1 // aarch64.cc -- aarch64 target support for gold.
3 // Copyright (C) 2014-2024 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
31 #include "parameters.h"
38 #include "copy-relocs.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
47 #include "aarch64-reloc-property.h"
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT
= 3;
58 template<int size
, bool big_endian
>
59 class Output_data_plt_aarch64
;
61 template<int size
, bool big_endian
>
62 class Output_data_plt_aarch64_standard
;
64 template<int size
, bool big_endian
>
67 template<int size
, bool big_endian
>
68 class AArch64_relocate_functions
;
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
74 template<bool big_endian
>
75 class AArch64_insn_utilities
78 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
80 static const int BYTES_PER_INSN
;
82 // Zero register encoding - 31.
83 static const unsigned int AARCH64_ZR
;
86 aarch64_bit(Insntype insn
, int pos
)
87 { return ((1 << pos
) & insn
) >> pos
; }
90 aarch64_bits(Insntype insn
, int pos
, int l
)
91 { return (insn
>> pos
) & ((1 << l
) - 1); }
93 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94 // the name defined in armv8 insn manual C3.5.9.
96 aarch64_op31(Insntype insn
)
97 { return aarch64_bits(insn
, 21, 3); }
99 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100 // third source register. See armv8 insn manual C3.5.9.
102 aarch64_ra(Insntype insn
)
103 { return aarch64_bits(insn
, 10, 5); }
106 is_adr(const Insntype insn
)
107 { return (insn
& 0x9F000000) == 0x10000000; }
110 is_adrp(const Insntype insn
)
111 { return (insn
& 0x9F000000) == 0x90000000; }
114 is_mrs_tpidr_el0(const Insntype insn
)
115 { return (insn
& 0xFFFFFFE0) == 0xd53bd040; }
118 aarch64_rm(const Insntype insn
)
119 { return aarch64_bits(insn
, 16, 5); }
122 aarch64_rn(const Insntype insn
)
123 { return aarch64_bits(insn
, 5, 5); }
126 aarch64_rd(const Insntype insn
)
127 { return aarch64_bits(insn
, 0, 5); }
130 aarch64_rt(const Insntype insn
)
131 { return aarch64_bits(insn
, 0, 5); }
134 aarch64_rt2(const Insntype insn
)
135 { return aarch64_bits(insn
, 10, 5); }
137 // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
139 aarch64_adr_encode_imm(Insntype adr
, int imm21
)
141 gold_assert(is_adr(adr
));
142 gold_assert(-(1 << 20) <= imm21
&& imm21
< (1 << 20));
143 const int mask19
= (1 << 19) - 1;
145 adr
&= ~((mask19
<< 5) | (mask2
<< 29));
146 adr
|= ((imm21
& mask2
) << 29) | (((imm21
>> 2) & mask19
) << 5);
150 // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
151 // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
152 // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
154 aarch64_adrp_decode_imm(const Insntype adrp
)
156 const int mask19
= (1 << 19) - 1;
158 gold_assert(is_adrp(adrp
));
159 // 21-bit imm encoded in adrp.
160 uint64_t imm
= ((adrp
>> 29) & mask2
) | (((adrp
>> 5) & mask19
) << 2);
161 // Retrieve msb of 21-bit-signed imm for sign extension.
162 uint64_t msbt
= (imm
>> 20) & 1;
163 // Real value is imm multiplied by 4k. Value now has 33-bit information.
164 int64_t value
= imm
<< 12;
165 // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
167 return ((((uint64_t)(1) << 32) - msbt
) << 33) | value
;
171 aarch64_b(const Insntype insn
)
172 { return (insn
& 0xFC000000) == 0x14000000; }
175 aarch64_bl(const Insntype insn
)
176 { return (insn
& 0xFC000000) == 0x94000000; }
179 aarch64_blr(const Insntype insn
)
180 { return (insn
& 0xFFFFFC1F) == 0xD63F0000; }
183 aarch64_br(const Insntype insn
)
184 { return (insn
& 0xFFFFFC1F) == 0xD61F0000; }
186 // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
187 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
189 aarch64_ld(Insntype insn
) { return aarch64_bit(insn
, 22) == 1; }
192 aarch64_ldst(Insntype insn
)
193 { return (insn
& 0x0a000000) == 0x08000000; }
196 aarch64_ldst_ex(Insntype insn
)
197 { return (insn
& 0x3f000000) == 0x08000000; }
200 aarch64_ldst_pcrel(Insntype insn
)
201 { return (insn
& 0x3b000000) == 0x18000000; }
204 aarch64_ldst_nap(Insntype insn
)
205 { return (insn
& 0x3b800000) == 0x28000000; }
208 aarch64_ldstp_pi(Insntype insn
)
209 { return (insn
& 0x3b800000) == 0x28800000; }
212 aarch64_ldstp_o(Insntype insn
)
213 { return (insn
& 0x3b800000) == 0x29000000; }
216 aarch64_ldstp_pre(Insntype insn
)
217 { return (insn
& 0x3b800000) == 0x29800000; }
220 aarch64_ldst_ui(Insntype insn
)
221 { return (insn
& 0x3b200c00) == 0x38000000; }
224 aarch64_ldst_piimm(Insntype insn
)
225 { return (insn
& 0x3b200c00) == 0x38000400; }
228 aarch64_ldst_u(Insntype insn
)
229 { return (insn
& 0x3b200c00) == 0x38000800; }
232 aarch64_ldst_preimm(Insntype insn
)
233 { return (insn
& 0x3b200c00) == 0x38000c00; }
236 aarch64_ldst_ro(Insntype insn
)
237 { return (insn
& 0x3b200c00) == 0x38200800; }
240 aarch64_ldst_uimm(Insntype insn
)
241 { return (insn
& 0x3b000000) == 0x39000000; }
244 aarch64_ldst_simd_m(Insntype insn
)
245 { return (insn
& 0xbfbf0000) == 0x0c000000; }
248 aarch64_ldst_simd_m_pi(Insntype insn
)
249 { return (insn
& 0xbfa00000) == 0x0c800000; }
252 aarch64_ldst_simd_s(Insntype insn
)
253 { return (insn
& 0xbf9f0000) == 0x0d000000; }
256 aarch64_ldst_simd_s_pi(Insntype insn
)
257 { return (insn
& 0xbf800000) == 0x0d800000; }
259 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
260 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
261 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
262 // instructions PAIR is TRUE, RT and RT2 are returned.
264 aarch64_mem_op_p(Insntype insn
, unsigned int *rt
, unsigned int *rt2
,
265 bool *pair
, bool *load
)
273 /* Bail out quickly if INSN doesn't fall into the load-store
275 if (!aarch64_ldst (insn
))
280 if (aarch64_ldst_ex (insn
))
282 *rt
= aarch64_rt (insn
);
284 if (aarch64_bit (insn
, 21) == 1)
287 *rt2
= aarch64_rt2 (insn
);
289 *load
= aarch64_ld (insn
);
292 else if (aarch64_ldst_nap (insn
)
293 || aarch64_ldstp_pi (insn
)
294 || aarch64_ldstp_o (insn
)
295 || aarch64_ldstp_pre (insn
))
298 *rt
= aarch64_rt (insn
);
299 *rt2
= aarch64_rt2 (insn
);
300 *load
= aarch64_ld (insn
);
303 else if (aarch64_ldst_pcrel (insn
)
304 || aarch64_ldst_ui (insn
)
305 || aarch64_ldst_piimm (insn
)
306 || aarch64_ldst_u (insn
)
307 || aarch64_ldst_preimm (insn
)
308 || aarch64_ldst_ro (insn
)
309 || aarch64_ldst_uimm (insn
))
311 *rt
= aarch64_rt (insn
);
313 if (aarch64_ldst_pcrel (insn
))
315 opc
= aarch64_bits (insn
, 22, 2);
316 v
= aarch64_bit (insn
, 26);
317 opc_v
= opc
| (v
<< 2);
318 *load
= (opc_v
== 1 || opc_v
== 2 || opc_v
== 3
319 || opc_v
== 5 || opc_v
== 7);
322 else if (aarch64_ldst_simd_m (insn
)
323 || aarch64_ldst_simd_m_pi (insn
))
325 *rt
= aarch64_rt (insn
);
326 *load
= aarch64_bit (insn
, 22);
327 opcode
= (insn
>> 12) & 0xf;
354 else if (aarch64_ldst_simd_s (insn
)
355 || aarch64_ldst_simd_s_pi (insn
))
357 *rt
= aarch64_rt (insn
);
358 r
= (insn
>> 21) & 1;
359 *load
= aarch64_bit (insn
, 22);
360 opcode
= (insn
>> 13) & 0x7;
372 *rt2
= *rt
+ (r
== 0 ? 2 : 3);
380 *rt2
= *rt
+ (r
== 0 ? 2 : 3);
389 } // End of "aarch64_mem_op_p".
391 // Return true if INSN is mac insn.
393 aarch64_mac(Insntype insn
)
394 { return (insn
& 0xff000000) == 0x9b000000; }
396 // Return true if INSN is multiply-accumulate.
397 // (This is similar to implementaton in elfnn-aarch64.c.)
399 aarch64_mlxl(Insntype insn
)
401 uint32_t op31
= aarch64_op31(insn
);
402 if (aarch64_mac(insn
)
403 && (op31
== 0 || op31
== 1 || op31
== 5)
404 /* Exclude MUL instructions which are encoded as a multiple-accumulate
406 && aarch64_ra(insn
) != AARCH64_ZR
)
412 }; // End of "AArch64_insn_utilities".
415 // Insn length in byte.
417 template<bool big_endian
>
418 const int AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
= 4;
421 // Zero register encoding - 31.
423 template<bool big_endian
>
424 const unsigned int AArch64_insn_utilities
<big_endian
>::AARCH64_ZR
= 0x1f;
427 // Output_data_got_aarch64 class.
429 template<int size
, bool big_endian
>
430 class Output_data_got_aarch64
: public Output_data_got
<size
, big_endian
>
433 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Valtype
;
434 Output_data_got_aarch64(Symbol_table
* symtab
, Layout
* layout
)
435 : Output_data_got
<size
, big_endian
>(),
436 symbol_table_(symtab
), layout_(layout
)
439 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
440 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
441 // applied in a static link.
443 add_static_reloc(unsigned int got_offset
, unsigned int r_type
, Symbol
* gsym
)
444 { this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, gsym
)); }
447 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
448 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
449 // relocation that needs to be applied in a static link.
451 add_static_reloc(unsigned int got_offset
, unsigned int r_type
,
452 Sized_relobj_file
<size
, big_endian
>* relobj
,
455 this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, relobj
,
461 // Write out the GOT table.
463 do_write(Output_file
* of
) {
464 // The first entry in the GOT is the address of the .dynamic section.
465 gold_assert(this->data_size() >= size
/ 8);
466 Output_section
* dynamic
= this->layout_
->dynamic_section();
467 Valtype dynamic_addr
= dynamic
== NULL
? 0 : dynamic
->address();
468 this->replace_constant(0, dynamic_addr
);
469 Output_data_got
<size
, big_endian
>::do_write(of
);
471 // Handling static relocs
472 if (this->static_relocs_
.empty())
475 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
477 gold_assert(parameters
->doing_static_link());
478 const off_t offset
= this->offset();
479 const section_size_type oview_size
=
480 convert_to_section_size_type(this->data_size());
481 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
483 Output_segment
* tls_segment
= this->layout_
->tls_segment();
484 gold_assert(tls_segment
!= NULL
);
486 AArch64_address aligned_tcb_address
=
487 align_address(Target_aarch64
<size
, big_endian
>::TCB_SIZE
,
488 tls_segment
->maximum_alignment());
490 for (size_t i
= 0; i
< this->static_relocs_
.size(); ++i
)
492 Static_reloc
& reloc(this->static_relocs_
[i
]);
493 AArch64_address value
;
495 if (!reloc
.symbol_is_global())
497 Sized_relobj_file
<size
, big_endian
>* object
= reloc
.relobj();
498 const Symbol_value
<size
>* psymval
=
499 reloc
.relobj()->local_symbol(reloc
.index());
501 // We are doing static linking. Issue an error and skip this
502 // relocation if the symbol is undefined or in a discarded_section.
504 unsigned int shndx
= psymval
->input_shndx(&is_ordinary
);
505 if ((shndx
== elfcpp::SHN_UNDEF
)
507 && shndx
!= elfcpp::SHN_UNDEF
508 && !object
->is_section_included(shndx
)
509 && !this->symbol_table_
->is_section_folded(object
, shndx
)))
511 gold_error(_("undefined or discarded local symbol %u from "
512 " object %s in GOT"),
513 reloc
.index(), reloc
.relobj()->name().c_str());
516 value
= psymval
->value(object
, 0);
520 const Symbol
* gsym
= reloc
.symbol();
521 gold_assert(gsym
!= NULL
);
522 if (gsym
->is_forwarder())
523 gsym
= this->symbol_table_
->resolve_forwards(gsym
);
525 // We are doing static linking. Issue an error and skip this
526 // relocation if the symbol is undefined or in a discarded_section
527 // unless it is a weakly_undefined symbol.
528 if ((gsym
->is_defined_in_discarded_section()
529 || gsym
->is_undefined())
530 && !gsym
->is_weak_undefined())
532 gold_error(_("undefined or discarded symbol %s in GOT"),
537 if (!gsym
->is_weak_undefined())
539 const Sized_symbol
<size
>* sym
=
540 static_cast<const Sized_symbol
<size
>*>(gsym
);
541 value
= sym
->value();
547 unsigned got_offset
= reloc
.got_offset();
548 gold_assert(got_offset
< oview_size
);
550 typedef typename
elfcpp::Swap
<size
, big_endian
>::Valtype Valtype
;
551 Valtype
* wv
= reinterpret_cast<Valtype
*>(oview
+ got_offset
);
553 switch (reloc
.r_type())
555 case elfcpp::R_AARCH64_TLS_DTPREL64
:
558 case elfcpp::R_AARCH64_TLS_TPREL64
:
559 x
= value
+ aligned_tcb_address
;
564 elfcpp::Swap
<size
, big_endian
>::writeval(wv
, x
);
567 of
->write_output_view(offset
, oview_size
, oview
);
571 // Symbol table of the output object.
572 Symbol_table
* symbol_table_
;
573 // A pointer to the Layout class, so that we can find the .dynamic
574 // section when we write out the GOT section.
577 // This class represent dynamic relocations that need to be applied by
578 // gold because we are using TLS relocations in a static link.
582 Static_reloc(unsigned int got_offset
, unsigned int r_type
, Symbol
* gsym
)
583 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(true)
584 { this->u_
.global
.symbol
= gsym
; }
586 Static_reloc(unsigned int got_offset
, unsigned int r_type
,
587 Sized_relobj_file
<size
, big_endian
>* relobj
, unsigned int index
)
588 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(false)
590 this->u_
.local
.relobj
= relobj
;
591 this->u_
.local
.index
= index
;
594 // Return the GOT offset.
597 { return this->got_offset_
; }
602 { return this->r_type_
; }
604 // Whether the symbol is global or not.
606 symbol_is_global() const
607 { return this->symbol_is_global_
; }
609 // For a relocation against a global symbol, the global symbol.
613 gold_assert(this->symbol_is_global_
);
614 return this->u_
.global
.symbol
;
617 // For a relocation against a local symbol, the defining object.
618 Sized_relobj_file
<size
, big_endian
>*
621 gold_assert(!this->symbol_is_global_
);
622 return this->u_
.local
.relobj
;
625 // For a relocation against a local symbol, the local symbol index.
629 gold_assert(!this->symbol_is_global_
);
630 return this->u_
.local
.index
;
634 // GOT offset of the entry to which this relocation is applied.
635 unsigned int got_offset_
;
636 // Type of relocation.
637 unsigned int r_type_
;
638 // Whether this relocation is against a global symbol.
639 bool symbol_is_global_
;
640 // A global or local symbol.
645 // For a global symbol, the symbol itself.
650 // For a local symbol, the object defining the symbol.
651 Sized_relobj_file
<size
, big_endian
>* relobj
;
652 // For a local symbol, the symbol index.
656 }; // End of inner class Static_reloc
658 std::vector
<Static_reloc
> static_relocs_
;
659 }; // End of Output_data_got_aarch64
662 template<int size
, bool big_endian
>
663 class AArch64_input_section
;
666 template<int size
, bool big_endian
>
667 class AArch64_output_section
;
670 template<int size
, bool big_endian
>
671 class AArch64_relobj
;
674 // Stub type enum constants.
680 // Using adrp/add pair, 4 insns (including alignment) without mem access,
681 // the fastest stub. This has a limited jump distance, which is tested by
682 // aarch64_valid_for_adrp_p.
685 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
686 // unlimited in jump distance.
687 ST_LONG_BRANCH_ABS
= 2,
689 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
690 // mem access, slowest one. Only used in position independent executables.
691 ST_LONG_BRANCH_PCREL
= 3,
693 // Stub for erratum 843419 handling.
696 // Stub for erratum 835769 handling.
699 // Number of total stub types.
704 // Struct that wraps insns for a particular stub. All stub templates are
705 // created/initialized as constants by Stub_template_repertoire.
707 template<bool big_endian
>
710 const typename AArch64_insn_utilities
<big_endian
>::Insntype
* insns
;
715 // Simple singleton class that creates/initializes/stores all types of stub
718 template<bool big_endian
>
719 class Stub_template_repertoire
722 typedef typename AArch64_insn_utilities
<big_endian
>::Insntype Insntype
;
724 // Single static method to get stub template for a given stub type.
725 static const Stub_template
<big_endian
>*
726 get_stub_template(int type
)
728 static Stub_template_repertoire
<big_endian
> singleton
;
729 return singleton
.stub_templates_
[type
];
733 // Constructor - creates/initializes all stub templates.
734 Stub_template_repertoire();
735 ~Stub_template_repertoire()
738 // Disallowing copy ctor and copy assignment operator.
739 Stub_template_repertoire(Stub_template_repertoire
&);
740 Stub_template_repertoire
& operator=(Stub_template_repertoire
&);
742 // Data that stores all insn templates.
743 const Stub_template
<big_endian
>* stub_templates_
[ST_NUMBER
];
744 }; // End of "class Stub_template_repertoire".
747 // Constructor - creates/initilizes all stub templates.
749 template<bool big_endian
>
750 Stub_template_repertoire
<big_endian
>::Stub_template_repertoire()
752 // Insn array definitions.
753 const static Insntype ST_NONE_INSNS
[] = {};
755 const static Insntype ST_ADRP_BRANCH_INSNS
[] =
757 0x90000010, /* adrp ip0, X */
758 /* ADR_PREL_PG_HI21(X) */
759 0x91000210, /* add ip0, ip0, :lo12:X */
760 /* ADD_ABS_LO12_NC(X) */
761 0xd61f0200, /* br ip0 */
762 0x00000000, /* alignment padding */
765 const static Insntype ST_LONG_BRANCH_ABS_INSNS
[] =
767 0x58000050, /* ldr ip0, 0x8 */
768 0xd61f0200, /* br ip0 */
769 0x00000000, /* address field */
770 0x00000000, /* address fields */
773 const static Insntype ST_LONG_BRANCH_PCREL_INSNS
[] =
775 0x58000090, /* ldr ip0, 0x10 */
776 0x10000011, /* adr ip1, #0 */
777 0x8b110210, /* add ip0, ip0, ip1 */
778 0xd61f0200, /* br ip0 */
779 0x00000000, /* address field */
780 0x00000000, /* address field */
781 0x00000000, /* alignment padding */
782 0x00000000, /* alignment padding */
785 const static Insntype ST_E_843419_INSNS
[] =
787 0x00000000, /* Placeholder for erratum insn. */
788 0x14000000, /* b <label> */
791 // ST_E_835769 has the same stub template as ST_E_843419
792 // but we reproduce the array here so that the sizeof
793 // expressions in install_insn_template will work.
794 const static Insntype ST_E_835769_INSNS
[] =
796 0x00000000, /* Placeholder for erratum insn. */
797 0x14000000, /* b <label> */
800 #define install_insn_template(T) \
801 const static Stub_template<big_endian> template_##T = { \
802 T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
803 this->stub_templates_[T] = &template_##T
805 install_insn_template(ST_NONE
);
806 install_insn_template(ST_ADRP_BRANCH
);
807 install_insn_template(ST_LONG_BRANCH_ABS
);
808 install_insn_template(ST_LONG_BRANCH_PCREL
);
809 install_insn_template(ST_E_843419
);
810 install_insn_template(ST_E_835769
);
812 #undef install_insn_template
816 // Base class for stubs.
818 template<int size
, bool big_endian
>
822 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
823 typedef typename AArch64_insn_utilities
<big_endian
>::Insntype Insntype
;
825 static const AArch64_address invalid_address
=
826 static_cast<AArch64_address
>(-1);
828 static const section_offset_type invalid_offset
=
829 static_cast<section_offset_type
>(-1);
832 : destination_address_(invalid_address
),
833 offset_(invalid_offset
),
843 { return this->type_
; }
845 // Get stub template that provides stub insn information.
846 const Stub_template
<big_endian
>*
847 stub_template() const
849 return Stub_template_repertoire
<big_endian
>::
850 get_stub_template(this->type());
853 // Get destination address.
855 destination_address() const
857 gold_assert(this->destination_address_
!= this->invalid_address
);
858 return this->destination_address_
;
861 // Set destination address.
863 set_destination_address(AArch64_address address
)
865 gold_assert(address
!= this->invalid_address
);
866 this->destination_address_
= address
;
869 // Reset the destination address.
871 reset_destination_address()
872 { this->destination_address_
= this->invalid_address
; }
874 // Get offset of code stub. For Reloc_stub, it is the offset from the
875 // beginning of its containing stub table; for Erratum_stub, it is the offset
876 // from the end of reloc_stubs.
880 gold_assert(this->offset_
!= this->invalid_offset
);
881 return this->offset_
;
886 set_offset(section_offset_type offset
)
887 { this->offset_
= offset
; }
889 // Return the stub insn.
892 { return this->stub_template()->insns
; }
894 // Return num of stub insns.
897 { return this->stub_template()->insn_num
; }
899 // Get size of the stub.
903 return this->insn_num() *
904 AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
;
907 // Write stub to output file.
909 write(unsigned char* view
, section_size_type view_size
)
910 { this->do_write(view
, view_size
); }
913 // Abstract method to be implemented by sub-classes.
915 do_write(unsigned char*, section_size_type
) = 0;
918 // The last insn of a stub is a jump to destination insn. This field records
919 // the destination address.
920 AArch64_address destination_address_
;
921 // The stub offset. Note this has difference interpretations between an
922 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
923 // beginning of the containing stub_table, whereas for Erratum_stub, this is
924 // the offset from the end of reloc_stubs.
925 section_offset_type offset_
;
928 }; // End of "Stub_base".
931 // Erratum stub class. An erratum stub differs from a reloc stub in that for
932 // each erratum occurrence, we generate an erratum stub. We never share erratum
933 // stubs, whereas for reloc stubs, different branch insns share a single reloc
934 // stub as long as the branch targets are the same. (More to the point, reloc
935 // stubs can be shared because they're used to reach a specific target, whereas
936 // erratum stubs branch back to the original control flow.)
938 template<int size
, bool big_endian
>
939 class Erratum_stub
: public Stub_base
<size
, big_endian
>
942 typedef AArch64_relobj
<size
, big_endian
> The_aarch64_relobj
;
943 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
944 typedef AArch64_insn_utilities
<big_endian
> Insn_utilities
;
945 typedef typename AArch64_insn_utilities
<big_endian
>::Insntype Insntype
;
947 static const int STUB_ADDR_ALIGN
;
949 static const Insntype invalid_insn
= static_cast<Insntype
>(-1);
951 Erratum_stub(The_aarch64_relobj
* relobj
, int type
,
952 unsigned shndx
, unsigned int sh_offset
)
953 : Stub_base
<size
, big_endian
>(type
), relobj_(relobj
),
954 shndx_(shndx
), sh_offset_(sh_offset
),
955 erratum_insn_(invalid_insn
),
956 erratum_address_(this->invalid_address
)
961 // Return the object that contains the erratum.
964 { return this->relobj_
; }
966 // Get section index of the erratum.
969 { return this->shndx_
; }
971 // Get section offset of the erratum.
974 { return this->sh_offset_
; }
976 // Get the erratum insn. This is the insn located at erratum_insn_address.
980 gold_assert(this->erratum_insn_
!= this->invalid_insn
);
981 return this->erratum_insn_
;
984 // Set the insn that the erratum happens to.
986 set_erratum_insn(Insntype insn
)
987 { this->erratum_insn_
= insn
; }
989 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
990 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
991 // is no longer the one we want to write out to the stub, update erratum_insn_
992 // with relocated version. Also note that in this case xn must not be "PC", so
993 // it is safe to move the erratum insn from the origin place to the stub. For
994 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
995 // relocation spot (assertion added though).
997 update_erratum_insn(Insntype insn
)
999 gold_assert(this->erratum_insn_
!= this->invalid_insn
);
1000 switch (this->type())
1003 gold_assert(Insn_utilities::aarch64_ldst_uimm(insn
));
1004 gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
1005 gold_assert(Insn_utilities::aarch64_rd(insn
) ==
1006 Insn_utilities::aarch64_rd(this->erratum_insn()));
1007 gold_assert(Insn_utilities::aarch64_rn(insn
) ==
1008 Insn_utilities::aarch64_rn(this->erratum_insn()));
1009 // Update plain ld/st insn with relocated insn.
1010 this->erratum_insn_
= insn
;
1013 gold_assert(insn
== this->erratum_insn());
1021 // Return the address where an erratum must be done.
1023 erratum_address() const
1025 gold_assert(this->erratum_address_
!= this->invalid_address
);
1026 return this->erratum_address_
;
1029 // Set the address where an erratum must be done.
1031 set_erratum_address(AArch64_address addr
)
1032 { this->erratum_address_
= addr
; }
1034 // Later relaxation passes of may alter the recorded erratum and destination
1035 // address. Given an up to date output section address of shidx_ in
1036 // relobj_ we can derive the erratum_address and destination address.
1038 update_erratum_address(AArch64_address output_section_addr
)
1040 const int BPI
= AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
;
1041 AArch64_address updated_addr
= output_section_addr
+ this->sh_offset_
;
1042 this->set_erratum_address(updated_addr
);
1043 this->set_destination_address(updated_addr
+ BPI
);
1046 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1047 // sh_offset). We do not include 'type' in the calculation, because there is
1048 // at most one stub type at (obj, shndx, sh_offset).
1050 operator<(const Erratum_stub
<size
, big_endian
>& k
) const
1054 // We group stubs by relobj.
1055 if (this->relobj_
!= k
.relobj_
)
1056 return this->relobj_
< k
.relobj_
;
1057 // Then by section index.
1058 if (this->shndx_
!= k
.shndx_
)
1059 return this->shndx_
< k
.shndx_
;
1060 // Lastly by section offset.
1061 return this->sh_offset_
< k
.sh_offset_
;
1065 invalidate_erratum_stub()
1067 gold_assert(this->erratum_insn_
!= invalid_insn
);
1068 this->erratum_insn_
= invalid_insn
;
1072 is_invalidated_erratum_stub()
1073 { return this->erratum_insn_
== invalid_insn
; }
1077 do_write(unsigned char*, section_size_type
);
1080 // The object that needs to be fixed.
1081 The_aarch64_relobj
* relobj_
;
1082 // The shndx in the object that needs to be fixed.
1083 const unsigned int shndx_
;
1084 // The section offset in the obejct that needs to be fixed.
1085 const unsigned int sh_offset_
;
1086 // The insn to be fixed.
1087 Insntype erratum_insn_
;
1088 // The address of the above insn.
1089 AArch64_address erratum_address_
;
1090 }; // End of "Erratum_stub".
1093 // Erratum sub class to wrap additional info needed by 843419. In fixing this
1094 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1095 // adrp's code position (two or three insns before erratum insn itself).
1097 template<int size
, bool big_endian
>
1098 class E843419_stub
: public Erratum_stub
<size
, big_endian
>
1101 typedef typename AArch64_insn_utilities
<big_endian
>::Insntype Insntype
;
1103 E843419_stub(AArch64_relobj
<size
, big_endian
>* relobj
,
1104 unsigned int shndx
, unsigned int sh_offset
,
1105 unsigned int adrp_sh_offset
)
1106 : Erratum_stub
<size
, big_endian
>(relobj
, ST_E_843419
, shndx
, sh_offset
),
1107 adrp_sh_offset_(adrp_sh_offset
)
1111 adrp_sh_offset() const
1112 { return this->adrp_sh_offset_
; }
1115 // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1116 // can obtain it from its parent.)
1117 const unsigned int adrp_sh_offset_
;
1121 template<int size
, bool big_endian
>
1122 const int Erratum_stub
<size
, big_endian
>::STUB_ADDR_ALIGN
= 4;
1124 // Comparator used in set definition.
1125 template<int size
, bool big_endian
>
1126 struct Erratum_stub_less
1129 operator()(const Erratum_stub
<size
, big_endian
>* s1
,
1130 const Erratum_stub
<size
, big_endian
>* s2
) const
1131 { return *s1
< *s2
; }
1134 // Erratum_stub implementation for writing stub to output file.
1136 template<int size
, bool big_endian
>
1138 Erratum_stub
<size
, big_endian
>::do_write(unsigned char* view
, section_size_type
)
1140 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
1141 const Insntype
* insns
= this->insns();
1142 uint32_t num_insns
= this->insn_num();
1143 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
1144 // For current implemented erratum 843419 and 835769, the first insn in the
1145 // stub is always a copy of the problematic insn (in 843419, the mem access
1146 // insn, in 835769, the mac insn), followed by a jump-back.
1147 elfcpp::Swap
<32, big_endian
>::writeval(ip
, this->erratum_insn());
1148 for (uint32_t i
= 1; i
< num_insns
; ++i
)
1149 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ i
, insns
[i
]);
1153 // Reloc stub class.
1155 template<int size
, bool big_endian
>
1156 class Reloc_stub
: public Stub_base
<size
, big_endian
>
1159 typedef Reloc_stub
<size
, big_endian
> This
;
1160 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
1162 // Branch range. This is used to calculate the section group size, as well as
1163 // determine whether a stub is needed.
1164 static const int MAX_BRANCH_OFFSET
= ((1 << 25) - 1) << 2;
1165 static const int MIN_BRANCH_OFFSET
= -((1 << 25) << 2);
1167 // Constant used to determine if an offset fits in the adrp instruction
1169 static const int MAX_ADRP_IMM
= (1 << 20) - 1;
1170 static const int MIN_ADRP_IMM
= -(1 << 20);
1172 static const int BYTES_PER_INSN
= 4;
1173 static const int STUB_ADDR_ALIGN
;
1175 // Determine whether the offset fits in the jump/branch instruction.
1177 aarch64_valid_branch_offset_p(int64_t offset
)
1178 { return offset
>= MIN_BRANCH_OFFSET
&& offset
<= MAX_BRANCH_OFFSET
; }
1180 // Determine whether the offset fits in the adrp immediate field.
1182 aarch64_valid_for_adrp_p(AArch64_address location
, AArch64_address dest
)
1184 typedef AArch64_relocate_functions
<size
, big_endian
> Reloc
;
1185 int64_t adrp_imm
= Reloc::Page (dest
) - Reloc::Page (location
);
1186 adrp_imm
= adrp_imm
< 0 ? ~(~adrp_imm
>> 12) : adrp_imm
>> 12;
1187 return adrp_imm
>= MIN_ADRP_IMM
&& adrp_imm
<= MAX_ADRP_IMM
;
1190 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1193 stub_type_for_reloc(unsigned int r_type
, AArch64_address address
,
1194 AArch64_address target
);
1196 Reloc_stub(int type
)
1197 : Stub_base
<size
, big_endian
>(type
)
1203 // The key class used to index the stub instance in the stub table's stub map.
1207 Key(int type
, const Symbol
* symbol
, const Relobj
* relobj
,
1208 unsigned int r_sym
, int32_t addend
)
1209 : type_(type
), addend_(addend
)
1213 this->r_sym_
= Reloc_stub::invalid_index
;
1214 this->u_
.symbol
= symbol
;
1218 gold_assert(relobj
!= NULL
&& r_sym
!= invalid_index
);
1219 this->r_sym_
= r_sym
;
1220 this->u_
.relobj
= relobj
;
1227 // Return stub type.
1230 { return this->type_
; }
1232 // Return the local symbol index or invalid_index.
1235 { return this->r_sym_
; }
1237 // Return the symbol if there is one.
1240 { return this->r_sym_
== invalid_index
? this->u_
.symbol
: NULL
; }
1242 // Return the relobj if there is one.
1245 { return this->r_sym_
!= invalid_index
? this->u_
.relobj
: NULL
; }
1247 // Whether this equals to another key k.
1249 eq(const Key
& k
) const
1251 return ((this->type_
== k
.type_
)
1252 && (this->r_sym_
== k
.r_sym_
)
1253 && ((this->r_sym_
!= Reloc_stub::invalid_index
)
1254 ? (this->u_
.relobj
== k
.u_
.relobj
)
1255 : (this->u_
.symbol
== k
.u_
.symbol
))
1256 && (this->addend_
== k
.addend_
));
1259 // Return a hash value.
1263 size_t name_hash_value
= gold::string_hash
<char>(
1264 (this->r_sym_
!= Reloc_stub::invalid_index
)
1265 ? this->u_
.relobj
->name().c_str()
1266 : this->u_
.symbol
->name());
1267 // We only have 4 stub types.
1268 size_t stub_type_hash_value
= 0x03 & this->type_
;
1269 return (name_hash_value
1270 ^ stub_type_hash_value
1271 ^ ((this->r_sym_
& 0x3fff) << 2)
1272 ^ ((this->addend_
& 0xffff) << 16));
1275 // Functors for STL associative containers.
1279 operator()(const Key
& k
) const
1280 { return k
.hash_value(); }
1286 operator()(const Key
& k1
, const Key
& k2
) const
1287 { return k1
.eq(k2
); }
1293 // If this is a local symbol, this is the index in the defining object.
1294 // Otherwise, it is invalid_index for a global symbol.
1295 unsigned int r_sym_
;
1296 // If r_sym_ is an invalid index, this points to a global symbol.
1297 // Otherwise, it points to a relobj. We used the unsized and target
1298 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1299 // Arm_relobj, in order to avoid making the stub class a template
1300 // as most of the stub machinery is endianness-neutral. However, it
1301 // may require a bit of casting done by users of this class.
1304 const Symbol
* symbol
;
1305 const Relobj
* relobj
;
1307 // Addend associated with a reloc.
1309 }; // End of inner class Reloc_stub::Key
1312 // This may be overridden in the child class.
1314 do_write(unsigned char*, section_size_type
);
1317 static const unsigned int invalid_index
= static_cast<unsigned int>(-1);
1318 }; // End of Reloc_stub
1320 template<int size
, bool big_endian
>
1321 const int Reloc_stub
<size
, big_endian
>::STUB_ADDR_ALIGN
= 4;
1323 // Write data to output file.
1325 template<int size
, bool big_endian
>
1327 Reloc_stub
<size
, big_endian
>::
1328 do_write(unsigned char* view
, section_size_type
)
1330 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
1331 const uint32_t* insns
= this->insns();
1332 uint32_t num_insns
= this->insn_num();
1333 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
1334 for (uint32_t i
= 0; i
< num_insns
; ++i
)
1335 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ i
, insns
[i
]);
1339 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1342 template<int size
, bool big_endian
>
1344 Reloc_stub
<size
, big_endian
>::stub_type_for_reloc(
1345 unsigned int r_type
, AArch64_address location
, AArch64_address dest
)
1347 int64_t branch_offset
= 0;
1350 case elfcpp::R_AARCH64_CALL26
:
1351 case elfcpp::R_AARCH64_JUMP26
:
1352 branch_offset
= dest
- location
;
1358 if (aarch64_valid_branch_offset_p(branch_offset
))
1361 if (aarch64_valid_for_adrp_p(location
, dest
))
1362 return ST_ADRP_BRANCH
;
1364 // Always use PC-relative addressing in case of -shared or -pie.
1365 if (parameters
->options().output_is_position_independent())
1366 return ST_LONG_BRANCH_PCREL
;
1368 // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1369 // But is only applicable to non-shared or non-pie.
1370 return ST_LONG_BRANCH_ABS
;
1373 // A class to hold stubs for the ARM target. This contains 2 different types of
1374 // stubs - reloc stubs and erratum stubs.
1376 template<int size
, bool big_endian
>
1377 class Stub_table
: public Output_data
1380 typedef Target_aarch64
<size
, big_endian
> The_target_aarch64
;
1381 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
1382 typedef AArch64_relobj
<size
, big_endian
> The_aarch64_relobj
;
1383 typedef AArch64_input_section
<size
, big_endian
> The_aarch64_input_section
;
1384 typedef Reloc_stub
<size
, big_endian
> The_reloc_stub
;
1385 typedef typename
The_reloc_stub::Key The_reloc_stub_key
;
1386 typedef Erratum_stub
<size
, big_endian
> The_erratum_stub
;
1387 typedef Erratum_stub_less
<size
, big_endian
> The_erratum_stub_less
;
1388 typedef typename
The_reloc_stub_key::hash The_reloc_stub_key_hash
;
1389 typedef typename
The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to
;
1390 typedef Stub_table
<size
, big_endian
> The_stub_table
;
1391 typedef Unordered_map
<The_reloc_stub_key
, The_reloc_stub
*,
1392 The_reloc_stub_key_hash
, The_reloc_stub_key_equal_to
>
1394 typedef typename
Reloc_stub_map::const_iterator Reloc_stub_map_const_iter
;
1395 typedef Relocate_info
<size
, big_endian
> The_relocate_info
;
1397 typedef std::set
<The_erratum_stub
*, The_erratum_stub_less
> Erratum_stub_set
;
1398 typedef typename
Erratum_stub_set::iterator Erratum_stub_set_iter
;
1400 Stub_table(The_aarch64_input_section
* owner
)
1401 : Output_data(), owner_(owner
), reloc_stubs_size_(0),
1402 erratum_stubs_size_(0), prev_data_size_(0)
1408 The_aarch64_input_section
*
1412 // Whether this stub table is empty.
1415 { return reloc_stubs_
.empty() && erratum_stubs_
.empty(); }
1417 // Return the current data size.
1419 current_data_size() const
1420 { return this->current_data_size_for_child(); }
1422 // Add a STUB using KEY. The caller is responsible for avoiding addition
1423 // if a STUB with the same key has already been added.
1425 add_reloc_stub(The_reloc_stub
* stub
, const The_reloc_stub_key
& key
);
1427 // Add an erratum stub into the erratum stub set. The set is ordered by
1428 // (relobj, shndx, sh_offset).
1430 add_erratum_stub(The_erratum_stub
* stub
);
1432 // Find if such erratum exists for any given (obj, shndx, sh_offset).
1434 find_erratum_stub(The_aarch64_relobj
* a64relobj
,
1435 unsigned int shndx
, unsigned int sh_offset
);
1437 // Find all the erratums for a given input section. The return value is a pair
1438 // of iterators [begin, end).
1439 std::pair
<Erratum_stub_set_iter
, Erratum_stub_set_iter
>
1440 find_erratum_stubs_for_input_section(The_aarch64_relobj
* a64relobj
,
1441 unsigned int shndx
);
1443 // Compute the erratum stub address.
1445 erratum_stub_address(The_erratum_stub
* stub
) const
1447 AArch64_address r
= align_address(this->address() + this->reloc_stubs_size_
,
1448 The_erratum_stub::STUB_ADDR_ALIGN
);
1449 r
+= stub
->offset();
1453 // Finalize stubs. No-op here, just for completeness.
1458 // Look up a relocation stub using KEY. Return NULL if there is none.
1460 find_reloc_stub(The_reloc_stub_key
& key
)
1462 Reloc_stub_map_const_iter p
= this->reloc_stubs_
.find(key
);
1463 return (p
!= this->reloc_stubs_
.end()) ? p
->second
: NULL
;
1466 // Relocate reloc stubs in this stub table. This does not relocate erratum stubs.
1468 relocate_reloc_stubs(const The_relocate_info
*,
1469 The_target_aarch64
*,
1475 // Relocate an erratum stub.
1477 relocate_erratum_stub(The_erratum_stub
*, unsigned char*);
1479 // Update data size at the end of a relaxation pass. Return true if data size
1480 // is different from that of the previous relaxation pass.
1482 update_data_size_changed_p()
1484 // No addralign changed here.
1485 off_t s
= align_address(this->reloc_stubs_size_
,
1486 The_erratum_stub::STUB_ADDR_ALIGN
)
1487 + this->erratum_stubs_size_
;
1488 bool changed
= (s
!= this->prev_data_size_
);
1489 this->prev_data_size_
= s
;
1494 // Write out section contents.
1496 do_write(Output_file
*);
1498 // Return the required alignment.
1500 do_addralign() const
1502 return std::max(The_reloc_stub::STUB_ADDR_ALIGN
,
1503 The_erratum_stub::STUB_ADDR_ALIGN
);
1506 // Reset address and file offset.
1508 do_reset_address_and_file_offset()
1509 { this->set_current_data_size_for_child(this->prev_data_size_
); }
1511 // Set final data size.
1513 set_final_data_size()
1514 { this->set_data_size(this->current_data_size()); }
1517 // Relocate one reloc stub.
1519 relocate_reloc_stub(The_reloc_stub
*,
1520 const The_relocate_info
*,
1521 The_target_aarch64
*,
1528 // Owner of this stub table.
1529 The_aarch64_input_section
* owner_
;
1530 // The relocation stubs.
1531 Reloc_stub_map reloc_stubs_
;
1532 // The erratum stubs.
1533 Erratum_stub_set erratum_stubs_
;
1534 // Size of reloc stubs.
1535 off_t reloc_stubs_size_
;
1536 // Size of erratum stubs.
1537 off_t erratum_stubs_size_
;
1538 // data size of this in the previous pass.
1539 off_t prev_data_size_
;
1540 }; // End of Stub_table
1543 // Add an erratum stub into the erratum stub set. The set is ordered by
1544 // (relobj, shndx, sh_offset).
1546 template<int size
, bool big_endian
>
1548 Stub_table
<size
, big_endian
>::add_erratum_stub(The_erratum_stub
* stub
)
1550 std::pair
<Erratum_stub_set_iter
, bool> ret
=
1551 this->erratum_stubs_
.insert(stub
);
1552 gold_assert(ret
.second
);
1553 this->erratum_stubs_size_
= align_address(
1554 this->erratum_stubs_size_
, The_erratum_stub::STUB_ADDR_ALIGN
);
1555 stub
->set_offset(this->erratum_stubs_size_
);
1556 this->erratum_stubs_size_
+= stub
->stub_size();
1560 // Find if such erratum exists for given (obj, shndx, sh_offset).
1562 template<int size
, bool big_endian
>
1563 Erratum_stub
<size
, big_endian
>*
1564 Stub_table
<size
, big_endian
>::find_erratum_stub(
1565 The_aarch64_relobj
* a64relobj
, unsigned int shndx
, unsigned int sh_offset
)
1567 // A dummy object used as key to search in the set.
1568 The_erratum_stub
key(a64relobj
, ST_NONE
,
1570 Erratum_stub_set_iter i
= this->erratum_stubs_
.find(&key
);
1571 if (i
!= this->erratum_stubs_
.end())
1573 The_erratum_stub
* stub(*i
);
1574 gold_assert(stub
->erratum_insn() != 0);
1581 // Find all the errata for a given input section. The return value is a pair of
1582 // iterators [begin, end).
1584 template<int size
, bool big_endian
>
1585 std::pair
<typename Stub_table
<size
, big_endian
>::Erratum_stub_set_iter
,
1586 typename Stub_table
<size
, big_endian
>::Erratum_stub_set_iter
>
1587 Stub_table
<size
, big_endian
>::find_erratum_stubs_for_input_section(
1588 The_aarch64_relobj
* a64relobj
, unsigned int shndx
)
1590 typedef std::pair
<Erratum_stub_set_iter
, Erratum_stub_set_iter
> Result_pair
;
1591 Erratum_stub_set_iter start
, end
;
1592 The_erratum_stub
low_key(a64relobj
, ST_NONE
, shndx
, 0);
1593 start
= this->erratum_stubs_
.lower_bound(&low_key
);
1594 if (start
== this->erratum_stubs_
.end())
1595 return Result_pair(this->erratum_stubs_
.end(),
1596 this->erratum_stubs_
.end());
1598 while (end
!= this->erratum_stubs_
.end() &&
1599 (*end
)->relobj() == a64relobj
&& (*end
)->shndx() == shndx
)
1601 return Result_pair(start
, end
);
1605 // Add a STUB using KEY. The caller is responsible for avoiding addition
1606 // if a STUB with the same key has already been added.
1608 template<int size
, bool big_endian
>
1610 Stub_table
<size
, big_endian
>::add_reloc_stub(
1611 The_reloc_stub
* stub
, const The_reloc_stub_key
& key
)
1613 gold_assert(stub
->type() == key
.type());
1614 this->reloc_stubs_
[key
] = stub
;
1616 // Assign stub offset early. We can do this because we never remove
1617 // reloc stubs and they are in the beginning of the stub table.
1618 this->reloc_stubs_size_
= align_address(this->reloc_stubs_size_
,
1619 The_reloc_stub::STUB_ADDR_ALIGN
);
1620 stub
->set_offset(this->reloc_stubs_size_
);
1621 this->reloc_stubs_size_
+= stub
->stub_size();
1625 // Relocate an erratum stub.
1627 template<int size
, bool big_endian
>
1629 Stub_table
<size
, big_endian
>::
1630 relocate_erratum_stub(The_erratum_stub
* estub
,
1631 unsigned char* view
)
1633 // Just for convenience.
1634 const int BPI
= AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
;
1636 gold_assert(!estub
->is_invalidated_erratum_stub());
1637 AArch64_address stub_address
= this->erratum_stub_address(estub
);
1638 // The address of "b" in the stub that is to be "relocated".
1639 AArch64_address stub_b_insn_address
;
1640 // Branch offset that is to be filled in "b" insn.
1642 switch (estub
->type())
1646 // The 1st insn of the erratum could be a relocation spot,
1647 // in this case we need to fix it with
1648 // "(*i)->erratum_insn()".
1649 elfcpp::Swap
<32, big_endian
>::writeval(
1650 view
+ (stub_address
- this->address()),
1651 estub
->erratum_insn());
1652 // For the erratum, the 2nd insn is a b-insn to be patched
1654 stub_b_insn_address
= stub_address
+ 1 * BPI
;
1655 b_offset
= estub
->destination_address() - stub_b_insn_address
;
1656 AArch64_relocate_functions
<size
, big_endian
>::construct_b(
1657 view
+ (stub_b_insn_address
- this->address()),
1658 ((unsigned int)(b_offset
)) & 0xfffffff);
1664 estub
->invalidate_erratum_stub();
1668 // Relocate only reloc stubs in this stub table. This does not relocate erratum
1671 template<int size
, bool big_endian
>
1673 Stub_table
<size
, big_endian
>::
1674 relocate_reloc_stubs(const The_relocate_info
* relinfo
,
1675 The_target_aarch64
* target_aarch64
,
1676 Output_section
* output_section
,
1677 unsigned char* view
,
1678 AArch64_address address
,
1679 section_size_type view_size
)
1681 // "view_size" is the total size of the stub_table.
1682 gold_assert(address
== this->address() &&
1683 view_size
== static_cast<section_size_type
>(this->data_size()));
1684 for(Reloc_stub_map_const_iter p
= this->reloc_stubs_
.begin();
1685 p
!= this->reloc_stubs_
.end(); ++p
)
1686 relocate_reloc_stub(p
->second
, relinfo
, target_aarch64
, output_section
,
1687 view
, address
, view_size
);
1691 // Relocate one reloc stub. This is a helper for
1692 // Stub_table::relocate_reloc_stubs().
1694 template<int size
, bool big_endian
>
1696 Stub_table
<size
, big_endian
>::
1697 relocate_reloc_stub(The_reloc_stub
* stub
,
1698 const The_relocate_info
* relinfo
,
1699 The_target_aarch64
* target_aarch64
,
1700 Output_section
* output_section
,
1701 unsigned char* view
,
1702 AArch64_address address
,
1703 section_size_type view_size
)
1705 // "offset" is the offset from the beginning of the stub_table.
1706 section_size_type offset
= stub
->offset();
1707 section_size_type stub_size
= stub
->stub_size();
1708 // "view_size" is the total size of the stub_table.
1709 gold_assert(offset
+ stub_size
<= view_size
);
1711 target_aarch64
->relocate_reloc_stub(stub
, relinfo
, output_section
,
1712 view
+ offset
, address
+ offset
, view_size
);
1716 // Write out the stubs to file.
1718 template<int size
, bool big_endian
>
1720 Stub_table
<size
, big_endian
>::do_write(Output_file
* of
)
1722 off_t offset
= this->offset();
1723 const section_size_type oview_size
=
1724 convert_to_section_size_type(this->data_size());
1725 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1727 // Write relocation stubs.
1728 for (typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.begin();
1729 p
!= this->reloc_stubs_
.end(); ++p
)
1731 The_reloc_stub
* stub
= p
->second
;
1732 AArch64_address address
= this->address() + stub
->offset();
1733 gold_assert(address
==
1734 align_address(address
, The_reloc_stub::STUB_ADDR_ALIGN
));
1735 stub
->write(oview
+ stub
->offset(), stub
->stub_size());
1738 // Write erratum stubs.
1739 unsigned int erratum_stub_start_offset
=
1740 align_address(this->reloc_stubs_size_
, The_erratum_stub::STUB_ADDR_ALIGN
);
1741 for (typename
Erratum_stub_set::iterator p
= this->erratum_stubs_
.begin();
1742 p
!= this->erratum_stubs_
.end(); ++p
)
1744 The_erratum_stub
* stub(*p
);
1745 stub
->write(oview
+ erratum_stub_start_offset
+ stub
->offset(),
1749 of
->write_output_view(this->offset(), oview_size
, oview
);
1753 // AArch64_relobj class.
1755 template<int size
, bool big_endian
>
1756 class AArch64_relobj
: public Sized_relobj_file
<size
, big_endian
>
1759 typedef AArch64_relobj
<size
, big_endian
> This
;
1760 typedef Target_aarch64
<size
, big_endian
> The_target_aarch64
;
1761 typedef AArch64_input_section
<size
, big_endian
> The_aarch64_input_section
;
1762 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
1763 typedef Stub_table
<size
, big_endian
> The_stub_table
;
1764 typedef Erratum_stub
<size
, big_endian
> The_erratum_stub
;
1765 typedef typename
The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter
;
1766 typedef std::vector
<The_stub_table
*> Stub_table_list
;
1767 static const AArch64_address invalid_address
=
1768 static_cast<AArch64_address
>(-1);
1770 AArch64_relobj(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1771 const typename
elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
1772 : Sized_relobj_file
<size
, big_endian
>(name
, input_file
, offset
, ehdr
),
1779 // Return the stub table of the SHNDX-th section if there is one.
1781 stub_table(unsigned int shndx
) const
1783 gold_assert(shndx
< this->stub_tables_
.size());
1784 return this->stub_tables_
[shndx
];
1787 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1789 set_stub_table(unsigned int shndx
, The_stub_table
* stub_table
)
1791 gold_assert(shndx
< this->stub_tables_
.size());
1792 this->stub_tables_
[shndx
] = stub_table
;
1795 // Entrance to errata scanning.
1797 scan_errata(unsigned int shndx
,
1798 const elfcpp::Shdr
<size
, big_endian
>&,
1799 Output_section
*, const Symbol_table
*,
1800 The_target_aarch64
*);
1802 // Scan all relocation sections for stub generation.
1804 scan_sections_for_stubs(The_target_aarch64
*, const Symbol_table
*,
1807 // Whether a section is a scannable text section.
1809 text_section_is_scannable(const elfcpp::Shdr
<size
, big_endian
>&, unsigned int,
1810 const Output_section
*, const Symbol_table
*);
1812 // Convert regular input section with index SHNDX to a relaxed section.
1814 convert_input_section_to_relaxed_section(unsigned shndx
)
1816 // The stubs have relocations and we need to process them after writing
1817 // out the stubs. So relocation now must follow section write.
1818 this->set_section_offset(shndx
, -1ULL);
1819 this->set_relocs_must_follow_section_writes();
1822 // Structure for mapping symbol position.
1823 struct Mapping_symbol_position
1825 Mapping_symbol_position(unsigned int shndx
, AArch64_address offset
):
1826 shndx_(shndx
), offset_(offset
)
1829 // "<" comparator used in ordered_map container.
1831 operator<(const Mapping_symbol_position
& p
) const
1833 return (this->shndx_
< p
.shndx_
1834 || (this->shndx_
== p
.shndx_
&& this->offset_
< p
.offset_
));
1838 unsigned int shndx_
;
1841 AArch64_address offset_
;
1844 typedef std::map
<Mapping_symbol_position
, char> Mapping_symbol_info
;
1847 // Post constructor setup.
1851 // Call parent's setup method.
1852 Sized_relobj_file
<size
, big_endian
>::do_setup();
1854 // Initialize look-up tables.
1855 this->stub_tables_
.resize(this->shnum());
1859 do_relocate_sections(
1860 const Symbol_table
* symtab
, const Layout
* layout
,
1861 const unsigned char* pshdrs
, Output_file
* of
,
1862 typename Sized_relobj_file
<size
, big_endian
>::Views
* pviews
);
1864 // Count local symbols and (optionally) record mapping info.
1866 do_count_local_symbols(Stringpool_template
<char>*,
1867 Stringpool_template
<char>*);
1870 // Fix all errata in the object, and for each erratum, relocate corresponding
1873 fix_errata_and_relocate_erratum_stubs(
1874 typename Sized_relobj_file
<size
, big_endian
>::Views
* pviews
);
1876 // Try to fix erratum 843419 in an optimized way. Return true if patch is
1879 try_fix_erratum_843419_optimized(
1880 The_erratum_stub
*, AArch64_address
,
1881 typename Sized_relobj_file
<size
, big_endian
>::View_size
&);
1883 // Whether a section needs to be scanned for relocation stubs.
1885 section_needs_reloc_stub_scanning(const elfcpp::Shdr
<size
, big_endian
>&,
1886 const Relobj::Output_sections
&,
1887 const Symbol_table
*, const unsigned char*);
1889 // List of stub tables.
1890 Stub_table_list stub_tables_
;
1892 // Mapping symbol information sorted by (section index, section_offset).
1893 Mapping_symbol_info mapping_symbol_info_
;
1894 }; // End of AArch64_relobj
1897 // Override to record mapping symbol information.
1898 template<int size
, bool big_endian
>
1900 AArch64_relobj
<size
, big_endian
>::do_count_local_symbols(
1901 Stringpool_template
<char>* pool
, Stringpool_template
<char>* dynpool
)
1903 Sized_relobj_file
<size
, big_endian
>::do_count_local_symbols(pool
, dynpool
);
1905 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1906 // processing if not fixing erratum.
1907 if (!parameters
->options().fix_cortex_a53_843419()
1908 && !parameters
->options().fix_cortex_a53_835769())
1911 const unsigned int loccount
= this->local_symbol_count();
1915 // Read the symbol table section header.
1916 const unsigned int symtab_shndx
= this->symtab_shndx();
1917 elfcpp::Shdr
<size
, big_endian
>
1918 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
1919 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1921 // Read the local symbols.
1922 const int sym_size
=elfcpp::Elf_sizes
<size
>::sym_size
;
1923 gold_assert(loccount
== symtabshdr
.get_sh_info());
1924 off_t locsize
= loccount
* sym_size
;
1925 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1926 locsize
, true, true);
1928 // For mapping symbol processing, we need to read the symbol names.
1929 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
1930 if (strtab_shndx
>= this->shnum())
1932 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
1936 elfcpp::Shdr
<size
, big_endian
>
1937 strtabshdr(this, this->elf_file()->section_header(strtab_shndx
));
1938 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
1940 this->error(_("symbol table name section has wrong type: %u"),
1941 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
1945 const char* pnames
=
1946 reinterpret_cast<const char*>(this->get_view(strtabshdr
.get_sh_offset(),
1947 strtabshdr
.get_sh_size(),
1950 // Skip the first dummy symbol.
1952 typename Sized_relobj_file
<size
, big_endian
>::Local_values
*
1953 plocal_values
= this->local_values();
1954 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1956 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
1957 Symbol_value
<size
>& lv((*plocal_values
)[i
]);
1958 AArch64_address input_value
= lv
.input_value();
1960 // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1961 // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1963 // Mapping symbols could be one of the following 4 forms -
1968 const char* sym_name
= pnames
+ sym
.get_st_name();
1969 if (sym_name
[0] == '$' && (sym_name
[1] == 'x' || sym_name
[1] == 'd')
1970 && (sym_name
[2] == '\0' || sym_name
[2] == '.'))
1973 unsigned int input_shndx
=
1974 this->adjust_sym_shndx(i
, sym
.get_st_shndx(), &is_ordinary
);
1975 gold_assert(is_ordinary
);
1977 Mapping_symbol_position
msp(input_shndx
, input_value
);
1978 // Insert mapping_symbol_info into map whose ordering is defined by
1979 // (shndx, offset_within_section).
1980 this->mapping_symbol_info_
[msp
] = sym_name
[1];
1986 // Fix all errata in the object and for each erratum, we relocate the
1987 // corresponding erratum stub (by calling Stub_table::relocate_erratum_stub).
1989 template<int size
, bool big_endian
>
1991 AArch64_relobj
<size
, big_endian
>::fix_errata_and_relocate_erratum_stubs(
1992 typename Sized_relobj_file
<size
, big_endian
>::Views
* pviews
)
1994 typedef typename
elfcpp::Swap
<32,big_endian
>::Valtype Insntype
;
1995 unsigned int shnum
= this->shnum();
1996 const Relobj::Output_sections
& out_sections(this->output_sections());
1997 for (unsigned int i
= 1; i
< shnum
; ++i
)
1999 The_stub_table
* stub_table
= this->stub_table(i
);
2002 std::pair
<Erratum_stub_set_iter
, Erratum_stub_set_iter
>
2003 ipair(stub_table
->find_erratum_stubs_for_input_section(this, i
));
2004 Erratum_stub_set_iter p
= ipair
.first
, end
= ipair
.second
;
2005 typename Sized_relobj_file
<size
, big_endian
>::View_size
&
2006 pview((*pviews
)[i
]);
2007 AArch64_address view_offset
= 0;
2008 if (pview
.is_input_output_view
)
2010 // In this case, write_sections has not added the output offset to
2011 // the view's address, so we must do so. Currently this only happens
2012 // for a relaxed section.
2013 unsigned int index
= this->adjust_shndx(i
);
2014 const Output_relaxed_input_section
* poris
=
2015 out_sections
[index
]->find_relaxed_input_section(this, index
);
2016 gold_assert(poris
!= NULL
);
2017 view_offset
= poris
->address() - pview
.address
;
2022 The_erratum_stub
* stub
= *p
;
2024 // Double check data before fix.
2025 gold_assert(pview
.address
+ view_offset
+ stub
->sh_offset()
2026 == stub
->erratum_address());
2028 // Update previously recorded erratum insn with relocated
2031 reinterpret_cast<Insntype
*>(
2032 pview
.view
+ view_offset
+ stub
->sh_offset());
2033 Insntype insn_to_fix
= ip
[0];
2034 stub
->update_erratum_insn(insn_to_fix
);
2036 // First try to see if erratum is 843419 and if it can be fixed
2037 // without using branch-to-stub.
2038 if (!try_fix_erratum_843419_optimized(stub
, view_offset
, pview
))
2040 // Replace the erratum insn with a branch-to-stub.
2041 AArch64_address stub_address
=
2042 stub_table
->erratum_stub_address(stub
);
2043 unsigned int b_offset
= stub_address
- stub
->erratum_address();
2044 AArch64_relocate_functions
<size
, big_endian
>::construct_b(
2045 pview
.view
+ view_offset
+ stub
->sh_offset(),
2046 b_offset
& 0xfffffff);
2049 // Erratum fix is done (or skipped), continue to relocate erratum
2050 // stub. Note, when erratum fix is skipped (either because we
2051 // proactively change the code sequence or the code sequence is
2052 // changed by relaxation, etc), we can still safely relocate the
2053 // erratum stub, ignoring the fact the erratum could never be
2055 stub_table
->relocate_erratum_stub(
2057 pview
.view
+ (stub_table
->address() - pview
.address
));
2059 // Next erratum stub.
2066 // This is an optimization for 843419. This erratum requires the sequence begin
2067 // with 'adrp', when final value calculated by adrp fits in adr, we can just
2068 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
2069 // in this case, we do not delete the erratum stub (too late to do so), it is
2070 // merely generated without ever being called.)
2072 template<int size
, bool big_endian
>
2074 AArch64_relobj
<size
, big_endian
>::try_fix_erratum_843419_optimized(
2075 The_erratum_stub
* stub
, AArch64_address view_offset
,
2076 typename Sized_relobj_file
<size
, big_endian
>::View_size
& pview
)
2078 if (stub
->type() != ST_E_843419
)
2081 typedef AArch64_insn_utilities
<big_endian
> Insn_utilities
;
2082 typedef typename
elfcpp::Swap
<32,big_endian
>::Valtype Insntype
;
2083 E843419_stub
<size
, big_endian
>* e843419_stub
=
2084 reinterpret_cast<E843419_stub
<size
, big_endian
>*>(stub
);
2085 AArch64_address pc
=
2086 pview
.address
+ view_offset
+ e843419_stub
->adrp_sh_offset();
2087 unsigned int adrp_offset
= e843419_stub
->adrp_sh_offset ();
2088 Insntype
* adrp_view
=
2089 reinterpret_cast<Insntype
*>(pview
.view
+ view_offset
+ adrp_offset
);
2090 Insntype adrp_insn
= adrp_view
[0];
2092 // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come
2093 // from IE -> LE relaxation etc. This is a side-effect of TLS relaxation that
2094 // ADRP has been turned into MRS, there is no erratum risk anymore.
2095 // Therefore, we return true to avoid doing unnecessary branch-to-stub.
2096 if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn
))
2099 // If the instruction at adrp_sh_offset is not ADRP and the instruction before
2100 // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc.
2101 // Like the above case, there is no erratum risk any more, we can safely
2103 if (!Insn_utilities::is_adrp(adrp_insn
) && adrp_offset
)
2105 Insntype
* prev_view
=
2106 reinterpret_cast<Insntype
*>(
2107 pview
.view
+ view_offset
+ adrp_offset
- 4);
2108 Insntype prev_insn
= prev_view
[0];
2110 if (Insn_utilities::is_mrs_tpidr_el0(prev_insn
))
2114 /* If we reach here, the first instruction must be ADRP. */
2115 gold_assert(Insn_utilities::is_adrp(adrp_insn
));
2116 // Get adrp 33-bit signed imm value.
2117 int64_t adrp_imm
= Insn_utilities::
2118 aarch64_adrp_decode_imm(adrp_insn
);
2119 // adrp - final value transferred to target register is calculated as:
2120 // PC[11:0] = Zeros(12)
2121 // adrp_dest_value = PC + adrp_imm;
2122 int64_t adrp_dest_value
= (pc
& ~((1 << 12) - 1)) + adrp_imm
;
2123 // adr -final value transferred to target register is calucalted as:
2126 // PC + adr_imm = adrp_dest_value
2128 // adr_imm = adrp_dest_value - PC
2129 int64_t adr_imm
= adrp_dest_value
- pc
;
2130 // Check if imm fits in adr (21-bit signed).
2131 if (-(1 << 20) <= adr_imm
&& adr_imm
< (1 << 20))
2133 // Convert 'adrp' into 'adr'.
2134 Insntype adr_insn
= adrp_insn
& ((1u << 31) - 1);
2135 adr_insn
= Insn_utilities::
2136 aarch64_adr_encode_imm(adr_insn
, adr_imm
);
2137 elfcpp::Swap
<32, big_endian
>::writeval(adrp_view
, adr_insn
);
2144 // Relocate sections.
2146 template<int size
, bool big_endian
>
2148 AArch64_relobj
<size
, big_endian
>::do_relocate_sections(
2149 const Symbol_table
* symtab
, const Layout
* layout
,
2150 const unsigned char* pshdrs
, Output_file
* of
,
2151 typename Sized_relobj_file
<size
, big_endian
>::Views
* pviews
)
2153 // Relocate the section data.
2154 this->relocate_section_range(symtab
, layout
, pshdrs
, of
, pviews
,
2155 1, this->shnum() - 1);
2157 // We do not generate stubs if doing a relocatable link.
2158 if (parameters
->options().relocatable())
2161 // This part only relocates erratum stubs that belong to input sections of this
2163 if (parameters
->options().fix_cortex_a53_843419()
2164 || parameters
->options().fix_cortex_a53_835769())
2165 this->fix_errata_and_relocate_erratum_stubs(pviews
);
2167 Relocate_info
<size
, big_endian
> relinfo
;
2168 relinfo
.symtab
= symtab
;
2169 relinfo
.layout
= layout
;
2170 relinfo
.object
= this;
2172 // This part relocates all reloc stubs that are contained in stub_tables of
2173 // this object file.
2174 unsigned int shnum
= this->shnum();
2175 The_target_aarch64
* target
= The_target_aarch64::current_target();
2177 for (unsigned int i
= 1; i
< shnum
; ++i
)
2179 The_aarch64_input_section
* aarch64_input_section
=
2180 target
->find_aarch64_input_section(this, i
);
2181 if (aarch64_input_section
!= NULL
2182 && aarch64_input_section
->is_stub_table_owner()
2183 && !aarch64_input_section
->stub_table()->empty())
2185 Output_section
* os
= this->output_section(i
);
2186 gold_assert(os
!= NULL
);
2188 relinfo
.reloc_shndx
= elfcpp::SHN_UNDEF
;
2189 relinfo
.reloc_shdr
= NULL
;
2190 relinfo
.data_shndx
= i
;
2191 relinfo
.data_shdr
= pshdrs
+ i
* elfcpp::Elf_sizes
<size
>::shdr_size
;
2193 typename Sized_relobj_file
<size
, big_endian
>::View_size
&
2194 view_struct
= (*pviews
)[i
];
2195 gold_assert(view_struct
.view
!= NULL
);
2197 The_stub_table
* stub_table
= aarch64_input_section
->stub_table();
2198 off_t offset
= stub_table
->address() - view_struct
.address
;
2199 unsigned char* view
= view_struct
.view
+ offset
;
2200 AArch64_address address
= stub_table
->address();
2201 section_size_type view_size
= stub_table
->data_size();
2202 stub_table
->relocate_reloc_stubs(&relinfo
, target
, os
, view
, address
,
2209 // Determine if an input section is scannable for stub processing. SHDR is
2210 // the header of the section and SHNDX is the section index. OS is the output
2211 // section for the input section and SYMTAB is the global symbol table used to
2212 // look up ICF information.
2214 template<int size
, bool big_endian
>
2216 AArch64_relobj
<size
, big_endian
>::text_section_is_scannable(
2217 const elfcpp::Shdr
<size
, big_endian
>& text_shdr
,
2218 unsigned int text_shndx
,
2219 const Output_section
* os
,
2220 const Symbol_table
* symtab
)
2222 // Skip any empty sections, unallocated sections or sections whose
2223 // type are not SHT_PROGBITS.
2224 if (text_shdr
.get_sh_size() == 0
2225 || (text_shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0
2226 || text_shdr
.get_sh_type() != elfcpp::SHT_PROGBITS
)
2229 // Skip any discarded or ICF'ed sections.
2230 if (os
== NULL
|| symtab
->is_section_folded(this, text_shndx
))
2233 // Skip exception frame.
2234 if (strcmp(os
->name(), ".eh_frame") == 0)
2237 gold_assert(!this->is_output_section_offset_invalid(text_shndx
) ||
2238 os
->find_relaxed_input_section(this, text_shndx
) != NULL
);
2244 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2245 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2247 template<int size
, bool big_endian
>
2249 AArch64_relobj
<size
, big_endian
>::section_needs_reloc_stub_scanning(
2250 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2251 const Relobj::Output_sections
& out_sections
,
2252 const Symbol_table
* symtab
,
2253 const unsigned char* pshdrs
)
2255 unsigned int sh_type
= shdr
.get_sh_type();
2256 if (sh_type
!= elfcpp::SHT_RELA
)
2259 // Ignore empty section.
2260 off_t sh_size
= shdr
.get_sh_size();
2264 // Ignore reloc section with unexpected symbol table. The
2265 // error will be reported in the final link.
2266 if (this->adjust_shndx(shdr
.get_sh_link()) != this->symtab_shndx())
2269 gold_assert(sh_type
== elfcpp::SHT_RELA
);
2270 unsigned int reloc_size
= elfcpp::Elf_sizes
<size
>::rela_size
;
2272 // Ignore reloc section with unexpected entsize or uneven size.
2273 // The error will be reported in the final link.
2274 if (reloc_size
!= shdr
.get_sh_entsize() || sh_size
% reloc_size
!= 0)
2277 // Ignore reloc section with bad info. This error will be
2278 // reported in the final link.
2279 unsigned int text_shndx
= this->adjust_shndx(shdr
.get_sh_info());
2280 if (text_shndx
>= this->shnum())
2283 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
2284 const elfcpp::Shdr
<size
, big_endian
> text_shdr(pshdrs
+
2285 text_shndx
* shdr_size
);
2286 return this->text_section_is_scannable(text_shdr
, text_shndx
,
2287 out_sections
[text_shndx
], symtab
);
2291 // Scan section SHNDX for erratum 843419 and 835769.
2293 template<int size
, bool big_endian
>
2295 AArch64_relobj
<size
, big_endian
>::scan_errata(
2296 unsigned int shndx
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2297 Output_section
* os
, const Symbol_table
* symtab
,
2298 The_target_aarch64
* target
)
2300 if (shdr
.get_sh_size() == 0
2301 || (shdr
.get_sh_flags() &
2302 (elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR
)) == 0
2303 || shdr
.get_sh_type() != elfcpp::SHT_PROGBITS
)
2306 if (!os
|| symtab
->is_section_folded(this, shndx
)) return;
2308 AArch64_address output_offset
= this->get_output_section_offset(shndx
);
2309 AArch64_address output_address
;
2310 if (output_offset
!= invalid_address
)
2311 output_address
= os
->address() + output_offset
;
2314 const Output_relaxed_input_section
* poris
=
2315 os
->find_relaxed_input_section(this, shndx
);
2317 output_address
= poris
->address();
2320 // Update the addresses in previously generated erratum stubs. Unlike when
2321 // we scan relocations for stubs, if section addresses have changed due to
2322 // other relaxations we are unlikely to scan the same erratum instances
2324 The_stub_table
* stub_table
= this->stub_table(shndx
);
2327 std::pair
<Erratum_stub_set_iter
, Erratum_stub_set_iter
>
2328 ipair(stub_table
->find_erratum_stubs_for_input_section(this, shndx
));
2329 for (Erratum_stub_set_iter p
= ipair
.first
; p
!= ipair
.second
; ++p
)
2330 (*p
)->update_erratum_address(output_address
);
2333 section_size_type input_view_size
= 0;
2334 const unsigned char* input_view
=
2335 this->section_contents(shndx
, &input_view_size
, false);
2337 Mapping_symbol_position
section_start(shndx
, 0);
2338 // Find the first mapping symbol record within section shndx.
2339 typename
Mapping_symbol_info::const_iterator p
=
2340 this->mapping_symbol_info_
.lower_bound(section_start
);
2341 while (p
!= this->mapping_symbol_info_
.end() &&
2342 p
->first
.shndx_
== shndx
)
2344 typename
Mapping_symbol_info::const_iterator prev
= p
;
2346 if (prev
->second
== 'x')
2348 section_size_type span_start
=
2349 convert_to_section_size_type(prev
->first
.offset_
);
2350 section_size_type span_end
;
2351 if (p
!= this->mapping_symbol_info_
.end()
2352 && p
->first
.shndx_
== shndx
)
2353 span_end
= convert_to_section_size_type(p
->first
.offset_
);
2355 span_end
= convert_to_section_size_type(shdr
.get_sh_size());
2357 // Here we do not share the scanning code of both errata. For 843419,
2358 // only the last few insns of each page are examined, which is fast,
2359 // whereas, for 835769, every insn pair needs to be checked.
2361 if (parameters
->options().fix_cortex_a53_843419())
2362 target
->scan_erratum_843419_span(
2363 this, shndx
, span_start
, span_end
,
2364 const_cast<unsigned char*>(input_view
), output_address
);
2366 if (parameters
->options().fix_cortex_a53_835769())
2367 target
->scan_erratum_835769_span(
2368 this, shndx
, span_start
, span_end
,
2369 const_cast<unsigned char*>(input_view
), output_address
);
2375 // Scan relocations for stub generation.
2377 template<int size
, bool big_endian
>
2379 AArch64_relobj
<size
, big_endian
>::scan_sections_for_stubs(
2380 The_target_aarch64
* target
,
2381 const Symbol_table
* symtab
,
2382 const Layout
* layout
)
2384 unsigned int shnum
= this->shnum();
2385 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
2387 // Read the section headers.
2388 const unsigned char* pshdrs
= this->get_view(this->elf_file()->shoff(),
2392 // To speed up processing, we set up hash tables for fast lookup of
2393 // input offsets to output addresses.
2394 this->initialize_input_to_output_maps();
2396 const Relobj::Output_sections
& out_sections(this->output_sections());
2398 Relocate_info
<size
, big_endian
> relinfo
;
2399 relinfo
.symtab
= symtab
;
2400 relinfo
.layout
= layout
;
2401 relinfo
.object
= this;
2403 // Do relocation stubs scanning.
2404 const unsigned char* p
= pshdrs
+ shdr_size
;
2405 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
2407 const elfcpp::Shdr
<size
, big_endian
> shdr(p
);
2408 if (parameters
->options().fix_cortex_a53_843419()
2409 || parameters
->options().fix_cortex_a53_835769())
2410 scan_errata(i
, shdr
, out_sections
[i
], symtab
, target
);
2411 if (this->section_needs_reloc_stub_scanning(shdr
, out_sections
, symtab
,
2414 unsigned int index
= this->adjust_shndx(shdr
.get_sh_info());
2415 AArch64_address output_offset
=
2416 this->get_output_section_offset(index
);
2417 AArch64_address output_address
;
2418 if (output_offset
!= invalid_address
)
2420 output_address
= out_sections
[index
]->address() + output_offset
;
2424 // Currently this only happens for a relaxed section.
2425 const Output_relaxed_input_section
* poris
=
2426 out_sections
[index
]->find_relaxed_input_section(this, index
);
2427 gold_assert(poris
!= NULL
);
2428 output_address
= poris
->address();
2431 // Get the relocations.
2432 const unsigned char* prelocs
= this->get_view(shdr
.get_sh_offset(),
2436 // Get the section contents.
2437 section_size_type input_view_size
= 0;
2438 const unsigned char* input_view
=
2439 this->section_contents(index
, &input_view_size
, false);
2441 relinfo
.reloc_shndx
= i
;
2442 relinfo
.data_shndx
= index
;
2443 unsigned int sh_type
= shdr
.get_sh_type();
2444 unsigned int reloc_size
;
2445 gold_assert (sh_type
== elfcpp::SHT_RELA
);
2446 reloc_size
= elfcpp::Elf_sizes
<size
>::rela_size
;
2448 Output_section
* os
= out_sections
[index
];
2449 target
->scan_section_for_stubs(&relinfo
, sh_type
, prelocs
,
2450 shdr
.get_sh_size() / reloc_size
,
2452 output_offset
== invalid_address
,
2453 input_view
, output_address
,
2460 // A class to wrap an ordinary input section containing executable code.
2462 template<int size
, bool big_endian
>
2463 class AArch64_input_section
: public Output_relaxed_input_section
2466 typedef Stub_table
<size
, big_endian
> The_stub_table
;
2468 AArch64_input_section(Relobj
* relobj
, unsigned int shndx
)
2469 : Output_relaxed_input_section(relobj
, shndx
, 1),
2471 original_contents_(NULL
), original_size_(0),
2472 original_addralign_(1)
2475 ~AArch64_input_section()
2476 { delete[] this->original_contents_
; }
2482 // Set the stub_table.
2484 set_stub_table(The_stub_table
* st
)
2485 { this->stub_table_
= st
; }
2487 // Whether this is a stub table owner.
2489 is_stub_table_owner() const
2490 { return this->stub_table_
!= NULL
&& this->stub_table_
->owner() == this; }
2492 // Return the original size of the section.
2494 original_size() const
2495 { return this->original_size_
; }
2497 // Return the stub table.
2500 { return stub_table_
; }
2503 // Write out this input section.
2505 do_write(Output_file
*);
2507 // Return required alignment of this.
2509 do_addralign() const
2511 if (this->is_stub_table_owner())
2512 return std::max(this->stub_table_
->addralign(),
2513 static_cast<uint64_t>(this->original_addralign_
));
2515 return this->original_addralign_
;
2518 // Finalize data size.
2520 set_final_data_size();
2522 // Reset address and file offset.
2524 do_reset_address_and_file_offset();
2528 do_output_offset(const Relobj
* object
, unsigned int shndx
,
2529 section_offset_type offset
,
2530 section_offset_type
* poutput
) const
2532 if ((object
== this->relobj())
2533 && (shndx
== this->shndx())
2536 convert_types
<section_offset_type
, uint32_t>(this->original_size_
)))
2546 // Copying is not allowed.
2547 AArch64_input_section(const AArch64_input_section
&);
2548 AArch64_input_section
& operator=(const AArch64_input_section
&);
2550 // The relocation stubs.
2551 The_stub_table
* stub_table_
;
2552 // Original section contents. We have to make a copy here since the file
2553 // containing the original section may not be locked when we need to access
2555 unsigned char* original_contents_
;
2556 // Section size of the original input section.
2557 uint32_t original_size_
;
2558 // Address alignment of the original input section.
2559 uint32_t original_addralign_
;
2560 }; // End of AArch64_input_section
2563 // Finalize data size.
2565 template<int size
, bool big_endian
>
2567 AArch64_input_section
<size
, big_endian
>::set_final_data_size()
2569 off_t off
= convert_types
<off_t
, uint64_t>(this->original_size_
);
2571 if (this->is_stub_table_owner())
2573 this->stub_table_
->finalize_data_size();
2574 off
= align_address(off
, this->stub_table_
->addralign());
2575 off
+= this->stub_table_
->data_size();
2577 this->set_data_size(off
);
2581 // Reset address and file offset.
2583 template<int size
, bool big_endian
>
2585 AArch64_input_section
<size
, big_endian
>::do_reset_address_and_file_offset()
2587 // Size of the original input section contents.
2588 off_t off
= convert_types
<off_t
, uint64_t>(this->original_size_
);
2590 // If this is a stub table owner, account for the stub table size.
2591 if (this->is_stub_table_owner())
2593 The_stub_table
* stub_table
= this->stub_table_
;
2595 // Reset the stub table's address and file offset. The
2596 // current data size for child will be updated after that.
2597 stub_table_
->reset_address_and_file_offset();
2598 off
= align_address(off
, stub_table_
->addralign());
2599 off
+= stub_table
->current_data_size();
2602 this->set_current_data_size(off
);
2606 // Initialize an Arm_input_section.
2608 template<int size
, bool big_endian
>
2610 AArch64_input_section
<size
, big_endian
>::init()
2612 Relobj
* relobj
= this->relobj();
2613 unsigned int shndx
= this->shndx();
2615 // We have to cache original size, alignment and contents to avoid locking
2616 // the original file.
2617 this->original_addralign_
=
2618 convert_types
<uint32_t, uint64_t>(relobj
->section_addralign(shndx
));
2620 // This is not efficient but we expect only a small number of relaxed
2621 // input sections for stubs.
2622 section_size_type section_size
;
2623 const unsigned char* section_contents
=
2624 relobj
->section_contents(shndx
, §ion_size
, false);
2625 this->original_size_
=
2626 convert_types
<uint32_t, uint64_t>(relobj
->section_size(shndx
));
2628 gold_assert(this->original_contents_
== NULL
);
2629 this->original_contents_
= new unsigned char[section_size
];
2630 memcpy(this->original_contents_
, section_contents
, section_size
);
2632 // We want to make this look like the original input section after
2633 // output sections are finalized.
2634 Output_section
* os
= relobj
->output_section(shndx
);
2635 off_t offset
= relobj
->output_section_offset(shndx
);
2636 gold_assert(os
!= NULL
&& !relobj
->is_output_section_offset_invalid(shndx
));
2637 this->set_address(os
->address() + offset
);
2638 this->set_file_offset(os
->offset() + offset
);
2639 this->set_current_data_size(this->original_size_
);
2640 this->finalize_data_size();
2644 // Write data to output file.
2646 template<int size
, bool big_endian
>
2648 AArch64_input_section
<size
, big_endian
>::do_write(Output_file
* of
)
2650 // We have to write out the original section content.
2651 gold_assert(this->original_contents_
!= NULL
);
2652 of
->write(this->offset(), this->original_contents_
,
2653 this->original_size_
);
2655 // If this owns a stub table and it is not empty, write it.
2656 if (this->is_stub_table_owner() && !this->stub_table_
->empty())
2657 this->stub_table_
->write(of
);
2661 // Arm output section class. This is defined mainly to add a number of stub
2662 // generation methods.
2664 template<int size
, bool big_endian
>
2665 class AArch64_output_section
: public Output_section
2668 typedef Target_aarch64
<size
, big_endian
> The_target_aarch64
;
2669 typedef AArch64_relobj
<size
, big_endian
> The_aarch64_relobj
;
2670 typedef Stub_table
<size
, big_endian
> The_stub_table
;
2671 typedef AArch64_input_section
<size
, big_endian
> The_aarch64_input_section
;
2674 AArch64_output_section(const char* name
, elfcpp::Elf_Word type
,
2675 elfcpp::Elf_Xword flags
)
2676 : Output_section(name
, type
, flags
)
2679 ~AArch64_output_section() {}
2681 // Group input sections for stub generation.
2683 group_sections(section_size_type
, bool, Target_aarch64
<size
, big_endian
>*,
2687 typedef Output_section::Input_section Input_section
;
2688 typedef Output_section::Input_section_list Input_section_list
;
2690 // Create a stub group.
2692 create_stub_group(Input_section_list::const_iterator
,
2693 Input_section_list::const_iterator
,
2694 Input_section_list::const_iterator
,
2695 The_target_aarch64
*,
2696 std::vector
<Output_relaxed_input_section
*>&,
2698 }; // End of AArch64_output_section
2701 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2702 // the input section that will be the owner of the stub table.
2704 template<int size
, bool big_endian
> void
2705 AArch64_output_section
<size
, big_endian
>::create_stub_group(
2706 Input_section_list::const_iterator first
,
2707 Input_section_list::const_iterator last
,
2708 Input_section_list::const_iterator owner
,
2709 The_target_aarch64
* target
,
2710 std::vector
<Output_relaxed_input_section
*>& new_relaxed_sections
,
2713 // Currently we convert ordinary input sections into relaxed sections only
2715 The_aarch64_input_section
* input_section
;
2716 if (owner
->is_relaxed_input_section())
2720 gold_assert(owner
->is_input_section());
2721 // Create a new relaxed input section. We need to lock the original
2723 Task_lock_obj
<Object
> tl(task
, owner
->relobj());
2725 target
->new_aarch64_input_section(owner
->relobj(), owner
->shndx());
2726 new_relaxed_sections
.push_back(input_section
);
2729 // Create a stub table.
2730 The_stub_table
* stub_table
=
2731 target
->new_stub_table(input_section
);
2733 input_section
->set_stub_table(stub_table
);
2735 Input_section_list::const_iterator p
= first
;
2736 // Look for input sections or relaxed input sections in [first ... last].
2739 if (p
->is_input_section() || p
->is_relaxed_input_section())
2741 // The stub table information for input sections live
2742 // in their objects.
2743 The_aarch64_relobj
* aarch64_relobj
=
2744 static_cast<The_aarch64_relobj
*>(p
->relobj());
2745 aarch64_relobj
->set_stub_table(p
->shndx(), stub_table
);
2748 while (p
++ != last
);
2752 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2753 // stub groups. We grow a stub group by adding input section until the size is
2754 // just below GROUP_SIZE. The last input section will be converted into a stub
2755 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2756 // after the stub table, effectively doubling the group size.
2758 // This is similar to the group_sections() function in elf32-arm.c but is
2759 // implemented differently.
2761 template<int size
, bool big_endian
>
2762 void AArch64_output_section
<size
, big_endian
>::group_sections(
2763 section_size_type group_size
,
2764 bool stubs_always_after_branch
,
2765 Target_aarch64
<size
, big_endian
>* target
,
2771 FINDING_STUB_SECTION
,
2775 std::vector
<Output_relaxed_input_section
*> new_relaxed_sections
;
2777 State state
= NO_GROUP
;
2778 section_size_type off
= 0;
2779 section_size_type group_begin_offset
= 0;
2780 section_size_type group_end_offset
= 0;
2781 section_size_type stub_table_end_offset
= 0;
2782 Input_section_list::const_iterator group_begin
=
2783 this->input_sections().end();
2784 Input_section_list::const_iterator stub_table
=
2785 this->input_sections().end();
2786 Input_section_list::const_iterator group_end
= this->input_sections().end();
2787 for (Input_section_list::const_iterator p
= this->input_sections().begin();
2788 p
!= this->input_sections().end();
2791 section_size_type section_begin_offset
=
2792 align_address(off
, p
->addralign());
2793 section_size_type section_end_offset
=
2794 section_begin_offset
+ p
->data_size();
2796 // Check to see if we should group the previously seen sections.
2802 case FINDING_STUB_SECTION
:
2803 // Adding this section makes the group larger than GROUP_SIZE.
2804 if (section_end_offset
- group_begin_offset
>= group_size
)
2806 if (stubs_always_after_branch
)
2808 gold_assert(group_end
!= this->input_sections().end());
2809 this->create_stub_group(group_begin
, group_end
, group_end
,
2810 target
, new_relaxed_sections
,
2816 // Input sections up to stub_group_size bytes after the stub
2817 // table can be handled by it too.
2818 state
= HAS_STUB_SECTION
;
2819 stub_table
= group_end
;
2820 stub_table_end_offset
= group_end_offset
;
2825 case HAS_STUB_SECTION
:
2826 // Adding this section makes the post stub-section group larger
2829 // NOT SUPPORTED YET. For completeness only.
2830 if (section_end_offset
- stub_table_end_offset
>= group_size
)
2832 gold_assert(group_end
!= this->input_sections().end());
2833 this->create_stub_group(group_begin
, group_end
, stub_table
,
2834 target
, new_relaxed_sections
, task
);
2843 // If we see an input section and currently there is no group, start
2844 // a new one. Skip any empty sections. We look at the data size
2845 // instead of calling p->relobj()->section_size() to avoid locking.
2846 if ((p
->is_input_section() || p
->is_relaxed_input_section())
2847 && (p
->data_size() != 0))
2849 if (state
== NO_GROUP
)
2851 state
= FINDING_STUB_SECTION
;
2853 group_begin_offset
= section_begin_offset
;
2856 // Keep track of the last input section seen.
2858 group_end_offset
= section_end_offset
;
2861 off
= section_end_offset
;
2864 // Create a stub group for any ungrouped sections.
2865 if (state
== FINDING_STUB_SECTION
|| state
== HAS_STUB_SECTION
)
2867 gold_assert(group_end
!= this->input_sections().end());
2868 this->create_stub_group(group_begin
, group_end
,
2869 (state
== FINDING_STUB_SECTION
2872 target
, new_relaxed_sections
, task
);
2875 if (!new_relaxed_sections
.empty())
2876 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections
);
2878 // Update the section offsets
2879 for (size_t i
= 0; i
< new_relaxed_sections
.size(); ++i
)
2881 The_aarch64_relobj
* relobj
= static_cast<The_aarch64_relobj
*>(
2882 new_relaxed_sections
[i
]->relobj());
2883 unsigned int shndx
= new_relaxed_sections
[i
]->shndx();
2884 // Tell AArch64_relobj that this input section is converted.
2885 relobj
->convert_input_section_to_relaxed_section(shndx
);
2887 } // End of AArch64_output_section::group_sections
2890 AArch64_reloc_property_table
* aarch64_reloc_property_table
= NULL
;
2893 // The aarch64 target class.
2895 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2896 template<int size
, bool big_endian
>
2897 class Target_aarch64
: public Sized_target
<size
, big_endian
>
2900 typedef Target_aarch64
<size
, big_endian
> This
;
2901 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
>
2903 typedef Relocate_info
<size
, big_endian
> The_relocate_info
;
2904 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
2905 typedef AArch64_relobj
<size
, big_endian
> The_aarch64_relobj
;
2906 typedef Reloc_stub
<size
, big_endian
> The_reloc_stub
;
2907 typedef Erratum_stub
<size
, big_endian
> The_erratum_stub
;
2908 typedef typename Reloc_stub
<size
, big_endian
>::Key The_reloc_stub_key
;
2909 typedef Stub_table
<size
, big_endian
> The_stub_table
;
2910 typedef std::vector
<The_stub_table
*> Stub_table_list
;
2911 typedef typename
Stub_table_list::iterator Stub_table_iterator
;
2912 typedef AArch64_input_section
<size
, big_endian
> The_aarch64_input_section
;
2913 typedef AArch64_output_section
<size
, big_endian
> The_aarch64_output_section
;
2914 typedef Unordered_map
<Section_id
,
2915 AArch64_input_section
<size
, big_endian
>*,
2916 Section_id_hash
> AArch64_input_section_map
;
2917 typedef AArch64_insn_utilities
<big_endian
> Insn_utilities
;
2918 const static int TCB_SIZE
= size
/ 8 * 2;
2919 static const Address invalid_address
= static_cast<Address
>(-1);
2921 Target_aarch64(const Target::Target_info
* info
= &aarch64_info
)
2922 : Sized_target
<size
, big_endian
>(info
),
2923 got_(NULL
), plt_(NULL
), got_plt_(NULL
), got_irelative_(NULL
),
2924 got_tlsdesc_(NULL
), global_offset_table_(NULL
), rela_dyn_(NULL
),
2925 rela_irelative_(NULL
), copy_relocs_(elfcpp::R_AARCH64_COPY
),
2926 got_mod_index_offset_(-1U),
2927 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2928 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2931 // Scan the relocations to determine unreferenced sections for
2932 // garbage collection.
2934 gc_process_relocs(Symbol_table
* symtab
,
2936 Sized_relobj_file
<size
, big_endian
>* object
,
2937 unsigned int data_shndx
,
2938 unsigned int sh_type
,
2939 const unsigned char* prelocs
,
2941 Output_section
* output_section
,
2942 bool needs_special_offset_handling
,
2943 size_t local_symbol_count
,
2944 const unsigned char* plocal_symbols
);
2946 // Scan the relocations to look for symbol adjustments.
2948 scan_relocs(Symbol_table
* symtab
,
2950 Sized_relobj_file
<size
, big_endian
>* object
,
2951 unsigned int data_shndx
,
2952 unsigned int sh_type
,
2953 const unsigned char* prelocs
,
2955 Output_section
* output_section
,
2956 bool needs_special_offset_handling
,
2957 size_t local_symbol_count
,
2958 const unsigned char* plocal_symbols
);
2960 // Finalize the sections.
2962 do_finalize_sections(Layout
*, const Input_objects
*, Symbol_table
*);
2964 // Return the value to use for a dynamic which requires special
2967 do_dynsym_value(const Symbol
*) const;
2969 // Relocate a section.
2971 relocate_section(const Relocate_info
<size
, big_endian
>*,
2972 unsigned int sh_type
,
2973 const unsigned char* prelocs
,
2975 Output_section
* output_section
,
2976 bool needs_special_offset_handling
,
2977 unsigned char* view
,
2978 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
2979 section_size_type view_size
,
2980 const Reloc_symbol_changes
*);
2982 // Scan the relocs during a relocatable link.
2984 scan_relocatable_relocs(Symbol_table
* symtab
,
2986 Sized_relobj_file
<size
, big_endian
>* object
,
2987 unsigned int data_shndx
,
2988 unsigned int sh_type
,
2989 const unsigned char* prelocs
,
2991 Output_section
* output_section
,
2992 bool needs_special_offset_handling
,
2993 size_t local_symbol_count
,
2994 const unsigned char* plocal_symbols
,
2995 Relocatable_relocs
*);
2997 // Scan the relocs for --emit-relocs.
2999 emit_relocs_scan(Symbol_table
* symtab
,
3001 Sized_relobj_file
<size
, big_endian
>* object
,
3002 unsigned int data_shndx
,
3003 unsigned int sh_type
,
3004 const unsigned char* prelocs
,
3006 Output_section
* output_section
,
3007 bool needs_special_offset_handling
,
3008 size_t local_symbol_count
,
3009 const unsigned char* plocal_syms
,
3010 Relocatable_relocs
* rr
);
3012 // Relocate a section during a relocatable link.
3015 const Relocate_info
<size
, big_endian
>*,
3016 unsigned int sh_type
,
3017 const unsigned char* prelocs
,
3019 Output_section
* output_section
,
3020 typename
elfcpp::Elf_types
<size
>::Elf_Off offset_in_output_section
,
3021 unsigned char* view
,
3022 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
3023 section_size_type view_size
,
3024 unsigned char* reloc_view
,
3025 section_size_type reloc_view_size
);
3027 // Return the symbol index to use for a target specific relocation.
3028 // The only target specific relocation is R_AARCH64_TLSDESC for a
3029 // local symbol, which is an absolute reloc.
3031 do_reloc_symbol_index(void*, unsigned int r_type
) const
3033 gold_assert(r_type
== elfcpp::R_AARCH64_TLSDESC
);
3037 // Return the addend to use for a target specific relocation.
3039 do_reloc_addend(void* arg
, unsigned int r_type
, uint64_t addend
) const;
3041 // Return the PLT section.
3043 do_plt_address_for_global(const Symbol
* gsym
) const
3044 { return this->plt_section()->address_for_global(gsym
); }
3047 do_plt_address_for_local(const Relobj
* relobj
, unsigned int symndx
) const
3048 { return this->plt_section()->address_for_local(relobj
, symndx
); }
3050 // This function should be defined in targets that can use relocation
3051 // types to determine (implemented in local_reloc_may_be_function_pointer
3052 // and global_reloc_may_be_function_pointer)
3053 // if a function's pointer is taken. ICF uses this in safe mode to only
3054 // fold those functions whose pointer is defintely not taken.
3056 do_can_check_for_function_pointers() const
3059 // Return the number of entries in the PLT.
3061 plt_entry_count() const;
3063 //Return the offset of the first non-reserved PLT entry.
3065 first_plt_entry_offset() const;
3067 // Return the size of each PLT entry.
3069 plt_entry_size() const;
3071 // Create a stub table.
3073 new_stub_table(The_aarch64_input_section
*);
3075 // Create an aarch64 input section.
3076 The_aarch64_input_section
*
3077 new_aarch64_input_section(Relobj
*, unsigned int);
3079 // Find an aarch64 input section instance for a given OBJ and SHNDX.
3080 The_aarch64_input_section
*
3081 find_aarch64_input_section(Relobj
*, unsigned int) const;
3083 // Return the thread control block size.
3085 tcb_size() const { return This::TCB_SIZE
; }
3087 // Scan a section for stub generation.
3089 scan_section_for_stubs(const Relocate_info
<size
, big_endian
>*, unsigned int,
3090 const unsigned char*, size_t, Output_section
*,
3091 bool, const unsigned char*,
3095 // Scan a relocation section for stub.
3096 template<int sh_type
>
3098 scan_reloc_section_for_stubs(
3099 const The_relocate_info
* relinfo
,
3100 const unsigned char* prelocs
,
3102 Output_section
* output_section
,
3103 bool needs_special_offset_handling
,
3104 const unsigned char* view
,
3105 Address view_address
,
3108 // Relocate a single reloc stub.
3110 relocate_reloc_stub(The_reloc_stub
*, const Relocate_info
<size
, big_endian
>*,
3111 Output_section
*, unsigned char*, Address
,
3114 // Get the default AArch64 target.
3118 gold_assert(parameters
->target().machine_code() == elfcpp::EM_AARCH64
3119 && parameters
->target().get_size() == size
3120 && parameters
->target().is_big_endian() == big_endian
);
3121 return static_cast<This
*>(parameters
->sized_target
<size
, big_endian
>());
3125 // Scan erratum 843419 for a part of a section.
3127 scan_erratum_843419_span(
3128 AArch64_relobj
<size
, big_endian
>*,
3130 const section_size_type
,
3131 const section_size_type
,
3135 // Scan erratum 835769 for a part of a section.
3137 scan_erratum_835769_span(
3138 AArch64_relobj
<size
, big_endian
>*,
3140 const section_size_type
,
3141 const section_size_type
,
3147 do_select_as_default_target()
3149 gold_assert(aarch64_reloc_property_table
== NULL
);
3150 aarch64_reloc_property_table
= new AArch64_reloc_property_table();
3153 // Add a new reloc argument, returning the index in the vector.
3155 add_tlsdesc_info(Sized_relobj_file
<size
, big_endian
>* object
,
3158 this->tlsdesc_reloc_info_
.push_back(Tlsdesc_info(object
, r_sym
));
3159 return this->tlsdesc_reloc_info_
.size() - 1;
3162 virtual Output_data_plt_aarch64
<size
, big_endian
>*
3163 do_make_data_plt(Layout
* layout
,
3164 Output_data_got_aarch64
<size
, big_endian
>* got
,
3165 Output_data_space
* got_plt
,
3166 Output_data_space
* got_irelative
)
3168 return new Output_data_plt_aarch64_standard
<size
, big_endian
>(
3169 layout
, got
, got_plt
, got_irelative
);
3173 // do_make_elf_object to override the same function in the base class.
3175 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
3176 const elfcpp::Ehdr
<size
, big_endian
>&);
3178 Output_data_plt_aarch64
<size
, big_endian
>*
3179 make_data_plt(Layout
* layout
,
3180 Output_data_got_aarch64
<size
, big_endian
>* got
,
3181 Output_data_space
* got_plt
,
3182 Output_data_space
* got_irelative
)
3184 return this->do_make_data_plt(layout
, got
, got_plt
, got_irelative
);
3187 // We only need to generate stubs, and hence perform relaxation if we are
3188 // not doing relocatable linking.
3190 do_may_relax() const
3191 { return !parameters
->options().relocatable(); }
3193 // Relaxation hook. This is where we do stub generation.
3195 do_relax(int, const Input_objects
*, Symbol_table
*, Layout
*, const Task
*);
3198 group_sections(Layout
* layout
,
3199 section_size_type group_size
,
3200 bool stubs_always_after_branch
,
3204 scan_reloc_for_stub(const The_relocate_info
*, unsigned int,
3205 const Sized_symbol
<size
>*, unsigned int,
3206 const Symbol_value
<size
>*,
3207 typename
elfcpp::Elf_types
<size
>::Elf_Swxword
,
3210 // Make an output section.
3212 do_make_output_section(const char* name
, elfcpp::Elf_Word type
,
3213 elfcpp::Elf_Xword flags
)
3214 { return new The_aarch64_output_section(name
, type
, flags
); }
3217 // The class which scans relocations.
3222 : issued_non_pic_error_(false)
3226 local(Symbol_table
* symtab
, Layout
* layout
, Target_aarch64
* target
,
3227 Sized_relobj_file
<size
, big_endian
>* object
,
3228 unsigned int data_shndx
,
3229 Output_section
* output_section
,
3230 const elfcpp::Rela
<size
, big_endian
>& reloc
, unsigned int r_type
,
3231 const elfcpp::Sym
<size
, big_endian
>& lsym
,
3235 global(Symbol_table
* symtab
, Layout
* layout
, Target_aarch64
* target
,
3236 Sized_relobj_file
<size
, big_endian
>* object
,
3237 unsigned int data_shndx
,
3238 Output_section
* output_section
,
3239 const elfcpp::Rela
<size
, big_endian
>& reloc
, unsigned int r_type
,
3243 local_reloc_may_be_function_pointer(Symbol_table
* , Layout
* ,
3244 Target_aarch64
<size
, big_endian
>* ,
3245 Sized_relobj_file
<size
, big_endian
>* ,
3248 const elfcpp::Rela
<size
, big_endian
>& ,
3249 unsigned int r_type
,
3250 const elfcpp::Sym
<size
, big_endian
>&);
3253 global_reloc_may_be_function_pointer(Symbol_table
* , Layout
* ,
3254 Target_aarch64
<size
, big_endian
>* ,
3255 Sized_relobj_file
<size
, big_endian
>* ,
3258 const elfcpp::Rela
<size
, big_endian
>& ,
3259 unsigned int r_type
,
3264 unsupported_reloc_local(Sized_relobj_file
<size
, big_endian
>*,
3265 unsigned int r_type
);
3268 unsupported_reloc_global(Sized_relobj_file
<size
, big_endian
>*,
3269 unsigned int r_type
, Symbol
*);
3272 possible_function_pointer_reloc(unsigned int r_type
);
3275 check_non_pic(Relobj
*, unsigned int r_type
);
3278 reloc_needs_plt_for_ifunc(Sized_relobj_file
<size
, big_endian
>*,
3279 unsigned int r_type
);
3281 // Whether we have issued an error about a non-PIC compilation.
3282 bool issued_non_pic_error_
;
3285 // The class which implements relocation.
3290 : skip_call_tls_get_addr_(false)
3296 // Do a relocation. Return false if the caller should not issue
3297 // any warnings about this relocation.
3299 relocate(const Relocate_info
<size
, big_endian
>*, unsigned int,
3300 Target_aarch64
*, Output_section
*, size_t, const unsigned char*,
3301 const Sized_symbol
<size
>*, const Symbol_value
<size
>*,
3302 unsigned char*, typename
elfcpp::Elf_types
<size
>::Elf_Addr
,
3306 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3307 relocate_tls(const Relocate_info
<size
, big_endian
>*,
3308 Target_aarch64
<size
, big_endian
>*,
3310 const elfcpp::Rela
<size
, big_endian
>&,
3311 unsigned int r_type
, const Sized_symbol
<size
>*,
3312 const Symbol_value
<size
>*,
3314 typename
elfcpp::Elf_types
<size
>::Elf_Addr
);
3316 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3318 const Relocate_info
<size
, big_endian
>*,
3319 Target_aarch64
<size
, big_endian
>*,
3320 const elfcpp::Rela
<size
, big_endian
>&,
3323 const Symbol_value
<size
>*);
3325 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3327 const Relocate_info
<size
, big_endian
>*,
3328 Target_aarch64
<size
, big_endian
>*,
3329 const elfcpp::Rela
<size
, big_endian
>&,
3332 const Symbol_value
<size
>*);
3334 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3336 const Relocate_info
<size
, big_endian
>*,
3337 Target_aarch64
<size
, big_endian
>*,
3338 const elfcpp::Rela
<size
, big_endian
>&,
3341 const Symbol_value
<size
>*);
3343 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3345 const Relocate_info
<size
, big_endian
>*,
3346 Target_aarch64
<size
, big_endian
>*,
3347 const elfcpp::Rela
<size
, big_endian
>&,
3350 const Symbol_value
<size
>*);
3352 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3354 const Relocate_info
<size
, big_endian
>*,
3355 Target_aarch64
<size
, big_endian
>*,
3356 const elfcpp::Rela
<size
, big_endian
>&,
3359 const Symbol_value
<size
>*,
3360 typename
elfcpp::Elf_types
<size
>::Elf_Addr
,
3361 typename
elfcpp::Elf_types
<size
>::Elf_Addr
);
3363 bool skip_call_tls_get_addr_
;
3365 }; // End of class Relocate
3367 // Adjust TLS relocation type based on the options and whether this
3368 // is a local symbol.
3369 static tls::Tls_optimization
3370 optimize_tls_reloc(bool is_final
, int r_type
);
3372 // Get the GOT section, creating it if necessary.
3373 Output_data_got_aarch64
<size
, big_endian
>*
3374 got_section(Symbol_table
*, Layout
*);
3376 // Get the GOT PLT section.
3378 got_plt_section() const
3380 gold_assert(this->got_plt_
!= NULL
);
3381 return this->got_plt_
;
3384 // Get the GOT section for TLSDESC entries.
3385 Output_data_got
<size
, big_endian
>*
3386 got_tlsdesc_section() const
3388 gold_assert(this->got_tlsdesc_
!= NULL
);
3389 return this->got_tlsdesc_
;
3392 // Create the PLT section.
3394 make_plt_section(Symbol_table
* symtab
, Layout
* layout
);
3396 // Create a PLT entry for a global symbol.
3398 make_plt_entry(Symbol_table
*, Layout
*, Symbol
*);
3400 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3402 make_local_ifunc_plt_entry(Symbol_table
*, Layout
*,
3403 Sized_relobj_file
<size
, big_endian
>* relobj
,
3404 unsigned int local_sym_index
);
3406 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3408 define_tls_base_symbol(Symbol_table
*, Layout
*);
3410 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3412 reserve_tlsdesc_entries(Symbol_table
* symtab
, Layout
* layout
);
3414 // Create a GOT entry for the TLS module index.
3416 got_mod_index_entry(Symbol_table
* symtab
, Layout
* layout
,
3417 Sized_relobj_file
<size
, big_endian
>* object
);
3419 // Get the PLT section.
3420 Output_data_plt_aarch64
<size
, big_endian
>*
3423 gold_assert(this->plt_
!= NULL
);
3427 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3428 // ST_E_843419, we need an additional field for adrp offset.
3429 void create_erratum_stub(
3430 AArch64_relobj
<size
, big_endian
>* relobj
,
3432 section_size_type erratum_insn_offset
,
3433 Address erratum_address
,
3434 typename
Insn_utilities::Insntype erratum_insn
,
3436 unsigned int e843419_adrp_offset
=0);
3438 // Return whether this is a 3-insn erratum sequence.
3439 bool is_erratum_843419_sequence(
3440 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn1
,
3441 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn2
,
3442 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn3
);
3444 // Return whether this is a 835769 sequence.
3445 // (Similarly implemented as in elfnn-aarch64.c.)
3446 bool is_erratum_835769_sequence(
3447 typename
elfcpp::Swap
<32,big_endian
>::Valtype
,
3448 typename
elfcpp::Swap
<32,big_endian
>::Valtype
);
3450 // Get the dynamic reloc section, creating it if necessary.
3452 rela_dyn_section(Layout
*);
3454 // Get the section to use for TLSDESC relocations.
3456 rela_tlsdesc_section(Layout
*) const;
3458 // Get the section to use for IRELATIVE relocations.
3460 rela_irelative_section(Layout
*);
3462 // Add a potential copy relocation.
3464 copy_reloc(Symbol_table
* symtab
, Layout
* layout
,
3465 Sized_relobj_file
<size
, big_endian
>* object
,
3466 unsigned int shndx
, Output_section
* output_section
,
3467 Symbol
* sym
, const elfcpp::Rela
<size
, big_endian
>& reloc
)
3469 unsigned int r_type
= elfcpp::elf_r_type
<size
>(reloc
.get_r_info());
3470 this->copy_relocs_
.copy_reloc(symtab
, layout
,
3471 symtab
->get_sized_symbol
<size
>(sym
),
3472 object
, shndx
, output_section
,
3473 r_type
, reloc
.get_r_offset(),
3474 reloc
.get_r_addend(),
3475 this->rela_dyn_section(layout
));
3478 // Information about this specific target which we pass to the
3479 // general Target structure.
3480 static const Target::Target_info aarch64_info
;
3482 // The types of GOT entries needed for this platform.
3483 // These values are exposed to the ABI in an incremental link.
3484 // Do not renumber existing values without changing the version
3485 // number of the .gnu_incremental_inputs section.
3488 GOT_TYPE_STANDARD
= 0, // GOT entry for a regular symbol
3489 GOT_TYPE_TLS_OFFSET
= 1, // GOT entry for TLS offset
3490 GOT_TYPE_TLS_PAIR
= 2, // GOT entry for TLS module/offset pair
3491 GOT_TYPE_TLS_DESC
= 3 // GOT entry for TLS_DESC pair
3494 // This type is used as the argument to the target specific
3495 // relocation routines. The only target specific reloc is
3496 // R_AARCh64_TLSDESC against a local symbol.
3499 Tlsdesc_info(Sized_relobj_file
<size
, big_endian
>* a_object
,
3500 unsigned int a_r_sym
)
3501 : object(a_object
), r_sym(a_r_sym
)
3504 // The object in which the local symbol is defined.
3505 Sized_relobj_file
<size
, big_endian
>* object
;
3506 // The local symbol index in the object.
3511 Output_data_got_aarch64
<size
, big_endian
>* got_
;
3513 Output_data_plt_aarch64
<size
, big_endian
>* plt_
;
3514 // The GOT PLT section.
3515 Output_data_space
* got_plt_
;
3516 // The GOT section for IRELATIVE relocations.
3517 Output_data_space
* got_irelative_
;
3518 // The GOT section for TLSDESC relocations.
3519 Output_data_got
<size
, big_endian
>* got_tlsdesc_
;
3520 // The _GLOBAL_OFFSET_TABLE_ symbol.
3521 Symbol
* global_offset_table_
;
3522 // The dynamic reloc section.
3523 Reloc_section
* rela_dyn_
;
3524 // The section to use for IRELATIVE relocs.
3525 Reloc_section
* rela_irelative_
;
3526 // Relocs saved to avoid a COPY reloc.
3527 Copy_relocs
<elfcpp::SHT_RELA
, size
, big_endian
> copy_relocs_
;
3528 // Offset of the GOT entry for the TLS module index.
3529 unsigned int got_mod_index_offset_
;
3530 // We handle R_AARCH64_TLSDESC against a local symbol as a target
3531 // specific relocation. Here we store the object and local symbol
3532 // index for the relocation.
3533 std::vector
<Tlsdesc_info
> tlsdesc_reloc_info_
;
3534 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3535 bool tls_base_symbol_defined_
;
3536 // List of stub_tables
3537 Stub_table_list stub_tables_
;
3538 // Actual stub group size
3539 section_size_type stub_group_size_
;
3540 AArch64_input_section_map aarch64_input_section_map_
;
3541 }; // End of Target_aarch64
3545 const Target::Target_info Target_aarch64
<64, false>::aarch64_info
=
3548 false, // is_big_endian
3549 elfcpp::EM_AARCH64
, // machine_code
3550 false, // has_make_symbol
3551 false, // has_resolve
3552 false, // has_code_fill
3553 false, // is_default_stack_executable
3554 true, // can_icf_inline_merge_sections
3556 "/lib/ld.so.1", // program interpreter
3557 0x400000, // default_text_segment_address
3558 0x10000, // abi_pagesize (overridable by -z max-page-size)
3559 0x1000, // common_pagesize (overridable by -z common-page-size)
3560 false, // isolate_execinstr
3562 elfcpp::SHN_UNDEF
, // small_common_shndx
3563 elfcpp::SHN_UNDEF
, // large_common_shndx
3564 0, // small_common_section_flags
3565 0, // large_common_section_flags
3566 NULL
, // attributes_section
3567 NULL
, // attributes_vendor
3568 "_start", // entry_symbol_name
3569 32, // hash_entry_size
3570 elfcpp::SHT_PROGBITS
, // unwind_section_type
3574 const Target::Target_info Target_aarch64
<32, false>::aarch64_info
=
3577 false, // is_big_endian
3578 elfcpp::EM_AARCH64
, // machine_code
3579 false, // has_make_symbol
3580 false, // has_resolve
3581 false, // has_code_fill
3582 false, // is_default_stack_executable
3583 false, // can_icf_inline_merge_sections
3585 "/lib/ld.so.1", // program interpreter
3586 0x400000, // default_text_segment_address
3587 0x10000, // abi_pagesize (overridable by -z max-page-size)
3588 0x1000, // common_pagesize (overridable by -z common-page-size)
3589 false, // isolate_execinstr
3591 elfcpp::SHN_UNDEF
, // small_common_shndx
3592 elfcpp::SHN_UNDEF
, // large_common_shndx
3593 0, // small_common_section_flags
3594 0, // large_common_section_flags
3595 NULL
, // attributes_section
3596 NULL
, // attributes_vendor
3597 "_start", // entry_symbol_name
3598 32, // hash_entry_size
3599 elfcpp::SHT_PROGBITS
, // unwind_section_type
3603 const Target::Target_info Target_aarch64
<64, true>::aarch64_info
=
3606 true, // is_big_endian
3607 elfcpp::EM_AARCH64
, // machine_code
3608 false, // has_make_symbol
3609 false, // has_resolve
3610 false, // has_code_fill
3611 false, // is_default_stack_executable
3612 true, // can_icf_inline_merge_sections
3614 "/lib/ld.so.1", // program interpreter
3615 0x400000, // default_text_segment_address
3616 0x10000, // abi_pagesize (overridable by -z max-page-size)
3617 0x1000, // common_pagesize (overridable by -z common-page-size)
3618 false, // isolate_execinstr
3620 elfcpp::SHN_UNDEF
, // small_common_shndx
3621 elfcpp::SHN_UNDEF
, // large_common_shndx
3622 0, // small_common_section_flags
3623 0, // large_common_section_flags
3624 NULL
, // attributes_section
3625 NULL
, // attributes_vendor
3626 "_start", // entry_symbol_name
3627 32, // hash_entry_size
3628 elfcpp::SHT_PROGBITS
, // unwind_section_type
3632 const Target::Target_info Target_aarch64
<32, true>::aarch64_info
=
3635 true, // is_big_endian
3636 elfcpp::EM_AARCH64
, // machine_code
3637 false, // has_make_symbol
3638 false, // has_resolve
3639 false, // has_code_fill
3640 false, // is_default_stack_executable
3641 false, // can_icf_inline_merge_sections
3643 "/lib/ld.so.1", // program interpreter
3644 0x400000, // default_text_segment_address
3645 0x10000, // abi_pagesize (overridable by -z max-page-size)
3646 0x1000, // common_pagesize (overridable by -z common-page-size)
3647 false, // isolate_execinstr
3649 elfcpp::SHN_UNDEF
, // small_common_shndx
3650 elfcpp::SHN_UNDEF
, // large_common_shndx
3651 0, // small_common_section_flags
3652 0, // large_common_section_flags
3653 NULL
, // attributes_section
3654 NULL
, // attributes_vendor
3655 "_start", // entry_symbol_name
3656 32, // hash_entry_size
3657 elfcpp::SHT_PROGBITS
, // unwind_section_type
3660 // Get the GOT section, creating it if necessary.
3662 template<int size
, bool big_endian
>
3663 Output_data_got_aarch64
<size
, big_endian
>*
3664 Target_aarch64
<size
, big_endian
>::got_section(Symbol_table
* symtab
,
3667 if (this->got_
== NULL
)
3669 gold_assert(symtab
!= NULL
&& layout
!= NULL
);
3671 // When using -z now, we can treat .got.plt as a relro section.
3672 // Without -z now, it is modified after program startup by lazy
3674 bool is_got_plt_relro
= parameters
->options().now();
3675 Output_section_order got_order
= (is_got_plt_relro
3677 : ORDER_RELRO_LAST
);
3678 Output_section_order got_plt_order
= (is_got_plt_relro
3680 : ORDER_NON_RELRO_FIRST
);
3682 // Layout of .got and .got.plt sections.
3683 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
3685 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
3686 // .gotplt[1] reserved for ld.so (resolver)
3687 // .gotplt[2] reserved
3689 // Generate .got section.
3690 this->got_
= new Output_data_got_aarch64
<size
, big_endian
>(symtab
,
3692 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
3693 (elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
),
3694 this->got_
, got_order
, true);
3695 // The first word of GOT is reserved for the address of .dynamic.
3696 // We put 0 here now. The value will be replaced later in
3697 // Output_data_got_aarch64::do_write.
3698 this->got_
->add_constant(0);
3700 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3701 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3702 // even if there is a .got.plt section.
3703 this->global_offset_table_
=
3704 symtab
->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL
,
3705 Symbol_table::PREDEFINED
,
3707 0, 0, elfcpp::STT_OBJECT
,
3709 elfcpp::STV_HIDDEN
, 0,
3712 // Generate .got.plt section.
3713 this->got_plt_
= new Output_data_space(size
/ 8, "** GOT PLT");
3714 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
3716 | elfcpp::SHF_WRITE
),
3717 this->got_plt_
, got_plt_order
,
3720 // The first three entries are reserved.
3721 this->got_plt_
->set_current_data_size(
3722 AARCH64_GOTPLT_RESERVE_COUNT
* (size
/ 8));
3724 // If there are any IRELATIVE relocations, they get GOT entries
3725 // in .got.plt after the jump slot entries.
3726 this->got_irelative_
= new Output_data_space(size
/ 8,
3727 "** GOT IRELATIVE PLT");
3728 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
3730 | elfcpp::SHF_WRITE
),
3731 this->got_irelative_
,
3735 // If there are any TLSDESC relocations, they get GOT entries in
3736 // .got.plt after the jump slot and IRELATIVE entries.
3737 this->got_tlsdesc_
= new Output_data_got
<size
, big_endian
>();
3738 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
3740 | elfcpp::SHF_WRITE
),
3745 if (!is_got_plt_relro
)
3747 // Those bytes can go into the relro segment.
3748 layout
->increase_relro(
3749 AARCH64_GOTPLT_RESERVE_COUNT
* (size
/ 8));
3756 // Get the dynamic reloc section, creating it if necessary.
3758 template<int size
, bool big_endian
>
3759 typename Target_aarch64
<size
, big_endian
>::Reloc_section
*
3760 Target_aarch64
<size
, big_endian
>::rela_dyn_section(Layout
* layout
)
3762 if (this->rela_dyn_
== NULL
)
3764 gold_assert(layout
!= NULL
);
3765 this->rela_dyn_
= new Reloc_section(parameters
->options().combreloc());
3766 layout
->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA
,
3767 elfcpp::SHF_ALLOC
, this->rela_dyn_
,
3768 ORDER_DYNAMIC_RELOCS
, false);
3770 return this->rela_dyn_
;
3773 // Get the section to use for IRELATIVE relocs, creating it if
3774 // necessary. These go in .rela.dyn, but only after all other dynamic
3775 // relocations. They need to follow the other dynamic relocations so
3776 // that they can refer to global variables initialized by those
3779 template<int size
, bool big_endian
>
3780 typename Target_aarch64
<size
, big_endian
>::Reloc_section
*
3781 Target_aarch64
<size
, big_endian
>::rela_irelative_section(Layout
* layout
)
3783 if (this->rela_irelative_
== NULL
)
3785 // Make sure we have already created the dynamic reloc section.
3786 this->rela_dyn_section(layout
);
3787 this->rela_irelative_
= new Reloc_section(false);
3788 layout
->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA
,
3789 elfcpp::SHF_ALLOC
, this->rela_irelative_
,
3790 ORDER_DYNAMIC_RELOCS
, false);
3791 gold_assert(this->rela_dyn_
->output_section()
3792 == this->rela_irelative_
->output_section());
3794 return this->rela_irelative_
;
3798 // do_make_elf_object to override the same function in the base class. We need
3799 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3800 // store backend specific information. Hence we need to have our own ELF object
3803 template<int size
, bool big_endian
>
3805 Target_aarch64
<size
, big_endian
>::do_make_elf_object(
3806 const std::string
& name
,
3807 Input_file
* input_file
,
3808 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
3810 int et
= ehdr
.get_e_type();
3811 // ET_EXEC files are valid input for --just-symbols/-R,
3812 // and we treat them as relocatable objects.
3813 if (et
== elfcpp::ET_EXEC
&& input_file
->just_symbols())
3814 return Sized_target
<size
, big_endian
>::do_make_elf_object(
3815 name
, input_file
, offset
, ehdr
);
3816 else if (et
== elfcpp::ET_REL
)
3818 AArch64_relobj
<size
, big_endian
>* obj
=
3819 new AArch64_relobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
3823 else if (et
== elfcpp::ET_DYN
)
3825 // Keep base implementation.
3826 Sized_dynobj
<size
, big_endian
>* obj
=
3827 new Sized_dynobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
3833 gold_error(_("%s: unsupported ELF file type %d"),
3840 // Scan a relocation for stub generation.
3842 template<int size
, bool big_endian
>
3844 Target_aarch64
<size
, big_endian
>::scan_reloc_for_stub(
3845 const Relocate_info
<size
, big_endian
>* relinfo
,
3846 unsigned int r_type
,
3847 const Sized_symbol
<size
>* gsym
,
3849 const Symbol_value
<size
>* psymval
,
3850 typename
elfcpp::Elf_types
<size
>::Elf_Swxword addend
,
3853 const AArch64_relobj
<size
, big_endian
>* aarch64_relobj
=
3854 static_cast<AArch64_relobj
<size
, big_endian
>*>(relinfo
->object
);
3856 Symbol_value
<size
> symval
;
3859 const AArch64_reloc_property
* arp
= aarch64_reloc_property_table
->
3860 get_reloc_property(r_type
);
3861 if (gsym
->use_plt_offset(arp
->reference_flags()))
3863 // This uses a PLT, change the symbol value.
3864 symval
.set_output_value(this->plt_address_for_global(gsym
));
3867 else if (gsym
->is_undefined())
3869 // There is no need to generate a stub symbol if the original symbol
3871 gold_debug(DEBUG_TARGET
,
3872 "stub: not creating a stub for undefined symbol %s in file %s",
3873 gsym
->name(), aarch64_relobj
->name().c_str());
3878 // Get the symbol value.
3879 typename Symbol_value
<size
>::Value value
= psymval
->value(aarch64_relobj
, 0);
3881 // Owing to pipelining, the PC relative branches below actually skip
3882 // two instructions when the branch offset is 0.
3883 Address destination
= static_cast<Address
>(-1);
3886 case elfcpp::R_AARCH64_CALL26
:
3887 case elfcpp::R_AARCH64_JUMP26
:
3888 destination
= value
+ addend
;
3894 int stub_type
= The_reloc_stub::
3895 stub_type_for_reloc(r_type
, address
, destination
);
3896 if (stub_type
== ST_NONE
)
3899 The_stub_table
* stub_table
= aarch64_relobj
->stub_table(relinfo
->data_shndx
);
3900 gold_assert(stub_table
!= NULL
);
3902 The_reloc_stub_key
key(stub_type
, gsym
, aarch64_relobj
, r_sym
, addend
);
3903 The_reloc_stub
* stub
= stub_table
->find_reloc_stub(key
);
3906 stub
= new The_reloc_stub(stub_type
);
3907 stub_table
->add_reloc_stub(stub
, key
);
3909 stub
->set_destination_address(destination
);
3910 } // End of Target_aarch64::scan_reloc_for_stub
3913 // This function scans a relocation section for stub generation.
3914 // The template parameter Relocate must be a class type which provides
3915 // a single function, relocate(), which implements the machine
3916 // specific part of a relocation.
3918 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
3919 // SHT_REL or SHT_RELA.
3921 // PRELOCS points to the relocation data. RELOC_COUNT is the number
3922 // of relocs. OUTPUT_SECTION is the output section.
3923 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3924 // mapped to output offsets.
3926 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3927 // VIEW_SIZE is the size. These refer to the input section, unless
3928 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3929 // the output section.
3931 template<int size
, bool big_endian
>
3932 template<int sh_type
>
3934 Target_aarch64
<size
, big_endian
>::scan_reloc_section_for_stubs(
3935 const Relocate_info
<size
, big_endian
>* relinfo
,
3936 const unsigned char* prelocs
,
3938 Output_section
* /*output_section*/,
3939 bool /*needs_special_offset_handling*/,
3940 const unsigned char* /*view*/,
3941 Address view_address
,
3944 typedef typename Reloc_types
<sh_type
,size
,big_endian
>::Reloc Reltype
;
3946 const int reloc_size
=
3947 Reloc_types
<sh_type
,size
,big_endian
>::reloc_size
;
3948 AArch64_relobj
<size
, big_endian
>* object
=
3949 static_cast<AArch64_relobj
<size
, big_endian
>*>(relinfo
->object
);
3950 unsigned int local_count
= object
->local_symbol_count();
3952 gold::Default_comdat_behavior default_comdat_behavior
;
3953 Comdat_behavior comdat_behavior
= CB_UNDETERMINED
;
3955 for (size_t i
= 0; i
< reloc_count
; ++i
, prelocs
+= reloc_size
)
3957 Reltype
reloc(prelocs
);
3958 typename
elfcpp::Elf_types
<size
>::Elf_WXword r_info
= reloc
.get_r_info();
3959 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(r_info
);
3960 unsigned int r_type
= elfcpp::elf_r_type
<size
>(r_info
);
3961 if (r_type
!= elfcpp::R_AARCH64_CALL26
3962 && r_type
!= elfcpp::R_AARCH64_JUMP26
)
3965 section_offset_type offset
=
3966 convert_to_section_size_type(reloc
.get_r_offset());
3969 typename
elfcpp::Elf_types
<size
>::Elf_Swxword addend
=
3970 reloc
.get_r_addend();
3972 const Sized_symbol
<size
>* sym
;
3973 Symbol_value
<size
> symval
;
3974 const Symbol_value
<size
> *psymval
;
3975 bool is_defined_in_discarded_section
;
3977 const Symbol
* gsym
= NULL
;
3978 if (r_sym
< local_count
)
3981 psymval
= object
->local_symbol(r_sym
);
3983 // If the local symbol belongs to a section we are discarding,
3984 // and that section is a debug section, try to find the
3985 // corresponding kept section and map this symbol to its
3986 // counterpart in the kept section. The symbol must not
3987 // correspond to a section we are folding.
3989 shndx
= psymval
->input_shndx(&is_ordinary
);
3990 is_defined_in_discarded_section
=
3992 && shndx
!= elfcpp::SHN_UNDEF
3993 && !object
->is_section_included(shndx
)
3994 && !relinfo
->symtab
->is_section_folded(object
, shndx
));
3996 // We need to compute the would-be final value of this local
3998 if (!is_defined_in_discarded_section
)
4000 typedef Sized_relobj_file
<size
, big_endian
> ObjType
;
4001 if (psymval
->is_section_symbol())
4002 symval
.set_is_section_symbol();
4003 typename
ObjType::Compute_final_local_value_status status
=
4004 object
->compute_final_local_value(r_sym
, psymval
, &symval
,
4006 if (status
== ObjType::CFLV_OK
)
4008 // Currently we cannot handle a branch to a target in
4009 // a merged section. If this is the case, issue an error
4010 // and also free the merge symbol value.
4011 if (!symval
.has_output_value())
4013 const std::string
& section_name
=
4014 object
->section_name(shndx
);
4015 object
->error(_("cannot handle branch to local %u "
4016 "in a merged section %s"),
4017 r_sym
, section_name
.c_str());
4023 // We cannot determine the final value.
4030 gsym
= object
->global_symbol(r_sym
);
4031 gold_assert(gsym
!= NULL
);
4032 if (gsym
->is_forwarder())
4033 gsym
= relinfo
->symtab
->resolve_forwards(gsym
);
4035 sym
= static_cast<const Sized_symbol
<size
>*>(gsym
);
4036 if (sym
->has_symtab_index() && sym
->symtab_index() != -1U)
4037 symval
.set_output_symtab_index(sym
->symtab_index());
4039 symval
.set_no_output_symtab_entry();
4041 // We need to compute the would-be final value of this global
4043 const Symbol_table
* symtab
= relinfo
->symtab
;
4044 const Sized_symbol
<size
>* sized_symbol
=
4045 symtab
->get_sized_symbol
<size
>(gsym
);
4046 Symbol_table::Compute_final_value_status status
;
4047 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
=
4048 symtab
->compute_final_value
<size
>(sized_symbol
, &status
);
4050 // Skip this if the symbol has not output section.
4051 if (status
== Symbol_table::CFVS_NO_OUTPUT_SECTION
)
4053 symval
.set_output_value(value
);
4055 if (gsym
->type() == elfcpp::STT_TLS
)
4056 symval
.set_is_tls_symbol();
4057 else if (gsym
->type() == elfcpp::STT_GNU_IFUNC
)
4058 symval
.set_is_ifunc_symbol();
4061 is_defined_in_discarded_section
=
4062 (gsym
->is_defined_in_discarded_section()
4063 && gsym
->is_undefined());
4067 Symbol_value
<size
> symval2
;
4068 if (is_defined_in_discarded_section
)
4070 std::string name
= object
->section_name(relinfo
->data_shndx
);
4072 if (comdat_behavior
== CB_UNDETERMINED
)
4073 comdat_behavior
= default_comdat_behavior
.get(name
.c_str());
4075 if (comdat_behavior
== CB_PRETEND
)
4078 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
=
4079 object
->map_to_kept_section(shndx
, name
, &found
);
4081 symval2
.set_output_value(value
+ psymval
->input_value());
4083 symval2
.set_output_value(0);
4087 if (comdat_behavior
== CB_ERROR
)
4088 issue_discarded_error(relinfo
, i
, offset
, r_sym
, gsym
);
4089 symval2
.set_output_value(0);
4091 symval2
.set_no_output_symtab_entry();
4095 this->scan_reloc_for_stub(relinfo
, r_type
, sym
, r_sym
, psymval
,
4096 addend
, view_address
+ offset
);
4097 } // End of iterating relocs in a section
4098 } // End of Target_aarch64::scan_reloc_section_for_stubs
4101 // Scan an input section for stub generation.
4103 template<int size
, bool big_endian
>
4105 Target_aarch64
<size
, big_endian
>::scan_section_for_stubs(
4106 const Relocate_info
<size
, big_endian
>* relinfo
,
4107 unsigned int sh_type
,
4108 const unsigned char* prelocs
,
4110 Output_section
* output_section
,
4111 bool needs_special_offset_handling
,
4112 const unsigned char* view
,
4113 Address view_address
,
4114 section_size_type view_size
)
4116 gold_assert(sh_type
== elfcpp::SHT_RELA
);
4117 this->scan_reloc_section_for_stubs
<elfcpp::SHT_RELA
>(
4122 needs_special_offset_handling
,
4129 // Relocate a single reloc stub.
4131 template<int size
, bool big_endian
>
4132 void Target_aarch64
<size
, big_endian
>::
4133 relocate_reloc_stub(The_reloc_stub
* stub
,
4134 const The_relocate_info
*,
4136 unsigned char* view
,
4140 typedef AArch64_relocate_functions
<size
, big_endian
> The_reloc_functions
;
4141 typedef typename
The_reloc_functions::Status The_reloc_functions_status
;
4142 typedef typename
elfcpp::Swap
<32,big_endian
>::Valtype Insntype
;
4144 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
4145 int insn_number
= stub
->insn_num();
4146 const uint32_t* insns
= stub
->insns();
4147 // Check the insns are really those stub insns.
4148 for (int i
= 0; i
< insn_number
; ++i
)
4150 Insntype insn
= elfcpp::Swap
<32,big_endian
>::readval(ip
+ i
);
4151 gold_assert(((uint32_t)insn
== insns
[i
]));
4154 Address dest
= stub
->destination_address();
4156 switch(stub
->type())
4158 case ST_ADRP_BRANCH
:
4160 // 1st reloc is ADR_PREL_PG_HI21
4161 The_reloc_functions_status status
=
4162 The_reloc_functions::adrp(view
, dest
, address
);
4163 // An error should never arise in the above step. If so, please
4164 // check 'aarch64_valid_for_adrp_p'.
4165 gold_assert(status
== The_reloc_functions::STATUS_OKAY
);
4167 // 2nd reloc is ADD_ABS_LO12_NC
4168 const AArch64_reloc_property
* arp
=
4169 aarch64_reloc_property_table
->get_reloc_property(
4170 elfcpp::R_AARCH64_ADD_ABS_LO12_NC
);
4171 gold_assert(arp
!= NULL
);
4172 status
= The_reloc_functions::template
4173 rela_general
<32>(view
+ 4, dest
, 0, arp
);
4174 // An error should never arise, it is an "_NC" relocation.
4175 gold_assert(status
== The_reloc_functions::STATUS_OKAY
);
4179 case ST_LONG_BRANCH_ABS
:
4180 // 1st reloc is R_AARCH64_PREL64, at offset 8
4181 elfcpp::Swap
<64,big_endian
>::writeval(view
+ 8, dest
);
4184 case ST_LONG_BRANCH_PCREL
:
4186 // "PC" calculation is the 2nd insn in the stub.
4187 uint64_t offset
= dest
- (address
+ 4);
4188 // Offset is placed at offset 4 and 5.
4189 elfcpp::Swap
<64,big_endian
>::writeval(view
+ 16, offset
);
4199 // A class to handle the PLT data.
4200 // This is an abstract base class that handles most of the linker details
4201 // but does not know the actual contents of PLT entries. The derived
4202 // classes below fill in those details.
4204 template<int size
, bool big_endian
>
4205 class Output_data_plt_aarch64
: public Output_section_data
4208 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
>
4210 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
4212 Output_data_plt_aarch64(Layout
* layout
,
4214 Output_data_got_aarch64
<size
, big_endian
>* got
,
4215 Output_data_space
* got_plt
,
4216 Output_data_space
* got_irelative
)
4217 : Output_section_data(addralign
), tlsdesc_rel_(NULL
), irelative_rel_(NULL
),
4218 got_(got
), got_plt_(got_plt
), got_irelative_(got_irelative
),
4219 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4220 { this->init(layout
); }
4222 // Initialize the PLT section.
4224 init(Layout
* layout
);
4226 // Add an entry to the PLT.
4228 add_entry(Symbol_table
*, Layout
*, Symbol
* gsym
);
4230 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4232 add_local_ifunc_entry(Symbol_table
* symtab
, Layout
*,
4233 Sized_relobj_file
<size
, big_endian
>* relobj
,
4234 unsigned int local_sym_index
);
4236 // Add the relocation for a PLT entry.
4238 add_relocation(Symbol_table
*, Layout
*, Symbol
* gsym
,
4239 unsigned int got_offset
);
4241 // Add the reserved TLSDESC_PLT entry to the PLT.
4243 reserve_tlsdesc_entry(unsigned int got_offset
)
4244 { this->tlsdesc_got_offset_
= got_offset
; }
4246 // Return true if a TLSDESC_PLT entry has been reserved.
4248 has_tlsdesc_entry() const
4249 { return this->tlsdesc_got_offset_
!= -1U; }
4251 // Return the GOT offset for the reserved TLSDESC_PLT entry.
4253 get_tlsdesc_got_offset() const
4254 { return this->tlsdesc_got_offset_
; }
4256 // Return the PLT offset of the reserved TLSDESC_PLT entry.
4258 get_tlsdesc_plt_offset() const
4260 return (this->first_plt_entry_offset() +
4261 (this->count_
+ this->irelative_count_
)
4262 * this->get_plt_entry_size());
4265 // Return the .rela.plt section data.
4268 { return this->rel_
; }
4270 // Return where the TLSDESC relocations should go.
4272 rela_tlsdesc(Layout
*);
4274 // Return where the IRELATIVE relocations should go in the PLT
4277 rela_irelative(Symbol_table
*, Layout
*);
4279 // Return whether we created a section for IRELATIVE relocations.
4281 has_irelative_section() const
4282 { return this->irelative_rel_
!= NULL
; }
4284 // Return the number of PLT entries.
4287 { return this->count_
+ this->irelative_count_
; }
4289 // Return the offset of the first non-reserved PLT entry.
4291 first_plt_entry_offset() const
4292 { return this->do_first_plt_entry_offset(); }
4294 // Return the size of a PLT entry.
4296 get_plt_entry_size() const
4297 { return this->do_get_plt_entry_size(); }
4299 // Return the reserved tlsdesc entry size.
4301 get_plt_tlsdesc_entry_size() const
4302 { return this->do_get_plt_tlsdesc_entry_size(); }
4304 // Return the PLT address to use for a global symbol.
4306 address_for_global(const Symbol
*);
4308 // Return the PLT address to use for a local symbol.
4310 address_for_local(const Relobj
*, unsigned int symndx
);
4313 // Fill in the first PLT entry.
4315 fill_first_plt_entry(unsigned char* pov
,
4316 Address got_address
,
4317 Address plt_address
)
4318 { this->do_fill_first_plt_entry(pov
, got_address
, plt_address
); }
4320 // Fill in a normal PLT entry.
4322 fill_plt_entry(unsigned char* pov
,
4323 Address got_address
,
4324 Address plt_address
,
4325 unsigned int got_offset
,
4326 unsigned int plt_offset
)
4328 this->do_fill_plt_entry(pov
, got_address
, plt_address
,
4329 got_offset
, plt_offset
);
4332 // Fill in the reserved TLSDESC PLT entry.
4334 fill_tlsdesc_entry(unsigned char* pov
,
4335 Address gotplt_address
,
4336 Address plt_address
,
4338 unsigned int tlsdesc_got_offset
,
4339 unsigned int plt_offset
)
4341 this->do_fill_tlsdesc_entry(pov
, gotplt_address
, plt_address
, got_base
,
4342 tlsdesc_got_offset
, plt_offset
);
4345 virtual unsigned int
4346 do_first_plt_entry_offset() const = 0;
4348 virtual unsigned int
4349 do_get_plt_entry_size() const = 0;
4351 virtual unsigned int
4352 do_get_plt_tlsdesc_entry_size() const = 0;
4355 do_fill_first_plt_entry(unsigned char* pov
,
4357 Address plt_addr
) = 0;
4360 do_fill_plt_entry(unsigned char* pov
,
4361 Address got_address
,
4362 Address plt_address
,
4363 unsigned int got_offset
,
4364 unsigned int plt_offset
) = 0;
4367 do_fill_tlsdesc_entry(unsigned char* pov
,
4368 Address gotplt_address
,
4369 Address plt_address
,
4371 unsigned int tlsdesc_got_offset
,
4372 unsigned int plt_offset
) = 0;
4375 do_adjust_output_section(Output_section
* os
);
4377 // Write to a map file.
4379 do_print_to_mapfile(Mapfile
* mapfile
) const
4380 { mapfile
->print_output_data(this, _("** PLT")); }
4383 // Set the final size.
4385 set_final_data_size();
4387 // Write out the PLT data.
4389 do_write(Output_file
*);
4391 // The reloc section.
4392 Reloc_section
* rel_
;
4394 // The TLSDESC relocs, if necessary. These must follow the regular
4396 Reloc_section
* tlsdesc_rel_
;
4398 // The IRELATIVE relocs, if necessary. These must follow the
4399 // regular PLT relocations.
4400 Reloc_section
* irelative_rel_
;
4402 // The .got section.
4403 Output_data_got_aarch64
<size
, big_endian
>* got_
;
4405 // The .got.plt section.
4406 Output_data_space
* got_plt_
;
4408 // The part of the .got.plt section used for IRELATIVE relocs.
4409 Output_data_space
* got_irelative_
;
4411 // The number of PLT entries.
4412 unsigned int count_
;
4414 // Number of PLT entries with R_AARCH64_IRELATIVE relocs. These
4415 // follow the regular PLT entries.
4416 unsigned int irelative_count_
;
4418 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4419 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4420 // indicates an offset is not allocated.
4421 unsigned int tlsdesc_got_offset_
;
4424 // Initialize the PLT section.
4426 template<int size
, bool big_endian
>
4428 Output_data_plt_aarch64
<size
, big_endian
>::init(Layout
* layout
)
4430 this->rel_
= new Reloc_section(false);
4431 layout
->add_output_section_data(".rela.plt", elfcpp::SHT_RELA
,
4432 elfcpp::SHF_ALLOC
, this->rel_
,
4433 ORDER_DYNAMIC_PLT_RELOCS
, false);
4436 template<int size
, bool big_endian
>
4438 Output_data_plt_aarch64
<size
, big_endian
>::do_adjust_output_section(
4441 os
->set_entsize(this->get_plt_entry_size());
4444 // Add an entry to the PLT.
4446 template<int size
, bool big_endian
>
4448 Output_data_plt_aarch64
<size
, big_endian
>::add_entry(Symbol_table
* symtab
,
4449 Layout
* layout
, Symbol
* gsym
)
4451 gold_assert(!gsym
->has_plt_offset());
4453 unsigned int* pcount
;
4454 unsigned int plt_reserved
;
4455 Output_section_data_build
* got
;
4457 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
4458 && gsym
->can_use_relative_reloc(false))
4460 pcount
= &this->irelative_count_
;
4462 got
= this->got_irelative_
;
4466 pcount
= &this->count_
;
4467 plt_reserved
= this->first_plt_entry_offset();
4468 got
= this->got_plt_
;
4471 gsym
->set_plt_offset((*pcount
) * this->get_plt_entry_size()
4476 section_offset_type got_offset
= got
->current_data_size();
4478 // Every PLT entry needs a GOT entry which points back to the PLT
4479 // entry (this will be changed by the dynamic linker, normally
4480 // lazily when the function is called).
4481 got
->set_current_data_size(got_offset
+ size
/ 8);
4483 // Every PLT entry needs a reloc.
4484 this->add_relocation(symtab
, layout
, gsym
, got_offset
);
4486 // Note that we don't need to save the symbol. The contents of the
4487 // PLT are independent of which symbols are used. The symbols only
4488 // appear in the relocations.
4491 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
4494 template<int size
, bool big_endian
>
4496 Output_data_plt_aarch64
<size
, big_endian
>::add_local_ifunc_entry(
4497 Symbol_table
* symtab
,
4499 Sized_relobj_file
<size
, big_endian
>* relobj
,
4500 unsigned int local_sym_index
)
4502 unsigned int plt_offset
= this->irelative_count_
* this->get_plt_entry_size();
4503 ++this->irelative_count_
;
4505 section_offset_type got_offset
= this->got_irelative_
->current_data_size();
4507 // Every PLT entry needs a GOT entry which points back to the PLT
4509 this->got_irelative_
->set_current_data_size(got_offset
+ size
/ 8);
4511 // Every PLT entry needs a reloc.
4512 Reloc_section
* rela
= this->rela_irelative(symtab
, layout
);
4513 rela
->add_symbolless_local_addend(relobj
, local_sym_index
,
4514 elfcpp::R_AARCH64_IRELATIVE
,
4515 this->got_irelative_
, got_offset
, 0);
4520 // Add the relocation for a PLT entry.
4522 template<int size
, bool big_endian
>
4524 Output_data_plt_aarch64
<size
, big_endian
>::add_relocation(
4525 Symbol_table
* symtab
, Layout
* layout
, Symbol
* gsym
, unsigned int got_offset
)
4527 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
4528 && gsym
->can_use_relative_reloc(false))
4530 Reloc_section
* rela
= this->rela_irelative(symtab
, layout
);
4531 rela
->add_symbolless_global_addend(gsym
, elfcpp::R_AARCH64_IRELATIVE
,
4532 this->got_irelative_
, got_offset
, 0);
4536 gsym
->set_needs_dynsym_entry();
4537 this->rel_
->add_global(gsym
, elfcpp::R_AARCH64_JUMP_SLOT
, this->got_plt_
,
4542 // Return where the TLSDESC relocations should go, creating it if
4543 // necessary. These follow the JUMP_SLOT relocations.
4545 template<int size
, bool big_endian
>
4546 typename Output_data_plt_aarch64
<size
, big_endian
>::Reloc_section
*
4547 Output_data_plt_aarch64
<size
, big_endian
>::rela_tlsdesc(Layout
* layout
)
4549 if (this->tlsdesc_rel_
== NULL
)
4551 this->tlsdesc_rel_
= new Reloc_section(false);
4552 layout
->add_output_section_data(".rela.plt", elfcpp::SHT_RELA
,
4553 elfcpp::SHF_ALLOC
, this->tlsdesc_rel_
,
4554 ORDER_DYNAMIC_PLT_RELOCS
, false);
4555 gold_assert(this->tlsdesc_rel_
->output_section()
4556 == this->rel_
->output_section());
4558 return this->tlsdesc_rel_
;
4561 // Return where the IRELATIVE relocations should go in the PLT. These
4562 // follow the JUMP_SLOT and the TLSDESC relocations.
4564 template<int size
, bool big_endian
>
4565 typename Output_data_plt_aarch64
<size
, big_endian
>::Reloc_section
*
4566 Output_data_plt_aarch64
<size
, big_endian
>::rela_irelative(Symbol_table
* symtab
,
4569 if (this->irelative_rel_
== NULL
)
4571 // Make sure we have a place for the TLSDESC relocations, in
4572 // case we see any later on.
4573 this->rela_tlsdesc(layout
);
4574 this->irelative_rel_
= new Reloc_section(false);
4575 layout
->add_output_section_data(".rela.plt", elfcpp::SHT_RELA
,
4576 elfcpp::SHF_ALLOC
, this->irelative_rel_
,
4577 ORDER_DYNAMIC_PLT_RELOCS
, false);
4578 gold_assert(this->irelative_rel_
->output_section()
4579 == this->rel_
->output_section());
4581 if (parameters
->doing_static_link())
4583 // A statically linked executable will only have a .rela.plt
4584 // section to hold R_AARCH64_IRELATIVE relocs for
4585 // STT_GNU_IFUNC symbols. The library will use these
4586 // symbols to locate the IRELATIVE relocs at program startup
4588 symtab
->define_in_output_data("__rela_iplt_start", NULL
,
4589 Symbol_table::PREDEFINED
,
4590 this->irelative_rel_
, 0, 0,
4591 elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
4592 elfcpp::STV_HIDDEN
, 0, false, true);
4593 symtab
->define_in_output_data("__rela_iplt_end", NULL
,
4594 Symbol_table::PREDEFINED
,
4595 this->irelative_rel_
, 0, 0,
4596 elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
4597 elfcpp::STV_HIDDEN
, 0, true, true);
4600 return this->irelative_rel_
;
4603 // Return the PLT address to use for a global symbol.
4605 template<int size
, bool big_endian
>
4607 Output_data_plt_aarch64
<size
, big_endian
>::address_for_global(
4610 uint64_t offset
= 0;
4611 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
4612 && gsym
->can_use_relative_reloc(false))
4613 offset
= (this->first_plt_entry_offset() +
4614 this->count_
* this->get_plt_entry_size());
4615 return this->address() + offset
+ gsym
->plt_offset();
4618 // Return the PLT address to use for a local symbol. These are always
4619 // IRELATIVE relocs.
4621 template<int size
, bool big_endian
>
4623 Output_data_plt_aarch64
<size
, big_endian
>::address_for_local(
4624 const Relobj
* object
,
4627 return (this->address()
4628 + this->first_plt_entry_offset()
4629 + this->count_
* this->get_plt_entry_size()
4630 + object
->local_plt_offset(r_sym
));
4633 // Set the final size.
4635 template<int size
, bool big_endian
>
4637 Output_data_plt_aarch64
<size
, big_endian
>::set_final_data_size()
4639 unsigned int count
= this->count_
+ this->irelative_count_
;
4640 unsigned int extra_size
= 0;
4641 if (this->has_tlsdesc_entry())
4642 extra_size
+= this->get_plt_tlsdesc_entry_size();
4643 this->set_data_size(this->first_plt_entry_offset()
4644 + count
* this->get_plt_entry_size()
4648 template<int size
, bool big_endian
>
4649 class Output_data_plt_aarch64_standard
:
4650 public Output_data_plt_aarch64
<size
, big_endian
>
4653 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
4654 Output_data_plt_aarch64_standard(
4656 Output_data_got_aarch64
<size
, big_endian
>* got
,
4657 Output_data_space
* got_plt
,
4658 Output_data_space
* got_irelative
)
4659 : Output_data_plt_aarch64
<size
, big_endian
>(layout
,
4666 // Return the offset of the first non-reserved PLT entry.
4667 virtual unsigned int
4668 do_first_plt_entry_offset() const
4669 { return this->first_plt_entry_size
; }
4671 // Return the size of a PLT entry
4672 virtual unsigned int
4673 do_get_plt_entry_size() const
4674 { return this->plt_entry_size
; }
4676 // Return the size of a tlsdesc entry
4677 virtual unsigned int
4678 do_get_plt_tlsdesc_entry_size() const
4679 { return this->plt_tlsdesc_entry_size
; }
4682 do_fill_first_plt_entry(unsigned char* pov
,
4683 Address got_address
,
4684 Address plt_address
);
4687 do_fill_plt_entry(unsigned char* pov
,
4688 Address got_address
,
4689 Address plt_address
,
4690 unsigned int got_offset
,
4691 unsigned int plt_offset
);
4694 do_fill_tlsdesc_entry(unsigned char* pov
,
4695 Address gotplt_address
,
4696 Address plt_address
,
4698 unsigned int tlsdesc_got_offset
,
4699 unsigned int plt_offset
);
4702 // The size of the first plt entry size.
4703 static const int first_plt_entry_size
= 32;
4704 // The size of the plt entry size.
4705 static const int plt_entry_size
= 16;
4706 // The size of the plt tlsdesc entry size.
4707 static const int plt_tlsdesc_entry_size
= 32;
4708 // Template for the first PLT entry.
4709 static const uint32_t first_plt_entry
[first_plt_entry_size
/ 4];
4710 // Template for subsequent PLT entries.
4711 static const uint32_t plt_entry
[plt_entry_size
/ 4];
4712 // The reserved TLSDESC entry in the PLT for an executable.
4713 static const uint32_t tlsdesc_plt_entry
[plt_tlsdesc_entry_size
/ 4];
4716 // The first entry in the PLT for an executable.
4720 Output_data_plt_aarch64_standard
<32, false>::
4721 first_plt_entry
[first_plt_entry_size
/ 4] =
4723 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4724 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4725 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4726 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4727 0xd61f0220, /* br x17 */
4728 0xd503201f, /* nop */
4729 0xd503201f, /* nop */
4730 0xd503201f, /* nop */
4736 Output_data_plt_aarch64_standard
<32, true>::
4737 first_plt_entry
[first_plt_entry_size
/ 4] =
4739 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4740 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4741 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4742 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4743 0xd61f0220, /* br x17 */
4744 0xd503201f, /* nop */
4745 0xd503201f, /* nop */
4746 0xd503201f, /* nop */
4752 Output_data_plt_aarch64_standard
<64, false>::
4753 first_plt_entry
[first_plt_entry_size
/ 4] =
4755 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4756 0x90000010, /* adrp x16, PLT_GOT+16 */
4757 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4758 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4759 0xd61f0220, /* br x17 */
4760 0xd503201f, /* nop */
4761 0xd503201f, /* nop */
4762 0xd503201f, /* nop */
4768 Output_data_plt_aarch64_standard
<64, true>::
4769 first_plt_entry
[first_plt_entry_size
/ 4] =
4771 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4772 0x90000010, /* adrp x16, PLT_GOT+16 */
4773 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4774 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4775 0xd61f0220, /* br x17 */
4776 0xd503201f, /* nop */
4777 0xd503201f, /* nop */
4778 0xd503201f, /* nop */
4784 Output_data_plt_aarch64_standard
<32, false>::
4785 plt_entry
[plt_entry_size
/ 4] =
4787 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4788 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4789 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4790 0xd61f0220, /* br x17. */
4796 Output_data_plt_aarch64_standard
<32, true>::
4797 plt_entry
[plt_entry_size
/ 4] =
4799 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4800 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4801 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4802 0xd61f0220, /* br x17. */
4808 Output_data_plt_aarch64_standard
<64, false>::
4809 plt_entry
[plt_entry_size
/ 4] =
4811 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4812 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4813 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4814 0xd61f0220, /* br x17. */
4820 Output_data_plt_aarch64_standard
<64, true>::
4821 plt_entry
[plt_entry_size
/ 4] =
4823 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4824 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4825 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4826 0xd61f0220, /* br x17. */
4830 template<int size
, bool big_endian
>
4832 Output_data_plt_aarch64_standard
<size
, big_endian
>::do_fill_first_plt_entry(
4834 Address got_address
,
4835 Address plt_address
)
4837 // PLT0 of the small PLT looks like this in ELF64 -
4838 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
4839 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
4840 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4842 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
4843 // GOTPLT entry for this.
4845 // PLT0 will be slightly different in ELF32 due to different got entry
4847 memcpy(pov
, this->first_plt_entry
, this->first_plt_entry_size
);
4848 Address gotplt_2nd_ent
= got_address
+ (size
/ 8) * 2;
4850 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4851 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4852 // FIXME: This only works for 64bit
4853 AArch64_relocate_functions
<size
, big_endian
>::adrp(pov
+ 4,
4854 gotplt_2nd_ent
, plt_address
+ 4);
4856 // Fill in R_AARCH64_LDST8_LO12
4857 elfcpp::Swap
<32, big_endian
>::writeval(
4859 ((this->first_plt_entry
[2] & 0xffc003ff)
4860 | ((gotplt_2nd_ent
& 0xff8) << 7)));
4862 // Fill in R_AARCH64_ADD_ABS_LO12
4863 elfcpp::Swap
<32, big_endian
>::writeval(
4865 ((this->first_plt_entry
[3] & 0xffc003ff)
4866 | ((gotplt_2nd_ent
& 0xfff) << 10)));
4870 // Subsequent entries in the PLT for an executable.
4871 // FIXME: This only works for 64bit
4873 template<int size
, bool big_endian
>
4875 Output_data_plt_aarch64_standard
<size
, big_endian
>::do_fill_plt_entry(
4877 Address got_address
,
4878 Address plt_address
,
4879 unsigned int got_offset
,
4880 unsigned int plt_offset
)
4882 memcpy(pov
, this->plt_entry
, this->plt_entry_size
);
4884 Address gotplt_entry_address
= got_address
+ got_offset
;
4885 Address plt_entry_address
= plt_address
+ plt_offset
;
4887 // Fill in R_AARCH64_PCREL_ADR_HI21
4888 AArch64_relocate_functions
<size
, big_endian
>::adrp(
4890 gotplt_entry_address
,
4893 // Fill in R_AARCH64_LDST64_ABS_LO12
4894 elfcpp::Swap
<32, big_endian
>::writeval(
4896 ((this->plt_entry
[1] & 0xffc003ff)
4897 | ((gotplt_entry_address
& 0xff8) << 7)));
4899 // Fill in R_AARCH64_ADD_ABS_LO12
4900 elfcpp::Swap
<32, big_endian
>::writeval(
4902 ((this->plt_entry
[2] & 0xffc003ff)
4903 | ((gotplt_entry_address
& 0xfff) <<10)));
4910 Output_data_plt_aarch64_standard
<32, false>::
4911 tlsdesc_plt_entry
[plt_tlsdesc_entry_size
/ 4] =
4913 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4914 0x90000002, /* adrp x2, 0 */
4915 0x90000003, /* adrp x3, 0 */
4916 0xb9400042, /* ldr w2, [w2, #0] */
4917 0x11000063, /* add w3, w3, 0 */
4918 0xd61f0040, /* br x2 */
4919 0xd503201f, /* nop */
4920 0xd503201f, /* nop */
4925 Output_data_plt_aarch64_standard
<32, true>::
4926 tlsdesc_plt_entry
[plt_tlsdesc_entry_size
/ 4] =
4928 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4929 0x90000002, /* adrp x2, 0 */
4930 0x90000003, /* adrp x3, 0 */
4931 0xb9400042, /* ldr w2, [w2, #0] */
4932 0x11000063, /* add w3, w3, 0 */
4933 0xd61f0040, /* br x2 */
4934 0xd503201f, /* nop */
4935 0xd503201f, /* nop */
4940 Output_data_plt_aarch64_standard
<64, false>::
4941 tlsdesc_plt_entry
[plt_tlsdesc_entry_size
/ 4] =
4943 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4944 0x90000002, /* adrp x2, 0 */
4945 0x90000003, /* adrp x3, 0 */
4946 0xf9400042, /* ldr x2, [x2, #0] */
4947 0x91000063, /* add x3, x3, 0 */
4948 0xd61f0040, /* br x2 */
4949 0xd503201f, /* nop */
4950 0xd503201f, /* nop */
4955 Output_data_plt_aarch64_standard
<64, true>::
4956 tlsdesc_plt_entry
[plt_tlsdesc_entry_size
/ 4] =
4958 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4959 0x90000002, /* adrp x2, 0 */
4960 0x90000003, /* adrp x3, 0 */
4961 0xf9400042, /* ldr x2, [x2, #0] */
4962 0x91000063, /* add x3, x3, 0 */
4963 0xd61f0040, /* br x2 */
4964 0xd503201f, /* nop */
4965 0xd503201f, /* nop */
4968 template<int size
, bool big_endian
>
4970 Output_data_plt_aarch64_standard
<size
, big_endian
>::do_fill_tlsdesc_entry(
4972 Address gotplt_address
,
4973 Address plt_address
,
4975 unsigned int tlsdesc_got_offset
,
4976 unsigned int plt_offset
)
4978 memcpy(pov
, tlsdesc_plt_entry
, plt_tlsdesc_entry_size
);
4980 // move DT_TLSDESC_GOT address into x2
4981 // move .got.plt address into x3
4982 Address tlsdesc_got_entry
= got_base
+ tlsdesc_got_offset
;
4983 Address plt_entry_address
= plt_address
+ plt_offset
;
4985 // R_AARCH64_ADR_PREL_PG_HI21
4986 AArch64_relocate_functions
<size
, big_endian
>::adrp(
4989 plt_entry_address
+ 4);
4991 // R_AARCH64_ADR_PREL_PG_HI21
4992 AArch64_relocate_functions
<size
, big_endian
>::adrp(
4995 plt_entry_address
+ 8);
4997 // R_AARCH64_LDST64_ABS_LO12
4998 elfcpp::Swap
<32, big_endian
>::writeval(
5000 ((this->tlsdesc_plt_entry
[3] & 0xffc003ff)
5001 | ((tlsdesc_got_entry
& 0xff8) << 7)));
5003 // R_AARCH64_ADD_ABS_LO12
5004 elfcpp::Swap
<32, big_endian
>::writeval(
5006 ((this->tlsdesc_plt_entry
[4] & 0xffc003ff)
5007 | ((gotplt_address
& 0xfff) << 10)));
5010 // Write out the PLT. This uses the hand-coded instructions above,
5011 // and adjusts them as needed. This is specified by the AMD64 ABI.
5013 template<int size
, bool big_endian
>
5015 Output_data_plt_aarch64
<size
, big_endian
>::do_write(Output_file
* of
)
5017 const off_t offset
= this->offset();
5018 const section_size_type oview_size
=
5019 convert_to_section_size_type(this->data_size());
5020 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
5022 const off_t got_file_offset
= this->got_plt_
->offset();
5023 gold_assert(got_file_offset
+ this->got_plt_
->data_size()
5024 == this->got_irelative_
->offset());
5026 const section_size_type got_size
=
5027 convert_to_section_size_type(this->got_plt_
->data_size()
5028 + this->got_irelative_
->data_size());
5029 unsigned char* const got_view
= of
->get_output_view(got_file_offset
,
5032 unsigned char* pov
= oview
;
5034 // The base address of the .plt section.
5035 typename
elfcpp::Elf_types
<size
>::Elf_Addr plt_address
= this->address();
5036 // The base address of the PLT portion of the .got section.
5037 typename
elfcpp::Elf_types
<size
>::Elf_Addr gotplt_address
5038 = this->got_plt_
->address();
5040 this->fill_first_plt_entry(pov
, gotplt_address
, plt_address
);
5041 pov
+= this->first_plt_entry_offset();
5043 // The first three entries in .got.plt are reserved.
5044 unsigned char* got_pov
= got_view
;
5045 memset(got_pov
, 0, size
/ 8 * AARCH64_GOTPLT_RESERVE_COUNT
);
5046 got_pov
+= (size
/ 8) * AARCH64_GOTPLT_RESERVE_COUNT
;
5048 unsigned int plt_offset
= this->first_plt_entry_offset();
5049 unsigned int got_offset
= (size
/ 8) * AARCH64_GOTPLT_RESERVE_COUNT
;
5050 const unsigned int count
= this->count_
+ this->irelative_count_
;
5051 for (unsigned int plt_index
= 0;
5054 pov
+= this->get_plt_entry_size(),
5055 got_pov
+= size
/ 8,
5056 plt_offset
+= this->get_plt_entry_size(),
5057 got_offset
+= size
/ 8)
5059 // Set and adjust the PLT entry itself.
5060 this->fill_plt_entry(pov
, gotplt_address
, plt_address
,
5061 got_offset
, plt_offset
);
5063 // Set the entry in the GOT, which points to plt0.
5064 elfcpp::Swap
<size
, big_endian
>::writeval(got_pov
, plt_address
);
5067 if (this->has_tlsdesc_entry())
5069 // Set and adjust the reserved TLSDESC PLT entry.
5070 unsigned int tlsdesc_got_offset
= this->get_tlsdesc_got_offset();
5071 // The base address of the .base section.
5072 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_base
=
5073 this->got_
->address();
5074 this->fill_tlsdesc_entry(pov
, gotplt_address
, plt_address
, got_base
,
5075 tlsdesc_got_offset
, plt_offset
);
5076 pov
+= this->get_plt_tlsdesc_entry_size();
5079 gold_assert(static_cast<section_size_type
>(pov
- oview
) == oview_size
);
5080 gold_assert(static_cast<section_size_type
>(got_pov
- got_view
) == got_size
);
5082 of
->write_output_view(offset
, oview_size
, oview
);
5083 of
->write_output_view(got_file_offset
, got_size
, got_view
);
5086 // Telling how to update the immediate field of an instruction.
5087 struct AArch64_howto
5089 // The immediate field mask.
5090 elfcpp::Elf_Xword dst_mask
;
5092 // The offset to apply relocation immediate
5095 // The second part offset, if the immediate field has two parts.
5096 // -1 if the immediate field has only one part.
5100 static const AArch64_howto aarch64_howto
[AArch64_reloc_property::INST_NUM
] =
5102 {0, -1, -1}, // DATA
5103 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
5104 {0xffffe0, 5, -1}, // LD [23:5]-imm19
5105 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
5106 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
5107 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
5108 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
5109 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
5110 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
5111 {0x3ffffff, 0, -1}, // B [25:0]-imm26
5112 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
5115 // AArch64 relocate function class
5117 template<int size
, bool big_endian
>
5118 class AArch64_relocate_functions
5123 STATUS_OKAY
, // No error during relocation.
5124 STATUS_OVERFLOW
, // Relocation overflow.
5125 STATUS_BAD_RELOC
, // Relocation cannot be applied.
5128 typedef AArch64_relocate_functions
<size
, big_endian
> This
;
5129 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
5130 typedef Relocate_info
<size
, big_endian
> The_relocate_info
;
5131 typedef AArch64_relobj
<size
, big_endian
> The_aarch64_relobj
;
5132 typedef Reloc_stub
<size
, big_endian
> The_reloc_stub
;
5133 typedef Stub_table
<size
, big_endian
> The_stub_table
;
5134 typedef elfcpp::Rela
<size
, big_endian
> The_rela
;
5135 typedef typename
elfcpp::Swap
<size
, big_endian
>::Valtype AArch64_valtype
;
5137 // Return the page address of the address.
5138 // Page(address) = address & ~0xFFF
5140 static inline AArch64_valtype
5141 Page(Address address
)
5143 return (address
& (~static_cast<Address
>(0xFFF)));
5147 // Update instruction (pointed by view) with selected bits (immed).
5148 // val = (val & ~dst_mask) | (immed << doffset)
5150 template<int valsize
>
5152 update_view(unsigned char* view
,
5153 AArch64_valtype immed
,
5154 elfcpp::Elf_Xword doffset
,
5155 elfcpp::Elf_Xword dst_mask
)
5157 typedef typename
elfcpp::Swap
<valsize
, big_endian
>::Valtype Valtype
;
5158 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
5159 Valtype val
= elfcpp::Swap
<valsize
, big_endian
>::readval(wv
);
5161 // Clear immediate fields.
5163 elfcpp::Swap
<valsize
, big_endian
>::writeval(wv
,
5164 static_cast<Valtype
>(val
| (immed
<< doffset
)));
5167 // Update two parts of an instruction (pointed by view) with selected
5168 // bits (immed1 and immed2).
5169 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5171 template<int valsize
>
5173 update_view_two_parts(
5174 unsigned char* view
,
5175 AArch64_valtype immed1
,
5176 AArch64_valtype immed2
,
5177 elfcpp::Elf_Xword doffset1
,
5178 elfcpp::Elf_Xword doffset2
,
5179 elfcpp::Elf_Xword dst_mask
)
5181 typedef typename
elfcpp::Swap
<valsize
, big_endian
>::Valtype Valtype
;
5182 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
5183 Valtype val
= elfcpp::Swap
<valsize
, big_endian
>::readval(wv
);
5185 elfcpp::Swap
<valsize
, big_endian
>::writeval(wv
,
5186 static_cast<Valtype
>(val
| (immed1
<< doffset1
) |
5187 (immed2
<< doffset2
)));
5190 // Update adr or adrp instruction with immed.
5191 // In adr and adrp: [30:29] immlo [23:5] immhi
5194 update_adr(unsigned char* view
, AArch64_valtype immed
)
5196 elfcpp::Elf_Xword dst_mask
= (0x3 << 29) | (0x7ffff << 5);
5197 This::template update_view_two_parts
<32>(
5200 (immed
& 0x1ffffc) >> 2,
5206 // Update movz/movn instruction with bits immed.
5207 // Set instruction to movz if is_movz is true, otherwise set instruction
5211 update_movnz(unsigned char* view
,
5212 AArch64_valtype immed
,
5215 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
5216 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
5217 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5219 const elfcpp::Elf_Xword doffset
=
5220 aarch64_howto
[AArch64_reloc_property::INST_MOVW
].doffset
;
5221 const elfcpp::Elf_Xword dst_mask
=
5222 aarch64_howto
[AArch64_reloc_property::INST_MOVW
].dst_mask
;
5224 // Clear immediate fields and opc code.
5225 val
&= ~(dst_mask
| (0x3 << 29));
5227 // Set instruction to movz or movn.
5228 // movz: [30:29] is 10 movn: [30:29] is 00
5232 elfcpp::Swap
<32, big_endian
>::writeval(wv
,
5233 static_cast<Valtype
>(val
| (immed
<< doffset
)));
5238 // Update selected bits in text.
5240 template<int valsize
>
5241 static inline typename
This::Status
5242 reloc_common(unsigned char* view
, Address x
,
5243 const AArch64_reloc_property
* reloc_property
)
5245 // Select bits from X.
5246 Address immed
= reloc_property
->select_x_value(x
);
5249 const AArch64_reloc_property::Reloc_inst inst
=
5250 reloc_property
->reloc_inst();
5251 // If it is a data relocation or instruction has 2 parts of immediate
5252 // fields, you should not call pcrela_general.
5253 gold_assert(aarch64_howto
[inst
].doffset2
== -1 &&
5254 aarch64_howto
[inst
].doffset
!= -1);
5255 This::template update_view
<valsize
>(view
, immed
,
5256 aarch64_howto
[inst
].doffset
,
5257 aarch64_howto
[inst
].dst_mask
);
5259 // Do check overflow or alignment if needed.
5260 return (reloc_property
->checkup_x_value(x
)
5262 : This::STATUS_OVERFLOW
);
5265 // Construct a B insn. Note, although we group it here with other relocation
5266 // operation, there is actually no 'relocation' involved here.
5268 construct_b(unsigned char* view
, unsigned int branch_offset
)
5270 update_view_two_parts
<32>(view
, 0x05, (branch_offset
>> 2),
5274 // Do a simple rela relocation at unaligned addresses.
5276 template<int valsize
>
5277 static inline typename
This::Status
5278 rela_ua(unsigned char* view
,
5279 const Sized_relobj_file
<size
, big_endian
>* object
,
5280 const Symbol_value
<size
>* psymval
,
5281 AArch64_valtype addend
,
5282 const AArch64_reloc_property
* reloc_property
)
5284 typedef typename
elfcpp::Swap_unaligned
<valsize
, big_endian
>::Valtype
5286 typename
elfcpp::Elf_types
<size
>::Elf_Addr x
=
5287 psymval
->value(object
, addend
);
5288 elfcpp::Swap_unaligned
<valsize
, big_endian
>::writeval(view
,
5289 static_cast<Valtype
>(x
));
5290 return (reloc_property
->checkup_x_value(x
)
5292 : This::STATUS_OVERFLOW
);
5295 // Do a simple pc-relative relocation at unaligned addresses.
5297 template<int valsize
>
5298 static inline typename
This::Status
5299 pcrela_ua(unsigned char* view
,
5300 const Sized_relobj_file
<size
, big_endian
>* object
,
5301 const Symbol_value
<size
>* psymval
,
5302 AArch64_valtype addend
,
5304 const AArch64_reloc_property
* reloc_property
)
5306 typedef typename
elfcpp::Swap_unaligned
<valsize
, big_endian
>::Valtype
5308 Address x
= psymval
->value(object
, addend
) - address
;
5309 elfcpp::Swap_unaligned
<valsize
, big_endian
>::writeval(view
,
5310 static_cast<Valtype
>(x
));
5311 return (reloc_property
->checkup_x_value(x
)
5313 : This::STATUS_OVERFLOW
);
5316 // Do a simple rela relocation at aligned addresses.
5318 template<int valsize
>
5319 static inline typename
This::Status
5321 unsigned char* view
,
5322 const Sized_relobj_file
<size
, big_endian
>* object
,
5323 const Symbol_value
<size
>* psymval
,
5324 AArch64_valtype addend
,
5325 const AArch64_reloc_property
* reloc_property
)
5327 typedef typename
elfcpp::Swap
<valsize
, big_endian
>::Valtype Valtype
;
5328 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
5329 Address x
= psymval
->value(object
, addend
);
5330 elfcpp::Swap
<valsize
, big_endian
>::writeval(wv
,static_cast<Valtype
>(x
));
5331 return (reloc_property
->checkup_x_value(x
)
5333 : This::STATUS_OVERFLOW
);
5336 // Do relocate. Update selected bits in text.
5337 // new_val = (val & ~dst_mask) | (immed << doffset)
5339 template<int valsize
>
5340 static inline typename
This::Status
5341 rela_general(unsigned char* view
,
5342 const Sized_relobj_file
<size
, big_endian
>* object
,
5343 const Symbol_value
<size
>* psymval
,
5344 AArch64_valtype addend
,
5345 const AArch64_reloc_property
* reloc_property
)
5347 // Calculate relocation.
5348 Address x
= psymval
->value(object
, addend
);
5349 return This::template reloc_common
<valsize
>(view
, x
, reloc_property
);
5352 // Do relocate. Update selected bits in text.
5353 // new val = (val & ~dst_mask) | (immed << doffset)
5355 template<int valsize
>
5356 static inline typename
This::Status
5358 unsigned char* view
,
5360 AArch64_valtype addend
,
5361 const AArch64_reloc_property
* reloc_property
)
5363 // Calculate relocation.
5364 Address x
= s
+ addend
;
5365 return This::template reloc_common
<valsize
>(view
, x
, reloc_property
);
5368 // Do address relative relocate. Update selected bits in text.
5369 // new val = (val & ~dst_mask) | (immed << doffset)
5371 template<int valsize
>
5372 static inline typename
This::Status
5374 unsigned char* view
,
5375 const Sized_relobj_file
<size
, big_endian
>* object
,
5376 const Symbol_value
<size
>* psymval
,
5377 AArch64_valtype addend
,
5379 const AArch64_reloc_property
* reloc_property
)
5381 // Calculate relocation.
5382 Address x
= psymval
->value(object
, addend
) - address
;
5383 return This::template reloc_common
<valsize
>(view
, x
, reloc_property
);
5387 // Calculate (S + A) - address, update adr instruction.
5389 static inline typename
This::Status
5390 adr(unsigned char* view
,
5391 const Sized_relobj_file
<size
, big_endian
>* object
,
5392 const Symbol_value
<size
>* psymval
,
5395 const AArch64_reloc_property
* /* reloc_property */)
5397 AArch64_valtype x
= psymval
->value(object
, addend
) - address
;
5398 // Pick bits [20:0] of X.
5399 AArch64_valtype immed
= x
& 0x1fffff;
5400 update_adr(view
, immed
);
5401 // Check -2^20 <= X < 2^20
5402 return (size
== 64 && Bits
<21>::has_overflow((x
))
5403 ? This::STATUS_OVERFLOW
5404 : This::STATUS_OKAY
);
5407 // Calculate PG(S+A) - PG(address), update adrp instruction.
5408 // R_AARCH64_ADR_PREL_PG_HI21
5410 static inline typename
This::Status
5412 unsigned char* view
,
5416 AArch64_valtype x
= This::Page(sa
) - This::Page(address
);
5417 // Pick [32:12] of X.
5418 AArch64_valtype immed
= (x
>> 12) & 0x1fffff;
5419 update_adr(view
, immed
);
5420 // Check -2^32 <= X < 2^32
5421 return (size
== 64 && Bits
<33>::has_overflow((x
))
5422 ? This::STATUS_OVERFLOW
5423 : This::STATUS_OKAY
);
5426 // Calculate PG(S+A) - PG(address), update adrp instruction.
5427 // R_AARCH64_ADR_PREL_PG_HI21
5429 static inline typename
This::Status
5430 adrp(unsigned char* view
,
5431 const Sized_relobj_file
<size
, big_endian
>* object
,
5432 const Symbol_value
<size
>* psymval
,
5435 const AArch64_reloc_property
* reloc_property
)
5437 Address sa
= psymval
->value(object
, addend
);
5438 AArch64_valtype x
= This::Page(sa
) - This::Page(address
);
5439 // Pick [32:12] of X.
5440 AArch64_valtype immed
= (x
>> 12) & 0x1fffff;
5441 update_adr(view
, immed
);
5442 return (reloc_property
->checkup_x_value(x
)
5444 : This::STATUS_OVERFLOW
);
5447 // Update mov[n/z] instruction. Check overflow if needed.
5448 // If X >=0, set the instruction to movz and its immediate value to the
5450 // If X < 0, set the instruction to movn and its immediate value to
5451 // NOT (selected bits of).
5453 static inline typename
This::Status
5454 movnz(unsigned char* view
,
5456 const AArch64_reloc_property
* reloc_property
)
5458 // Select bits from X.
5461 typedef typename
elfcpp::Elf_types
<size
>::Elf_Swxword SignedW
;
5462 if (static_cast<SignedW
>(x
) >= 0)
5464 immed
= reloc_property
->select_x_value(x
);
5469 immed
= reloc_property
->select_x_value(~x
);;
5473 // Update movnz instruction.
5474 update_movnz(view
, immed
, is_movz
);
5476 // Do check overflow or alignment if needed.
5477 return (reloc_property
->checkup_x_value(x
)
5479 : This::STATUS_OVERFLOW
);
5483 maybe_apply_stub(unsigned int,
5484 const The_relocate_info
*,
5488 const Sized_symbol
<size
>*,
5489 const Symbol_value
<size
>*,
5490 const Sized_relobj_file
<size
, big_endian
>*,
5493 }; // End of AArch64_relocate_functions
5496 // For a certain relocation type (usually jump/branch), test to see if the
5497 // destination needs a stub to fulfil. If so, re-route the destination of the
5498 // original instruction to the stub, note, at this time, the stub has already
5501 template<int size
, bool big_endian
>
5503 AArch64_relocate_functions
<size
, big_endian
>::
5504 maybe_apply_stub(unsigned int r_type
,
5505 const The_relocate_info
* relinfo
,
5506 const The_rela
& rela
,
5507 unsigned char* view
,
5509 const Sized_symbol
<size
>* gsym
,
5510 const Symbol_value
<size
>* psymval
,
5511 const Sized_relobj_file
<size
, big_endian
>* object
,
5512 section_size_type current_group_size
)
5514 if (parameters
->options().relocatable())
5517 typename
elfcpp::Elf_types
<size
>::Elf_Swxword addend
= rela
.get_r_addend();
5518 Address branch_target
= psymval
->value(object
, 0) + addend
;
5520 The_reloc_stub::stub_type_for_reloc(r_type
, address
, branch_target
);
5521 if (stub_type
== ST_NONE
)
5524 const The_aarch64_relobj
* aarch64_relobj
=
5525 static_cast<const The_aarch64_relobj
*>(object
);
5526 const AArch64_reloc_property
* arp
=
5527 aarch64_reloc_property_table
->get_reloc_property(r_type
);
5528 gold_assert(arp
!= NULL
);
5530 // We don't create stubs for undefined symbols, but do for weak.
5532 && !gsym
->use_plt_offset(arp
->reference_flags())
5533 && gsym
->is_undefined())
5535 gold_debug(DEBUG_TARGET
,
5536 "stub: looking for a stub for undefined symbol %s in file %s",
5537 gsym
->name(), aarch64_relobj
->name().c_str());
5541 The_stub_table
* stub_table
= aarch64_relobj
->stub_table(relinfo
->data_shndx
);
5542 gold_assert(stub_table
!= NULL
);
5544 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
5545 typename
The_reloc_stub::Key
stub_key(stub_type
, gsym
, object
, r_sym
, addend
);
5546 The_reloc_stub
* stub
= stub_table
->find_reloc_stub(stub_key
);
5547 gold_assert(stub
!= NULL
);
5549 Address new_branch_target
= stub_table
->address() + stub
->offset();
5550 typename
elfcpp::Swap
<size
, big_endian
>::Valtype branch_offset
=
5551 new_branch_target
- address
;
5552 typename
This::Status status
= This::template
5553 rela_general
<32>(view
, branch_offset
, 0, arp
);
5554 if (status
!= This::STATUS_OKAY
)
5555 gold_error(_("Stub is too far away, try a smaller value "
5556 "for '--stub-group-size'. The current value is 0x%lx."),
5557 static_cast<unsigned long>(current_group_size
));
5562 // Group input sections for stub generation.
5564 // We group input sections in an output section so that the total size,
5565 // including any padding space due to alignment is smaller than GROUP_SIZE
5566 // unless the only input section in group is bigger than GROUP_SIZE already.
5567 // Then an ARM stub table is created to follow the last input section
5568 // in group. For each group an ARM stub table is created an is placed
5569 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
5570 // extend the group after the stub table.
5572 template<int size
, bool big_endian
>
5574 Target_aarch64
<size
, big_endian
>::group_sections(
5576 section_size_type group_size
,
5577 bool stubs_always_after_branch
,
5580 // Group input sections and insert stub table
5581 Layout::Section_list section_list
;
5582 layout
->get_executable_sections(§ion_list
);
5583 for (Layout::Section_list::const_iterator p
= section_list
.begin();
5584 p
!= section_list
.end();
5587 AArch64_output_section
<size
, big_endian
>* output_section
=
5588 static_cast<AArch64_output_section
<size
, big_endian
>*>(*p
);
5589 output_section
->group_sections(group_size
, stubs_always_after_branch
,
5595 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5596 // section of RELOBJ.
5598 template<int size
, bool big_endian
>
5599 AArch64_input_section
<size
, big_endian
>*
5600 Target_aarch64
<size
, big_endian
>::find_aarch64_input_section(
5601 Relobj
* relobj
, unsigned int shndx
) const
5603 Section_id
sid(relobj
, shndx
);
5604 typename
AArch64_input_section_map::const_iterator p
=
5605 this->aarch64_input_section_map_
.find(sid
);
5606 return (p
!= this->aarch64_input_section_map_
.end()) ? p
->second
: NULL
;
5610 // Make a new AArch64_input_section object.
5612 template<int size
, bool big_endian
>
5613 AArch64_input_section
<size
, big_endian
>*
5614 Target_aarch64
<size
, big_endian
>::new_aarch64_input_section(
5615 Relobj
* relobj
, unsigned int shndx
)
5617 Section_id
sid(relobj
, shndx
);
5619 AArch64_input_section
<size
, big_endian
>* input_section
=
5620 new AArch64_input_section
<size
, big_endian
>(relobj
, shndx
);
5621 input_section
->init();
5623 // Register new AArch64_input_section in map for look-up.
5624 std::pair
<typename
AArch64_input_section_map::iterator
,bool> ins
=
5625 this->aarch64_input_section_map_
.insert(
5626 std::make_pair(sid
, input_section
));
5628 // Make sure that it we have not created another AArch64_input_section
5629 // for this input section already.
5630 gold_assert(ins
.second
);
5632 return input_section
;
5636 // Relaxation hook. This is where we do stub generation.
5638 template<int size
, bool big_endian
>
5640 Target_aarch64
<size
, big_endian
>::do_relax(
5642 const Input_objects
* input_objects
,
5643 Symbol_table
* symtab
,
5647 gold_assert(!parameters
->options().relocatable());
5650 // We don't handle negative stub_group_size right now.
5651 this->stub_group_size_
= abs(parameters
->options().stub_group_size());
5652 if (this->stub_group_size_
== 1)
5654 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5655 // will fail to link. The user will have to relink with an explicit
5656 // group size option.
5657 this->stub_group_size_
= The_reloc_stub::MAX_BRANCH_OFFSET
-
5660 group_sections(layout
, this->stub_group_size_
, true, task
);
5664 // If this is not the first pass, addresses and file offsets have
5665 // been reset at this point, set them here.
5666 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
5667 sp
!= this->stub_tables_
.end(); ++sp
)
5669 The_stub_table
* stt
= *sp
;
5670 The_aarch64_input_section
* owner
= stt
->owner();
5671 off_t off
= align_address(owner
->original_size(),
5673 stt
->set_address_and_file_offset(owner
->address() + off
,
5674 owner
->offset() + off
);
5678 // Scan relocs for relocation stubs
5679 for (Input_objects::Relobj_iterator op
= input_objects
->relobj_begin();
5680 op
!= input_objects
->relobj_end();
5683 The_aarch64_relobj
* aarch64_relobj
=
5684 static_cast<The_aarch64_relobj
*>(*op
);
5685 // Lock the object so we can read from it. This is only called
5686 // single-threaded from Layout::finalize, so it is OK to lock.
5687 Task_lock_obj
<Object
> tl(task
, aarch64_relobj
);
5688 aarch64_relobj
->scan_sections_for_stubs(this, symtab
, layout
);
5691 bool any_stub_table_changed
= false;
5692 for (Stub_table_iterator siter
= this->stub_tables_
.begin();
5693 siter
!= this->stub_tables_
.end() && !any_stub_table_changed
; ++siter
)
5695 The_stub_table
* stub_table
= *siter
;
5696 if (stub_table
->update_data_size_changed_p())
5698 The_aarch64_input_section
* owner
= stub_table
->owner();
5699 uint64_t address
= owner
->address();
5700 off_t offset
= owner
->offset();
5701 owner
->reset_address_and_file_offset();
5702 owner
->set_address_and_file_offset(address
, offset
);
5704 any_stub_table_changed
= true;
5708 // Do not continue relaxation.
5709 bool continue_relaxation
= any_stub_table_changed
;
5710 if (!continue_relaxation
)
5711 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
5712 (sp
!= this->stub_tables_
.end());
5714 (*sp
)->finalize_stubs();
5716 return continue_relaxation
;
5720 // Make a new Stub_table.
5722 template<int size
, bool big_endian
>
5723 Stub_table
<size
, big_endian
>*
5724 Target_aarch64
<size
, big_endian
>::new_stub_table(
5725 AArch64_input_section
<size
, big_endian
>* owner
)
5727 Stub_table
<size
, big_endian
>* stub_table
=
5728 new Stub_table
<size
, big_endian
>(owner
);
5729 stub_table
->set_address(align_address(
5730 owner
->address() + owner
->data_size(), 8));
5731 stub_table
->set_file_offset(owner
->offset() + owner
->data_size());
5732 stub_table
->finalize_data_size();
5734 this->stub_tables_
.push_back(stub_table
);
5740 template<int size
, bool big_endian
>
5742 Target_aarch64
<size
, big_endian
>::do_reloc_addend(
5743 void* arg
, unsigned int r_type
, uint64_t) const
5745 gold_assert(r_type
== elfcpp::R_AARCH64_TLSDESC
);
5746 uintptr_t intarg
= reinterpret_cast<uintptr_t>(arg
);
5747 gold_assert(intarg
< this->tlsdesc_reloc_info_
.size());
5748 const Tlsdesc_info
& ti(this->tlsdesc_reloc_info_
[intarg
]);
5749 const Symbol_value
<size
>* psymval
= ti
.object
->local_symbol(ti
.r_sym
);
5750 gold_assert(psymval
->is_tls_symbol());
5751 // The value of a TLS symbol is the offset in the TLS segment.
5752 return psymval
->value(ti
.object
, 0);
5755 // Return the number of entries in the PLT.
5757 template<int size
, bool big_endian
>
5759 Target_aarch64
<size
, big_endian
>::plt_entry_count() const
5761 if (this->plt_
== NULL
)
5763 return this->plt_
->entry_count();
5766 // Return the offset of the first non-reserved PLT entry.
5768 template<int size
, bool big_endian
>
5770 Target_aarch64
<size
, big_endian
>::first_plt_entry_offset() const
5772 return this->plt_
->first_plt_entry_offset();
5775 // Return the size of each PLT entry.
5777 template<int size
, bool big_endian
>
5779 Target_aarch64
<size
, big_endian
>::plt_entry_size() const
5781 return this->plt_
->get_plt_entry_size();
5784 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5786 template<int size
, bool big_endian
>
5788 Target_aarch64
<size
, big_endian
>::define_tls_base_symbol(
5789 Symbol_table
* symtab
, Layout
* layout
)
5791 if (this->tls_base_symbol_defined_
)
5794 Output_segment
* tls_segment
= layout
->tls_segment();
5795 if (tls_segment
!= NULL
)
5797 // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5798 symtab
->define_in_output_segment("_TLS_MODULE_BASE_", NULL
,
5799 Symbol_table::PREDEFINED
,
5803 elfcpp::STV_HIDDEN
, 0,
5804 Symbol::SEGMENT_START
,
5807 this->tls_base_symbol_defined_
= true;
5810 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5812 template<int size
, bool big_endian
>
5814 Target_aarch64
<size
, big_endian
>::reserve_tlsdesc_entries(
5815 Symbol_table
* symtab
, Layout
* layout
)
5817 if (this->plt_
== NULL
)
5818 this->make_plt_section(symtab
, layout
);
5820 if (!this->plt_
->has_tlsdesc_entry())
5822 // Allocate the TLSDESC_GOT entry.
5823 Output_data_got_aarch64
<size
, big_endian
>* got
=
5824 this->got_section(symtab
, layout
);
5825 unsigned int got_offset
= got
->add_constant(0);
5827 // Allocate the TLSDESC_PLT entry.
5828 this->plt_
->reserve_tlsdesc_entry(got_offset
);
5832 // Create a GOT entry for the TLS module index.
5834 template<int size
, bool big_endian
>
5836 Target_aarch64
<size
, big_endian
>::got_mod_index_entry(
5837 Symbol_table
* symtab
, Layout
* layout
,
5838 Sized_relobj_file
<size
, big_endian
>* object
)
5840 if (this->got_mod_index_offset_
== -1U)
5842 gold_assert(symtab
!= NULL
&& layout
!= NULL
&& object
!= NULL
);
5843 Reloc_section
* rela_dyn
= this->rela_dyn_section(layout
);
5844 Output_data_got_aarch64
<size
, big_endian
>* got
=
5845 this->got_section(symtab
, layout
);
5846 unsigned int got_offset
= got
->add_constant(0);
5847 rela_dyn
->add_local(object
, 0, elfcpp::R_AARCH64_TLS_DTPMOD64
, got
,
5849 got
->add_constant(0);
5850 this->got_mod_index_offset_
= got_offset
;
5852 return this->got_mod_index_offset_
;
5855 // Optimize the TLS relocation type based on what we know about the
5856 // symbol. IS_FINAL is true if the final address of this symbol is
5857 // known at link time.
5859 template<int size
, bool big_endian
>
5860 tls::Tls_optimization
5861 Target_aarch64
<size
, big_endian
>::optimize_tls_reloc(bool is_final
,
5864 // If we are generating a shared library, then we can't do anything
5866 if (parameters
->options().shared())
5867 return tls::TLSOPT_NONE
;
5871 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
5872 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
:
5873 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19
:
5874 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21
:
5875 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
5876 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
5877 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
5878 case elfcpp::R_AARCH64_TLSDESC_OFF_G1
:
5879 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC
:
5880 case elfcpp::R_AARCH64_TLSDESC_LDR
:
5881 case elfcpp::R_AARCH64_TLSDESC_ADD
:
5882 case elfcpp::R_AARCH64_TLSDESC_CALL
:
5883 // These are General-Dynamic which permits fully general TLS
5884 // access. Since we know that we are generating an executable,
5885 // we can convert this to Initial-Exec. If we also know that
5886 // this is a local symbol, we can further switch to Local-Exec.
5888 return tls::TLSOPT_TO_LE
;
5889 return tls::TLSOPT_TO_IE
;
5891 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
5892 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
:
5893 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
5894 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
5895 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
5896 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
:
5897 // These are Local-Dynamic, which refer to local symbols in the
5898 // dynamic TLS block. Since we know that we generating an
5899 // executable, we can switch to Local-Exec.
5900 return tls::TLSOPT_TO_LE
;
5902 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1
:
5903 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
:
5904 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
5905 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
5906 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
5907 // These are Initial-Exec relocs which get the thread offset
5908 // from the GOT. If we know that we are linking against the
5909 // local symbol, we can switch to Local-Exec, which links the
5910 // thread offset into the instruction.
5912 return tls::TLSOPT_TO_LE
;
5913 return tls::TLSOPT_NONE
;
5915 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
5916 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
5917 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
5918 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
5919 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
5920 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
:
5921 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
:
5922 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
5923 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12
:
5924 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
5925 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12
:
5926 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
5927 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12
:
5928 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
5929 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12
:
5930 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
:
5931 // When we already have Local-Exec, there is nothing further we
5933 return tls::TLSOPT_NONE
;
5940 // Returns true if this relocation type could be that of a function pointer.
5942 template<int size
, bool big_endian
>
5944 Target_aarch64
<size
, big_endian
>::Scan::possible_function_pointer_reloc(
5945 unsigned int r_type
)
5949 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21
:
5950 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC
:
5951 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC
:
5952 case elfcpp::R_AARCH64_ADR_GOT_PAGE
:
5953 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC
:
5961 // For safe ICF, scan a relocation for a local symbol to check if it
5962 // corresponds to a function pointer being taken. In that case mark
5963 // the function whose pointer was taken as not foldable.
5965 template<int size
, bool big_endian
>
5967 Target_aarch64
<size
, big_endian
>::Scan::local_reloc_may_be_function_pointer(
5970 Target_aarch64
<size
, big_endian
>* ,
5971 Sized_relobj_file
<size
, big_endian
>* ,
5974 const elfcpp::Rela
<size
, big_endian
>& ,
5975 unsigned int r_type
,
5976 const elfcpp::Sym
<size
, big_endian
>&)
5978 // When building a shared library, do not fold any local symbols.
5979 return (parameters
->options().shared()
5980 || possible_function_pointer_reloc(r_type
));
5983 // For safe ICF, scan a relocation for a global symbol to check if it
5984 // corresponds to a function pointer being taken. In that case mark
5985 // the function whose pointer was taken as not foldable.
5987 template<int size
, bool big_endian
>
5989 Target_aarch64
<size
, big_endian
>::Scan::global_reloc_may_be_function_pointer(
5992 Target_aarch64
<size
, big_endian
>* ,
5993 Sized_relobj_file
<size
, big_endian
>* ,
5996 const elfcpp::Rela
<size
, big_endian
>& ,
5997 unsigned int r_type
,
6000 // When building a shared library, do not fold symbols whose visibility
6001 // is hidden, internal or protected.
6002 return ((parameters
->options().shared()
6003 && (gsym
->visibility() == elfcpp::STV_INTERNAL
6004 || gsym
->visibility() == elfcpp::STV_PROTECTED
6005 || gsym
->visibility() == elfcpp::STV_HIDDEN
))
6006 || possible_function_pointer_reloc(r_type
));
6009 // Report an unsupported relocation against a local symbol.
6011 template<int size
, bool big_endian
>
6013 Target_aarch64
<size
, big_endian
>::Scan::unsupported_reloc_local(
6014 Sized_relobj_file
<size
, big_endian
>* object
,
6015 unsigned int r_type
)
6017 gold_error(_("%s: unsupported reloc %u against local symbol"),
6018 object
->name().c_str(), r_type
);
6021 // We are about to emit a dynamic relocation of type R_TYPE. If the
6022 // dynamic linker does not support it, issue an error.
6024 template<int size
, bool big_endian
>
6026 Target_aarch64
<size
, big_endian
>::Scan::check_non_pic(Relobj
* object
,
6027 unsigned int r_type
)
6029 gold_assert(r_type
!= elfcpp::R_AARCH64_NONE
);
6033 // These are the relocation types supported by glibc for AARCH64.
6034 case elfcpp::R_AARCH64_NONE
:
6035 case elfcpp::R_AARCH64_COPY
:
6036 case elfcpp::R_AARCH64_GLOB_DAT
:
6037 case elfcpp::R_AARCH64_JUMP_SLOT
:
6038 case elfcpp::R_AARCH64_RELATIVE
:
6039 case elfcpp::R_AARCH64_TLS_DTPREL64
:
6040 case elfcpp::R_AARCH64_TLS_DTPMOD64
:
6041 case elfcpp::R_AARCH64_TLS_TPREL64
:
6042 case elfcpp::R_AARCH64_TLSDESC
:
6043 case elfcpp::R_AARCH64_IRELATIVE
:
6044 case elfcpp::R_AARCH64_ABS32
:
6045 case elfcpp::R_AARCH64_ABS64
:
6052 // This prevents us from issuing more than one error per reloc
6053 // section. But we can still wind up issuing more than one
6054 // error per object file.
6055 if (this->issued_non_pic_error_
)
6057 gold_assert(parameters
->options().output_is_position_independent());
6058 object
->error(_("requires unsupported dynamic reloc; "
6059 "recompile with -fPIC"));
6060 this->issued_non_pic_error_
= true;
6064 // Return whether we need to make a PLT entry for a relocation of the
6065 // given type against a STT_GNU_IFUNC symbol.
6067 template<int size
, bool big_endian
>
6069 Target_aarch64
<size
, big_endian
>::Scan::reloc_needs_plt_for_ifunc(
6070 Sized_relobj_file
<size
, big_endian
>* object
,
6071 unsigned int r_type
)
6073 const AArch64_reloc_property
* arp
=
6074 aarch64_reloc_property_table
->get_reloc_property(r_type
);
6075 gold_assert(arp
!= NULL
);
6077 int flags
= arp
->reference_flags();
6078 if (flags
& Symbol::TLS_REF
)
6080 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
6081 object
->name().c_str(), arp
->name().c_str());
6087 // Scan a relocation for a local symbol.
6089 template<int size
, bool big_endian
>
6091 Target_aarch64
<size
, big_endian
>::Scan::local(
6092 Symbol_table
* symtab
,
6094 Target_aarch64
<size
, big_endian
>* target
,
6095 Sized_relobj_file
<size
, big_endian
>* object
,
6096 unsigned int data_shndx
,
6097 Output_section
* output_section
,
6098 const elfcpp::Rela
<size
, big_endian
>& rela
,
6099 unsigned int r_type
,
6100 const elfcpp::Sym
<size
, big_endian
>& lsym
,
6106 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
>
6108 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
6110 // A local STT_GNU_IFUNC symbol may require a PLT entry.
6111 bool is_ifunc
= lsym
.get_st_type() == elfcpp::STT_GNU_IFUNC
;
6112 if (is_ifunc
&& this->reloc_needs_plt_for_ifunc(object
, r_type
))
6113 target
->make_local_ifunc_plt_entry(symtab
, layout
, object
, r_sym
);
6117 case elfcpp::R_AARCH64_NONE
:
6120 case elfcpp::R_AARCH64_ABS32
:
6121 case elfcpp::R_AARCH64_ABS16
:
6122 if (parameters
->options().output_is_position_independent())
6124 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6125 object
->name().c_str(), r_type
);
6129 case elfcpp::R_AARCH64_ABS64
:
6130 // If building a shared library or pie, we need to mark this as a dynmic
6131 // reloction, so that the dynamic loader can relocate it.
6132 if (parameters
->options().output_is_position_independent())
6134 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
6135 rela_dyn
->add_local_relative(object
, r_sym
,
6136 elfcpp::R_AARCH64_RELATIVE
,
6139 rela
.get_r_offset(),
6140 rela
.get_r_addend(),
6145 case elfcpp::R_AARCH64_PREL64
:
6146 case elfcpp::R_AARCH64_PREL32
:
6147 case elfcpp::R_AARCH64_PREL16
:
6150 case elfcpp::R_AARCH64_ADR_GOT_PAGE
:
6151 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC
:
6152 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15
:
6153 // The above relocations are used to access GOT entries.
6155 Output_data_got_aarch64
<size
, big_endian
>* got
=
6156 target
->got_section(symtab
, layout
);
6157 bool is_new
= false;
6158 // This symbol requires a GOT entry.
6160 is_new
= got
->add_local_plt(object
, r_sym
, GOT_TYPE_STANDARD
);
6162 is_new
= got
->add_local(object
, r_sym
, GOT_TYPE_STANDARD
);
6163 if (is_new
&& parameters
->options().output_is_position_independent())
6164 target
->rela_dyn_section(layout
)->
6165 add_local_relative(object
,
6167 elfcpp::R_AARCH64_RELATIVE
,
6169 object
->local_got_offset(r_sym
,
6176 case elfcpp::R_AARCH64_MOVW_UABS_G0
: // 263
6177 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC
: // 264
6178 case elfcpp::R_AARCH64_MOVW_UABS_G1
: // 265
6179 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC
: // 266
6180 case elfcpp::R_AARCH64_MOVW_UABS_G2
: // 267
6181 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC
: // 268
6182 case elfcpp::R_AARCH64_MOVW_UABS_G3
: // 269
6183 case elfcpp::R_AARCH64_MOVW_SABS_G0
: // 270
6184 case elfcpp::R_AARCH64_MOVW_SABS_G1
: // 271
6185 case elfcpp::R_AARCH64_MOVW_SABS_G2
: // 272
6186 if (parameters
->options().output_is_position_independent())
6188 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6189 object
->name().c_str(), r_type
);
6193 case elfcpp::R_AARCH64_LD_PREL_LO19
: // 273
6194 case elfcpp::R_AARCH64_ADR_PREL_LO21
: // 274
6195 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21
: // 275
6196 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC
: // 276
6197 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC
: // 277
6198 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC
: // 278
6199 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC
: // 284
6200 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC
: // 285
6201 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC
: // 286
6202 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC
: // 299
6205 // Control flow, pc-relative. We don't need to do anything for a relative
6206 // addressing relocation against a local symbol if it does not reference
6208 case elfcpp::R_AARCH64_TSTBR14
:
6209 case elfcpp::R_AARCH64_CONDBR19
:
6210 case elfcpp::R_AARCH64_JUMP26
:
6211 case elfcpp::R_AARCH64_CALL26
:
6214 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
6215 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
6217 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6218 optimize_tls_reloc(!parameters
->options().shared(), r_type
);
6219 if (tlsopt
== tls::TLSOPT_TO_LE
)
6222 layout
->set_has_static_tls();
6223 // Create a GOT entry for the tp-relative offset.
6224 if (!parameters
->doing_static_link())
6226 Output_data_got_aarch64
<size
, big_endian
>* got
=
6227 target
->got_section(symtab
, layout
);
6228 got
->add_local_with_rel(object
, r_sym
, GOT_TYPE_TLS_OFFSET
,
6229 target
->rela_dyn_section(layout
),
6230 elfcpp::R_AARCH64_TLS_TPREL64
);
6232 else if (!object
->local_has_got_offset(r_sym
,
6233 GOT_TYPE_TLS_OFFSET
))
6235 Output_data_got_aarch64
<size
, big_endian
>* got
=
6236 target
->got_section(symtab
, layout
);
6237 got
->add_local(object
, r_sym
, GOT_TYPE_TLS_OFFSET
);
6238 unsigned int got_offset
=
6239 object
->local_got_offset(r_sym
, GOT_TYPE_TLS_OFFSET
);
6240 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
6241 gold_assert(addend
== 0);
6242 got
->add_static_reloc(got_offset
, elfcpp::R_AARCH64_TLS_TPREL64
,
6248 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
6249 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
:
6251 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6252 optimize_tls_reloc(!parameters
->options().shared(), r_type
);
6253 if (tlsopt
== tls::TLSOPT_TO_LE
)
6255 layout
->set_has_static_tls();
6258 gold_assert(tlsopt
== tls::TLSOPT_NONE
);
6260 Output_data_got_aarch64
<size
, big_endian
>* got
=
6261 target
->got_section(symtab
, layout
);
6262 got
->add_local_pair_with_rel(object
,r_sym
, data_shndx
,
6264 target
->rela_dyn_section(layout
),
6265 elfcpp::R_AARCH64_TLS_DTPMOD64
);
6269 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
6270 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
6271 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
6272 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
6273 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
6274 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
:
6275 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
:
6276 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
6277 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12
:
6278 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
6279 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12
:
6280 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
6281 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12
:
6282 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
6283 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12
:
6284 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
:
6286 layout
->set_has_static_tls();
6287 bool output_is_shared
= parameters
->options().shared();
6288 if (output_is_shared
)
6289 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6290 object
->name().c_str(), r_type
);
6294 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
6295 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
:
6297 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6298 optimize_tls_reloc(!parameters
->options().shared(), r_type
);
6299 if (tlsopt
== tls::TLSOPT_NONE
)
6301 // Create a GOT entry for the module index.
6302 target
->got_mod_index_entry(symtab
, layout
, object
);
6304 else if (tlsopt
!= tls::TLSOPT_TO_LE
)
6305 unsupported_reloc_local(object
, r_type
);
6309 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
6310 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
6311 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
6312 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
:
6315 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
6316 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
6317 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
6319 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6320 optimize_tls_reloc(!parameters
->options().shared(), r_type
);
6321 target
->define_tls_base_symbol(symtab
, layout
);
6322 if (tlsopt
== tls::TLSOPT_NONE
)
6324 // Create reserved PLT and GOT entries for the resolver.
6325 target
->reserve_tlsdesc_entries(symtab
, layout
);
6327 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6328 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6329 // entry needs to be in an area in .got.plt, not .got. Call
6330 // got_section to make sure the section has been created.
6331 target
->got_section(symtab
, layout
);
6332 Output_data_got
<size
, big_endian
>* got
=
6333 target
->got_tlsdesc_section();
6334 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
6335 if (!object
->local_has_got_offset(r_sym
, GOT_TYPE_TLS_DESC
))
6337 unsigned int got_offset
= got
->add_constant(0);
6338 got
->add_constant(0);
6339 object
->set_local_got_offset(r_sym
, GOT_TYPE_TLS_DESC
,
6341 Reloc_section
* rt
= target
->rela_tlsdesc_section(layout
);
6342 // We store the arguments we need in a vector, and use
6343 // the index into the vector as the parameter to pass
6344 // to the target specific routines.
6345 uintptr_t intarg
= target
->add_tlsdesc_info(object
, r_sym
);
6346 void* arg
= reinterpret_cast<void*>(intarg
);
6347 rt
->add_target_specific(elfcpp::R_AARCH64_TLSDESC
, arg
,
6348 got
, got_offset
, 0);
6351 else if (tlsopt
!= tls::TLSOPT_TO_LE
)
6352 unsupported_reloc_local(object
, r_type
);
6356 case elfcpp::R_AARCH64_TLSDESC_CALL
:
6360 unsupported_reloc_local(object
, r_type
);
6365 // Report an unsupported relocation against a global symbol.
6367 template<int size
, bool big_endian
>
6369 Target_aarch64
<size
, big_endian
>::Scan::unsupported_reloc_global(
6370 Sized_relobj_file
<size
, big_endian
>* object
,
6371 unsigned int r_type
,
6374 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6375 object
->name().c_str(), r_type
, gsym
->demangled_name().c_str());
6378 template<int size
, bool big_endian
>
6380 Target_aarch64
<size
, big_endian
>::Scan::global(
6381 Symbol_table
* symtab
,
6383 Target_aarch64
<size
, big_endian
>* target
,
6384 Sized_relobj_file
<size
, big_endian
> * object
,
6385 unsigned int data_shndx
,
6386 Output_section
* output_section
,
6387 const elfcpp::Rela
<size
, big_endian
>& rela
,
6388 unsigned int r_type
,
6391 // A STT_GNU_IFUNC symbol may require a PLT entry.
6392 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
6393 && this->reloc_needs_plt_for_ifunc(object
, r_type
))
6394 target
->make_plt_entry(symtab
, layout
, gsym
);
6396 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
>
6398 const AArch64_reloc_property
* arp
=
6399 aarch64_reloc_property_table
->get_reloc_property(r_type
);
6400 gold_assert(arp
!= NULL
);
6404 case elfcpp::R_AARCH64_NONE
:
6407 case elfcpp::R_AARCH64_ABS16
:
6408 case elfcpp::R_AARCH64_ABS32
:
6409 case elfcpp::R_AARCH64_ABS64
:
6411 // Make a PLT entry if necessary.
6412 if (gsym
->needs_plt_entry())
6414 target
->make_plt_entry(symtab
, layout
, gsym
);
6415 // Since this is not a PC-relative relocation, we may be
6416 // taking the address of a function. In that case we need to
6417 // set the entry in the dynamic symbol table to the address of
6419 if (gsym
->is_from_dynobj() && !parameters
->options().shared())
6420 gsym
->set_needs_dynsym_value();
6422 // Make a dynamic relocation if necessary.
6423 if (gsym
->needs_dynamic_reloc(arp
->reference_flags()))
6425 if (!parameters
->options().output_is_position_independent()
6426 && gsym
->may_need_copy_reloc())
6428 target
->copy_reloc(symtab
, layout
, object
,
6429 data_shndx
, output_section
, gsym
, rela
);
6431 else if (r_type
== elfcpp::R_AARCH64_ABS64
6432 && gsym
->type() == elfcpp::STT_GNU_IFUNC
6433 && gsym
->can_use_relative_reloc(false)
6434 && !gsym
->is_from_dynobj()
6435 && !gsym
->is_undefined()
6436 && !gsym
->is_preemptible())
6438 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6439 // symbol. This makes a function address in a PIE executable
6440 // match the address in a shared library that it links against.
6441 Reloc_section
* rela_dyn
=
6442 target
->rela_irelative_section(layout
);
6443 unsigned int r_type
= elfcpp::R_AARCH64_IRELATIVE
;
6444 rela_dyn
->add_symbolless_global_addend(gsym
, r_type
,
6445 output_section
, object
,
6447 rela
.get_r_offset(),
6448 rela
.get_r_addend());
6450 else if (r_type
== elfcpp::R_AARCH64_ABS64
6451 && gsym
->can_use_relative_reloc(false))
6453 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
6454 rela_dyn
->add_global_relative(gsym
,
6455 elfcpp::R_AARCH64_RELATIVE
,
6459 rela
.get_r_offset(),
6460 rela
.get_r_addend(),
6465 check_non_pic(object
, r_type
);
6466 Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
>*
6467 rela_dyn
= target
->rela_dyn_section(layout
);
6468 rela_dyn
->add_global(
6469 gsym
, r_type
, output_section
, object
,
6470 data_shndx
, rela
.get_r_offset(),rela
.get_r_addend());
6476 case elfcpp::R_AARCH64_PREL16
:
6477 case elfcpp::R_AARCH64_PREL32
:
6478 case elfcpp::R_AARCH64_PREL64
:
6479 // This is used to fill the GOT absolute address.
6480 if (gsym
->needs_plt_entry())
6482 target
->make_plt_entry(symtab
, layout
, gsym
);
6486 case elfcpp::R_AARCH64_MOVW_UABS_G0
: // 263
6487 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC
: // 264
6488 case elfcpp::R_AARCH64_MOVW_UABS_G1
: // 265
6489 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC
: // 266
6490 case elfcpp::R_AARCH64_MOVW_UABS_G2
: // 267
6491 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC
: // 268
6492 case elfcpp::R_AARCH64_MOVW_UABS_G3
: // 269
6493 case elfcpp::R_AARCH64_MOVW_SABS_G0
: // 270
6494 case elfcpp::R_AARCH64_MOVW_SABS_G1
: // 271
6495 case elfcpp::R_AARCH64_MOVW_SABS_G2
: // 272
6496 if (parameters
->options().output_is_position_independent())
6498 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6499 object
->name().c_str(), r_type
);
6501 // Make a PLT entry if necessary.
6502 if (gsym
->needs_plt_entry())
6504 target
->make_plt_entry(symtab
, layout
, gsym
);
6505 // Since this is not a PC-relative relocation, we may be
6506 // taking the address of a function. In that case we need to
6507 // set the entry in the dynamic symbol table to the address of
6509 if (gsym
->is_from_dynobj() && !parameters
->options().shared())
6510 gsym
->set_needs_dynsym_value();
6514 case elfcpp::R_AARCH64_LD_PREL_LO19
: // 273
6515 case elfcpp::R_AARCH64_ADR_PREL_LO21
: // 274
6516 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21
: // 275
6517 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC
: // 276
6518 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC
: // 277
6519 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC
: // 278
6520 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC
: // 284
6521 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC
: // 285
6522 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC
: // 286
6523 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC
: // 299
6525 if (gsym
->needs_plt_entry())
6526 target
->make_plt_entry(symtab
, layout
, gsym
);
6527 // Make a dynamic relocation if necessary.
6528 if (gsym
->needs_dynamic_reloc(arp
->reference_flags()))
6530 if (parameters
->options().output_is_executable()
6531 && gsym
->may_need_copy_reloc())
6533 target
->copy_reloc(symtab
, layout
, object
,
6534 data_shndx
, output_section
, gsym
, rela
);
6540 case elfcpp::R_AARCH64_ADR_GOT_PAGE
:
6541 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC
:
6542 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15
:
6544 // The above relocations are used to access GOT entries.
6545 // Note a GOT entry is an *address* to a symbol.
6546 // The symbol requires a GOT entry
6547 Output_data_got_aarch64
<size
, big_endian
>* got
=
6548 target
->got_section(symtab
, layout
);
6549 if (gsym
->final_value_is_known())
6551 // For a STT_GNU_IFUNC symbol we want the PLT address.
6552 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
)
6553 got
->add_global_plt(gsym
, GOT_TYPE_STANDARD
);
6555 got
->add_global(gsym
, GOT_TYPE_STANDARD
);
6559 // If this symbol is not fully resolved, we need to add a dynamic
6560 // relocation for it.
6561 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
6563 // Use a GLOB_DAT rather than a RELATIVE reloc if:
6565 // 1) The symbol may be defined in some other module.
6566 // 2) We are building a shared library and this is a protected
6567 // symbol; using GLOB_DAT means that the dynamic linker can use
6568 // the address of the PLT in the main executable when appropriate
6569 // so that function address comparisons work.
6570 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6571 // again so that function address comparisons work.
6572 if (gsym
->is_from_dynobj()
6573 || gsym
->is_undefined()
6574 || gsym
->is_preemptible()
6575 || (gsym
->visibility() == elfcpp::STV_PROTECTED
6576 && parameters
->options().shared())
6577 || (gsym
->type() == elfcpp::STT_GNU_IFUNC
6578 && parameters
->options().output_is_position_independent()))
6579 got
->add_global_with_rel(gsym
, GOT_TYPE_STANDARD
,
6580 rela_dyn
, elfcpp::R_AARCH64_GLOB_DAT
);
6583 // For a STT_GNU_IFUNC symbol we want to write the PLT
6584 // offset into the GOT, so that function pointer
6585 // comparisons work correctly.
6587 if (gsym
->type() != elfcpp::STT_GNU_IFUNC
)
6588 is_new
= got
->add_global(gsym
, GOT_TYPE_STANDARD
);
6591 is_new
= got
->add_global_plt(gsym
, GOT_TYPE_STANDARD
);
6592 // Tell the dynamic linker to use the PLT address
6593 // when resolving relocations.
6594 if (gsym
->is_from_dynobj()
6595 && !parameters
->options().shared())
6596 gsym
->set_needs_dynsym_value();
6600 rela_dyn
->add_global_relative(
6601 gsym
, elfcpp::R_AARCH64_RELATIVE
,
6603 gsym
->got_offset(GOT_TYPE_STANDARD
),
6612 case elfcpp::R_AARCH64_TSTBR14
:
6613 case elfcpp::R_AARCH64_CONDBR19
:
6614 case elfcpp::R_AARCH64_JUMP26
:
6615 case elfcpp::R_AARCH64_CALL26
:
6617 if (gsym
->final_value_is_known())
6620 if (gsym
->is_defined() &&
6621 !gsym
->is_from_dynobj() &&
6622 !gsym
->is_preemptible())
6625 // Make plt entry for function call.
6626 target
->make_plt_entry(symtab
, layout
, gsym
);
6630 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
6631 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
: // General dynamic
6633 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6634 optimize_tls_reloc(gsym
->final_value_is_known(), r_type
);
6635 if (tlsopt
== tls::TLSOPT_TO_LE
)
6637 layout
->set_has_static_tls();
6640 gold_assert(tlsopt
== tls::TLSOPT_NONE
);
6643 Output_data_got_aarch64
<size
, big_endian
>* got
=
6644 target
->got_section(symtab
, layout
);
6645 // Create 2 consecutive entries for module index and offset.
6646 got
->add_global_pair_with_rel(gsym
, GOT_TYPE_TLS_PAIR
,
6647 target
->rela_dyn_section(layout
),
6648 elfcpp::R_AARCH64_TLS_DTPMOD64
,
6649 elfcpp::R_AARCH64_TLS_DTPREL64
);
6653 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
6654 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
: // Local dynamic
6656 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6657 optimize_tls_reloc(!parameters
->options().shared(), r_type
);
6658 if (tlsopt
== tls::TLSOPT_NONE
)
6660 // Create a GOT entry for the module index.
6661 target
->got_mod_index_entry(symtab
, layout
, object
);
6663 else if (tlsopt
!= tls::TLSOPT_TO_LE
)
6664 unsupported_reloc_local(object
, r_type
);
6668 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
6669 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
6670 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
6671 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
: // Other local dynamic
6674 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
6675 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
: // Initial executable
6677 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6678 optimize_tls_reloc(gsym
->final_value_is_known(), r_type
);
6679 if (tlsopt
== tls::TLSOPT_TO_LE
)
6682 layout
->set_has_static_tls();
6683 // Create a GOT entry for the tp-relative offset.
6684 Output_data_got_aarch64
<size
, big_endian
>* got
6685 = target
->got_section(symtab
, layout
);
6686 if (!parameters
->doing_static_link())
6688 got
->add_global_with_rel(
6689 gsym
, GOT_TYPE_TLS_OFFSET
,
6690 target
->rela_dyn_section(layout
),
6691 elfcpp::R_AARCH64_TLS_TPREL64
);
6693 if (!gsym
->has_got_offset(GOT_TYPE_TLS_OFFSET
))
6695 got
->add_global(gsym
, GOT_TYPE_TLS_OFFSET
);
6696 unsigned int got_offset
=
6697 gsym
->got_offset(GOT_TYPE_TLS_OFFSET
);
6698 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
6699 gold_assert(addend
== 0);
6700 got
->add_static_reloc(got_offset
,
6701 elfcpp::R_AARCH64_TLS_TPREL64
, gsym
);
6706 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
6707 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
6708 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
6709 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
6710 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
6711 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
:
6712 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
:
6713 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
6714 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12
:
6715 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
6716 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12
:
6717 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
6718 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12
:
6719 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
6720 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12
:
6721 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
: // Local executable
6722 layout
->set_has_static_tls();
6723 if (parameters
->options().shared())
6724 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6725 object
->name().c_str(), r_type
);
6728 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
6729 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
6730 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
: // TLS descriptor
6732 target
->define_tls_base_symbol(symtab
, layout
);
6733 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6734 optimize_tls_reloc(gsym
->final_value_is_known(), r_type
);
6735 if (tlsopt
== tls::TLSOPT_NONE
)
6737 // Create reserved PLT and GOT entries for the resolver.
6738 target
->reserve_tlsdesc_entries(symtab
, layout
);
6740 // Create a double GOT entry with an R_AARCH64_TLSDESC
6741 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6742 // entry needs to be in an area in .got.plt, not .got. Call
6743 // got_section to make sure the section has been created.
6744 target
->got_section(symtab
, layout
);
6745 Output_data_got
<size
, big_endian
>* got
=
6746 target
->got_tlsdesc_section();
6747 Reloc_section
* rt
= target
->rela_tlsdesc_section(layout
);
6748 got
->add_global_pair_with_rel(gsym
, GOT_TYPE_TLS_DESC
, rt
,
6749 elfcpp::R_AARCH64_TLSDESC
, 0);
6751 else if (tlsopt
== tls::TLSOPT_TO_IE
)
6753 // Create a GOT entry for the tp-relative offset.
6754 Output_data_got
<size
, big_endian
>* got
6755 = target
->got_section(symtab
, layout
);
6756 got
->add_global_with_rel(gsym
, GOT_TYPE_TLS_OFFSET
,
6757 target
->rela_dyn_section(layout
),
6758 elfcpp::R_AARCH64_TLS_TPREL64
);
6760 else if (tlsopt
!= tls::TLSOPT_TO_LE
)
6761 unsupported_reloc_global(object
, r_type
, gsym
);
6765 case elfcpp::R_AARCH64_TLSDESC_CALL
:
6769 gold_error(_("%s: unsupported reloc type in global scan"),
6770 aarch64_reloc_property_table
->
6771 reloc_name_in_error_message(r_type
).c_str());
6774 } // End of Scan::global
6777 // Create the PLT section.
6778 template<int size
, bool big_endian
>
6780 Target_aarch64
<size
, big_endian
>::make_plt_section(
6781 Symbol_table
* symtab
, Layout
* layout
)
6783 if (this->plt_
== NULL
)
6785 // Create the GOT section first.
6786 this->got_section(symtab
, layout
);
6788 this->plt_
= this->make_data_plt(layout
, this->got_
, this->got_plt_
,
6789 this->got_irelative_
);
6791 layout
->add_output_section_data(".plt", elfcpp::SHT_PROGBITS
,
6793 | elfcpp::SHF_EXECINSTR
),
6794 this->plt_
, ORDER_PLT
, false);
6796 // Make the sh_info field of .rela.plt point to .plt.
6797 Output_section
* rela_plt_os
= this->plt_
->rela_plt()->output_section();
6798 rela_plt_os
->set_info_section(this->plt_
->output_section());
6802 // Return the section for TLSDESC relocations.
6804 template<int size
, bool big_endian
>
6805 typename Target_aarch64
<size
, big_endian
>::Reloc_section
*
6806 Target_aarch64
<size
, big_endian
>::rela_tlsdesc_section(Layout
* layout
) const
6808 return this->plt_section()->rela_tlsdesc(layout
);
6811 // Create a PLT entry for a global symbol.
6813 template<int size
, bool big_endian
>
6815 Target_aarch64
<size
, big_endian
>::make_plt_entry(
6816 Symbol_table
* symtab
,
6820 if (gsym
->has_plt_offset())
6823 if (this->plt_
== NULL
)
6824 this->make_plt_section(symtab
, layout
);
6826 this->plt_
->add_entry(symtab
, layout
, gsym
);
6829 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6831 template<int size
, bool big_endian
>
6833 Target_aarch64
<size
, big_endian
>::make_local_ifunc_plt_entry(
6834 Symbol_table
* symtab
, Layout
* layout
,
6835 Sized_relobj_file
<size
, big_endian
>* relobj
,
6836 unsigned int local_sym_index
)
6838 if (relobj
->local_has_plt_offset(local_sym_index
))
6840 if (this->plt_
== NULL
)
6841 this->make_plt_section(symtab
, layout
);
6842 unsigned int plt_offset
= this->plt_
->add_local_ifunc_entry(symtab
, layout
,
6845 relobj
->set_local_plt_offset(local_sym_index
, plt_offset
);
6848 template<int size
, bool big_endian
>
6850 Target_aarch64
<size
, big_endian
>::gc_process_relocs(
6851 Symbol_table
* symtab
,
6853 Sized_relobj_file
<size
, big_endian
>* object
,
6854 unsigned int data_shndx
,
6855 unsigned int sh_type
,
6856 const unsigned char* prelocs
,
6858 Output_section
* output_section
,
6859 bool needs_special_offset_handling
,
6860 size_t local_symbol_count
,
6861 const unsigned char* plocal_symbols
)
6863 typedef Target_aarch64
<size
, big_endian
> Aarch64
;
6864 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
6867 if (sh_type
== elfcpp::SHT_REL
)
6872 gold::gc_process_relocs
<size
, big_endian
, Aarch64
, Scan
, Classify_reloc
>(
6881 needs_special_offset_handling
,
6886 // Scan relocations for a section.
6888 template<int size
, bool big_endian
>
6890 Target_aarch64
<size
, big_endian
>::scan_relocs(
6891 Symbol_table
* symtab
,
6893 Sized_relobj_file
<size
, big_endian
>* object
,
6894 unsigned int data_shndx
,
6895 unsigned int sh_type
,
6896 const unsigned char* prelocs
,
6898 Output_section
* output_section
,
6899 bool needs_special_offset_handling
,
6900 size_t local_symbol_count
,
6901 const unsigned char* plocal_symbols
)
6903 typedef Target_aarch64
<size
, big_endian
> Aarch64
;
6904 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
6907 if (sh_type
== elfcpp::SHT_REL
)
6909 gold_error(_("%s: unsupported REL reloc section"),
6910 object
->name().c_str());
6914 gold::scan_relocs
<size
, big_endian
, Aarch64
, Scan
, Classify_reloc
>(
6923 needs_special_offset_handling
,
6928 // Return the value to use for a dynamic which requires special
6929 // treatment. This is how we support equality comparisons of function
6930 // pointers across shared library boundaries, as described in the
6931 // processor specific ABI supplement.
6933 template<int size
, bool big_endian
>
6935 Target_aarch64
<size
, big_endian
>::do_dynsym_value(const Symbol
* gsym
) const
6937 gold_assert(gsym
->is_from_dynobj() && gsym
->has_plt_offset());
6938 return this->plt_address_for_global(gsym
);
6942 // Finalize the sections.
6944 template<int size
, bool big_endian
>
6946 Target_aarch64
<size
, big_endian
>::do_finalize_sections(
6948 const Input_objects
*,
6949 Symbol_table
* symtab
)
6951 const Reloc_section
* rel_plt
= (this->plt_
== NULL
6953 : this->plt_
->rela_plt());
6954 layout
->add_target_dynamic_tags(false, this->got_plt_
, rel_plt
,
6955 this->rela_dyn_
, true, false, false);
6957 // Emit any relocs we saved in an attempt to avoid generating COPY
6959 if (this->copy_relocs_
.any_saved_relocs())
6960 this->copy_relocs_
.emit(this->rela_dyn_section(layout
));
6962 // Fill in some more dynamic tags.
6963 Output_data_dynamic
* const odyn
= layout
->dynamic_data();
6966 if (this->plt_
!= NULL
6967 && this->plt_
->output_section() != NULL
6968 && this->plt_
->has_tlsdesc_entry())
6970 unsigned int plt_offset
= this->plt_
->get_tlsdesc_plt_offset();
6971 unsigned int got_offset
= this->plt_
->get_tlsdesc_got_offset();
6972 this->got_
->finalize_data_size();
6973 odyn
->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT
,
6974 this->plt_
, plt_offset
);
6975 odyn
->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT
,
6976 this->got_
, got_offset
);
6980 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6981 // the .got section.
6982 Symbol
* sym
= this->global_offset_table_
;
6985 uint64_t data_size
= this->got_
->current_data_size();
6986 symtab
->get_sized_symbol
<size
>(sym
)->set_symsize(data_size
);
6988 // If the .got section is more than 0x8000 bytes, we add
6989 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6990 // bit relocations have a greater chance of working.
6991 if (data_size
>= 0x8000)
6992 symtab
->get_sized_symbol
<size
>(sym
)->set_value(
6993 symtab
->get_sized_symbol
<size
>(sym
)->value() + 0x8000);
6996 if (parameters
->doing_static_link()
6997 && (this->plt_
== NULL
|| !this->plt_
->has_irelative_section()))
6999 // If linking statically, make sure that the __rela_iplt symbols
7000 // were defined if necessary, even if we didn't create a PLT.
7001 static const Define_symbol_in_segment syms
[] =
7004 "__rela_iplt_start", // name
7005 elfcpp::PT_LOAD
, // segment_type
7006 elfcpp::PF_W
, // segment_flags_set
7007 elfcpp::PF(0), // segment_flags_clear
7010 elfcpp::STT_NOTYPE
, // type
7011 elfcpp::STB_GLOBAL
, // binding
7012 elfcpp::STV_HIDDEN
, // visibility
7014 Symbol::SEGMENT_START
, // offset_from_base
7018 "__rela_iplt_end", // name
7019 elfcpp::PT_LOAD
, // segment_type
7020 elfcpp::PF_W
, // segment_flags_set
7021 elfcpp::PF(0), // segment_flags_clear
7024 elfcpp::STT_NOTYPE
, // type
7025 elfcpp::STB_GLOBAL
, // binding
7026 elfcpp::STV_HIDDEN
, // visibility
7028 Symbol::SEGMENT_START
, // offset_from_base
7033 symtab
->define_symbols(layout
, 2, syms
,
7034 layout
->script_options()->saw_sections_clause());
7040 // Perform a relocation.
7042 template<int size
, bool big_endian
>
7044 Target_aarch64
<size
, big_endian
>::Relocate::relocate(
7045 const Relocate_info
<size
, big_endian
>* relinfo
,
7047 Target_aarch64
<size
, big_endian
>* target
,
7050 const unsigned char* preloc
,
7051 const Sized_symbol
<size
>* gsym
,
7052 const Symbol_value
<size
>* psymval
,
7053 unsigned char* view
,
7054 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
7055 section_size_type
/* view_size */)
7060 typedef AArch64_relocate_functions
<size
, big_endian
> Reloc
;
7062 const elfcpp::Rela
<size
, big_endian
> rela(preloc
);
7063 unsigned int r_type
= elfcpp::elf_r_type
<size
>(rela
.get_r_info());
7064 const AArch64_reloc_property
* reloc_property
=
7065 aarch64_reloc_property_table
->get_reloc_property(r_type
);
7067 if (reloc_property
== NULL
)
7069 std::string reloc_name
=
7070 aarch64_reloc_property_table
->reloc_name_in_error_message(r_type
);
7071 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
7072 _("cannot relocate %s in object file"),
7073 reloc_name
.c_str());
7077 const Sized_relobj_file
<size
, big_endian
>* object
= relinfo
->object
;
7079 // Pick the value to use for symbols defined in the PLT.
7080 Symbol_value
<size
> symval
;
7082 && gsym
->use_plt_offset(reloc_property
->reference_flags()))
7084 symval
.set_output_value(target
->plt_address_for_global(gsym
));
7087 else if (gsym
== NULL
&& psymval
->is_ifunc_symbol())
7089 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
7090 if (object
->local_has_plt_offset(r_sym
))
7092 symval
.set_output_value(target
->plt_address_for_local(object
, r_sym
));
7097 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
7099 // Get the GOT offset if needed.
7100 // For aarch64, the GOT pointer points to the start of the GOT section.
7101 bool have_got_offset
= false;
7103 int got_base
= (target
->got_
!= NULL
7104 ? (target
->got_
->current_data_size() >= 0x8000
7109 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0
:
7110 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC
:
7111 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1
:
7112 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC
:
7113 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2
:
7114 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC
:
7115 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3
:
7116 case elfcpp::R_AARCH64_GOTREL64
:
7117 case elfcpp::R_AARCH64_GOTREL32
:
7118 case elfcpp::R_AARCH64_GOT_LD_PREL19
:
7119 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15
:
7120 case elfcpp::R_AARCH64_ADR_GOT_PAGE
:
7121 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC
:
7122 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15
:
7125 gold_assert(gsym
->has_got_offset(GOT_TYPE_STANDARD
));
7126 got_offset
= gsym
->got_offset(GOT_TYPE_STANDARD
) - got_base
;
7130 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
7131 gold_assert(object
->local_has_got_offset(r_sym
, GOT_TYPE_STANDARD
));
7132 got_offset
= (object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
)
7135 have_got_offset
= true;
7142 typename
Reloc::Status reloc_status
= Reloc::STATUS_OKAY
;
7143 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
7146 case elfcpp::R_AARCH64_NONE
:
7149 case elfcpp::R_AARCH64_ABS64
:
7150 if (!parameters
->options().apply_dynamic_relocs()
7151 && parameters
->options().output_is_position_independent()
7153 && gsym
->needs_dynamic_reloc(reloc_property
->reference_flags())
7154 && !gsym
->can_use_relative_reloc(false))
7155 // We have generated an absolute dynamic relocation, so do not
7156 // apply the relocation statically. (Works around bugs in older
7157 // Android dynamic linkers.)
7159 reloc_status
= Reloc::template rela_ua
<64>(
7160 view
, object
, psymval
, addend
, reloc_property
);
7163 case elfcpp::R_AARCH64_ABS32
:
7164 if (!parameters
->options().apply_dynamic_relocs()
7165 && parameters
->options().output_is_position_independent()
7167 && gsym
->needs_dynamic_reloc(reloc_property
->reference_flags()))
7168 // We have generated an absolute dynamic relocation, so do not
7169 // apply the relocation statically. (Works around bugs in older
7170 // Android dynamic linkers.)
7172 reloc_status
= Reloc::template rela_ua
<32>(
7173 view
, object
, psymval
, addend
, reloc_property
);
7176 case elfcpp::R_AARCH64_ABS16
:
7177 if (!parameters
->options().apply_dynamic_relocs()
7178 && parameters
->options().output_is_position_independent()
7180 && gsym
->needs_dynamic_reloc(reloc_property
->reference_flags()))
7181 // We have generated an absolute dynamic relocation, so do not
7182 // apply the relocation statically. (Works around bugs in older
7183 // Android dynamic linkers.)
7185 reloc_status
= Reloc::template rela_ua
<16>(
7186 view
, object
, psymval
, addend
, reloc_property
);
7189 case elfcpp::R_AARCH64_PREL64
:
7190 reloc_status
= Reloc::template pcrela_ua
<64>(
7191 view
, object
, psymval
, addend
, address
, reloc_property
);
7194 case elfcpp::R_AARCH64_PREL32
:
7195 reloc_status
= Reloc::template pcrela_ua
<32>(
7196 view
, object
, psymval
, addend
, address
, reloc_property
);
7199 case elfcpp::R_AARCH64_PREL16
:
7200 reloc_status
= Reloc::template pcrela_ua
<16>(
7201 view
, object
, psymval
, addend
, address
, reloc_property
);
7204 case elfcpp::R_AARCH64_MOVW_UABS_G0
:
7205 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC
:
7206 case elfcpp::R_AARCH64_MOVW_UABS_G1
:
7207 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC
:
7208 case elfcpp::R_AARCH64_MOVW_UABS_G2
:
7209 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC
:
7210 case elfcpp::R_AARCH64_MOVW_UABS_G3
:
7211 reloc_status
= Reloc::template rela_general
<32>(
7212 view
, object
, psymval
, addend
, reloc_property
);
7214 case elfcpp::R_AARCH64_MOVW_SABS_G0
:
7215 case elfcpp::R_AARCH64_MOVW_SABS_G1
:
7216 case elfcpp::R_AARCH64_MOVW_SABS_G2
:
7217 reloc_status
= Reloc::movnz(view
, psymval
->value(object
, addend
),
7221 case elfcpp::R_AARCH64_LD_PREL_LO19
:
7222 reloc_status
= Reloc::template pcrela_general
<32>(
7223 view
, object
, psymval
, addend
, address
, reloc_property
);
7226 case elfcpp::R_AARCH64_ADR_PREL_LO21
:
7227 reloc_status
= Reloc::adr(view
, object
, psymval
, addend
,
7228 address
, reloc_property
);
7231 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC
:
7232 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21
:
7233 reloc_status
= Reloc::adrp(view
, object
, psymval
, addend
, address
,
7237 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC
:
7238 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC
:
7239 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC
:
7240 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC
:
7241 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC
:
7242 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC
:
7243 reloc_status
= Reloc::template rela_general
<32>(
7244 view
, object
, psymval
, addend
, reloc_property
);
7247 case elfcpp::R_AARCH64_CALL26
:
7248 if (this->skip_call_tls_get_addr_
)
7250 // Double check that the TLSGD insn has been optimized away.
7251 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
7252 Insntype insn
= elfcpp::Swap
<32, big_endian
>::readval(
7253 reinterpret_cast<Insntype
*>(view
));
7254 gold_assert((insn
& 0xff000000) == 0x91000000);
7256 reloc_status
= Reloc::STATUS_OKAY
;
7257 this->skip_call_tls_get_addr_
= false;
7258 // Return false to stop further processing this reloc.
7262 case elfcpp::R_AARCH64_JUMP26
:
7263 if (Reloc::maybe_apply_stub(r_type
, relinfo
, rela
, view
, address
,
7264 gsym
, psymval
, object
,
7265 target
->stub_group_size_
))
7268 case elfcpp::R_AARCH64_TSTBR14
:
7269 case elfcpp::R_AARCH64_CONDBR19
:
7270 reloc_status
= Reloc::template pcrela_general
<32>(
7271 view
, object
, psymval
, addend
, address
, reloc_property
);
7274 case elfcpp::R_AARCH64_ADR_GOT_PAGE
:
7275 gold_assert(have_got_offset
);
7276 value
= target
->got_
->address() + got_base
+ got_offset
;
7277 reloc_status
= Reloc::adrp(view
, value
+ addend
, address
);
7280 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC
:
7281 gold_assert(have_got_offset
);
7282 value
= target
->got_
->address() + got_base
+ got_offset
;
7283 reloc_status
= Reloc::template rela_general
<32>(
7284 view
, value
, addend
, reloc_property
);
7287 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15
:
7289 gold_assert(have_got_offset
);
7290 value
= target
->got_
->address() + got_base
+ got_offset
+ addend
-
7291 Reloc::Page(target
->got_
->address() + got_base
);
7292 if ((value
& 7) != 0)
7293 reloc_status
= Reloc::STATUS_OVERFLOW
;
7295 reloc_status
= Reloc::template reloc_common
<32>(
7296 view
, value
, reloc_property
);
7300 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
7301 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
:
7302 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
7303 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
:
7304 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
7305 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
7306 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
7307 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
:
7308 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
7309 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
7310 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
7311 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
7312 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
7313 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
7314 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
7315 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
:
7316 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
:
7317 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
7318 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12
:
7319 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
7320 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12
:
7321 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
7322 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12
:
7323 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
7324 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12
:
7325 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
:
7326 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
7327 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
7328 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
7329 case elfcpp::R_AARCH64_TLSDESC_CALL
:
7330 reloc_status
= relocate_tls(relinfo
, target
, relnum
, rela
, r_type
,
7331 gsym
, psymval
, view
, address
);
7334 // These are dynamic relocations, which are unexpected when linking.
7335 case elfcpp::R_AARCH64_COPY
:
7336 case elfcpp::R_AARCH64_GLOB_DAT
:
7337 case elfcpp::R_AARCH64_JUMP_SLOT
:
7338 case elfcpp::R_AARCH64_RELATIVE
:
7339 case elfcpp::R_AARCH64_IRELATIVE
:
7340 case elfcpp::R_AARCH64_TLS_DTPREL64
:
7341 case elfcpp::R_AARCH64_TLS_DTPMOD64
:
7342 case elfcpp::R_AARCH64_TLS_TPREL64
:
7343 case elfcpp::R_AARCH64_TLSDESC
:
7344 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
7345 _("unexpected reloc %u in object file"),
7350 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
7351 _("unsupported reloc %s"),
7352 reloc_property
->name().c_str());
7356 // Report any errors.
7357 switch (reloc_status
)
7359 case Reloc::STATUS_OKAY
:
7361 case Reloc::STATUS_OVERFLOW
:
7362 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
7363 _("relocation overflow in %s"),
7364 reloc_property
->name().c_str());
7366 case Reloc::STATUS_BAD_RELOC
:
7367 gold_error_at_location(
7370 rela
.get_r_offset(),
7371 _("unexpected opcode while processing relocation %s"),
7372 reloc_property
->name().c_str());
7382 template<int size
, bool big_endian
>
7384 typename AArch64_relocate_functions
<size
, big_endian
>::Status
7385 Target_aarch64
<size
, big_endian
>::Relocate::relocate_tls(
7386 const Relocate_info
<size
, big_endian
>* relinfo
,
7387 Target_aarch64
<size
, big_endian
>* target
,
7389 const elfcpp::Rela
<size
, big_endian
>& rela
,
7390 unsigned int r_type
, const Sized_symbol
<size
>* gsym
,
7391 const Symbol_value
<size
>* psymval
,
7392 unsigned char* view
,
7393 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
)
7395 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
7396 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
7398 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
7399 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
7400 const AArch64_reloc_property
* reloc_property
=
7401 aarch64_reloc_property_table
->get_reloc_property(r_type
);
7402 gold_assert(reloc_property
!= NULL
);
7404 const bool is_final
= (gsym
== NULL
7405 ? !parameters
->options().shared()
7406 : gsym
->final_value_is_known());
7407 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
7408 optimize_tls_reloc(is_final
, r_type
);
7410 Sized_relobj_file
<size
, big_endian
>* object
= relinfo
->object
;
7411 int tls_got_offset_type
;
7414 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
7415 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
: // Global-dynamic
7417 if (tlsopt
== tls::TLSOPT_TO_LE
)
7419 if (tls_segment
== NULL
)
7421 gold_assert(parameters
->errors()->error_count() > 0
7422 || issue_undefined_symbol_error(gsym
));
7423 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7425 return tls_gd_to_le(relinfo
, target
, rela
, r_type
, view
,
7428 else if (tlsopt
== tls::TLSOPT_NONE
)
7430 tls_got_offset_type
= GOT_TYPE_TLS_PAIR
;
7431 // Firstly get the address for the got entry.
7432 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_entry_address
;
7435 gold_assert(gsym
->has_got_offset(tls_got_offset_type
));
7436 got_entry_address
= target
->got_
->address() +
7437 gsym
->got_offset(tls_got_offset_type
);
7441 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
7443 object
->local_has_got_offset(r_sym
, tls_got_offset_type
));
7444 got_entry_address
= target
->got_
->address() +
7445 object
->local_got_offset(r_sym
, tls_got_offset_type
);
7448 // Relocate the address into adrp/ld, adrp/add pair.
7451 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
7452 return aarch64_reloc_funcs::adrp(
7453 view
, got_entry_address
+ addend
, address
);
7457 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
:
7458 return aarch64_reloc_funcs::template rela_general
<32>(
7459 view
, got_entry_address
, addend
, reloc_property
);
7466 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
7467 _("unsupported gd_to_ie relaxation on %u"),
7472 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
7473 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
: // Local-dynamic
7475 if (tlsopt
== tls::TLSOPT_TO_LE
)
7477 if (tls_segment
== NULL
)
7479 gold_assert(parameters
->errors()->error_count() > 0
7480 || issue_undefined_symbol_error(gsym
));
7481 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7483 return this->tls_ld_to_le(relinfo
, target
, rela
, r_type
, view
,
7487 gold_assert(tlsopt
== tls::TLSOPT_NONE
);
7488 // Relocate the field with the offset of the GOT entry for
7489 // the module index.
7490 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_entry_address
;
7491 got_entry_address
= (target
->got_mod_index_entry(NULL
, NULL
, NULL
) +
7492 target
->got_
->address());
7496 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
7497 return aarch64_reloc_funcs::adrp(
7498 view
, got_entry_address
+ addend
, address
);
7501 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
:
7502 return aarch64_reloc_funcs::template rela_general
<32>(
7503 view
, got_entry_address
, addend
, reloc_property
);
7512 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
7513 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
7514 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
7515 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
: // Other local-dynamic
7517 AArch64_address value
= psymval
->value(object
, 0);
7518 if (tlsopt
== tls::TLSOPT_TO_LE
)
7520 if (tls_segment
== NULL
)
7522 gold_assert(parameters
->errors()->error_count() > 0
7523 || issue_undefined_symbol_error(gsym
));
7524 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7529 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
7530 return aarch64_reloc_funcs::movnz(view
, value
+ addend
,
7534 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
7535 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
7536 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
:
7537 return aarch64_reloc_funcs::template rela_general
<32>(
7538 view
, value
, addend
, reloc_property
);
7544 // We should never reach here.
7548 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
7549 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
: // Initial-exec
7551 if (tlsopt
== tls::TLSOPT_TO_LE
)
7553 if (tls_segment
== NULL
)
7555 gold_assert(parameters
->errors()->error_count() > 0
7556 || issue_undefined_symbol_error(gsym
));
7557 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7559 return tls_ie_to_le(relinfo
, target
, rela
, r_type
, view
,
7562 tls_got_offset_type
= GOT_TYPE_TLS_OFFSET
;
7564 // Firstly get the address for the got entry.
7565 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_entry_address
;
7568 gold_assert(gsym
->has_got_offset(tls_got_offset_type
));
7569 got_entry_address
= target
->got_
->address() +
7570 gsym
->got_offset(tls_got_offset_type
);
7574 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
7576 object
->local_has_got_offset(r_sym
, tls_got_offset_type
));
7577 got_entry_address
= target
->got_
->address() +
7578 object
->local_got_offset(r_sym
, tls_got_offset_type
);
7580 // Relocate the address into adrp/ld, adrp/add pair.
7583 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
7584 return aarch64_reloc_funcs::adrp(view
, got_entry_address
+ addend
,
7587 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
7588 return aarch64_reloc_funcs::template rela_general
<32>(
7589 view
, got_entry_address
, addend
, reloc_property
);
7594 // We shall never reach here.
7597 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
7598 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
7599 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
7600 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
7601 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
7602 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
:
7603 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
:
7604 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
7605 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12
:
7606 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
7607 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12
:
7608 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
7609 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12
:
7610 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
7611 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12
:
7612 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
:
7614 gold_assert(tls_segment
!= NULL
);
7615 AArch64_address value
= psymval
->value(object
, 0);
7617 if (!parameters
->options().shared())
7619 AArch64_address aligned_tcb_size
=
7620 align_address(target
->tcb_size(),
7621 tls_segment
->maximum_alignment());
7622 value
+= aligned_tcb_size
;
7625 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
7626 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
7627 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
7628 return aarch64_reloc_funcs::movnz(view
, value
+ addend
,
7631 return aarch64_reloc_funcs::template
7632 rela_general
<32>(view
,
7639 gold_error(_("%s: unsupported reloc %u "
7640 "in non-static TLSLE mode."),
7641 object
->name().c_str(), r_type
);
7645 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
7646 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
7647 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
7648 case elfcpp::R_AARCH64_TLSDESC_CALL
:
7650 if (tlsopt
== tls::TLSOPT_TO_LE
)
7652 if (tls_segment
== NULL
)
7654 gold_assert(parameters
->errors()->error_count() > 0
7655 || issue_undefined_symbol_error(gsym
));
7656 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7658 return tls_desc_gd_to_le(relinfo
, target
, rela
, r_type
,
7663 tls_got_offset_type
= (tlsopt
== tls::TLSOPT_TO_IE
7664 ? GOT_TYPE_TLS_OFFSET
7665 : GOT_TYPE_TLS_DESC
);
7666 int got_tlsdesc_offset
= 0;
7667 if (r_type
!= elfcpp::R_AARCH64_TLSDESC_CALL
7668 && tlsopt
== tls::TLSOPT_NONE
)
7670 // We created GOT entries in the .got.tlsdesc portion of the
7671 // .got.plt section, but the offset stored in the symbol is the
7672 // offset within .got.tlsdesc.
7673 got_tlsdesc_offset
= (target
->got_tlsdesc_
->address()
7674 - target
->got_
->address());
7676 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_entry_address
;
7679 gold_assert(gsym
->has_got_offset(tls_got_offset_type
));
7680 got_entry_address
= target
->got_
->address()
7681 + got_tlsdesc_offset
7682 + gsym
->got_offset(tls_got_offset_type
);
7686 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
7688 object
->local_has_got_offset(r_sym
, tls_got_offset_type
));
7689 got_entry_address
= target
->got_
->address() +
7690 got_tlsdesc_offset
+
7691 object
->local_got_offset(r_sym
, tls_got_offset_type
);
7693 if (tlsopt
== tls::TLSOPT_TO_IE
)
7695 return tls_desc_gd_to_ie(relinfo
, target
, rela
, r_type
,
7696 view
, psymval
, got_entry_address
,
7700 // Now do tlsdesc relocation.
7703 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
7704 return aarch64_reloc_funcs::adrp(view
,
7705 got_entry_address
+ addend
,
7708 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
7709 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
7710 return aarch64_reloc_funcs::template rela_general
<32>(
7711 view
, got_entry_address
, addend
, reloc_property
);
7713 case elfcpp::R_AARCH64_TLSDESC_CALL
:
7714 return aarch64_reloc_funcs::STATUS_OKAY
;
7724 gold_error(_("%s: unsupported TLS reloc %u."),
7725 object
->name().c_str(), r_type
);
7727 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7728 } // End of relocate_tls.
7731 template<int size
, bool big_endian
>
7733 typename AArch64_relocate_functions
<size
, big_endian
>::Status
7734 Target_aarch64
<size
, big_endian
>::Relocate::tls_gd_to_le(
7735 const Relocate_info
<size
, big_endian
>* relinfo
,
7736 Target_aarch64
<size
, big_endian
>* target
,
7737 const elfcpp::Rela
<size
, big_endian
>& rela
,
7738 unsigned int r_type
,
7739 unsigned char* view
,
7740 const Symbol_value
<size
>* psymval
)
7742 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
7743 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
7744 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
7746 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
7747 Insntype insn1
= elfcpp::Swap
<32, big_endian
>::readval(ip
);
7748 Insntype insn2
= elfcpp::Swap
<32, big_endian
>::readval(ip
+ 1);
7749 Insntype insn3
= elfcpp::Swap
<32, big_endian
>::readval(ip
+ 2);
7751 if (r_type
== elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
)
7753 // This is the 2nd relocs, optimization should already have been
7755 gold_assert((insn1
& 0xfff00000) == 0x91400000);
7756 return aarch64_reloc_funcs::STATUS_OKAY
;
7759 // The original sequence is -
7760 // 90000000 adrp x0, 0 <main>
7761 // 91000000 add x0, x0, #0x0
7762 // 94000000 bl 0 <__tls_get_addr>
7763 // optimized to sequence -
7764 // d53bd040 mrs x0, tpidr_el0
7765 // 91400000 add x0, x0, #0x0, lsl #12
7766 // 91000000 add x0, x0, #0x0
7768 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7769 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7770 // have to change "bl tls_get_addr", which does not have a corresponding tls
7771 // relocation type. So before proceeding, we need to make sure compiler
7772 // does not change the sequence.
7773 if(!(insn1
== 0x90000000 // adrp x0,0
7774 && insn2
== 0x91000000 // add x0, x0, #0x0
7775 && insn3
== 0x94000000)) // bl 0
7777 // Ideally we should give up gd_to_le relaxation and do gd access.
7778 // However the gd_to_le relaxation decision has been made early
7779 // in the scan stage, where we did not allocate any GOT entry for
7780 // this symbol. Therefore we have to exit and report error now.
7781 gold_error(_("unexpected reloc insn sequence while relaxing "
7782 "tls gd to le for reloc %u."), r_type
);
7783 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7787 insn1
= 0xd53bd040; // mrs x0, tpidr_el0
7788 insn2
= 0x91400000; // add x0, x0, #0x0, lsl #12
7789 insn3
= 0x91000000; // add x0, x0, #0x0
7790 elfcpp::Swap
<32, big_endian
>::writeval(ip
, insn1
);
7791 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ 1, insn2
);
7792 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ 2, insn3
);
7794 // Calculate tprel value.
7795 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
7796 gold_assert(tls_segment
!= NULL
);
7797 AArch64_address value
= psymval
->value(relinfo
->object
, 0);
7798 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
7799 AArch64_address aligned_tcb_size
=
7800 align_address(target
->tcb_size(), tls_segment
->maximum_alignment());
7801 AArch64_address x
= value
+ aligned_tcb_size
;
7803 // After new insns are written, apply TLSLE relocs.
7804 const AArch64_reloc_property
* rp1
=
7805 aarch64_reloc_property_table
->get_reloc_property(
7806 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
);
7807 const AArch64_reloc_property
* rp2
=
7808 aarch64_reloc_property_table
->get_reloc_property(
7809 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
);
7810 gold_assert(rp1
!= NULL
&& rp2
!= NULL
);
7812 typename
aarch64_reloc_funcs::Status s1
=
7813 aarch64_reloc_funcs::template rela_general
<32>(view
+ 4,
7817 if (s1
!= aarch64_reloc_funcs::STATUS_OKAY
)
7820 typename
aarch64_reloc_funcs::Status s2
=
7821 aarch64_reloc_funcs::template rela_general
<32>(view
+ 8,
7826 this->skip_call_tls_get_addr_
= true;
7828 } // End of tls_gd_to_le
7831 template<int size
, bool big_endian
>
7833 typename AArch64_relocate_functions
<size
, big_endian
>::Status
7834 Target_aarch64
<size
, big_endian
>::Relocate::tls_ld_to_le(
7835 const Relocate_info
<size
, big_endian
>* relinfo
,
7836 Target_aarch64
<size
, big_endian
>* target
,
7837 const elfcpp::Rela
<size
, big_endian
>& rela
,
7838 unsigned int r_type
,
7839 unsigned char* view
,
7840 const Symbol_value
<size
>* psymval
)
7842 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
7843 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
7844 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
7846 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
7847 Insntype insn1
= elfcpp::Swap
<32, big_endian
>::readval(ip
);
7848 Insntype insn2
= elfcpp::Swap
<32, big_endian
>::readval(ip
+ 1);
7849 Insntype insn3
= elfcpp::Swap
<32, big_endian
>::readval(ip
+ 2);
7851 if (r_type
== elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
)
7853 // This is the 2nd relocs, optimization should already have been
7855 gold_assert((insn1
& 0xfff00000) == 0x91400000);
7856 return aarch64_reloc_funcs::STATUS_OKAY
;
7859 // The original sequence is -
7860 // 90000000 adrp x0, 0 <main>
7861 // 91000000 add x0, x0, #0x0
7862 // 94000000 bl 0 <__tls_get_addr>
7863 // optimized to sequence -
7864 // d53bd040 mrs x0, tpidr_el0
7865 // 91400000 add x0, x0, #0x0, lsl #12
7866 // 91000000 add x0, x0, #0x0
7868 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7869 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7870 // have to change "bl tls_get_addr", which does not have a corresponding tls
7871 // relocation type. So before proceeding, we need to make sure compiler
7872 // does not change the sequence.
7873 if(!(insn1
== 0x90000000 // adrp x0,0
7874 && insn2
== 0x91000000 // add x0, x0, #0x0
7875 && insn3
== 0x94000000)) // bl 0
7877 // Ideally we should give up gd_to_le relaxation and do gd access.
7878 // However the gd_to_le relaxation decision has been made early
7879 // in the scan stage, where we did not allocate a GOT entry for
7880 // this symbol. Therefore we have to exit and report an error now.
7881 gold_error(_("unexpected reloc insn sequence while relaxing "
7882 "tls gd to le for reloc %u."), r_type
);
7883 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7887 insn1
= 0xd53bd040; // mrs x0, tpidr_el0
7888 insn2
= 0x91400000; // add x0, x0, #0x0, lsl #12
7889 insn3
= 0x91000000; // add x0, x0, #0x0
7890 elfcpp::Swap
<32, big_endian
>::writeval(ip
, insn1
);
7891 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ 1, insn2
);
7892 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ 2, insn3
);
7894 // Calculate tprel value.
7895 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
7896 gold_assert(tls_segment
!= NULL
);
7897 AArch64_address value
= psymval
->value(relinfo
->object
, 0);
7898 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
7899 AArch64_address aligned_tcb_size
=
7900 align_address(target
->tcb_size(), tls_segment
->maximum_alignment());
7901 AArch64_address x
= value
+ aligned_tcb_size
;
7903 // After new insns are written, apply TLSLE relocs.
7904 const AArch64_reloc_property
* rp1
=
7905 aarch64_reloc_property_table
->get_reloc_property(
7906 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
);
7907 const AArch64_reloc_property
* rp2
=
7908 aarch64_reloc_property_table
->get_reloc_property(
7909 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
);
7910 gold_assert(rp1
!= NULL
&& rp2
!= NULL
);
7912 typename
aarch64_reloc_funcs::Status s1
=
7913 aarch64_reloc_funcs::template rela_general
<32>(view
+ 4,
7917 if (s1
!= aarch64_reloc_funcs::STATUS_OKAY
)
7920 typename
aarch64_reloc_funcs::Status s2
=
7921 aarch64_reloc_funcs::template rela_general
<32>(view
+ 8,
7926 this->skip_call_tls_get_addr_
= true;
7929 } // End of tls_ld_to_le
7931 template<int size
, bool big_endian
>
7933 typename AArch64_relocate_functions
<size
, big_endian
>::Status
7934 Target_aarch64
<size
, big_endian
>::Relocate::tls_ie_to_le(
7935 const Relocate_info
<size
, big_endian
>* relinfo
,
7936 Target_aarch64
<size
, big_endian
>* target
,
7937 const elfcpp::Rela
<size
, big_endian
>& rela
,
7938 unsigned int r_type
,
7939 unsigned char* view
,
7940 const Symbol_value
<size
>* psymval
)
7942 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
7943 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
7944 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
7946 AArch64_address value
= psymval
->value(relinfo
->object
, 0);
7947 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
7948 AArch64_address aligned_tcb_address
=
7949 align_address(target
->tcb_size(), tls_segment
->maximum_alignment());
7950 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
7951 AArch64_address x
= value
+ addend
+ aligned_tcb_address
;
7952 // "x" is the offset to tp, we can only do this if x is within
7953 // range [0, 2^32-1]
7954 if (!(size
== 32 || (size
== 64 && (static_cast<uint64_t>(x
) >> 32) == 0)))
7956 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7958 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7961 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
7962 Insntype insn
= elfcpp::Swap
<32, big_endian
>::readval(ip
);
7965 if (r_type
== elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
)
7968 regno
= (insn
& 0x1f);
7969 newinsn
= (0xd2a00000 | regno
) | (((x
>> 16) & 0xffff) << 5);
7971 else if (r_type
== elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
)
7974 regno
= (insn
& 0x1f);
7975 gold_assert(regno
== ((insn
>> 5) & 0x1f));
7976 newinsn
= (0xf2800000 | regno
) | ((x
& 0xffff) << 5);
7981 elfcpp::Swap
<32, big_endian
>::writeval(ip
, newinsn
);
7982 return aarch64_reloc_funcs::STATUS_OKAY
;
7983 } // End of tls_ie_to_le
7986 template<int size
, bool big_endian
>
7988 typename AArch64_relocate_functions
<size
, big_endian
>::Status
7989 Target_aarch64
<size
, big_endian
>::Relocate::tls_desc_gd_to_le(
7990 const Relocate_info
<size
, big_endian
>* relinfo
,
7991 Target_aarch64
<size
, big_endian
>* target
,
7992 const elfcpp::Rela
<size
, big_endian
>& rela
,
7993 unsigned int r_type
,
7994 unsigned char* view
,
7995 const Symbol_value
<size
>* psymval
)
7997 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
7998 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
7999 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
8001 // TLSDESC-GD sequence is like:
8002 // adrp x0, :tlsdesc:v1
8003 // ldr x1, [x0, #:tlsdesc_lo12:v1]
8004 // add x0, x0, :tlsdesc_lo12:v1
8007 // After desc_gd_to_le optimization, the sequence will be like:
8008 // movz x0, #0x0, lsl #16
8013 // Calculate tprel value.
8014 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
8015 gold_assert(tls_segment
!= NULL
);
8016 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
8017 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
8018 AArch64_address value
= psymval
->value(relinfo
->object
, addend
);
8019 AArch64_address aligned_tcb_size
=
8020 align_address(target
->tcb_size(), tls_segment
->maximum_alignment());
8021 AArch64_address x
= value
+ aligned_tcb_size
;
8022 // x is the offset to tp, we can only do this if x is within range
8023 // [0, 2^32-1]. If x is out of range, fail and exit.
8024 if (size
== 64 && (static_cast<uint64_t>(x
) >> 32) != 0)
8026 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
8027 "We Can't do gd_to_le relaxation.\n"), r_type
);
8028 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
8033 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
8034 case elfcpp::R_AARCH64_TLSDESC_CALL
:
8036 newinsn
= 0xd503201f;
8039 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
8041 newinsn
= 0xd2a00000 | (((x
>> 16) & 0xffff) << 5);
8044 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
8046 newinsn
= 0xf2800000 | ((x
& 0xffff) << 5);
8050 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
8054 elfcpp::Swap
<32, big_endian
>::writeval(ip
, newinsn
);
8055 return aarch64_reloc_funcs::STATUS_OKAY
;
8056 } // End of tls_desc_gd_to_le
8059 template<int size
, bool big_endian
>
8061 typename AArch64_relocate_functions
<size
, big_endian
>::Status
8062 Target_aarch64
<size
, big_endian
>::Relocate::tls_desc_gd_to_ie(
8063 const Relocate_info
<size
, big_endian
>* /* relinfo */,
8064 Target_aarch64
<size
, big_endian
>* /* target */,
8065 const elfcpp::Rela
<size
, big_endian
>& rela
,
8066 unsigned int r_type
,
8067 unsigned char* view
,
8068 const Symbol_value
<size
>* /* psymval */,
8069 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_entry_address
,
8070 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
)
8072 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
8073 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
8075 // TLSDESC-GD sequence is like:
8076 // adrp x0, :tlsdesc:v1
8077 // ldr x1, [x0, #:tlsdesc_lo12:v1]
8078 // add x0, x0, :tlsdesc_lo12:v1
8081 // After desc_gd_to_ie optimization, the sequence will be like:
8082 // adrp x0, :tlsie:v1
8083 // ldr x0, [x0, :tlsie_lo12:v1]
8087 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
8088 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
8092 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
8093 case elfcpp::R_AARCH64_TLSDESC_CALL
:
8095 newinsn
= 0xd503201f;
8096 elfcpp::Swap
<32, big_endian
>::writeval(ip
, newinsn
);
8099 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
8101 return aarch64_reloc_funcs::adrp(view
, got_entry_address
+ addend
,
8106 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
8108 // Set ldr target register to be x0.
8109 Insntype insn
= elfcpp::Swap
<32, big_endian
>::readval(ip
);
8111 elfcpp::Swap
<32, big_endian
>::writeval(ip
, insn
);
8113 const AArch64_reloc_property
* reloc_property
=
8114 aarch64_reloc_property_table
->get_reloc_property(
8115 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
);
8116 return aarch64_reloc_funcs::template rela_general
<32>(
8117 view
, got_entry_address
, addend
, reloc_property
);
8122 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
8126 return aarch64_reloc_funcs::STATUS_OKAY
;
8127 } // End of tls_desc_gd_to_ie
8129 // Relocate section data.
8131 template<int size
, bool big_endian
>
8133 Target_aarch64
<size
, big_endian
>::relocate_section(
8134 const Relocate_info
<size
, big_endian
>* relinfo
,
8135 unsigned int sh_type
,
8136 const unsigned char* prelocs
,
8138 Output_section
* output_section
,
8139 bool needs_special_offset_handling
,
8140 unsigned char* view
,
8141 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
8142 section_size_type view_size
,
8143 const Reloc_symbol_changes
* reloc_symbol_changes
)
8145 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
8146 typedef Target_aarch64
<size
, big_endian
> Aarch64
;
8147 typedef typename Target_aarch64
<size
, big_endian
>::Relocate AArch64_relocate
;
8148 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
8151 gold_assert(sh_type
== elfcpp::SHT_RELA
);
8153 // See if we are relocating a relaxed input section. If so, the view
8154 // covers the whole output section and we need to adjust accordingly.
8155 if (needs_special_offset_handling
)
8157 const Output_relaxed_input_section
* poris
=
8158 output_section
->find_relaxed_input_section(relinfo
->object
,
8159 relinfo
->data_shndx
);
8162 Address section_address
= poris
->address();
8163 section_size_type section_size
= poris
->data_size();
8165 gold_assert((section_address
>= address
)
8166 && ((section_address
+ section_size
)
8167 <= (address
+ view_size
)));
8169 off_t offset
= section_address
- address
;
8172 view_size
= section_size
;
8176 gold::relocate_section
<size
, big_endian
, Aarch64
, AArch64_relocate
,
8177 gold::Default_comdat_behavior
, Classify_reloc
>(
8183 needs_special_offset_handling
,
8187 reloc_symbol_changes
);
8190 // Scan the relocs during a relocatable link.
8192 template<int size
, bool big_endian
>
8194 Target_aarch64
<size
, big_endian
>::scan_relocatable_relocs(
8195 Symbol_table
* symtab
,
8197 Sized_relobj_file
<size
, big_endian
>* object
,
8198 unsigned int data_shndx
,
8199 unsigned int sh_type
,
8200 const unsigned char* prelocs
,
8202 Output_section
* output_section
,
8203 bool needs_special_offset_handling
,
8204 size_t local_symbol_count
,
8205 const unsigned char* plocal_symbols
,
8206 Relocatable_relocs
* rr
)
8208 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
8210 typedef gold::Default_scan_relocatable_relocs
<Classify_reloc
>
8211 Scan_relocatable_relocs
;
8213 gold_assert(sh_type
== elfcpp::SHT_RELA
);
8215 gold::scan_relocatable_relocs
<size
, big_endian
, Scan_relocatable_relocs
>(
8223 needs_special_offset_handling
,
8229 // Scan the relocs for --emit-relocs.
8231 template<int size
, bool big_endian
>
8233 Target_aarch64
<size
, big_endian
>::emit_relocs_scan(
8234 Symbol_table
* symtab
,
8236 Sized_relobj_file
<size
, big_endian
>* object
,
8237 unsigned int data_shndx
,
8238 unsigned int sh_type
,
8239 const unsigned char* prelocs
,
8241 Output_section
* output_section
,
8242 bool needs_special_offset_handling
,
8243 size_t local_symbol_count
,
8244 const unsigned char* plocal_syms
,
8245 Relocatable_relocs
* rr
)
8247 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
8249 typedef gold::Default_emit_relocs_strategy
<Classify_reloc
>
8250 Emit_relocs_strategy
;
8252 gold_assert(sh_type
== elfcpp::SHT_RELA
);
8254 gold::scan_relocatable_relocs
<size
, big_endian
, Emit_relocs_strategy
>(
8262 needs_special_offset_handling
,
8268 // Relocate a section during a relocatable link.
8270 template<int size
, bool big_endian
>
8272 Target_aarch64
<size
, big_endian
>::relocate_relocs(
8273 const Relocate_info
<size
, big_endian
>* relinfo
,
8274 unsigned int sh_type
,
8275 const unsigned char* prelocs
,
8277 Output_section
* output_section
,
8278 typename
elfcpp::Elf_types
<size
>::Elf_Off offset_in_output_section
,
8279 unsigned char* view
,
8280 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
8281 section_size_type view_size
,
8282 unsigned char* reloc_view
,
8283 section_size_type reloc_view_size
)
8285 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
8288 gold_assert(sh_type
== elfcpp::SHT_RELA
);
8290 if (offset_in_output_section
== this->invalid_address
)
8292 const Output_relaxed_input_section
*poris
8293 = output_section
->find_relaxed_input_section(relinfo
->object
,
8294 relinfo
->data_shndx
);
8297 Address section_address
= poris
->address();
8298 section_size_type section_size
= poris
->data_size();
8300 gold_assert(section_address
>= view_address
8301 && (section_address
+ section_size
8302 <= view_address
+ view_size
));
8304 off_t offset
= section_address
- view_address
;
8306 view_address
+= offset
;
8307 view_size
= section_size
;
8311 gold::relocate_relocs
<size
, big_endian
, Classify_reloc
>(
8316 offset_in_output_section
,
8325 // Return whether this is a 3-insn erratum sequence.
8327 template<int size
, bool big_endian
>
8329 Target_aarch64
<size
, big_endian
>::is_erratum_843419_sequence(
8330 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn1
,
8331 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn2
,
8332 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn3
)
8337 // The 2nd insn is a single register load or store; or register pair
8339 if (Insn_utilities::aarch64_mem_op_p(insn2
, &rt1
, &rt2
, &pair
, &load
)
8340 && (!pair
|| (pair
&& !load
)))
8342 // The 3rd insn is a load or store instruction from the "Load/store
8343 // register (unsigned immediate)" encoding class, using Rn as the
8344 // base address register.
8345 if (Insn_utilities::aarch64_ldst_uimm(insn3
)
8346 && (Insn_utilities::aarch64_rn(insn3
)
8347 == Insn_utilities::aarch64_rd(insn1
)))
8354 // Return whether this is a 835769 sequence.
8355 // (Similarly implemented as in elfnn-aarch64.c.)
8357 template<int size
, bool big_endian
>
8359 Target_aarch64
<size
, big_endian
>::is_erratum_835769_sequence(
8360 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn1
,
8361 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn2
)
8371 if (Insn_utilities::aarch64_mlxl(insn2
)
8372 && Insn_utilities::aarch64_mem_op_p (insn1
, &rt
, &rt2
, &pair
, &load
))
8374 /* Any SIMD memory op is independent of the subsequent MLA
8375 by definition of the erratum. */
8376 if (Insn_utilities::aarch64_bit(insn1
, 26))
8379 /* If not SIMD, check for integer memory ops and MLA relationship. */
8380 rn
= Insn_utilities::aarch64_rn(insn2
);
8381 ra
= Insn_utilities::aarch64_ra(insn2
);
8382 rm
= Insn_utilities::aarch64_rm(insn2
);
8384 /* If this is a load and there's a true(RAW) dependency, we are safe
8385 and this is not an erratum sequence. */
8387 (rt
== rn
|| rt
== rm
|| rt
== ra
8388 || (pair
&& (rt2
== rn
|| rt2
== rm
|| rt2
== ra
))))
8391 /* We conservatively put out stubs for all other cases (including
8400 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8402 template<int size
, bool big_endian
>
8404 Target_aarch64
<size
, big_endian
>::create_erratum_stub(
8405 AArch64_relobj
<size
, big_endian
>* relobj
,
8407 section_size_type erratum_insn_offset
,
8408 Address erratum_address
,
8409 typename
Insn_utilities::Insntype erratum_insn
,
8411 unsigned int e843419_adrp_offset
)
8413 gold_assert(erratum_type
== ST_E_843419
|| erratum_type
== ST_E_835769
);
8414 The_stub_table
* stub_table
= relobj
->stub_table(shndx
);
8415 gold_assert(stub_table
!= NULL
);
8416 if (stub_table
->find_erratum_stub(relobj
,
8418 erratum_insn_offset
) == NULL
)
8420 const int BPI
= AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
;
8421 The_erratum_stub
* stub
;
8422 if (erratum_type
== ST_E_835769
)
8423 stub
= new The_erratum_stub(relobj
, erratum_type
, shndx
,
8424 erratum_insn_offset
);
8425 else if (erratum_type
== ST_E_843419
)
8426 stub
= new E843419_stub
<size
, big_endian
>(
8427 relobj
, shndx
, erratum_insn_offset
, e843419_adrp_offset
);
8430 stub
->set_erratum_insn(erratum_insn
);
8431 stub
->set_erratum_address(erratum_address
);
8432 // For erratum ST_E_843419 and ST_E_835769, the destination address is
8433 // always the next insn after erratum insn.
8434 stub
->set_destination_address(erratum_address
+ BPI
);
8435 stub_table
->add_erratum_stub(stub
);
8440 // Scan erratum for section SHNDX range [output_address + span_start,
8441 // output_address + span_end). Note here we do not share the code with
8442 // scan_erratum_843419_span function, because for 843419 we optimize by only
8443 // scanning the last few insns of a page, whereas for 835769, we need to scan
8446 template<int size
, bool big_endian
>
8448 Target_aarch64
<size
, big_endian
>::scan_erratum_835769_span(
8449 AArch64_relobj
<size
, big_endian
>* relobj
,
8451 const section_size_type span_start
,
8452 const section_size_type span_end
,
8453 unsigned char* input_view
,
8454 Address output_address
)
8456 typedef typename
Insn_utilities::Insntype Insntype
;
8458 const int BPI
= AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
;
8460 // Adjust output_address and view to the start of span.
8461 output_address
+= span_start
;
8462 input_view
+= span_start
;
8464 section_size_type span_length
= span_end
- span_start
;
8465 section_size_type offset
= 0;
8466 for (offset
= 0; offset
+ BPI
< span_length
; offset
+= BPI
)
8468 Insntype
* ip
= reinterpret_cast<Insntype
*>(input_view
+ offset
);
8469 Insntype insn1
= ip
[0];
8470 Insntype insn2
= ip
[1];
8471 if (is_erratum_835769_sequence(insn1
, insn2
))
8473 Insntype erratum_insn
= insn2
;
8474 // "span_start + offset" is the offset for insn1. So for insn2, it is
8475 // "span_start + offset + BPI".
8476 section_size_type erratum_insn_offset
= span_start
+ offset
+ BPI
;
8477 Address erratum_address
= output_address
+ offset
+ BPI
;
8478 gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8479 "section %d, offset 0x%08x."),
8480 relobj
->name().c_str(), shndx
,
8481 (unsigned int)(span_start
+ offset
));
8483 this->create_erratum_stub(relobj
, shndx
,
8484 erratum_insn_offset
, erratum_address
,
8485 erratum_insn
, ST_E_835769
);
8486 offset
+= BPI
; // Skip mac insn.
8489 } // End of "Target_aarch64::scan_erratum_835769_span".
8492 // Scan erratum for section SHNDX range
8493 // [output_address + span_start, output_address + span_end).
8495 template<int size
, bool big_endian
>
8497 Target_aarch64
<size
, big_endian
>::scan_erratum_843419_span(
8498 AArch64_relobj
<size
, big_endian
>* relobj
,
8500 const section_size_type span_start
,
8501 const section_size_type span_end
,
8502 unsigned char* input_view
,
8503 Address output_address
)
8505 typedef typename
Insn_utilities::Insntype Insntype
;
8507 // Adjust output_address and view to the start of span.
8508 output_address
+= span_start
;
8509 input_view
+= span_start
;
8511 if ((output_address
& 0x03) != 0)
8514 section_size_type offset
= 0;
8515 section_size_type span_length
= span_end
- span_start
;
8516 // The first instruction must be ending at 0xFF8 or 0xFFC.
8517 unsigned int page_offset
= output_address
& 0xFFF;
8518 // Make sure starting position, that is "output_address+offset",
8519 // starts at page position 0xff8 or 0xffc.
8520 if (page_offset
< 0xff8)
8521 offset
= 0xff8 - page_offset
;
8522 while (offset
+ 3 * Insn_utilities::BYTES_PER_INSN
<= span_length
)
8524 Insntype
* ip
= reinterpret_cast<Insntype
*>(input_view
+ offset
);
8525 Insntype insn1
= ip
[0];
8526 if (Insn_utilities::is_adrp(insn1
))
8528 Insntype insn2
= ip
[1];
8529 Insntype insn3
= ip
[2];
8530 Insntype erratum_insn
;
8531 unsigned insn_offset
;
8532 bool do_report
= false;
8533 if (is_erratum_843419_sequence(insn1
, insn2
, insn3
))
8536 erratum_insn
= insn3
;
8537 insn_offset
= 2 * Insn_utilities::BYTES_PER_INSN
;
8539 else if (offset
+ 4 * Insn_utilities::BYTES_PER_INSN
<= span_length
)
8541 // Optionally we can have an insn between ins2 and ins3
8542 Insntype insn_opt
= ip
[2];
8543 // And insn_opt must not be a branch.
8544 if (!Insn_utilities::aarch64_b(insn_opt
)
8545 && !Insn_utilities::aarch64_bl(insn_opt
)
8546 && !Insn_utilities::aarch64_blr(insn_opt
)
8547 && !Insn_utilities::aarch64_br(insn_opt
))
8549 // And insn_opt must not write to dest reg in insn1. However
8550 // we do a conservative scan, which means we may fix/report
8551 // more than necessary, but it doesn't hurt.
8553 Insntype insn4
= ip
[3];
8554 if (is_erratum_843419_sequence(insn1
, insn2
, insn4
))
8557 erratum_insn
= insn4
;
8558 insn_offset
= 3 * Insn_utilities::BYTES_PER_INSN
;
8564 unsigned int erratum_insn_offset
=
8565 span_start
+ offset
+ insn_offset
;
8566 Address erratum_address
=
8567 output_address
+ offset
+ insn_offset
;
8568 create_erratum_stub(relobj
, shndx
,
8569 erratum_insn_offset
, erratum_address
,
8570 erratum_insn
, ST_E_843419
,
8571 span_start
+ offset
);
8575 // Advance to next candidate instruction. We only consider instruction
8576 // sequences starting at a page offset of 0xff8 or 0xffc.
8577 page_offset
= (output_address
+ offset
) & 0xfff;
8578 if (page_offset
== 0xff8)
8580 else // (page_offset == 0xffc), we move to next page's 0xff8.
8583 } // End of "Target_aarch64::scan_erratum_843419_span".
8586 // The selector for aarch64 object files.
8588 template<int size
, bool big_endian
>
8589 class Target_selector_aarch64
: public Target_selector
8592 Target_selector_aarch64();
8595 do_instantiate_target()
8596 { return new Target_aarch64
<size
, big_endian
>(); }
8600 Target_selector_aarch64
<32, true>::Target_selector_aarch64()
8601 : Target_selector(elfcpp::EM_AARCH64
, 32, true,
8602 "elf32-bigaarch64", "aarch64_elf32_be_vec")
8606 Target_selector_aarch64
<32, false>::Target_selector_aarch64()
8607 : Target_selector(elfcpp::EM_AARCH64
, 32, false,
8608 "elf32-littleaarch64", "aarch64_elf32_le_vec")
8612 Target_selector_aarch64
<64, true>::Target_selector_aarch64()
8613 : Target_selector(elfcpp::EM_AARCH64
, 64, true,
8614 "elf64-bigaarch64", "aarch64_elf64_be_vec")
8618 Target_selector_aarch64
<64, false>::Target_selector_aarch64()
8619 : Target_selector(elfcpp::EM_AARCH64
, 64, false,
8620 "elf64-littleaarch64", "aarch64_elf64_le_vec")
8623 Target_selector_aarch64
<32, true> target_selector_aarch64elf32b
;
8624 Target_selector_aarch64
<32, false> target_selector_aarch64elf32
;
8625 Target_selector_aarch64
<64, true> target_selector_aarch64elfb
;
8626 Target_selector_aarch64
<64, false> target_selector_aarch64elf
;
8628 } // End anonymous namespace.