1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
9 This file is part of GAS, the GNU Assembler.
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "safe-ctype.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
38 #include "dw2gencfi.h"
41 #include "dwarf2dbg.h"
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
47 /* This structure holds the unwinding state. */
52 symbolS
* table_entry
;
53 symbolS
* personality_routine
;
54 int personality_index
;
55 /* The segment containing the function. */
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes
;
62 /* The number of bytes pushed to the stack. */
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset
;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
72 /* Nonzero if an unwind_setfp directive has been seen. */
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored
:1;
78 /* Whether --fdpic was given. */
83 /* Results from operand parsing worker functions. */
87 PARSE_OPERAND_SUCCESS
,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result
;
99 /* Types of processor to assemble for. */
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
125 #endif /* ifndef FPU_DEFAULT */
127 #define streq(a, b) (strcmp (a, b) == 0)
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant
;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used
;
136 static arm_feature_set thumb_arch_used
;
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26
= FALSE
;
140 static int atpcs
= FALSE
;
141 static int support_interwork
= FALSE
;
142 static int uses_apcs_float
= FALSE
;
143 static int pic_code
= FALSE
;
144 static int fix_v4bx
= FALSE
;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated
= TRUE
;
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax
= FALSE
;
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set
*legacy_cpu
= NULL
;
158 static const arm_feature_set
*legacy_fpu
= NULL
;
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set
*mcpu_cpu_opt
= NULL
;
162 static arm_feature_set
*mcpu_ext_opt
= NULL
;
163 static const arm_feature_set
*mcpu_fpu_opt
= NULL
;
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set
*march_cpu_opt
= NULL
;
167 static arm_feature_set
*march_ext_opt
= NULL
;
168 static const arm_feature_set
*march_fpu_opt
= NULL
;
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set
*mfpu_opt
= NULL
;
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default
= FPU_DEFAULT
;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED
= FPU_ARCH_VFP_V1
;
176 static const arm_feature_set fpu_arch_vfp_v2
= FPU_ARCH_VFP_V2
;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED
= FPU_ARCH_VFP_V3
;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED
= FPU_ARCH_NEON_V1
;
179 static const arm_feature_set fpu_arch_fpa
= FPU_ARCH_FPA
;
180 static const arm_feature_set fpu_any_hard
= FPU_ANY_HARD
;
182 static const arm_feature_set fpu_arch_maverick
= FPU_ARCH_MAVERICK
;
184 static const arm_feature_set fpu_endian_pure
= FPU_ARCH_ENDIAN_PURE
;
187 static const arm_feature_set cpu_default
= CPU_DEFAULT
;
190 static const arm_feature_set arm_ext_v1
= ARM_FEATURE_CORE_LOW (ARM_EXT_V1
);
191 static const arm_feature_set arm_ext_v2
= ARM_FEATURE_CORE_LOW (ARM_EXT_V2
);
192 static const arm_feature_set arm_ext_v2s
= ARM_FEATURE_CORE_LOW (ARM_EXT_V2S
);
193 static const arm_feature_set arm_ext_v3
= ARM_FEATURE_CORE_LOW (ARM_EXT_V3
);
194 static const arm_feature_set arm_ext_v3m
= ARM_FEATURE_CORE_LOW (ARM_EXT_V3M
);
195 static const arm_feature_set arm_ext_v4
= ARM_FEATURE_CORE_LOW (ARM_EXT_V4
);
196 static const arm_feature_set arm_ext_v4t
= ARM_FEATURE_CORE_LOW (ARM_EXT_V4T
);
197 static const arm_feature_set arm_ext_v5
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5
);
198 static const arm_feature_set arm_ext_v4t_5
=
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T
| ARM_EXT_V5
);
200 static const arm_feature_set arm_ext_v5t
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5T
);
201 static const arm_feature_set arm_ext_v5e
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5E
);
202 static const arm_feature_set arm_ext_v5exp
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
);
203 static const arm_feature_set arm_ext_v5j
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5J
);
204 static const arm_feature_set arm_ext_v6
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6
);
205 static const arm_feature_set arm_ext_v6k
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
);
206 static const arm_feature_set arm_ext_v6t2
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2
);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2
=
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
| ARM_EXT_V6T2
);
210 static const arm_feature_set arm_ext_v6_notm
=
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM
);
212 static const arm_feature_set arm_ext_v6_dsp
=
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP
);
214 static const arm_feature_set arm_ext_barrier
=
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER
);
216 static const arm_feature_set arm_ext_msr
=
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR
);
218 static const arm_feature_set arm_ext_div
= ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
);
219 static const arm_feature_set arm_ext_v7
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7
);
220 static const arm_feature_set arm_ext_v7a
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
);
221 static const arm_feature_set arm_ext_v7r
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
);
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7M
);
225 static const arm_feature_set arm_ext_v8
= ARM_FEATURE_CORE_LOW (ARM_EXT_V8
);
226 static const arm_feature_set arm_ext_m
=
227 ARM_FEATURE_CORE (ARM_EXT_V6M
| ARM_EXT_V7M
,
228 ARM_EXT2_V8M
| ARM_EXT2_V8M_MAIN
);
229 static const arm_feature_set arm_ext_mp
= ARM_FEATURE_CORE_LOW (ARM_EXT_MP
);
230 static const arm_feature_set arm_ext_sec
= ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
);
231 static const arm_feature_set arm_ext_os
= ARM_FEATURE_CORE_LOW (ARM_EXT_OS
);
232 static const arm_feature_set arm_ext_adiv
= ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
);
233 static const arm_feature_set arm_ext_virt
= ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
);
234 static const arm_feature_set arm_ext_pan
= ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN
);
235 static const arm_feature_set arm_ext_v8m
= ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M
);
236 static const arm_feature_set arm_ext_v8m_main
=
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN
);
238 static const arm_feature_set arm_ext_v8_1m_main
=
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN
);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only
=
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M
| ARM_EXT2_V8M_MAIN
);
243 static const arm_feature_set arm_ext_v6t2_v8m
=
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M
);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics
=
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS
);
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp
=
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E
| ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
);
253 static const arm_feature_set arm_ext_ras
=
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS
);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16
=
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
);
258 static const arm_feature_set arm_ext_fp16_fml
=
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML
);
260 static const arm_feature_set arm_ext_v8_2
=
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A
);
262 static const arm_feature_set arm_ext_v8_3
=
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A
);
264 static const arm_feature_set arm_ext_sb
=
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
);
266 static const arm_feature_set arm_ext_predres
=
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
);
269 static const arm_feature_set arm_arch_any
= ARM_ANY
;
271 static const arm_feature_set fpu_any
= FPU_ANY
;
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED
= ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2
= ARM_ARCH_THUMB2
;
275 static const arm_feature_set arm_arch_none
= ARM_ARCH_NONE
;
277 static const arm_feature_set arm_cext_iwmmxt2
=
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
);
279 static const arm_feature_set arm_cext_iwmmxt
=
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
);
281 static const arm_feature_set arm_cext_xscale
=
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
);
283 static const arm_feature_set arm_cext_maverick
=
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
);
285 static const arm_feature_set fpu_fpa_ext_v1
=
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1
);
287 static const arm_feature_set fpu_fpa_ext_v2
=
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2
);
289 static const arm_feature_set fpu_vfp_ext_v1xd
=
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD
);
291 static const arm_feature_set fpu_vfp_ext_v1
=
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1
);
293 static const arm_feature_set fpu_vfp_ext_v2
=
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2
);
295 static const arm_feature_set fpu_vfp_ext_v3xd
=
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD
);
297 static const arm_feature_set fpu_vfp_ext_v3
=
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3
);
299 static const arm_feature_set fpu_vfp_ext_d32
=
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32
);
301 static const arm_feature_set fpu_neon_ext_v1
=
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext
=
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_VFP_EXT_V3
);
305 static const arm_feature_set mve_ext
=
306 ARM_FEATURE_COPROC (FPU_MVE
);
307 static const arm_feature_set mve_fp_ext
=
308 ARM_FEATURE_COPROC (FPU_MVE_FP
);
310 static const arm_feature_set fpu_vfp_fp16
=
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16
);
312 static const arm_feature_set fpu_neon_ext_fma
=
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA
);
315 static const arm_feature_set fpu_vfp_ext_fma
=
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA
);
317 static const arm_feature_set fpu_vfp_ext_armv8
=
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8
);
319 static const arm_feature_set fpu_vfp_ext_armv8xd
=
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD
);
321 static const arm_feature_set fpu_neon_ext_armv8
=
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8
);
323 static const arm_feature_set fpu_crypto_ext_armv8
=
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8
);
325 static const arm_feature_set crc_ext_armv8
=
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
);
327 static const arm_feature_set fpu_neon_ext_v8_1
=
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA
);
329 static const arm_feature_set fpu_neon_ext_dotprod
=
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD
);
332 static int mfloat_abi_opt
= -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
335 static arm_feature_set selected_arch
= ARM_ARCH_NONE
;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
338 static arm_feature_set selected_ext
= ARM_ARCH_NONE
;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
342 static arm_feature_set selected_cpu
= ARM_ARCH_NONE
;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu
= FPU_NONE
;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch
= ARM_ARCH_NONE
;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name
[20];
350 extern FLONUM_TYPE generic_floating_point_number
;
352 /* Return if no cpu was selected on command-line. */
354 no_cpu_selected (void)
356 return ARM_FEATURE_EQUAL (selected_cpu
, arm_arch_none
);
361 static int meabi_flags
= EABI_DEFAULT
;
363 static int meabi_flags
= EF_ARM_EABI_UNKNOWN
;
366 static int attributes_set_explicitly
[NUM_KNOWN_OBJ_ATTRIBUTES
];
371 return (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
);
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS
* GOT_symbol
;
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
384 static int thumb_mode
= 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
393 IMPLICIT_IT_MODE_NEVER
= 0x00,
394 IMPLICIT_IT_MODE_ARM
= 0x01,
395 IMPLICIT_IT_MODE_THUMB
= 0x02,
396 IMPLICIT_IT_MODE_ALWAYS
= (IMPLICIT_IT_MODE_ARM
| IMPLICIT_IT_MODE_THUMB
)
398 static int implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
412 Important differences from the old Thumb mode:
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
423 static bfd_boolean unified_syntax
= FALSE
;
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars
[] = "#[]{}";
444 enum neon_el_type type
;
448 #define NEON_MAX_TYPE_ELS 4
452 struct neon_type_el el
[NEON_MAX_TYPE_ELS
];
456 enum pred_instruction_type
462 IF_INSIDE_IT_LAST_INSN
, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN
, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN
, /* The IT insn has been parsed. */
467 VPT_INSN
, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN
, /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN
/* MVE instruction that is non-predicable. */
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
480 unsigned long instruction
;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
488 struct neon_type vectype
;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
497 bfd_reloc_code_real_type type
;
500 } relocs
[ARM_IT_MAX_RELOCS
];
502 enum pred_instruction_type pred_insn_type
;
508 struct neon_type_el vectype
;
509 unsigned present
: 1; /* Operand present. */
510 unsigned isreg
: 1; /* Operand was a register. */
511 unsigned immisreg
: 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar
: 2; /* Operand is a (SIMD) scalar:
517 unsigned immisalign
: 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat
: 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm
: 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec
: 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad
: 1; /* Operand is SIMD quad register. */
524 unsigned issingle
: 1; /* Operand is VFP single-precision register. */
525 unsigned iszr
: 1; /* Operand is ZR register. */
526 unsigned hasreloc
: 1; /* Operand has relocation suffix. */
527 unsigned writeback
: 1; /* Operand has trailing ! */
528 unsigned preind
: 1; /* Preindexed address. */
529 unsigned postind
: 1; /* Postindexed address. */
530 unsigned negative
: 1; /* Index register was negated. */
531 unsigned shifted
: 1; /* Shift applied to operation. */
532 unsigned shift_kind
: 3; /* Shift operation (enum shift_kind). */
533 } operands
[ARM_IT_MAX_OPERANDS
];
536 static struct arm_it inst
;
538 #define NUM_FLOAT_VALS 8
540 const char * fp_const
[] =
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
545 LITTLENUM_TYPE fp_values
[NUM_FLOAT_VALS
][MAX_LITTLENUMS
];
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
561 #define DOUBLE_LOAD_FLAG 0x00000001
565 const char * template_name
;
569 #define COND_ALWAYS 0xE
573 const char * template_name
;
577 struct asm_barrier_opt
579 const char * template_name
;
581 const arm_feature_set arch
;
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
596 bfd_reloc_code_real_type reloc
;
601 VFP_REG_Sd
, VFP_REG_Sm
, VFP_REG_Sn
,
602 VFP_REG_Dd
, VFP_REG_Dm
, VFP_REG_Dn
607 VFP_LDSTMIA
, VFP_LDSTMDB
, VFP_LDSTMIAX
, VFP_LDSTMDBX
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
614 struct neon_typed_alias
616 unsigned char defined
;
618 struct neon_type_el eltype
;
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
662 unsigned char builtin
;
663 struct neon_typed_alias
* neon
;
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs
[] =
669 [REG_TYPE_RN
] = N_("ARM register expected"),
670 [REG_TYPE_CP
] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN
] = N_("co-processor register expected"),
672 [REG_TYPE_FN
] = N_("FPA register expected"),
673 [REG_TYPE_VFS
] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD
] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ
] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD
] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ
] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD
] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ
] = N_("VFP single, double or Neon quad precision register"
681 [REG_TYPE_VFC
] = N_("VFP system register expected"),
682 [REG_TYPE_MVF
] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD
] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX
] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX
] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX
] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC
] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR
] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC
] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG
] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE
] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ
] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB
] = N_("")
696 /* Some well known registers that we refer to directly elsewhere. */
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
708 /* Basic string to match. */
709 const char * template_name
;
711 /* Parameters to instruction. */
712 unsigned int operands
[8];
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag
: 4;
717 /* Basic instruction code. */
720 /* Thumb-format instruction code. */
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set
* avariant
;
725 const arm_feature_set
* tvariant
;
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode
) (void);
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode
) (void);
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred
: 1;
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
753 #define T2_SUBS_PC_LR 0xf3de8f00
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
770 /* Codes to distinguish the arithmetic instructions. */
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
850 #define T_OPCODE_BRANCH 0xe000
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
905 static struct hash_control
* arm_ops_hsh
;
906 static struct hash_control
* arm_cond_hsh
;
907 static struct hash_control
* arm_vcond_hsh
;
908 static struct hash_control
* arm_shift_hsh
;
909 static struct hash_control
* arm_psr_hsh
;
910 static struct hash_control
* arm_v7m_psr_hsh
;
911 static struct hash_control
* arm_reg_hsh
;
912 static struct hash_control
* arm_reloc_hsh
;
913 static struct hash_control
* arm_barrier_opt_hsh
;
915 /* Stuff needed to resolve the label ambiguity
924 symbolS
* last_label_seen
;
925 static int label_is_thumb_function_name
= FALSE
;
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
933 expressionS literals
[MAX_LITERAL_POOL_SIZE
];
934 unsigned int next_free_entry
;
940 struct dwarf2_line_info locs
[MAX_LITERAL_POOL_SIZE
];
942 struct literal_pool
* next
;
943 unsigned int alignment
;
946 /* Pointer to a linked list of literal pools. */
947 literal_pool
* list_of_pools
= NULL
;
949 typedef enum asmfunc_states
952 WAITING_ASMFUNC_NAME
,
956 static asmfunc_states asmfunc_state
= OUTSIDE_ASMFUNC
;
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
961 static struct current_pred now_pred
;
965 now_pred_compatible (int cond
)
967 return (cond
& ~1) == (now_pred
.cc
& ~1);
971 conditional_insn (void)
973 return inst
.cond
!= COND_ALWAYS
;
976 static int in_pred_block (void);
978 static int handle_pred_state (void);
980 static void force_automatic_it_block_close (void);
982 static void it_fsm_post_encode (void);
984 #define set_pred_insn_type(type) \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
993 #define set_pred_insn_type_nonvoid(type, failret) \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
1002 #define set_pred_insn_type_last() \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars
[] = "@";
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars
[] = "#";
1027 char arm_line_separator_chars
[] = ";";
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS
[] = "eE";
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1037 const char FLT_CHARS
[] = "rRsSfFdDxXeEpP";
1039 /* Prefix characters that indicate the start of an immediate
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1043 /* Separator character handling. */
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1048 skip_past_char (char ** str
, char c
)
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str
);
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1064 /* Arithmetic expressions (possibly involving symbols). */
1066 /* Return TRUE if anything in the expression is a bignum. */
1069 walk_no_bignums (symbolS
* sp
)
1071 if (symbol_get_value_expression (sp
)->X_op
== O_big
)
1074 if (symbol_get_value_expression (sp
)->X_add_symbol
)
1076 return (walk_no_bignums (symbol_get_value_expression (sp
)->X_add_symbol
)
1077 || (symbol_get_value_expression (sp
)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp
)->X_op_symbol
)));
1084 static bfd_boolean in_my_get_expression
= FALSE
;
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1095 my_get_expression (expressionS
* ep
, char ** str
, int prefix_mode
)
1099 /* In unified syntax, all prefixes are optional. */
1101 prefix_mode
= (prefix_mode
== GE_OPT_PREFIX_BIG
) ? prefix_mode
1104 switch (prefix_mode
)
1106 case GE_NO_PREFIX
: break;
1108 if (!is_immediate_prefix (**str
))
1110 inst
.error
= _("immediate expression requires a # prefix");
1116 case GE_OPT_PREFIX_BIG
:
1117 if (is_immediate_prefix (**str
))
1124 memset (ep
, 0, sizeof (expressionS
));
1126 save_in
= input_line_pointer
;
1127 input_line_pointer
= *str
;
1128 in_my_get_expression
= TRUE
;
1130 in_my_get_expression
= FALSE
;
1132 if (ep
->X_op
== O_illegal
|| ep
->X_op
== O_absent
)
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str
= input_line_pointer
;
1136 input_line_pointer
= save_in
;
1137 if (inst
.error
== NULL
)
1138 inst
.error
= (ep
->X_op
== O_absent
1139 ? _("missing expression") :_("bad expression"));
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode
!= GE_OPT_PREFIX_BIG
1147 && (ep
->X_op
== O_big
1148 || (ep
->X_add_symbol
1149 && (walk_no_bignums (ep
->X_add_symbol
)
1151 && walk_no_bignums (ep
->X_op_symbol
))))))
1153 inst
.error
= _("invalid constant");
1154 *str
= input_line_pointer
;
1155 input_line_pointer
= save_in
;
1159 *str
= input_line_pointer
;
1160 input_line_pointer
= save_in
;
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1179 md_atof (int type
, char * litP
, int * sizeP
)
1182 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
1214 return _("Unrecognized or unsupported floating point constant");
1217 t
= atof_ieee (input_line_pointer
, type
, words
);
1219 input_line_pointer
= t
;
1220 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
1222 if (target_big_endian
)
1224 for (i
= 0; i
< prec
; i
++)
1226 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1227 litP
+= sizeof (LITTLENUM_TYPE
);
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
1233 for (i
= prec
- 1; i
>= 0; i
--)
1235 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1236 litP
+= sizeof (LITTLENUM_TYPE
);
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i
= 0; i
< prec
; i
+= 2)
1243 md_number_to_chars (litP
, (valueT
) words
[i
+ 1],
1244 sizeof (LITTLENUM_TYPE
));
1245 md_number_to_chars (litP
+ sizeof (LITTLENUM_TYPE
),
1246 (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1247 litP
+= 2 * sizeof (LITTLENUM_TYPE
);
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1258 md_operand (expressionS
* exp
)
1260 if (in_my_get_expression
)
1261 exp
->X_op
= O_illegal
;
1264 /* Immediate values. */
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1272 immediate_for_directive (int *val
)
1275 exp
.X_op
= O_illegal
;
1277 if (is_immediate_prefix (*input_line_pointer
))
1279 input_line_pointer
++;
1283 if (exp
.X_op
!= O_constant
)
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1289 *val
= exp
.X_add_number
;
1294 /* Register parsing. */
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1301 static struct reg_entry
*
1302 arm_reg_parse_multi (char **ccp
)
1306 struct reg_entry
*reg
;
1308 skip_whitespace (start
);
1310 #ifdef REGISTER_PREFIX
1311 if (*start
!= REGISTER_PREFIX
)
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start
== OPTIONAL_REGISTER_PREFIX
)
1321 if (!ISALPHA (*p
) || !is_name_beginner (*p
))
1326 while (ISALPHA (*p
) || ISDIGIT (*p
) || *p
== '_');
1328 reg
= (struct reg_entry
*) hash_find_n (arm_reg_hsh
, start
, p
- start
);
1338 arm_reg_alt_syntax (char **ccp
, char *start
, struct reg_entry
*reg
,
1339 enum arm_reg_type type
)
1341 /* Alternative syntaxes are accepted for a few register classes. */
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg
&& reg
->type
== REG_TYPE_CN
)
1354 /* For backward compatibility, a bare number is valid here. */
1356 unsigned long processor
= strtoul (start
, ccp
, 10);
1357 if (*ccp
!= start
&& processor
<= 15)
1362 case REG_TYPE_MMXWC
:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg
&& reg
->type
== REG_TYPE_MMXWCG
)
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1380 arm_reg_parse (char **ccp
, enum arm_reg_type type
)
1383 struct reg_entry
*reg
= arm_reg_parse_multi (ccp
);
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg
&& reg
->neon
&& (reg
->neon
->defined
& NTA_HASINDEX
))
1390 if (reg
&& reg
->type
== type
)
1393 if ((ret
= arm_reg_alt_syntax (ccp
, start
, reg
, type
)) != FAIL
)
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1408 Can all be legally parsed by this function.
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1415 parse_neon_type (struct neon_type
*type
, char **str
)
1422 while (type
->elems
< NEON_MAX_TYPE_ELS
)
1424 enum neon_el_type thistype
= NT_untyped
;
1425 unsigned thissize
= -1u;
1432 /* Just a size without an explicit type. */
1436 switch (TOLOWER (*ptr
))
1438 case 'i': thistype
= NT_integer
; break;
1439 case 'f': thistype
= NT_float
; break;
1440 case 'p': thistype
= NT_poly
; break;
1441 case 's': thistype
= NT_signed
; break;
1442 case 'u': thistype
= NT_unsigned
; break;
1444 thistype
= NT_float
;
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr
);
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype
== NT_float
&& !ISDIGIT (*ptr
))
1461 thissize
= strtoul (ptr
, &ptr
, 10);
1463 if (thissize
!= 8 && thissize
!= 16 && thissize
!= 32
1466 as_bad (_("bad size %d in type specifier"), thissize
);
1474 type
->el
[type
->elems
].type
= thistype
;
1475 type
->el
[type
->elems
].size
= thissize
;
1480 /* Empty/missing type is not a successful parse. */
1481 if (type
->elems
== 0)
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1495 first_error (const char *err
)
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1503 parse_neon_operand_type (struct neon_type_el
*vectype
, char **ccp
)
1506 struct neon_type optype
;
1510 if (parse_neon_type (&optype
, &str
) == SUCCESS
)
1512 if (optype
.elems
== 1)
1513 *vectype
= optype
.el
[0];
1516 first_error (_("only one type should be specified for operand"));
1522 first_error (_("vector type expected"));
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1540 /* Record a use of the given feature. */
1542 record_feature_use (const arm_feature_set
*feature
)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
, *feature
);
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, *feature
);
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1553 mark_feature_used (const arm_feature_set
*feature
)
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1558 if (((feature
== &mve_ext
) || (feature
== &mve_fp_ext
))
1559 && ARM_CPU_IS_ANY (cpu_variant
))
1561 first_error (BAD_MVE_AUTO
);
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
1568 /* Add the appropriate architecture feature for the barrier option used.
1570 record_feature_use (feature
);
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1581 parse_typed_reg_or_scalar (char **ccp
, enum arm_reg_type type
,
1582 enum arm_reg_type
*rtype
,
1583 struct neon_typed_alias
*typeinfo
)
1586 struct reg_entry
*reg
= arm_reg_parse_multi (&str
);
1587 struct neon_typed_alias atype
;
1588 struct neon_type_el parsetype
;
1592 atype
.eltype
.type
= NT_invtype
;
1593 atype
.eltype
.size
= -1;
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1599 int altreg
= arm_reg_alt_syntax (&str
, *ccp
, reg
, type
);
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type
== REG_TYPE_NDQ
1609 && (reg
->type
== REG_TYPE_NQ
|| reg
->type
== REG_TYPE_VFD
))
1610 || (type
== REG_TYPE_VFSD
1611 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1612 || (type
== REG_TYPE_NSDQ
1613 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
1614 || reg
->type
== REG_TYPE_NQ
))
1615 || (type
== REG_TYPE_NSD
1616 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1617 || (type
== REG_TYPE_MMXWC
1618 && (reg
->type
== REG_TYPE_MMXWCG
)))
1619 type
= (enum arm_reg_type
) reg
->type
;
1621 if (type
== REG_TYPE_MQ
)
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
1626 if (!reg
|| reg
->type
!= REG_TYPE_NQ
)
1629 if (reg
->number
> 14 && !mark_feature_used (&fpu_vfp_ext_d32
))
1631 first_error (_("expected MVE register [q0..q7]"));
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
1637 && (type
== REG_TYPE_NQ
))
1641 if (type
!= reg
->type
)
1647 if (parse_neon_operand_type (&parsetype
, &str
) == SUCCESS
)
1649 if ((atype
.defined
& NTA_HASTYPE
) != 0)
1651 first_error (_("can't redefine type for operand"));
1654 atype
.defined
|= NTA_HASTYPE
;
1655 atype
.eltype
= parsetype
;
1658 if (skip_past_char (&str
, '[') == SUCCESS
)
1660 if (type
!= REG_TYPE_VFD
1661 && !(type
== REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8_2
))
1663 && !(type
== REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)))
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
1667 first_error (_("only D and Q registers may be indexed"));
1669 first_error (_("only D registers may be indexed"));
1673 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1675 first_error (_("can't change index for operand"));
1679 atype
.defined
|= NTA_HASINDEX
;
1681 if (skip_past_char (&str
, ']') == SUCCESS
)
1682 atype
.index
= NEON_ALL_LANES
;
1687 my_get_expression (&exp
, &str
, GE_NO_PREFIX
);
1689 if (exp
.X_op
!= O_constant
)
1691 first_error (_("constant expression required"));
1695 if (skip_past_char (&str
, ']') == FAIL
)
1698 atype
.index
= exp
.X_add_number
;
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1721 arm_typed_reg_parse (char **ccp
, enum arm_reg_type type
,
1722 enum arm_reg_type
*rtype
, struct neon_type_el
*vectype
)
1724 struct neon_typed_alias atype
;
1726 int reg
= parse_typed_reg_or_scalar (&str
, type
, rtype
, &atype
);
1731 /* Do not allow regname(... to parse as a register. */
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1738 first_error (_("register operand expected, but got scalar"));
1743 *vectype
= atype
.eltype
;
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1758 parse_scalar (char **ccp
, int elsize
, struct neon_type_el
*type
, enum
1759 arm_reg_type reg_type
)
1763 struct neon_typed_alias atype
;
1766 reg
= parse_typed_reg_or_scalar (&str
, reg_type
, NULL
, &atype
);
1784 if (reg
== FAIL
|| (atype
.defined
& NTA_HASINDEX
) == 0)
1787 if (reg_type
!= REG_TYPE_MQ
&& atype
.index
== NEON_ALL_LANES
)
1789 first_error (_("scalar must have an index"));
1792 else if (atype
.index
>= reg_size
/ elsize
)
1794 first_error (_("scalar index out of range"));
1799 *type
= atype
.eltype
;
1803 return reg
* 16 + atype
.index
;
1806 /* Types of registers in a list. */
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1822 parse_reg_list (char ** strp
, enum reg_list_els etype
)
1828 gas_assert (etype
== REGLIST_RN
|| etype
== REGLIST_CLRM
);
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1833 skip_whitespace (str
);
1846 const char apsr_str
[] = "apsr";
1847 int apsr_str_len
= strlen (apsr_str
);
1849 reg
= arm_reg_parse (&str
, REGLIST_RN
);
1850 if (etype
== REGLIST_CLRM
)
1852 if (reg
== REG_SP
|| reg
== REG_PC
)
1854 else if (reg
== FAIL
1855 && !strncasecmp (str
, apsr_str
, apsr_str_len
)
1856 && !ISALPHA (*(str
+ apsr_str_len
)))
1859 str
+= apsr_str_len
;
1864 first_error (_("r0-r12, lr or APSR expected"));
1868 else /* etype == REGLIST_RN. */
1872 first_error (_(reg_expected_msgs
[REGLIST_RN
]));
1883 first_error (_("bad range in register list"));
1887 for (i
= cur_reg
+ 1; i
< reg
; i
++)
1889 if (range
& (1 << i
))
1891 (_("Warning: duplicated register (r%d) in register list"),
1899 if (range
& (1 << reg
))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1902 else if (reg
<= cur_reg
)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1908 while (skip_past_comma (&str
) != FAIL
1909 || (in_range
= 1, *str
++ == '-'));
1912 if (skip_past_char (&str
, '}') == FAIL
)
1914 first_error (_("missing `}'"));
1918 else if (etype
== REGLIST_RN
)
1922 if (my_get_expression (&exp
, &str
, GE_NO_PREFIX
))
1925 if (exp
.X_op
== O_constant
)
1927 if (exp
.X_add_number
1928 != (exp
.X_add_number
& 0x0000ffff))
1930 inst
.error
= _("invalid register mask");
1934 if ((range
& exp
.X_add_number
) != 0)
1936 int regno
= range
& exp
.X_add_number
;
1939 regno
= (1 << regno
) - 1;
1941 (_("Warning: duplicated register (r%d) in register list"),
1945 range
|= exp
.X_add_number
;
1949 if (inst
.relocs
[0].type
!= 0)
1951 inst
.error
= _("expression too complex");
1955 memcpy (&inst
.relocs
[0].exp
, &exp
, sizeof (expressionS
));
1956 inst
.relocs
[0].type
= BFD_RELOC_ARM_MULTI
;
1957 inst
.relocs
[0].pc_rel
= 0;
1961 if (*str
== '|' || *str
== '+')
1967 while (another_range
);
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1989 parse_vfp_reg_list (char **ccp
, unsigned int *pbase
, enum reg_list_els etype
,
1990 bfd_boolean
*partial_match
)
1995 enum arm_reg_type regtype
= (enum arm_reg_type
) 0;
1999 unsigned long mask
= 0;
2001 bfd_boolean vpr_seen
= FALSE
;
2002 bfd_boolean expect_vpr
=
2003 (etype
== REGLIST_VFP_S_VPR
) || (etype
== REGLIST_VFP_D_VPR
);
2005 if (skip_past_char (&str
, '{') == FAIL
)
2007 inst
.error
= _("expecting {");
2014 case REGLIST_VFP_S_VPR
:
2015 regtype
= REG_TYPE_VFS
;
2020 case REGLIST_VFP_D_VPR
:
2021 regtype
= REG_TYPE_VFD
;
2024 case REGLIST_NEON_D
:
2025 regtype
= REG_TYPE_NDQ
;
2032 if (etype
!= REGLIST_VFP_S
&& etype
!= REGLIST_VFP_S_VPR
)
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
2049 base_reg
= max_regs
;
2050 *partial_match
= FALSE
;
2054 int setmask
= 1, addregs
= 1;
2055 const char vpr_str
[] = "vpr";
2056 int vpr_str_len
= strlen (vpr_str
);
2058 new_base
= arm_typed_reg_parse (&str
, regtype
, ®type
, NULL
);
2062 if (new_base
== FAIL
2063 && !strncasecmp (str
, vpr_str
, vpr_str_len
)
2064 && !ISALPHA (*(str
+ vpr_str_len
))
2070 base_reg
= 0; /* Canonicalize VPR only on d0 with 0 regs. */
2074 first_error (_("VPR expected last"));
2077 else if (new_base
== FAIL
)
2079 if (regtype
== REG_TYPE_VFS
)
2080 first_error (_("VFP single precision register or VPR "
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2088 else if (new_base
== FAIL
)
2090 first_error (_(reg_expected_msgs
[regtype
]));
2094 *partial_match
= TRUE
;
2098 if (new_base
>= max_regs
)
2100 first_error (_("register out of range in list"));
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype
== REG_TYPE_NQ
)
2111 if (new_base
< base_reg
)
2112 base_reg
= new_base
;
2114 if (mask
& (setmask
<< new_base
))
2116 first_error (_("invalid register list"));
2120 if ((mask
>> new_base
) != 0 && ! warned
&& !vpr_seen
)
2122 as_tsktsk (_("register list not in ascending order"));
2126 mask
|= setmask
<< new_base
;
2129 if (*str
== '-') /* We have the start of a range expression */
2135 if ((high_range
= arm_typed_reg_parse (&str
, regtype
, NULL
, NULL
))
2138 inst
.error
= gettext (reg_expected_msgs
[regtype
]);
2142 if (high_range
>= max_regs
)
2144 first_error (_("register out of range in list"));
2148 if (regtype
== REG_TYPE_NQ
)
2149 high_range
= high_range
+ 1;
2151 if (high_range
<= new_base
)
2153 inst
.error
= _("register range not in ascending order");
2157 for (new_base
+= addregs
; new_base
<= high_range
; new_base
+= addregs
)
2159 if (mask
& (setmask
<< new_base
))
2161 inst
.error
= _("invalid register list");
2165 mask
|= setmask
<< new_base
;
2170 while (skip_past_comma (&str
) != FAIL
);
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen
&& count
== 0) || count
> max_regs
)
2180 if (expect_vpr
&& !vpr_seen
)
2182 first_error (_("VPR expected last"));
2186 /* Final test -- the registers must be consecutive. */
2188 for (i
= 0; i
< count
; i
++)
2190 if ((mask
& (1u << i
)) == 0)
2192 inst
.error
= _("non-contiguous register range");
2202 /* True if two alias types are the same. */
2205 neon_alias_types_same (struct neon_typed_alias
*a
, struct neon_typed_alias
*b
)
2213 if (a
->defined
!= b
->defined
)
2216 if ((a
->defined
& NTA_HASTYPE
) != 0
2217 && (a
->eltype
.type
!= b
->eltype
.type
2218 || a
->eltype
.size
!= b
->eltype
.size
))
2221 if ((a
->defined
& NTA_HASINDEX
) != 0
2222 && (a
->index
!= b
->index
))
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2241 parse_neon_el_struct_list (char **str
, unsigned *pbase
,
2243 struct neon_type_el
*eltype
)
2250 int leading_brace
= 0;
2251 enum arm_reg_type rtype
= REG_TYPE_NDQ
;
2252 const char *const incr_error
= mve
? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error
= _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype
;
2256 firsttype
.defined
= 0;
2257 firsttype
.eltype
.type
= NT_invtype
;
2258 firsttype
.eltype
.size
= -1;
2259 firsttype
.index
= -1;
2261 if (skip_past_char (&ptr
, '{') == SUCCESS
)
2266 struct neon_typed_alias atype
;
2268 rtype
= REG_TYPE_MQ
;
2269 int getreg
= parse_typed_reg_or_scalar (&ptr
, rtype
, &rtype
, &atype
);
2273 first_error (_(reg_expected_msgs
[rtype
]));
2280 if (rtype
== REG_TYPE_NQ
)
2286 else if (reg_incr
== -1)
2288 reg_incr
= getreg
- base_reg
;
2289 if (reg_incr
< 1 || reg_incr
> 2)
2291 first_error (_(incr_error
));
2295 else if (getreg
!= base_reg
+ reg_incr
* count
)
2297 first_error (_(incr_error
));
2301 if (! neon_alias_types_same (&atype
, &firsttype
))
2303 first_error (_(type_error
));
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2311 struct neon_typed_alias htype
;
2312 int hireg
, dregs
= (rtype
== REG_TYPE_NQ
) ? 2 : 1;
2314 lane
= NEON_INTERLEAVE_LANES
;
2315 else if (lane
!= NEON_INTERLEAVE_LANES
)
2317 first_error (_(type_error
));
2322 else if (reg_incr
!= 1)
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2328 hireg
= parse_typed_reg_or_scalar (&ptr
, rtype
, NULL
, &htype
);
2331 first_error (_(reg_expected_msgs
[rtype
]));
2334 if (! neon_alias_types_same (&htype
, &firsttype
))
2336 first_error (_(type_error
));
2339 count
+= hireg
+ dregs
- getreg
;
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype
== REG_TYPE_NQ
)
2350 if ((atype
.defined
& NTA_HASINDEX
) != 0)
2354 else if (lane
!= atype
.index
)
2356 first_error (_(type_error
));
2360 else if (lane
== -1)
2361 lane
= NEON_INTERLEAVE_LANES
;
2362 else if (lane
!= NEON_INTERLEAVE_LANES
)
2364 first_error (_(type_error
));
2369 while ((count
!= 1 || leading_brace
) && skip_past_comma (&ptr
) != FAIL
);
2371 /* No lane set by [x]. We must be interleaving structures. */
2373 lane
= NEON_INTERLEAVE_LANES
;
2376 if (lane
== -1 || base_reg
== -1 || count
< 1 || (!mve
&& count
> 4)
2377 || (count
> 1 && reg_incr
== -1))
2379 first_error (_("error parsing element/structure list"));
2383 if ((count
> 1 || leading_brace
) && skip_past_char (&ptr
, '}') == FAIL
)
2385 first_error (_("expected }"));
2393 *eltype
= firsttype
.eltype
;
2398 return lane
| ((reg_incr
- 1) << 4) | ((count
- 1) << 5);
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2408 parse_reloc (char **str
)
2410 struct reloc_entry
*r
;
2414 return BFD_RELOC_UNUSED
;
2419 while (*q
&& *q
!= ')' && *q
!= ',')
2424 if ((r
= (struct reloc_entry
*)
2425 hash_find_n (arm_reloc_hsh
, p
, q
- p
)) == NULL
)
2432 /* Directives: register aliases. */
2434 static struct reg_entry
*
2435 insert_reg_alias (char *str
, unsigned number
, int type
)
2437 struct reg_entry
*new_reg
;
2440 if ((new_reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, str
)) != 0)
2442 if (new_reg
->builtin
)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str
);
2445 /* Only warn about a redefinition if it's not defined as the
2447 else if (new_reg
->number
!= number
|| new_reg
->type
!= type
)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str
);
2453 name
= xstrdup (str
);
2454 new_reg
= XNEW (struct reg_entry
);
2456 new_reg
->name
= name
;
2457 new_reg
->number
= number
;
2458 new_reg
->type
= type
;
2459 new_reg
->builtin
= FALSE
;
2460 new_reg
->neon
= NULL
;
2462 if (hash_insert (arm_reg_hsh
, name
, (void *) new_reg
))
2469 insert_neon_reg_alias (char *str
, int number
, int type
,
2470 struct neon_typed_alias
*atype
)
2472 struct reg_entry
*reg
= insert_reg_alias (str
, number
, type
);
2476 first_error (_("attempt to redefine typed alias"));
2482 reg
->neon
= XNEW (struct neon_typed_alias
);
2483 *reg
->neon
= *atype
;
2487 /* Look for the .req directive. This is of the form:
2489 new_register_name .req existing_register_name
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2495 create_register_alias (char * newname
, char *p
)
2497 struct reg_entry
*old
;
2498 char *oldname
, *nbuf
;
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2504 if (strncmp (oldname
, " .req ", 6) != 0)
2508 if (*oldname
== '\0')
2511 old
= (struct reg_entry
*) hash_find (arm_reg_hsh
, oldname
);
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname
);
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2524 newname
= original_case_string
;
2525 nlen
= strlen (newname
);
2528 nbuf
= xmemdup0 (newname
, nlen
);
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2533 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) != NULL
)
2535 for (p
= nbuf
; *p
; p
++)
2538 if (strncmp (nbuf
, newname
, nlen
))
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2549 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) == NULL
)
2556 for (p
= nbuf
; *p
; p
++)
2559 if (strncmp (nbuf
, newname
, nlen
))
2560 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2578 create_neon_reg_alias (char *newname
, char *p
)
2580 enum arm_reg_type basetype
;
2581 struct reg_entry
*basereg
;
2582 struct reg_entry mybasereg
;
2583 struct neon_type ntype
;
2584 struct neon_typed_alias typeinfo
;
2585 char *namebuf
, *nameend ATTRIBUTE_UNUSED
;
2588 typeinfo
.defined
= 0;
2589 typeinfo
.eltype
.type
= NT_invtype
;
2590 typeinfo
.eltype
.size
= -1;
2591 typeinfo
.index
= -1;
2595 if (strncmp (p
, " .dn ", 5) == 0)
2596 basetype
= REG_TYPE_VFD
;
2597 else if (strncmp (p
, " .qn ", 5) == 0)
2598 basetype
= REG_TYPE_NQ
;
2607 basereg
= arm_reg_parse_multi (&p
);
2609 if (basereg
&& basereg
->type
!= basetype
)
2611 as_bad (_("bad type for register"));
2615 if (basereg
== NULL
)
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2620 if (exp
.X_op
!= O_constant
)
2622 as_bad (_("expression must be constant"));
2625 basereg
= &mybasereg
;
2626 basereg
->number
= (basetype
== REG_TYPE_NQ
) ? exp
.X_add_number
* 2
2632 typeinfo
= *basereg
->neon
;
2634 if (parse_neon_type (&ntype
, &p
) == SUCCESS
)
2636 /* We got a type. */
2637 if (typeinfo
.defined
& NTA_HASTYPE
)
2639 as_bad (_("can't redefine the type of a register alias"));
2643 typeinfo
.defined
|= NTA_HASTYPE
;
2644 if (ntype
.elems
!= 1)
2646 as_bad (_("you must specify a single type only"));
2649 typeinfo
.eltype
= ntype
.el
[0];
2652 if (skip_past_char (&p
, '[') == SUCCESS
)
2655 /* We got a scalar index. */
2657 if (typeinfo
.defined
& NTA_HASINDEX
)
2659 as_bad (_("can't redefine the index of a scalar alias"));
2663 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2665 if (exp
.X_op
!= O_constant
)
2667 as_bad (_("scalar index must be constant"));
2671 typeinfo
.defined
|= NTA_HASINDEX
;
2672 typeinfo
.index
= exp
.X_add_number
;
2674 if (skip_past_char (&p
, ']') == FAIL
)
2676 as_bad (_("expecting ]"));
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen
= nameend
- newname
;
2687 newname
= original_case_string
;
2688 namelen
= strlen (newname
);
2691 namebuf
= xmemdup0 (newname
, namelen
);
2693 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2694 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2696 /* Insert name in all uppercase. */
2697 for (p
= namebuf
; *p
; p
++)
2700 if (strncmp (namebuf
, newname
, namelen
))
2701 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2702 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2704 /* Insert name in all lowercase. */
2705 for (p
= namebuf
; *p
; p
++)
2708 if (strncmp (namebuf
, newname
, namelen
))
2709 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2710 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2720 s_req (int a ATTRIBUTE_UNUSED
)
2722 as_bad (_("invalid syntax for .req directive"));
2726 s_dn (int a ATTRIBUTE_UNUSED
)
2728 as_bad (_("invalid syntax for .dn directive"));
2732 s_qn (int a ATTRIBUTE_UNUSED
)
2734 as_bad (_("invalid syntax for .qn directive"));
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2744 s_unreq (int a ATTRIBUTE_UNUSED
)
2749 name
= input_line_pointer
;
2751 while (*input_line_pointer
!= 0
2752 && *input_line_pointer
!= ' '
2753 && *input_line_pointer
!= '\n')
2754 ++input_line_pointer
;
2756 saved_char
= *input_line_pointer
;
2757 *input_line_pointer
= 0;
2760 as_bad (_("invalid syntax for .unreq directive"));
2763 struct reg_entry
*reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
,
2767 as_bad (_("unknown register alias '%s'"), name
);
2768 else if (reg
->builtin
)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2776 hash_delete (arm_reg_hsh
, name
, FALSE
);
2777 free ((char *) reg
->name
);
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2786 nbuf
= strdup (name
);
2787 for (p
= nbuf
; *p
; p
++)
2789 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2792 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2793 free ((char *) reg
->name
);
2799 for (p
= nbuf
; *p
; p
++)
2801 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2804 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2805 free ((char *) reg
->name
);
2815 *input_line_pointer
= saved_char
;
2816 demand_empty_rest_of_line ();
2819 /* Directives: Instruction set selection. */
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2827 /* Create a new mapping symbol for the transition to STATE. */
2830 make_mapping_symbol (enum mstate state
, valueT value
, fragS
*frag
)
2833 const char * symname
;
2840 type
= BSF_NO_FLAGS
;
2844 type
= BSF_NO_FLAGS
;
2848 type
= BSF_NO_FLAGS
;
2854 symbolP
= symbol_new (symname
, now_seg
, value
, frag
);
2855 symbol_get_bfdsym (symbolP
)->flags
|= type
| BSF_LOCAL
;
2860 THUMB_SET_FUNC (symbolP
, 0);
2861 ARM_SET_THUMB (symbolP
, 0);
2862 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2866 THUMB_SET_FUNC (symbolP
, 1);
2867 ARM_SET_THUMB (symbolP
, 1);
2868 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2887 if (frag
->tc_frag_data
.first_map
!= NULL
)
2889 know (S_GET_VALUE (frag
->tc_frag_data
.first_map
) == 0);
2890 symbol_remove (frag
->tc_frag_data
.first_map
, &symbol_rootP
, &symbol_lastP
);
2892 frag
->tc_frag_data
.first_map
= symbolP
;
2894 if (frag
->tc_frag_data
.last_map
!= NULL
)
2896 know (S_GET_VALUE (frag
->tc_frag_data
.last_map
) <= S_GET_VALUE (symbolP
));
2897 if (S_GET_VALUE (frag
->tc_frag_data
.last_map
) == S_GET_VALUE (symbolP
))
2898 symbol_remove (frag
->tc_frag_data
.last_map
, &symbol_rootP
, &symbol_lastP
);
2900 frag
->tc_frag_data
.last_map
= symbolP
;
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2908 insert_data_mapping_symbol (enum mstate state
,
2909 valueT value
, fragS
*frag
, offsetT bytes
)
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag
->tc_frag_data
.last_map
!= NULL
2913 && S_GET_VALUE (frag
->tc_frag_data
.last_map
) == frag
->fr_address
+ value
)
2915 symbolS
*symp
= frag
->tc_frag_data
.last_map
;
2919 know (frag
->tc_frag_data
.first_map
== symp
);
2920 frag
->tc_frag_data
.first_map
= NULL
;
2922 frag
->tc_frag_data
.last_map
= NULL
;
2923 symbol_remove (symp
, &symbol_rootP
, &symbol_lastP
);
2926 make_mapping_symbol (MAP_DATA
, value
, frag
);
2927 make_mapping_symbol (state
, value
+ bytes
, frag
);
2930 static void mapping_state_2 (enum mstate state
, int max_chars
);
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2937 mapping_state (enum mstate state
)
2939 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2941 if (mapstate
== state
)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2946 if (state
== MAP_ARM
|| state
== MAP_THUMB
)
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2951 When emitting instructions into any section, mark the section
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg
, state
== MAP_ARM
? 2 : 1);
2962 if (TRANSITION (MAP_UNDEFINED
, MAP_DATA
))
2963 /* This case will be evaluated later. */
2966 mapping_state_2 (state
, 0);
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2973 mapping_state_2 (enum mstate state
, int max_chars
)
2975 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2977 if (!SEG_NORMAL (now_seg
))
2980 if (mapstate
== state
)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2985 if (TRANSITION (MAP_UNDEFINED
, MAP_ARM
)
2986 || TRANSITION (MAP_UNDEFINED
, MAP_THUMB
))
2988 struct frag
* const frag_first
= seg_info (now_seg
)->frchainP
->frch_root
;
2989 const int add_symbol
= (frag_now
!= frag_first
) || (frag_now_fix () > 0);
2992 make_mapping_symbol (MAP_DATA
, (valueT
) 0, frag_first
);
2995 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= state
;
2996 make_mapping_symbol (state
, (valueT
) frag_now_fix () - max_chars
, frag_now
);
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3008 find_real_start (symbolS
* symbolP
)
3011 const char * name
= S_GET_NAME (symbolP
);
3012 symbolS
* new_target
;
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP
) || name
[0] == '.')
3028 real_start
= concat (STUB_NAME
, name
, NULL
);
3029 new_target
= symbol_find (real_start
);
3032 if (new_target
== NULL
)
3034 as_warn (_("Failed to find real start of function: %s\n"), name
);
3035 new_target
= symbolP
;
3043 opcode_select (int width
)
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg
, 1);
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3069 frag_align (2, 0, 0);
3071 record_alignment (now_seg
, 1);
3076 as_bad (_("invalid instruction size selected (%d)"), width
);
3081 s_arm (int ignore ATTRIBUTE_UNUSED
)
3084 demand_empty_rest_of_line ();
3088 s_thumb (int ignore ATTRIBUTE_UNUSED
)
3091 demand_empty_rest_of_line ();
3095 s_code (int unused ATTRIBUTE_UNUSED
)
3099 temp
= get_absolute_expression ();
3104 opcode_select (temp
);
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp
);
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED
)
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3123 record_alignment (now_seg
, 1);
3126 demand_empty_rest_of_line ();
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED
)
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name
= TRUE
;
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3143 s_thumb_set (int equiv
)
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3156 delim
= get_symbol_name (& name
);
3157 end_name
= input_line_pointer
;
3158 (void) restore_line_pointer (delim
);
3160 if (*input_line_pointer
!= ',')
3163 as_bad (_("expected comma after name \"%s\""), name
);
3165 ignore_rest_of_line ();
3169 input_line_pointer
++;
3172 if (name
[0] == '.' && name
[1] == '\0')
3174 /* XXX - this should not happen to .thumb_set. */
3178 if ((symbolP
= symbol_find (name
)) == NULL
3179 && (symbolP
= md_undefined_symbol (name
)) == NULL
)
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3185 if (listing
& LISTING_SYMBOLS
)
3187 extern struct list_info_struct
* listing_tail
;
3188 fragS
* dummy_frag
= (fragS
* ) xmalloc (sizeof (fragS
));
3190 memset (dummy_frag
, 0, sizeof (fragS
));
3191 dummy_frag
->fr_type
= rs_fill
;
3192 dummy_frag
->line
= listing_tail
;
3193 symbolP
= symbol_new (name
, undefined_section
, 0, dummy_frag
);
3194 dummy_frag
->fr_symbol
= symbolP
;
3198 symbolP
= symbol_new (name
, undefined_section
, 0, &zero_address_frag
);
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP
);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3206 symbol_table_insert (symbolP
);
3211 && S_IS_DEFINED (symbolP
)
3212 && S_GET_SEGMENT (symbolP
) != reg_section
)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP
));
3215 pseudo_set (symbolP
);
3217 demand_empty_rest_of_line ();
3219 /* XXX Now we come to the Thumb specific bit of code. */
3221 THUMB_SET_FUNC (symbolP
, 1);
3222 ARM_SET_THUMB (symbolP
, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP
, support_interwork
);
3228 /* Directives: Mode selection. */
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3234 s_syntax (int unused ATTRIBUTE_UNUSED
)
3238 delim
= get_symbol_name (& name
);
3240 if (!strcasecmp (name
, "unified"))
3241 unified_syntax
= TRUE
;
3242 else if (!strcasecmp (name
, "divided"))
3243 unified_syntax
= FALSE
;
3246 as_bad (_("unrecognized syntax mode \"%s\""), name
);
3249 (void) restore_line_pointer (delim
);
3250 demand_empty_rest_of_line ();
3253 /* Directives: sectioning and alignment. */
3256 s_bss (int ignore ATTRIBUTE_UNUSED
)
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section
, 0);
3261 demand_empty_rest_of_line ();
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3269 s_even (int ignore ATTRIBUTE_UNUSED
)
3271 /* Never make frag if expect extra pass. */
3273 frag_align (1, 0, 0);
3275 record_alignment (now_seg
, 1);
3277 demand_empty_rest_of_line ();
3280 /* Directives: CodeComposer Studio. */
3282 /* .ref (for CodeComposer Studio syntax only). */
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED
)
3286 if (codecomposer_syntax
)
3287 ignore_rest_of_line ();
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3295 asmfunc_debug (const char * name
)
3297 static const char * last_name
= NULL
;
3301 gas_assert (last_name
== NULL
);
3304 if (debug_type
== DEBUG_STABS
)
3305 stabs_generate_asm_func (name
, name
);
3309 gas_assert (last_name
!= NULL
);
3311 if (debug_type
== DEBUG_STABS
)
3312 stabs_generate_asm_endfunc (last_name
, last_name
);
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED
)
3321 if (codecomposer_syntax
)
3323 switch (asmfunc_state
)
3325 case OUTSIDE_ASMFUNC
:
3326 asmfunc_state
= WAITING_ASMFUNC_NAME
;
3329 case WAITING_ASMFUNC_NAME
:
3330 as_bad (_(".asmfunc repeated."));
3333 case WAITING_ENDASMFUNC
:
3334 as_bad (_(".asmfunc without function."));
3337 demand_empty_rest_of_line ();
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED
)
3346 if (codecomposer_syntax
)
3348 switch (asmfunc_state
)
3350 case OUTSIDE_ASMFUNC
:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3354 case WAITING_ASMFUNC_NAME
:
3355 as_bad (_(".endasmfunc without function."));
3358 case WAITING_ENDASMFUNC
:
3359 asmfunc_state
= OUTSIDE_ASMFUNC
;
3360 asmfunc_debug (NULL
);
3363 demand_empty_rest_of_line ();
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3370 s_ccs_def (int name
)
3372 if (codecomposer_syntax
)
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3378 /* Directives: Literal pools. */
3380 static literal_pool
*
3381 find_literal_pool (void)
3383 literal_pool
* pool
;
3385 for (pool
= list_of_pools
; pool
!= NULL
; pool
= pool
->next
)
3387 if (pool
->section
== now_seg
3388 && pool
->sub_section
== now_subseg
)
3395 static literal_pool
*
3396 find_or_make_literal_pool (void)
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num
= 1;
3400 literal_pool
* pool
;
3402 pool
= find_literal_pool ();
3406 /* Create a new pool. */
3407 pool
= XNEW (literal_pool
);
3411 pool
->next_free_entry
= 0;
3412 pool
->section
= now_seg
;
3413 pool
->sub_section
= now_subseg
;
3414 pool
->next
= list_of_pools
;
3415 pool
->symbol
= NULL
;
3416 pool
->alignment
= 2;
3418 /* Add it to the list. */
3419 list_of_pools
= pool
;
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool
->symbol
== NULL
)
3425 pool
->symbol
= symbol_create (FAKE_LABEL_NAME
, undefined_section
,
3426 (valueT
) 0, &zero_address_frag
);
3427 pool
->id
= latest_pool_num
++;
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3438 add_to_lit_pool (unsigned int nbytes
)
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool
* pool
;
3443 unsigned int entry
, pool_size
= 0;
3444 bfd_boolean padding_slot_p
= FALSE
;
3450 imm1
= inst
.operands
[1].imm
;
3451 imm2
= (inst
.operands
[1].regisimm
? inst
.operands
[1].reg
3452 : inst
.relocs
[0].exp
.X_unsigned
? 0
3453 : ((bfd_int64_t
) inst
.operands
[1].imm
) >> 32);
3454 if (target_big_endian
)
3457 imm2
= inst
.operands
[1].imm
;
3461 pool
= find_or_make_literal_pool ();
3463 /* Check if this literal value is already in the pool. */
3464 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3468 if ((pool
->literals
[entry
].X_op
== inst
.relocs
[0].exp
.X_op
)
3469 && (inst
.relocs
[0].exp
.X_op
== O_constant
)
3470 && (pool
->literals
[entry
].X_add_number
3471 == inst
.relocs
[0].exp
.X_add_number
)
3472 && (pool
->literals
[entry
].X_md
== nbytes
)
3473 && (pool
->literals
[entry
].X_unsigned
3474 == inst
.relocs
[0].exp
.X_unsigned
))
3477 if ((pool
->literals
[entry
].X_op
== inst
.relocs
[0].exp
.X_op
)
3478 && (inst
.relocs
[0].exp
.X_op
== O_symbol
)
3479 && (pool
->literals
[entry
].X_add_number
3480 == inst
.relocs
[0].exp
.X_add_number
)
3481 && (pool
->literals
[entry
].X_add_symbol
3482 == inst
.relocs
[0].exp
.X_add_symbol
)
3483 && (pool
->literals
[entry
].X_op_symbol
3484 == inst
.relocs
[0].exp
.X_op_symbol
)
3485 && (pool
->literals
[entry
].X_md
== nbytes
))
3488 else if ((nbytes
== 8)
3489 && !(pool_size
& 0x7)
3490 && ((entry
+ 1) != pool
->next_free_entry
)
3491 && (pool
->literals
[entry
].X_op
== O_constant
)
3492 && (pool
->literals
[entry
].X_add_number
== (offsetT
) imm1
)
3493 && (pool
->literals
[entry
].X_unsigned
3494 == inst
.relocs
[0].exp
.X_unsigned
)
3495 && (pool
->literals
[entry
+ 1].X_op
== O_constant
)
3496 && (pool
->literals
[entry
+ 1].X_add_number
== (offsetT
) imm2
)
3497 && (pool
->literals
[entry
+ 1].X_unsigned
3498 == inst
.relocs
[0].exp
.X_unsigned
))
3501 padding_slot_p
= ((pool
->literals
[entry
].X_md
>> 8) == PADDING_SLOT
);
3502 if (padding_slot_p
&& (nbytes
== 4))
3508 /* Do we need to create a new entry? */
3509 if (entry
== pool
->next_free_entry
)
3511 if (entry
>= MAX_LITERAL_POOL_SIZE
)
3513 inst
.error
= _("literal pool overflow");
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3525 We also need to make sure there is enough space for
3528 We also check to make sure the literal operand is a
3530 if (!(inst
.relocs
[0].exp
.X_op
== O_constant
3531 || inst
.relocs
[0].exp
.X_op
== O_big
))
3533 inst
.error
= _("invalid type for literal pool");
3536 else if (pool_size
& 0x7)
3538 if ((entry
+ 2) >= MAX_LITERAL_POOL_SIZE
)
3540 inst
.error
= _("literal pool overflow");
3544 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3545 pool
->literals
[entry
].X_op
= O_constant
;
3546 pool
->literals
[entry
].X_add_number
= 0;
3547 pool
->literals
[entry
++].X_md
= (PADDING_SLOT
<< 8) | 4;
3548 pool
->next_free_entry
+= 1;
3551 else if ((entry
+ 1) >= MAX_LITERAL_POOL_SIZE
)
3553 inst
.error
= _("literal pool overflow");
3557 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3558 pool
->literals
[entry
].X_op
= O_constant
;
3559 pool
->literals
[entry
].X_add_number
= imm1
;
3560 pool
->literals
[entry
].X_unsigned
= inst
.relocs
[0].exp
.X_unsigned
;
3561 pool
->literals
[entry
++].X_md
= 4;
3562 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3563 pool
->literals
[entry
].X_op
= O_constant
;
3564 pool
->literals
[entry
].X_add_number
= imm2
;
3565 pool
->literals
[entry
].X_unsigned
= inst
.relocs
[0].exp
.X_unsigned
;
3566 pool
->literals
[entry
].X_md
= 4;
3567 pool
->alignment
= 3;
3568 pool
->next_free_entry
+= 1;
3572 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3573 pool
->literals
[entry
].X_md
= 4;
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type
== DEBUG_DWARF2
)
3582 dwarf2_where (pool
->locs
+ entry
);
3584 pool
->next_free_entry
+= 1;
3586 else if (padding_slot_p
)
3588 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3589 pool
->literals
[entry
].X_md
= nbytes
;
3592 inst
.relocs
[0].exp
.X_op
= O_symbol
;
3593 inst
.relocs
[0].exp
.X_add_number
= pool_size
;
3594 inst
.relocs
[0].exp
.X_add_symbol
= pool
->symbol
;
3600 tc_start_label_without_colon (void)
3602 bfd_boolean ret
= TRUE
;
3604 if (codecomposer_syntax
&& asmfunc_state
== WAITING_ASMFUNC_NAME
)
3606 const char *label
= input_line_pointer
;
3608 while (!is_end_of_line
[(int) label
[-1]])
3613 as_bad (_("Invalid label '%s'"), label
);
3617 asmfunc_debug (label
);
3619 asmfunc_state
= WAITING_ENDASMFUNC
;
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3629 symbol_locate (symbolS
* symbolP
,
3630 const char * name
, /* It is copied, the caller can modify. */
3631 segT segment
, /* Segment identifier (SEG_<something>). */
3632 valueT valu
, /* Symbol value. */
3633 fragS
* frag
) /* Associated fragment. */
3636 char * preserved_copy_of_name
;
3638 name_length
= strlen (name
) + 1; /* +1 for \0. */
3639 obstack_grow (¬es
, name
, name_length
);
3640 preserved_copy_of_name
= (char *) obstack_finish (¬es
);
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name
=
3644 tc_canonicalize_symbol_name (preserved_copy_of_name
);
3647 S_SET_NAME (symbolP
, preserved_copy_of_name
);
3649 S_SET_SEGMENT (symbolP
, segment
);
3650 S_SET_VALUE (symbolP
, valu
);
3651 symbol_clear_list_pointers (symbolP
);
3653 symbol_set_frag (symbolP
, frag
);
3655 /* Link to end of symbol chain. */
3657 extern int symbol_table_frozen
;
3659 if (symbol_table_frozen
)
3663 symbol_append (symbolP
, symbol_lastP
, & symbol_rootP
, & symbol_lastP
);
3665 obj_symbol_new_hook (symbolP
);
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP
);
3672 verify_symbol_chain (symbol_rootP
, symbol_lastP
);
3673 #endif /* DEBUG_SYMS */
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED
)
3680 literal_pool
* pool
;
3683 pool
= find_literal_pool ();
3685 || pool
->symbol
== NULL
3686 || pool
->next_free_entry
== 0)
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3692 frag_align (pool
->alignment
, 0, 0);
3694 record_alignment (now_seg
, 2);
3697 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= MAP_DATA
;
3698 make_mapping_symbol (MAP_DATA
, (valueT
) frag_now_fix (), frag_now
);
3700 sprintf (sym_name
, "$$lit_\002%x", pool
->id
);
3702 symbol_locate (pool
->symbol
, sym_name
, now_seg
,
3703 (valueT
) frag_now_fix (), frag_now
);
3704 symbol_table_insert (pool
->symbol
);
3706 ARM_SET_THUMB (pool
->symbol
, thumb_mode
);
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool
->symbol
, support_interwork
);
3712 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3715 if (debug_type
== DEBUG_DWARF2
)
3716 dwarf2_gen_line_info (frag_now_fix (), pool
->locs
+ entry
);
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool
->literals
[entry
]),
3720 pool
->literals
[entry
].X_md
& LIT_ENTRY_SIZE_MASK
);
3723 /* Mark the pool as empty. */
3724 pool
->next_free_entry
= 0;
3725 pool
->symbol
= NULL
;
3729 /* Forward declarations for functions below, in the MD interface
3731 static void fix_new_arm (fragS
*, int, short, expressionS
*, int, int);
3732 static valueT
create_unwind_entry (int);
3733 static void start_unwind_section (const segT
, int);
3734 static void add_unwind_opcode (valueT
, int);
3735 static void flush_pending_unwind (void);
3737 /* Directives: Data. */
3740 s_arm_elf_cons (int nbytes
)
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3748 if (is_it_end_of_statement ())
3750 demand_empty_rest_of_line ();
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes
);
3758 mapping_state (MAP_DATA
);
3762 char *base
= input_line_pointer
;
3766 if (exp
.X_op
!= O_symbol
)
3767 emit_expr (&exp
, (unsigned int) nbytes
);
3770 char *before_reloc
= input_line_pointer
;
3771 reloc
= parse_reloc (&input_line_pointer
);
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3778 else if (reloc
== BFD_RELOC_UNUSED
)
3779 emit_expr (&exp
, (unsigned int) nbytes
);
3782 reloc_howto_type
*howto
= (reloc_howto_type
*)
3783 bfd_reloc_type_lookup (stdoutput
,
3784 (bfd_reloc_code_real_type
) reloc
);
3785 int size
= bfd_get_reloc_size (howto
);
3787 if (reloc
== BFD_RELOC_ARM_PLT32
)
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc
= BFD_RELOC_UNUSED
;
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3798 howto
->name
, nbytes
);
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p
= input_line_pointer
;
3807 char *save_buf
= XNEWVEC (char, input_line_pointer
- base
);
3809 memcpy (save_buf
, base
, input_line_pointer
- base
);
3810 memmove (base
+ (input_line_pointer
- before_reloc
),
3811 base
, before_reloc
- base
);
3813 input_line_pointer
= base
+ (input_line_pointer
-before_reloc
);
3815 memcpy (base
, save_buf
, p
- base
);
3817 offset
= nbytes
- size
;
3818 p
= frag_more (nbytes
);
3819 memset (p
, 0, nbytes
);
3820 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
+ offset
,
3821 size
, &exp
, 0, (enum bfd_reloc_code_real
) reloc
);
3827 while (*input_line_pointer
++ == ',');
3829 /* Put terminator back into stream. */
3830 input_line_pointer
--;
3831 demand_empty_rest_of_line ();
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3838 emit_thumb32_expr (expressionS
* exp
)
3840 expressionS exp_high
= *exp
;
3842 exp_high
.X_add_number
= (unsigned long)exp_high
.X_add_number
>> 16;
3843 emit_expr (& exp_high
, (unsigned int) THUMB_SIZE
);
3844 exp
->X_add_number
&= 0xffff;
3845 emit_expr (exp
, (unsigned int) THUMB_SIZE
);
3848 /* Guess the instruction size based on the opcode. */
3851 thumb_insn_size (int opcode
)
3853 if ((unsigned int) opcode
< 0xe800u
)
3855 else if ((unsigned int) opcode
>= 0xe8000000u
)
3862 emit_insn (expressionS
*exp
, int nbytes
)
3866 if (exp
->X_op
== O_constant
)
3871 size
= thumb_insn_size (exp
->X_add_number
);
3875 if (size
== 2 && (unsigned int)exp
->X_add_number
> 0xffffu
)
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3883 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN
, 0);
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN
, 0);
3888 if (thumb_mode
&& (size
> THUMB_SIZE
) && !target_big_endian
)
3889 emit_thumb32_expr (exp
);
3891 emit_expr (exp
, (unsigned int) size
);
3893 it_fsm_post_encode ();
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3901 as_bad (_("constant expression required"));
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3910 s_arm_elf_inst (int nbytes
)
3912 if (is_it_end_of_statement ())
3914 demand_empty_rest_of_line ();
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3922 mapping_state (MAP_THUMB
);
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3934 mapping_state (MAP_ARM
);
3943 if (! emit_insn (& exp
, nbytes
))
3945 ignore_rest_of_line ();
3949 while (*input_line_pointer
++ == ',');
3951 /* Put terminator back into stream. */
3952 input_line_pointer
--;
3953 demand_empty_rest_of_line ();
3956 /* Parse a .rel31 directive. */
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED
)
3966 if (*input_line_pointer
== '1')
3967 highbit
= 0x80000000;
3968 else if (*input_line_pointer
!= '0')
3969 as_bad (_("expected 0 or 1"));
3971 input_line_pointer
++;
3972 if (*input_line_pointer
!= ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer
++;
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3980 #ifdef md_cons_align
3984 mapping_state (MAP_DATA
);
3989 md_number_to_chars (p
, highbit
, 4);
3990 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 1,
3991 BFD_RELOC_ARM_PREL31
);
3993 demand_empty_rest_of_line ();
3996 /* Directives: AEABI stack-unwind tables. */
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED
)
4003 demand_empty_rest_of_line ();
4004 if (unwind
.proc_start
)
4006 as_bad (_("duplicate .fnstart directive"));
4010 /* Mark the start of the function. */
4011 unwind
.proc_start
= expr_build_dot ();
4013 /* Reset the rest of the unwind info. */
4014 unwind
.opcode_count
= 0;
4015 unwind
.table_entry
= NULL
;
4016 unwind
.personality_routine
= NULL
;
4017 unwind
.personality_index
= -1;
4018 unwind
.frame_size
= 0;
4019 unwind
.fp_offset
= 0;
4020 unwind
.fp_reg
= REG_SP
;
4022 unwind
.sp_restored
= 0;
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED
)
4032 demand_empty_rest_of_line ();
4033 if (!unwind
.proc_start
)
4034 as_bad (MISSING_FNSTART
);
4036 if (unwind
.table_entry
)
4037 as_bad (_("duplicate .handlerdata directive"));
4039 create_unwind_entry (1);
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED
)
4050 unsigned int marked_pr_dependency
;
4052 demand_empty_rest_of_line ();
4054 if (!unwind
.proc_start
)
4056 as_bad (_(".fnend directive without .fnstart"));
4060 /* Add eh table entry. */
4061 if (unwind
.table_entry
== NULL
)
4062 val
= create_unwind_entry (0);
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind
.saved_seg
, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg
, 2);
4071 ptr
= frag_more (8);
4073 where
= frag_now_fix () - 8;
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now
, where
, 4, unwind
.proc_start
, 0, 1,
4077 BFD_RELOC_ARM_PREL31
);
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
;
4083 if (unwind
.personality_index
>= 0 && unwind
.personality_index
< 3
4084 && !(marked_pr_dependency
& (1 << unwind
.personality_index
)))
4086 static const char *const name
[] =
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4092 symbolS
*pr
= symbol_find_or_make (name
[unwind
.personality_index
]);
4093 fix_new (frag_now
, where
, 0, pr
, 0, 1, BFD_RELOC_NONE
);
4094 seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
4095 |= 1 << unwind
.personality_index
;
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr
+ 4, val
, 4);
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now
, where
+ 4, 4, unwind
.table_entry
, 0, 1,
4104 BFD_RELOC_ARM_PREL31
);
4106 /* Restore the original section. */
4107 subseg_set (unwind
.saved_seg
, unwind
.saved_subseg
);
4109 unwind
.proc_start
= NULL
;
4113 /* Parse an unwind_cantunwind directive. */
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED
)
4118 demand_empty_rest_of_line ();
4119 if (!unwind
.proc_start
)
4120 as_bad (MISSING_FNSTART
);
4122 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4125 unwind
.personality_index
= -2;
4129 /* Parse a personalityindex directive. */
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED
)
4136 if (!unwind
.proc_start
)
4137 as_bad (MISSING_FNSTART
);
4139 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4144 if (exp
.X_op
!= O_constant
4145 || exp
.X_add_number
< 0 || exp
.X_add_number
> 15)
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4152 unwind
.personality_index
= exp
.X_add_number
;
4154 demand_empty_rest_of_line ();
4158 /* Parse a personality directive. */
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED
)
4165 if (!unwind
.proc_start
)
4166 as_bad (MISSING_FNSTART
);
4168 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4169 as_bad (_("duplicate .personality directive"));
4171 c
= get_symbol_name (& name
);
4172 p
= input_line_pointer
;
4174 ++ input_line_pointer
;
4175 unwind
.personality_routine
= symbol_find_or_make (name
);
4177 demand_empty_rest_of_line ();
4181 /* Parse a directive saving core registers. */
4184 s_arm_unwind_save_core (void)
4190 range
= parse_reg_list (&input_line_pointer
, REGLIST_RN
);
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4198 demand_empty_rest_of_line ();
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind
.sp_restored
&& unwind
.fp_reg
== 12
4204 && (range
& 0x3000) == 0x1000)
4206 unwind
.opcode_count
--;
4207 unwind
.sp_restored
= 0;
4208 range
= (range
| 0x2000) & ~0x1000;
4209 unwind
.pending_offset
= 0;
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n
= 0; n
< 8; n
++)
4219 /* Break at the first non-saved register. */
4220 if ((range
& (1 << (n
+ 4))) == 0)
4223 /* See if there are any other bits set. */
4224 if (n
== 0 || (range
& (0xfff0 << n
) & 0xbff0) != 0)
4226 /* Use the long form. */
4227 op
= 0x8000 | ((range
>> 4) & 0xfff);
4228 add_unwind_opcode (op
, 2);
4232 /* Use the short form. */
4234 op
= 0xa8; /* Pop r14. */
4236 op
= 0xa0; /* Do not pop r14. */
4238 add_unwind_opcode (op
, 1);
4245 op
= 0xb100 | (range
& 0xf);
4246 add_unwind_opcode (op
, 2);
4249 /* Record the number of bytes pushed. */
4250 for (n
= 0; n
< 16; n
++)
4252 if (range
& (1 << n
))
4253 unwind
.frame_size
+= 4;
4258 /* Parse a directive saving FPA registers. */
4261 s_arm_unwind_save_fpa (int reg
)
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4271 exp
.X_op
= O_illegal
;
4273 if (exp
.X_op
!= O_constant
)
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4280 num_regs
= exp
.X_add_number
;
4282 if (num_regs
< 1 || num_regs
> 4)
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4289 demand_empty_rest_of_line ();
4294 op
= 0xb4 | (num_regs
- 1);
4295 add_unwind_opcode (op
, 1);
4300 op
= 0xc800 | (reg
<< 4) | (num_regs
- 1);
4301 add_unwind_opcode (op
, 2);
4303 unwind
.frame_size
+= num_regs
* 12;
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4310 s_arm_unwind_save_vfp_armv6 (void)
4315 int num_vfpv3_regs
= 0;
4316 int num_regs_below_16
;
4317 bfd_boolean partial_match
;
4319 count
= parse_vfp_reg_list (&input_line_pointer
, &start
, REGLIST_VFP_D
,
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4328 demand_empty_rest_of_line ();
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4335 num_vfpv3_regs
= count
;
4336 else if (start
+ count
> 16)
4337 num_vfpv3_regs
= start
+ count
- 16;
4339 if (num_vfpv3_regs
> 0)
4341 int start_offset
= start
> 16 ? start
- 16 : 0;
4342 op
= 0xc800 | (start_offset
<< 4) | (num_vfpv3_regs
- 1);
4343 add_unwind_opcode (op
, 2);
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16
= num_vfpv3_regs
> 0 ? 16 - (int) start
: count
;
4348 gas_assert (num_regs_below_16
+ num_vfpv3_regs
== count
);
4349 if (num_regs_below_16
> 0)
4351 op
= 0xc900 | (start
<< 4) | (num_regs_below_16
- 1);
4352 add_unwind_opcode (op
, 2);
4355 unwind
.frame_size
+= count
* 8;
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4362 s_arm_unwind_save_vfp (void)
4367 bfd_boolean partial_match
;
4369 count
= parse_vfp_reg_list (&input_line_pointer
, ®
, REGLIST_VFP_D
,
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4378 demand_empty_rest_of_line ();
4383 op
= 0xb8 | (count
- 1);
4384 add_unwind_opcode (op
, 1);
4389 op
= 0xb300 | (reg
<< 4) | (count
- 1);
4390 add_unwind_opcode (op
, 2);
4392 unwind
.frame_size
+= count
* 8 + 4;
4396 /* Parse a directive saving iWMMXt data registers. */
4399 s_arm_unwind_save_mmxwr (void)
4407 if (*input_line_pointer
== '{')
4408 input_line_pointer
++;
4412 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
4416 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
4421 as_tsktsk (_("register list not in ascending order"));
4424 if (*input_line_pointer
== '-')
4426 input_line_pointer
++;
4427 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
4430 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
4433 else if (reg
>= hi_reg
)
4435 as_bad (_("bad register range"));
4438 for (; reg
< hi_reg
; reg
++)
4442 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4444 skip_past_char (&input_line_pointer
, '}');
4446 demand_empty_rest_of_line ();
4448 /* Generate any deferred opcodes because we're going to be looking at
4450 flush_pending_unwind ();
4452 for (i
= 0; i
< 16; i
++)
4454 if (mask
& (1 << i
))
4455 unwind
.frame_size
+= 8;
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4461 if (unwind
.opcode_count
> 0)
4463 i
= unwind
.opcodes
[unwind
.opcode_count
- 1];
4464 if ((i
& 0xf8) == 0xc0)
4467 /* Only merge if the blocks are contiguous. */
4470 if ((mask
& 0xfe00) == (1 << 9))
4472 mask
|= ((1 << (i
+ 11)) - 1) & 0xfc00;
4473 unwind
.opcode_count
--;
4476 else if (i
== 6 && unwind
.opcode_count
>= 2)
4478 i
= unwind
.opcodes
[unwind
.opcode_count
- 2];
4482 op
= 0xffff << (reg
- 1);
4484 && ((mask
& op
) == (1u << (reg
- 1))))
4486 op
= (1 << (reg
+ i
+ 1)) - 1;
4487 op
&= ~((1 << reg
) - 1);
4489 unwind
.opcode_count
-= 2;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg
= 15; reg
>= -1; reg
--)
4500 /* Save registers in blocks. */
4502 || !(mask
& (1 << reg
)))
4504 /* We found an unsaved reg. Generate opcodes to save the
4511 op
= 0xc0 | (hi_reg
- 10);
4512 add_unwind_opcode (op
, 1);
4517 op
= 0xc600 | ((reg
+ 1) << 4) | ((hi_reg
- reg
) - 1);
4518 add_unwind_opcode (op
, 2);
4527 ignore_rest_of_line ();
4531 s_arm_unwind_save_mmxwcg (void)
4538 if (*input_line_pointer
== '{')
4539 input_line_pointer
++;
4541 skip_whitespace (input_line_pointer
);
4545 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4549 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4555 as_tsktsk (_("register list not in ascending order"));
4558 if (*input_line_pointer
== '-')
4560 input_line_pointer
++;
4561 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4564 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4567 else if (reg
>= hi_reg
)
4569 as_bad (_("bad register range"));
4572 for (; reg
< hi_reg
; reg
++)
4576 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4578 skip_past_char (&input_line_pointer
, '}');
4580 demand_empty_rest_of_line ();
4582 /* Generate any deferred opcodes because we're going to be looking at
4584 flush_pending_unwind ();
4586 for (reg
= 0; reg
< 16; reg
++)
4588 if (mask
& (1 << reg
))
4589 unwind
.frame_size
+= 4;
4592 add_unwind_opcode (op
, 2);
4595 ignore_rest_of_line ();
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4603 s_arm_unwind_save (int arch_v6
)
4606 struct reg_entry
*reg
;
4607 bfd_boolean had_brace
= FALSE
;
4609 if (!unwind
.proc_start
)
4610 as_bad (MISSING_FNSTART
);
4612 /* Figure out what sort of save we have. */
4613 peek
= input_line_pointer
;
4621 reg
= arm_reg_parse_multi (&peek
);
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4639 input_line_pointer
= peek
;
4640 s_arm_unwind_save_fpa (reg
->number
);
4644 s_arm_unwind_save_core ();
4649 s_arm_unwind_save_vfp_armv6 ();
4651 s_arm_unwind_save_vfp ();
4654 case REG_TYPE_MMXWR
:
4655 s_arm_unwind_save_mmxwr ();
4658 case REG_TYPE_MMXWCG
:
4659 s_arm_unwind_save_mmxwcg ();
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4669 /* Parse an unwind_movsp directive. */
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED
)
4678 if (!unwind
.proc_start
)
4679 as_bad (MISSING_FNSTART
);
4681 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4684 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_RN
]));
4685 ignore_rest_of_line ();
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4692 if (immediate_for_directive (&offset
) == FAIL
)
4698 demand_empty_rest_of_line ();
4700 if (reg
== REG_SP
|| reg
== REG_PC
)
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4706 if (unwind
.fp_reg
!= REG_SP
)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4709 /* Generate opcode to restore the value. */
4711 add_unwind_opcode (op
, 1);
4713 /* Record the information for later. */
4714 unwind
.fp_reg
= reg
;
4715 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4716 unwind
.sp_restored
= 1;
4719 /* Parse an unwind_pad directive. */
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED
)
4726 if (!unwind
.proc_start
)
4727 as_bad (MISSING_FNSTART
);
4729 if (immediate_for_directive (&offset
) == FAIL
)
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind
.frame_size
+= offset
;
4741 unwind
.pending_offset
+= offset
;
4743 demand_empty_rest_of_line ();
4746 /* Parse an unwind_setfp directive. */
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED
)
4755 if (!unwind
.proc_start
)
4756 as_bad (MISSING_FNSTART
);
4758 fp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4759 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4762 sp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4764 if (fp_reg
== FAIL
|| sp_reg
== FAIL
)
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4774 if (immediate_for_directive (&offset
) == FAIL
)
4780 demand_empty_rest_of_line ();
4782 if (sp_reg
!= REG_SP
&& sp_reg
!= unwind
.fp_reg
)
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind
.fp_reg
= fp_reg
;
4792 if (sp_reg
== REG_SP
)
4793 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4795 unwind
.fp_offset
-= offset
;
4798 /* Parse an unwind_raw directive. */
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED
)
4804 /* This is an arbitrary limit. */
4805 unsigned char op
[16];
4808 if (!unwind
.proc_start
)
4809 as_bad (MISSING_FNSTART
);
4812 if (exp
.X_op
== O_constant
4813 && skip_past_comma (&input_line_pointer
) != FAIL
)
4815 unwind
.frame_size
+= exp
.X_add_number
;
4819 exp
.X_op
= O_illegal
;
4821 if (exp
.X_op
!= O_constant
)
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4830 /* Parse the opcode. */
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4838 if (exp
.X_op
!= O_constant
|| exp
.X_add_number
& ~0xff)
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4844 op
[count
++] = exp
.X_add_number
;
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4853 /* Add the opcode bytes in reverse order. */
4855 add_unwind_opcode (op
[count
], 1);
4857 demand_empty_rest_of_line ();
4861 /* Parse a .eabi_attribute directive. */
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED
)
4866 int tag
= obj_elf_vendor_attribute (OBJ_ATTR_PROC
);
4868 if (tag
>= 0 && tag
< NUM_KNOWN_OBJ_ATTRIBUTES
)
4869 attributes_set_explicitly
[tag
] = 1;
4872 /* Emit a tls fix for the symbol. */
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED
)
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4883 #ifdef md_cons_align
4887 /* Since we're just labelling the code, there's no need to define a
4890 p
= obstack_next_free (&frchain_now
->frch_obstack
);
4891 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 0,
4892 thumb_mode
? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ
);
4895 #endif /* OBJ_ELF */
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
4913 if (exp
.X_op
== O_symbol
)
4914 exp
.X_op
= O_secrel
;
4916 emit_expr (&exp
, 4);
4918 while (*input_line_pointer
++ == ',');
4920 input_line_pointer
--;
4921 demand_empty_rest_of_line ();
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4931 const pseudo_typeS md_pseudo_table
[] =
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req
, 0 },
4935 /* Following two are likewise never called. */
4938 { "unreq", s_unreq
, 0 },
4939 { "bss", s_bss
, 0 },
4940 { "align", s_align_ptwo
, 2 },
4941 { "arm", s_arm
, 0 },
4942 { "thumb", s_thumb
, 0 },
4943 { "code", s_code
, 0 },
4944 { "force_thumb", s_force_thumb
, 0 },
4945 { "thumb_func", s_thumb_func
, 0 },
4946 { "thumb_set", s_thumb_set
, 0 },
4947 { "even", s_even
, 0 },
4948 { "ltorg", s_ltorg
, 0 },
4949 { "pool", s_ltorg
, 0 },
4950 { "syntax", s_syntax
, 0 },
4951 { "cpu", s_arm_cpu
, 0 },
4952 { "arch", s_arm_arch
, 0 },
4953 { "object_arch", s_arm_object_arch
, 0 },
4954 { "fpu", s_arm_fpu
, 0 },
4955 { "arch_extension", s_arm_arch_extension
, 0 },
4957 { "word", s_arm_elf_cons
, 4 },
4958 { "long", s_arm_elf_cons
, 4 },
4959 { "inst.n", s_arm_elf_inst
, 2 },
4960 { "inst.w", s_arm_elf_inst
, 4 },
4961 { "inst", s_arm_elf_inst
, 0 },
4962 { "rel31", s_arm_rel31
, 0 },
4963 { "fnstart", s_arm_unwind_fnstart
, 0 },
4964 { "fnend", s_arm_unwind_fnend
, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind
, 0 },
4966 { "personality", s_arm_unwind_personality
, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex
, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata
, 0 },
4969 { "save", s_arm_unwind_save
, 0 },
4970 { "vsave", s_arm_unwind_save
, 1 },
4971 { "movsp", s_arm_unwind_movsp
, 0 },
4972 { "pad", s_arm_unwind_pad
, 0 },
4973 { "setfp", s_arm_unwind_setfp
, 0 },
4974 { "unwind_raw", s_arm_unwind_raw
, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute
, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq
, 0 },
4980 /* These are used for dwarf. */
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file
, 0 },
4986 { "loc", dwarf2_directive_loc
, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0 },
4989 { "extend", float_cons
, 'x' },
4990 { "ldouble", float_cons
, 'x' },
4991 { "packed", float_cons
, 'p' },
4993 {"secrel32", pe_directive_secrel
, 0},
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref
, 0},
4998 {"def", s_ccs_def
, 0},
4999 {"asmfunc", s_ccs_asmfunc
, 0},
5000 {"endasmfunc", s_ccs_endasmfunc
, 0},
5005 /* Parser functions used exclusively in instruction operands. */
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5014 parse_immediate (char **str
, int *val
, int min
, int max
,
5015 bfd_boolean prefix_opt
)
5019 my_get_expression (&exp
, str
, prefix_opt
? GE_OPT_PREFIX
: GE_IMM_PREFIX
);
5020 if (exp
.X_op
!= O_constant
)
5022 inst
.error
= _("constant expression required");
5026 if (exp
.X_add_number
< min
|| exp
.X_add_number
> max
)
5028 inst
.error
= _("immediate value out of range");
5032 *val
= exp
.X_add_number
;
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5041 parse_big_immediate (char **str
, int i
, expressionS
*in_exp
,
5042 bfd_boolean allow_symbol_p
)
5045 expressionS
*exp_p
= in_exp
? in_exp
: &exp
;
5048 my_get_expression (exp_p
, &ptr
, GE_OPT_PREFIX_BIG
);
5050 if (exp_p
->X_op
== O_constant
)
5052 inst
.operands
[i
].imm
= exp_p
->X_add_number
& 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p
->X_add_number
& ~(offsetT
)(0xffffffffU
)) != 0)
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst
.operands
[i
].reg
= (((exp_p
->X_add_number
>> 16) >> 16)
5061 inst
.operands
[i
].regisimm
= 1;
5064 else if (exp_p
->X_op
== O_big
5065 && LITTLENUM_NUMBER_OF_BITS
* exp_p
->X_add_number
> 32)
5067 unsigned parts
= 32 / LITTLENUM_NUMBER_OF_BITS
, j
, idx
= 0;
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts
!= 0);
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS
* exp_p
->X_add_number
> 64)
5080 LITTLENUM_TYPE m
= -1;
5082 if (generic_bignum
[parts
* 2] != 0
5083 && generic_bignum
[parts
* 2] != m
)
5086 for (j
= parts
* 2 + 1; j
< (unsigned) exp_p
->X_add_number
; j
++)
5087 if (generic_bignum
[j
] != generic_bignum
[j
-1])
5091 inst
.operands
[i
].imm
= 0;
5092 for (j
= 0; j
< parts
; j
++, idx
++)
5093 inst
.operands
[i
].imm
|= generic_bignum
[idx
]
5094 << (LITTLENUM_NUMBER_OF_BITS
* j
);
5095 inst
.operands
[i
].reg
= 0;
5096 for (j
= 0; j
< parts
; j
++, idx
++)
5097 inst
.operands
[i
].reg
|= generic_bignum
[idx
]
5098 << (LITTLENUM_NUMBER_OF_BITS
* j
);
5099 inst
.operands
[i
].regisimm
= 1;
5101 else if (!(exp_p
->X_op
== O_symbol
&& allow_symbol_p
))
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5113 parse_fpa_immediate (char ** str
)
5115 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5124 for (i
= 0; fp_const
[i
]; i
++)
5126 if (strncmp (*str
, fp_const
[i
], strlen (fp_const
[i
])) == 0)
5130 *str
+= strlen (fp_const
[i
]);
5131 if (is_end_of_line
[(unsigned char) **str
])
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5142 memset (words
, 0, MAX_LITTLENUMS
* sizeof (LITTLENUM_TYPE
));
5144 /* Look for a raw floating point number. */
5145 if ((save_in
= atof_ieee (*str
, 'x', words
)) != NULL
5146 && is_end_of_line
[(unsigned char) *save_in
])
5148 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
5150 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
5152 if (words
[j
] != fp_values
[i
][j
])
5156 if (j
== MAX_LITTLENUMS
)
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in
= input_line_pointer
;
5167 input_line_pointer
= *str
;
5168 if (expression (&exp
) == absolute_section
5169 && exp
.X_op
== O_big
5170 && exp
.X_add_number
< 0)
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words
, X_PRECISION
, E_PRECISION
) == 0)
5178 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
5180 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
5182 if (words
[j
] != fp_values
[i
][j
])
5186 if (j
== MAX_LITTLENUMS
)
5188 *str
= input_line_pointer
;
5189 input_line_pointer
= save_in
;
5196 *str
= input_line_pointer
;
5197 input_line_pointer
= save_in
;
5198 inst
.error
= _("invalid FPA immediate expression");
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5206 is_quarter_float (unsigned imm
)
5208 int bs
= (imm
& 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm
& 0x7ffff) == 0 && ((imm
& 0x7e000000) ^ bs
) == 0;
5213 /* Detect the presence of a floating point or integer zero constant,
5217 parse_ifimm_zero (char **in
)
5221 if (!is_immediate_prefix (**in
))
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax
)
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in
, "0x", 2) == 0)
5234 if (parse_immediate (in
, &val
, 0, 0, TRUE
) == FAIL
)
5239 error_code
= atof_generic (in
, ".", EXP_CHARS
,
5240 &generic_floating_point_number
);
5243 && generic_floating_point_number
.sign
== '+'
5244 && (generic_floating_point_number
.low
5245 > generic_floating_point_number
.leader
))
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5258 parse_qfloat_immediate (char **ccp
, int *immed
)
5262 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5263 int found_fpchar
= 0;
5265 skip_past_char (&str
, '#');
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5273 skip_whitespace (fpnum
);
5275 if (strncmp (fpnum
, "0x", 2) == 0)
5279 for (; *fpnum
!= '\0' && *fpnum
!= ' ' && *fpnum
!= '\n'; fpnum
++)
5280 if (*fpnum
== '.' || *fpnum
== 'e' || *fpnum
== 'E')
5290 if ((str
= atof_ieee (str
, 's', words
)) != NULL
)
5292 unsigned fpword
= 0;
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i
= 0; i
< 32 / LITTLENUM_NUMBER_OF_BITS
; i
++)
5298 fpword
<<= LITTLENUM_NUMBER_OF_BITS
;
5302 if (is_quarter_float (fpword
) || (fpword
& 0x7fffffff) == 0)
5315 /* Shift operands. */
5318 SHIFT_LSL
, SHIFT_LSR
, SHIFT_ASR
, SHIFT_ROR
, SHIFT_RRX
, SHIFT_UXTW
5321 struct asm_shift_name
5324 enum shift_kind kind
;
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5330 NO_SHIFT_RESTRICT
, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE
, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE
, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE
, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE
, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE
/* Shift must be UXTW immediate. */
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5349 parse_shift (char **str
, int i
, enum parse_shift_mode mode
)
5351 const struct asm_shift_name
*shift_name
;
5352 enum shift_kind shift
;
5357 for (p
= *str
; ISALPHA (*p
); p
++)
5362 inst
.error
= _("shift expression expected");
5366 shift_name
= (const struct asm_shift_name
*) hash_find_n (arm_shift_hsh
, *str
,
5369 if (shift_name
== NULL
)
5371 inst
.error
= _("shift expression expected");
5375 shift
= shift_name
->kind
;
5379 case NO_SHIFT_RESTRICT
:
5380 case SHIFT_IMMEDIATE
:
5381 if (shift
== SHIFT_UXTW
)
5383 inst
.error
= _("'UXTW' not allowed here");
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE
:
5389 if (shift
!= SHIFT_LSL
&& shift
!= SHIFT_ASR
)
5391 inst
.error
= _("'LSL' or 'ASR' required");
5396 case SHIFT_LSL_IMMEDIATE
:
5397 if (shift
!= SHIFT_LSL
)
5399 inst
.error
= _("'LSL' required");
5404 case SHIFT_ASR_IMMEDIATE
:
5405 if (shift
!= SHIFT_ASR
)
5407 inst
.error
= _("'ASR' required");
5411 case SHIFT_UXTW_IMMEDIATE
:
5412 if (shift
!= SHIFT_UXTW
)
5414 inst
.error
= _("'UXTW' required");
5422 if (shift
!= SHIFT_RRX
)
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p
);
5427 if (mode
== NO_SHIFT_RESTRICT
5428 && (reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5430 inst
.operands
[i
].imm
= reg
;
5431 inst
.operands
[i
].immisreg
= 1;
5433 else if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
5436 inst
.operands
[i
].shift_kind
= shift
;
5437 inst
.operands
[i
].shifted
= 1;
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5445 #<immediate>, <rotate>
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5454 parse_shifter_operand (char **str
, int i
)
5459 if ((value
= arm_reg_parse (str
, REG_TYPE_RN
)) != FAIL
)
5461 inst
.operands
[i
].reg
= value
;
5462 inst
.operands
[i
].isreg
= 1;
5464 /* parse_shift will override this if appropriate */
5465 inst
.relocs
[0].exp
.X_op
= O_constant
;
5466 inst
.relocs
[0].exp
.X_add_number
= 0;
5468 if (skip_past_comma (str
) == FAIL
)
5471 /* Shift operation on register. */
5472 return parse_shift (str
, i
, NO_SHIFT_RESTRICT
);
5475 if (my_get_expression (&inst
.relocs
[0].exp
, str
, GE_IMM_PREFIX
))
5478 if (skip_past_comma (str
) == SUCCESS
)
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp
, str
, GE_NO_PREFIX
))
5484 if (exp
.X_op
!= O_constant
|| inst
.relocs
[0].exp
.X_op
!= O_constant
)
5486 inst
.error
= _("constant expression expected");
5490 value
= exp
.X_add_number
;
5491 if (value
< 0 || value
> 30 || value
% 2 != 0)
5493 inst
.error
= _("invalid rotation");
5496 if (inst
.relocs
[0].exp
.X_add_number
< 0
5497 || inst
.relocs
[0].exp
.X_add_number
> 255)
5499 inst
.error
= _("invalid constant");
5503 /* Encode as specified. */
5504 inst
.operands
[i
].imm
= inst
.relocs
[0].exp
.X_add_number
| value
<< 7;
5508 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
5509 inst
.relocs
[0].pc_rel
= 0;
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5520 struct group_reloc_table_entry
5531 /* Varieties of non-ALU group relocation. */
5539 static struct group_reloc_table_entry group_reloc_table
[] =
5540 { /* Program counter relative: */
5542 BFD_RELOC_ARM_ALU_PC_G0_NC
, /* ALU */
5547 BFD_RELOC_ARM_ALU_PC_G0
, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0
, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0
, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0
}, /* LDC */
5552 BFD_RELOC_ARM_ALU_PC_G1_NC
, /* ALU */
5557 BFD_RELOC_ARM_ALU_PC_G1
, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1
, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1
, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1
}, /* LDC */
5562 BFD_RELOC_ARM_ALU_PC_G2
, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2
, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2
, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2
}, /* LDC */
5566 /* Section base relative */
5568 BFD_RELOC_ARM_ALU_SB_G0_NC
, /* ALU */
5573 BFD_RELOC_ARM_ALU_SB_G0
, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0
, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0
, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0
}, /* LDC */
5578 BFD_RELOC_ARM_ALU_SB_G1_NC
, /* ALU */
5583 BFD_RELOC_ARM_ALU_SB_G1
, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1
, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1
, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1
}, /* LDC */
5588 BFD_RELOC_ARM_ALU_SB_G2
, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2
, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2
, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2
}, /* LDC */
5592 /* Absolute thumb alu relocations. */
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
,/* ALU. */
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
,/* ALU. */
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
,/* ALU. */
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,/* ALU. */
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5622 find_group_reloc_table_entry (char **str
, struct group_reloc_table_entry
**out
)
5625 for (i
= 0; i
< ARRAY_SIZE (group_reloc_table
); i
++)
5627 int length
= strlen (group_reloc_table
[i
].name
);
5629 if (strncasecmp (group_reloc_table
[i
].name
, *str
, length
) == 0
5630 && (*str
)[length
] == ':')
5632 *out
= &group_reloc_table
[i
];
5633 *str
+= (length
+ 1);
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5653 Everything else is as for parse_shifter_operand. */
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str
, int i
)
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5662 if (((*str
)[0] == '#' && (*str
)[1] == ':')
5663 || (*str
)[0] == ':')
5665 struct group_reloc_table_entry
*entry
;
5667 if ((*str
)[0] == '#')
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str
, &entry
) == FAIL
)
5675 inst
.error
= _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst
.relocs
[0].exp
, str
, GE_NO_PREFIX
))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) entry
->alu_code
;
5686 gas_assert (inst
.relocs
[0].type
!= 0);
5688 return PARSE_OPERAND_SUCCESS
;
5691 return parse_shifter_operand (str
, i
) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS
: PARSE_OPERAND_FAIL
;
5694 /* Never reached. */
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str
, int i
)
5707 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
5709 if (exp
.X_op
!= O_constant
)
5711 inst
.error
= _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL
;
5715 inst
.operands
[i
].imm
= exp
.X_add_number
<< 8;
5716 inst
.operands
[i
].immisalign
= 1;
5717 /* Alignments are not pre-indexes. */
5718 inst
.operands
[i
].preind
= 0;
5721 return PARSE_OPERAND_SUCCESS
;
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5727 Preindexed addressing (.preind=1):
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5734 These three may have a trailing ! which causes .writeback to be set also.
5736 Postindexed addressing (.postind=1, .writeback=1):
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5743 Unindexed addressing (.preind=0, .postind=0):
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5756 static parse_operand_result
5757 parse_address_main (char **str
, int i
, int group_relocations
,
5758 group_reloc_type group_type
)
5763 if (skip_past_char (&p
, '[') == FAIL
)
5765 if (skip_past_char (&p
, '=') == FAIL
)
5767 /* Bare address - translate to PC-relative offset. */
5768 inst
.relocs
[0].pc_rel
= 1;
5769 inst
.operands
[i
].reg
= REG_PC
;
5770 inst
.operands
[i
].isreg
= 1;
5771 inst
.operands
[i
].preind
= 1;
5773 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_OPT_PREFIX_BIG
))
5774 return PARSE_OPERAND_FAIL
;
5776 else if (parse_big_immediate (&p
, i
, &inst
.relocs
[0].exp
,
5777 /*allow_symbol_p=*/TRUE
))
5778 return PARSE_OPERAND_FAIL
;
5781 return PARSE_OPERAND_SUCCESS
;
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p
);
5787 if (group_type
== GROUP_MVE
)
5789 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5790 struct neon_type_el et
;
5791 if ((reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
5793 inst
.operands
[i
].isquad
= 1;
5795 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5797 inst
.error
= BAD_ADDR_MODE
;
5798 return PARSE_OPERAND_FAIL
;
5801 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5803 if (group_type
== GROUP_MVE
)
5804 inst
.error
= BAD_ADDR_MODE
;
5806 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5807 return PARSE_OPERAND_FAIL
;
5809 inst
.operands
[i
].reg
= reg
;
5810 inst
.operands
[i
].isreg
= 1;
5812 if (skip_past_comma (&p
) == SUCCESS
)
5814 inst
.operands
[i
].preind
= 1;
5817 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5819 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5820 struct neon_type_el et
;
5821 if (group_type
== GROUP_MVE
5822 && (reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
5824 inst
.operands
[i
].immisreg
= 2;
5825 inst
.operands
[i
].imm
= reg
;
5827 if (skip_past_comma (&p
) == SUCCESS
)
5829 if (parse_shift (&p
, i
, SHIFT_UXTW_IMMEDIATE
) == SUCCESS
)
5831 inst
.operands
[i
].imm
|= inst
.relocs
[0].exp
.X_add_number
<< 5;
5832 inst
.relocs
[0].exp
.X_add_number
= 0;
5835 return PARSE_OPERAND_FAIL
;
5838 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5840 inst
.operands
[i
].imm
= reg
;
5841 inst
.operands
[i
].immisreg
= 1;
5843 if (skip_past_comma (&p
) == SUCCESS
)
5844 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
5845 return PARSE_OPERAND_FAIL
;
5847 else if (skip_past_char (&p
, ':') == SUCCESS
)
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5852 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5854 if (result
!= PARSE_OPERAND_SUCCESS
)
5859 if (inst
.operands
[i
].negative
)
5861 inst
.operands
[i
].negative
= 0;
5865 if (group_relocations
5866 && ((*p
== '#' && *(p
+ 1) == ':') || *p
== ':'))
5868 struct group_reloc_table_entry
*entry
;
5870 /* Skip over the #: or : sequence. */
5876 /* Try to parse a group relocation. Anything else is an
5878 if (find_group_reloc_table_entry (&p
, &entry
) == FAIL
)
5880 inst
.error
= _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5887 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_NO_PREFIX
))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5890 /* Record the relocation type. */
5895 = (bfd_reloc_code_real_type
) entry
->ldr_code
;
5900 = (bfd_reloc_code_real_type
) entry
->ldrs_code
;
5905 = (bfd_reloc_code_real_type
) entry
->ldc_code
;
5912 if (inst
.relocs
[0].type
== 0)
5914 inst
.error
= _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5922 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
5923 return PARSE_OPERAND_FAIL
;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst
.relocs
[0].exp
.X_op
== O_constant
5926 && inst
.relocs
[0].exp
.X_add_number
== 0)
5928 skip_whitespace (q
);
5932 skip_whitespace (q
);
5935 inst
.operands
[i
].negative
= 1;
5940 else if (skip_past_char (&p
, ':') == SUCCESS
)
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5946 if (result
!= PARSE_OPERAND_SUCCESS
)
5950 if (skip_past_char (&p
, ']') == FAIL
)
5952 inst
.error
= _("']' expected");
5953 return PARSE_OPERAND_FAIL
;
5956 if (skip_past_char (&p
, '!') == SUCCESS
)
5957 inst
.operands
[i
].writeback
= 1;
5959 else if (skip_past_comma (&p
) == SUCCESS
)
5961 if (skip_past_char (&p
, '{') == SUCCESS
)
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p
, &inst
.operands
[i
].imm
,
5965 0, 255, TRUE
) == FAIL
)
5966 return PARSE_OPERAND_FAIL
;
5968 if (skip_past_char (&p
, '}') == FAIL
)
5970 inst
.error
= _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL
;
5973 if (inst
.operands
[i
].preind
)
5975 inst
.error
= _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL
;
5979 return PARSE_OPERAND_SUCCESS
;
5983 inst
.operands
[i
].postind
= 1;
5984 inst
.operands
[i
].writeback
= 1;
5986 if (inst
.operands
[i
].preind
)
5988 inst
.error
= _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL
;
5993 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5995 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5996 struct neon_type_el et
;
5997 if (group_type
== GROUP_MVE
5998 && (reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
6000 inst
.operands
[i
].immisreg
= 2;
6001 inst
.operands
[i
].imm
= reg
;
6003 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst
.operands
[i
].immisalign
)
6008 inst
.operands
[i
].imm
|= reg
;
6010 inst
.operands
[i
].imm
= reg
;
6011 inst
.operands
[i
].immisreg
= 1;
6013 if (skip_past_comma (&p
) == SUCCESS
)
6014 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
6015 return PARSE_OPERAND_FAIL
;
6021 if (inst
.operands
[i
].negative
)
6023 inst
.operands
[i
].negative
= 0;
6026 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
6027 return PARSE_OPERAND_FAIL
;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst
.relocs
[0].exp
.X_op
== O_constant
6030 && inst
.relocs
[0].exp
.X_add_number
== 0)
6032 skip_whitespace (q
);
6036 skip_whitespace (q
);
6039 inst
.operands
[i
].negative
= 1;
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst
.operands
[i
].preind
== 0 && inst
.operands
[i
].postind
== 0)
6049 inst
.operands
[i
].preind
= 1;
6050 inst
.relocs
[0].exp
.X_op
= O_constant
;
6051 inst
.relocs
[0].exp
.X_add_number
= 0;
6054 return PARSE_OPERAND_SUCCESS
;
6058 parse_address (char **str
, int i
)
6060 return parse_address_main (str
, i
, 0, GROUP_LDR
) == PARSE_OPERAND_SUCCESS
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str
, int i
, group_reloc_type type
)
6067 return parse_address_main (str
, i
, 1, type
);
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6072 parse_half (char **str
)
6077 skip_past_char (&p
, '#');
6078 if (strncasecmp (p
, ":lower16:", 9) == 0)
6079 inst
.relocs
[0].type
= BFD_RELOC_ARM_MOVW
;
6080 else if (strncasecmp (p
, ":upper16:", 9) == 0)
6081 inst
.relocs
[0].type
= BFD_RELOC_ARM_MOVT
;
6083 if (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
)
6086 skip_whitespace (p
);
6089 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_NO_PREFIX
))
6092 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
6094 if (inst
.relocs
[0].exp
.X_op
!= O_constant
)
6096 inst
.error
= _("constant expression expected");
6099 if (inst
.relocs
[0].exp
.X_add_number
< 0
6100 || inst
.relocs
[0].exp
.X_add_number
> 0xffff)
6102 inst
.error
= _("immediate value out of range");
6110 /* Miscellaneous. */
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6115 parse_psr (char **str
, bfd_boolean lhs
)
6118 unsigned long psr_field
;
6119 const struct asm_psr
*psr
;
6121 bfd_boolean is_apsr
= FALSE
;
6122 bfd_boolean m_profile
= ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
);
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
))
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6133 if (strncasecmp (p
, "SPSR", 4) == 0)
6136 goto unsupported_psr
;
6138 psr_field
= SPSR_BIT
;
6140 else if (strncasecmp (p
, "CPSR", 4) == 0)
6143 goto unsupported_psr
;
6147 else if (strncasecmp (p
, "APSR", 4) == 0)
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6159 while (ISALNUM (*p
) || *p
== '_');
6161 if (strncasecmp (start
, "iapsr", 5) == 0
6162 || strncasecmp (start
, "eapsr", 5) == 0
6163 || strncasecmp (start
, "xpsr", 4) == 0
6164 || strncasecmp (start
, "psr", 3) == 0)
6165 p
= start
+ strcspn (start
, "rR") + 1;
6167 psr
= (const struct asm_psr
*) hash_find_n (arm_v7m_psr_hsh
, start
,
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr
->field
<= 3)
6177 psr_field
= psr
->field
;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6187 return psr
->field
| (lhs
? PSR_f
: 0);
6190 goto unsupported_psr
;
6196 /* A suffix follows. */
6202 while (ISALNUM (*p
) || *p
== '_');
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits
= 0;
6208 unsigned int g_bit
= 0;
6211 for (bit
= start
; bit
!= p
; bit
++)
6213 switch (TOLOWER (*bit
))
6216 nzcvq_bits
|= (nzcvq_bits
& 0x01) ? 0x20 : 0x01;
6220 nzcvq_bits
|= (nzcvq_bits
& 0x02) ? 0x20 : 0x02;
6224 nzcvq_bits
|= (nzcvq_bits
& 0x04) ? 0x20 : 0x04;
6228 nzcvq_bits
|= (nzcvq_bits
& 0x08) ? 0x20 : 0x08;
6232 nzcvq_bits
|= (nzcvq_bits
& 0x10) ? 0x20 : 0x10;
6236 g_bit
|= (g_bit
& 0x1) ? 0x2 : 0x1;
6240 inst
.error
= _("unexpected bit specified after APSR");
6245 if (nzcvq_bits
== 0x1f)
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
))
6252 inst
.error
= _("selected processor does not "
6253 "support DSP extension");
6260 if ((nzcvq_bits
& 0x20) != 0
6261 || (nzcvq_bits
!= 0x1f && nzcvq_bits
!= 0)
6262 || (g_bit
& 0x2) != 0)
6264 inst
.error
= _("bad bitmask specified after APSR");
6270 psr
= (const struct asm_psr
*) hash_find_n (arm_psr_hsh
, start
,
6275 psr_field
|= psr
->field
;
6281 goto error
; /* Garbage after "[CS]PSR". */
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6291 else if (!m_profile
)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field
|= (PSR_c
| PSR_f
);
6300 inst
.error
= _("selected processor does not support requested special "
6301 "purpose register");
6305 inst
.error
= _("flag for {c}psr instruction expected");
6310 parse_sys_vldr_vstr (char **str
)
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6326 char *op_end
= strchr (*str
, ',');
6327 size_t op_strlen
= op_end
- *str
;
6329 for (i
= 0; i
< sizeof (sysregs
) / sizeof (sysregs
[0]); i
++)
6331 if (!strncmp (*str
, sysregs
[i
].name
, op_strlen
))
6333 val
= sysregs
[i
].regl
| (sysregs
[i
].regh
<< 3);
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6346 parse_cps_flags (char **str
)
6355 case '\0': case ',':
6358 case 'a': case 'A': saw_a_flag
= 1; val
|= 0x4; break;
6359 case 'i': case 'I': saw_a_flag
= 1; val
|= 0x2; break;
6360 case 'f': case 'F': saw_a_flag
= 1; val
|= 0x1; break;
6363 inst
.error
= _("unrecognized CPS flag");
6368 if (saw_a_flag
== 0)
6370 inst
.error
= _("missing CPS flags");
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6382 parse_endian_specifier (char **str
)
6387 if (strncasecmp (s
, "BE", 2))
6389 else if (strncasecmp (s
, "LE", 2))
6393 inst
.error
= _("valid endian specifiers are be or le");
6397 if (ISALNUM (s
[2]) || s
[2] == '_')
6399 inst
.error
= _("valid endian specifiers are be or le");
6404 return little_endian
;
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6412 parse_ror (char **str
)
6417 if (strncasecmp (s
, "ROR", 3) == 0)
6421 inst
.error
= _("missing rotation field after comma");
6425 if (parse_immediate (&s
, &rot
, 0, 24, FALSE
) == FAIL
)
6430 case 0: *str
= s
; return 0x0;
6431 case 8: *str
= s
; return 0x1;
6432 case 16: *str
= s
; return 0x2;
6433 case 24: *str
= s
; return 0x3;
6436 inst
.error
= _("rotation can only be 0, 8, 16, or 24");
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6444 parse_cond (char **str
)
6447 const struct asm_cond
*c
;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6455 while (ISALPHA (*q
) && n
< 3)
6457 cond
[n
] = TOLOWER (*q
);
6462 c
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, cond
, n
);
6465 inst
.error
= _("condition required");
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6476 parse_barrier (char **str
)
6479 const struct asm_barrier_opt
*o
;
6482 while (ISALPHA (*q
))
6485 o
= (const struct asm_barrier_opt
*) hash_find_n (arm_barrier_opt_hsh
, p
,
6490 if (!mark_feature_used (&o
->arch
))
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6500 parse_tb (char **str
)
6505 if (skip_past_char (&p
, '[') == FAIL
)
6507 inst
.error
= _("'[' expected");
6511 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
6513 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
6516 inst
.operands
[0].reg
= reg
;
6518 if (skip_past_comma (&p
) == FAIL
)
6520 inst
.error
= _("',' expected");
6524 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
6526 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
6529 inst
.operands
[0].imm
= reg
;
6531 if (skip_past_comma (&p
) == SUCCESS
)
6533 if (parse_shift (&p
, 0, SHIFT_LSL_IMMEDIATE
) == FAIL
)
6535 if (inst
.relocs
[0].exp
.X_add_number
!= 1)
6537 inst
.error
= _("invalid shift");
6540 inst
.operands
[0].shifted
= 1;
6543 if (skip_past_char (&p
, ']') == FAIL
)
6545 inst
.error
= _("']' expected");
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6560 parse_neon_mov (char **str
, int *which_operand
)
6562 int i
= *which_operand
, val
;
6563 enum arm_reg_type rtype
;
6565 struct neon_type_el optype
;
6567 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6569 /* Cases 17 or 19. */
6570 inst
.operands
[i
].reg
= val
;
6571 inst
.operands
[i
].isvec
= 1;
6572 inst
.operands
[i
].isscalar
= 2;
6573 inst
.operands
[i
].vectype
= optype
;
6574 inst
.operands
[i
++].present
= 1;
6576 if (skip_past_comma (&ptr
) == FAIL
)
6579 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst
.operands
[i
].reg
= val
;
6583 inst
.operands
[i
].isreg
= 1;
6584 inst
.operands
[i
].present
= 1;
6586 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst
.operands
[i
].reg
= val
;
6590 inst
.operands
[i
].isvec
= 1;
6591 inst
.operands
[i
].isscalar
= 2;
6592 inst
.operands
[i
].vectype
= optype
;
6593 inst
.operands
[i
++].present
= 1;
6595 if (skip_past_comma (&ptr
) == FAIL
)
6598 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6601 inst
.operands
[i
].reg
= val
;
6602 inst
.operands
[i
].isreg
= 1;
6603 inst
.operands
[i
++].present
= 1;
6605 if (skip_past_comma (&ptr
) == FAIL
)
6608 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6611 inst
.operands
[i
].reg
= val
;
6612 inst
.operands
[i
].isreg
= 1;
6613 inst
.operands
[i
].present
= 1;
6617 first_error (_("expected ARM or MVE vector register"));
6621 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_VFD
)) != FAIL
)
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst
.operands
[i
].reg
= val
;
6625 inst
.operands
[i
].isscalar
= 1;
6626 inst
.operands
[i
].vectype
= optype
;
6627 inst
.operands
[i
++].present
= 1;
6629 if (skip_past_comma (&ptr
) == FAIL
)
6632 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6635 inst
.operands
[i
].reg
= val
;
6636 inst
.operands
[i
].isreg
= 1;
6637 inst
.operands
[i
].present
= 1;
6639 else if (((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
, &optype
))
6641 || ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_MQ
, &rtype
, &optype
))
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr
) == FAIL
)
6648 inst
.operands
[i
].reg
= val
;
6649 inst
.operands
[i
].isreg
= 1;
6650 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
6651 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6652 inst
.operands
[i
].isvec
= 1;
6653 inst
.operands
[i
].vectype
= optype
;
6654 inst
.operands
[i
++].present
= 1;
6656 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst
.operands
[i
].reg
= val
;
6661 inst
.operands
[i
].isreg
= 1;
6662 inst
.operands
[i
].present
= 1;
6664 if (rtype
== REG_TYPE_NQ
)
6666 first_error (_("can't use Neon quad register here"));
6669 else if (rtype
!= REG_TYPE_VFS
)
6672 if (skip_past_comma (&ptr
) == FAIL
)
6674 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6676 inst
.operands
[i
].reg
= val
;
6677 inst
.operands
[i
].isreg
= 1;
6678 inst
.operands
[i
].present
= 1;
6681 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
,
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6689 inst
.operands
[i
].reg
= val
;
6690 inst
.operands
[i
].isreg
= 1;
6691 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
6692 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6693 inst
.operands
[i
].isvec
= 1;
6694 inst
.operands
[i
].vectype
= optype
;
6695 inst
.operands
[i
].present
= 1;
6697 if (skip_past_comma (&ptr
) == SUCCESS
)
6702 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6705 inst
.operands
[i
].reg
= val
;
6706 inst
.operands
[i
].isreg
= 1;
6707 inst
.operands
[i
++].present
= 1;
6709 if (skip_past_comma (&ptr
) == FAIL
)
6712 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6715 inst
.operands
[i
].reg
= val
;
6716 inst
.operands
[i
].isreg
= 1;
6717 inst
.operands
[i
].present
= 1;
6720 else if (parse_qfloat_immediate (&ptr
, &inst
.operands
[i
].imm
) == SUCCESS
)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst
.operands
[i
].immisfloat
= 1;
6726 else if (parse_big_immediate (&ptr
, i
, NULL
, /*allow_symbol_p=*/FALSE
)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6737 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6739 /* Cases 6, 7, 16, 18. */
6740 inst
.operands
[i
].reg
= val
;
6741 inst
.operands
[i
].isreg
= 1;
6742 inst
.operands
[i
++].present
= 1;
6744 if (skip_past_comma (&ptr
) == FAIL
)
6747 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst
.operands
[i
].reg
= val
;
6751 inst
.operands
[i
].isscalar
= 2;
6752 inst
.operands
[i
].present
= 1;
6753 inst
.operands
[i
].vectype
= optype
;
6755 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_VFD
)) != FAIL
)
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst
.operands
[i
].reg
= val
;
6759 inst
.operands
[i
].isscalar
= 1;
6760 inst
.operands
[i
].present
= 1;
6761 inst
.operands
[i
].vectype
= optype
;
6763 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6765 inst
.operands
[i
].reg
= val
;
6766 inst
.operands
[i
].isreg
= 1;
6767 inst
.operands
[i
++].present
= 1;
6769 if (skip_past_comma (&ptr
) == FAIL
)
6772 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFSD
, &rtype
, &optype
))
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6777 inst
.operands
[i
].reg
= val
;
6778 inst
.operands
[i
].isreg
= 1;
6779 inst
.operands
[i
].isvec
= 1;
6780 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6781 inst
.operands
[i
].vectype
= optype
;
6782 inst
.operands
[i
].present
= 1;
6784 if (rtype
== REG_TYPE_VFS
)
6788 if (skip_past_comma (&ptr
) == FAIL
)
6790 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
,
6793 first_error (_(reg_expected_msgs
[REG_TYPE_VFS
]));
6796 inst
.operands
[i
].reg
= val
;
6797 inst
.operands
[i
].isreg
= 1;
6798 inst
.operands
[i
].isvec
= 1;
6799 inst
.operands
[i
].issingle
= 1;
6800 inst
.operands
[i
].vectype
= optype
;
6801 inst
.operands
[i
].present
= 1;
6806 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
))
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst
.operands
[i
].reg
= val
;
6811 inst
.operands
[i
].isvec
= 1;
6812 inst
.operands
[i
].isscalar
= 2;
6813 inst
.operands
[i
].vectype
= optype
;
6814 inst
.operands
[i
++].present
= 1;
6816 if (skip_past_comma (&ptr
) == FAIL
)
6819 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
))
6822 first_error (_(reg_expected_msgs
[REG_TYPE_MQ
]));
6825 inst
.operands
[i
].reg
= val
;
6826 inst
.operands
[i
].isvec
= 1;
6827 inst
.operands
[i
].isscalar
= 2;
6828 inst
.operands
[i
].vectype
= optype
;
6829 inst
.operands
[i
].present
= 1;
6833 first_error (_("VFP single, double or MVE vector register"
6839 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
, &optype
))
6843 inst
.operands
[i
].reg
= val
;
6844 inst
.operands
[i
].isreg
= 1;
6845 inst
.operands
[i
].isvec
= 1;
6846 inst
.operands
[i
].issingle
= 1;
6847 inst
.operands
[i
].vectype
= optype
;
6848 inst
.operands
[i
].present
= 1;
6853 first_error (_("parse error"));
6857 /* Successfully parsed the operands. Update args. */
6863 first_error (_("expected comma"));
6867 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6879 OP_stop
, /* end of line */
6881 OP_RR
, /* ARM register */
6882 OP_RRnpc
, /* ARM register, not r15 */
6883 OP_RRnpcsp
, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb
, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw
, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw
, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP
, /* Coprocessor number */
6889 OP_RCN
, /* Coprocessor register */
6890 OP_RF
, /* FPA register */
6891 OP_RVS
, /* VFP single precision register */
6892 OP_RVD
, /* VFP double precision register (0..15) */
6893 OP_RND
, /* Neon double precision register (0..31) */
6894 OP_RNDMQ
, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR
, /* Neon double precision (0..31), MVE vector or ARM register.
6897 OP_RNQ
, /* Neon quad precision register */
6898 OP_RNQMQ
, /* Neon quad or MVE vector register. */
6899 OP_RVSD
, /* VFP single or double precision register */
6900 OP_RVSD_COND
, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ
, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD
, /* Neon single or double precision register */
6903 OP_RNDQ
, /* Neon double or quad precision register */
6904 OP_RNDQMQ
, /* Neon double, quad or MVE vector register. */
6905 OP_RNSDQ
, /* Neon single, double or quad precision register */
6906 OP_RNSC
, /* Neon scalar D[X] */
6907 OP_RVC
, /* VFP control register */
6908 OP_RMF
, /* Maverick F register */
6909 OP_RMD
, /* Maverick D register */
6910 OP_RMFX
, /* Maverick FX register */
6911 OP_RMDX
, /* Maverick DX register */
6912 OP_RMAX
, /* Maverick AX register */
6913 OP_RMDS
, /* Maverick DSPSC register */
6914 OP_RIWR
, /* iWMMXt wR register */
6915 OP_RIWC
, /* iWMMXt wC register */
6916 OP_RIWG
, /* iWMMXt wCG register */
6917 OP_RXA
, /* XScale accumulator register */
6919 OP_RNSDQMQ
, /* Neon single, double or quad register or MVE vector register
6921 OP_RNSDQMQR
, /* Neon single, double or quad register, MVE vector register or
6923 OP_RMQ
, /* MVE vector register. */
6924 OP_RMQRZ
, /* MVE vector or ARM register including ZR. */
6926 /* New operands for Armv8.1-M Mainline. */
6927 OP_LR
, /* ARM LR register */
6928 OP_RRe
, /* ARM register, only even numbered. */
6929 OP_RRo
, /* ARM register, only odd numbered, not r13 or r15. */
6930 OP_RRnpcsp_I32
, /* ARM register (no BadReg) or literal 1 .. 32 */
6932 OP_REGLST
, /* ARM register list */
6933 OP_CLRMLST
, /* CLRM register list */
6934 OP_VRSLST
, /* VFP single-precision register list */
6935 OP_VRDLST
, /* VFP double-precision register list */
6936 OP_VRSDLST
, /* VFP single or double-precision register list (& quad) */
6937 OP_NRDLST
, /* Neon double-precision register list (d0-d31, qN aliases) */
6938 OP_NSTRLST
, /* Neon element/structure list */
6939 OP_VRSDVLST
, /* VFP single or double-precision register list and VPR */
6940 OP_MSTRLST2
, /* MVE vector list with two elements. */
6941 OP_MSTRLST4
, /* MVE vector list with four elements. */
6943 OP_RNDQ_I0
, /* Neon D or Q reg, or immediate zero. */
6944 OP_RVSD_I0
, /* VFP S or D reg, or immediate zero. */
6945 OP_RSVD_FI0
, /* VFP S or D reg, or floating point immediate zero. */
6946 OP_RSVDMQ_FI0
, /* VFP S, D, MVE vector register or floating point immediate
6948 OP_RR_RNSC
, /* ARM reg or Neon scalar. */
6949 OP_RNSD_RNSC
, /* Neon S or D reg, or Neon scalar. */
6950 OP_RNSDQ_RNSC
, /* Vector S, D or Q reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC_MQ
, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6953 OP_RNDQ_RNSC
, /* Neon D or Q reg, or Neon scalar. */
6954 OP_RND_RNSC
, /* Neon D reg, or Neon scalar. */
6955 OP_VMOV
, /* Neon VMOV operands. */
6956 OP_RNDQ_Ibig
, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6957 OP_RNDQ_I63b
, /* Neon D or Q reg, or immediate for shift. */
6958 OP_RIWR_I32z
, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6959 OP_VLDR
, /* VLDR operand. */
6961 OP_I0
, /* immediate zero */
6962 OP_I7
, /* immediate value 0 .. 7 */
6963 OP_I15
, /* 0 .. 15 */
6964 OP_I16
, /* 1 .. 16 */
6965 OP_I16z
, /* 0 .. 16 */
6966 OP_I31
, /* 0 .. 31 */
6967 OP_I31w
, /* 0 .. 31, optional trailing ! */
6968 OP_I32
, /* 1 .. 32 */
6969 OP_I32z
, /* 0 .. 32 */
6970 OP_I63
, /* 0 .. 63 */
6971 OP_I63s
, /* -64 .. 63 */
6972 OP_I64
, /* 1 .. 64 */
6973 OP_I64z
, /* 0 .. 64 */
6974 OP_I255
, /* 0 .. 255 */
6976 OP_I4b
, /* immediate, prefix optional, 1 .. 4 */
6977 OP_I7b
, /* 0 .. 7 */
6978 OP_I15b
, /* 0 .. 15 */
6979 OP_I31b
, /* 0 .. 31 */
6981 OP_SH
, /* shifter operand */
6982 OP_SHG
, /* shifter operand with possible group relocation */
6983 OP_ADDR
, /* Memory address expression (any mode) */
6984 OP_ADDRMVE
, /* Memory address expression for MVE's VSTR/VLDR. */
6985 OP_ADDRGLDR
, /* Mem addr expr (any mode) with possible LDR group reloc */
6986 OP_ADDRGLDRS
, /* Mem addr expr (any mode) with possible LDRS group reloc */
6987 OP_ADDRGLDC
, /* Mem addr expr (any mode) with possible LDC group reloc */
6988 OP_EXP
, /* arbitrary expression */
6989 OP_EXPi
, /* same, with optional immediate prefix */
6990 OP_EXPr
, /* same, with optional relocation suffix */
6991 OP_EXPs
, /* same, with optional non-first operand relocation suffix */
6992 OP_HALF
, /* 0 .. 65535 or low/high reloc. */
6993 OP_IROT1
, /* VCADD rotate immediate: 90, 270. */
6994 OP_IROT2
, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6996 OP_CPSF
, /* CPS flags */
6997 OP_ENDI
, /* Endianness specifier */
6998 OP_wPSR
, /* CPSR/SPSR/APSR mask for msr (writing). */
6999 OP_rPSR
, /* CPSR/SPSR/APSR mask for msr (reading). */
7000 OP_COND
, /* conditional code */
7001 OP_TB
, /* Table branch. */
7003 OP_APSR_RR
, /* ARM register or "APSR_nzcv". */
7005 OP_RRnpc_I0
, /* ARM register or literal 0 */
7006 OP_RR_EXr
, /* ARM register or expression with opt. reloc stuff. */
7007 OP_RR_EXi
, /* ARM register or expression with imm prefix */
7008 OP_RF_IF
, /* FPA register or immediate */
7009 OP_RIWR_RIWC
, /* iWMMXt R or C reg */
7010 OP_RIWC_RIWG
, /* iWMMXt wC or wCG reg */
7012 /* Optional operands. */
7013 OP_oI7b
, /* immediate, prefix optional, 0 .. 7 */
7014 OP_oI31b
, /* 0 .. 31 */
7015 OP_oI32b
, /* 1 .. 32 */
7016 OP_oI32z
, /* 0 .. 32 */
7017 OP_oIffffb
, /* 0 .. 65535 */
7018 OP_oI255c
, /* curly-brace enclosed, 0 .. 255 */
7020 OP_oRR
, /* ARM register */
7021 OP_oLR
, /* ARM LR register */
7022 OP_oRRnpc
, /* ARM register, not the PC */
7023 OP_oRRnpcsp
, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7024 OP_oRRw
, /* ARM register, not r15, optional trailing ! */
7025 OP_oRND
, /* Optional Neon double precision register */
7026 OP_oRNQ
, /* Optional Neon quad precision register */
7027 OP_oRNDQMQ
, /* Optional Neon double, quad or MVE vector register. */
7028 OP_oRNDQ
, /* Optional Neon double or quad precision register */
7029 OP_oRNSDQ
, /* Optional single, double or quad precision vector register */
7030 OP_oRNSDQMQ
, /* Optional single, double or quad register or MVE vector
7032 OP_oSHll
, /* LSL immediate */
7033 OP_oSHar
, /* ASR immediate */
7034 OP_oSHllar
, /* LSL or ASR immediate */
7035 OP_oROR
, /* ROR 0/8/16/24 */
7036 OP_oBARRIER_I15
, /* Option argument for a barrier instruction. */
7038 OP_oRMQRZ
, /* optional MVE vector or ARM register including ZR. */
7040 /* Some pre-defined mixed (ARM/THUMB) operands. */
7041 OP_RR_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RR
, OP_RRnpcsp
),
7042 OP_RRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RRnpc
, OP_RRnpcsp
),
7043 OP_oRRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_oRRnpc
, OP_oRRnpcsp
),
7045 OP_FIRST_OPTIONAL
= OP_oI7b
7048 /* Generic instruction operand parser. This does no encoding and no
7049 semantic validation; it merely squirrels values away in the inst
7050 structure. Returns SUCCESS or FAIL depending on whether the
7051 specified grammar matched. */
7053 parse_operands (char *str
, const unsigned int *pattern
, bfd_boolean thumb
)
7055 unsigned const int *upat
= pattern
;
7056 char *backtrack_pos
= 0;
7057 const char *backtrack_error
= 0;
7058 int i
, val
= 0, backtrack_index
= 0;
7059 enum arm_reg_type rtype
;
7060 parse_operand_result result
;
7061 unsigned int op_parse_code
;
7062 bfd_boolean partial_match
;
7064 #define po_char_or_fail(chr) \
7067 if (skip_past_char (&str, chr) == FAIL) \
7072 #define po_reg_or_fail(regtype) \
7075 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7076 & inst.operands[i].vectype); \
7079 first_error (_(reg_expected_msgs[regtype])); \
7082 inst.operands[i].reg = val; \
7083 inst.operands[i].isreg = 1; \
7084 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7085 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7086 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7087 || rtype == REG_TYPE_VFD \
7088 || rtype == REG_TYPE_NQ); \
7089 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7093 #define po_reg_or_goto(regtype, label) \
7096 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7097 & inst.operands[i].vectype); \
7101 inst.operands[i].reg = val; \
7102 inst.operands[i].isreg = 1; \
7103 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7104 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7105 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7106 || rtype == REG_TYPE_VFD \
7107 || rtype == REG_TYPE_NQ); \
7108 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7112 #define po_imm_or_fail(min, max, popt) \
7115 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7117 inst.operands[i].imm = val; \
7121 #define po_scalar_or_goto(elsz, label, reg_type) \
7124 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7128 inst.operands[i].reg = val; \
7129 inst.operands[i].isscalar = 1; \
7133 #define po_misc_or_fail(expr) \
7141 #define po_misc_or_fail_no_backtrack(expr) \
7145 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7146 backtrack_pos = 0; \
7147 if (result != PARSE_OPERAND_SUCCESS) \
7152 #define po_barrier_or_imm(str) \
7155 val = parse_barrier (&str); \
7156 if (val == FAIL && ! ISALPHA (*str)) \
7159 /* ISB can only take SY as an option. */ \
7160 || ((inst.instruction & 0xf0) == 0x60 \
7163 inst.error = _("invalid barrier type"); \
7164 backtrack_pos = 0; \
7170 skip_whitespace (str
);
7172 for (i
= 0; upat
[i
] != OP_stop
; i
++)
7174 op_parse_code
= upat
[i
];
7175 if (op_parse_code
>= 1<<16)
7176 op_parse_code
= thumb
? (op_parse_code
>> 16)
7177 : (op_parse_code
& ((1<<16)-1));
7179 if (op_parse_code
>= OP_FIRST_OPTIONAL
)
7181 /* Remember where we are in case we need to backtrack. */
7182 backtrack_pos
= str
;
7183 backtrack_error
= inst
.error
;
7184 backtrack_index
= i
;
7187 if (i
> 0 && (i
> 1 || inst
.operands
[0].present
))
7188 po_char_or_fail (',');
7190 switch (op_parse_code
)
7202 case OP_RR
: po_reg_or_fail (REG_TYPE_RN
); break;
7203 case OP_RCP
: po_reg_or_fail (REG_TYPE_CP
); break;
7204 case OP_RCN
: po_reg_or_fail (REG_TYPE_CN
); break;
7205 case OP_RF
: po_reg_or_fail (REG_TYPE_FN
); break;
7206 case OP_RVS
: po_reg_or_fail (REG_TYPE_VFS
); break;
7207 case OP_RVD
: po_reg_or_fail (REG_TYPE_VFD
); break;
7210 po_reg_or_goto (REG_TYPE_RN
, try_rndmq
);
7214 po_reg_or_goto (REG_TYPE_MQ
, try_rnd
);
7217 case OP_RND
: po_reg_or_fail (REG_TYPE_VFD
); break;
7219 po_reg_or_goto (REG_TYPE_VFC
, coproc_reg
);
7221 /* Also accept generic coprocessor regs for unknown registers. */
7223 po_reg_or_fail (REG_TYPE_CN
);
7225 case OP_RMF
: po_reg_or_fail (REG_TYPE_MVF
); break;
7226 case OP_RMD
: po_reg_or_fail (REG_TYPE_MVD
); break;
7227 case OP_RMFX
: po_reg_or_fail (REG_TYPE_MVFX
); break;
7228 case OP_RMDX
: po_reg_or_fail (REG_TYPE_MVDX
); break;
7229 case OP_RMAX
: po_reg_or_fail (REG_TYPE_MVAX
); break;
7230 case OP_RMDS
: po_reg_or_fail (REG_TYPE_DSPSC
); break;
7231 case OP_RIWR
: po_reg_or_fail (REG_TYPE_MMXWR
); break;
7232 case OP_RIWC
: po_reg_or_fail (REG_TYPE_MMXWC
); break;
7233 case OP_RIWG
: po_reg_or_fail (REG_TYPE_MMXWCG
); break;
7234 case OP_RXA
: po_reg_or_fail (REG_TYPE_XSCALE
); break;
7237 po_reg_or_goto (REG_TYPE_MQ
, try_nq
);
7240 case OP_RNQ
: po_reg_or_fail (REG_TYPE_NQ
); break;
7241 case OP_RNSD
: po_reg_or_fail (REG_TYPE_NSD
); break;
7244 po_reg_or_goto (REG_TYPE_MQ
, try_rndq
);
7248 case OP_RNDQ
: po_reg_or_fail (REG_TYPE_NDQ
); break;
7250 po_reg_or_goto (REG_TYPE_MQ
, try_rvsd
);
7253 case OP_RVSD
: po_reg_or_fail (REG_TYPE_VFSD
); break;
7255 po_reg_or_goto (REG_TYPE_VFSD
, try_cond
);
7258 case OP_RNSDQ
: po_reg_or_fail (REG_TYPE_NSDQ
); break;
7260 po_reg_or_goto (REG_TYPE_RN
, try_mq
);
7265 po_reg_or_goto (REG_TYPE_MQ
, try_nsdq2
);
7268 po_reg_or_fail (REG_TYPE_NSDQ
);
7272 po_reg_or_fail (REG_TYPE_MQ
);
7274 /* Neon scalar. Using an element size of 8 means that some invalid
7275 scalars are accepted here, so deal with those in later code. */
7276 case OP_RNSC
: po_scalar_or_goto (8, failure
, REG_TYPE_VFD
); break;
7280 po_reg_or_goto (REG_TYPE_NDQ
, try_imm0
);
7283 po_imm_or_fail (0, 0, TRUE
);
7288 po_reg_or_goto (REG_TYPE_VFSD
, try_imm0
);
7292 po_reg_or_goto (REG_TYPE_MQ
, try_rsvd_fi0
);
7297 po_reg_or_goto (REG_TYPE_VFSD
, try_ifimm0
);
7300 if (parse_ifimm_zero (&str
))
7301 inst
.operands
[i
].imm
= 0;
7305 = _("only floating point zero is allowed as immediate value");
7313 po_scalar_or_goto (8, try_rr
, REG_TYPE_VFD
);
7316 po_reg_or_fail (REG_TYPE_RN
);
7320 case OP_RNSDQ_RNSC_MQ
:
7321 po_reg_or_goto (REG_TYPE_MQ
, try_rnsdq_rnsc
);
7326 po_scalar_or_goto (8, try_nsdq
, REG_TYPE_VFD
);
7330 po_reg_or_fail (REG_TYPE_NSDQ
);
7337 po_scalar_or_goto (8, try_s_scalar
, REG_TYPE_VFD
);
7340 po_scalar_or_goto (4, try_nsd
, REG_TYPE_VFS
);
7343 po_reg_or_fail (REG_TYPE_NSD
);
7349 po_scalar_or_goto (8, try_ndq
, REG_TYPE_VFD
);
7352 po_reg_or_fail (REG_TYPE_NDQ
);
7358 po_scalar_or_goto (8, try_vfd
, REG_TYPE_VFD
);
7361 po_reg_or_fail (REG_TYPE_VFD
);
7366 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7367 not careful then bad things might happen. */
7368 po_misc_or_fail (parse_neon_mov (&str
, &i
) == FAIL
);
7373 po_reg_or_goto (REG_TYPE_NDQ
, try_immbig
);
7376 /* There's a possibility of getting a 64-bit immediate here, so
7377 we need special handling. */
7378 if (parse_big_immediate (&str
, i
, NULL
, /*allow_symbol_p=*/FALSE
)
7381 inst
.error
= _("immediate value is out of range");
7389 po_reg_or_goto (REG_TYPE_NDQ
, try_shimm
);
7392 po_imm_or_fail (0, 63, TRUE
);
7397 po_char_or_fail ('[');
7398 po_reg_or_fail (REG_TYPE_RN
);
7399 po_char_or_fail (']');
7405 po_reg_or_fail (REG_TYPE_RN
);
7406 if (skip_past_char (&str
, '!') == SUCCESS
)
7407 inst
.operands
[i
].writeback
= 1;
7411 case OP_I7
: po_imm_or_fail ( 0, 7, FALSE
); break;
7412 case OP_I15
: po_imm_or_fail ( 0, 15, FALSE
); break;
7413 case OP_I16
: po_imm_or_fail ( 1, 16, FALSE
); break;
7414 case OP_I16z
: po_imm_or_fail ( 0, 16, FALSE
); break;
7415 case OP_I31
: po_imm_or_fail ( 0, 31, FALSE
); break;
7416 case OP_I32
: po_imm_or_fail ( 1, 32, FALSE
); break;
7417 case OP_I32z
: po_imm_or_fail ( 0, 32, FALSE
); break;
7418 case OP_I63s
: po_imm_or_fail (-64, 63, FALSE
); break;
7419 case OP_I63
: po_imm_or_fail ( 0, 63, FALSE
); break;
7420 case OP_I64
: po_imm_or_fail ( 1, 64, FALSE
); break;
7421 case OP_I64z
: po_imm_or_fail ( 0, 64, FALSE
); break;
7422 case OP_I255
: po_imm_or_fail ( 0, 255, FALSE
); break;
7424 case OP_I4b
: po_imm_or_fail ( 1, 4, TRUE
); break;
7426 case OP_I7b
: po_imm_or_fail ( 0, 7, TRUE
); break;
7427 case OP_I15b
: po_imm_or_fail ( 0, 15, TRUE
); break;
7429 case OP_I31b
: po_imm_or_fail ( 0, 31, TRUE
); break;
7430 case OP_oI32b
: po_imm_or_fail ( 1, 32, TRUE
); break;
7431 case OP_oI32z
: po_imm_or_fail ( 0, 32, TRUE
); break;
7432 case OP_oIffffb
: po_imm_or_fail ( 0, 0xffff, TRUE
); break;
7434 /* Immediate variants */
7436 po_char_or_fail ('{');
7437 po_imm_or_fail (0, 255, TRUE
);
7438 po_char_or_fail ('}');
7442 /* The expression parser chokes on a trailing !, so we have
7443 to find it first and zap it. */
7446 while (*s
&& *s
!= ',')
7451 inst
.operands
[i
].writeback
= 1;
7453 po_imm_or_fail (0, 31, TRUE
);
7461 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7466 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7471 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7473 if (inst
.relocs
[0].exp
.X_op
== O_symbol
)
7475 val
= parse_reloc (&str
);
7478 inst
.error
= _("unrecognized relocation suffix");
7481 else if (val
!= BFD_RELOC_UNUSED
)
7483 inst
.operands
[i
].imm
= val
;
7484 inst
.operands
[i
].hasreloc
= 1;
7490 po_misc_or_fail (my_get_expression (&inst
.relocs
[i
].exp
, &str
,
7492 if (inst
.relocs
[i
].exp
.X_op
== O_symbol
)
7494 inst
.operands
[i
].hasreloc
= 1;
7496 else if (inst
.relocs
[i
].exp
.X_op
== O_constant
)
7498 inst
.operands
[i
].imm
= inst
.relocs
[i
].exp
.X_add_number
;
7499 inst
.operands
[i
].hasreloc
= 0;
7503 /* Operand for MOVW or MOVT. */
7505 po_misc_or_fail (parse_half (&str
));
7508 /* Register or expression. */
7509 case OP_RR_EXr
: po_reg_or_goto (REG_TYPE_RN
, EXPr
); break;
7510 case OP_RR_EXi
: po_reg_or_goto (REG_TYPE_RN
, EXPi
); break;
7512 /* Register or immediate. */
7513 case OP_RRnpc_I0
: po_reg_or_goto (REG_TYPE_RN
, I0
); break;
7514 I0
: po_imm_or_fail (0, 0, FALSE
); break;
7516 case OP_RF_IF
: po_reg_or_goto (REG_TYPE_FN
, IF
); break;
7518 if (!is_immediate_prefix (*str
))
7521 val
= parse_fpa_immediate (&str
);
7524 /* FPA immediates are encoded as registers 8-15.
7525 parse_fpa_immediate has already applied the offset. */
7526 inst
.operands
[i
].reg
= val
;
7527 inst
.operands
[i
].isreg
= 1;
7530 case OP_RIWR_I32z
: po_reg_or_goto (REG_TYPE_MMXWR
, I32z
); break;
7531 I32z
: po_imm_or_fail (0, 32, FALSE
); break;
7533 /* Two kinds of register. */
7536 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
7538 || (rege
->type
!= REG_TYPE_MMXWR
7539 && rege
->type
!= REG_TYPE_MMXWC
7540 && rege
->type
!= REG_TYPE_MMXWCG
))
7542 inst
.error
= _("iWMMXt data or control register expected");
7545 inst
.operands
[i
].reg
= rege
->number
;
7546 inst
.operands
[i
].isreg
= (rege
->type
== REG_TYPE_MMXWR
);
7552 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
7554 || (rege
->type
!= REG_TYPE_MMXWC
7555 && rege
->type
!= REG_TYPE_MMXWCG
))
7557 inst
.error
= _("iWMMXt control register expected");
7560 inst
.operands
[i
].reg
= rege
->number
;
7561 inst
.operands
[i
].isreg
= 1;
7566 case OP_CPSF
: val
= parse_cps_flags (&str
); break;
7567 case OP_ENDI
: val
= parse_endian_specifier (&str
); break;
7568 case OP_oROR
: val
= parse_ror (&str
); break;
7570 case OP_COND
: val
= parse_cond (&str
); break;
7571 case OP_oBARRIER_I15
:
7572 po_barrier_or_imm (str
); break;
7574 if (parse_immediate (&str
, &val
, 0, 15, TRUE
) == FAIL
)
7580 po_reg_or_goto (REG_TYPE_RNB
, try_psr
);
7581 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_virt
))
7583 inst
.error
= _("Banked registers are not available with this "
7589 val
= parse_psr (&str
, op_parse_code
== OP_wPSR
);
7593 po_reg_or_goto (REG_TYPE_VFSD
, try_sysreg
);
7596 val
= parse_sys_vldr_vstr (&str
);
7600 po_reg_or_goto (REG_TYPE_RN
, try_apsr
);
7603 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7605 if (strncasecmp (str
, "APSR_", 5) == 0)
7612 case 'c': found
= (found
& 1) ? 16 : found
| 1; break;
7613 case 'n': found
= (found
& 2) ? 16 : found
| 2; break;
7614 case 'z': found
= (found
& 4) ? 16 : found
| 4; break;
7615 case 'v': found
= (found
& 8) ? 16 : found
| 8; break;
7616 default: found
= 16;
7620 inst
.operands
[i
].isvec
= 1;
7621 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7622 inst
.operands
[i
].reg
= REG_PC
;
7629 po_misc_or_fail (parse_tb (&str
));
7632 /* Register lists. */
7634 val
= parse_reg_list (&str
, REGLIST_RN
);
7637 inst
.operands
[i
].writeback
= 1;
7643 val
= parse_reg_list (&str
, REGLIST_CLRM
);
7647 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_S
,
7652 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_D
,
7657 /* Allow Q registers too. */
7658 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7659 REGLIST_NEON_D
, &partial_match
);
7663 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7664 REGLIST_VFP_S
, &partial_match
);
7665 inst
.operands
[i
].issingle
= 1;
7670 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7671 REGLIST_VFP_D_VPR
, &partial_match
);
7672 if (val
== FAIL
&& !partial_match
)
7675 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7676 REGLIST_VFP_S_VPR
, &partial_match
);
7677 inst
.operands
[i
].issingle
= 1;
7682 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7683 REGLIST_NEON_D
, &partial_match
);
7688 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
7689 1, &inst
.operands
[i
].vectype
);
7690 if (val
!= (((op_parse_code
== OP_MSTRLST2
) ? 3 : 7) << 5 | 0xe))
7694 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
7695 0, &inst
.operands
[i
].vectype
);
7698 /* Addressing modes */
7700 po_misc_or_fail (parse_address_group_reloc (&str
, i
, GROUP_MVE
));
7704 po_misc_or_fail (parse_address (&str
, i
));
7708 po_misc_or_fail_no_backtrack (
7709 parse_address_group_reloc (&str
, i
, GROUP_LDR
));
7713 po_misc_or_fail_no_backtrack (
7714 parse_address_group_reloc (&str
, i
, GROUP_LDRS
));
7718 po_misc_or_fail_no_backtrack (
7719 parse_address_group_reloc (&str
, i
, GROUP_LDC
));
7723 po_misc_or_fail (parse_shifter_operand (&str
, i
));
7727 po_misc_or_fail_no_backtrack (
7728 parse_shifter_operand_group_reloc (&str
, i
));
7732 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_IMMEDIATE
));
7736 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_ASR_IMMEDIATE
));
7740 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_OR_ASR_IMMEDIATE
));
7745 po_reg_or_goto (REG_TYPE_MQ
, try_rr_zr
);
7748 po_reg_or_goto (REG_TYPE_RN
, ZR
);
7751 po_reg_or_fail (REG_TYPE_ZR
);
7755 as_fatal (_("unhandled operand code %d"), op_parse_code
);
7758 /* Various value-based sanity checks and shared operations. We
7759 do not signal immediate failures for the register constraints;
7760 this allows a syntax error to take precedence. */
7761 switch (op_parse_code
)
7769 if (inst
.operands
[i
].isreg
&& inst
.operands
[i
].reg
== REG_PC
)
7770 inst
.error
= BAD_PC
;
7775 if (inst
.operands
[i
].isreg
)
7777 if (inst
.operands
[i
].reg
== REG_PC
)
7778 inst
.error
= BAD_PC
;
7779 else if (inst
.operands
[i
].reg
== REG_SP
7780 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7781 relaxed since ARMv8-A. */
7782 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
7785 inst
.error
= BAD_SP
;
7791 if (inst
.operands
[i
].isreg
7792 && inst
.operands
[i
].reg
== REG_PC
7793 && (inst
.operands
[i
].writeback
|| thumb
))
7794 inst
.error
= BAD_PC
;
7799 if (inst
.operands
[i
].isreg
)
7809 case OP_oBARRIER_I15
:
7822 inst
.operands
[i
].imm
= val
;
7827 if (inst
.operands
[i
].reg
!= REG_LR
)
7828 inst
.error
= _("operand must be LR register");
7833 if (!inst
.operands
[i
].iszr
&& inst
.operands
[i
].reg
== REG_PC
)
7834 inst
.error
= BAD_PC
;
7838 if (inst
.operands
[i
].isreg
7839 && (inst
.operands
[i
].reg
& 0x00000001) != 0)
7840 inst
.error
= BAD_ODD
;
7844 if (inst
.operands
[i
].isreg
)
7846 if ((inst
.operands
[i
].reg
& 0x00000001) != 1)
7847 inst
.error
= BAD_EVEN
;
7848 else if (inst
.operands
[i
].reg
== REG_SP
)
7849 as_tsktsk (MVE_BAD_SP
);
7850 else if (inst
.operands
[i
].reg
== REG_PC
)
7851 inst
.error
= BAD_PC
;
7859 /* If we get here, this operand was successfully parsed. */
7860 inst
.operands
[i
].present
= 1;
7864 inst
.error
= BAD_ARGS
;
7869 /* The parse routine should already have set inst.error, but set a
7870 default here just in case. */
7872 inst
.error
= BAD_SYNTAX
;
7876 /* Do not backtrack over a trailing optional argument that
7877 absorbed some text. We will only fail again, with the
7878 'garbage following instruction' error message, which is
7879 probably less helpful than the current one. */
7880 if (backtrack_index
== i
&& backtrack_pos
!= str
7881 && upat
[i
+1] == OP_stop
)
7884 inst
.error
= BAD_SYNTAX
;
7888 /* Try again, skipping the optional argument at backtrack_pos. */
7889 str
= backtrack_pos
;
7890 inst
.error
= backtrack_error
;
7891 inst
.operands
[backtrack_index
].present
= 0;
7892 i
= backtrack_index
;
7896 /* Check that we have parsed all the arguments. */
7897 if (*str
!= '\0' && !inst
.error
)
7898 inst
.error
= _("garbage following instruction");
7900 return inst
.error
? FAIL
: SUCCESS
;
7903 #undef po_char_or_fail
7904 #undef po_reg_or_fail
7905 #undef po_reg_or_goto
7906 #undef po_imm_or_fail
7907 #undef po_scalar_or_fail
7908 #undef po_barrier_or_imm
7910 /* Shorthand macro for instruction encoding functions issuing errors. */
7911 #define constraint(expr, err) \
7922 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7923 instructions are unpredictable if these registers are used. This
7924 is the BadReg predicate in ARM's Thumb-2 documentation.
7926 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7927 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7928 #define reject_bad_reg(reg) \
7930 if (reg == REG_PC) \
7932 inst.error = BAD_PC; \
7935 else if (reg == REG_SP \
7936 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7938 inst.error = BAD_SP; \
7943 /* If REG is R13 (the stack pointer), warn that its use is
7945 #define warn_deprecated_sp(reg) \
7947 if (warn_on_deprecated && reg == REG_SP) \
7948 as_tsktsk (_("use of r13 is deprecated")); \
7951 /* Functions for operand encoding. ARM, then Thumb. */
7953 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7955 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7957 The only binary encoding difference is the Coprocessor number. Coprocessor
7958 9 is used for half-precision calculations or conversions. The format of the
7959 instruction is the same as the equivalent Coprocessor 10 instruction that
7960 exists for Single-Precision operation. */
7963 do_scalar_fp16_v82_encode (void)
7965 if (inst
.cond
< COND_ALWAYS
)
7966 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7967 " the behaviour is UNPREDICTABLE"));
7968 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
),
7971 inst
.instruction
= (inst
.instruction
& 0xfffff0ff) | 0x900;
7972 mark_feature_used (&arm_ext_fp16
);
7975 /* If VAL can be encoded in the immediate field of an ARM instruction,
7976 return the encoded form. Otherwise, return FAIL. */
7979 encode_arm_immediate (unsigned int val
)
7986 for (i
= 2; i
< 32; i
+= 2)
7987 if ((a
= rotate_left (val
, i
)) <= 0xff)
7988 return a
| (i
<< 7); /* 12-bit pack: [shift-cnt,const]. */
7993 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7994 return the encoded form. Otherwise, return FAIL. */
7996 encode_thumb32_immediate (unsigned int val
)
8003 for (i
= 1; i
<= 24; i
++)
8006 if ((val
& ~(0xff << i
)) == 0)
8007 return ((val
>> i
) & 0x7f) | ((32 - i
) << 7);
8011 if (val
== ((a
<< 16) | a
))
8013 if (val
== ((a
<< 24) | (a
<< 16) | (a
<< 8) | a
))
8017 if (val
== ((a
<< 16) | a
))
8018 return 0x200 | (a
>> 8);
8022 /* Encode a VFP SP or DP register number into inst.instruction. */
8025 encode_arm_vfp_reg (int reg
, enum vfp_reg_pos pos
)
8027 if ((pos
== VFP_REG_Dd
|| pos
== VFP_REG_Dn
|| pos
== VFP_REG_Dm
)
8030 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
8033 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
8036 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
8041 first_error (_("D register out of range for selected VFP version"));
8049 inst
.instruction
|= ((reg
>> 1) << 12) | ((reg
& 1) << 22);
8053 inst
.instruction
|= ((reg
>> 1) << 16) | ((reg
& 1) << 7);
8057 inst
.instruction
|= ((reg
>> 1) << 0) | ((reg
& 1) << 5);
8061 inst
.instruction
|= ((reg
& 15) << 12) | ((reg
>> 4) << 22);
8065 inst
.instruction
|= ((reg
& 15) << 16) | ((reg
>> 4) << 7);
8069 inst
.instruction
|= (reg
& 15) | ((reg
>> 4) << 5);
8077 /* Encode a <shift> in an ARM-format instruction. The immediate,
8078 if any, is handled by md_apply_fix. */
8080 encode_arm_shift (int i
)
8082 /* register-shifted register. */
8083 if (inst
.operands
[i
].immisreg
)
8086 for (op_index
= 0; op_index
<= i
; ++op_index
)
8088 /* Check the operand only when it's presented. In pre-UAL syntax,
8089 if the destination register is the same as the first operand, two
8090 register form of the instruction can be used. */
8091 if (inst
.operands
[op_index
].present
&& inst
.operands
[op_index
].isreg
8092 && inst
.operands
[op_index
].reg
== REG_PC
)
8093 as_warn (UNPRED_REG ("r15"));
8096 if (inst
.operands
[i
].imm
== REG_PC
)
8097 as_warn (UNPRED_REG ("r15"));
8100 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
8101 inst
.instruction
|= SHIFT_ROR
<< 5;
8104 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
8105 if (inst
.operands
[i
].immisreg
)
8107 inst
.instruction
|= SHIFT_BY_REG
;
8108 inst
.instruction
|= inst
.operands
[i
].imm
<< 8;
8111 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
8116 encode_arm_shifter_operand (int i
)
8118 if (inst
.operands
[i
].isreg
)
8120 inst
.instruction
|= inst
.operands
[i
].reg
;
8121 encode_arm_shift (i
);
8125 inst
.instruction
|= INST_IMMEDIATE
;
8126 if (inst
.relocs
[0].type
!= BFD_RELOC_ARM_IMMEDIATE
)
8127 inst
.instruction
|= inst
.operands
[i
].imm
;
8131 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8133 encode_arm_addr_mode_common (int i
, bfd_boolean is_t
)
8136 Generate an error if the operand is not a register. */
8137 constraint (!inst
.operands
[i
].isreg
,
8138 _("Instruction does not support =N addresses"));
8140 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8142 if (inst
.operands
[i
].preind
)
8146 inst
.error
= _("instruction does not accept preindexed addressing");
8149 inst
.instruction
|= PRE_INDEX
;
8150 if (inst
.operands
[i
].writeback
)
8151 inst
.instruction
|= WRITE_BACK
;
8154 else if (inst
.operands
[i
].postind
)
8156 gas_assert (inst
.operands
[i
].writeback
);
8158 inst
.instruction
|= WRITE_BACK
;
8160 else /* unindexed - only for coprocessor */
8162 inst
.error
= _("instruction does not accept unindexed addressing");
8166 if (((inst
.instruction
& WRITE_BACK
) || !(inst
.instruction
& PRE_INDEX
))
8167 && (((inst
.instruction
& 0x000f0000) >> 16)
8168 == ((inst
.instruction
& 0x0000f000) >> 12)))
8169 as_warn ((inst
.instruction
& LOAD_BIT
)
8170 ? _("destination register same as write-back base")
8171 : _("source register same as write-back base"));
8174 /* inst.operands[i] was set up by parse_address. Encode it into an
8175 ARM-format mode 2 load or store instruction. If is_t is true,
8176 reject forms that cannot be used with a T instruction (i.e. not
8179 encode_arm_addr_mode_2 (int i
, bfd_boolean is_t
)
8181 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
8183 encode_arm_addr_mode_common (i
, is_t
);
8185 if (inst
.operands
[i
].immisreg
)
8187 constraint ((inst
.operands
[i
].imm
== REG_PC
8188 || (is_pc
&& inst
.operands
[i
].writeback
)),
8190 inst
.instruction
|= INST_IMMEDIATE
; /* yes, this is backwards */
8191 inst
.instruction
|= inst
.operands
[i
].imm
;
8192 if (!inst
.operands
[i
].negative
)
8193 inst
.instruction
|= INDEX_UP
;
8194 if (inst
.operands
[i
].shifted
)
8196 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
8197 inst
.instruction
|= SHIFT_ROR
<< 5;
8200 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
8201 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
8205 else /* immediate offset in inst.relocs[0] */
8207 if (is_pc
&& !inst
.relocs
[0].pc_rel
)
8209 const bfd_boolean is_load
= ((inst
.instruction
& LOAD_BIT
) != 0);
8211 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8212 cannot use PC in addressing.
8213 PC cannot be used in writeback addressing, either. */
8214 constraint ((is_t
|| inst
.operands
[i
].writeback
),
8217 /* Use of PC in str is deprecated for ARMv7. */
8218 if (warn_on_deprecated
8220 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
))
8221 as_tsktsk (_("use of PC in this instruction is deprecated"));
8224 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
8226 /* Prefer + for zero encoded value. */
8227 if (!inst
.operands
[i
].negative
)
8228 inst
.instruction
|= INDEX_UP
;
8229 inst
.relocs
[0].type
= BFD_RELOC_ARM_OFFSET_IMM
;
8234 /* inst.operands[i] was set up by parse_address. Encode it into an
8235 ARM-format mode 3 load or store instruction. Reject forms that
8236 cannot be used with such instructions. If is_t is true, reject
8237 forms that cannot be used with a T instruction (i.e. not
8240 encode_arm_addr_mode_3 (int i
, bfd_boolean is_t
)
8242 if (inst
.operands
[i
].immisreg
&& inst
.operands
[i
].shifted
)
8244 inst
.error
= _("instruction does not accept scaled register index");
8248 encode_arm_addr_mode_common (i
, is_t
);
8250 if (inst
.operands
[i
].immisreg
)
8252 constraint ((inst
.operands
[i
].imm
== REG_PC
8253 || (is_t
&& inst
.operands
[i
].reg
== REG_PC
)),
8255 constraint (inst
.operands
[i
].reg
== REG_PC
&& inst
.operands
[i
].writeback
,
8257 inst
.instruction
|= inst
.operands
[i
].imm
;
8258 if (!inst
.operands
[i
].negative
)
8259 inst
.instruction
|= INDEX_UP
;
8261 else /* immediate offset in inst.relocs[0] */
8263 constraint ((inst
.operands
[i
].reg
== REG_PC
&& !inst
.relocs
[0].pc_rel
8264 && inst
.operands
[i
].writeback
),
8266 inst
.instruction
|= HWOFFSET_IMM
;
8267 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
8269 /* Prefer + for zero encoded value. */
8270 if (!inst
.operands
[i
].negative
)
8271 inst
.instruction
|= INDEX_UP
;
8273 inst
.relocs
[0].type
= BFD_RELOC_ARM_OFFSET_IMM8
;
8278 /* Write immediate bits [7:0] to the following locations:
8280 |28/24|23 19|18 16|15 4|3 0|
8281 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8283 This function is used by VMOV/VMVN/VORR/VBIC. */
8286 neon_write_immbits (unsigned immbits
)
8288 inst
.instruction
|= immbits
& 0xf;
8289 inst
.instruction
|= ((immbits
>> 4) & 0x7) << 16;
8290 inst
.instruction
|= ((immbits
>> 7) & 0x1) << (thumb_mode
? 28 : 24);
8293 /* Invert low-order SIZE bits of XHI:XLO. */
8296 neon_invert_size (unsigned *xlo
, unsigned *xhi
, int size
)
8298 unsigned immlo
= xlo
? *xlo
: 0;
8299 unsigned immhi
= xhi
? *xhi
: 0;
8304 immlo
= (~immlo
) & 0xff;
8308 immlo
= (~immlo
) & 0xffff;
8312 immhi
= (~immhi
) & 0xffffffff;
8316 immlo
= (~immlo
) & 0xffffffff;
8330 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8334 neon_bits_same_in_bytes (unsigned imm
)
8336 return ((imm
& 0x000000ff) == 0 || (imm
& 0x000000ff) == 0x000000ff)
8337 && ((imm
& 0x0000ff00) == 0 || (imm
& 0x0000ff00) == 0x0000ff00)
8338 && ((imm
& 0x00ff0000) == 0 || (imm
& 0x00ff0000) == 0x00ff0000)
8339 && ((imm
& 0xff000000) == 0 || (imm
& 0xff000000) == 0xff000000);
8342 /* For immediate of above form, return 0bABCD. */
8345 neon_squash_bits (unsigned imm
)
8347 return (imm
& 0x01) | ((imm
& 0x0100) >> 7) | ((imm
& 0x010000) >> 14)
8348 | ((imm
& 0x01000000) >> 21);
8351 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8354 neon_qfloat_bits (unsigned imm
)
8356 return ((imm
>> 19) & 0x7f) | ((imm
>> 24) & 0x80);
8359 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8360 the instruction. *OP is passed as the initial value of the op field, and
8361 may be set to a different value depending on the constant (i.e.
8362 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8363 MVN). If the immediate looks like a repeated pattern then also
8364 try smaller element sizes. */
8367 neon_cmode_for_move_imm (unsigned immlo
, unsigned immhi
, int float_p
,
8368 unsigned *immbits
, int *op
, int size
,
8369 enum neon_el_type type
)
8371 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8373 if (type
== NT_float
&& !float_p
)
8376 if (type
== NT_float
&& is_quarter_float (immlo
) && immhi
== 0)
8378 if (size
!= 32 || *op
== 1)
8380 *immbits
= neon_qfloat_bits (immlo
);
8386 if (neon_bits_same_in_bytes (immhi
)
8387 && neon_bits_same_in_bytes (immlo
))
8391 *immbits
= (neon_squash_bits (immhi
) << 4)
8392 | neon_squash_bits (immlo
);
8403 if (immlo
== (immlo
& 0x000000ff))
8408 else if (immlo
== (immlo
& 0x0000ff00))
8410 *immbits
= immlo
>> 8;
8413 else if (immlo
== (immlo
& 0x00ff0000))
8415 *immbits
= immlo
>> 16;
8418 else if (immlo
== (immlo
& 0xff000000))
8420 *immbits
= immlo
>> 24;
8423 else if (immlo
== ((immlo
& 0x0000ff00) | 0x000000ff))
8425 *immbits
= (immlo
>> 8) & 0xff;
8428 else if (immlo
== ((immlo
& 0x00ff0000) | 0x0000ffff))
8430 *immbits
= (immlo
>> 16) & 0xff;
8434 if ((immlo
& 0xffff) != (immlo
>> 16))
8441 if (immlo
== (immlo
& 0x000000ff))
8446 else if (immlo
== (immlo
& 0x0000ff00))
8448 *immbits
= immlo
>> 8;
8452 if ((immlo
& 0xff) != (immlo
>> 8))
8457 if (immlo
== (immlo
& 0x000000ff))
8459 /* Don't allow MVN with 8-bit immediate. */
8469 #if defined BFD_HOST_64_BIT
8470 /* Returns TRUE if double precision value V may be cast
8471 to single precision without loss of accuracy. */
8474 is_double_a_single (bfd_int64_t v
)
8476 int exp
= (int)((v
>> 52) & 0x7FF);
8477 bfd_int64_t mantissa
= (v
& (bfd_int64_t
)0xFFFFFFFFFFFFFULL
);
8479 return (exp
== 0 || exp
== 0x7FF
8480 || (exp
>= 1023 - 126 && exp
<= 1023 + 127))
8481 && (mantissa
& 0x1FFFFFFFl
) == 0;
8484 /* Returns a double precision value casted to single precision
8485 (ignoring the least significant bits in exponent and mantissa). */
8488 double_to_single (bfd_int64_t v
)
8490 int sign
= (int) ((v
>> 63) & 1l);
8491 int exp
= (int) ((v
>> 52) & 0x7FF);
8492 bfd_int64_t mantissa
= (v
& (bfd_int64_t
)0xFFFFFFFFFFFFFULL
);
8498 exp
= exp
- 1023 + 127;
8507 /* No denormalized numbers. */
8513 return (sign
<< 31) | (exp
<< 23) | mantissa
;
8515 #endif /* BFD_HOST_64_BIT */
8524 static void do_vfp_nsyn_opcode (const char *);
8526 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8527 Determine whether it can be performed with a move instruction; if
8528 it can, convert inst.instruction to that move instruction and
8529 return TRUE; if it can't, convert inst.instruction to a literal-pool
8530 load and return FALSE. If this is not a valid thing to do in the
8531 current context, set inst.error and return TRUE.
8533 inst.operands[i] describes the destination register. */
8536 move_or_literal_pool (int i
, enum lit_type t
, bfd_boolean mode_3
)
8539 bfd_boolean thumb_p
= (t
== CONST_THUMB
);
8540 bfd_boolean arm_p
= (t
== CONST_ARM
);
8543 tbit
= (inst
.instruction
> 0xffff) ? THUMB2_LOAD_BIT
: THUMB_LOAD_BIT
;
8547 if ((inst
.instruction
& tbit
) == 0)
8549 inst
.error
= _("invalid pseudo operation");
8553 if (inst
.relocs
[0].exp
.X_op
!= O_constant
8554 && inst
.relocs
[0].exp
.X_op
!= O_symbol
8555 && inst
.relocs
[0].exp
.X_op
!= O_big
)
8557 inst
.error
= _("constant expression expected");
8561 if (inst
.relocs
[0].exp
.X_op
== O_constant
8562 || inst
.relocs
[0].exp
.X_op
== O_big
)
8564 #if defined BFD_HOST_64_BIT
8569 if (inst
.relocs
[0].exp
.X_op
== O_big
)
8571 LITTLENUM_TYPE w
[X_PRECISION
];
8574 if (inst
.relocs
[0].exp
.X_add_number
== -1)
8576 gen_to_words (w
, X_PRECISION
, E_PRECISION
);
8578 /* FIXME: Should we check words w[2..5] ? */
8583 #if defined BFD_HOST_64_BIT
8585 ((((((((bfd_int64_t
) l
[3] & LITTLENUM_MASK
)
8586 << LITTLENUM_NUMBER_OF_BITS
)
8587 | ((bfd_int64_t
) l
[2] & LITTLENUM_MASK
))
8588 << LITTLENUM_NUMBER_OF_BITS
)
8589 | ((bfd_int64_t
) l
[1] & LITTLENUM_MASK
))
8590 << LITTLENUM_NUMBER_OF_BITS
)
8591 | ((bfd_int64_t
) l
[0] & LITTLENUM_MASK
));
8593 v
= ((l
[1] & LITTLENUM_MASK
) << LITTLENUM_NUMBER_OF_BITS
)
8594 | (l
[0] & LITTLENUM_MASK
);
8598 v
= inst
.relocs
[0].exp
.X_add_number
;
8600 if (!inst
.operands
[i
].issingle
)
8604 /* LDR should not use lead in a flag-setting instruction being
8605 chosen so we do not check whether movs can be used. */
8607 if ((ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)
8608 || ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
))
8609 && inst
.operands
[i
].reg
!= 13
8610 && inst
.operands
[i
].reg
!= 15)
8612 /* Check if on thumb2 it can be done with a mov.w, mvn or
8613 movw instruction. */
8614 unsigned int newimm
;
8615 bfd_boolean isNegated
;
8617 newimm
= encode_thumb32_immediate (v
);
8618 if (newimm
!= (unsigned int) FAIL
)
8622 newimm
= encode_thumb32_immediate (~v
);
8623 if (newimm
!= (unsigned int) FAIL
)
8627 /* The number can be loaded with a mov.w or mvn
8629 if (newimm
!= (unsigned int) FAIL
8630 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
8632 inst
.instruction
= (0xf04f0000 /* MOV.W. */
8633 | (inst
.operands
[i
].reg
<< 8));
8634 /* Change to MOVN. */
8635 inst
.instruction
|= (isNegated
? 0x200000 : 0);
8636 inst
.instruction
|= (newimm
& 0x800) << 15;
8637 inst
.instruction
|= (newimm
& 0x700) << 4;
8638 inst
.instruction
|= (newimm
& 0x0ff);
8641 /* The number can be loaded with a movw instruction. */
8642 else if ((v
& ~0xFFFF) == 0
8643 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
))
8645 int imm
= v
& 0xFFFF;
8647 inst
.instruction
= 0xf2400000; /* MOVW. */
8648 inst
.instruction
|= (inst
.operands
[i
].reg
<< 8);
8649 inst
.instruction
|= (imm
& 0xf000) << 4;
8650 inst
.instruction
|= (imm
& 0x0800) << 15;
8651 inst
.instruction
|= (imm
& 0x0700) << 4;
8652 inst
.instruction
|= (imm
& 0x00ff);
8659 int value
= encode_arm_immediate (v
);
8663 /* This can be done with a mov instruction. */
8664 inst
.instruction
&= LITERAL_MASK
;
8665 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MOV
<< DATA_OP_SHIFT
);
8666 inst
.instruction
|= value
& 0xfff;
8670 value
= encode_arm_immediate (~ v
);
8673 /* This can be done with a mvn instruction. */
8674 inst
.instruction
&= LITERAL_MASK
;
8675 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MVN
<< DATA_OP_SHIFT
);
8676 inst
.instruction
|= value
& 0xfff;
8680 else if (t
== CONST_VEC
&& ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
8683 unsigned immbits
= 0;
8684 unsigned immlo
= inst
.operands
[1].imm
;
8685 unsigned immhi
= inst
.operands
[1].regisimm
8686 ? inst
.operands
[1].reg
8687 : inst
.relocs
[0].exp
.X_unsigned
8689 : ((bfd_int64_t
)((int) immlo
)) >> 32;
8690 int cmode
= neon_cmode_for_move_imm (immlo
, immhi
, FALSE
, &immbits
,
8691 &op
, 64, NT_invtype
);
8695 neon_invert_size (&immlo
, &immhi
, 64);
8697 cmode
= neon_cmode_for_move_imm (immlo
, immhi
, FALSE
, &immbits
,
8698 &op
, 64, NT_invtype
);
8703 inst
.instruction
= (inst
.instruction
& VLDR_VMOV_SAME
)
8709 /* Fill other bits in vmov encoding for both thumb and arm. */
8711 inst
.instruction
|= (0x7U
<< 29) | (0xF << 24);
8713 inst
.instruction
|= (0xFU
<< 28) | (0x1 << 25);
8714 neon_write_immbits (immbits
);
8722 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8723 if (inst
.operands
[i
].issingle
8724 && is_quarter_float (inst
.operands
[1].imm
)
8725 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3xd
))
8727 inst
.operands
[1].imm
=
8728 neon_qfloat_bits (v
);
8729 do_vfp_nsyn_opcode ("fconsts");
8733 /* If our host does not support a 64-bit type then we cannot perform
8734 the following optimization. This mean that there will be a
8735 discrepancy between the output produced by an assembler built for
8736 a 32-bit-only host and the output produced from a 64-bit host, but
8737 this cannot be helped. */
8738 #if defined BFD_HOST_64_BIT
8739 else if (!inst
.operands
[1].issingle
8740 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3
))
8742 if (is_double_a_single (v
)
8743 && is_quarter_float (double_to_single (v
)))
8745 inst
.operands
[1].imm
=
8746 neon_qfloat_bits (double_to_single (v
));
8747 do_vfp_nsyn_opcode ("fconstd");
8755 if (add_to_lit_pool ((!inst
.operands
[i
].isvec
8756 || inst
.operands
[i
].issingle
) ? 4 : 8) == FAIL
)
8759 inst
.operands
[1].reg
= REG_PC
;
8760 inst
.operands
[1].isreg
= 1;
8761 inst
.operands
[1].preind
= 1;
8762 inst
.relocs
[0].pc_rel
= 1;
8763 inst
.relocs
[0].type
= (thumb_p
8764 ? BFD_RELOC_ARM_THUMB_OFFSET
8766 ? BFD_RELOC_ARM_HWLITERAL
8767 : BFD_RELOC_ARM_LITERAL
));
8771 /* inst.operands[i] was set up by parse_address. Encode it into an
8772 ARM-format instruction. Reject all forms which cannot be encoded
8773 into a coprocessor load/store instruction. If wb_ok is false,
8774 reject use of writeback; if unind_ok is false, reject use of
8775 unindexed addressing. If reloc_override is not 0, use it instead
8776 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8777 (in which case it is preserved). */
8780 encode_arm_cp_address (int i
, int wb_ok
, int unind_ok
, int reloc_override
)
8782 if (!inst
.operands
[i
].isreg
)
8785 if (! inst
.operands
[0].isvec
)
8787 inst
.error
= _("invalid co-processor operand");
8790 if (move_or_literal_pool (0, CONST_VEC
, /*mode_3=*/FALSE
))
8794 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8796 gas_assert (!(inst
.operands
[i
].preind
&& inst
.operands
[i
].postind
));
8798 if (!inst
.operands
[i
].preind
&& !inst
.operands
[i
].postind
) /* unindexed */
8800 gas_assert (!inst
.operands
[i
].writeback
);
8803 inst
.error
= _("instruction does not support unindexed addressing");
8806 inst
.instruction
|= inst
.operands
[i
].imm
;
8807 inst
.instruction
|= INDEX_UP
;
8811 if (inst
.operands
[i
].preind
)
8812 inst
.instruction
|= PRE_INDEX
;
8814 if (inst
.operands
[i
].writeback
)
8816 if (inst
.operands
[i
].reg
== REG_PC
)
8818 inst
.error
= _("pc may not be used with write-back");
8823 inst
.error
= _("instruction does not support writeback");
8826 inst
.instruction
|= WRITE_BACK
;
8830 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) reloc_override
;
8831 else if ((inst
.relocs
[0].type
< BFD_RELOC_ARM_ALU_PC_G0_NC
8832 || inst
.relocs
[0].type
> BFD_RELOC_ARM_LDC_SB_G2
)
8833 && inst
.relocs
[0].type
!= BFD_RELOC_ARM_LDR_PC_G0
)
8836 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_CP_OFF_IMM
;
8838 inst
.relocs
[0].type
= BFD_RELOC_ARM_CP_OFF_IMM
;
8841 /* Prefer + for zero encoded value. */
8842 if (!inst
.operands
[i
].negative
)
8843 inst
.instruction
|= INDEX_UP
;
8848 /* Functions for instruction encoding, sorted by sub-architecture.
8849 First some generics; their names are taken from the conventional
8850 bit positions for register arguments in ARM format instructions. */
8860 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8866 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8872 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8873 inst
.instruction
|= inst
.operands
[1].reg
;
8879 inst
.instruction
|= inst
.operands
[0].reg
;
8880 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8886 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8887 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8893 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8894 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8900 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8901 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8905 check_obsolete (const arm_feature_set
*feature
, const char *msg
)
8907 if (ARM_CPU_IS_ANY (cpu_variant
))
8909 as_tsktsk ("%s", msg
);
8912 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
8924 unsigned Rn
= inst
.operands
[2].reg
;
8925 /* Enforce restrictions on SWP instruction. */
8926 if ((inst
.instruction
& 0x0fbfffff) == 0x01000090)
8928 constraint (Rn
== inst
.operands
[0].reg
|| Rn
== inst
.operands
[1].reg
,
8929 _("Rn must not overlap other operands"));
8931 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8933 if (!check_obsolete (&arm_ext_v8
,
8934 _("swp{b} use is obsoleted for ARMv8 and later"))
8935 && warn_on_deprecated
8936 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
))
8937 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8940 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8941 inst
.instruction
|= inst
.operands
[1].reg
;
8942 inst
.instruction
|= Rn
<< 16;
8948 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8949 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8950 inst
.instruction
|= inst
.operands
[2].reg
;
8956 constraint ((inst
.operands
[2].reg
== REG_PC
), BAD_PC
);
8957 constraint (((inst
.relocs
[0].exp
.X_op
!= O_constant
8958 && inst
.relocs
[0].exp
.X_op
!= O_illegal
)
8959 || inst
.relocs
[0].exp
.X_add_number
!= 0),
8961 inst
.instruction
|= inst
.operands
[0].reg
;
8962 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8963 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8969 inst
.instruction
|= inst
.operands
[0].imm
;
8975 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8976 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
8979 /* ARM instructions, in alphabetical order by function name (except
8980 that wrapper functions appear immediately after the function they
8983 /* This is a pseudo-op of the form "adr rd, label" to be converted
8984 into a relative address of the form "add rd, pc, #label-.-8". */
8989 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
8991 /* Frag hacking will turn this into a sub instruction if the offset turns
8992 out to be negative. */
8993 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
8994 inst
.relocs
[0].pc_rel
= 1;
8995 inst
.relocs
[0].exp
.X_add_number
-= 8;
8997 if (support_interwork
8998 && inst
.relocs
[0].exp
.X_op
== O_symbol
8999 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
9000 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
9001 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
9002 inst
.relocs
[0].exp
.X_add_number
|= 1;
9005 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9006 into a relative address of the form:
9007 add rd, pc, #low(label-.-8)"
9008 add rd, rd, #high(label-.-8)" */
9013 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
9015 /* Frag hacking will turn this into a sub instruction if the offset turns
9016 out to be negative. */
9017 inst
.relocs
[0].type
= BFD_RELOC_ARM_ADRL_IMMEDIATE
;
9018 inst
.relocs
[0].pc_rel
= 1;
9019 inst
.size
= INSN_SIZE
* 2;
9020 inst
.relocs
[0].exp
.X_add_number
-= 8;
9022 if (support_interwork
9023 && inst
.relocs
[0].exp
.X_op
== O_symbol
9024 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
9025 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
9026 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
9027 inst
.relocs
[0].exp
.X_add_number
|= 1;
9033 constraint (inst
.relocs
[0].type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9034 && inst
.relocs
[0].type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,
9036 if (!inst
.operands
[1].present
)
9037 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
9038 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9039 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9040 encode_arm_shifter_operand (2);
9046 if (inst
.operands
[0].present
)
9047 inst
.instruction
|= inst
.operands
[0].imm
;
9049 inst
.instruction
|= 0xf;
9055 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
9056 constraint (msb
> 32, _("bit-field extends past end of register"));
9057 /* The instruction encoding stores the LSB and MSB,
9058 not the LSB and width. */
9059 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9060 inst
.instruction
|= inst
.operands
[1].imm
<< 7;
9061 inst
.instruction
|= (msb
- 1) << 16;
9069 /* #0 in second position is alternative syntax for bfc, which is
9070 the same instruction but with REG_PC in the Rm field. */
9071 if (!inst
.operands
[1].isreg
)
9072 inst
.operands
[1].reg
= REG_PC
;
9074 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
9075 constraint (msb
> 32, _("bit-field extends past end of register"));
9076 /* The instruction encoding stores the LSB and MSB,
9077 not the LSB and width. */
9078 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9079 inst
.instruction
|= inst
.operands
[1].reg
;
9080 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
9081 inst
.instruction
|= (msb
- 1) << 16;
9087 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
9088 _("bit-field extends past end of register"));
9089 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9090 inst
.instruction
|= inst
.operands
[1].reg
;
9091 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
9092 inst
.instruction
|= (inst
.operands
[3].imm
- 1) << 16;
9095 /* ARM V5 breakpoint instruction (argument parse)
9096 BKPT <16 bit unsigned immediate>
9097 Instruction is not conditional.
9098 The bit pattern given in insns[] has the COND_ALWAYS condition,
9099 and it is an error if the caller tried to override that. */
9104 /* Top 12 of 16 bits to bits 19:8. */
9105 inst
.instruction
|= (inst
.operands
[0].imm
& 0xfff0) << 4;
9107 /* Bottom 4 of 16 bits to bits 3:0. */
9108 inst
.instruction
|= inst
.operands
[0].imm
& 0xf;
9112 encode_branch (int default_reloc
)
9114 if (inst
.operands
[0].hasreloc
)
9116 constraint (inst
.operands
[0].imm
!= BFD_RELOC_ARM_PLT32
9117 && inst
.operands
[0].imm
!= BFD_RELOC_ARM_TLS_CALL
,
9118 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9119 inst
.relocs
[0].type
= inst
.operands
[0].imm
== BFD_RELOC_ARM_PLT32
9120 ? BFD_RELOC_ARM_PLT32
9121 : thumb_mode
? BFD_RELOC_ARM_THM_TLS_CALL
: BFD_RELOC_ARM_TLS_CALL
;
9124 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) default_reloc
;
9125 inst
.relocs
[0].pc_rel
= 1;
9132 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
9133 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
9136 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
9143 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
9145 if (inst
.cond
== COND_ALWAYS
)
9146 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
9148 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
9152 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
9155 /* ARM V5 branch-link-exchange instruction (argument parse)
9156 BLX <target_addr> ie BLX(1)
9157 BLX{<condition>} <Rm> ie BLX(2)
9158 Unfortunately, there are two different opcodes for this mnemonic.
9159 So, the insns[].value is not used, and the code here zaps values
9160 into inst.instruction.
9161 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9166 if (inst
.operands
[0].isreg
)
9168 /* Arg is a register; the opcode provided by insns[] is correct.
9169 It is not illegal to do "blx pc", just useless. */
9170 if (inst
.operands
[0].reg
== REG_PC
)
9171 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9173 inst
.instruction
|= inst
.operands
[0].reg
;
9177 /* Arg is an address; this instruction cannot be executed
9178 conditionally, and the opcode must be adjusted.
9179 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9180 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9181 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
9182 inst
.instruction
= 0xfa000000;
9183 encode_branch (BFD_RELOC_ARM_PCREL_BLX
);
9190 bfd_boolean want_reloc
;
9192 if (inst
.operands
[0].reg
== REG_PC
)
9193 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9195 inst
.instruction
|= inst
.operands
[0].reg
;
9196 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9197 it is for ARMv4t or earlier. */
9198 want_reloc
= !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5
);
9199 if (!ARM_FEATURE_ZERO (selected_object_arch
)
9200 && !ARM_CPU_HAS_FEATURE (selected_object_arch
, arm_ext_v5
))
9204 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
9209 inst
.relocs
[0].type
= BFD_RELOC_ARM_V4BX
;
9213 /* ARM v5TEJ. Jump to Jazelle code. */
9218 if (inst
.operands
[0].reg
== REG_PC
)
9219 as_tsktsk (_("use of r15 in bxj is not really useful"));
9221 inst
.instruction
|= inst
.operands
[0].reg
;
9224 /* Co-processor data operation:
9225 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9226 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9230 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9231 inst
.instruction
|= inst
.operands
[1].imm
<< 20;
9232 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
9233 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9234 inst
.instruction
|= inst
.operands
[4].reg
;
9235 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
9241 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9242 encode_arm_shifter_operand (1);
9245 /* Transfer between coprocessor and ARM registers.
9246 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9251 No special properties. */
9253 struct deprecated_coproc_regs_s
9260 arm_feature_set deprecated
;
9261 arm_feature_set obsoleted
;
9262 const char *dep_msg
;
9263 const char *obs_msg
;
9266 #define DEPR_ACCESS_V8 \
9267 N_("This coprocessor register access is deprecated in ARMv8")
9269 /* Table of all deprecated coprocessor registers. */
9270 static struct deprecated_coproc_regs_s deprecated_coproc_regs
[] =
9272 {15, 0, 7, 10, 5, /* CP15DMB. */
9273 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9274 DEPR_ACCESS_V8
, NULL
},
9275 {15, 0, 7, 10, 4, /* CP15DSB. */
9276 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9277 DEPR_ACCESS_V8
, NULL
},
9278 {15, 0, 7, 5, 4, /* CP15ISB. */
9279 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9280 DEPR_ACCESS_V8
, NULL
},
9281 {14, 6, 1, 0, 0, /* TEEHBR. */
9282 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9283 DEPR_ACCESS_V8
, NULL
},
9284 {14, 6, 0, 0, 0, /* TEECR. */
9285 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9286 DEPR_ACCESS_V8
, NULL
},
9289 #undef DEPR_ACCESS_V8
9291 static const size_t deprecated_coproc_reg_count
=
9292 sizeof (deprecated_coproc_regs
) / sizeof (deprecated_coproc_regs
[0]);
9300 Rd
= inst
.operands
[2].reg
;
9303 if (inst
.instruction
== 0xee000010
9304 || inst
.instruction
== 0xfe000010)
9306 reject_bad_reg (Rd
);
9307 else if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
9309 constraint (Rd
== REG_SP
, BAD_SP
);
9314 if (inst
.instruction
== 0xe000010)
9315 constraint (Rd
== REG_PC
, BAD_PC
);
9318 for (i
= 0; i
< deprecated_coproc_reg_count
; ++i
)
9320 const struct deprecated_coproc_regs_s
*r
=
9321 deprecated_coproc_regs
+ i
;
9323 if (inst
.operands
[0].reg
== r
->cp
9324 && inst
.operands
[1].imm
== r
->opc1
9325 && inst
.operands
[3].reg
== r
->crn
9326 && inst
.operands
[4].reg
== r
->crm
9327 && inst
.operands
[5].imm
== r
->opc2
)
9329 if (! ARM_CPU_IS_ANY (cpu_variant
)
9330 && warn_on_deprecated
9331 && ARM_CPU_HAS_FEATURE (cpu_variant
, r
->deprecated
))
9332 as_tsktsk ("%s", r
->dep_msg
);
9336 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9337 inst
.instruction
|= inst
.operands
[1].imm
<< 21;
9338 inst
.instruction
|= Rd
<< 12;
9339 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9340 inst
.instruction
|= inst
.operands
[4].reg
;
9341 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
9344 /* Transfer between coprocessor register and pair of ARM registers.
9345 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9350 Two XScale instructions are special cases of these:
9352 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9353 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9355 Result unpredictable if Rd or Rn is R15. */
9362 Rd
= inst
.operands
[2].reg
;
9363 Rn
= inst
.operands
[3].reg
;
9367 reject_bad_reg (Rd
);
9368 reject_bad_reg (Rn
);
9372 constraint (Rd
== REG_PC
, BAD_PC
);
9373 constraint (Rn
== REG_PC
, BAD_PC
);
9376 /* Only check the MRRC{2} variants. */
9377 if ((inst
.instruction
& 0x0FF00000) == 0x0C500000)
9379 /* If Rd == Rn, error that the operation is
9380 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9381 constraint (Rd
== Rn
, BAD_OVERLAP
);
9384 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9385 inst
.instruction
|= inst
.operands
[1].imm
<< 4;
9386 inst
.instruction
|= Rd
<< 12;
9387 inst
.instruction
|= Rn
<< 16;
9388 inst
.instruction
|= inst
.operands
[4].reg
;
9394 inst
.instruction
|= inst
.operands
[0].imm
<< 6;
9395 if (inst
.operands
[1].present
)
9397 inst
.instruction
|= CPSI_MMOD
;
9398 inst
.instruction
|= inst
.operands
[1].imm
;
9405 inst
.instruction
|= inst
.operands
[0].imm
;
9411 unsigned Rd
, Rn
, Rm
;
9413 Rd
= inst
.operands
[0].reg
;
9414 Rn
= (inst
.operands
[1].present
9415 ? inst
.operands
[1].reg
: Rd
);
9416 Rm
= inst
.operands
[2].reg
;
9418 constraint ((Rd
== REG_PC
), BAD_PC
);
9419 constraint ((Rn
== REG_PC
), BAD_PC
);
9420 constraint ((Rm
== REG_PC
), BAD_PC
);
9422 inst
.instruction
|= Rd
<< 16;
9423 inst
.instruction
|= Rn
<< 0;
9424 inst
.instruction
|= Rm
<< 8;
9430 /* There is no IT instruction in ARM mode. We
9431 process it to do the validation as if in
9432 thumb mode, just in case the code gets
9433 assembled for thumb using the unified syntax. */
9438 set_pred_insn_type (IT_INSN
);
9439 now_pred
.mask
= (inst
.instruction
& 0xf) | 0x10;
9440 now_pred
.cc
= inst
.operands
[0].imm
;
9444 /* If there is only one register in the register list,
9445 then return its register number. Otherwise return -1. */
9447 only_one_reg_in_list (int range
)
9449 int i
= ffs (range
) - 1;
9450 return (i
> 15 || range
!= (1 << i
)) ? -1 : i
;
9454 encode_ldmstm(int from_push_pop_mnem
)
9456 int base_reg
= inst
.operands
[0].reg
;
9457 int range
= inst
.operands
[1].imm
;
9460 inst
.instruction
|= base_reg
<< 16;
9461 inst
.instruction
|= range
;
9463 if (inst
.operands
[1].writeback
)
9464 inst
.instruction
|= LDM_TYPE_2_OR_3
;
9466 if (inst
.operands
[0].writeback
)
9468 inst
.instruction
|= WRITE_BACK
;
9469 /* Check for unpredictable uses of writeback. */
9470 if (inst
.instruction
& LOAD_BIT
)
9472 /* Not allowed in LDM type 2. */
9473 if ((inst
.instruction
& LDM_TYPE_2_OR_3
)
9474 && ((range
& (1 << REG_PC
)) == 0))
9475 as_warn (_("writeback of base register is UNPREDICTABLE"));
9476 /* Only allowed if base reg not in list for other types. */
9477 else if (range
& (1 << base_reg
))
9478 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9482 /* Not allowed for type 2. */
9483 if (inst
.instruction
& LDM_TYPE_2_OR_3
)
9484 as_warn (_("writeback of base register is UNPREDICTABLE"));
9485 /* Only allowed if base reg not in list, or first in list. */
9486 else if ((range
& (1 << base_reg
))
9487 && (range
& ((1 << base_reg
) - 1)))
9488 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9492 /* If PUSH/POP has only one register, then use the A2 encoding. */
9493 one_reg
= only_one_reg_in_list (range
);
9494 if (from_push_pop_mnem
&& one_reg
>= 0)
9496 int is_push
= (inst
.instruction
& A_PUSH_POP_OP_MASK
) == A1_OPCODE_PUSH
;
9498 if (is_push
&& one_reg
== 13 /* SP */)
9499 /* PR 22483: The A2 encoding cannot be used when
9500 pushing the stack pointer as this is UNPREDICTABLE. */
9503 inst
.instruction
&= A_COND_MASK
;
9504 inst
.instruction
|= is_push
? A2_OPCODE_PUSH
: A2_OPCODE_POP
;
9505 inst
.instruction
|= one_reg
<< 12;
9512 encode_ldmstm (/*from_push_pop_mnem=*/FALSE
);
9515 /* ARMv5TE load-consecutive (argument parse)
9524 constraint (inst
.operands
[0].reg
% 2 != 0,
9525 _("first transfer register must be even"));
9526 constraint (inst
.operands
[1].present
9527 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
9528 _("can only transfer two consecutive registers"));
9529 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
9530 constraint (!inst
.operands
[2].isreg
, _("'[' expected"));
9532 if (!inst
.operands
[1].present
)
9533 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
9535 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9536 register and the first register written; we have to diagnose
9537 overlap between the base and the second register written here. */
9539 if (inst
.operands
[2].reg
== inst
.operands
[1].reg
9540 && (inst
.operands
[2].writeback
|| inst
.operands
[2].postind
))
9541 as_warn (_("base register written back, and overlaps "
9542 "second transfer register"));
9544 if (!(inst
.instruction
& V4_STR_BIT
))
9546 /* For an index-register load, the index register must not overlap the
9547 destination (even if not write-back). */
9548 if (inst
.operands
[2].immisreg
9549 && ((unsigned) inst
.operands
[2].imm
== inst
.operands
[0].reg
9550 || (unsigned) inst
.operands
[2].imm
== inst
.operands
[1].reg
))
9551 as_warn (_("index register overlaps transfer register"));
9553 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9554 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE
);
9560 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
9561 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
9562 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
9563 || inst
.operands
[1].negative
9564 /* This can arise if the programmer has written
9566 or if they have mistakenly used a register name as the last
9569 It is very difficult to distinguish between these two cases
9570 because "rX" might actually be a label. ie the register
9571 name has been occluded by a symbol of the same name. So we
9572 just generate a general 'bad addressing mode' type error
9573 message and leave it up to the programmer to discover the
9574 true cause and fix their mistake. */
9575 || (inst
.operands
[1].reg
== REG_PC
),
9578 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9579 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9580 _("offset must be zero in ARM encoding"));
9582 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
9584 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9585 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9586 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
9592 constraint (inst
.operands
[0].reg
% 2 != 0,
9593 _("even register required"));
9594 constraint (inst
.operands
[1].present
9595 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
9596 _("can only load two consecutive registers"));
9597 /* If op 1 were present and equal to PC, this function wouldn't
9598 have been called in the first place. */
9599 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
9601 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9602 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9605 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9606 which is not a multiple of four is UNPREDICTABLE. */
9608 check_ldr_r15_aligned (void)
9610 constraint (!(inst
.operands
[1].immisreg
)
9611 && (inst
.operands
[0].reg
== REG_PC
9612 && inst
.operands
[1].reg
== REG_PC
9613 && (inst
.relocs
[0].exp
.X_add_number
& 0x3)),
9614 _("ldr to register 15 must be 4-byte aligned"));
9620 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9621 if (!inst
.operands
[1].isreg
)
9622 if (move_or_literal_pool (0, CONST_ARM
, /*mode_3=*/FALSE
))
9624 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE
);
9625 check_ldr_r15_aligned ();
9631 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9633 if (inst
.operands
[1].preind
)
9635 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9636 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9637 _("this instruction requires a post-indexed address"));
9639 inst
.operands
[1].preind
= 0;
9640 inst
.operands
[1].postind
= 1;
9641 inst
.operands
[1].writeback
= 1;
9643 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9644 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE
);
9647 /* Halfword and signed-byte load/store operations. */
9652 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9653 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9654 if (!inst
.operands
[1].isreg
)
9655 if (move_or_literal_pool (0, CONST_ARM
, /*mode_3=*/TRUE
))
9657 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE
);
9663 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9665 if (inst
.operands
[1].preind
)
9667 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9668 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9669 _("this instruction requires a post-indexed address"));
9671 inst
.operands
[1].preind
= 0;
9672 inst
.operands
[1].postind
= 1;
9673 inst
.operands
[1].writeback
= 1;
9675 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9676 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE
);
9679 /* Co-processor register load/store.
9680 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9684 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9685 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9686 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
9692 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9693 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
9694 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
)
9695 && !(inst
.instruction
& 0x00400000))
9696 as_tsktsk (_("Rd and Rm should be different in mla"));
9698 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9699 inst
.instruction
|= inst
.operands
[1].reg
;
9700 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
9701 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
9707 constraint (inst
.relocs
[0].type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9708 && inst
.relocs
[0].type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,
9710 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9711 encode_arm_shifter_operand (1);
9714 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9721 top
= (inst
.instruction
& 0x00400000) != 0;
9722 constraint (top
&& inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVW
,
9723 _(":lower16: not allowed in this instruction"));
9724 constraint (!top
&& inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVT
,
9725 _(":upper16: not allowed in this instruction"));
9726 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9727 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
9729 imm
= inst
.relocs
[0].exp
.X_add_number
;
9730 /* The value is in two pieces: 0:11, 16:19. */
9731 inst
.instruction
|= (imm
& 0x00000fff);
9732 inst
.instruction
|= (imm
& 0x0000f000) << 4;
9737 do_vfp_nsyn_mrs (void)
9739 if (inst
.operands
[0].isvec
)
9741 if (inst
.operands
[1].reg
!= 1)
9742 first_error (_("operand 1 must be FPSCR"));
9743 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
9744 memset (&inst
.operands
[1], '\0', sizeof (inst
.operands
[1]));
9745 do_vfp_nsyn_opcode ("fmstat");
9747 else if (inst
.operands
[1].isvec
)
9748 do_vfp_nsyn_opcode ("fmrx");
9756 do_vfp_nsyn_msr (void)
9758 if (inst
.operands
[0].isvec
)
9759 do_vfp_nsyn_opcode ("fmxr");
9769 unsigned Rt
= inst
.operands
[0].reg
;
9771 if (thumb_mode
&& Rt
== REG_SP
)
9773 inst
.error
= BAD_SP
;
9777 /* MVFR2 is only valid at ARMv8-A. */
9778 if (inst
.operands
[1].reg
== 5)
9779 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
9782 /* APSR_ sets isvec. All other refs to PC are illegal. */
9783 if (!inst
.operands
[0].isvec
&& Rt
== REG_PC
)
9785 inst
.error
= BAD_PC
;
9789 /* If we get through parsing the register name, we just insert the number
9790 generated into the instruction without further validation. */
9791 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
9792 inst
.instruction
|= (Rt
<< 12);
9798 unsigned Rt
= inst
.operands
[1].reg
;
9801 reject_bad_reg (Rt
);
9802 else if (Rt
== REG_PC
)
9804 inst
.error
= BAD_PC
;
9808 /* MVFR2 is only valid for ARMv8-A. */
9809 if (inst
.operands
[0].reg
== 5)
9810 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
9813 /* If we get through parsing the register name, we just insert the number
9814 generated into the instruction without further validation. */
9815 inst
.instruction
|= (inst
.operands
[0].reg
<< 16);
9816 inst
.instruction
|= (Rt
<< 12);
9824 if (do_vfp_nsyn_mrs () == SUCCESS
)
9827 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9828 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9830 if (inst
.operands
[1].isreg
)
9832 br
= inst
.operands
[1].reg
;
9833 if (((br
& 0x200) == 0) && ((br
& 0xf0000) != 0xf0000))
9834 as_bad (_("bad register for mrs"));
9838 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9839 constraint ((inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
))
9841 _("'APSR', 'CPSR' or 'SPSR' expected"));
9842 br
= (15<<16) | (inst
.operands
[1].imm
& SPSR_BIT
);
9845 inst
.instruction
|= br
;
9848 /* Two possible forms:
9849 "{C|S}PSR_<field>, Rm",
9850 "{C|S}PSR_f, #expression". */
9855 if (do_vfp_nsyn_msr () == SUCCESS
)
9858 inst
.instruction
|= inst
.operands
[0].imm
;
9859 if (inst
.operands
[1].isreg
)
9860 inst
.instruction
|= inst
.operands
[1].reg
;
9863 inst
.instruction
|= INST_IMMEDIATE
;
9864 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
9865 inst
.relocs
[0].pc_rel
= 0;
9872 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
9874 if (!inst
.operands
[2].present
)
9875 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
9876 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9877 inst
.instruction
|= inst
.operands
[1].reg
;
9878 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
9880 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
9881 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
9882 as_tsktsk (_("Rd and Rm should be different in mul"));
9885 /* Long Multiply Parser
9886 UMULL RdLo, RdHi, Rm, Rs
9887 SMULL RdLo, RdHi, Rm, Rs
9888 UMLAL RdLo, RdHi, Rm, Rs
9889 SMLAL RdLo, RdHi, Rm, Rs. */
9894 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9895 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9896 inst
.instruction
|= inst
.operands
[2].reg
;
9897 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
9899 /* rdhi and rdlo must be different. */
9900 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
9901 as_tsktsk (_("rdhi and rdlo must be different"));
9903 /* rdhi, rdlo and rm must all be different before armv6. */
9904 if ((inst
.operands
[0].reg
== inst
.operands
[2].reg
9905 || inst
.operands
[1].reg
== inst
.operands
[2].reg
)
9906 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
9907 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9913 if (inst
.operands
[0].present
9914 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
))
9916 /* Architectural NOP hints are CPSR sets with no bits selected. */
9917 inst
.instruction
&= 0xf0000000;
9918 inst
.instruction
|= 0x0320f000;
9919 if (inst
.operands
[0].present
)
9920 inst
.instruction
|= inst
.operands
[0].imm
;
9924 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9925 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9926 Condition defaults to COND_ALWAYS.
9927 Error if Rd, Rn or Rm are R15. */
9932 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9933 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9934 inst
.instruction
|= inst
.operands
[2].reg
;
9935 if (inst
.operands
[3].present
)
9936 encode_arm_shift (3);
9939 /* ARM V6 PKHTB (Argument Parse). */
9944 if (!inst
.operands
[3].present
)
9946 /* If the shift specifier is omitted, turn the instruction
9947 into pkhbt rd, rm, rn. */
9948 inst
.instruction
&= 0xfff00010;
9949 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9950 inst
.instruction
|= inst
.operands
[1].reg
;
9951 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9955 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9956 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9957 inst
.instruction
|= inst
.operands
[2].reg
;
9958 encode_arm_shift (3);
9962 /* ARMv5TE: Preload-Cache
9963 MP Extensions: Preload for write
9967 Syntactically, like LDR with B=1, W=0, L=1. */
9972 constraint (!inst
.operands
[0].isreg
,
9973 _("'[' expected after PLD mnemonic"));
9974 constraint (inst
.operands
[0].postind
,
9975 _("post-indexed expression used in preload instruction"));
9976 constraint (inst
.operands
[0].writeback
,
9977 _("writeback used in preload instruction"));
9978 constraint (!inst
.operands
[0].preind
,
9979 _("unindexed addressing used in preload instruction"));
9980 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
9983 /* ARMv7: PLI <addr_mode> */
9987 constraint (!inst
.operands
[0].isreg
,
9988 _("'[' expected after PLI mnemonic"));
9989 constraint (inst
.operands
[0].postind
,
9990 _("post-indexed expression used in preload instruction"));
9991 constraint (inst
.operands
[0].writeback
,
9992 _("writeback used in preload instruction"));
9993 constraint (!inst
.operands
[0].preind
,
9994 _("unindexed addressing used in preload instruction"));
9995 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
9996 inst
.instruction
&= ~PRE_INDEX
;
10002 constraint (inst
.operands
[0].writeback
,
10003 _("push/pop do not support {reglist}^"));
10004 inst
.operands
[1] = inst
.operands
[0];
10005 memset (&inst
.operands
[0], 0, sizeof inst
.operands
[0]);
10006 inst
.operands
[0].isreg
= 1;
10007 inst
.operands
[0].writeback
= 1;
10008 inst
.operands
[0].reg
= REG_SP
;
10009 encode_ldmstm (/*from_push_pop_mnem=*/TRUE
);
10012 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10013 word at the specified address and the following word
10015 Unconditionally executed.
10016 Error if Rn is R15. */
10021 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10022 if (inst
.operands
[0].writeback
)
10023 inst
.instruction
|= WRITE_BACK
;
10026 /* ARM V6 ssat (argument parse). */
10031 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10032 inst
.instruction
|= (inst
.operands
[1].imm
- 1) << 16;
10033 inst
.instruction
|= inst
.operands
[2].reg
;
10035 if (inst
.operands
[3].present
)
10036 encode_arm_shift (3);
10039 /* ARM V6 usat (argument parse). */
10044 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10045 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
10046 inst
.instruction
|= inst
.operands
[2].reg
;
10048 if (inst
.operands
[3].present
)
10049 encode_arm_shift (3);
10052 /* ARM V6 ssat16 (argument parse). */
10057 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10058 inst
.instruction
|= ((inst
.operands
[1].imm
- 1) << 16);
10059 inst
.instruction
|= inst
.operands
[2].reg
;
10065 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10066 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
10067 inst
.instruction
|= inst
.operands
[2].reg
;
10070 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10071 preserving the other bits.
10073 setend <endian_specifier>, where <endian_specifier> is either
10079 if (warn_on_deprecated
10080 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
10081 as_tsktsk (_("setend use is deprecated for ARMv8"));
10083 if (inst
.operands
[0].imm
)
10084 inst
.instruction
|= 0x200;
10090 unsigned int Rm
= (inst
.operands
[1].present
10091 ? inst
.operands
[1].reg
10092 : inst
.operands
[0].reg
);
10094 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10095 inst
.instruction
|= Rm
;
10096 if (inst
.operands
[2].isreg
) /* Rd, {Rm,} Rs */
10098 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10099 inst
.instruction
|= SHIFT_BY_REG
;
10100 /* PR 12854: Error on extraneous shifts. */
10101 constraint (inst
.operands
[2].shifted
,
10102 _("extraneous shift as part of operand to shift insn"));
10105 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
10111 inst
.relocs
[0].type
= BFD_RELOC_ARM_SMC
;
10112 inst
.relocs
[0].pc_rel
= 0;
10118 inst
.relocs
[0].type
= BFD_RELOC_ARM_HVC
;
10119 inst
.relocs
[0].pc_rel
= 0;
10125 inst
.relocs
[0].type
= BFD_RELOC_ARM_SWI
;
10126 inst
.relocs
[0].pc_rel
= 0;
10132 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_pan
),
10133 _("selected processor does not support SETPAN instruction"));
10135 inst
.instruction
|= ((inst
.operands
[0].imm
& 1) << 9);
10141 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_pan
),
10142 _("selected processor does not support SETPAN instruction"));
10144 inst
.instruction
|= (inst
.operands
[0].imm
<< 3);
10147 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10148 SMLAxy{cond} Rd,Rm,Rs,Rn
10149 SMLAWy{cond} Rd,Rm,Rs,Rn
10150 Error if any register is R15. */
10155 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10156 inst
.instruction
|= inst
.operands
[1].reg
;
10157 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10158 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
10161 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10162 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10163 Error if any register is R15.
10164 Warning if Rdlo == Rdhi. */
10169 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10170 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10171 inst
.instruction
|= inst
.operands
[2].reg
;
10172 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
10174 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
10175 as_tsktsk (_("rdhi and rdlo must be different"));
10178 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10179 SMULxy{cond} Rd,Rm,Rs
10180 Error if any register is R15. */
10185 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10186 inst
.instruction
|= inst
.operands
[1].reg
;
10187 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10190 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10191 the same for both ARM and Thumb-2. */
10198 if (inst
.operands
[0].present
)
10200 reg
= inst
.operands
[0].reg
;
10201 constraint (reg
!= REG_SP
, _("SRS base register must be r13"));
10206 inst
.instruction
|= reg
<< 16;
10207 inst
.instruction
|= inst
.operands
[1].imm
;
10208 if (inst
.operands
[0].writeback
|| inst
.operands
[1].writeback
)
10209 inst
.instruction
|= WRITE_BACK
;
10212 /* ARM V6 strex (argument parse). */
10217 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10218 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10219 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10220 || inst
.operands
[2].negative
10221 /* See comment in do_ldrex(). */
10222 || (inst
.operands
[2].reg
== REG_PC
),
10225 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10226 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10228 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
10229 || inst
.relocs
[0].exp
.X_add_number
!= 0,
10230 _("offset must be zero in ARM encoding"));
10232 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10233 inst
.instruction
|= inst
.operands
[1].reg
;
10234 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10235 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
10239 do_t_strexbh (void)
10241 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10242 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10243 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10244 || inst
.operands
[2].negative
,
10247 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10248 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10256 constraint (inst
.operands
[1].reg
% 2 != 0,
10257 _("even register required"));
10258 constraint (inst
.operands
[2].present
10259 && inst
.operands
[2].reg
!= inst
.operands
[1].reg
+ 1,
10260 _("can only store two consecutive registers"));
10261 /* If op 2 were present and equal to PC, this function wouldn't
10262 have been called in the first place. */
10263 constraint (inst
.operands
[1].reg
== REG_LR
, _("r14 not allowed here"));
10265 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10266 || inst
.operands
[0].reg
== inst
.operands
[1].reg
+ 1
10267 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
10270 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10271 inst
.instruction
|= inst
.operands
[1].reg
;
10272 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
10279 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10280 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10288 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10289 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10294 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10295 extends it to 32-bits, and adds the result to a value in another
10296 register. You can specify a rotation by 0, 8, 16, or 24 bits
10297 before extracting the 16-bit value.
10298 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10299 Condition defaults to COND_ALWAYS.
10300 Error if any register uses R15. */
10305 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10306 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10307 inst
.instruction
|= inst
.operands
[2].reg
;
10308 inst
.instruction
|= inst
.operands
[3].imm
<< 10;
10313 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10314 Condition defaults to COND_ALWAYS.
10315 Error if any register uses R15. */
10320 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10321 inst
.instruction
|= inst
.operands
[1].reg
;
10322 inst
.instruction
|= inst
.operands
[2].imm
<< 10;
10325 /* VFP instructions. In a logical order: SP variant first, monad
10326 before dyad, arithmetic then move then load/store. */
10329 do_vfp_sp_monadic (void)
10331 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10332 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10335 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10336 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
10340 do_vfp_sp_dyadic (void)
10342 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10343 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
10344 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
10348 do_vfp_sp_compare_z (void)
10350 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10354 do_vfp_dp_sp_cvt (void)
10356 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10357 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
10361 do_vfp_sp_dp_cvt (void)
10363 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10364 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
10368 do_vfp_reg_from_sp (void)
10370 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10371 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10374 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10375 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
10379 do_vfp_reg2_from_sp2 (void)
10381 constraint (inst
.operands
[2].imm
!= 2,
10382 _("only two consecutive VFP SP registers allowed here"));
10383 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10384 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10385 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
10389 do_vfp_sp_from_reg (void)
10391 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10392 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10395 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sn
);
10396 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10400 do_vfp_sp2_from_reg2 (void)
10402 constraint (inst
.operands
[0].imm
!= 2,
10403 _("only two consecutive VFP SP registers allowed here"));
10404 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sm
);
10405 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10406 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10410 do_vfp_sp_ldst (void)
10412 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10413 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
10417 do_vfp_dp_ldst (void)
10419 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10420 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
10425 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type
)
10427 if (inst
.operands
[0].writeback
)
10428 inst
.instruction
|= WRITE_BACK
;
10430 constraint (ldstm_type
!= VFP_LDSTMIA
,
10431 _("this addressing mode requires base-register writeback"));
10432 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10433 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sd
);
10434 inst
.instruction
|= inst
.operands
[1].imm
;
10438 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type
)
10442 if (inst
.operands
[0].writeback
)
10443 inst
.instruction
|= WRITE_BACK
;
10445 constraint (ldstm_type
!= VFP_LDSTMIA
&& ldstm_type
!= VFP_LDSTMIAX
,
10446 _("this addressing mode requires base-register writeback"));
10448 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10449 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10451 count
= inst
.operands
[1].imm
<< 1;
10452 if (ldstm_type
== VFP_LDSTMIAX
|| ldstm_type
== VFP_LDSTMDBX
)
10455 inst
.instruction
|= count
;
10459 do_vfp_sp_ldstmia (void)
10461 vfp_sp_ldstm (VFP_LDSTMIA
);
10465 do_vfp_sp_ldstmdb (void)
10467 vfp_sp_ldstm (VFP_LDSTMDB
);
10471 do_vfp_dp_ldstmia (void)
10473 vfp_dp_ldstm (VFP_LDSTMIA
);
10477 do_vfp_dp_ldstmdb (void)
10479 vfp_dp_ldstm (VFP_LDSTMDB
);
10483 do_vfp_xp_ldstmia (void)
10485 vfp_dp_ldstm (VFP_LDSTMIAX
);
10489 do_vfp_xp_ldstmdb (void)
10491 vfp_dp_ldstm (VFP_LDSTMDBX
);
10495 do_vfp_dp_rd_rm (void)
10497 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
10498 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10501 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10502 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
10506 do_vfp_dp_rn_rd (void)
10508 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dn
);
10509 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10513 do_vfp_dp_rd_rn (void)
10515 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10516 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
10520 do_vfp_dp_rd_rn_rm (void)
10522 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
10523 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10526 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10527 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
10528 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dm
);
10532 do_vfp_dp_rd (void)
10534 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10538 do_vfp_dp_rm_rd_rn (void)
10540 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
10541 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10544 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dm
);
10545 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10546 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dn
);
10549 /* VFPv3 instructions. */
10551 do_vfp_sp_const (void)
10553 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10554 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
10555 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
10559 do_vfp_dp_const (void)
10561 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10562 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
10563 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
10567 vfp_conv (int srcsize
)
10569 int immbits
= srcsize
- inst
.operands
[1].imm
;
10571 if (srcsize
== 16 && !(immbits
>= 0 && immbits
<= srcsize
))
10573 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10574 i.e. immbits must be in range 0 - 16. */
10575 inst
.error
= _("immediate value out of range, expected range [0, 16]");
10578 else if (srcsize
== 32 && !(immbits
>= 0 && immbits
< srcsize
))
10580 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10581 i.e. immbits must be in range 0 - 31. */
10582 inst
.error
= _("immediate value out of range, expected range [1, 32]");
10586 inst
.instruction
|= (immbits
& 1) << 5;
10587 inst
.instruction
|= (immbits
>> 1);
10591 do_vfp_sp_conv_16 (void)
10593 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10598 do_vfp_dp_conv_16 (void)
10600 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10605 do_vfp_sp_conv_32 (void)
10607 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10612 do_vfp_dp_conv_32 (void)
10614 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10618 /* FPA instructions. Also in a logical order. */
10623 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10624 inst
.instruction
|= inst
.operands
[1].reg
;
10628 do_fpa_ldmstm (void)
10630 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10631 switch (inst
.operands
[1].imm
)
10633 case 1: inst
.instruction
|= CP_T_X
; break;
10634 case 2: inst
.instruction
|= CP_T_Y
; break;
10635 case 3: inst
.instruction
|= CP_T_Y
| CP_T_X
; break;
10640 if (inst
.instruction
& (PRE_INDEX
| INDEX_UP
))
10642 /* The instruction specified "ea" or "fd", so we can only accept
10643 [Rn]{!}. The instruction does not really support stacking or
10644 unstacking, so we have to emulate these by setting appropriate
10645 bits and offsets. */
10646 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
10647 || inst
.relocs
[0].exp
.X_add_number
!= 0,
10648 _("this instruction does not support indexing"));
10650 if ((inst
.instruction
& PRE_INDEX
) || inst
.operands
[2].writeback
)
10651 inst
.relocs
[0].exp
.X_add_number
= 12 * inst
.operands
[1].imm
;
10653 if (!(inst
.instruction
& INDEX_UP
))
10654 inst
.relocs
[0].exp
.X_add_number
= -inst
.relocs
[0].exp
.X_add_number
;
10656 if (!(inst
.instruction
& PRE_INDEX
) && inst
.operands
[2].writeback
)
10658 inst
.operands
[2].preind
= 0;
10659 inst
.operands
[2].postind
= 1;
10663 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
10666 /* iWMMXt instructions: strictly in alphabetical order. */
10669 do_iwmmxt_tandorc (void)
10671 constraint (inst
.operands
[0].reg
!= REG_PC
, _("only r15 allowed here"));
10675 do_iwmmxt_textrc (void)
10677 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10678 inst
.instruction
|= inst
.operands
[1].imm
;
10682 do_iwmmxt_textrm (void)
10684 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10685 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10686 inst
.instruction
|= inst
.operands
[2].imm
;
10690 do_iwmmxt_tinsr (void)
10692 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10693 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10694 inst
.instruction
|= inst
.operands
[2].imm
;
10698 do_iwmmxt_tmia (void)
10700 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
10701 inst
.instruction
|= inst
.operands
[1].reg
;
10702 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10706 do_iwmmxt_waligni (void)
10708 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10709 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10710 inst
.instruction
|= inst
.operands
[2].reg
;
10711 inst
.instruction
|= inst
.operands
[3].imm
<< 20;
10715 do_iwmmxt_wmerge (void)
10717 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10718 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10719 inst
.instruction
|= inst
.operands
[2].reg
;
10720 inst
.instruction
|= inst
.operands
[3].imm
<< 21;
10724 do_iwmmxt_wmov (void)
10726 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10727 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10728 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10729 inst
.instruction
|= inst
.operands
[1].reg
;
10733 do_iwmmxt_wldstbh (void)
10736 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10738 reloc
= BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
;
10740 reloc
= BFD_RELOC_ARM_CP_OFF_IMM_S2
;
10741 encode_arm_cp_address (1, TRUE
, FALSE
, reloc
);
10745 do_iwmmxt_wldstw (void)
10747 /* RIWR_RIWC clears .isreg for a control register. */
10748 if (!inst
.operands
[0].isreg
)
10750 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
10751 inst
.instruction
|= 0xf0000000;
10754 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10755 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
10759 do_iwmmxt_wldstd (void)
10761 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10762 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
)
10763 && inst
.operands
[1].immisreg
)
10765 inst
.instruction
&= ~0x1a000ff;
10766 inst
.instruction
|= (0xfU
<< 28);
10767 if (inst
.operands
[1].preind
)
10768 inst
.instruction
|= PRE_INDEX
;
10769 if (!inst
.operands
[1].negative
)
10770 inst
.instruction
|= INDEX_UP
;
10771 if (inst
.operands
[1].writeback
)
10772 inst
.instruction
|= WRITE_BACK
;
10773 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10774 inst
.instruction
|= inst
.relocs
[0].exp
.X_add_number
<< 4;
10775 inst
.instruction
|= inst
.operands
[1].imm
;
10778 encode_arm_cp_address (1, TRUE
, FALSE
, 0);
10782 do_iwmmxt_wshufh (void)
10784 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10785 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10786 inst
.instruction
|= ((inst
.operands
[2].imm
& 0xf0) << 16);
10787 inst
.instruction
|= (inst
.operands
[2].imm
& 0x0f);
10791 do_iwmmxt_wzero (void)
10793 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10794 inst
.instruction
|= inst
.operands
[0].reg
;
10795 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10796 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10800 do_iwmmxt_wrwrwr_or_imm5 (void)
10802 if (inst
.operands
[2].isreg
)
10805 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
),
10806 _("immediate operand requires iWMMXt2"));
10808 if (inst
.operands
[2].imm
== 0)
10810 switch ((inst
.instruction
>> 20) & 0xf)
10816 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10817 inst
.operands
[2].imm
= 16;
10818 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0x7 << 20);
10824 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10825 inst
.operands
[2].imm
= 32;
10826 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0xb << 20);
10833 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10835 wrn
= (inst
.instruction
>> 16) & 0xf;
10836 inst
.instruction
&= 0xff0fff0f;
10837 inst
.instruction
|= wrn
;
10838 /* Bail out here; the instruction is now assembled. */
10843 /* Map 32 -> 0, etc. */
10844 inst
.operands
[2].imm
&= 0x1f;
10845 inst
.instruction
|= (0xfU
<< 28) | ((inst
.operands
[2].imm
& 0x10) << 4) | (inst
.operands
[2].imm
& 0xf);
10849 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10850 operations first, then control, shift, and load/store. */
10852 /* Insns like "foo X,Y,Z". */
10855 do_mav_triple (void)
10857 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10858 inst
.instruction
|= inst
.operands
[1].reg
;
10859 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10862 /* Insns like "foo W,X,Y,Z".
10863 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10868 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
10869 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10870 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10871 inst
.instruction
|= inst
.operands
[3].reg
;
10874 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10876 do_mav_dspsc (void)
10878 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10881 /* Maverick shift immediate instructions.
10882 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10883 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10886 do_mav_shift (void)
10888 int imm
= inst
.operands
[2].imm
;
10890 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10891 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10893 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10894 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10895 Bit 4 should be 0. */
10896 imm
= (imm
& 0xf) | ((imm
& 0x70) << 1);
10898 inst
.instruction
|= imm
;
10901 /* XScale instructions. Also sorted arithmetic before move. */
10903 /* Xscale multiply-accumulate (argument parse)
10906 MIAxycc acc0,Rm,Rs. */
10911 inst
.instruction
|= inst
.operands
[1].reg
;
10912 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10915 /* Xscale move-accumulator-register (argument parse)
10917 MARcc acc0,RdLo,RdHi. */
10922 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10923 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10926 /* Xscale move-register-accumulator (argument parse)
10928 MRAcc RdLo,RdHi,acc0. */
10933 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
10934 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10935 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10938 /* Encoding functions relevant only to Thumb. */
10940 /* inst.operands[i] is a shifted-register operand; encode
10941 it into inst.instruction in the format used by Thumb32. */
10944 encode_thumb32_shifted_operand (int i
)
10946 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
10947 unsigned int shift
= inst
.operands
[i
].shift_kind
;
10949 constraint (inst
.operands
[i
].immisreg
,
10950 _("shift by register not allowed in thumb mode"));
10951 inst
.instruction
|= inst
.operands
[i
].reg
;
10952 if (shift
== SHIFT_RRX
)
10953 inst
.instruction
|= SHIFT_ROR
<< 4;
10956 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
10957 _("expression too complex"));
10959 constraint (value
> 32
10960 || (value
== 32 && (shift
== SHIFT_LSL
10961 || shift
== SHIFT_ROR
)),
10962 _("shift expression is too large"));
10966 else if (value
== 32)
10969 inst
.instruction
|= shift
<< 4;
10970 inst
.instruction
|= (value
& 0x1c) << 10;
10971 inst
.instruction
|= (value
& 0x03) << 6;
10976 /* inst.operands[i] was set up by parse_address. Encode it into a
10977 Thumb32 format load or store instruction. Reject forms that cannot
10978 be used with such instructions. If is_t is true, reject forms that
10979 cannot be used with a T instruction; if is_d is true, reject forms
10980 that cannot be used with a D instruction. If it is a store insn,
10981 reject PC in Rn. */
10984 encode_thumb32_addr_mode (int i
, bfd_boolean is_t
, bfd_boolean is_d
)
10986 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
10988 constraint (!inst
.operands
[i
].isreg
,
10989 _("Instruction does not support =N addresses"));
10991 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
10992 if (inst
.operands
[i
].immisreg
)
10994 constraint (is_pc
, BAD_PC_ADDRESSING
);
10995 constraint (is_t
|| is_d
, _("cannot use register index with this instruction"));
10996 constraint (inst
.operands
[i
].negative
,
10997 _("Thumb does not support negative register indexing"));
10998 constraint (inst
.operands
[i
].postind
,
10999 _("Thumb does not support register post-indexing"));
11000 constraint (inst
.operands
[i
].writeback
,
11001 _("Thumb does not support register indexing with writeback"));
11002 constraint (inst
.operands
[i
].shifted
&& inst
.operands
[i
].shift_kind
!= SHIFT_LSL
,
11003 _("Thumb supports only LSL in shifted register indexing"));
11005 inst
.instruction
|= inst
.operands
[i
].imm
;
11006 if (inst
.operands
[i
].shifted
)
11008 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11009 _("expression too complex"));
11010 constraint (inst
.relocs
[0].exp
.X_add_number
< 0
11011 || inst
.relocs
[0].exp
.X_add_number
> 3,
11012 _("shift out of range"));
11013 inst
.instruction
|= inst
.relocs
[0].exp
.X_add_number
<< 4;
11015 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
11017 else if (inst
.operands
[i
].preind
)
11019 constraint (is_pc
&& inst
.operands
[i
].writeback
, BAD_PC_WRITEBACK
);
11020 constraint (is_t
&& inst
.operands
[i
].writeback
,
11021 _("cannot use writeback with this instruction"));
11022 constraint (is_pc
&& ((inst
.instruction
& THUMB2_LOAD_BIT
) == 0),
11023 BAD_PC_ADDRESSING
);
11027 inst
.instruction
|= 0x01000000;
11028 if (inst
.operands
[i
].writeback
)
11029 inst
.instruction
|= 0x00200000;
11033 inst
.instruction
|= 0x00000c00;
11034 if (inst
.operands
[i
].writeback
)
11035 inst
.instruction
|= 0x00000100;
11037 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
11039 else if (inst
.operands
[i
].postind
)
11041 gas_assert (inst
.operands
[i
].writeback
);
11042 constraint (is_pc
, _("cannot use post-indexing with PC-relative addressing"));
11043 constraint (is_t
, _("cannot use post-indexing with this instruction"));
11046 inst
.instruction
|= 0x00200000;
11048 inst
.instruction
|= 0x00000900;
11049 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
11051 else /* unindexed - only for coprocessor */
11052 inst
.error
= _("instruction does not accept unindexed addressing");
11055 /* Table of Thumb instructions which exist in both 16- and 32-bit
11056 encodings (the latter only in post-V6T2 cores). The index is the
11057 value used in the insns table below. When there is more than one
11058 possible 16-bit encoding for the instruction, this table always
11060 Also contains several pseudo-instructions used during relaxation. */
11061 #define T16_32_TAB \
11062 X(_adc, 4140, eb400000), \
11063 X(_adcs, 4140, eb500000), \
11064 X(_add, 1c00, eb000000), \
11065 X(_adds, 1c00, eb100000), \
11066 X(_addi, 0000, f1000000), \
11067 X(_addis, 0000, f1100000), \
11068 X(_add_pc,000f, f20f0000), \
11069 X(_add_sp,000d, f10d0000), \
11070 X(_adr, 000f, f20f0000), \
11071 X(_and, 4000, ea000000), \
11072 X(_ands, 4000, ea100000), \
11073 X(_asr, 1000, fa40f000), \
11074 X(_asrs, 1000, fa50f000), \
11075 X(_b, e000, f000b000), \
11076 X(_bcond, d000, f0008000), \
11077 X(_bf, 0000, f040e001), \
11078 X(_bfcsel,0000, f000e001), \
11079 X(_bfx, 0000, f060e001), \
11080 X(_bfl, 0000, f000c001), \
11081 X(_bflx, 0000, f070e001), \
11082 X(_bic, 4380, ea200000), \
11083 X(_bics, 4380, ea300000), \
11084 X(_cmn, 42c0, eb100f00), \
11085 X(_cmp, 2800, ebb00f00), \
11086 X(_cpsie, b660, f3af8400), \
11087 X(_cpsid, b670, f3af8600), \
11088 X(_cpy, 4600, ea4f0000), \
11089 X(_dec_sp,80dd, f1ad0d00), \
11090 X(_dls, 0000, f040e001), \
11091 X(_eor, 4040, ea800000), \
11092 X(_eors, 4040, ea900000), \
11093 X(_inc_sp,00dd, f10d0d00), \
11094 X(_ldmia, c800, e8900000), \
11095 X(_ldr, 6800, f8500000), \
11096 X(_ldrb, 7800, f8100000), \
11097 X(_ldrh, 8800, f8300000), \
11098 X(_ldrsb, 5600, f9100000), \
11099 X(_ldrsh, 5e00, f9300000), \
11100 X(_ldr_pc,4800, f85f0000), \
11101 X(_ldr_pc2,4800, f85f0000), \
11102 X(_ldr_sp,9800, f85d0000), \
11103 X(_le, 0000, f00fc001), \
11104 X(_lsl, 0000, fa00f000), \
11105 X(_lsls, 0000, fa10f000), \
11106 X(_lsr, 0800, fa20f000), \
11107 X(_lsrs, 0800, fa30f000), \
11108 X(_mov, 2000, ea4f0000), \
11109 X(_movs, 2000, ea5f0000), \
11110 X(_mul, 4340, fb00f000), \
11111 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11112 X(_mvn, 43c0, ea6f0000), \
11113 X(_mvns, 43c0, ea7f0000), \
11114 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11115 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11116 X(_orr, 4300, ea400000), \
11117 X(_orrs, 4300, ea500000), \
11118 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11119 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11120 X(_rev, ba00, fa90f080), \
11121 X(_rev16, ba40, fa90f090), \
11122 X(_revsh, bac0, fa90f0b0), \
11123 X(_ror, 41c0, fa60f000), \
11124 X(_rors, 41c0, fa70f000), \
11125 X(_sbc, 4180, eb600000), \
11126 X(_sbcs, 4180, eb700000), \
11127 X(_stmia, c000, e8800000), \
11128 X(_str, 6000, f8400000), \
11129 X(_strb, 7000, f8000000), \
11130 X(_strh, 8000, f8200000), \
11131 X(_str_sp,9000, f84d0000), \
11132 X(_sub, 1e00, eba00000), \
11133 X(_subs, 1e00, ebb00000), \
11134 X(_subi, 8000, f1a00000), \
11135 X(_subis, 8000, f1b00000), \
11136 X(_sxtb, b240, fa4ff080), \
11137 X(_sxth, b200, fa0ff080), \
11138 X(_tst, 4200, ea100f00), \
11139 X(_uxtb, b2c0, fa5ff080), \
11140 X(_uxth, b280, fa1ff080), \
11141 X(_nop, bf00, f3af8000), \
11142 X(_yield, bf10, f3af8001), \
11143 X(_wfe, bf20, f3af8002), \
11144 X(_wfi, bf30, f3af8003), \
11145 X(_wls, 0000, f040c001), \
11146 X(_sev, bf40, f3af8004), \
11147 X(_sevl, bf50, f3af8005), \
11148 X(_udf, de00, f7f0a000)
11150 /* To catch errors in encoding functions, the codes are all offset by
11151 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11152 as 16-bit instructions. */
11153 #define X(a,b,c) T_MNEM##a
11154 enum t16_32_codes
{ T16_32_OFFSET
= 0xF7FF, T16_32_TAB
};
11157 #define X(a,b,c) 0x##b
11158 static const unsigned short thumb_op16
[] = { T16_32_TAB
};
11159 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11162 #define X(a,b,c) 0x##c
11163 static const unsigned int thumb_op32
[] = { T16_32_TAB
};
11164 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11165 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11169 /* Thumb instruction encoders, in alphabetical order. */
11171 /* ADDW or SUBW. */
11174 do_t_add_sub_w (void)
11178 Rd
= inst
.operands
[0].reg
;
11179 Rn
= inst
.operands
[1].reg
;
11181 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11182 is the SP-{plus,minus}-immediate form of the instruction. */
11184 constraint (Rd
== REG_PC
, BAD_PC
);
11186 reject_bad_reg (Rd
);
11188 inst
.instruction
|= (Rn
<< 16) | (Rd
<< 8);
11189 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMM12
;
11192 /* Parse an add or subtract instruction. We get here with inst.instruction
11193 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11196 do_t_add_sub (void)
11200 Rd
= inst
.operands
[0].reg
;
11201 Rs
= (inst
.operands
[1].present
11202 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11203 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11206 set_pred_insn_type_last ();
11208 if (unified_syntax
)
11211 bfd_boolean narrow
;
11214 flags
= (inst
.instruction
== T_MNEM_adds
11215 || inst
.instruction
== T_MNEM_subs
);
11217 narrow
= !in_pred_block ();
11219 narrow
= in_pred_block ();
11220 if (!inst
.operands
[2].isreg
)
11224 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11225 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
11227 add
= (inst
.instruction
== T_MNEM_add
11228 || inst
.instruction
== T_MNEM_adds
);
11230 if (inst
.size_req
!= 4)
11232 /* Attempt to use a narrow opcode, with relaxation if
11234 if (Rd
== REG_SP
&& Rs
== REG_SP
&& !flags
)
11235 opcode
= add
? T_MNEM_inc_sp
: T_MNEM_dec_sp
;
11236 else if (Rd
<= 7 && Rs
== REG_SP
&& add
&& !flags
)
11237 opcode
= T_MNEM_add_sp
;
11238 else if (Rd
<= 7 && Rs
== REG_PC
&& add
&& !flags
)
11239 opcode
= T_MNEM_add_pc
;
11240 else if (Rd
<= 7 && Rs
<= 7 && narrow
)
11243 opcode
= add
? T_MNEM_addis
: T_MNEM_subis
;
11245 opcode
= add
? T_MNEM_addi
: T_MNEM_subi
;
11249 inst
.instruction
= THUMB_OP16(opcode
);
11250 inst
.instruction
|= (Rd
<< 4) | Rs
;
11251 if (inst
.relocs
[0].type
< BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11252 || (inst
.relocs
[0].type
11253 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
))
11255 if (inst
.size_req
== 2)
11256 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11258 inst
.relax
= opcode
;
11262 constraint (inst
.size_req
== 2, BAD_HIREG
);
11264 if (inst
.size_req
== 4
11265 || (inst
.size_req
!= 2 && !opcode
))
11267 constraint ((inst
.relocs
[0].type
11268 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
)
11269 && (inst
.relocs
[0].type
11270 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
) ,
11271 THUMB1_RELOC_ONLY
);
11274 constraint (add
, BAD_PC
);
11275 constraint (Rs
!= REG_LR
|| inst
.instruction
!= T_MNEM_subs
,
11276 _("only SUBS PC, LR, #const allowed"));
11277 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11278 _("expression too complex"));
11279 constraint (inst
.relocs
[0].exp
.X_add_number
< 0
11280 || inst
.relocs
[0].exp
.X_add_number
> 0xff,
11281 _("immediate value out of range"));
11282 inst
.instruction
= T2_SUBS_PC_LR
11283 | inst
.relocs
[0].exp
.X_add_number
;
11284 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
11287 else if (Rs
== REG_PC
)
11289 /* Always use addw/subw. */
11290 inst
.instruction
= add
? 0xf20f0000 : 0xf2af0000;
11291 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMM12
;
11295 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11296 inst
.instruction
= (inst
.instruction
& 0xe1ffffff)
11299 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11301 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_ADD_IMM
;
11303 inst
.instruction
|= Rd
<< 8;
11304 inst
.instruction
|= Rs
<< 16;
11309 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
11310 unsigned int shift
= inst
.operands
[2].shift_kind
;
11312 Rn
= inst
.operands
[2].reg
;
11313 /* See if we can do this with a 16-bit instruction. */
11314 if (!inst
.operands
[2].shifted
&& inst
.size_req
!= 4)
11316 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
11321 inst
.instruction
= ((inst
.instruction
== T_MNEM_adds
11322 || inst
.instruction
== T_MNEM_add
)
11324 : T_OPCODE_SUB_R3
);
11325 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
11329 if (inst
.instruction
== T_MNEM_add
&& (Rd
== Rs
|| Rd
== Rn
))
11331 /* Thumb-1 cores (except v6-M) require at least one high
11332 register in a narrow non flag setting add. */
11333 if (Rd
> 7 || Rn
> 7
11334 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
)
11335 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_msr
))
11342 inst
.instruction
= T_OPCODE_ADD_HI
;
11343 inst
.instruction
|= (Rd
& 8) << 4;
11344 inst
.instruction
|= (Rd
& 7);
11345 inst
.instruction
|= Rn
<< 3;
11351 constraint (Rd
== REG_PC
, BAD_PC
);
11352 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11353 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
11354 constraint (Rs
== REG_PC
, BAD_PC
);
11355 reject_bad_reg (Rn
);
11357 /* If we get here, it can't be done in 16 bits. */
11358 constraint (inst
.operands
[2].shifted
&& inst
.operands
[2].immisreg
,
11359 _("shift must be constant"));
11360 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11361 inst
.instruction
|= Rd
<< 8;
11362 inst
.instruction
|= Rs
<< 16;
11363 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& value
> 3,
11364 _("shift value over 3 not allowed in thumb mode"));
11365 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& shift
!= SHIFT_LSL
,
11366 _("only LSL shift allowed in thumb mode"));
11367 encode_thumb32_shifted_operand (2);
11372 constraint (inst
.instruction
== T_MNEM_adds
11373 || inst
.instruction
== T_MNEM_subs
,
11376 if (!inst
.operands
[2].isreg
) /* Rd, Rs, #imm */
11378 constraint ((Rd
> 7 && (Rd
!= REG_SP
|| Rs
!= REG_SP
))
11379 || (Rs
> 7 && Rs
!= REG_SP
&& Rs
!= REG_PC
),
11382 inst
.instruction
= (inst
.instruction
== T_MNEM_add
11383 ? 0x0000 : 0x8000);
11384 inst
.instruction
|= (Rd
<< 4) | Rs
;
11385 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11389 Rn
= inst
.operands
[2].reg
;
11390 constraint (inst
.operands
[2].shifted
, _("unshifted register required"));
11392 /* We now have Rd, Rs, and Rn set to registers. */
11393 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
11395 /* Can't do this for SUB. */
11396 constraint (inst
.instruction
== T_MNEM_sub
, BAD_HIREG
);
11397 inst
.instruction
= T_OPCODE_ADD_HI
;
11398 inst
.instruction
|= (Rd
& 8) << 4;
11399 inst
.instruction
|= (Rd
& 7);
11401 inst
.instruction
|= Rn
<< 3;
11403 inst
.instruction
|= Rs
<< 3;
11405 constraint (1, _("dest must overlap one source register"));
11409 inst
.instruction
= (inst
.instruction
== T_MNEM_add
11410 ? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3
);
11411 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
11421 Rd
= inst
.operands
[0].reg
;
11422 reject_bad_reg (Rd
);
11424 if (unified_syntax
&& inst
.size_req
== 0 && Rd
<= 7)
11426 /* Defer to section relaxation. */
11427 inst
.relax
= inst
.instruction
;
11428 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11429 inst
.instruction
|= Rd
<< 4;
11431 else if (unified_syntax
&& inst
.size_req
!= 2)
11433 /* Generate a 32-bit opcode. */
11434 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11435 inst
.instruction
|= Rd
<< 8;
11436 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_ADD_PC12
;
11437 inst
.relocs
[0].pc_rel
= 1;
11441 /* Generate a 16-bit opcode. */
11442 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11443 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11444 inst
.relocs
[0].exp
.X_add_number
-= 4; /* PC relative adjust. */
11445 inst
.relocs
[0].pc_rel
= 1;
11446 inst
.instruction
|= Rd
<< 4;
11449 if (inst
.relocs
[0].exp
.X_op
== O_symbol
11450 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
11451 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
11452 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
11453 inst
.relocs
[0].exp
.X_add_number
+= 1;
11456 /* Arithmetic instructions for which there is just one 16-bit
11457 instruction encoding, and it allows only two low registers.
11458 For maximal compatibility with ARM syntax, we allow three register
11459 operands even when Thumb-32 instructions are not available, as long
11460 as the first two are identical. For instance, both "sbc r0,r1" and
11461 "sbc r0,r0,r1" are allowed. */
11467 Rd
= inst
.operands
[0].reg
;
11468 Rs
= (inst
.operands
[1].present
11469 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11470 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11471 Rn
= inst
.operands
[2].reg
;
11473 reject_bad_reg (Rd
);
11474 reject_bad_reg (Rs
);
11475 if (inst
.operands
[2].isreg
)
11476 reject_bad_reg (Rn
);
11478 if (unified_syntax
)
11480 if (!inst
.operands
[2].isreg
)
11482 /* For an immediate, we always generate a 32-bit opcode;
11483 section relaxation will shrink it later if possible. */
11484 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11485 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11486 inst
.instruction
|= Rd
<< 8;
11487 inst
.instruction
|= Rs
<< 16;
11488 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11492 bfd_boolean narrow
;
11494 /* See if we can do this with a 16-bit instruction. */
11495 if (THUMB_SETS_FLAGS (inst
.instruction
))
11496 narrow
= !in_pred_block ();
11498 narrow
= in_pred_block ();
11500 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
11502 if (inst
.operands
[2].shifted
)
11504 if (inst
.size_req
== 4)
11510 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11511 inst
.instruction
|= Rd
;
11512 inst
.instruction
|= Rn
<< 3;
11516 /* If we get here, it can't be done in 16 bits. */
11517 constraint (inst
.operands
[2].shifted
11518 && inst
.operands
[2].immisreg
,
11519 _("shift must be constant"));
11520 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11521 inst
.instruction
|= Rd
<< 8;
11522 inst
.instruction
|= Rs
<< 16;
11523 encode_thumb32_shifted_operand (2);
11528 /* On its face this is a lie - the instruction does set the
11529 flags. However, the only supported mnemonic in this mode
11530 says it doesn't. */
11531 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11533 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
11534 _("unshifted register required"));
11535 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
11536 constraint (Rd
!= Rs
,
11537 _("dest and source1 must be the same register"));
11539 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11540 inst
.instruction
|= Rd
;
11541 inst
.instruction
|= Rn
<< 3;
11545 /* Similarly, but for instructions where the arithmetic operation is
11546 commutative, so we can allow either of them to be different from
11547 the destination operand in a 16-bit instruction. For instance, all
11548 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11555 Rd
= inst
.operands
[0].reg
;
11556 Rs
= (inst
.operands
[1].present
11557 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11558 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11559 Rn
= inst
.operands
[2].reg
;
11561 reject_bad_reg (Rd
);
11562 reject_bad_reg (Rs
);
11563 if (inst
.operands
[2].isreg
)
11564 reject_bad_reg (Rn
);
11566 if (unified_syntax
)
11568 if (!inst
.operands
[2].isreg
)
11570 /* For an immediate, we always generate a 32-bit opcode;
11571 section relaxation will shrink it later if possible. */
11572 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11573 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11574 inst
.instruction
|= Rd
<< 8;
11575 inst
.instruction
|= Rs
<< 16;
11576 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11580 bfd_boolean narrow
;
11582 /* See if we can do this with a 16-bit instruction. */
11583 if (THUMB_SETS_FLAGS (inst
.instruction
))
11584 narrow
= !in_pred_block ();
11586 narrow
= in_pred_block ();
11588 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
11590 if (inst
.operands
[2].shifted
)
11592 if (inst
.size_req
== 4)
11599 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11600 inst
.instruction
|= Rd
;
11601 inst
.instruction
|= Rn
<< 3;
11606 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11607 inst
.instruction
|= Rd
;
11608 inst
.instruction
|= Rs
<< 3;
11613 /* If we get here, it can't be done in 16 bits. */
11614 constraint (inst
.operands
[2].shifted
11615 && inst
.operands
[2].immisreg
,
11616 _("shift must be constant"));
11617 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11618 inst
.instruction
|= Rd
<< 8;
11619 inst
.instruction
|= Rs
<< 16;
11620 encode_thumb32_shifted_operand (2);
11625 /* On its face this is a lie - the instruction does set the
11626 flags. However, the only supported mnemonic in this mode
11627 says it doesn't. */
11628 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11630 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
11631 _("unshifted register required"));
11632 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
11634 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11635 inst
.instruction
|= Rd
;
11638 inst
.instruction
|= Rn
<< 3;
11640 inst
.instruction
|= Rs
<< 3;
11642 constraint (1, _("dest must overlap one source register"));
11650 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
11651 constraint (msb
> 32, _("bit-field extends past end of register"));
11652 /* The instruction encoding stores the LSB and MSB,
11653 not the LSB and width. */
11654 Rd
= inst
.operands
[0].reg
;
11655 reject_bad_reg (Rd
);
11656 inst
.instruction
|= Rd
<< 8;
11657 inst
.instruction
|= (inst
.operands
[1].imm
& 0x1c) << 10;
11658 inst
.instruction
|= (inst
.operands
[1].imm
& 0x03) << 6;
11659 inst
.instruction
|= msb
- 1;
11668 Rd
= inst
.operands
[0].reg
;
11669 reject_bad_reg (Rd
);
11671 /* #0 in second position is alternative syntax for bfc, which is
11672 the same instruction but with REG_PC in the Rm field. */
11673 if (!inst
.operands
[1].isreg
)
11677 Rn
= inst
.operands
[1].reg
;
11678 reject_bad_reg (Rn
);
11681 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
11682 constraint (msb
> 32, _("bit-field extends past end of register"));
11683 /* The instruction encoding stores the LSB and MSB,
11684 not the LSB and width. */
11685 inst
.instruction
|= Rd
<< 8;
11686 inst
.instruction
|= Rn
<< 16;
11687 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
11688 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
11689 inst
.instruction
|= msb
- 1;
11697 Rd
= inst
.operands
[0].reg
;
11698 Rn
= inst
.operands
[1].reg
;
11700 reject_bad_reg (Rd
);
11701 reject_bad_reg (Rn
);
11703 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
11704 _("bit-field extends past end of register"));
11705 inst
.instruction
|= Rd
<< 8;
11706 inst
.instruction
|= Rn
<< 16;
11707 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
11708 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
11709 inst
.instruction
|= inst
.operands
[3].imm
- 1;
11712 /* ARM V5 Thumb BLX (argument parse)
11713 BLX <target_addr> which is BLX(1)
11714 BLX <Rm> which is BLX(2)
11715 Unfortunately, there are two different opcodes for this mnemonic.
11716 So, the insns[].value is not used, and the code here zaps values
11717 into inst.instruction.
11719 ??? How to take advantage of the additional two bits of displacement
11720 available in Thumb32 mode? Need new relocation? */
11725 set_pred_insn_type_last ();
11727 if (inst
.operands
[0].isreg
)
11729 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
11730 /* We have a register, so this is BLX(2). */
11731 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
11735 /* No register. This must be BLX(1). */
11736 inst
.instruction
= 0xf000e800;
11737 encode_branch (BFD_RELOC_THUMB_PCREL_BLX
);
11746 bfd_reloc_code_real_type reloc
;
11749 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN
);
11751 if (in_pred_block ())
11753 /* Conditional branches inside IT blocks are encoded as unconditional
11755 cond
= COND_ALWAYS
;
11760 if (cond
!= COND_ALWAYS
)
11761 opcode
= T_MNEM_bcond
;
11763 opcode
= inst
.instruction
;
11766 && (inst
.size_req
== 4
11767 || (inst
.size_req
!= 2
11768 && (inst
.operands
[0].hasreloc
11769 || inst
.relocs
[0].exp
.X_op
== O_constant
))))
11771 inst
.instruction
= THUMB_OP32(opcode
);
11772 if (cond
== COND_ALWAYS
)
11773 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
11776 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
),
11777 _("selected architecture does not support "
11778 "wide conditional branch instruction"));
11780 gas_assert (cond
!= 0xF);
11781 inst
.instruction
|= cond
<< 22;
11782 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
11787 inst
.instruction
= THUMB_OP16(opcode
);
11788 if (cond
== COND_ALWAYS
)
11789 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
11792 inst
.instruction
|= cond
<< 8;
11793 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
11795 /* Allow section relaxation. */
11796 if (unified_syntax
&& inst
.size_req
!= 2)
11797 inst
.relax
= opcode
;
11799 inst
.relocs
[0].type
= reloc
;
11800 inst
.relocs
[0].pc_rel
= 1;
11803 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11804 between the two is the maximum immediate allowed - which is passed in
11807 do_t_bkpt_hlt1 (int range
)
11809 constraint (inst
.cond
!= COND_ALWAYS
,
11810 _("instruction is always unconditional"));
11811 if (inst
.operands
[0].present
)
11813 constraint (inst
.operands
[0].imm
> range
,
11814 _("immediate value out of range"));
11815 inst
.instruction
|= inst
.operands
[0].imm
;
11818 set_pred_insn_type (NEUTRAL_IT_INSN
);
11824 do_t_bkpt_hlt1 (63);
11830 do_t_bkpt_hlt1 (255);
11834 do_t_branch23 (void)
11836 set_pred_insn_type_last ();
11837 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23
);
11839 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11840 this file. We used to simply ignore the PLT reloc type here --
11841 the branch encoding is now needed to deal with TLSCALL relocs.
11842 So if we see a PLT reloc now, put it back to how it used to be to
11843 keep the preexisting behaviour. */
11844 if (inst
.relocs
[0].type
== BFD_RELOC_ARM_PLT32
)
11845 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
11847 #if defined(OBJ_COFF)
11848 /* If the destination of the branch is a defined symbol which does not have
11849 the THUMB_FUNC attribute, then we must be calling a function which has
11850 the (interfacearm) attribute. We look for the Thumb entry point to that
11851 function and change the branch to refer to that function instead. */
11852 if ( inst
.relocs
[0].exp
.X_op
== O_symbol
11853 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
11854 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
11855 && ! THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
11856 inst
.relocs
[0].exp
.X_add_symbol
11857 = find_real_start (inst
.relocs
[0].exp
.X_add_symbol
);
11864 set_pred_insn_type_last ();
11865 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
11866 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11867 should cause the alignment to be checked once it is known. This is
11868 because BX PC only works if the instruction is word aligned. */
11876 set_pred_insn_type_last ();
11877 Rm
= inst
.operands
[0].reg
;
11878 reject_bad_reg (Rm
);
11879 inst
.instruction
|= Rm
<< 16;
11888 Rd
= inst
.operands
[0].reg
;
11889 Rm
= inst
.operands
[1].reg
;
11891 reject_bad_reg (Rd
);
11892 reject_bad_reg (Rm
);
11894 inst
.instruction
|= Rd
<< 8;
11895 inst
.instruction
|= Rm
<< 16;
11896 inst
.instruction
|= Rm
;
11902 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11908 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11909 inst
.instruction
|= inst
.operands
[0].imm
;
11915 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11917 && (inst
.operands
[1].present
|| inst
.size_req
== 4)
11918 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6_notm
))
11920 unsigned int imod
= (inst
.instruction
& 0x0030) >> 4;
11921 inst
.instruction
= 0xf3af8000;
11922 inst
.instruction
|= imod
<< 9;
11923 inst
.instruction
|= inst
.operands
[0].imm
<< 5;
11924 if (inst
.operands
[1].present
)
11925 inst
.instruction
|= 0x100 | inst
.operands
[1].imm
;
11929 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
)
11930 && (inst
.operands
[0].imm
& 4),
11931 _("selected processor does not support 'A' form "
11932 "of this instruction"));
11933 constraint (inst
.operands
[1].present
|| inst
.size_req
== 4,
11934 _("Thumb does not support the 2-argument "
11935 "form of this instruction"));
11936 inst
.instruction
|= inst
.operands
[0].imm
;
11940 /* THUMB CPY instruction (argument parse). */
11945 if (inst
.size_req
== 4)
11947 inst
.instruction
= THUMB_OP32 (T_MNEM_mov
);
11948 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11949 inst
.instruction
|= inst
.operands
[1].reg
;
11953 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
11954 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
11955 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11962 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11963 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
11964 inst
.instruction
|= inst
.operands
[0].reg
;
11965 inst
.relocs
[0].pc_rel
= 1;
11966 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH7
;
11972 inst
.instruction
|= inst
.operands
[0].imm
;
11978 unsigned Rd
, Rn
, Rm
;
11980 Rd
= inst
.operands
[0].reg
;
11981 Rn
= (inst
.operands
[1].present
11982 ? inst
.operands
[1].reg
: Rd
);
11983 Rm
= inst
.operands
[2].reg
;
11985 reject_bad_reg (Rd
);
11986 reject_bad_reg (Rn
);
11987 reject_bad_reg (Rm
);
11989 inst
.instruction
|= Rd
<< 8;
11990 inst
.instruction
|= Rn
<< 16;
11991 inst
.instruction
|= Rm
;
11997 if (unified_syntax
&& inst
.size_req
== 4)
11998 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12000 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12006 unsigned int cond
= inst
.operands
[0].imm
;
12008 set_pred_insn_type (IT_INSN
);
12009 now_pred
.mask
= (inst
.instruction
& 0xf) | 0x10;
12010 now_pred
.cc
= cond
;
12011 now_pred
.warn_deprecated
= FALSE
;
12012 now_pred
.type
= SCALAR_PRED
;
12014 /* If the condition is a negative condition, invert the mask. */
12015 if ((cond
& 0x1) == 0x0)
12017 unsigned int mask
= inst
.instruction
& 0x000f;
12019 if ((mask
& 0x7) == 0)
12021 /* No conversion needed. */
12022 now_pred
.block_length
= 1;
12024 else if ((mask
& 0x3) == 0)
12027 now_pred
.block_length
= 2;
12029 else if ((mask
& 0x1) == 0)
12032 now_pred
.block_length
= 3;
12037 now_pred
.block_length
= 4;
12040 inst
.instruction
&= 0xfff0;
12041 inst
.instruction
|= mask
;
12044 inst
.instruction
|= cond
<< 4;
12047 /* Helper function used for both push/pop and ldm/stm. */
12049 encode_thumb2_multi (bfd_boolean do_io
, int base
, unsigned mask
,
12050 bfd_boolean writeback
)
12052 bfd_boolean load
, store
;
12054 gas_assert (base
!= -1 || !do_io
);
12055 load
= do_io
&& ((inst
.instruction
& (1 << 20)) != 0);
12056 store
= do_io
&& !load
;
12058 if (mask
& (1 << 13))
12059 inst
.error
= _("SP not allowed in register list");
12061 if (do_io
&& (mask
& (1 << base
)) != 0
12063 inst
.error
= _("having the base register in the register list when "
12064 "using write back is UNPREDICTABLE");
12068 if (mask
& (1 << 15))
12070 if (mask
& (1 << 14))
12071 inst
.error
= _("LR and PC should not both be in register list");
12073 set_pred_insn_type_last ();
12078 if (mask
& (1 << 15))
12079 inst
.error
= _("PC not allowed in register list");
12082 if (do_io
&& ((mask
& (mask
- 1)) == 0))
12084 /* Single register transfers implemented as str/ldr. */
12087 if (inst
.instruction
& (1 << 23))
12088 inst
.instruction
= 0x00000b04; /* ia! -> [base], #4 */
12090 inst
.instruction
= 0x00000d04; /* db! -> [base, #-4]! */
12094 if (inst
.instruction
& (1 << 23))
12095 inst
.instruction
= 0x00800000; /* ia -> [base] */
12097 inst
.instruction
= 0x00000c04; /* db -> [base, #-4] */
12100 inst
.instruction
|= 0xf8400000;
12102 inst
.instruction
|= 0x00100000;
12104 mask
= ffs (mask
) - 1;
12107 else if (writeback
)
12108 inst
.instruction
|= WRITE_BACK
;
12110 inst
.instruction
|= mask
;
12112 inst
.instruction
|= base
<< 16;
12118 /* This really doesn't seem worth it. */
12119 constraint (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
,
12120 _("expression too complex"));
12121 constraint (inst
.operands
[1].writeback
,
12122 _("Thumb load/store multiple does not support {reglist}^"));
12124 if (unified_syntax
)
12126 bfd_boolean narrow
;
12130 /* See if we can use a 16-bit instruction. */
12131 if (inst
.instruction
< 0xffff /* not ldmdb/stmdb */
12132 && inst
.size_req
!= 4
12133 && !(inst
.operands
[1].imm
& ~0xff))
12135 mask
= 1 << inst
.operands
[0].reg
;
12137 if (inst
.operands
[0].reg
<= 7)
12139 if (inst
.instruction
== T_MNEM_stmia
12140 ? inst
.operands
[0].writeback
12141 : (inst
.operands
[0].writeback
12142 == !(inst
.operands
[1].imm
& mask
)))
12144 if (inst
.instruction
== T_MNEM_stmia
12145 && (inst
.operands
[1].imm
& mask
)
12146 && (inst
.operands
[1].imm
& (mask
- 1)))
12147 as_warn (_("value stored for r%d is UNKNOWN"),
12148 inst
.operands
[0].reg
);
12150 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12151 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12152 inst
.instruction
|= inst
.operands
[1].imm
;
12155 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
12157 /* This means 1 register in reg list one of 3 situations:
12158 1. Instruction is stmia, but without writeback.
12159 2. lmdia without writeback, but with Rn not in
12161 3. ldmia with writeback, but with Rn in reglist.
12162 Case 3 is UNPREDICTABLE behaviour, so we handle
12163 case 1 and 2 which can be converted into a 16-bit
12164 str or ldr. The SP cases are handled below. */
12165 unsigned long opcode
;
12166 /* First, record an error for Case 3. */
12167 if (inst
.operands
[1].imm
& mask
12168 && inst
.operands
[0].writeback
)
12170 _("having the base register in the register list when "
12171 "using write back is UNPREDICTABLE");
12173 opcode
= (inst
.instruction
== T_MNEM_stmia
? T_MNEM_str
12175 inst
.instruction
= THUMB_OP16 (opcode
);
12176 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
12177 inst
.instruction
|= (ffs (inst
.operands
[1].imm
)-1);
12181 else if (inst
.operands
[0] .reg
== REG_SP
)
12183 if (inst
.operands
[0].writeback
)
12186 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
12187 ? T_MNEM_push
: T_MNEM_pop
);
12188 inst
.instruction
|= inst
.operands
[1].imm
;
12191 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
12194 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
12195 ? T_MNEM_str_sp
: T_MNEM_ldr_sp
);
12196 inst
.instruction
|= ((ffs (inst
.operands
[1].imm
)-1) << 8);
12204 if (inst
.instruction
< 0xffff)
12205 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12207 encode_thumb2_multi (TRUE
/* do_io */, inst
.operands
[0].reg
,
12208 inst
.operands
[1].imm
,
12209 inst
.operands
[0].writeback
);
12214 constraint (inst
.operands
[0].reg
> 7
12215 || (inst
.operands
[1].imm
& ~0xff), BAD_HIREG
);
12216 constraint (inst
.instruction
!= T_MNEM_ldmia
12217 && inst
.instruction
!= T_MNEM_stmia
,
12218 _("Thumb-2 instruction only valid in unified syntax"));
12219 if (inst
.instruction
== T_MNEM_stmia
)
12221 if (!inst
.operands
[0].writeback
)
12222 as_warn (_("this instruction will write back the base register"));
12223 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
12224 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
12225 as_warn (_("value stored for r%d is UNKNOWN"),
12226 inst
.operands
[0].reg
);
12230 if (!inst
.operands
[0].writeback
12231 && !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
12232 as_warn (_("this instruction will write back the base register"));
12233 else if (inst
.operands
[0].writeback
12234 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
12235 as_warn (_("this instruction will not write back the base register"));
12238 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12239 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12240 inst
.instruction
|= inst
.operands
[1].imm
;
12247 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
12248 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
12249 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
12250 || inst
.operands
[1].negative
,
12253 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
12255 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12256 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
12257 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
12263 if (!inst
.operands
[1].present
)
12265 constraint (inst
.operands
[0].reg
== REG_LR
,
12266 _("r14 not allowed as first register "
12267 "when second register is omitted"));
12268 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
12270 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
,
12273 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12274 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
12275 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
12281 unsigned long opcode
;
12284 if (inst
.operands
[0].isreg
12285 && !inst
.operands
[0].preind
12286 && inst
.operands
[0].reg
== REG_PC
)
12287 set_pred_insn_type_last ();
12289 opcode
= inst
.instruction
;
12290 if (unified_syntax
)
12292 if (!inst
.operands
[1].isreg
)
12294 if (opcode
<= 0xffff)
12295 inst
.instruction
= THUMB_OP32 (opcode
);
12296 if (move_or_literal_pool (0, CONST_THUMB
, /*mode_3=*/FALSE
))
12299 if (inst
.operands
[1].isreg
12300 && !inst
.operands
[1].writeback
12301 && !inst
.operands
[1].shifted
&& !inst
.operands
[1].postind
12302 && !inst
.operands
[1].negative
&& inst
.operands
[0].reg
<= 7
12303 && opcode
<= 0xffff
12304 && inst
.size_req
!= 4)
12306 /* Insn may have a 16-bit form. */
12307 Rn
= inst
.operands
[1].reg
;
12308 if (inst
.operands
[1].immisreg
)
12310 inst
.instruction
= THUMB_OP16 (opcode
);
12312 if (Rn
<= 7 && inst
.operands
[1].imm
<= 7)
12314 else if (opcode
!= T_MNEM_ldr
&& opcode
!= T_MNEM_str
)
12315 reject_bad_reg (inst
.operands
[1].imm
);
12317 else if ((Rn
<= 7 && opcode
!= T_MNEM_ldrsh
12318 && opcode
!= T_MNEM_ldrsb
)
12319 || ((Rn
== REG_PC
|| Rn
== REG_SP
) && opcode
== T_MNEM_ldr
)
12320 || (Rn
== REG_SP
&& opcode
== T_MNEM_str
))
12327 if (inst
.relocs
[0].pc_rel
)
12328 opcode
= T_MNEM_ldr_pc2
;
12330 opcode
= T_MNEM_ldr_pc
;
12334 if (opcode
== T_MNEM_ldr
)
12335 opcode
= T_MNEM_ldr_sp
;
12337 opcode
= T_MNEM_str_sp
;
12339 inst
.instruction
= inst
.operands
[0].reg
<< 8;
12343 inst
.instruction
= inst
.operands
[0].reg
;
12344 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12346 inst
.instruction
|= THUMB_OP16 (opcode
);
12347 if (inst
.size_req
== 2)
12348 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12350 inst
.relax
= opcode
;
12354 /* Definitely a 32-bit variant. */
12356 /* Warning for Erratum 752419. */
12357 if (opcode
== T_MNEM_ldr
12358 && inst
.operands
[0].reg
== REG_SP
12359 && inst
.operands
[1].writeback
== 1
12360 && !inst
.operands
[1].immisreg
)
12362 if (no_cpu_selected ()
12363 || (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7
)
12364 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
)
12365 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7r
)))
12366 as_warn (_("This instruction may be unpredictable "
12367 "if executed on M-profile cores "
12368 "with interrupts enabled."));
12371 /* Do some validations regarding addressing modes. */
12372 if (inst
.operands
[1].immisreg
)
12373 reject_bad_reg (inst
.operands
[1].imm
);
12375 constraint (inst
.operands
[1].writeback
== 1
12376 && inst
.operands
[0].reg
== inst
.operands
[1].reg
,
12379 inst
.instruction
= THUMB_OP32 (opcode
);
12380 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12381 encode_thumb32_addr_mode (1, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
12382 check_ldr_r15_aligned ();
12386 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
12388 if (inst
.instruction
== T_MNEM_ldrsh
|| inst
.instruction
== T_MNEM_ldrsb
)
12390 /* Only [Rn,Rm] is acceptable. */
12391 constraint (inst
.operands
[1].reg
> 7 || inst
.operands
[1].imm
> 7, BAD_HIREG
);
12392 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].immisreg
12393 || inst
.operands
[1].postind
|| inst
.operands
[1].shifted
12394 || inst
.operands
[1].negative
,
12395 _("Thumb does not support this addressing mode"));
12396 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12400 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12401 if (!inst
.operands
[1].isreg
)
12402 if (move_or_literal_pool (0, CONST_THUMB
, /*mode_3=*/FALSE
))
12405 constraint (!inst
.operands
[1].preind
12406 || inst
.operands
[1].shifted
12407 || inst
.operands
[1].writeback
,
12408 _("Thumb does not support this addressing mode"));
12409 if (inst
.operands
[1].reg
== REG_PC
|| inst
.operands
[1].reg
== REG_SP
)
12411 constraint (inst
.instruction
& 0x0600,
12412 _("byte or halfword not valid for base register"));
12413 constraint (inst
.operands
[1].reg
== REG_PC
12414 && !(inst
.instruction
& THUMB_LOAD_BIT
),
12415 _("r15 based store not allowed"));
12416 constraint (inst
.operands
[1].immisreg
,
12417 _("invalid base register for register offset"));
12419 if (inst
.operands
[1].reg
== REG_PC
)
12420 inst
.instruction
= T_OPCODE_LDR_PC
;
12421 else if (inst
.instruction
& THUMB_LOAD_BIT
)
12422 inst
.instruction
= T_OPCODE_LDR_SP
;
12424 inst
.instruction
= T_OPCODE_STR_SP
;
12426 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12427 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12431 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
12432 if (!inst
.operands
[1].immisreg
)
12434 /* Immediate offset. */
12435 inst
.instruction
|= inst
.operands
[0].reg
;
12436 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12437 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12441 /* Register offset. */
12442 constraint (inst
.operands
[1].imm
> 7, BAD_HIREG
);
12443 constraint (inst
.operands
[1].negative
,
12444 _("Thumb does not support this addressing mode"));
12447 switch (inst
.instruction
)
12449 case T_OPCODE_STR_IW
: inst
.instruction
= T_OPCODE_STR_RW
; break;
12450 case T_OPCODE_STR_IH
: inst
.instruction
= T_OPCODE_STR_RH
; break;
12451 case T_OPCODE_STR_IB
: inst
.instruction
= T_OPCODE_STR_RB
; break;
12452 case T_OPCODE_LDR_IW
: inst
.instruction
= T_OPCODE_LDR_RW
; break;
12453 case T_OPCODE_LDR_IH
: inst
.instruction
= T_OPCODE_LDR_RH
; break;
12454 case T_OPCODE_LDR_IB
: inst
.instruction
= T_OPCODE_LDR_RB
; break;
12455 case 0x5600 /* ldrsb */:
12456 case 0x5e00 /* ldrsh */: break;
12460 inst
.instruction
|= inst
.operands
[0].reg
;
12461 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12462 inst
.instruction
|= inst
.operands
[1].imm
<< 6;
12468 if (!inst
.operands
[1].present
)
12470 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
12471 constraint (inst
.operands
[0].reg
== REG_LR
,
12472 _("r14 not allowed here"));
12473 constraint (inst
.operands
[0].reg
== REG_R12
,
12474 _("r12 not allowed here"));
12477 if (inst
.operands
[2].writeback
12478 && (inst
.operands
[0].reg
== inst
.operands
[2].reg
12479 || inst
.operands
[1].reg
== inst
.operands
[2].reg
))
12480 as_warn (_("base register written back, and overlaps "
12481 "one of transfer registers"));
12483 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12484 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
12485 encode_thumb32_addr_mode (2, /*is_t=*/FALSE
, /*is_d=*/TRUE
);
12491 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12492 encode_thumb32_addr_mode (1, /*is_t=*/TRUE
, /*is_d=*/FALSE
);
12498 unsigned Rd
, Rn
, Rm
, Ra
;
12500 Rd
= inst
.operands
[0].reg
;
12501 Rn
= inst
.operands
[1].reg
;
12502 Rm
= inst
.operands
[2].reg
;
12503 Ra
= inst
.operands
[3].reg
;
12505 reject_bad_reg (Rd
);
12506 reject_bad_reg (Rn
);
12507 reject_bad_reg (Rm
);
12508 reject_bad_reg (Ra
);
12510 inst
.instruction
|= Rd
<< 8;
12511 inst
.instruction
|= Rn
<< 16;
12512 inst
.instruction
|= Rm
;
12513 inst
.instruction
|= Ra
<< 12;
12519 unsigned RdLo
, RdHi
, Rn
, Rm
;
12521 RdLo
= inst
.operands
[0].reg
;
12522 RdHi
= inst
.operands
[1].reg
;
12523 Rn
= inst
.operands
[2].reg
;
12524 Rm
= inst
.operands
[3].reg
;
12526 reject_bad_reg (RdLo
);
12527 reject_bad_reg (RdHi
);
12528 reject_bad_reg (Rn
);
12529 reject_bad_reg (Rm
);
12531 inst
.instruction
|= RdLo
<< 12;
12532 inst
.instruction
|= RdHi
<< 8;
12533 inst
.instruction
|= Rn
<< 16;
12534 inst
.instruction
|= Rm
;
12538 do_t_mov_cmp (void)
12542 Rn
= inst
.operands
[0].reg
;
12543 Rm
= inst
.operands
[1].reg
;
12546 set_pred_insn_type_last ();
12548 if (unified_syntax
)
12550 int r0off
= (inst
.instruction
== T_MNEM_mov
12551 || inst
.instruction
== T_MNEM_movs
) ? 8 : 16;
12552 unsigned long opcode
;
12553 bfd_boolean narrow
;
12554 bfd_boolean low_regs
;
12556 low_regs
= (Rn
<= 7 && Rm
<= 7);
12557 opcode
= inst
.instruction
;
12558 if (in_pred_block ())
12559 narrow
= opcode
!= T_MNEM_movs
;
12561 narrow
= opcode
!= T_MNEM_movs
|| low_regs
;
12562 if (inst
.size_req
== 4
12563 || inst
.operands
[1].shifted
)
12566 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12567 if (opcode
== T_MNEM_movs
&& inst
.operands
[1].isreg
12568 && !inst
.operands
[1].shifted
12572 inst
.instruction
= T2_SUBS_PC_LR
;
12576 if (opcode
== T_MNEM_cmp
)
12578 constraint (Rn
== REG_PC
, BAD_PC
);
12581 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12583 warn_deprecated_sp (Rm
);
12584 /* R15 was documented as a valid choice for Rm in ARMv6,
12585 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12586 tools reject R15, so we do too. */
12587 constraint (Rm
== REG_PC
, BAD_PC
);
12590 reject_bad_reg (Rm
);
12592 else if (opcode
== T_MNEM_mov
12593 || opcode
== T_MNEM_movs
)
12595 if (inst
.operands
[1].isreg
)
12597 if (opcode
== T_MNEM_movs
)
12599 reject_bad_reg (Rn
);
12600 reject_bad_reg (Rm
);
12604 /* This is mov.n. */
12605 if ((Rn
== REG_SP
|| Rn
== REG_PC
)
12606 && (Rm
== REG_SP
|| Rm
== REG_PC
))
12608 as_tsktsk (_("Use of r%u as a source register is "
12609 "deprecated when r%u is the destination "
12610 "register."), Rm
, Rn
);
12615 /* This is mov.w. */
12616 constraint (Rn
== REG_PC
, BAD_PC
);
12617 constraint (Rm
== REG_PC
, BAD_PC
);
12618 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
12619 constraint (Rn
== REG_SP
&& Rm
== REG_SP
, BAD_SP
);
12623 reject_bad_reg (Rn
);
12626 if (!inst
.operands
[1].isreg
)
12628 /* Immediate operand. */
12629 if (!in_pred_block () && opcode
== T_MNEM_mov
)
12631 if (low_regs
&& narrow
)
12633 inst
.instruction
= THUMB_OP16 (opcode
);
12634 inst
.instruction
|= Rn
<< 8;
12635 if (inst
.relocs
[0].type
< BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12636 || inst
.relocs
[0].type
> BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
)
12638 if (inst
.size_req
== 2)
12639 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_IMM
;
12641 inst
.relax
= opcode
;
12646 constraint ((inst
.relocs
[0].type
12647 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
)
12648 && (inst
.relocs
[0].type
12649 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
) ,
12650 THUMB1_RELOC_ONLY
);
12652 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12653 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
12654 inst
.instruction
|= Rn
<< r0off
;
12655 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
12658 else if (inst
.operands
[1].shifted
&& inst
.operands
[1].immisreg
12659 && (inst
.instruction
== T_MNEM_mov
12660 || inst
.instruction
== T_MNEM_movs
))
12662 /* Register shifts are encoded as separate shift instructions. */
12663 bfd_boolean flags
= (inst
.instruction
== T_MNEM_movs
);
12665 if (in_pred_block ())
12670 if (inst
.size_req
== 4)
12673 if (!low_regs
|| inst
.operands
[1].imm
> 7)
12679 switch (inst
.operands
[1].shift_kind
)
12682 opcode
= narrow
? T_OPCODE_LSL_R
: THUMB_OP32 (T_MNEM_lsl
);
12685 opcode
= narrow
? T_OPCODE_ASR_R
: THUMB_OP32 (T_MNEM_asr
);
12688 opcode
= narrow
? T_OPCODE_LSR_R
: THUMB_OP32 (T_MNEM_lsr
);
12691 opcode
= narrow
? T_OPCODE_ROR_R
: THUMB_OP32 (T_MNEM_ror
);
12697 inst
.instruction
= opcode
;
12700 inst
.instruction
|= Rn
;
12701 inst
.instruction
|= inst
.operands
[1].imm
<< 3;
12706 inst
.instruction
|= CONDS_BIT
;
12708 inst
.instruction
|= Rn
<< 8;
12709 inst
.instruction
|= Rm
<< 16;
12710 inst
.instruction
|= inst
.operands
[1].imm
;
12715 /* Some mov with immediate shift have narrow variants.
12716 Register shifts are handled above. */
12717 if (low_regs
&& inst
.operands
[1].shifted
12718 && (inst
.instruction
== T_MNEM_mov
12719 || inst
.instruction
== T_MNEM_movs
))
12721 if (in_pred_block ())
12722 narrow
= (inst
.instruction
== T_MNEM_mov
);
12724 narrow
= (inst
.instruction
== T_MNEM_movs
);
12729 switch (inst
.operands
[1].shift_kind
)
12731 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
12732 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
12733 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
12734 default: narrow
= FALSE
; break;
12740 inst
.instruction
|= Rn
;
12741 inst
.instruction
|= Rm
<< 3;
12742 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
12746 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12747 inst
.instruction
|= Rn
<< r0off
;
12748 encode_thumb32_shifted_operand (1);
12752 switch (inst
.instruction
)
12755 /* In v4t or v5t a move of two lowregs produces unpredictable
12756 results. Don't allow this. */
12759 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
),
12760 "MOV Rd, Rs with two low registers is not "
12761 "permitted on this architecture");
12762 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
12766 inst
.instruction
= T_OPCODE_MOV_HR
;
12767 inst
.instruction
|= (Rn
& 0x8) << 4;
12768 inst
.instruction
|= (Rn
& 0x7);
12769 inst
.instruction
|= Rm
<< 3;
12773 /* We know we have low registers at this point.
12774 Generate LSLS Rd, Rs, #0. */
12775 inst
.instruction
= T_OPCODE_LSL_I
;
12776 inst
.instruction
|= Rn
;
12777 inst
.instruction
|= Rm
<< 3;
12783 inst
.instruction
= T_OPCODE_CMP_LR
;
12784 inst
.instruction
|= Rn
;
12785 inst
.instruction
|= Rm
<< 3;
12789 inst
.instruction
= T_OPCODE_CMP_HR
;
12790 inst
.instruction
|= (Rn
& 0x8) << 4;
12791 inst
.instruction
|= (Rn
& 0x7);
12792 inst
.instruction
|= Rm
<< 3;
12799 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12801 /* PR 10443: Do not silently ignore shifted operands. */
12802 constraint (inst
.operands
[1].shifted
,
12803 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12805 if (inst
.operands
[1].isreg
)
12807 if (Rn
< 8 && Rm
< 8)
12809 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12810 since a MOV instruction produces unpredictable results. */
12811 if (inst
.instruction
== T_OPCODE_MOV_I8
)
12812 inst
.instruction
= T_OPCODE_ADD_I3
;
12814 inst
.instruction
= T_OPCODE_CMP_LR
;
12816 inst
.instruction
|= Rn
;
12817 inst
.instruction
|= Rm
<< 3;
12821 if (inst
.instruction
== T_OPCODE_MOV_I8
)
12822 inst
.instruction
= T_OPCODE_MOV_HR
;
12824 inst
.instruction
= T_OPCODE_CMP_HR
;
12830 constraint (Rn
> 7,
12831 _("only lo regs allowed with immediate"));
12832 inst
.instruction
|= Rn
<< 8;
12833 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_IMM
;
12844 top
= (inst
.instruction
& 0x00800000) != 0;
12845 if (inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVW
)
12847 constraint (top
, _(":lower16: not allowed in this instruction"));
12848 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_MOVW
;
12850 else if (inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVT
)
12852 constraint (!top
, _(":upper16: not allowed in this instruction"));
12853 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_MOVT
;
12856 Rd
= inst
.operands
[0].reg
;
12857 reject_bad_reg (Rd
);
12859 inst
.instruction
|= Rd
<< 8;
12860 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
12862 imm
= inst
.relocs
[0].exp
.X_add_number
;
12863 inst
.instruction
|= (imm
& 0xf000) << 4;
12864 inst
.instruction
|= (imm
& 0x0800) << 15;
12865 inst
.instruction
|= (imm
& 0x0700) << 4;
12866 inst
.instruction
|= (imm
& 0x00ff);
12871 do_t_mvn_tst (void)
12875 Rn
= inst
.operands
[0].reg
;
12876 Rm
= inst
.operands
[1].reg
;
12878 if (inst
.instruction
== T_MNEM_cmp
12879 || inst
.instruction
== T_MNEM_cmn
)
12880 constraint (Rn
== REG_PC
, BAD_PC
);
12882 reject_bad_reg (Rn
);
12883 reject_bad_reg (Rm
);
12885 if (unified_syntax
)
12887 int r0off
= (inst
.instruction
== T_MNEM_mvn
12888 || inst
.instruction
== T_MNEM_mvns
) ? 8 : 16;
12889 bfd_boolean narrow
;
12891 if (inst
.size_req
== 4
12892 || inst
.instruction
> 0xffff
12893 || inst
.operands
[1].shifted
12894 || Rn
> 7 || Rm
> 7)
12896 else if (inst
.instruction
== T_MNEM_cmn
12897 || inst
.instruction
== T_MNEM_tst
)
12899 else if (THUMB_SETS_FLAGS (inst
.instruction
))
12900 narrow
= !in_pred_block ();
12902 narrow
= in_pred_block ();
12904 if (!inst
.operands
[1].isreg
)
12906 /* For an immediate, we always generate a 32-bit opcode;
12907 section relaxation will shrink it later if possible. */
12908 if (inst
.instruction
< 0xffff)
12909 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12910 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
12911 inst
.instruction
|= Rn
<< r0off
;
12912 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
12916 /* See if we can do this with a 16-bit instruction. */
12919 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12920 inst
.instruction
|= Rn
;
12921 inst
.instruction
|= Rm
<< 3;
12925 constraint (inst
.operands
[1].shifted
12926 && inst
.operands
[1].immisreg
,
12927 _("shift must be constant"));
12928 if (inst
.instruction
< 0xffff)
12929 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12930 inst
.instruction
|= Rn
<< r0off
;
12931 encode_thumb32_shifted_operand (1);
12937 constraint (inst
.instruction
> 0xffff
12938 || inst
.instruction
== T_MNEM_mvns
, BAD_THUMB32
);
12939 constraint (!inst
.operands
[1].isreg
|| inst
.operands
[1].shifted
,
12940 _("unshifted register required"));
12941 constraint (Rn
> 7 || Rm
> 7,
12944 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12945 inst
.instruction
|= Rn
;
12946 inst
.instruction
|= Rm
<< 3;
12955 if (do_vfp_nsyn_mrs () == SUCCESS
)
12958 Rd
= inst
.operands
[0].reg
;
12959 reject_bad_reg (Rd
);
12960 inst
.instruction
|= Rd
<< 8;
12962 if (inst
.operands
[1].isreg
)
12964 unsigned br
= inst
.operands
[1].reg
;
12965 if (((br
& 0x200) == 0) && ((br
& 0xf000) != 0xf000))
12966 as_bad (_("bad register for mrs"));
12968 inst
.instruction
|= br
& (0xf << 16);
12969 inst
.instruction
|= (br
& 0x300) >> 4;
12970 inst
.instruction
|= (br
& SPSR_BIT
) >> 2;
12974 int flags
= inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
12976 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
12978 /* PR gas/12698: The constraint is only applied for m_profile.
12979 If the user has specified -march=all, we want to ignore it as
12980 we are building for any CPU type, including non-m variants. */
12981 bfd_boolean m_profile
=
12982 !ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
);
12983 constraint ((flags
!= 0) && m_profile
, _("selected processor does "
12984 "not support requested special purpose register"));
12987 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12989 constraint ((flags
& ~SPSR_BIT
) != (PSR_c
|PSR_f
),
12990 _("'APSR', 'CPSR' or 'SPSR' expected"));
12992 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
12993 inst
.instruction
|= inst
.operands
[1].imm
& 0xff;
12994 inst
.instruction
|= 0xf0000;
13004 if (do_vfp_nsyn_msr () == SUCCESS
)
13007 constraint (!inst
.operands
[1].isreg
,
13008 _("Thumb encoding does not support an immediate here"));
13010 if (inst
.operands
[0].isreg
)
13011 flags
= (int)(inst
.operands
[0].reg
);
13013 flags
= inst
.operands
[0].imm
;
13015 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
13017 int bits
= inst
.operands
[0].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
13019 /* PR gas/12698: The constraint is only applied for m_profile.
13020 If the user has specified -march=all, we want to ignore it as
13021 we are building for any CPU type, including non-m variants. */
13022 bfd_boolean m_profile
=
13023 !ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
);
13024 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
13025 && (bits
& ~(PSR_s
| PSR_f
)) != 0)
13026 || (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
13027 && bits
!= PSR_f
)) && m_profile
,
13028 _("selected processor does not support requested special "
13029 "purpose register"));
13032 constraint ((flags
& 0xff) != 0, _("selected processor does not support "
13033 "requested special purpose register"));
13035 Rn
= inst
.operands
[1].reg
;
13036 reject_bad_reg (Rn
);
13038 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
13039 inst
.instruction
|= (flags
& 0xf0000) >> 8;
13040 inst
.instruction
|= (flags
& 0x300) >> 4;
13041 inst
.instruction
|= (flags
& 0xff);
13042 inst
.instruction
|= Rn
<< 16;
13048 bfd_boolean narrow
;
13049 unsigned Rd
, Rn
, Rm
;
13051 if (!inst
.operands
[2].present
)
13052 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
13054 Rd
= inst
.operands
[0].reg
;
13055 Rn
= inst
.operands
[1].reg
;
13056 Rm
= inst
.operands
[2].reg
;
13058 if (unified_syntax
)
13060 if (inst
.size_req
== 4
13066 else if (inst
.instruction
== T_MNEM_muls
)
13067 narrow
= !in_pred_block ();
13069 narrow
= in_pred_block ();
13073 constraint (inst
.instruction
== T_MNEM_muls
, BAD_THUMB32
);
13074 constraint (Rn
> 7 || Rm
> 7,
13081 /* 16-bit MULS/Conditional MUL. */
13082 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13083 inst
.instruction
|= Rd
;
13086 inst
.instruction
|= Rm
<< 3;
13088 inst
.instruction
|= Rn
<< 3;
13090 constraint (1, _("dest must overlap one source register"));
13094 constraint (inst
.instruction
!= T_MNEM_mul
,
13095 _("Thumb-2 MUL must not set flags"));
13097 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13098 inst
.instruction
|= Rd
<< 8;
13099 inst
.instruction
|= Rn
<< 16;
13100 inst
.instruction
|= Rm
<< 0;
13102 reject_bad_reg (Rd
);
13103 reject_bad_reg (Rn
);
13104 reject_bad_reg (Rm
);
13111 unsigned RdLo
, RdHi
, Rn
, Rm
;
13113 RdLo
= inst
.operands
[0].reg
;
13114 RdHi
= inst
.operands
[1].reg
;
13115 Rn
= inst
.operands
[2].reg
;
13116 Rm
= inst
.operands
[3].reg
;
13118 reject_bad_reg (RdLo
);
13119 reject_bad_reg (RdHi
);
13120 reject_bad_reg (Rn
);
13121 reject_bad_reg (Rm
);
13123 inst
.instruction
|= RdLo
<< 12;
13124 inst
.instruction
|= RdHi
<< 8;
13125 inst
.instruction
|= Rn
<< 16;
13126 inst
.instruction
|= Rm
;
13129 as_tsktsk (_("rdhi and rdlo must be different"));
13135 set_pred_insn_type (NEUTRAL_IT_INSN
);
13137 if (unified_syntax
)
13139 if (inst
.size_req
== 4 || inst
.operands
[0].imm
> 15)
13141 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13142 inst
.instruction
|= inst
.operands
[0].imm
;
13146 /* PR9722: Check for Thumb2 availability before
13147 generating a thumb2 nop instruction. */
13148 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
13150 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13151 inst
.instruction
|= inst
.operands
[0].imm
<< 4;
13154 inst
.instruction
= 0x46c0;
13159 constraint (inst
.operands
[0].present
,
13160 _("Thumb does not support NOP with hints"));
13161 inst
.instruction
= 0x46c0;
13168 if (unified_syntax
)
13170 bfd_boolean narrow
;
13172 if (THUMB_SETS_FLAGS (inst
.instruction
))
13173 narrow
= !in_pred_block ();
13175 narrow
= in_pred_block ();
13176 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
13178 if (inst
.size_req
== 4)
13183 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13184 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13185 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13189 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13190 inst
.instruction
|= inst
.operands
[0].reg
;
13191 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13196 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
13198 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
13200 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13201 inst
.instruction
|= inst
.operands
[0].reg
;
13202 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13211 Rd
= inst
.operands
[0].reg
;
13212 Rn
= inst
.operands
[1].present
? inst
.operands
[1].reg
: Rd
;
13214 reject_bad_reg (Rd
);
13215 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13216 reject_bad_reg (Rn
);
13218 inst
.instruction
|= Rd
<< 8;
13219 inst
.instruction
|= Rn
<< 16;
13221 if (!inst
.operands
[2].isreg
)
13223 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13224 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13230 Rm
= inst
.operands
[2].reg
;
13231 reject_bad_reg (Rm
);
13233 constraint (inst
.operands
[2].shifted
13234 && inst
.operands
[2].immisreg
,
13235 _("shift must be constant"));
13236 encode_thumb32_shifted_operand (2);
13243 unsigned Rd
, Rn
, Rm
;
13245 Rd
= inst
.operands
[0].reg
;
13246 Rn
= inst
.operands
[1].reg
;
13247 Rm
= inst
.operands
[2].reg
;
13249 reject_bad_reg (Rd
);
13250 reject_bad_reg (Rn
);
13251 reject_bad_reg (Rm
);
13253 inst
.instruction
|= Rd
<< 8;
13254 inst
.instruction
|= Rn
<< 16;
13255 inst
.instruction
|= Rm
;
13256 if (inst
.operands
[3].present
)
13258 unsigned int val
= inst
.relocs
[0].exp
.X_add_number
;
13259 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13260 _("expression too complex"));
13261 inst
.instruction
|= (val
& 0x1c) << 10;
13262 inst
.instruction
|= (val
& 0x03) << 6;
13269 if (!inst
.operands
[3].present
)
13273 inst
.instruction
&= ~0x00000020;
13275 /* PR 10168. Swap the Rm and Rn registers. */
13276 Rtmp
= inst
.operands
[1].reg
;
13277 inst
.operands
[1].reg
= inst
.operands
[2].reg
;
13278 inst
.operands
[2].reg
= Rtmp
;
13286 if (inst
.operands
[0].immisreg
)
13287 reject_bad_reg (inst
.operands
[0].imm
);
13289 encode_thumb32_addr_mode (0, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
13293 do_t_push_pop (void)
13297 constraint (inst
.operands
[0].writeback
,
13298 _("push/pop do not support {reglist}^"));
13299 constraint (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
,
13300 _("expression too complex"));
13302 mask
= inst
.operands
[0].imm
;
13303 if (inst
.size_req
!= 4 && (mask
& ~0xff) == 0)
13304 inst
.instruction
= THUMB_OP16 (inst
.instruction
) | mask
;
13305 else if (inst
.size_req
!= 4
13306 && (mask
& ~0xff) == (1U << (inst
.instruction
== T_MNEM_push
13307 ? REG_LR
: REG_PC
)))
13309 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13310 inst
.instruction
|= THUMB_PP_PC_LR
;
13311 inst
.instruction
|= mask
& 0xff;
13313 else if (unified_syntax
)
13315 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13316 encode_thumb2_multi (TRUE
/* do_io */, 13, mask
, TRUE
);
13320 inst
.error
= _("invalid register list to push/pop instruction");
13328 if (unified_syntax
)
13329 encode_thumb2_multi (FALSE
/* do_io */, -1, inst
.operands
[0].imm
, FALSE
);
13332 inst
.error
= _("invalid register list to push/pop instruction");
13338 do_t_vscclrm (void)
13340 if (inst
.operands
[0].issingle
)
13342 inst
.instruction
|= (inst
.operands
[0].reg
& 0x1) << 22;
13343 inst
.instruction
|= (inst
.operands
[0].reg
& 0x1e) << 11;
13344 inst
.instruction
|= inst
.operands
[0].imm
;
13348 inst
.instruction
|= (inst
.operands
[0].reg
& 0x10) << 18;
13349 inst
.instruction
|= (inst
.operands
[0].reg
& 0xf) << 12;
13350 inst
.instruction
|= 1 << 8;
13351 inst
.instruction
|= inst
.operands
[0].imm
<< 1;
13360 Rd
= inst
.operands
[0].reg
;
13361 Rm
= inst
.operands
[1].reg
;
13363 reject_bad_reg (Rd
);
13364 reject_bad_reg (Rm
);
13366 inst
.instruction
|= Rd
<< 8;
13367 inst
.instruction
|= Rm
<< 16;
13368 inst
.instruction
|= Rm
;
13376 Rd
= inst
.operands
[0].reg
;
13377 Rm
= inst
.operands
[1].reg
;
13379 reject_bad_reg (Rd
);
13380 reject_bad_reg (Rm
);
13382 if (Rd
<= 7 && Rm
<= 7
13383 && inst
.size_req
!= 4)
13385 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13386 inst
.instruction
|= Rd
;
13387 inst
.instruction
|= Rm
<< 3;
13389 else if (unified_syntax
)
13391 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13392 inst
.instruction
|= Rd
<< 8;
13393 inst
.instruction
|= Rm
<< 16;
13394 inst
.instruction
|= Rm
;
13397 inst
.error
= BAD_HIREG
;
13405 Rd
= inst
.operands
[0].reg
;
13406 Rm
= inst
.operands
[1].reg
;
13408 reject_bad_reg (Rd
);
13409 reject_bad_reg (Rm
);
13411 inst
.instruction
|= Rd
<< 8;
13412 inst
.instruction
|= Rm
;
13420 Rd
= inst
.operands
[0].reg
;
13421 Rs
= (inst
.operands
[1].present
13422 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
13423 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
13425 reject_bad_reg (Rd
);
13426 reject_bad_reg (Rs
);
13427 if (inst
.operands
[2].isreg
)
13428 reject_bad_reg (inst
.operands
[2].reg
);
13430 inst
.instruction
|= Rd
<< 8;
13431 inst
.instruction
|= Rs
<< 16;
13432 if (!inst
.operands
[2].isreg
)
13434 bfd_boolean narrow
;
13436 if ((inst
.instruction
& 0x00100000) != 0)
13437 narrow
= !in_pred_block ();
13439 narrow
= in_pred_block ();
13441 if (Rd
> 7 || Rs
> 7)
13444 if (inst
.size_req
== 4 || !unified_syntax
)
13447 if (inst
.relocs
[0].exp
.X_op
!= O_constant
13448 || inst
.relocs
[0].exp
.X_add_number
!= 0)
13451 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13452 relaxation, but it doesn't seem worth the hassle. */
13455 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13456 inst
.instruction
= THUMB_OP16 (T_MNEM_negs
);
13457 inst
.instruction
|= Rs
<< 3;
13458 inst
.instruction
|= Rd
;
13462 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13463 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13467 encode_thumb32_shifted_operand (2);
13473 if (warn_on_deprecated
13474 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
13475 as_tsktsk (_("setend use is deprecated for ARMv8"));
13477 set_pred_insn_type (OUTSIDE_PRED_INSN
);
13478 if (inst
.operands
[0].imm
)
13479 inst
.instruction
|= 0x8;
13485 if (!inst
.operands
[1].present
)
13486 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
13488 if (unified_syntax
)
13490 bfd_boolean narrow
;
13493 switch (inst
.instruction
)
13496 case T_MNEM_asrs
: shift_kind
= SHIFT_ASR
; break;
13498 case T_MNEM_lsls
: shift_kind
= SHIFT_LSL
; break;
13500 case T_MNEM_lsrs
: shift_kind
= SHIFT_LSR
; break;
13502 case T_MNEM_rors
: shift_kind
= SHIFT_ROR
; break;
13506 if (THUMB_SETS_FLAGS (inst
.instruction
))
13507 narrow
= !in_pred_block ();
13509 narrow
= in_pred_block ();
13510 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
13512 if (!inst
.operands
[2].isreg
&& shift_kind
== SHIFT_ROR
)
13514 if (inst
.operands
[2].isreg
13515 && (inst
.operands
[1].reg
!= inst
.operands
[0].reg
13516 || inst
.operands
[2].reg
> 7))
13518 if (inst
.size_req
== 4)
13521 reject_bad_reg (inst
.operands
[0].reg
);
13522 reject_bad_reg (inst
.operands
[1].reg
);
13526 if (inst
.operands
[2].isreg
)
13528 reject_bad_reg (inst
.operands
[2].reg
);
13529 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13530 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13531 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13532 inst
.instruction
|= inst
.operands
[2].reg
;
13534 /* PR 12854: Error on extraneous shifts. */
13535 constraint (inst
.operands
[2].shifted
,
13536 _("extraneous shift as part of operand to shift insn"));
13540 inst
.operands
[1].shifted
= 1;
13541 inst
.operands
[1].shift_kind
= shift_kind
;
13542 inst
.instruction
= THUMB_OP32 (THUMB_SETS_FLAGS (inst
.instruction
)
13543 ? T_MNEM_movs
: T_MNEM_mov
);
13544 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13545 encode_thumb32_shifted_operand (1);
13546 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13547 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13552 if (inst
.operands
[2].isreg
)
13554 switch (shift_kind
)
13556 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_R
; break;
13557 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_R
; break;
13558 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_R
; break;
13559 case SHIFT_ROR
: inst
.instruction
= T_OPCODE_ROR_R
; break;
13563 inst
.instruction
|= inst
.operands
[0].reg
;
13564 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
13566 /* PR 12854: Error on extraneous shifts. */
13567 constraint (inst
.operands
[2].shifted
,
13568 _("extraneous shift as part of operand to shift insn"));
13572 switch (shift_kind
)
13574 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
13575 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
13576 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
13579 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
13580 inst
.instruction
|= inst
.operands
[0].reg
;
13581 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13587 constraint (inst
.operands
[0].reg
> 7
13588 || inst
.operands
[1].reg
> 7, BAD_HIREG
);
13589 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
13591 if (inst
.operands
[2].isreg
) /* Rd, {Rs,} Rn */
13593 constraint (inst
.operands
[2].reg
> 7, BAD_HIREG
);
13594 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
13595 _("source1 and dest must be same register"));
13597 switch (inst
.instruction
)
13599 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_R
; break;
13600 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_R
; break;
13601 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_R
; break;
13602 case T_MNEM_ror
: inst
.instruction
= T_OPCODE_ROR_R
; break;
13606 inst
.instruction
|= inst
.operands
[0].reg
;
13607 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
13609 /* PR 12854: Error on extraneous shifts. */
13610 constraint (inst
.operands
[2].shifted
,
13611 _("extraneous shift as part of operand to shift insn"));
13615 switch (inst
.instruction
)
13617 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_I
; break;
13618 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_I
; break;
13619 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_I
; break;
13620 case T_MNEM_ror
: inst
.error
= _("ror #imm not supported"); return;
13623 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
13624 inst
.instruction
|= inst
.operands
[0].reg
;
13625 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13633 unsigned Rd
, Rn
, Rm
;
13635 Rd
= inst
.operands
[0].reg
;
13636 Rn
= inst
.operands
[1].reg
;
13637 Rm
= inst
.operands
[2].reg
;
13639 reject_bad_reg (Rd
);
13640 reject_bad_reg (Rn
);
13641 reject_bad_reg (Rm
);
13643 inst
.instruction
|= Rd
<< 8;
13644 inst
.instruction
|= Rn
<< 16;
13645 inst
.instruction
|= Rm
;
13651 unsigned Rd
, Rn
, Rm
;
13653 Rd
= inst
.operands
[0].reg
;
13654 Rm
= inst
.operands
[1].reg
;
13655 Rn
= inst
.operands
[2].reg
;
13657 reject_bad_reg (Rd
);
13658 reject_bad_reg (Rn
);
13659 reject_bad_reg (Rm
);
13661 inst
.instruction
|= Rd
<< 8;
13662 inst
.instruction
|= Rn
<< 16;
13663 inst
.instruction
|= Rm
;
13669 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
13670 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
),
13671 _("SMC is not permitted on this architecture"));
13672 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13673 _("expression too complex"));
13674 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13675 inst
.instruction
|= (value
& 0xf000) >> 12;
13676 inst
.instruction
|= (value
& 0x0ff0);
13677 inst
.instruction
|= (value
& 0x000f) << 16;
13678 /* PR gas/15623: SMC instructions must be last in an IT block. */
13679 set_pred_insn_type_last ();
13685 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
13687 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13688 inst
.instruction
|= (value
& 0x0fff);
13689 inst
.instruction
|= (value
& 0xf000) << 4;
13693 do_t_ssat_usat (int bias
)
13697 Rd
= inst
.operands
[0].reg
;
13698 Rn
= inst
.operands
[2].reg
;
13700 reject_bad_reg (Rd
);
13701 reject_bad_reg (Rn
);
13703 inst
.instruction
|= Rd
<< 8;
13704 inst
.instruction
|= inst
.operands
[1].imm
- bias
;
13705 inst
.instruction
|= Rn
<< 16;
13707 if (inst
.operands
[3].present
)
13709 offsetT shift_amount
= inst
.relocs
[0].exp
.X_add_number
;
13711 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13713 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13714 _("expression too complex"));
13716 if (shift_amount
!= 0)
13718 constraint (shift_amount
> 31,
13719 _("shift expression is too large"));
13721 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
13722 inst
.instruction
|= 0x00200000; /* sh bit. */
13724 inst
.instruction
|= (shift_amount
& 0x1c) << 10;
13725 inst
.instruction
|= (shift_amount
& 0x03) << 6;
13733 do_t_ssat_usat (1);
13741 Rd
= inst
.operands
[0].reg
;
13742 Rn
= inst
.operands
[2].reg
;
13744 reject_bad_reg (Rd
);
13745 reject_bad_reg (Rn
);
13747 inst
.instruction
|= Rd
<< 8;
13748 inst
.instruction
|= inst
.operands
[1].imm
- 1;
13749 inst
.instruction
|= Rn
<< 16;
13755 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
13756 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
13757 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
13758 || inst
.operands
[2].negative
,
13761 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
13763 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13764 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
13765 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
13766 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
13772 if (!inst
.operands
[2].present
)
13773 inst
.operands
[2].reg
= inst
.operands
[1].reg
+ 1;
13775 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
13776 || inst
.operands
[0].reg
== inst
.operands
[2].reg
13777 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
13780 inst
.instruction
|= inst
.operands
[0].reg
;
13781 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
13782 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
13783 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
13789 unsigned Rd
, Rn
, Rm
;
13791 Rd
= inst
.operands
[0].reg
;
13792 Rn
= inst
.operands
[1].reg
;
13793 Rm
= inst
.operands
[2].reg
;
13795 reject_bad_reg (Rd
);
13796 reject_bad_reg (Rn
);
13797 reject_bad_reg (Rm
);
13799 inst
.instruction
|= Rd
<< 8;
13800 inst
.instruction
|= Rn
<< 16;
13801 inst
.instruction
|= Rm
;
13802 inst
.instruction
|= inst
.operands
[3].imm
<< 4;
13810 Rd
= inst
.operands
[0].reg
;
13811 Rm
= inst
.operands
[1].reg
;
13813 reject_bad_reg (Rd
);
13814 reject_bad_reg (Rm
);
13816 if (inst
.instruction
<= 0xffff
13817 && inst
.size_req
!= 4
13818 && Rd
<= 7 && Rm
<= 7
13819 && (!inst
.operands
[2].present
|| inst
.operands
[2].imm
== 0))
13821 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13822 inst
.instruction
|= Rd
;
13823 inst
.instruction
|= Rm
<< 3;
13825 else if (unified_syntax
)
13827 if (inst
.instruction
<= 0xffff)
13828 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13829 inst
.instruction
|= Rd
<< 8;
13830 inst
.instruction
|= Rm
;
13831 inst
.instruction
|= inst
.operands
[2].imm
<< 4;
13835 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
!= 0,
13836 _("Thumb encoding does not support rotation"));
13837 constraint (1, BAD_HIREG
);
13844 inst
.relocs
[0].type
= BFD_RELOC_ARM_SWI
;
13853 half
= (inst
.instruction
& 0x10) != 0;
13854 set_pred_insn_type_last ();
13855 constraint (inst
.operands
[0].immisreg
,
13856 _("instruction requires register index"));
13858 Rn
= inst
.operands
[0].reg
;
13859 Rm
= inst
.operands
[0].imm
;
13861 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
13862 constraint (Rn
== REG_SP
, BAD_SP
);
13863 reject_bad_reg (Rm
);
13865 constraint (!half
&& inst
.operands
[0].shifted
,
13866 _("instruction does not allow shifted index"));
13867 inst
.instruction
|= (Rn
<< 16) | Rm
;
13873 if (!inst
.operands
[0].present
)
13874 inst
.operands
[0].imm
= 0;
13876 if ((unsigned int) inst
.operands
[0].imm
> 255 || inst
.size_req
== 4)
13878 constraint (inst
.size_req
== 2,
13879 _("immediate value out of range"));
13880 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13881 inst
.instruction
|= (inst
.operands
[0].imm
& 0xf000u
) << 4;
13882 inst
.instruction
|= (inst
.operands
[0].imm
& 0x0fffu
) << 0;
13886 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13887 inst
.instruction
|= inst
.operands
[0].imm
;
13890 set_pred_insn_type (NEUTRAL_IT_INSN
);
13897 do_t_ssat_usat (0);
13905 Rd
= inst
.operands
[0].reg
;
13906 Rn
= inst
.operands
[2].reg
;
13908 reject_bad_reg (Rd
);
13909 reject_bad_reg (Rn
);
13911 inst
.instruction
|= Rd
<< 8;
13912 inst
.instruction
|= inst
.operands
[1].imm
;
13913 inst
.instruction
|= Rn
<< 16;
13916 /* Checking the range of the branch offset (VAL) with NBITS bits
13917 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13919 v8_1_branch_value_check (int val
, int nbits
, int is_signed
)
13921 gas_assert (nbits
> 0 && nbits
<= 32);
13924 int cmp
= (1 << (nbits
- 1));
13925 if ((val
< -cmp
) || (val
>= cmp
) || (val
& 0x01))
13930 if ((val
<= 0) || (val
>= (1 << nbits
)) || (val
& 0x1))
13936 /* For branches in Armv8.1-M Mainline. */
13938 do_t_branch_future (void)
13940 unsigned long insn
= inst
.instruction
;
13942 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13943 if (inst
.operands
[0].hasreloc
== 0)
13945 if (v8_1_branch_value_check (inst
.operands
[0].imm
, 5, FALSE
) == FAIL
)
13946 as_bad (BAD_BRANCH_OFF
);
13948 inst
.instruction
|= ((inst
.operands
[0].imm
& 0x1f) >> 1) << 23;
13952 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH5
;
13953 inst
.relocs
[0].pc_rel
= 1;
13959 if (inst
.operands
[1].hasreloc
== 0)
13961 int val
= inst
.operands
[1].imm
;
13962 if (v8_1_branch_value_check (inst
.operands
[1].imm
, 17, TRUE
) == FAIL
)
13963 as_bad (BAD_BRANCH_OFF
);
13965 int immA
= (val
& 0x0001f000) >> 12;
13966 int immB
= (val
& 0x00000ffc) >> 2;
13967 int immC
= (val
& 0x00000002) >> 1;
13968 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
13972 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF17
;
13973 inst
.relocs
[1].pc_rel
= 1;
13978 if (inst
.operands
[1].hasreloc
== 0)
13980 int val
= inst
.operands
[1].imm
;
13981 if (v8_1_branch_value_check (inst
.operands
[1].imm
, 19, TRUE
) == FAIL
)
13982 as_bad (BAD_BRANCH_OFF
);
13984 int immA
= (val
& 0x0007f000) >> 12;
13985 int immB
= (val
& 0x00000ffc) >> 2;
13986 int immC
= (val
& 0x00000002) >> 1;
13987 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
13991 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF19
;
13992 inst
.relocs
[1].pc_rel
= 1;
13996 case T_MNEM_bfcsel
:
13998 if (inst
.operands
[1].hasreloc
== 0)
14000 int val
= inst
.operands
[1].imm
;
14001 int immA
= (val
& 0x00001000) >> 12;
14002 int immB
= (val
& 0x00000ffc) >> 2;
14003 int immC
= (val
& 0x00000002) >> 1;
14004 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14008 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF13
;
14009 inst
.relocs
[1].pc_rel
= 1;
14013 if (inst
.operands
[2].hasreloc
== 0)
14015 constraint ((inst
.operands
[0].hasreloc
!= 0), BAD_ARGS
);
14016 int val2
= inst
.operands
[2].imm
;
14017 int val0
= inst
.operands
[0].imm
& 0x1f;
14018 int diff
= val2
- val0
;
14020 inst
.instruction
|= 1 << 17; /* T bit. */
14021 else if (diff
!= 2)
14022 as_bad (_("out of range label-relative fixup value"));
14026 constraint ((inst
.operands
[0].hasreloc
== 0), BAD_ARGS
);
14027 inst
.relocs
[2].type
= BFD_RELOC_THUMB_PCREL_BFCSEL
;
14028 inst
.relocs
[2].pc_rel
= 1;
14032 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
14033 inst
.instruction
|= (inst
.operands
[3].imm
& 0xf) << 18;
14038 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
14045 /* Helper function for do_t_loloop to handle relocations. */
14047 v8_1_loop_reloc (int is_le
)
14049 if (inst
.relocs
[0].exp
.X_op
== O_constant
)
14051 int value
= inst
.relocs
[0].exp
.X_add_number
;
14052 value
= (is_le
) ? -value
: value
;
14054 if (v8_1_branch_value_check (value
, 12, FALSE
) == FAIL
)
14055 as_bad (BAD_BRANCH_OFF
);
14059 immh
= (value
& 0x00000ffc) >> 2;
14060 imml
= (value
& 0x00000002) >> 1;
14062 inst
.instruction
|= (imml
<< 11) | (immh
<< 1);
14066 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_LOOP12
;
14067 inst
.relocs
[0].pc_rel
= 1;
14071 /* To handle the Scalar Low Overhead Loop instructions
14072 in Armv8.1-M Mainline. */
14076 unsigned long insn
= inst
.instruction
;
14078 set_pred_insn_type (OUTSIDE_PRED_INSN
);
14079 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
14085 if (!inst
.operands
[0].present
)
14086 inst
.instruction
|= 1 << 21;
14088 v8_1_loop_reloc (TRUE
);
14092 v8_1_loop_reloc (FALSE
);
14093 /* Fall through. */
14095 constraint (inst
.operands
[1].isreg
!= 1, BAD_ARGS
);
14096 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
14103 /* MVE instruction encoder helpers. */
14104 #define M_MNEM_vabav 0xee800f01
14105 #define M_MNEM_vmladav 0xeef00e00
14106 #define M_MNEM_vmladava 0xeef00e20
14107 #define M_MNEM_vmladavx 0xeef01e00
14108 #define M_MNEM_vmladavax 0xeef01e20
14109 #define M_MNEM_vmlsdav 0xeef00e01
14110 #define M_MNEM_vmlsdava 0xeef00e21
14111 #define M_MNEM_vmlsdavx 0xeef01e01
14112 #define M_MNEM_vmlsdavax 0xeef01e21
14113 #define M_MNEM_vmullt 0xee011e00
14114 #define M_MNEM_vmullb 0xee010e00
14115 #define M_MNEM_vst20 0xfc801e00
14116 #define M_MNEM_vst21 0xfc801e20
14117 #define M_MNEM_vst40 0xfc801e01
14118 #define M_MNEM_vst41 0xfc801e21
14119 #define M_MNEM_vst42 0xfc801e41
14120 #define M_MNEM_vst43 0xfc801e61
14121 #define M_MNEM_vld20 0xfc901e00
14122 #define M_MNEM_vld21 0xfc901e20
14123 #define M_MNEM_vld40 0xfc901e01
14124 #define M_MNEM_vld41 0xfc901e21
14125 #define M_MNEM_vld42 0xfc901e41
14126 #define M_MNEM_vld43 0xfc901e61
14127 #define M_MNEM_vstrb 0xec000e00
14128 #define M_MNEM_vstrh 0xec000e10
14129 #define M_MNEM_vstrw 0xec000e40
14130 #define M_MNEM_vstrd 0xec000e50
14131 #define M_MNEM_vldrb 0xec100e00
14132 #define M_MNEM_vldrh 0xec100e10
14133 #define M_MNEM_vldrw 0xec100e40
14134 #define M_MNEM_vldrd 0xec100e50
14135 #define M_MNEM_vmovlt 0xeea01f40
14136 #define M_MNEM_vmovlb 0xeea00f40
14137 #define M_MNEM_vmovnt 0xfe311e81
14138 #define M_MNEM_vmovnb 0xfe310e81
14139 #define M_MNEM_vadc 0xee300f00
14140 #define M_MNEM_vadci 0xee301f00
14141 #define M_MNEM_vbrsr 0xfe011e60
14143 /* Neon instruction encoder helpers. */
14145 /* Encodings for the different types for various Neon opcodes. */
14147 /* An "invalid" code for the following tables. */
14150 struct neon_tab_entry
14153 unsigned float_or_poly
;
14154 unsigned scalar_or_imm
;
14157 /* Map overloaded Neon opcodes to their respective encodings. */
14158 #define NEON_ENC_TAB \
14159 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14160 X(vabdl, 0x0800700, N_INV, N_INV), \
14161 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14162 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14163 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14164 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14165 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14166 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14167 X(vaddl, 0x0800000, N_INV, N_INV), \
14168 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14169 X(vsubl, 0x0800200, N_INV, N_INV), \
14170 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14171 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14172 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14173 /* Register variants of the following two instructions are encoded as
14174 vcge / vcgt with the operands reversed. */ \
14175 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14176 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14177 X(vfma, N_INV, 0x0000c10, N_INV), \
14178 X(vfms, N_INV, 0x0200c10, N_INV), \
14179 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14180 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14181 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14182 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14183 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14184 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14185 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14186 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14187 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14188 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14189 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14190 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14191 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14192 X(vshl, 0x0000400, N_INV, 0x0800510), \
14193 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14194 X(vand, 0x0000110, N_INV, 0x0800030), \
14195 X(vbic, 0x0100110, N_INV, 0x0800030), \
14196 X(veor, 0x1000110, N_INV, N_INV), \
14197 X(vorn, 0x0300110, N_INV, 0x0800010), \
14198 X(vorr, 0x0200110, N_INV, 0x0800010), \
14199 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14200 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14201 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14202 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14203 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14204 X(vst1, 0x0000000, 0x0800000, N_INV), \
14205 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14206 X(vst2, 0x0000100, 0x0800100, N_INV), \
14207 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14208 X(vst3, 0x0000200, 0x0800200, N_INV), \
14209 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14210 X(vst4, 0x0000300, 0x0800300, N_INV), \
14211 X(vmovn, 0x1b20200, N_INV, N_INV), \
14212 X(vtrn, 0x1b20080, N_INV, N_INV), \
14213 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14214 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14215 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14216 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14217 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14218 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14219 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14220 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14221 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14222 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14223 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14224 X(vseleq, 0xe000a00, N_INV, N_INV), \
14225 X(vselvs, 0xe100a00, N_INV, N_INV), \
14226 X(vselge, 0xe200a00, N_INV, N_INV), \
14227 X(vselgt, 0xe300a00, N_INV, N_INV), \
14228 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14229 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14230 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14231 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14232 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14233 X(aes, 0x3b00300, N_INV, N_INV), \
14234 X(sha3op, 0x2000c00, N_INV, N_INV), \
14235 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14236 X(sha2op, 0x3ba0380, N_INV, N_INV)
14240 #define X(OPC,I,F,S) N_MNEM_##OPC
14245 static const struct neon_tab_entry neon_enc_tab
[] =
14247 #define X(OPC,I,F,S) { (I), (F), (S) }
14252 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14253 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14254 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14255 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14256 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14257 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14258 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14259 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14260 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14261 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14262 #define NEON_ENC_SINGLE_(X) \
14263 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14264 #define NEON_ENC_DOUBLE_(X) \
14265 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14266 #define NEON_ENC_FPV8_(X) \
14267 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14269 #define NEON_ENCODE(type, inst) \
14272 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14273 inst.is_neon = 1; \
14277 #define check_neon_suffixes \
14280 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14282 as_bad (_("invalid neon suffix for non neon instruction")); \
14288 /* Define shapes for instruction operands. The following mnemonic characters
14289 are used in this table:
14291 F - VFP S<n> register
14292 D - Neon D<n> register
14293 Q - Neon Q<n> register
14297 L - D<n> register list
14299 This table is used to generate various data:
14300 - enumerations of the form NS_DDR to be used as arguments to
14302 - a table classifying shapes into single, double, quad, mixed.
14303 - a table used to drive neon_select_shape. */
14305 #define NEON_SHAPE_DEF \
14306 X(4, (R, R, S, S), QUAD), \
14307 X(4, (S, S, R, R), QUAD), \
14308 X(3, (I, Q, Q), QUAD), \
14309 X(3, (I, Q, R), QUAD), \
14310 X(3, (R, Q, Q), QUAD), \
14311 X(3, (D, D, D), DOUBLE), \
14312 X(3, (Q, Q, Q), QUAD), \
14313 X(3, (D, D, I), DOUBLE), \
14314 X(3, (Q, Q, I), QUAD), \
14315 X(3, (D, D, S), DOUBLE), \
14316 X(3, (Q, Q, S), QUAD), \
14317 X(3, (Q, Q, R), QUAD), \
14318 X(2, (D, D), DOUBLE), \
14319 X(2, (Q, Q), QUAD), \
14320 X(2, (D, S), DOUBLE), \
14321 X(2, (Q, S), QUAD), \
14322 X(2, (D, R), DOUBLE), \
14323 X(2, (Q, R), QUAD), \
14324 X(2, (D, I), DOUBLE), \
14325 X(2, (Q, I), QUAD), \
14326 X(3, (D, L, D), DOUBLE), \
14327 X(2, (D, Q), MIXED), \
14328 X(2, (Q, D), MIXED), \
14329 X(3, (D, Q, I), MIXED), \
14330 X(3, (Q, D, I), MIXED), \
14331 X(3, (Q, D, D), MIXED), \
14332 X(3, (D, Q, Q), MIXED), \
14333 X(3, (Q, Q, D), MIXED), \
14334 X(3, (Q, D, S), MIXED), \
14335 X(3, (D, Q, S), MIXED), \
14336 X(4, (D, D, D, I), DOUBLE), \
14337 X(4, (Q, Q, Q, I), QUAD), \
14338 X(4, (D, D, S, I), DOUBLE), \
14339 X(4, (Q, Q, S, I), QUAD), \
14340 X(2, (F, F), SINGLE), \
14341 X(3, (F, F, F), SINGLE), \
14342 X(2, (F, I), SINGLE), \
14343 X(2, (F, D), MIXED), \
14344 X(2, (D, F), MIXED), \
14345 X(3, (F, F, I), MIXED), \
14346 X(4, (R, R, F, F), SINGLE), \
14347 X(4, (F, F, R, R), SINGLE), \
14348 X(3, (D, R, R), DOUBLE), \
14349 X(3, (R, R, D), DOUBLE), \
14350 X(2, (S, R), SINGLE), \
14351 X(2, (R, S), SINGLE), \
14352 X(2, (F, R), SINGLE), \
14353 X(2, (R, F), SINGLE), \
14354 /* Half float shape supported so far. */\
14355 X (2, (H, D), MIXED), \
14356 X (2, (D, H), MIXED), \
14357 X (2, (H, F), MIXED), \
14358 X (2, (F, H), MIXED), \
14359 X (2, (H, H), HALF), \
14360 X (2, (H, R), HALF), \
14361 X (2, (R, H), HALF), \
14362 X (2, (H, I), HALF), \
14363 X (3, (H, H, H), HALF), \
14364 X (3, (H, F, I), MIXED), \
14365 X (3, (F, H, I), MIXED), \
14366 X (3, (D, H, H), MIXED), \
14367 X (3, (D, H, S), MIXED)
14369 #define S2(A,B) NS_##A##B
14370 #define S3(A,B,C) NS_##A##B##C
14371 #define S4(A,B,C,D) NS_##A##B##C##D
14373 #define X(N, L, C) S##N L
14386 enum neon_shape_class
14395 #define X(N, L, C) SC_##C
14397 static enum neon_shape_class neon_shape_class
[] =
14416 /* Register widths of above. */
14417 static unsigned neon_shape_el_size
[] =
14429 struct neon_shape_info
14432 enum neon_shape_el el
[NEON_MAX_TYPE_ELS
];
14435 #define S2(A,B) { SE_##A, SE_##B }
14436 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14437 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14439 #define X(N, L, C) { N, S##N L }
14441 static struct neon_shape_info neon_shape_tab
[] =
14451 /* Bit masks used in type checking given instructions.
14452 'N_EQK' means the type must be the same as (or based on in some way) the key
14453 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14454 set, various other bits can be set as well in order to modify the meaning of
14455 the type constraint. */
14457 enum neon_type_mask
14481 N_KEY
= 0x1000000, /* Key element (main type specifier). */
14482 N_EQK
= 0x2000000, /* Given operand has the same type & size as the key. */
14483 N_VFP
= 0x4000000, /* VFP mode: operand size must match register width. */
14484 N_UNT
= 0x8000000, /* Must be explicitly untyped. */
14485 N_DBL
= 0x0000001, /* If N_EQK, this operand is twice the size. */
14486 N_HLF
= 0x0000002, /* If N_EQK, this operand is half the size. */
14487 N_SGN
= 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14488 N_UNS
= 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14489 N_INT
= 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14490 N_FLT
= 0x0000020, /* If N_EQK, this operand is forced to be float. */
14491 N_SIZ
= 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14493 N_MAX_NONSPECIAL
= N_P64
14496 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14498 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14499 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14500 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14501 #define N_S_32 (N_S8 | N_S16 | N_S32)
14502 #define N_F_16_32 (N_F16 | N_F32)
14503 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14504 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14505 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14506 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14507 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14508 #define N_F_MVE (N_F16 | N_F32)
14509 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14511 /* Pass this as the first type argument to neon_check_type to ignore types
14513 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14515 /* Select a "shape" for the current instruction (describing register types or
14516 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14517 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14518 function of operand parsing, so this function doesn't need to be called.
14519 Shapes should be listed in order of decreasing length. */
14521 static enum neon_shape
14522 neon_select_shape (enum neon_shape shape
, ...)
14525 enum neon_shape first_shape
= shape
;
14527 /* Fix missing optional operands. FIXME: we don't know at this point how
14528 many arguments we should have, so this makes the assumption that we have
14529 > 1. This is true of all current Neon opcodes, I think, but may not be
14530 true in the future. */
14531 if (!inst
.operands
[1].present
)
14532 inst
.operands
[1] = inst
.operands
[0];
14534 va_start (ap
, shape
);
14536 for (; shape
!= NS_NULL
; shape
= (enum neon_shape
) va_arg (ap
, int))
14541 for (j
= 0; j
< neon_shape_tab
[shape
].els
; j
++)
14543 if (!inst
.operands
[j
].present
)
14549 switch (neon_shape_tab
[shape
].el
[j
])
14551 /* If a .f16, .16, .u16, .s16 type specifier is given over
14552 a VFP single precision register operand, it's essentially
14553 means only half of the register is used.
14555 If the type specifier is given after the mnemonics, the
14556 information is stored in inst.vectype. If the type specifier
14557 is given after register operand, the information is stored
14558 in inst.operands[].vectype.
14560 When there is only one type specifier, and all the register
14561 operands are the same type of hardware register, the type
14562 specifier applies to all register operands.
14564 If no type specifier is given, the shape is inferred from
14565 operand information.
14568 vadd.f16 s0, s1, s2: NS_HHH
14569 vabs.f16 s0, s1: NS_HH
14570 vmov.f16 s0, r1: NS_HR
14571 vmov.f16 r0, s1: NS_RH
14572 vcvt.f16 r0, s1: NS_RH
14573 vcvt.f16.s32 s2, s2, #29: NS_HFI
14574 vcvt.f16.s32 s2, s2: NS_HF
14577 if (!(inst
.operands
[j
].isreg
14578 && inst
.operands
[j
].isvec
14579 && inst
.operands
[j
].issingle
14580 && !inst
.operands
[j
].isquad
14581 && ((inst
.vectype
.elems
== 1
14582 && inst
.vectype
.el
[0].size
== 16)
14583 || (inst
.vectype
.elems
> 1
14584 && inst
.vectype
.el
[j
].size
== 16)
14585 || (inst
.vectype
.elems
== 0
14586 && inst
.operands
[j
].vectype
.type
!= NT_invtype
14587 && inst
.operands
[j
].vectype
.size
== 16))))
14592 if (!(inst
.operands
[j
].isreg
14593 && inst
.operands
[j
].isvec
14594 && inst
.operands
[j
].issingle
14595 && !inst
.operands
[j
].isquad
14596 && ((inst
.vectype
.elems
== 1 && inst
.vectype
.el
[0].size
== 32)
14597 || (inst
.vectype
.elems
> 1 && inst
.vectype
.el
[j
].size
== 32)
14598 || (inst
.vectype
.elems
== 0
14599 && (inst
.operands
[j
].vectype
.size
== 32
14600 || inst
.operands
[j
].vectype
.type
== NT_invtype
)))))
14605 if (!(inst
.operands
[j
].isreg
14606 && inst
.operands
[j
].isvec
14607 && !inst
.operands
[j
].isquad
14608 && !inst
.operands
[j
].issingle
))
14613 if (!(inst
.operands
[j
].isreg
14614 && !inst
.operands
[j
].isvec
))
14619 if (!(inst
.operands
[j
].isreg
14620 && inst
.operands
[j
].isvec
14621 && inst
.operands
[j
].isquad
14622 && !inst
.operands
[j
].issingle
))
14627 if (!(!inst
.operands
[j
].isreg
14628 && !inst
.operands
[j
].isscalar
))
14633 if (!(!inst
.operands
[j
].isreg
14634 && inst
.operands
[j
].isscalar
))
14644 if (matches
&& (j
>= ARM_IT_MAX_OPERANDS
|| !inst
.operands
[j
].present
))
14645 /* We've matched all the entries in the shape table, and we don't
14646 have any left over operands which have not been matched. */
14652 if (shape
== NS_NULL
&& first_shape
!= NS_NULL
)
14653 first_error (_("invalid instruction shape"));
14658 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14659 means the Q bit should be set). */
14662 neon_quad (enum neon_shape shape
)
14664 return neon_shape_class
[shape
] == SC_QUAD
;
14668 neon_modify_type_size (unsigned typebits
, enum neon_el_type
*g_type
,
14671 /* Allow modification to be made to types which are constrained to be
14672 based on the key element, based on bits set alongside N_EQK. */
14673 if ((typebits
& N_EQK
) != 0)
14675 if ((typebits
& N_HLF
) != 0)
14677 else if ((typebits
& N_DBL
) != 0)
14679 if ((typebits
& N_SGN
) != 0)
14680 *g_type
= NT_signed
;
14681 else if ((typebits
& N_UNS
) != 0)
14682 *g_type
= NT_unsigned
;
14683 else if ((typebits
& N_INT
) != 0)
14684 *g_type
= NT_integer
;
14685 else if ((typebits
& N_FLT
) != 0)
14686 *g_type
= NT_float
;
14687 else if ((typebits
& N_SIZ
) != 0)
14688 *g_type
= NT_untyped
;
14692 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14693 operand type, i.e. the single type specified in a Neon instruction when it
14694 is the only one given. */
14696 static struct neon_type_el
14697 neon_type_promote (struct neon_type_el
*key
, unsigned thisarg
)
14699 struct neon_type_el dest
= *key
;
14701 gas_assert ((thisarg
& N_EQK
) != 0);
14703 neon_modify_type_size (thisarg
, &dest
.type
, &dest
.size
);
14708 /* Convert Neon type and size into compact bitmask representation. */
14710 static enum neon_type_mask
14711 type_chk_of_el_type (enum neon_el_type type
, unsigned size
)
14718 case 8: return N_8
;
14719 case 16: return N_16
;
14720 case 32: return N_32
;
14721 case 64: return N_64
;
14729 case 8: return N_I8
;
14730 case 16: return N_I16
;
14731 case 32: return N_I32
;
14732 case 64: return N_I64
;
14740 case 16: return N_F16
;
14741 case 32: return N_F32
;
14742 case 64: return N_F64
;
14750 case 8: return N_P8
;
14751 case 16: return N_P16
;
14752 case 64: return N_P64
;
14760 case 8: return N_S8
;
14761 case 16: return N_S16
;
14762 case 32: return N_S32
;
14763 case 64: return N_S64
;
14771 case 8: return N_U8
;
14772 case 16: return N_U16
;
14773 case 32: return N_U32
;
14774 case 64: return N_U64
;
14785 /* Convert compact Neon bitmask type representation to a type and size. Only
14786 handles the case where a single bit is set in the mask. */
14789 el_type_of_type_chk (enum neon_el_type
*type
, unsigned *size
,
14790 enum neon_type_mask mask
)
14792 if ((mask
& N_EQK
) != 0)
14795 if ((mask
& (N_S8
| N_U8
| N_I8
| N_8
| N_P8
)) != 0)
14797 else if ((mask
& (N_S16
| N_U16
| N_I16
| N_16
| N_F16
| N_P16
)) != 0)
14799 else if ((mask
& (N_S32
| N_U32
| N_I32
| N_32
| N_F32
)) != 0)
14801 else if ((mask
& (N_S64
| N_U64
| N_I64
| N_64
| N_F64
| N_P64
)) != 0)
14806 if ((mask
& (N_S8
| N_S16
| N_S32
| N_S64
)) != 0)
14808 else if ((mask
& (N_U8
| N_U16
| N_U32
| N_U64
)) != 0)
14809 *type
= NT_unsigned
;
14810 else if ((mask
& (N_I8
| N_I16
| N_I32
| N_I64
)) != 0)
14811 *type
= NT_integer
;
14812 else if ((mask
& (N_8
| N_16
| N_32
| N_64
)) != 0)
14813 *type
= NT_untyped
;
14814 else if ((mask
& (N_P8
| N_P16
| N_P64
)) != 0)
14816 else if ((mask
& (N_F_ALL
)) != 0)
14824 /* Modify a bitmask of allowed types. This is only needed for type
14828 modify_types_allowed (unsigned allowed
, unsigned mods
)
14831 enum neon_el_type type
;
14837 for (i
= 1; i
<= N_MAX_NONSPECIAL
; i
<<= 1)
14839 if (el_type_of_type_chk (&type
, &size
,
14840 (enum neon_type_mask
) (allowed
& i
)) == SUCCESS
)
14842 neon_modify_type_size (mods
, &type
, &size
);
14843 destmask
|= type_chk_of_el_type (type
, size
);
14850 /* Check type and return type classification.
14851 The manual states (paraphrase): If one datatype is given, it indicates the
14853 - the second operand, if there is one
14854 - the operand, if there is no second operand
14855 - the result, if there are no operands.
14856 This isn't quite good enough though, so we use a concept of a "key" datatype
14857 which is set on a per-instruction basis, which is the one which matters when
14858 only one data type is written.
14859 Note: this function has side-effects (e.g. filling in missing operands). All
14860 Neon instructions should call it before performing bit encoding. */
14862 static struct neon_type_el
14863 neon_check_type (unsigned els
, enum neon_shape ns
, ...)
14866 unsigned i
, pass
, key_el
= 0;
14867 unsigned types
[NEON_MAX_TYPE_ELS
];
14868 enum neon_el_type k_type
= NT_invtype
;
14869 unsigned k_size
= -1u;
14870 struct neon_type_el badtype
= {NT_invtype
, -1};
14871 unsigned key_allowed
= 0;
14873 /* Optional registers in Neon instructions are always (not) in operand 1.
14874 Fill in the missing operand here, if it was omitted. */
14875 if (els
> 1 && !inst
.operands
[1].present
)
14876 inst
.operands
[1] = inst
.operands
[0];
14878 /* Suck up all the varargs. */
14880 for (i
= 0; i
< els
; i
++)
14882 unsigned thisarg
= va_arg (ap
, unsigned);
14883 if (thisarg
== N_IGNORE_TYPE
)
14888 types
[i
] = thisarg
;
14889 if ((thisarg
& N_KEY
) != 0)
14894 if (inst
.vectype
.elems
> 0)
14895 for (i
= 0; i
< els
; i
++)
14896 if (inst
.operands
[i
].vectype
.type
!= NT_invtype
)
14898 first_error (_("types specified in both the mnemonic and operands"));
14902 /* Duplicate inst.vectype elements here as necessary.
14903 FIXME: No idea if this is exactly the same as the ARM assembler,
14904 particularly when an insn takes one register and one non-register
14906 if (inst
.vectype
.elems
== 1 && els
> 1)
14909 inst
.vectype
.elems
= els
;
14910 inst
.vectype
.el
[key_el
] = inst
.vectype
.el
[0];
14911 for (j
= 0; j
< els
; j
++)
14913 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
14916 else if (inst
.vectype
.elems
== 0 && els
> 0)
14919 /* No types were given after the mnemonic, so look for types specified
14920 after each operand. We allow some flexibility here; as long as the
14921 "key" operand has a type, we can infer the others. */
14922 for (j
= 0; j
< els
; j
++)
14923 if (inst
.operands
[j
].vectype
.type
!= NT_invtype
)
14924 inst
.vectype
.el
[j
] = inst
.operands
[j
].vectype
;
14926 if (inst
.operands
[key_el
].vectype
.type
!= NT_invtype
)
14928 for (j
= 0; j
< els
; j
++)
14929 if (inst
.operands
[j
].vectype
.type
== NT_invtype
)
14930 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
14935 first_error (_("operand types can't be inferred"));
14939 else if (inst
.vectype
.elems
!= els
)
14941 first_error (_("type specifier has the wrong number of parts"));
14945 for (pass
= 0; pass
< 2; pass
++)
14947 for (i
= 0; i
< els
; i
++)
14949 unsigned thisarg
= types
[i
];
14950 unsigned types_allowed
= ((thisarg
& N_EQK
) != 0 && pass
!= 0)
14951 ? modify_types_allowed (key_allowed
, thisarg
) : thisarg
;
14952 enum neon_el_type g_type
= inst
.vectype
.el
[i
].type
;
14953 unsigned g_size
= inst
.vectype
.el
[i
].size
;
14955 /* Decay more-specific signed & unsigned types to sign-insensitive
14956 integer types if sign-specific variants are unavailable. */
14957 if ((g_type
== NT_signed
|| g_type
== NT_unsigned
)
14958 && (types_allowed
& N_SU_ALL
) == 0)
14959 g_type
= NT_integer
;
14961 /* If only untyped args are allowed, decay any more specific types to
14962 them. Some instructions only care about signs for some element
14963 sizes, so handle that properly. */
14964 if (((types_allowed
& N_UNT
) == 0)
14965 && ((g_size
== 8 && (types_allowed
& N_8
) != 0)
14966 || (g_size
== 16 && (types_allowed
& N_16
) != 0)
14967 || (g_size
== 32 && (types_allowed
& N_32
) != 0)
14968 || (g_size
== 64 && (types_allowed
& N_64
) != 0)))
14969 g_type
= NT_untyped
;
14973 if ((thisarg
& N_KEY
) != 0)
14977 key_allowed
= thisarg
& ~N_KEY
;
14979 /* Check architecture constraint on FP16 extension. */
14981 && k_type
== NT_float
14982 && ! ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
))
14984 inst
.error
= _(BAD_FP16
);
14991 if ((thisarg
& N_VFP
) != 0)
14993 enum neon_shape_el regshape
;
14994 unsigned regwidth
, match
;
14996 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14999 first_error (_("invalid instruction shape"));
15002 regshape
= neon_shape_tab
[ns
].el
[i
];
15003 regwidth
= neon_shape_el_size
[regshape
];
15005 /* In VFP mode, operands must match register widths. If we
15006 have a key operand, use its width, else use the width of
15007 the current operand. */
15013 /* FP16 will use a single precision register. */
15014 if (regwidth
== 32 && match
== 16)
15016 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
))
15020 inst
.error
= _(BAD_FP16
);
15025 if (regwidth
!= match
)
15027 first_error (_("operand size must match register width"));
15032 if ((thisarg
& N_EQK
) == 0)
15034 unsigned given_type
= type_chk_of_el_type (g_type
, g_size
);
15036 if ((given_type
& types_allowed
) == 0)
15038 first_error (BAD_SIMD_TYPE
);
15044 enum neon_el_type mod_k_type
= k_type
;
15045 unsigned mod_k_size
= k_size
;
15046 neon_modify_type_size (thisarg
, &mod_k_type
, &mod_k_size
);
15047 if (g_type
!= mod_k_type
|| g_size
!= mod_k_size
)
15049 first_error (_("inconsistent types in Neon instruction"));
15057 return inst
.vectype
.el
[key_el
];
15060 /* Neon-style VFP instruction forwarding. */
15062 /* Thumb VFP instructions have 0xE in the condition field. */
15065 do_vfp_cond_or_thumb (void)
15070 inst
.instruction
|= 0xe0000000;
15072 inst
.instruction
|= inst
.cond
<< 28;
15075 /* Look up and encode a simple mnemonic, for use as a helper function for the
15076 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15077 etc. It is assumed that operand parsing has already been done, and that the
15078 operands are in the form expected by the given opcode (this isn't necessarily
15079 the same as the form in which they were parsed, hence some massaging must
15080 take place before this function is called).
15081 Checks current arch version against that in the looked-up opcode. */
15084 do_vfp_nsyn_opcode (const char *opname
)
15086 const struct asm_opcode
*opcode
;
15088 opcode
= (const struct asm_opcode
*) hash_find (arm_ops_hsh
, opname
);
15093 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
,
15094 thumb_mode
? *opcode
->tvariant
: *opcode
->avariant
),
15101 inst
.instruction
= opcode
->tvalue
;
15102 opcode
->tencode ();
15106 inst
.instruction
= (inst
.cond
<< 28) | opcode
->avalue
;
15107 opcode
->aencode ();
15112 do_vfp_nsyn_add_sub (enum neon_shape rs
)
15114 int is_add
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vadd
;
15116 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15119 do_vfp_nsyn_opcode ("fadds");
15121 do_vfp_nsyn_opcode ("fsubs");
15123 /* ARMv8.2 fp16 instruction. */
15125 do_scalar_fp16_v82_encode ();
15130 do_vfp_nsyn_opcode ("faddd");
15132 do_vfp_nsyn_opcode ("fsubd");
15136 /* Check operand types to see if this is a VFP instruction, and if so call
15140 try_vfp_nsyn (int args
, void (*pfn
) (enum neon_shape
))
15142 enum neon_shape rs
;
15143 struct neon_type_el et
;
15148 rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15149 et
= neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15153 rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15154 et
= neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15155 N_F_ALL
| N_KEY
| N_VFP
);
15162 if (et
.type
!= NT_invtype
)
15173 do_vfp_nsyn_mla_mls (enum neon_shape rs
)
15175 int is_mla
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vmla
;
15177 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15180 do_vfp_nsyn_opcode ("fmacs");
15182 do_vfp_nsyn_opcode ("fnmacs");
15184 /* ARMv8.2 fp16 instruction. */
15186 do_scalar_fp16_v82_encode ();
15191 do_vfp_nsyn_opcode ("fmacd");
15193 do_vfp_nsyn_opcode ("fnmacd");
15198 do_vfp_nsyn_fma_fms (enum neon_shape rs
)
15200 int is_fma
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vfma
;
15202 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15205 do_vfp_nsyn_opcode ("ffmas");
15207 do_vfp_nsyn_opcode ("ffnmas");
15209 /* ARMv8.2 fp16 instruction. */
15211 do_scalar_fp16_v82_encode ();
15216 do_vfp_nsyn_opcode ("ffmad");
15218 do_vfp_nsyn_opcode ("ffnmad");
15223 do_vfp_nsyn_mul (enum neon_shape rs
)
15225 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15227 do_vfp_nsyn_opcode ("fmuls");
15229 /* ARMv8.2 fp16 instruction. */
15231 do_scalar_fp16_v82_encode ();
15234 do_vfp_nsyn_opcode ("fmuld");
15238 do_vfp_nsyn_abs_neg (enum neon_shape rs
)
15240 int is_neg
= (inst
.instruction
& 0x80) != 0;
15241 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_VFP
| N_KEY
);
15243 if (rs
== NS_FF
|| rs
== NS_HH
)
15246 do_vfp_nsyn_opcode ("fnegs");
15248 do_vfp_nsyn_opcode ("fabss");
15250 /* ARMv8.2 fp16 instruction. */
15252 do_scalar_fp16_v82_encode ();
15257 do_vfp_nsyn_opcode ("fnegd");
15259 do_vfp_nsyn_opcode ("fabsd");
15263 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15264 insns belong to Neon, and are handled elsewhere. */
15267 do_vfp_nsyn_ldm_stm (int is_dbmode
)
15269 int is_ldm
= (inst
.instruction
& (1 << 20)) != 0;
15273 do_vfp_nsyn_opcode ("fldmdbs");
15275 do_vfp_nsyn_opcode ("fldmias");
15280 do_vfp_nsyn_opcode ("fstmdbs");
15282 do_vfp_nsyn_opcode ("fstmias");
15287 do_vfp_nsyn_sqrt (void)
15289 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15290 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15292 if (rs
== NS_FF
|| rs
== NS_HH
)
15294 do_vfp_nsyn_opcode ("fsqrts");
15296 /* ARMv8.2 fp16 instruction. */
15298 do_scalar_fp16_v82_encode ();
15301 do_vfp_nsyn_opcode ("fsqrtd");
15305 do_vfp_nsyn_div (void)
15307 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15308 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15309 N_F_ALL
| N_KEY
| N_VFP
);
15311 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15313 do_vfp_nsyn_opcode ("fdivs");
15315 /* ARMv8.2 fp16 instruction. */
15317 do_scalar_fp16_v82_encode ();
15320 do_vfp_nsyn_opcode ("fdivd");
15324 do_vfp_nsyn_nmul (void)
15326 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15327 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15328 N_F_ALL
| N_KEY
| N_VFP
);
15330 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15332 NEON_ENCODE (SINGLE
, inst
);
15333 do_vfp_sp_dyadic ();
15335 /* ARMv8.2 fp16 instruction. */
15337 do_scalar_fp16_v82_encode ();
15341 NEON_ENCODE (DOUBLE
, inst
);
15342 do_vfp_dp_rd_rn_rm ();
15344 do_vfp_cond_or_thumb ();
15348 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15352 neon_logbits (unsigned x
)
15354 return ffs (x
) - 4;
15357 #define LOW4(R) ((R) & 0xf)
15358 #define HI1(R) (((R) >> 4) & 1)
15361 mve_get_vcmp_vpt_cond (struct neon_type_el et
)
15366 first_error (BAD_EL_TYPE
);
15369 switch (inst
.operands
[0].imm
)
15372 first_error (_("invalid condition"));
15394 /* only accept eq and ne. */
15395 if (inst
.operands
[0].imm
> 1)
15397 first_error (_("invalid condition"));
15400 return inst
.operands
[0].imm
;
15402 if (inst
.operands
[0].imm
== 0x2)
15404 else if (inst
.operands
[0].imm
== 0x8)
15408 first_error (_("invalid condition"));
15412 switch (inst
.operands
[0].imm
)
15415 first_error (_("invalid condition"));
15431 /* Should be unreachable. */
15438 /* We are dealing with a vector predicated block. */
15439 if (inst
.operands
[0].present
)
15441 enum neon_shape rs
= neon_select_shape (NS_IQQ
, NS_IQR
, NS_NULL
);
15442 struct neon_type_el et
15443 = neon_check_type (3, rs
, N_EQK
, N_KEY
| N_F_MVE
| N_I_MVE
| N_SU_32
,
15446 unsigned fcond
= mve_get_vcmp_vpt_cond (et
);
15448 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
15450 if (et
.type
== NT_invtype
)
15453 if (et
.type
== NT_float
)
15455 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
15457 constraint (et
.size
!= 16 && et
.size
!= 32, BAD_EL_TYPE
);
15458 inst
.instruction
|= (et
.size
== 16) << 28;
15459 inst
.instruction
|= 0x3 << 20;
15463 constraint (et
.size
!= 8 && et
.size
!= 16 && et
.size
!= 32,
15465 inst
.instruction
|= 1 << 28;
15466 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15469 if (inst
.operands
[2].isquad
)
15471 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15472 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15473 inst
.instruction
|= (fcond
& 0x2) >> 1;
15477 if (inst
.operands
[2].reg
== REG_SP
)
15478 as_tsktsk (MVE_BAD_SP
);
15479 inst
.instruction
|= 1 << 6;
15480 inst
.instruction
|= (fcond
& 0x2) << 4;
15481 inst
.instruction
|= inst
.operands
[2].reg
;
15483 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15484 inst
.instruction
|= (fcond
& 0x4) << 10;
15485 inst
.instruction
|= (fcond
& 0x1) << 7;
15488 set_pred_insn_type (VPT_INSN
);
15490 now_pred
.mask
= ((inst
.instruction
& 0x00400000) >> 19)
15491 | ((inst
.instruction
& 0xe000) >> 13);
15492 now_pred
.warn_deprecated
= FALSE
;
15493 now_pred
.type
= VECTOR_PRED
;
15500 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
15501 if (!inst
.operands
[1].isreg
|| !inst
.operands
[1].isquad
)
15502 first_error (_(reg_expected_msgs
[REG_TYPE_MQ
]));
15503 if (!inst
.operands
[2].present
)
15504 first_error (_("MVE vector or ARM register expected"));
15505 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
15507 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15508 if ((inst
.instruction
& 0xffffffff) == N_MNEM_vcmpe
15509 && inst
.operands
[1].isquad
)
15511 inst
.instruction
= N_MNEM_vcmp
;
15515 if (inst
.cond
> COND_ALWAYS
)
15516 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15518 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15520 enum neon_shape rs
= neon_select_shape (NS_IQQ
, NS_IQR
, NS_NULL
);
15521 struct neon_type_el et
15522 = neon_check_type (3, rs
, N_EQK
, N_KEY
| N_F_MVE
| N_I_MVE
| N_SU_32
,
15525 constraint (rs
== NS_IQR
&& inst
.operands
[2].reg
== REG_PC
15526 && !inst
.operands
[2].iszr
, BAD_PC
);
15528 unsigned fcond
= mve_get_vcmp_vpt_cond (et
);
15530 inst
.instruction
= 0xee010f00;
15531 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15532 inst
.instruction
|= (fcond
& 0x4) << 10;
15533 inst
.instruction
|= (fcond
& 0x1) << 7;
15534 if (et
.type
== NT_float
)
15536 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
15538 inst
.instruction
|= (et
.size
== 16) << 28;
15539 inst
.instruction
|= 0x3 << 20;
15543 inst
.instruction
|= 1 << 28;
15544 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15546 if (inst
.operands
[2].isquad
)
15548 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15549 inst
.instruction
|= (fcond
& 0x2) >> 1;
15550 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15554 if (inst
.operands
[2].reg
== REG_SP
)
15555 as_tsktsk (MVE_BAD_SP
);
15556 inst
.instruction
|= 1 << 6;
15557 inst
.instruction
|= (fcond
& 0x2) << 4;
15558 inst
.instruction
|= inst
.operands
[2].reg
;
15566 do_vfp_nsyn_cmp (void)
15568 enum neon_shape rs
;
15569 if (!inst
.operands
[0].isreg
)
15576 constraint (inst
.operands
[2].present
, BAD_SYNTAX
);
15577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
),
15581 if (inst
.operands
[1].isreg
)
15583 rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15584 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15586 if (rs
== NS_FF
|| rs
== NS_HH
)
15588 NEON_ENCODE (SINGLE
, inst
);
15589 do_vfp_sp_monadic ();
15593 NEON_ENCODE (DOUBLE
, inst
);
15594 do_vfp_dp_rd_rm ();
15599 rs
= neon_select_shape (NS_HI
, NS_FI
, NS_DI
, NS_NULL
);
15600 neon_check_type (2, rs
, N_F_ALL
| N_KEY
| N_VFP
, N_EQK
);
15602 switch (inst
.instruction
& 0x0fffffff)
15605 inst
.instruction
+= N_MNEM_vcmpz
- N_MNEM_vcmp
;
15608 inst
.instruction
+= N_MNEM_vcmpez
- N_MNEM_vcmpe
;
15614 if (rs
== NS_FI
|| rs
== NS_HI
)
15616 NEON_ENCODE (SINGLE
, inst
);
15617 do_vfp_sp_compare_z ();
15621 NEON_ENCODE (DOUBLE
, inst
);
15625 do_vfp_cond_or_thumb ();
15627 /* ARMv8.2 fp16 instruction. */
15628 if (rs
== NS_HI
|| rs
== NS_HH
)
15629 do_scalar_fp16_v82_encode ();
15633 nsyn_insert_sp (void)
15635 inst
.operands
[1] = inst
.operands
[0];
15636 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
15637 inst
.operands
[0].reg
= REG_SP
;
15638 inst
.operands
[0].isreg
= 1;
15639 inst
.operands
[0].writeback
= 1;
15640 inst
.operands
[0].present
= 1;
15644 do_vfp_nsyn_push (void)
15648 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
15649 _("register list must contain at least 1 and at most 16 "
15652 if (inst
.operands
[1].issingle
)
15653 do_vfp_nsyn_opcode ("fstmdbs");
15655 do_vfp_nsyn_opcode ("fstmdbd");
15659 do_vfp_nsyn_pop (void)
15663 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
15664 _("register list must contain at least 1 and at most 16 "
15667 if (inst
.operands
[1].issingle
)
15668 do_vfp_nsyn_opcode ("fldmias");
15670 do_vfp_nsyn_opcode ("fldmiad");
15673 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15674 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15677 neon_dp_fixup (struct arm_it
* insn
)
15679 unsigned int i
= insn
->instruction
;
15684 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15695 insn
->instruction
= i
;
15699 mve_encode_qqr (int size
, int fp
)
15701 if (inst
.operands
[2].reg
== REG_SP
)
15702 as_tsktsk (MVE_BAD_SP
);
15703 else if (inst
.operands
[2].reg
== REG_PC
)
15704 as_tsktsk (MVE_BAD_PC
);
15709 if (((unsigned)inst
.instruction
) == 0xd00)
15710 inst
.instruction
= 0xee300f40;
15712 else if (((unsigned)inst
.instruction
) == 0x200d00)
15713 inst
.instruction
= 0xee301f40;
15715 /* Setting size which is 1 for F16 and 0 for F32. */
15716 inst
.instruction
|= (size
== 16) << 28;
15721 if (((unsigned)inst
.instruction
) == 0x800)
15722 inst
.instruction
= 0xee010f40;
15724 else if (((unsigned)inst
.instruction
) == 0x1000800)
15725 inst
.instruction
= 0xee011f40;
15726 /* Setting bits for size. */
15727 inst
.instruction
|= neon_logbits (size
) << 20;
15729 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15730 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15731 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15732 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15733 inst
.instruction
|= inst
.operands
[2].reg
;
15738 mve_encode_rqq (unsigned bit28
, unsigned size
)
15740 inst
.instruction
|= bit28
<< 28;
15741 inst
.instruction
|= neon_logbits (size
) << 20;
15742 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15743 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
15744 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15745 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15746 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15751 mve_encode_qqq (int ubit
, int size
)
15754 inst
.instruction
|= (ubit
!= 0) << 28;
15755 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15756 inst
.instruction
|= neon_logbits (size
) << 20;
15757 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15758 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15759 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15760 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15761 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15767 /* Encode insns with bit pattern:
15769 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15770 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
15772 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15773 different meaning for some instruction. */
15776 neon_three_same (int isquad
, int ubit
, int size
)
15778 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15779 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15780 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15781 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15782 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15783 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15784 inst
.instruction
|= (isquad
!= 0) << 6;
15785 inst
.instruction
|= (ubit
!= 0) << 24;
15787 inst
.instruction
|= neon_logbits (size
) << 20;
15789 neon_dp_fixup (&inst
);
15792 /* Encode instructions of the form:
15794 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15795 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
15797 Don't write size if SIZE == -1. */
15800 neon_two_same (int qbit
, int ubit
, int size
)
15802 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15803 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15804 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
15805 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
15806 inst
.instruction
|= (qbit
!= 0) << 6;
15807 inst
.instruction
|= (ubit
!= 0) << 24;
15810 inst
.instruction
|= neon_logbits (size
) << 18;
15812 neon_dp_fixup (&inst
);
15815 /* Neon instruction encoders, in approximate order of appearance. */
15818 do_neon_dyadic_i_su (void)
15820 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15821 struct neon_type_el et
= neon_check_type (3, rs
,
15822 N_EQK
, N_EQK
, N_SU_32
| N_KEY
);
15823 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
15827 do_neon_dyadic_i64_su (void)
15829 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15830 struct neon_type_el et
= neon_check_type (3, rs
,
15831 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
15832 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
15836 neon_imm_shift (int write_ubit
, int uval
, int isquad
, struct neon_type_el et
,
15839 unsigned size
= et
.size
>> 3;
15840 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15841 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15842 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
15843 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
15844 inst
.instruction
|= (isquad
!= 0) << 6;
15845 inst
.instruction
|= immbits
<< 16;
15846 inst
.instruction
|= (size
>> 3) << 7;
15847 inst
.instruction
|= (size
& 0x7) << 19;
15849 inst
.instruction
|= (uval
!= 0) << 24;
15851 neon_dp_fixup (&inst
);
15855 do_neon_shl_imm (void)
15857 if (!inst
.operands
[2].isreg
)
15859 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
15860 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_ALL
);
15861 int imm
= inst
.operands
[2].imm
;
15863 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
15864 _("immediate out of range for shift"));
15865 NEON_ENCODE (IMMED
, inst
);
15866 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
15870 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15871 struct neon_type_el et
= neon_check_type (3, rs
,
15872 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
15875 /* VSHL/VQSHL 3-register variants have syntax such as:
15877 whereas other 3-register operations encoded by neon_three_same have
15880 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
15882 tmp
= inst
.operands
[2].reg
;
15883 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
15884 inst
.operands
[1].reg
= tmp
;
15885 NEON_ENCODE (INTEGER
, inst
);
15886 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
15891 do_neon_qshl_imm (void)
15893 if (!inst
.operands
[2].isreg
)
15895 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
15896 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
15897 int imm
= inst
.operands
[2].imm
;
15899 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
15900 _("immediate out of range for shift"));
15901 NEON_ENCODE (IMMED
, inst
);
15902 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
, imm
);
15906 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15907 struct neon_type_el et
= neon_check_type (3, rs
,
15908 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
15911 /* See note in do_neon_shl_imm. */
15912 tmp
= inst
.operands
[2].reg
;
15913 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
15914 inst
.operands
[1].reg
= tmp
;
15915 NEON_ENCODE (INTEGER
, inst
);
15916 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
15921 do_neon_rshl (void)
15923 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15924 struct neon_type_el et
= neon_check_type (3, rs
,
15925 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
15928 tmp
= inst
.operands
[2].reg
;
15929 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
15930 inst
.operands
[1].reg
= tmp
;
15931 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
15935 neon_cmode_for_logic_imm (unsigned immediate
, unsigned *immbits
, int size
)
15937 /* Handle .I8 pseudo-instructions. */
15940 /* Unfortunately, this will make everything apart from zero out-of-range.
15941 FIXME is this the intended semantics? There doesn't seem much point in
15942 accepting .I8 if so. */
15943 immediate
|= immediate
<< 8;
15949 if (immediate
== (immediate
& 0x000000ff))
15951 *immbits
= immediate
;
15954 else if (immediate
== (immediate
& 0x0000ff00))
15956 *immbits
= immediate
>> 8;
15959 else if (immediate
== (immediate
& 0x00ff0000))
15961 *immbits
= immediate
>> 16;
15964 else if (immediate
== (immediate
& 0xff000000))
15966 *immbits
= immediate
>> 24;
15969 if ((immediate
& 0xffff) != (immediate
>> 16))
15970 goto bad_immediate
;
15971 immediate
&= 0xffff;
15974 if (immediate
== (immediate
& 0x000000ff))
15976 *immbits
= immediate
;
15979 else if (immediate
== (immediate
& 0x0000ff00))
15981 *immbits
= immediate
>> 8;
15986 first_error (_("immediate value out of range"));
15991 do_neon_logic (void)
15993 if (inst
.operands
[2].present
&& inst
.operands
[2].isreg
)
15995 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15996 neon_check_type (3, rs
, N_IGNORE_TYPE
);
15997 /* U bit and size field were set as part of the bitmask. */
15998 NEON_ENCODE (INTEGER
, inst
);
15999 neon_three_same (neon_quad (rs
), 0, -1);
16003 const int three_ops_form
= (inst
.operands
[2].present
16004 && !inst
.operands
[2].isreg
);
16005 const int immoperand
= (three_ops_form
? 2 : 1);
16006 enum neon_shape rs
= (three_ops_form
16007 ? neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
)
16008 : neon_select_shape (NS_DI
, NS_QI
, NS_NULL
));
16009 struct neon_type_el et
= neon_check_type (2, rs
,
16010 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
16011 enum neon_opc opcode
= (enum neon_opc
) inst
.instruction
& 0x0fffffff;
16015 if (et
.type
== NT_invtype
)
16018 if (three_ops_form
)
16019 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
16020 _("first and second operands shall be the same register"));
16022 NEON_ENCODE (IMMED
, inst
);
16024 immbits
= inst
.operands
[immoperand
].imm
;
16027 /* .i64 is a pseudo-op, so the immediate must be a repeating
16029 if (immbits
!= (inst
.operands
[immoperand
].regisimm
?
16030 inst
.operands
[immoperand
].reg
: 0))
16032 /* Set immbits to an invalid constant. */
16033 immbits
= 0xdeadbeef;
16040 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16044 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16048 /* Pseudo-instruction for VBIC. */
16049 neon_invert_size (&immbits
, 0, et
.size
);
16050 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16054 /* Pseudo-instruction for VORR. */
16055 neon_invert_size (&immbits
, 0, et
.size
);
16056 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16066 inst
.instruction
|= neon_quad (rs
) << 6;
16067 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16068 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16069 inst
.instruction
|= cmode
<< 8;
16070 neon_write_immbits (immbits
);
16072 neon_dp_fixup (&inst
);
16077 do_neon_bitfield (void)
16079 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16080 neon_check_type (3, rs
, N_IGNORE_TYPE
);
16081 neon_three_same (neon_quad (rs
), 0, -1);
16085 neon_dyadic_misc (enum neon_el_type ubit_meaning
, unsigned types
,
16088 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16089 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
| destbits
, N_EQK
,
16091 if (et
.type
== NT_float
)
16093 NEON_ENCODE (FLOAT
, inst
);
16095 mve_encode_qqr (et
.size
, 1);
16097 neon_three_same (neon_quad (rs
), 0, et
.size
== 16 ? (int) et
.size
: -1);
16101 NEON_ENCODE (INTEGER
, inst
);
16103 mve_encode_qqr (et
.size
, 0);
16105 neon_three_same (neon_quad (rs
), et
.type
== ubit_meaning
, et
.size
);
16111 do_neon_dyadic_if_su_d (void)
16113 /* This version only allow D registers, but that constraint is enforced during
16114 operand parsing so we don't need to do anything extra here. */
16115 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
16119 do_neon_dyadic_if_i_d (void)
16121 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16122 affected if we specify unsigned args. */
16123 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
16126 enum vfp_or_neon_is_neon_bits
16129 NEON_CHECK_ARCH
= 2,
16130 NEON_CHECK_ARCH8
= 4
16133 /* Call this function if an instruction which may have belonged to the VFP or
16134 Neon instruction sets, but turned out to be a Neon instruction (due to the
16135 operand types involved, etc.). We have to check and/or fix-up a couple of
16138 - Make sure the user hasn't attempted to make a Neon instruction
16140 - Alter the value in the condition code field if necessary.
16141 - Make sure that the arch supports Neon instructions.
16143 Which of these operations take place depends on bits from enum
16144 vfp_or_neon_is_neon_bits.
16146 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16147 current instruction's condition is COND_ALWAYS, the condition field is
16148 changed to inst.uncond_value. This is necessary because instructions shared
16149 between VFP and Neon may be conditional for the VFP variants only, and the
16150 unconditional Neon version must have, e.g., 0xF in the condition field. */
16153 vfp_or_neon_is_neon (unsigned check
)
16155 /* Conditions are always legal in Thumb mode (IT blocks). */
16156 if (!thumb_mode
&& (check
& NEON_CHECK_CC
))
16158 if (inst
.cond
!= COND_ALWAYS
)
16160 first_error (_(BAD_COND
));
16163 if (inst
.uncond_value
!= -1)
16164 inst
.instruction
|= inst
.uncond_value
<< 28;
16168 if (((check
& NEON_CHECK_ARCH
) && !mark_feature_used (&fpu_neon_ext_v1
))
16169 || ((check
& NEON_CHECK_ARCH8
)
16170 && !mark_feature_used (&fpu_neon_ext_armv8
)))
16172 first_error (_(BAD_FPU
));
16180 check_simd_pred_availability (int fp
, unsigned check
)
16182 if (inst
.cond
> COND_ALWAYS
)
16184 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16186 inst
.error
= BAD_FPU
;
16189 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16191 else if (inst
.cond
< COND_ALWAYS
)
16193 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16194 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16195 else if (vfp_or_neon_is_neon (check
) == FAIL
)
16200 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fp
? mve_fp_ext
: mve_ext
)
16201 && vfp_or_neon_is_neon (check
) == FAIL
)
16204 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16205 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16211 do_mve_vstr_vldr_QI (int size
, int elsize
, int load
)
16213 constraint (size
< 32, BAD_ADDR_MODE
);
16214 constraint (size
!= elsize
, BAD_EL_TYPE
);
16215 constraint (inst
.operands
[1].immisreg
, BAD_ADDR_MODE
);
16216 constraint (!inst
.operands
[1].preind
, BAD_ADDR_MODE
);
16217 constraint (load
&& inst
.operands
[0].reg
== inst
.operands
[1].reg
,
16218 _("destination register and offset register may not be the"
16221 int imm
= inst
.relocs
[0].exp
.X_add_number
;
16228 constraint ((imm
% (size
/ 8) != 0)
16229 || imm
> (0x7f << neon_logbits (size
)),
16230 (size
== 32) ? _("immediate must be a multiple of 4 in the"
16231 " range of +/-[0,508]")
16232 : _("immediate must be a multiple of 8 in the"
16233 " range of +/-[0,1016]"));
16234 inst
.instruction
|= 0x11 << 24;
16235 inst
.instruction
|= add
<< 23;
16236 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16237 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16238 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16239 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16240 inst
.instruction
|= 1 << 12;
16241 inst
.instruction
|= (size
== 64) << 8;
16242 inst
.instruction
&= 0xffffff00;
16243 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16244 inst
.instruction
|= imm
>> neon_logbits (size
);
16248 do_mve_vstr_vldr_RQ (int size
, int elsize
, int load
)
16250 unsigned os
= inst
.operands
[1].imm
>> 5;
16251 constraint (os
!= 0 && size
== 8,
16252 _("can not shift offsets when accessing less than half-word"));
16253 constraint (os
&& os
!= neon_logbits (size
),
16254 _("shift immediate must be 1, 2 or 3 for half-word, word"
16255 " or double-word accesses respectively"));
16256 if (inst
.operands
[1].reg
== REG_PC
)
16257 as_tsktsk (MVE_BAD_PC
);
16262 constraint (elsize
>= 64, BAD_EL_TYPE
);
16265 constraint (elsize
< 16 || elsize
>= 64, BAD_EL_TYPE
);
16269 constraint (elsize
!= size
, BAD_EL_TYPE
);
16274 constraint (inst
.operands
[1].writeback
|| !inst
.operands
[1].preind
,
16278 constraint (inst
.operands
[0].reg
== (inst
.operands
[1].imm
& 0x1f),
16279 _("destination register and offset register may not be"
16281 constraint (size
== elsize
&& inst
.vectype
.el
[0].type
!= NT_unsigned
,
16283 constraint (inst
.vectype
.el
[0].type
!= NT_unsigned
16284 && inst
.vectype
.el
[0].type
!= NT_signed
, BAD_EL_TYPE
);
16285 inst
.instruction
|= (inst
.vectype
.el
[0].type
== NT_unsigned
) << 28;
16289 constraint (inst
.vectype
.el
[0].type
!= NT_untyped
, BAD_EL_TYPE
);
16292 inst
.instruction
|= 1 << 23;
16293 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16294 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16295 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16296 inst
.instruction
|= neon_logbits (elsize
) << 7;
16297 inst
.instruction
|= HI1 (inst
.operands
[1].imm
) << 5;
16298 inst
.instruction
|= LOW4 (inst
.operands
[1].imm
);
16299 inst
.instruction
|= !!os
;
16303 do_mve_vstr_vldr_RI (int size
, int elsize
, int load
)
16305 enum neon_el_type type
= inst
.vectype
.el
[0].type
;
16307 constraint (size
>= 64, BAD_ADDR_MODE
);
16311 constraint (elsize
< 16 || elsize
>= 64, BAD_EL_TYPE
);
16314 constraint (elsize
!= size
, BAD_EL_TYPE
);
16321 constraint (elsize
!= size
&& type
!= NT_unsigned
16322 && type
!= NT_signed
, BAD_EL_TYPE
);
16326 constraint (elsize
!= size
&& type
!= NT_untyped
, BAD_EL_TYPE
);
16329 int imm
= inst
.relocs
[0].exp
.X_add_number
;
16337 if ((imm
% (size
/ 8) != 0) || imm
> (0x7f << neon_logbits (size
)))
16342 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16345 constraint (1, _("immediate must be a multiple of 2 in the"
16346 " range of +/-[0,254]"));
16349 constraint (1, _("immediate must be a multiple of 4 in the"
16350 " range of +/-[0,508]"));
16355 if (size
!= elsize
)
16357 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
16358 constraint (inst
.operands
[0].reg
> 14,
16359 _("MVE vector register in the range [Q0..Q7] expected"));
16360 inst
.instruction
|= (load
&& type
== NT_unsigned
) << 28;
16361 inst
.instruction
|= (size
== 16) << 19;
16362 inst
.instruction
|= neon_logbits (elsize
) << 7;
16366 if (inst
.operands
[1].reg
== REG_PC
)
16367 as_tsktsk (MVE_BAD_PC
);
16368 else if (inst
.operands
[1].reg
== REG_SP
&& inst
.operands
[1].writeback
)
16369 as_tsktsk (MVE_BAD_SP
);
16370 inst
.instruction
|= 1 << 12;
16371 inst
.instruction
|= neon_logbits (size
) << 7;
16373 inst
.instruction
|= inst
.operands
[1].preind
<< 24;
16374 inst
.instruction
|= add
<< 23;
16375 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16376 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16377 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16378 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16379 inst
.instruction
&= 0xffffff80;
16380 inst
.instruction
|= imm
>> neon_logbits (size
);
16385 do_mve_vstr_vldr (void)
16390 if (inst
.cond
> COND_ALWAYS
)
16391 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16393 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16395 switch (inst
.instruction
)
16402 /* fall through. */
16408 /* fall through. */
16414 /* fall through. */
16420 /* fall through. */
16425 unsigned elsize
= inst
.vectype
.el
[0].size
;
16427 if (inst
.operands
[1].isquad
)
16429 /* We are dealing with [Q, imm]{!} cases. */
16430 do_mve_vstr_vldr_QI (size
, elsize
, load
);
16434 if (inst
.operands
[1].immisreg
== 2)
16436 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16437 do_mve_vstr_vldr_RQ (size
, elsize
, load
);
16439 else if (!inst
.operands
[1].immisreg
)
16441 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16442 do_mve_vstr_vldr_RI (size
, elsize
, load
);
16445 constraint (1, BAD_ADDR_MODE
);
16452 do_mve_vst_vld (void)
16454 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16457 constraint (!inst
.operands
[1].preind
|| inst
.relocs
[0].exp
.X_add_symbol
!= 0
16458 || inst
.relocs
[0].exp
.X_add_number
!= 0
16459 || inst
.operands
[1].immisreg
!= 0,
16461 constraint (inst
.vectype
.el
[0].size
> 32, BAD_EL_TYPE
);
16462 if (inst
.operands
[1].reg
== REG_PC
)
16463 as_tsktsk (MVE_BAD_PC
);
16464 else if (inst
.operands
[1].reg
== REG_SP
&& inst
.operands
[1].writeback
)
16465 as_tsktsk (MVE_BAD_SP
);
16468 /* These instructions are one of the "exceptions" mentioned in
16469 handle_pred_state. They are MVE instructions that are not VPT compatible
16470 and do not accept a VPT code, thus appending such a code is a syntax
16472 if (inst
.cond
> COND_ALWAYS
)
16473 first_error (BAD_SYNTAX
);
16474 /* If we append a scalar condition code we can set this to
16475 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16476 else if (inst
.cond
< COND_ALWAYS
)
16477 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16479 inst
.pred_insn_type
= MVE_UNPREDICABLE_INSN
;
16481 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16482 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16483 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16484 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16485 inst
.instruction
|= neon_logbits (inst
.vectype
.el
[0].size
) << 7;
16490 do_neon_dyadic_if_su (void)
16492 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16493 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
16496 if (check_simd_pred_availability (et
.type
== NT_float
,
16497 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16500 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
16504 do_neon_addsub_if_i (void)
16506 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
16507 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub
) == SUCCESS
)
16510 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16511 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
,
16512 N_EQK
, N_IF_32
| N_I64
| N_KEY
);
16514 constraint (rs
== NS_QQR
&& et
.size
== 64, BAD_FPU
);
16515 /* If we are parsing Q registers and the element types match MVE, which NEON
16516 also supports, then we must check whether this is an instruction that can
16517 be used by both MVE/NEON. This distinction can be made based on whether
16518 they are predicated or not. */
16519 if ((rs
== NS_QQQ
|| rs
== NS_QQR
) && et
.size
!= 64)
16521 if (check_simd_pred_availability (et
.type
== NT_float
,
16522 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16527 /* If they are either in a D register or are using an unsupported. */
16529 && vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
16533 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16534 affected if we specify unsigned args. */
16535 neon_dyadic_misc (NT_untyped
, N_IF_32
| N_I64
, 0);
16538 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16540 V<op> A,B (A is operand 0, B is operand 2)
16545 so handle that case specially. */
16548 neon_exchange_operands (void)
16550 if (inst
.operands
[1].present
)
16552 void *scratch
= xmalloc (sizeof (inst
.operands
[0]));
16554 /* Swap operands[1] and operands[2]. */
16555 memcpy (scratch
, &inst
.operands
[1], sizeof (inst
.operands
[0]));
16556 inst
.operands
[1] = inst
.operands
[2];
16557 memcpy (&inst
.operands
[2], scratch
, sizeof (inst
.operands
[0]));
16562 inst
.operands
[1] = inst
.operands
[2];
16563 inst
.operands
[2] = inst
.operands
[0];
16568 neon_compare (unsigned regtypes
, unsigned immtypes
, int invert
)
16570 if (inst
.operands
[2].isreg
)
16573 neon_exchange_operands ();
16574 neon_dyadic_misc (NT_unsigned
, regtypes
, N_SIZ
);
16578 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
16579 struct neon_type_el et
= neon_check_type (2, rs
,
16580 N_EQK
| N_SIZ
, immtypes
| N_KEY
);
16582 NEON_ENCODE (IMMED
, inst
);
16583 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16584 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16585 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16586 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16587 inst
.instruction
|= neon_quad (rs
) << 6;
16588 inst
.instruction
|= (et
.type
== NT_float
) << 10;
16589 inst
.instruction
|= neon_logbits (et
.size
) << 18;
16591 neon_dp_fixup (&inst
);
16598 neon_compare (N_SUF_32
, N_S_32
| N_F_16_32
, FALSE
);
16602 do_neon_cmp_inv (void)
16604 neon_compare (N_SUF_32
, N_S_32
| N_F_16_32
, TRUE
);
16610 neon_compare (N_IF_32
, N_IF_32
, FALSE
);
16613 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
16614 scalars, which are encoded in 5 bits, M : Rm.
16615 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16616 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
16619 Dot Product instructions are similar to multiply instructions except elsize
16620 should always be 32.
16622 This function translates SCALAR, which is GAS's internal encoding of indexed
16623 scalar register, to raw encoding. There is also register and index range
16624 check based on ELSIZE. */
16627 neon_scalar_for_mul (unsigned scalar
, unsigned elsize
)
16629 unsigned regno
= NEON_SCALAR_REG (scalar
);
16630 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
16635 if (regno
> 7 || elno
> 3)
16637 return regno
| (elno
<< 3);
16640 if (regno
> 15 || elno
> 1)
16642 return regno
| (elno
<< 4);
16646 first_error (_("scalar out of range for multiply instruction"));
16652 /* Encode multiply / multiply-accumulate scalar instructions. */
16655 neon_mul_mac (struct neon_type_el et
, int ubit
)
16659 /* Give a more helpful error message if we have an invalid type. */
16660 if (et
.type
== NT_invtype
)
16663 scalar
= neon_scalar_for_mul (inst
.operands
[2].reg
, et
.size
);
16664 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16665 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16666 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16667 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16668 inst
.instruction
|= LOW4 (scalar
);
16669 inst
.instruction
|= HI1 (scalar
) << 5;
16670 inst
.instruction
|= (et
.type
== NT_float
) << 8;
16671 inst
.instruction
|= neon_logbits (et
.size
) << 20;
16672 inst
.instruction
|= (ubit
!= 0) << 24;
16674 neon_dp_fixup (&inst
);
16678 do_neon_mac_maybe_scalar (void)
16680 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls
) == SUCCESS
)
16683 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
16686 if (inst
.operands
[2].isscalar
)
16688 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
16689 struct neon_type_el et
= neon_check_type (3, rs
,
16690 N_EQK
, N_EQK
, N_I16
| N_I32
| N_F_16_32
| N_KEY
);
16691 NEON_ENCODE (SCALAR
, inst
);
16692 neon_mul_mac (et
, neon_quad (rs
));
16696 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16697 affected if we specify unsigned args. */
16698 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
16703 do_neon_fmac (void)
16705 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms
) == SUCCESS
)
16708 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
16711 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
16717 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16718 struct neon_type_el et
= neon_check_type (3, rs
,
16719 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
16720 neon_three_same (neon_quad (rs
), 0, et
.size
);
16723 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
16724 same types as the MAC equivalents. The polynomial type for this instruction
16725 is encoded the same as the integer type. */
16730 if (try_vfp_nsyn (3, do_vfp_nsyn_mul
) == SUCCESS
)
16733 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
16736 if (inst
.operands
[2].isscalar
)
16737 do_neon_mac_maybe_scalar ();
16739 neon_dyadic_misc (NT_poly
, N_I8
| N_I16
| N_I32
| N_F16
| N_F32
| N_P8
, 0);
16743 do_neon_qdmulh (void)
16745 if (inst
.operands
[2].isscalar
)
16747 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
16748 struct neon_type_el et
= neon_check_type (3, rs
,
16749 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
16750 NEON_ENCODE (SCALAR
, inst
);
16751 neon_mul_mac (et
, neon_quad (rs
));
16755 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16756 struct neon_type_el et
= neon_check_type (3, rs
,
16757 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
16758 NEON_ENCODE (INTEGER
, inst
);
16759 /* The U bit (rounding) comes from bit mask. */
16760 neon_three_same (neon_quad (rs
), 0, et
.size
);
16767 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
16768 struct neon_type_el et
16769 = neon_check_type (3, rs
, N_KEY
| N_I32
, N_EQK
, N_EQK
);
16771 if (et
.type
== NT_invtype
)
16772 first_error (BAD_EL_TYPE
);
16774 if (inst
.cond
> COND_ALWAYS
)
16775 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16777 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16779 mve_encode_qqq (0, 64);
16783 do_mve_vbrsr (void)
16785 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
16786 struct neon_type_el et
16787 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
16789 if (inst
.cond
> COND_ALWAYS
)
16790 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16792 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16794 mve_encode_qqr (et
.size
, 0);
16800 neon_check_type (3, NS_QQQ
, N_EQK
, N_EQK
, N_I32
| N_KEY
);
16802 if (inst
.cond
> COND_ALWAYS
)
16803 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16805 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16807 mve_encode_qqq (1, 64);
16811 do_mve_vmull (void)
16814 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_DDS
,
16815 NS_QQS
, NS_QQQ
, NS_QQR
, NS_NULL
);
16816 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
16817 && inst
.cond
== COND_ALWAYS
16818 && ((unsigned)inst
.instruction
) == M_MNEM_vmullt
)
16823 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
16824 N_SUF_32
| N_F64
| N_P8
16825 | N_P16
| N_I_MVE
| N_KEY
);
16826 if (((et
.type
== NT_poly
) && et
.size
== 8
16827 && ARM_CPU_IS_ANY (cpu_variant
))
16828 || (et
.type
== NT_integer
) || (et
.type
== NT_float
))
16835 constraint (rs
!= NS_QQQ
, BAD_FPU
);
16836 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
16837 N_SU_32
| N_P8
| N_P16
| N_KEY
);
16839 /* We are dealing with MVE's vmullt. */
16841 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
16842 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
16843 as_tsktsk (BAD_MVE_SRCDEST
);
16845 if (inst
.cond
> COND_ALWAYS
)
16846 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16848 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16850 if (et
.type
== NT_poly
)
16851 mve_encode_qqq (neon_logbits (et
.size
), 64);
16853 mve_encode_qqq (et
.type
== NT_unsigned
, et
.size
);
16858 inst
.instruction
= N_MNEM_vmul
;
16861 inst
.pred_insn_type
= INSIDE_IT_INSN
;
16866 do_mve_vabav (void)
16868 enum neon_shape rs
= neon_select_shape (NS_RQQ
, NS_NULL
);
16873 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16876 struct neon_type_el et
= neon_check_type (2, NS_NULL
, N_EQK
, N_KEY
| N_S8
16877 | N_S16
| N_S32
| N_U8
| N_U16
16880 if (inst
.cond
> COND_ALWAYS
)
16881 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16883 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16885 mve_encode_rqq (et
.type
== NT_unsigned
, et
.size
);
16889 do_mve_vmladav (void)
16891 enum neon_shape rs
= neon_select_shape (NS_RQQ
, NS_NULL
);
16892 struct neon_type_el et
= neon_check_type (3, rs
,
16893 N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
16895 if (et
.type
== NT_unsigned
16896 && (inst
.instruction
== M_MNEM_vmladavx
16897 || inst
.instruction
== M_MNEM_vmladavax
16898 || inst
.instruction
== M_MNEM_vmlsdav
16899 || inst
.instruction
== M_MNEM_vmlsdava
16900 || inst
.instruction
== M_MNEM_vmlsdavx
16901 || inst
.instruction
== M_MNEM_vmlsdavax
))
16902 first_error (BAD_SIMD_TYPE
);
16904 constraint (inst
.operands
[2].reg
> 14,
16905 _("MVE vector register in the range [Q0..Q7] expected"));
16907 if (inst
.cond
> COND_ALWAYS
)
16908 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16910 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16912 if (inst
.instruction
== M_MNEM_vmlsdav
16913 || inst
.instruction
== M_MNEM_vmlsdava
16914 || inst
.instruction
== M_MNEM_vmlsdavx
16915 || inst
.instruction
== M_MNEM_vmlsdavax
)
16916 inst
.instruction
|= (et
.size
== 8) << 28;
16918 inst
.instruction
|= (et
.size
== 8) << 8;
16920 mve_encode_rqq (et
.type
== NT_unsigned
, 64);
16921 inst
.instruction
|= (et
.size
== 32) << 16;
16925 do_neon_qrdmlah (void)
16927 /* Check we're on the correct architecture. */
16928 if (!mark_feature_used (&fpu_neon_ext_armv8
))
16930 _("instruction form not available on this architecture.");
16931 else if (!mark_feature_used (&fpu_neon_ext_v8_1
))
16933 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
16934 record_feature_use (&fpu_neon_ext_v8_1
);
16937 if (inst
.operands
[2].isscalar
)
16939 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
16940 struct neon_type_el et
= neon_check_type (3, rs
,
16941 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
16942 NEON_ENCODE (SCALAR
, inst
);
16943 neon_mul_mac (et
, neon_quad (rs
));
16947 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16948 struct neon_type_el et
= neon_check_type (3, rs
,
16949 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
16950 NEON_ENCODE (INTEGER
, inst
);
16951 /* The U bit (rounding) comes from bit mask. */
16952 neon_three_same (neon_quad (rs
), 0, et
.size
);
16957 do_neon_fcmp_absolute (void)
16959 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16960 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
16961 N_F_16_32
| N_KEY
);
16962 /* Size field comes from bit mask. */
16963 neon_three_same (neon_quad (rs
), 1, et
.size
== 16 ? (int) et
.size
: -1);
16967 do_neon_fcmp_absolute_inv (void)
16969 neon_exchange_operands ();
16970 do_neon_fcmp_absolute ();
16974 do_neon_step (void)
16976 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16977 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
16978 N_F_16_32
| N_KEY
);
16979 neon_three_same (neon_quad (rs
), 0, et
.size
== 16 ? (int) et
.size
: -1);
16983 do_neon_abs_neg (void)
16985 enum neon_shape rs
;
16986 struct neon_type_el et
;
16988 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg
) == SUCCESS
)
16991 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
16992 et
= neon_check_type (2, rs
, N_EQK
, N_S_32
| N_F_16_32
| N_KEY
);
16994 if (check_simd_pred_availability (et
.type
== NT_float
,
16995 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16998 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16999 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17000 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17001 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17002 inst
.instruction
|= neon_quad (rs
) << 6;
17003 inst
.instruction
|= (et
.type
== NT_float
) << 10;
17004 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17006 neon_dp_fixup (&inst
);
17012 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17013 struct neon_type_el et
= neon_check_type (2, rs
,
17014 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
17015 int imm
= inst
.operands
[2].imm
;
17016 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
17017 _("immediate out of range for insert"));
17018 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
17024 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17025 struct neon_type_el et
= neon_check_type (2, rs
,
17026 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
17027 int imm
= inst
.operands
[2].imm
;
17028 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17029 _("immediate out of range for insert"));
17030 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, et
.size
- imm
);
17034 do_neon_qshlu_imm (void)
17036 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17037 struct neon_type_el et
= neon_check_type (2, rs
,
17038 N_EQK
| N_UNS
, N_S8
| N_S16
| N_S32
| N_S64
| N_KEY
);
17039 int imm
= inst
.operands
[2].imm
;
17040 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
17041 _("immediate out of range for shift"));
17042 /* Only encodes the 'U present' variant of the instruction.
17043 In this case, signed types have OP (bit 8) set to 0.
17044 Unsigned types have OP set to 1. */
17045 inst
.instruction
|= (et
.type
== NT_unsigned
) << 8;
17046 /* The rest of the bits are the same as other immediate shifts. */
17047 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
17051 do_neon_qmovn (void)
17053 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17054 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
17055 /* Saturating move where operands can be signed or unsigned, and the
17056 destination has the same signedness. */
17057 NEON_ENCODE (INTEGER
, inst
);
17058 if (et
.type
== NT_unsigned
)
17059 inst
.instruction
|= 0xc0;
17061 inst
.instruction
|= 0x80;
17062 neon_two_same (0, 1, et
.size
/ 2);
17066 do_neon_qmovun (void)
17068 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17069 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
17070 /* Saturating move with unsigned results. Operands must be signed. */
17071 NEON_ENCODE (INTEGER
, inst
);
17072 neon_two_same (0, 1, et
.size
/ 2);
17076 do_neon_rshift_sat_narrow (void)
17078 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17079 or unsigned. If operands are unsigned, results must also be unsigned. */
17080 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17081 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
17082 int imm
= inst
.operands
[2].imm
;
17083 /* This gets the bounds check, size encoding and immediate bits calculation
17087 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17088 VQMOVN.I<size> <Dd>, <Qm>. */
17091 inst
.operands
[2].present
= 0;
17092 inst
.instruction
= N_MNEM_vqmovn
;
17097 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17098 _("immediate out of range"));
17099 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, et
.size
- imm
);
17103 do_neon_rshift_sat_narrow_u (void)
17105 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17106 or unsigned. If operands are unsigned, results must also be unsigned. */
17107 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17108 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
17109 int imm
= inst
.operands
[2].imm
;
17110 /* This gets the bounds check, size encoding and immediate bits calculation
17114 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17115 VQMOVUN.I<size> <Dd>, <Qm>. */
17118 inst
.operands
[2].present
= 0;
17119 inst
.instruction
= N_MNEM_vqmovun
;
17124 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17125 _("immediate out of range"));
17126 /* FIXME: The manual is kind of unclear about what value U should have in
17127 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17129 neon_imm_shift (TRUE
, 1, 0, et
, et
.size
- imm
);
17133 do_neon_movn (void)
17135 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17136 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
17137 NEON_ENCODE (INTEGER
, inst
);
17138 neon_two_same (0, 1, et
.size
/ 2);
17142 do_neon_rshift_narrow (void)
17144 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17145 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
17146 int imm
= inst
.operands
[2].imm
;
17147 /* This gets the bounds check, size encoding and immediate bits calculation
17151 /* If immediate is zero then we are a pseudo-instruction for
17152 VMOVN.I<size> <Dd>, <Qm> */
17155 inst
.operands
[2].present
= 0;
17156 inst
.instruction
= N_MNEM_vmovn
;
17161 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17162 _("immediate out of range for narrowing operation"));
17163 neon_imm_shift (FALSE
, 0, 0, et
, et
.size
- imm
);
17167 do_neon_shll (void)
17169 /* FIXME: Type checking when lengthening. */
17170 struct neon_type_el et
= neon_check_type (2, NS_QDI
,
17171 N_EQK
| N_DBL
, N_I8
| N_I16
| N_I32
| N_KEY
);
17172 unsigned imm
= inst
.operands
[2].imm
;
17174 if (imm
== et
.size
)
17176 /* Maximum shift variant. */
17177 NEON_ENCODE (INTEGER
, inst
);
17178 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17179 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17180 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17181 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17182 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17184 neon_dp_fixup (&inst
);
17188 /* A more-specific type check for non-max versions. */
17189 et
= neon_check_type (2, NS_QDI
,
17190 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
17191 NEON_ENCODE (IMMED
, inst
);
17192 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, imm
);
17196 /* Check the various types for the VCVT instruction, and return which version
17197 the current instruction is. */
17199 #define CVT_FLAVOUR_VAR \
17200 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17201 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17202 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17203 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17204 /* Half-precision conversions. */ \
17205 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17206 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17207 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17208 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17209 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17210 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17211 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17212 Compared with single/double precision variants, only the co-processor \
17213 field is different, so the encoding flow is reused here. */ \
17214 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17215 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17216 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17217 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17218 /* VFP instructions. */ \
17219 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17220 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17221 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17222 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17223 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17224 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17225 /* VFP instructions with bitshift. */ \
17226 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17227 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17228 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17229 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17230 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17231 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17232 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17233 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17235 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17236 neon_cvt_flavour_##C,
17238 /* The different types of conversions we can do. */
17239 enum neon_cvt_flavour
17242 neon_cvt_flavour_invalid
,
17243 neon_cvt_flavour_first_fp
= neon_cvt_flavour_f32_f64
17248 static enum neon_cvt_flavour
17249 get_neon_cvt_flavour (enum neon_shape rs
)
17251 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17252 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17253 if (et.type != NT_invtype) \
17255 inst.error = NULL; \
17256 return (neon_cvt_flavour_##C); \
17259 struct neon_type_el et
;
17260 unsigned whole_reg
= (rs
== NS_FFI
|| rs
== NS_FD
|| rs
== NS_DF
17261 || rs
== NS_FF
) ? N_VFP
: 0;
17262 /* The instruction versions which take an immediate take one register
17263 argument, which is extended to the width of the full register. Thus the
17264 "source" and "destination" registers must have the same width. Hack that
17265 here by making the size equal to the key (wider, in this case) operand. */
17266 unsigned key
= (rs
== NS_QQI
|| rs
== NS_DDI
|| rs
== NS_FFI
) ? N_KEY
: 0;
17270 return neon_cvt_flavour_invalid
;
17285 /* Neon-syntax VFP conversions. */
17288 do_vfp_nsyn_cvt (enum neon_shape rs
, enum neon_cvt_flavour flavour
)
17290 const char *opname
= 0;
17292 if (rs
== NS_DDI
|| rs
== NS_QQI
|| rs
== NS_FFI
17293 || rs
== NS_FHI
|| rs
== NS_HFI
)
17295 /* Conversions with immediate bitshift. */
17296 const char *enc
[] =
17298 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17304 if (flavour
< (int) ARRAY_SIZE (enc
))
17306 opname
= enc
[flavour
];
17307 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
17308 _("operands 0 and 1 must be the same register"));
17309 inst
.operands
[1] = inst
.operands
[2];
17310 memset (&inst
.operands
[2], '\0', sizeof (inst
.operands
[2]));
17315 /* Conversions without bitshift. */
17316 const char *enc
[] =
17318 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17324 if (flavour
< (int) ARRAY_SIZE (enc
))
17325 opname
= enc
[flavour
];
17329 do_vfp_nsyn_opcode (opname
);
17331 /* ARMv8.2 fp16 VCVT instruction. */
17332 if (flavour
== neon_cvt_flavour_s32_f16
17333 || flavour
== neon_cvt_flavour_u32_f16
17334 || flavour
== neon_cvt_flavour_f16_u32
17335 || flavour
== neon_cvt_flavour_f16_s32
)
17336 do_scalar_fp16_v82_encode ();
17340 do_vfp_nsyn_cvtz (void)
17342 enum neon_shape rs
= neon_select_shape (NS_FH
, NS_FF
, NS_FD
, NS_NULL
);
17343 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
17344 const char *enc
[] =
17346 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17352 if (flavour
< (int) ARRAY_SIZE (enc
) && enc
[flavour
])
17353 do_vfp_nsyn_opcode (enc
[flavour
]);
17357 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour
,
17358 enum neon_cvt_mode mode
)
17363 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17364 D register operands. */
17365 if (flavour
== neon_cvt_flavour_s32_f64
17366 || flavour
== neon_cvt_flavour_u32_f64
)
17367 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
17370 if (flavour
== neon_cvt_flavour_s32_f16
17371 || flavour
== neon_cvt_flavour_u32_f16
)
17372 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
),
17375 set_pred_insn_type (OUTSIDE_PRED_INSN
);
17379 case neon_cvt_flavour_s32_f64
:
17383 case neon_cvt_flavour_s32_f32
:
17387 case neon_cvt_flavour_s32_f16
:
17391 case neon_cvt_flavour_u32_f64
:
17395 case neon_cvt_flavour_u32_f32
:
17399 case neon_cvt_flavour_u32_f16
:
17404 first_error (_("invalid instruction shape"));
17410 case neon_cvt_mode_a
: rm
= 0; break;
17411 case neon_cvt_mode_n
: rm
= 1; break;
17412 case neon_cvt_mode_p
: rm
= 2; break;
17413 case neon_cvt_mode_m
: rm
= 3; break;
17414 default: first_error (_("invalid rounding mode")); return;
17417 NEON_ENCODE (FPV8
, inst
);
17418 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
17419 encode_arm_vfp_reg (inst
.operands
[1].reg
, sz
== 1 ? VFP_REG_Dm
: VFP_REG_Sm
);
17420 inst
.instruction
|= sz
<< 8;
17422 /* ARMv8.2 fp16 VCVT instruction. */
17423 if (flavour
== neon_cvt_flavour_s32_f16
17424 ||flavour
== neon_cvt_flavour_u32_f16
)
17425 do_scalar_fp16_v82_encode ();
17426 inst
.instruction
|= op
<< 7;
17427 inst
.instruction
|= rm
<< 16;
17428 inst
.instruction
|= 0xf0000000;
17429 inst
.is_neon
= TRUE
;
17433 do_neon_cvt_1 (enum neon_cvt_mode mode
)
17435 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_FFI
, NS_DD
, NS_QQ
,
17436 NS_FD
, NS_DF
, NS_FF
, NS_QD
, NS_DQ
,
17437 NS_FH
, NS_HF
, NS_FHI
, NS_HFI
,
17439 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
17441 if (flavour
== neon_cvt_flavour_invalid
)
17444 /* PR11109: Handle round-to-zero for VCVT conversions. */
17445 if (mode
== neon_cvt_mode_z
17446 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_vfp_v2
)
17447 && (flavour
== neon_cvt_flavour_s16_f16
17448 || flavour
== neon_cvt_flavour_u16_f16
17449 || flavour
== neon_cvt_flavour_s32_f32
17450 || flavour
== neon_cvt_flavour_u32_f32
17451 || flavour
== neon_cvt_flavour_s32_f64
17452 || flavour
== neon_cvt_flavour_u32_f64
)
17453 && (rs
== NS_FD
|| rs
== NS_FF
))
17455 do_vfp_nsyn_cvtz ();
17459 /* ARMv8.2 fp16 VCVT conversions. */
17460 if (mode
== neon_cvt_mode_z
17461 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
)
17462 && (flavour
== neon_cvt_flavour_s32_f16
17463 || flavour
== neon_cvt_flavour_u32_f16
)
17466 do_vfp_nsyn_cvtz ();
17467 do_scalar_fp16_v82_encode ();
17471 /* VFP rather than Neon conversions. */
17472 if (flavour
>= neon_cvt_flavour_first_fp
)
17474 if (mode
== neon_cvt_mode_x
|| mode
== neon_cvt_mode_z
)
17475 do_vfp_nsyn_cvt (rs
, flavour
);
17477 do_vfp_nsyn_cvt_fpv8 (flavour
, mode
);
17485 if (mode
== neon_cvt_mode_z
17486 && (flavour
== neon_cvt_flavour_f16_s16
17487 || flavour
== neon_cvt_flavour_f16_u16
17488 || flavour
== neon_cvt_flavour_s16_f16
17489 || flavour
== neon_cvt_flavour_u16_f16
17490 || flavour
== neon_cvt_flavour_f32_u32
17491 || flavour
== neon_cvt_flavour_f32_s32
17492 || flavour
== neon_cvt_flavour_s32_f32
17493 || flavour
== neon_cvt_flavour_u32_f32
))
17495 if (check_simd_pred_availability (1, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17498 else if (mode
== neon_cvt_mode_n
)
17500 /* We are dealing with vcvt with the 'ne' condition. */
17502 inst
.instruction
= N_MNEM_vcvt
;
17503 do_neon_cvt_1 (neon_cvt_mode_z
);
17506 /* fall through. */
17510 unsigned enctab
[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17511 0x0000100, 0x1000100, 0x0, 0x1000000};
17513 if ((rs
!= NS_QQI
|| !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
17514 && vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
17517 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
17519 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0,
17520 _("immediate value out of range"));
17523 case neon_cvt_flavour_f16_s16
:
17524 case neon_cvt_flavour_f16_u16
:
17525 case neon_cvt_flavour_s16_f16
:
17526 case neon_cvt_flavour_u16_f16
:
17527 constraint (inst
.operands
[2].imm
> 16,
17528 _("immediate value out of range"));
17530 case neon_cvt_flavour_f32_u32
:
17531 case neon_cvt_flavour_f32_s32
:
17532 case neon_cvt_flavour_s32_f32
:
17533 case neon_cvt_flavour_u32_f32
:
17534 constraint (inst
.operands
[2].imm
> 32,
17535 _("immediate value out of range"));
17538 inst
.error
= BAD_FPU
;
17543 /* Fixed-point conversion with #0 immediate is encoded as an
17544 integer conversion. */
17545 if (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0)
17547 NEON_ENCODE (IMMED
, inst
);
17548 if (flavour
!= neon_cvt_flavour_invalid
)
17549 inst
.instruction
|= enctab
[flavour
];
17550 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17551 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17552 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17553 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17554 inst
.instruction
|= neon_quad (rs
) << 6;
17555 inst
.instruction
|= 1 << 21;
17556 if (flavour
< neon_cvt_flavour_s16_f16
)
17558 inst
.instruction
|= 1 << 21;
17559 immbits
= 32 - inst
.operands
[2].imm
;
17560 inst
.instruction
|= immbits
<< 16;
17564 inst
.instruction
|= 3 << 20;
17565 immbits
= 16 - inst
.operands
[2].imm
;
17566 inst
.instruction
|= immbits
<< 16;
17567 inst
.instruction
&= ~(1 << 9);
17570 neon_dp_fixup (&inst
);
17575 if ((mode
== neon_cvt_mode_a
|| mode
== neon_cvt_mode_n
17576 || mode
== neon_cvt_mode_m
|| mode
== neon_cvt_mode_p
)
17577 && (flavour
== neon_cvt_flavour_s16_f16
17578 || flavour
== neon_cvt_flavour_u16_f16
17579 || flavour
== neon_cvt_flavour_s32_f32
17580 || flavour
== neon_cvt_flavour_u32_f32
))
17582 if (check_simd_pred_availability (1,
17583 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
17586 else if (mode
== neon_cvt_mode_z
17587 && (flavour
== neon_cvt_flavour_f16_s16
17588 || flavour
== neon_cvt_flavour_f16_u16
17589 || flavour
== neon_cvt_flavour_s16_f16
17590 || flavour
== neon_cvt_flavour_u16_f16
17591 || flavour
== neon_cvt_flavour_f32_u32
17592 || flavour
== neon_cvt_flavour_f32_s32
17593 || flavour
== neon_cvt_flavour_s32_f32
17594 || flavour
== neon_cvt_flavour_u32_f32
))
17596 if (check_simd_pred_availability (1,
17597 NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17600 /* fall through. */
17602 if (mode
!= neon_cvt_mode_x
&& mode
!= neon_cvt_mode_z
)
17605 NEON_ENCODE (FLOAT
, inst
);
17606 if (check_simd_pred_availability (1,
17607 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
17610 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17611 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17612 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17613 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17614 inst
.instruction
|= neon_quad (rs
) << 6;
17615 inst
.instruction
|= (flavour
== neon_cvt_flavour_u16_f16
17616 || flavour
== neon_cvt_flavour_u32_f32
) << 7;
17617 inst
.instruction
|= mode
<< 8;
17618 if (flavour
== neon_cvt_flavour_u16_f16
17619 || flavour
== neon_cvt_flavour_s16_f16
)
17620 /* Mask off the original size bits and reencode them. */
17621 inst
.instruction
= ((inst
.instruction
& 0xfff3ffff) | (1 << 18));
17624 inst
.instruction
|= 0xfc000000;
17626 inst
.instruction
|= 0xf0000000;
17632 unsigned enctab
[] = { 0x100, 0x180, 0x0, 0x080,
17633 0x100, 0x180, 0x0, 0x080};
17635 NEON_ENCODE (INTEGER
, inst
);
17637 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
17639 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
17643 if (flavour
!= neon_cvt_flavour_invalid
)
17644 inst
.instruction
|= enctab
[flavour
];
17646 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17647 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17648 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17649 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17650 inst
.instruction
|= neon_quad (rs
) << 6;
17651 if (flavour
>= neon_cvt_flavour_s16_f16
17652 && flavour
<= neon_cvt_flavour_f16_u16
)
17653 /* Half precision. */
17654 inst
.instruction
|= 1 << 18;
17656 inst
.instruction
|= 2 << 18;
17658 neon_dp_fixup (&inst
);
17663 /* Half-precision conversions for Advanced SIMD -- neon. */
17666 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
17670 && (inst
.vectype
.el
[0].size
!= 16 || inst
.vectype
.el
[1].size
!= 32))
17672 as_bad (_("operand size must match register width"));
17677 && ((inst
.vectype
.el
[0].size
!= 32 || inst
.vectype
.el
[1].size
!= 16)))
17679 as_bad (_("operand size must match register width"));
17684 inst
.instruction
= 0x3b60600;
17686 inst
.instruction
= 0x3b60700;
17688 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17689 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17690 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17691 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17692 neon_dp_fixup (&inst
);
17696 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
17697 if (mode
== neon_cvt_mode_x
|| mode
== neon_cvt_mode_z
)
17698 do_vfp_nsyn_cvt (rs
, flavour
);
17700 do_vfp_nsyn_cvt_fpv8 (flavour
, mode
);
17705 do_neon_cvtr (void)
17707 do_neon_cvt_1 (neon_cvt_mode_x
);
17713 do_neon_cvt_1 (neon_cvt_mode_z
);
17717 do_neon_cvta (void)
17719 do_neon_cvt_1 (neon_cvt_mode_a
);
17723 do_neon_cvtn (void)
17725 do_neon_cvt_1 (neon_cvt_mode_n
);
17729 do_neon_cvtp (void)
17731 do_neon_cvt_1 (neon_cvt_mode_p
);
17735 do_neon_cvtm (void)
17737 do_neon_cvt_1 (neon_cvt_mode_m
);
17741 do_neon_cvttb_2 (bfd_boolean t
, bfd_boolean to
, bfd_boolean is_double
)
17744 mark_feature_used (&fpu_vfp_ext_armv8
);
17746 encode_arm_vfp_reg (inst
.operands
[0].reg
,
17747 (is_double
&& !to
) ? VFP_REG_Dd
: VFP_REG_Sd
);
17748 encode_arm_vfp_reg (inst
.operands
[1].reg
,
17749 (is_double
&& to
) ? VFP_REG_Dm
: VFP_REG_Sm
);
17750 inst
.instruction
|= to
? 0x10000 : 0;
17751 inst
.instruction
|= t
? 0x80 : 0;
17752 inst
.instruction
|= is_double
? 0x100 : 0;
17753 do_vfp_cond_or_thumb ();
17757 do_neon_cvttb_1 (bfd_boolean t
)
17759 enum neon_shape rs
= neon_select_shape (NS_HF
, NS_HD
, NS_FH
, NS_FF
, NS_FD
,
17760 NS_DF
, NS_DH
, NS_QQ
, NS_QQI
, NS_NULL
);
17764 else if (rs
== NS_QQ
|| rs
== NS_QQI
)
17766 int single_to_half
= 0;
17767 if (check_simd_pred_availability (1, NEON_CHECK_ARCH
))
17770 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
17772 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
17773 && (flavour
== neon_cvt_flavour_u16_f16
17774 || flavour
== neon_cvt_flavour_s16_f16
17775 || flavour
== neon_cvt_flavour_f16_s16
17776 || flavour
== neon_cvt_flavour_f16_u16
17777 || flavour
== neon_cvt_flavour_u32_f32
17778 || flavour
== neon_cvt_flavour_s32_f32
17779 || flavour
== neon_cvt_flavour_f32_s32
17780 || flavour
== neon_cvt_flavour_f32_u32
))
17783 inst
.instruction
= N_MNEM_vcvt
;
17784 set_pred_insn_type (INSIDE_VPT_INSN
);
17785 do_neon_cvt_1 (neon_cvt_mode_z
);
17788 else if (rs
== NS_QQ
&& flavour
== neon_cvt_flavour_f32_f16
)
17789 single_to_half
= 1;
17790 else if (rs
== NS_QQ
&& flavour
!= neon_cvt_flavour_f16_f32
)
17792 first_error (BAD_FPU
);
17796 inst
.instruction
= 0xee3f0e01;
17797 inst
.instruction
|= single_to_half
<< 28;
17798 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17799 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 13;
17800 inst
.instruction
|= t
<< 12;
17801 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17802 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 1;
17805 else if (neon_check_type (2, rs
, N_F16
, N_F32
| N_VFP
).type
!= NT_invtype
)
17808 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/FALSE
);
17810 else if (neon_check_type (2, rs
, N_F32
| N_VFP
, N_F16
).type
!= NT_invtype
)
17813 do_neon_cvttb_2 (t
, /*to=*/FALSE
, /*is_double=*/FALSE
);
17815 else if (neon_check_type (2, rs
, N_F16
, N_F64
| N_VFP
).type
!= NT_invtype
)
17817 /* The VCVTB and VCVTT instructions with D-register operands
17818 don't work for SP only targets. */
17819 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
17823 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/TRUE
);
17825 else if (neon_check_type (2, rs
, N_F64
| N_VFP
, N_F16
).type
!= NT_invtype
)
17827 /* The VCVTB and VCVTT instructions with D-register operands
17828 don't work for SP only targets. */
17829 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
17833 do_neon_cvttb_2 (t
, /*to=*/FALSE
, /*is_double=*/TRUE
);
17840 do_neon_cvtb (void)
17842 do_neon_cvttb_1 (FALSE
);
17847 do_neon_cvtt (void)
17849 do_neon_cvttb_1 (TRUE
);
17853 neon_move_immediate (void)
17855 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
17856 struct neon_type_el et
= neon_check_type (2, rs
,
17857 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
17858 unsigned immlo
, immhi
= 0, immbits
;
17859 int op
, cmode
, float_p
;
17861 constraint (et
.type
== NT_invtype
,
17862 _("operand size must be specified for immediate VMOV"));
17864 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
17865 op
= (inst
.instruction
& (1 << 5)) != 0;
17867 immlo
= inst
.operands
[1].imm
;
17868 if (inst
.operands
[1].regisimm
)
17869 immhi
= inst
.operands
[1].reg
;
17871 constraint (et
.size
< 32 && (immlo
& ~((1 << et
.size
) - 1)) != 0,
17872 _("immediate has bits set outside the operand size"));
17874 float_p
= inst
.operands
[1].immisfloat
;
17876 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
, &op
,
17877 et
.size
, et
.type
)) == FAIL
)
17879 /* Invert relevant bits only. */
17880 neon_invert_size (&immlo
, &immhi
, et
.size
);
17881 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
17882 with one or the other; those cases are caught by
17883 neon_cmode_for_move_imm. */
17885 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
,
17886 &op
, et
.size
, et
.type
)) == FAIL
)
17888 first_error (_("immediate out of range"));
17893 inst
.instruction
&= ~(1 << 5);
17894 inst
.instruction
|= op
<< 5;
17896 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17897 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17898 inst
.instruction
|= neon_quad (rs
) << 6;
17899 inst
.instruction
|= cmode
<< 8;
17901 neon_write_immbits (immbits
);
17907 if (inst
.operands
[1].isreg
)
17909 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
17911 NEON_ENCODE (INTEGER
, inst
);
17912 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17913 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17914 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17915 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17916 inst
.instruction
|= neon_quad (rs
) << 6;
17920 NEON_ENCODE (IMMED
, inst
);
17921 neon_move_immediate ();
17924 neon_dp_fixup (&inst
);
17927 /* Encode instructions of form:
17929 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
17930 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
17933 neon_mixed_length (struct neon_type_el et
, unsigned size
)
17935 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17936 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17937 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
17938 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
17939 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
17940 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
17941 inst
.instruction
|= (et
.type
== NT_unsigned
) << 24;
17942 inst
.instruction
|= neon_logbits (size
) << 20;
17944 neon_dp_fixup (&inst
);
17948 do_neon_dyadic_long (void)
17950 enum neon_shape rs
= neon_select_shape (NS_QDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
17953 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH
| NEON_CHECK_CC
) == FAIL
)
17956 NEON_ENCODE (INTEGER
, inst
);
17957 /* FIXME: Type checking for lengthening op. */
17958 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
17959 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
17960 neon_mixed_length (et
, et
.size
);
17962 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
17963 && (inst
.cond
== 0xf || inst
.cond
== 0x10))
17965 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
17966 in an IT block with le/lt conditions. */
17968 if (inst
.cond
== 0xf)
17970 else if (inst
.cond
== 0x10)
17973 inst
.pred_insn_type
= INSIDE_IT_INSN
;
17975 if (inst
.instruction
== N_MNEM_vaddl
)
17977 inst
.instruction
= N_MNEM_vadd
;
17978 do_neon_addsub_if_i ();
17980 else if (inst
.instruction
== N_MNEM_vsubl
)
17982 inst
.instruction
= N_MNEM_vsub
;
17983 do_neon_addsub_if_i ();
17985 else if (inst
.instruction
== N_MNEM_vabdl
)
17987 inst
.instruction
= N_MNEM_vabd
;
17988 do_neon_dyadic_if_su ();
17992 first_error (BAD_FPU
);
17996 do_neon_abal (void)
17998 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
17999 N_EQK
| N_INT
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
18000 neon_mixed_length (et
, et
.size
);
18004 neon_mac_reg_scalar_long (unsigned regtypes
, unsigned scalartypes
)
18006 if (inst
.operands
[2].isscalar
)
18008 struct neon_type_el et
= neon_check_type (3, NS_QDS
,
18009 N_EQK
| N_DBL
, N_EQK
, regtypes
| N_KEY
);
18010 NEON_ENCODE (SCALAR
, inst
);
18011 neon_mul_mac (et
, et
.type
== NT_unsigned
);
18015 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18016 N_EQK
| N_DBL
, N_EQK
, scalartypes
| N_KEY
);
18017 NEON_ENCODE (INTEGER
, inst
);
18018 neon_mixed_length (et
, et
.size
);
18023 do_neon_mac_maybe_scalar_long (void)
18025 neon_mac_reg_scalar_long (N_S16
| N_S32
| N_U16
| N_U32
, N_SU_32
);
18028 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18029 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18032 neon_scalar_for_fmac_fp16_long (unsigned scalar
, unsigned quad_p
)
18034 unsigned regno
= NEON_SCALAR_REG (scalar
);
18035 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
18039 if (regno
> 7 || elno
> 3)
18042 return ((regno
& 0x7)
18043 | ((elno
& 0x1) << 3)
18044 | (((elno
>> 1) & 0x1) << 5));
18048 if (regno
> 15 || elno
> 1)
18051 return (((regno
& 0x1) << 5)
18052 | ((regno
>> 1) & 0x7)
18053 | ((elno
& 0x1) << 3));
18057 first_error (_("scalar out of range for multiply instruction"));
18062 do_neon_fmac_maybe_scalar_long (int subtype
)
18064 enum neon_shape rs
;
18066 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18067 field (bits[21:20]) has different meaning. For scalar index variant, it's
18068 used to differentiate add and subtract, otherwise it's with fixed value
18072 if (inst
.cond
!= COND_ALWAYS
)
18073 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18074 "behaviour is UNPREDICTABLE"));
18076 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16_fml
),
18079 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
18082 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18083 be a scalar index register. */
18084 if (inst
.operands
[2].isscalar
)
18086 high8
= 0xfe000000;
18089 rs
= neon_select_shape (NS_DHS
, NS_QDS
, NS_NULL
);
18093 high8
= 0xfc000000;
18096 inst
.instruction
|= (0x1 << 23);
18097 rs
= neon_select_shape (NS_DHH
, NS_QDD
, NS_NULL
);
18100 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_F16
);
18102 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18103 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18104 so we simply pass -1 as size. */
18105 unsigned quad_p
= (rs
== NS_QDD
|| rs
== NS_QDS
);
18106 neon_three_same (quad_p
, 0, size
);
18108 /* Undo neon_dp_fixup. Redo the high eight bits. */
18109 inst
.instruction
&= 0x00ffffff;
18110 inst
.instruction
|= high8
;
18112 #define LOW1(R) ((R) & 0x1)
18113 #define HI4(R) (((R) >> 1) & 0xf)
18114 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18115 whether the instruction is in Q form and whether Vm is a scalar indexed
18117 if (inst
.operands
[2].isscalar
)
18120 = neon_scalar_for_fmac_fp16_long (inst
.operands
[2].reg
, quad_p
);
18121 inst
.instruction
&= 0xffffffd0;
18122 inst
.instruction
|= rm
;
18126 /* Redo Rn as well. */
18127 inst
.instruction
&= 0xfff0ff7f;
18128 inst
.instruction
|= HI4 (inst
.operands
[1].reg
) << 16;
18129 inst
.instruction
|= LOW1 (inst
.operands
[1].reg
) << 7;
18134 /* Redo Rn and Rm. */
18135 inst
.instruction
&= 0xfff0ff50;
18136 inst
.instruction
|= HI4 (inst
.operands
[1].reg
) << 16;
18137 inst
.instruction
|= LOW1 (inst
.operands
[1].reg
) << 7;
18138 inst
.instruction
|= HI4 (inst
.operands
[2].reg
);
18139 inst
.instruction
|= LOW1 (inst
.operands
[2].reg
) << 5;
18144 do_neon_vfmal (void)
18146 return do_neon_fmac_maybe_scalar_long (0);
18150 do_neon_vfmsl (void)
18152 return do_neon_fmac_maybe_scalar_long (1);
18156 do_neon_dyadic_wide (void)
18158 struct neon_type_el et
= neon_check_type (3, NS_QQD
,
18159 N_EQK
| N_DBL
, N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
18160 neon_mixed_length (et
, et
.size
);
18164 do_neon_dyadic_narrow (void)
18166 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18167 N_EQK
| N_DBL
, N_EQK
, N_I16
| N_I32
| N_I64
| N_KEY
);
18168 /* Operand sign is unimportant, and the U bit is part of the opcode,
18169 so force the operand type to integer. */
18170 et
.type
= NT_integer
;
18171 neon_mixed_length (et
, et
.size
/ 2);
18175 do_neon_mul_sat_scalar_long (void)
18177 neon_mac_reg_scalar_long (N_S16
| N_S32
, N_S16
| N_S32
);
18181 do_neon_vmull (void)
18183 if (inst
.operands
[2].isscalar
)
18184 do_neon_mac_maybe_scalar_long ();
18187 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18188 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_P8
| N_P64
| N_KEY
);
18190 if (et
.type
== NT_poly
)
18191 NEON_ENCODE (POLY
, inst
);
18193 NEON_ENCODE (INTEGER
, inst
);
18195 /* For polynomial encoding the U bit must be zero, and the size must
18196 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18197 obviously, as 0b10). */
18200 /* Check we're on the correct architecture. */
18201 if (!mark_feature_used (&fpu_crypto_ext_armv8
))
18203 _("Instruction form not available on this architecture.");
18208 neon_mixed_length (et
, et
.size
);
18215 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
18216 struct neon_type_el et
= neon_check_type (3, rs
,
18217 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
18218 unsigned imm
= (inst
.operands
[3].imm
* et
.size
) / 8;
18220 constraint (imm
>= (unsigned) (neon_quad (rs
) ? 16 : 8),
18221 _("shift out of range"));
18222 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18223 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18224 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
18225 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
18226 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
18227 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
18228 inst
.instruction
|= neon_quad (rs
) << 6;
18229 inst
.instruction
|= imm
<< 8;
18231 neon_dp_fixup (&inst
);
18237 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18238 struct neon_type_el et
= neon_check_type (2, rs
,
18239 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18240 unsigned op
= (inst
.instruction
>> 7) & 3;
18241 /* N (width of reversed regions) is encoded as part of the bitmask. We
18242 extract it here to check the elements to be reversed are smaller.
18243 Otherwise we'd get a reserved instruction. */
18244 unsigned elsize
= (op
== 2) ? 16 : (op
== 1) ? 32 : (op
== 0) ? 64 : 0;
18245 gas_assert (elsize
!= 0);
18246 constraint (et
.size
>= elsize
,
18247 _("elements must be smaller than reversal region"));
18248 neon_two_same (neon_quad (rs
), 1, et
.size
);
18254 if (inst
.operands
[1].isscalar
)
18256 enum neon_shape rs
= neon_select_shape (NS_DS
, NS_QS
, NS_NULL
);
18257 struct neon_type_el et
= neon_check_type (2, rs
,
18258 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18259 unsigned sizebits
= et
.size
>> 3;
18260 unsigned dm
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
18261 int logsize
= neon_logbits (et
.size
);
18262 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
) << logsize
;
18264 if (vfp_or_neon_is_neon (NEON_CHECK_CC
) == FAIL
)
18267 NEON_ENCODE (SCALAR
, inst
);
18268 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18269 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18270 inst
.instruction
|= LOW4 (dm
);
18271 inst
.instruction
|= HI1 (dm
) << 5;
18272 inst
.instruction
|= neon_quad (rs
) << 6;
18273 inst
.instruction
|= x
<< 17;
18274 inst
.instruction
|= sizebits
<< 16;
18276 neon_dp_fixup (&inst
);
18280 enum neon_shape rs
= neon_select_shape (NS_DR
, NS_QR
, NS_NULL
);
18281 struct neon_type_el et
= neon_check_type (2, rs
,
18282 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
18283 /* Duplicate ARM register to lanes of vector. */
18284 NEON_ENCODE (ARMREG
, inst
);
18287 case 8: inst
.instruction
|= 0x400000; break;
18288 case 16: inst
.instruction
|= 0x000020; break;
18289 case 32: inst
.instruction
|= 0x000000; break;
18292 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
18293 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 16;
18294 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 7;
18295 inst
.instruction
|= neon_quad (rs
) << 21;
18296 /* The encoding for this instruction is identical for the ARM and Thumb
18297 variants, except for the condition field. */
18298 do_vfp_cond_or_thumb ();
18303 do_mve_mov (int toQ
)
18305 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18307 if (inst
.cond
> COND_ALWAYS
)
18308 inst
.pred_insn_type
= MVE_UNPREDICABLE_INSN
;
18310 unsigned Rt
= 0, Rt2
= 1, Q0
= 2, Q1
= 3;
18319 constraint (inst
.operands
[Q0
].reg
!= inst
.operands
[Q1
].reg
+ 2,
18320 _("Index one must be [2,3] and index two must be two less than"
18322 constraint (inst
.operands
[Rt
].reg
== inst
.operands
[Rt2
].reg
,
18323 _("General purpose registers may not be the same"));
18324 constraint (inst
.operands
[Rt
].reg
== REG_SP
18325 || inst
.operands
[Rt2
].reg
== REG_SP
,
18327 constraint (inst
.operands
[Rt
].reg
== REG_PC
18328 || inst
.operands
[Rt2
].reg
== REG_PC
,
18331 inst
.instruction
= 0xec000f00;
18332 inst
.instruction
|= HI1 (inst
.operands
[Q1
].reg
/ 32) << 23;
18333 inst
.instruction
|= !!toQ
<< 20;
18334 inst
.instruction
|= inst
.operands
[Rt2
].reg
<< 16;
18335 inst
.instruction
|= LOW4 (inst
.operands
[Q1
].reg
/ 32) << 13;
18336 inst
.instruction
|= (inst
.operands
[Q1
].reg
% 4) << 4;
18337 inst
.instruction
|= inst
.operands
[Rt
].reg
;
18343 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18346 if (inst
.cond
> COND_ALWAYS
)
18347 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18349 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18351 struct neon_type_el et
= neon_check_type (2, NS_QQ
, N_EQK
, N_I16
| N_I32
18354 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18355 inst
.instruction
|= (neon_logbits (et
.size
) - 1) << 18;
18356 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18357 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18358 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18363 /* VMOV has particularly many variations. It can be one of:
18364 0. VMOV<c><q> <Qd>, <Qm>
18365 1. VMOV<c><q> <Dd>, <Dm>
18366 (Register operations, which are VORR with Rm = Rn.)
18367 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18368 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18370 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18371 (ARM register to scalar.)
18372 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18373 (Two ARM registers to vector.)
18374 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18375 (Scalar to ARM register.)
18376 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18377 (Vector to two ARM registers.)
18378 8. VMOV.F32 <Sd>, <Sm>
18379 9. VMOV.F64 <Dd>, <Dm>
18380 (VFP register moves.)
18381 10. VMOV.F32 <Sd>, #imm
18382 11. VMOV.F64 <Dd>, #imm
18383 (VFP float immediate load.)
18384 12. VMOV <Rd>, <Sm>
18385 (VFP single to ARM reg.)
18386 13. VMOV <Sd>, <Rm>
18387 (ARM reg to VFP single.)
18388 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18389 (Two ARM regs to two VFP singles.)
18390 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18391 (Two VFP singles to two ARM regs.)
18392 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18393 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18394 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18395 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
18397 These cases can be disambiguated using neon_select_shape, except cases 1/9
18398 and 3/11 which depend on the operand type too.
18400 All the encoded bits are hardcoded by this function.
18402 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18403 Cases 5, 7 may be used with VFPv2 and above.
18405 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
18406 can specify a type where it doesn't make sense to, and is ignored). */
18411 enum neon_shape rs
= neon_select_shape (NS_RRSS
, NS_SSRR
, NS_RRFF
, NS_FFRR
,
18412 NS_DRR
, NS_RRD
, NS_QQ
, NS_DD
, NS_QI
,
18413 NS_DI
, NS_SR
, NS_RS
, NS_FF
, NS_FI
,
18414 NS_RF
, NS_FR
, NS_HR
, NS_RH
, NS_HI
,
18416 struct neon_type_el et
;
18417 const char *ldconst
= 0;
18421 case NS_DD
: /* case 1/9. */
18422 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
18423 /* It is not an error here if no type is given. */
18425 if (et
.type
== NT_float
&& et
.size
== 64)
18427 do_vfp_nsyn_opcode ("fcpyd");
18430 /* fall through. */
18432 case NS_QQ
: /* case 0/1. */
18434 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18436 /* The architecture manual I have doesn't explicitly state which
18437 value the U bit should have for register->register moves, but
18438 the equivalent VORR instruction has U = 0, so do that. */
18439 inst
.instruction
= 0x0200110;
18440 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18441 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18442 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18443 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18444 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
18445 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
18446 inst
.instruction
|= neon_quad (rs
) << 6;
18448 neon_dp_fixup (&inst
);
18452 case NS_DI
: /* case 3/11. */
18453 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
18455 if (et
.type
== NT_float
&& et
.size
== 64)
18457 /* case 11 (fconstd). */
18458 ldconst
= "fconstd";
18459 goto encode_fconstd
;
18461 /* fall through. */
18463 case NS_QI
: /* case 2/3. */
18464 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18466 inst
.instruction
= 0x0800010;
18467 neon_move_immediate ();
18468 neon_dp_fixup (&inst
);
18471 case NS_SR
: /* case 4. */
18473 unsigned bcdebits
= 0;
18475 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[0].reg
);
18476 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[0].reg
);
18478 /* .<size> is optional here, defaulting to .32. */
18479 if (inst
.vectype
.elems
== 0
18480 && inst
.operands
[0].vectype
.type
== NT_invtype
18481 && inst
.operands
[1].vectype
.type
== NT_invtype
)
18483 inst
.vectype
.el
[0].type
= NT_untyped
;
18484 inst
.vectype
.el
[0].size
= 32;
18485 inst
.vectype
.elems
= 1;
18488 et
= neon_check_type (2, NS_NULL
, N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
18489 logsize
= neon_logbits (et
.size
);
18493 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
18494 && vfp_or_neon_is_neon (NEON_CHECK_ARCH
) == FAIL
)
18499 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
18500 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18504 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18506 if (inst
.operands
[1].reg
== REG_SP
)
18507 as_tsktsk (MVE_BAD_SP
);
18508 else if (inst
.operands
[1].reg
== REG_PC
)
18509 as_tsktsk (MVE_BAD_PC
);
18511 unsigned size
= inst
.operands
[0].isscalar
== 1 ? 64 : 128;
18513 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
18514 constraint (x
>= size
/ et
.size
, _("scalar index out of range"));
18519 case 8: bcdebits
= 0x8; break;
18520 case 16: bcdebits
= 0x1; break;
18521 case 32: bcdebits
= 0x0; break;
18525 bcdebits
|= (x
& ((1 << (3-logsize
)) - 1)) << logsize
;
18527 inst
.instruction
= 0xe000b10;
18528 do_vfp_cond_or_thumb ();
18529 inst
.instruction
|= LOW4 (dn
) << 16;
18530 inst
.instruction
|= HI1 (dn
) << 7;
18531 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
18532 inst
.instruction
|= (bcdebits
& 3) << 5;
18533 inst
.instruction
|= ((bcdebits
>> 2) & 3) << 21;
18534 inst
.instruction
|= (x
>> (3-logsize
)) << 16;
18538 case NS_DRR
: /* case 5 (fmdrr). */
18539 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
18540 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18543 inst
.instruction
= 0xc400b10;
18544 do_vfp_cond_or_thumb ();
18545 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
);
18546 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 5;
18547 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
18548 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
18551 case NS_RS
: /* case 6. */
18554 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
18555 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
);
18556 unsigned abcdebits
= 0;
18558 /* .<dt> is optional here, defaulting to .32. */
18559 if (inst
.vectype
.elems
== 0
18560 && inst
.operands
[0].vectype
.type
== NT_invtype
18561 && inst
.operands
[1].vectype
.type
== NT_invtype
)
18563 inst
.vectype
.el
[0].type
= NT_untyped
;
18564 inst
.vectype
.el
[0].size
= 32;
18565 inst
.vectype
.elems
= 1;
18568 et
= neon_check_type (2, NS_NULL
,
18569 N_EQK
, N_S8
| N_S16
| N_U8
| N_U16
| N_32
| N_KEY
);
18570 logsize
= neon_logbits (et
.size
);
18574 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
18575 && vfp_or_neon_is_neon (NEON_CHECK_CC
18576 | NEON_CHECK_ARCH
) == FAIL
)
18581 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
18582 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18586 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18588 if (inst
.operands
[0].reg
== REG_SP
)
18589 as_tsktsk (MVE_BAD_SP
);
18590 else if (inst
.operands
[0].reg
== REG_PC
)
18591 as_tsktsk (MVE_BAD_PC
);
18594 unsigned size
= inst
.operands
[1].isscalar
== 1 ? 64 : 128;
18596 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
18597 constraint (x
>= size
/ et
.size
, _("scalar index out of range"));
18601 case 8: abcdebits
= (et
.type
== NT_signed
) ? 0x08 : 0x18; break;
18602 case 16: abcdebits
= (et
.type
== NT_signed
) ? 0x01 : 0x11; break;
18603 case 32: abcdebits
= 0x00; break;
18607 abcdebits
|= (x
& ((1 << (3-logsize
)) - 1)) << logsize
;
18608 inst
.instruction
= 0xe100b10;
18609 do_vfp_cond_or_thumb ();
18610 inst
.instruction
|= LOW4 (dn
) << 16;
18611 inst
.instruction
|= HI1 (dn
) << 7;
18612 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
18613 inst
.instruction
|= (abcdebits
& 3) << 5;
18614 inst
.instruction
|= (abcdebits
>> 2) << 21;
18615 inst
.instruction
|= (x
>> (3-logsize
)) << 16;
18619 case NS_RRD
: /* case 7 (fmrrd). */
18620 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
18621 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18624 inst
.instruction
= 0xc500b10;
18625 do_vfp_cond_or_thumb ();
18626 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
18627 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
18628 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
18629 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
18632 case NS_FF
: /* case 8 (fcpys). */
18633 do_vfp_nsyn_opcode ("fcpys");
18637 case NS_FI
: /* case 10 (fconsts). */
18638 ldconst
= "fconsts";
18640 if (!inst
.operands
[1].immisfloat
)
18643 /* Immediate has to fit in 8 bits so float is enough. */
18644 float imm
= (float) inst
.operands
[1].imm
;
18645 memcpy (&new_imm
, &imm
, sizeof (float));
18646 /* But the assembly may have been written to provide an integer
18647 bit pattern that equates to a float, so check that the
18648 conversion has worked. */
18649 if (is_quarter_float (new_imm
))
18651 if (is_quarter_float (inst
.operands
[1].imm
))
18652 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18654 inst
.operands
[1].imm
= new_imm
;
18655 inst
.operands
[1].immisfloat
= 1;
18659 if (is_quarter_float (inst
.operands
[1].imm
))
18661 inst
.operands
[1].imm
= neon_qfloat_bits (inst
.operands
[1].imm
);
18662 do_vfp_nsyn_opcode (ldconst
);
18664 /* ARMv8.2 fp16 vmov.f16 instruction. */
18666 do_scalar_fp16_v82_encode ();
18669 first_error (_("immediate out of range"));
18673 case NS_RF
: /* case 12 (fmrs). */
18674 do_vfp_nsyn_opcode ("fmrs");
18675 /* ARMv8.2 fp16 vmov.f16 instruction. */
18677 do_scalar_fp16_v82_encode ();
18681 case NS_FR
: /* case 13 (fmsr). */
18682 do_vfp_nsyn_opcode ("fmsr");
18683 /* ARMv8.2 fp16 vmov.f16 instruction. */
18685 do_scalar_fp16_v82_encode ();
18695 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18696 (one of which is a list), but we have parsed four. Do some fiddling to
18697 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18699 case NS_RRFF
: /* case 14 (fmrrs). */
18700 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
18701 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18703 constraint (inst
.operands
[3].reg
!= inst
.operands
[2].reg
+ 1,
18704 _("VFP registers must be adjacent"));
18705 inst
.operands
[2].imm
= 2;
18706 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
18707 do_vfp_nsyn_opcode ("fmrrs");
18710 case NS_FFRR
: /* case 15 (fmsrr). */
18711 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
18712 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18714 constraint (inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
18715 _("VFP registers must be adjacent"));
18716 inst
.operands
[1] = inst
.operands
[2];
18717 inst
.operands
[2] = inst
.operands
[3];
18718 inst
.operands
[0].imm
= 2;
18719 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
18720 do_vfp_nsyn_opcode ("fmsrr");
18724 /* neon_select_shape has determined that the instruction
18725 shape is wrong and has already set the error message. */
18736 if (!(inst
.operands
[0].present
&& inst
.operands
[0].isquad
18737 && inst
.operands
[1].present
&& inst
.operands
[1].isquad
18738 && !inst
.operands
[2].present
))
18740 inst
.instruction
= 0;
18743 set_pred_insn_type (INSIDE_IT_INSN
);
18748 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18751 if (inst
.cond
!= COND_ALWAYS
)
18752 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18754 struct neon_type_el et
= neon_check_type (2, NS_QQ
, N_EQK
, N_S8
| N_U8
18755 | N_S16
| N_U16
| N_KEY
);
18757 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
18758 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18759 inst
.instruction
|= (neon_logbits (et
.size
) + 1) << 19;
18760 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18761 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18762 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18767 do_neon_rshift_round_imm (void)
18769 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
18770 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
18771 int imm
= inst
.operands
[2].imm
;
18773 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
18776 inst
.operands
[2].present
= 0;
18781 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
18782 _("immediate out of range for shift"));
18783 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
18788 do_neon_movhf (void)
18790 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_NULL
);
18791 constraint (rs
!= NS_HH
, _("invalid suffix"));
18793 if (inst
.cond
!= COND_ALWAYS
)
18797 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
18798 " the behaviour is UNPREDICTABLE"));
18802 inst
.error
= BAD_COND
;
18807 do_vfp_sp_monadic ();
18810 inst
.instruction
|= 0xf0000000;
18814 do_neon_movl (void)
18816 struct neon_type_el et
= neon_check_type (2, NS_QD
,
18817 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
18818 unsigned sizebits
= et
.size
>> 3;
18819 inst
.instruction
|= sizebits
<< 19;
18820 neon_two_same (0, et
.type
== NT_unsigned
, -1);
18826 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18827 struct neon_type_el et
= neon_check_type (2, rs
,
18828 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18829 NEON_ENCODE (INTEGER
, inst
);
18830 neon_two_same (neon_quad (rs
), 1, et
.size
);
18834 do_neon_zip_uzp (void)
18836 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18837 struct neon_type_el et
= neon_check_type (2, rs
,
18838 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18839 if (rs
== NS_DD
&& et
.size
== 32)
18841 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
18842 inst
.instruction
= N_MNEM_vtrn
;
18846 neon_two_same (neon_quad (rs
), 1, et
.size
);
18850 do_neon_sat_abs_neg (void)
18852 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18853 struct neon_type_el et
= neon_check_type (2, rs
,
18854 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
18855 neon_two_same (neon_quad (rs
), 1, et
.size
);
18859 do_neon_pair_long (void)
18861 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18862 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
18863 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
18864 inst
.instruction
|= (et
.type
== NT_unsigned
) << 7;
18865 neon_two_same (neon_quad (rs
), 1, et
.size
);
18869 do_neon_recip_est (void)
18871 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18872 struct neon_type_el et
= neon_check_type (2, rs
,
18873 N_EQK
| N_FLT
, N_F_16_32
| N_U32
| N_KEY
);
18874 inst
.instruction
|= (et
.type
== NT_float
) << 8;
18875 neon_two_same (neon_quad (rs
), 1, et
.size
);
18881 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18882 struct neon_type_el et
= neon_check_type (2, rs
,
18883 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
18884 neon_two_same (neon_quad (rs
), 1, et
.size
);
18890 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18891 struct neon_type_el et
= neon_check_type (2, rs
,
18892 N_EQK
, N_I8
| N_I16
| N_I32
| N_KEY
);
18893 neon_two_same (neon_quad (rs
), 1, et
.size
);
18899 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18900 struct neon_type_el et
= neon_check_type (2, rs
,
18901 N_EQK
| N_INT
, N_8
| N_KEY
);
18902 neon_two_same (neon_quad (rs
), 1, et
.size
);
18908 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18909 neon_two_same (neon_quad (rs
), 1, -1);
18913 do_neon_tbl_tbx (void)
18915 unsigned listlenbits
;
18916 neon_check_type (3, NS_DLD
, N_EQK
, N_EQK
, N_8
| N_KEY
);
18918 if (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 4)
18920 first_error (_("bad list length for table lookup"));
18924 listlenbits
= inst
.operands
[1].imm
- 1;
18925 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18926 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18927 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
18928 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
18929 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
18930 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
18931 inst
.instruction
|= listlenbits
<< 8;
18933 neon_dp_fixup (&inst
);
18937 do_neon_ldm_stm (void)
18939 /* P, U and L bits are part of bitmask. */
18940 int is_dbmode
= (inst
.instruction
& (1 << 24)) != 0;
18941 unsigned offsetbits
= inst
.operands
[1].imm
* 2;
18943 if (inst
.operands
[1].issingle
)
18945 do_vfp_nsyn_ldm_stm (is_dbmode
);
18949 constraint (is_dbmode
&& !inst
.operands
[0].writeback
,
18950 _("writeback (!) must be used for VLDMDB and VSTMDB"));
18952 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
18953 _("register list must contain at least 1 and at most 16 "
18956 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
18957 inst
.instruction
|= inst
.operands
[0].writeback
<< 21;
18958 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
18959 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 22;
18961 inst
.instruction
|= offsetbits
;
18963 do_vfp_cond_or_thumb ();
18967 do_neon_ldr_str (void)
18969 int is_ldr
= (inst
.instruction
& (1 << 20)) != 0;
18971 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
18972 And is UNPREDICTABLE in thumb mode. */
18974 && inst
.operands
[1].reg
== REG_PC
18975 && (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
) || thumb_mode
))
18978 inst
.error
= _("Use of PC here is UNPREDICTABLE");
18979 else if (warn_on_deprecated
)
18980 as_tsktsk (_("Use of PC here is deprecated"));
18983 if (inst
.operands
[0].issingle
)
18986 do_vfp_nsyn_opcode ("flds");
18988 do_vfp_nsyn_opcode ("fsts");
18990 /* ARMv8.2 vldr.16/vstr.16 instruction. */
18991 if (inst
.vectype
.el
[0].size
== 16)
18992 do_scalar_fp16_v82_encode ();
18997 do_vfp_nsyn_opcode ("fldd");
18999 do_vfp_nsyn_opcode ("fstd");
19004 do_t_vldr_vstr_sysreg (void)
19006 int fp_vldr_bitno
= 20, sysreg_vldr_bitno
= 20;
19007 bfd_boolean is_vldr
= ((inst
.instruction
& (1 << fp_vldr_bitno
)) != 0);
19009 /* Use of PC is UNPREDICTABLE. */
19010 if (inst
.operands
[1].reg
== REG_PC
)
19011 inst
.error
= _("Use of PC here is UNPREDICTABLE");
19013 if (inst
.operands
[1].immisreg
)
19014 inst
.error
= _("instruction does not accept register index");
19016 if (!inst
.operands
[1].isreg
)
19017 inst
.error
= _("instruction does not accept PC-relative addressing");
19019 if (abs (inst
.operands
[1].imm
) >= (1 << 7))
19020 inst
.error
= _("immediate value out of range");
19022 inst
.instruction
= 0xec000f80;
19024 inst
.instruction
|= 1 << sysreg_vldr_bitno
;
19025 encode_arm_cp_address (1, TRUE
, FALSE
, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
);
19026 inst
.instruction
|= (inst
.operands
[0].imm
& 0x7) << 13;
19027 inst
.instruction
|= (inst
.operands
[0].imm
& 0x8) << 19;
19031 do_vldr_vstr (void)
19033 bfd_boolean sysreg_op
= !inst
.operands
[0].isreg
;
19035 /* VLDR/VSTR (System Register). */
19038 if (!mark_feature_used (&arm_ext_v8_1m_main
))
19039 as_bad (_("Instruction not permitted on this architecture"));
19041 do_t_vldr_vstr_sysreg ();
19046 if (!mark_feature_used (&fpu_vfp_ext_v1xd
))
19047 as_bad (_("Instruction not permitted on this architecture"));
19048 do_neon_ldr_str ();
19052 /* "interleave" version also handles non-interleaving register VLD1/VST1
19056 do_neon_ld_st_interleave (void)
19058 struct neon_type_el et
= neon_check_type (1, NS_NULL
,
19059 N_8
| N_16
| N_32
| N_64
);
19060 unsigned alignbits
= 0;
19062 /* The bits in this table go:
19063 0: register stride of one (0) or two (1)
19064 1,2: register list length, minus one (1, 2, 3, 4).
19065 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19066 We use -1 for invalid entries. */
19067 const int typetable
[] =
19069 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19070 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19071 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19072 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19076 if (et
.type
== NT_invtype
)
19079 if (inst
.operands
[1].immisalign
)
19080 switch (inst
.operands
[1].imm
>> 8)
19082 case 64: alignbits
= 1; break;
19084 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2
19085 && NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
19086 goto bad_alignment
;
19090 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
19091 goto bad_alignment
;
19096 first_error (_("bad alignment"));
19100 inst
.instruction
|= alignbits
<< 4;
19101 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19103 /* Bits [4:6] of the immediate in a list specifier encode register stride
19104 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19105 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19106 up the right value for "type" in a table based on this value and the given
19107 list style, then stick it back. */
19108 idx
= ((inst
.operands
[0].imm
>> 4) & 7)
19109 | (((inst
.instruction
>> 8) & 3) << 3);
19111 typebits
= typetable
[idx
];
19113 constraint (typebits
== -1, _("bad list type for instruction"));
19114 constraint (((inst
.instruction
>> 8) & 3) && et
.size
== 64,
19117 inst
.instruction
&= ~0xf00;
19118 inst
.instruction
|= typebits
<< 8;
19121 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19122 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19123 otherwise. The variable arguments are a list of pairs of legal (size, align)
19124 values, terminated with -1. */
19127 neon_alignment_bit (int size
, int align
, int *do_alignment
, ...)
19130 int result
= FAIL
, thissize
, thisalign
;
19132 if (!inst
.operands
[1].immisalign
)
19138 va_start (ap
, do_alignment
);
19142 thissize
= va_arg (ap
, int);
19143 if (thissize
== -1)
19145 thisalign
= va_arg (ap
, int);
19147 if (size
== thissize
&& align
== thisalign
)
19150 while (result
!= SUCCESS
);
19154 if (result
== SUCCESS
)
19157 first_error (_("unsupported alignment for instruction"));
19163 do_neon_ld_st_lane (void)
19165 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
19166 int align_good
, do_alignment
= 0;
19167 int logsize
= neon_logbits (et
.size
);
19168 int align
= inst
.operands
[1].imm
>> 8;
19169 int n
= (inst
.instruction
>> 8) & 3;
19170 int max_el
= 64 / et
.size
;
19172 if (et
.type
== NT_invtype
)
19175 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != n
+ 1,
19176 _("bad list length"));
19177 constraint (NEON_LANE (inst
.operands
[0].imm
) >= max_el
,
19178 _("scalar index out of range"));
19179 constraint (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2
19181 _("stride of 2 unavailable when element size is 8"));
19185 case 0: /* VLD1 / VST1. */
19186 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 16, 16,
19188 if (align_good
== FAIL
)
19192 unsigned alignbits
= 0;
19195 case 16: alignbits
= 0x1; break;
19196 case 32: alignbits
= 0x3; break;
19199 inst
.instruction
|= alignbits
<< 4;
19203 case 1: /* VLD2 / VST2. */
19204 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 16,
19205 16, 32, 32, 64, -1);
19206 if (align_good
== FAIL
)
19209 inst
.instruction
|= 1 << 4;
19212 case 2: /* VLD3 / VST3. */
19213 constraint (inst
.operands
[1].immisalign
,
19214 _("can't use alignment with this instruction"));
19217 case 3: /* VLD4 / VST4. */
19218 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 32,
19219 16, 64, 32, 64, 32, 128, -1);
19220 if (align_good
== FAIL
)
19224 unsigned alignbits
= 0;
19227 case 8: alignbits
= 0x1; break;
19228 case 16: alignbits
= 0x1; break;
19229 case 32: alignbits
= (align
== 64) ? 0x1 : 0x2; break;
19232 inst
.instruction
|= alignbits
<< 4;
19239 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19240 if (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
19241 inst
.instruction
|= 1 << (4 + logsize
);
19243 inst
.instruction
|= NEON_LANE (inst
.operands
[0].imm
) << (logsize
+ 5);
19244 inst
.instruction
|= logsize
<< 10;
19247 /* Encode single n-element structure to all lanes VLD<n> instructions. */
19250 do_neon_ld_dup (void)
19252 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
19253 int align_good
, do_alignment
= 0;
19255 if (et
.type
== NT_invtype
)
19258 switch ((inst
.instruction
>> 8) & 3)
19260 case 0: /* VLD1. */
19261 gas_assert (NEON_REG_STRIDE (inst
.operands
[0].imm
) != 2);
19262 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
19263 &do_alignment
, 16, 16, 32, 32, -1);
19264 if (align_good
== FAIL
)
19266 switch (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
))
19269 case 2: inst
.instruction
|= 1 << 5; break;
19270 default: first_error (_("bad list length")); return;
19272 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19275 case 1: /* VLD2. */
19276 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
19277 &do_alignment
, 8, 16, 16, 32, 32, 64,
19279 if (align_good
== FAIL
)
19281 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2,
19282 _("bad list length"));
19283 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
19284 inst
.instruction
|= 1 << 5;
19285 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19288 case 2: /* VLD3. */
19289 constraint (inst
.operands
[1].immisalign
,
19290 _("can't use alignment with this instruction"));
19291 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 3,
19292 _("bad list length"));
19293 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
19294 inst
.instruction
|= 1 << 5;
19295 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19298 case 3: /* VLD4. */
19300 int align
= inst
.operands
[1].imm
>> 8;
19301 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 32,
19302 16, 64, 32, 64, 32, 128, -1);
19303 if (align_good
== FAIL
)
19305 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4,
19306 _("bad list length"));
19307 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
19308 inst
.instruction
|= 1 << 5;
19309 if (et
.size
== 32 && align
== 128)
19310 inst
.instruction
|= 0x3 << 6;
19312 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19319 inst
.instruction
|= do_alignment
<< 4;
19322 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19323 apart from bits [11:4]. */
19326 do_neon_ldx_stx (void)
19328 if (inst
.operands
[1].isreg
)
19329 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
19331 switch (NEON_LANE (inst
.operands
[0].imm
))
19333 case NEON_INTERLEAVE_LANES
:
19334 NEON_ENCODE (INTERLV
, inst
);
19335 do_neon_ld_st_interleave ();
19338 case NEON_ALL_LANES
:
19339 NEON_ENCODE (DUP
, inst
);
19340 if (inst
.instruction
== N_INV
)
19342 first_error ("only loads support such operands");
19349 NEON_ENCODE (LANE
, inst
);
19350 do_neon_ld_st_lane ();
19353 /* L bit comes from bit mask. */
19354 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19355 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19356 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
19358 if (inst
.operands
[1].postind
)
19360 int postreg
= inst
.operands
[1].imm
& 0xf;
19361 constraint (!inst
.operands
[1].immisreg
,
19362 _("post-index must be a register"));
19363 constraint (postreg
== 0xd || postreg
== 0xf,
19364 _("bad register for post-index"));
19365 inst
.instruction
|= postreg
;
19369 constraint (inst
.operands
[1].immisreg
, BAD_ADDR_MODE
);
19370 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
19371 || inst
.relocs
[0].exp
.X_add_number
!= 0,
19374 if (inst
.operands
[1].writeback
)
19376 inst
.instruction
|= 0xd;
19379 inst
.instruction
|= 0xf;
19383 inst
.instruction
|= 0xf9000000;
19385 inst
.instruction
|= 0xf4000000;
19390 do_vfp_nsyn_fpv8 (enum neon_shape rs
)
19392 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19393 D register operands. */
19394 if (neon_shape_class
[rs
] == SC_DOUBLE
)
19395 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
19398 NEON_ENCODE (FPV8
, inst
);
19400 if (rs
== NS_FFF
|| rs
== NS_HHH
)
19402 do_vfp_sp_dyadic ();
19404 /* ARMv8.2 fp16 instruction. */
19406 do_scalar_fp16_v82_encode ();
19409 do_vfp_dp_rd_rn_rm ();
19412 inst
.instruction
|= 0x100;
19414 inst
.instruction
|= 0xf0000000;
19420 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19422 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8
) != SUCCESS
)
19423 first_error (_("invalid instruction shape"));
19429 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19431 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8
) == SUCCESS
)
19434 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH8
) == FAIL
)
19437 neon_dyadic_misc (NT_untyped
, N_F_16_32
, 0);
19441 do_vrint_1 (enum neon_cvt_mode mode
)
19443 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_QQ
, NS_NULL
);
19444 struct neon_type_el et
;
19449 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19450 D register operands. */
19451 if (neon_shape_class
[rs
] == SC_DOUBLE
)
19452 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
19455 et
= neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
19457 if (et
.type
!= NT_invtype
)
19459 /* VFP encodings. */
19460 if (mode
== neon_cvt_mode_a
|| mode
== neon_cvt_mode_n
19461 || mode
== neon_cvt_mode_p
|| mode
== neon_cvt_mode_m
)
19462 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19464 NEON_ENCODE (FPV8
, inst
);
19465 if (rs
== NS_FF
|| rs
== NS_HH
)
19466 do_vfp_sp_monadic ();
19468 do_vfp_dp_rd_rm ();
19472 case neon_cvt_mode_r
: inst
.instruction
|= 0x00000000; break;
19473 case neon_cvt_mode_z
: inst
.instruction
|= 0x00000080; break;
19474 case neon_cvt_mode_x
: inst
.instruction
|= 0x00010000; break;
19475 case neon_cvt_mode_a
: inst
.instruction
|= 0xf0000000; break;
19476 case neon_cvt_mode_n
: inst
.instruction
|= 0xf0010000; break;
19477 case neon_cvt_mode_p
: inst
.instruction
|= 0xf0020000; break;
19478 case neon_cvt_mode_m
: inst
.instruction
|= 0xf0030000; break;
19482 inst
.instruction
|= (rs
== NS_DD
) << 8;
19483 do_vfp_cond_or_thumb ();
19485 /* ARMv8.2 fp16 vrint instruction. */
19487 do_scalar_fp16_v82_encode ();
19491 /* Neon encodings (or something broken...). */
19493 et
= neon_check_type (2, rs
, N_EQK
, N_F_16_32
| N_KEY
);
19495 if (et
.type
== NT_invtype
)
19498 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19499 NEON_ENCODE (FLOAT
, inst
);
19501 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH8
) == FAIL
)
19504 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19505 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19506 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19507 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19508 inst
.instruction
|= neon_quad (rs
) << 6;
19509 /* Mask off the original size bits and reencode them. */
19510 inst
.instruction
= ((inst
.instruction
& 0xfff3ffff)
19511 | neon_logbits (et
.size
) << 18);
19515 case neon_cvt_mode_z
: inst
.instruction
|= 3 << 7; break;
19516 case neon_cvt_mode_x
: inst
.instruction
|= 1 << 7; break;
19517 case neon_cvt_mode_a
: inst
.instruction
|= 2 << 7; break;
19518 case neon_cvt_mode_n
: inst
.instruction
|= 0 << 7; break;
19519 case neon_cvt_mode_p
: inst
.instruction
|= 7 << 7; break;
19520 case neon_cvt_mode_m
: inst
.instruction
|= 5 << 7; break;
19521 case neon_cvt_mode_r
: inst
.error
= _("invalid rounding mode"); break;
19526 inst
.instruction
|= 0xfc000000;
19528 inst
.instruction
|= 0xf0000000;
19535 do_vrint_1 (neon_cvt_mode_x
);
19541 do_vrint_1 (neon_cvt_mode_z
);
19547 do_vrint_1 (neon_cvt_mode_r
);
19553 do_vrint_1 (neon_cvt_mode_a
);
19559 do_vrint_1 (neon_cvt_mode_n
);
19565 do_vrint_1 (neon_cvt_mode_p
);
19571 do_vrint_1 (neon_cvt_mode_m
);
19575 neon_scalar_for_vcmla (unsigned opnd
, unsigned elsize
)
19577 unsigned regno
= NEON_SCALAR_REG (opnd
);
19578 unsigned elno
= NEON_SCALAR_INDEX (opnd
);
19580 if (elsize
== 16 && elno
< 2 && regno
< 16)
19581 return regno
| (elno
<< 4);
19582 else if (elsize
== 32 && elno
== 0)
19585 first_error (_("scalar out of range"));
19592 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
19594 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
19595 _("expression too complex"));
19596 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
19597 constraint (rot
!= 0 && rot
!= 90 && rot
!= 180 && rot
!= 270,
19598 _("immediate out of range"));
19600 if (inst
.operands
[2].isscalar
)
19602 enum neon_shape rs
= neon_select_shape (NS_DDSI
, NS_QQSI
, NS_NULL
);
19603 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
19604 N_KEY
| N_F16
| N_F32
).size
;
19605 unsigned m
= neon_scalar_for_vcmla (inst
.operands
[2].reg
, size
);
19607 inst
.instruction
= 0xfe000800;
19608 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19609 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19610 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
19611 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
19612 inst
.instruction
|= LOW4 (m
);
19613 inst
.instruction
|= HI1 (m
) << 5;
19614 inst
.instruction
|= neon_quad (rs
) << 6;
19615 inst
.instruction
|= rot
<< 20;
19616 inst
.instruction
|= (size
== 32) << 23;
19620 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
19621 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
19622 N_KEY
| N_F16
| N_F32
).size
;
19623 neon_three_same (neon_quad (rs
), 0, -1);
19624 inst
.instruction
&= 0x00ffffff; /* Undo neon_dp_fixup. */
19625 inst
.instruction
|= 0xfc200800;
19626 inst
.instruction
|= rot
<< 23;
19627 inst
.instruction
|= (size
== 32) << 20;
19634 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
19636 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
19637 _("expression too complex"));
19638 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
19639 constraint (rot
!= 90 && rot
!= 270, _("immediate out of range"));
19640 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
19641 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
19642 N_KEY
| N_F16
| N_F32
).size
;
19643 neon_three_same (neon_quad (rs
), 0, -1);
19644 inst
.instruction
&= 0x00ffffff; /* Undo neon_dp_fixup. */
19645 inst
.instruction
|= 0xfc800800;
19646 inst
.instruction
|= (rot
== 270) << 24;
19647 inst
.instruction
|= (size
== 32) << 20;
19650 /* Dot Product instructions encoding support. */
19653 do_neon_dotproduct (int unsigned_p
)
19655 enum neon_shape rs
;
19656 unsigned scalar_oprd2
= 0;
19659 if (inst
.cond
!= COND_ALWAYS
)
19660 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
19661 "is UNPREDICTABLE"));
19663 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
19666 /* Dot Product instructions are in three-same D/Q register format or the third
19667 operand can be a scalar index register. */
19668 if (inst
.operands
[2].isscalar
)
19670 scalar_oprd2
= neon_scalar_for_mul (inst
.operands
[2].reg
, 32);
19671 high8
= 0xfe000000;
19672 rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
19676 high8
= 0xfc000000;
19677 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
19681 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_U8
);
19683 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_S8
);
19685 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
19686 Product instruction, so we pass 0 as the "ubit" parameter. And the
19687 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
19688 neon_three_same (neon_quad (rs
), 0, 32);
19690 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
19691 different NEON three-same encoding. */
19692 inst
.instruction
&= 0x00ffffff;
19693 inst
.instruction
|= high8
;
19694 /* Encode 'U' bit which indicates signedness. */
19695 inst
.instruction
|= (unsigned_p
? 1 : 0) << 4;
19696 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
19697 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
19698 the instruction encoding. */
19699 if (inst
.operands
[2].isscalar
)
19701 inst
.instruction
&= 0xffffffd0;
19702 inst
.instruction
|= LOW4 (scalar_oprd2
);
19703 inst
.instruction
|= HI1 (scalar_oprd2
) << 5;
19707 /* Dot Product instructions for signed integer. */
19710 do_neon_dotproduct_s (void)
19712 return do_neon_dotproduct (0);
19715 /* Dot Product instructions for unsigned integer. */
19718 do_neon_dotproduct_u (void)
19720 return do_neon_dotproduct (1);
19723 /* Crypto v1 instructions. */
19725 do_crypto_2op_1 (unsigned elttype
, int op
)
19727 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19729 if (neon_check_type (2, NS_QQ
, N_EQK
| N_UNT
, elttype
| N_UNT
| N_KEY
).type
19735 NEON_ENCODE (INTEGER
, inst
);
19736 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19737 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19738 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19739 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19741 inst
.instruction
|= op
<< 6;
19744 inst
.instruction
|= 0xfc000000;
19746 inst
.instruction
|= 0xf0000000;
19750 do_crypto_3op_1 (int u
, int op
)
19752 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19754 if (neon_check_type (3, NS_QQQ
, N_EQK
| N_UNT
, N_EQK
| N_UNT
,
19755 N_32
| N_UNT
| N_KEY
).type
== NT_invtype
)
19760 NEON_ENCODE (INTEGER
, inst
);
19761 neon_three_same (1, u
, 8 << op
);
19767 do_crypto_2op_1 (N_8
, 0);
19773 do_crypto_2op_1 (N_8
, 1);
19779 do_crypto_2op_1 (N_8
, 2);
19785 do_crypto_2op_1 (N_8
, 3);
19791 do_crypto_3op_1 (0, 0);
19797 do_crypto_3op_1 (0, 1);
19803 do_crypto_3op_1 (0, 2);
19809 do_crypto_3op_1 (0, 3);
19815 do_crypto_3op_1 (1, 0);
19821 do_crypto_3op_1 (1, 1);
19825 do_sha256su1 (void)
19827 do_crypto_3op_1 (1, 2);
19833 do_crypto_2op_1 (N_32
, -1);
19839 do_crypto_2op_1 (N_32
, 0);
19843 do_sha256su0 (void)
19845 do_crypto_2op_1 (N_32
, 1);
19849 do_crc32_1 (unsigned int poly
, unsigned int sz
)
19851 unsigned int Rd
= inst
.operands
[0].reg
;
19852 unsigned int Rn
= inst
.operands
[1].reg
;
19853 unsigned int Rm
= inst
.operands
[2].reg
;
19855 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19856 inst
.instruction
|= LOW4 (Rd
) << (thumb_mode
? 8 : 12);
19857 inst
.instruction
|= LOW4 (Rn
) << 16;
19858 inst
.instruction
|= LOW4 (Rm
);
19859 inst
.instruction
|= sz
<< (thumb_mode
? 4 : 21);
19860 inst
.instruction
|= poly
<< (thumb_mode
? 20 : 9);
19862 if (Rd
== REG_PC
|| Rn
== REG_PC
|| Rm
== REG_PC
)
19863 as_warn (UNPRED_REG ("r15"));
19905 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
19907 neon_check_type (2, NS_FD
, N_S32
, N_F64
);
19908 do_vfp_sp_dp_cvt ();
19909 do_vfp_cond_or_thumb ();
19913 /* Overall per-instruction processing. */
19915 /* We need to be able to fix up arbitrary expressions in some statements.
19916 This is so that we can handle symbols that are an arbitrary distance from
19917 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
19918 which returns part of an address in a form which will be valid for
19919 a data instruction. We do this by pushing the expression into a symbol
19920 in the expr_section, and creating a fix for that. */
19923 fix_new_arm (fragS
* frag
,
19937 /* Create an absolute valued symbol, so we have something to
19938 refer to in the object file. Unfortunately for us, gas's
19939 generic expression parsing will already have folded out
19940 any use of .set foo/.type foo %function that may have
19941 been used to set type information of the target location,
19942 that's being specified symbolically. We have to presume
19943 the user knows what they are doing. */
19947 sprintf (name
, "*ABS*0x%lx", (unsigned long)exp
->X_add_number
);
19949 symbol
= symbol_find_or_make (name
);
19950 S_SET_SEGMENT (symbol
, absolute_section
);
19951 symbol_set_frag (symbol
, &zero_address_frag
);
19952 S_SET_VALUE (symbol
, exp
->X_add_number
);
19953 exp
->X_op
= O_symbol
;
19954 exp
->X_add_symbol
= symbol
;
19955 exp
->X_add_number
= 0;
19961 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pc_rel
,
19962 (enum bfd_reloc_code_real
) reloc
);
19966 new_fix
= (fixS
*) fix_new (frag
, where
, size
, make_expr_symbol (exp
), 0,
19967 pc_rel
, (enum bfd_reloc_code_real
) reloc
);
19971 /* Mark whether the fix is to a THUMB instruction, or an ARM
19973 new_fix
->tc_fix_data
= thumb_mode
;
19976 /* Create a frg for an instruction requiring relaxation. */
19978 output_relax_insn (void)
19984 /* The size of the instruction is unknown, so tie the debug info to the
19985 start of the instruction. */
19986 dwarf2_emit_insn (0);
19988 switch (inst
.relocs
[0].exp
.X_op
)
19991 sym
= inst
.relocs
[0].exp
.X_add_symbol
;
19992 offset
= inst
.relocs
[0].exp
.X_add_number
;
19996 offset
= inst
.relocs
[0].exp
.X_add_number
;
19999 sym
= make_expr_symbol (&inst
.relocs
[0].exp
);
20003 to
= frag_var (rs_machine_dependent
, INSN_SIZE
, THUMB_SIZE
,
20004 inst
.relax
, sym
, offset
, NULL
/*offset, opcode*/);
20005 md_number_to_chars (to
, inst
.instruction
, THUMB_SIZE
);
20008 /* Write a 32-bit thumb instruction to buf. */
20010 put_thumb32_insn (char * buf
, unsigned long insn
)
20012 md_number_to_chars (buf
, insn
>> 16, THUMB_SIZE
);
20013 md_number_to_chars (buf
+ THUMB_SIZE
, insn
, THUMB_SIZE
);
20017 output_inst (const char * str
)
20023 as_bad ("%s -- `%s'", inst
.error
, str
);
20028 output_relax_insn ();
20031 if (inst
.size
== 0)
20034 to
= frag_more (inst
.size
);
20035 /* PR 9814: Record the thumb mode into the current frag so that we know
20036 what type of NOP padding to use, if necessary. We override any previous
20037 setting so that if the mode has changed then the NOPS that we use will
20038 match the encoding of the last instruction in the frag. */
20039 frag_now
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
20041 if (thumb_mode
&& (inst
.size
> THUMB_SIZE
))
20043 gas_assert (inst
.size
== (2 * THUMB_SIZE
));
20044 put_thumb32_insn (to
, inst
.instruction
);
20046 else if (inst
.size
> INSN_SIZE
)
20048 gas_assert (inst
.size
== (2 * INSN_SIZE
));
20049 md_number_to_chars (to
, inst
.instruction
, INSN_SIZE
);
20050 md_number_to_chars (to
+ INSN_SIZE
, inst
.instruction
, INSN_SIZE
);
20053 md_number_to_chars (to
, inst
.instruction
, inst
.size
);
20056 for (r
= 0; r
< ARM_IT_MAX_RELOCS
; r
++)
20058 if (inst
.relocs
[r
].type
!= BFD_RELOC_UNUSED
)
20059 fix_new_arm (frag_now
, to
- frag_now
->fr_literal
,
20060 inst
.size
, & inst
.relocs
[r
].exp
, inst
.relocs
[r
].pc_rel
,
20061 inst
.relocs
[r
].type
);
20064 dwarf2_emit_insn (inst
.size
);
20068 output_it_inst (int cond
, int mask
, char * to
)
20070 unsigned long instruction
= 0xbf00;
20073 instruction
|= mask
;
20074 instruction
|= cond
<< 4;
20078 to
= frag_more (2);
20080 dwarf2_emit_insn (2);
20084 md_number_to_chars (to
, instruction
, 2);
20089 /* Tag values used in struct asm_opcode's tag field. */
20092 OT_unconditional
, /* Instruction cannot be conditionalized.
20093 The ARM condition field is still 0xE. */
20094 OT_unconditionalF
, /* Instruction cannot be conditionalized
20095 and carries 0xF in its ARM condition field. */
20096 OT_csuffix
, /* Instruction takes a conditional suffix. */
20097 OT_csuffixF
, /* Some forms of the instruction take a scalar
20098 conditional suffix, others place 0xF where the
20099 condition field would be, others take a vector
20100 conditional suffix. */
20101 OT_cinfix3
, /* Instruction takes a conditional infix,
20102 beginning at character index 3. (In
20103 unified mode, it becomes a suffix.) */
20104 OT_cinfix3_deprecated
, /* The same as OT_cinfix3. This is used for
20105 tsts, cmps, cmns, and teqs. */
20106 OT_cinfix3_legacy
, /* Legacy instruction takes a conditional infix at
20107 character index 3, even in unified mode. Used for
20108 legacy instructions where suffix and infix forms
20109 may be ambiguous. */
20110 OT_csuf_or_in3
, /* Instruction takes either a conditional
20111 suffix or an infix at character index 3. */
20112 OT_odd_infix_unc
, /* This is the unconditional variant of an
20113 instruction that takes a conditional infix
20114 at an unusual position. In unified mode,
20115 this variant will accept a suffix. */
20116 OT_odd_infix_0
/* Values greater than or equal to OT_odd_infix_0
20117 are the conditional variants of instructions that
20118 take conditional infixes in unusual positions.
20119 The infix appears at character index
20120 (tag - OT_odd_infix_0). These are not accepted
20121 in unified mode. */
20124 /* Subroutine of md_assemble, responsible for looking up the primary
20125 opcode from the mnemonic the user wrote. STR points to the
20126 beginning of the mnemonic.
20128 This is not simply a hash table lookup, because of conditional
20129 variants. Most instructions have conditional variants, which are
20130 expressed with a _conditional affix_ to the mnemonic. If we were
20131 to encode each conditional variant as a literal string in the opcode
20132 table, it would have approximately 20,000 entries.
20134 Most mnemonics take this affix as a suffix, and in unified syntax,
20135 'most' is upgraded to 'all'. However, in the divided syntax, some
20136 instructions take the affix as an infix, notably the s-variants of
20137 the arithmetic instructions. Of those instructions, all but six
20138 have the infix appear after the third character of the mnemonic.
20140 Accordingly, the algorithm for looking up primary opcodes given
20143 1. Look up the identifier in the opcode table.
20144 If we find a match, go to step U.
20146 2. Look up the last two characters of the identifier in the
20147 conditions table. If we find a match, look up the first N-2
20148 characters of the identifier in the opcode table. If we
20149 find a match, go to step CE.
20151 3. Look up the fourth and fifth characters of the identifier in
20152 the conditions table. If we find a match, extract those
20153 characters from the identifier, and look up the remaining
20154 characters in the opcode table. If we find a match, go
20159 U. Examine the tag field of the opcode structure, in case this is
20160 one of the six instructions with its conditional infix in an
20161 unusual place. If it is, the tag tells us where to find the
20162 infix; look it up in the conditions table and set inst.cond
20163 accordingly. Otherwise, this is an unconditional instruction.
20164 Again set inst.cond accordingly. Return the opcode structure.
20166 CE. Examine the tag field to make sure this is an instruction that
20167 should receive a conditional suffix. If it is not, fail.
20168 Otherwise, set inst.cond from the suffix we already looked up,
20169 and return the opcode structure.
20171 CM. Examine the tag field to make sure this is an instruction that
20172 should receive a conditional infix after the third character.
20173 If it is not, fail. Otherwise, undo the edits to the current
20174 line of input and proceed as for case CE. */
20176 static const struct asm_opcode
*
20177 opcode_lookup (char **str
)
20181 const struct asm_opcode
*opcode
;
20182 const struct asm_cond
*cond
;
20185 /* Scan up to the end of the mnemonic, which must end in white space,
20186 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20187 for (base
= end
= *str
; *end
!= '\0'; end
++)
20188 if (*end
== ' ' || *end
== '.')
20194 /* Handle a possible width suffix and/or Neon type suffix. */
20199 /* The .w and .n suffixes are only valid if the unified syntax is in
20201 if (unified_syntax
&& end
[1] == 'w')
20203 else if (unified_syntax
&& end
[1] == 'n')
20208 inst
.vectype
.elems
= 0;
20210 *str
= end
+ offset
;
20212 if (end
[offset
] == '.')
20214 /* See if we have a Neon type suffix (possible in either unified or
20215 non-unified ARM syntax mode). */
20216 if (parse_neon_type (&inst
.vectype
, str
) == FAIL
)
20219 else if (end
[offset
] != '\0' && end
[offset
] != ' ')
20225 /* Look for unaffixed or special-case affixed mnemonic. */
20226 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
20231 if (opcode
->tag
< OT_odd_infix_0
)
20233 inst
.cond
= COND_ALWAYS
;
20237 if (warn_on_deprecated
&& unified_syntax
)
20238 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20239 affix
= base
+ (opcode
->tag
- OT_odd_infix_0
);
20240 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
20243 inst
.cond
= cond
->value
;
20246 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20248 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20250 if (end
- base
< 2)
20253 cond
= (const struct asm_cond
*) hash_find_n (arm_vcond_hsh
, affix
, 1);
20254 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
20256 /* If this opcode can not be vector predicated then don't accept it with a
20257 vector predication code. */
20258 if (opcode
&& !opcode
->mayBeVecPred
)
20261 if (!opcode
|| !cond
)
20263 /* Cannot have a conditional suffix on a mnemonic of less than two
20265 if (end
- base
< 3)
20268 /* Look for suffixed mnemonic. */
20270 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
20271 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
20275 if (opcode
&& cond
)
20278 switch (opcode
->tag
)
20280 case OT_cinfix3_legacy
:
20281 /* Ignore conditional suffixes matched on infix only mnemonics. */
20285 case OT_cinfix3_deprecated
:
20286 case OT_odd_infix_unc
:
20287 if (!unified_syntax
)
20289 /* Fall through. */
20293 case OT_csuf_or_in3
:
20294 inst
.cond
= cond
->value
;
20297 case OT_unconditional
:
20298 case OT_unconditionalF
:
20300 inst
.cond
= cond
->value
;
20303 /* Delayed diagnostic. */
20304 inst
.error
= BAD_COND
;
20305 inst
.cond
= COND_ALWAYS
;
20314 /* Cannot have a usual-position infix on a mnemonic of less than
20315 six characters (five would be a suffix). */
20316 if (end
- base
< 6)
20319 /* Look for infixed mnemonic in the usual position. */
20321 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
20325 memcpy (save
, affix
, 2);
20326 memmove (affix
, affix
+ 2, (end
- affix
) - 2);
20327 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
20329 memmove (affix
+ 2, affix
, (end
- affix
) - 2);
20330 memcpy (affix
, save
, 2);
20333 && (opcode
->tag
== OT_cinfix3
20334 || opcode
->tag
== OT_cinfix3_deprecated
20335 || opcode
->tag
== OT_csuf_or_in3
20336 || opcode
->tag
== OT_cinfix3_legacy
))
20339 if (warn_on_deprecated
&& unified_syntax
20340 && (opcode
->tag
== OT_cinfix3
20341 || opcode
->tag
== OT_cinfix3_deprecated
))
20342 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20344 inst
.cond
= cond
->value
;
20351 /* This function generates an initial IT instruction, leaving its block
20352 virtually open for the new instructions. Eventually,
20353 the mask will be updated by now_pred_add_mask () each time
20354 a new instruction needs to be included in the IT block.
20355 Finally, the block is closed with close_automatic_it_block ().
20356 The block closure can be requested either from md_assemble (),
20357 a tencode (), or due to a label hook. */
20360 new_automatic_it_block (int cond
)
20362 now_pred
.state
= AUTOMATIC_PRED_BLOCK
;
20363 now_pred
.mask
= 0x18;
20364 now_pred
.cc
= cond
;
20365 now_pred
.block_length
= 1;
20366 mapping_state (MAP_THUMB
);
20367 now_pred
.insn
= output_it_inst (cond
, now_pred
.mask
, NULL
);
20368 now_pred
.warn_deprecated
= FALSE
;
20369 now_pred
.insn_cond
= TRUE
;
20372 /* Close an automatic IT block.
20373 See comments in new_automatic_it_block (). */
20376 close_automatic_it_block (void)
20378 now_pred
.mask
= 0x10;
20379 now_pred
.block_length
= 0;
20382 /* Update the mask of the current automatically-generated IT
20383 instruction. See comments in new_automatic_it_block (). */
20386 now_pred_add_mask (int cond
)
20388 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20389 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
20390 | ((bitvalue) << (nbit)))
20391 const int resulting_bit
= (cond
& 1);
20393 now_pred
.mask
&= 0xf;
20394 now_pred
.mask
= SET_BIT_VALUE (now_pred
.mask
,
20396 (5 - now_pred
.block_length
));
20397 now_pred
.mask
= SET_BIT_VALUE (now_pred
.mask
,
20399 ((5 - now_pred
.block_length
) - 1));
20400 output_it_inst (now_pred
.cc
, now_pred
.mask
, now_pred
.insn
);
20403 #undef SET_BIT_VALUE
20406 /* The IT blocks handling machinery is accessed through the these functions:
20407 it_fsm_pre_encode () from md_assemble ()
20408 set_pred_insn_type () optional, from the tencode functions
20409 set_pred_insn_type_last () ditto
20410 in_pred_block () ditto
20411 it_fsm_post_encode () from md_assemble ()
20412 force_automatic_it_block_close () from label handling functions
20415 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
20416 initializing the IT insn type with a generic initial value depending
20417 on the inst.condition.
20418 2) During the tencode function, two things may happen:
20419 a) The tencode function overrides the IT insn type by
20420 calling either set_pred_insn_type (type) or
20421 set_pred_insn_type_last ().
20422 b) The tencode function queries the IT block state by
20423 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
20425 Both set_pred_insn_type and in_pred_block run the internal FSM state
20426 handling function (handle_pred_state), because: a) setting the IT insn
20427 type may incur in an invalid state (exiting the function),
20428 and b) querying the state requires the FSM to be updated.
20429 Specifically we want to avoid creating an IT block for conditional
20430 branches, so it_fsm_pre_encode is actually a guess and we can't
20431 determine whether an IT block is required until the tencode () routine
20432 has decided what type of instruction this actually it.
20433 Because of this, if set_pred_insn_type and in_pred_block have to be
20434 used, set_pred_insn_type has to be called first.
20436 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20437 that determines the insn IT type depending on the inst.cond code.
20438 When a tencode () routine encodes an instruction that can be
20439 either outside an IT block, or, in the case of being inside, has to be
20440 the last one, set_pred_insn_type_last () will determine the proper
20441 IT instruction type based on the inst.cond code. Otherwise,
20442 set_pred_insn_type can be called for overriding that logic or
20443 for covering other cases.
20445 Calling handle_pred_state () may not transition the IT block state to
20446 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
20447 still queried. Instead, if the FSM determines that the state should
20448 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
20449 after the tencode () function: that's what it_fsm_post_encode () does.
20451 Since in_pred_block () calls the state handling function to get an
20452 updated state, an error may occur (due to invalid insns combination).
20453 In that case, inst.error is set.
20454 Therefore, inst.error has to be checked after the execution of
20455 the tencode () routine.
20457 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
20458 any pending state change (if any) that didn't take place in
20459 handle_pred_state () as explained above. */
20462 it_fsm_pre_encode (void)
20464 if (inst
.cond
!= COND_ALWAYS
)
20465 inst
.pred_insn_type
= INSIDE_IT_INSN
;
20467 inst
.pred_insn_type
= OUTSIDE_PRED_INSN
;
20469 now_pred
.state_handled
= 0;
20472 /* IT state FSM handling function. */
20473 /* MVE instructions and non-MVE instructions are handled differently because of
20474 the introduction of VPT blocks.
20475 Specifications say that any non-MVE instruction inside a VPT block is
20476 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20477 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
20478 few exceptions we have MVE_UNPREDICABLE_INSN.
20479 The error messages provided depending on the different combinations possible
20480 are described in the cases below:
20481 For 'most' MVE instructions:
20482 1) In an IT block, with an IT code: syntax error
20483 2) In an IT block, with a VPT code: error: must be in a VPT block
20484 3) In an IT block, with no code: warning: UNPREDICTABLE
20485 4) In a VPT block, with an IT code: syntax error
20486 5) In a VPT block, with a VPT code: OK!
20487 6) In a VPT block, with no code: error: missing code
20488 7) Outside a pred block, with an IT code: error: syntax error
20489 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20490 9) Outside a pred block, with no code: OK!
20491 For non-MVE instructions:
20492 10) In an IT block, with an IT code: OK!
20493 11) In an IT block, with a VPT code: syntax error
20494 12) In an IT block, with no code: error: missing code
20495 13) In a VPT block, with an IT code: error: should be in an IT block
20496 14) In a VPT block, with a VPT code: syntax error
20497 15) In a VPT block, with no code: UNPREDICTABLE
20498 16) Outside a pred block, with an IT code: error: should be in an IT block
20499 17) Outside a pred block, with a VPT code: syntax error
20500 18) Outside a pred block, with no code: OK!
20505 handle_pred_state (void)
20507 now_pred
.state_handled
= 1;
20508 now_pred
.insn_cond
= FALSE
;
20510 switch (now_pred
.state
)
20512 case OUTSIDE_PRED_BLOCK
:
20513 switch (inst
.pred_insn_type
)
20515 case MVE_UNPREDICABLE_INSN
:
20516 case MVE_OUTSIDE_PRED_INSN
:
20517 if (inst
.cond
< COND_ALWAYS
)
20519 /* Case 7: Outside a pred block, with an IT code: error: syntax
20521 inst
.error
= BAD_SYNTAX
;
20524 /* Case 9: Outside a pred block, with no code: OK! */
20526 case OUTSIDE_PRED_INSN
:
20527 if (inst
.cond
> COND_ALWAYS
)
20529 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20531 inst
.error
= BAD_SYNTAX
;
20534 /* Case 18: Outside a pred block, with no code: OK! */
20537 case INSIDE_VPT_INSN
:
20538 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20540 inst
.error
= BAD_OUT_VPT
;
20543 case INSIDE_IT_INSN
:
20544 case INSIDE_IT_LAST_INSN
:
20545 if (inst
.cond
< COND_ALWAYS
)
20547 /* Case 16: Outside a pred block, with an IT code: error: should
20548 be in an IT block. */
20549 if (thumb_mode
== 0)
20552 && !(implicit_it_mode
& IMPLICIT_IT_MODE_ARM
))
20553 as_tsktsk (_("Warning: conditional outside an IT block"\
20558 if ((implicit_it_mode
& IMPLICIT_IT_MODE_THUMB
)
20559 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
20561 /* Automatically generate the IT instruction. */
20562 new_automatic_it_block (inst
.cond
);
20563 if (inst
.pred_insn_type
== INSIDE_IT_LAST_INSN
)
20564 close_automatic_it_block ();
20568 inst
.error
= BAD_OUT_IT
;
20574 else if (inst
.cond
> COND_ALWAYS
)
20576 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20578 inst
.error
= BAD_SYNTAX
;
20583 case IF_INSIDE_IT_LAST_INSN
:
20584 case NEUTRAL_IT_INSN
:
20588 if (inst
.cond
!= COND_ALWAYS
)
20589 first_error (BAD_SYNTAX
);
20590 now_pred
.state
= MANUAL_PRED_BLOCK
;
20591 now_pred
.block_length
= 0;
20592 now_pred
.type
= VECTOR_PRED
;
20596 now_pred
.state
= MANUAL_PRED_BLOCK
;
20597 now_pred
.block_length
= 0;
20598 now_pred
.type
= SCALAR_PRED
;
20603 case AUTOMATIC_PRED_BLOCK
:
20604 /* Three things may happen now:
20605 a) We should increment current it block size;
20606 b) We should close current it block (closing insn or 4 insns);
20607 c) We should close current it block and start a new one (due
20608 to incompatible conditions or
20609 4 insns-length block reached). */
20611 switch (inst
.pred_insn_type
)
20613 case INSIDE_VPT_INSN
:
20615 case MVE_UNPREDICABLE_INSN
:
20616 case MVE_OUTSIDE_PRED_INSN
:
20618 case OUTSIDE_PRED_INSN
:
20619 /* The closure of the block shall happen immediately,
20620 so any in_pred_block () call reports the block as closed. */
20621 force_automatic_it_block_close ();
20624 case INSIDE_IT_INSN
:
20625 case INSIDE_IT_LAST_INSN
:
20626 case IF_INSIDE_IT_LAST_INSN
:
20627 now_pred
.block_length
++;
20629 if (now_pred
.block_length
> 4
20630 || !now_pred_compatible (inst
.cond
))
20632 force_automatic_it_block_close ();
20633 if (inst
.pred_insn_type
!= IF_INSIDE_IT_LAST_INSN
)
20634 new_automatic_it_block (inst
.cond
);
20638 now_pred
.insn_cond
= TRUE
;
20639 now_pred_add_mask (inst
.cond
);
20642 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
20643 && (inst
.pred_insn_type
== INSIDE_IT_LAST_INSN
20644 || inst
.pred_insn_type
== IF_INSIDE_IT_LAST_INSN
))
20645 close_automatic_it_block ();
20648 case NEUTRAL_IT_INSN
:
20649 now_pred
.block_length
++;
20650 now_pred
.insn_cond
= TRUE
;
20652 if (now_pred
.block_length
> 4)
20653 force_automatic_it_block_close ();
20655 now_pred_add_mask (now_pred
.cc
& 1);
20659 close_automatic_it_block ();
20660 now_pred
.state
= MANUAL_PRED_BLOCK
;
20665 case MANUAL_PRED_BLOCK
:
20668 if (now_pred
.type
== SCALAR_PRED
)
20670 /* Check conditional suffixes. */
20671 cond
= now_pred
.cc
^ ((now_pred
.mask
>> 4) & 1) ^ 1;
20672 now_pred
.mask
<<= 1;
20673 now_pred
.mask
&= 0x1f;
20674 is_last
= (now_pred
.mask
== 0x10);
20678 now_pred
.cc
^= (now_pred
.mask
>> 4);
20679 cond
= now_pred
.cc
+ 0xf;
20680 now_pred
.mask
<<= 1;
20681 now_pred
.mask
&= 0x1f;
20682 is_last
= now_pred
.mask
== 0x10;
20684 now_pred
.insn_cond
= TRUE
;
20686 switch (inst
.pred_insn_type
)
20688 case OUTSIDE_PRED_INSN
:
20689 if (now_pred
.type
== SCALAR_PRED
)
20691 if (inst
.cond
== COND_ALWAYS
)
20693 /* Case 12: In an IT block, with no code: error: missing
20695 inst
.error
= BAD_NOT_IT
;
20698 else if (inst
.cond
> COND_ALWAYS
)
20700 /* Case 11: In an IT block, with a VPT code: syntax error.
20702 inst
.error
= BAD_SYNTAX
;
20705 else if (thumb_mode
)
20707 /* This is for some special cases where a non-MVE
20708 instruction is not allowed in an IT block, such as cbz,
20709 but are put into one with a condition code.
20710 You could argue this should be a syntax error, but we
20711 gave the 'not allowed in IT block' diagnostic in the
20712 past so we will keep doing so. */
20713 inst
.error
= BAD_NOT_IT
;
20720 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
20721 as_tsktsk (MVE_NOT_VPT
);
20724 case MVE_OUTSIDE_PRED_INSN
:
20725 if (now_pred
.type
== SCALAR_PRED
)
20727 if (inst
.cond
== COND_ALWAYS
)
20729 /* Case 3: In an IT block, with no code: warning:
20731 as_tsktsk (MVE_NOT_IT
);
20734 else if (inst
.cond
< COND_ALWAYS
)
20736 /* Case 1: In an IT block, with an IT code: syntax error.
20738 inst
.error
= BAD_SYNTAX
;
20746 if (inst
.cond
< COND_ALWAYS
)
20748 /* Case 4: In a VPT block, with an IT code: syntax error.
20750 inst
.error
= BAD_SYNTAX
;
20753 else if (inst
.cond
== COND_ALWAYS
)
20755 /* Case 6: In a VPT block, with no code: error: missing
20757 inst
.error
= BAD_NOT_VPT
;
20765 case MVE_UNPREDICABLE_INSN
:
20766 as_tsktsk (now_pred
.type
== SCALAR_PRED
? MVE_NOT_IT
: MVE_NOT_VPT
);
20768 case INSIDE_IT_INSN
:
20769 if (inst
.cond
> COND_ALWAYS
)
20771 /* Case 11: In an IT block, with a VPT code: syntax error. */
20772 /* Case 14: In a VPT block, with a VPT code: syntax error. */
20773 inst
.error
= BAD_SYNTAX
;
20776 else if (now_pred
.type
== SCALAR_PRED
)
20778 /* Case 10: In an IT block, with an IT code: OK! */
20779 if (cond
!= inst
.cond
)
20781 inst
.error
= now_pred
.type
== SCALAR_PRED
? BAD_IT_COND
:
20788 /* Case 13: In a VPT block, with an IT code: error: should be
20790 inst
.error
= BAD_OUT_IT
;
20795 case INSIDE_VPT_INSN
:
20796 if (now_pred
.type
== SCALAR_PRED
)
20798 /* Case 2: In an IT block, with a VPT code: error: must be in a
20800 inst
.error
= BAD_OUT_VPT
;
20803 /* Case 5: In a VPT block, with a VPT code: OK! */
20804 else if (cond
!= inst
.cond
)
20806 inst
.error
= BAD_VPT_COND
;
20810 case INSIDE_IT_LAST_INSN
:
20811 case IF_INSIDE_IT_LAST_INSN
:
20812 if (now_pred
.type
== VECTOR_PRED
|| inst
.cond
> COND_ALWAYS
)
20814 /* Case 4: In a VPT block, with an IT code: syntax error. */
20815 /* Case 11: In an IT block, with a VPT code: syntax error. */
20816 inst
.error
= BAD_SYNTAX
;
20819 else if (cond
!= inst
.cond
)
20821 inst
.error
= BAD_IT_COND
;
20826 inst
.error
= BAD_BRANCH
;
20831 case NEUTRAL_IT_INSN
:
20832 /* The BKPT instruction is unconditional even in a IT or VPT
20837 if (now_pred
.type
== SCALAR_PRED
)
20839 inst
.error
= BAD_IT_IT
;
20842 /* fall through. */
20844 if (inst
.cond
== COND_ALWAYS
)
20846 /* Executing a VPT/VPST instruction inside an IT block or a
20847 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
20849 if (now_pred
.type
== SCALAR_PRED
)
20850 as_tsktsk (MVE_NOT_IT
);
20852 as_tsktsk (MVE_NOT_VPT
);
20857 /* VPT/VPST do not accept condition codes. */
20858 inst
.error
= BAD_SYNTAX
;
20869 struct depr_insn_mask
20871 unsigned long pattern
;
20872 unsigned long mask
;
20873 const char* description
;
20876 /* List of 16-bit instruction patterns deprecated in an IT block in
20878 static const struct depr_insn_mask depr_it_insns
[] = {
20879 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
20880 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
20881 { 0xa000, 0xb800, N_("ADR") },
20882 { 0x4800, 0xf800, N_("Literal loads") },
20883 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
20884 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
20885 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
20886 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
20887 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
20892 it_fsm_post_encode (void)
20896 if (!now_pred
.state_handled
)
20897 handle_pred_state ();
20899 if (now_pred
.insn_cond
20900 && !now_pred
.warn_deprecated
20901 && warn_on_deprecated
20902 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
)
20903 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_m
))
20905 if (inst
.instruction
>= 0x10000)
20907 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
20908 "performance deprecated in ARMv8-A and ARMv8-R"));
20909 now_pred
.warn_deprecated
= TRUE
;
20913 const struct depr_insn_mask
*p
= depr_it_insns
;
20915 while (p
->mask
!= 0)
20917 if ((inst
.instruction
& p
->mask
) == p
->pattern
)
20919 as_tsktsk (_("IT blocks containing 16-bit Thumb "
20920 "instructions of the following class are "
20921 "performance deprecated in ARMv8-A and "
20922 "ARMv8-R: %s"), p
->description
);
20923 now_pred
.warn_deprecated
= TRUE
;
20931 if (now_pred
.block_length
> 1)
20933 as_tsktsk (_("IT blocks containing more than one conditional "
20934 "instruction are performance deprecated in ARMv8-A and "
20936 now_pred
.warn_deprecated
= TRUE
;
20940 is_last
= (now_pred
.mask
== 0x10);
20943 now_pred
.state
= OUTSIDE_PRED_BLOCK
;
20949 force_automatic_it_block_close (void)
20951 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
)
20953 close_automatic_it_block ();
20954 now_pred
.state
= OUTSIDE_PRED_BLOCK
;
20960 in_pred_block (void)
20962 if (!now_pred
.state_handled
)
20963 handle_pred_state ();
20965 return now_pred
.state
!= OUTSIDE_PRED_BLOCK
;
20968 /* Whether OPCODE only has T32 encoding. Since this function is only used by
20969 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
20970 here, hence the "known" in the function name. */
20973 known_t32_only_insn (const struct asm_opcode
*opcode
)
20975 /* Original Thumb-1 wide instruction. */
20976 if (opcode
->tencode
== do_t_blx
20977 || opcode
->tencode
== do_t_branch23
20978 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_msr
)
20979 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_barrier
))
20982 /* Wide-only instruction added to ARMv8-M Baseline. */
20983 if (ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_v8m_m_only
)
20984 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_atomics
)
20985 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_v6t2_v8m
)
20986 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_div
))
20992 /* Whether wide instruction variant can be used if available for a valid OPCODE
20996 t32_insn_ok (arm_feature_set arch
, const struct asm_opcode
*opcode
)
20998 if (known_t32_only_insn (opcode
))
21001 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21002 of variant T3 of B.W is checked in do_t_branch. */
21003 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v8m
)
21004 && opcode
->tencode
== do_t_branch
)
21007 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21008 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v8m
)
21009 && opcode
->tencode
== do_t_mov_cmp
21010 /* Make sure CMP instruction is not affected. */
21011 && opcode
->aencode
== do_mov
)
21014 /* Wide instruction variants of all instructions with narrow *and* wide
21015 variants become available with ARMv6t2. Other opcodes are either
21016 narrow-only or wide-only and are thus available if OPCODE is valid. */
21017 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v6t2
))
21020 /* OPCODE with narrow only instruction variant or wide variant not
21026 md_assemble (char *str
)
21029 const struct asm_opcode
* opcode
;
21031 /* Align the previous label if needed. */
21032 if (last_label_seen
!= NULL
)
21034 symbol_set_frag (last_label_seen
, frag_now
);
21035 S_SET_VALUE (last_label_seen
, (valueT
) frag_now_fix ());
21036 S_SET_SEGMENT (last_label_seen
, now_seg
);
21039 memset (&inst
, '\0', sizeof (inst
));
21041 for (r
= 0; r
< ARM_IT_MAX_RELOCS
; r
++)
21042 inst
.relocs
[r
].type
= BFD_RELOC_UNUSED
;
21044 opcode
= opcode_lookup (&p
);
21047 /* It wasn't an instruction, but it might be a register alias of
21048 the form alias .req reg, or a Neon .dn/.qn directive. */
21049 if (! create_register_alias (str
, p
)
21050 && ! create_neon_reg_alias (str
, p
))
21051 as_bad (_("bad instruction `%s'"), str
);
21056 if (warn_on_deprecated
&& opcode
->tag
== OT_cinfix3_deprecated
)
21057 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21059 /* The value which unconditional instructions should have in place of the
21060 condition field. */
21061 inst
.uncond_value
= (opcode
->tag
== OT_csuffixF
) ? 0xf : -1;
21065 arm_feature_set variant
;
21067 variant
= cpu_variant
;
21068 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21069 if (!ARM_CPU_HAS_FEATURE (variant
, arm_arch_t2
))
21070 ARM_CLEAR_FEATURE (variant
, variant
, fpu_any_hard
);
21071 /* Check that this instruction is supported for this CPU. */
21072 if (!opcode
->tvariant
21073 || (thumb_mode
== 1
21074 && !ARM_CPU_HAS_FEATURE (variant
, *opcode
->tvariant
)))
21076 if (opcode
->tencode
== do_t_swi
)
21077 as_bad (_("SVC is not permitted on this architecture"));
21079 as_bad (_("selected processor does not support `%s' in Thumb mode"), str
);
21082 if (inst
.cond
!= COND_ALWAYS
&& !unified_syntax
21083 && opcode
->tencode
!= do_t_branch
)
21085 as_bad (_("Thumb does not support conditional execution"));
21089 /* Two things are addressed here:
21090 1) Implicit require narrow instructions on Thumb-1.
21091 This avoids relaxation accidentally introducing Thumb-2
21093 2) Reject wide instructions in non Thumb-2 cores.
21095 Only instructions with narrow and wide variants need to be handled
21096 but selecting all non wide-only instructions is easier. */
21097 if (!ARM_CPU_HAS_FEATURE (variant
, arm_ext_v6t2
)
21098 && !t32_insn_ok (variant
, opcode
))
21100 if (inst
.size_req
== 0)
21102 else if (inst
.size_req
== 4)
21104 if (ARM_CPU_HAS_FEATURE (variant
, arm_ext_v8m
))
21105 as_bad (_("selected processor does not support 32bit wide "
21106 "variant of instruction `%s'"), str
);
21108 as_bad (_("selected processor does not support `%s' in "
21109 "Thumb-2 mode"), str
);
21114 inst
.instruction
= opcode
->tvalue
;
21116 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/TRUE
))
21118 /* Prepare the pred_insn_type for those encodings that don't set
21120 it_fsm_pre_encode ();
21122 opcode
->tencode ();
21124 it_fsm_post_encode ();
21127 if (!(inst
.error
|| inst
.relax
))
21129 gas_assert (inst
.instruction
< 0xe800 || inst
.instruction
> 0xffff);
21130 inst
.size
= (inst
.instruction
> 0xffff ? 4 : 2);
21131 if (inst
.size_req
&& inst
.size_req
!= inst
.size
)
21133 as_bad (_("cannot honor width suffix -- `%s'"), str
);
21138 /* Something has gone badly wrong if we try to relax a fixed size
21140 gas_assert (inst
.size_req
== 0 || !inst
.relax
);
21142 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
21143 *opcode
->tvariant
);
21144 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21145 set those bits when Thumb-2 32-bit instructions are seen. The impact
21146 of relaxable instructions will be considered later after we finish all
21148 if (ARM_FEATURE_CORE_EQUAL (cpu_variant
, arm_arch_any
))
21149 variant
= arm_arch_none
;
21151 variant
= cpu_variant
;
21152 if (inst
.size
== 4 && !t32_insn_ok (variant
, opcode
))
21153 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
21156 check_neon_suffixes
;
21160 mapping_state (MAP_THUMB
);
21163 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
21167 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21168 is_bx
= (opcode
->aencode
== do_bx
);
21170 /* Check that this instruction is supported for this CPU. */
21171 if (!(is_bx
&& fix_v4bx
)
21172 && !(opcode
->avariant
&&
21173 ARM_CPU_HAS_FEATURE (cpu_variant
, *opcode
->avariant
)))
21175 as_bad (_("selected processor does not support `%s' in ARM mode"), str
);
21180 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str
);
21184 inst
.instruction
= opcode
->avalue
;
21185 if (opcode
->tag
== OT_unconditionalF
)
21186 inst
.instruction
|= 0xFU
<< 28;
21188 inst
.instruction
|= inst
.cond
<< 28;
21189 inst
.size
= INSN_SIZE
;
21190 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/FALSE
))
21192 it_fsm_pre_encode ();
21193 opcode
->aencode ();
21194 it_fsm_post_encode ();
21196 /* Arm mode bx is marked as both v4T and v5 because it's still required
21197 on a hypothetical non-thumb v5 core. */
21199 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, arm_ext_v4t
);
21201 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
21202 *opcode
->avariant
);
21204 check_neon_suffixes
;
21208 mapping_state (MAP_ARM
);
21213 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21221 check_pred_blocks_finished (void)
21226 for (sect
= stdoutput
->sections
; sect
!= NULL
; sect
= sect
->next
)
21227 if (seg_info (sect
)->tc_segment_info_data
.current_pred
.state
21228 == MANUAL_PRED_BLOCK
)
21230 if (now_pred
.type
== SCALAR_PRED
)
21231 as_warn (_("section '%s' finished with an open IT block."),
21234 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21238 if (now_pred
.state
== MANUAL_PRED_BLOCK
)
21240 if (now_pred
.type
== SCALAR_PRED
)
21241 as_warn (_("file finished with an open IT block."));
21243 as_warn (_("file finished with an open VPT/VPST block."));
21248 /* Various frobbings of labels and their addresses. */
21251 arm_start_line_hook (void)
21253 last_label_seen
= NULL
;
21257 arm_frob_label (symbolS
* sym
)
21259 last_label_seen
= sym
;
21261 ARM_SET_THUMB (sym
, thumb_mode
);
21263 #if defined OBJ_COFF || defined OBJ_ELF
21264 ARM_SET_INTERWORK (sym
, support_interwork
);
21267 force_automatic_it_block_close ();
21269 /* Note - do not allow local symbols (.Lxxx) to be labelled
21270 as Thumb functions. This is because these labels, whilst
21271 they exist inside Thumb code, are not the entry points for
21272 possible ARM->Thumb calls. Also, these labels can be used
21273 as part of a computed goto or switch statement. eg gcc
21274 can generate code that looks like this:
21276 ldr r2, [pc, .Laaa]
21286 The first instruction loads the address of the jump table.
21287 The second instruction converts a table index into a byte offset.
21288 The third instruction gets the jump address out of the table.
21289 The fourth instruction performs the jump.
21291 If the address stored at .Laaa is that of a symbol which has the
21292 Thumb_Func bit set, then the linker will arrange for this address
21293 to have the bottom bit set, which in turn would mean that the
21294 address computation performed by the third instruction would end
21295 up with the bottom bit set. Since the ARM is capable of unaligned
21296 word loads, the instruction would then load the incorrect address
21297 out of the jump table, and chaos would ensue. */
21298 if (label_is_thumb_function_name
21299 && (S_GET_NAME (sym
)[0] != '.' || S_GET_NAME (sym
)[1] != 'L')
21300 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
21302 /* When the address of a Thumb function is taken the bottom
21303 bit of that address should be set. This will allow
21304 interworking between Arm and Thumb functions to work
21307 THUMB_SET_FUNC (sym
, 1);
21309 label_is_thumb_function_name
= FALSE
;
21312 dwarf2_emit_label (sym
);
21316 arm_data_in_code (void)
21318 if (thumb_mode
&& ! strncmp (input_line_pointer
+ 1, "data:", 5))
21320 *input_line_pointer
= '/';
21321 input_line_pointer
+= 5;
21322 *input_line_pointer
= 0;
21330 arm_canonicalize_symbol_name (char * name
)
21334 if (thumb_mode
&& (len
= strlen (name
)) > 5
21335 && streq (name
+ len
- 5, "/data"))
21336 *(name
+ len
- 5) = 0;
21341 /* Table of all register names defined by default. The user can
21342 define additional names with .req. Note that all register names
21343 should appear in both upper and lowercase variants. Some registers
21344 also have mixed-case names. */
21346 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
21347 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
21348 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
21349 #define REGSET(p,t) \
21350 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21351 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21352 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21353 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
21354 #define REGSETH(p,t) \
21355 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21356 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21357 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21358 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21359 #define REGSET2(p,t) \
21360 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21361 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21362 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21363 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
21364 #define SPLRBANK(base,bank,t) \
21365 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21366 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21367 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21368 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21369 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21370 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
21372 static const struct reg_entry reg_names
[] =
21374 /* ARM integer registers. */
21375 REGSET(r
, RN
), REGSET(R
, RN
),
21377 /* ATPCS synonyms. */
21378 REGDEF(a1
,0,RN
), REGDEF(a2
,1,RN
), REGDEF(a3
, 2,RN
), REGDEF(a4
, 3,RN
),
21379 REGDEF(v1
,4,RN
), REGDEF(v2
,5,RN
), REGDEF(v3
, 6,RN
), REGDEF(v4
, 7,RN
),
21380 REGDEF(v5
,8,RN
), REGDEF(v6
,9,RN
), REGDEF(v7
,10,RN
), REGDEF(v8
,11,RN
),
21382 REGDEF(A1
,0,RN
), REGDEF(A2
,1,RN
), REGDEF(A3
, 2,RN
), REGDEF(A4
, 3,RN
),
21383 REGDEF(V1
,4,RN
), REGDEF(V2
,5,RN
), REGDEF(V3
, 6,RN
), REGDEF(V4
, 7,RN
),
21384 REGDEF(V5
,8,RN
), REGDEF(V6
,9,RN
), REGDEF(V7
,10,RN
), REGDEF(V8
,11,RN
),
21386 /* Well-known aliases. */
21387 REGDEF(wr
, 7,RN
), REGDEF(sb
, 9,RN
), REGDEF(sl
,10,RN
), REGDEF(fp
,11,RN
),
21388 REGDEF(ip
,12,RN
), REGDEF(sp
,13,RN
), REGDEF(lr
,14,RN
), REGDEF(pc
,15,RN
),
21390 REGDEF(WR
, 7,RN
), REGDEF(SB
, 9,RN
), REGDEF(SL
,10,RN
), REGDEF(FP
,11,RN
),
21391 REGDEF(IP
,12,RN
), REGDEF(SP
,13,RN
), REGDEF(LR
,14,RN
), REGDEF(PC
,15,RN
),
21393 /* Defining the new Zero register from ARMv8.1-M. */
21397 /* Coprocessor numbers. */
21398 REGSET(p
, CP
), REGSET(P
, CP
),
21400 /* Coprocessor register numbers. The "cr" variants are for backward
21402 REGSET(c
, CN
), REGSET(C
, CN
),
21403 REGSET(cr
, CN
), REGSET(CR
, CN
),
21405 /* ARM banked registers. */
21406 REGDEF(R8_usr
,512|(0<<16),RNB
), REGDEF(r8_usr
,512|(0<<16),RNB
),
21407 REGDEF(R9_usr
,512|(1<<16),RNB
), REGDEF(r9_usr
,512|(1<<16),RNB
),
21408 REGDEF(R10_usr
,512|(2<<16),RNB
), REGDEF(r10_usr
,512|(2<<16),RNB
),
21409 REGDEF(R11_usr
,512|(3<<16),RNB
), REGDEF(r11_usr
,512|(3<<16),RNB
),
21410 REGDEF(R12_usr
,512|(4<<16),RNB
), REGDEF(r12_usr
,512|(4<<16),RNB
),
21411 REGDEF(SP_usr
,512|(5<<16),RNB
), REGDEF(sp_usr
,512|(5<<16),RNB
),
21412 REGDEF(LR_usr
,512|(6<<16),RNB
), REGDEF(lr_usr
,512|(6<<16),RNB
),
21414 REGDEF(R8_fiq
,512|(8<<16),RNB
), REGDEF(r8_fiq
,512|(8<<16),RNB
),
21415 REGDEF(R9_fiq
,512|(9<<16),RNB
), REGDEF(r9_fiq
,512|(9<<16),RNB
),
21416 REGDEF(R10_fiq
,512|(10<<16),RNB
), REGDEF(r10_fiq
,512|(10<<16),RNB
),
21417 REGDEF(R11_fiq
,512|(11<<16),RNB
), REGDEF(r11_fiq
,512|(11<<16),RNB
),
21418 REGDEF(R12_fiq
,512|(12<<16),RNB
), REGDEF(r12_fiq
,512|(12<<16),RNB
),
21419 REGDEF(SP_fiq
,512|(13<<16),RNB
), REGDEF(sp_fiq
,512|(13<<16),RNB
),
21420 REGDEF(LR_fiq
,512|(14<<16),RNB
), REGDEF(lr_fiq
,512|(14<<16),RNB
),
21421 REGDEF(SPSR_fiq
,512|(14<<16)|SPSR_BIT
,RNB
), REGDEF(spsr_fiq
,512|(14<<16)|SPSR_BIT
,RNB
),
21423 SPLRBANK(0,IRQ
,RNB
), SPLRBANK(0,irq
,RNB
),
21424 SPLRBANK(2,SVC
,RNB
), SPLRBANK(2,svc
,RNB
),
21425 SPLRBANK(4,ABT
,RNB
), SPLRBANK(4,abt
,RNB
),
21426 SPLRBANK(6,UND
,RNB
), SPLRBANK(6,und
,RNB
),
21427 SPLRBANK(12,MON
,RNB
), SPLRBANK(12,mon
,RNB
),
21428 REGDEF(elr_hyp
,768|(14<<16),RNB
), REGDEF(ELR_hyp
,768|(14<<16),RNB
),
21429 REGDEF(sp_hyp
,768|(15<<16),RNB
), REGDEF(SP_hyp
,768|(15<<16),RNB
),
21430 REGDEF(spsr_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
21431 REGDEF(SPSR_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
21433 /* FPA registers. */
21434 REGNUM(f
,0,FN
), REGNUM(f
,1,FN
), REGNUM(f
,2,FN
), REGNUM(f
,3,FN
),
21435 REGNUM(f
,4,FN
), REGNUM(f
,5,FN
), REGNUM(f
,6,FN
), REGNUM(f
,7, FN
),
21437 REGNUM(F
,0,FN
), REGNUM(F
,1,FN
), REGNUM(F
,2,FN
), REGNUM(F
,3,FN
),
21438 REGNUM(F
,4,FN
), REGNUM(F
,5,FN
), REGNUM(F
,6,FN
), REGNUM(F
,7, FN
),
21440 /* VFP SP registers. */
21441 REGSET(s
,VFS
), REGSET(S
,VFS
),
21442 REGSETH(s
,VFS
), REGSETH(S
,VFS
),
21444 /* VFP DP Registers. */
21445 REGSET(d
,VFD
), REGSET(D
,VFD
),
21446 /* Extra Neon DP registers. */
21447 REGSETH(d
,VFD
), REGSETH(D
,VFD
),
21449 /* Neon QP registers. */
21450 REGSET2(q
,NQ
), REGSET2(Q
,NQ
),
21452 /* VFP control registers. */
21453 REGDEF(fpsid
,0,VFC
), REGDEF(fpscr
,1,VFC
), REGDEF(fpexc
,8,VFC
),
21454 REGDEF(FPSID
,0,VFC
), REGDEF(FPSCR
,1,VFC
), REGDEF(FPEXC
,8,VFC
),
21455 REGDEF(fpinst
,9,VFC
), REGDEF(fpinst2
,10,VFC
),
21456 REGDEF(FPINST
,9,VFC
), REGDEF(FPINST2
,10,VFC
),
21457 REGDEF(mvfr0
,7,VFC
), REGDEF(mvfr1
,6,VFC
),
21458 REGDEF(MVFR0
,7,VFC
), REGDEF(MVFR1
,6,VFC
),
21459 REGDEF(mvfr2
,5,VFC
), REGDEF(MVFR2
,5,VFC
),
21461 /* Maverick DSP coprocessor registers. */
21462 REGSET(mvf
,MVF
), REGSET(mvd
,MVD
), REGSET(mvfx
,MVFX
), REGSET(mvdx
,MVDX
),
21463 REGSET(MVF
,MVF
), REGSET(MVD
,MVD
), REGSET(MVFX
,MVFX
), REGSET(MVDX
,MVDX
),
21465 REGNUM(mvax
,0,MVAX
), REGNUM(mvax
,1,MVAX
),
21466 REGNUM(mvax
,2,MVAX
), REGNUM(mvax
,3,MVAX
),
21467 REGDEF(dspsc
,0,DSPSC
),
21469 REGNUM(MVAX
,0,MVAX
), REGNUM(MVAX
,1,MVAX
),
21470 REGNUM(MVAX
,2,MVAX
), REGNUM(MVAX
,3,MVAX
),
21471 REGDEF(DSPSC
,0,DSPSC
),
21473 /* iWMMXt data registers - p0, c0-15. */
21474 REGSET(wr
,MMXWR
), REGSET(wR
,MMXWR
), REGSET(WR
, MMXWR
),
21476 /* iWMMXt control registers - p1, c0-3. */
21477 REGDEF(wcid
, 0,MMXWC
), REGDEF(wCID
, 0,MMXWC
), REGDEF(WCID
, 0,MMXWC
),
21478 REGDEF(wcon
, 1,MMXWC
), REGDEF(wCon
, 1,MMXWC
), REGDEF(WCON
, 1,MMXWC
),
21479 REGDEF(wcssf
, 2,MMXWC
), REGDEF(wCSSF
, 2,MMXWC
), REGDEF(WCSSF
, 2,MMXWC
),
21480 REGDEF(wcasf
, 3,MMXWC
), REGDEF(wCASF
, 3,MMXWC
), REGDEF(WCASF
, 3,MMXWC
),
21482 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21483 REGDEF(wcgr0
, 8,MMXWCG
), REGDEF(wCGR0
, 8,MMXWCG
), REGDEF(WCGR0
, 8,MMXWCG
),
21484 REGDEF(wcgr1
, 9,MMXWCG
), REGDEF(wCGR1
, 9,MMXWCG
), REGDEF(WCGR1
, 9,MMXWCG
),
21485 REGDEF(wcgr2
,10,MMXWCG
), REGDEF(wCGR2
,10,MMXWCG
), REGDEF(WCGR2
,10,MMXWCG
),
21486 REGDEF(wcgr3
,11,MMXWCG
), REGDEF(wCGR3
,11,MMXWCG
), REGDEF(WCGR3
,11,MMXWCG
),
21488 /* XScale accumulator registers. */
21489 REGNUM(acc
,0,XSCALE
), REGNUM(ACC
,0,XSCALE
),
21495 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21496 within psr_required_here. */
21497 static const struct asm_psr psrs
[] =
21499 /* Backward compatibility notation. Note that "all" is no longer
21500 truly all possible PSR bits. */
21501 {"all", PSR_c
| PSR_f
},
21505 /* Individual flags. */
21511 /* Combinations of flags. */
21512 {"fs", PSR_f
| PSR_s
},
21513 {"fx", PSR_f
| PSR_x
},
21514 {"fc", PSR_f
| PSR_c
},
21515 {"sf", PSR_s
| PSR_f
},
21516 {"sx", PSR_s
| PSR_x
},
21517 {"sc", PSR_s
| PSR_c
},
21518 {"xf", PSR_x
| PSR_f
},
21519 {"xs", PSR_x
| PSR_s
},
21520 {"xc", PSR_x
| PSR_c
},
21521 {"cf", PSR_c
| PSR_f
},
21522 {"cs", PSR_c
| PSR_s
},
21523 {"cx", PSR_c
| PSR_x
},
21524 {"fsx", PSR_f
| PSR_s
| PSR_x
},
21525 {"fsc", PSR_f
| PSR_s
| PSR_c
},
21526 {"fxs", PSR_f
| PSR_x
| PSR_s
},
21527 {"fxc", PSR_f
| PSR_x
| PSR_c
},
21528 {"fcs", PSR_f
| PSR_c
| PSR_s
},
21529 {"fcx", PSR_f
| PSR_c
| PSR_x
},
21530 {"sfx", PSR_s
| PSR_f
| PSR_x
},
21531 {"sfc", PSR_s
| PSR_f
| PSR_c
},
21532 {"sxf", PSR_s
| PSR_x
| PSR_f
},
21533 {"sxc", PSR_s
| PSR_x
| PSR_c
},
21534 {"scf", PSR_s
| PSR_c
| PSR_f
},
21535 {"scx", PSR_s
| PSR_c
| PSR_x
},
21536 {"xfs", PSR_x
| PSR_f
| PSR_s
},
21537 {"xfc", PSR_x
| PSR_f
| PSR_c
},
21538 {"xsf", PSR_x
| PSR_s
| PSR_f
},
21539 {"xsc", PSR_x
| PSR_s
| PSR_c
},
21540 {"xcf", PSR_x
| PSR_c
| PSR_f
},
21541 {"xcs", PSR_x
| PSR_c
| PSR_s
},
21542 {"cfs", PSR_c
| PSR_f
| PSR_s
},
21543 {"cfx", PSR_c
| PSR_f
| PSR_x
},
21544 {"csf", PSR_c
| PSR_s
| PSR_f
},
21545 {"csx", PSR_c
| PSR_s
| PSR_x
},
21546 {"cxf", PSR_c
| PSR_x
| PSR_f
},
21547 {"cxs", PSR_c
| PSR_x
| PSR_s
},
21548 {"fsxc", PSR_f
| PSR_s
| PSR_x
| PSR_c
},
21549 {"fscx", PSR_f
| PSR_s
| PSR_c
| PSR_x
},
21550 {"fxsc", PSR_f
| PSR_x
| PSR_s
| PSR_c
},
21551 {"fxcs", PSR_f
| PSR_x
| PSR_c
| PSR_s
},
21552 {"fcsx", PSR_f
| PSR_c
| PSR_s
| PSR_x
},
21553 {"fcxs", PSR_f
| PSR_c
| PSR_x
| PSR_s
},
21554 {"sfxc", PSR_s
| PSR_f
| PSR_x
| PSR_c
},
21555 {"sfcx", PSR_s
| PSR_f
| PSR_c
| PSR_x
},
21556 {"sxfc", PSR_s
| PSR_x
| PSR_f
| PSR_c
},
21557 {"sxcf", PSR_s
| PSR_x
| PSR_c
| PSR_f
},
21558 {"scfx", PSR_s
| PSR_c
| PSR_f
| PSR_x
},
21559 {"scxf", PSR_s
| PSR_c
| PSR_x
| PSR_f
},
21560 {"xfsc", PSR_x
| PSR_f
| PSR_s
| PSR_c
},
21561 {"xfcs", PSR_x
| PSR_f
| PSR_c
| PSR_s
},
21562 {"xsfc", PSR_x
| PSR_s
| PSR_f
| PSR_c
},
21563 {"xscf", PSR_x
| PSR_s
| PSR_c
| PSR_f
},
21564 {"xcfs", PSR_x
| PSR_c
| PSR_f
| PSR_s
},
21565 {"xcsf", PSR_x
| PSR_c
| PSR_s
| PSR_f
},
21566 {"cfsx", PSR_c
| PSR_f
| PSR_s
| PSR_x
},
21567 {"cfxs", PSR_c
| PSR_f
| PSR_x
| PSR_s
},
21568 {"csfx", PSR_c
| PSR_s
| PSR_f
| PSR_x
},
21569 {"csxf", PSR_c
| PSR_s
| PSR_x
| PSR_f
},
21570 {"cxfs", PSR_c
| PSR_x
| PSR_f
| PSR_s
},
21571 {"cxsf", PSR_c
| PSR_x
| PSR_s
| PSR_f
},
21574 /* Table of V7M psr names. */
21575 static const struct asm_psr v7m_psrs
[] =
21577 {"apsr", 0x0 }, {"APSR", 0x0 },
21578 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21579 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21580 {"psr", 0x3 }, {"PSR", 0x3 },
21581 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21582 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21583 {"epsr", 0x6 }, {"EPSR", 0x6 },
21584 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21585 {"msp", 0x8 }, {"MSP", 0x8 },
21586 {"psp", 0x9 }, {"PSP", 0x9 },
21587 {"msplim", 0xa }, {"MSPLIM", 0xa },
21588 {"psplim", 0xb }, {"PSPLIM", 0xb },
21589 {"primask", 0x10}, {"PRIMASK", 0x10},
21590 {"basepri", 0x11}, {"BASEPRI", 0x11},
21591 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
21592 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21593 {"control", 0x14}, {"CONTROL", 0x14},
21594 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21595 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21596 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21597 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21598 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21599 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21600 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21601 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21602 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
21605 /* Table of all shift-in-operand names. */
21606 static const struct asm_shift_name shift_names
[] =
21608 { "asl", SHIFT_LSL
}, { "ASL", SHIFT_LSL
},
21609 { "lsl", SHIFT_LSL
}, { "LSL", SHIFT_LSL
},
21610 { "lsr", SHIFT_LSR
}, { "LSR", SHIFT_LSR
},
21611 { "asr", SHIFT_ASR
}, { "ASR", SHIFT_ASR
},
21612 { "ror", SHIFT_ROR
}, { "ROR", SHIFT_ROR
},
21613 { "rrx", SHIFT_RRX
}, { "RRX", SHIFT_RRX
},
21614 { "uxtw", SHIFT_UXTW
}, { "UXTW", SHIFT_UXTW
}
21617 /* Table of all explicit relocation names. */
21619 static struct reloc_entry reloc_names
[] =
21621 { "got", BFD_RELOC_ARM_GOT32
}, { "GOT", BFD_RELOC_ARM_GOT32
},
21622 { "gotoff", BFD_RELOC_ARM_GOTOFF
}, { "GOTOFF", BFD_RELOC_ARM_GOTOFF
},
21623 { "plt", BFD_RELOC_ARM_PLT32
}, { "PLT", BFD_RELOC_ARM_PLT32
},
21624 { "target1", BFD_RELOC_ARM_TARGET1
}, { "TARGET1", BFD_RELOC_ARM_TARGET1
},
21625 { "target2", BFD_RELOC_ARM_TARGET2
}, { "TARGET2", BFD_RELOC_ARM_TARGET2
},
21626 { "sbrel", BFD_RELOC_ARM_SBREL32
}, { "SBREL", BFD_RELOC_ARM_SBREL32
},
21627 { "tlsgd", BFD_RELOC_ARM_TLS_GD32
}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32
},
21628 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32
}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32
},
21629 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32
}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32
},
21630 { "gottpoff",BFD_RELOC_ARM_TLS_IE32
}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32
},
21631 { "tpoff", BFD_RELOC_ARM_TLS_LE32
}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32
},
21632 { "got_prel", BFD_RELOC_ARM_GOT_PREL
}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL
},
21633 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC
},
21634 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC
},
21635 { "tlscall", BFD_RELOC_ARM_TLS_CALL
},
21636 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL
},
21637 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ
},
21638 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ
},
21639 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC
},
21640 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC
},
21641 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC
},
21642 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC
},
21643 { "funcdesc", BFD_RELOC_ARM_FUNCDESC
},
21644 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC
},
21645 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC
}, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC
},
21646 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC
}, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC
},
21647 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC
}, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC
},
21651 /* Table of all conditional affixes. */
21652 static const struct asm_cond conds
[] =
21656 {"cs", 0x2}, {"hs", 0x2},
21657 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
21670 static const struct asm_cond vconds
[] =
21676 #define UL_BARRIER(L,U,CODE,FEAT) \
21677 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
21678 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
21680 static struct asm_barrier_opt barrier_opt_names
[] =
21682 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER
),
21683 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER
),
21684 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8
),
21685 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER
),
21686 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER
),
21687 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER
),
21688 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER
),
21689 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8
),
21690 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER
),
21691 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER
),
21692 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER
),
21693 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER
),
21694 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8
),
21695 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER
),
21696 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER
),
21697 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8
)
21702 /* Table of ARM-format instructions. */
21704 /* Macros for gluing together operand strings. N.B. In all cases
21705 other than OPS0, the trailing OP_stop comes from default
21706 zero-initialization of the unspecified elements of the array. */
21707 #define OPS0() { OP_stop, }
21708 #define OPS1(a) { OP_##a, }
21709 #define OPS2(a,b) { OP_##a,OP_##b, }
21710 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
21711 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
21712 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
21713 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
21715 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
21716 This is useful when mixing operands for ARM and THUMB, i.e. using the
21717 MIX_ARM_THUMB_OPERANDS macro.
21718 In order to use these macros, prefix the number of operands with _
21720 #define OPS_1(a) { a, }
21721 #define OPS_2(a,b) { a,b, }
21722 #define OPS_3(a,b,c) { a,b,c, }
21723 #define OPS_4(a,b,c,d) { a,b,c,d, }
21724 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
21725 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
21727 /* These macros abstract out the exact format of the mnemonic table and
21728 save some repeated characters. */
21730 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
21731 #define TxCE(mnem, op, top, nops, ops, ae, te) \
21732 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
21733 THUMB_VARIANT, do_##ae, do_##te, 0 }
21735 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
21736 a T_MNEM_xyz enumerator. */
21737 #define TCE(mnem, aop, top, nops, ops, ae, te) \
21738 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
21739 #define tCE(mnem, aop, top, nops, ops, ae, te) \
21740 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21742 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
21743 infix after the third character. */
21744 #define TxC3(mnem, op, top, nops, ops, ae, te) \
21745 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
21746 THUMB_VARIANT, do_##ae, do_##te, 0 }
21747 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
21748 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
21749 THUMB_VARIANT, do_##ae, do_##te, 0 }
21750 #define TC3(mnem, aop, top, nops, ops, ae, te) \
21751 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
21752 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
21753 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
21754 #define tC3(mnem, aop, top, nops, ops, ae, te) \
21755 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21756 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
21757 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21759 /* Mnemonic that cannot be conditionalized. The ARM condition-code
21760 field is still 0xE. Many of the Thumb variants can be executed
21761 conditionally, so this is checked separately. */
21762 #define TUE(mnem, op, top, nops, ops, ae, te) \
21763 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
21764 THUMB_VARIANT, do_##ae, do_##te, 0 }
21766 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
21767 Used by mnemonics that have very minimal differences in the encoding for
21768 ARM and Thumb variants and can be handled in a common function. */
21769 #define TUEc(mnem, op, top, nops, ops, en) \
21770 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
21771 THUMB_VARIANT, do_##en, do_##en, 0 }
21773 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
21774 condition code field. */
21775 #define TUF(mnem, op, top, nops, ops, ae, te) \
21776 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
21777 THUMB_VARIANT, do_##ae, do_##te, 0 }
21779 /* ARM-only variants of all the above. */
21780 #define CE(mnem, op, nops, ops, ae) \
21781 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21783 #define C3(mnem, op, nops, ops, ae) \
21784 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21786 /* Thumb-only variants of TCE and TUE. */
21787 #define ToC(mnem, top, nops, ops, te) \
21788 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
21791 #define ToU(mnem, top, nops, ops, te) \
21792 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
21795 /* T_MNEM_xyz enumerator variants of ToC. */
21796 #define toC(mnem, top, nops, ops, te) \
21797 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
21800 /* T_MNEM_xyz enumerator variants of ToU. */
21801 #define toU(mnem, top, nops, ops, te) \
21802 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
21805 /* Legacy mnemonics that always have conditional infix after the third
21807 #define CL(mnem, op, nops, ops, ae) \
21808 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
21809 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21811 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
21812 #define cCE(mnem, op, nops, ops, ae) \
21813 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21815 /* mov instructions that are shared between coprocessor and MVE. */
21816 #define mcCE(mnem, op, nops, ops, ae) \
21817 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
21819 /* Legacy coprocessor instructions where conditional infix and conditional
21820 suffix are ambiguous. For consistency this includes all FPA instructions,
21821 not just the potentially ambiguous ones. */
21822 #define cCL(mnem, op, nops, ops, ae) \
21823 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
21824 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21826 /* Coprocessor, takes either a suffix or a position-3 infix
21827 (for an FPA corner case). */
21828 #define C3E(mnem, op, nops, ops, ae) \
21829 { mnem, OPS##nops ops, OT_csuf_or_in3, \
21830 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21832 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
21833 { m1 #m2 m3, OPS##nops ops, \
21834 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
21835 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21837 #define CM(m1, m2, op, nops, ops, ae) \
21838 xCM_ (m1, , m2, op, nops, ops, ae), \
21839 xCM_ (m1, eq, m2, op, nops, ops, ae), \
21840 xCM_ (m1, ne, m2, op, nops, ops, ae), \
21841 xCM_ (m1, cs, m2, op, nops, ops, ae), \
21842 xCM_ (m1, hs, m2, op, nops, ops, ae), \
21843 xCM_ (m1, cc, m2, op, nops, ops, ae), \
21844 xCM_ (m1, ul, m2, op, nops, ops, ae), \
21845 xCM_ (m1, lo, m2, op, nops, ops, ae), \
21846 xCM_ (m1, mi, m2, op, nops, ops, ae), \
21847 xCM_ (m1, pl, m2, op, nops, ops, ae), \
21848 xCM_ (m1, vs, m2, op, nops, ops, ae), \
21849 xCM_ (m1, vc, m2, op, nops, ops, ae), \
21850 xCM_ (m1, hi, m2, op, nops, ops, ae), \
21851 xCM_ (m1, ls, m2, op, nops, ops, ae), \
21852 xCM_ (m1, ge, m2, op, nops, ops, ae), \
21853 xCM_ (m1, lt, m2, op, nops, ops, ae), \
21854 xCM_ (m1, gt, m2, op, nops, ops, ae), \
21855 xCM_ (m1, le, m2, op, nops, ops, ae), \
21856 xCM_ (m1, al, m2, op, nops, ops, ae)
21858 #define UE(mnem, op, nops, ops, ae) \
21859 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21861 #define UF(mnem, op, nops, ops, ae) \
21862 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21864 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
21865 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
21866 use the same encoding function for each. */
21867 #define NUF(mnem, op, nops, ops, enc) \
21868 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
21869 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
21871 /* Neon data processing, version which indirects through neon_enc_tab for
21872 the various overloaded versions of opcodes. */
21873 #define nUF(mnem, op, nops, ops, enc) \
21874 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
21875 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
21877 /* Neon insn with conditional suffix for the ARM version, non-overloaded
21879 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21880 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
21881 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
21883 #define NCE(mnem, op, nops, ops, enc) \
21884 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
21886 #define NCEF(mnem, op, nops, ops, enc) \
21887 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
21889 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
21890 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21891 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
21892 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
21894 #define nCE(mnem, op, nops, ops, enc) \
21895 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
21897 #define nCEF(mnem, op, nops, ops, enc) \
21898 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
21901 #define mCEF(mnem, op, nops, ops, enc) \
21902 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
21903 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21906 /* nCEF but for MVE predicated instructions. */
21907 #define mnCEF(mnem, op, nops, ops, enc) \
21908 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
21910 /* nCE but for MVE predicated instructions. */
21911 #define mnCE(mnem, op, nops, ops, enc) \
21912 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
21914 /* NUF but for potentially MVE predicated instructions. */
21915 #define MNUF(mnem, op, nops, ops, enc) \
21916 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
21917 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21919 /* nUF but for potentially MVE predicated instructions. */
21920 #define mnUF(mnem, op, nops, ops, enc) \
21921 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
21922 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21924 /* ToC but for potentially MVE predicated instructions. */
21925 #define mToC(mnem, top, nops, ops, te) \
21926 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
21929 /* NCE but for MVE predicated instructions. */
21930 #define MNCE(mnem, op, nops, ops, enc) \
21931 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
21933 /* NCEF but for MVE predicated instructions. */
21934 #define MNCEF(mnem, op, nops, ops, enc) \
21935 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
21938 static const struct asm_opcode insns
[] =
21940 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
21941 #define THUMB_VARIANT & arm_ext_v4t
21942 tCE("and", 0000000, _and
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
21943 tC3("ands", 0100000, _ands
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
21944 tCE("eor", 0200000, _eor
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
21945 tC3("eors", 0300000, _eors
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
21946 tCE("sub", 0400000, _sub
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
21947 tC3("subs", 0500000, _subs
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
21948 tCE("add", 0800000, _add
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
21949 tC3("adds", 0900000, _adds
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
21950 tCE("adc", 0a00000
, _adc
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
21951 tC3("adcs", 0b00000, _adcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
21952 tCE("sbc", 0c00000
, _sbc
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
21953 tC3("sbcs", 0d00000
, _sbcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
21954 tCE("orr", 1800000, _orr
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
21955 tC3("orrs", 1900000, _orrs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
21956 tCE("bic", 1c00000
, _bic
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
21957 tC3("bics", 1d00000
, _bics
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
21959 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
21960 for setting PSR flag bits. They are obsolete in V6 and do not
21961 have Thumb equivalents. */
21962 tCE("tst", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
21963 tC3w("tsts", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
21964 CL("tstp", 110f000
, 2, (RR
, SH
), cmp
),
21965 tCE("cmp", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
21966 tC3w("cmps", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
21967 CL("cmpp", 150f000
, 2, (RR
, SH
), cmp
),
21968 tCE("cmn", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
21969 tC3w("cmns", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
21970 CL("cmnp", 170f000
, 2, (RR
, SH
), cmp
),
21972 tCE("mov", 1a00000
, _mov
, 2, (RR
, SH
), mov
, t_mov_cmp
),
21973 tC3("movs", 1b00000
, _movs
, 2, (RR
, SHG
), mov
, t_mov_cmp
),
21974 tCE("mvn", 1e00000
, _mvn
, 2, (RR
, SH
), mov
, t_mvn_tst
),
21975 tC3("mvns", 1f00000
, _mvns
, 2, (RR
, SH
), mov
, t_mvn_tst
),
21977 tCE("ldr", 4100000, _ldr
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
21978 tC3("ldrb", 4500000, _ldrb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
21979 tCE("str", 4000000, _str
, _2
, (MIX_ARM_THUMB_OPERANDS (OP_RR
,
21981 OP_ADDRGLDR
),ldst
, t_ldst
),
21982 tC3("strb", 4400000, _strb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
21984 tCE("stm", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
21985 tC3("stmia", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
21986 tC3("stmea", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
21987 tCE("ldm", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
21988 tC3("ldmia", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
21989 tC3("ldmfd", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
21991 tCE("b", a000000
, _b
, 1, (EXPr
), branch
, t_branch
),
21992 TCE("bl", b000000
, f000f800
, 1, (EXPr
), bl
, t_branch23
),
21995 tCE("adr", 28f0000
, _adr
, 2, (RR
, EXP
), adr
, t_adr
),
21996 C3(adrl
, 28f0000
, 2, (RR
, EXP
), adrl
),
21997 tCE("nop", 1a00000
, _nop
, 1, (oI255c
), nop
, t_nop
),
21998 tCE("udf", 7f000f0
, _udf
, 1, (oIffffb
), bkpt
, t_udf
),
22000 /* Thumb-compatibility pseudo ops. */
22001 tCE("lsl", 1a00000
, _lsl
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22002 tC3("lsls", 1b00000
, _lsls
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22003 tCE("lsr", 1a00020
, _lsr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22004 tC3("lsrs", 1b00020
, _lsrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22005 tCE("asr", 1a00040
, _asr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22006 tC3("asrs", 1b00040
, _asrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22007 tCE("ror", 1a00060
, _ror
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22008 tC3("rors", 1b00060
, _rors
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22009 tCE("neg", 2600000, _neg
, 2, (RR
, RR
), rd_rn
, t_neg
),
22010 tC3("negs", 2700000, _negs
, 2, (RR
, RR
), rd_rn
, t_neg
),
22011 tCE("push", 92d0000
, _push
, 1, (REGLST
), push_pop
, t_push_pop
),
22012 tCE("pop", 8bd0000
, _pop
, 1, (REGLST
), push_pop
, t_push_pop
),
22014 /* These may simplify to neg. */
22015 TCE("rsb", 0600000, ebc00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
22016 TC3("rsbs", 0700000, ebd00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
22018 #undef THUMB_VARIANT
22019 #define THUMB_VARIANT & arm_ext_os
22021 TCE("swi", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
22022 TCE("svc", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
22024 #undef THUMB_VARIANT
22025 #define THUMB_VARIANT & arm_ext_v6
22027 TCE("cpy", 1a00000
, 4600, 2, (RR
, RR
), rd_rm
, t_cpy
),
22029 /* V1 instructions with no Thumb analogue prior to V6T2. */
22030 #undef THUMB_VARIANT
22031 #define THUMB_VARIANT & arm_ext_v6t2
22033 TCE("teq", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22034 TC3w("teqs", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22035 CL("teqp", 130f000
, 2, (RR
, SH
), cmp
),
22037 TC3("ldrt", 4300000, f8500e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22038 TC3("ldrbt", 4700000, f8100e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22039 TC3("strt", 4200000, f8400e00
, 2, (RR_npcsp
, ADDR
), ldstt
, t_ldstt
),
22040 TC3("strbt", 4600000, f8000e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22042 TC3("stmdb", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22043 TC3("stmfd", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22045 TC3("ldmdb", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22046 TC3("ldmea", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22048 /* V1 instructions with no Thumb analogue at all. */
22049 CE("rsc", 0e00000
, 3, (RR
, oRR
, SH
), arit
),
22050 C3(rscs
, 0f00000
, 3, (RR
, oRR
, SH
), arit
),
22052 C3(stmib
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
22053 C3(stmfa
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
22054 C3(stmda
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
22055 C3(stmed
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
22056 C3(ldmib
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
22057 C3(ldmed
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
22058 C3(ldmda
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
22059 C3(ldmfa
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
22062 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22063 #undef THUMB_VARIANT
22064 #define THUMB_VARIANT & arm_ext_v4t
22066 tCE("mul", 0000090, _mul
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
22067 tC3("muls", 0100090, _muls
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
22069 #undef THUMB_VARIANT
22070 #define THUMB_VARIANT & arm_ext_v6t2
22072 TCE("mla", 0200090, fb000000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
22073 C3(mlas
, 0300090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
),
22075 /* Generic coprocessor instructions. */
22076 TCE("cdp", e000000
, ee000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
22077 TCE("ldc", c100000
, ec100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22078 TC3("ldcl", c500000
, ec500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22079 TCE("stc", c000000
, ec000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22080 TC3("stcl", c400000
, ec400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22081 TCE("mcr", e000010
, ee000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22082 TCE("mrc", e100010
, ee100010
, 6, (RCP
, I7b
, APSR_RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22085 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22087 CE("swp", 1000090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
22088 C3(swpb
, 1400090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
22091 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22092 #undef THUMB_VARIANT
22093 #define THUMB_VARIANT & arm_ext_msr
22095 TCE("mrs", 1000000, f3e08000
, 2, (RRnpc
, rPSR
), mrs
, t_mrs
),
22096 TCE("msr", 120f000
, f3808000
, 2, (wPSR
, RR_EXi
), msr
, t_msr
),
22099 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22100 #undef THUMB_VARIANT
22101 #define THUMB_VARIANT & arm_ext_v6t2
22103 TCE("smull", 0c00090
, fb800000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22104 CM("smull","s", 0d00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22105 TCE("umull", 0800090, fba00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22106 CM("umull","s", 0900090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22107 TCE("smlal", 0e00090
, fbc00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22108 CM("smlal","s", 0f00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22109 TCE("umlal", 0a00090
, fbe00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22110 CM("umlal","s", 0b00090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22113 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22114 #undef THUMB_VARIANT
22115 #define THUMB_VARIANT & arm_ext_v4t
22117 tC3("ldrh", 01000b0
, _ldrh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22118 tC3("strh", 00000b0
, _strh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22119 tC3("ldrsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22120 tC3("ldrsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22121 tC3("ldsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22122 tC3("ldsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22125 #define ARM_VARIANT & arm_ext_v4t_5
22127 /* ARM Architecture 4T. */
22128 /* Note: bx (and blx) are required on V5, even if the processor does
22129 not support Thumb. */
22130 TCE("bx", 12fff10
, 4700, 1, (RR
), bx
, t_bx
),
22133 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22134 #undef THUMB_VARIANT
22135 #define THUMB_VARIANT & arm_ext_v5t
22137 /* Note: blx has 2 variants; the .value coded here is for
22138 BLX(2). Only this variant has conditional execution. */
22139 TCE("blx", 12fff30
, 4780, 1, (RR_EXr
), blx
, t_blx
),
22140 TUE("bkpt", 1200070, be00
, 1, (oIffffb
), bkpt
, t_bkpt
),
22142 #undef THUMB_VARIANT
22143 #define THUMB_VARIANT & arm_ext_v6t2
22145 TCE("clz", 16f0f10
, fab0f080
, 2, (RRnpc
, RRnpc
), rd_rm
, t_clz
),
22146 TUF("ldc2", c100000
, fc100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22147 TUF("ldc2l", c500000
, fc500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22148 TUF("stc2", c000000
, fc000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22149 TUF("stc2l", c400000
, fc400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22150 TUF("cdp2", e000000
, fe000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
22151 TUF("mcr2", e000010
, fe000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22152 TUF("mrc2", e100010
, fe100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22155 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22156 #undef THUMB_VARIANT
22157 #define THUMB_VARIANT & arm_ext_v5exp
22159 TCE("smlabb", 1000080, fb100000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22160 TCE("smlatb", 10000a0
, fb100020
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22161 TCE("smlabt", 10000c0
, fb100010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22162 TCE("smlatt", 10000e0
, fb100030
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22164 TCE("smlawb", 1200080, fb300000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22165 TCE("smlawt", 12000c0
, fb300010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22167 TCE("smlalbb", 1400080, fbc00080
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22168 TCE("smlaltb", 14000a0
, fbc000a0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22169 TCE("smlalbt", 14000c0
, fbc00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22170 TCE("smlaltt", 14000e0
, fbc000b0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22172 TCE("smulbb", 1600080, fb10f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22173 TCE("smultb", 16000a0
, fb10f020
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22174 TCE("smulbt", 16000c0
, fb10f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22175 TCE("smultt", 16000e0
, fb10f030
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22177 TCE("smulwb", 12000a0
, fb30f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22178 TCE("smulwt", 12000e0
, fb30f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22180 TCE("qadd", 1000050, fa80f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22181 TCE("qdadd", 1400050, fa80f090
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22182 TCE("qsub", 1200050, fa80f0a0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22183 TCE("qdsub", 1600050, fa80f0b0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22186 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22187 #undef THUMB_VARIANT
22188 #define THUMB_VARIANT & arm_ext_v6t2
22190 TUF("pld", 450f000
, f810f000
, 1, (ADDR
), pld
, t_pld
),
22191 TC3("ldrd", 00000d0
, e8500000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, ADDRGLDRS
),
22193 TC3("strd", 00000f0
, e8400000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
,
22194 ADDRGLDRS
), ldrd
, t_ldstd
),
22196 TCE("mcrr", c400000
, ec400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
22197 TCE("mrrc", c500000
, ec500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
22200 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22202 TCE("bxj", 12fff20
, f3c08f00
, 1, (RR
), bxj
, t_bxj
),
22205 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22206 #undef THUMB_VARIANT
22207 #define THUMB_VARIANT & arm_ext_v6
22209 TUF("cpsie", 1080000, b660
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
22210 TUF("cpsid", 10c0000
, b670
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
22211 tCE("rev", 6bf0f30
, _rev
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
22212 tCE("rev16", 6bf0fb0
, _rev16
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
22213 tCE("revsh", 6ff0fb0
, _revsh
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
22214 tCE("sxth", 6bf0070
, _sxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22215 tCE("uxth", 6ff0070
, _uxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22216 tCE("sxtb", 6af0070
, _sxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22217 tCE("uxtb", 6ef0070
, _uxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22218 TUF("setend", 1010000, b650
, 1, (ENDI
), setend
, t_setend
),
22220 #undef THUMB_VARIANT
22221 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22223 TCE("ldrex", 1900f9f
, e8500f00
, 2, (RRnpc_npcsp
, ADDR
), ldrex
, t_ldrex
),
22224 TCE("strex", 1800f90
, e8400000
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
22226 #undef THUMB_VARIANT
22227 #define THUMB_VARIANT & arm_ext_v6t2
22229 TUF("mcrr2", c400000
, fc400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
22230 TUF("mrrc2", c500000
, fc500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
22232 TCE("ssat", 6a00010
, f3000000
, 4, (RRnpc
, I32
, RRnpc
, oSHllar
),ssat
, t_ssat
),
22233 TCE("usat", 6e00010
, f3800000
, 4, (RRnpc
, I31
, RRnpc
, oSHllar
),usat
, t_usat
),
22235 /* ARM V6 not included in V7M. */
22236 #undef THUMB_VARIANT
22237 #define THUMB_VARIANT & arm_ext_v6_notm
22238 TUF("rfeia", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
22239 TUF("rfe", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
22240 UF(rfeib
, 9900a00
, 1, (RRw
), rfe
),
22241 UF(rfeda
, 8100a00
, 1, (RRw
), rfe
),
22242 TUF("rfedb", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
22243 TUF("rfefd", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
22244 UF(rfefa
, 8100a00
, 1, (RRw
), rfe
),
22245 TUF("rfeea", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
22246 UF(rfeed
, 9900a00
, 1, (RRw
), rfe
),
22247 TUF("srsia", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
22248 TUF("srs", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
22249 TUF("srsea", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
22250 UF(srsib
, 9c00500
, 2, (oRRw
, I31w
), srs
),
22251 UF(srsfa
, 9c00500
, 2, (oRRw
, I31w
), srs
),
22252 UF(srsda
, 8400500, 2, (oRRw
, I31w
), srs
),
22253 UF(srsed
, 8400500, 2, (oRRw
, I31w
), srs
),
22254 TUF("srsdb", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
22255 TUF("srsfd", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
22256 TUF("cps", 1020000, f3af8100
, 1, (I31b
), imm0
, t_cps
),
22258 /* ARM V6 not included in V7M (eg. integer SIMD). */
22259 #undef THUMB_VARIANT
22260 #define THUMB_VARIANT & arm_ext_v6_dsp
22261 TCE("pkhbt", 6800010, eac00000
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHll
), pkhbt
, t_pkhbt
),
22262 TCE("pkhtb", 6800050, eac00020
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHar
), pkhtb
, t_pkhtb
),
22263 TCE("qadd16", 6200f10
, fa90f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22264 TCE("qadd8", 6200f90
, fa80f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22265 TCE("qasx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22266 /* Old name for QASX. */
22267 TCE("qaddsubx",6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22268 TCE("qsax", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22269 /* Old name for QSAX. */
22270 TCE("qsubaddx",6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22271 TCE("qsub16", 6200f70
, fad0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22272 TCE("qsub8", 6200ff0
, fac0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22273 TCE("sadd16", 6100f10
, fa90f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22274 TCE("sadd8", 6100f90
, fa80f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22275 TCE("sasx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22276 /* Old name for SASX. */
22277 TCE("saddsubx",6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22278 TCE("shadd16", 6300f10
, fa90f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22279 TCE("shadd8", 6300f90
, fa80f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22280 TCE("shasx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22281 /* Old name for SHASX. */
22282 TCE("shaddsubx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22283 TCE("shsax", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22284 /* Old name for SHSAX. */
22285 TCE("shsubaddx", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22286 TCE("shsub16", 6300f70
, fad0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22287 TCE("shsub8", 6300ff0
, fac0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22288 TCE("ssax", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22289 /* Old name for SSAX. */
22290 TCE("ssubaddx",6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22291 TCE("ssub16", 6100f70
, fad0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22292 TCE("ssub8", 6100ff0
, fac0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22293 TCE("uadd16", 6500f10
, fa90f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22294 TCE("uadd8", 6500f90
, fa80f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22295 TCE("uasx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22296 /* Old name for UASX. */
22297 TCE("uaddsubx",6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22298 TCE("uhadd16", 6700f10
, fa90f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22299 TCE("uhadd8", 6700f90
, fa80f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22300 TCE("uhasx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22301 /* Old name for UHASX. */
22302 TCE("uhaddsubx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22303 TCE("uhsax", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22304 /* Old name for UHSAX. */
22305 TCE("uhsubaddx", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22306 TCE("uhsub16", 6700f70
, fad0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22307 TCE("uhsub8", 6700ff0
, fac0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22308 TCE("uqadd16", 6600f10
, fa90f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22309 TCE("uqadd8", 6600f90
, fa80f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22310 TCE("uqasx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22311 /* Old name for UQASX. */
22312 TCE("uqaddsubx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22313 TCE("uqsax", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22314 /* Old name for UQSAX. */
22315 TCE("uqsubaddx", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22316 TCE("uqsub16", 6600f70
, fad0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22317 TCE("uqsub8", 6600ff0
, fac0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22318 TCE("usub16", 6500f70
, fad0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22319 TCE("usax", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22320 /* Old name for USAX. */
22321 TCE("usubaddx",6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22322 TCE("usub8", 6500ff0
, fac0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22323 TCE("sxtah", 6b00070
, fa00f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22324 TCE("sxtab16", 6800070, fa20f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22325 TCE("sxtab", 6a00070
, fa40f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22326 TCE("sxtb16", 68f0070
, fa2ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22327 TCE("uxtah", 6f00070
, fa10f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22328 TCE("uxtab16", 6c00070
, fa30f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22329 TCE("uxtab", 6e00070
, fa50f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22330 TCE("uxtb16", 6cf0070
, fa3ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22331 TCE("sel", 6800fb0
, faa0f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22332 TCE("smlad", 7000010, fb200000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22333 TCE("smladx", 7000030, fb200010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22334 TCE("smlald", 7400010, fbc000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
22335 TCE("smlaldx", 7400030, fbc000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
22336 TCE("smlsd", 7000050, fb400000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22337 TCE("smlsdx", 7000070, fb400010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22338 TCE("smlsld", 7400050, fbd000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
22339 TCE("smlsldx", 7400070, fbd000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
22340 TCE("smmla", 7500010, fb500000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22341 TCE("smmlar", 7500030, fb500010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22342 TCE("smmls", 75000d0
, fb600000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22343 TCE("smmlsr", 75000f0
, fb600010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22344 TCE("smmul", 750f010
, fb50f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22345 TCE("smmulr", 750f030
, fb50f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22346 TCE("smuad", 700f010
, fb20f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22347 TCE("smuadx", 700f030
, fb20f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22348 TCE("smusd", 700f050
, fb40f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22349 TCE("smusdx", 700f070
, fb40f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22350 TCE("ssat16", 6a00f30
, f3200000
, 3, (RRnpc
, I16
, RRnpc
), ssat16
, t_ssat16
),
22351 TCE("umaal", 0400090, fbe00060
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
, t_mlal
),
22352 TCE("usad8", 780f010
, fb70f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22353 TCE("usada8", 7800010, fb700000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22354 TCE("usat16", 6e00f30
, f3a00000
, 3, (RRnpc
, I15
, RRnpc
), usat16
, t_usat16
),
22357 #define ARM_VARIANT & arm_ext_v6k_v6t2
22358 #undef THUMB_VARIANT
22359 #define THUMB_VARIANT & arm_ext_v6k_v6t2
22361 tCE("yield", 320f001
, _yield
, 0, (), noargs
, t_hint
),
22362 tCE("wfe", 320f002
, _wfe
, 0, (), noargs
, t_hint
),
22363 tCE("wfi", 320f003
, _wfi
, 0, (), noargs
, t_hint
),
22364 tCE("sev", 320f004
, _sev
, 0, (), noargs
, t_hint
),
22366 #undef THUMB_VARIANT
22367 #define THUMB_VARIANT & arm_ext_v6_notm
22368 TCE("ldrexd", 1b00f9f
, e8d0007f
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, RRnpcb
),
22370 TCE("strexd", 1a00f90
, e8c00070
, 4, (RRnpc_npcsp
, RRnpc_npcsp
, oRRnpc_npcsp
,
22371 RRnpcb
), strexd
, t_strexd
),
22373 #undef THUMB_VARIANT
22374 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22375 TCE("ldrexb", 1d00f9f
, e8d00f4f
, 2, (RRnpc_npcsp
,RRnpcb
),
22377 TCE("ldrexh", 1f00f9f
, e8d00f5f
, 2, (RRnpc_npcsp
, RRnpcb
),
22379 TCE("strexb", 1c00f90
, e8c00f40
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
22381 TCE("strexh", 1e00f90
, e8c00f50
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
22383 TUF("clrex", 57ff01f
, f3bf8f2f
, 0, (), noargs
, noargs
),
22386 #define ARM_VARIANT & arm_ext_sec
22387 #undef THUMB_VARIANT
22388 #define THUMB_VARIANT & arm_ext_sec
22390 TCE("smc", 1600070, f7f08000
, 1, (EXPi
), smc
, t_smc
),
22393 #define ARM_VARIANT & arm_ext_virt
22394 #undef THUMB_VARIANT
22395 #define THUMB_VARIANT & arm_ext_virt
22397 TCE("hvc", 1400070, f7e08000
, 1, (EXPi
), hvc
, t_hvc
),
22398 TCE("eret", 160006e
, f3de8f00
, 0, (), noargs
, noargs
),
22401 #define ARM_VARIANT & arm_ext_pan
22402 #undef THUMB_VARIANT
22403 #define THUMB_VARIANT & arm_ext_pan
22405 TUF("setpan", 1100000, b610
, 1, (I7
), setpan
, t_setpan
),
22408 #define ARM_VARIANT & arm_ext_v6t2
22409 #undef THUMB_VARIANT
22410 #define THUMB_VARIANT & arm_ext_v6t2
22412 TCE("bfc", 7c0001f
, f36f0000
, 3, (RRnpc
, I31
, I32
), bfc
, t_bfc
),
22413 TCE("bfi", 7c00010
, f3600000
, 4, (RRnpc
, RRnpc_I0
, I31
, I32
), bfi
, t_bfi
),
22414 TCE("sbfx", 7a00050
, f3400000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
22415 TCE("ubfx", 7e00050
, f3c00000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
22417 TCE("mls", 0600090, fb000010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
22418 TCE("rbit", 6ff0f30
, fa90f0a0
, 2, (RR
, RR
), rd_rm
, t_rbit
),
22420 TC3("ldrht", 03000b0
, f8300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
22421 TC3("ldrsht", 03000f0
, f9300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
22422 TC3("ldrsbt", 03000d0
, f9100e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
22423 TC3("strht", 02000b0
, f8200e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
22426 #define ARM_VARIANT & arm_ext_v3
22427 #undef THUMB_VARIANT
22428 #define THUMB_VARIANT & arm_ext_v6t2
22430 TUE("csdb", 320f014
, f3af8014
, 0, (), noargs
, t_csdb
),
22431 TUF("ssbb", 57ff040
, f3bf8f40
, 0, (), noargs
, t_csdb
),
22432 TUF("pssbb", 57ff044
, f3bf8f44
, 0, (), noargs
, t_csdb
),
22435 #define ARM_VARIANT & arm_ext_v6t2
22436 #undef THUMB_VARIANT
22437 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22438 TCE("movw", 3000000, f2400000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
22439 TCE("movt", 3400000, f2c00000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
22441 /* Thumb-only instructions. */
22443 #define ARM_VARIANT NULL
22444 TUE("cbnz", 0, b900
, 2, (RR
, EXP
), 0, t_cbz
),
22445 TUE("cbz", 0, b100
, 2, (RR
, EXP
), 0, t_cbz
),
22447 /* ARM does not really have an IT instruction, so always allow it.
22448 The opcode is copied from Thumb in order to allow warnings in
22449 -mimplicit-it=[never | arm] modes. */
22451 #define ARM_VARIANT & arm_ext_v1
22452 #undef THUMB_VARIANT
22453 #define THUMB_VARIANT & arm_ext_v6t2
22455 TUE("it", bf08
, bf08
, 1, (COND
), it
, t_it
),
22456 TUE("itt", bf0c
, bf0c
, 1, (COND
), it
, t_it
),
22457 TUE("ite", bf04
, bf04
, 1, (COND
), it
, t_it
),
22458 TUE("ittt", bf0e
, bf0e
, 1, (COND
), it
, t_it
),
22459 TUE("itet", bf06
, bf06
, 1, (COND
), it
, t_it
),
22460 TUE("itte", bf0a
, bf0a
, 1, (COND
), it
, t_it
),
22461 TUE("itee", bf02
, bf02
, 1, (COND
), it
, t_it
),
22462 TUE("itttt", bf0f
, bf0f
, 1, (COND
), it
, t_it
),
22463 TUE("itett", bf07
, bf07
, 1, (COND
), it
, t_it
),
22464 TUE("ittet", bf0b
, bf0b
, 1, (COND
), it
, t_it
),
22465 TUE("iteet", bf03
, bf03
, 1, (COND
), it
, t_it
),
22466 TUE("ittte", bf0d
, bf0d
, 1, (COND
), it
, t_it
),
22467 TUE("itete", bf05
, bf05
, 1, (COND
), it
, t_it
),
22468 TUE("ittee", bf09
, bf09
, 1, (COND
), it
, t_it
),
22469 TUE("iteee", bf01
, bf01
, 1, (COND
), it
, t_it
),
22470 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
22471 TC3("rrx", 01a00060
, ea4f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
22472 TC3("rrxs", 01b00060
, ea5f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
22474 /* Thumb2 only instructions. */
22476 #define ARM_VARIANT NULL
22478 TCE("addw", 0, f2000000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
22479 TCE("subw", 0, f2a00000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
22480 TCE("orn", 0, ea600000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
22481 TCE("orns", 0, ea700000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
22482 TCE("tbb", 0, e8d0f000
, 1, (TB
), 0, t_tb
),
22483 TCE("tbh", 0, e8d0f010
, 1, (TB
), 0, t_tb
),
22485 /* Hardware division instructions. */
22487 #define ARM_VARIANT & arm_ext_adiv
22488 #undef THUMB_VARIANT
22489 #define THUMB_VARIANT & arm_ext_div
22491 TCE("sdiv", 710f010
, fb90f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
22492 TCE("udiv", 730f010
, fbb0f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
22494 /* ARM V6M/V7 instructions. */
22496 #define ARM_VARIANT & arm_ext_barrier
22497 #undef THUMB_VARIANT
22498 #define THUMB_VARIANT & arm_ext_barrier
22500 TUF("dmb", 57ff050
, f3bf8f50
, 1, (oBARRIER_I15
), barrier
, barrier
),
22501 TUF("dsb", 57ff040
, f3bf8f40
, 1, (oBARRIER_I15
), barrier
, barrier
),
22502 TUF("isb", 57ff060
, f3bf8f60
, 1, (oBARRIER_I15
), barrier
, barrier
),
22504 /* ARM V7 instructions. */
22506 #define ARM_VARIANT & arm_ext_v7
22507 #undef THUMB_VARIANT
22508 #define THUMB_VARIANT & arm_ext_v7
22510 TUF("pli", 450f000
, f910f000
, 1, (ADDR
), pli
, t_pld
),
22511 TCE("dbg", 320f0f0
, f3af80f0
, 1, (I15
), dbg
, t_dbg
),
22514 #define ARM_VARIANT & arm_ext_mp
22515 #undef THUMB_VARIANT
22516 #define THUMB_VARIANT & arm_ext_mp
22518 TUF("pldw", 410f000
, f830f000
, 1, (ADDR
), pld
, t_pld
),
22520 /* AArchv8 instructions. */
22522 #define ARM_VARIANT & arm_ext_v8
22524 /* Instructions shared between armv8-a and armv8-m. */
22525 #undef THUMB_VARIANT
22526 #define THUMB_VARIANT & arm_ext_atomics
22528 TCE("lda", 1900c9f
, e8d00faf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
22529 TCE("ldab", 1d00c9f
, e8d00f8f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
22530 TCE("ldah", 1f00c9f
, e8d00f9f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
22531 TCE("stl", 180fc90
, e8c00faf
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
22532 TCE("stlb", 1c0fc90
, e8c00f8f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
22533 TCE("stlh", 1e0fc90
, e8c00f9f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
22534 TCE("ldaex", 1900e9f
, e8d00fef
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
22535 TCE("ldaexb", 1d00e9f
, e8d00fcf
, 2, (RRnpc
,RRnpcb
), rd_rn
, rd_rn
),
22536 TCE("ldaexh", 1f00e9f
, e8d00fdf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
22537 TCE("stlex", 1800e90
, e8c00fe0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
22539 TCE("stlexb", 1c00e90
, e8c00fc0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
22541 TCE("stlexh", 1e00e90
, e8c00fd0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
22543 #undef THUMB_VARIANT
22544 #define THUMB_VARIANT & arm_ext_v8
22546 tCE("sevl", 320f005
, _sevl
, 0, (), noargs
, t_hint
),
22547 TCE("ldaexd", 1b00e9f
, e8d000ff
, 3, (RRnpc
, oRRnpc
, RRnpcb
),
22549 TCE("stlexd", 1a00e90
, e8c000f0
, 4, (RRnpc
, RRnpc
, oRRnpc
, RRnpcb
),
22552 /* Defined in V8 but is in undefined encoding space for earlier
22553 architectures. However earlier architectures are required to treat
22554 this instuction as a semihosting trap as well. Hence while not explicitly
22555 defined as such, it is in fact correct to define the instruction for all
22557 #undef THUMB_VARIANT
22558 #define THUMB_VARIANT & arm_ext_v1
22560 #define ARM_VARIANT & arm_ext_v1
22561 TUE("hlt", 1000070, ba80
, 1, (oIffffb
), bkpt
, t_hlt
),
22563 /* ARMv8 T32 only. */
22565 #define ARM_VARIANT NULL
22566 TUF("dcps1", 0, f78f8001
, 0, (), noargs
, noargs
),
22567 TUF("dcps2", 0, f78f8002
, 0, (), noargs
, noargs
),
22568 TUF("dcps3", 0, f78f8003
, 0, (), noargs
, noargs
),
22570 /* FP for ARMv8. */
22572 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
22573 #undef THUMB_VARIANT
22574 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
22576 nUF(vseleq
, _vseleq
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
22577 nUF(vselvs
, _vselvs
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
22578 nUF(vselge
, _vselge
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
22579 nUF(vselgt
, _vselgt
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
22580 nUF(vmaxnm
, _vmaxnm
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), vmaxnm
),
22581 nUF(vminnm
, _vminnm
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), vmaxnm
),
22582 nCE(vrintr
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintr
),
22583 nCE(vrintz
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintz
),
22584 nCE(vrintx
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintx
),
22585 nUF(vrinta
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrinta
),
22586 nUF(vrintn
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintn
),
22587 nUF(vrintp
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintp
),
22588 nUF(vrintm
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintm
),
22590 /* Crypto v1 extensions. */
22592 #define ARM_VARIANT & fpu_crypto_ext_armv8
22593 #undef THUMB_VARIANT
22594 #define THUMB_VARIANT & fpu_crypto_ext_armv8
22596 nUF(aese
, _aes
, 2, (RNQ
, RNQ
), aese
),
22597 nUF(aesd
, _aes
, 2, (RNQ
, RNQ
), aesd
),
22598 nUF(aesmc
, _aes
, 2, (RNQ
, RNQ
), aesmc
),
22599 nUF(aesimc
, _aes
, 2, (RNQ
, RNQ
), aesimc
),
22600 nUF(sha1c
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1c
),
22601 nUF(sha1p
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1p
),
22602 nUF(sha1m
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1m
),
22603 nUF(sha1su0
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1su0
),
22604 nUF(sha256h
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256h
),
22605 nUF(sha256h2
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256h2
),
22606 nUF(sha256su1
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256su1
),
22607 nUF(sha1h
, _sha1h
, 2, (RNQ
, RNQ
), sha1h
),
22608 nUF(sha1su1
, _sha2op
, 2, (RNQ
, RNQ
), sha1su1
),
22609 nUF(sha256su0
, _sha2op
, 2, (RNQ
, RNQ
), sha256su0
),
22612 #define ARM_VARIANT & crc_ext_armv8
22613 #undef THUMB_VARIANT
22614 #define THUMB_VARIANT & crc_ext_armv8
22615 TUEc("crc32b", 1000040, fac0f080
, 3, (RR
, oRR
, RR
), crc32b
),
22616 TUEc("crc32h", 1200040, fac0f090
, 3, (RR
, oRR
, RR
), crc32h
),
22617 TUEc("crc32w", 1400040, fac0f0a0
, 3, (RR
, oRR
, RR
), crc32w
),
22618 TUEc("crc32cb",1000240, fad0f080
, 3, (RR
, oRR
, RR
), crc32cb
),
22619 TUEc("crc32ch",1200240, fad0f090
, 3, (RR
, oRR
, RR
), crc32ch
),
22620 TUEc("crc32cw",1400240, fad0f0a0
, 3, (RR
, oRR
, RR
), crc32cw
),
22622 /* ARMv8.2 RAS extension. */
22624 #define ARM_VARIANT & arm_ext_ras
22625 #undef THUMB_VARIANT
22626 #define THUMB_VARIANT & arm_ext_ras
22627 TUE ("esb", 320f010
, f3af8010
, 0, (), noargs
, noargs
),
22630 #define ARM_VARIANT & arm_ext_v8_3
22631 #undef THUMB_VARIANT
22632 #define THUMB_VARIANT & arm_ext_v8_3
22633 NCE (vjcvt
, eb90bc0
, 2, (RVS
, RVD
), vjcvt
),
22634 NUF (vcmla
, 0, 4, (RNDQ
, RNDQ
, RNDQ_RNSC
, EXPi
), vcmla
),
22635 NUF (vcadd
, 0, 4, (RNDQ
, RNDQ
, RNDQ
, EXPi
), vcadd
),
22638 #define ARM_VARIANT & fpu_neon_ext_dotprod
22639 #undef THUMB_VARIANT
22640 #define THUMB_VARIANT & fpu_neon_ext_dotprod
22641 NUF (vsdot
, d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), neon_dotproduct_s
),
22642 NUF (vudot
, d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), neon_dotproduct_u
),
22645 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
22646 #undef THUMB_VARIANT
22647 #define THUMB_VARIANT NULL
22649 cCE("wfs", e200110
, 1, (RR
), rd
),
22650 cCE("rfs", e300110
, 1, (RR
), rd
),
22651 cCE("wfc", e400110
, 1, (RR
), rd
),
22652 cCE("rfc", e500110
, 1, (RR
), rd
),
22654 cCL("ldfs", c100100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22655 cCL("ldfd", c108100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22656 cCL("ldfe", c500100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22657 cCL("ldfp", c508100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22659 cCL("stfs", c000100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22660 cCL("stfd", c008100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22661 cCL("stfe", c400100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22662 cCL("stfp", c408100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22664 cCL("mvfs", e008100
, 2, (RF
, RF_IF
), rd_rm
),
22665 cCL("mvfsp", e008120
, 2, (RF
, RF_IF
), rd_rm
),
22666 cCL("mvfsm", e008140
, 2, (RF
, RF_IF
), rd_rm
),
22667 cCL("mvfsz", e008160
, 2, (RF
, RF_IF
), rd_rm
),
22668 cCL("mvfd", e008180
, 2, (RF
, RF_IF
), rd_rm
),
22669 cCL("mvfdp", e0081a0
, 2, (RF
, RF_IF
), rd_rm
),
22670 cCL("mvfdm", e0081c0
, 2, (RF
, RF_IF
), rd_rm
),
22671 cCL("mvfdz", e0081e0
, 2, (RF
, RF_IF
), rd_rm
),
22672 cCL("mvfe", e088100
, 2, (RF
, RF_IF
), rd_rm
),
22673 cCL("mvfep", e088120
, 2, (RF
, RF_IF
), rd_rm
),
22674 cCL("mvfem", e088140
, 2, (RF
, RF_IF
), rd_rm
),
22675 cCL("mvfez", e088160
, 2, (RF
, RF_IF
), rd_rm
),
22677 cCL("mnfs", e108100
, 2, (RF
, RF_IF
), rd_rm
),
22678 cCL("mnfsp", e108120
, 2, (RF
, RF_IF
), rd_rm
),
22679 cCL("mnfsm", e108140
, 2, (RF
, RF_IF
), rd_rm
),
22680 cCL("mnfsz", e108160
, 2, (RF
, RF_IF
), rd_rm
),
22681 cCL("mnfd", e108180
, 2, (RF
, RF_IF
), rd_rm
),
22682 cCL("mnfdp", e1081a0
, 2, (RF
, RF_IF
), rd_rm
),
22683 cCL("mnfdm", e1081c0
, 2, (RF
, RF_IF
), rd_rm
),
22684 cCL("mnfdz", e1081e0
, 2, (RF
, RF_IF
), rd_rm
),
22685 cCL("mnfe", e188100
, 2, (RF
, RF_IF
), rd_rm
),
22686 cCL("mnfep", e188120
, 2, (RF
, RF_IF
), rd_rm
),
22687 cCL("mnfem", e188140
, 2, (RF
, RF_IF
), rd_rm
),
22688 cCL("mnfez", e188160
, 2, (RF
, RF_IF
), rd_rm
),
22690 cCL("abss", e208100
, 2, (RF
, RF_IF
), rd_rm
),
22691 cCL("abssp", e208120
, 2, (RF
, RF_IF
), rd_rm
),
22692 cCL("abssm", e208140
, 2, (RF
, RF_IF
), rd_rm
),
22693 cCL("abssz", e208160
, 2, (RF
, RF_IF
), rd_rm
),
22694 cCL("absd", e208180
, 2, (RF
, RF_IF
), rd_rm
),
22695 cCL("absdp", e2081a0
, 2, (RF
, RF_IF
), rd_rm
),
22696 cCL("absdm", e2081c0
, 2, (RF
, RF_IF
), rd_rm
),
22697 cCL("absdz", e2081e0
, 2, (RF
, RF_IF
), rd_rm
),
22698 cCL("abse", e288100
, 2, (RF
, RF_IF
), rd_rm
),
22699 cCL("absep", e288120
, 2, (RF
, RF_IF
), rd_rm
),
22700 cCL("absem", e288140
, 2, (RF
, RF_IF
), rd_rm
),
22701 cCL("absez", e288160
, 2, (RF
, RF_IF
), rd_rm
),
22703 cCL("rnds", e308100
, 2, (RF
, RF_IF
), rd_rm
),
22704 cCL("rndsp", e308120
, 2, (RF
, RF_IF
), rd_rm
),
22705 cCL("rndsm", e308140
, 2, (RF
, RF_IF
), rd_rm
),
22706 cCL("rndsz", e308160
, 2, (RF
, RF_IF
), rd_rm
),
22707 cCL("rndd", e308180
, 2, (RF
, RF_IF
), rd_rm
),
22708 cCL("rnddp", e3081a0
, 2, (RF
, RF_IF
), rd_rm
),
22709 cCL("rnddm", e3081c0
, 2, (RF
, RF_IF
), rd_rm
),
22710 cCL("rnddz", e3081e0
, 2, (RF
, RF_IF
), rd_rm
),
22711 cCL("rnde", e388100
, 2, (RF
, RF_IF
), rd_rm
),
22712 cCL("rndep", e388120
, 2, (RF
, RF_IF
), rd_rm
),
22713 cCL("rndem", e388140
, 2, (RF
, RF_IF
), rd_rm
),
22714 cCL("rndez", e388160
, 2, (RF
, RF_IF
), rd_rm
),
22716 cCL("sqts", e408100
, 2, (RF
, RF_IF
), rd_rm
),
22717 cCL("sqtsp", e408120
, 2, (RF
, RF_IF
), rd_rm
),
22718 cCL("sqtsm", e408140
, 2, (RF
, RF_IF
), rd_rm
),
22719 cCL("sqtsz", e408160
, 2, (RF
, RF_IF
), rd_rm
),
22720 cCL("sqtd", e408180
, 2, (RF
, RF_IF
), rd_rm
),
22721 cCL("sqtdp", e4081a0
, 2, (RF
, RF_IF
), rd_rm
),
22722 cCL("sqtdm", e4081c0
, 2, (RF
, RF_IF
), rd_rm
),
22723 cCL("sqtdz", e4081e0
, 2, (RF
, RF_IF
), rd_rm
),
22724 cCL("sqte", e488100
, 2, (RF
, RF_IF
), rd_rm
),
22725 cCL("sqtep", e488120
, 2, (RF
, RF_IF
), rd_rm
),
22726 cCL("sqtem", e488140
, 2, (RF
, RF_IF
), rd_rm
),
22727 cCL("sqtez", e488160
, 2, (RF
, RF_IF
), rd_rm
),
22729 cCL("logs", e508100
, 2, (RF
, RF_IF
), rd_rm
),
22730 cCL("logsp", e508120
, 2, (RF
, RF_IF
), rd_rm
),
22731 cCL("logsm", e508140
, 2, (RF
, RF_IF
), rd_rm
),
22732 cCL("logsz", e508160
, 2, (RF
, RF_IF
), rd_rm
),
22733 cCL("logd", e508180
, 2, (RF
, RF_IF
), rd_rm
),
22734 cCL("logdp", e5081a0
, 2, (RF
, RF_IF
), rd_rm
),
22735 cCL("logdm", e5081c0
, 2, (RF
, RF_IF
), rd_rm
),
22736 cCL("logdz", e5081e0
, 2, (RF
, RF_IF
), rd_rm
),
22737 cCL("loge", e588100
, 2, (RF
, RF_IF
), rd_rm
),
22738 cCL("logep", e588120
, 2, (RF
, RF_IF
), rd_rm
),
22739 cCL("logem", e588140
, 2, (RF
, RF_IF
), rd_rm
),
22740 cCL("logez", e588160
, 2, (RF
, RF_IF
), rd_rm
),
22742 cCL("lgns", e608100
, 2, (RF
, RF_IF
), rd_rm
),
22743 cCL("lgnsp", e608120
, 2, (RF
, RF_IF
), rd_rm
),
22744 cCL("lgnsm", e608140
, 2, (RF
, RF_IF
), rd_rm
),
22745 cCL("lgnsz", e608160
, 2, (RF
, RF_IF
), rd_rm
),
22746 cCL("lgnd", e608180
, 2, (RF
, RF_IF
), rd_rm
),
22747 cCL("lgndp", e6081a0
, 2, (RF
, RF_IF
), rd_rm
),
22748 cCL("lgndm", e6081c0
, 2, (RF
, RF_IF
), rd_rm
),
22749 cCL("lgndz", e6081e0
, 2, (RF
, RF_IF
), rd_rm
),
22750 cCL("lgne", e688100
, 2, (RF
, RF_IF
), rd_rm
),
22751 cCL("lgnep", e688120
, 2, (RF
, RF_IF
), rd_rm
),
22752 cCL("lgnem", e688140
, 2, (RF
, RF_IF
), rd_rm
),
22753 cCL("lgnez", e688160
, 2, (RF
, RF_IF
), rd_rm
),
22755 cCL("exps", e708100
, 2, (RF
, RF_IF
), rd_rm
),
22756 cCL("expsp", e708120
, 2, (RF
, RF_IF
), rd_rm
),
22757 cCL("expsm", e708140
, 2, (RF
, RF_IF
), rd_rm
),
22758 cCL("expsz", e708160
, 2, (RF
, RF_IF
), rd_rm
),
22759 cCL("expd", e708180
, 2, (RF
, RF_IF
), rd_rm
),
22760 cCL("expdp", e7081a0
, 2, (RF
, RF_IF
), rd_rm
),
22761 cCL("expdm", e7081c0
, 2, (RF
, RF_IF
), rd_rm
),
22762 cCL("expdz", e7081e0
, 2, (RF
, RF_IF
), rd_rm
),
22763 cCL("expe", e788100
, 2, (RF
, RF_IF
), rd_rm
),
22764 cCL("expep", e788120
, 2, (RF
, RF_IF
), rd_rm
),
22765 cCL("expem", e788140
, 2, (RF
, RF_IF
), rd_rm
),
22766 cCL("expdz", e788160
, 2, (RF
, RF_IF
), rd_rm
),
22768 cCL("sins", e808100
, 2, (RF
, RF_IF
), rd_rm
),
22769 cCL("sinsp", e808120
, 2, (RF
, RF_IF
), rd_rm
),
22770 cCL("sinsm", e808140
, 2, (RF
, RF_IF
), rd_rm
),
22771 cCL("sinsz", e808160
, 2, (RF
, RF_IF
), rd_rm
),
22772 cCL("sind", e808180
, 2, (RF
, RF_IF
), rd_rm
),
22773 cCL("sindp", e8081a0
, 2, (RF
, RF_IF
), rd_rm
),
22774 cCL("sindm", e8081c0
, 2, (RF
, RF_IF
), rd_rm
),
22775 cCL("sindz", e8081e0
, 2, (RF
, RF_IF
), rd_rm
),
22776 cCL("sine", e888100
, 2, (RF
, RF_IF
), rd_rm
),
22777 cCL("sinep", e888120
, 2, (RF
, RF_IF
), rd_rm
),
22778 cCL("sinem", e888140
, 2, (RF
, RF_IF
), rd_rm
),
22779 cCL("sinez", e888160
, 2, (RF
, RF_IF
), rd_rm
),
22781 cCL("coss", e908100
, 2, (RF
, RF_IF
), rd_rm
),
22782 cCL("cossp", e908120
, 2, (RF
, RF_IF
), rd_rm
),
22783 cCL("cossm", e908140
, 2, (RF
, RF_IF
), rd_rm
),
22784 cCL("cossz", e908160
, 2, (RF
, RF_IF
), rd_rm
),
22785 cCL("cosd", e908180
, 2, (RF
, RF_IF
), rd_rm
),
22786 cCL("cosdp", e9081a0
, 2, (RF
, RF_IF
), rd_rm
),
22787 cCL("cosdm", e9081c0
, 2, (RF
, RF_IF
), rd_rm
),
22788 cCL("cosdz", e9081e0
, 2, (RF
, RF_IF
), rd_rm
),
22789 cCL("cose", e988100
, 2, (RF
, RF_IF
), rd_rm
),
22790 cCL("cosep", e988120
, 2, (RF
, RF_IF
), rd_rm
),
22791 cCL("cosem", e988140
, 2, (RF
, RF_IF
), rd_rm
),
22792 cCL("cosez", e988160
, 2, (RF
, RF_IF
), rd_rm
),
22794 cCL("tans", ea08100
, 2, (RF
, RF_IF
), rd_rm
),
22795 cCL("tansp", ea08120
, 2, (RF
, RF_IF
), rd_rm
),
22796 cCL("tansm", ea08140
, 2, (RF
, RF_IF
), rd_rm
),
22797 cCL("tansz", ea08160
, 2, (RF
, RF_IF
), rd_rm
),
22798 cCL("tand", ea08180
, 2, (RF
, RF_IF
), rd_rm
),
22799 cCL("tandp", ea081a0
, 2, (RF
, RF_IF
), rd_rm
),
22800 cCL("tandm", ea081c0
, 2, (RF
, RF_IF
), rd_rm
),
22801 cCL("tandz", ea081e0
, 2, (RF
, RF_IF
), rd_rm
),
22802 cCL("tane", ea88100
, 2, (RF
, RF_IF
), rd_rm
),
22803 cCL("tanep", ea88120
, 2, (RF
, RF_IF
), rd_rm
),
22804 cCL("tanem", ea88140
, 2, (RF
, RF_IF
), rd_rm
),
22805 cCL("tanez", ea88160
, 2, (RF
, RF_IF
), rd_rm
),
22807 cCL("asns", eb08100
, 2, (RF
, RF_IF
), rd_rm
),
22808 cCL("asnsp", eb08120
, 2, (RF
, RF_IF
), rd_rm
),
22809 cCL("asnsm", eb08140
, 2, (RF
, RF_IF
), rd_rm
),
22810 cCL("asnsz", eb08160
, 2, (RF
, RF_IF
), rd_rm
),
22811 cCL("asnd", eb08180
, 2, (RF
, RF_IF
), rd_rm
),
22812 cCL("asndp", eb081a0
, 2, (RF
, RF_IF
), rd_rm
),
22813 cCL("asndm", eb081c0
, 2, (RF
, RF_IF
), rd_rm
),
22814 cCL("asndz", eb081e0
, 2, (RF
, RF_IF
), rd_rm
),
22815 cCL("asne", eb88100
, 2, (RF
, RF_IF
), rd_rm
),
22816 cCL("asnep", eb88120
, 2, (RF
, RF_IF
), rd_rm
),
22817 cCL("asnem", eb88140
, 2, (RF
, RF_IF
), rd_rm
),
22818 cCL("asnez", eb88160
, 2, (RF
, RF_IF
), rd_rm
),
22820 cCL("acss", ec08100
, 2, (RF
, RF_IF
), rd_rm
),
22821 cCL("acssp", ec08120
, 2, (RF
, RF_IF
), rd_rm
),
22822 cCL("acssm", ec08140
, 2, (RF
, RF_IF
), rd_rm
),
22823 cCL("acssz", ec08160
, 2, (RF
, RF_IF
), rd_rm
),
22824 cCL("acsd", ec08180
, 2, (RF
, RF_IF
), rd_rm
),
22825 cCL("acsdp", ec081a0
, 2, (RF
, RF_IF
), rd_rm
),
22826 cCL("acsdm", ec081c0
, 2, (RF
, RF_IF
), rd_rm
),
22827 cCL("acsdz", ec081e0
, 2, (RF
, RF_IF
), rd_rm
),
22828 cCL("acse", ec88100
, 2, (RF
, RF_IF
), rd_rm
),
22829 cCL("acsep", ec88120
, 2, (RF
, RF_IF
), rd_rm
),
22830 cCL("acsem", ec88140
, 2, (RF
, RF_IF
), rd_rm
),
22831 cCL("acsez", ec88160
, 2, (RF
, RF_IF
), rd_rm
),
22833 cCL("atns", ed08100
, 2, (RF
, RF_IF
), rd_rm
),
22834 cCL("atnsp", ed08120
, 2, (RF
, RF_IF
), rd_rm
),
22835 cCL("atnsm", ed08140
, 2, (RF
, RF_IF
), rd_rm
),
22836 cCL("atnsz", ed08160
, 2, (RF
, RF_IF
), rd_rm
),
22837 cCL("atnd", ed08180
, 2, (RF
, RF_IF
), rd_rm
),
22838 cCL("atndp", ed081a0
, 2, (RF
, RF_IF
), rd_rm
),
22839 cCL("atndm", ed081c0
, 2, (RF
, RF_IF
), rd_rm
),
22840 cCL("atndz", ed081e0
, 2, (RF
, RF_IF
), rd_rm
),
22841 cCL("atne", ed88100
, 2, (RF
, RF_IF
), rd_rm
),
22842 cCL("atnep", ed88120
, 2, (RF
, RF_IF
), rd_rm
),
22843 cCL("atnem", ed88140
, 2, (RF
, RF_IF
), rd_rm
),
22844 cCL("atnez", ed88160
, 2, (RF
, RF_IF
), rd_rm
),
22846 cCL("urds", ee08100
, 2, (RF
, RF_IF
), rd_rm
),
22847 cCL("urdsp", ee08120
, 2, (RF
, RF_IF
), rd_rm
),
22848 cCL("urdsm", ee08140
, 2, (RF
, RF_IF
), rd_rm
),
22849 cCL("urdsz", ee08160
, 2, (RF
, RF_IF
), rd_rm
),
22850 cCL("urdd", ee08180
, 2, (RF
, RF_IF
), rd_rm
),
22851 cCL("urddp", ee081a0
, 2, (RF
, RF_IF
), rd_rm
),
22852 cCL("urddm", ee081c0
, 2, (RF
, RF_IF
), rd_rm
),
22853 cCL("urddz", ee081e0
, 2, (RF
, RF_IF
), rd_rm
),
22854 cCL("urde", ee88100
, 2, (RF
, RF_IF
), rd_rm
),
22855 cCL("urdep", ee88120
, 2, (RF
, RF_IF
), rd_rm
),
22856 cCL("urdem", ee88140
, 2, (RF
, RF_IF
), rd_rm
),
22857 cCL("urdez", ee88160
, 2, (RF
, RF_IF
), rd_rm
),
22859 cCL("nrms", ef08100
, 2, (RF
, RF_IF
), rd_rm
),
22860 cCL("nrmsp", ef08120
, 2, (RF
, RF_IF
), rd_rm
),
22861 cCL("nrmsm", ef08140
, 2, (RF
, RF_IF
), rd_rm
),
22862 cCL("nrmsz", ef08160
, 2, (RF
, RF_IF
), rd_rm
),
22863 cCL("nrmd", ef08180
, 2, (RF
, RF_IF
), rd_rm
),
22864 cCL("nrmdp", ef081a0
, 2, (RF
, RF_IF
), rd_rm
),
22865 cCL("nrmdm", ef081c0
, 2, (RF
, RF_IF
), rd_rm
),
22866 cCL("nrmdz", ef081e0
, 2, (RF
, RF_IF
), rd_rm
),
22867 cCL("nrme", ef88100
, 2, (RF
, RF_IF
), rd_rm
),
22868 cCL("nrmep", ef88120
, 2, (RF
, RF_IF
), rd_rm
),
22869 cCL("nrmem", ef88140
, 2, (RF
, RF_IF
), rd_rm
),
22870 cCL("nrmez", ef88160
, 2, (RF
, RF_IF
), rd_rm
),
22872 cCL("adfs", e000100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22873 cCL("adfsp", e000120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22874 cCL("adfsm", e000140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22875 cCL("adfsz", e000160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22876 cCL("adfd", e000180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22877 cCL("adfdp", e0001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22878 cCL("adfdm", e0001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22879 cCL("adfdz", e0001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22880 cCL("adfe", e080100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22881 cCL("adfep", e080120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22882 cCL("adfem", e080140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22883 cCL("adfez", e080160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22885 cCL("sufs", e200100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22886 cCL("sufsp", e200120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22887 cCL("sufsm", e200140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22888 cCL("sufsz", e200160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22889 cCL("sufd", e200180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22890 cCL("sufdp", e2001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22891 cCL("sufdm", e2001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22892 cCL("sufdz", e2001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22893 cCL("sufe", e280100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22894 cCL("sufep", e280120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22895 cCL("sufem", e280140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22896 cCL("sufez", e280160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22898 cCL("rsfs", e300100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22899 cCL("rsfsp", e300120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22900 cCL("rsfsm", e300140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22901 cCL("rsfsz", e300160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22902 cCL("rsfd", e300180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22903 cCL("rsfdp", e3001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22904 cCL("rsfdm", e3001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22905 cCL("rsfdz", e3001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22906 cCL("rsfe", e380100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22907 cCL("rsfep", e380120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22908 cCL("rsfem", e380140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22909 cCL("rsfez", e380160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22911 cCL("mufs", e100100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22912 cCL("mufsp", e100120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22913 cCL("mufsm", e100140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22914 cCL("mufsz", e100160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22915 cCL("mufd", e100180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22916 cCL("mufdp", e1001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22917 cCL("mufdm", e1001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22918 cCL("mufdz", e1001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22919 cCL("mufe", e180100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22920 cCL("mufep", e180120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22921 cCL("mufem", e180140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22922 cCL("mufez", e180160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22924 cCL("dvfs", e400100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22925 cCL("dvfsp", e400120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22926 cCL("dvfsm", e400140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22927 cCL("dvfsz", e400160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22928 cCL("dvfd", e400180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22929 cCL("dvfdp", e4001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22930 cCL("dvfdm", e4001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22931 cCL("dvfdz", e4001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22932 cCL("dvfe", e480100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22933 cCL("dvfep", e480120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22934 cCL("dvfem", e480140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22935 cCL("dvfez", e480160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22937 cCL("rdfs", e500100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22938 cCL("rdfsp", e500120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22939 cCL("rdfsm", e500140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22940 cCL("rdfsz", e500160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22941 cCL("rdfd", e500180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22942 cCL("rdfdp", e5001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22943 cCL("rdfdm", e5001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22944 cCL("rdfdz", e5001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22945 cCL("rdfe", e580100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22946 cCL("rdfep", e580120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22947 cCL("rdfem", e580140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22948 cCL("rdfez", e580160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22950 cCL("pows", e600100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22951 cCL("powsp", e600120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22952 cCL("powsm", e600140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22953 cCL("powsz", e600160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22954 cCL("powd", e600180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22955 cCL("powdp", e6001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22956 cCL("powdm", e6001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22957 cCL("powdz", e6001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22958 cCL("powe", e680100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22959 cCL("powep", e680120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22960 cCL("powem", e680140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22961 cCL("powez", e680160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22963 cCL("rpws", e700100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22964 cCL("rpwsp", e700120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22965 cCL("rpwsm", e700140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22966 cCL("rpwsz", e700160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22967 cCL("rpwd", e700180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22968 cCL("rpwdp", e7001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22969 cCL("rpwdm", e7001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22970 cCL("rpwdz", e7001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22971 cCL("rpwe", e780100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22972 cCL("rpwep", e780120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22973 cCL("rpwem", e780140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22974 cCL("rpwez", e780160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22976 cCL("rmfs", e800100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22977 cCL("rmfsp", e800120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22978 cCL("rmfsm", e800140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22979 cCL("rmfsz", e800160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22980 cCL("rmfd", e800180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22981 cCL("rmfdp", e8001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22982 cCL("rmfdm", e8001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22983 cCL("rmfdz", e8001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22984 cCL("rmfe", e880100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22985 cCL("rmfep", e880120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22986 cCL("rmfem", e880140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22987 cCL("rmfez", e880160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22989 cCL("fmls", e900100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22990 cCL("fmlsp", e900120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22991 cCL("fmlsm", e900140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22992 cCL("fmlsz", e900160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22993 cCL("fmld", e900180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22994 cCL("fmldp", e9001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22995 cCL("fmldm", e9001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22996 cCL("fmldz", e9001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22997 cCL("fmle", e980100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22998 cCL("fmlep", e980120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22999 cCL("fmlem", e980140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23000 cCL("fmlez", e980160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23002 cCL("fdvs", ea00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23003 cCL("fdvsp", ea00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23004 cCL("fdvsm", ea00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23005 cCL("fdvsz", ea00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23006 cCL("fdvd", ea00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23007 cCL("fdvdp", ea001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23008 cCL("fdvdm", ea001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23009 cCL("fdvdz", ea001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23010 cCL("fdve", ea80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23011 cCL("fdvep", ea80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23012 cCL("fdvem", ea80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23013 cCL("fdvez", ea80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23015 cCL("frds", eb00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23016 cCL("frdsp", eb00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23017 cCL("frdsm", eb00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23018 cCL("frdsz", eb00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23019 cCL("frdd", eb00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23020 cCL("frddp", eb001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23021 cCL("frddm", eb001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23022 cCL("frddz", eb001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23023 cCL("frde", eb80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23024 cCL("frdep", eb80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23025 cCL("frdem", eb80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23026 cCL("frdez", eb80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23028 cCL("pols", ec00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23029 cCL("polsp", ec00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23030 cCL("polsm", ec00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23031 cCL("polsz", ec00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23032 cCL("pold", ec00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23033 cCL("poldp", ec001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23034 cCL("poldm", ec001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23035 cCL("poldz", ec001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23036 cCL("pole", ec80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23037 cCL("polep", ec80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23038 cCL("polem", ec80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23039 cCL("polez", ec80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23041 cCE("cmf", e90f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23042 C3E("cmfe", ed0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23043 cCE("cnf", eb0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23044 C3E("cnfe", ef0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23046 cCL("flts", e000110
, 2, (RF
, RR
), rn_rd
),
23047 cCL("fltsp", e000130
, 2, (RF
, RR
), rn_rd
),
23048 cCL("fltsm", e000150
, 2, (RF
, RR
), rn_rd
),
23049 cCL("fltsz", e000170
, 2, (RF
, RR
), rn_rd
),
23050 cCL("fltd", e000190
, 2, (RF
, RR
), rn_rd
),
23051 cCL("fltdp", e0001b0
, 2, (RF
, RR
), rn_rd
),
23052 cCL("fltdm", e0001d0
, 2, (RF
, RR
), rn_rd
),
23053 cCL("fltdz", e0001f0
, 2, (RF
, RR
), rn_rd
),
23054 cCL("flte", e080110
, 2, (RF
, RR
), rn_rd
),
23055 cCL("fltep", e080130
, 2, (RF
, RR
), rn_rd
),
23056 cCL("fltem", e080150
, 2, (RF
, RR
), rn_rd
),
23057 cCL("fltez", e080170
, 2, (RF
, RR
), rn_rd
),
23059 /* The implementation of the FIX instruction is broken on some
23060 assemblers, in that it accepts a precision specifier as well as a
23061 rounding specifier, despite the fact that this is meaningless.
23062 To be more compatible, we accept it as well, though of course it
23063 does not set any bits. */
23064 cCE("fix", e100110
, 2, (RR
, RF
), rd_rm
),
23065 cCL("fixp", e100130
, 2, (RR
, RF
), rd_rm
),
23066 cCL("fixm", e100150
, 2, (RR
, RF
), rd_rm
),
23067 cCL("fixz", e100170
, 2, (RR
, RF
), rd_rm
),
23068 cCL("fixsp", e100130
, 2, (RR
, RF
), rd_rm
),
23069 cCL("fixsm", e100150
, 2, (RR
, RF
), rd_rm
),
23070 cCL("fixsz", e100170
, 2, (RR
, RF
), rd_rm
),
23071 cCL("fixdp", e100130
, 2, (RR
, RF
), rd_rm
),
23072 cCL("fixdm", e100150
, 2, (RR
, RF
), rd_rm
),
23073 cCL("fixdz", e100170
, 2, (RR
, RF
), rd_rm
),
23074 cCL("fixep", e100130
, 2, (RR
, RF
), rd_rm
),
23075 cCL("fixem", e100150
, 2, (RR
, RF
), rd_rm
),
23076 cCL("fixez", e100170
, 2, (RR
, RF
), rd_rm
),
23078 /* Instructions that were new with the real FPA, call them V2. */
23080 #define ARM_VARIANT & fpu_fpa_ext_v2
23082 cCE("lfm", c100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23083 cCL("lfmfd", c900200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23084 cCL("lfmea", d100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23085 cCE("sfm", c000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23086 cCL("sfmfd", d000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23087 cCL("sfmea", c800200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23090 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23092 /* Moves and type conversions. */
23093 cCE("fmstat", ef1fa10
, 0, (), noargs
),
23094 cCE("vmrs", ef00a10
, 2, (APSR_RR
, RVC
), vmrs
),
23095 cCE("vmsr", ee00a10
, 2, (RVC
, RR
), vmsr
),
23096 cCE("fsitos", eb80ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23097 cCE("fuitos", eb80a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23098 cCE("ftosis", ebd0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23099 cCE("ftosizs", ebd0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23100 cCE("ftouis", ebc0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23101 cCE("ftouizs", ebc0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23102 cCE("fmrx", ef00a10
, 2, (RR
, RVC
), rd_rn
),
23103 cCE("fmxr", ee00a10
, 2, (RVC
, RR
), rn_rd
),
23105 /* Memory operations. */
23106 cCE("flds", d100a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
23107 cCE("fsts", d000a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
23108 cCE("fldmias", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23109 cCE("fldmfds", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23110 cCE("fldmdbs", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23111 cCE("fldmeas", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23112 cCE("fldmiax", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23113 cCE("fldmfdx", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23114 cCE("fldmdbx", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23115 cCE("fldmeax", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23116 cCE("fstmias", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23117 cCE("fstmeas", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23118 cCE("fstmdbs", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23119 cCE("fstmfds", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23120 cCE("fstmiax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23121 cCE("fstmeax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23122 cCE("fstmdbx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23123 cCE("fstmfdx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23125 /* Monadic operations. */
23126 cCE("fabss", eb00ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23127 cCE("fnegs", eb10a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23128 cCE("fsqrts", eb10ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23130 /* Dyadic operations. */
23131 cCE("fadds", e300a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23132 cCE("fsubs", e300a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23133 cCE("fmuls", e200a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23134 cCE("fdivs", e800a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23135 cCE("fmacs", e000a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23136 cCE("fmscs", e100a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23137 cCE("fnmuls", e200a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23138 cCE("fnmacs", e000a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23139 cCE("fnmscs", e100a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23142 cCE("fcmps", eb40a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23143 cCE("fcmpzs", eb50a40
, 1, (RVS
), vfp_sp_compare_z
),
23144 cCE("fcmpes", eb40ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23145 cCE("fcmpezs", eb50ac0
, 1, (RVS
), vfp_sp_compare_z
),
23147 /* Double precision load/store are still present on single precision
23148 implementations. */
23149 cCE("fldd", d100b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
23150 cCE("fstd", d000b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
23151 cCE("fldmiad", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23152 cCE("fldmfdd", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23153 cCE("fldmdbd", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23154 cCE("fldmead", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23155 cCE("fstmiad", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23156 cCE("fstmead", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23157 cCE("fstmdbd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23158 cCE("fstmfdd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23161 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23163 /* Moves and type conversions. */
23164 cCE("fcvtds", eb70ac0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
23165 cCE("fcvtsd", eb70bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23166 cCE("fmdhr", e200b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
23167 cCE("fmdlr", e000b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
23168 cCE("fmrdh", e300b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
23169 cCE("fmrdl", e100b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
23170 cCE("fsitod", eb80bc0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
23171 cCE("fuitod", eb80b40
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
23172 cCE("ftosid", ebd0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23173 cCE("ftosizd", ebd0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23174 cCE("ftouid", ebc0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23175 cCE("ftouizd", ebc0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23177 /* Monadic operations. */
23178 cCE("fabsd", eb00bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23179 cCE("fnegd", eb10b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23180 cCE("fsqrtd", eb10bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23182 /* Dyadic operations. */
23183 cCE("faddd", e300b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23184 cCE("fsubd", e300b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23185 cCE("fmuld", e200b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23186 cCE("fdivd", e800b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23187 cCE("fmacd", e000b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23188 cCE("fmscd", e100b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23189 cCE("fnmuld", e200b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23190 cCE("fnmacd", e000b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23191 cCE("fnmscd", e100b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23194 cCE("fcmpd", eb40b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23195 cCE("fcmpzd", eb50b40
, 1, (RVD
), vfp_dp_rd
),
23196 cCE("fcmped", eb40bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23197 cCE("fcmpezd", eb50bc0
, 1, (RVD
), vfp_dp_rd
),
23199 /* Instructions which may belong to either the Neon or VFP instruction sets.
23200 Individual encoder functions perform additional architecture checks. */
23202 #define ARM_VARIANT & fpu_vfp_ext_v1xd
23203 #undef THUMB_VARIANT
23204 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
23206 /* These mnemonics are unique to VFP. */
23207 NCE(vsqrt
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_sqrt
),
23208 NCE(vdiv
, 0, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_div
),
23209 nCE(vnmul
, _vnmul
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
23210 nCE(vnmla
, _vnmla
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
23211 nCE(vnmls
, _vnmls
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
23212 NCE(vpush
, 0, 1, (VRSDLST
), vfp_nsyn_push
),
23213 NCE(vpop
, 0, 1, (VRSDLST
), vfp_nsyn_pop
),
23214 NCE(vcvtz
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_cvtz
),
23216 /* Mnemonics shared by Neon and VFP. */
23217 nCEF(vmul
, _vmul
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mul
),
23218 nCEF(vmla
, _vmla
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
23219 nCEF(vmls
, _vmls
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
23221 NCE(vldm
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23222 NCE(vldmia
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23223 NCE(vldmdb
, d100b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23224 NCE(vstm
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23225 NCE(vstmia
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23226 NCE(vstmdb
, d000b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23228 mnCEF(vcvt
, _vcvt
, 3, (RNSDQMQ
, RNSDQMQ
, oI32z
), neon_cvt
),
23229 nCEF(vcvtr
, _vcvt
, 2, (RNSDQ
, RNSDQ
), neon_cvtr
),
23230 MNCEF(vcvtb
, eb20a40
, 3, (RVSDMQ
, RVSDMQ
, oI32b
), neon_cvtb
),
23231 MNCEF(vcvtt
, eb20a40
, 3, (RVSDMQ
, RVSDMQ
, oI32b
), neon_cvtt
),
23234 /* NOTE: All VMOV encoding is special-cased! */
23235 NCE(vmovq
, 0, 1, (VMOV
), neon_mov
),
23237 #undef THUMB_VARIANT
23238 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23239 by different feature bits. Since we are setting the Thumb guard, we can
23240 require Thumb-1 which makes it a nop guard and set the right feature bit in
23241 do_vldr_vstr (). */
23242 #define THUMB_VARIANT & arm_ext_v4t
23243 NCE(vldr
, d100b00
, 2, (VLDR
, ADDRGLDC
), vldr_vstr
),
23244 NCE(vstr
, d000b00
, 2, (VLDR
, ADDRGLDC
), vldr_vstr
),
23247 #define ARM_VARIANT & arm_ext_fp16
23248 #undef THUMB_VARIANT
23249 #define THUMB_VARIANT & arm_ext_fp16
23250 /* New instructions added from v8.2, allowing the extraction and insertion of
23251 the upper 16 bits of a 32-bit vector register. */
23252 NCE (vmovx
, eb00a40
, 2, (RVS
, RVS
), neon_movhf
),
23253 NCE (vins
, eb00ac0
, 2, (RVS
, RVS
), neon_movhf
),
23255 /* New backported fma/fms instructions optional in v8.2. */
23256 NCE (vfmal
, 810, 3, (RNDQ
, RNSD
, RNSD_RNSC
), neon_vfmal
),
23257 NCE (vfmsl
, 810, 3, (RNDQ
, RNSD
, RNSD_RNSC
), neon_vfmsl
),
23259 #undef THUMB_VARIANT
23260 #define THUMB_VARIANT & fpu_neon_ext_v1
23262 #define ARM_VARIANT & fpu_neon_ext_v1
23264 /* Data processing with three registers of the same length. */
23265 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23266 NUF(vaba
, 0000710, 3, (RNDQ
, RNDQ
, RNDQ
), neon_dyadic_i_su
),
23267 NUF(vabaq
, 0000710, 3, (RNQ
, RNQ
, RNQ
), neon_dyadic_i_su
),
23268 NUF(vhadd
, 0000000, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
23269 NUF(vhaddq
, 0000000, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
23270 NUF(vrhadd
, 0000100, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
23271 NUF(vrhaddq
, 0000100, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
23272 NUF(vhsub
, 0000200, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
23273 NUF(vhsubq
, 0000200, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
23274 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23275 NUF(vqadd
, 0000010, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
23276 NUF(vqaddq
, 0000010, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
23277 NUF(vqsub
, 0000210, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
23278 NUF(vqsubq
, 0000210, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
23279 NUF(vrshl
, 0000500, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
23280 NUF(vrshlq
, 0000500, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
23281 NUF(vqrshl
, 0000510, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
23282 NUF(vqrshlq
, 0000510, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
23283 /* If not immediate, fall back to neon_dyadic_i64_su.
23284 shl_imm should accept I8 I16 I32 I64,
23285 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
23286 nUF(vshl
, _vshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_shl_imm
),
23287 nUF(vshlq
, _vshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_shl_imm
),
23288 nUF(vqshl
, _vqshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_qshl_imm
),
23289 nUF(vqshlq
, _vqshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_qshl_imm
),
23290 /* Logic ops, types optional & ignored. */
23291 nUF(vand
, _vand
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
23292 nUF(vandq
, _vand
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
23293 nUF(vbic
, _vbic
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
23294 nUF(vbicq
, _vbic
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
23295 nUF(vorr
, _vorr
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
23296 nUF(vorrq
, _vorr
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
23297 nUF(vorn
, _vorn
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
23298 nUF(vornq
, _vorn
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
23299 nUF(veor
, _veor
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_logic
),
23300 nUF(veorq
, _veor
, 3, (RNQ
, oRNQ
, RNQ
), neon_logic
),
23301 /* Bitfield ops, untyped. */
23302 NUF(vbsl
, 1100110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
23303 NUF(vbslq
, 1100110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
23304 NUF(vbit
, 1200110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
23305 NUF(vbitq
, 1200110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
23306 NUF(vbif
, 1300110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
23307 NUF(vbifq
, 1300110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
23308 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
23309 nUF(vabdq
, _vabd
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
23310 nUF(vmax
, _vmax
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
23311 nUF(vmaxq
, _vmax
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
23312 nUF(vmin
, _vmin
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
23313 nUF(vminq
, _vmin
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
23314 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23315 back to neon_dyadic_if_su. */
23316 nUF(vcge
, _vcge
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
23317 nUF(vcgeq
, _vcge
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
23318 nUF(vcgt
, _vcgt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
23319 nUF(vcgtq
, _vcgt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
23320 nUF(vclt
, _vclt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
23321 nUF(vcltq
, _vclt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
23322 nUF(vcle
, _vcle
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
23323 nUF(vcleq
, _vcle
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
23324 /* Comparison. Type I8 I16 I32 F32. */
23325 nUF(vceq
, _vceq
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_ceq
),
23326 nUF(vceqq
, _vceq
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_ceq
),
23327 /* As above, D registers only. */
23328 nUF(vpmax
, _vpmax
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
23329 nUF(vpmin
, _vpmin
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
23330 /* Int and float variants, signedness unimportant. */
23331 nUF(vmlaq
, _vmla
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
23332 nUF(vmlsq
, _vmls
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
23333 nUF(vpadd
, _vpadd
, 3, (RND
, oRND
, RND
), neon_dyadic_if_i_d
),
23334 /* Add/sub take types I8 I16 I32 I64 F32. */
23335 nUF(vaddq
, _vadd
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
23336 nUF(vsubq
, _vsub
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
23337 /* vtst takes sizes 8, 16, 32. */
23338 NUF(vtst
, 0000810, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_tst
),
23339 NUF(vtstq
, 0000810, 3, (RNQ
, oRNQ
, RNQ
), neon_tst
),
23340 /* VMUL takes I8 I16 I32 F32 P8. */
23341 nUF(vmulq
, _vmul
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mul
),
23342 /* VQD{R}MULH takes S16 S32. */
23343 nUF(vqdmulh
, _vqdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
23344 nUF(vqdmulhq
, _vqdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
23345 nUF(vqrdmulh
, _vqrdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
23346 nUF(vqrdmulhq
, _vqrdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
23347 NUF(vacge
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
23348 NUF(vacgeq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
23349 NUF(vacgt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
23350 NUF(vacgtq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
23351 NUF(vaclt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
23352 NUF(vacltq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
23353 NUF(vacle
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
23354 NUF(vacleq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
23355 NUF(vrecps
, 0000f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
23356 NUF(vrecpsq
, 0000f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
23357 NUF(vrsqrts
, 0200f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
23358 NUF(vrsqrtsq
, 0200f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
23359 /* ARM v8.1 extension. */
23360 nUF (vqrdmlah
, _vqrdmlah
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qrdmlah
),
23361 nUF (vqrdmlahq
, _vqrdmlah
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qrdmlah
),
23362 nUF (vqrdmlsh
, _vqrdmlsh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qrdmlah
),
23363 nUF (vqrdmlshq
, _vqrdmlsh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qrdmlah
),
23365 /* Two address, int/float. Types S8 S16 S32 F32. */
23366 NUF(vabsq
, 1b10300
, 2, (RNQ
, RNQ
), neon_abs_neg
),
23367 NUF(vnegq
, 1b10380
, 2, (RNQ
, RNQ
), neon_abs_neg
),
23369 /* Data processing with two registers and a shift amount. */
23370 /* Right shifts, and variants with rounding.
23371 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23372 NUF(vshr
, 0800010, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
23373 NUF(vshrq
, 0800010, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
23374 NUF(vrshr
, 0800210, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
23375 NUF(vrshrq
, 0800210, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
23376 NUF(vsra
, 0800110, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
23377 NUF(vsraq
, 0800110, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
23378 NUF(vrsra
, 0800310, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
23379 NUF(vrsraq
, 0800310, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
23380 /* Shift and insert. Sizes accepted 8 16 32 64. */
23381 NUF(vsli
, 1800510, 3, (RNDQ
, oRNDQ
, I63
), neon_sli
),
23382 NUF(vsliq
, 1800510, 3, (RNQ
, oRNQ
, I63
), neon_sli
),
23383 NUF(vsri
, 1800410, 3, (RNDQ
, oRNDQ
, I64
), neon_sri
),
23384 NUF(vsriq
, 1800410, 3, (RNQ
, oRNQ
, I64
), neon_sri
),
23385 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23386 NUF(vqshlu
, 1800610, 3, (RNDQ
, oRNDQ
, I63
), neon_qshlu_imm
),
23387 NUF(vqshluq
, 1800610, 3, (RNQ
, oRNQ
, I63
), neon_qshlu_imm
),
23388 /* Right shift immediate, saturating & narrowing, with rounding variants.
23389 Types accepted S16 S32 S64 U16 U32 U64. */
23390 NUF(vqshrn
, 0800910, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
23391 NUF(vqrshrn
, 0800950, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
23392 /* As above, unsigned. Types accepted S16 S32 S64. */
23393 NUF(vqshrun
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
23394 NUF(vqrshrun
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
23395 /* Right shift narrowing. Types accepted I16 I32 I64. */
23396 NUF(vshrn
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
23397 NUF(vrshrn
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
23398 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
23399 nUF(vshll
, _vshll
, 3, (RNQ
, RND
, I32
), neon_shll
),
23400 /* CVT with optional immediate for fixed-point variant. */
23401 nUF(vcvtq
, _vcvt
, 3, (RNQ
, RNQ
, oI32b
), neon_cvt
),
23403 nUF(vmvn
, _vmvn
, 2, (RNDQ
, RNDQ_Ibig
), neon_mvn
),
23404 nUF(vmvnq
, _vmvn
, 2, (RNQ
, RNDQ_Ibig
), neon_mvn
),
23406 /* Data processing, three registers of different lengths. */
23407 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23408 NUF(vabal
, 0800500, 3, (RNQ
, RND
, RND
), neon_abal
),
23409 /* If not scalar, fall back to neon_dyadic_long.
23410 Vector types as above, scalar types S16 S32 U16 U32. */
23411 nUF(vmlal
, _vmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
23412 nUF(vmlsl
, _vmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
23413 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23414 NUF(vaddw
, 0800100, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
23415 NUF(vsubw
, 0800300, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
23416 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23417 NUF(vaddhn
, 0800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
23418 NUF(vraddhn
, 1800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
23419 NUF(vsubhn
, 0800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
23420 NUF(vrsubhn
, 1800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
23421 /* Saturating doubling multiplies. Types S16 S32. */
23422 nUF(vqdmlal
, _vqdmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
23423 nUF(vqdmlsl
, _vqdmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
23424 nUF(vqdmull
, _vqdmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
23425 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23426 S16 S32 U16 U32. */
23427 nUF(vmull
, _vmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_vmull
),
23429 /* Extract. Size 8. */
23430 NUF(vext
, 0b00000, 4, (RNDQ
, oRNDQ
, RNDQ
, I15
), neon_ext
),
23431 NUF(vextq
, 0b00000, 4, (RNQ
, oRNQ
, RNQ
, I15
), neon_ext
),
23433 /* Two registers, miscellaneous. */
23434 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23435 NUF(vrev64
, 1b00000
, 2, (RNDQ
, RNDQ
), neon_rev
),
23436 NUF(vrev64q
, 1b00000
, 2, (RNQ
, RNQ
), neon_rev
),
23437 NUF(vrev32
, 1b00080
, 2, (RNDQ
, RNDQ
), neon_rev
),
23438 NUF(vrev32q
, 1b00080
, 2, (RNQ
, RNQ
), neon_rev
),
23439 NUF(vrev16
, 1b00100
, 2, (RNDQ
, RNDQ
), neon_rev
),
23440 NUF(vrev16q
, 1b00100
, 2, (RNQ
, RNQ
), neon_rev
),
23441 /* Vector replicate. Sizes 8 16 32. */
23442 nCE(vdup
, _vdup
, 2, (RNDQ
, RR_RNSC
), neon_dup
),
23443 nCE(vdupq
, _vdup
, 2, (RNQ
, RR_RNSC
), neon_dup
),
23444 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23445 NUF(vmovl
, 0800a10
, 2, (RNQ
, RND
), neon_movl
),
23446 /* VMOVN. Types I16 I32 I64. */
23447 nUF(vmovn
, _vmovn
, 2, (RND
, RNQ
), neon_movn
),
23448 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
23449 nUF(vqmovn
, _vqmovn
, 2, (RND
, RNQ
), neon_qmovn
),
23450 /* VQMOVUN. Types S16 S32 S64. */
23451 nUF(vqmovun
, _vqmovun
, 2, (RND
, RNQ
), neon_qmovun
),
23452 /* VZIP / VUZP. Sizes 8 16 32. */
23453 NUF(vzip
, 1b20180
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
23454 NUF(vzipq
, 1b20180
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
23455 NUF(vuzp
, 1b20100
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
23456 NUF(vuzpq
, 1b20100
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
23457 /* VQABS / VQNEG. Types S8 S16 S32. */
23458 NUF(vqabs
, 1b00700
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
23459 NUF(vqabsq
, 1b00700
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
23460 NUF(vqneg
, 1b00780
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
23461 NUF(vqnegq
, 1b00780
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
23462 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23463 NUF(vpadal
, 1b00600
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
23464 NUF(vpadalq
, 1b00600
, 2, (RNQ
, RNQ
), neon_pair_long
),
23465 NUF(vpaddl
, 1b00200
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
23466 NUF(vpaddlq
, 1b00200
, 2, (RNQ
, RNQ
), neon_pair_long
),
23467 /* Reciprocal estimates. Types U32 F16 F32. */
23468 NUF(vrecpe
, 1b30400
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
23469 NUF(vrecpeq
, 1b30400
, 2, (RNQ
, RNQ
), neon_recip_est
),
23470 NUF(vrsqrte
, 1b30480
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
23471 NUF(vrsqrteq
, 1b30480
, 2, (RNQ
, RNQ
), neon_recip_est
),
23472 /* VCLS. Types S8 S16 S32. */
23473 NUF(vcls
, 1b00400
, 2, (RNDQ
, RNDQ
), neon_cls
),
23474 NUF(vclsq
, 1b00400
, 2, (RNQ
, RNQ
), neon_cls
),
23475 /* VCLZ. Types I8 I16 I32. */
23476 NUF(vclz
, 1b00480
, 2, (RNDQ
, RNDQ
), neon_clz
),
23477 NUF(vclzq
, 1b00480
, 2, (RNQ
, RNQ
), neon_clz
),
23478 /* VCNT. Size 8. */
23479 NUF(vcnt
, 1b00500
, 2, (RNDQ
, RNDQ
), neon_cnt
),
23480 NUF(vcntq
, 1b00500
, 2, (RNQ
, RNQ
), neon_cnt
),
23481 /* Two address, untyped. */
23482 NUF(vswp
, 1b20000
, 2, (RNDQ
, RNDQ
), neon_swp
),
23483 NUF(vswpq
, 1b20000
, 2, (RNQ
, RNQ
), neon_swp
),
23484 /* VTRN. Sizes 8 16 32. */
23485 nUF(vtrn
, _vtrn
, 2, (RNDQ
, RNDQ
), neon_trn
),
23486 nUF(vtrnq
, _vtrn
, 2, (RNQ
, RNQ
), neon_trn
),
23488 /* Table lookup. Size 8. */
23489 NUF(vtbl
, 1b00800
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
23490 NUF(vtbx
, 1b00840
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
23492 #undef THUMB_VARIANT
23493 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23495 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23497 /* Neon element/structure load/store. */
23498 nUF(vld1
, _vld1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23499 nUF(vst1
, _vst1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23500 nUF(vld2
, _vld2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23501 nUF(vst2
, _vst2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23502 nUF(vld3
, _vld3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23503 nUF(vst3
, _vst3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23504 nUF(vld4
, _vld4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23505 nUF(vst4
, _vst4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23507 #undef THUMB_VARIANT
23508 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
23510 #define ARM_VARIANT & fpu_vfp_ext_v3xd
23511 cCE("fconsts", eb00a00
, 2, (RVS
, I255
), vfp_sp_const
),
23512 cCE("fshtos", eba0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
23513 cCE("fsltos", eba0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
23514 cCE("fuhtos", ebb0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
23515 cCE("fultos", ebb0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
23516 cCE("ftoshs", ebe0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
23517 cCE("ftosls", ebe0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
23518 cCE("ftouhs", ebf0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
23519 cCE("ftouls", ebf0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
23521 #undef THUMB_VARIANT
23522 #define THUMB_VARIANT & fpu_vfp_ext_v3
23524 #define ARM_VARIANT & fpu_vfp_ext_v3
23526 cCE("fconstd", eb00b00
, 2, (RVD
, I255
), vfp_dp_const
),
23527 cCE("fshtod", eba0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
23528 cCE("fsltod", eba0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
23529 cCE("fuhtod", ebb0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
23530 cCE("fultod", ebb0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
23531 cCE("ftoshd", ebe0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
23532 cCE("ftosld", ebe0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
23533 cCE("ftouhd", ebf0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
23534 cCE("ftould", ebf0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
23537 #define ARM_VARIANT & fpu_vfp_ext_fma
23538 #undef THUMB_VARIANT
23539 #define THUMB_VARIANT & fpu_vfp_ext_fma
23540 /* Mnemonics shared by Neon and VFP. These are included in the
23541 VFP FMA variant; NEON and VFP FMA always includes the NEON
23542 FMA instructions. */
23543 nCEF(vfma
, _vfma
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_fmac
),
23544 nCEF(vfms
, _vfms
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_fmac
),
23545 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23546 the v form should always be used. */
23547 cCE("ffmas", ea00a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23548 cCE("ffnmas", ea00a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23549 cCE("ffmad", ea00b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23550 cCE("ffnmad", ea00b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23551 nCE(vfnma
, _vfnma
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
23552 nCE(vfnms
, _vfnms
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
23554 #undef THUMB_VARIANT
23556 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23558 cCE("mia", e200010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23559 cCE("miaph", e280010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23560 cCE("miabb", e2c0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23561 cCE("miabt", e2d0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23562 cCE("miatb", e2e0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23563 cCE("miatt", e2f0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23564 cCE("mar", c400000
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mar
),
23565 cCE("mra", c500000
, 3, (RRnpc
, RRnpc
, RXA
), xsc_mra
),
23568 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23570 cCE("tandcb", e13f130
, 1, (RR
), iwmmxt_tandorc
),
23571 cCE("tandch", e53f130
, 1, (RR
), iwmmxt_tandorc
),
23572 cCE("tandcw", e93f130
, 1, (RR
), iwmmxt_tandorc
),
23573 cCE("tbcstb", e400010
, 2, (RIWR
, RR
), rn_rd
),
23574 cCE("tbcsth", e400050
, 2, (RIWR
, RR
), rn_rd
),
23575 cCE("tbcstw", e400090
, 2, (RIWR
, RR
), rn_rd
),
23576 cCE("textrcb", e130170
, 2, (RR
, I7
), iwmmxt_textrc
),
23577 cCE("textrch", e530170
, 2, (RR
, I7
), iwmmxt_textrc
),
23578 cCE("textrcw", e930170
, 2, (RR
, I7
), iwmmxt_textrc
),
23579 cCE("textrmub",e100070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23580 cCE("textrmuh",e500070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23581 cCE("textrmuw",e900070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23582 cCE("textrmsb",e100078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23583 cCE("textrmsh",e500078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23584 cCE("textrmsw",e900078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23585 cCE("tinsrb", e600010
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
23586 cCE("tinsrh", e600050
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
23587 cCE("tinsrw", e600090
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
23588 cCE("tmcr", e000110
, 2, (RIWC_RIWG
, RR
), rn_rd
),
23589 cCE("tmcrr", c400000
, 3, (RIWR
, RR
, RR
), rm_rd_rn
),
23590 cCE("tmia", e200010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23591 cCE("tmiaph", e280010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23592 cCE("tmiabb", e2c0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23593 cCE("tmiabt", e2d0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23594 cCE("tmiatb", e2e0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23595 cCE("tmiatt", e2f0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23596 cCE("tmovmskb",e100030
, 2, (RR
, RIWR
), rd_rn
),
23597 cCE("tmovmskh",e500030
, 2, (RR
, RIWR
), rd_rn
),
23598 cCE("tmovmskw",e900030
, 2, (RR
, RIWR
), rd_rn
),
23599 cCE("tmrc", e100110
, 2, (RR
, RIWC_RIWG
), rd_rn
),
23600 cCE("tmrrc", c500000
, 3, (RR
, RR
, RIWR
), rd_rn_rm
),
23601 cCE("torcb", e13f150
, 1, (RR
), iwmmxt_tandorc
),
23602 cCE("torch", e53f150
, 1, (RR
), iwmmxt_tandorc
),
23603 cCE("torcw", e93f150
, 1, (RR
), iwmmxt_tandorc
),
23604 cCE("waccb", e0001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23605 cCE("wacch", e4001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23606 cCE("waccw", e8001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23607 cCE("waddbss", e300180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23608 cCE("waddb", e000180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23609 cCE("waddbus", e100180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23610 cCE("waddhss", e700180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23611 cCE("waddh", e400180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23612 cCE("waddhus", e500180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23613 cCE("waddwss", eb00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23614 cCE("waddw", e800180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23615 cCE("waddwus", e900180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23616 cCE("waligni", e000020
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_waligni
),
23617 cCE("walignr0",e800020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23618 cCE("walignr1",e900020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23619 cCE("walignr2",ea00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23620 cCE("walignr3",eb00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23621 cCE("wand", e200000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23622 cCE("wandn", e300000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23623 cCE("wavg2b", e800000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23624 cCE("wavg2br", e900000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23625 cCE("wavg2h", ec00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23626 cCE("wavg2hr", ed00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23627 cCE("wcmpeqb", e000060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23628 cCE("wcmpeqh", e400060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23629 cCE("wcmpeqw", e800060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23630 cCE("wcmpgtub",e100060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23631 cCE("wcmpgtuh",e500060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23632 cCE("wcmpgtuw",e900060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23633 cCE("wcmpgtsb",e300060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23634 cCE("wcmpgtsh",e700060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23635 cCE("wcmpgtsw",eb00060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23636 cCE("wldrb", c100000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
23637 cCE("wldrh", c500000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
23638 cCE("wldrw", c100100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
23639 cCE("wldrd", c500100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
23640 cCE("wmacs", e600100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23641 cCE("wmacsz", e700100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23642 cCE("wmacu", e400100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23643 cCE("wmacuz", e500100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23644 cCE("wmadds", ea00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23645 cCE("wmaddu", e800100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23646 cCE("wmaxsb", e200160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23647 cCE("wmaxsh", e600160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23648 cCE("wmaxsw", ea00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23649 cCE("wmaxub", e000160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23650 cCE("wmaxuh", e400160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23651 cCE("wmaxuw", e800160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23652 cCE("wminsb", e300160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23653 cCE("wminsh", e700160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23654 cCE("wminsw", eb00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23655 cCE("wminub", e100160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23656 cCE("wminuh", e500160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23657 cCE("wminuw", e900160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23658 cCE("wmov", e000000
, 2, (RIWR
, RIWR
), iwmmxt_wmov
),
23659 cCE("wmulsm", e300100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23660 cCE("wmulsl", e200100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23661 cCE("wmulum", e100100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23662 cCE("wmulul", e000100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23663 cCE("wor", e000000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23664 cCE("wpackhss",e700080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23665 cCE("wpackhus",e500080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23666 cCE("wpackwss",eb00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23667 cCE("wpackwus",e900080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23668 cCE("wpackdss",ef00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23669 cCE("wpackdus",ed00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23670 cCE("wrorh", e700040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23671 cCE("wrorhg", e700148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23672 cCE("wrorw", eb00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23673 cCE("wrorwg", eb00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23674 cCE("wrord", ef00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23675 cCE("wrordg", ef00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23676 cCE("wsadb", e000120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23677 cCE("wsadbz", e100120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23678 cCE("wsadh", e400120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23679 cCE("wsadhz", e500120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23680 cCE("wshufh", e0001e0
, 3, (RIWR
, RIWR
, I255
), iwmmxt_wshufh
),
23681 cCE("wsllh", e500040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23682 cCE("wsllhg", e500148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23683 cCE("wsllw", e900040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23684 cCE("wsllwg", e900148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23685 cCE("wslld", ed00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23686 cCE("wslldg", ed00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23687 cCE("wsrah", e400040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23688 cCE("wsrahg", e400148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23689 cCE("wsraw", e800040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23690 cCE("wsrawg", e800148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23691 cCE("wsrad", ec00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23692 cCE("wsradg", ec00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23693 cCE("wsrlh", e600040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23694 cCE("wsrlhg", e600148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23695 cCE("wsrlw", ea00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23696 cCE("wsrlwg", ea00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23697 cCE("wsrld", ee00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23698 cCE("wsrldg", ee00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23699 cCE("wstrb", c000000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
23700 cCE("wstrh", c400000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
23701 cCE("wstrw", c000100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
23702 cCE("wstrd", c400100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
23703 cCE("wsubbss", e3001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23704 cCE("wsubb", e0001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23705 cCE("wsubbus", e1001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23706 cCE("wsubhss", e7001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23707 cCE("wsubh", e4001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23708 cCE("wsubhus", e5001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23709 cCE("wsubwss", eb001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23710 cCE("wsubw", e8001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23711 cCE("wsubwus", e9001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23712 cCE("wunpckehub",e0000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23713 cCE("wunpckehuh",e4000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23714 cCE("wunpckehuw",e8000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23715 cCE("wunpckehsb",e2000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23716 cCE("wunpckehsh",e6000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23717 cCE("wunpckehsw",ea000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23718 cCE("wunpckihb", e1000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23719 cCE("wunpckihh", e5000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23720 cCE("wunpckihw", e9000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23721 cCE("wunpckelub",e0000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23722 cCE("wunpckeluh",e4000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23723 cCE("wunpckeluw",e8000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23724 cCE("wunpckelsb",e2000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23725 cCE("wunpckelsh",e6000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23726 cCE("wunpckelsw",ea000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23727 cCE("wunpckilb", e1000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23728 cCE("wunpckilh", e5000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23729 cCE("wunpckilw", e9000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23730 cCE("wxor", e100000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23731 cCE("wzero", e300000
, 1, (RIWR
), iwmmxt_wzero
),
23734 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
23736 cCE("torvscb", e12f190
, 1, (RR
), iwmmxt_tandorc
),
23737 cCE("torvsch", e52f190
, 1, (RR
), iwmmxt_tandorc
),
23738 cCE("torvscw", e92f190
, 1, (RR
), iwmmxt_tandorc
),
23739 cCE("wabsb", e2001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23740 cCE("wabsh", e6001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23741 cCE("wabsw", ea001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23742 cCE("wabsdiffb", e1001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23743 cCE("wabsdiffh", e5001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23744 cCE("wabsdiffw", e9001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23745 cCE("waddbhusl", e2001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23746 cCE("waddbhusm", e6001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23747 cCE("waddhc", e600180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23748 cCE("waddwc", ea00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23749 cCE("waddsubhx", ea001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23750 cCE("wavg4", e400000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23751 cCE("wavg4r", e500000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23752 cCE("wmaddsn", ee00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23753 cCE("wmaddsx", eb00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23754 cCE("wmaddun", ec00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23755 cCE("wmaddux", e900100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23756 cCE("wmerge", e000080
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_wmerge
),
23757 cCE("wmiabb", e0000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23758 cCE("wmiabt", e1000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23759 cCE("wmiatb", e2000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23760 cCE("wmiatt", e3000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23761 cCE("wmiabbn", e4000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23762 cCE("wmiabtn", e5000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23763 cCE("wmiatbn", e6000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23764 cCE("wmiattn", e7000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23765 cCE("wmiawbb", e800120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23766 cCE("wmiawbt", e900120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23767 cCE("wmiawtb", ea00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23768 cCE("wmiawtt", eb00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23769 cCE("wmiawbbn", ec00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23770 cCE("wmiawbtn", ed00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23771 cCE("wmiawtbn", ee00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23772 cCE("wmiawttn", ef00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23773 cCE("wmulsmr", ef00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23774 cCE("wmulumr", ed00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23775 cCE("wmulwumr", ec000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23776 cCE("wmulwsmr", ee000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23777 cCE("wmulwum", ed000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23778 cCE("wmulwsm", ef000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23779 cCE("wmulwl", eb000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23780 cCE("wqmiabb", e8000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23781 cCE("wqmiabt", e9000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23782 cCE("wqmiatb", ea000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23783 cCE("wqmiatt", eb000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23784 cCE("wqmiabbn", ec000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23785 cCE("wqmiabtn", ed000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23786 cCE("wqmiatbn", ee000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23787 cCE("wqmiattn", ef000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23788 cCE("wqmulm", e100080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23789 cCE("wqmulmr", e300080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23790 cCE("wqmulwm", ec000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23791 cCE("wqmulwmr", ee000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23792 cCE("wsubaddhx", ed001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23795 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
23797 cCE("cfldrs", c100400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
23798 cCE("cfldrd", c500400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
23799 cCE("cfldr32", c100500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
23800 cCE("cfldr64", c500500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
23801 cCE("cfstrs", c000400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
23802 cCE("cfstrd", c400400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
23803 cCE("cfstr32", c000500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
23804 cCE("cfstr64", c400500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
23805 cCE("cfmvsr", e000450
, 2, (RMF
, RR
), rn_rd
),
23806 cCE("cfmvrs", e100450
, 2, (RR
, RMF
), rd_rn
),
23807 cCE("cfmvdlr", e000410
, 2, (RMD
, RR
), rn_rd
),
23808 cCE("cfmvrdl", e100410
, 2, (RR
, RMD
), rd_rn
),
23809 cCE("cfmvdhr", e000430
, 2, (RMD
, RR
), rn_rd
),
23810 cCE("cfmvrdh", e100430
, 2, (RR
, RMD
), rd_rn
),
23811 cCE("cfmv64lr",e000510
, 2, (RMDX
, RR
), rn_rd
),
23812 cCE("cfmvr64l",e100510
, 2, (RR
, RMDX
), rd_rn
),
23813 cCE("cfmv64hr",e000530
, 2, (RMDX
, RR
), rn_rd
),
23814 cCE("cfmvr64h",e100530
, 2, (RR
, RMDX
), rd_rn
),
23815 cCE("cfmval32",e200440
, 2, (RMAX
, RMFX
), rd_rn
),
23816 cCE("cfmv32al",e100440
, 2, (RMFX
, RMAX
), rd_rn
),
23817 cCE("cfmvam32",e200460
, 2, (RMAX
, RMFX
), rd_rn
),
23818 cCE("cfmv32am",e100460
, 2, (RMFX
, RMAX
), rd_rn
),
23819 cCE("cfmvah32",e200480
, 2, (RMAX
, RMFX
), rd_rn
),
23820 cCE("cfmv32ah",e100480
, 2, (RMFX
, RMAX
), rd_rn
),
23821 cCE("cfmva32", e2004a0
, 2, (RMAX
, RMFX
), rd_rn
),
23822 cCE("cfmv32a", e1004a0
, 2, (RMFX
, RMAX
), rd_rn
),
23823 cCE("cfmva64", e2004c0
, 2, (RMAX
, RMDX
), rd_rn
),
23824 cCE("cfmv64a", e1004c0
, 2, (RMDX
, RMAX
), rd_rn
),
23825 cCE("cfmvsc32",e2004e0
, 2, (RMDS
, RMDX
), mav_dspsc
),
23826 cCE("cfmv32sc",e1004e0
, 2, (RMDX
, RMDS
), rd
),
23827 cCE("cfcpys", e000400
, 2, (RMF
, RMF
), rd_rn
),
23828 cCE("cfcpyd", e000420
, 2, (RMD
, RMD
), rd_rn
),
23829 cCE("cfcvtsd", e000460
, 2, (RMD
, RMF
), rd_rn
),
23830 cCE("cfcvtds", e000440
, 2, (RMF
, RMD
), rd_rn
),
23831 cCE("cfcvt32s",e000480
, 2, (RMF
, RMFX
), rd_rn
),
23832 cCE("cfcvt32d",e0004a0
, 2, (RMD
, RMFX
), rd_rn
),
23833 cCE("cfcvt64s",e0004c0
, 2, (RMF
, RMDX
), rd_rn
),
23834 cCE("cfcvt64d",e0004e0
, 2, (RMD
, RMDX
), rd_rn
),
23835 cCE("cfcvts32",e100580
, 2, (RMFX
, RMF
), rd_rn
),
23836 cCE("cfcvtd32",e1005a0
, 2, (RMFX
, RMD
), rd_rn
),
23837 cCE("cftruncs32",e1005c0
, 2, (RMFX
, RMF
), rd_rn
),
23838 cCE("cftruncd32",e1005e0
, 2, (RMFX
, RMD
), rd_rn
),
23839 cCE("cfrshl32",e000550
, 3, (RMFX
, RMFX
, RR
), mav_triple
),
23840 cCE("cfrshl64",e000570
, 3, (RMDX
, RMDX
, RR
), mav_triple
),
23841 cCE("cfsh32", e000500
, 3, (RMFX
, RMFX
, I63s
), mav_shift
),
23842 cCE("cfsh64", e200500
, 3, (RMDX
, RMDX
, I63s
), mav_shift
),
23843 cCE("cfcmps", e100490
, 3, (RR
, RMF
, RMF
), rd_rn_rm
),
23844 cCE("cfcmpd", e1004b0
, 3, (RR
, RMD
, RMD
), rd_rn_rm
),
23845 cCE("cfcmp32", e100590
, 3, (RR
, RMFX
, RMFX
), rd_rn_rm
),
23846 cCE("cfcmp64", e1005b0
, 3, (RR
, RMDX
, RMDX
), rd_rn_rm
),
23847 cCE("cfabss", e300400
, 2, (RMF
, RMF
), rd_rn
),
23848 cCE("cfabsd", e300420
, 2, (RMD
, RMD
), rd_rn
),
23849 cCE("cfnegs", e300440
, 2, (RMF
, RMF
), rd_rn
),
23850 cCE("cfnegd", e300460
, 2, (RMD
, RMD
), rd_rn
),
23851 cCE("cfadds", e300480
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
23852 cCE("cfaddd", e3004a0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
23853 cCE("cfsubs", e3004c0
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
23854 cCE("cfsubd", e3004e0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
23855 cCE("cfmuls", e100400
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
23856 cCE("cfmuld", e100420
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
23857 cCE("cfabs32", e300500
, 2, (RMFX
, RMFX
), rd_rn
),
23858 cCE("cfabs64", e300520
, 2, (RMDX
, RMDX
), rd_rn
),
23859 cCE("cfneg32", e300540
, 2, (RMFX
, RMFX
), rd_rn
),
23860 cCE("cfneg64", e300560
, 2, (RMDX
, RMDX
), rd_rn
),
23861 cCE("cfadd32", e300580
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
23862 cCE("cfadd64", e3005a0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
23863 cCE("cfsub32", e3005c0
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
23864 cCE("cfsub64", e3005e0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
23865 cCE("cfmul32", e100500
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
23866 cCE("cfmul64", e100520
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
23867 cCE("cfmac32", e100540
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
23868 cCE("cfmsc32", e100560
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
23869 cCE("cfmadd32",e000600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
23870 cCE("cfmsub32",e100600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
23871 cCE("cfmadda32", e200600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
23872 cCE("cfmsuba32", e300600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
23874 /* ARMv8.5-A instructions. */
23876 #define ARM_VARIANT & arm_ext_sb
23877 #undef THUMB_VARIANT
23878 #define THUMB_VARIANT & arm_ext_sb
23879 TUF("sb", 57ff070
, f3bf8f70
, 0, (), noargs
, noargs
),
23882 #define ARM_VARIANT & arm_ext_predres
23883 #undef THUMB_VARIANT
23884 #define THUMB_VARIANT & arm_ext_predres
23885 CE("cfprctx", e070f93
, 1, (RRnpc
), rd
),
23886 CE("dvprctx", e070fb3
, 1, (RRnpc
), rd
),
23887 CE("cpprctx", e070ff3
, 1, (RRnpc
), rd
),
23889 /* ARMv8-M instructions. */
23891 #define ARM_VARIANT NULL
23892 #undef THUMB_VARIANT
23893 #define THUMB_VARIANT & arm_ext_v8m
23894 ToU("sg", e97fe97f
, 0, (), noargs
),
23895 ToC("blxns", 4784, 1, (RRnpc
), t_blx
),
23896 ToC("bxns", 4704, 1, (RRnpc
), t_bx
),
23897 ToC("tt", e840f000
, 2, (RRnpc
, RRnpc
), tt
),
23898 ToC("ttt", e840f040
, 2, (RRnpc
, RRnpc
), tt
),
23899 ToC("tta", e840f080
, 2, (RRnpc
, RRnpc
), tt
),
23900 ToC("ttat", e840f0c0
, 2, (RRnpc
, RRnpc
), tt
),
23902 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
23903 instructions behave as nop if no VFP is present. */
23904 #undef THUMB_VARIANT
23905 #define THUMB_VARIANT & arm_ext_v8m_main
23906 ToC("vlldm", ec300a00
, 1, (RRnpc
), rn
),
23907 ToC("vlstm", ec200a00
, 1, (RRnpc
), rn
),
23909 /* Armv8.1-M Mainline instructions. */
23910 #undef THUMB_VARIANT
23911 #define THUMB_VARIANT & arm_ext_v8_1m_main
23912 toC("bf", _bf
, 2, (EXPs
, EXPs
), t_branch_future
),
23913 toU("bfcsel", _bfcsel
, 4, (EXPs
, EXPs
, EXPs
, COND
), t_branch_future
),
23914 toC("bfx", _bfx
, 2, (EXPs
, RRnpcsp
), t_branch_future
),
23915 toC("bfl", _bfl
, 2, (EXPs
, EXPs
), t_branch_future
),
23916 toC("bflx", _bflx
, 2, (EXPs
, RRnpcsp
), t_branch_future
),
23918 toU("dls", _dls
, 2, (LR
, RRnpcsp
), t_loloop
),
23919 toU("wls", _wls
, 3, (LR
, RRnpcsp
, EXP
), t_loloop
),
23920 toU("le", _le
, 2, (oLR
, EXP
), t_loloop
),
23922 ToC("clrm", e89f0000
, 1, (CLRMLST
), t_clrm
),
23923 ToC("vscclrm", ec9f0a00
, 1, (VRSDVLST
), t_vscclrm
),
23925 #undef THUMB_VARIANT
23926 #define THUMB_VARIANT & mve_ext
23928 ToC("vpt", ee410f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23929 ToC("vptt", ee018f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23930 ToC("vpte", ee418f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23931 ToC("vpttt", ee014f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23932 ToC("vptte", ee01cf00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23933 ToC("vptet", ee41cf00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23934 ToC("vptee", ee414f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23935 ToC("vptttt", ee012f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23936 ToC("vpttte", ee016f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23937 ToC("vpttet", ee01ef00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23938 ToC("vpttee", ee01af00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23939 ToC("vptett", ee41af00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23940 ToC("vptete", ee41ef00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23941 ToC("vpteet", ee416f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23942 ToC("vpteee", ee412f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
23944 ToC("vpst", fe710f4d
, 0, (), mve_vpt
),
23945 ToC("vpstt", fe318f4d
, 0, (), mve_vpt
),
23946 ToC("vpste", fe718f4d
, 0, (), mve_vpt
),
23947 ToC("vpsttt", fe314f4d
, 0, (), mve_vpt
),
23948 ToC("vpstte", fe31cf4d
, 0, (), mve_vpt
),
23949 ToC("vpstet", fe71cf4d
, 0, (), mve_vpt
),
23950 ToC("vpstee", fe714f4d
, 0, (), mve_vpt
),
23951 ToC("vpstttt", fe312f4d
, 0, (), mve_vpt
),
23952 ToC("vpsttte", fe316f4d
, 0, (), mve_vpt
),
23953 ToC("vpsttet", fe31ef4d
, 0, (), mve_vpt
),
23954 ToC("vpsttee", fe31af4d
, 0, (), mve_vpt
),
23955 ToC("vpstett", fe71af4d
, 0, (), mve_vpt
),
23956 ToC("vpstete", fe71ef4d
, 0, (), mve_vpt
),
23957 ToC("vpsteet", fe716f4d
, 0, (), mve_vpt
),
23958 ToC("vpsteee", fe712f4d
, 0, (), mve_vpt
),
23960 /* MVE and MVE FP only. */
23961 mCEF(vadc
, _vadc
, 3, (RMQ
, RMQ
, RMQ
), mve_vadc
),
23962 mCEF(vadci
, _vadci
, 3, (RMQ
, RMQ
, RMQ
), mve_vadc
),
23963 mToC("vsbc", fe300f00
, 3, (RMQ
, RMQ
, RMQ
), mve_vsbc
),
23964 mToC("vsbci", fe301f00
, 3, (RMQ
, RMQ
, RMQ
), mve_vsbc
),
23965 mCEF(vmullb
, _vmullb
, 3, (RMQ
, RMQ
, RMQ
), mve_vmull
),
23966 mCEF(vabav
, _vabav
, 3, (RRnpcsp
, RMQ
, RMQ
), mve_vabav
),
23967 mCEF(vmladav
, _vmladav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
23968 mCEF(vmladava
, _vmladava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
23969 mCEF(vmladavx
, _vmladavx
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
23970 mCEF(vmladavax
, _vmladavax
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
23971 mCEF(vmlav
, _vmladav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
23972 mCEF(vmlava
, _vmladava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
23973 mCEF(vmlsdav
, _vmlsdav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
23974 mCEF(vmlsdava
, _vmlsdava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
23975 mCEF(vmlsdavx
, _vmlsdavx
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
23976 mCEF(vmlsdavax
, _vmlsdavax
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
23978 mCEF(vst20
, _vst20
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
23979 mCEF(vst21
, _vst21
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
23980 mCEF(vst40
, _vst40
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
23981 mCEF(vst41
, _vst41
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
23982 mCEF(vst42
, _vst42
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
23983 mCEF(vst43
, _vst43
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
23984 mCEF(vld20
, _vld20
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
23985 mCEF(vld21
, _vld21
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
23986 mCEF(vld40
, _vld40
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
23987 mCEF(vld41
, _vld41
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
23988 mCEF(vld42
, _vld42
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
23989 mCEF(vld43
, _vld43
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
23990 mCEF(vstrb
, _vstrb
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
23991 mCEF(vstrh
, _vstrh
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
23992 mCEF(vstrw
, _vstrw
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
23993 mCEF(vstrd
, _vstrd
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
23994 mCEF(vldrb
, _vldrb
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
23995 mCEF(vldrh
, _vldrh
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
23996 mCEF(vldrw
, _vldrw
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
23997 mCEF(vldrd
, _vldrd
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
23999 mCEF(vmovnt
, _vmovnt
, 2, (RMQ
, RMQ
), mve_movn
),
24000 mCEF(vmovnb
, _vmovnb
, 2, (RMQ
, RMQ
), mve_movn
),
24001 mCEF(vbrsr
, _vbrsr
, 3, (RMQ
, RMQ
, RR
), mve_vbrsr
),
24004 #define ARM_VARIANT & fpu_vfp_ext_v1
24005 #undef THUMB_VARIANT
24006 #define THUMB_VARIANT & arm_ext_v6t2
24008 mcCE(fcpyd
, eb00b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24011 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24013 MNCE(vmov
, 0, 1, (VMOV
), neon_mov
),
24014 mcCE(fmrs
, e100a10
, 2, (RR
, RVS
), vfp_reg_from_sp
),
24015 mcCE(fmsr
, e000a10
, 2, (RVS
, RR
), vfp_sp_from_reg
),
24016 mcCE(fcpys
, eb00a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
24018 mCEF(vmullt
, _vmullt
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ
), mve_vmull
),
24019 mnCEF(vadd
, _vadd
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_addsub_if_i
),
24020 mnCEF(vsub
, _vsub
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_addsub_if_i
),
24022 MNCEF(vabs
, 1b10300
, 2, (RNSDQMQ
, RNSDQMQ
), neon_abs_neg
),
24023 MNCEF(vneg
, 1b10380
, 2, (RNSDQMQ
, RNSDQMQ
), neon_abs_neg
),
24025 mCEF(vmovlt
, _vmovlt
, 1, (VMOV
), mve_movl
),
24026 mCEF(vmovlb
, _vmovlb
, 1, (VMOV
), mve_movl
),
24028 mnCE(vcmp
, _vcmp
, 3, (RVSD_COND
, RSVDMQ_FI0
, oRMQRZ
), vfp_nsyn_cmp
),
24029 mnCE(vcmpe
, _vcmpe
, 3, (RVSD_COND
, RSVDMQ_FI0
, oRMQRZ
), vfp_nsyn_cmp
),
24032 #define ARM_VARIANT & fpu_vfp_ext_v2
24034 mcCE(fmsrr
, c400a10
, 3, (VRSLST
, RR
, RR
), vfp_sp2_from_reg2
),
24035 mcCE(fmrrs
, c500a10
, 3, (RR
, RR
, VRSLST
), vfp_reg2_from_sp2
),
24036 mcCE(fmdrr
, c400b10
, 3, (RVD
, RR
, RR
), vfp_dp_rm_rd_rn
),
24037 mcCE(fmrrd
, c500b10
, 3, (RR
, RR
, RVD
), vfp_dp_rd_rn_rm
),
24040 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24041 mnUF(vcvta
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvta
),
24042 mnUF(vcvtp
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvtp
),
24043 mnUF(vcvtn
, _vcvta
, 3, (RNSDQMQ
, oRNSDQMQ
, oI32z
), neon_cvtn
),
24044 mnUF(vcvtm
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvtm
),
24047 #define ARM_VARIANT & fpu_neon_ext_v1
24048 mnUF(vabd
, _vabd
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
24049 mnUF(vabdl
, _vabdl
, 3, (RNQMQ
, RNDMQ
, RNDMQ
), neon_dyadic_long
),
24050 mnUF(vaddl
, _vaddl
, 3, (RNQMQ
, RNDMQ
, RNDMQR
), neon_dyadic_long
),
24051 mnUF(vsubl
, _vsubl
, 3, (RNQMQ
, RNDMQ
, RNDMQR
), neon_dyadic_long
),
24054 #undef THUMB_VARIANT
24086 /* MD interface: bits in the object file. */
24088 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24089 for use in the a.out file, and stores them in the array pointed to by buf.
24090 This knows about the endian-ness of the target machine and does
24091 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24092 2 (short) and 4 (long) Floating numbers are put out as a series of
24093 LITTLENUMS (shorts, here at least). */
24096 md_number_to_chars (char * buf
, valueT val
, int n
)
24098 if (target_big_endian
)
24099 number_to_chars_bigendian (buf
, val
, n
);
24101 number_to_chars_littleendian (buf
, val
, n
);
24105 md_chars_to_number (char * buf
, int n
)
24108 unsigned char * where
= (unsigned char *) buf
;
24110 if (target_big_endian
)
24115 result
|= (*where
++ & 255);
24123 result
|= (where
[n
] & 255);
24130 /* MD interface: Sections. */
24132 /* Calculate the maximum variable size (i.e., excluding fr_fix)
24133 that an rs_machine_dependent frag may reach. */
24136 arm_frag_max_var (fragS
*fragp
)
24138 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24139 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24141 Note that we generate relaxable instructions even for cases that don't
24142 really need it, like an immediate that's a trivial constant. So we're
24143 overestimating the instruction size for some of those cases. Rather
24144 than putting more intelligence here, it would probably be better to
24145 avoid generating a relaxation frag in the first place when it can be
24146 determined up front that a short instruction will suffice. */
24148 gas_assert (fragp
->fr_type
== rs_machine_dependent
);
24152 /* Estimate the size of a frag before relaxing. Assume everything fits in
24156 md_estimate_size_before_relax (fragS
* fragp
,
24157 segT segtype ATTRIBUTE_UNUSED
)
24163 /* Convert a machine dependent frag. */
24166 md_convert_frag (bfd
*abfd
, segT asec ATTRIBUTE_UNUSED
, fragS
*fragp
)
24168 unsigned long insn
;
24169 unsigned long old_op
;
24177 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
24179 old_op
= bfd_get_16(abfd
, buf
);
24180 if (fragp
->fr_symbol
)
24182 exp
.X_op
= O_symbol
;
24183 exp
.X_add_symbol
= fragp
->fr_symbol
;
24187 exp
.X_op
= O_constant
;
24189 exp
.X_add_number
= fragp
->fr_offset
;
24190 opcode
= fragp
->fr_subtype
;
24193 case T_MNEM_ldr_pc
:
24194 case T_MNEM_ldr_pc2
:
24195 case T_MNEM_ldr_sp
:
24196 case T_MNEM_str_sp
:
24203 if (fragp
->fr_var
== 4)
24205 insn
= THUMB_OP32 (opcode
);
24206 if ((old_op
>> 12) == 4 || (old_op
>> 12) == 9)
24208 insn
|= (old_op
& 0x700) << 4;
24212 insn
|= (old_op
& 7) << 12;
24213 insn
|= (old_op
& 0x38) << 13;
24215 insn
|= 0x00000c00;
24216 put_thumb32_insn (buf
, insn
);
24217 reloc_type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
24221 reloc_type
= BFD_RELOC_ARM_THUMB_OFFSET
;
24223 pc_rel
= (opcode
== T_MNEM_ldr_pc2
);
24226 if (fragp
->fr_var
== 4)
24228 insn
= THUMB_OP32 (opcode
);
24229 insn
|= (old_op
& 0xf0) << 4;
24230 put_thumb32_insn (buf
, insn
);
24231 reloc_type
= BFD_RELOC_ARM_T32_ADD_PC12
;
24235 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
24236 exp
.X_add_number
-= 4;
24244 if (fragp
->fr_var
== 4)
24246 int r0off
= (opcode
== T_MNEM_mov
24247 || opcode
== T_MNEM_movs
) ? 0 : 8;
24248 insn
= THUMB_OP32 (opcode
);
24249 insn
= (insn
& 0xe1ffffff) | 0x10000000;
24250 insn
|= (old_op
& 0x700) << r0off
;
24251 put_thumb32_insn (buf
, insn
);
24252 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
24256 reloc_type
= BFD_RELOC_ARM_THUMB_IMM
;
24261 if (fragp
->fr_var
== 4)
24263 insn
= THUMB_OP32(opcode
);
24264 put_thumb32_insn (buf
, insn
);
24265 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
24268 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
24272 if (fragp
->fr_var
== 4)
24274 insn
= THUMB_OP32(opcode
);
24275 insn
|= (old_op
& 0xf00) << 14;
24276 put_thumb32_insn (buf
, insn
);
24277 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
24280 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
24283 case T_MNEM_add_sp
:
24284 case T_MNEM_add_pc
:
24285 case T_MNEM_inc_sp
:
24286 case T_MNEM_dec_sp
:
24287 if (fragp
->fr_var
== 4)
24289 /* ??? Choose between add and addw. */
24290 insn
= THUMB_OP32 (opcode
);
24291 insn
|= (old_op
& 0xf0) << 4;
24292 put_thumb32_insn (buf
, insn
);
24293 if (opcode
== T_MNEM_add_pc
)
24294 reloc_type
= BFD_RELOC_ARM_T32_IMM12
;
24296 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
24299 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
24307 if (fragp
->fr_var
== 4)
24309 insn
= THUMB_OP32 (opcode
);
24310 insn
|= (old_op
& 0xf0) << 4;
24311 insn
|= (old_op
& 0xf) << 16;
24312 put_thumb32_insn (buf
, insn
);
24313 if (insn
& (1 << 20))
24314 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
24316 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
24319 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
24325 fixp
= fix_new_exp (fragp
, fragp
->fr_fix
, fragp
->fr_var
, &exp
, pc_rel
,
24326 (enum bfd_reloc_code_real
) reloc_type
);
24327 fixp
->fx_file
= fragp
->fr_file
;
24328 fixp
->fx_line
= fragp
->fr_line
;
24329 fragp
->fr_fix
+= fragp
->fr_var
;
24331 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24332 if (thumb_mode
&& fragp
->fr_var
== 4 && no_cpu_selected ()
24333 && !ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_t2
))
24334 ARM_MERGE_FEATURE_SETS (arm_arch_used
, thumb_arch_used
, arm_ext_v6t2
);
24337 /* Return the size of a relaxable immediate operand instruction.
24338 SHIFT and SIZE specify the form of the allowable immediate. */
24340 relax_immediate (fragS
*fragp
, int size
, int shift
)
24346 /* ??? Should be able to do better than this. */
24347 if (fragp
->fr_symbol
)
24350 low
= (1 << shift
) - 1;
24351 mask
= (1 << (shift
+ size
)) - (1 << shift
);
24352 offset
= fragp
->fr_offset
;
24353 /* Force misaligned offsets to 32-bit variant. */
24356 if (offset
& ~mask
)
24361 /* Get the address of a symbol during relaxation. */
24363 relaxed_symbol_addr (fragS
*fragp
, long stretch
)
24369 sym
= fragp
->fr_symbol
;
24370 sym_frag
= symbol_get_frag (sym
);
24371 know (S_GET_SEGMENT (sym
) != absolute_section
24372 || sym_frag
== &zero_address_frag
);
24373 addr
= S_GET_VALUE (sym
) + fragp
->fr_offset
;
24375 /* If frag has yet to be reached on this pass, assume it will
24376 move by STRETCH just as we did. If this is not so, it will
24377 be because some frag between grows, and that will force
24381 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
24385 /* Adjust stretch for any alignment frag. Note that if have
24386 been expanding the earlier code, the symbol may be
24387 defined in what appears to be an earlier frag. FIXME:
24388 This doesn't handle the fr_subtype field, which specifies
24389 a maximum number of bytes to skip when doing an
24391 for (f
= fragp
; f
!= NULL
&& f
!= sym_frag
; f
= f
->fr_next
)
24393 if (f
->fr_type
== rs_align
|| f
->fr_type
== rs_align_code
)
24396 stretch
= - ((- stretch
)
24397 & ~ ((1 << (int) f
->fr_offset
) - 1));
24399 stretch
&= ~ ((1 << (int) f
->fr_offset
) - 1);
24411 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
24414 relax_adr (fragS
*fragp
, asection
*sec
, long stretch
)
24419 /* Assume worst case for symbols not known to be in the same section. */
24420 if (fragp
->fr_symbol
== NULL
24421 || !S_IS_DEFINED (fragp
->fr_symbol
)
24422 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
24423 || S_IS_WEAK (fragp
->fr_symbol
))
24426 val
= relaxed_symbol_addr (fragp
, stretch
);
24427 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
24428 addr
= (addr
+ 4) & ~3;
24429 /* Force misaligned targets to 32-bit variant. */
24433 if (val
< 0 || val
> 1020)
24438 /* Return the size of a relaxable add/sub immediate instruction. */
24440 relax_addsub (fragS
*fragp
, asection
*sec
)
24445 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
24446 op
= bfd_get_16(sec
->owner
, buf
);
24447 if ((op
& 0xf) == ((op
>> 4) & 0xf))
24448 return relax_immediate (fragp
, 8, 0);
24450 return relax_immediate (fragp
, 3, 0);
24453 /* Return TRUE iff the definition of symbol S could be pre-empted
24454 (overridden) at link or load time. */
24456 symbol_preemptible (symbolS
*s
)
24458 /* Weak symbols can always be pre-empted. */
24462 /* Non-global symbols cannot be pre-empted. */
24463 if (! S_IS_EXTERNAL (s
))
24467 /* In ELF, a global symbol can be marked protected, or private. In that
24468 case it can't be pre-empted (other definitions in the same link unit
24469 would violate the ODR). */
24470 if (ELF_ST_VISIBILITY (S_GET_OTHER (s
)) > STV_DEFAULT
)
24474 /* Other global symbols might be pre-empted. */
24478 /* Return the size of a relaxable branch instruction. BITS is the
24479 size of the offset field in the narrow instruction. */
24482 relax_branch (fragS
*fragp
, asection
*sec
, int bits
, long stretch
)
24488 /* Assume worst case for symbols not known to be in the same section. */
24489 if (!S_IS_DEFINED (fragp
->fr_symbol
)
24490 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
24491 || S_IS_WEAK (fragp
->fr_symbol
))
24495 /* A branch to a function in ARM state will require interworking. */
24496 if (S_IS_DEFINED (fragp
->fr_symbol
)
24497 && ARM_IS_FUNC (fragp
->fr_symbol
))
24501 if (symbol_preemptible (fragp
->fr_symbol
))
24504 val
= relaxed_symbol_addr (fragp
, stretch
);
24505 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
24508 /* Offset is a signed value *2 */
24510 if (val
>= limit
|| val
< -limit
)
24516 /* Relax a machine dependent frag. This returns the amount by which
24517 the current size of the frag should change. */
24520 arm_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
24525 oldsize
= fragp
->fr_var
;
24526 switch (fragp
->fr_subtype
)
24528 case T_MNEM_ldr_pc2
:
24529 newsize
= relax_adr (fragp
, sec
, stretch
);
24531 case T_MNEM_ldr_pc
:
24532 case T_MNEM_ldr_sp
:
24533 case T_MNEM_str_sp
:
24534 newsize
= relax_immediate (fragp
, 8, 2);
24538 newsize
= relax_immediate (fragp
, 5, 2);
24542 newsize
= relax_immediate (fragp
, 5, 1);
24546 newsize
= relax_immediate (fragp
, 5, 0);
24549 newsize
= relax_adr (fragp
, sec
, stretch
);
24555 newsize
= relax_immediate (fragp
, 8, 0);
24558 newsize
= relax_branch (fragp
, sec
, 11, stretch
);
24561 newsize
= relax_branch (fragp
, sec
, 8, stretch
);
24563 case T_MNEM_add_sp
:
24564 case T_MNEM_add_pc
:
24565 newsize
= relax_immediate (fragp
, 8, 2);
24567 case T_MNEM_inc_sp
:
24568 case T_MNEM_dec_sp
:
24569 newsize
= relax_immediate (fragp
, 7, 2);
24575 newsize
= relax_addsub (fragp
, sec
);
24581 fragp
->fr_var
= newsize
;
24582 /* Freeze wide instructions that are at or before the same location as
24583 in the previous pass. This avoids infinite loops.
24584 Don't freeze them unconditionally because targets may be artificially
24585 misaligned by the expansion of preceding frags. */
24586 if (stretch
<= 0 && newsize
> 2)
24588 md_convert_frag (sec
->owner
, sec
, fragp
);
24592 return newsize
- oldsize
;
24595 /* Round up a section size to the appropriate boundary. */
24598 md_section_align (segT segment ATTRIBUTE_UNUSED
,
24604 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24605 of an rs_align_code fragment. */
24608 arm_handle_align (fragS
* fragP
)
24610 static unsigned char const arm_noop
[2][2][4] =
24613 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
24614 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
24617 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
24618 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
24621 static unsigned char const thumb_noop
[2][2][2] =
24624 {0xc0, 0x46}, /* LE */
24625 {0x46, 0xc0}, /* BE */
24628 {0x00, 0xbf}, /* LE */
24629 {0xbf, 0x00} /* BE */
24632 static unsigned char const wide_thumb_noop
[2][4] =
24633 { /* Wide Thumb-2 */
24634 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
24635 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
24638 unsigned bytes
, fix
, noop_size
;
24640 const unsigned char * noop
;
24641 const unsigned char *narrow_noop
= NULL
;
24646 if (fragP
->fr_type
!= rs_align_code
)
24649 bytes
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
24650 p
= fragP
->fr_literal
+ fragP
->fr_fix
;
24653 if (bytes
> MAX_MEM_FOR_RS_ALIGN_CODE
)
24654 bytes
&= MAX_MEM_FOR_RS_ALIGN_CODE
;
24656 gas_assert ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) != 0);
24658 if (fragP
->tc_frag_data
.thumb_mode
& (~ MODE_RECORDED
))
24660 if (ARM_CPU_HAS_FEATURE (selected_cpu_name
[0]
24661 ? selected_cpu
: arm_arch_none
, arm_ext_v6t2
))
24663 narrow_noop
= thumb_noop
[1][target_big_endian
];
24664 noop
= wide_thumb_noop
[target_big_endian
];
24667 noop
= thumb_noop
[0][target_big_endian
];
24675 noop
= arm_noop
[ARM_CPU_HAS_FEATURE (selected_cpu_name
[0]
24676 ? selected_cpu
: arm_arch_none
,
24678 [target_big_endian
];
24685 fragP
->fr_var
= noop_size
;
24687 if (bytes
& (noop_size
- 1))
24689 fix
= bytes
& (noop_size
- 1);
24691 insert_data_mapping_symbol (state
, fragP
->fr_fix
, fragP
, fix
);
24693 memset (p
, 0, fix
);
24700 if (bytes
& noop_size
)
24702 /* Insert a narrow noop. */
24703 memcpy (p
, narrow_noop
, noop_size
);
24705 bytes
-= noop_size
;
24709 /* Use wide noops for the remainder */
24713 while (bytes
>= noop_size
)
24715 memcpy (p
, noop
, noop_size
);
24717 bytes
-= noop_size
;
24721 fragP
->fr_fix
+= fix
;
24724 /* Called from md_do_align. Used to create an alignment
24725 frag in a code section. */
24728 arm_frag_align_code (int n
, int max
)
24732 /* We assume that there will never be a requirement
24733 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
24734 if (max
> MAX_MEM_FOR_RS_ALIGN_CODE
)
24739 _("alignments greater than %d bytes not supported in .text sections."),
24740 MAX_MEM_FOR_RS_ALIGN_CODE
+ 1);
24741 as_fatal ("%s", err_msg
);
24744 p
= frag_var (rs_align_code
,
24745 MAX_MEM_FOR_RS_ALIGN_CODE
,
24747 (relax_substateT
) max
,
24754 /* Perform target specific initialisation of a frag.
24755 Note - despite the name this initialisation is not done when the frag
24756 is created, but only when its type is assigned. A frag can be created
24757 and used a long time before its type is set, so beware of assuming that
24758 this initialisation is performed first. */
24762 arm_init_frag (fragS
* fragP
, int max_chars ATTRIBUTE_UNUSED
)
24764 /* Record whether this frag is in an ARM or a THUMB area. */
24765 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
24768 #else /* OBJ_ELF is defined. */
24770 arm_init_frag (fragS
* fragP
, int max_chars
)
24772 bfd_boolean frag_thumb_mode
;
24774 /* If the current ARM vs THUMB mode has not already
24775 been recorded into this frag then do so now. */
24776 if ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) == 0)
24777 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
24779 /* PR 21809: Do not set a mapping state for debug sections
24780 - it just confuses other tools. */
24781 if (bfd_get_section_flags (NULL
, now_seg
) & SEC_DEBUGGING
)
24784 frag_thumb_mode
= fragP
->tc_frag_data
.thumb_mode
^ MODE_RECORDED
;
24786 /* Record a mapping symbol for alignment frags. We will delete this
24787 later if the alignment ends up empty. */
24788 switch (fragP
->fr_type
)
24791 case rs_align_test
:
24793 mapping_state_2 (MAP_DATA
, max_chars
);
24795 case rs_align_code
:
24796 mapping_state_2 (frag_thumb_mode
? MAP_THUMB
: MAP_ARM
, max_chars
);
24803 /* When we change sections we need to issue a new mapping symbol. */
24806 arm_elf_change_section (void)
24808 /* Link an unlinked unwind index table section to the .text section. */
24809 if (elf_section_type (now_seg
) == SHT_ARM_EXIDX
24810 && elf_linked_to_section (now_seg
) == NULL
)
24811 elf_linked_to_section (now_seg
) = text_section
;
24815 arm_elf_section_type (const char * str
, size_t len
)
24817 if (len
== 5 && strncmp (str
, "exidx", 5) == 0)
24818 return SHT_ARM_EXIDX
;
24823 /* Code to deal with unwinding tables. */
24825 static void add_unwind_adjustsp (offsetT
);
24827 /* Generate any deferred unwind frame offset. */
24830 flush_pending_unwind (void)
24834 offset
= unwind
.pending_offset
;
24835 unwind
.pending_offset
= 0;
24837 add_unwind_adjustsp (offset
);
24840 /* Add an opcode to this list for this function. Two-byte opcodes should
24841 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
24845 add_unwind_opcode (valueT op
, int length
)
24847 /* Add any deferred stack adjustment. */
24848 if (unwind
.pending_offset
)
24849 flush_pending_unwind ();
24851 unwind
.sp_restored
= 0;
24853 if (unwind
.opcode_count
+ length
> unwind
.opcode_alloc
)
24855 unwind
.opcode_alloc
+= ARM_OPCODE_CHUNK_SIZE
;
24856 if (unwind
.opcodes
)
24857 unwind
.opcodes
= XRESIZEVEC (unsigned char, unwind
.opcodes
,
24858 unwind
.opcode_alloc
);
24860 unwind
.opcodes
= XNEWVEC (unsigned char, unwind
.opcode_alloc
);
24865 unwind
.opcodes
[unwind
.opcode_count
] = op
& 0xff;
24867 unwind
.opcode_count
++;
24871 /* Add unwind opcodes to adjust the stack pointer. */
24874 add_unwind_adjustsp (offsetT offset
)
24878 if (offset
> 0x200)
24880 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
24885 /* Long form: 0xb2, uleb128. */
24886 /* This might not fit in a word so add the individual bytes,
24887 remembering the list is built in reverse order. */
24888 o
= (valueT
) ((offset
- 0x204) >> 2);
24890 add_unwind_opcode (0, 1);
24892 /* Calculate the uleb128 encoding of the offset. */
24896 bytes
[n
] = o
& 0x7f;
24902 /* Add the insn. */
24904 add_unwind_opcode (bytes
[n
- 1], 1);
24905 add_unwind_opcode (0xb2, 1);
24907 else if (offset
> 0x100)
24909 /* Two short opcodes. */
24910 add_unwind_opcode (0x3f, 1);
24911 op
= (offset
- 0x104) >> 2;
24912 add_unwind_opcode (op
, 1);
24914 else if (offset
> 0)
24916 /* Short opcode. */
24917 op
= (offset
- 4) >> 2;
24918 add_unwind_opcode (op
, 1);
24920 else if (offset
< 0)
24923 while (offset
> 0x100)
24925 add_unwind_opcode (0x7f, 1);
24928 op
= ((offset
- 4) >> 2) | 0x40;
24929 add_unwind_opcode (op
, 1);
24933 /* Finish the list of unwind opcodes for this function. */
24936 finish_unwind_opcodes (void)
24940 if (unwind
.fp_used
)
24942 /* Adjust sp as necessary. */
24943 unwind
.pending_offset
+= unwind
.fp_offset
- unwind
.frame_size
;
24944 flush_pending_unwind ();
24946 /* After restoring sp from the frame pointer. */
24947 op
= 0x90 | unwind
.fp_reg
;
24948 add_unwind_opcode (op
, 1);
24951 flush_pending_unwind ();
24955 /* Start an exception table entry. If idx is nonzero this is an index table
24959 start_unwind_section (const segT text_seg
, int idx
)
24961 const char * text_name
;
24962 const char * prefix
;
24963 const char * prefix_once
;
24964 const char * group_name
;
24972 prefix
= ELF_STRING_ARM_unwind
;
24973 prefix_once
= ELF_STRING_ARM_unwind_once
;
24974 type
= SHT_ARM_EXIDX
;
24978 prefix
= ELF_STRING_ARM_unwind_info
;
24979 prefix_once
= ELF_STRING_ARM_unwind_info_once
;
24980 type
= SHT_PROGBITS
;
24983 text_name
= segment_name (text_seg
);
24984 if (streq (text_name
, ".text"))
24987 if (strncmp (text_name
, ".gnu.linkonce.t.",
24988 strlen (".gnu.linkonce.t.")) == 0)
24990 prefix
= prefix_once
;
24991 text_name
+= strlen (".gnu.linkonce.t.");
24994 sec_name
= concat (prefix
, text_name
, (char *) NULL
);
25000 /* Handle COMDAT group. */
25001 if (prefix
!= prefix_once
&& (text_seg
->flags
& SEC_LINK_ONCE
) != 0)
25003 group_name
= elf_group_name (text_seg
);
25004 if (group_name
== NULL
)
25006 as_bad (_("Group section `%s' has no group signature"),
25007 segment_name (text_seg
));
25008 ignore_rest_of_line ();
25011 flags
|= SHF_GROUP
;
25015 obj_elf_change_section (sec_name
, type
, 0, flags
, 0, group_name
,
25018 /* Set the section link for index tables. */
25020 elf_linked_to_section (now_seg
) = text_seg
;
25024 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25025 personality routine data. Returns zero, or the index table value for
25026 an inline entry. */
25029 create_unwind_entry (int have_data
)
25034 /* The current word of data. */
25036 /* The number of bytes left in this word. */
25039 finish_unwind_opcodes ();
25041 /* Remember the current text section. */
25042 unwind
.saved_seg
= now_seg
;
25043 unwind
.saved_subseg
= now_subseg
;
25045 start_unwind_section (now_seg
, 0);
25047 if (unwind
.personality_routine
== NULL
)
25049 if (unwind
.personality_index
== -2)
25052 as_bad (_("handlerdata in cantunwind frame"));
25053 return 1; /* EXIDX_CANTUNWIND. */
25056 /* Use a default personality routine if none is specified. */
25057 if (unwind
.personality_index
== -1)
25059 if (unwind
.opcode_count
> 3)
25060 unwind
.personality_index
= 1;
25062 unwind
.personality_index
= 0;
25065 /* Space for the personality routine entry. */
25066 if (unwind
.personality_index
== 0)
25068 if (unwind
.opcode_count
> 3)
25069 as_bad (_("too many unwind opcodes for personality routine 0"));
25073 /* All the data is inline in the index table. */
25076 while (unwind
.opcode_count
> 0)
25078 unwind
.opcode_count
--;
25079 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
25083 /* Pad with "finish" opcodes. */
25085 data
= (data
<< 8) | 0xb0;
25092 /* We get two opcodes "free" in the first word. */
25093 size
= unwind
.opcode_count
- 2;
25097 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25098 if (unwind
.personality_index
!= -1)
25100 as_bad (_("attempt to recreate an unwind entry"));
25104 /* An extra byte is required for the opcode count. */
25105 size
= unwind
.opcode_count
+ 1;
25108 size
= (size
+ 3) >> 2;
25110 as_bad (_("too many unwind opcodes"));
25112 frag_align (2, 0, 0);
25113 record_alignment (now_seg
, 2);
25114 unwind
.table_entry
= expr_build_dot ();
25116 /* Allocate the table entry. */
25117 ptr
= frag_more ((size
<< 2) + 4);
25118 /* PR 13449: Zero the table entries in case some of them are not used. */
25119 memset (ptr
, 0, (size
<< 2) + 4);
25120 where
= frag_now_fix () - ((size
<< 2) + 4);
25122 switch (unwind
.personality_index
)
25125 /* ??? Should this be a PLT generating relocation? */
25126 /* Custom personality routine. */
25127 fix_new (frag_now
, where
, 4, unwind
.personality_routine
, 0, 1,
25128 BFD_RELOC_ARM_PREL31
);
25133 /* Set the first byte to the number of additional words. */
25134 data
= size
> 0 ? size
- 1 : 0;
25138 /* ABI defined personality routines. */
25140 /* Three opcodes bytes are packed into the first word. */
25147 /* The size and first two opcode bytes go in the first word. */
25148 data
= ((0x80 + unwind
.personality_index
) << 8) | size
;
25153 /* Should never happen. */
25157 /* Pack the opcodes into words (MSB first), reversing the list at the same
25159 while (unwind
.opcode_count
> 0)
25163 md_number_to_chars (ptr
, data
, 4);
25168 unwind
.opcode_count
--;
25170 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
25173 /* Finish off the last word. */
25176 /* Pad with "finish" opcodes. */
25178 data
= (data
<< 8) | 0xb0;
25180 md_number_to_chars (ptr
, data
, 4);
25185 /* Add an empty descriptor if there is no user-specified data. */
25186 ptr
= frag_more (4);
25187 md_number_to_chars (ptr
, 0, 4);
25194 /* Initialize the DWARF-2 unwind information for this procedure. */
25197 tc_arm_frame_initial_instructions (void)
25199 cfi_add_CFA_def_cfa (REG_SP
, 0);
25201 #endif /* OBJ_ELF */
25203 /* Convert REGNAME to a DWARF-2 register number. */
25206 tc_arm_regname_to_dw2regnum (char *regname
)
25208 int reg
= arm_reg_parse (®name
, REG_TYPE_RN
);
25212 /* PR 16694: Allow VFP registers as well. */
25213 reg
= arm_reg_parse (®name
, REG_TYPE_VFS
);
25217 reg
= arm_reg_parse (®name
, REG_TYPE_VFD
);
25226 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
25230 exp
.X_op
= O_secrel
;
25231 exp
.X_add_symbol
= symbol
;
25232 exp
.X_add_number
= 0;
25233 emit_expr (&exp
, size
);
25237 /* MD interface: Symbol and relocation handling. */
25239 /* Return the address within the segment that a PC-relative fixup is
25240 relative to. For ARM, PC-relative fixups applied to instructions
25241 are generally relative to the location of the fixup plus 8 bytes.
25242 Thumb branches are offset by 4, and Thumb loads relative to PC
25243 require special handling. */
25246 md_pcrel_from_section (fixS
* fixP
, segT seg
)
25248 offsetT base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
25250 /* If this is pc-relative and we are going to emit a relocation
25251 then we just want to put out any pipeline compensation that the linker
25252 will need. Otherwise we want to use the calculated base.
25253 For WinCE we skip the bias for externals as well, since this
25254 is how the MS ARM-CE assembler behaves and we want to be compatible. */
25256 && ((fixP
->fx_addsy
&& S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
25257 || (arm_force_relocation (fixP
)
25259 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
25265 switch (fixP
->fx_r_type
)
25267 /* PC relative addressing on the Thumb is slightly odd as the
25268 bottom two bits of the PC are forced to zero for the
25269 calculation. This happens *after* application of the
25270 pipeline offset. However, Thumb adrl already adjusts for
25271 this, so we need not do it again. */
25272 case BFD_RELOC_ARM_THUMB_ADD
:
25275 case BFD_RELOC_ARM_THUMB_OFFSET
:
25276 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
25277 case BFD_RELOC_ARM_T32_ADD_PC12
:
25278 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
25279 return (base
+ 4) & ~3;
25281 /* Thumb branches are simply offset by +4. */
25282 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
25283 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
25284 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
25285 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
25286 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
25287 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
25288 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
25289 case BFD_RELOC_ARM_THUMB_BF17
:
25290 case BFD_RELOC_ARM_THUMB_BF19
:
25291 case BFD_RELOC_ARM_THUMB_BF13
:
25292 case BFD_RELOC_ARM_THUMB_LOOP12
:
25295 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
25297 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
25298 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
25299 && ARM_IS_FUNC (fixP
->fx_addsy
)
25300 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
25301 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
25304 /* BLX is like branches above, but forces the low two bits of PC to
25306 case BFD_RELOC_THUMB_PCREL_BLX
:
25308 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
25309 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
25310 && THUMB_IS_FUNC (fixP
->fx_addsy
)
25311 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
25312 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
25313 return (base
+ 4) & ~3;
25315 /* ARM mode branches are offset by +8. However, the Windows CE
25316 loader expects the relocation not to take this into account. */
25317 case BFD_RELOC_ARM_PCREL_BLX
:
25319 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
25320 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
25321 && ARM_IS_FUNC (fixP
->fx_addsy
)
25322 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
25323 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
25326 case BFD_RELOC_ARM_PCREL_CALL
:
25328 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
25329 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
25330 && THUMB_IS_FUNC (fixP
->fx_addsy
)
25331 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
25332 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
25335 case BFD_RELOC_ARM_PCREL_BRANCH
:
25336 case BFD_RELOC_ARM_PCREL_JUMP
:
25337 case BFD_RELOC_ARM_PLT32
:
25339 /* When handling fixups immediately, because we have already
25340 discovered the value of a symbol, or the address of the frag involved
25341 we must account for the offset by +8, as the OS loader will never see the reloc.
25342 see fixup_segment() in write.c
25343 The S_IS_EXTERNAL test handles the case of global symbols.
25344 Those need the calculated base, not just the pipe compensation the linker will need. */
25346 && fixP
->fx_addsy
!= NULL
25347 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
25348 && (S_IS_EXTERNAL (fixP
->fx_addsy
) || !arm_force_relocation (fixP
)))
25356 /* ARM mode loads relative to PC are also offset by +8. Unlike
25357 branches, the Windows CE loader *does* expect the relocation
25358 to take this into account. */
25359 case BFD_RELOC_ARM_OFFSET_IMM
:
25360 case BFD_RELOC_ARM_OFFSET_IMM8
:
25361 case BFD_RELOC_ARM_HWLITERAL
:
25362 case BFD_RELOC_ARM_LITERAL
:
25363 case BFD_RELOC_ARM_CP_OFF_IMM
:
25367 /* Other PC-relative relocations are un-offset. */
25373 static bfd_boolean flag_warn_syms
= TRUE
;
25376 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED
, char * name
)
25378 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25379 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25380 does mean that the resulting code might be very confusing to the reader.
25381 Also this warning can be triggered if the user omits an operand before
25382 an immediate address, eg:
25386 GAS treats this as an assignment of the value of the symbol foo to a
25387 symbol LDR, and so (without this code) it will not issue any kind of
25388 warning or error message.
25390 Note - ARM instructions are case-insensitive but the strings in the hash
25391 table are all stored in lower case, so we must first ensure that name is
25393 if (flag_warn_syms
&& arm_ops_hsh
)
25395 char * nbuf
= strdup (name
);
25398 for (p
= nbuf
; *p
; p
++)
25400 if (hash_find (arm_ops_hsh
, nbuf
) != NULL
)
25402 static struct hash_control
* already_warned
= NULL
;
25404 if (already_warned
== NULL
)
25405 already_warned
= hash_new ();
25406 /* Only warn about the symbol once. To keep the code
25407 simple we let hash_insert do the lookup for us. */
25408 if (hash_insert (already_warned
, nbuf
, NULL
) == NULL
)
25409 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name
);
25418 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25419 Otherwise we have no need to default values of symbols. */
25422 md_undefined_symbol (char * name ATTRIBUTE_UNUSED
)
25425 if (name
[0] == '_' && name
[1] == 'G'
25426 && streq (name
, GLOBAL_OFFSET_TABLE_NAME
))
25430 if (symbol_find (name
))
25431 as_bad (_("GOT already in the symbol table"));
25433 GOT_symbol
= symbol_new (name
, undefined_section
,
25434 (valueT
) 0, & zero_address_frag
);
25444 /* Subroutine of md_apply_fix. Check to see if an immediate can be
25445 computed as two separate immediate values, added together. We
25446 already know that this value cannot be computed by just one ARM
25449 static unsigned int
25450 validate_immediate_twopart (unsigned int val
,
25451 unsigned int * highpart
)
25456 for (i
= 0; i
< 32; i
+= 2)
25457 if (((a
= rotate_left (val
, i
)) & 0xff) != 0)
25463 * highpart
= (a
>> 8) | ((i
+ 24) << 7);
25465 else if (a
& 0xff0000)
25467 if (a
& 0xff000000)
25469 * highpart
= (a
>> 16) | ((i
+ 16) << 7);
25473 gas_assert (a
& 0xff000000);
25474 * highpart
= (a
>> 24) | ((i
+ 8) << 7);
25477 return (a
& 0xff) | (i
<< 7);
25484 validate_offset_imm (unsigned int val
, int hwse
)
25486 if ((hwse
&& val
> 255) || val
> 4095)
25491 /* Subroutine of md_apply_fix. Do those data_ops which can take a
25492 negative immediate constant by altering the instruction. A bit of
25497 by inverting the second operand, and
25500 by negating the second operand. */
25503 negate_data_op (unsigned long * instruction
,
25504 unsigned long value
)
25507 unsigned long negated
, inverted
;
25509 negated
= encode_arm_immediate (-value
);
25510 inverted
= encode_arm_immediate (~value
);
25512 op
= (*instruction
>> DATA_OP_SHIFT
) & 0xf;
25515 /* First negates. */
25516 case OPCODE_SUB
: /* ADD <-> SUB */
25517 new_inst
= OPCODE_ADD
;
25522 new_inst
= OPCODE_SUB
;
25526 case OPCODE_CMP
: /* CMP <-> CMN */
25527 new_inst
= OPCODE_CMN
;
25532 new_inst
= OPCODE_CMP
;
25536 /* Now Inverted ops. */
25537 case OPCODE_MOV
: /* MOV <-> MVN */
25538 new_inst
= OPCODE_MVN
;
25543 new_inst
= OPCODE_MOV
;
25547 case OPCODE_AND
: /* AND <-> BIC */
25548 new_inst
= OPCODE_BIC
;
25553 new_inst
= OPCODE_AND
;
25557 case OPCODE_ADC
: /* ADC <-> SBC */
25558 new_inst
= OPCODE_SBC
;
25563 new_inst
= OPCODE_ADC
;
25567 /* We cannot do anything. */
25572 if (value
== (unsigned) FAIL
)
25575 *instruction
&= OPCODE_MASK
;
25576 *instruction
|= new_inst
<< DATA_OP_SHIFT
;
25580 /* Like negate_data_op, but for Thumb-2. */
25582 static unsigned int
25583 thumb32_negate_data_op (offsetT
*instruction
, unsigned int value
)
25587 unsigned int negated
, inverted
;
25589 negated
= encode_thumb32_immediate (-value
);
25590 inverted
= encode_thumb32_immediate (~value
);
25592 rd
= (*instruction
>> 8) & 0xf;
25593 op
= (*instruction
>> T2_DATA_OP_SHIFT
) & 0xf;
25596 /* ADD <-> SUB. Includes CMP <-> CMN. */
25597 case T2_OPCODE_SUB
:
25598 new_inst
= T2_OPCODE_ADD
;
25602 case T2_OPCODE_ADD
:
25603 new_inst
= T2_OPCODE_SUB
;
25607 /* ORR <-> ORN. Includes MOV <-> MVN. */
25608 case T2_OPCODE_ORR
:
25609 new_inst
= T2_OPCODE_ORN
;
25613 case T2_OPCODE_ORN
:
25614 new_inst
= T2_OPCODE_ORR
;
25618 /* AND <-> BIC. TST has no inverted equivalent. */
25619 case T2_OPCODE_AND
:
25620 new_inst
= T2_OPCODE_BIC
;
25627 case T2_OPCODE_BIC
:
25628 new_inst
= T2_OPCODE_AND
;
25633 case T2_OPCODE_ADC
:
25634 new_inst
= T2_OPCODE_SBC
;
25638 case T2_OPCODE_SBC
:
25639 new_inst
= T2_OPCODE_ADC
;
25643 /* We cannot do anything. */
25648 if (value
== (unsigned int)FAIL
)
25651 *instruction
&= T2_OPCODE_MASK
;
25652 *instruction
|= new_inst
<< T2_DATA_OP_SHIFT
;
25656 /* Read a 32-bit thumb instruction from buf. */
25658 static unsigned long
25659 get_thumb32_insn (char * buf
)
25661 unsigned long insn
;
25662 insn
= md_chars_to_number (buf
, THUMB_SIZE
) << 16;
25663 insn
|= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
25668 /* We usually want to set the low bit on the address of thumb function
25669 symbols. In particular .word foo - . should have the low bit set.
25670 Generic code tries to fold the difference of two symbols to
25671 a constant. Prevent this and force a relocation when the first symbols
25672 is a thumb function. */
25675 arm_optimize_expr (expressionS
*l
, operatorT op
, expressionS
*r
)
25677 if (op
== O_subtract
25678 && l
->X_op
== O_symbol
25679 && r
->X_op
== O_symbol
25680 && THUMB_IS_FUNC (l
->X_add_symbol
))
25682 l
->X_op
= O_subtract
;
25683 l
->X_op_symbol
= r
->X_add_symbol
;
25684 l
->X_add_number
-= r
->X_add_number
;
25688 /* Process as normal. */
25692 /* Encode Thumb2 unconditional branches and calls. The encoding
25693 for the 2 are identical for the immediate values. */
25696 encode_thumb2_b_bl_offset (char * buf
, offsetT value
)
25698 #define T2I1I2MASK ((1 << 13) | (1 << 11))
25701 addressT S
, I1
, I2
, lo
, hi
;
25703 S
= (value
>> 24) & 0x01;
25704 I1
= (value
>> 23) & 0x01;
25705 I2
= (value
>> 22) & 0x01;
25706 hi
= (value
>> 12) & 0x3ff;
25707 lo
= (value
>> 1) & 0x7ff;
25708 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
25709 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
25710 newval
|= (S
<< 10) | hi
;
25711 newval2
&= ~T2I1I2MASK
;
25712 newval2
|= (((I1
^ S
) << 13) | ((I2
^ S
) << 11) | lo
) ^ T2I1I2MASK
;
25713 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
25714 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
25718 md_apply_fix (fixS
* fixP
,
25722 offsetT value
= * valP
;
25724 unsigned int newimm
;
25725 unsigned long temp
;
25727 char * buf
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
25729 gas_assert (fixP
->fx_r_type
<= BFD_RELOC_UNUSED
);
25731 /* Note whether this will delete the relocation. */
25733 if (fixP
->fx_addsy
== 0 && !fixP
->fx_pcrel
)
25736 /* On a 64-bit host, silently truncate 'value' to 32 bits for
25737 consistency with the behaviour on 32-bit hosts. Remember value
25739 value
&= 0xffffffff;
25740 value
^= 0x80000000;
25741 value
-= 0x80000000;
25744 fixP
->fx_addnumber
= value
;
25746 /* Same treatment for fixP->fx_offset. */
25747 fixP
->fx_offset
&= 0xffffffff;
25748 fixP
->fx_offset
^= 0x80000000;
25749 fixP
->fx_offset
-= 0x80000000;
25751 switch (fixP
->fx_r_type
)
25753 case BFD_RELOC_NONE
:
25754 /* This will need to go in the object file. */
25758 case BFD_RELOC_ARM_IMMEDIATE
:
25759 /* We claim that this fixup has been processed here,
25760 even if in fact we generate an error because we do
25761 not have a reloc for it, so tc_gen_reloc will reject it. */
25764 if (fixP
->fx_addsy
)
25766 const char *msg
= 0;
25768 if (! S_IS_DEFINED (fixP
->fx_addsy
))
25769 msg
= _("undefined symbol %s used as an immediate value");
25770 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
25771 msg
= _("symbol %s is in a different section");
25772 else if (S_IS_WEAK (fixP
->fx_addsy
))
25773 msg
= _("symbol %s is weak and may be overridden later");
25777 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25778 msg
, S_GET_NAME (fixP
->fx_addsy
));
25783 temp
= md_chars_to_number (buf
, INSN_SIZE
);
25785 /* If the offset is negative, we should use encoding A2 for ADR. */
25786 if ((temp
& 0xfff0000) == 0x28f0000 && value
< 0)
25787 newimm
= negate_data_op (&temp
, value
);
25790 newimm
= encode_arm_immediate (value
);
25792 /* If the instruction will fail, see if we can fix things up by
25793 changing the opcode. */
25794 if (newimm
== (unsigned int) FAIL
)
25795 newimm
= negate_data_op (&temp
, value
);
25796 /* MOV accepts both ARM modified immediate (A1 encoding) and
25797 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
25798 When disassembling, MOV is preferred when there is no encoding
25800 if (newimm
== (unsigned int) FAIL
25801 && ((temp
>> DATA_OP_SHIFT
) & 0xf) == OPCODE_MOV
25802 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)
25803 && !((temp
>> SBIT_SHIFT
) & 0x1)
25804 && value
>= 0 && value
<= 0xffff)
25806 /* Clear bits[23:20] to change encoding from A1 to A2. */
25807 temp
&= 0xff0fffff;
25808 /* Encoding high 4bits imm. Code below will encode the remaining
25810 temp
|= (value
& 0x0000f000) << 4;
25811 newimm
= value
& 0x00000fff;
25815 if (newimm
== (unsigned int) FAIL
)
25817 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25818 _("invalid constant (%lx) after fixup"),
25819 (unsigned long) value
);
25823 newimm
|= (temp
& 0xfffff000);
25824 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
25827 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
25829 unsigned int highpart
= 0;
25830 unsigned int newinsn
= 0xe1a00000; /* nop. */
25832 if (fixP
->fx_addsy
)
25834 const char *msg
= 0;
25836 if (! S_IS_DEFINED (fixP
->fx_addsy
))
25837 msg
= _("undefined symbol %s used as an immediate value");
25838 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
25839 msg
= _("symbol %s is in a different section");
25840 else if (S_IS_WEAK (fixP
->fx_addsy
))
25841 msg
= _("symbol %s is weak and may be overridden later");
25845 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25846 msg
, S_GET_NAME (fixP
->fx_addsy
));
25851 newimm
= encode_arm_immediate (value
);
25852 temp
= md_chars_to_number (buf
, INSN_SIZE
);
25854 /* If the instruction will fail, see if we can fix things up by
25855 changing the opcode. */
25856 if (newimm
== (unsigned int) FAIL
25857 && (newimm
= negate_data_op (& temp
, value
)) == (unsigned int) FAIL
)
25859 /* No ? OK - try using two ADD instructions to generate
25861 newimm
= validate_immediate_twopart (value
, & highpart
);
25863 /* Yes - then make sure that the second instruction is
25865 if (newimm
!= (unsigned int) FAIL
)
25867 /* Still No ? Try using a negated value. */
25868 else if ((newimm
= validate_immediate_twopart (- value
, & highpart
)) != (unsigned int) FAIL
)
25869 temp
= newinsn
= (temp
& OPCODE_MASK
) | OPCODE_SUB
<< DATA_OP_SHIFT
;
25870 /* Otherwise - give up. */
25873 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25874 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
25879 /* Replace the first operand in the 2nd instruction (which
25880 is the PC) with the destination register. We have
25881 already added in the PC in the first instruction and we
25882 do not want to do it again. */
25883 newinsn
&= ~ 0xf0000;
25884 newinsn
|= ((newinsn
& 0x0f000) << 4);
25887 newimm
|= (temp
& 0xfffff000);
25888 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
25890 highpart
|= (newinsn
& 0xfffff000);
25891 md_number_to_chars (buf
+ INSN_SIZE
, (valueT
) highpart
, INSN_SIZE
);
25895 case BFD_RELOC_ARM_OFFSET_IMM
:
25896 if (!fixP
->fx_done
&& seg
->use_rela_p
)
25898 /* Fall through. */
25900 case BFD_RELOC_ARM_LITERAL
:
25906 if (validate_offset_imm (value
, 0) == FAIL
)
25908 if (fixP
->fx_r_type
== BFD_RELOC_ARM_LITERAL
)
25909 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25910 _("invalid literal constant: pool needs to be closer"));
25912 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25913 _("bad immediate value for offset (%ld)"),
25918 newval
= md_chars_to_number (buf
, INSN_SIZE
);
25920 newval
&= 0xfffff000;
25923 newval
&= 0xff7ff000;
25924 newval
|= value
| (sign
? INDEX_UP
: 0);
25926 md_number_to_chars (buf
, newval
, INSN_SIZE
);
25929 case BFD_RELOC_ARM_OFFSET_IMM8
:
25930 case BFD_RELOC_ARM_HWLITERAL
:
25936 if (validate_offset_imm (value
, 1) == FAIL
)
25938 if (fixP
->fx_r_type
== BFD_RELOC_ARM_HWLITERAL
)
25939 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25940 _("invalid literal constant: pool needs to be closer"));
25942 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25943 _("bad immediate value for 8-bit offset (%ld)"),
25948 newval
= md_chars_to_number (buf
, INSN_SIZE
);
25950 newval
&= 0xfffff0f0;
25953 newval
&= 0xff7ff0f0;
25954 newval
|= ((value
>> 4) << 8) | (value
& 0xf) | (sign
? INDEX_UP
: 0);
25956 md_number_to_chars (buf
, newval
, INSN_SIZE
);
25959 case BFD_RELOC_ARM_T32_OFFSET_U8
:
25960 if (value
< 0 || value
> 1020 || value
% 4 != 0)
25961 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25962 _("bad immediate value for offset (%ld)"), (long) value
);
25965 newval
= md_chars_to_number (buf
+2, THUMB_SIZE
);
25967 md_number_to_chars (buf
+2, newval
, THUMB_SIZE
);
25970 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
25971 /* This is a complicated relocation used for all varieties of Thumb32
25972 load/store instruction with immediate offset:
25974 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
25975 *4, optional writeback(W)
25976 (doubleword load/store)
25978 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
25979 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
25980 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
25981 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
25982 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
25984 Uppercase letters indicate bits that are already encoded at
25985 this point. Lowercase letters are our problem. For the
25986 second block of instructions, the secondary opcode nybble
25987 (bits 8..11) is present, and bit 23 is zero, even if this is
25988 a PC-relative operation. */
25989 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
25991 newval
|= md_chars_to_number (buf
+THUMB_SIZE
, THUMB_SIZE
);
25993 if ((newval
& 0xf0000000) == 0xe0000000)
25995 /* Doubleword load/store: 8-bit offset, scaled by 4. */
25997 newval
|= (1 << 23);
26000 if (value
% 4 != 0)
26002 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26003 _("offset not a multiple of 4"));
26009 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26010 _("offset out of range"));
26015 else if ((newval
& 0x000f0000) == 0x000f0000)
26017 /* PC-relative, 12-bit offset. */
26019 newval
|= (1 << 23);
26024 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26025 _("offset out of range"));
26030 else if ((newval
& 0x00000100) == 0x00000100)
26032 /* Writeback: 8-bit, +/- offset. */
26034 newval
|= (1 << 9);
26039 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26040 _("offset out of range"));
26045 else if ((newval
& 0x00000f00) == 0x00000e00)
26047 /* T-instruction: positive 8-bit offset. */
26048 if (value
< 0 || value
> 0xff)
26050 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26051 _("offset out of range"));
26059 /* Positive 12-bit or negative 8-bit offset. */
26063 newval
|= (1 << 23);
26073 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26074 _("offset out of range"));
26081 md_number_to_chars (buf
, (newval
>> 16) & 0xffff, THUMB_SIZE
);
26082 md_number_to_chars (buf
+ THUMB_SIZE
, newval
& 0xffff, THUMB_SIZE
);
26085 case BFD_RELOC_ARM_SHIFT_IMM
:
26086 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26087 if (((unsigned long) value
) > 32
26089 && (((newval
& 0x60) == 0) || (newval
& 0x60) == 0x60)))
26091 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26092 _("shift expression is too large"));
26097 /* Shifts of zero must be done as lsl. */
26099 else if (value
== 32)
26101 newval
&= 0xfffff07f;
26102 newval
|= (value
& 0x1f) << 7;
26103 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26106 case BFD_RELOC_ARM_T32_IMMEDIATE
:
26107 case BFD_RELOC_ARM_T32_ADD_IMM
:
26108 case BFD_RELOC_ARM_T32_IMM12
:
26109 case BFD_RELOC_ARM_T32_ADD_PC12
:
26110 /* We claim that this fixup has been processed here,
26111 even if in fact we generate an error because we do
26112 not have a reloc for it, so tc_gen_reloc will reject it. */
26116 && ! S_IS_DEFINED (fixP
->fx_addsy
))
26118 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26119 _("undefined symbol %s used as an immediate value"),
26120 S_GET_NAME (fixP
->fx_addsy
));
26124 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26126 newval
|= md_chars_to_number (buf
+2, THUMB_SIZE
);
26129 if ((fixP
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
26130 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26131 Thumb2 modified immediate encoding (T2). */
26132 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
26133 || fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
26135 newimm
= encode_thumb32_immediate (value
);
26136 if (newimm
== (unsigned int) FAIL
)
26137 newimm
= thumb32_negate_data_op (&newval
, value
);
26139 if (newimm
== (unsigned int) FAIL
)
26141 if (fixP
->fx_r_type
!= BFD_RELOC_ARM_T32_IMMEDIATE
)
26143 /* Turn add/sum into addw/subw. */
26144 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
26145 newval
= (newval
& 0xfeffffff) | 0x02000000;
26146 /* No flat 12-bit imm encoding for addsw/subsw. */
26147 if ((newval
& 0x00100000) == 0)
26149 /* 12 bit immediate for addw/subw. */
26153 newval
^= 0x00a00000;
26156 newimm
= (unsigned int) FAIL
;
26163 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26164 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26165 disassembling, MOV is preferred when there is no encoding
26167 if (((newval
>> T2_DATA_OP_SHIFT
) & 0xf) == T2_OPCODE_ORR
26168 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26169 but with the Rn field [19:16] set to 1111. */
26170 && (((newval
>> 16) & 0xf) == 0xf)
26171 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
)
26172 && !((newval
>> T2_SBIT_SHIFT
) & 0x1)
26173 && value
>= 0 && value
<= 0xffff)
26175 /* Toggle bit[25] to change encoding from T2 to T3. */
26177 /* Clear bits[19:16]. */
26178 newval
&= 0xfff0ffff;
26179 /* Encoding high 4bits imm. Code below will encode the
26180 remaining low 12bits. */
26181 newval
|= (value
& 0x0000f000) << 4;
26182 newimm
= value
& 0x00000fff;
26187 if (newimm
== (unsigned int)FAIL
)
26189 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26190 _("invalid constant (%lx) after fixup"),
26191 (unsigned long) value
);
26195 newval
|= (newimm
& 0x800) << 15;
26196 newval
|= (newimm
& 0x700) << 4;
26197 newval
|= (newimm
& 0x0ff);
26199 md_number_to_chars (buf
, (valueT
) ((newval
>> 16) & 0xffff), THUMB_SIZE
);
26200 md_number_to_chars (buf
+2, (valueT
) (newval
& 0xffff), THUMB_SIZE
);
26203 case BFD_RELOC_ARM_SMC
:
26204 if (((unsigned long) value
) > 0xffff)
26205 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26206 _("invalid smc expression"));
26207 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26208 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
26209 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26212 case BFD_RELOC_ARM_HVC
:
26213 if (((unsigned long) value
) > 0xffff)
26214 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26215 _("invalid hvc expression"));
26216 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26217 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
26218 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26221 case BFD_RELOC_ARM_SWI
:
26222 if (fixP
->tc_fix_data
!= 0)
26224 if (((unsigned long) value
) > 0xff)
26225 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26226 _("invalid swi expression"));
26227 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26229 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26233 if (((unsigned long) value
) > 0x00ffffff)
26234 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26235 _("invalid swi expression"));
26236 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26238 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26242 case BFD_RELOC_ARM_MULTI
:
26243 if (((unsigned long) value
) > 0xffff)
26244 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26245 _("invalid expression in load/store multiple"));
26246 newval
= value
| md_chars_to_number (buf
, INSN_SIZE
);
26247 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26251 case BFD_RELOC_ARM_PCREL_CALL
:
26253 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
26255 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26256 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26257 && THUMB_IS_FUNC (fixP
->fx_addsy
))
26258 /* Flip the bl to blx. This is a simple flip
26259 bit here because we generate PCREL_CALL for
26260 unconditional bls. */
26262 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26263 newval
= newval
| 0x10000000;
26264 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26270 goto arm_branch_common
;
26272 case BFD_RELOC_ARM_PCREL_JUMP
:
26273 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
26275 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26276 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26277 && THUMB_IS_FUNC (fixP
->fx_addsy
))
26279 /* This would map to a bl<cond>, b<cond>,
26280 b<always> to a Thumb function. We
26281 need to force a relocation for this particular
26283 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26286 /* Fall through. */
26288 case BFD_RELOC_ARM_PLT32
:
26290 case BFD_RELOC_ARM_PCREL_BRANCH
:
26292 goto arm_branch_common
;
26294 case BFD_RELOC_ARM_PCREL_BLX
:
26297 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
26299 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26300 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26301 && ARM_IS_FUNC (fixP
->fx_addsy
))
26303 /* Flip the blx to a bl and warn. */
26304 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
26305 newval
= 0xeb000000;
26306 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
26307 _("blx to '%s' an ARM ISA state function changed to bl"),
26309 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26315 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
26316 fixP
->fx_r_type
= BFD_RELOC_ARM_PCREL_CALL
;
26320 /* We are going to store value (shifted right by two) in the
26321 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26322 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
26325 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26326 _("misaligned branch destination"));
26327 if ((value
& (offsetT
)0xfe000000) != (offsetT
)0
26328 && (value
& (offsetT
)0xfe000000) != (offsetT
)0xfe000000)
26329 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26331 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26333 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26334 newval
|= (value
>> 2) & 0x00ffffff;
26335 /* Set the H bit on BLX instructions. */
26339 newval
|= 0x01000000;
26341 newval
&= ~0x01000000;
26343 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26347 case BFD_RELOC_THUMB_PCREL_BRANCH7
: /* CBZ */
26348 /* CBZ can only branch forward. */
26350 /* Attempts to use CBZ to branch to the next instruction
26351 (which, strictly speaking, are prohibited) will be turned into
26354 FIXME: It may be better to remove the instruction completely and
26355 perform relaxation. */
26358 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26359 newval
= 0xbf00; /* NOP encoding T1 */
26360 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26365 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26367 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26369 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26370 newval
|= ((value
& 0x3e) << 2) | ((value
& 0x40) << 3);
26371 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26376 case BFD_RELOC_THUMB_PCREL_BRANCH9
: /* Conditional branch. */
26377 if ((value
& ~0xff) && ((value
& ~0xff) != ~0xff))
26378 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26380 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26382 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26383 newval
|= (value
& 0x1ff) >> 1;
26384 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26388 case BFD_RELOC_THUMB_PCREL_BRANCH12
: /* Unconditional branch. */
26389 if ((value
& ~0x7ff) && ((value
& ~0x7ff) != ~0x7ff))
26390 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26392 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26394 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26395 newval
|= (value
& 0xfff) >> 1;
26396 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26400 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
26402 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26403 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26404 && ARM_IS_FUNC (fixP
->fx_addsy
)
26405 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26407 /* Force a relocation for a branch 20 bits wide. */
26410 if ((value
& ~0x1fffff) && ((value
& ~0x0fffff) != ~0x0fffff))
26411 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26412 _("conditional branch out of range"));
26414 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26417 addressT S
, J1
, J2
, lo
, hi
;
26419 S
= (value
& 0x00100000) >> 20;
26420 J2
= (value
& 0x00080000) >> 19;
26421 J1
= (value
& 0x00040000) >> 18;
26422 hi
= (value
& 0x0003f000) >> 12;
26423 lo
= (value
& 0x00000ffe) >> 1;
26425 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26426 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
26427 newval
|= (S
<< 10) | hi
;
26428 newval2
|= (J1
<< 13) | (J2
<< 11) | lo
;
26429 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26430 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
26434 case BFD_RELOC_THUMB_PCREL_BLX
:
26435 /* If there is a blx from a thumb state function to
26436 another thumb function flip this to a bl and warn
26440 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26441 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26442 && THUMB_IS_FUNC (fixP
->fx_addsy
))
26444 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
26445 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
26446 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26448 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
26449 newval
= newval
| 0x1000;
26450 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
26451 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
26456 goto thumb_bl_common
;
26458 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
26459 /* A bl from Thumb state ISA to an internal ARM state function
26460 is converted to a blx. */
26462 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26463 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26464 && ARM_IS_FUNC (fixP
->fx_addsy
)
26465 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26467 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
26468 newval
= newval
& ~0x1000;
26469 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
26470 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BLX
;
26476 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
26477 /* For a BLX instruction, make sure that the relocation is rounded up
26478 to a word boundary. This follows the semantics of the instruction
26479 which specifies that bit 1 of the target address will come from bit
26480 1 of the base address. */
26481 value
= (value
+ 3) & ~ 3;
26484 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
26485 && fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
26486 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
26489 if ((value
& ~0x3fffff) && ((value
& ~0x3fffff) != ~0x3fffff))
26491 if (!(ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)))
26492 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26493 else if ((value
& ~0x1ffffff)
26494 && ((value
& ~0x1ffffff) != ~0x1ffffff))
26495 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26496 _("Thumb2 branch out of range"));
26499 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26500 encode_thumb2_b_bl_offset (buf
, value
);
26504 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
26505 if ((value
& ~0x0ffffff) && ((value
& ~0x0ffffff) != ~0x0ffffff))
26506 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26508 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26509 encode_thumb2_b_bl_offset (buf
, value
);
26514 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26519 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26520 md_number_to_chars (buf
, value
, 2);
26524 case BFD_RELOC_ARM_TLS_CALL
:
26525 case BFD_RELOC_ARM_THM_TLS_CALL
:
26526 case BFD_RELOC_ARM_TLS_DESCSEQ
:
26527 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
26528 case BFD_RELOC_ARM_TLS_GOTDESC
:
26529 case BFD_RELOC_ARM_TLS_GD32
:
26530 case BFD_RELOC_ARM_TLS_LE32
:
26531 case BFD_RELOC_ARM_TLS_IE32
:
26532 case BFD_RELOC_ARM_TLS_LDM32
:
26533 case BFD_RELOC_ARM_TLS_LDO32
:
26534 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
26537 /* Same handling as above, but with the arm_fdpic guard. */
26538 case BFD_RELOC_ARM_TLS_GD32_FDPIC
:
26539 case BFD_RELOC_ARM_TLS_IE32_FDPIC
:
26540 case BFD_RELOC_ARM_TLS_LDM32_FDPIC
:
26543 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
26547 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26548 _("Relocation supported only in FDPIC mode"));
26552 case BFD_RELOC_ARM_GOT32
:
26553 case BFD_RELOC_ARM_GOTOFF
:
26556 case BFD_RELOC_ARM_GOT_PREL
:
26557 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26558 md_number_to_chars (buf
, value
, 4);
26561 case BFD_RELOC_ARM_TARGET2
:
26562 /* TARGET2 is not partial-inplace, so we need to write the
26563 addend here for REL targets, because it won't be written out
26564 during reloc processing later. */
26565 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26566 md_number_to_chars (buf
, fixP
->fx_offset
, 4);
26569 /* Relocations for FDPIC. */
26570 case BFD_RELOC_ARM_GOTFUNCDESC
:
26571 case BFD_RELOC_ARM_GOTOFFFUNCDESC
:
26572 case BFD_RELOC_ARM_FUNCDESC
:
26575 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26576 md_number_to_chars (buf
, 0, 4);
26580 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26581 _("Relocation supported only in FDPIC mode"));
26586 case BFD_RELOC_RVA
:
26588 case BFD_RELOC_ARM_TARGET1
:
26589 case BFD_RELOC_ARM_ROSEGREL32
:
26590 case BFD_RELOC_ARM_SBREL32
:
26591 case BFD_RELOC_32_PCREL
:
26593 case BFD_RELOC_32_SECREL
:
26595 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26597 /* For WinCE we only do this for pcrel fixups. */
26598 if (fixP
->fx_done
|| fixP
->fx_pcrel
)
26600 md_number_to_chars (buf
, value
, 4);
26604 case BFD_RELOC_ARM_PREL31
:
26605 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26607 newval
= md_chars_to_number (buf
, 4) & 0x80000000;
26608 if ((value
^ (value
>> 1)) & 0x40000000)
26610 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26611 _("rel31 relocation overflow"));
26613 newval
|= value
& 0x7fffffff;
26614 md_number_to_chars (buf
, newval
, 4);
26619 case BFD_RELOC_ARM_CP_OFF_IMM
:
26620 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
26621 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
:
26622 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
)
26623 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26625 newval
= get_thumb32_insn (buf
);
26626 if ((newval
& 0x0f200f00) == 0x0d000900)
26628 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
26629 has permitted values that are multiples of 2, in the range 0
26631 if (value
< -510 || value
> 510 || (value
& 1))
26632 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26633 _("co-processor offset out of range"));
26635 else if ((newval
& 0xfe001f80) == 0xec000f80)
26637 if (value
< -511 || value
> 512 || (value
& 3))
26638 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26639 _("co-processor offset out of range"));
26641 else if (value
< -1023 || value
> 1023 || (value
& 3))
26642 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26643 _("co-processor offset out of range"));
26648 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
26649 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
26650 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26652 newval
= get_thumb32_insn (buf
);
26655 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
)
26656 newval
&= 0xffffff80;
26658 newval
&= 0xffffff00;
26662 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
)
26663 newval
&= 0xff7fff80;
26665 newval
&= 0xff7fff00;
26666 if ((newval
& 0x0f200f00) == 0x0d000900)
26668 /* This is a fp16 vstr/vldr.
26670 It requires the immediate offset in the instruction is shifted
26671 left by 1 to be a half-word offset.
26673 Here, left shift by 1 first, and later right shift by 2
26674 should get the right offset. */
26677 newval
|= (value
>> 2) | (sign
? INDEX_UP
: 0);
26679 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
26680 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
26681 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26683 put_thumb32_insn (buf
, newval
);
26686 case BFD_RELOC_ARM_CP_OFF_IMM_S2
:
26687 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
:
26688 if (value
< -255 || value
> 255)
26689 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26690 _("co-processor offset out of range"));
26692 goto cp_off_common
;
26694 case BFD_RELOC_ARM_THUMB_OFFSET
:
26695 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26696 /* Exactly what ranges, and where the offset is inserted depends
26697 on the type of instruction, we can establish this from the
26699 switch (newval
>> 12)
26701 case 4: /* PC load. */
26702 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
26703 forced to zero for these loads; md_pcrel_from has already
26704 compensated for this. */
26706 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26707 _("invalid offset, target not word aligned (0x%08lX)"),
26708 (((unsigned long) fixP
->fx_frag
->fr_address
26709 + (unsigned long) fixP
->fx_where
) & ~3)
26710 + (unsigned long) value
);
26712 if (value
& ~0x3fc)
26713 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26714 _("invalid offset, value too big (0x%08lX)"),
26717 newval
|= value
>> 2;
26720 case 9: /* SP load/store. */
26721 if (value
& ~0x3fc)
26722 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26723 _("invalid offset, value too big (0x%08lX)"),
26725 newval
|= value
>> 2;
26728 case 6: /* Word load/store. */
26730 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26731 _("invalid offset, value too big (0x%08lX)"),
26733 newval
|= value
<< 4; /* 6 - 2. */
26736 case 7: /* Byte load/store. */
26738 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26739 _("invalid offset, value too big (0x%08lX)"),
26741 newval
|= value
<< 6;
26744 case 8: /* Halfword load/store. */
26746 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26747 _("invalid offset, value too big (0x%08lX)"),
26749 newval
|= value
<< 5; /* 6 - 1. */
26753 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26754 "Unable to process relocation for thumb opcode: %lx",
26755 (unsigned long) newval
);
26758 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26761 case BFD_RELOC_ARM_THUMB_ADD
:
26762 /* This is a complicated relocation, since we use it for all of
26763 the following immediate relocations:
26767 9bit ADD/SUB SP word-aligned
26768 10bit ADD PC/SP word-aligned
26770 The type of instruction being processed is encoded in the
26777 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26779 int rd
= (newval
>> 4) & 0xf;
26780 int rs
= newval
& 0xf;
26781 int subtract
= !!(newval
& 0x8000);
26783 /* Check for HI regs, only very restricted cases allowed:
26784 Adjusting SP, and using PC or SP to get an address. */
26785 if ((rd
> 7 && (rd
!= REG_SP
|| rs
!= REG_SP
))
26786 || (rs
> 7 && rs
!= REG_SP
&& rs
!= REG_PC
))
26787 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26788 _("invalid Hi register with immediate"));
26790 /* If value is negative, choose the opposite instruction. */
26794 subtract
= !subtract
;
26796 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26797 _("immediate value out of range"));
26802 if (value
& ~0x1fc)
26803 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26804 _("invalid immediate for stack address calculation"));
26805 newval
= subtract
? T_OPCODE_SUB_ST
: T_OPCODE_ADD_ST
;
26806 newval
|= value
>> 2;
26808 else if (rs
== REG_PC
|| rs
== REG_SP
)
26810 /* PR gas/18541. If the addition is for a defined symbol
26811 within range of an ADR instruction then accept it. */
26814 && fixP
->fx_addsy
!= NULL
)
26818 if (! S_IS_DEFINED (fixP
->fx_addsy
)
26819 || S_GET_SEGMENT (fixP
->fx_addsy
) != seg
26820 || S_IS_WEAK (fixP
->fx_addsy
))
26822 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26823 _("address calculation needs a strongly defined nearby symbol"));
26827 offsetT v
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26829 /* Round up to the next 4-byte boundary. */
26834 v
= S_GET_VALUE (fixP
->fx_addsy
) - v
;
26838 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26839 _("symbol too far away"));
26849 if (subtract
|| value
& ~0x3fc)
26850 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26851 _("invalid immediate for address calculation (value = 0x%08lX)"),
26852 (unsigned long) (subtract
? - value
: value
));
26853 newval
= (rs
== REG_PC
? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP
);
26855 newval
|= value
>> 2;
26860 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26861 _("immediate value out of range"));
26862 newval
= subtract
? T_OPCODE_SUB_I8
: T_OPCODE_ADD_I8
;
26863 newval
|= (rd
<< 8) | value
;
26868 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26869 _("immediate value out of range"));
26870 newval
= subtract
? T_OPCODE_SUB_I3
: T_OPCODE_ADD_I3
;
26871 newval
|= rd
| (rs
<< 3) | (value
<< 6);
26874 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26877 case BFD_RELOC_ARM_THUMB_IMM
:
26878 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26879 if (value
< 0 || value
> 255)
26880 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26881 _("invalid immediate: %ld is out of range"),
26884 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26887 case BFD_RELOC_ARM_THUMB_SHIFT
:
26888 /* 5bit shift value (0..32). LSL cannot take 32. */
26889 newval
= md_chars_to_number (buf
, THUMB_SIZE
) & 0xf83f;
26890 temp
= newval
& 0xf800;
26891 if (value
< 0 || value
> 32 || (value
== 32 && temp
== T_OPCODE_LSL_I
))
26892 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26893 _("invalid shift value: %ld"), (long) value
);
26894 /* Shifts of zero must be encoded as LSL. */
26896 newval
= (newval
& 0x003f) | T_OPCODE_LSL_I
;
26897 /* Shifts of 32 are encoded as zero. */
26898 else if (value
== 32)
26900 newval
|= value
<< 6;
26901 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26904 case BFD_RELOC_VTABLE_INHERIT
:
26905 case BFD_RELOC_VTABLE_ENTRY
:
26909 case BFD_RELOC_ARM_MOVW
:
26910 case BFD_RELOC_ARM_MOVT
:
26911 case BFD_RELOC_ARM_THUMB_MOVW
:
26912 case BFD_RELOC_ARM_THUMB_MOVT
:
26913 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26915 /* REL format relocations are limited to a 16-bit addend. */
26916 if (!fixP
->fx_done
)
26918 if (value
< -0x8000 || value
> 0x7fff)
26919 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26920 _("offset out of range"));
26922 else if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
26923 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
26928 if (fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
26929 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
26931 newval
= get_thumb32_insn (buf
);
26932 newval
&= 0xfbf08f00;
26933 newval
|= (value
& 0xf000) << 4;
26934 newval
|= (value
& 0x0800) << 15;
26935 newval
|= (value
& 0x0700) << 4;
26936 newval
|= (value
& 0x00ff);
26937 put_thumb32_insn (buf
, newval
);
26941 newval
= md_chars_to_number (buf
, 4);
26942 newval
&= 0xfff0f000;
26943 newval
|= value
& 0x0fff;
26944 newval
|= (value
& 0xf000) << 4;
26945 md_number_to_chars (buf
, newval
, 4);
26950 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
:
26951 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
:
26952 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
:
26953 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
:
26954 gas_assert (!fixP
->fx_done
);
26957 bfd_boolean is_mov
;
26958 bfd_vma encoded_addend
= value
;
26960 /* Check that addend can be encoded in instruction. */
26961 if (!seg
->use_rela_p
&& (value
< 0 || value
> 255))
26962 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26963 _("the offset 0x%08lX is not representable"),
26964 (unsigned long) encoded_addend
);
26966 /* Extract the instruction. */
26967 insn
= md_chars_to_number (buf
, THUMB_SIZE
);
26968 is_mov
= (insn
& 0xf800) == 0x2000;
26973 if (!seg
->use_rela_p
)
26974 insn
|= encoded_addend
;
26980 /* Extract the instruction. */
26981 /* Encoding is the following
26986 /* The following conditions must be true :
26991 rd
= (insn
>> 4) & 0xf;
26993 if ((insn
& 0x8000) || (rd
!= rs
) || rd
> 7)
26994 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26995 _("Unable to process relocation for thumb opcode: %lx"),
26996 (unsigned long) insn
);
26998 /* Encode as ADD immediate8 thumb 1 code. */
26999 insn
= 0x3000 | (rd
<< 8);
27001 /* Place the encoded addend into the first 8 bits of the
27003 if (!seg
->use_rela_p
)
27004 insn
|= encoded_addend
;
27007 /* Update the instruction. */
27008 md_number_to_chars (buf
, insn
, THUMB_SIZE
);
27012 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
27013 case BFD_RELOC_ARM_ALU_PC_G0
:
27014 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
27015 case BFD_RELOC_ARM_ALU_PC_G1
:
27016 case BFD_RELOC_ARM_ALU_PC_G2
:
27017 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
27018 case BFD_RELOC_ARM_ALU_SB_G0
:
27019 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
27020 case BFD_RELOC_ARM_ALU_SB_G1
:
27021 case BFD_RELOC_ARM_ALU_SB_G2
:
27022 gas_assert (!fixP
->fx_done
);
27023 if (!seg
->use_rela_p
)
27026 bfd_vma encoded_addend
;
27027 bfd_vma addend_abs
= llabs (value
);
27029 /* Check that the absolute value of the addend can be
27030 expressed as an 8-bit constant plus a rotation. */
27031 encoded_addend
= encode_arm_immediate (addend_abs
);
27032 if (encoded_addend
== (unsigned int) FAIL
)
27033 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27034 _("the offset 0x%08lX is not representable"),
27035 (unsigned long) addend_abs
);
27037 /* Extract the instruction. */
27038 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27040 /* If the addend is positive, use an ADD instruction.
27041 Otherwise use a SUB. Take care not to destroy the S bit. */
27042 insn
&= 0xff1fffff;
27048 /* Place the encoded addend into the first 12 bits of the
27050 insn
&= 0xfffff000;
27051 insn
|= encoded_addend
;
27053 /* Update the instruction. */
27054 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27058 case BFD_RELOC_ARM_LDR_PC_G0
:
27059 case BFD_RELOC_ARM_LDR_PC_G1
:
27060 case BFD_RELOC_ARM_LDR_PC_G2
:
27061 case BFD_RELOC_ARM_LDR_SB_G0
:
27062 case BFD_RELOC_ARM_LDR_SB_G1
:
27063 case BFD_RELOC_ARM_LDR_SB_G2
:
27064 gas_assert (!fixP
->fx_done
);
27065 if (!seg
->use_rela_p
)
27068 bfd_vma addend_abs
= llabs (value
);
27070 /* Check that the absolute value of the addend can be
27071 encoded in 12 bits. */
27072 if (addend_abs
>= 0x1000)
27073 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27074 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27075 (unsigned long) addend_abs
);
27077 /* Extract the instruction. */
27078 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27080 /* If the addend is negative, clear bit 23 of the instruction.
27081 Otherwise set it. */
27083 insn
&= ~(1 << 23);
27087 /* Place the absolute value of the addend into the first 12 bits
27088 of the instruction. */
27089 insn
&= 0xfffff000;
27090 insn
|= addend_abs
;
27092 /* Update the instruction. */
27093 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27097 case BFD_RELOC_ARM_LDRS_PC_G0
:
27098 case BFD_RELOC_ARM_LDRS_PC_G1
:
27099 case BFD_RELOC_ARM_LDRS_PC_G2
:
27100 case BFD_RELOC_ARM_LDRS_SB_G0
:
27101 case BFD_RELOC_ARM_LDRS_SB_G1
:
27102 case BFD_RELOC_ARM_LDRS_SB_G2
:
27103 gas_assert (!fixP
->fx_done
);
27104 if (!seg
->use_rela_p
)
27107 bfd_vma addend_abs
= llabs (value
);
27109 /* Check that the absolute value of the addend can be
27110 encoded in 8 bits. */
27111 if (addend_abs
>= 0x100)
27112 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27113 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27114 (unsigned long) addend_abs
);
27116 /* Extract the instruction. */
27117 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27119 /* If the addend is negative, clear bit 23 of the instruction.
27120 Otherwise set it. */
27122 insn
&= ~(1 << 23);
27126 /* Place the first four bits of the absolute value of the addend
27127 into the first 4 bits of the instruction, and the remaining
27128 four into bits 8 .. 11. */
27129 insn
&= 0xfffff0f0;
27130 insn
|= (addend_abs
& 0xf) | ((addend_abs
& 0xf0) << 4);
27132 /* Update the instruction. */
27133 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27137 case BFD_RELOC_ARM_LDC_PC_G0
:
27138 case BFD_RELOC_ARM_LDC_PC_G1
:
27139 case BFD_RELOC_ARM_LDC_PC_G2
:
27140 case BFD_RELOC_ARM_LDC_SB_G0
:
27141 case BFD_RELOC_ARM_LDC_SB_G1
:
27142 case BFD_RELOC_ARM_LDC_SB_G2
:
27143 gas_assert (!fixP
->fx_done
);
27144 if (!seg
->use_rela_p
)
27147 bfd_vma addend_abs
= llabs (value
);
27149 /* Check that the absolute value of the addend is a multiple of
27150 four and, when divided by four, fits in 8 bits. */
27151 if (addend_abs
& 0x3)
27152 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27153 _("bad offset 0x%08lX (must be word-aligned)"),
27154 (unsigned long) addend_abs
);
27156 if ((addend_abs
>> 2) > 0xff)
27157 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27158 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27159 (unsigned long) addend_abs
);
27161 /* Extract the instruction. */
27162 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27164 /* If the addend is negative, clear bit 23 of the instruction.
27165 Otherwise set it. */
27167 insn
&= ~(1 << 23);
27171 /* Place the addend (divided by four) into the first eight
27172 bits of the instruction. */
27173 insn
&= 0xfffffff0;
27174 insn
|= addend_abs
>> 2;
27176 /* Update the instruction. */
27177 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27181 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
27183 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27184 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27185 && ARM_IS_FUNC (fixP
->fx_addsy
)
27186 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27188 /* Force a relocation for a branch 5 bits wide. */
27191 if (v8_1_branch_value_check (value
, 5, FALSE
) == FAIL
)
27192 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27195 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27197 addressT boff
= value
>> 1;
27199 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27200 newval
|= (boff
<< 7);
27201 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27205 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
27207 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27208 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27209 && ARM_IS_FUNC (fixP
->fx_addsy
)
27210 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27214 if ((value
& ~0x7f) && ((value
& ~0x3f) != ~0x3f))
27215 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27216 _("branch out of range"));
27218 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27220 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27222 addressT boff
= ((newval
& 0x0780) >> 7) << 1;
27223 addressT diff
= value
- boff
;
27227 newval
|= 1 << 1; /* T bit. */
27229 else if (diff
!= 2)
27231 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27232 _("out of range label-relative fixup value"));
27234 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27238 case BFD_RELOC_ARM_THUMB_BF17
:
27240 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27241 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27242 && ARM_IS_FUNC (fixP
->fx_addsy
)
27243 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27245 /* Force a relocation for a branch 17 bits wide. */
27249 if (v8_1_branch_value_check (value
, 17, TRUE
) == FAIL
)
27250 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27253 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27256 addressT immA
, immB
, immC
;
27258 immA
= (value
& 0x0001f000) >> 12;
27259 immB
= (value
& 0x00000ffc) >> 2;
27260 immC
= (value
& 0x00000002) >> 1;
27262 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27263 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27265 newval2
|= (immC
<< 11) | (immB
<< 1);
27266 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27267 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
27271 case BFD_RELOC_ARM_THUMB_BF19
:
27273 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27274 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27275 && ARM_IS_FUNC (fixP
->fx_addsy
)
27276 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27278 /* Force a relocation for a branch 19 bits wide. */
27282 if (v8_1_branch_value_check (value
, 19, TRUE
) == FAIL
)
27283 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27286 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27289 addressT immA
, immB
, immC
;
27291 immA
= (value
& 0x0007f000) >> 12;
27292 immB
= (value
& 0x00000ffc) >> 2;
27293 immC
= (value
& 0x00000002) >> 1;
27295 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27296 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27298 newval2
|= (immC
<< 11) | (immB
<< 1);
27299 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27300 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
27304 case BFD_RELOC_ARM_THUMB_BF13
:
27306 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27307 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27308 && ARM_IS_FUNC (fixP
->fx_addsy
)
27309 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27311 /* Force a relocation for a branch 13 bits wide. */
27315 if (v8_1_branch_value_check (value
, 13, TRUE
) == FAIL
)
27316 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27319 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27322 addressT immA
, immB
, immC
;
27324 immA
= (value
& 0x00001000) >> 12;
27325 immB
= (value
& 0x00000ffc) >> 2;
27326 immC
= (value
& 0x00000002) >> 1;
27328 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27329 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27331 newval2
|= (immC
<< 11) | (immB
<< 1);
27332 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27333 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
27337 case BFD_RELOC_ARM_THUMB_LOOP12
:
27339 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27340 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27341 && ARM_IS_FUNC (fixP
->fx_addsy
)
27342 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27344 /* Force a relocation for a branch 12 bits wide. */
27348 bfd_vma insn
= get_thumb32_insn (buf
);
27349 /* le lr, <label> or le <label> */
27350 if (((insn
& 0xffffffff) == 0xf00fc001)
27351 || ((insn
& 0xffffffff) == 0xf02fc001))
27354 if (v8_1_branch_value_check (value
, 12, FALSE
) == FAIL
)
27355 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27357 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27359 addressT imml
, immh
;
27361 immh
= (value
& 0x00000ffc) >> 2;
27362 imml
= (value
& 0x00000002) >> 1;
27364 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27365 newval
|= (imml
<< 11) | (immh
<< 1);
27366 md_number_to_chars (buf
+ THUMB_SIZE
, newval
, THUMB_SIZE
);
27370 case BFD_RELOC_ARM_V4BX
:
27371 /* This will need to go in the object file. */
27375 case BFD_RELOC_UNUSED
:
27377 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27378 _("bad relocation fixup type (%d)"), fixP
->fx_r_type
);
27382 /* Translate internal representation of relocation info to BFD target
27386 tc_gen_reloc (asection
*section
, fixS
*fixp
)
27389 bfd_reloc_code_real_type code
;
27391 reloc
= XNEW (arelent
);
27393 reloc
->sym_ptr_ptr
= XNEW (asymbol
*);
27394 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
27395 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
27397 if (fixp
->fx_pcrel
)
27399 if (section
->use_rela_p
)
27400 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, section
);
27402 fixp
->fx_offset
= reloc
->address
;
27404 reloc
->addend
= fixp
->fx_offset
;
27406 switch (fixp
->fx_r_type
)
27409 if (fixp
->fx_pcrel
)
27411 code
= BFD_RELOC_8_PCREL
;
27414 /* Fall through. */
27417 if (fixp
->fx_pcrel
)
27419 code
= BFD_RELOC_16_PCREL
;
27422 /* Fall through. */
27425 if (fixp
->fx_pcrel
)
27427 code
= BFD_RELOC_32_PCREL
;
27430 /* Fall through. */
27432 case BFD_RELOC_ARM_MOVW
:
27433 if (fixp
->fx_pcrel
)
27435 code
= BFD_RELOC_ARM_MOVW_PCREL
;
27438 /* Fall through. */
27440 case BFD_RELOC_ARM_MOVT
:
27441 if (fixp
->fx_pcrel
)
27443 code
= BFD_RELOC_ARM_MOVT_PCREL
;
27446 /* Fall through. */
27448 case BFD_RELOC_ARM_THUMB_MOVW
:
27449 if (fixp
->fx_pcrel
)
27451 code
= BFD_RELOC_ARM_THUMB_MOVW_PCREL
;
27454 /* Fall through. */
27456 case BFD_RELOC_ARM_THUMB_MOVT
:
27457 if (fixp
->fx_pcrel
)
27459 code
= BFD_RELOC_ARM_THUMB_MOVT_PCREL
;
27462 /* Fall through. */
27464 case BFD_RELOC_NONE
:
27465 case BFD_RELOC_ARM_PCREL_BRANCH
:
27466 case BFD_RELOC_ARM_PCREL_BLX
:
27467 case BFD_RELOC_RVA
:
27468 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
27469 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
27470 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
27471 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
27472 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
27473 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
27474 case BFD_RELOC_VTABLE_ENTRY
:
27475 case BFD_RELOC_VTABLE_INHERIT
:
27477 case BFD_RELOC_32_SECREL
:
27479 code
= fixp
->fx_r_type
;
27482 case BFD_RELOC_THUMB_PCREL_BLX
:
27484 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
27485 code
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
27488 code
= BFD_RELOC_THUMB_PCREL_BLX
;
27491 case BFD_RELOC_ARM_LITERAL
:
27492 case BFD_RELOC_ARM_HWLITERAL
:
27493 /* If this is called then the a literal has
27494 been referenced across a section boundary. */
27495 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27496 _("literal referenced across section boundary"));
27500 case BFD_RELOC_ARM_TLS_CALL
:
27501 case BFD_RELOC_ARM_THM_TLS_CALL
:
27502 case BFD_RELOC_ARM_TLS_DESCSEQ
:
27503 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
27504 case BFD_RELOC_ARM_GOT32
:
27505 case BFD_RELOC_ARM_GOTOFF
:
27506 case BFD_RELOC_ARM_GOT_PREL
:
27507 case BFD_RELOC_ARM_PLT32
:
27508 case BFD_RELOC_ARM_TARGET1
:
27509 case BFD_RELOC_ARM_ROSEGREL32
:
27510 case BFD_RELOC_ARM_SBREL32
:
27511 case BFD_RELOC_ARM_PREL31
:
27512 case BFD_RELOC_ARM_TARGET2
:
27513 case BFD_RELOC_ARM_TLS_LDO32
:
27514 case BFD_RELOC_ARM_PCREL_CALL
:
27515 case BFD_RELOC_ARM_PCREL_JUMP
:
27516 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
27517 case BFD_RELOC_ARM_ALU_PC_G0
:
27518 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
27519 case BFD_RELOC_ARM_ALU_PC_G1
:
27520 case BFD_RELOC_ARM_ALU_PC_G2
:
27521 case BFD_RELOC_ARM_LDR_PC_G0
:
27522 case BFD_RELOC_ARM_LDR_PC_G1
:
27523 case BFD_RELOC_ARM_LDR_PC_G2
:
27524 case BFD_RELOC_ARM_LDRS_PC_G0
:
27525 case BFD_RELOC_ARM_LDRS_PC_G1
:
27526 case BFD_RELOC_ARM_LDRS_PC_G2
:
27527 case BFD_RELOC_ARM_LDC_PC_G0
:
27528 case BFD_RELOC_ARM_LDC_PC_G1
:
27529 case BFD_RELOC_ARM_LDC_PC_G2
:
27530 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
27531 case BFD_RELOC_ARM_ALU_SB_G0
:
27532 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
27533 case BFD_RELOC_ARM_ALU_SB_G1
:
27534 case BFD_RELOC_ARM_ALU_SB_G2
:
27535 case BFD_RELOC_ARM_LDR_SB_G0
:
27536 case BFD_RELOC_ARM_LDR_SB_G1
:
27537 case BFD_RELOC_ARM_LDR_SB_G2
:
27538 case BFD_RELOC_ARM_LDRS_SB_G0
:
27539 case BFD_RELOC_ARM_LDRS_SB_G1
:
27540 case BFD_RELOC_ARM_LDRS_SB_G2
:
27541 case BFD_RELOC_ARM_LDC_SB_G0
:
27542 case BFD_RELOC_ARM_LDC_SB_G1
:
27543 case BFD_RELOC_ARM_LDC_SB_G2
:
27544 case BFD_RELOC_ARM_V4BX
:
27545 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
:
27546 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
:
27547 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
:
27548 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
:
27549 case BFD_RELOC_ARM_GOTFUNCDESC
:
27550 case BFD_RELOC_ARM_GOTOFFFUNCDESC
:
27551 case BFD_RELOC_ARM_FUNCDESC
:
27552 case BFD_RELOC_ARM_THUMB_BF17
:
27553 case BFD_RELOC_ARM_THUMB_BF19
:
27554 case BFD_RELOC_ARM_THUMB_BF13
:
27555 code
= fixp
->fx_r_type
;
27558 case BFD_RELOC_ARM_TLS_GOTDESC
:
27559 case BFD_RELOC_ARM_TLS_GD32
:
27560 case BFD_RELOC_ARM_TLS_GD32_FDPIC
:
27561 case BFD_RELOC_ARM_TLS_LE32
:
27562 case BFD_RELOC_ARM_TLS_IE32
:
27563 case BFD_RELOC_ARM_TLS_IE32_FDPIC
:
27564 case BFD_RELOC_ARM_TLS_LDM32
:
27565 case BFD_RELOC_ARM_TLS_LDM32_FDPIC
:
27566 /* BFD will include the symbol's address in the addend.
27567 But we don't want that, so subtract it out again here. */
27568 if (!S_IS_COMMON (fixp
->fx_addsy
))
27569 reloc
->addend
-= (*reloc
->sym_ptr_ptr
)->value
;
27570 code
= fixp
->fx_r_type
;
27574 case BFD_RELOC_ARM_IMMEDIATE
:
27575 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27576 _("internal relocation (type: IMMEDIATE) not fixed up"));
27579 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
27580 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27581 _("ADRL used for a symbol not defined in the same file"));
27584 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
27585 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
27586 case BFD_RELOC_ARM_THUMB_LOOP12
:
27587 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27588 _("%s used for a symbol not defined in the same file"),
27589 bfd_get_reloc_code_name (fixp
->fx_r_type
));
27592 case BFD_RELOC_ARM_OFFSET_IMM
:
27593 if (section
->use_rela_p
)
27595 code
= fixp
->fx_r_type
;
27599 if (fixp
->fx_addsy
!= NULL
27600 && !S_IS_DEFINED (fixp
->fx_addsy
)
27601 && S_IS_LOCAL (fixp
->fx_addsy
))
27603 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27604 _("undefined local label `%s'"),
27605 S_GET_NAME (fixp
->fx_addsy
));
27609 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27610 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
27617 switch (fixp
->fx_r_type
)
27619 case BFD_RELOC_NONE
: type
= "NONE"; break;
27620 case BFD_RELOC_ARM_OFFSET_IMM8
: type
= "OFFSET_IMM8"; break;
27621 case BFD_RELOC_ARM_SHIFT_IMM
: type
= "SHIFT_IMM"; break;
27622 case BFD_RELOC_ARM_SMC
: type
= "SMC"; break;
27623 case BFD_RELOC_ARM_SWI
: type
= "SWI"; break;
27624 case BFD_RELOC_ARM_MULTI
: type
= "MULTI"; break;
27625 case BFD_RELOC_ARM_CP_OFF_IMM
: type
= "CP_OFF_IMM"; break;
27626 case BFD_RELOC_ARM_T32_OFFSET_IMM
: type
= "T32_OFFSET_IMM"; break;
27627 case BFD_RELOC_ARM_T32_CP_OFF_IMM
: type
= "T32_CP_OFF_IMM"; break;
27628 case BFD_RELOC_ARM_THUMB_ADD
: type
= "THUMB_ADD"; break;
27629 case BFD_RELOC_ARM_THUMB_SHIFT
: type
= "THUMB_SHIFT"; break;
27630 case BFD_RELOC_ARM_THUMB_IMM
: type
= "THUMB_IMM"; break;
27631 case BFD_RELOC_ARM_THUMB_OFFSET
: type
= "THUMB_OFFSET"; break;
27632 default: type
= _("<unknown>"); break;
27634 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27635 _("cannot represent %s relocation in this object file format"),
27642 if ((code
== BFD_RELOC_32_PCREL
|| code
== BFD_RELOC_32
)
27644 && fixp
->fx_addsy
== GOT_symbol
)
27646 code
= BFD_RELOC_ARM_GOTPC
;
27647 reloc
->addend
= fixp
->fx_offset
= reloc
->address
;
27651 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
27653 if (reloc
->howto
== NULL
)
27655 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27656 _("cannot represent %s relocation in this object file format"),
27657 bfd_get_reloc_code_name (code
));
27661 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
27662 vtable entry to be used in the relocation's section offset. */
27663 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
27664 reloc
->address
= fixp
->fx_offset
;
27669 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
27672 cons_fix_new_arm (fragS
* frag
,
27676 bfd_reloc_code_real_type reloc
)
27681 FIXME: @@ Should look at CPU word size. */
27685 reloc
= BFD_RELOC_8
;
27688 reloc
= BFD_RELOC_16
;
27692 reloc
= BFD_RELOC_32
;
27695 reloc
= BFD_RELOC_64
;
27700 if (exp
->X_op
== O_secrel
)
27702 exp
->X_op
= O_symbol
;
27703 reloc
= BFD_RELOC_32_SECREL
;
27707 fix_new_exp (frag
, where
, size
, exp
, pcrel
, reloc
);
27710 #if defined (OBJ_COFF)
27712 arm_validate_fix (fixS
* fixP
)
27714 /* If the destination of the branch is a defined symbol which does not have
27715 the THUMB_FUNC attribute, then we must be calling a function which has
27716 the (interfacearm) attribute. We look for the Thumb entry point to that
27717 function and change the branch to refer to that function instead. */
27718 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BRANCH23
27719 && fixP
->fx_addsy
!= NULL
27720 && S_IS_DEFINED (fixP
->fx_addsy
)
27721 && ! THUMB_IS_FUNC (fixP
->fx_addsy
))
27723 fixP
->fx_addsy
= find_real_start (fixP
->fx_addsy
);
27730 arm_force_relocation (struct fix
* fixp
)
27732 #if defined (OBJ_COFF) && defined (TE_PE)
27733 if (fixp
->fx_r_type
== BFD_RELOC_RVA
)
27737 /* In case we have a call or a branch to a function in ARM ISA mode from
27738 a thumb function or vice-versa force the relocation. These relocations
27739 are cleared off for some cores that might have blx and simple transformations
27743 switch (fixp
->fx_r_type
)
27745 case BFD_RELOC_ARM_PCREL_JUMP
:
27746 case BFD_RELOC_ARM_PCREL_CALL
:
27747 case BFD_RELOC_THUMB_PCREL_BLX
:
27748 if (THUMB_IS_FUNC (fixp
->fx_addsy
))
27752 case BFD_RELOC_ARM_PCREL_BLX
:
27753 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
27754 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
27755 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
27756 if (ARM_IS_FUNC (fixp
->fx_addsy
))
27765 /* Resolve these relocations even if the symbol is extern or weak.
27766 Technically this is probably wrong due to symbol preemption.
27767 In practice these relocations do not have enough range to be useful
27768 at dynamic link time, and some code (e.g. in the Linux kernel)
27769 expects these references to be resolved. */
27770 if (fixp
->fx_r_type
== BFD_RELOC_ARM_IMMEDIATE
27771 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM
27772 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM8
27773 || fixp
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
27774 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
27775 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
27776 || fixp
->fx_r_type
== BFD_RELOC_ARM_THUMB_OFFSET
27777 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
27778 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
27779 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMM12
27780 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_OFFSET_IMM
27781 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_PC12
27782 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM
27783 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
)
27786 /* Always leave these relocations for the linker. */
27787 if ((fixp
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
27788 && fixp
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
27789 || fixp
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
27792 /* Always generate relocations against function symbols. */
27793 if (fixp
->fx_r_type
== BFD_RELOC_32
27795 && (symbol_get_bfdsym (fixp
->fx_addsy
)->flags
& BSF_FUNCTION
))
27798 return generic_force_reloc (fixp
);
27801 #if defined (OBJ_ELF) || defined (OBJ_COFF)
27802 /* Relocations against function names must be left unadjusted,
27803 so that the linker can use this information to generate interworking
27804 stubs. The MIPS version of this function
27805 also prevents relocations that are mips-16 specific, but I do not
27806 know why it does this.
27809 There is one other problem that ought to be addressed here, but
27810 which currently is not: Taking the address of a label (rather
27811 than a function) and then later jumping to that address. Such
27812 addresses also ought to have their bottom bit set (assuming that
27813 they reside in Thumb code), but at the moment they will not. */
27816 arm_fix_adjustable (fixS
* fixP
)
27818 if (fixP
->fx_addsy
== NULL
)
27821 /* Preserve relocations against symbols with function type. */
27822 if (symbol_get_bfdsym (fixP
->fx_addsy
)->flags
& BSF_FUNCTION
)
27825 if (THUMB_IS_FUNC (fixP
->fx_addsy
)
27826 && fixP
->fx_subsy
== NULL
)
27829 /* We need the symbol name for the VTABLE entries. */
27830 if ( fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
27831 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
27834 /* Don't allow symbols to be discarded on GOT related relocs. */
27835 if (fixP
->fx_r_type
== BFD_RELOC_ARM_PLT32
27836 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOT32
27837 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOTOFF
27838 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32
27839 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32_FDPIC
27840 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LE32
27841 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32
27842 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32_FDPIC
27843 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32
27844 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32_FDPIC
27845 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDO32
27846 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GOTDESC
27847 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_CALL
27848 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_CALL
27849 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_DESCSEQ
27850 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_DESCSEQ
27851 || fixP
->fx_r_type
== BFD_RELOC_ARM_TARGET2
)
27854 /* Similarly for group relocations. */
27855 if ((fixP
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
27856 && fixP
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
27857 || fixP
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
27860 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
27861 if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW
27862 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
27863 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW_PCREL
27864 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT_PCREL
27865 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
27866 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
27867 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW_PCREL
27868 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT_PCREL
)
27871 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
27872 offsets, so keep these symbols. */
27873 if (fixP
->fx_r_type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
27874 && fixP
->fx_r_type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
)
27879 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
27883 elf32_arm_target_format (void)
27886 return (target_big_endian
27887 ? "elf32-bigarm-symbian"
27888 : "elf32-littlearm-symbian");
27889 #elif defined (TE_VXWORKS)
27890 return (target_big_endian
27891 ? "elf32-bigarm-vxworks"
27892 : "elf32-littlearm-vxworks");
27893 #elif defined (TE_NACL)
27894 return (target_big_endian
27895 ? "elf32-bigarm-nacl"
27896 : "elf32-littlearm-nacl");
27900 if (target_big_endian
)
27901 return "elf32-bigarm-fdpic";
27903 return "elf32-littlearm-fdpic";
27907 if (target_big_endian
)
27908 return "elf32-bigarm";
27910 return "elf32-littlearm";
27916 armelf_frob_symbol (symbolS
* symp
,
27919 elf_frob_symbol (symp
, puntp
);
27923 /* MD interface: Finalization. */
27928 literal_pool
* pool
;
27930 /* Ensure that all the predication blocks are properly closed. */
27931 check_pred_blocks_finished ();
27933 for (pool
= list_of_pools
; pool
; pool
= pool
->next
)
27935 /* Put it at the end of the relevant section. */
27936 subseg_set (pool
->section
, pool
->sub_section
);
27938 arm_elf_change_section ();
27945 /* Remove any excess mapping symbols generated for alignment frags in
27946 SEC. We may have created a mapping symbol before a zero byte
27947 alignment; remove it if there's a mapping symbol after the
27950 check_mapping_symbols (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
,
27951 void *dummy ATTRIBUTE_UNUSED
)
27953 segment_info_type
*seginfo
= seg_info (sec
);
27956 if (seginfo
== NULL
|| seginfo
->frchainP
== NULL
)
27959 for (fragp
= seginfo
->frchainP
->frch_root
;
27961 fragp
= fragp
->fr_next
)
27963 symbolS
*sym
= fragp
->tc_frag_data
.last_map
;
27964 fragS
*next
= fragp
->fr_next
;
27966 /* Variable-sized frags have been converted to fixed size by
27967 this point. But if this was variable-sized to start with,
27968 there will be a fixed-size frag after it. So don't handle
27970 if (sym
== NULL
|| next
== NULL
)
27973 if (S_GET_VALUE (sym
) < next
->fr_address
)
27974 /* Not at the end of this frag. */
27976 know (S_GET_VALUE (sym
) == next
->fr_address
);
27980 if (next
->tc_frag_data
.first_map
!= NULL
)
27982 /* Next frag starts with a mapping symbol. Discard this
27984 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
27988 if (next
->fr_next
== NULL
)
27990 /* This mapping symbol is at the end of the section. Discard
27992 know (next
->fr_fix
== 0 && next
->fr_var
== 0);
27993 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
27997 /* As long as we have empty frags without any mapping symbols,
27999 /* If the next frag is non-empty and does not start with a
28000 mapping symbol, then this mapping symbol is required. */
28001 if (next
->fr_address
!= next
->fr_next
->fr_address
)
28004 next
= next
->fr_next
;
28006 while (next
!= NULL
);
28011 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28015 arm_adjust_symtab (void)
28020 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
28022 if (ARM_IS_THUMB (sym
))
28024 if (THUMB_IS_FUNC (sym
))
28026 /* Mark the symbol as a Thumb function. */
28027 if ( S_GET_STORAGE_CLASS (sym
) == C_STAT
28028 || S_GET_STORAGE_CLASS (sym
) == C_LABEL
) /* This can happen! */
28029 S_SET_STORAGE_CLASS (sym
, C_THUMBSTATFUNC
);
28031 else if (S_GET_STORAGE_CLASS (sym
) == C_EXT
)
28032 S_SET_STORAGE_CLASS (sym
, C_THUMBEXTFUNC
);
28034 as_bad (_("%s: unexpected function type: %d"),
28035 S_GET_NAME (sym
), S_GET_STORAGE_CLASS (sym
));
28037 else switch (S_GET_STORAGE_CLASS (sym
))
28040 S_SET_STORAGE_CLASS (sym
, C_THUMBEXT
);
28043 S_SET_STORAGE_CLASS (sym
, C_THUMBSTAT
);
28046 S_SET_STORAGE_CLASS (sym
, C_THUMBLABEL
);
28054 if (ARM_IS_INTERWORK (sym
))
28055 coffsymbol (symbol_get_bfdsym (sym
))->native
->u
.syment
.n_flags
= 0xFF;
28062 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
28064 if (ARM_IS_THUMB (sym
))
28066 elf_symbol_type
* elf_sym
;
28068 elf_sym
= elf_symbol (symbol_get_bfdsym (sym
));
28069 bind
= ELF_ST_BIND (elf_sym
->internal_elf_sym
.st_info
);
28071 if (! bfd_is_arm_special_symbol_name (elf_sym
->symbol
.name
,
28072 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
28074 /* If it's a .thumb_func, declare it as so,
28075 otherwise tag label as .code 16. */
28076 if (THUMB_IS_FUNC (sym
))
28077 ARM_SET_SYM_BRANCH_TYPE (elf_sym
->internal_elf_sym
.st_target_internal
,
28078 ST_BRANCH_TO_THUMB
);
28079 else if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
28080 elf_sym
->internal_elf_sym
.st_info
=
28081 ELF_ST_INFO (bind
, STT_ARM_16BIT
);
28086 /* Remove any overlapping mapping symbols generated by alignment frags. */
28087 bfd_map_over_sections (stdoutput
, check_mapping_symbols
, (char *) 0);
28088 /* Now do generic ELF adjustments. */
28089 elf_adjust_symtab ();
28093 /* MD interface: Initialization. */
28096 set_constant_flonums (void)
28100 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
28101 if (atof_ieee ((char *) fp_const
[i
], 'x', fp_values
[i
]) == NULL
)
28105 /* Auto-select Thumb mode if it's the only available instruction set for the
28106 given architecture. */
28109 autoselect_thumb_from_cpu_variant (void)
28111 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
28112 opcode_select (16);
28121 if ( (arm_ops_hsh
= hash_new ()) == NULL
28122 || (arm_cond_hsh
= hash_new ()) == NULL
28123 || (arm_vcond_hsh
= hash_new ()) == NULL
28124 || (arm_shift_hsh
= hash_new ()) == NULL
28125 || (arm_psr_hsh
= hash_new ()) == NULL
28126 || (arm_v7m_psr_hsh
= hash_new ()) == NULL
28127 || (arm_reg_hsh
= hash_new ()) == NULL
28128 || (arm_reloc_hsh
= hash_new ()) == NULL
28129 || (arm_barrier_opt_hsh
= hash_new ()) == NULL
)
28130 as_fatal (_("virtual memory exhausted"));
28132 for (i
= 0; i
< sizeof (insns
) / sizeof (struct asm_opcode
); i
++)
28133 hash_insert (arm_ops_hsh
, insns
[i
].template_name
, (void *) (insns
+ i
));
28134 for (i
= 0; i
< sizeof (conds
) / sizeof (struct asm_cond
); i
++)
28135 hash_insert (arm_cond_hsh
, conds
[i
].template_name
, (void *) (conds
+ i
));
28136 for (i
= 0; i
< sizeof (vconds
) / sizeof (struct asm_cond
); i
++)
28137 hash_insert (arm_vcond_hsh
, vconds
[i
].template_name
, (void *) (vconds
+ i
));
28138 for (i
= 0; i
< sizeof (shift_names
) / sizeof (struct asm_shift_name
); i
++)
28139 hash_insert (arm_shift_hsh
, shift_names
[i
].name
, (void *) (shift_names
+ i
));
28140 for (i
= 0; i
< sizeof (psrs
) / sizeof (struct asm_psr
); i
++)
28141 hash_insert (arm_psr_hsh
, psrs
[i
].template_name
, (void *) (psrs
+ i
));
28142 for (i
= 0; i
< sizeof (v7m_psrs
) / sizeof (struct asm_psr
); i
++)
28143 hash_insert (arm_v7m_psr_hsh
, v7m_psrs
[i
].template_name
,
28144 (void *) (v7m_psrs
+ i
));
28145 for (i
= 0; i
< sizeof (reg_names
) / sizeof (struct reg_entry
); i
++)
28146 hash_insert (arm_reg_hsh
, reg_names
[i
].name
, (void *) (reg_names
+ i
));
28148 i
< sizeof (barrier_opt_names
) / sizeof (struct asm_barrier_opt
);
28150 hash_insert (arm_barrier_opt_hsh
, barrier_opt_names
[i
].template_name
,
28151 (void *) (barrier_opt_names
+ i
));
28153 for (i
= 0; i
< ARRAY_SIZE (reloc_names
); i
++)
28155 struct reloc_entry
* entry
= reloc_names
+ i
;
28157 if (arm_is_eabi() && entry
->reloc
== BFD_RELOC_ARM_PLT32
)
28158 /* This makes encode_branch() use the EABI versions of this relocation. */
28159 entry
->reloc
= BFD_RELOC_UNUSED
;
28161 hash_insert (arm_reloc_hsh
, entry
->name
, (void *) entry
);
28165 set_constant_flonums ();
28167 /* Set the cpu variant based on the command-line options. We prefer
28168 -mcpu= over -march= if both are set (as for GCC); and we prefer
28169 -mfpu= over any other way of setting the floating point unit.
28170 Use of legacy options with new options are faulted. */
28173 if (mcpu_cpu_opt
|| march_cpu_opt
)
28174 as_bad (_("use of old and new-style options to set CPU type"));
28176 selected_arch
= *legacy_cpu
;
28178 else if (mcpu_cpu_opt
)
28180 selected_arch
= *mcpu_cpu_opt
;
28181 selected_ext
= *mcpu_ext_opt
;
28183 else if (march_cpu_opt
)
28185 selected_arch
= *march_cpu_opt
;
28186 selected_ext
= *march_ext_opt
;
28188 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
28193 as_bad (_("use of old and new-style options to set FPU type"));
28195 selected_fpu
= *legacy_fpu
;
28198 selected_fpu
= *mfpu_opt
;
28201 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28202 || defined (TE_NetBSD) || defined (TE_VXWORKS))
28203 /* Some environments specify a default FPU. If they don't, infer it
28204 from the processor. */
28206 selected_fpu
= *mcpu_fpu_opt
;
28207 else if (march_fpu_opt
)
28208 selected_fpu
= *march_fpu_opt
;
28210 selected_fpu
= fpu_default
;
28214 if (ARM_FEATURE_ZERO (selected_fpu
))
28216 if (!no_cpu_selected ())
28217 selected_fpu
= fpu_default
;
28219 selected_fpu
= fpu_arch_fpa
;
28223 if (ARM_FEATURE_ZERO (selected_arch
))
28225 selected_arch
= cpu_default
;
28226 selected_cpu
= selected_arch
;
28228 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
28230 /* Autodection of feature mode: allow all features in cpu_variant but leave
28231 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28232 after all instruction have been processed and we can decide what CPU
28233 should be selected. */
28234 if (ARM_FEATURE_ZERO (selected_arch
))
28235 ARM_MERGE_FEATURE_SETS (cpu_variant
, arm_arch_any
, selected_fpu
);
28237 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
28240 autoselect_thumb_from_cpu_variant ();
28242 arm_arch_used
= thumb_arch_used
= arm_arch_none
;
28244 #if defined OBJ_COFF || defined OBJ_ELF
28246 unsigned int flags
= 0;
28248 #if defined OBJ_ELF
28249 flags
= meabi_flags
;
28251 switch (meabi_flags
)
28253 case EF_ARM_EABI_UNKNOWN
:
28255 /* Set the flags in the private structure. */
28256 if (uses_apcs_26
) flags
|= F_APCS26
;
28257 if (support_interwork
) flags
|= F_INTERWORK
;
28258 if (uses_apcs_float
) flags
|= F_APCS_FLOAT
;
28259 if (pic_code
) flags
|= F_PIC
;
28260 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_any_hard
))
28261 flags
|= F_SOFT_FLOAT
;
28263 switch (mfloat_abi_opt
)
28265 case ARM_FLOAT_ABI_SOFT
:
28266 case ARM_FLOAT_ABI_SOFTFP
:
28267 flags
|= F_SOFT_FLOAT
;
28270 case ARM_FLOAT_ABI_HARD
:
28271 if (flags
& F_SOFT_FLOAT
)
28272 as_bad (_("hard-float conflicts with specified fpu"));
28276 /* Using pure-endian doubles (even if soft-float). */
28277 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
28278 flags
|= F_VFP_FLOAT
;
28280 #if defined OBJ_ELF
28281 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_maverick
))
28282 flags
|= EF_ARM_MAVERICK_FLOAT
;
28285 case EF_ARM_EABI_VER4
:
28286 case EF_ARM_EABI_VER5
:
28287 /* No additional flags to set. */
28294 bfd_set_private_flags (stdoutput
, flags
);
28296 /* We have run out flags in the COFF header to encode the
28297 status of ATPCS support, so instead we create a dummy,
28298 empty, debug section called .arm.atpcs. */
28303 sec
= bfd_make_section (stdoutput
, ".arm.atpcs");
28307 bfd_set_section_flags
28308 (stdoutput
, sec
, SEC_READONLY
| SEC_DEBUGGING
/* | SEC_HAS_CONTENTS */);
28309 bfd_set_section_size (stdoutput
, sec
, 0);
28310 bfd_set_section_contents (stdoutput
, sec
, NULL
, 0, 0);
28316 /* Record the CPU type as well. */
28317 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
))
28318 mach
= bfd_mach_arm_iWMMXt2
;
28319 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt
))
28320 mach
= bfd_mach_arm_iWMMXt
;
28321 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_xscale
))
28322 mach
= bfd_mach_arm_XScale
;
28323 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_maverick
))
28324 mach
= bfd_mach_arm_ep9312
;
28325 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5e
))
28326 mach
= bfd_mach_arm_5TE
;
28327 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5
))
28329 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
28330 mach
= bfd_mach_arm_5T
;
28332 mach
= bfd_mach_arm_5
;
28334 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4
))
28336 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
28337 mach
= bfd_mach_arm_4T
;
28339 mach
= bfd_mach_arm_4
;
28341 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3m
))
28342 mach
= bfd_mach_arm_3M
;
28343 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3
))
28344 mach
= bfd_mach_arm_3
;
28345 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2s
))
28346 mach
= bfd_mach_arm_2a
;
28347 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2
))
28348 mach
= bfd_mach_arm_2
;
28350 mach
= bfd_mach_arm_unknown
;
28352 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, mach
);
28355 /* Command line processing. */
28358 Invocation line includes a switch not recognized by the base assembler.
28359 See if it's a processor-specific option.
28361 This routine is somewhat complicated by the need for backwards
28362 compatibility (since older releases of gcc can't be changed).
28363 The new options try to make the interface as compatible as
28366 New options (supported) are:
28368 -mcpu=<cpu name> Assemble for selected processor
28369 -march=<architecture name> Assemble for selected architecture
28370 -mfpu=<fpu architecture> Assemble for selected FPU.
28371 -EB/-mbig-endian Big-endian
28372 -EL/-mlittle-endian Little-endian
28373 -k Generate PIC code
28374 -mthumb Start in Thumb mode
28375 -mthumb-interwork Code supports ARM/Thumb interworking
28377 -m[no-]warn-deprecated Warn about deprecated features
28378 -m[no-]warn-syms Warn when symbols match instructions
28380 For now we will also provide support for:
28382 -mapcs-32 32-bit Program counter
28383 -mapcs-26 26-bit Program counter
28384 -macps-float Floats passed in FP registers
28385 -mapcs-reentrant Reentrant code
28387 (sometime these will probably be replaced with -mapcs=<list of options>
28388 and -matpcs=<list of options>)
28390 The remaining options are only supported for back-wards compatibility.
28391 Cpu variants, the arm part is optional:
28392 -m[arm]1 Currently not supported.
28393 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28394 -m[arm]3 Arm 3 processor
28395 -m[arm]6[xx], Arm 6 processors
28396 -m[arm]7[xx][t][[d]m] Arm 7 processors
28397 -m[arm]8[10] Arm 8 processors
28398 -m[arm]9[20][tdmi] Arm 9 processors
28399 -mstrongarm[110[0]] StrongARM processors
28400 -mxscale XScale processors
28401 -m[arm]v[2345[t[e]]] Arm architectures
28402 -mall All (except the ARM1)
28404 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28405 -mfpe-old (No float load/store multiples)
28406 -mvfpxd VFP Single precision
28408 -mno-fpu Disable all floating point instructions
28410 The following CPU names are recognized:
28411 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28412 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28413 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28414 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28415 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28416 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28417 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
28421 const char * md_shortopts
= "m:k";
28423 #ifdef ARM_BI_ENDIAN
28424 #define OPTION_EB (OPTION_MD_BASE + 0)
28425 #define OPTION_EL (OPTION_MD_BASE + 1)
28427 #if TARGET_BYTES_BIG_ENDIAN
28428 #define OPTION_EB (OPTION_MD_BASE + 0)
28430 #define OPTION_EL (OPTION_MD_BASE + 1)
28433 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
28434 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
28436 struct option md_longopts
[] =
28439 {"EB", no_argument
, NULL
, OPTION_EB
},
28442 {"EL", no_argument
, NULL
, OPTION_EL
},
28444 {"fix-v4bx", no_argument
, NULL
, OPTION_FIX_V4BX
},
28446 {"fdpic", no_argument
, NULL
, OPTION_FDPIC
},
28448 {NULL
, no_argument
, NULL
, 0}
28451 size_t md_longopts_size
= sizeof (md_longopts
);
28453 struct arm_option_table
28455 const char * option
; /* Option name to match. */
28456 const char * help
; /* Help information. */
28457 int * var
; /* Variable to change. */
28458 int value
; /* What to change it to. */
28459 const char * deprecated
; /* If non-null, print this message. */
28462 struct arm_option_table arm_opts
[] =
28464 {"k", N_("generate PIC code"), &pic_code
, 1, NULL
},
28465 {"mthumb", N_("assemble Thumb code"), &thumb_mode
, 1, NULL
},
28466 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28467 &support_interwork
, 1, NULL
},
28468 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26
, 0, NULL
},
28469 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26
, 1, NULL
},
28470 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float
,
28472 {"mapcs-reentrant", N_("re-entrant code"), &pic_code
, 1, NULL
},
28473 {"matpcs", N_("code is ATPCS conformant"), &atpcs
, 1, NULL
},
28474 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian
, 1, NULL
},
28475 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian
, 0,
28478 /* These are recognized by the assembler, but have no affect on code. */
28479 {"mapcs-frame", N_("use frame pointer"), NULL
, 0, NULL
},
28480 {"mapcs-stack-check", N_("use stack size checking"), NULL
, 0, NULL
},
28482 {"mwarn-deprecated", NULL
, &warn_on_deprecated
, 1, NULL
},
28483 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28484 &warn_on_deprecated
, 0, NULL
},
28485 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms
), TRUE
, NULL
},
28486 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms
), FALSE
, NULL
},
28487 {NULL
, NULL
, NULL
, 0, NULL
}
28490 struct arm_legacy_option_table
28492 const char * option
; /* Option name to match. */
28493 const arm_feature_set
** var
; /* Variable to change. */
28494 const arm_feature_set value
; /* What to change it to. */
28495 const char * deprecated
; /* If non-null, print this message. */
28498 const struct arm_legacy_option_table arm_legacy_opts
[] =
28500 /* DON'T add any new processors to this list -- we want the whole list
28501 to go away... Add them to the processors table instead. */
28502 {"marm1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
28503 {"m1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
28504 {"marm2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
28505 {"m2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
28506 {"marm250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
28507 {"m250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
28508 {"marm3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
28509 {"m3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
28510 {"marm6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
28511 {"m6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
28512 {"marm600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
28513 {"m600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
28514 {"marm610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
28515 {"m610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
28516 {"marm620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
28517 {"m620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
28518 {"marm7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
28519 {"m7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
28520 {"marm70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
28521 {"m70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
28522 {"marm700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
28523 {"m700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
28524 {"marm700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
28525 {"m700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
28526 {"marm710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
28527 {"m710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
28528 {"marm710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
28529 {"m710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
28530 {"marm720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
28531 {"m720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
28532 {"marm7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
28533 {"m7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
28534 {"marm7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
28535 {"m7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
28536 {"marm7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
28537 {"m7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
28538 {"marm7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
28539 {"m7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
28540 {"marm7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
28541 {"m7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
28542 {"marm7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
28543 {"m7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
28544 {"marm7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
28545 {"m7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
28546 {"marm7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
28547 {"m7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
28548 {"marm7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
28549 {"m7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
28550 {"marm7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
28551 {"m7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
28552 {"marm710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
28553 {"m710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
28554 {"marm720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
28555 {"m720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
28556 {"marm740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
28557 {"m740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
28558 {"marm8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
28559 {"m8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
28560 {"marm810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
28561 {"m810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
28562 {"marm9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
28563 {"m9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
28564 {"marm9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
28565 {"m9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
28566 {"marm920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
28567 {"m920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
28568 {"marm940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
28569 {"m940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
28570 {"mstrongarm", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=strongarm")},
28571 {"mstrongarm110", &legacy_cpu
, ARM_ARCH_V4
,
28572 N_("use -mcpu=strongarm110")},
28573 {"mstrongarm1100", &legacy_cpu
, ARM_ARCH_V4
,
28574 N_("use -mcpu=strongarm1100")},
28575 {"mstrongarm1110", &legacy_cpu
, ARM_ARCH_V4
,
28576 N_("use -mcpu=strongarm1110")},
28577 {"mxscale", &legacy_cpu
, ARM_ARCH_XSCALE
, N_("use -mcpu=xscale")},
28578 {"miwmmxt", &legacy_cpu
, ARM_ARCH_IWMMXT
, N_("use -mcpu=iwmmxt")},
28579 {"mall", &legacy_cpu
, ARM_ANY
, N_("use -mcpu=all")},
28581 /* Architecture variants -- don't add any more to this list either. */
28582 {"mv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
28583 {"marmv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
28584 {"mv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
28585 {"marmv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
28586 {"mv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
28587 {"marmv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
28588 {"mv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
28589 {"marmv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
28590 {"mv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
28591 {"marmv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
28592 {"mv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
28593 {"marmv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
28594 {"mv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
28595 {"marmv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
28596 {"mv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
28597 {"marmv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
28598 {"mv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
28599 {"marmv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
28601 /* Floating point variants -- don't add any more to this list either. */
28602 {"mfpe-old", &legacy_fpu
, FPU_ARCH_FPE
, N_("use -mfpu=fpe")},
28603 {"mfpa10", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa10")},
28604 {"mfpa11", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa11")},
28605 {"mno-fpu", &legacy_fpu
, ARM_ARCH_NONE
,
28606 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
28608 {NULL
, NULL
, ARM_ARCH_NONE
, NULL
}
28611 struct arm_cpu_option_table
28615 const arm_feature_set value
;
28616 const arm_feature_set ext
;
28617 /* For some CPUs we assume an FPU unless the user explicitly sets
28619 const arm_feature_set default_fpu
;
28620 /* The canonical name of the CPU, or NULL to use NAME converted to upper
28622 const char * canonical_name
;
28625 /* This list should, at a minimum, contain all the cpu names
28626 recognized by GCC. */
28627 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
28629 static const struct arm_cpu_option_table arm_cpus
[] =
28631 ARM_CPU_OPT ("all", NULL
, ARM_ANY
,
28634 ARM_CPU_OPT ("arm1", NULL
, ARM_ARCH_V1
,
28637 ARM_CPU_OPT ("arm2", NULL
, ARM_ARCH_V2
,
28640 ARM_CPU_OPT ("arm250", NULL
, ARM_ARCH_V2S
,
28643 ARM_CPU_OPT ("arm3", NULL
, ARM_ARCH_V2S
,
28646 ARM_CPU_OPT ("arm6", NULL
, ARM_ARCH_V3
,
28649 ARM_CPU_OPT ("arm60", NULL
, ARM_ARCH_V3
,
28652 ARM_CPU_OPT ("arm600", NULL
, ARM_ARCH_V3
,
28655 ARM_CPU_OPT ("arm610", NULL
, ARM_ARCH_V3
,
28658 ARM_CPU_OPT ("arm620", NULL
, ARM_ARCH_V3
,
28661 ARM_CPU_OPT ("arm7", NULL
, ARM_ARCH_V3
,
28664 ARM_CPU_OPT ("arm7m", NULL
, ARM_ARCH_V3M
,
28667 ARM_CPU_OPT ("arm7d", NULL
, ARM_ARCH_V3
,
28670 ARM_CPU_OPT ("arm7dm", NULL
, ARM_ARCH_V3M
,
28673 ARM_CPU_OPT ("arm7di", NULL
, ARM_ARCH_V3
,
28676 ARM_CPU_OPT ("arm7dmi", NULL
, ARM_ARCH_V3M
,
28679 ARM_CPU_OPT ("arm70", NULL
, ARM_ARCH_V3
,
28682 ARM_CPU_OPT ("arm700", NULL
, ARM_ARCH_V3
,
28685 ARM_CPU_OPT ("arm700i", NULL
, ARM_ARCH_V3
,
28688 ARM_CPU_OPT ("arm710", NULL
, ARM_ARCH_V3
,
28691 ARM_CPU_OPT ("arm710t", NULL
, ARM_ARCH_V4T
,
28694 ARM_CPU_OPT ("arm720", NULL
, ARM_ARCH_V3
,
28697 ARM_CPU_OPT ("arm720t", NULL
, ARM_ARCH_V4T
,
28700 ARM_CPU_OPT ("arm740t", NULL
, ARM_ARCH_V4T
,
28703 ARM_CPU_OPT ("arm710c", NULL
, ARM_ARCH_V3
,
28706 ARM_CPU_OPT ("arm7100", NULL
, ARM_ARCH_V3
,
28709 ARM_CPU_OPT ("arm7500", NULL
, ARM_ARCH_V3
,
28712 ARM_CPU_OPT ("arm7500fe", NULL
, ARM_ARCH_V3
,
28715 ARM_CPU_OPT ("arm7t", NULL
, ARM_ARCH_V4T
,
28718 ARM_CPU_OPT ("arm7tdmi", NULL
, ARM_ARCH_V4T
,
28721 ARM_CPU_OPT ("arm7tdmi-s", NULL
, ARM_ARCH_V4T
,
28724 ARM_CPU_OPT ("arm8", NULL
, ARM_ARCH_V4
,
28727 ARM_CPU_OPT ("arm810", NULL
, ARM_ARCH_V4
,
28730 ARM_CPU_OPT ("strongarm", NULL
, ARM_ARCH_V4
,
28733 ARM_CPU_OPT ("strongarm1", NULL
, ARM_ARCH_V4
,
28736 ARM_CPU_OPT ("strongarm110", NULL
, ARM_ARCH_V4
,
28739 ARM_CPU_OPT ("strongarm1100", NULL
, ARM_ARCH_V4
,
28742 ARM_CPU_OPT ("strongarm1110", NULL
, ARM_ARCH_V4
,
28745 ARM_CPU_OPT ("arm9", NULL
, ARM_ARCH_V4T
,
28748 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T
,
28751 ARM_CPU_OPT ("arm920t", NULL
, ARM_ARCH_V4T
,
28754 ARM_CPU_OPT ("arm922t", NULL
, ARM_ARCH_V4T
,
28757 ARM_CPU_OPT ("arm940t", NULL
, ARM_ARCH_V4T
,
28760 ARM_CPU_OPT ("arm9tdmi", NULL
, ARM_ARCH_V4T
,
28763 ARM_CPU_OPT ("fa526", NULL
, ARM_ARCH_V4
,
28766 ARM_CPU_OPT ("fa626", NULL
, ARM_ARCH_V4
,
28770 /* For V5 or later processors we default to using VFP; but the user
28771 should really set the FPU type explicitly. */
28772 ARM_CPU_OPT ("arm9e-r0", NULL
, ARM_ARCH_V5TExP
,
28775 ARM_CPU_OPT ("arm9e", NULL
, ARM_ARCH_V5TE
,
28778 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ
,
28781 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ
,
28784 ARM_CPU_OPT ("arm926ej-s", NULL
, ARM_ARCH_V5TEJ
,
28787 ARM_CPU_OPT ("arm946e-r0", NULL
, ARM_ARCH_V5TExP
,
28790 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE
,
28793 ARM_CPU_OPT ("arm946e-s", NULL
, ARM_ARCH_V5TE
,
28796 ARM_CPU_OPT ("arm966e-r0", NULL
, ARM_ARCH_V5TExP
,
28799 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE
,
28802 ARM_CPU_OPT ("arm966e-s", NULL
, ARM_ARCH_V5TE
,
28805 ARM_CPU_OPT ("arm968e-s", NULL
, ARM_ARCH_V5TE
,
28808 ARM_CPU_OPT ("arm10t", NULL
, ARM_ARCH_V5T
,
28811 ARM_CPU_OPT ("arm10tdmi", NULL
, ARM_ARCH_V5T
,
28814 ARM_CPU_OPT ("arm10e", NULL
, ARM_ARCH_V5TE
,
28817 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE
,
28820 ARM_CPU_OPT ("arm1020t", NULL
, ARM_ARCH_V5T
,
28823 ARM_CPU_OPT ("arm1020e", NULL
, ARM_ARCH_V5TE
,
28826 ARM_CPU_OPT ("arm1022e", NULL
, ARM_ARCH_V5TE
,
28829 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ
,
28832 ARM_CPU_OPT ("arm1026ej-s", NULL
, ARM_ARCH_V5TEJ
,
28835 ARM_CPU_OPT ("fa606te", NULL
, ARM_ARCH_V5TE
,
28838 ARM_CPU_OPT ("fa616te", NULL
, ARM_ARCH_V5TE
,
28841 ARM_CPU_OPT ("fa626te", NULL
, ARM_ARCH_V5TE
,
28844 ARM_CPU_OPT ("fmp626", NULL
, ARM_ARCH_V5TE
,
28847 ARM_CPU_OPT ("fa726te", NULL
, ARM_ARCH_V5TE
,
28850 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6
,
28853 ARM_CPU_OPT ("arm1136j-s", NULL
, ARM_ARCH_V6
,
28856 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6
,
28859 ARM_CPU_OPT ("arm1136jf-s", NULL
, ARM_ARCH_V6
,
28862 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K
,
28865 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K
,
28868 ARM_CPU_OPT ("arm1156t2-s", NULL
, ARM_ARCH_V6T2
,
28871 ARM_CPU_OPT ("arm1156t2f-s", NULL
, ARM_ARCH_V6T2
,
28874 ARM_CPU_OPT ("arm1176jz-s", NULL
, ARM_ARCH_V6KZ
,
28877 ARM_CPU_OPT ("arm1176jzf-s", NULL
, ARM_ARCH_V6KZ
,
28880 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A
,
28881 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
28883 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE
,
28885 FPU_ARCH_NEON_VFP_V4
),
28886 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A
,
28887 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
28888 ARM_FEATURE_COPROC (FPU_VFP_V3
| FPU_NEON_EXT_V1
)),
28889 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A
,
28890 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
28891 ARM_FEATURE_COPROC (FPU_VFP_V3
| FPU_NEON_EXT_V1
)),
28892 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE
,
28894 FPU_ARCH_NEON_VFP_V4
),
28895 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE
,
28897 FPU_ARCH_NEON_VFP_V4
),
28898 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE
,
28900 FPU_ARCH_NEON_VFP_V4
),
28901 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A
,
28902 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
28903 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
28904 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A
,
28905 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
28906 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
28907 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A
,
28908 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
28909 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
28910 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A
,
28911 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
28912 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
28913 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A
,
28914 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
28915 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
28916 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A
,
28917 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
28918 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
28919 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A
,
28920 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
28921 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
28922 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A
,
28923 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
28924 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
28925 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A
,
28926 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
28927 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
28928 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A
,
28929 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
28930 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
28931 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R
,
28934 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R
,
28936 FPU_ARCH_VFP_V3D16
),
28937 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R
,
28938 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
28940 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R
,
28941 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
28942 FPU_ARCH_VFP_V3D16
),
28943 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R
,
28944 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
28945 FPU_ARCH_VFP_V3D16
),
28946 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R
,
28947 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
28948 FPU_ARCH_NEON_VFP_ARMV8
),
28949 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN
,
28950 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
28952 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE
,
28955 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM
,
28958 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM
,
28961 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M
,
28964 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM
,
28967 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM
,
28970 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM
,
28973 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A
,
28974 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
28975 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
28976 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A
,
28977 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
28978 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
28979 /* ??? XSCALE is really an architecture. */
28980 ARM_CPU_OPT ("xscale", NULL
, ARM_ARCH_XSCALE
,
28984 /* ??? iwmmxt is not a processor. */
28985 ARM_CPU_OPT ("iwmmxt", NULL
, ARM_ARCH_IWMMXT
,
28988 ARM_CPU_OPT ("iwmmxt2", NULL
, ARM_ARCH_IWMMXT2
,
28991 ARM_CPU_OPT ("i80200", NULL
, ARM_ARCH_XSCALE
,
28996 ARM_CPU_OPT ("ep9312", "ARM920T",
28997 ARM_FEATURE_LOW (ARM_AEXT_V4T
, ARM_CEXT_MAVERICK
),
28998 ARM_ARCH_NONE
, FPU_ARCH_MAVERICK
),
29000 /* Marvell processors. */
29001 ARM_CPU_OPT ("marvell-pj4", NULL
, ARM_ARCH_V7A
,
29002 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29003 FPU_ARCH_VFP_V3D16
),
29004 ARM_CPU_OPT ("marvell-whitney", NULL
, ARM_ARCH_V7A
,
29005 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29006 FPU_ARCH_NEON_VFP_V4
),
29008 /* APM X-Gene family. */
29009 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A
,
29011 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29012 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A
,
29013 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29014 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29016 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
29020 struct arm_ext_table
29024 const arm_feature_set merge
;
29025 const arm_feature_set clear
;
29028 struct arm_arch_option_table
29032 const arm_feature_set value
;
29033 const arm_feature_set default_fpu
;
29034 const struct arm_ext_table
* ext_table
;
29037 /* Used to add support for +E and +noE extension. */
29038 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29039 /* Used to add support for a +E extension. */
29040 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29041 /* Used to add support for a +noE extension. */
29042 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29044 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29045 ~0 & ~FPU_ENDIAN_PURE)
29047 static const struct arm_ext_table armv5te_ext_table
[] =
29049 ARM_EXT ("fp", FPU_ARCH_VFP_V2
, ALL_FP
),
29050 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29053 static const struct arm_ext_table armv7_ext_table
[] =
29055 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
29056 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29059 static const struct arm_ext_table armv7ve_ext_table
[] =
29061 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16
, ALL_FP
),
29062 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
),
29063 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3
),
29064 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
29065 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
),
29066 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16
), /* Alias for +fp. */
29067 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4
),
29069 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4
,
29070 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_NEON_EXT_FMA
)),
29072 /* Aliases for +simd. */
29073 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4
),
29075 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29076 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29077 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16
),
29079 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29082 static const struct arm_ext_table armv7a_ext_table
[] =
29084 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
29085 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
), /* Alias for +fp. */
29086 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3
),
29087 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
29088 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
),
29089 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16
),
29090 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4
),
29092 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1
,
29093 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_NEON_EXT_FMA
)),
29095 /* Aliases for +simd. */
29096 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29097 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29099 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16
),
29100 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4
),
29102 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP
)),
29103 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
)),
29104 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29107 static const struct arm_ext_table armv7r_ext_table
[] =
29109 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD
),
29110 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD
), /* Alias for +fp.sp. */
29111 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
29112 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
), /* Alias for +fp. */
29113 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
),
29114 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
29115 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
29116 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
)),
29117 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29120 static const struct arm_ext_table armv7em_ext_table
[] =
29122 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16
, ALL_FP
),
29123 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29124 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
),
29125 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16
),
29126 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16
),
29127 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16
),
29128 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29131 static const struct arm_ext_table armv8a_ext_table
[] =
29133 ARM_ADD ("crc", ARCH_CRC_ARMV8
),
29134 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8
),
29135 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
29136 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29138 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29139 should use the +simd option to turn on FP. */
29140 ARM_REMOVE ("fp", ALL_FP
),
29141 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
29142 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
29143 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29147 static const struct arm_ext_table armv81a_ext_table
[] =
29149 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1
),
29150 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
,
29151 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29153 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29154 should use the +simd option to turn on FP. */
29155 ARM_REMOVE ("fp", ALL_FP
),
29156 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
29157 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
29158 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29161 static const struct arm_ext_table armv82a_ext_table
[] =
29163 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1
),
29164 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16
),
29165 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML
),
29166 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
,
29167 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29168 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
29170 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29171 should use the +simd option to turn on FP. */
29172 ARM_REMOVE ("fp", ALL_FP
),
29173 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
29174 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
29175 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29178 static const struct arm_ext_table armv84a_ext_table
[] =
29180 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
29181 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML
),
29182 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4
,
29183 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29185 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29186 should use the +simd option to turn on FP. */
29187 ARM_REMOVE ("fp", ALL_FP
),
29188 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
29189 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
29190 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29193 static const struct arm_ext_table armv85a_ext_table
[] =
29195 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
29196 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML
),
29197 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4
,
29198 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29200 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29201 should use the +simd option to turn on FP. */
29202 ARM_REMOVE ("fp", ALL_FP
),
29203 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29206 static const struct arm_ext_table armv8m_main_ext_table
[] =
29208 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29209 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
)),
29210 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16
, ALL_FP
),
29211 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16
),
29212 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29215 static const struct arm_ext_table armv8_1m_main_ext_table
[] =
29217 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29218 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
)),
29220 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
29221 FPU_VFP_V5_SP_D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
),
29224 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
29225 FPU_VFP_V5D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
)),
29226 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE
),
29227 ARM_FEATURE_COPROC (FPU_MVE
| FPU_MVE_FP
)),
29229 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
29230 FPU_MVE
| FPU_MVE_FP
| FPU_VFP_V5_SP_D16
|
29231 FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
)),
29232 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29235 static const struct arm_ext_table armv8r_ext_table
[] =
29237 ARM_ADD ("crc", ARCH_CRC_ARMV8
),
29238 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8
),
29239 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
29240 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29241 ARM_REMOVE ("fp", ALL_FP
),
29242 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16
),
29243 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29246 /* This list should, at a minimum, contain all the architecture names
29247 recognized by GCC. */
29248 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29249 #define ARM_ARCH_OPT2(N, V, DF, ext) \
29250 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
29252 static const struct arm_arch_option_table arm_archs
[] =
29254 ARM_ARCH_OPT ("all", ARM_ANY
, FPU_ARCH_FPA
),
29255 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1
, FPU_ARCH_FPA
),
29256 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2
, FPU_ARCH_FPA
),
29257 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
29258 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
29259 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3
, FPU_ARCH_FPA
),
29260 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M
, FPU_ARCH_FPA
),
29261 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4
, FPU_ARCH_FPA
),
29262 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM
, FPU_ARCH_FPA
),
29263 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T
, FPU_ARCH_FPA
),
29264 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM
, FPU_ARCH_FPA
),
29265 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5
, FPU_ARCH_VFP
),
29266 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T
, FPU_ARCH_VFP
),
29267 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM
, FPU_ARCH_VFP
),
29268 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE
, FPU_ARCH_VFP
, armv5te
),
29269 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP
, FPU_ARCH_VFP
, armv5te
),
29270 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP
, armv5te
),
29271 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6
, FPU_ARCH_VFP
, armv5te
),
29272 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6
, FPU_ARCH_VFP
, armv5te
),
29273 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K
, FPU_ARCH_VFP
, armv5te
),
29274 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z
, FPU_ARCH_VFP
, armv5te
),
29275 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29276 kept to preserve existing behaviour. */
29277 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ
, FPU_ARCH_VFP
, armv5te
),
29278 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ
, FPU_ARCH_VFP
, armv5te
),
29279 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2
, FPU_ARCH_VFP
, armv5te
),
29280 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2
, FPU_ARCH_VFP
, armv5te
),
29281 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2
, FPU_ARCH_VFP
, armv5te
),
29282 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29283 kept to preserve existing behaviour. */
29284 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2
, FPU_ARCH_VFP
, armv5te
),
29285 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2
, FPU_ARCH_VFP
, armv5te
),
29286 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M
, FPU_ARCH_VFP
),
29287 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM
, FPU_ARCH_VFP
),
29288 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7
, FPU_ARCH_VFP
, armv7
),
29289 /* The official spelling of the ARMv7 profile variants is the dashed form.
29290 Accept the non-dashed form for compatibility with old toolchains. */
29291 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A
, FPU_ARCH_VFP
, armv7a
),
29292 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE
, FPU_ARCH_VFP
, armv7ve
),
29293 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R
, FPU_ARCH_VFP
, armv7r
),
29294 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
29295 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A
, FPU_ARCH_VFP
, armv7a
),
29296 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R
, FPU_ARCH_VFP
, armv7r
),
29297 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
29298 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM
, FPU_ARCH_VFP
, armv7em
),
29299 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE
, FPU_ARCH_VFP
),
29300 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN
, FPU_ARCH_VFP
,
29302 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN
, FPU_ARCH_VFP
,
29304 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A
, FPU_ARCH_VFP
, armv8a
),
29305 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A
, FPU_ARCH_VFP
, armv81a
),
29306 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A
, FPU_ARCH_VFP
, armv82a
),
29307 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A
, FPU_ARCH_VFP
, armv82a
),
29308 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R
, FPU_ARCH_VFP
, armv8r
),
29309 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A
, FPU_ARCH_VFP
, armv84a
),
29310 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A
, FPU_ARCH_VFP
, armv85a
),
29311 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP
),
29312 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP
),
29313 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2
, FPU_ARCH_VFP
),
29314 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
29316 #undef ARM_ARCH_OPT
29318 /* ISA extensions in the co-processor and main instruction set space. */
29320 struct arm_option_extension_value_table
29324 const arm_feature_set merge_value
;
29325 const arm_feature_set clear_value
;
29326 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29327 indicates that an extension is available for all architectures while
29328 ARM_ANY marks an empty entry. */
29329 const arm_feature_set allowed_archs
[2];
29332 /* The following table must be in alphabetical order with a NULL last entry. */
29334 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29335 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
29337 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
29338 use the context sensitive approach using arm_ext_table's. */
29339 static const struct arm_option_extension_value_table arm_extensions
[] =
29341 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8
, ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29342 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
29343 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
29344 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
),
29345 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
29346 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
,
29347 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD
),
29349 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29350 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29351 ARM_FEATURE_CORE (ARM_EXT_V7M
, ARM_EXT2_V8M
)),
29352 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8
, ARM_FEATURE_COPROC (FPU_VFP_ARMV8
),
29353 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
29354 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29355 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29357 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29358 | ARM_EXT2_FP16_FML
),
29359 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29360 | ARM_EXT2_FP16_FML
),
29362 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
29363 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
29364 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
),
29365 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
)),
29366 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29367 Thumb divide instruction. Due to this having the same name as the
29368 previous entry, this will be ignored when doing command-line parsing and
29369 only considered by build attribute selection code. */
29370 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
),
29371 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
),
29372 ARM_FEATURE_CORE_LOW (ARM_EXT_V7
)),
29373 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
),
29374 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
), ARM_ARCH_NONE
),
29375 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
),
29376 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
), ARM_ARCH_NONE
),
29377 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
),
29378 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
), ARM_ARCH_NONE
),
29379 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP
),
29380 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
),
29381 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
),
29382 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
)),
29383 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS
),
29384 ARM_FEATURE_CORE_LOW (ARM_EXT_OS
),
29385 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M
)),
29386 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN
),
29387 ARM_FEATURE (ARM_EXT_V8
, ARM_EXT2_PAN
, 0),
29388 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
29389 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
),
29390 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
),
29392 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS
),
29393 ARM_FEATURE (ARM_EXT_V8
, ARM_EXT2_RAS
, 0),
29394 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
29395 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1
,
29396 ARM_FEATURE_COPROC (FPU_NEON_ARMV8
| FPU_NEON_EXT_RDMA
),
29397 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
29398 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
),
29399 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
),
29401 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
29402 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
29403 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
),
29404 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
)),
29405 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8
,
29406 ARM_FEATURE_COPROC (FPU_NEON_ARMV8
),
29407 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
29408 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
| ARM_EXT_ADIV
29410 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
),
29411 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
)),
29412 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
),
29413 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
), ARM_ARCH_NONE
),
29414 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, { ARM_ARCH_NONE
, ARM_ARCH_NONE
} }
29418 /* ISA floating-point and Advanced SIMD extensions. */
29419 struct arm_option_fpu_value_table
29422 const arm_feature_set value
;
29425 /* This list should, at a minimum, contain all the fpu names
29426 recognized by GCC. */
29427 static const struct arm_option_fpu_value_table arm_fpus
[] =
29429 {"softfpa", FPU_NONE
},
29430 {"fpe", FPU_ARCH_FPE
},
29431 {"fpe2", FPU_ARCH_FPE
},
29432 {"fpe3", FPU_ARCH_FPA
}, /* Third release supports LFM/SFM. */
29433 {"fpa", FPU_ARCH_FPA
},
29434 {"fpa10", FPU_ARCH_FPA
},
29435 {"fpa11", FPU_ARCH_FPA
},
29436 {"arm7500fe", FPU_ARCH_FPA
},
29437 {"softvfp", FPU_ARCH_VFP
},
29438 {"softvfp+vfp", FPU_ARCH_VFP_V2
},
29439 {"vfp", FPU_ARCH_VFP_V2
},
29440 {"vfp9", FPU_ARCH_VFP_V2
},
29441 {"vfp3", FPU_ARCH_VFP_V3
}, /* Undocumented, use vfpv3. */
29442 {"vfp10", FPU_ARCH_VFP_V2
},
29443 {"vfp10-r0", FPU_ARCH_VFP_V1
},
29444 {"vfpxd", FPU_ARCH_VFP_V1xD
},
29445 {"vfpv2", FPU_ARCH_VFP_V2
},
29446 {"vfpv3", FPU_ARCH_VFP_V3
},
29447 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
},
29448 {"vfpv3-d16", FPU_ARCH_VFP_V3D16
},
29449 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
},
29450 {"vfpv3xd", FPU_ARCH_VFP_V3xD
},
29451 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
},
29452 {"arm1020t", FPU_ARCH_VFP_V1
},
29453 {"arm1020e", FPU_ARCH_VFP_V2
},
29454 {"arm1136jfs", FPU_ARCH_VFP_V2
}, /* Undocumented, use arm1136jf-s. */
29455 {"arm1136jf-s", FPU_ARCH_VFP_V2
},
29456 {"maverick", FPU_ARCH_MAVERICK
},
29457 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
29458 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
29459 {"neon-fp16", FPU_ARCH_NEON_FP16
},
29460 {"vfpv4", FPU_ARCH_VFP_V4
},
29461 {"vfpv4-d16", FPU_ARCH_VFP_V4D16
},
29462 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
},
29463 {"fpv5-d16", FPU_ARCH_VFP_V5D16
},
29464 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16
},
29465 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4
},
29466 {"fp-armv8", FPU_ARCH_VFP_ARMV8
},
29467 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8
},
29468 {"crypto-neon-fp-armv8",
29469 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
},
29470 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1
},
29471 {"crypto-neon-fp-armv8.1",
29472 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
},
29473 {NULL
, ARM_ARCH_NONE
}
29476 struct arm_option_value_table
29482 static const struct arm_option_value_table arm_float_abis
[] =
29484 {"hard", ARM_FLOAT_ABI_HARD
},
29485 {"softfp", ARM_FLOAT_ABI_SOFTFP
},
29486 {"soft", ARM_FLOAT_ABI_SOFT
},
29491 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
29492 static const struct arm_option_value_table arm_eabis
[] =
29494 {"gnu", EF_ARM_EABI_UNKNOWN
},
29495 {"4", EF_ARM_EABI_VER4
},
29496 {"5", EF_ARM_EABI_VER5
},
29501 struct arm_long_option_table
29503 const char * option
; /* Substring to match. */
29504 const char * help
; /* Help information. */
29505 int (* func
) (const char * subopt
); /* Function to decode sub-option. */
29506 const char * deprecated
; /* If non-null, print this message. */
29510 arm_parse_extension (const char *str
, const arm_feature_set
*opt_set
,
29511 arm_feature_set
*ext_set
,
29512 const struct arm_ext_table
*ext_table
)
29514 /* We insist on extensions being specified in alphabetical order, and with
29515 extensions being added before being removed. We achieve this by having
29516 the global ARM_EXTENSIONS table in alphabetical order, and using the
29517 ADDING_VALUE variable to indicate whether we are adding an extension (1)
29518 or removing it (0) and only allowing it to change in the order
29520 const struct arm_option_extension_value_table
* opt
= NULL
;
29521 const arm_feature_set arm_any
= ARM_ANY
;
29522 int adding_value
= -1;
29524 while (str
!= NULL
&& *str
!= 0)
29531 as_bad (_("invalid architectural extension"));
29536 ext
= strchr (str
, '+');
29541 len
= strlen (str
);
29543 if (len
>= 2 && strncmp (str
, "no", 2) == 0)
29545 if (adding_value
!= 0)
29548 opt
= arm_extensions
;
29556 if (adding_value
== -1)
29559 opt
= arm_extensions
;
29561 else if (adding_value
!= 1)
29563 as_bad (_("must specify extensions to add before specifying "
29564 "those to remove"));
29571 as_bad (_("missing architectural extension"));
29575 gas_assert (adding_value
!= -1);
29576 gas_assert (opt
!= NULL
);
29578 if (ext_table
!= NULL
)
29580 const struct arm_ext_table
* ext_opt
= ext_table
;
29581 bfd_boolean found
= FALSE
;
29582 for (; ext_opt
->name
!= NULL
; ext_opt
++)
29583 if (ext_opt
->name_len
== len
29584 && strncmp (ext_opt
->name
, str
, len
) == 0)
29588 if (ARM_FEATURE_ZERO (ext_opt
->merge
))
29589 /* TODO: Option not supported. When we remove the
29590 legacy table this case should error out. */
29593 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, ext_opt
->merge
);
29597 if (ARM_FEATURE_ZERO (ext_opt
->clear
))
29598 /* TODO: Option not supported. When we remove the
29599 legacy table this case should error out. */
29601 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, ext_opt
->clear
);
29613 /* Scan over the options table trying to find an exact match. */
29614 for (; opt
->name
!= NULL
; opt
++)
29615 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
29617 int i
, nb_allowed_archs
=
29618 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[0]);
29619 /* Check we can apply the extension to this architecture. */
29620 for (i
= 0; i
< nb_allowed_archs
; i
++)
29623 if (ARM_FEATURE_EQUAL (opt
->allowed_archs
[i
], arm_any
))
29625 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], *opt_set
))
29628 if (i
== nb_allowed_archs
)
29630 as_bad (_("extension does not apply to the base architecture"));
29634 /* Add or remove the extension. */
29636 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, opt
->merge_value
);
29638 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, opt
->clear_value
);
29640 /* Allowing Thumb division instructions for ARMv7 in autodetection
29641 rely on this break so that duplicate extensions (extensions
29642 with the same name as a previous extension in the list) are not
29643 considered for command-line parsing. */
29647 if (opt
->name
== NULL
)
29649 /* Did we fail to find an extension because it wasn't specified in
29650 alphabetical order, or because it does not exist? */
29652 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
29653 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
29656 if (opt
->name
== NULL
)
29657 as_bad (_("unknown architectural extension `%s'"), str
);
29659 as_bad (_("architectural extensions must be specified in "
29660 "alphabetical order"));
29666 /* We should skip the extension we've just matched the next time
29678 arm_parse_cpu (const char *str
)
29680 const struct arm_cpu_option_table
*opt
;
29681 const char *ext
= strchr (str
, '+');
29687 len
= strlen (str
);
29691 as_bad (_("missing cpu name `%s'"), str
);
29695 for (opt
= arm_cpus
; opt
->name
!= NULL
; opt
++)
29696 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
29698 mcpu_cpu_opt
= &opt
->value
;
29699 if (mcpu_ext_opt
== NULL
)
29700 mcpu_ext_opt
= XNEW (arm_feature_set
);
29701 *mcpu_ext_opt
= opt
->ext
;
29702 mcpu_fpu_opt
= &opt
->default_fpu
;
29703 if (opt
->canonical_name
)
29705 gas_assert (sizeof selected_cpu_name
> strlen (opt
->canonical_name
));
29706 strcpy (selected_cpu_name
, opt
->canonical_name
);
29712 if (len
>= sizeof selected_cpu_name
)
29713 len
= (sizeof selected_cpu_name
) - 1;
29715 for (i
= 0; i
< len
; i
++)
29716 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
29717 selected_cpu_name
[i
] = 0;
29721 return arm_parse_extension (ext
, mcpu_cpu_opt
, mcpu_ext_opt
, NULL
);
29726 as_bad (_("unknown cpu `%s'"), str
);
29731 arm_parse_arch (const char *str
)
29733 const struct arm_arch_option_table
*opt
;
29734 const char *ext
= strchr (str
, '+');
29740 len
= strlen (str
);
29744 as_bad (_("missing architecture name `%s'"), str
);
29748 for (opt
= arm_archs
; opt
->name
!= NULL
; opt
++)
29749 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
29751 march_cpu_opt
= &opt
->value
;
29752 if (march_ext_opt
== NULL
)
29753 march_ext_opt
= XNEW (arm_feature_set
);
29754 *march_ext_opt
= arm_arch_none
;
29755 march_fpu_opt
= &opt
->default_fpu
;
29756 strcpy (selected_cpu_name
, opt
->name
);
29759 return arm_parse_extension (ext
, march_cpu_opt
, march_ext_opt
,
29765 as_bad (_("unknown architecture `%s'\n"), str
);
29770 arm_parse_fpu (const char * str
)
29772 const struct arm_option_fpu_value_table
* opt
;
29774 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
29775 if (streq (opt
->name
, str
))
29777 mfpu_opt
= &opt
->value
;
29781 as_bad (_("unknown floating point format `%s'\n"), str
);
29786 arm_parse_float_abi (const char * str
)
29788 const struct arm_option_value_table
* opt
;
29790 for (opt
= arm_float_abis
; opt
->name
!= NULL
; opt
++)
29791 if (streq (opt
->name
, str
))
29793 mfloat_abi_opt
= opt
->value
;
29797 as_bad (_("unknown floating point abi `%s'\n"), str
);
29803 arm_parse_eabi (const char * str
)
29805 const struct arm_option_value_table
*opt
;
29807 for (opt
= arm_eabis
; opt
->name
!= NULL
; opt
++)
29808 if (streq (opt
->name
, str
))
29810 meabi_flags
= opt
->value
;
29813 as_bad (_("unknown EABI `%s'\n"), str
);
29819 arm_parse_it_mode (const char * str
)
29821 bfd_boolean ret
= TRUE
;
29823 if (streq ("arm", str
))
29824 implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
29825 else if (streq ("thumb", str
))
29826 implicit_it_mode
= IMPLICIT_IT_MODE_THUMB
;
29827 else if (streq ("always", str
))
29828 implicit_it_mode
= IMPLICIT_IT_MODE_ALWAYS
;
29829 else if (streq ("never", str
))
29830 implicit_it_mode
= IMPLICIT_IT_MODE_NEVER
;
29833 as_bad (_("unknown implicit IT mode `%s', should be "\
29834 "arm, thumb, always, or never."), str
);
29842 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED
)
29844 codecomposer_syntax
= TRUE
;
29845 arm_comment_chars
[0] = ';';
29846 arm_line_separator_chars
[0] = 0;
29850 struct arm_long_option_table arm_long_opts
[] =
29852 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
29853 arm_parse_cpu
, NULL
},
29854 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
29855 arm_parse_arch
, NULL
},
29856 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
29857 arm_parse_fpu
, NULL
},
29858 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
29859 arm_parse_float_abi
, NULL
},
29861 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
29862 arm_parse_eabi
, NULL
},
29864 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
29865 arm_parse_it_mode
, NULL
},
29866 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
29867 arm_ccs_mode
, NULL
},
29868 {NULL
, NULL
, 0, NULL
}
29872 md_parse_option (int c
, const char * arg
)
29874 struct arm_option_table
*opt
;
29875 const struct arm_legacy_option_table
*fopt
;
29876 struct arm_long_option_table
*lopt
;
29882 target_big_endian
= 1;
29888 target_big_endian
= 0;
29892 case OPTION_FIX_V4BX
:
29900 #endif /* OBJ_ELF */
29903 /* Listing option. Just ignore these, we don't support additional
29908 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
29910 if (c
== opt
->option
[0]
29911 && ((arg
== NULL
&& opt
->option
[1] == 0)
29912 || streq (arg
, opt
->option
+ 1)))
29914 /* If the option is deprecated, tell the user. */
29915 if (warn_on_deprecated
&& opt
->deprecated
!= NULL
)
29916 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
29917 arg
? arg
: "", _(opt
->deprecated
));
29919 if (opt
->var
!= NULL
)
29920 *opt
->var
= opt
->value
;
29926 for (fopt
= arm_legacy_opts
; fopt
->option
!= NULL
; fopt
++)
29928 if (c
== fopt
->option
[0]
29929 && ((arg
== NULL
&& fopt
->option
[1] == 0)
29930 || streq (arg
, fopt
->option
+ 1)))
29932 /* If the option is deprecated, tell the user. */
29933 if (warn_on_deprecated
&& fopt
->deprecated
!= NULL
)
29934 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
29935 arg
? arg
: "", _(fopt
->deprecated
));
29937 if (fopt
->var
!= NULL
)
29938 *fopt
->var
= &fopt
->value
;
29944 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
29946 /* These options are expected to have an argument. */
29947 if (c
== lopt
->option
[0]
29949 && strncmp (arg
, lopt
->option
+ 1,
29950 strlen (lopt
->option
+ 1)) == 0)
29952 /* If the option is deprecated, tell the user. */
29953 if (warn_on_deprecated
&& lopt
->deprecated
!= NULL
)
29954 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
, arg
,
29955 _(lopt
->deprecated
));
29957 /* Call the sup-option parser. */
29958 return lopt
->func (arg
+ strlen (lopt
->option
) - 1);
29969 md_show_usage (FILE * fp
)
29971 struct arm_option_table
*opt
;
29972 struct arm_long_option_table
*lopt
;
29974 fprintf (fp
, _(" ARM-specific assembler options:\n"));
29976 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
29977 if (opt
->help
!= NULL
)
29978 fprintf (fp
, " -%-23s%s\n", opt
->option
, _(opt
->help
));
29980 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
29981 if (lopt
->help
!= NULL
)
29982 fprintf (fp
, " -%s%s\n", lopt
->option
, _(lopt
->help
));
29986 -EB assemble code for a big-endian cpu\n"));
29991 -EL assemble code for a little-endian cpu\n"));
29995 --fix-v4bx Allow BX in ARMv4 code\n"));
29999 --fdpic generate an FDPIC object file\n"));
30000 #endif /* OBJ_ELF */
30008 arm_feature_set flags
;
30009 } cpu_arch_ver_table
;
30011 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30012 chronologically for architectures, with an exception for ARMv6-M and
30013 ARMv6S-M due to legacy reasons. No new architecture should have a
30014 special case. This allows for build attribute selection results to be
30015 stable when new architectures are added. */
30016 static const cpu_arch_ver_table cpu_arch_ver
[] =
30018 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V1
},
30019 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V2
},
30020 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V2S
},
30021 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V3
},
30022 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V3M
},
30023 {TAG_CPU_ARCH_V4
, ARM_ARCH_V4xM
},
30024 {TAG_CPU_ARCH_V4
, ARM_ARCH_V4
},
30025 {TAG_CPU_ARCH_V4T
, ARM_ARCH_V4TxM
},
30026 {TAG_CPU_ARCH_V4T
, ARM_ARCH_V4T
},
30027 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5xM
},
30028 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5
},
30029 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5TxM
},
30030 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5T
},
30031 {TAG_CPU_ARCH_V5TE
, ARM_ARCH_V5TExP
},
30032 {TAG_CPU_ARCH_V5TE
, ARM_ARCH_V5TE
},
30033 {TAG_CPU_ARCH_V5TEJ
, ARM_ARCH_V5TEJ
},
30034 {TAG_CPU_ARCH_V6
, ARM_ARCH_V6
},
30035 {TAG_CPU_ARCH_V6KZ
, ARM_ARCH_V6Z
},
30036 {TAG_CPU_ARCH_V6KZ
, ARM_ARCH_V6KZ
},
30037 {TAG_CPU_ARCH_V6K
, ARM_ARCH_V6K
},
30038 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6T2
},
30039 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6KT2
},
30040 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6ZT2
},
30041 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6KZT2
},
30043 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30044 always selected build attributes to match those of ARMv6-M
30045 (resp. ARMv6S-M). However, due to these architectures being a strict
30046 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30047 would be selected when fully respecting chronology of architectures.
30048 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30049 move them before ARMv7 architectures. */
30050 {TAG_CPU_ARCH_V6_M
, ARM_ARCH_V6M
},
30051 {TAG_CPU_ARCH_V6S_M
, ARM_ARCH_V6SM
},
30053 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7
},
30054 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7A
},
30055 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7R
},
30056 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7M
},
30057 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7VE
},
30058 {TAG_CPU_ARCH_V7E_M
, ARM_ARCH_V7EM
},
30059 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8A
},
30060 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_1A
},
30061 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_2A
},
30062 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_3A
},
30063 {TAG_CPU_ARCH_V8M_BASE
, ARM_ARCH_V8M_BASE
},
30064 {TAG_CPU_ARCH_V8M_MAIN
, ARM_ARCH_V8M_MAIN
},
30065 {TAG_CPU_ARCH_V8R
, ARM_ARCH_V8R
},
30066 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_4A
},
30067 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_5A
},
30068 {TAG_CPU_ARCH_V8_1M_MAIN
, ARM_ARCH_V8_1M_MAIN
},
30069 {-1, ARM_ARCH_NONE
}
30072 /* Set an attribute if it has not already been set by the user. */
30075 aeabi_set_attribute_int (int tag
, int value
)
30078 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
30079 || !attributes_set_explicitly
[tag
])
30080 bfd_elf_add_proc_attr_int (stdoutput
, tag
, value
);
30084 aeabi_set_attribute_string (int tag
, const char *value
)
30087 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
30088 || !attributes_set_explicitly
[tag
])
30089 bfd_elf_add_proc_attr_string (stdoutput
, tag
, value
);
30092 /* Return whether features in the *NEEDED feature set are available via
30093 extensions for the architecture whose feature set is *ARCH_FSET. */
30096 have_ext_for_needed_feat_p (const arm_feature_set
*arch_fset
,
30097 const arm_feature_set
*needed
)
30099 int i
, nb_allowed_archs
;
30100 arm_feature_set ext_fset
;
30101 const struct arm_option_extension_value_table
*opt
;
30103 ext_fset
= arm_arch_none
;
30104 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
30106 /* Extension does not provide any feature we need. */
30107 if (!ARM_CPU_HAS_FEATURE (*needed
, opt
->merge_value
))
30111 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[0]);
30112 for (i
= 0; i
< nb_allowed_archs
; i
++)
30115 if (ARM_FEATURE_EQUAL (opt
->allowed_archs
[i
], arm_arch_any
))
30118 /* Extension is available, add it. */
30119 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], *arch_fset
))
30120 ARM_MERGE_FEATURE_SETS (ext_fset
, ext_fset
, opt
->merge_value
);
30124 /* Can we enable all features in *needed? */
30125 return ARM_FSET_CPU_SUBSET (*needed
, ext_fset
);
30128 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30129 a given architecture feature set *ARCH_EXT_FSET including extension feature
30130 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30131 - if true, check for an exact match of the architecture modulo extensions;
30132 - otherwise, select build attribute value of the first superset
30133 architecture released so that results remains stable when new architectures
30135 For -march/-mcpu=all the build attribute value of the most featureful
30136 architecture is returned. Tag_CPU_arch_profile result is returned in
30140 get_aeabi_cpu_arch_from_fset (const arm_feature_set
*arch_ext_fset
,
30141 const arm_feature_set
*ext_fset
,
30142 char *profile
, int exact_match
)
30144 arm_feature_set arch_fset
;
30145 const cpu_arch_ver_table
*p_ver
, *p_ver_ret
= NULL
;
30147 /* Select most featureful architecture with all its extensions if building
30148 for -march=all as the feature sets used to set build attributes. */
30149 if (ARM_FEATURE_EQUAL (*arch_ext_fset
, arm_arch_any
))
30151 /* Force revisiting of decision for each new architecture. */
30152 gas_assert (MAX_TAG_CPU_ARCH
<= TAG_CPU_ARCH_V8_1M_MAIN
);
30154 return TAG_CPU_ARCH_V8
;
30157 ARM_CLEAR_FEATURE (arch_fset
, *arch_ext_fset
, *ext_fset
);
30159 for (p_ver
= cpu_arch_ver
; p_ver
->val
!= -1; p_ver
++)
30161 arm_feature_set known_arch_fset
;
30163 ARM_CLEAR_FEATURE (known_arch_fset
, p_ver
->flags
, fpu_any
);
30166 /* Base architecture match user-specified architecture and
30167 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30168 if (ARM_FEATURE_EQUAL (*arch_ext_fset
, known_arch_fset
))
30173 /* Base architecture match user-specified architecture only
30174 (eg. ARMv6-M in the same case as above). Record it in case we
30175 find a match with above condition. */
30176 else if (p_ver_ret
== NULL
30177 && ARM_FEATURE_EQUAL (arch_fset
, known_arch_fset
))
30183 /* Architecture has all features wanted. */
30184 if (ARM_FSET_CPU_SUBSET (arch_fset
, known_arch_fset
))
30186 arm_feature_set added_fset
;
30188 /* Compute features added by this architecture over the one
30189 recorded in p_ver_ret. */
30190 if (p_ver_ret
!= NULL
)
30191 ARM_CLEAR_FEATURE (added_fset
, known_arch_fset
,
30193 /* First architecture that match incl. with extensions, or the
30194 only difference in features over the recorded match is
30195 features that were optional and are now mandatory. */
30196 if (p_ver_ret
== NULL
30197 || ARM_FSET_CPU_SUBSET (added_fset
, arch_fset
))
30203 else if (p_ver_ret
== NULL
)
30205 arm_feature_set needed_ext_fset
;
30207 ARM_CLEAR_FEATURE (needed_ext_fset
, arch_fset
, known_arch_fset
);
30209 /* Architecture has all features needed when using some
30210 extensions. Record it and continue searching in case there
30211 exist an architecture providing all needed features without
30212 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30214 if (have_ext_for_needed_feat_p (&known_arch_fset
,
30221 if (p_ver_ret
== NULL
)
30225 /* Tag_CPU_arch_profile. */
30226 if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v7a
)
30227 || ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v8
)
30228 || (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_atomics
)
30229 && !ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v8m_m_only
)))
30231 else if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v7r
))
30233 else if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_m
))
30237 return p_ver_ret
->val
;
30240 /* Set the public EABI object attributes. */
30243 aeabi_set_public_attributes (void)
30245 char profile
= '\0';
30248 int fp16_optional
= 0;
30249 int skip_exact_match
= 0;
30250 arm_feature_set flags
, flags_arch
, flags_ext
;
30252 /* Autodetection mode, choose the architecture based the instructions
30254 if (no_cpu_selected ())
30256 ARM_MERGE_FEATURE_SETS (flags
, arm_arch_used
, thumb_arch_used
);
30258 if (ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
))
30259 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v1
);
30261 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_any
))
30262 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v4t
);
30264 /* Code run during relaxation relies on selected_cpu being set. */
30265 ARM_CLEAR_FEATURE (flags_arch
, flags
, fpu_any
);
30266 flags_ext
= arm_arch_none
;
30267 ARM_CLEAR_FEATURE (selected_arch
, flags_arch
, flags_ext
);
30268 selected_ext
= flags_ext
;
30269 selected_cpu
= flags
;
30271 /* Otherwise, choose the architecture based on the capabilities of the
30275 ARM_MERGE_FEATURE_SETS (flags_arch
, selected_arch
, selected_ext
);
30276 ARM_CLEAR_FEATURE (flags_arch
, flags_arch
, fpu_any
);
30277 flags_ext
= selected_ext
;
30278 flags
= selected_cpu
;
30280 ARM_MERGE_FEATURE_SETS (flags
, flags
, selected_fpu
);
30282 /* Allow the user to override the reported architecture. */
30283 if (!ARM_FEATURE_ZERO (selected_object_arch
))
30285 ARM_CLEAR_FEATURE (flags_arch
, selected_object_arch
, fpu_any
);
30286 flags_ext
= arm_arch_none
;
30289 skip_exact_match
= ARM_FEATURE_EQUAL (selected_cpu
, arm_arch_any
);
30291 /* When this function is run again after relaxation has happened there is no
30292 way to determine whether an architecture or CPU was specified by the user:
30293 - selected_cpu is set above for relaxation to work;
30294 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30295 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30296 Therefore, if not in -march=all case we first try an exact match and fall
30297 back to autodetection. */
30298 if (!skip_exact_match
)
30299 arch
= get_aeabi_cpu_arch_from_fset (&flags_arch
, &flags_ext
, &profile
, 1);
30301 arch
= get_aeabi_cpu_arch_from_fset (&flags_arch
, &flags_ext
, &profile
, 0);
30303 as_bad (_("no architecture contains all the instructions used\n"));
30305 /* Tag_CPU_name. */
30306 if (selected_cpu_name
[0])
30310 q
= selected_cpu_name
;
30311 if (strncmp (q
, "armv", 4) == 0)
30316 for (i
= 0; q
[i
]; i
++)
30317 q
[i
] = TOUPPER (q
[i
]);
30319 aeabi_set_attribute_string (Tag_CPU_name
, q
);
30322 /* Tag_CPU_arch. */
30323 aeabi_set_attribute_int (Tag_CPU_arch
, arch
);
30325 /* Tag_CPU_arch_profile. */
30326 if (profile
!= '\0')
30327 aeabi_set_attribute_int (Tag_CPU_arch_profile
, profile
);
30329 /* Tag_DSP_extension. */
30330 if (ARM_CPU_HAS_FEATURE (selected_ext
, arm_ext_dsp
))
30331 aeabi_set_attribute_int (Tag_DSP_extension
, 1);
30333 ARM_CLEAR_FEATURE (flags_arch
, flags
, fpu_any
);
30334 /* Tag_ARM_ISA_use. */
30335 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v1
)
30336 || ARM_FEATURE_ZERO (flags_arch
))
30337 aeabi_set_attribute_int (Tag_ARM_ISA_use
, 1);
30339 /* Tag_THUMB_ISA_use. */
30340 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v4t
)
30341 || ARM_FEATURE_ZERO (flags_arch
))
30345 if (!ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
)
30346 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8m_m_only
))
30348 else if (ARM_CPU_HAS_FEATURE (flags
, arm_arch_t2
))
30352 aeabi_set_attribute_int (Tag_THUMB_ISA_use
, thumb_isa_use
);
30355 /* Tag_VFP_arch. */
30356 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_armv8xd
))
30357 aeabi_set_attribute_int (Tag_VFP_arch
,
30358 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
30360 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_fma
))
30361 aeabi_set_attribute_int (Tag_VFP_arch
,
30362 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
30364 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
))
30367 aeabi_set_attribute_int (Tag_VFP_arch
, 3);
30369 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v3xd
))
30371 aeabi_set_attribute_int (Tag_VFP_arch
, 4);
30374 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v2
))
30375 aeabi_set_attribute_int (Tag_VFP_arch
, 2);
30376 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
)
30377 || ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
))
30378 aeabi_set_attribute_int (Tag_VFP_arch
, 1);
30380 /* Tag_ABI_HardFP_use. */
30381 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
)
30382 && !ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
))
30383 aeabi_set_attribute_int (Tag_ABI_HardFP_use
, 1);
30385 /* Tag_WMMX_arch. */
30386 if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt2
))
30387 aeabi_set_attribute_int (Tag_WMMX_arch
, 2);
30388 else if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt
))
30389 aeabi_set_attribute_int (Tag_WMMX_arch
, 1);
30391 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
30392 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v8_1
))
30393 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 4);
30394 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_armv8
))
30395 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 3);
30396 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v1
))
30398 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_fma
))
30400 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 2);
30404 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 1);
30409 if (ARM_CPU_HAS_FEATURE (flags
, mve_fp_ext
))
30410 aeabi_set_attribute_int (Tag_MVE_arch
, 2);
30411 else if (ARM_CPU_HAS_FEATURE (flags
, mve_ext
))
30412 aeabi_set_attribute_int (Tag_MVE_arch
, 1);
30414 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
30415 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_fp16
) && fp16_optional
)
30416 aeabi_set_attribute_int (Tag_VFP_HP_extension
, 1);
30420 We set Tag_DIV_use to two when integer divide instructions have been used
30421 in ARM state, or when Thumb integer divide instructions have been used,
30422 but we have no architecture profile set, nor have we any ARM instructions.
30424 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30425 by the base architecture.
30427 For new architectures we will have to check these tests. */
30428 gas_assert (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
30429 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
)
30430 || ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8m
))
30431 aeabi_set_attribute_int (Tag_DIV_use
, 0);
30432 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_adiv
)
30433 || (profile
== '\0'
30434 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_div
)
30435 && !ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
)))
30436 aeabi_set_attribute_int (Tag_DIV_use
, 2);
30438 /* Tag_MP_extension_use. */
30439 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_mp
))
30440 aeabi_set_attribute_int (Tag_MPextension_use
, 1);
30442 /* Tag Virtualization_use. */
30443 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_sec
))
30445 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_virt
))
30448 aeabi_set_attribute_int (Tag_Virtualization_use
, virt_sec
);
30451 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
30452 finished and free extension feature bits which will not be used anymore. */
30455 arm_md_post_relax (void)
30457 aeabi_set_public_attributes ();
30458 XDELETE (mcpu_ext_opt
);
30459 mcpu_ext_opt
= NULL
;
30460 XDELETE (march_ext_opt
);
30461 march_ext_opt
= NULL
;
30464 /* Add the default contents for the .ARM.attributes section. */
30469 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
30472 aeabi_set_public_attributes ();
30474 #endif /* OBJ_ELF */
30476 /* Parse a .cpu directive. */
30479 s_arm_cpu (int ignored ATTRIBUTE_UNUSED
)
30481 const struct arm_cpu_option_table
*opt
;
30485 name
= input_line_pointer
;
30486 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
30487 input_line_pointer
++;
30488 saved_char
= *input_line_pointer
;
30489 *input_line_pointer
= 0;
30491 /* Skip the first "all" entry. */
30492 for (opt
= arm_cpus
+ 1; opt
->name
!= NULL
; opt
++)
30493 if (streq (opt
->name
, name
))
30495 selected_arch
= opt
->value
;
30496 selected_ext
= opt
->ext
;
30497 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
30498 if (opt
->canonical_name
)
30499 strcpy (selected_cpu_name
, opt
->canonical_name
);
30503 for (i
= 0; opt
->name
[i
]; i
++)
30504 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
30506 selected_cpu_name
[i
] = 0;
30508 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
30510 *input_line_pointer
= saved_char
;
30511 demand_empty_rest_of_line ();
30514 as_bad (_("unknown cpu `%s'"), name
);
30515 *input_line_pointer
= saved_char
;
30516 ignore_rest_of_line ();
30519 /* Parse a .arch directive. */
30522 s_arm_arch (int ignored ATTRIBUTE_UNUSED
)
30524 const struct arm_arch_option_table
*opt
;
30528 name
= input_line_pointer
;
30529 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
30530 input_line_pointer
++;
30531 saved_char
= *input_line_pointer
;
30532 *input_line_pointer
= 0;
30534 /* Skip the first "all" entry. */
30535 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
30536 if (streq (opt
->name
, name
))
30538 selected_arch
= opt
->value
;
30539 selected_ext
= arm_arch_none
;
30540 selected_cpu
= selected_arch
;
30541 strcpy (selected_cpu_name
, opt
->name
);
30542 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
30543 *input_line_pointer
= saved_char
;
30544 demand_empty_rest_of_line ();
30548 as_bad (_("unknown architecture `%s'\n"), name
);
30549 *input_line_pointer
= saved_char
;
30550 ignore_rest_of_line ();
30553 /* Parse a .object_arch directive. */
30556 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED
)
30558 const struct arm_arch_option_table
*opt
;
30562 name
= input_line_pointer
;
30563 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
30564 input_line_pointer
++;
30565 saved_char
= *input_line_pointer
;
30566 *input_line_pointer
= 0;
30568 /* Skip the first "all" entry. */
30569 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
30570 if (streq (opt
->name
, name
))
30572 selected_object_arch
= opt
->value
;
30573 *input_line_pointer
= saved_char
;
30574 demand_empty_rest_of_line ();
30578 as_bad (_("unknown architecture `%s'\n"), name
);
30579 *input_line_pointer
= saved_char
;
30580 ignore_rest_of_line ();
30583 /* Parse a .arch_extension directive. */
30586 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED
)
30588 const struct arm_option_extension_value_table
*opt
;
30591 int adding_value
= 1;
30593 name
= input_line_pointer
;
30594 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
30595 input_line_pointer
++;
30596 saved_char
= *input_line_pointer
;
30597 *input_line_pointer
= 0;
30599 if (strlen (name
) >= 2
30600 && strncmp (name
, "no", 2) == 0)
30606 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
30607 if (streq (opt
->name
, name
))
30609 int i
, nb_allowed_archs
=
30610 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[i
]);
30611 for (i
= 0; i
< nb_allowed_archs
; i
++)
30614 if (ARM_CPU_IS_ANY (opt
->allowed_archs
[i
]))
30616 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], selected_arch
))
30620 if (i
== nb_allowed_archs
)
30622 as_bad (_("architectural extension `%s' is not allowed for the "
30623 "current base architecture"), name
);
30628 ARM_MERGE_FEATURE_SETS (selected_ext
, selected_ext
,
30631 ARM_CLEAR_FEATURE (selected_ext
, selected_ext
, opt
->clear_value
);
30633 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
30634 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
30635 *input_line_pointer
= saved_char
;
30636 demand_empty_rest_of_line ();
30637 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
30638 on this return so that duplicate extensions (extensions with the
30639 same name as a previous extension in the list) are not considered
30640 for command-line parsing. */
30644 if (opt
->name
== NULL
)
30645 as_bad (_("unknown architecture extension `%s'\n"), name
);
30647 *input_line_pointer
= saved_char
;
30648 ignore_rest_of_line ();
30651 /* Parse a .fpu directive. */
30654 s_arm_fpu (int ignored ATTRIBUTE_UNUSED
)
30656 const struct arm_option_fpu_value_table
*opt
;
30660 name
= input_line_pointer
;
30661 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
30662 input_line_pointer
++;
30663 saved_char
= *input_line_pointer
;
30664 *input_line_pointer
= 0;
30666 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
30667 if (streq (opt
->name
, name
))
30669 selected_fpu
= opt
->value
;
30670 #ifndef CPU_DEFAULT
30671 if (no_cpu_selected ())
30672 ARM_MERGE_FEATURE_SETS (cpu_variant
, arm_arch_any
, selected_fpu
);
30675 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
30676 *input_line_pointer
= saved_char
;
30677 demand_empty_rest_of_line ();
30681 as_bad (_("unknown floating point format `%s'\n"), name
);
30682 *input_line_pointer
= saved_char
;
30683 ignore_rest_of_line ();
30686 /* Copy symbol information. */
30689 arm_copy_symbol_attributes (symbolS
*dest
, symbolS
*src
)
30691 ARM_GET_FLAG (dest
) = ARM_GET_FLAG (src
);
30695 /* Given a symbolic attribute NAME, return the proper integer value.
30696 Returns -1 if the attribute is not known. */
30699 arm_convert_symbolic_attribute (const char *name
)
30701 static const struct
30706 attribute_table
[] =
30708 /* When you modify this table you should
30709 also modify the list in doc/c-arm.texi. */
30710 #define T(tag) {#tag, tag}
30711 T (Tag_CPU_raw_name
),
30714 T (Tag_CPU_arch_profile
),
30715 T (Tag_ARM_ISA_use
),
30716 T (Tag_THUMB_ISA_use
),
30720 T (Tag_Advanced_SIMD_arch
),
30721 T (Tag_PCS_config
),
30722 T (Tag_ABI_PCS_R9_use
),
30723 T (Tag_ABI_PCS_RW_data
),
30724 T (Tag_ABI_PCS_RO_data
),
30725 T (Tag_ABI_PCS_GOT_use
),
30726 T (Tag_ABI_PCS_wchar_t
),
30727 T (Tag_ABI_FP_rounding
),
30728 T (Tag_ABI_FP_denormal
),
30729 T (Tag_ABI_FP_exceptions
),
30730 T (Tag_ABI_FP_user_exceptions
),
30731 T (Tag_ABI_FP_number_model
),
30732 T (Tag_ABI_align_needed
),
30733 T (Tag_ABI_align8_needed
),
30734 T (Tag_ABI_align_preserved
),
30735 T (Tag_ABI_align8_preserved
),
30736 T (Tag_ABI_enum_size
),
30737 T (Tag_ABI_HardFP_use
),
30738 T (Tag_ABI_VFP_args
),
30739 T (Tag_ABI_WMMX_args
),
30740 T (Tag_ABI_optimization_goals
),
30741 T (Tag_ABI_FP_optimization_goals
),
30742 T (Tag_compatibility
),
30743 T (Tag_CPU_unaligned_access
),
30744 T (Tag_FP_HP_extension
),
30745 T (Tag_VFP_HP_extension
),
30746 T (Tag_ABI_FP_16bit_format
),
30747 T (Tag_MPextension_use
),
30749 T (Tag_nodefaults
),
30750 T (Tag_also_compatible_with
),
30751 T (Tag_conformance
),
30753 T (Tag_Virtualization_use
),
30754 T (Tag_DSP_extension
),
30756 /* We deliberately do not include Tag_MPextension_use_legacy. */
30764 for (i
= 0; i
< ARRAY_SIZE (attribute_table
); i
++)
30765 if (streq (name
, attribute_table
[i
].name
))
30766 return attribute_table
[i
].tag
;
30771 /* Apply sym value for relocations only in the case that they are for
30772 local symbols in the same segment as the fixup and you have the
30773 respective architectural feature for blx and simple switches. */
30776 arm_apply_sym_value (struct fix
* fixP
, segT this_seg
)
30779 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
30780 /* PR 17444: If the local symbol is in a different section then a reloc
30781 will always be generated for it, so applying the symbol value now
30782 will result in a double offset being stored in the relocation. */
30783 && (S_GET_SEGMENT (fixP
->fx_addsy
) == this_seg
)
30784 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
))
30786 switch (fixP
->fx_r_type
)
30788 case BFD_RELOC_ARM_PCREL_BLX
:
30789 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
30790 if (ARM_IS_FUNC (fixP
->fx_addsy
))
30794 case BFD_RELOC_ARM_PCREL_CALL
:
30795 case BFD_RELOC_THUMB_PCREL_BLX
:
30796 if (THUMB_IS_FUNC (fixP
->fx_addsy
))
30807 #endif /* OBJ_ELF */