v3 currently always emits stubbed member functions,
2456 but with fully mangled physnames, which start with _Z. */
2457 if (!(strncmp (new_sublist
->fn_field
.physname
,
2458 main_fn_name
, slen
) == 0
2459 && new_sublist
->fn_field
.physname
[slen
] == '_'
2460 && new_sublist
->fn_field
.physname
[slen
+ 1] == '_'))
2462 new_sublist
->fn_field
.is_stub
= 1;
2469 complaint (_("member function type missing, got '%c'"),
2471 /* Normal member function. */
2475 /* normal member function. */
2476 new_sublist
->fn_field
.voffset
= 0;
2477 new_sublist
->fn_field
.fcontext
= 0;
2481 new_sublist
->next
= sublist
;
2482 sublist
= new_sublist
;
2484 STABS_CONTINUE (pp
, objfile
);
2486 while (**pp
!= ';' && **pp
!= '\0');
2489 STABS_CONTINUE (pp
, objfile
);
2491 /* Skip GCC 3.X member functions which are duplicates of the callable
2492 constructor/destructor. */
2493 if (strcmp_iw (main_fn_name
, "__base_ctor ") == 0
2494 || strcmp_iw (main_fn_name
, "__base_dtor ") == 0
2495 || strcmp (main_fn_name
, "__deleting_dtor") == 0)
2497 xfree (main_fn_name
);
2501 int has_destructor
= 0, has_other
= 0;
2503 struct next_fnfield
*tmp_sublist
;
2505 /* Various versions of GCC emit various mostly-useless
2506 strings in the name field for special member functions.
2508 For stub methods, we need to defer correcting the name
2509 until we are ready to unstub the method, because the current
2510 name string is used by gdb_mangle_name. The only stub methods
2511 of concern here are GNU v2 operators; other methods have their
2512 names correct (see caveat below).
2514 For non-stub methods, in GNU v3, we have a complete physname.
2515 Therefore we can safely correct the name now. This primarily
2516 affects constructors and destructors, whose name will be
2517 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2518 operators will also have incorrect names; for instance,
2519 "operator int" will be named "operator i" (i.e. the type is
2522 For non-stub methods in GNU v2, we have no easy way to
2523 know if we have a complete physname or not. For most
2524 methods the result depends on the platform (if CPLUS_MARKER
2525 can be `$' or `.', it will use minimal debug information, or
2526 otherwise the full physname will be included).
2528 Rather than dealing with this, we take a different approach.
2529 For v3 mangled names, we can use the full physname; for v2,
2530 we use cplus_demangle_opname (which is actually v2 specific),
2531 because the only interesting names are all operators - once again
2532 barring the caveat below. Skip this process if any method in the
2533 group is a stub, to prevent our fouling up the workings of
2536 The caveat: GCC 2.95.x (and earlier?) put constructors and
2537 destructors in the same method group. We need to split this
2538 into two groups, because they should have different names.
2539 So for each method group we check whether it contains both
2540 routines whose physname appears to be a destructor (the physnames
2541 for and destructors are always provided, due to quirks in v2
2542 mangling) and routines whose physname does not appear to be a
2543 destructor. If so then we break up the list into two halves.
2544 Even if the constructors and destructors aren't in the same group
2545 the destructor will still lack the leading tilde, so that also
2548 So, to summarize what we expect and handle here:
2550 Given Given Real Real Action
2551 method name physname physname method name
2553 __opi [none] __opi__3Foo operator int opname
2555 Foo _._3Foo _._3Foo ~Foo separate and
2557 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2558 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2561 tmp_sublist
= sublist
;
2562 while (tmp_sublist
!= NULL
)
2564 if (tmp_sublist
->fn_field
.physname
[0] == '_'
2565 && tmp_sublist
->fn_field
.physname
[1] == 'Z')
2568 if (is_destructor_name (tmp_sublist
->fn_field
.physname
))
2573 tmp_sublist
= tmp_sublist
->next
;
2576 if (has_destructor
&& has_other
)
2578 struct next_fnfieldlist
*destr_fnlist
;
2579 struct next_fnfield
*last_sublist
;
2581 /* Create a new fn_fieldlist for the destructors. */
2583 destr_fnlist
= OBSTACK_ZALLOC (&fip
->obstack
,
2584 struct next_fnfieldlist
);
2586 destr_fnlist
->fn_fieldlist
.name
2587 = obconcat (&objfile
->objfile_obstack
, "~",
2588 new_fnlist
->fn_fieldlist
.name
, (char *) NULL
);
2590 destr_fnlist
->fn_fieldlist
.fn_fields
=
2591 XOBNEWVEC (&objfile
->objfile_obstack
,
2592 struct fn_field
, has_destructor
);
2593 memset (destr_fnlist
->fn_fieldlist
.fn_fields
, 0,
2594 sizeof (struct fn_field
) * has_destructor
);
2595 tmp_sublist
= sublist
;
2596 last_sublist
= NULL
;
2598 while (tmp_sublist
!= NULL
)
2600 if (!is_destructor_name (tmp_sublist
->fn_field
.physname
))
2602 tmp_sublist
= tmp_sublist
->next
;
2606 destr_fnlist
->fn_fieldlist
.fn_fields
[i
++]
2607 = tmp_sublist
->fn_field
;
2609 last_sublist
->next
= tmp_sublist
->next
;
2611 sublist
= tmp_sublist
->next
;
2612 last_sublist
= tmp_sublist
;
2613 tmp_sublist
= tmp_sublist
->next
;
2616 destr_fnlist
->fn_fieldlist
.length
= has_destructor
;
2617 destr_fnlist
->next
= fip
->fnlist
;
2618 fip
->fnlist
= destr_fnlist
;
2620 length
-= has_destructor
;
2624 /* v3 mangling prevents the use of abbreviated physnames,
2625 so we can do this here. There are stubbed methods in v3
2627 - in -gstabs instead of -gstabs+
2628 - or for static methods, which are output as a function type
2629 instead of a method type. */
2630 char *new_method_name
=
2631 stabs_method_name_from_physname (sublist
->fn_field
.physname
);
2633 if (new_method_name
!= NULL
2634 && strcmp (new_method_name
,
2635 new_fnlist
->fn_fieldlist
.name
) != 0)
2637 new_fnlist
->fn_fieldlist
.name
= new_method_name
;
2638 xfree (main_fn_name
);
2641 xfree (new_method_name
);
2643 else if (has_destructor
&& new_fnlist
->fn_fieldlist
.name
[0] != '~')
2645 new_fnlist
->fn_fieldlist
.name
=
2646 obconcat (&objfile
->objfile_obstack
,
2647 "~", main_fn_name
, (char *)NULL
);
2648 xfree (main_fn_name
);
2651 new_fnlist
->fn_fieldlist
.fn_fields
2652 = OBSTACK_CALLOC (&objfile
->objfile_obstack
, length
, fn_field
);
2653 for (i
= length
; (i
--, sublist
); sublist
= sublist
->next
)
2655 new_fnlist
->fn_fieldlist
.fn_fields
[i
] = sublist
->fn_field
;
2658 new_fnlist
->fn_fieldlist
.length
= length
;
2659 new_fnlist
->next
= fip
->fnlist
;
2660 fip
->fnlist
= new_fnlist
;
2667 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
2668 TYPE_FN_FIELDLISTS (type
) = (struct fn_fieldlist
*)
2669 TYPE_ALLOC (type
, sizeof (struct fn_fieldlist
) * nfn_fields
);
2670 memset (TYPE_FN_FIELDLISTS (type
), 0,
2671 sizeof (struct fn_fieldlist
) * nfn_fields
);
2672 TYPE_NFN_FIELDS (type
) = nfn_fields
;
2678 /* Special GNU C++ name.
2680 Returns 1 for success, 0 for failure. "failure" means that we can't
2681 keep parsing and it's time for error_type(). */
2684 read_cpp_abbrev (struct stab_field_info
*fip
, const char **pp
,
2685 struct type
*type
, struct objfile
*objfile
)
2690 struct type
*context
;
2700 /* At this point, *pp points to something like "22:23=*22...",
2701 where the type number before the ':' is the "context" and
2702 everything after is a regular type definition. Lookup the
2703 type, find it's name, and construct the field name. */
2705 context
= read_type (pp
, objfile
);
2709 case 'f': /* $vf -- a virtual function table pointer */
2710 name
= context
->name ();
2715 fip
->list
->field
.set_name (obconcat (&objfile
->objfile_obstack
,
2716 vptr_name
, name
, (char *) NULL
));
2719 case 'b': /* $vb -- a virtual bsomethingorother */
2720 name
= context
->name ();
2723 complaint (_("C++ abbreviated type name "
2724 "unknown at symtab pos %d"),
2728 fip
->list
->field
.set_name (obconcat (&objfile
->objfile_obstack
,
2729 vb_name
, name
, (char *) NULL
));
2733 invalid_cpp_abbrev_complaint (*pp
);
2734 fip
->list
->field
.set_name (obconcat (&objfile
->objfile_obstack
,
2735 "INVALID_CPLUSPLUS_ABBREV",
2740 /* At this point, *pp points to the ':'. Skip it and read the
2746 invalid_cpp_abbrev_complaint (*pp
);
2749 fip
->list
->field
.set_type (read_type (pp
, objfile
));
2751 (*pp
)++; /* Skip the comma. */
2758 fip
->list
->field
.set_loc_bitpos (read_huge_number (pp
, ';', &nbits
, 0));
2762 /* This field is unpacked. */
2763 FIELD_BITSIZE (fip
->list
->field
) = 0;
2764 fip
->list
->visibility
= VISIBILITY_PRIVATE
;
2768 invalid_cpp_abbrev_complaint (*pp
);
2769 /* We have no idea what syntax an unrecognized abbrev would have, so
2770 better return 0. If we returned 1, we would need to at least advance
2771 *pp to avoid an infinite loop. */
2778 read_one_struct_field (struct stab_field_info
*fip
, const char **pp
,
2779 const char *p
, struct type
*type
,
2780 struct objfile
*objfile
)
2782 struct gdbarch
*gdbarch
= objfile
->arch ();
2784 fip
->list
->field
.set_name
2785 (obstack_strndup (&objfile
->objfile_obstack
, *pp
, p
- *pp
));
2788 /* This means we have a visibility for a field coming. */
2792 fip
->list
->visibility
= *(*pp
)++;
2796 /* normal dbx-style format, no explicit visibility */
2797 fip
->list
->visibility
= VISIBILITY_PUBLIC
;
2800 fip
->list
->field
.set_type (read_type (pp
, objfile
));
2805 /* Possible future hook for nested types. */
2808 fip
->list
->field
.bitpos
= (long) -2; /* nested type */
2818 /* Static class member. */
2819 fip
->list
->field
.set_loc_physname (savestring (*pp
, p
- *pp
));
2823 else if (**pp
!= ',')
2825 /* Bad structure-type format. */
2826 stabs_general_complaint ("bad structure-type format");
2830 (*pp
)++; /* Skip the comma. */
2835 fip
->list
->field
.set_loc_bitpos (read_huge_number (pp
, ',', &nbits
, 0));
2838 stabs_general_complaint ("bad structure-type format");
2841 FIELD_BITSIZE (fip
->list
->field
) = read_huge_number (pp
, ';', &nbits
, 0);
2844 stabs_general_complaint ("bad structure-type format");
2849 if (fip
->list
->field
.loc_bitpos () == 0
2850 && FIELD_BITSIZE (fip
->list
->field
) == 0)
2852 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2853 it is a field which has been optimized out. The correct stab for
2854 this case is to use VISIBILITY_IGNORE, but that is a recent
2855 invention. (2) It is a 0-size array. For example
2856 union { int num; char str[0]; } foo. Printing _("<no value>" for
2857 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2858 will continue to work, and a 0-size array as a whole doesn't
2859 have any contents to print.
2861 I suspect this probably could also happen with gcc -gstabs (not
2862 -gstabs+) for static fields, and perhaps other C++ extensions.
2863 Hopefully few people use -gstabs with gdb, since it is intended
2864 for dbx compatibility. */
2866 /* Ignore this field. */
2867 fip
->list
->visibility
= VISIBILITY_IGNORE
;
2871 /* Detect an unpacked field and mark it as such.
2872 dbx gives a bit size for all fields.
2873 Note that forward refs cannot be packed,
2874 and treat enums as if they had the width of ints. */
2876 struct type
*field_type
= check_typedef (fip
->list
->field
.type ());
2878 if (field_type
->code () != TYPE_CODE_INT
2879 && field_type
->code () != TYPE_CODE_RANGE
2880 && field_type
->code () != TYPE_CODE_BOOL
2881 && field_type
->code () != TYPE_CODE_ENUM
)
2883 FIELD_BITSIZE (fip
->list
->field
) = 0;
2885 if ((FIELD_BITSIZE (fip
->list
->field
)
2886 == TARGET_CHAR_BIT
* TYPE_LENGTH (field_type
)
2887 || (field_type
->code () == TYPE_CODE_ENUM
2888 && FIELD_BITSIZE (fip
->list
->field
)
2889 == gdbarch_int_bit (gdbarch
))
2892 fip
->list
->field
.loc_bitpos () % 8 == 0)
2894 FIELD_BITSIZE (fip
->list
->field
) = 0;
2900 /* Read struct or class data fields. They have the form:
2902 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2904 At the end, we see a semicolon instead of a field.
2906 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2909 The optional VISIBILITY is one of:
2911 '/0' (VISIBILITY_PRIVATE)
2912 '/1' (VISIBILITY_PROTECTED)
2913 '/2' (VISIBILITY_PUBLIC)
2914 '/9' (VISIBILITY_IGNORE)
2916 or nothing, for C style fields with public visibility.
2918 Returns 1 for success, 0 for failure. */
2921 read_struct_fields (struct stab_field_info
*fip
, const char **pp
,
2922 struct type
*type
, struct objfile
*objfile
)
2925 struct nextfield
*newobj
;
2927 /* We better set p right now, in case there are no fields at all... */
2931 /* Read each data member type until we find the terminating ';' at the end of
2932 the data member list, or break for some other reason such as finding the
2933 start of the member function list. */
2934 /* Stab string for structure/union does not end with two ';' in
2935 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2937 while (**pp
!= ';' && **pp
!= '\0')
2939 STABS_CONTINUE (pp
, objfile
);
2940 /* Get space to record the next field's data. */
2941 newobj
= OBSTACK_ZALLOC (&fip
->obstack
, struct nextfield
);
2943 newobj
->next
= fip
->list
;
2946 /* Get the field name. */
2949 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2950 unless the CPLUS_MARKER is followed by an underscore, in
2951 which case it is just the name of an anonymous type, which we
2952 should handle like any other type name. */
2954 if (is_cplus_marker (p
[0]) && p
[1] != '_')
2956 if (!read_cpp_abbrev (fip
, pp
, type
, objfile
))
2961 /* Look for the ':' that separates the field name from the field
2962 values. Data members are delimited by a single ':', while member
2963 functions are delimited by a pair of ':'s. When we hit the member
2964 functions (if any), terminate scan loop and return. */
2966 while (*p
!= ':' && *p
!= '\0')
2973 /* Check to see if we have hit the member functions yet. */
2978 read_one_struct_field (fip
, pp
, p
, type
, objfile
);
2980 if (p
[0] == ':' && p
[1] == ':')
2982 /* (the deleted) chill the list of fields: the last entry (at
2983 the head) is a partially constructed entry which we now
2985 fip
->list
= fip
->list
->next
;
2990 /* The stabs for C++ derived classes contain baseclass information which
2991 is marked by a '!' character after the total size. This function is
2992 called when we encounter the baseclass marker, and slurps up all the
2993 baseclass information.
2995 Immediately following the '!' marker is the number of base classes that
2996 the class is derived from, followed by information for each base class.
2997 For each base class, there are two visibility specifiers, a bit offset
2998 to the base class information within the derived class, a reference to
2999 the type for the base class, and a terminating semicolon.
3001 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3003 Baseclass information marker __________________|| | | | | | |
3004 Number of baseclasses __________________________| | | | | | |
3005 Visibility specifiers (2) ________________________| | | | | |
3006 Offset in bits from start of class _________________| | | | |
3007 Type number for base class ___________________________| | | |
3008 Visibility specifiers (2) _______________________________| | |
3009 Offset in bits from start of class ________________________| |
3010 Type number of base class ____________________________________|
3012 Return 1 for success, 0 for (error-type-inducing) failure. */
3018 read_baseclasses (struct stab_field_info
*fip
, const char **pp
,
3019 struct type
*type
, struct objfile
*objfile
)
3022 struct nextfield
*newobj
;
3030 /* Skip the '!' baseclass information marker. */
3034 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
3038 TYPE_N_BASECLASSES (type
) = read_huge_number (pp
, ',', &nbits
, 0);
3044 /* Some stupid compilers have trouble with the following, so break
3045 it up into simpler expressions. */
3046 TYPE_FIELD_VIRTUAL_BITS (type
) = (B_TYPE
*)
3047 TYPE_ALLOC (type
, B_BYTES (TYPE_N_BASECLASSES (type
)));
3050 int num_bytes
= B_BYTES (TYPE_N_BASECLASSES (type
));
3053 pointer
= (char *) TYPE_ALLOC (type
, num_bytes
);
3054 TYPE_FIELD_VIRTUAL_BITS (type
) = (B_TYPE
*) pointer
;
3058 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type
), TYPE_N_BASECLASSES (type
));
3060 for (i
= 0; i
< TYPE_N_BASECLASSES (type
); i
++)
3062 newobj
= OBSTACK_ZALLOC (&fip
->obstack
, struct nextfield
);
3064 newobj
->next
= fip
->list
;
3066 FIELD_BITSIZE (newobj
->field
) = 0; /* This should be an unpacked
3069 STABS_CONTINUE (pp
, objfile
);
3073 /* Nothing to do. */
3076 SET_TYPE_FIELD_VIRTUAL (type
, i
);
3079 /* Unknown character. Complain and treat it as non-virtual. */
3081 complaint (_("Unknown virtual character `%c' for baseclass"),
3087 newobj
->visibility
= *(*pp
)++;
3088 switch (newobj
->visibility
)
3090 case VISIBILITY_PRIVATE
:
3091 case VISIBILITY_PROTECTED
:
3092 case VISIBILITY_PUBLIC
:
3095 /* Bad visibility format. Complain and treat it as
3098 complaint (_("Unknown visibility `%c' for baseclass"),
3099 newobj
->visibility
);
3100 newobj
->visibility
= VISIBILITY_PUBLIC
;
3107 /* The remaining value is the bit offset of the portion of the object
3108 corresponding to this baseclass. Always zero in the absence of
3109 multiple inheritance. */
3111 newobj
->field
.set_loc_bitpos (read_huge_number (pp
, ',', &nbits
, 0));
3116 /* The last piece of baseclass information is the type of the
3117 base class. Read it, and remember it's type name as this
3120 newobj
->field
.set_type (read_type (pp
, objfile
));
3121 newobj
->field
.set_name (newobj
->field
.type ()->name ());
3123 /* Skip trailing ';' and bump count of number of fields seen. */
3132 /* The tail end of stabs for C++ classes that contain a virtual function
3133 pointer contains a tilde, a %, and a type number.
3134 The type number refers to the base class (possibly this class itself) which
3135 contains the vtable pointer for the current class.
3137 This function is called when we have parsed all the method declarations,
3138 so we can look for the vptr base class info. */
3141 read_tilde_fields (struct stab_field_info
*fip
, const char **pp
,
3142 struct type
*type
, struct objfile
*objfile
)
3146 STABS_CONTINUE (pp
, objfile
);
3148 /* If we are positioned at a ';', then skip it. */
3158 if (**pp
== '=' || **pp
== '+' || **pp
== '-')
3160 /* Obsolete flags that used to indicate the presence
3161 of constructors and/or destructors. */
3165 /* Read either a '%' or the final ';'. */
3166 if (*(*pp
)++ == '%')
3168 /* The next number is the type number of the base class
3169 (possibly our own class) which supplies the vtable for
3170 this class. Parse it out, and search that class to find
3171 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3172 and TYPE_VPTR_FIELDNO. */
3177 t
= read_type (pp
, objfile
);
3179 while (*p
!= '\0' && *p
!= ';')
3185 /* Premature end of symbol. */
3189 set_type_vptr_basetype (type
, t
);
3190 if (type
== t
) /* Our own class provides vtbl ptr. */
3192 for (i
= t
->num_fields () - 1;
3193 i
>= TYPE_N_BASECLASSES (t
);
3196 const char *name
= t
->field (i
).name ();
3198 if (!strncmp (name
, vptr_name
, sizeof (vptr_name
) - 2)
3199 && is_cplus_marker (name
[sizeof (vptr_name
) - 2]))
3201 set_type_vptr_fieldno (type
, i
);
3205 /* Virtual function table field not found. */
3206 complaint (_("virtual function table pointer "
3207 "not found when defining class `%s'"),
3213 set_type_vptr_fieldno (type
, TYPE_VPTR_FIELDNO (t
));
3224 attach_fn_fields_to_type (struct stab_field_info
*fip
, struct type
*type
)
3228 for (n
= TYPE_NFN_FIELDS (type
);
3229 fip
->fnlist
!= NULL
;
3230 fip
->fnlist
= fip
->fnlist
->next
)
3232 --n
; /* Circumvent Sun3 compiler bug. */
3233 TYPE_FN_FIELDLISTS (type
)[n
] = fip
->fnlist
->fn_fieldlist
;
3238 /* Create the vector of fields, and record how big it is.
3239 We need this info to record proper virtual function table information
3240 for this class's virtual functions. */
3243 attach_fields_to_type (struct stab_field_info
*fip
, struct type
*type
,
3244 struct objfile
*objfile
)
3247 int non_public_fields
= 0;
3248 struct nextfield
*scan
;
3250 /* Count up the number of fields that we have, as well as taking note of
3251 whether or not there are any non-public fields, which requires us to
3252 allocate and build the private_field_bits and protected_field_bits
3255 for (scan
= fip
->list
; scan
!= NULL
; scan
= scan
->next
)
3258 if (scan
->visibility
!= VISIBILITY_PUBLIC
)
3260 non_public_fields
++;
3264 /* Now we know how many fields there are, and whether or not there are any
3265 non-public fields. Record the field count, allocate space for the
3266 array of fields, and create blank visibility bitfields if necessary. */
3268 type
->set_num_fields (nfields
);
3271 TYPE_ALLOC (type
, sizeof (struct field
) * nfields
));
3272 memset (type
->fields (), 0, sizeof (struct field
) * nfields
);
3274 if (non_public_fields
)
3276 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
3278 TYPE_FIELD_PRIVATE_BITS (type
) =
3279 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3280 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type
), nfields
);
3282 TYPE_FIELD_PROTECTED_BITS (type
) =
3283 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3284 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type
), nfields
);
3286 TYPE_FIELD_IGNORE_BITS (type
) =
3287 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3288 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type
), nfields
);
3291 /* Copy the saved-up fields into the field vector. Start from the
3292 head of the list, adding to the tail of the field array, so that
3293 they end up in the same order in the array in which they were
3294 added to the list. */
3296 while (nfields
-- > 0)
3298 type
->field (nfields
) = fip
->list
->field
;
3299 switch (fip
->list
->visibility
)
3301 case VISIBILITY_PRIVATE
:
3302 SET_TYPE_FIELD_PRIVATE (type
, nfields
);
3305 case VISIBILITY_PROTECTED
:
3306 SET_TYPE_FIELD_PROTECTED (type
, nfields
);
3309 case VISIBILITY_IGNORE
:
3310 SET_TYPE_FIELD_IGNORE (type
, nfields
);
3313 case VISIBILITY_PUBLIC
:
3317 /* Unknown visibility. Complain and treat it as public. */
3319 complaint (_("Unknown visibility `%c' for field"),
3320 fip
->list
->visibility
);
3324 fip
->list
= fip
->list
->next
;
3330 /* Complain that the compiler has emitted more than one definition for the
3331 structure type TYPE. */
3333 complain_about_struct_wipeout (struct type
*type
)
3335 const char *name
= "";
3336 const char *kind
= "";
3340 name
= type
->name ();
3341 switch (type
->code ())
3343 case TYPE_CODE_STRUCT
: kind
= "struct "; break;
3344 case TYPE_CODE_UNION
: kind
= "union "; break;
3345 case TYPE_CODE_ENUM
: kind
= "enum "; break;
3355 complaint (_("struct/union type gets multiply defined: %s%s"), kind
, name
);
3358 /* Set the length for all variants of a same main_type, which are
3359 connected in the closed chain.
3361 This is something that needs to be done when a type is defined *after*
3362 some cross references to this type have already been read. Consider
3363 for instance the following scenario where we have the following two
3366 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3367 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3369 A stubbed version of type dummy is created while processing the first
3370 stabs entry. The length of that type is initially set to zero, since
3371 it is unknown at this point. Also, a "constant" variation of type
3372 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3375 The second stabs entry allows us to replace the stubbed definition
3376 with the real definition. However, we still need to adjust the length
3377 of the "constant" variation of that type, as its length was left
3378 untouched during the main type replacement... */
3381 set_length_in_type_chain (struct type
*type
)
3383 struct type
*ntype
= TYPE_CHAIN (type
);
3385 while (ntype
!= type
)
3387 if (TYPE_LENGTH(ntype
) == 0)
3388 TYPE_LENGTH (ntype
) = TYPE_LENGTH (type
);
3390 complain_about_struct_wipeout (ntype
);
3391 ntype
= TYPE_CHAIN (ntype
);
3395 /* Read the description of a structure (or union type) and return an object
3396 describing the type.
3398 PP points to a character pointer that points to the next unconsumed token
3399 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3400 *PP will point to "4a:1,0,32;;".
3402 TYPE points to an incomplete type that needs to be filled in.
3404 OBJFILE points to the current objfile from which the stabs information is
3405 being read. (Note that it is redundant in that TYPE also contains a pointer
3406 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3409 static struct type
*
3410 read_struct_type (const char **pp
, struct type
*type
, enum type_code type_code
,
3411 struct objfile
*objfile
)
3413 struct stab_field_info fi
;
3415 /* When describing struct/union/class types in stabs, G++ always drops
3416 all qualifications from the name. So if you've got:
3417 struct A { ... struct B { ... }; ... };
3418 then G++ will emit stabs for `struct A::B' that call it simply
3419 `struct B'. Obviously, if you've got a real top-level definition for
3420 `struct B', or other nested definitions, this is going to cause
3423 Obviously, GDB can't fix this by itself, but it can at least avoid
3424 scribbling on existing structure type objects when new definitions
3426 if (! (type
->code () == TYPE_CODE_UNDEF
3427 || type
->is_stub ()))
3429 complain_about_struct_wipeout (type
);
3431 /* It's probably best to return the type unchanged. */
3435 INIT_CPLUS_SPECIFIC (type
);
3436 type
->set_code (type_code
);
3437 type
->set_is_stub (false);
3439 /* First comes the total size in bytes. */
3444 TYPE_LENGTH (type
) = read_huge_number (pp
, 0, &nbits
, 0);
3446 return error_type (pp
, objfile
);
3447 set_length_in_type_chain (type
);
3450 /* Now read the baseclasses, if any, read the regular C struct or C++
3451 class member fields, attach the fields to the type, read the C++
3452 member functions, attach them to the type, and then read any tilde
3453 field (baseclass specifier for the class holding the main vtable). */
3455 if (!read_baseclasses (&fi
, pp
, type
, objfile
)
3456 || !read_struct_fields (&fi
, pp
, type
, objfile
)
3457 || !attach_fields_to_type (&fi
, type
, objfile
)
3458 || !read_member_functions (&fi
, pp
, type
, objfile
)
3459 || !attach_fn_fields_to_type (&fi
, type
)
3460 || !read_tilde_fields (&fi
, pp
, type
, objfile
))
3462 type
= error_type (pp
, objfile
);
3468 /* Read a definition of an array type,
3469 and create and return a suitable type object.
3470 Also creates a range type which represents the bounds of that
3473 static struct type
*
3474 read_array_type (const char **pp
, struct type
*type
,
3475 struct objfile
*objfile
)
3477 struct type
*index_type
, *element_type
, *range_type
;
3482 /* Format of an array type:
3483 "ar<index type>;lower;upper;<array_contents_type>".
3484 OS9000: "arlower,upper;<array_contents_type>".
3486 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3487 for these, produce a type like float[][]. */
3490 index_type
= read_type (pp
, objfile
);
3492 /* Improper format of array type decl. */
3493 return error_type (pp
, objfile
);
3497 if (!(**pp
>= '0' && **pp
<= '9') && **pp
!= '-')
3502 lower
= read_huge_number (pp
, ';', &nbits
, 0);
3505 return error_type (pp
, objfile
);
3507 if (!(**pp
>= '0' && **pp
<= '9') && **pp
!= '-')
3512 upper
= read_huge_number (pp
, ';', &nbits
, 0);
3514 return error_type (pp
, objfile
);
3516 element_type
= read_type (pp
, objfile
);
3525 create_static_range_type (NULL
, index_type
, lower
, upper
);
3526 type
= create_array_type (type
, element_type
, range_type
);
3532 /* Read a definition of an enumeration type,
3533 and create and return a suitable type object.
3534 Also defines the symbols that represent the values of the type. */
3536 static struct type
*
3537 read_enum_type (const char **pp
, struct type
*type
,
3538 struct objfile
*objfile
)
3540 struct gdbarch
*gdbarch
= objfile
->arch ();
3546 struct pending
**symlist
;
3547 struct pending
*osyms
, *syms
;
3550 int unsigned_enum
= 1;
3553 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3554 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3555 to do? For now, force all enum values to file scope. */
3556 if (within_function
)
3557 symlist
= get_local_symbols ();
3560 symlist
= get_file_symbols ();
3562 o_nsyms
= osyms
? osyms
->nsyms
: 0;
3564 /* The aix4 compiler emits an extra field before the enum members;
3565 my guess is it's a type of some sort. Just ignore it. */
3568 /* Skip over the type. */
3572 /* Skip over the colon. */
3576 /* Read the value-names and their values.
3577 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3578 A semicolon or comma instead of a NAME means the end. */
3579 while (**pp
&& **pp
!= ';' && **pp
!= ',')
3581 STABS_CONTINUE (pp
, objfile
);
3585 name
= obstack_strndup (&objfile
->objfile_obstack
, *pp
, p
- *pp
);
3587 n
= read_huge_number (pp
, ',', &nbits
, 0);
3589 return error_type (pp
, objfile
);
3591 sym
= new (&objfile
->objfile_obstack
) symbol
;
3592 sym
->set_linkage_name (name
);
3593 sym
->set_language (get_current_subfile ()->language
,
3594 &objfile
->objfile_obstack
);
3595 sym
->set_aclass_index (LOC_CONST
);
3596 sym
->set_domain (VAR_DOMAIN
);
3597 sym
->set_value_longest (n
);
3600 add_symbol_to_list (sym
, symlist
);
3605 (*pp
)++; /* Skip the semicolon. */
3607 /* Now fill in the fields of the type-structure. */
3609 TYPE_LENGTH (type
) = gdbarch_int_bit (gdbarch
) / HOST_CHAR_BIT
;
3610 set_length_in_type_chain (type
);
3611 type
->set_code (TYPE_CODE_ENUM
);
3612 type
->set_is_stub (false);
3614 type
->set_is_unsigned (true);
3615 type
->set_num_fields (nsyms
);
3618 TYPE_ALLOC (type
, sizeof (struct field
) * nsyms
));
3619 memset (type
->fields (), 0, sizeof (struct field
) * nsyms
);
3621 /* Find the symbols for the values and put them into the type.
3622 The symbols can be found in the symlist that we put them on
3623 to cause them to be defined. osyms contains the old value
3624 of that symlist; everything up to there was defined by us. */
3625 /* Note that we preserve the order of the enum constants, so
3626 that in something like "enum {FOO, LAST_THING=FOO}" we print
3627 FOO, not LAST_THING. */
3629 for (syms
= *symlist
, n
= nsyms
- 1; syms
; syms
= syms
->next
)
3631 int last
= syms
== osyms
? o_nsyms
: 0;
3632 int j
= syms
->nsyms
;
3634 for (; --j
>= last
; --n
)
3636 struct symbol
*xsym
= syms
->symbol
[j
];
3638 xsym
->set_type (type
);
3639 type
->field (n
).set_name (xsym
->linkage_name ());
3640 type
->field (n
).set_loc_enumval (xsym
->value_longest ());
3641 TYPE_FIELD_BITSIZE (type
, n
) = 0;
3650 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3651 typedefs in every file (for int, long, etc):
3653 type = b <signed> <width> <format type>; <offset>; <nbits>
3655 optional format type = c or b for char or boolean.
3656 offset = offset from high order bit to start bit of type.
3657 width is # bytes in object of this type, nbits is # bits in type.
3659 The width/offset stuff appears to be for small objects stored in
3660 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3663 static struct type
*
3664 read_sun_builtin_type (const char **pp
, int typenums
[2], struct objfile
*objfile
)
3669 int boolean_type
= 0;
3680 return error_type (pp
, objfile
);
3684 /* For some odd reason, all forms of char put a c here. This is strange
3685 because no other type has this honor. We can safely ignore this because
3686 we actually determine 'char'acterness by the number of bits specified in
3688 Boolean forms, e.g Fortran logical*X, put a b here. */
3692 else if (**pp
== 'b')
3698 /* The first number appears to be the number of bytes occupied
3699 by this type, except that unsigned short is 4 instead of 2.
3700 Since this information is redundant with the third number,
3701 we will ignore it. */
3702 read_huge_number (pp
, ';', &nbits
, 0);
3704 return error_type (pp
, objfile
);
3706 /* The second number is always 0, so ignore it too. */
3707 read_huge_number (pp
, ';', &nbits
, 0);
3709 return error_type (pp
, objfile
);
3711 /* The third number is the number of bits for this type. */
3712 type_bits
= read_huge_number (pp
, 0, &nbits
, 0);
3714 return error_type (pp
, objfile
);
3715 /* The type *should* end with a semicolon. If it are embedded
3716 in a larger type the semicolon may be the only way to know where
3717 the type ends. If this type is at the end of the stabstring we
3718 can deal with the omitted semicolon (but we don't have to like
3719 it). Don't bother to complain(), Sun's compiler omits the semicolon
3726 struct type
*type
= init_type (objfile
, TYPE_CODE_VOID
,
3727 TARGET_CHAR_BIT
, NULL
);
3729 type
->set_is_unsigned (true);
3735 return init_boolean_type (objfile
, type_bits
, unsigned_type
, NULL
);
3737 return init_integer_type (objfile
, type_bits
, unsigned_type
, NULL
);
3740 static struct type
*
3741 read_sun_floating_type (const char **pp
, int typenums
[2],
3742 struct objfile
*objfile
)
3747 struct type
*rettype
;
3749 /* The first number has more details about the type, for example
3751 details
= read_huge_number (pp
, ';', &nbits
, 0);
3753 return error_type (pp
, objfile
);
3755 /* The second number is the number of bytes occupied by this type. */
3756 nbytes
= read_huge_number (pp
, ';', &nbits
, 0);
3758 return error_type (pp
, objfile
);
3760 nbits
= nbytes
* TARGET_CHAR_BIT
;
3762 if (details
== NF_COMPLEX
|| details
== NF_COMPLEX16
3763 || details
== NF_COMPLEX32
)
3765 rettype
= dbx_init_float_type (objfile
, nbits
/ 2);
3766 return init_complex_type (NULL
, rettype
);
3769 return dbx_init_float_type (objfile
, nbits
);
3772 /* Read a number from the string pointed to by *PP.
3773 The value of *PP is advanced over the number.
3774 If END is nonzero, the character that ends the
3775 number must match END, or an error happens;
3776 and that character is skipped if it does match.
3777 If END is zero, *PP is left pointing to that character.
3779 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3780 the number is represented in an octal representation, assume that
3781 it is represented in a 2's complement representation with a size of
3782 TWOS_COMPLEMENT_BITS.
3784 If the number fits in a long, set *BITS to 0 and return the value.
3785 If not, set *BITS to be the number of bits in the number and return 0.
3787 If encounter garbage, set *BITS to -1 and return 0. */
3790 read_huge_number (const char **pp
, int end
, int *bits
,
3791 int twos_complement_bits
)
3793 const char *p
= *pp
;
3802 int twos_complement_representation
= 0;
3810 /* Leading zero means octal. GCC uses this to output values larger
3811 than an int (because that would be hard in decimal). */
3818 /* Skip extra zeros. */
3822 if (sign
> 0 && radix
== 8 && twos_complement_bits
> 0)
3824 /* Octal, possibly signed. Check if we have enough chars for a
3830 while ((c
= *p1
) >= '0' && c
< '8')
3834 if (len
> twos_complement_bits
/ 3
3835 || (twos_complement_bits
% 3 == 0
3836 && len
== twos_complement_bits
/ 3))
3838 /* Ok, we have enough characters for a signed value, check
3839 for signedness by testing if the sign bit is set. */
3840 sign_bit
= (twos_complement_bits
% 3 + 2) % 3;
3842 if (c
& (1 << sign_bit
))
3844 /* Definitely signed. */
3845 twos_complement_representation
= 1;
3851 upper_limit
= LONG_MAX
/ radix
;
3853 while ((c
= *p
++) >= '0' && c
< ('0' + radix
))
3855 if (n
<= upper_limit
)
3857 if (twos_complement_representation
)
3859 /* Octal, signed, twos complement representation. In
3860 this case, n is the corresponding absolute value. */
3863 long sn
= c
- '0' - ((2 * (c
- '0')) | (2 << sign_bit
));
3875 /* unsigned representation */
3877 n
+= c
- '0'; /* FIXME this overflows anyway. */
3883 /* This depends on large values being output in octal, which is
3890 /* Ignore leading zeroes. */
3894 else if (c
== '2' || c
== '3')
3915 if (radix
== 8 && twos_complement_bits
> 0 && nbits
> twos_complement_bits
)
3917 /* We were supposed to parse a number with maximum
3918 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3929 /* Large decimal constants are an error (because it is hard to
3930 count how many bits are in them). */
3936 /* -0x7f is the same as 0x80. So deal with it by adding one to
3937 the number of bits. Two's complement represention octals
3938 can't have a '-' in front. */
3939 if (sign
== -1 && !twos_complement_representation
)
3950 /* It's *BITS which has the interesting information. */
3954 static struct type
*
3955 read_range_type (const char **pp
, int typenums
[2], int type_size
,
3956 struct objfile
*objfile
)
3958 struct gdbarch
*gdbarch
= objfile
->arch ();
3959 const char *orig_pp
= *pp
;
3964 struct type
*result_type
;
3965 struct type
*index_type
= NULL
;
3967 /* First comes a type we are a subrange of.
3968 In C it is usually 0, 1 or the type being defined. */
3969 if (read_type_number (pp
, rangenums
) != 0)
3970 return error_type (pp
, objfile
);
3971 self_subrange
= (rangenums
[0] == typenums
[0] &&
3972 rangenums
[1] == typenums
[1]);
3977 index_type
= read_type (pp
, objfile
);
3980 /* A semicolon should now follow; skip it. */
3984 /* The remaining two operands are usually lower and upper bounds
3985 of the range. But in some special cases they mean something else. */
3986 n2
= read_huge_number (pp
, ';', &n2bits
, type_size
);
3987 n3
= read_huge_number (pp
, ';', &n3bits
, type_size
);
3989 if (n2bits
== -1 || n3bits
== -1)
3990 return error_type (pp
, objfile
);
3993 goto handle_true_range
;
3995 /* If limits are huge, must be large integral type. */
3996 if (n2bits
!= 0 || n3bits
!= 0)
3998 char got_signed
= 0;
3999 char got_unsigned
= 0;
4000 /* Number of bits in the type. */
4003 /* If a type size attribute has been specified, the bounds of
4004 the range should fit in this size. If the lower bounds needs
4005 more bits than the upper bound, then the type is signed. */
4006 if (n2bits
<= type_size
&& n3bits
<= type_size
)
4008 if (n2bits
== type_size
&& n2bits
> n3bits
)
4014 /* Range from 0 to <large number> is an unsigned large integral type. */
4015 else if ((n2bits
== 0 && n2
== 0) && n3bits
!= 0)
4020 /* Range from <large number> to <large number>-1 is a large signed
4021 integral type. Take care of the case where <large number> doesn't
4022 fit in a long but <large number>-1 does. */
4023 else if ((n2bits
!= 0 && n3bits
!= 0 && n2bits
== n3bits
+ 1)
4024 || (n2bits
!= 0 && n3bits
== 0
4025 && (n2bits
== sizeof (long) * HOST_CHAR_BIT
)
4032 if (got_signed
|| got_unsigned
)
4033 return init_integer_type (objfile
, nbits
, got_unsigned
, NULL
);
4035 return error_type (pp
, objfile
);
4038 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4039 if (self_subrange
&& n2
== 0 && n3
== 0)
4040 return init_type (objfile
, TYPE_CODE_VOID
, TARGET_CHAR_BIT
, NULL
);
4042 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4043 is the width in bytes.
4045 Fortran programs appear to use this for complex types also. To
4046 distinguish between floats and complex, g77 (and others?) seem
4047 to use self-subranges for the complexes, and subranges of int for
4050 Also note that for complexes, g77 sets n2 to the size of one of
4051 the member floats, not the whole complex beast. My guess is that
4052 this was to work well with pre-COMPLEX versions of gdb. */
4054 if (n3
== 0 && n2
> 0)
4056 struct type
*float_type
4057 = dbx_init_float_type (objfile
, n2
* TARGET_CHAR_BIT
);
4060 return init_complex_type (NULL
, float_type
);
4065 /* If the upper bound is -1, it must really be an unsigned integral. */
4067 else if (n2
== 0 && n3
== -1)
4069 int bits
= type_size
;
4073 /* We don't know its size. It is unsigned int or unsigned
4074 long. GCC 2.3.3 uses this for long long too, but that is
4075 just a GDB 3.5 compatibility hack. */
4076 bits
= gdbarch_int_bit (gdbarch
);
4079 return init_integer_type (objfile
, bits
, 1, NULL
);
4082 /* Special case: char is defined (Who knows why) as a subrange of
4083 itself with range 0-127. */
4084 else if (self_subrange
&& n2
== 0 && n3
== 127)
4086 struct type
*type
= init_integer_type (objfile
, TARGET_CHAR_BIT
,
4088 type
->set_has_no_signedness (true);
4091 /* We used to do this only for subrange of self or subrange of int. */
4094 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4095 "unsigned long", and we already checked for that,
4096 so don't need to test for it here. */
4099 /* n3 actually gives the size. */
4100 return init_integer_type (objfile
, -n3
* TARGET_CHAR_BIT
, 1, NULL
);
4102 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4103 unsigned n-byte integer. But do require n to be a power of
4104 two; we don't want 3- and 5-byte integers flying around. */
4110 for (bytes
= 0; (bits
& 0xff) == 0xff; bytes
++)
4113 && ((bytes
- 1) & bytes
) == 0) /* "bytes is a power of two" */
4114 return init_integer_type (objfile
, bytes
* TARGET_CHAR_BIT
, 1, NULL
);
4117 /* I think this is for Convex "long long". Since I don't know whether
4118 Convex sets self_subrange, I also accept that particular size regardless
4119 of self_subrange. */
4120 else if (n3
== 0 && n2
< 0
4122 || n2
== -gdbarch_long_long_bit
4123 (gdbarch
) / TARGET_CHAR_BIT
))
4124 return init_integer_type (objfile
, -n2
* TARGET_CHAR_BIT
, 0, NULL
);
4125 else if (n2
== -n3
- 1)
4128 return init_integer_type (objfile
, 8, 0, NULL
);
4130 return init_integer_type (objfile
, 16, 0, NULL
);
4131 if (n3
== 0x7fffffff)
4132 return init_integer_type (objfile
, 32, 0, NULL
);
4135 /* We have a real range type on our hands. Allocate space and
4136 return a real pointer. */
4140 index_type
= objfile_type (objfile
)->builtin_int
;
4142 index_type
= *dbx_lookup_type (rangenums
, objfile
);
4143 if (index_type
== NULL
)
4145 /* Does this actually ever happen? Is that why we are worrying
4146 about dealing with it rather than just calling error_type? */
4148 complaint (_("base type %d of range type is not defined"), rangenums
[1]);
4150 index_type
= objfile_type (objfile
)->builtin_int
;
4154 = create_static_range_type (NULL
, index_type
, n2
, n3
);
4155 return (result_type
);
4158 /* Read in an argument list. This is a list of types, separated by commas
4159 and terminated with END. Return the list of types read in, or NULL
4160 if there is an error. */
4162 static struct field
*
4163 read_args (const char **pp
, int end
, struct objfile
*objfile
, int *nargsp
,
4166 /* FIXME! Remove this arbitrary limit! */
4167 struct type
*types
[1024]; /* Allow for fns of 1023 parameters. */
4174 /* Invalid argument list: no ','. */
4177 STABS_CONTINUE (pp
, objfile
);
4178 types
[n
++] = read_type (pp
, objfile
);
4180 (*pp
)++; /* get past `end' (the ':' character). */
4184 /* We should read at least the THIS parameter here. Some broken stabs
4185 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4186 have been present ";-16,(0,43)" reference instead. This way the
4187 excessive ";" marker prematurely stops the parameters parsing. */
4189 complaint (_("Invalid (empty) method arguments"));
4192 else if (types
[n
- 1]->code () != TYPE_CODE_VOID
)
4200 rval
= XCNEWVEC (struct field
, n
);
4201 for (i
= 0; i
< n
; i
++)
4202 rval
[i
].set_type (types
[i
]);
4207 /* Common block handling. */
4209 /* List of symbols declared since the last BCOMM. This list is a tail
4210 of local_symbols. When ECOMM is seen, the symbols on the list
4211 are noted so their proper addresses can be filled in later,
4212 using the common block base address gotten from the assembler
4215 static struct pending
*common_block
;
4216 static int common_block_i
;
4218 /* Name of the current common block. We get it from the BCOMM instead of the
4219 ECOMM to match IBM documentation (even though IBM puts the name both places
4220 like everyone else). */
4221 static char *common_block_name
;
4223 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4224 to remain after this function returns. */
4227 common_block_start (const char *name
, struct objfile
*objfile
)
4229 if (common_block_name
!= NULL
)
4231 complaint (_("Invalid symbol data: common block within common block"));
4233 common_block
= *get_local_symbols ();
4234 common_block_i
= common_block
? common_block
->nsyms
: 0;
4235 common_block_name
= obstack_strdup (&objfile
->objfile_obstack
, name
);
4238 /* Process a N_ECOMM symbol. */
4241 common_block_end (struct objfile
*objfile
)
4243 /* Symbols declared since the BCOMM are to have the common block
4244 start address added in when we know it. common_block and
4245 common_block_i point to the first symbol after the BCOMM in
4246 the local_symbols list; copy the list and hang it off the
4247 symbol for the common block name for later fixup. */
4250 struct pending
*newobj
= 0;
4251 struct pending
*next
;
4254 if (common_block_name
== NULL
)
4256 complaint (_("ECOMM symbol unmatched by BCOMM"));
4260 sym
= new (&objfile
->objfile_obstack
) symbol
;
4261 /* Note: common_block_name already saved on objfile_obstack. */
4262 sym
->set_linkage_name (common_block_name
);
4263 sym
->set_aclass_index (LOC_BLOCK
);
4265 /* Now we copy all the symbols which have been defined since the BCOMM. */
4267 /* Copy all the struct pendings before common_block. */
4268 for (next
= *get_local_symbols ();
4269 next
!= NULL
&& next
!= common_block
;
4272 for (j
= 0; j
< next
->nsyms
; j
++)
4273 add_symbol_to_list (next
->symbol
[j
], &newobj
);
4276 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4277 NULL, it means copy all the local symbols (which we already did
4280 if (common_block
!= NULL
)
4281 for (j
= common_block_i
; j
< common_block
->nsyms
; j
++)
4282 add_symbol_to_list (common_block
->symbol
[j
], &newobj
);
4284 sym
->set_type ((struct type
*) newobj
);
4286 /* Should we be putting local_symbols back to what it was?
4289 i
= hashname (sym
->linkage_name ());
4290 sym
->set_value_chain (global_sym_chain
[i
]);
4291 global_sym_chain
[i
] = sym
;
4292 common_block_name
= NULL
;
4295 /* Add a common block's start address to the offset of each symbol
4296 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4297 the common block name). */
4300 fix_common_block (struct symbol
*sym
, CORE_ADDR valu
)
4302 struct pending
*next
= (struct pending
*) sym
->type ();
4304 for (; next
; next
= next
->next
)
4308 for (j
= next
->nsyms
- 1; j
>= 0; j
--)
4309 next
->symbol
[j
]->set_value_address
4310 (next
->symbol
[j
]->value_address () + valu
);
4316 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4317 See add_undefined_type for more details. */
4320 add_undefined_type_noname (struct type
*type
, int typenums
[2])
4324 nat
.typenums
[0] = typenums
[0];
4325 nat
.typenums
[1] = typenums
[1];
4328 if (noname_undefs_length
== noname_undefs_allocated
)
4330 noname_undefs_allocated
*= 2;
4331 noname_undefs
= (struct nat
*)
4332 xrealloc ((char *) noname_undefs
,
4333 noname_undefs_allocated
* sizeof (struct nat
));
4335 noname_undefs
[noname_undefs_length
++] = nat
;
4338 /* Add TYPE to the UNDEF_TYPES vector.
4339 See add_undefined_type for more details. */
4342 add_undefined_type_1 (struct type
*type
)
4344 if (undef_types_length
== undef_types_allocated
)
4346 undef_types_allocated
*= 2;
4347 undef_types
= (struct type
**)
4348 xrealloc ((char *) undef_types
,
4349 undef_types_allocated
* sizeof (struct type
*));
4351 undef_types
[undef_types_length
++] = type
;
4354 /* What about types defined as forward references inside of a small lexical
4356 /* Add a type to the list of undefined types to be checked through
4357 once this file has been read in.
4359 In practice, we actually maintain two such lists: The first list
4360 (UNDEF_TYPES) is used for types whose name has been provided, and
4361 concerns forward references (eg 'xs' or 'xu' forward references);
4362 the second list (NONAME_UNDEFS) is used for types whose name is
4363 unknown at creation time, because they were referenced through
4364 their type number before the actual type was declared.
4365 This function actually adds the given type to the proper list. */
4368 add_undefined_type (struct type
*type
, int typenums
[2])
4370 if (type
->name () == NULL
)
4371 add_undefined_type_noname (type
, typenums
);
4373 add_undefined_type_1 (type
);
4376 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4379 cleanup_undefined_types_noname (struct objfile
*objfile
)
4383 for (i
= 0; i
< noname_undefs_length
; i
++)
4385 struct nat nat
= noname_undefs
[i
];
4388 type
= dbx_lookup_type (nat
.typenums
, objfile
);
4389 if (nat
.type
!= *type
&& (*type
)->code () != TYPE_CODE_UNDEF
)
4391 /* The instance flags of the undefined type are still unset,
4392 and needs to be copied over from the reference type.
4393 Since replace_type expects them to be identical, we need
4394 to set these flags manually before hand. */
4395 nat
.type
->set_instance_flags ((*type
)->instance_flags ());
4396 replace_type (nat
.type
, *type
);
4400 noname_undefs_length
= 0;
4403 /* Go through each undefined type, see if it's still undefined, and fix it
4404 up if possible. We have two kinds of undefined types:
4406 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4407 Fix: update array length using the element bounds
4408 and the target type's length.
4409 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4410 yet defined at the time a pointer to it was made.
4411 Fix: Do a full lookup on the struct/union tag. */
4414 cleanup_undefined_types_1 (void)
4418 /* Iterate over every undefined type, and look for a symbol whose type
4419 matches our undefined type. The symbol matches if:
4420 1. It is a typedef in the STRUCT domain;
4421 2. It has the same name, and same type code;
4422 3. The instance flags are identical.
4424 It is important to check the instance flags, because we have seen
4425 examples where the debug info contained definitions such as:
4427 "foo_t:t30=B31=xefoo_t:"
4429 In this case, we have created an undefined type named "foo_t" whose
4430 instance flags is null (when processing "xefoo_t"), and then created
4431 another type with the same name, but with different instance flags
4432 ('B' means volatile). I think that the definition above is wrong,
4433 since the same type cannot be volatile and non-volatile at the same
4434 time, but we need to be able to cope with it when it happens. The
4435 approach taken here is to treat these two types as different. */
4437 for (type
= undef_types
; type
< undef_types
+ undef_types_length
; type
++)
4439 switch ((*type
)->code ())
4442 case TYPE_CODE_STRUCT
:
4443 case TYPE_CODE_UNION
:
4444 case TYPE_CODE_ENUM
:
4446 /* Check if it has been defined since. Need to do this here
4447 as well as in check_typedef to deal with the (legitimate in
4448 C though not C++) case of several types with the same name
4449 in different source files. */
4450 if ((*type
)->is_stub ())
4452 struct pending
*ppt
;
4454 /* Name of the type, without "struct" or "union". */
4455 const char *type_name
= (*type
)->name ();
4457 if (type_name
== NULL
)
4459 complaint (_("need a type name"));
4462 for (ppt
= *get_file_symbols (); ppt
; ppt
= ppt
->next
)
4464 for (i
= 0; i
< ppt
->nsyms
; i
++)
4466 struct symbol
*sym
= ppt
->symbol
[i
];
4468 if (sym
->aclass () == LOC_TYPEDEF
4469 && sym
->domain () == STRUCT_DOMAIN
4470 && (sym
->type ()->code () == (*type
)->code ())
4471 && ((*type
)->instance_flags ()
4472 == sym
->type ()->instance_flags ())
4473 && strcmp (sym
->linkage_name (), type_name
) == 0)
4474 replace_type (*type
, sym
->type ());
4483 complaint (_("forward-referenced types left unresolved, "
4491 undef_types_length
= 0;
4494 /* Try to fix all the undefined types we encountered while processing
4498 cleanup_undefined_stabs_types (struct objfile
*objfile
)
4500 cleanup_undefined_types_1 ();
4501 cleanup_undefined_types_noname (objfile
);
4504 /* See stabsread.h. */
4507 scan_file_globals (struct objfile
*objfile
)
4510 struct symbol
*sym
, *prev
;
4511 struct objfile
*resolve_objfile
;
4513 /* SVR4 based linkers copy referenced global symbols from shared
4514 libraries to the main executable.
4515 If we are scanning the symbols for a shared library, try to resolve
4516 them from the minimal symbols of the main executable first. */
4518 if (current_program_space
->symfile_object_file
4519 && objfile
!= current_program_space
->symfile_object_file
)
4520 resolve_objfile
= current_program_space
->symfile_object_file
;
4522 resolve_objfile
= objfile
;
4526 /* Avoid expensive loop through all minimal symbols if there are
4527 no unresolved symbols. */
4528 for (hash
= 0; hash
< HASHSIZE
; hash
++)
4530 if (global_sym_chain
[hash
])
4533 if (hash
>= HASHSIZE
)
4536 for (minimal_symbol
*msymbol
: resolve_objfile
->msymbols ())
4540 /* Skip static symbols. */
4541 switch (msymbol
->type ())
4553 /* Get the hash index and check all the symbols
4554 under that hash index. */
4556 hash
= hashname (msymbol
->linkage_name ());
4558 for (sym
= global_sym_chain
[hash
]; sym
;)
4560 if (strcmp (msymbol
->linkage_name (), sym
->linkage_name ()) == 0)
4562 /* Splice this symbol out of the hash chain and
4563 assign the value we have to it. */
4566 prev
->set_value_chain (sym
->value_chain ());
4570 global_sym_chain
[hash
] = sym
->value_chain ();
4573 /* Check to see whether we need to fix up a common block. */
4574 /* Note: this code might be executed several times for
4575 the same symbol if there are multiple references. */
4578 if (sym
->aclass () == LOC_BLOCK
)
4580 (sym
, msymbol
->value_address (resolve_objfile
));
4582 sym
->set_value_address
4583 (msymbol
->value_address (resolve_objfile
));
4584 sym
->set_section_index (msymbol
->section_index ());
4589 sym
= prev
->value_chain ();
4593 sym
= global_sym_chain
[hash
];
4599 sym
= sym
->value_chain ();
4603 if (resolve_objfile
== objfile
)
4605 resolve_objfile
= objfile
;
4608 /* Change the storage class of any remaining unresolved globals to
4609 LOC_UNRESOLVED and remove them from the chain. */
4610 for (hash
= 0; hash
< HASHSIZE
; hash
++)
4612 sym
= global_sym_chain
[hash
];
4616 sym
= sym
->value_chain ();
4618 /* Change the symbol address from the misleading chain value
4620 prev
->set_value_address (0);
4622 /* Complain about unresolved common block symbols. */
4623 if (prev
->aclass () == LOC_STATIC
)
4624 prev
->set_aclass_index (LOC_UNRESOLVED
);
4626 complaint (_("%s: common block `%s' from "
4627 "global_sym_chain unresolved"),
4628 objfile_name (objfile
), prev
->print_name ());
4631 memset (global_sym_chain
, 0, sizeof (global_sym_chain
));
4634 /* Initialize anything that needs initializing when starting to read
4635 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4639 stabsread_init (void)
4643 /* Initialize anything that needs initializing when a completely new
4644 symbol file is specified (not just adding some symbols from another
4645 file, e.g. a shared library). */
4648 stabsread_new_init (void)
4650 /* Empty the hash table of global syms looking for values. */
4651 memset (global_sym_chain
, 0, sizeof (global_sym_chain
));
4654 /* Initialize anything that needs initializing at the same time as
4655 start_compunit_symtab() is called. */
4660 global_stabs
= NULL
; /* AIX COFF */
4661 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4662 n_this_object_header_files
= 1;
4663 type_vector_length
= 0;
4664 type_vector
= (struct type
**) 0;
4665 within_function
= 0;
4667 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4668 common_block_name
= NULL
;
4671 /* Call after end_compunit_symtab(). */
4678 xfree (type_vector
);
4681 type_vector_length
= 0;
4682 previous_stab_code
= 0;
4686 finish_global_stabs (struct objfile
*objfile
)
4690 patch_block_stabs (*get_global_symbols (), global_stabs
, objfile
);
4691 xfree (global_stabs
);
4692 global_stabs
= NULL
;
4696 /* Find the end of the name, delimited by a ':', but don't match
4697 ObjC symbols which look like -[Foo bar::]:bla. */
4699 find_name_end (const char *name
)
4701 const char *s
= name
;
4703 if (s
[0] == '-' || *s
== '+')
4705 /* Must be an ObjC method symbol. */
4708 error (_("invalid symbol name \"%s\""), name
);
4710 s
= strchr (s
, ']');
4713 error (_("invalid symbol name \"%s\""), name
);
4715 return strchr (s
, ':');
4719 return strchr (s
, ':');
4723 /* See stabsread.h. */
4726 hashname (const char *name
)
4728 return fast_hash (name
, strlen (name
)) % HASHSIZE
;
4731 /* Initializer for this module. */
4733 void _initialize_stabsread ();
4735 _initialize_stabsread ()
4737 undef_types_allocated
= 20;
4738 undef_types_length
= 0;
4739 undef_types
= XNEWVEC (struct type
*, undef_types_allocated
);
4741 noname_undefs_allocated
= 20;
4742 noname_undefs_length
= 0;
4743 noname_undefs
= XNEWVEC (struct nat
, noname_undefs_allocated
);
4745 stab_register_index
= register_symbol_register_impl (LOC_REGISTER
,
4746 &stab_register_funcs
);
4747 stab_regparm_index
= register_symbol_register_impl (LOC_REGPARM_ADDR
,
4748 &stab_register_funcs
);