[src/erc32] Use ncurses instead of termcap on Cygwin too
[binutils-gdb.git] / sim / mn10300 / interp.c
blob7f0655f3f472ef1a660a29f25c2fd01c2db163f8
1 #include "config.h"
2 #include <signal.h>
4 #include "sim-main.h"
5 #include "sim-options.h"
6 #include "sim-hw.h"
8 #include "bfd.h"
9 #include "sim-assert.h"
12 #ifdef HAVE_STDLIB_H
13 #include <stdlib.h>
14 #endif
16 #ifdef HAVE_STRING_H
17 #include <string.h>
18 #else
19 #ifdef HAVE_STRINGS_H
20 #include <strings.h>
21 #endif
22 #endif
24 #include "bfd.h"
27 struct _state State;
30 /* simulation target board. NULL=default configuration */
31 static char* board = NULL;
33 static DECLARE_OPTION_HANDLER (mn10300_option_handler);
35 enum {
36 OPTION_BOARD = OPTION_START,
39 static SIM_RC
40 mn10300_option_handler (SIM_DESC sd,
41 sim_cpu *cpu,
42 int opt,
43 char *arg,
44 int is_command)
46 int cpu_nr;
47 switch (opt)
49 case OPTION_BOARD:
51 if (arg)
53 board = zalloc(strlen(arg) + 1);
54 strcpy(board, arg);
56 return SIM_RC_OK;
60 return SIM_RC_OK;
63 static const OPTION mn10300_options[] =
65 #define BOARD_AM32 "stdeval1"
66 { {"board", required_argument, NULL, OPTION_BOARD},
67 '\0', "none" /* rely on compile-time string concatenation for other options */
68 "|" BOARD_AM32
69 , "Customize simulation for a particular board.", mn10300_option_handler },
71 { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
74 /* For compatibility */
75 SIM_DESC simulator;
77 static sim_cia
78 mn10300_pc_get (sim_cpu *cpu)
80 return PC;
83 static void
84 mn10300_pc_set (sim_cpu *cpu, sim_cia pc)
86 PC = pc;
89 static int mn10300_reg_fetch (SIM_CPU *, int, unsigned char *, int);
90 static int mn10300_reg_store (SIM_CPU *, int, unsigned char *, int);
92 /* These default values correspond to expected usage for the chip. */
94 SIM_DESC
95 sim_open (SIM_OPEN_KIND kind,
96 host_callback *cb,
97 struct bfd *abfd,
98 char * const *argv)
100 int i;
101 SIM_DESC sd = sim_state_alloc (kind, cb);
103 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
105 /* The cpu data is kept in a separately allocated chunk of memory. */
106 if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
107 return 0;
109 /* for compatibility */
110 simulator = sd;
112 /* FIXME: should be better way of setting up interrupts. For
113 moment, only support watchpoints causing a breakpoint (gdb
114 halt). */
115 STATE_WATCHPOINTS (sd)->pc = &(PC);
116 STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
117 STATE_WATCHPOINTS (sd)->interrupt_handler = NULL;
118 STATE_WATCHPOINTS (sd)->interrupt_names = NULL;
120 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
121 return 0;
122 sim_add_option_table (sd, NULL, mn10300_options);
124 /* Allocate core managed memory */
125 sim_do_command (sd, "memory region 0,0x100000");
126 sim_do_command (sd, "memory region 0x40000000,0x200000");
128 /* The parser will print an error message for us, so we silently return. */
129 if (sim_parse_args (sd, argv) != SIM_RC_OK)
131 /* Uninstall the modules to avoid memory leaks,
132 file descriptor leaks, etc. */
133 sim_module_uninstall (sd);
134 return 0;
137 if ( NULL != board
138 && (strcmp(board, BOARD_AM32) == 0 ) )
140 /* environment */
141 STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
143 sim_do_command (sd, "memory region 0x44000000,0x40000");
144 sim_do_command (sd, "memory region 0x48000000,0x400000");
146 /* device support for mn1030002 */
147 /* interrupt controller */
149 sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x34000280 0x8");
151 /* DEBUG: NMI input's */
152 sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12");
153 sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int");
154 sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int");
155 sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int");
157 /* DEBUG: ACK input */
158 sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4");
159 sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int");
161 /* DEBUG: LEVEL output */
162 sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8");
163 sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000");
164 sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000");
166 /* DEBUG: A bunch of interrupt inputs */
167 sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32");
168 sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int");
169 sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int");
170 sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int");
171 sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int");
172 sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int");
173 sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int");
174 sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int");
175 sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int");
177 /* processor interrupt device */
179 /* the device */
180 sim_hw_parse (sd, "/mn103cpu@0x20000000");
181 sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42");
183 /* DEBUG: ACK output wired upto a glue device */
184 sim_hw_parse (sd, "/glue@0x20002000");
185 sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4");
186 sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000");
188 /* DEBUG: RESET/NMI/LEVEL wired up to a glue device */
189 sim_hw_parse (sd, "/glue@0x20004000");
190 sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12");
191 sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu");
192 sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu");
193 sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu");
195 /* REAL: The processor wired up to the real interrupt controller */
196 sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int");
197 sim_hw_parse (sd, "/mn103int > level level /mn103cpu");
198 sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu");
201 /* PAL */
203 /* the device */
204 sim_hw_parse (sd, "/pal@0x31000000");
205 sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64");
206 sim_hw_parse (sd, "/pal@0x31000000/poll? true");
208 /* DEBUG: PAL wired up to a glue device */
209 sim_hw_parse (sd, "/glue@0x31002000");
210 sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16");
211 sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000");
212 sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000");
213 sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000");
214 sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000");
215 sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000");
216 sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000");
218 /* REAL: The PAL wired up to the real interrupt controller */
219 sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int");
220 sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int");
221 sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int");
223 /* 8 and 16 bit timers */
224 sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100 0x34004000 16");
226 /* Hook timer interrupts up to interrupt controller */
227 sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int");
228 sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int");
229 sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int");
230 sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int");
231 sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int");
232 sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int");
233 sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int");
234 sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int");
235 sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int");
238 /* Serial devices 0,1,2 */
239 sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48");
240 sim_hw_parse (sd, "/mn103ser@0x34000800/poll? true");
242 /* Hook serial interrupts up to interrupt controller */
243 sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int");
244 sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int");
245 sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-1-receive /mn103int");
246 sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-1-transmit /mn103int");
247 sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-2-receive /mn103int");
248 sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-2-transmit /mn103int");
250 sim_hw_parse (sd, "/mn103iop@0x36008000/reg 0x36008000 8 0x36008020 8 0x36008040 0xc 0x36008060 8 0x36008080 8");
252 /* Memory control registers */
253 sim_do_command (sd, "memory region 0x32000020,0x30");
254 /* Cache control register */
255 sim_do_command (sd, "memory region 0x20000070,0x4");
256 /* Cache purge regions */
257 sim_do_command (sd, "memory region 0x28400000,0x800");
258 sim_do_command (sd, "memory region 0x28401000,0x800");
259 /* DMA registers */
260 sim_do_command (sd, "memory region 0x32000100,0xF");
261 sim_do_command (sd, "memory region 0x32000200,0xF");
262 sim_do_command (sd, "memory region 0x32000400,0xF");
263 sim_do_command (sd, "memory region 0x32000800,0xF");
265 else
267 if (board != NULL)
269 sim_io_eprintf (sd, "Error: Board `%s' unknown.\n", board);
270 return 0;
276 /* check for/establish the a reference program image */
277 if (sim_analyze_program (sd,
278 (STATE_PROG_ARGV (sd) != NULL
279 ? *STATE_PROG_ARGV (sd)
280 : NULL),
281 abfd) != SIM_RC_OK)
283 sim_module_uninstall (sd);
284 return 0;
287 /* establish any remaining configuration options */
288 if (sim_config (sd) != SIM_RC_OK)
290 sim_module_uninstall (sd);
291 return 0;
294 if (sim_post_argv_init (sd) != SIM_RC_OK)
296 /* Uninstall the modules to avoid memory leaks,
297 file descriptor leaks, etc. */
298 sim_module_uninstall (sd);
299 return 0;
303 /* set machine specific configuration */
304 /* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */
305 /* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */
307 /* CPU specific initialization. */
308 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
310 SIM_CPU *cpu = STATE_CPU (sd, i);
312 CPU_REG_FETCH (cpu) = mn10300_reg_fetch;
313 CPU_REG_STORE (cpu) = mn10300_reg_store;
314 CPU_PC_FETCH (cpu) = mn10300_pc_get;
315 CPU_PC_STORE (cpu) = mn10300_pc_set;
318 return sd;
321 SIM_RC
322 sim_create_inferior (SIM_DESC sd,
323 struct bfd *prog_bfd,
324 char * const *argv,
325 char * const *env)
327 memset (&State, 0, sizeof (State));
328 if (prog_bfd != NULL) {
329 PC = bfd_get_start_address (prog_bfd);
330 } else {
331 PC = 0;
333 CPU_PC_SET (STATE_CPU (sd, 0), (unsigned64) PC);
335 if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_am33_2)
336 PSW |= PSW_FE;
338 return SIM_RC_OK;
341 /* FIXME These would more efficient to use than load_mem/store_mem,
342 but need to be changed to use the memory map. */
344 static int
345 mn10300_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
347 reg_t reg = State.regs[rn];
348 uint8 *a = memory;
349 a[0] = reg;
350 a[1] = reg >> 8;
351 a[2] = reg >> 16;
352 a[3] = reg >> 24;
353 return length;
356 static int
357 mn10300_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
359 uint8 *a = memory;
360 State.regs[rn] = (a[3] << 24) + (a[2] << 16) + (a[1] << 8) + a[0];
361 return length;
364 void
365 mn10300_core_signal (SIM_DESC sd,
366 sim_cpu *cpu,
367 sim_cia cia,
368 unsigned map,
369 int nr_bytes,
370 address_word addr,
371 transfer_type transfer,
372 sim_core_signals sig)
374 const char *copy = (transfer == read_transfer ? "read" : "write");
375 address_word ip = CIA_ADDR (cia);
377 switch (sig)
379 case sim_core_unmapped_signal:
380 sim_io_eprintf (sd, "mn10300-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
381 nr_bytes, copy,
382 (unsigned long) addr, (unsigned long) ip);
383 program_interrupt(sd, cpu, cia, SIM_SIGSEGV);
384 break;
386 case sim_core_unaligned_signal:
387 sim_io_eprintf (sd, "mn10300-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
388 nr_bytes, copy,
389 (unsigned long) addr, (unsigned long) ip);
390 program_interrupt(sd, cpu, cia, SIM_SIGBUS);
391 break;
393 default:
394 sim_engine_abort (sd, cpu, cia,
395 "mn10300_core_signal - internal error - bad switch");
400 void
401 program_interrupt (SIM_DESC sd,
402 sim_cpu *cpu,
403 sim_cia cia,
404 SIM_SIGNAL sig)
406 int status;
407 struct hw *device;
408 static int in_interrupt = 0;
410 #ifdef SIM_CPU_EXCEPTION_TRIGGER
411 SIM_CPU_EXCEPTION_TRIGGER(sd,cpu,cia);
412 #endif
414 /* avoid infinite recursion */
415 if (in_interrupt)
416 sim_io_printf (sd, "ERROR: recursion in program_interrupt during software exception dispatch.");
417 else
419 in_interrupt = 1;
420 /* copy NMI handler code from dv-mn103cpu.c */
421 store_word (SP - 4, CPU_PC_GET (cpu));
422 store_half (SP - 8, PSW);
424 /* Set the SYSEF flag in NMICR by backdoor method. See
425 dv-mn103int.c:write_icr(). This is necessary because
426 software exceptions are not modelled by actually talking to
427 the interrupt controller, so it cannot set its own SYSEF
428 flag. */
429 if ((NULL != board) && (strcmp(board, BOARD_AM32) == 0))
430 store_byte (0x34000103, 0x04);
433 PSW &= ~PSW_IE;
434 SP = SP - 8;
435 CPU_PC_SET (cpu, 0x40000008);
437 in_interrupt = 0;
438 sim_engine_halt(sd, cpu, NULL, cia, sim_stopped, sig);
442 void
443 mn10300_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
445 ASSERT(cpu != NULL);
447 if(State.exc_suspended > 0)
448 sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", State.exc_suspended);
450 CPU_PC_SET (cpu, cia);
451 memcpy(State.exc_trigger_regs, State.regs, sizeof(State.exc_trigger_regs));
452 State.exc_suspended = 0;
455 void
456 mn10300_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
458 ASSERT(cpu != NULL);
460 if(State.exc_suspended > 0)
461 sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
462 State.exc_suspended, exception);
464 memcpy(State.exc_suspend_regs, State.regs, sizeof(State.exc_suspend_regs));
465 memcpy(State.regs, State.exc_trigger_regs, sizeof(State.regs));
466 CPU_PC_SET (cpu, PC); /* copy PC back from new State.regs */
467 State.exc_suspended = exception;
470 void
471 mn10300_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
473 ASSERT(cpu != NULL);
475 if(exception == 0 && State.exc_suspended > 0)
477 if(State.exc_suspended != SIGTRAP) /* warn not for breakpoints */
478 sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
479 State.exc_suspended);
481 else if(exception != 0 && State.exc_suspended > 0)
483 if(exception != State.exc_suspended)
484 sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
485 State.exc_suspended, exception);
487 memcpy(State.regs, State.exc_suspend_regs, sizeof(State.regs));
488 CPU_PC_SET (cpu, PC); /* copy PC back from new State.regs */
490 else if(exception != 0 && State.exc_suspended == 0)
492 sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
494 State.exc_suspended = 0;
497 /* This is called when an FP instruction is issued when the FP unit is
498 disabled, i.e., the FE bit of PSW is zero. It raises interrupt
499 code 0x1c0. */
500 void
501 fpu_disabled_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
503 sim_io_eprintf(sd, "FPU disabled exception\n");
504 program_interrupt (sd, cpu, cia, SIM_SIGFPE);
507 /* This is called when the FP unit is enabled but one of the
508 unimplemented insns is issued. It raises interrupt code 0x1c8. */
509 void
510 fpu_unimp_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
512 sim_io_eprintf(sd, "Unimplemented FPU instruction exception\n");
513 program_interrupt (sd, cpu, cia, SIM_SIGFPE);
516 /* This is called at the end of any FP insns that may have triggered
517 FP exceptions. If no exception is enabled, it returns immediately.
518 Otherwise, it raises an exception code 0x1d0. */
519 void
520 fpu_check_signal_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
522 if ((FPCR & EC_MASK) == 0)
523 return;
525 sim_io_eprintf(sd, "FPU %s%s%s%s%s exception\n",
526 (FPCR & EC_V) ? "V" : "",
527 (FPCR & EC_Z) ? "Z" : "",
528 (FPCR & EC_O) ? "O" : "",
529 (FPCR & EC_U) ? "U" : "",
530 (FPCR & EC_I) ? "I" : "");
531 program_interrupt (sd, cpu, cia, SIM_SIGFPE);
534 /* Convert a 32-bit single-precision FP value in the target platform
535 format to a sim_fpu value. */
536 static void
537 reg2val_32 (const void *reg, sim_fpu *val)
539 FS2FPU (*(reg_t *)reg, *val);
542 /* Round the given sim_fpu value to single precision, following the
543 target platform rounding and denormalization conventions. On
544 AM33/2.0, round_near is the only rounding mode. */
545 static int
546 round_32 (sim_fpu *val)
548 return sim_fpu_round_32 (val, sim_fpu_round_near, sim_fpu_denorm_zero);
551 /* Convert a sim_fpu value to the 32-bit single-precision target
552 representation. */
553 static void
554 val2reg_32 (const sim_fpu *val, void *reg)
556 FPU2FS (*val, *(reg_t *)reg);
559 /* Define the 32-bit single-precision conversion and rounding uniform
560 interface. */
561 const struct fp_prec_t
562 fp_single_prec = {
563 reg2val_32, round_32, val2reg_32
566 /* Convert a 64-bit double-precision FP value in the target platform
567 format to a sim_fpu value. */
568 static void
569 reg2val_64 (const void *reg, sim_fpu *val)
571 FD2FPU (*(dword *)reg, *val);
574 /* Round the given sim_fpu value to double precision, following the
575 target platform rounding and denormalization conventions. On
576 AM33/2.0, round_near is the only rounding mode. */
577 static int
578 round_64 (sim_fpu *val)
580 return sim_fpu_round_64 (val, sim_fpu_round_near, sim_fpu_denorm_zero);
583 /* Convert a sim_fpu value to the 64-bit double-precision target
584 representation. */
585 static void
586 val2reg_64 (const sim_fpu *val, void *reg)
588 FPU2FD (*val, *(dword *)reg);
591 /* Define the 64-bit single-precision conversion and rounding uniform
592 interface. */
593 const struct fp_prec_t
594 fp_double_prec = {
595 reg2val_64, round_64, val2reg_64
598 /* Define shortcuts to the uniform interface operations. */
599 #define REG2VAL(reg,val) (*ops->reg2val) (reg,val)
600 #define ROUND(val) (*ops->round) (val)
601 #define VAL2REG(val,reg) (*ops->val2reg) (val,reg)
603 /* Check whether overflow, underflow or inexact exceptions should be
604 raised. */
605 static int
606 fpu_status_ok (sim_fpu_status stat)
608 if ((stat & sim_fpu_status_overflow)
609 && (FPCR & EE_O))
610 FPCR |= EC_O;
611 else if ((stat & (sim_fpu_status_underflow | sim_fpu_status_denorm))
612 && (FPCR & EE_U))
613 FPCR |= EC_U;
614 else if ((stat & (sim_fpu_status_inexact | sim_fpu_status_rounded))
615 && (FPCR & EE_I))
616 FPCR |= EC_I;
617 else if (stat & ~ (sim_fpu_status_overflow
618 | sim_fpu_status_underflow
619 | sim_fpu_status_denorm
620 | sim_fpu_status_inexact
621 | sim_fpu_status_rounded))
622 abort ();
623 else
624 return 1;
625 return 0;
628 /* Implement a 32/64 bit reciprocal square root, signaling FP
629 exceptions when appropriate. */
630 void
631 fpu_rsqrt (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
632 const void *reg_in, void *reg_out, const struct fp_prec_t *ops)
634 sim_fpu in, med, out;
636 REG2VAL (reg_in, &in);
637 ROUND (&in);
638 FPCR &= ~ EC_MASK;
639 switch (sim_fpu_is (&in))
641 case SIM_FPU_IS_SNAN:
642 case SIM_FPU_IS_NNUMBER:
643 case SIM_FPU_IS_NINF:
644 if (FPCR & EE_V)
645 FPCR |= EC_V;
646 else
647 VAL2REG (&sim_fpu_qnan, reg_out);
648 break;
650 case SIM_FPU_IS_QNAN:
651 VAL2REG (&sim_fpu_qnan, reg_out);
652 break;
654 case SIM_FPU_IS_PINF:
655 VAL2REG (&sim_fpu_zero, reg_out);
656 break;
658 case SIM_FPU_IS_PNUMBER:
660 /* Since we don't have a function to compute rsqrt directly,
661 use sqrt and inv. */
662 sim_fpu_status stat = 0;
663 stat |= sim_fpu_sqrt (&med, &in);
664 stat |= sim_fpu_inv (&out, &med);
665 stat |= ROUND (&out);
666 if (fpu_status_ok (stat))
667 VAL2REG (&out, reg_out);
669 break;
671 case SIM_FPU_IS_NZERO:
672 case SIM_FPU_IS_PZERO:
673 if (FPCR & EE_Z)
674 FPCR |= EC_Z;
675 else
677 /* Generate an INF with the same sign. */
678 sim_fpu_inv (&out, &in);
679 VAL2REG (&out, reg_out);
681 break;
683 default:
684 abort ();
687 fpu_check_signal_exception (sd, cpu, cia);
690 static inline reg_t
691 cmp2fcc (int res)
693 switch (res)
695 case SIM_FPU_IS_SNAN:
696 case SIM_FPU_IS_QNAN:
697 return FCC_U;
699 case SIM_FPU_IS_NINF:
700 case SIM_FPU_IS_NNUMBER:
701 case SIM_FPU_IS_NDENORM:
702 return FCC_L;
704 case SIM_FPU_IS_PINF:
705 case SIM_FPU_IS_PNUMBER:
706 case SIM_FPU_IS_PDENORM:
707 return FCC_G;
709 case SIM_FPU_IS_NZERO:
710 case SIM_FPU_IS_PZERO:
711 return FCC_E;
713 default:
714 abort ();
718 /* Implement a 32/64 bit FP compare, setting the FPCR status and/or
719 exception bits as specified. */
720 void
721 fpu_cmp (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
722 const void *reg_in1, const void *reg_in2,
723 const struct fp_prec_t *ops)
725 sim_fpu m, n;
727 REG2VAL (reg_in1, &m);
728 REG2VAL (reg_in2, &n);
729 FPCR &= ~ EC_MASK;
730 FPCR &= ~ FCC_MASK;
731 ROUND (&m);
732 ROUND (&n);
733 if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n))
735 if (FPCR & EE_V)
736 FPCR |= EC_V;
737 else
738 FPCR |= FCC_U;
740 else
741 FPCR |= cmp2fcc (sim_fpu_cmp (&m, &n));
743 fpu_check_signal_exception (sd, cpu, cia);
746 /* Implement a 32/64 bit FP add, setting FP exception bits when
747 appropriate. */
748 void
749 fpu_add (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
750 const void *reg_in1, const void *reg_in2,
751 void *reg_out, const struct fp_prec_t *ops)
753 sim_fpu m, n, r;
755 REG2VAL (reg_in1, &m);
756 REG2VAL (reg_in2, &n);
757 ROUND (&m);
758 ROUND (&n);
759 FPCR &= ~ EC_MASK;
760 if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
761 || (sim_fpu_is (&m) == SIM_FPU_IS_PINF
762 && sim_fpu_is (&n) == SIM_FPU_IS_NINF)
763 || (sim_fpu_is (&m) == SIM_FPU_IS_NINF
764 && sim_fpu_is (&n) == SIM_FPU_IS_PINF))
766 if (FPCR & EE_V)
767 FPCR |= EC_V;
768 else
769 VAL2REG (&sim_fpu_qnan, reg_out);
771 else
773 sim_fpu_status stat = sim_fpu_add (&r, &m, &n);
774 stat |= ROUND (&r);
775 if (fpu_status_ok (stat))
776 VAL2REG (&r, reg_out);
779 fpu_check_signal_exception (sd, cpu, cia);
782 /* Implement a 32/64 bit FP sub, setting FP exception bits when
783 appropriate. */
784 void
785 fpu_sub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
786 const void *reg_in1, const void *reg_in2,
787 void *reg_out, const struct fp_prec_t *ops)
789 sim_fpu m, n, r;
791 REG2VAL (reg_in1, &m);
792 REG2VAL (reg_in2, &n);
793 ROUND (&m);
794 ROUND (&n);
795 FPCR &= ~ EC_MASK;
796 if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
797 || (sim_fpu_is (&m) == SIM_FPU_IS_PINF
798 && sim_fpu_is (&n) == SIM_FPU_IS_PINF)
799 || (sim_fpu_is (&m) == SIM_FPU_IS_NINF
800 && sim_fpu_is (&n) == SIM_FPU_IS_NINF))
802 if (FPCR & EE_V)
803 FPCR |= EC_V;
804 else
805 VAL2REG (&sim_fpu_qnan, reg_out);
807 else
809 sim_fpu_status stat = sim_fpu_sub (&r, &m, &n);
810 stat |= ROUND (&r);
811 if (fpu_status_ok (stat))
812 VAL2REG (&r, reg_out);
815 fpu_check_signal_exception (sd, cpu, cia);
818 /* Implement a 32/64 bit FP mul, setting FP exception bits when
819 appropriate. */
820 void
821 fpu_mul (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
822 const void *reg_in1, const void *reg_in2,
823 void *reg_out, const struct fp_prec_t *ops)
825 sim_fpu m, n, r;
827 REG2VAL (reg_in1, &m);
828 REG2VAL (reg_in2, &n);
829 ROUND (&m);
830 ROUND (&n);
831 FPCR &= ~ EC_MASK;
832 if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
833 || (sim_fpu_is_infinity (&m) && sim_fpu_is_zero (&n))
834 || (sim_fpu_is_zero (&m) && sim_fpu_is_infinity (&n)))
836 if (FPCR & EE_V)
837 FPCR |= EC_V;
838 else
839 VAL2REG (&sim_fpu_qnan, reg_out);
841 else
843 sim_fpu_status stat = sim_fpu_mul (&r, &m, &n);
844 stat |= ROUND (&r);
845 if (fpu_status_ok (stat))
846 VAL2REG (&r, reg_out);
849 fpu_check_signal_exception (sd, cpu, cia);
852 /* Implement a 32/64 bit FP div, setting FP exception bits when
853 appropriate. */
854 void
855 fpu_div (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
856 const void *reg_in1, const void *reg_in2,
857 void *reg_out, const struct fp_prec_t *ops)
859 sim_fpu m, n, r;
861 REG2VAL (reg_in1, &m);
862 REG2VAL (reg_in2, &n);
863 ROUND (&m);
864 ROUND (&n);
865 FPCR &= ~ EC_MASK;
866 if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
867 || (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n))
868 || (sim_fpu_is_zero (&m) && sim_fpu_is_zero (&n)))
870 if (FPCR & EE_V)
871 FPCR |= EC_V;
872 else
873 VAL2REG (&sim_fpu_qnan, reg_out);
875 else if (sim_fpu_is_number (&m) && sim_fpu_is_zero (&n)
876 && (FPCR & EE_Z))
877 FPCR |= EC_Z;
878 else
880 sim_fpu_status stat = sim_fpu_div (&r, &m, &n);
881 stat |= ROUND (&r);
882 if (fpu_status_ok (stat))
883 VAL2REG (&r, reg_out);
886 fpu_check_signal_exception (sd, cpu, cia);
889 /* Implement a 32/64 bit FP madd, setting FP exception bits when
890 appropriate. */
891 void
892 fpu_fmadd (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
893 const void *reg_in1, const void *reg_in2, const void *reg_in3,
894 void *reg_out, const struct fp_prec_t *ops)
896 sim_fpu m1, m2, m, n, r;
898 REG2VAL (reg_in1, &m1);
899 REG2VAL (reg_in2, &m2);
900 REG2VAL (reg_in3, &n);
901 ROUND (&m1);
902 ROUND (&m2);
903 ROUND (&n);
904 FPCR &= ~ EC_MASK;
905 if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
906 || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
907 || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
909 invalid_operands:
910 if (FPCR & EE_V)
911 FPCR |= EC_V;
912 else
913 VAL2REG (&sim_fpu_qnan, reg_out);
915 else
917 sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
919 if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
920 && sim_fpu_sign (&m) != sim_fpu_sign (&n))
921 goto invalid_operands;
923 stat |= sim_fpu_add (&r, &m, &n);
924 stat |= ROUND (&r);
925 if (fpu_status_ok (stat))
926 VAL2REG (&r, reg_out);
929 fpu_check_signal_exception (sd, cpu, cia);
932 /* Implement a 32/64 bit FP msub, setting FP exception bits when
933 appropriate. */
934 void
935 fpu_fmsub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
936 const void *reg_in1, const void *reg_in2, const void *reg_in3,
937 void *reg_out, const struct fp_prec_t *ops)
939 sim_fpu m1, m2, m, n, r;
941 REG2VAL (reg_in1, &m1);
942 REG2VAL (reg_in2, &m2);
943 REG2VAL (reg_in3, &n);
944 ROUND (&m1);
945 ROUND (&m2);
946 ROUND (&n);
947 FPCR &= ~ EC_MASK;
948 if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
949 || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
950 || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
952 invalid_operands:
953 if (FPCR & EE_V)
954 FPCR |= EC_V;
955 else
956 VAL2REG (&sim_fpu_qnan, reg_out);
958 else
960 sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
962 if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
963 && sim_fpu_sign (&m) == sim_fpu_sign (&n))
964 goto invalid_operands;
966 stat |= sim_fpu_sub (&r, &m, &n);
967 stat |= ROUND (&r);
968 if (fpu_status_ok (stat))
969 VAL2REG (&r, reg_out);
972 fpu_check_signal_exception (sd, cpu, cia);
975 /* Implement a 32/64 bit FP nmadd, setting FP exception bits when
976 appropriate. */
977 void
978 fpu_fnmadd (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
979 const void *reg_in1, const void *reg_in2, const void *reg_in3,
980 void *reg_out, const struct fp_prec_t *ops)
982 sim_fpu m1, m2, m, mm, n, r;
984 REG2VAL (reg_in1, &m1);
985 REG2VAL (reg_in2, &m2);
986 REG2VAL (reg_in3, &n);
987 ROUND (&m1);
988 ROUND (&m2);
989 ROUND (&n);
990 FPCR &= ~ EC_MASK;
991 if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
992 || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
993 || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
995 invalid_operands:
996 if (FPCR & EE_V)
997 FPCR |= EC_V;
998 else
999 VAL2REG (&sim_fpu_qnan, reg_out);
1001 else
1003 sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
1005 if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
1006 && sim_fpu_sign (&m) == sim_fpu_sign (&n))
1007 goto invalid_operands;
1009 stat |= sim_fpu_neg (&mm, &m);
1010 stat |= sim_fpu_add (&r, &mm, &n);
1011 stat |= ROUND (&r);
1012 if (fpu_status_ok (stat))
1013 VAL2REG (&r, reg_out);
1016 fpu_check_signal_exception (sd, cpu, cia);
1019 /* Implement a 32/64 bit FP nmsub, setting FP exception bits when
1020 appropriate. */
1021 void
1022 fpu_fnmsub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
1023 const void *reg_in1, const void *reg_in2, const void *reg_in3,
1024 void *reg_out, const struct fp_prec_t *ops)
1026 sim_fpu m1, m2, m, mm, n, r;
1028 REG2VAL (reg_in1, &m1);
1029 REG2VAL (reg_in2, &m2);
1030 REG2VAL (reg_in3, &n);
1031 ROUND (&m1);
1032 ROUND (&m2);
1033 ROUND (&n);
1034 FPCR &= ~ EC_MASK;
1035 if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
1036 || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
1037 || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
1039 invalid_operands:
1040 if (FPCR & EE_V)
1041 FPCR |= EC_V;
1042 else
1043 VAL2REG (&sim_fpu_qnan, reg_out);
1045 else
1047 sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
1049 if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
1050 && sim_fpu_sign (&m) != sim_fpu_sign (&n))
1051 goto invalid_operands;
1053 stat |= sim_fpu_neg (&mm, &m);
1054 stat |= sim_fpu_sub (&r, &mm, &n);
1055 stat |= ROUND (&r);
1056 if (fpu_status_ok (stat))
1057 VAL2REG (&r, reg_out);
1060 fpu_check_signal_exception (sd, cpu, cia);