[src/erc32] Use ncurses instead of termcap on Cygwin too
[binutils-gdb.git] / sim / arm / armcopro.c
blob9227fc097acdda8b20a697914c147994d61dffe4
1 /* armcopro.c -- co-processor interface: ARM6 Instruction Emulator.
2 Copyright (C) 1994, 2000 Advanced RISC Machines Ltd.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, see <http://www.gnu.org/licenses/>. */
17 #include "armdefs.h"
18 #include "armos.h"
19 #include "armemu.h"
20 #include "ansidecl.h"
21 #include "iwmmxt.h"
23 /* Dummy Co-processors. */
25 static unsigned
26 NoCoPro3R (ARMul_State * state ATTRIBUTE_UNUSED,
27 unsigned a ATTRIBUTE_UNUSED,
28 ARMword b ATTRIBUTE_UNUSED)
30 return ARMul_CANT;
33 static unsigned
34 NoCoPro4R (ARMul_State * state ATTRIBUTE_UNUSED,
35 unsigned a ATTRIBUTE_UNUSED,
36 ARMword b ATTRIBUTE_UNUSED,
37 ARMword c ATTRIBUTE_UNUSED)
39 return ARMul_CANT;
42 static unsigned
43 NoCoPro4W (ARMul_State * state ATTRIBUTE_UNUSED,
44 unsigned a ATTRIBUTE_UNUSED,
45 ARMword b ATTRIBUTE_UNUSED,
46 ARMword * c ATTRIBUTE_UNUSED)
48 return ARMul_CANT;
51 /* The XScale Co-processors. */
53 /* Coprocessor 15: System Control. */
54 static void write_cp14_reg (unsigned, ARMword);
55 static ARMword read_cp14_reg (unsigned);
57 /* There are two sets of registers for copro 15.
58 One set is available when opcode_2 is 0 and
59 the other set when opcode_2 >= 1. */
60 static ARMword XScale_cp15_opcode_2_is_0_Regs[16];
61 static ARMword XScale_cp15_opcode_2_is_not_0_Regs[16];
62 /* There are also a set of breakpoint registers
63 which are accessed via CRm instead of opcode_2. */
64 static ARMword XScale_cp15_DBR1;
65 static ARMword XScale_cp15_DBCON;
66 static ARMword XScale_cp15_IBCR0;
67 static ARMword XScale_cp15_IBCR1;
69 static unsigned
70 XScale_cp15_init (ARMul_State * state ATTRIBUTE_UNUSED)
72 int i;
74 for (i = 16; i--;)
76 XScale_cp15_opcode_2_is_0_Regs[i] = 0;
77 XScale_cp15_opcode_2_is_not_0_Regs[i] = 0;
80 /* Initialise the processor ID. */
81 XScale_cp15_opcode_2_is_0_Regs[0] = 0x69052000;
83 /* Initialise the cache type. */
84 XScale_cp15_opcode_2_is_not_0_Regs[0] = 0x0B1AA1AA;
86 /* Initialise the ARM Control Register. */
87 XScale_cp15_opcode_2_is_0_Regs[1] = 0x00000078;
89 return TRUE;
92 /* Check an access to a register. */
94 static unsigned
95 check_cp15_access (ARMul_State * state,
96 unsigned reg,
97 unsigned CRm,
98 unsigned opcode_1,
99 unsigned opcode_2)
101 /* Do not allow access to these register in USER mode. */
102 if (state->Mode == USER26MODE || state->Mode == USER32MODE)
103 return ARMul_CANT;
105 /* Opcode_1should be zero. */
106 if (opcode_1 != 0)
107 return ARMul_CANT;
109 /* Different register have different access requirements. */
110 switch (reg)
112 case 0:
113 case 1:
114 /* CRm must be 0. Opcode_2 can be anything. */
115 if (CRm != 0)
116 return ARMul_CANT;
117 break;
118 case 2:
119 case 3:
120 /* CRm must be 0. Opcode_2 must be zero. */
121 if ((CRm != 0) || (opcode_2 != 0))
122 return ARMul_CANT;
123 break;
124 case 4:
125 /* Access not allowed. */
126 return ARMul_CANT;
127 case 5:
128 case 6:
129 /* Opcode_2 must be zero. CRm must be 0. */
130 if ((CRm != 0) || (opcode_2 != 0))
131 return ARMul_CANT;
132 break;
133 case 7:
134 /* Permissable combinations:
135 Opcode_2 CRm
141 1 10
142 4 10
144 6 5 */
145 switch (opcode_2)
147 default: return ARMul_CANT;
148 case 6: if (CRm != 5) return ARMul_CANT; break;
149 case 5: if (CRm != 2) return ARMul_CANT; break;
150 case 4: if (CRm != 10) return ARMul_CANT; break;
151 case 1: if ((CRm != 5) && (CRm != 6) && (CRm != 10)) return ARMul_CANT; break;
152 case 0: if ((CRm < 5) || (CRm > 7)) return ARMul_CANT; break;
154 break;
156 case 8:
157 /* Permissable combinations:
158 Opcode_2 CRm
163 1 6 */
164 if (opcode_2 > 1)
165 return ARMul_CANT;
166 if ((CRm < 5) || (CRm > 7))
167 return ARMul_CANT;
168 if (opcode_2 == 1 && CRm == 7)
169 return ARMul_CANT;
170 break;
171 case 9:
172 /* Opcode_2 must be zero or one. CRm must be 1 or 2. */
173 if ( ((CRm != 0) && (CRm != 1))
174 || ((opcode_2 != 1) && (opcode_2 != 2)))
175 return ARMul_CANT;
176 break;
177 case 10:
178 /* Opcode_2 must be zero or one. CRm must be 4 or 8. */
179 if ( ((CRm != 0) && (CRm != 1))
180 || ((opcode_2 != 4) && (opcode_2 != 8)))
181 return ARMul_CANT;
182 break;
183 case 11:
184 /* Access not allowed. */
185 return ARMul_CANT;
186 case 12:
187 /* Access not allowed. */
188 return ARMul_CANT;
189 case 13:
190 /* Opcode_2 must be zero. CRm must be 0. */
191 if ((CRm != 0) || (opcode_2 != 0))
192 return ARMul_CANT;
193 break;
194 case 14:
195 /* Opcode_2 must be 0. CRm must be 0, 3, 4, 8 or 9. */
196 if (opcode_2 != 0)
197 return ARMul_CANT;
199 if ((CRm != 0) && (CRm != 3) && (CRm != 4) && (CRm != 8) && (CRm != 9))
200 return ARMul_CANT;
201 break;
202 case 15:
203 /* Opcode_2 must be zero. CRm must be 1. */
204 if ((CRm != 1) || (opcode_2 != 0))
205 return ARMul_CANT;
206 break;
207 default:
208 /* Should never happen. */
209 return ARMul_CANT;
212 return ARMul_DONE;
215 /* Store a value into one of coprocessor 15's registers. */
217 static void
218 write_cp15_reg (ARMul_State * state,
219 unsigned reg,
220 unsigned opcode_2,
221 unsigned CRm,
222 ARMword value)
224 if (opcode_2)
226 switch (reg)
228 case 0: /* Cache Type. */
229 /* Writes are not allowed. */
230 return;
232 case 1: /* Auxillary Control. */
233 /* Only BITS (5, 4) and BITS (1, 0) can be written. */
234 value &= 0x33;
235 break;
237 default:
238 return;
241 XScale_cp15_opcode_2_is_not_0_Regs [reg] = value;
243 else
245 switch (reg)
247 case 0: /* ID. */
248 /* Writes are not allowed. */
249 return;
251 case 1: /* ARM Control. */
252 /* Only BITS (13, 11), BITS (9, 7) and BITS (2, 0) can be written.
253 BITS (31, 14) and BIT (10) write as zero, BITS (6, 3) write as one. */
254 value &= 0x00003b87;
255 value |= 0x00000078;
257 /* Change the endianness if necessary. */
258 if ((value & ARMul_CP15_R1_ENDIAN) !=
259 (XScale_cp15_opcode_2_is_0_Regs [reg] & ARMul_CP15_R1_ENDIAN))
261 state->bigendSig = value & ARMul_CP15_R1_ENDIAN;
262 /* Force ARMulator to notice these now. */
263 state->Emulate = CHANGEMODE;
265 break;
267 case 2: /* Translation Table Base. */
268 /* Only BITS (31, 14) can be written. */
269 value &= 0xffffc000;
270 break;
272 case 3: /* Domain Access Control. */
273 /* All bits writable. */
274 break;
276 case 5: /* Fault Status Register. */
277 /* BITS (10, 9) and BITS (7, 0) can be written. */
278 value &= 0x000006ff;
279 break;
281 case 6: /* Fault Address Register. */
282 /* All bits writable. */
283 break;
285 case 7: /* Cache Functions. */
286 case 8: /* TLB Operations. */
287 case 10: /* TLB Lock Down. */
288 /* Ignore writes. */
289 return;
291 case 9: /* Data Cache Lock. */
292 /* Only BIT (0) can be written. */
293 value &= 0x1;
294 break;
296 case 13: /* Process ID. */
297 /* Only BITS (31, 25) are writable. */
298 value &= 0xfe000000;
299 break;
301 case 14: /* DBR0, DBR1, DBCON, IBCR0, IBCR1 */
302 /* All bits can be written. Which register is accessed is
303 dependent upon CRm. */
304 switch (CRm)
306 case 0: /* DBR0 */
307 break;
308 case 3: /* DBR1 */
309 XScale_cp15_DBR1 = value;
310 break;
311 case 4: /* DBCON */
312 XScale_cp15_DBCON = value;
313 break;
314 case 8: /* IBCR0 */
315 XScale_cp15_IBCR0 = value;
316 break;
317 case 9: /* IBCR1 */
318 XScale_cp15_IBCR1 = value;
319 break;
320 default:
321 return;
323 break;
325 case 15: /* Coprpcessor Access Register. */
326 /* Access is only valid if CRm == 1. */
327 if (CRm != 1)
328 return;
330 /* Only BITS (13, 0) may be written. */
331 value &= 0x00003fff;
332 break;
334 default:
335 return;
338 XScale_cp15_opcode_2_is_0_Regs [reg] = value;
341 return;
344 /* Return the value in a cp15 register. */
346 ARMword
347 read_cp15_reg (unsigned reg, unsigned opcode_2, unsigned CRm)
349 if (opcode_2 == 0)
351 if (reg == 15 && CRm != 1)
352 return 0;
354 if (reg == 14)
356 switch (CRm)
358 case 3: return XScale_cp15_DBR1;
359 case 4: return XScale_cp15_DBCON;
360 case 8: return XScale_cp15_IBCR0;
361 case 9: return XScale_cp15_IBCR1;
362 default:
363 break;
367 return XScale_cp15_opcode_2_is_0_Regs [reg];
369 else
370 return XScale_cp15_opcode_2_is_not_0_Regs [reg];
372 return 0;
375 static unsigned
376 XScale_cp15_MRC (ARMul_State * state,
377 unsigned type ATTRIBUTE_UNUSED,
378 ARMword instr,
379 ARMword * value)
381 unsigned opcode_2 = BITS (5, 7);
382 unsigned CRm = BITS (0, 3);
383 unsigned reg = BITS (16, 19);
384 unsigned result;
386 result = check_cp15_access (state, reg, CRm, BITS (21, 23), opcode_2);
388 if (result == ARMul_DONE)
389 * value = read_cp15_reg (reg, opcode_2, CRm);
391 return result;
394 static unsigned
395 XScale_cp15_MCR (ARMul_State * state,
396 unsigned type ATTRIBUTE_UNUSED,
397 ARMword instr,
398 ARMword value)
400 unsigned opcode_2 = BITS (5, 7);
401 unsigned CRm = BITS (0, 3);
402 unsigned reg = BITS (16, 19);
403 unsigned result;
405 result = check_cp15_access (state, reg, CRm, BITS (21, 23), opcode_2);
407 if (result == ARMul_DONE)
408 write_cp15_reg (state, reg, opcode_2, CRm, value);
410 return result;
413 static unsigned
414 XScale_cp15_read_reg (ARMul_State * state ATTRIBUTE_UNUSED,
415 unsigned reg,
416 ARMword * value)
418 /* FIXME: Not sure what to do about the alternative register set
419 here. For now default to just accessing CRm == 0 registers. */
420 * value = read_cp15_reg (reg, 0, 0);
422 return TRUE;
425 static unsigned
426 XScale_cp15_write_reg (ARMul_State * state ATTRIBUTE_UNUSED,
427 unsigned reg,
428 ARMword value)
430 /* FIXME: Not sure what to do about the alternative register set
431 here. For now default to just accessing CRm == 0 registers. */
432 write_cp15_reg (state, reg, 0, 0, value);
434 return TRUE;
437 /* Check for special XScale memory access features. */
439 void
440 XScale_check_memacc (ARMul_State * state, ARMword * address, int store)
442 ARMword dbcon, r0, r1;
443 int e1, e0;
445 if (!state->is_XScale)
446 return;
448 /* Check for PID-ification.
449 XXX BTB access support will require this test failing. */
450 r0 = (read_cp15_reg (13, 0, 0) & 0xfe000000);
451 if (r0 && (* address & 0xfe000000) == 0)
452 * address |= r0;
454 /* Check alignment fault enable/disable. */
455 if ((read_cp15_reg (1, 0, 0) & ARMul_CP15_R1_ALIGN) && (* address & 3))
457 /* Set the FSR and FAR.
458 Do not use XScale_set_fsr_far as this checks the DCSR register. */
459 write_cp15_reg (state, 5, 0, 0, ARMul_CP15_R5_MMU_EXCPT);
460 write_cp15_reg (state, 6, 0, 0, * address);
462 ARMul_Abort (state, ARMul_DataAbortV);
465 if (XScale_debug_moe (state, -1))
466 return;
468 /* Check the data breakpoint registers. */
469 dbcon = read_cp15_reg (14, 0, 4);
470 r0 = read_cp15_reg (14, 0, 0);
471 r1 = read_cp15_reg (14, 0, 3);
472 e0 = dbcon & ARMul_CP15_DBCON_E0;
474 if (dbcon & ARMul_CP15_DBCON_M)
476 /* r1 is a inverse mask. */
477 if (e0 != 0 && ((store && e0 != 3) || (!store && e0 != 1))
478 && ((* address & ~r1) == (r0 & ~r1)))
480 XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB);
481 ARMul_OSHandleSWI (state, SWI_Breakpoint);
484 else
486 if (e0 != 0 && ((store && e0 != 3) || (!store && e0 != 1))
487 && ((* address & ~3) == (r0 & ~3)))
489 XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB);
490 ARMul_OSHandleSWI (state, SWI_Breakpoint);
493 e1 = (dbcon & ARMul_CP15_DBCON_E1) >> 2;
494 if (e1 != 0 && ((store && e1 != 3) || (!store && e1 != 1))
495 && ((* address & ~3) == (r1 & ~3)))
497 XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB);
498 ARMul_OSHandleSWI (state, SWI_Breakpoint);
503 /* Set the XScale FSR and FAR registers. */
505 void
506 XScale_set_fsr_far (ARMul_State * state, ARMword fsr, ARMword far)
508 if (!state->is_XScale || (read_cp14_reg (10) & (1UL << 31)) == 0)
509 return;
511 write_cp15_reg (state, 5, 0, 0, fsr);
512 write_cp15_reg (state, 6, 0, 0, far);
515 /* Set the XScale debug `method of entry' if it is enabled. */
518 XScale_debug_moe (ARMul_State * state, int moe)
520 ARMword value;
522 if (!state->is_XScale)
523 return 1;
525 value = read_cp14_reg (10);
526 if (value & (1UL << 31))
528 if (moe != -1)
530 value &= ~0x1c;
531 value |= moe;
533 write_cp14_reg (10, value);
535 return 1;
537 return 0;
540 /* Coprocessor 13: Interrupt Controller and Bus Controller. */
542 /* There are two sets of registers for copro 13.
543 One set (of three registers) is available when CRm is 0
544 and the other set (of six registers) when CRm is 1. */
546 static ARMword XScale_cp13_CR0_Regs[16];
547 static ARMword XScale_cp13_CR1_Regs[16];
549 static unsigned
550 XScale_cp13_init (ARMul_State * state ATTRIBUTE_UNUSED)
552 int i;
554 for (i = 16; i--;)
556 XScale_cp13_CR0_Regs[i] = 0;
557 XScale_cp13_CR1_Regs[i] = 0;
560 return TRUE;
563 /* Check an access to a register. */
565 static unsigned
566 check_cp13_access (ARMul_State * state,
567 unsigned reg,
568 unsigned CRm,
569 unsigned opcode_1,
570 unsigned opcode_2)
572 /* Do not allow access to these registers in USER mode. */
573 if (state->Mode == USER26MODE || state->Mode == USER32MODE)
574 return ARMul_CANT;
576 /* The opcodes should be zero. */
577 if ((opcode_1 != 0) || (opcode_2 != 0))
578 return ARMul_CANT;
580 /* Do not allow access to these register if bit
581 13 of coprocessor 15's register 15 is zero. */
582 if (! CP_ACCESS_ALLOWED (state, 13))
583 return ARMul_CANT;
585 /* Registers 0, 4 and 8 are defined when CRm == 0.
586 Registers 0, 1, 4, 5, 6, 7, 8 are defined when CRm == 1.
587 For all other CRm values undefined behaviour results. */
588 if (CRm == 0)
590 if (reg == 0 || reg == 4 || reg == 8)
591 return ARMul_DONE;
593 else if (CRm == 1)
595 if (reg == 0 || reg == 1 || (reg >= 4 && reg <= 8))
596 return ARMul_DONE;
599 return ARMul_CANT;
602 /* Store a value into one of coprocessor 13's registers. */
604 static void
605 write_cp13_reg (unsigned reg, unsigned CRm, ARMword value)
607 switch (CRm)
609 case 0:
610 switch (reg)
612 case 0: /* INTCTL */
613 /* Only BITS (3:0) can be written. */
614 value &= 0xf;
615 break;
617 case 4: /* INTSRC */
618 /* No bits may be written. */
619 return;
621 case 8: /* INTSTR */
622 /* Only BITS (1:0) can be written. */
623 value &= 0x3;
624 break;
626 default:
627 /* Should not happen. Ignore any writes to unimplemented registers. */
628 return;
631 XScale_cp13_CR0_Regs [reg] = value;
632 break;
634 case 1:
635 switch (reg)
637 case 0: /* BCUCTL */
638 /* Only BITS (30:28) and BITS (3:0) can be written.
639 BIT(31) is write ignored. */
640 value &= 0x7000000f;
641 value |= XScale_cp13_CR1_Regs[0] & (1UL << 31);
642 break;
644 case 1: /* BCUMOD */
645 /* Only bit 0 is accecssible. */
646 value &= 1;
647 value |= XScale_cp13_CR1_Regs[1] & ~ 1;
648 break;
650 case 4: /* ELOG0 */
651 case 5: /* ELOG1 */
652 case 6: /* ECAR0 */
653 case 7: /* ECAR1 */
654 /* No bits can be written. */
655 return;
657 case 8: /* ECTST */
658 /* Only BITS (7:0) can be written. */
659 value &= 0xff;
660 break;
662 default:
663 /* Should not happen. Ignore any writes to unimplemented registers. */
664 return;
667 XScale_cp13_CR1_Regs [reg] = value;
668 break;
670 default:
671 /* Should not happen. */
672 break;
675 return;
678 /* Return the value in a cp13 register. */
680 static ARMword
681 read_cp13_reg (unsigned reg, unsigned CRm)
683 if (CRm == 0)
684 return XScale_cp13_CR0_Regs [reg];
685 else if (CRm == 1)
686 return XScale_cp13_CR1_Regs [reg];
688 return 0;
691 static unsigned
692 XScale_cp13_LDC (ARMul_State * state, unsigned type, ARMword instr, ARMword data)
694 unsigned reg = BITS (12, 15);
695 unsigned result;
697 result = check_cp13_access (state, reg, 0, 0, 0);
699 if (result == ARMul_DONE && type == ARMul_DATA)
700 write_cp13_reg (reg, 0, data);
702 return result;
705 static unsigned
706 XScale_cp13_STC (ARMul_State * state, unsigned type, ARMword instr, ARMword * data)
708 unsigned reg = BITS (12, 15);
709 unsigned result;
711 result = check_cp13_access (state, reg, 0, 0, 0);
713 if (result == ARMul_DONE && type == ARMul_DATA)
714 * data = read_cp13_reg (reg, 0);
716 return result;
719 static unsigned
720 XScale_cp13_MRC (ARMul_State * state,
721 unsigned type ATTRIBUTE_UNUSED,
722 ARMword instr,
723 ARMword * value)
725 unsigned CRm = BITS (0, 3);
726 unsigned reg = BITS (16, 19);
727 unsigned result;
729 result = check_cp13_access (state, reg, CRm, BITS (21, 23), BITS (5, 7));
731 if (result == ARMul_DONE)
732 * value = read_cp13_reg (reg, CRm);
734 return result;
737 static unsigned
738 XScale_cp13_MCR (ARMul_State * state,
739 unsigned type ATTRIBUTE_UNUSED,
740 ARMword instr,
741 ARMword value)
743 unsigned CRm = BITS (0, 3);
744 unsigned reg = BITS (16, 19);
745 unsigned result;
747 result = check_cp13_access (state, reg, CRm, BITS (21, 23), BITS (5, 7));
749 if (result == ARMul_DONE)
750 write_cp13_reg (reg, CRm, value);
752 return result;
755 static unsigned
756 XScale_cp13_read_reg (ARMul_State * state ATTRIBUTE_UNUSED,
757 unsigned reg,
758 ARMword * value)
760 /* FIXME: Not sure what to do about the alternative register set
761 here. For now default to just accessing CRm == 0 registers. */
762 * value = read_cp13_reg (reg, 0);
764 return TRUE;
767 static unsigned
768 XScale_cp13_write_reg (ARMul_State * state ATTRIBUTE_UNUSED,
769 unsigned reg,
770 ARMword value)
772 /* FIXME: Not sure what to do about the alternative register set
773 here. For now default to just accessing CRm == 0 registers. */
774 write_cp13_reg (reg, 0, value);
776 return TRUE;
779 /* Coprocessor 14: Performance Monitoring, Clock and Power management,
780 Software Debug. */
782 static ARMword XScale_cp14_Regs[16];
784 static unsigned
785 XScale_cp14_init (ARMul_State * state ATTRIBUTE_UNUSED)
787 int i;
789 for (i = 16; i--;)
790 XScale_cp14_Regs[i] = 0;
792 return TRUE;
795 /* Check an access to a register. */
797 static unsigned
798 check_cp14_access (ARMul_State * state,
799 unsigned reg,
800 unsigned CRm,
801 unsigned opcode1,
802 unsigned opcode2)
804 /* Not allowed to access these register in USER mode. */
805 if (state->Mode == USER26MODE || state->Mode == USER32MODE)
806 return ARMul_CANT;
808 /* CRm should be zero. */
809 if (CRm != 0)
810 return ARMul_CANT;
812 /* OPcodes should be zero. */
813 if (opcode1 != 0 || opcode2 != 0)
814 return ARMul_CANT;
816 /* Accessing registers 4 or 5 has unpredicatable results. */
817 if (reg >= 4 && reg <= 5)
818 return ARMul_CANT;
820 return ARMul_DONE;
823 /* Store a value into one of coprocessor 14's registers. */
825 static void
826 write_cp14_reg (unsigned reg, ARMword value)
828 switch (reg)
830 case 0: /* PMNC */
831 /* Only BITS (27:12), BITS (10:8) and BITS (6:0) can be written. */
832 value &= 0x0ffff77f;
834 /* Reset the clock counter if necessary. */
835 if (value & ARMul_CP14_R0_CLKRST)
836 XScale_cp14_Regs [1] = 0;
837 break;
839 case 4:
840 case 5:
841 /* We should not normally reach this code. The debugger interface
842 can bypass the normal checks though, so it could happen. */
843 value = 0;
844 break;
846 case 6: /* CCLKCFG */
847 /* Only BITS (3:0) can be written. */
848 value &= 0xf;
849 break;
851 case 7: /* PWRMODE */
852 /* Although BITS (1:0) can be written with non-zero values, this would
853 have the side effect of putting the processor to sleep. Thus in
854 order for the register to be read again, it would have to go into
855 ACTIVE mode, which means that any read will see these bits as zero.
857 Rather than trying to implement complex reset-to-zero-upon-read logic
858 we just override the write value with zero. */
859 value = 0;
860 break;
862 case 10: /* DCSR */
863 /* Only BITS (31:30), BITS (23:22), BITS (20:16) and BITS (5:0) can
864 be written. */
865 value &= 0xc0df003f;
866 break;
868 case 11: /* TBREG */
869 /* No writes are permitted. */
870 value = 0;
871 break;
873 case 14: /* TXRXCTRL */
874 /* Only BITS (31:30) can be written. */
875 value &= 0xc0000000;
876 break;
878 default:
879 /* All bits can be written. */
880 break;
883 XScale_cp14_Regs [reg] = value;
886 /* Return the value in a cp14 register. Not a static function since
887 it is used by the code to emulate the BKPT instruction in armemu.c. */
889 ARMword
890 read_cp14_reg (unsigned reg)
892 return XScale_cp14_Regs [reg];
895 static unsigned
896 XScale_cp14_LDC (ARMul_State * state, unsigned type, ARMword instr, ARMword data)
898 unsigned reg = BITS (12, 15);
899 unsigned result;
901 result = check_cp14_access (state, reg, 0, 0, 0);
903 if (result == ARMul_DONE && type == ARMul_DATA)
904 write_cp14_reg (reg, data);
906 return result;
909 static unsigned
910 XScale_cp14_STC (ARMul_State * state, unsigned type, ARMword instr, ARMword * data)
912 unsigned reg = BITS (12, 15);
913 unsigned result;
915 result = check_cp14_access (state, reg, 0, 0, 0);
917 if (result == ARMul_DONE && type == ARMul_DATA)
918 * data = read_cp14_reg (reg);
920 return result;
923 static unsigned
924 XScale_cp14_MRC
926 ARMul_State * state,
927 unsigned type ATTRIBUTE_UNUSED,
928 ARMword instr,
929 ARMword * value
932 unsigned reg = BITS (16, 19);
933 unsigned result;
935 result = check_cp14_access (state, reg, BITS (0, 3), BITS (21, 23), BITS (5, 7));
937 if (result == ARMul_DONE)
938 * value = read_cp14_reg (reg);
940 return result;
943 static unsigned
944 XScale_cp14_MCR
946 ARMul_State * state,
947 unsigned type ATTRIBUTE_UNUSED,
948 ARMword instr,
949 ARMword value
952 unsigned reg = BITS (16, 19);
953 unsigned result;
955 result = check_cp14_access (state, reg, BITS (0, 3), BITS (21, 23), BITS (5, 7));
957 if (result == ARMul_DONE)
958 write_cp14_reg (reg, value);
960 return result;
963 static unsigned
964 XScale_cp14_read_reg
966 ARMul_State * state ATTRIBUTE_UNUSED,
967 unsigned reg,
968 ARMword * value
971 * value = read_cp14_reg (reg);
973 return TRUE;
976 static unsigned
977 XScale_cp14_write_reg
979 ARMul_State * state ATTRIBUTE_UNUSED,
980 unsigned reg,
981 ARMword value
984 write_cp14_reg (reg, value);
986 return TRUE;
989 /* Here's ARMulator's MMU definition. A few things to note:
990 1) It has eight registers, but only two are defined.
991 2) You can only access its registers with MCR and MRC.
992 3) MMU Register 0 (ID) returns 0x41440110
993 4) Register 1 only has 4 bits defined. Bits 0 to 3 are unused, bit 4
994 controls 32/26 bit program space, bit 5 controls 32/26 bit data space,
995 bit 6 controls late abort timimg and bit 7 controls big/little endian. */
997 static ARMword MMUReg[8];
999 static unsigned
1000 MMUInit (ARMul_State * state)
1002 MMUReg[1] = state->prog32Sig << 4 |
1003 state->data32Sig << 5 | state->lateabtSig << 6 | state->bigendSig << 7;
1005 ARMul_ConsolePrint (state, ", MMU present");
1007 return TRUE;
1010 static unsigned
1011 MMUMRC (ARMul_State * state ATTRIBUTE_UNUSED,
1012 unsigned type ATTRIBUTE_UNUSED,
1013 ARMword instr,
1014 ARMword * value)
1016 int reg = BITS (16, 19) & 7;
1018 if (reg == 0)
1019 *value = 0x41440110;
1020 else
1021 *value = MMUReg[reg];
1023 return ARMul_DONE;
1026 static unsigned
1027 MMUMCR (ARMul_State * state,
1028 unsigned type ATTRIBUTE_UNUSED,
1029 ARMword instr,
1030 ARMword value)
1032 int reg = BITS (16, 19) & 7;
1034 MMUReg[reg] = value;
1036 if (reg == 1)
1038 ARMword p,d,l,b;
1040 p = state->prog32Sig;
1041 d = state->data32Sig;
1042 l = state->lateabtSig;
1043 b = state->bigendSig;
1045 state->prog32Sig = value >> 4 & 1;
1046 state->data32Sig = value >> 5 & 1;
1047 state->lateabtSig = value >> 6 & 1;
1048 state->bigendSig = value >> 7 & 1;
1050 if ( p != state->prog32Sig
1051 || d != state->data32Sig
1052 || l != state->lateabtSig
1053 || b != state->bigendSig)
1054 /* Force ARMulator to notice these now. */
1055 state->Emulate = CHANGEMODE;
1058 return ARMul_DONE;
1061 static unsigned
1062 MMURead (ARMul_State * state ATTRIBUTE_UNUSED, unsigned reg, ARMword * value)
1064 if (reg == 0)
1065 *value = 0x41440110;
1066 else if (reg < 8)
1067 *value = MMUReg[reg];
1069 return TRUE;
1072 static unsigned
1073 MMUWrite (ARMul_State * state, unsigned reg, ARMword value)
1075 if (reg < 8)
1076 MMUReg[reg] = value;
1078 if (reg == 1)
1080 ARMword p,d,l,b;
1082 p = state->prog32Sig;
1083 d = state->data32Sig;
1084 l = state->lateabtSig;
1085 b = state->bigendSig;
1087 state->prog32Sig = value >> 4 & 1;
1088 state->data32Sig = value >> 5 & 1;
1089 state->lateabtSig = value >> 6 & 1;
1090 state->bigendSig = value >> 7 & 1;
1092 if ( p != state->prog32Sig
1093 || d != state->data32Sig
1094 || l != state->lateabtSig
1095 || b != state->bigendSig)
1096 /* Force ARMulator to notice these now. */
1097 state->Emulate = CHANGEMODE;
1100 return TRUE;
1104 /* What follows is the Validation Suite Coprocessor. It uses two
1105 co-processor numbers (4 and 5) and has the follwing functionality.
1106 Sixteen registers. Both co-processor nuimbers can be used in an MCR
1107 and MRC to access these registers. CP 4 can LDC and STC to and from
1108 the registers. CP 4 and CP 5 CDP 0 will busy wait for the number of
1109 cycles specified by a CP register. CP 5 CDP 1 issues a FIQ after a
1110 number of cycles (specified in a CP register), CDP 2 issues an IRQW
1111 in the same way, CDP 3 and 4 turn of the FIQ and IRQ source, and CDP 5
1112 stores a 32 bit time value in a CP register (actually it's the total
1113 number of N, S, I, C and F cyles). */
1115 static ARMword ValReg[16];
1117 static unsigned
1118 ValLDC (ARMul_State * state ATTRIBUTE_UNUSED,
1119 unsigned type,
1120 ARMword instr,
1121 ARMword data)
1123 static unsigned words;
1125 if (type != ARMul_DATA)
1126 words = 0;
1127 else
1129 ValReg[BITS (12, 15)] = data;
1131 if (BIT (22))
1132 /* It's a long access, get two words. */
1133 if (words++ != 4)
1134 return ARMul_INC;
1137 return ARMul_DONE;
1140 static unsigned
1141 ValSTC (ARMul_State * state ATTRIBUTE_UNUSED,
1142 unsigned type,
1143 ARMword instr,
1144 ARMword * data)
1146 static unsigned words;
1148 if (type != ARMul_DATA)
1149 words = 0;
1150 else
1152 * data = ValReg[BITS (12, 15)];
1154 if (BIT (22))
1155 /* It's a long access, get two words. */
1156 if (words++ != 4)
1157 return ARMul_INC;
1160 return ARMul_DONE;
1163 static unsigned
1164 ValMRC (ARMul_State * state ATTRIBUTE_UNUSED,
1165 unsigned type ATTRIBUTE_UNUSED,
1166 ARMword instr,
1167 ARMword * value)
1169 *value = ValReg[BITS (16, 19)];
1171 return ARMul_DONE;
1174 static unsigned
1175 ValMCR (ARMul_State * state ATTRIBUTE_UNUSED,
1176 unsigned type ATTRIBUTE_UNUSED,
1177 ARMword instr,
1178 ARMword value)
1180 ValReg[BITS (16, 19)] = value;
1182 return ARMul_DONE;
1185 static unsigned
1186 ValCDP (ARMul_State * state, unsigned type, ARMword instr)
1188 static unsigned long finish = 0;
1190 if (BITS (20, 23) != 0)
1191 return ARMul_CANT;
1193 if (type == ARMul_FIRST)
1195 ARMword howlong;
1197 howlong = ValReg[BITS (0, 3)];
1199 /* First cycle of a busy wait. */
1200 finish = ARMul_Time (state) + howlong;
1202 return howlong == 0 ? ARMul_DONE : ARMul_BUSY;
1204 else if (type == ARMul_BUSY)
1206 if (ARMul_Time (state) >= finish)
1207 return ARMul_DONE;
1208 else
1209 return ARMul_BUSY;
1212 return ARMul_CANT;
1215 static unsigned
1216 DoAFIQ (ARMul_State * state)
1218 state->NfiqSig = LOW;
1219 state->Exception++;
1220 return 0;
1223 static unsigned
1224 DoAIRQ (ARMul_State * state)
1226 state->NirqSig = LOW;
1227 state->Exception++;
1228 return 0;
1231 static unsigned
1232 IntCDP (ARMul_State * state, unsigned type, ARMword instr)
1234 static unsigned long finish;
1235 ARMword howlong;
1237 howlong = ValReg[BITS (0, 3)];
1239 switch ((int) BITS (20, 23))
1241 case 0:
1242 if (type == ARMul_FIRST)
1244 /* First cycle of a busy wait. */
1245 finish = ARMul_Time (state) + howlong;
1247 return howlong == 0 ? ARMul_DONE : ARMul_BUSY;
1249 else if (type == ARMul_BUSY)
1251 if (ARMul_Time (state) >= finish)
1252 return ARMul_DONE;
1253 else
1254 return ARMul_BUSY;
1256 return ARMul_DONE;
1258 case 1:
1259 if (howlong == 0)
1260 ARMul_Abort (state, ARMul_FIQV);
1261 else
1262 ARMul_ScheduleEvent (state, howlong, DoAFIQ);
1263 return ARMul_DONE;
1265 case 2:
1266 if (howlong == 0)
1267 ARMul_Abort (state, ARMul_IRQV);
1268 else
1269 ARMul_ScheduleEvent (state, howlong, DoAIRQ);
1270 return ARMul_DONE;
1272 case 3:
1273 state->NfiqSig = HIGH;
1274 state->Exception--;
1275 return ARMul_DONE;
1277 case 4:
1278 state->NirqSig = HIGH;
1279 state->Exception--;
1280 return ARMul_DONE;
1282 case 5:
1283 ValReg[BITS (0, 3)] = ARMul_Time (state);
1284 return ARMul_DONE;
1287 return ARMul_CANT;
1290 /* Install co-processor instruction handlers in this routine. */
1292 unsigned
1293 ARMul_CoProInit (ARMul_State * state)
1295 unsigned int i;
1297 /* Initialise tham all first. */
1298 for (i = 0; i < 16; i++)
1299 ARMul_CoProDetach (state, i);
1301 /* Install CoPro Instruction handlers here.
1302 The format is:
1303 ARMul_CoProAttach (state, CP Number, Init routine, Exit routine
1304 LDC routine, STC routine, MRC routine, MCR routine,
1305 CDP routine, Read Reg routine, Write Reg routine). */
1306 if (state->is_ep9312)
1308 ARMul_CoProAttach (state, 4, NULL, NULL, DSPLDC4, DSPSTC4,
1309 DSPMRC4, DSPMCR4, DSPCDP4, NULL, NULL);
1310 ARMul_CoProAttach (state, 5, NULL, NULL, DSPLDC5, DSPSTC5,
1311 DSPMRC5, DSPMCR5, DSPCDP5, NULL, NULL);
1312 ARMul_CoProAttach (state, 6, NULL, NULL, NULL, NULL,
1313 DSPMRC6, DSPMCR6, DSPCDP6, NULL, NULL);
1315 else
1317 ARMul_CoProAttach (state, 4, NULL, NULL, ValLDC, ValSTC,
1318 ValMRC, ValMCR, ValCDP, NULL, NULL);
1320 ARMul_CoProAttach (state, 5, NULL, NULL, NULL, NULL,
1321 ValMRC, ValMCR, IntCDP, NULL, NULL);
1324 if (state->is_XScale)
1326 ARMul_CoProAttach (state, 13, XScale_cp13_init, NULL,
1327 XScale_cp13_LDC, XScale_cp13_STC, XScale_cp13_MRC,
1328 XScale_cp13_MCR, NULL, XScale_cp13_read_reg,
1329 XScale_cp13_write_reg);
1331 ARMul_CoProAttach (state, 14, XScale_cp14_init, NULL,
1332 XScale_cp14_LDC, XScale_cp14_STC, XScale_cp14_MRC,
1333 XScale_cp14_MCR, NULL, XScale_cp14_read_reg,
1334 XScale_cp14_write_reg);
1336 ARMul_CoProAttach (state, 15, XScale_cp15_init, NULL,
1337 NULL, NULL, XScale_cp15_MRC, XScale_cp15_MCR,
1338 NULL, XScale_cp15_read_reg, XScale_cp15_write_reg);
1340 else
1342 ARMul_CoProAttach (state, 15, MMUInit, NULL, NULL, NULL,
1343 MMUMRC, MMUMCR, NULL, MMURead, MMUWrite);
1346 if (state->is_iWMMXt)
1348 ARMul_CoProAttach (state, 0, NULL, NULL, IwmmxtLDC, IwmmxtSTC,
1349 NULL, NULL, IwmmxtCDP, NULL, NULL);
1351 ARMul_CoProAttach (state, 1, NULL, NULL, NULL, NULL,
1352 IwmmxtMRC, IwmmxtMCR, IwmmxtCDP, NULL, NULL);
1355 /* No handlers below here. */
1357 /* Call all the initialisation routines. */
1358 for (i = 0; i < 16; i++)
1359 if (state->CPInit[i])
1360 (state->CPInit[i]) (state);
1362 return TRUE;
1365 /* Install co-processor finalisation routines in this routine. */
1367 void
1368 ARMul_CoProExit (ARMul_State * state)
1370 register unsigned i;
1372 for (i = 0; i < 16; i++)
1373 if (state->CPExit[i])
1374 (state->CPExit[i]) (state);
1376 for (i = 0; i < 16; i++) /* Detach all handlers. */
1377 ARMul_CoProDetach (state, i);
1380 /* Routines to hook Co-processors into ARMulator. */
1382 void
1383 ARMul_CoProAttach (ARMul_State * state,
1384 unsigned number,
1385 ARMul_CPInits * init,
1386 ARMul_CPExits * exit,
1387 ARMul_LDCs * ldc,
1388 ARMul_STCs * stc,
1389 ARMul_MRCs * mrc,
1390 ARMul_MCRs * mcr,
1391 ARMul_CDPs * cdp,
1392 ARMul_CPReads * read,
1393 ARMul_CPWrites * write)
1395 if (init != NULL)
1396 state->CPInit[number] = init;
1397 if (exit != NULL)
1398 state->CPExit[number] = exit;
1399 if (ldc != NULL)
1400 state->LDC[number] = ldc;
1401 if (stc != NULL)
1402 state->STC[number] = stc;
1403 if (mrc != NULL)
1404 state->MRC[number] = mrc;
1405 if (mcr != NULL)
1406 state->MCR[number] = mcr;
1407 if (cdp != NULL)
1408 state->CDP[number] = cdp;
1409 if (read != NULL)
1410 state->CPRead[number] = read;
1411 if (write != NULL)
1412 state->CPWrite[number] = write;
1415 void
1416 ARMul_CoProDetach (ARMul_State * state, unsigned number)
1418 ARMul_CoProAttach (state, number, NULL, NULL,
1419 NoCoPro4R, NoCoPro4W, NoCoPro4W, NoCoPro4R,
1420 NoCoPro3R, NULL, NULL);
1422 state->CPInit[number] = NULL;
1423 state->CPExit[number] = NULL;
1424 state->CPRead[number] = NULL;
1425 state->CPWrite[number] = NULL;