[PATCH 45/57][Arm][OBJDUMP] Add support for MVE instructions: vmov, vmvn, vorr, vorn...
[binutils-gdb.git] / gold / layout.cc
blobb83e8e6e2dc83a356cc38f08631e1274cc0d6006
1 // layout.cc -- lay out output file sections for gold
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
61 namespace gold
64 // Class Free_list.
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
84 void
85 Free_list::init(off_t len, bool extend)
87 this->list_.push_front(Free_list_node(0, len));
88 this->last_remove_ = this->list_.begin();
89 this->extend_ = extend;
90 this->length_ = len;
91 ++Free_list::num_lists;
92 ++Free_list::num_nodes;
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
104 void
105 Free_list::remove(off_t start, off_t end)
107 if (start == end)
108 return;
109 gold_assert(start < end);
111 ++Free_list::num_removes;
113 Iterator p = this->last_remove_;
114 if (p->start_ > start)
115 p = this->list_.begin();
117 for (; p != this->list_.end(); ++p)
119 ++Free_list::num_remove_visits;
120 // Find a node that wholly contains the indicated region.
121 if (p->start_ <= start && p->end_ >= end)
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 p = this->list_.erase(p);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p->start_ + 3 >= start)
129 p->start_ = end;
130 // Case 3: remove a chunk from the end of the node.
131 else if (p->end_ <= end + 3)
132 p->end_ = start;
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
135 else
137 Free_list_node newnode(p->start_, start);
138 p->start_ = end;
139 this->list_.insert(p, newnode);
140 ++Free_list::num_nodes;
142 this->last_remove_ = p;
143 return;
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start), static_cast<int>(end));
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
161 gold_debug(DEBUG_INCREMENTAL,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len), static_cast<int>(align),
164 static_cast<long>(minoff));
165 if (len == 0)
166 return align_address(minoff, align);
168 ++Free_list::num_allocates;
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
175 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
177 ++Free_list::num_allocate_visits;
178 off_t start = p->start_ > minoff ? p->start_ : minoff;
179 start = align_address(start, align);
180 off_t end = start + len;
181 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
183 this->length_ = end;
184 p->end_ = end;
186 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
188 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 this->list_.erase(p);
190 else if (p->start_ + fuzz >= start)
191 p->start_ = end;
192 else if (p->end_ <= end + fuzz)
193 p->end_ = start;
194 else
196 Free_list_node newnode(p->start_, start);
197 p->start_ = end;
198 this->list_.insert(p, newnode);
199 ++Free_list::num_nodes;
201 return start;
204 if (this->extend_)
206 off_t start = align_address(this->length_, align);
207 this->length_ = start + len;
208 return start;
210 return -1;
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
220 static_cast<long>(p->end_),
221 static_cast<long>(p->end_ - p->start_));
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
228 fprintf(stderr, _("%s: total free lists: %u\n"),
229 program_name, Free_list::num_lists);
230 fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 program_name, Free_list::num_nodes);
232 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 program_name, Free_list::num_removes);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_remove_visits);
236 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name, Free_list::num_allocates);
238 fprintf(stderr, _("%s: nodes visited: %u\n"),
239 program_name, Free_list::num_allocate_visits);
242 // A Hash_task computes the MD5 checksum of an array of char.
244 class Hash_task : public Task
246 public:
247 Hash_task(Output_file* of,
248 size_t offset,
249 size_t size,
250 unsigned char* dst,
251 Task_token* final_blocker)
252 : of_(of), offset_(offset), size_(size), dst_(dst),
253 final_blocker_(final_blocker)
256 void
257 run(Workqueue*)
259 const unsigned char* iv =
260 this->of_->get_input_view(this->offset_, this->size_);
261 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262 this->of_->free_input_view(this->offset_, this->size_, iv);
265 Task_token*
266 is_runnable()
267 { return NULL; }
269 // Unblock FINAL_BLOCKER_ when done.
270 void
271 locks(Task_locker* tl)
272 { tl->add(this, this->final_blocker_); }
274 std::string
275 get_name() const
276 { return "Hash_task"; }
278 private:
279 Output_file* of_;
280 const size_t offset_;
281 const size_t size_;
282 unsigned char* const dst_;
283 Task_token* const final_blocker_;
286 // Layout::Relaxation_debug_check methods.
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
308 gold_assert(relax_outputs.empty());
311 // Save information of SECTIONS for checking later.
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
331 // Verify SECTIONS using previously recorded information.
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
347 if (i >= this->section_infos_.size())
349 gold_fatal("Section_info of %s missing.\n", os->name());
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
362 // Layout_task_runner methods.
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
383 if (this->mapfile_ != NULL)
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
397 else
399 of = layout->incremental_base()->output_file();
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
411 of->resize(file_size);
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
419 // Layout methods.
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 script_output_section_data_list_(),
470 segment_states_(NULL),
471 relaxation_debug_check_(NULL),
472 section_order_map_(),
473 section_segment_map_(),
474 input_section_position_(),
475 input_section_glob_(),
476 incremental_base_(NULL),
477 free_list_(),
478 gnu_properties_()
480 // Make space for more than enough segments for a typical file.
481 // This is just for efficiency--it's OK if we wind up needing more.
482 this->segment_list_.reserve(12);
484 // We expect two unattached Output_data objects: the file header and
485 // the segment headers.
486 this->special_output_list_.reserve(2);
488 // Initialize structure needed for an incremental build.
489 if (parameters->incremental())
490 this->incremental_inputs_ = new Incremental_inputs;
492 // The section name pool is worth optimizing in all cases, because
493 // it is small, but there are often overlaps due to .rel sections.
494 this->namepool_.set_optimize();
497 // For incremental links, record the base file to be modified.
499 void
500 Layout::set_incremental_base(Incremental_binary* base)
502 this->incremental_base_ = base;
503 this->free_list_.init(base->output_file()->filesize(), true);
506 // Hash a key we use to look up an output section mapping.
508 size_t
509 Layout::Hash_key::operator()(const Layout::Key& k) const
511 return k.first + k.second.first + k.second.second;
514 // These are the debug sections that are actually used by gdb.
515 // Currently, we've checked versions of gdb up to and including 7.4.
516 // We only check the part of the name that follows ".debug_" or
517 // ".zdebug_".
519 static const char* gdb_sections[] =
521 "abbrev",
522 "addr", // Fission extension
523 // "aranges", // not used by gdb as of 7.4
524 "frame",
525 "gdb_scripts",
526 "info",
527 "types",
528 "line",
529 "loc",
530 "macinfo",
531 "macro",
532 // "pubnames", // not used by gdb as of 7.4
533 // "pubtypes", // not used by gdb as of 7.4
534 // "gnu_pubnames", // Fission extension
535 // "gnu_pubtypes", // Fission extension
536 "ranges",
537 "str",
538 "str_offsets",
541 // This is the minimum set of sections needed for line numbers.
543 static const char* lines_only_debug_sections[] =
545 "abbrev",
546 // "addr", // Fission extension
547 // "aranges", // not used by gdb as of 7.4
548 // "frame",
549 // "gdb_scripts",
550 "info",
551 // "types",
552 "line",
553 // "loc",
554 // "macinfo",
555 // "macro",
556 // "pubnames", // not used by gdb as of 7.4
557 // "pubtypes", // not used by gdb as of 7.4
558 // "gnu_pubnames", // Fission extension
559 // "gnu_pubtypes", // Fission extension
560 // "ranges",
561 "str",
562 "str_offsets", // Fission extension
565 // These sections are the DWARF fast-lookup tables, and are not needed
566 // when building a .gdb_index section.
568 static const char* gdb_fast_lookup_sections[] =
570 "aranges",
571 "pubnames",
572 "gnu_pubnames",
573 "pubtypes",
574 "gnu_pubtypes",
577 // Returns whether the given debug section is in the list of
578 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
579 // portion of the name following ".debug_" or ".zdebug_".
581 static inline bool
582 is_gdb_debug_section(const char* suffix)
584 // We can do this faster: binary search or a hashtable. But why bother?
585 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
586 if (strcmp(suffix, gdb_sections[i]) == 0)
587 return true;
588 return false;
591 // Returns whether the given section is needed for lines-only debugging.
593 static inline bool
594 is_lines_only_debug_section(const char* suffix)
596 // We can do this faster: binary search or a hashtable. But why bother?
597 for (size_t i = 0;
598 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
599 ++i)
600 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
601 return true;
602 return false;
605 // Returns whether the given section is a fast-lookup section that
606 // will not be needed when building a .gdb_index section.
608 static inline bool
609 is_gdb_fast_lookup_section(const char* suffix)
611 // We can do this faster: binary search or a hashtable. But why bother?
612 for (size_t i = 0;
613 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
614 ++i)
615 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
616 return true;
617 return false;
620 // Sometimes we compress sections. This is typically done for
621 // sections that are not part of normal program execution (such as
622 // .debug_* sections), and where the readers of these sections know
623 // how to deal with compressed sections. This routine doesn't say for
624 // certain whether we'll compress -- it depends on commandline options
625 // as well -- just whether this section is a candidate for compression.
626 // (The Output_compressed_section class decides whether to compress
627 // a given section, and picks the name of the compressed section.)
629 static bool
630 is_compressible_debug_section(const char* secname)
632 return (is_prefix_of(".debug", secname));
635 // We may see compressed debug sections in input files. Return TRUE
636 // if this is the name of a compressed debug section.
638 bool
639 is_compressed_debug_section(const char* secname)
641 return (is_prefix_of(".zdebug", secname));
644 std::string
645 corresponding_uncompressed_section_name(std::string secname)
647 gold_assert(secname[0] == '.' && secname[1] == 'z');
648 std::string ret(".");
649 ret.append(secname, 2, std::string::npos);
650 return ret;
653 // Whether to include this section in the link.
655 template<int size, bool big_endian>
656 bool
657 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
658 const elfcpp::Shdr<size, big_endian>& shdr)
660 if (!parameters->options().relocatable()
661 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
662 return false;
664 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
666 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
667 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
668 return parameters->target().should_include_section(sh_type);
670 switch (sh_type)
672 case elfcpp::SHT_NULL:
673 case elfcpp::SHT_SYMTAB:
674 case elfcpp::SHT_DYNSYM:
675 case elfcpp::SHT_HASH:
676 case elfcpp::SHT_DYNAMIC:
677 case elfcpp::SHT_SYMTAB_SHNDX:
678 return false;
680 case elfcpp::SHT_STRTAB:
681 // Discard the sections which have special meanings in the ELF
682 // ABI. Keep others (e.g., .stabstr). We could also do this by
683 // checking the sh_link fields of the appropriate sections.
684 return (strcmp(name, ".dynstr") != 0
685 && strcmp(name, ".strtab") != 0
686 && strcmp(name, ".shstrtab") != 0);
688 case elfcpp::SHT_RELA:
689 case elfcpp::SHT_REL:
690 case elfcpp::SHT_GROUP:
691 // If we are emitting relocations these should be handled
692 // elsewhere.
693 gold_assert(!parameters->options().relocatable());
694 return false;
696 case elfcpp::SHT_PROGBITS:
697 if (parameters->options().strip_debug()
698 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700 if (is_debug_info_section(name))
701 return false;
703 if (parameters->options().strip_debug_non_line()
704 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
706 // Debugging sections can only be recognized by name.
707 if (is_prefix_of(".debug_", name)
708 && !is_lines_only_debug_section(name + 7))
709 return false;
710 if (is_prefix_of(".zdebug_", name)
711 && !is_lines_only_debug_section(name + 8))
712 return false;
714 if (parameters->options().strip_debug_gdb()
715 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
717 // Debugging sections can only be recognized by name.
718 if (is_prefix_of(".debug_", name)
719 && !is_gdb_debug_section(name + 7))
720 return false;
721 if (is_prefix_of(".zdebug_", name)
722 && !is_gdb_debug_section(name + 8))
723 return false;
725 if (parameters->options().gdb_index()
726 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
728 // When building .gdb_index, we can strip .debug_pubnames,
729 // .debug_pubtypes, and .debug_aranges sections.
730 if (is_prefix_of(".debug_", name)
731 && is_gdb_fast_lookup_section(name + 7))
732 return false;
733 if (is_prefix_of(".zdebug_", name)
734 && is_gdb_fast_lookup_section(name + 8))
735 return false;
737 if (parameters->options().strip_lto_sections()
738 && !parameters->options().relocatable()
739 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
741 // Ignore LTO sections containing intermediate code.
742 if (is_prefix_of(".gnu.lto_", name))
743 return false;
745 // The GNU linker strips .gnu_debuglink sections, so we do too.
746 // This is a feature used to keep debugging information in
747 // separate files.
748 if (strcmp(name, ".gnu_debuglink") == 0)
749 return false;
750 return true;
752 default:
753 return true;
757 // Return an output section named NAME, or NULL if there is none.
759 Output_section*
760 Layout::find_output_section(const char* name) const
762 for (Section_list::const_iterator p = this->section_list_.begin();
763 p != this->section_list_.end();
764 ++p)
765 if (strcmp((*p)->name(), name) == 0)
766 return *p;
767 return NULL;
770 // Return an output segment of type TYPE, with segment flags SET set
771 // and segment flags CLEAR clear. Return NULL if there is none.
773 Output_segment*
774 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
775 elfcpp::Elf_Word clear) const
777 for (Segment_list::const_iterator p = this->segment_list_.begin();
778 p != this->segment_list_.end();
779 ++p)
780 if (static_cast<elfcpp::PT>((*p)->type()) == type
781 && ((*p)->flags() & set) == set
782 && ((*p)->flags() & clear) == 0)
783 return *p;
784 return NULL;
787 // When we put a .ctors or .dtors section with more than one word into
788 // a .init_array or .fini_array section, we need to reverse the words
789 // in the .ctors/.dtors section. This is because .init_array executes
790 // constructors front to back, where .ctors executes them back to
791 // front, and vice-versa for .fini_array/.dtors. Although we do want
792 // to remap .ctors/.dtors into .init_array/.fini_array because it can
793 // be more efficient, we don't want to change the order in which
794 // constructors/destructors are run. This set just keeps track of
795 // these sections which need to be reversed. It is only changed by
796 // Layout::layout. It should be a private member of Layout, but that
797 // would require layout.h to #include object.h to get the definition
798 // of Section_id.
799 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
801 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
802 // .init_array/.fini_array section.
804 bool
805 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
807 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
808 != ctors_sections_in_init_array.end());
811 // Return the output section to use for section NAME with type TYPE
812 // and section flags FLAGS. NAME must be canonicalized in the string
813 // pool, and NAME_KEY is the key. ORDER is where this should appear
814 // in the output sections. IS_RELRO is true for a relro section.
816 Output_section*
817 Layout::get_output_section(const char* name, Stringpool::Key name_key,
818 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
819 Output_section_order order, bool is_relro)
821 elfcpp::Elf_Word lookup_type = type;
823 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
824 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
825 // .init_array, .fini_array, and .preinit_array sections by name
826 // whatever their type in the input file. We do this because the
827 // types are not always right in the input files.
828 if (lookup_type == elfcpp::SHT_INIT_ARRAY
829 || lookup_type == elfcpp::SHT_FINI_ARRAY
830 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
831 lookup_type = elfcpp::SHT_PROGBITS;
833 elfcpp::Elf_Xword lookup_flags = flags;
835 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
836 // read-write with read-only sections. Some other ELF linkers do
837 // not do this. FIXME: Perhaps there should be an option
838 // controlling this.
839 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
841 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
842 const std::pair<Key, Output_section*> v(key, NULL);
843 std::pair<Section_name_map::iterator, bool> ins(
844 this->section_name_map_.insert(v));
846 if (!ins.second)
847 return ins.first->second;
848 else
850 // This is the first time we've seen this name/type/flags
851 // combination. For compatibility with the GNU linker, we
852 // combine sections with contents and zero flags with sections
853 // with non-zero flags. This is a workaround for cases where
854 // assembler code forgets to set section flags. FIXME: Perhaps
855 // there should be an option to control this.
856 Output_section* os = NULL;
858 if (lookup_type == elfcpp::SHT_PROGBITS)
860 if (flags == 0)
862 Output_section* same_name = this->find_output_section(name);
863 if (same_name != NULL
864 && (same_name->type() == elfcpp::SHT_PROGBITS
865 || same_name->type() == elfcpp::SHT_INIT_ARRAY
866 || same_name->type() == elfcpp::SHT_FINI_ARRAY
867 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
868 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
869 os = same_name;
871 else if ((flags & elfcpp::SHF_TLS) == 0)
873 elfcpp::Elf_Xword zero_flags = 0;
874 const Key zero_key(name_key, std::make_pair(lookup_type,
875 zero_flags));
876 Section_name_map::iterator p =
877 this->section_name_map_.find(zero_key);
878 if (p != this->section_name_map_.end())
879 os = p->second;
883 if (os == NULL)
884 os = this->make_output_section(name, type, flags, order, is_relro);
886 ins.first->second = os;
887 return os;
891 // Returns TRUE iff NAME (an input section from RELOBJ) will
892 // be mapped to an output section that should be KEPT.
894 bool
895 Layout::keep_input_section(const Relobj* relobj, const char* name)
897 if (! this->script_options_->saw_sections_clause())
898 return false;
900 Script_sections* ss = this->script_options_->script_sections();
901 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
902 Output_section** output_section_slot;
903 Script_sections::Section_type script_section_type;
904 bool keep;
906 name = ss->output_section_name(file_name, name, &output_section_slot,
907 &script_section_type, &keep, true);
908 return name != NULL && keep;
911 // Clear the input section flags that should not be copied to the
912 // output section.
914 elfcpp::Elf_Xword
915 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
917 // Some flags in the input section should not be automatically
918 // copied to the output section.
919 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
920 | elfcpp::SHF_GROUP
921 | elfcpp::SHF_COMPRESSED
922 | elfcpp::SHF_MERGE
923 | elfcpp::SHF_STRINGS);
925 // We only clear the SHF_LINK_ORDER flag in for
926 // a non-relocatable link.
927 if (!parameters->options().relocatable())
928 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
930 return input_section_flags;
933 // Pick the output section to use for section NAME, in input file
934 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
935 // linker created section. IS_INPUT_SECTION is true if we are
936 // choosing an output section for an input section found in a input
937 // file. ORDER is where this section should appear in the output
938 // sections. IS_RELRO is true for a relro section. This will return
939 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
940 // is true if the section name should be matched against input specs
941 // in a linker script.
943 Output_section*
944 Layout::choose_output_section(const Relobj* relobj, const char* name,
945 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
946 bool is_input_section, Output_section_order order,
947 bool is_relro, bool is_reloc,
948 bool match_input_spec)
950 // We should not see any input sections after we have attached
951 // sections to segments.
952 gold_assert(!is_input_section || !this->sections_are_attached_);
954 flags = this->get_output_section_flags(flags);
956 if (this->script_options_->saw_sections_clause() && !is_reloc)
958 // We are using a SECTIONS clause, so the output section is
959 // chosen based only on the name.
961 Script_sections* ss = this->script_options_->script_sections();
962 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
963 Output_section** output_section_slot;
964 Script_sections::Section_type script_section_type;
965 const char* orig_name = name;
966 bool keep;
967 name = ss->output_section_name(file_name, name, &output_section_slot,
968 &script_section_type, &keep,
969 match_input_spec);
971 if (name == NULL)
973 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
974 "because it is not allowed by the "
975 "SECTIONS clause of the linker script"),
976 orig_name);
977 // The SECTIONS clause says to discard this input section.
978 return NULL;
981 // We can only handle script section types ST_NONE and ST_NOLOAD.
982 switch (script_section_type)
984 case Script_sections::ST_NONE:
985 break;
986 case Script_sections::ST_NOLOAD:
987 flags &= elfcpp::SHF_ALLOC;
988 break;
989 default:
990 gold_unreachable();
993 // If this is an orphan section--one not mentioned in the linker
994 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
995 // default processing below.
997 if (output_section_slot != NULL)
999 if (*output_section_slot != NULL)
1001 (*output_section_slot)->update_flags_for_input_section(flags);
1002 return *output_section_slot;
1005 // We don't put sections found in the linker script into
1006 // SECTION_NAME_MAP_. That keeps us from getting confused
1007 // if an orphan section is mapped to a section with the same
1008 // name as one in the linker script.
1010 name = this->namepool_.add(name, false, NULL);
1012 Output_section* os = this->make_output_section(name, type, flags,
1013 order, is_relro);
1015 os->set_found_in_sections_clause();
1017 // Special handling for NOLOAD sections.
1018 if (script_section_type == Script_sections::ST_NOLOAD)
1020 os->set_is_noload();
1022 // The constructor of Output_section sets addresses of non-ALLOC
1023 // sections to 0 by default. We don't want that for NOLOAD
1024 // sections even if they have no SHF_ALLOC flag.
1025 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1026 && os->is_address_valid())
1028 gold_assert(os->address() == 0
1029 && !os->is_offset_valid()
1030 && !os->is_data_size_valid());
1031 os->reset_address_and_file_offset();
1035 *output_section_slot = os;
1036 return os;
1040 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1042 size_t len = strlen(name);
1043 std::string uncompressed_name;
1045 // Compressed debug sections should be mapped to the corresponding
1046 // uncompressed section.
1047 if (is_compressed_debug_section(name))
1049 uncompressed_name =
1050 corresponding_uncompressed_section_name(std::string(name, len));
1051 name = uncompressed_name.c_str();
1052 len = uncompressed_name.length();
1055 // Turn NAME from the name of the input section into the name of the
1056 // output section.
1057 if (is_input_section
1058 && !this->script_options_->saw_sections_clause()
1059 && !parameters->options().relocatable())
1061 const char *orig_name = name;
1062 name = parameters->target().output_section_name(relobj, name, &len);
1063 if (name == NULL)
1064 name = Layout::output_section_name(relobj, orig_name, &len);
1067 Stringpool::Key name_key;
1068 name = this->namepool_.add_with_length(name, len, true, &name_key);
1070 // Find or make the output section. The output section is selected
1071 // based on the section name, type, and flags.
1072 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1075 // For incremental links, record the initial fixed layout of a section
1076 // from the base file, and return a pointer to the Output_section.
1078 template<int size, bool big_endian>
1079 Output_section*
1080 Layout::init_fixed_output_section(const char* name,
1081 elfcpp::Shdr<size, big_endian>& shdr)
1083 unsigned int sh_type = shdr.get_sh_type();
1085 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1086 // PRE_INIT_ARRAY, and NOTE sections.
1087 // All others will be created from scratch and reallocated.
1088 if (!can_incremental_update(sh_type))
1089 return NULL;
1091 // If we're generating a .gdb_index section, we need to regenerate
1092 // it from scratch.
1093 if (parameters->options().gdb_index()
1094 && sh_type == elfcpp::SHT_PROGBITS
1095 && strcmp(name, ".gdb_index") == 0)
1096 return NULL;
1098 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1099 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1100 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1101 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1102 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1103 shdr.get_sh_addralign();
1105 // Make the output section.
1106 Stringpool::Key name_key;
1107 name = this->namepool_.add(name, true, &name_key);
1108 Output_section* os = this->get_output_section(name, name_key, sh_type,
1109 sh_flags, ORDER_INVALID, false);
1110 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1111 if (sh_type != elfcpp::SHT_NOBITS)
1112 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1113 return os;
1116 // Return the index by which an input section should be ordered. This
1117 // is used to sort some .text sections, for compatibility with GNU ld.
1120 Layout::special_ordering_of_input_section(const char* name)
1122 // The GNU linker has some special handling for some sections that
1123 // wind up in the .text section. Sections that start with these
1124 // prefixes must appear first, and must appear in the order listed
1125 // here.
1126 static const char* const text_section_sort[] =
1128 ".text.unlikely",
1129 ".text.exit",
1130 ".text.startup",
1131 ".text.hot"
1134 for (size_t i = 0;
1135 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1136 i++)
1137 if (is_prefix_of(text_section_sort[i], name))
1138 return i;
1140 return -1;
1143 // Return the output section to use for input section SHNDX, with name
1144 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1145 // index of a relocation section which applies to this section, or 0
1146 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1147 // relocation section if there is one. Set *OFF to the offset of this
1148 // input section without the output section. Return NULL if the
1149 // section should be discarded. Set *OFF to -1 if the section
1150 // contents should not be written directly to the output file, but
1151 // will instead receive special handling.
1153 template<int size, bool big_endian>
1154 Output_section*
1155 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1156 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1157 unsigned int sh_type, unsigned int reloc_shndx,
1158 unsigned int, off_t* off)
1160 *off = 0;
1162 if (!this->include_section(object, name, shdr))
1163 return NULL;
1165 // In a relocatable link a grouped section must not be combined with
1166 // any other sections.
1167 Output_section* os;
1168 if (parameters->options().relocatable()
1169 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1171 // Some flags in the input section should not be automatically
1172 // copied to the output section.
1173 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174 & ~ elfcpp::SHF_COMPRESSED);
1175 name = this->namepool_.add(name, true, NULL);
1176 os = this->make_output_section(name, sh_type, flags,
1177 ORDER_INVALID, false);
1179 else
1181 // All ".text.unlikely.*" sections can be moved to a unique
1182 // segment with --text-unlikely-segment option.
1183 bool text_unlikely_segment
1184 = (parameters->options().text_unlikely_segment()
1185 && is_prefix_of(".text.unlikely",
1186 object->section_name(shndx).c_str()));
1187 if (text_unlikely_segment)
1189 elfcpp::Elf_Xword flags
1190 = this->get_output_section_flags(shdr.get_sh_flags());
1192 Stringpool::Key name_key;
1193 const char* os_name = this->namepool_.add(".text.unlikely", true,
1194 &name_key);
1195 os = this->get_output_section(os_name, name_key, sh_type, flags,
1196 ORDER_INVALID, false);
1197 // Map this output section to a unique segment. This is done to
1198 // separate "text" that is not likely to be executed from "text"
1199 // that is likely executed.
1200 os->set_is_unique_segment();
1202 else
1204 // Plugins can choose to place one or more subsets of sections in
1205 // unique segments and this is done by mapping these section subsets
1206 // to unique output sections. Check if this section needs to be
1207 // remapped to a unique output section.
1208 Section_segment_map::iterator it
1209 = this->section_segment_map_.find(Const_section_id(object, shndx));
1210 if (it == this->section_segment_map_.end())
1212 os = this->choose_output_section(object, name, sh_type,
1213 shdr.get_sh_flags(), true,
1214 ORDER_INVALID, false, false,
1215 true);
1217 else
1219 // We know the name of the output section, directly call
1220 // get_output_section here by-passing choose_output_section.
1221 elfcpp::Elf_Xword flags
1222 = this->get_output_section_flags(shdr.get_sh_flags());
1224 const char* os_name = it->second->name;
1225 Stringpool::Key name_key;
1226 os_name = this->namepool_.add(os_name, true, &name_key);
1227 os = this->get_output_section(os_name, name_key, sh_type, flags,
1228 ORDER_INVALID, false);
1229 if (!os->is_unique_segment())
1231 os->set_is_unique_segment();
1232 os->set_extra_segment_flags(it->second->flags);
1233 os->set_segment_alignment(it->second->align);
1237 if (os == NULL)
1238 return NULL;
1241 // By default the GNU linker sorts input sections whose names match
1242 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1243 // sections are sorted by name. This is used to implement
1244 // constructor priority ordering. We are compatible. When we put
1245 // .ctor sections in .init_array and .dtor sections in .fini_array,
1246 // we must also sort plain .ctor and .dtor sections.
1247 if (!this->script_options_->saw_sections_clause()
1248 && !parameters->options().relocatable()
1249 && (is_prefix_of(".ctors.", name)
1250 || is_prefix_of(".dtors.", name)
1251 || is_prefix_of(".init_array.", name)
1252 || is_prefix_of(".fini_array.", name)
1253 || (parameters->options().ctors_in_init_array()
1254 && (strcmp(name, ".ctors") == 0
1255 || strcmp(name, ".dtors") == 0))))
1256 os->set_must_sort_attached_input_sections();
1258 // By default the GNU linker sorts some special text sections ahead
1259 // of others. We are compatible.
1260 if (parameters->options().text_reorder()
1261 && !this->script_options_->saw_sections_clause()
1262 && !this->is_section_ordering_specified()
1263 && !parameters->options().relocatable()
1264 && Layout::special_ordering_of_input_section(name) >= 0)
1265 os->set_must_sort_attached_input_sections();
1267 // If this is a .ctors or .ctors.* section being mapped to a
1268 // .init_array section, or a .dtors or .dtors.* section being mapped
1269 // to a .fini_array section, we will need to reverse the words if
1270 // there is more than one. Record this section for later. See
1271 // ctors_sections_in_init_array above.
1272 if (!this->script_options_->saw_sections_clause()
1273 && !parameters->options().relocatable()
1274 && shdr.get_sh_size() > size / 8
1275 && (((strcmp(name, ".ctors") == 0
1276 || is_prefix_of(".ctors.", name))
1277 && strcmp(os->name(), ".init_array") == 0)
1278 || ((strcmp(name, ".dtors") == 0
1279 || is_prefix_of(".dtors.", name))
1280 && strcmp(os->name(), ".fini_array") == 0)))
1281 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1283 // FIXME: Handle SHF_LINK_ORDER somewhere.
1285 elfcpp::Elf_Xword orig_flags = os->flags();
1287 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1288 this->script_options_->saw_sections_clause());
1290 // If the flags changed, we may have to change the order.
1291 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1293 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1294 elfcpp::Elf_Xword new_flags =
1295 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296 if (orig_flags != new_flags)
1297 os->set_order(this->default_section_order(os, false));
1300 this->have_added_input_section_ = true;
1302 return os;
1305 // Maps section SECN to SEGMENT s.
1306 void
1307 Layout::insert_section_segment_map(Const_section_id secn,
1308 Unique_segment_info *s)
1310 gold_assert(this->unique_segment_for_sections_specified_);
1311 this->section_segment_map_[secn] = s;
1314 // Handle a relocation section when doing a relocatable link.
1316 template<int size, bool big_endian>
1317 Output_section*
1318 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1319 unsigned int,
1320 const elfcpp::Shdr<size, big_endian>& shdr,
1321 Output_section* data_section,
1322 Relocatable_relocs* rr)
1324 gold_assert(parameters->options().relocatable()
1325 || parameters->options().emit_relocs());
1327 int sh_type = shdr.get_sh_type();
1329 std::string name;
1330 if (sh_type == elfcpp::SHT_REL)
1331 name = ".rel";
1332 else if (sh_type == elfcpp::SHT_RELA)
1333 name = ".rela";
1334 else
1335 gold_unreachable();
1336 name += data_section->name();
1338 // If the output data section already has a reloc section, use that;
1339 // otherwise, make a new one.
1340 Output_section* os = data_section->reloc_section();
1341 if (os == NULL)
1343 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1344 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1345 ORDER_INVALID, false);
1346 os->set_should_link_to_symtab();
1347 os->set_info_section(data_section);
1348 data_section->set_reloc_section(os);
1351 Output_section_data* posd;
1352 if (sh_type == elfcpp::SHT_REL)
1354 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1355 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1356 size,
1357 big_endian>(rr);
1359 else if (sh_type == elfcpp::SHT_RELA)
1361 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1362 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1363 size,
1364 big_endian>(rr);
1366 else
1367 gold_unreachable();
1369 os->add_output_section_data(posd);
1370 rr->set_output_data(posd);
1372 return os;
1375 // Handle a group section when doing a relocatable link.
1377 template<int size, bool big_endian>
1378 void
1379 Layout::layout_group(Symbol_table* symtab,
1380 Sized_relobj_file<size, big_endian>* object,
1381 unsigned int,
1382 const char* group_section_name,
1383 const char* signature,
1384 const elfcpp::Shdr<size, big_endian>& shdr,
1385 elfcpp::Elf_Word flags,
1386 std::vector<unsigned int>* shndxes)
1388 gold_assert(parameters->options().relocatable());
1389 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1390 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1391 Output_section* os = this->make_output_section(group_section_name,
1392 elfcpp::SHT_GROUP,
1393 shdr.get_sh_flags(),
1394 ORDER_INVALID, false);
1396 // We need to find a symbol with the signature in the symbol table.
1397 // If we don't find one now, we need to look again later.
1398 Symbol* sym = symtab->lookup(signature, NULL);
1399 if (sym != NULL)
1400 os->set_info_symndx(sym);
1401 else
1403 // Reserve some space to minimize reallocations.
1404 if (this->group_signatures_.empty())
1405 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1407 // We will wind up using a symbol whose name is the signature.
1408 // So just put the signature in the symbol name pool to save it.
1409 signature = symtab->canonicalize_name(signature);
1410 this->group_signatures_.push_back(Group_signature(os, signature));
1413 os->set_should_link_to_symtab();
1414 os->set_entsize(4);
1416 section_size_type entry_count =
1417 convert_to_section_size_type(shdr.get_sh_size() / 4);
1418 Output_section_data* posd =
1419 new Output_data_group<size, big_endian>(object, entry_count, flags,
1420 shndxes);
1421 os->add_output_section_data(posd);
1424 // Special GNU handling of sections name .eh_frame. They will
1425 // normally hold exception frame data as defined by the C++ ABI
1426 // (http://codesourcery.com/cxx-abi/).
1428 template<int size, bool big_endian>
1429 Output_section*
1430 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1431 const unsigned char* symbols,
1432 off_t symbols_size,
1433 const unsigned char* symbol_names,
1434 off_t symbol_names_size,
1435 unsigned int shndx,
1436 const elfcpp::Shdr<size, big_endian>& shdr,
1437 unsigned int reloc_shndx, unsigned int reloc_type,
1438 off_t* off)
1440 const unsigned int unwind_section_type =
1441 parameters->target().unwind_section_type();
1443 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1444 || shdr.get_sh_type() == unwind_section_type);
1445 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1447 Output_section* os = this->make_eh_frame_section(object);
1448 if (os == NULL)
1449 return NULL;
1451 gold_assert(this->eh_frame_section_ == os);
1453 elfcpp::Elf_Xword orig_flags = os->flags();
1455 Eh_frame::Eh_frame_section_disposition disp =
1456 Eh_frame::EH_UNRECOGNIZED_SECTION;
1457 if (!parameters->incremental())
1459 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1460 symbols,
1461 symbols_size,
1462 symbol_names,
1463 symbol_names_size,
1464 shndx,
1465 reloc_shndx,
1466 reloc_type);
1469 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1471 os->update_flags_for_input_section(shdr.get_sh_flags());
1473 // A writable .eh_frame section is a RELRO section.
1474 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1475 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1477 os->set_is_relro();
1478 os->set_order(ORDER_RELRO);
1481 *off = -1;
1482 return os;
1485 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1487 // We found the end marker section, so now we can add the set of
1488 // optimized sections to the output section. We need to postpone
1489 // adding this until we've found a section we can optimize so that
1490 // the .eh_frame section in crtbeginT.o winds up at the start of
1491 // the output section.
1492 os->add_output_section_data(this->eh_frame_data_);
1493 this->added_eh_frame_data_ = true;
1496 // We couldn't handle this .eh_frame section for some reason.
1497 // Add it as a normal section.
1498 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1499 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1500 reloc_shndx, saw_sections_clause);
1501 this->have_added_input_section_ = true;
1503 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1504 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1505 os->set_order(this->default_section_order(os, false));
1507 return os;
1510 void
1511 Layout::finalize_eh_frame_section()
1513 // If we never found an end marker section, we need to add the
1514 // optimized eh sections to the output section now.
1515 if (!parameters->incremental()
1516 && this->eh_frame_section_ != NULL
1517 && !this->added_eh_frame_data_)
1519 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1520 this->added_eh_frame_data_ = true;
1524 // Create and return the magic .eh_frame section. Create
1525 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1526 // input .eh_frame section; it may be NULL.
1528 Output_section*
1529 Layout::make_eh_frame_section(const Relobj* object)
1531 const unsigned int unwind_section_type =
1532 parameters->target().unwind_section_type();
1534 Output_section* os = this->choose_output_section(object, ".eh_frame",
1535 unwind_section_type,
1536 elfcpp::SHF_ALLOC, false,
1537 ORDER_EHFRAME, false, false,
1538 false);
1539 if (os == NULL)
1540 return NULL;
1542 if (this->eh_frame_section_ == NULL)
1544 this->eh_frame_section_ = os;
1545 this->eh_frame_data_ = new Eh_frame();
1547 // For incremental linking, we do not optimize .eh_frame sections
1548 // or create a .eh_frame_hdr section.
1549 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1551 Output_section* hdr_os =
1552 this->choose_output_section(NULL, ".eh_frame_hdr",
1553 unwind_section_type,
1554 elfcpp::SHF_ALLOC, false,
1555 ORDER_EHFRAME, false, false,
1556 false);
1558 if (hdr_os != NULL)
1560 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1561 this->eh_frame_data_);
1562 hdr_os->add_output_section_data(hdr_posd);
1564 hdr_os->set_after_input_sections();
1566 if (!this->script_options_->saw_phdrs_clause())
1568 Output_segment* hdr_oseg;
1569 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1570 elfcpp::PF_R);
1571 hdr_oseg->add_output_section_to_nonload(hdr_os,
1572 elfcpp::PF_R);
1575 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1580 return os;
1583 // Add an exception frame for a PLT. This is called from target code.
1585 void
1586 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1587 size_t cie_length, const unsigned char* fde_data,
1588 size_t fde_length)
1590 if (parameters->incremental())
1592 // FIXME: Maybe this could work some day....
1593 return;
1595 Output_section* os = this->make_eh_frame_section(NULL);
1596 if (os == NULL)
1597 return;
1598 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1599 fde_data, fde_length);
1600 if (!this->added_eh_frame_data_)
1602 os->add_output_section_data(this->eh_frame_data_);
1603 this->added_eh_frame_data_ = true;
1607 // Remove .eh_frame information for a PLT. FDEs using the CIE must
1608 // be removed in reverse order to the order they were added.
1610 void
1611 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1612 size_t cie_length, const unsigned char* fde_data,
1613 size_t fde_length)
1615 if (parameters->incremental())
1617 // FIXME: Maybe this could work some day....
1618 return;
1620 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length,
1621 fde_data, fde_length);
1624 // Scan a .debug_info or .debug_types section, and add summary
1625 // information to the .gdb_index section.
1627 template<int size, bool big_endian>
1628 void
1629 Layout::add_to_gdb_index(bool is_type_unit,
1630 Sized_relobj<size, big_endian>* object,
1631 const unsigned char* symbols,
1632 off_t symbols_size,
1633 unsigned int shndx,
1634 unsigned int reloc_shndx,
1635 unsigned int reloc_type)
1637 if (this->gdb_index_data_ == NULL)
1639 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1640 elfcpp::SHT_PROGBITS, 0,
1641 false, ORDER_INVALID,
1642 false, false, false);
1643 if (os == NULL)
1644 return;
1646 this->gdb_index_data_ = new Gdb_index(os);
1647 os->add_output_section_data(this->gdb_index_data_);
1648 os->set_after_input_sections();
1651 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1652 symbols_size, shndx, reloc_shndx,
1653 reloc_type);
1656 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1657 // the output section.
1659 Output_section*
1660 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1661 elfcpp::Elf_Xword flags,
1662 Output_section_data* posd,
1663 Output_section_order order, bool is_relro)
1665 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1666 false, order, is_relro,
1667 false, false);
1668 if (os != NULL)
1669 os->add_output_section_data(posd);
1670 return os;
1673 // Map section flags to segment flags.
1675 elfcpp::Elf_Word
1676 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1678 elfcpp::Elf_Word ret = elfcpp::PF_R;
1679 if ((flags & elfcpp::SHF_WRITE) != 0)
1680 ret |= elfcpp::PF_W;
1681 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1682 ret |= elfcpp::PF_X;
1683 return ret;
1686 // Make a new Output_section, and attach it to segments as
1687 // appropriate. ORDER is the order in which this section should
1688 // appear in the output segment. IS_RELRO is true if this is a relro
1689 // (read-only after relocations) section.
1691 Output_section*
1692 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1693 elfcpp::Elf_Xword flags,
1694 Output_section_order order, bool is_relro)
1696 Output_section* os;
1697 if ((flags & elfcpp::SHF_ALLOC) == 0
1698 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1699 && is_compressible_debug_section(name))
1700 os = new Output_compressed_section(&parameters->options(), name, type,
1701 flags);
1702 else if ((flags & elfcpp::SHF_ALLOC) == 0
1703 && parameters->options().strip_debug_non_line()
1704 && strcmp(".debug_abbrev", name) == 0)
1706 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1707 name, type, flags);
1708 if (this->debug_info_)
1709 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1711 else if ((flags & elfcpp::SHF_ALLOC) == 0
1712 && parameters->options().strip_debug_non_line()
1713 && strcmp(".debug_info", name) == 0)
1715 os = this->debug_info_ = new Output_reduced_debug_info_section(
1716 name, type, flags);
1717 if (this->debug_abbrev_)
1718 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1720 else
1722 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1723 // not have correct section types. Force them here.
1724 if (type == elfcpp::SHT_PROGBITS)
1726 if (is_prefix_of(".init_array", name))
1727 type = elfcpp::SHT_INIT_ARRAY;
1728 else if (is_prefix_of(".preinit_array", name))
1729 type = elfcpp::SHT_PREINIT_ARRAY;
1730 else if (is_prefix_of(".fini_array", name))
1731 type = elfcpp::SHT_FINI_ARRAY;
1734 // FIXME: const_cast is ugly.
1735 Target* target = const_cast<Target*>(&parameters->target());
1736 os = target->make_output_section(name, type, flags);
1739 // With -z relro, we have to recognize the special sections by name.
1740 // There is no other way.
1741 bool is_relro_local = false;
1742 if (!this->script_options_->saw_sections_clause()
1743 && parameters->options().relro()
1744 && (flags & elfcpp::SHF_ALLOC) != 0
1745 && (flags & elfcpp::SHF_WRITE) != 0)
1747 if (type == elfcpp::SHT_PROGBITS)
1749 if ((flags & elfcpp::SHF_TLS) != 0)
1750 is_relro = true;
1751 else if (strcmp(name, ".data.rel.ro") == 0)
1752 is_relro = true;
1753 else if (strcmp(name, ".data.rel.ro.local") == 0)
1755 is_relro = true;
1756 is_relro_local = true;
1758 else if (strcmp(name, ".ctors") == 0
1759 || strcmp(name, ".dtors") == 0
1760 || strcmp(name, ".jcr") == 0)
1761 is_relro = true;
1763 else if (type == elfcpp::SHT_INIT_ARRAY
1764 || type == elfcpp::SHT_FINI_ARRAY
1765 || type == elfcpp::SHT_PREINIT_ARRAY)
1766 is_relro = true;
1769 if (is_relro)
1770 os->set_is_relro();
1772 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1773 order = this->default_section_order(os, is_relro_local);
1775 os->set_order(order);
1777 parameters->target().new_output_section(os);
1779 this->section_list_.push_back(os);
1781 // The GNU linker by default sorts some sections by priority, so we
1782 // do the same. We need to know that this might happen before we
1783 // attach any input sections.
1784 if (!this->script_options_->saw_sections_clause()
1785 && !parameters->options().relocatable()
1786 && (strcmp(name, ".init_array") == 0
1787 || strcmp(name, ".fini_array") == 0
1788 || (!parameters->options().ctors_in_init_array()
1789 && (strcmp(name, ".ctors") == 0
1790 || strcmp(name, ".dtors") == 0))))
1791 os->set_may_sort_attached_input_sections();
1793 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1794 // sections before other .text sections. We are compatible. We
1795 // need to know that this might happen before we attach any input
1796 // sections.
1797 if (parameters->options().text_reorder()
1798 && !this->script_options_->saw_sections_clause()
1799 && !this->is_section_ordering_specified()
1800 && !parameters->options().relocatable()
1801 && strcmp(name, ".text") == 0)
1802 os->set_may_sort_attached_input_sections();
1804 // GNU linker sorts section by name with --sort-section=name.
1805 if (strcmp(parameters->options().sort_section(), "name") == 0)
1806 os->set_must_sort_attached_input_sections();
1808 // Check for .stab*str sections, as .stab* sections need to link to
1809 // them.
1810 if (type == elfcpp::SHT_STRTAB
1811 && !this->have_stabstr_section_
1812 && strncmp(name, ".stab", 5) == 0
1813 && strcmp(name + strlen(name) - 3, "str") == 0)
1814 this->have_stabstr_section_ = true;
1816 // During a full incremental link, we add patch space to most
1817 // PROGBITS and NOBITS sections. Flag those that may be
1818 // arbitrarily padded.
1819 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1820 && order != ORDER_INTERP
1821 && order != ORDER_INIT
1822 && order != ORDER_PLT
1823 && order != ORDER_FINI
1824 && order != ORDER_RELRO_LAST
1825 && order != ORDER_NON_RELRO_FIRST
1826 && strcmp(name, ".eh_frame") != 0
1827 && strcmp(name, ".ctors") != 0
1828 && strcmp(name, ".dtors") != 0
1829 && strcmp(name, ".jcr") != 0)
1831 os->set_is_patch_space_allowed();
1833 // Certain sections require "holes" to be filled with
1834 // specific fill patterns. These fill patterns may have
1835 // a minimum size, so we must prevent allocations from the
1836 // free list that leave a hole smaller than the minimum.
1837 if (strcmp(name, ".debug_info") == 0)
1838 os->set_free_space_fill(new Output_fill_debug_info(false));
1839 else if (strcmp(name, ".debug_types") == 0)
1840 os->set_free_space_fill(new Output_fill_debug_info(true));
1841 else if (strcmp(name, ".debug_line") == 0)
1842 os->set_free_space_fill(new Output_fill_debug_line());
1845 // If we have already attached the sections to segments, then we
1846 // need to attach this one now. This happens for sections created
1847 // directly by the linker.
1848 if (this->sections_are_attached_)
1849 this->attach_section_to_segment(&parameters->target(), os);
1851 return os;
1854 // Return the default order in which a section should be placed in an
1855 // output segment. This function captures a lot of the ideas in
1856 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1857 // linker created section is normally set when the section is created;
1858 // this function is used for input sections.
1860 Output_section_order
1861 Layout::default_section_order(Output_section* os, bool is_relro_local)
1863 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1864 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1865 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1866 bool is_bss = false;
1868 switch (os->type())
1870 default:
1871 case elfcpp::SHT_PROGBITS:
1872 break;
1873 case elfcpp::SHT_NOBITS:
1874 is_bss = true;
1875 break;
1876 case elfcpp::SHT_RELA:
1877 case elfcpp::SHT_REL:
1878 if (!is_write)
1879 return ORDER_DYNAMIC_RELOCS;
1880 break;
1881 case elfcpp::SHT_HASH:
1882 case elfcpp::SHT_DYNAMIC:
1883 case elfcpp::SHT_SHLIB:
1884 case elfcpp::SHT_DYNSYM:
1885 case elfcpp::SHT_GNU_HASH:
1886 case elfcpp::SHT_GNU_verdef:
1887 case elfcpp::SHT_GNU_verneed:
1888 case elfcpp::SHT_GNU_versym:
1889 if (!is_write)
1890 return ORDER_DYNAMIC_LINKER;
1891 break;
1892 case elfcpp::SHT_NOTE:
1893 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1896 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1897 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1899 if (!is_bss && !is_write)
1901 if (is_execinstr)
1903 if (strcmp(os->name(), ".init") == 0)
1904 return ORDER_INIT;
1905 else if (strcmp(os->name(), ".fini") == 0)
1906 return ORDER_FINI;
1907 else if (parameters->options().keep_text_section_prefix())
1909 // -z,keep-text-section-prefix introduces additional
1910 // output sections.
1911 if (strcmp(os->name(), ".text.hot") == 0)
1912 return ORDER_TEXT_HOT;
1913 else if (strcmp(os->name(), ".text.startup") == 0)
1914 return ORDER_TEXT_STARTUP;
1915 else if (strcmp(os->name(), ".text.exit") == 0)
1916 return ORDER_TEXT_EXIT;
1917 else if (strcmp(os->name(), ".text.unlikely") == 0)
1918 return ORDER_TEXT_UNLIKELY;
1921 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1924 if (os->is_relro())
1925 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1927 if (os->is_small_section())
1928 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1929 if (os->is_large_section())
1930 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1932 return is_bss ? ORDER_BSS : ORDER_DATA;
1935 // Attach output sections to segments. This is called after we have
1936 // seen all the input sections.
1938 void
1939 Layout::attach_sections_to_segments(const Target* target)
1941 for (Section_list::iterator p = this->section_list_.begin();
1942 p != this->section_list_.end();
1943 ++p)
1944 this->attach_section_to_segment(target, *p);
1946 this->sections_are_attached_ = true;
1949 // Attach an output section to a segment.
1951 void
1952 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1954 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1955 this->unattached_section_list_.push_back(os);
1956 else
1957 this->attach_allocated_section_to_segment(target, os);
1960 // Attach an allocated output section to a segment.
1962 void
1963 Layout::attach_allocated_section_to_segment(const Target* target,
1964 Output_section* os)
1966 elfcpp::Elf_Xword flags = os->flags();
1967 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1969 if (parameters->options().relocatable())
1970 return;
1972 // If we have a SECTIONS clause, we can't handle the attachment to
1973 // segments until after we've seen all the sections.
1974 if (this->script_options_->saw_sections_clause())
1975 return;
1977 gold_assert(!this->script_options_->saw_phdrs_clause());
1979 // This output section goes into a PT_LOAD segment.
1981 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1983 // If this output section's segment has extra flags that need to be set,
1984 // coming from a linker plugin, do that.
1985 seg_flags |= os->extra_segment_flags();
1987 // Check for --section-start.
1988 uint64_t addr;
1989 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1991 // In general the only thing we really care about for PT_LOAD
1992 // segments is whether or not they are writable or executable,
1993 // so that is how we search for them.
1994 // Large data sections also go into their own PT_LOAD segment.
1995 // People who need segments sorted on some other basis will
1996 // have to use a linker script.
1998 Segment_list::const_iterator p;
1999 if (!os->is_unique_segment())
2001 for (p = this->segment_list_.begin();
2002 p != this->segment_list_.end();
2003 ++p)
2005 if ((*p)->type() != elfcpp::PT_LOAD)
2006 continue;
2007 if ((*p)->is_unique_segment())
2008 continue;
2009 if (!parameters->options().omagic()
2010 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2011 continue;
2012 if ((target->isolate_execinstr() || parameters->options().rosegment())
2013 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2014 continue;
2015 // If -Tbss was specified, we need to separate the data and BSS
2016 // segments.
2017 if (parameters->options().user_set_Tbss())
2019 if ((os->type() == elfcpp::SHT_NOBITS)
2020 == (*p)->has_any_data_sections())
2021 continue;
2023 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2024 continue;
2026 if (is_address_set)
2028 if ((*p)->are_addresses_set())
2029 continue;
2031 (*p)->add_initial_output_data(os);
2032 (*p)->update_flags_for_output_section(seg_flags);
2033 (*p)->set_addresses(addr, addr);
2034 break;
2037 (*p)->add_output_section_to_load(this, os, seg_flags);
2038 break;
2042 if (p == this->segment_list_.end()
2043 || os->is_unique_segment())
2045 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2046 seg_flags);
2047 if (os->is_large_data_section())
2048 oseg->set_is_large_data_segment();
2049 oseg->add_output_section_to_load(this, os, seg_flags);
2050 if (is_address_set)
2051 oseg->set_addresses(addr, addr);
2052 // Check if segment should be marked unique. For segments marked
2053 // unique by linker plugins, set the new alignment if specified.
2054 if (os->is_unique_segment())
2056 oseg->set_is_unique_segment();
2057 if (os->segment_alignment() != 0)
2058 oseg->set_minimum_p_align(os->segment_alignment());
2062 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2063 // segment.
2064 if (os->type() == elfcpp::SHT_NOTE)
2066 // See if we already have an equivalent PT_NOTE segment.
2067 for (p = this->segment_list_.begin();
2068 p != segment_list_.end();
2069 ++p)
2071 if ((*p)->type() == elfcpp::PT_NOTE
2072 && (((*p)->flags() & elfcpp::PF_W)
2073 == (seg_flags & elfcpp::PF_W)))
2075 (*p)->add_output_section_to_nonload(os, seg_flags);
2076 break;
2080 if (p == this->segment_list_.end())
2082 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2083 seg_flags);
2084 oseg->add_output_section_to_nonload(os, seg_flags);
2088 // If we see a loadable SHF_TLS section, we create a PT_TLS
2089 // segment. There can only be one such segment.
2090 if ((flags & elfcpp::SHF_TLS) != 0)
2092 if (this->tls_segment_ == NULL)
2093 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2094 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2097 // If -z relro is in effect, and we see a relro section, we create a
2098 // PT_GNU_RELRO segment. There can only be one such segment.
2099 if (os->is_relro() && parameters->options().relro())
2101 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2102 if (this->relro_segment_ == NULL)
2103 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2104 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2107 // If we see a section named .interp, put it into a PT_INTERP
2108 // segment. This seems broken to me, but this is what GNU ld does,
2109 // and glibc expects it.
2110 if (strcmp(os->name(), ".interp") == 0
2111 && !this->script_options_->saw_phdrs_clause())
2113 if (this->interp_segment_ == NULL)
2114 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2115 else
2116 gold_warning(_("multiple '.interp' sections in input files "
2117 "may cause confusing PT_INTERP segment"));
2118 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2122 // Make an output section for a script.
2124 Output_section*
2125 Layout::make_output_section_for_script(
2126 const char* name,
2127 Script_sections::Section_type section_type)
2129 name = this->namepool_.add(name, false, NULL);
2130 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2131 if (section_type == Script_sections::ST_NOLOAD)
2132 sh_flags = 0;
2133 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2134 sh_flags, ORDER_INVALID,
2135 false);
2136 os->set_found_in_sections_clause();
2137 if (section_type == Script_sections::ST_NOLOAD)
2138 os->set_is_noload();
2139 return os;
2142 // Return the number of segments we expect to see.
2144 size_t
2145 Layout::expected_segment_count() const
2147 size_t ret = this->segment_list_.size();
2149 // If we didn't see a SECTIONS clause in a linker script, we should
2150 // already have the complete list of segments. Otherwise we ask the
2151 // SECTIONS clause how many segments it expects, and add in the ones
2152 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2154 if (!this->script_options_->saw_sections_clause())
2155 return ret;
2156 else
2158 const Script_sections* ss = this->script_options_->script_sections();
2159 return ret + ss->expected_segment_count(this);
2163 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2164 // is whether we saw a .note.GNU-stack section in the object file.
2165 // GNU_STACK_FLAGS is the section flags. The flags give the
2166 // protection required for stack memory. We record this in an
2167 // executable as a PT_GNU_STACK segment. If an object file does not
2168 // have a .note.GNU-stack segment, we must assume that it is an old
2169 // object. On some targets that will force an executable stack.
2171 void
2172 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2173 const Object* obj)
2175 if (!seen_gnu_stack)
2177 this->input_without_gnu_stack_note_ = true;
2178 if (parameters->options().warn_execstack()
2179 && parameters->target().is_default_stack_executable())
2180 gold_warning(_("%s: missing .note.GNU-stack section"
2181 " implies executable stack"),
2182 obj->name().c_str());
2184 else
2186 this->input_with_gnu_stack_note_ = true;
2187 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2189 this->input_requires_executable_stack_ = true;
2190 if (parameters->options().warn_execstack())
2191 gold_warning(_("%s: requires executable stack"),
2192 obj->name().c_str());
2197 // Read a value with given size and endianness.
2199 static inline uint64_t
2200 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2201 const Object* object)
2203 uint64_t val = 0;
2204 if (size == 4)
2206 if (is_big_endian)
2207 val = elfcpp::Swap<32, true>::readval(buf);
2208 else
2209 val = elfcpp::Swap<32, false>::readval(buf);
2211 else if (size == 8)
2213 if (is_big_endian)
2214 val = elfcpp::Swap<64, true>::readval(buf);
2215 else
2216 val = elfcpp::Swap<64, false>::readval(buf);
2218 else
2220 gold_warning(_("%s: in .note.gnu.property section, "
2221 "pr_datasz must be 4 or 8"),
2222 object->name().c_str());
2224 return val;
2227 // Write a value with given size and endianness.
2229 static inline void
2230 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2231 bool is_big_endian)
2233 if (size == 4)
2235 if (is_big_endian)
2236 elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2237 else
2238 elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2240 else if (size == 8)
2242 if (is_big_endian)
2243 elfcpp::Swap<64, true>::writeval(buf, value);
2244 else
2245 elfcpp::Swap<64, false>::writeval(buf, value);
2247 else
2249 // We will have already complained about this.
2253 // Handle the .note.gnu.property section at layout time.
2255 void
2256 Layout::layout_gnu_property(unsigned int note_type,
2257 unsigned int pr_type,
2258 size_t pr_datasz,
2259 const unsigned char* pr_data,
2260 const Object* object)
2262 // We currently support only the one note type.
2263 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2265 if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2266 && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2268 // Target-dependent property value; call the target to record.
2269 const int size = parameters->target().get_size();
2270 const bool is_big_endian = parameters->target().is_big_endian();
2271 if (size == 32)
2273 if (is_big_endian)
2275 #ifdef HAVE_TARGET_32_BIG
2276 parameters->sized_target<32, true>()->
2277 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2278 object);
2279 #else
2280 gold_unreachable();
2281 #endif
2283 else
2285 #ifdef HAVE_TARGET_32_LITTLE
2286 parameters->sized_target<32, false>()->
2287 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2288 object);
2289 #else
2290 gold_unreachable();
2291 #endif
2294 else if (size == 64)
2296 if (is_big_endian)
2298 #ifdef HAVE_TARGET_64_BIG
2299 parameters->sized_target<64, true>()->
2300 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2301 object);
2302 #else
2303 gold_unreachable();
2304 #endif
2306 else
2308 #ifdef HAVE_TARGET_64_LITTLE
2309 parameters->sized_target<64, false>()->
2310 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2311 object);
2312 #else
2313 gold_unreachable();
2314 #endif
2317 else
2318 gold_unreachable();
2319 return;
2322 Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2323 if (pprop == this->gnu_properties_.end())
2325 Gnu_property prop;
2326 prop.pr_datasz = pr_datasz;
2327 prop.pr_data = new unsigned char[pr_datasz];
2328 memcpy(prop.pr_data, pr_data, pr_datasz);
2329 this->gnu_properties_[pr_type] = prop;
2331 else
2333 const bool is_big_endian = parameters->target().is_big_endian();
2334 switch (pr_type)
2336 case elfcpp::GNU_PROPERTY_STACK_SIZE:
2337 // Record the maximum value seen.
2339 uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2340 pprop->second.pr_data,
2341 is_big_endian, object);
2342 uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2343 is_big_endian, object);
2344 if (val2 > val1)
2345 write_sized_value(val2, pprop->second.pr_datasz,
2346 pprop->second.pr_data, is_big_endian);
2348 break;
2349 case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2350 // No data to merge.
2351 break;
2352 default:
2353 gold_warning(_("%s: unknown program property type %d "
2354 "in .note.gnu.property section"),
2355 object->name().c_str(), pr_type);
2360 // Merge per-object properties with program properties.
2361 // This lets the target identify objects that are missing certain
2362 // properties, in cases where properties must be ANDed together.
2364 void
2365 Layout::merge_gnu_properties(const Object* object)
2367 const int size = parameters->target().get_size();
2368 const bool is_big_endian = parameters->target().is_big_endian();
2369 if (size == 32)
2371 if (is_big_endian)
2373 #ifdef HAVE_TARGET_32_BIG
2374 parameters->sized_target<32, true>()->merge_gnu_properties(object);
2375 #else
2376 gold_unreachable();
2377 #endif
2379 else
2381 #ifdef HAVE_TARGET_32_LITTLE
2382 parameters->sized_target<32, false>()->merge_gnu_properties(object);
2383 #else
2384 gold_unreachable();
2385 #endif
2388 else if (size == 64)
2390 if (is_big_endian)
2392 #ifdef HAVE_TARGET_64_BIG
2393 parameters->sized_target<64, true>()->merge_gnu_properties(object);
2394 #else
2395 gold_unreachable();
2396 #endif
2398 else
2400 #ifdef HAVE_TARGET_64_LITTLE
2401 parameters->sized_target<64, false>()->merge_gnu_properties(object);
2402 #else
2403 gold_unreachable();
2404 #endif
2407 else
2408 gold_unreachable();
2411 // Add a target-specific property for the output .note.gnu.property section.
2413 void
2414 Layout::add_gnu_property(unsigned int note_type,
2415 unsigned int pr_type,
2416 size_t pr_datasz,
2417 const unsigned char* pr_data)
2419 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2421 Gnu_property prop;
2422 prop.pr_datasz = pr_datasz;
2423 prop.pr_data = new unsigned char[pr_datasz];
2424 memcpy(prop.pr_data, pr_data, pr_datasz);
2425 this->gnu_properties_[pr_type] = prop;
2428 // Create automatic note sections.
2430 void
2431 Layout::create_notes()
2433 this->create_gnu_properties_note();
2434 this->create_gold_note();
2435 this->create_stack_segment();
2436 this->create_build_id();
2439 // Create the dynamic sections which are needed before we read the
2440 // relocs.
2442 void
2443 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2445 if (parameters->doing_static_link())
2446 return;
2448 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2449 elfcpp::SHT_DYNAMIC,
2450 (elfcpp::SHF_ALLOC
2451 | elfcpp::SHF_WRITE),
2452 false, ORDER_RELRO,
2453 true, false, false);
2455 // A linker script may discard .dynamic, so check for NULL.
2456 if (this->dynamic_section_ != NULL)
2458 this->dynamic_symbol_ =
2459 symtab->define_in_output_data("_DYNAMIC", NULL,
2460 Symbol_table::PREDEFINED,
2461 this->dynamic_section_, 0, 0,
2462 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2463 elfcpp::STV_HIDDEN, 0, false, false);
2465 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2467 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2471 // For each output section whose name can be represented as C symbol,
2472 // define __start and __stop symbols for the section. This is a GNU
2473 // extension.
2475 void
2476 Layout::define_section_symbols(Symbol_table* symtab)
2478 for (Section_list::const_iterator p = this->section_list_.begin();
2479 p != this->section_list_.end();
2480 ++p)
2482 const char* const name = (*p)->name();
2483 if (is_cident(name))
2485 const std::string name_string(name);
2486 const std::string start_name(cident_section_start_prefix
2487 + name_string);
2488 const std::string stop_name(cident_section_stop_prefix
2489 + name_string);
2491 symtab->define_in_output_data(start_name.c_str(),
2492 NULL, // version
2493 Symbol_table::PREDEFINED,
2495 0, // value
2496 0, // symsize
2497 elfcpp::STT_NOTYPE,
2498 elfcpp::STB_GLOBAL,
2499 elfcpp::STV_PROTECTED,
2500 0, // nonvis
2501 false, // offset_is_from_end
2502 true); // only_if_ref
2504 symtab->define_in_output_data(stop_name.c_str(),
2505 NULL, // version
2506 Symbol_table::PREDEFINED,
2508 0, // value
2509 0, // symsize
2510 elfcpp::STT_NOTYPE,
2511 elfcpp::STB_GLOBAL,
2512 elfcpp::STV_PROTECTED,
2513 0, // nonvis
2514 true, // offset_is_from_end
2515 true); // only_if_ref
2520 // Define symbols for group signatures.
2522 void
2523 Layout::define_group_signatures(Symbol_table* symtab)
2525 for (Group_signatures::iterator p = this->group_signatures_.begin();
2526 p != this->group_signatures_.end();
2527 ++p)
2529 Symbol* sym = symtab->lookup(p->signature, NULL);
2530 if (sym != NULL)
2531 p->section->set_info_symndx(sym);
2532 else
2534 // Force the name of the group section to the group
2535 // signature, and use the group's section symbol as the
2536 // signature symbol.
2537 if (strcmp(p->section->name(), p->signature) != 0)
2539 const char* name = this->namepool_.add(p->signature,
2540 true, NULL);
2541 p->section->set_name(name);
2543 p->section->set_needs_symtab_index();
2544 p->section->set_info_section_symndx(p->section);
2548 this->group_signatures_.clear();
2551 // Find the first read-only PT_LOAD segment, creating one if
2552 // necessary.
2554 Output_segment*
2555 Layout::find_first_load_seg(const Target* target)
2557 Output_segment* best = NULL;
2558 for (Segment_list::const_iterator p = this->segment_list_.begin();
2559 p != this->segment_list_.end();
2560 ++p)
2562 if ((*p)->type() == elfcpp::PT_LOAD
2563 && ((*p)->flags() & elfcpp::PF_R) != 0
2564 && (parameters->options().omagic()
2565 || ((*p)->flags() & elfcpp::PF_W) == 0)
2566 && (!target->isolate_execinstr()
2567 || ((*p)->flags() & elfcpp::PF_X) == 0))
2569 if (best == NULL || this->segment_precedes(*p, best))
2570 best = *p;
2573 if (best != NULL)
2574 return best;
2576 gold_assert(!this->script_options_->saw_phdrs_clause());
2578 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2579 elfcpp::PF_R);
2580 return load_seg;
2583 // Save states of all current output segments. Store saved states
2584 // in SEGMENT_STATES.
2586 void
2587 Layout::save_segments(Segment_states* segment_states)
2589 for (Segment_list::const_iterator p = this->segment_list_.begin();
2590 p != this->segment_list_.end();
2591 ++p)
2593 Output_segment* segment = *p;
2594 // Shallow copy.
2595 Output_segment* copy = new Output_segment(*segment);
2596 (*segment_states)[segment] = copy;
2600 // Restore states of output segments and delete any segment not found in
2601 // SEGMENT_STATES.
2603 void
2604 Layout::restore_segments(const Segment_states* segment_states)
2606 // Go through the segment list and remove any segment added in the
2607 // relaxation loop.
2608 this->tls_segment_ = NULL;
2609 this->relro_segment_ = NULL;
2610 Segment_list::iterator list_iter = this->segment_list_.begin();
2611 while (list_iter != this->segment_list_.end())
2613 Output_segment* segment = *list_iter;
2614 Segment_states::const_iterator states_iter =
2615 segment_states->find(segment);
2616 if (states_iter != segment_states->end())
2618 const Output_segment* copy = states_iter->second;
2619 // Shallow copy to restore states.
2620 *segment = *copy;
2622 // Also fix up TLS and RELRO segment pointers as appropriate.
2623 if (segment->type() == elfcpp::PT_TLS)
2624 this->tls_segment_ = segment;
2625 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2626 this->relro_segment_ = segment;
2628 ++list_iter;
2630 else
2632 list_iter = this->segment_list_.erase(list_iter);
2633 // This is a segment created during section layout. It should be
2634 // safe to remove it since we should have removed all pointers to it.
2635 delete segment;
2640 // Clean up after relaxation so that sections can be laid out again.
2642 void
2643 Layout::clean_up_after_relaxation()
2645 // Restore the segments to point state just prior to the relaxation loop.
2646 Script_sections* script_section = this->script_options_->script_sections();
2647 script_section->release_segments();
2648 this->restore_segments(this->segment_states_);
2650 // Reset section addresses and file offsets
2651 for (Section_list::iterator p = this->section_list_.begin();
2652 p != this->section_list_.end();
2653 ++p)
2655 (*p)->restore_states();
2657 // If an input section changes size because of relaxation,
2658 // we need to adjust the section offsets of all input sections.
2659 // after such a section.
2660 if ((*p)->section_offsets_need_adjustment())
2661 (*p)->adjust_section_offsets();
2663 (*p)->reset_address_and_file_offset();
2666 // Reset special output object address and file offsets.
2667 for (Data_list::iterator p = this->special_output_list_.begin();
2668 p != this->special_output_list_.end();
2669 ++p)
2670 (*p)->reset_address_and_file_offset();
2672 // A linker script may have created some output section data objects.
2673 // They are useless now.
2674 for (Output_section_data_list::const_iterator p =
2675 this->script_output_section_data_list_.begin();
2676 p != this->script_output_section_data_list_.end();
2677 ++p)
2678 delete *p;
2679 this->script_output_section_data_list_.clear();
2681 // Special-case fill output objects are recreated each time through
2682 // the relaxation loop.
2683 this->reset_relax_output();
2686 void
2687 Layout::reset_relax_output()
2689 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2690 p != this->relax_output_list_.end();
2691 ++p)
2692 delete *p;
2693 this->relax_output_list_.clear();
2696 // Prepare for relaxation.
2698 void
2699 Layout::prepare_for_relaxation()
2701 // Create an relaxation debug check if in debugging mode.
2702 if (is_debugging_enabled(DEBUG_RELAXATION))
2703 this->relaxation_debug_check_ = new Relaxation_debug_check();
2705 // Save segment states.
2706 this->segment_states_ = new Segment_states();
2707 this->save_segments(this->segment_states_);
2709 for(Section_list::const_iterator p = this->section_list_.begin();
2710 p != this->section_list_.end();
2711 ++p)
2712 (*p)->save_states();
2714 if (is_debugging_enabled(DEBUG_RELAXATION))
2715 this->relaxation_debug_check_->check_output_data_for_reset_values(
2716 this->section_list_, this->special_output_list_,
2717 this->relax_output_list_);
2719 // Also enable recording of output section data from scripts.
2720 this->record_output_section_data_from_script_ = true;
2723 // If the user set the address of the text segment, that may not be
2724 // compatible with putting the segment headers and file headers into
2725 // that segment. For isolate_execinstr() targets, it's the rodata
2726 // segment rather than text where we might put the headers.
2727 static inline bool
2728 load_seg_unusable_for_headers(const Target* target)
2730 const General_options& options = parameters->options();
2731 if (target->isolate_execinstr())
2732 return (options.user_set_Trodata_segment()
2733 && options.Trodata_segment() % target->abi_pagesize() != 0);
2734 else
2735 return (options.user_set_Ttext()
2736 && options.Ttext() % target->abi_pagesize() != 0);
2739 // Relaxation loop body: If target has no relaxation, this runs only once
2740 // Otherwise, the target relaxation hook is called at the end of
2741 // each iteration. If the hook returns true, it means re-layout of
2742 // section is required.
2744 // The number of segments created by a linking script without a PHDRS
2745 // clause may be affected by section sizes and alignments. There is
2746 // a remote chance that relaxation causes different number of PT_LOAD
2747 // segments are created and sections are attached to different segments.
2748 // Therefore, we always throw away all segments created during section
2749 // layout. In order to be able to restart the section layout, we keep
2750 // a copy of the segment list right before the relaxation loop and use
2751 // that to restore the segments.
2753 // PASS is the current relaxation pass number.
2754 // SYMTAB is a symbol table.
2755 // PLOAD_SEG is the address of a pointer for the load segment.
2756 // PHDR_SEG is a pointer to the PHDR segment.
2757 // SEGMENT_HEADERS points to the output segment header.
2758 // FILE_HEADER points to the output file header.
2759 // PSHNDX is the address to store the output section index.
2761 off_t inline
2762 Layout::relaxation_loop_body(
2763 int pass,
2764 Target* target,
2765 Symbol_table* symtab,
2766 Output_segment** pload_seg,
2767 Output_segment* phdr_seg,
2768 Output_segment_headers* segment_headers,
2769 Output_file_header* file_header,
2770 unsigned int* pshndx)
2772 // If this is not the first iteration, we need to clean up after
2773 // relaxation so that we can lay out the sections again.
2774 if (pass != 0)
2775 this->clean_up_after_relaxation();
2777 // If there is a SECTIONS clause, put all the input sections into
2778 // the required order.
2779 Output_segment* load_seg;
2780 if (this->script_options_->saw_sections_clause())
2781 load_seg = this->set_section_addresses_from_script(symtab);
2782 else if (parameters->options().relocatable())
2783 load_seg = NULL;
2784 else
2785 load_seg = this->find_first_load_seg(target);
2787 if (parameters->options().oformat_enum()
2788 != General_options::OBJECT_FORMAT_ELF)
2789 load_seg = NULL;
2791 if (load_seg_unusable_for_headers(target))
2793 load_seg = NULL;
2794 phdr_seg = NULL;
2797 gold_assert(phdr_seg == NULL
2798 || load_seg != NULL
2799 || this->script_options_->saw_sections_clause());
2801 // If the address of the load segment we found has been set by
2802 // --section-start rather than by a script, then adjust the VMA and
2803 // LMA downward if possible to include the file and section headers.
2804 uint64_t header_gap = 0;
2805 if (load_seg != NULL
2806 && load_seg->are_addresses_set()
2807 && !this->script_options_->saw_sections_clause()
2808 && !parameters->options().relocatable())
2810 file_header->finalize_data_size();
2811 segment_headers->finalize_data_size();
2812 size_t sizeof_headers = (file_header->data_size()
2813 + segment_headers->data_size());
2814 const uint64_t abi_pagesize = target->abi_pagesize();
2815 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2816 hdr_paddr &= ~(abi_pagesize - 1);
2817 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2818 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2819 load_seg = NULL;
2820 else
2822 load_seg->set_addresses(load_seg->vaddr() - subtract,
2823 load_seg->paddr() - subtract);
2824 header_gap = subtract - sizeof_headers;
2828 // Lay out the segment headers.
2829 if (!parameters->options().relocatable())
2831 gold_assert(segment_headers != NULL);
2832 if (header_gap != 0 && load_seg != NULL)
2834 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2835 load_seg->add_initial_output_data(z);
2837 if (load_seg != NULL)
2838 load_seg->add_initial_output_data(segment_headers);
2839 if (phdr_seg != NULL)
2840 phdr_seg->add_initial_output_data(segment_headers);
2843 // Lay out the file header.
2844 if (load_seg != NULL)
2845 load_seg->add_initial_output_data(file_header);
2847 if (this->script_options_->saw_phdrs_clause()
2848 && !parameters->options().relocatable())
2850 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2851 // clause in a linker script.
2852 Script_sections* ss = this->script_options_->script_sections();
2853 ss->put_headers_in_phdrs(file_header, segment_headers);
2856 // We set the output section indexes in set_segment_offsets and
2857 // set_section_indexes.
2858 *pshndx = 1;
2860 // Set the file offsets of all the segments, and all the sections
2861 // they contain.
2862 off_t off;
2863 if (!parameters->options().relocatable())
2864 off = this->set_segment_offsets(target, load_seg, pshndx);
2865 else
2866 off = this->set_relocatable_section_offsets(file_header, pshndx);
2868 // Verify that the dummy relaxation does not change anything.
2869 if (is_debugging_enabled(DEBUG_RELAXATION))
2871 if (pass == 0)
2872 this->relaxation_debug_check_->read_sections(this->section_list_);
2873 else
2874 this->relaxation_debug_check_->verify_sections(this->section_list_);
2877 *pload_seg = load_seg;
2878 return off;
2881 // Search the list of patterns and find the position of the given section
2882 // name in the output section. If the section name matches a glob
2883 // pattern and a non-glob name, then the non-glob position takes
2884 // precedence. Return 0 if no match is found.
2886 unsigned int
2887 Layout::find_section_order_index(const std::string& section_name)
2889 Unordered_map<std::string, unsigned int>::iterator map_it;
2890 map_it = this->input_section_position_.find(section_name);
2891 if (map_it != this->input_section_position_.end())
2892 return map_it->second;
2894 // Absolute match failed. Linear search the glob patterns.
2895 std::vector<std::string>::iterator it;
2896 for (it = this->input_section_glob_.begin();
2897 it != this->input_section_glob_.end();
2898 ++it)
2900 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2902 map_it = this->input_section_position_.find(*it);
2903 gold_assert(map_it != this->input_section_position_.end());
2904 return map_it->second;
2907 return 0;
2910 // Read the sequence of input sections from the file specified with
2911 // option --section-ordering-file.
2913 void
2914 Layout::read_layout_from_file()
2916 const char* filename = parameters->options().section_ordering_file();
2917 std::ifstream in;
2918 std::string line;
2920 in.open(filename);
2921 if (!in)
2922 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2923 filename, strerror(errno));
2925 std::getline(in, line); // this chops off the trailing \n, if any
2926 unsigned int position = 1;
2927 this->set_section_ordering_specified();
2929 while (in)
2931 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2932 line.resize(line.length() - 1);
2933 // Ignore comments, beginning with '#'
2934 if (line[0] == '#')
2936 std::getline(in, line);
2937 continue;
2939 this->input_section_position_[line] = position;
2940 // Store all glob patterns in a vector.
2941 if (is_wildcard_string(line.c_str()))
2942 this->input_section_glob_.push_back(line);
2943 position++;
2944 std::getline(in, line);
2948 // Finalize the layout. When this is called, we have created all the
2949 // output sections and all the output segments which are based on
2950 // input sections. We have several things to do, and we have to do
2951 // them in the right order, so that we get the right results correctly
2952 // and efficiently.
2954 // 1) Finalize the list of output segments and create the segment
2955 // table header.
2957 // 2) Finalize the dynamic symbol table and associated sections.
2959 // 3) Determine the final file offset of all the output segments.
2961 // 4) Determine the final file offset of all the SHF_ALLOC output
2962 // sections.
2964 // 5) Create the symbol table sections and the section name table
2965 // section.
2967 // 6) Finalize the symbol table: set symbol values to their final
2968 // value and make a final determination of which symbols are going
2969 // into the output symbol table.
2971 // 7) Create the section table header.
2973 // 8) Determine the final file offset of all the output sections which
2974 // are not SHF_ALLOC, including the section table header.
2976 // 9) Finalize the ELF file header.
2978 // This function returns the size of the output file.
2980 off_t
2981 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2982 Target* target, const Task* task)
2984 unsigned int local_dynamic_count = 0;
2985 unsigned int forced_local_dynamic_count = 0;
2987 target->finalize_sections(this, input_objects, symtab);
2989 this->count_local_symbols(task, input_objects);
2991 this->link_stabs_sections();
2993 Output_segment* phdr_seg = NULL;
2994 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2996 // There was a dynamic object in the link. We need to create
2997 // some information for the dynamic linker.
2999 // Create the PT_PHDR segment which will hold the program
3000 // headers.
3001 if (!this->script_options_->saw_phdrs_clause())
3002 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3004 // Create the dynamic symbol table, including the hash table.
3005 Output_section* dynstr;
3006 std::vector<Symbol*> dynamic_symbols;
3007 Versions versions(*this->script_options()->version_script_info(),
3008 &this->dynpool_);
3009 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3010 &local_dynamic_count,
3011 &forced_local_dynamic_count,
3012 &dynamic_symbols,
3013 &versions);
3015 // Create the .interp section to hold the name of the
3016 // interpreter, and put it in a PT_INTERP segment. Don't do it
3017 // if we saw a .interp section in an input file.
3018 if ((!parameters->options().shared()
3019 || parameters->options().dynamic_linker() != NULL)
3020 && this->interp_segment_ == NULL)
3021 this->create_interp(target);
3023 // Finish the .dynamic section to hold the dynamic data, and put
3024 // it in a PT_DYNAMIC segment.
3025 this->finish_dynamic_section(input_objects, symtab);
3027 // We should have added everything we need to the dynamic string
3028 // table.
3029 this->dynpool_.set_string_offsets();
3031 // Create the version sections. We can't do this until the
3032 // dynamic string table is complete.
3033 this->create_version_sections(&versions, symtab,
3034 (local_dynamic_count
3035 + forced_local_dynamic_count),
3036 dynamic_symbols, dynstr);
3038 // Set the size of the _DYNAMIC symbol. We can't do this until
3039 // after we call create_version_sections.
3040 this->set_dynamic_symbol_size(symtab);
3043 // Create segment headers.
3044 Output_segment_headers* segment_headers =
3045 (parameters->options().relocatable()
3046 ? NULL
3047 : new Output_segment_headers(this->segment_list_));
3049 // Lay out the file header.
3050 Output_file_header* file_header = new Output_file_header(target, symtab,
3051 segment_headers);
3053 this->special_output_list_.push_back(file_header);
3054 if (segment_headers != NULL)
3055 this->special_output_list_.push_back(segment_headers);
3057 // Find approriate places for orphan output sections if we are using
3058 // a linker script.
3059 if (this->script_options_->saw_sections_clause())
3060 this->place_orphan_sections_in_script();
3062 Output_segment* load_seg;
3063 off_t off;
3064 unsigned int shndx;
3065 int pass = 0;
3067 // Take a snapshot of the section layout as needed.
3068 if (target->may_relax())
3069 this->prepare_for_relaxation();
3071 // Run the relaxation loop to lay out sections.
3074 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3075 phdr_seg, segment_headers, file_header,
3076 &shndx);
3077 pass++;
3079 while (target->may_relax()
3080 && target->relax(pass, input_objects, symtab, this, task));
3082 // If there is a load segment that contains the file and program headers,
3083 // provide a symbol __ehdr_start pointing there.
3084 // A program can use this to examine itself robustly.
3085 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3086 if (ehdr_start != NULL && ehdr_start->is_predefined())
3088 if (load_seg != NULL)
3089 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3090 else
3091 ehdr_start->set_undefined();
3094 // Set the file offsets of all the non-data sections we've seen so
3095 // far which don't have to wait for the input sections. We need
3096 // this in order to finalize local symbols in non-allocated
3097 // sections.
3098 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3100 // Set the section indexes of all unallocated sections seen so far,
3101 // in case any of them are somehow referenced by a symbol.
3102 shndx = this->set_section_indexes(shndx);
3104 // Create the symbol table sections.
3105 this->create_symtab_sections(input_objects, symtab, shndx, &off,
3106 local_dynamic_count);
3107 if (!parameters->doing_static_link())
3108 this->assign_local_dynsym_offsets(input_objects);
3110 // Process any symbol assignments from a linker script. This must
3111 // be called after the symbol table has been finalized.
3112 this->script_options_->finalize_symbols(symtab, this);
3114 // Create the incremental inputs sections.
3115 if (this->incremental_inputs_)
3117 this->incremental_inputs_->finalize();
3118 this->create_incremental_info_sections(symtab);
3121 // Create the .shstrtab section.
3122 Output_section* shstrtab_section = this->create_shstrtab();
3124 // Set the file offsets of the rest of the non-data sections which
3125 // don't have to wait for the input sections.
3126 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3128 // Now that all sections have been created, set the section indexes
3129 // for any sections which haven't been done yet.
3130 shndx = this->set_section_indexes(shndx);
3132 // Create the section table header.
3133 this->create_shdrs(shstrtab_section, &off);
3135 // If there are no sections which require postprocessing, we can
3136 // handle the section names now, and avoid a resize later.
3137 if (!this->any_postprocessing_sections_)
3139 off = this->set_section_offsets(off,
3140 POSTPROCESSING_SECTIONS_PASS);
3141 off =
3142 this->set_section_offsets(off,
3143 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3146 file_header->set_section_info(this->section_headers_, shstrtab_section);
3148 // Now we know exactly where everything goes in the output file
3149 // (except for non-allocated sections which require postprocessing).
3150 Output_data::layout_complete();
3152 this->output_file_size_ = off;
3154 return off;
3157 // Create a note header following the format defined in the ELF ABI.
3158 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3159 // of the section to create, DESCSZ is the size of the descriptor.
3160 // ALLOCATE is true if the section should be allocated in memory.
3161 // This returns the new note section. It sets *TRAILING_PADDING to
3162 // the number of trailing zero bytes required.
3164 Output_section*
3165 Layout::create_note(const char* name, int note_type,
3166 const char* section_name, size_t descsz,
3167 bool allocate, size_t* trailing_padding)
3169 // Authorities all agree that the values in a .note field should
3170 // be aligned on 4-byte boundaries for 32-bit binaries. However,
3171 // they differ on what the alignment is for 64-bit binaries.
3172 // The GABI says unambiguously they take 8-byte alignment:
3173 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3174 // Other documentation says alignment should always be 4 bytes:
3175 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3176 // GNU ld and GNU readelf both support the latter (at least as of
3177 // version 2.16.91), and glibc always generates the latter for
3178 // .note.ABI-tag (as of version 1.6), so that's the one we go with
3179 // here.
3180 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
3181 const int size = parameters->target().get_size();
3182 #else
3183 const int size = 32;
3184 #endif
3186 // The contents of the .note section.
3187 size_t namesz = strlen(name) + 1;
3188 size_t aligned_namesz = align_address(namesz, size / 8);
3189 size_t aligned_descsz = align_address(descsz, size / 8);
3191 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3193 unsigned char* buffer = new unsigned char[notehdrsz];
3194 memset(buffer, 0, notehdrsz);
3196 bool is_big_endian = parameters->target().is_big_endian();
3198 if (size == 32)
3200 if (!is_big_endian)
3202 elfcpp::Swap<32, false>::writeval(buffer, namesz);
3203 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3204 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3206 else
3208 elfcpp::Swap<32, true>::writeval(buffer, namesz);
3209 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3210 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3213 else if (size == 64)
3215 if (!is_big_endian)
3217 elfcpp::Swap<64, false>::writeval(buffer, namesz);
3218 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3219 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3221 else
3223 elfcpp::Swap<64, true>::writeval(buffer, namesz);
3224 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3225 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3228 else
3229 gold_unreachable();
3231 memcpy(buffer + 3 * (size / 8), name, namesz);
3233 elfcpp::Elf_Xword flags = 0;
3234 Output_section_order order = ORDER_INVALID;
3235 if (allocate)
3237 flags = elfcpp::SHF_ALLOC;
3238 order = ORDER_RO_NOTE;
3240 Output_section* os = this->choose_output_section(NULL, section_name,
3241 elfcpp::SHT_NOTE,
3242 flags, false, order, false,
3243 false, true);
3244 if (os == NULL)
3245 return NULL;
3247 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3248 size / 8,
3249 "** note header");
3250 os->add_output_section_data(posd);
3252 *trailing_padding = aligned_descsz - descsz;
3254 return os;
3257 // Create a .note.gnu.property section to record program properties
3258 // accumulated from the input files.
3260 void
3261 Layout::create_gnu_properties_note()
3263 parameters->target().finalize_gnu_properties(this);
3265 if (this->gnu_properties_.empty())
3266 return;
3268 const unsigned int size = parameters->target().get_size();
3269 const bool is_big_endian = parameters->target().is_big_endian();
3271 // Compute the total size of the properties array.
3272 size_t descsz = 0;
3273 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3274 prop != this->gnu_properties_.end();
3275 ++prop)
3277 descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3280 // Create the note section.
3281 size_t trailing_padding;
3282 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3283 ".note.gnu.property", descsz,
3284 true, &trailing_padding);
3285 if (os == NULL)
3286 return;
3287 gold_assert(trailing_padding == 0);
3289 // Allocate and fill the properties array.
3290 unsigned char* desc = new unsigned char[descsz];
3291 unsigned char* p = desc;
3292 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3293 prop != this->gnu_properties_.end();
3294 ++prop)
3296 size_t datasz = prop->second.pr_datasz;
3297 size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3298 write_sized_value(prop->first, 4, p, is_big_endian);
3299 write_sized_value(datasz, 4, p + 4, is_big_endian);
3300 memcpy(p + 8, prop->second.pr_data, datasz);
3301 if (aligned_datasz > datasz)
3302 memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3303 p += 8 + aligned_datasz;
3305 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3306 os->add_output_section_data(posd);
3309 // For an executable or shared library, create a note to record the
3310 // version of gold used to create the binary.
3312 void
3313 Layout::create_gold_note()
3315 if (parameters->options().relocatable()
3316 || parameters->incremental_update())
3317 return;
3319 std::string desc = std::string("gold ") + gold::get_version_string();
3321 size_t trailing_padding;
3322 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3323 ".note.gnu.gold-version", desc.size(),
3324 false, &trailing_padding);
3325 if (os == NULL)
3326 return;
3328 Output_section_data* posd = new Output_data_const(desc, 4);
3329 os->add_output_section_data(posd);
3331 if (trailing_padding > 0)
3333 posd = new Output_data_zero_fill(trailing_padding, 0);
3334 os->add_output_section_data(posd);
3338 // Record whether the stack should be executable. This can be set
3339 // from the command line using the -z execstack or -z noexecstack
3340 // options. Otherwise, if any input file has a .note.GNU-stack
3341 // section with the SHF_EXECINSTR flag set, the stack should be
3342 // executable. Otherwise, if at least one input file a
3343 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3344 // section, we use the target default for whether the stack should be
3345 // executable. If -z stack-size was used to set a p_memsz value for
3346 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3347 // don't generate a stack note. When generating a object file, we
3348 // create a .note.GNU-stack section with the appropriate marking.
3349 // When generating an executable or shared library, we create a
3350 // PT_GNU_STACK segment.
3352 void
3353 Layout::create_stack_segment()
3355 bool is_stack_executable;
3356 if (parameters->options().is_execstack_set())
3358 is_stack_executable = parameters->options().is_stack_executable();
3359 if (!is_stack_executable
3360 && this->input_requires_executable_stack_
3361 && parameters->options().warn_execstack())
3362 gold_warning(_("one or more inputs require executable stack, "
3363 "but -z noexecstack was given"));
3365 else if (!this->input_with_gnu_stack_note_
3366 && (!parameters->options().user_set_stack_size()
3367 || parameters->options().relocatable()))
3368 return;
3369 else
3371 if (this->input_requires_executable_stack_)
3372 is_stack_executable = true;
3373 else if (this->input_without_gnu_stack_note_)
3374 is_stack_executable =
3375 parameters->target().is_default_stack_executable();
3376 else
3377 is_stack_executable = false;
3380 if (parameters->options().relocatable())
3382 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3383 elfcpp::Elf_Xword flags = 0;
3384 if (is_stack_executable)
3385 flags |= elfcpp::SHF_EXECINSTR;
3386 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3387 ORDER_INVALID, false);
3389 else
3391 if (this->script_options_->saw_phdrs_clause())
3392 return;
3393 int flags = elfcpp::PF_R | elfcpp::PF_W;
3394 if (is_stack_executable)
3395 flags |= elfcpp::PF_X;
3396 Output_segment* seg =
3397 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3398 seg->set_size(parameters->options().stack_size());
3399 // BFD lets targets override this default alignment, but the only
3400 // targets that do so are ones that Gold does not support so far.
3401 seg->set_minimum_p_align(16);
3405 // If --build-id was used, set up the build ID note.
3407 void
3408 Layout::create_build_id()
3410 if (!parameters->options().user_set_build_id())
3411 return;
3413 const char* style = parameters->options().build_id();
3414 if (strcmp(style, "none") == 0)
3415 return;
3417 // Set DESCSZ to the size of the note descriptor. When possible,
3418 // set DESC to the note descriptor contents.
3419 size_t descsz;
3420 std::string desc;
3421 if (strcmp(style, "md5") == 0)
3422 descsz = 128 / 8;
3423 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3424 descsz = 160 / 8;
3425 else if (strcmp(style, "uuid") == 0)
3427 #ifndef __MINGW32__
3428 const size_t uuidsz = 128 / 8;
3430 char buffer[uuidsz];
3431 memset(buffer, 0, uuidsz);
3433 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3434 if (descriptor < 0)
3435 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3436 strerror(errno));
3437 else
3439 ssize_t got = ::read(descriptor, buffer, uuidsz);
3440 release_descriptor(descriptor, true);
3441 if (got < 0)
3442 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3443 else if (static_cast<size_t>(got) != uuidsz)
3444 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3445 uuidsz, got);
3448 desc.assign(buffer, uuidsz);
3449 descsz = uuidsz;
3450 #else // __MINGW32__
3451 UUID uuid;
3452 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3454 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3455 if (!rpc_library)
3456 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3457 else
3459 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3460 GetProcAddress(rpc_library, "UuidCreate"));
3461 if (!uuid_create)
3462 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3463 else if (uuid_create(&uuid) != RPC_S_OK)
3464 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3465 FreeLibrary(rpc_library);
3467 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3468 descsz = sizeof(UUID);
3469 #endif // __MINGW32__
3471 else if (strncmp(style, "0x", 2) == 0)
3473 hex_init();
3474 const char* p = style + 2;
3475 while (*p != '\0')
3477 if (hex_p(p[0]) && hex_p(p[1]))
3479 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3480 desc += c;
3481 p += 2;
3483 else if (*p == '-' || *p == ':')
3484 ++p;
3485 else
3486 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3487 style);
3489 descsz = desc.size();
3491 else
3492 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3494 // Create the note.
3495 size_t trailing_padding;
3496 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3497 ".note.gnu.build-id", descsz, true,
3498 &trailing_padding);
3499 if (os == NULL)
3500 return;
3502 if (!desc.empty())
3504 // We know the value already, so we fill it in now.
3505 gold_assert(desc.size() == descsz);
3507 Output_section_data* posd = new Output_data_const(desc, 4);
3508 os->add_output_section_data(posd);
3510 if (trailing_padding != 0)
3512 posd = new Output_data_zero_fill(trailing_padding, 0);
3513 os->add_output_section_data(posd);
3516 else
3518 // We need to compute a checksum after we have completed the
3519 // link.
3520 gold_assert(trailing_padding == 0);
3521 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3522 os->add_output_section_data(this->build_id_note_);
3526 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3527 // field of the former should point to the latter. I'm not sure who
3528 // started this, but the GNU linker does it, and some tools depend
3529 // upon it.
3531 void
3532 Layout::link_stabs_sections()
3534 if (!this->have_stabstr_section_)
3535 return;
3537 for (Section_list::iterator p = this->section_list_.begin();
3538 p != this->section_list_.end();
3539 ++p)
3541 if ((*p)->type() != elfcpp::SHT_STRTAB)
3542 continue;
3544 const char* name = (*p)->name();
3545 if (strncmp(name, ".stab", 5) != 0)
3546 continue;
3548 size_t len = strlen(name);
3549 if (strcmp(name + len - 3, "str") != 0)
3550 continue;
3552 std::string stab_name(name, len - 3);
3553 Output_section* stab_sec;
3554 stab_sec = this->find_output_section(stab_name.c_str());
3555 if (stab_sec != NULL)
3556 stab_sec->set_link_section(*p);
3560 // Create .gnu_incremental_inputs and related sections needed
3561 // for the next run of incremental linking to check what has changed.
3563 void
3564 Layout::create_incremental_info_sections(Symbol_table* symtab)
3566 Incremental_inputs* incr = this->incremental_inputs_;
3568 gold_assert(incr != NULL);
3570 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3571 incr->create_data_sections(symtab);
3573 // Add the .gnu_incremental_inputs section.
3574 const char* incremental_inputs_name =
3575 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3576 Output_section* incremental_inputs_os =
3577 this->make_output_section(incremental_inputs_name,
3578 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3579 ORDER_INVALID, false);
3580 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3582 // Add the .gnu_incremental_symtab section.
3583 const char* incremental_symtab_name =
3584 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3585 Output_section* incremental_symtab_os =
3586 this->make_output_section(incremental_symtab_name,
3587 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3588 ORDER_INVALID, false);
3589 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3590 incremental_symtab_os->set_entsize(4);
3592 // Add the .gnu_incremental_relocs section.
3593 const char* incremental_relocs_name =
3594 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3595 Output_section* incremental_relocs_os =
3596 this->make_output_section(incremental_relocs_name,
3597 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3598 ORDER_INVALID, false);
3599 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3600 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3602 // Add the .gnu_incremental_got_plt section.
3603 const char* incremental_got_plt_name =
3604 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3605 Output_section* incremental_got_plt_os =
3606 this->make_output_section(incremental_got_plt_name,
3607 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3608 ORDER_INVALID, false);
3609 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3611 // Add the .gnu_incremental_strtab section.
3612 const char* incremental_strtab_name =
3613 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3614 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3615 elfcpp::SHT_STRTAB, 0,
3616 ORDER_INVALID, false);
3617 Output_data_strtab* strtab_data =
3618 new Output_data_strtab(incr->get_stringpool());
3619 incremental_strtab_os->add_output_section_data(strtab_data);
3621 incremental_inputs_os->set_after_input_sections();
3622 incremental_symtab_os->set_after_input_sections();
3623 incremental_relocs_os->set_after_input_sections();
3624 incremental_got_plt_os->set_after_input_sections();
3626 incremental_inputs_os->set_link_section(incremental_strtab_os);
3627 incremental_symtab_os->set_link_section(incremental_inputs_os);
3628 incremental_relocs_os->set_link_section(incremental_inputs_os);
3629 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3632 // Return whether SEG1 should be before SEG2 in the output file. This
3633 // is based entirely on the segment type and flags. When this is
3634 // called the segment addresses have normally not yet been set.
3636 bool
3637 Layout::segment_precedes(const Output_segment* seg1,
3638 const Output_segment* seg2)
3640 // In order to produce a stable ordering if we're called with the same pointer
3641 // return false.
3642 if (seg1 == seg2)
3643 return false;
3645 elfcpp::Elf_Word type1 = seg1->type();
3646 elfcpp::Elf_Word type2 = seg2->type();
3648 // The single PT_PHDR segment is required to precede any loadable
3649 // segment. We simply make it always first.
3650 if (type1 == elfcpp::PT_PHDR)
3652 gold_assert(type2 != elfcpp::PT_PHDR);
3653 return true;
3655 if (type2 == elfcpp::PT_PHDR)
3656 return false;
3658 // The single PT_INTERP segment is required to precede any loadable
3659 // segment. We simply make it always second.
3660 if (type1 == elfcpp::PT_INTERP)
3662 gold_assert(type2 != elfcpp::PT_INTERP);
3663 return true;
3665 if (type2 == elfcpp::PT_INTERP)
3666 return false;
3668 // We then put PT_LOAD segments before any other segments.
3669 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3670 return true;
3671 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3672 return false;
3674 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3675 // segment, because that is where the dynamic linker expects to find
3676 // it (this is just for efficiency; other positions would also work
3677 // correctly).
3678 if (type1 == elfcpp::PT_TLS
3679 && type2 != elfcpp::PT_TLS
3680 && type2 != elfcpp::PT_GNU_RELRO)
3681 return false;
3682 if (type2 == elfcpp::PT_TLS
3683 && type1 != elfcpp::PT_TLS
3684 && type1 != elfcpp::PT_GNU_RELRO)
3685 return true;
3687 // We put the PT_GNU_RELRO segment last, because that is where the
3688 // dynamic linker expects to find it (as with PT_TLS, this is just
3689 // for efficiency).
3690 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3691 return false;
3692 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3693 return true;
3695 const elfcpp::Elf_Word flags1 = seg1->flags();
3696 const elfcpp::Elf_Word flags2 = seg2->flags();
3698 // The order of non-PT_LOAD segments is unimportant. We simply sort
3699 // by the numeric segment type and flags values. There should not
3700 // be more than one segment with the same type and flags, except
3701 // when a linker script specifies such.
3702 if (type1 != elfcpp::PT_LOAD)
3704 if (type1 != type2)
3705 return type1 < type2;
3706 gold_assert(flags1 != flags2
3707 || this->script_options_->saw_phdrs_clause());
3708 return flags1 < flags2;
3711 // If the addresses are set already, sort by load address.
3712 if (seg1->are_addresses_set())
3714 if (!seg2->are_addresses_set())
3715 return true;
3717 unsigned int section_count1 = seg1->output_section_count();
3718 unsigned int section_count2 = seg2->output_section_count();
3719 if (section_count1 == 0 && section_count2 > 0)
3720 return true;
3721 if (section_count1 > 0 && section_count2 == 0)
3722 return false;
3724 uint64_t paddr1 = (seg1->are_addresses_set()
3725 ? seg1->paddr()
3726 : seg1->first_section_load_address());
3727 uint64_t paddr2 = (seg2->are_addresses_set()
3728 ? seg2->paddr()
3729 : seg2->first_section_load_address());
3731 if (paddr1 != paddr2)
3732 return paddr1 < paddr2;
3734 else if (seg2->are_addresses_set())
3735 return false;
3737 // A segment which holds large data comes after a segment which does
3738 // not hold large data.
3739 if (seg1->is_large_data_segment())
3741 if (!seg2->is_large_data_segment())
3742 return false;
3744 else if (seg2->is_large_data_segment())
3745 return true;
3747 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3748 // segments come before writable segments. Then writable segments
3749 // with data come before writable segments without data. Then
3750 // executable segments come before non-executable segments. Then
3751 // the unlikely case of a non-readable segment comes before the
3752 // normal case of a readable segment. If there are multiple
3753 // segments with the same type and flags, we require that the
3754 // address be set, and we sort by virtual address and then physical
3755 // address.
3756 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3757 return (flags1 & elfcpp::PF_W) == 0;
3758 if ((flags1 & elfcpp::PF_W) != 0
3759 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3760 return seg1->has_any_data_sections();
3761 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3762 return (flags1 & elfcpp::PF_X) != 0;
3763 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3764 return (flags1 & elfcpp::PF_R) == 0;
3766 // We shouldn't get here--we shouldn't create segments which we
3767 // can't distinguish. Unless of course we are using a weird linker
3768 // script or overlapping --section-start options. We could also get
3769 // here if plugins want unique segments for subsets of sections.
3770 gold_assert(this->script_options_->saw_phdrs_clause()
3771 || parameters->options().any_section_start()
3772 || this->is_unique_segment_for_sections_specified()
3773 || parameters->options().text_unlikely_segment());
3774 return false;
3777 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3779 static off_t
3780 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3782 uint64_t unsigned_off = off;
3783 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3784 | (addr & (abi_pagesize - 1)));
3785 if (aligned_off < unsigned_off)
3786 aligned_off += abi_pagesize;
3787 return aligned_off;
3790 // On targets where the text segment contains only executable code,
3791 // a non-executable segment is never the text segment.
3793 static inline bool
3794 is_text_segment(const Target* target, const Output_segment* seg)
3796 elfcpp::Elf_Xword flags = seg->flags();
3797 if ((flags & elfcpp::PF_W) != 0)
3798 return false;
3799 if ((flags & elfcpp::PF_X) == 0)
3800 return !target->isolate_execinstr();
3801 return true;
3804 // Set the file offsets of all the segments, and all the sections they
3805 // contain. They have all been created. LOAD_SEG must be laid out
3806 // first. Return the offset of the data to follow.
3808 off_t
3809 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3810 unsigned int* pshndx)
3812 // Sort them into the final order. We use a stable sort so that we
3813 // don't randomize the order of indistinguishable segments created
3814 // by linker scripts.
3815 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3816 Layout::Compare_segments(this));
3818 // Find the PT_LOAD segments, and set their addresses and offsets
3819 // and their section's addresses and offsets.
3820 uint64_t start_addr;
3821 if (parameters->options().user_set_Ttext())
3822 start_addr = parameters->options().Ttext();
3823 else if (parameters->options().output_is_position_independent())
3824 start_addr = 0;
3825 else
3826 start_addr = target->default_text_segment_address();
3828 uint64_t addr = start_addr;
3829 off_t off = 0;
3831 // If LOAD_SEG is NULL, then the file header and segment headers
3832 // will not be loadable. But they still need to be at offset 0 in
3833 // the file. Set their offsets now.
3834 if (load_seg == NULL)
3836 for (Data_list::iterator p = this->special_output_list_.begin();
3837 p != this->special_output_list_.end();
3838 ++p)
3840 off = align_address(off, (*p)->addralign());
3841 (*p)->set_address_and_file_offset(0, off);
3842 off += (*p)->data_size();
3846 unsigned int increase_relro = this->increase_relro_;
3847 if (this->script_options_->saw_sections_clause())
3848 increase_relro = 0;
3850 const bool check_sections = parameters->options().check_sections();
3851 Output_segment* last_load_segment = NULL;
3853 unsigned int shndx_begin = *pshndx;
3854 unsigned int shndx_load_seg = *pshndx;
3856 for (Segment_list::iterator p = this->segment_list_.begin();
3857 p != this->segment_list_.end();
3858 ++p)
3860 if ((*p)->type() == elfcpp::PT_LOAD)
3862 if (target->isolate_execinstr())
3864 // When we hit the segment that should contain the
3865 // file headers, reset the file offset so we place
3866 // it and subsequent segments appropriately.
3867 // We'll fix up the preceding segments below.
3868 if (load_seg == *p)
3870 if (off == 0)
3871 load_seg = NULL;
3872 else
3874 off = 0;
3875 shndx_load_seg = *pshndx;
3879 else
3881 // Verify that the file headers fall into the first segment.
3882 if (load_seg != NULL && load_seg != *p)
3883 gold_unreachable();
3884 load_seg = NULL;
3887 bool are_addresses_set = (*p)->are_addresses_set();
3888 if (are_addresses_set)
3890 // When it comes to setting file offsets, we care about
3891 // the physical address.
3892 addr = (*p)->paddr();
3894 else if (parameters->options().user_set_Ttext()
3895 && (parameters->options().omagic()
3896 || is_text_segment(target, *p)))
3898 are_addresses_set = true;
3900 else if (parameters->options().user_set_Trodata_segment()
3901 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3903 addr = parameters->options().Trodata_segment();
3904 are_addresses_set = true;
3906 else if (parameters->options().user_set_Tdata()
3907 && ((*p)->flags() & elfcpp::PF_W) != 0
3908 && (!parameters->options().user_set_Tbss()
3909 || (*p)->has_any_data_sections()))
3911 addr = parameters->options().Tdata();
3912 are_addresses_set = true;
3914 else if (parameters->options().user_set_Tbss()
3915 && ((*p)->flags() & elfcpp::PF_W) != 0
3916 && !(*p)->has_any_data_sections())
3918 addr = parameters->options().Tbss();
3919 are_addresses_set = true;
3922 uint64_t orig_addr = addr;
3923 uint64_t orig_off = off;
3925 uint64_t aligned_addr = 0;
3926 uint64_t abi_pagesize = target->abi_pagesize();
3927 uint64_t common_pagesize = target->common_pagesize();
3929 if (!parameters->options().nmagic()
3930 && !parameters->options().omagic())
3931 (*p)->set_minimum_p_align(abi_pagesize);
3933 if (!are_addresses_set)
3935 // Skip the address forward one page, maintaining the same
3936 // position within the page. This lets us store both segments
3937 // overlapping on a single page in the file, but the loader will
3938 // put them on different pages in memory. We will revisit this
3939 // decision once we know the size of the segment.
3941 uint64_t max_align = (*p)->maximum_alignment();
3942 if (max_align > abi_pagesize)
3943 addr = align_address(addr, max_align);
3944 aligned_addr = addr;
3946 if (load_seg == *p)
3948 // This is the segment that will contain the file
3949 // headers, so its offset will have to be exactly zero.
3950 gold_assert(orig_off == 0);
3952 // If the target wants a fixed minimum distance from the
3953 // text segment to the read-only segment, move up now.
3954 uint64_t min_addr =
3955 start_addr + (parameters->options().user_set_rosegment_gap()
3956 ? parameters->options().rosegment_gap()
3957 : target->rosegment_gap());
3958 if (addr < min_addr)
3959 addr = min_addr;
3961 // But this is not the first segment! To make its
3962 // address congruent with its offset, that address better
3963 // be aligned to the ABI-mandated page size.
3964 addr = align_address(addr, abi_pagesize);
3965 aligned_addr = addr;
3967 else
3969 if ((addr & (abi_pagesize - 1)) != 0)
3970 addr = addr + abi_pagesize;
3972 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3976 if (!parameters->options().nmagic()
3977 && !parameters->options().omagic())
3979 // Here we are also taking care of the case when
3980 // the maximum segment alignment is larger than the page size.
3981 off = align_file_offset(off, addr,
3982 std::max(abi_pagesize,
3983 (*p)->maximum_alignment()));
3985 else
3987 // This is -N or -n with a section script which prevents
3988 // us from using a load segment. We need to ensure that
3989 // the file offset is aligned to the alignment of the
3990 // segment. This is because the linker script
3991 // implicitly assumed a zero offset. If we don't align
3992 // here, then the alignment of the sections in the
3993 // linker script may not match the alignment of the
3994 // sections in the set_section_addresses call below,
3995 // causing an error about dot moving backward.
3996 off = align_address(off, (*p)->maximum_alignment());
3999 unsigned int shndx_hold = *pshndx;
4000 bool has_relro = false;
4001 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4002 false, addr,
4003 &increase_relro,
4004 &has_relro,
4005 &off, pshndx);
4007 // Now that we know the size of this segment, we may be able
4008 // to save a page in memory, at the cost of wasting some
4009 // file space, by instead aligning to the start of a new
4010 // page. Here we use the real machine page size rather than
4011 // the ABI mandated page size. If the segment has been
4012 // aligned so that the relro data ends at a page boundary,
4013 // we do not try to realign it.
4015 if (!are_addresses_set
4016 && !has_relro
4017 && aligned_addr != addr
4018 && !parameters->incremental())
4020 uint64_t first_off = (common_pagesize
4021 - (aligned_addr
4022 & (common_pagesize - 1)));
4023 uint64_t last_off = new_addr & (common_pagesize - 1);
4024 if (first_off > 0
4025 && last_off > 0
4026 && ((aligned_addr & ~ (common_pagesize - 1))
4027 != (new_addr & ~ (common_pagesize - 1)))
4028 && first_off + last_off <= common_pagesize)
4030 *pshndx = shndx_hold;
4031 addr = align_address(aligned_addr, common_pagesize);
4032 addr = align_address(addr, (*p)->maximum_alignment());
4033 if ((addr & (abi_pagesize - 1)) != 0)
4034 addr = addr + abi_pagesize;
4035 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4036 off = align_file_offset(off, addr, abi_pagesize);
4038 increase_relro = this->increase_relro_;
4039 if (this->script_options_->saw_sections_clause())
4040 increase_relro = 0;
4041 has_relro = false;
4043 new_addr = (*p)->set_section_addresses(target, this,
4044 true, addr,
4045 &increase_relro,
4046 &has_relro,
4047 &off, pshndx);
4051 addr = new_addr;
4053 // Implement --check-sections. We know that the segments
4054 // are sorted by LMA.
4055 if (check_sections && last_load_segment != NULL)
4057 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4058 if (last_load_segment->paddr() + last_load_segment->memsz()
4059 > (*p)->paddr())
4061 unsigned long long lb1 = last_load_segment->paddr();
4062 unsigned long long le1 = lb1 + last_load_segment->memsz();
4063 unsigned long long lb2 = (*p)->paddr();
4064 unsigned long long le2 = lb2 + (*p)->memsz();
4065 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4066 "[0x%llx -> 0x%llx]"),
4067 lb1, le1, lb2, le2);
4070 last_load_segment = *p;
4074 if (load_seg != NULL && target->isolate_execinstr())
4076 // Process the early segments again, setting their file offsets
4077 // so they land after the segments starting at LOAD_SEG.
4078 off = align_file_offset(off, 0, target->abi_pagesize());
4080 this->reset_relax_output();
4082 for (Segment_list::iterator p = this->segment_list_.begin();
4083 *p != load_seg;
4084 ++p)
4086 if ((*p)->type() == elfcpp::PT_LOAD)
4088 // We repeat the whole job of assigning addresses and
4089 // offsets, but we really only want to change the offsets and
4090 // must ensure that the addresses all come out the same as
4091 // they did the first time through.
4092 bool has_relro = false;
4093 const uint64_t old_addr = (*p)->vaddr();
4094 const uint64_t old_end = old_addr + (*p)->memsz();
4095 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4096 true, old_addr,
4097 &increase_relro,
4098 &has_relro,
4099 &off,
4100 &shndx_begin);
4101 gold_assert(new_addr == old_end);
4105 gold_assert(shndx_begin == shndx_load_seg);
4108 // Handle the non-PT_LOAD segments, setting their offsets from their
4109 // section's offsets.
4110 for (Segment_list::iterator p = this->segment_list_.begin();
4111 p != this->segment_list_.end();
4112 ++p)
4114 // PT_GNU_STACK was set up correctly when it was created.
4115 if ((*p)->type() != elfcpp::PT_LOAD
4116 && (*p)->type() != elfcpp::PT_GNU_STACK)
4117 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4118 ? increase_relro
4119 : 0);
4122 // Set the TLS offsets for each section in the PT_TLS segment.
4123 if (this->tls_segment_ != NULL)
4124 this->tls_segment_->set_tls_offsets();
4126 return off;
4129 // Set the offsets of all the allocated sections when doing a
4130 // relocatable link. This does the same jobs as set_segment_offsets,
4131 // only for a relocatable link.
4133 off_t
4134 Layout::set_relocatable_section_offsets(Output_data* file_header,
4135 unsigned int* pshndx)
4137 off_t off = 0;
4139 file_header->set_address_and_file_offset(0, 0);
4140 off += file_header->data_size();
4142 for (Section_list::iterator p = this->section_list_.begin();
4143 p != this->section_list_.end();
4144 ++p)
4146 // We skip unallocated sections here, except that group sections
4147 // have to come first.
4148 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4149 && (*p)->type() != elfcpp::SHT_GROUP)
4150 continue;
4152 off = align_address(off, (*p)->addralign());
4154 // The linker script might have set the address.
4155 if (!(*p)->is_address_valid())
4156 (*p)->set_address(0);
4157 (*p)->set_file_offset(off);
4158 (*p)->finalize_data_size();
4159 if ((*p)->type() != elfcpp::SHT_NOBITS)
4160 off += (*p)->data_size();
4162 (*p)->set_out_shndx(*pshndx);
4163 ++*pshndx;
4166 return off;
4169 // Set the file offset of all the sections not associated with a
4170 // segment.
4172 off_t
4173 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4175 off_t startoff = off;
4176 off_t maxoff = off;
4178 for (Section_list::iterator p = this->unattached_section_list_.begin();
4179 p != this->unattached_section_list_.end();
4180 ++p)
4182 // The symtab section is handled in create_symtab_sections.
4183 if (*p == this->symtab_section_)
4184 continue;
4186 // If we've already set the data size, don't set it again.
4187 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4188 continue;
4190 if (pass == BEFORE_INPUT_SECTIONS_PASS
4191 && (*p)->requires_postprocessing())
4193 (*p)->create_postprocessing_buffer();
4194 this->any_postprocessing_sections_ = true;
4197 if (pass == BEFORE_INPUT_SECTIONS_PASS
4198 && (*p)->after_input_sections())
4199 continue;
4200 else if (pass == POSTPROCESSING_SECTIONS_PASS
4201 && (!(*p)->after_input_sections()
4202 || (*p)->type() == elfcpp::SHT_STRTAB))
4203 continue;
4204 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4205 && (!(*p)->after_input_sections()
4206 || (*p)->type() != elfcpp::SHT_STRTAB))
4207 continue;
4209 if (!parameters->incremental_update())
4211 off = align_address(off, (*p)->addralign());
4212 (*p)->set_file_offset(off);
4213 (*p)->finalize_data_size();
4215 else
4217 // Incremental update: allocate file space from free list.
4218 (*p)->pre_finalize_data_size();
4219 off_t current_size = (*p)->current_data_size();
4220 off = this->allocate(current_size, (*p)->addralign(), startoff);
4221 if (off == -1)
4223 if (is_debugging_enabled(DEBUG_INCREMENTAL))
4224 this->free_list_.dump();
4225 gold_assert((*p)->output_section() != NULL);
4226 gold_fallback(_("out of patch space for section %s; "
4227 "relink with --incremental-full"),
4228 (*p)->output_section()->name());
4230 (*p)->set_file_offset(off);
4231 (*p)->finalize_data_size();
4232 if ((*p)->data_size() > current_size)
4234 gold_assert((*p)->output_section() != NULL);
4235 gold_fallback(_("%s: section changed size; "
4236 "relink with --incremental-full"),
4237 (*p)->output_section()->name());
4239 gold_debug(DEBUG_INCREMENTAL,
4240 "set_section_offsets: %08lx %08lx %s",
4241 static_cast<long>(off),
4242 static_cast<long>((*p)->data_size()),
4243 ((*p)->output_section() != NULL
4244 ? (*p)->output_section()->name() : "(special)"));
4247 off += (*p)->data_size();
4248 if (off > maxoff)
4249 maxoff = off;
4251 // At this point the name must be set.
4252 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4253 this->namepool_.add((*p)->name(), false, NULL);
4255 return maxoff;
4258 // Set the section indexes of all the sections not associated with a
4259 // segment.
4261 unsigned int
4262 Layout::set_section_indexes(unsigned int shndx)
4264 for (Section_list::iterator p = this->unattached_section_list_.begin();
4265 p != this->unattached_section_list_.end();
4266 ++p)
4268 if (!(*p)->has_out_shndx())
4270 (*p)->set_out_shndx(shndx);
4271 ++shndx;
4274 return shndx;
4277 // Set the section addresses according to the linker script. This is
4278 // only called when we see a SECTIONS clause. This returns the
4279 // program segment which should hold the file header and segment
4280 // headers, if any. It will return NULL if they should not be in a
4281 // segment.
4283 Output_segment*
4284 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4286 Script_sections* ss = this->script_options_->script_sections();
4287 gold_assert(ss->saw_sections_clause());
4288 return this->script_options_->set_section_addresses(symtab, this);
4291 // Place the orphan sections in the linker script.
4293 void
4294 Layout::place_orphan_sections_in_script()
4296 Script_sections* ss = this->script_options_->script_sections();
4297 gold_assert(ss->saw_sections_clause());
4299 // Place each orphaned output section in the script.
4300 for (Section_list::iterator p = this->section_list_.begin();
4301 p != this->section_list_.end();
4302 ++p)
4304 if (!(*p)->found_in_sections_clause())
4305 ss->place_orphan(*p);
4309 // Count the local symbols in the regular symbol table and the dynamic
4310 // symbol table, and build the respective string pools.
4312 void
4313 Layout::count_local_symbols(const Task* task,
4314 const Input_objects* input_objects)
4316 // First, figure out an upper bound on the number of symbols we'll
4317 // be inserting into each pool. This helps us create the pools with
4318 // the right size, to avoid unnecessary hashtable resizing.
4319 unsigned int symbol_count = 0;
4320 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4321 p != input_objects->relobj_end();
4322 ++p)
4323 symbol_count += (*p)->local_symbol_count();
4325 // Go from "upper bound" to "estimate." We overcount for two
4326 // reasons: we double-count symbols that occur in more than one
4327 // object file, and we count symbols that are dropped from the
4328 // output. Add it all together and assume we overcount by 100%.
4329 symbol_count /= 2;
4331 // We assume all symbols will go into both the sympool and dynpool.
4332 this->sympool_.reserve(symbol_count);
4333 this->dynpool_.reserve(symbol_count);
4335 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4336 p != input_objects->relobj_end();
4337 ++p)
4339 Task_lock_obj<Object> tlo(task, *p);
4340 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4344 // Create the symbol table sections. Here we also set the final
4345 // values of the symbols. At this point all the loadable sections are
4346 // fully laid out. SHNUM is the number of sections so far.
4348 void
4349 Layout::create_symtab_sections(const Input_objects* input_objects,
4350 Symbol_table* symtab,
4351 unsigned int shnum,
4352 off_t* poff,
4353 unsigned int local_dynamic_count)
4355 int symsize;
4356 unsigned int align;
4357 if (parameters->target().get_size() == 32)
4359 symsize = elfcpp::Elf_sizes<32>::sym_size;
4360 align = 4;
4362 else if (parameters->target().get_size() == 64)
4364 symsize = elfcpp::Elf_sizes<64>::sym_size;
4365 align = 8;
4367 else
4368 gold_unreachable();
4370 // Compute file offsets relative to the start of the symtab section.
4371 off_t off = 0;
4373 // Save space for the dummy symbol at the start of the section. We
4374 // never bother to write this out--it will just be left as zero.
4375 off += symsize;
4376 unsigned int local_symbol_index = 1;
4378 // Add STT_SECTION symbols for each Output section which needs one.
4379 for (Section_list::iterator p = this->section_list_.begin();
4380 p != this->section_list_.end();
4381 ++p)
4383 if (!(*p)->needs_symtab_index())
4384 (*p)->set_symtab_index(-1U);
4385 else
4387 (*p)->set_symtab_index(local_symbol_index);
4388 ++local_symbol_index;
4389 off += symsize;
4393 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4394 p != input_objects->relobj_end();
4395 ++p)
4397 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4398 off, symtab);
4399 off += (index - local_symbol_index) * symsize;
4400 local_symbol_index = index;
4403 unsigned int local_symcount = local_symbol_index;
4404 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4406 off_t dynoff;
4407 size_t dyncount;
4408 if (this->dynsym_section_ == NULL)
4410 dynoff = 0;
4411 dyncount = 0;
4413 else
4415 off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4416 dynoff = this->dynsym_section_->offset() + locsize;
4417 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4418 gold_assert(static_cast<off_t>(dyncount * symsize)
4419 == this->dynsym_section_->data_size() - locsize);
4422 off_t global_off = off;
4423 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4424 &this->sympool_, &local_symcount);
4426 if (!parameters->options().strip_all())
4428 this->sympool_.set_string_offsets();
4430 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4431 Output_section* osymtab = this->make_output_section(symtab_name,
4432 elfcpp::SHT_SYMTAB,
4433 0, ORDER_INVALID,
4434 false);
4435 this->symtab_section_ = osymtab;
4437 Output_section_data* pos = new Output_data_fixed_space(off, align,
4438 "** symtab");
4439 osymtab->add_output_section_data(pos);
4441 // We generate a .symtab_shndx section if we have more than
4442 // SHN_LORESERVE sections. Technically it is possible that we
4443 // don't need one, because it is possible that there are no
4444 // symbols in any of sections with indexes larger than
4445 // SHN_LORESERVE. That is probably unusual, though, and it is
4446 // easier to always create one than to compute section indexes
4447 // twice (once here, once when writing out the symbols).
4448 if (shnum >= elfcpp::SHN_LORESERVE)
4450 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4451 false, NULL);
4452 Output_section* osymtab_xindex =
4453 this->make_output_section(symtab_xindex_name,
4454 elfcpp::SHT_SYMTAB_SHNDX, 0,
4455 ORDER_INVALID, false);
4457 size_t symcount = off / symsize;
4458 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4460 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4462 osymtab_xindex->set_link_section(osymtab);
4463 osymtab_xindex->set_addralign(4);
4464 osymtab_xindex->set_entsize(4);
4466 osymtab_xindex->set_after_input_sections();
4468 // This tells the driver code to wait until the symbol table
4469 // has written out before writing out the postprocessing
4470 // sections, including the .symtab_shndx section.
4471 this->any_postprocessing_sections_ = true;
4474 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4475 Output_section* ostrtab = this->make_output_section(strtab_name,
4476 elfcpp::SHT_STRTAB,
4477 0, ORDER_INVALID,
4478 false);
4480 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4481 ostrtab->add_output_section_data(pstr);
4483 off_t symtab_off;
4484 if (!parameters->incremental_update())
4485 symtab_off = align_address(*poff, align);
4486 else
4488 symtab_off = this->allocate(off, align, *poff);
4489 if (off == -1)
4490 gold_fallback(_("out of patch space for symbol table; "
4491 "relink with --incremental-full"));
4492 gold_debug(DEBUG_INCREMENTAL,
4493 "create_symtab_sections: %08lx %08lx .symtab",
4494 static_cast<long>(symtab_off),
4495 static_cast<long>(off));
4498 symtab->set_file_offset(symtab_off + global_off);
4499 osymtab->set_file_offset(symtab_off);
4500 osymtab->finalize_data_size();
4501 osymtab->set_link_section(ostrtab);
4502 osymtab->set_info(local_symcount);
4503 osymtab->set_entsize(symsize);
4505 if (symtab_off + off > *poff)
4506 *poff = symtab_off + off;
4510 // Create the .shstrtab section, which holds the names of the
4511 // sections. At the time this is called, we have created all the
4512 // output sections except .shstrtab itself.
4514 Output_section*
4515 Layout::create_shstrtab()
4517 // FIXME: We don't need to create a .shstrtab section if we are
4518 // stripping everything.
4520 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4522 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4523 ORDER_INVALID, false);
4525 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4527 // We can't write out this section until we've set all the
4528 // section names, and we don't set the names of compressed
4529 // output sections until relocations are complete. FIXME: With
4530 // the current names we use, this is unnecessary.
4531 os->set_after_input_sections();
4534 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4535 os->add_output_section_data(posd);
4537 return os;
4540 // Create the section headers. SIZE is 32 or 64. OFF is the file
4541 // offset.
4543 void
4544 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4546 Output_section_headers* oshdrs;
4547 oshdrs = new Output_section_headers(this,
4548 &this->segment_list_,
4549 &this->section_list_,
4550 &this->unattached_section_list_,
4551 &this->namepool_,
4552 shstrtab_section);
4553 off_t off;
4554 if (!parameters->incremental_update())
4555 off = align_address(*poff, oshdrs->addralign());
4556 else
4558 oshdrs->pre_finalize_data_size();
4559 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4560 if (off == -1)
4561 gold_fallback(_("out of patch space for section header table; "
4562 "relink with --incremental-full"));
4563 gold_debug(DEBUG_INCREMENTAL,
4564 "create_shdrs: %08lx %08lx (section header table)",
4565 static_cast<long>(off),
4566 static_cast<long>(off + oshdrs->data_size()));
4568 oshdrs->set_address_and_file_offset(0, off);
4569 off += oshdrs->data_size();
4570 if (off > *poff)
4571 *poff = off;
4572 this->section_headers_ = oshdrs;
4575 // Count the allocated sections.
4577 size_t
4578 Layout::allocated_output_section_count() const
4580 size_t section_count = 0;
4581 for (Segment_list::const_iterator p = this->segment_list_.begin();
4582 p != this->segment_list_.end();
4583 ++p)
4584 section_count += (*p)->output_section_count();
4585 return section_count;
4588 // Create the dynamic symbol table.
4589 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4590 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4591 // to the number of global symbols that have been forced local.
4592 // We need to remember the former because the forced-local symbols are
4593 // written along with the global symbols in Symtab::write_globals().
4595 void
4596 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4597 Symbol_table* symtab,
4598 Output_section** pdynstr,
4599 unsigned int* plocal_dynamic_count,
4600 unsigned int* pforced_local_dynamic_count,
4601 std::vector<Symbol*>* pdynamic_symbols,
4602 Versions* pversions)
4604 // Count all the symbols in the dynamic symbol table, and set the
4605 // dynamic symbol indexes.
4607 // Skip symbol 0, which is always all zeroes.
4608 unsigned int index = 1;
4610 // Add STT_SECTION symbols for each Output section which needs one.
4611 for (Section_list::iterator p = this->section_list_.begin();
4612 p != this->section_list_.end();
4613 ++p)
4615 if (!(*p)->needs_dynsym_index())
4616 (*p)->set_dynsym_index(-1U);
4617 else
4619 (*p)->set_dynsym_index(index);
4620 ++index;
4624 // Count the local symbols that need to go in the dynamic symbol table,
4625 // and set the dynamic symbol indexes.
4626 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4627 p != input_objects->relobj_end();
4628 ++p)
4630 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4631 index = new_index;
4634 unsigned int local_symcount = index;
4635 unsigned int forced_local_count = 0;
4637 index = symtab->set_dynsym_indexes(index, &forced_local_count,
4638 pdynamic_symbols, &this->dynpool_,
4639 pversions);
4641 *plocal_dynamic_count = local_symcount;
4642 *pforced_local_dynamic_count = forced_local_count;
4644 int symsize;
4645 unsigned int align;
4646 const int size = parameters->target().get_size();
4647 if (size == 32)
4649 symsize = elfcpp::Elf_sizes<32>::sym_size;
4650 align = 4;
4652 else if (size == 64)
4654 symsize = elfcpp::Elf_sizes<64>::sym_size;
4655 align = 8;
4657 else
4658 gold_unreachable();
4660 // Create the dynamic symbol table section.
4662 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4663 elfcpp::SHT_DYNSYM,
4664 elfcpp::SHF_ALLOC,
4665 false,
4666 ORDER_DYNAMIC_LINKER,
4667 false, false, false);
4669 // Check for NULL as a linker script may discard .dynsym.
4670 if (dynsym != NULL)
4672 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4673 align,
4674 "** dynsym");
4675 dynsym->add_output_section_data(odata);
4677 dynsym->set_info(local_symcount + forced_local_count);
4678 dynsym->set_entsize(symsize);
4679 dynsym->set_addralign(align);
4681 this->dynsym_section_ = dynsym;
4684 Output_data_dynamic* const odyn = this->dynamic_data_;
4685 if (odyn != NULL)
4687 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4688 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4691 // If there are more than SHN_LORESERVE allocated sections, we
4692 // create a .dynsym_shndx section. It is possible that we don't
4693 // need one, because it is possible that there are no dynamic
4694 // symbols in any of the sections with indexes larger than
4695 // SHN_LORESERVE. This is probably unusual, though, and at this
4696 // time we don't know the actual section indexes so it is
4697 // inconvenient to check.
4698 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4700 Output_section* dynsym_xindex =
4701 this->choose_output_section(NULL, ".dynsym_shndx",
4702 elfcpp::SHT_SYMTAB_SHNDX,
4703 elfcpp::SHF_ALLOC,
4704 false, ORDER_DYNAMIC_LINKER, false, false,
4705 false);
4707 if (dynsym_xindex != NULL)
4709 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4711 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4713 dynsym_xindex->set_link_section(dynsym);
4714 dynsym_xindex->set_addralign(4);
4715 dynsym_xindex->set_entsize(4);
4717 dynsym_xindex->set_after_input_sections();
4719 // This tells the driver code to wait until the symbol table
4720 // has written out before writing out the postprocessing
4721 // sections, including the .dynsym_shndx section.
4722 this->any_postprocessing_sections_ = true;
4726 // Create the dynamic string table section.
4728 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4729 elfcpp::SHT_STRTAB,
4730 elfcpp::SHF_ALLOC,
4731 false,
4732 ORDER_DYNAMIC_LINKER,
4733 false, false, false);
4734 *pdynstr = dynstr;
4735 if (dynstr != NULL)
4737 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4738 dynstr->add_output_section_data(strdata);
4740 if (dynsym != NULL)
4741 dynsym->set_link_section(dynstr);
4742 if (this->dynamic_section_ != NULL)
4743 this->dynamic_section_->set_link_section(dynstr);
4745 if (odyn != NULL)
4747 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4748 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4752 // Create the hash tables. The Gnu-style hash table must be
4753 // built first, because it changes the order of the symbols
4754 // in the dynamic symbol table.
4756 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4757 || strcmp(parameters->options().hash_style(), "both") == 0)
4759 unsigned char* phash;
4760 unsigned int hashlen;
4761 Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4762 local_symcount + forced_local_count,
4763 &phash, &hashlen);
4765 Output_section* hashsec =
4766 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4767 elfcpp::SHF_ALLOC, false,
4768 ORDER_DYNAMIC_LINKER, false, false,
4769 false);
4771 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4772 hashlen,
4773 align,
4774 "** hash");
4775 if (hashsec != NULL && hashdata != NULL)
4776 hashsec->add_output_section_data(hashdata);
4778 if (hashsec != NULL)
4780 if (dynsym != NULL)
4781 hashsec->set_link_section(dynsym);
4783 // For a 64-bit target, the entries in .gnu.hash do not have
4784 // a uniform size, so we only set the entry size for a
4785 // 32-bit target.
4786 if (parameters->target().get_size() == 32)
4787 hashsec->set_entsize(4);
4789 if (odyn != NULL)
4790 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4794 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4795 || strcmp(parameters->options().hash_style(), "both") == 0)
4797 unsigned char* phash;
4798 unsigned int hashlen;
4799 Dynobj::create_elf_hash_table(*pdynamic_symbols,
4800 local_symcount + forced_local_count,
4801 &phash, &hashlen);
4803 Output_section* hashsec =
4804 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4805 elfcpp::SHF_ALLOC, false,
4806 ORDER_DYNAMIC_LINKER, false, false,
4807 false);
4809 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4810 hashlen,
4811 align,
4812 "** hash");
4813 if (hashsec != NULL && hashdata != NULL)
4814 hashsec->add_output_section_data(hashdata);
4816 if (hashsec != NULL)
4818 if (dynsym != NULL)
4819 hashsec->set_link_section(dynsym);
4820 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4823 if (odyn != NULL)
4824 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4828 // Assign offsets to each local portion of the dynamic symbol table.
4830 void
4831 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4833 Output_section* dynsym = this->dynsym_section_;
4834 if (dynsym == NULL)
4835 return;
4837 off_t off = dynsym->offset();
4839 // Skip the dummy symbol at the start of the section.
4840 off += dynsym->entsize();
4842 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4843 p != input_objects->relobj_end();
4844 ++p)
4846 unsigned int count = (*p)->set_local_dynsym_offset(off);
4847 off += count * dynsym->entsize();
4851 // Create the version sections.
4853 void
4854 Layout::create_version_sections(const Versions* versions,
4855 const Symbol_table* symtab,
4856 unsigned int local_symcount,
4857 const std::vector<Symbol*>& dynamic_symbols,
4858 const Output_section* dynstr)
4860 if (!versions->any_defs() && !versions->any_needs())
4861 return;
4863 switch (parameters->size_and_endianness())
4865 #ifdef HAVE_TARGET_32_LITTLE
4866 case Parameters::TARGET_32_LITTLE:
4867 this->sized_create_version_sections<32, false>(versions, symtab,
4868 local_symcount,
4869 dynamic_symbols, dynstr);
4870 break;
4871 #endif
4872 #ifdef HAVE_TARGET_32_BIG
4873 case Parameters::TARGET_32_BIG:
4874 this->sized_create_version_sections<32, true>(versions, symtab,
4875 local_symcount,
4876 dynamic_symbols, dynstr);
4877 break;
4878 #endif
4879 #ifdef HAVE_TARGET_64_LITTLE
4880 case Parameters::TARGET_64_LITTLE:
4881 this->sized_create_version_sections<64, false>(versions, symtab,
4882 local_symcount,
4883 dynamic_symbols, dynstr);
4884 break;
4885 #endif
4886 #ifdef HAVE_TARGET_64_BIG
4887 case Parameters::TARGET_64_BIG:
4888 this->sized_create_version_sections<64, true>(versions, symtab,
4889 local_symcount,
4890 dynamic_symbols, dynstr);
4891 break;
4892 #endif
4893 default:
4894 gold_unreachable();
4898 // Create the version sections, sized version.
4900 template<int size, bool big_endian>
4901 void
4902 Layout::sized_create_version_sections(
4903 const Versions* versions,
4904 const Symbol_table* symtab,
4905 unsigned int local_symcount,
4906 const std::vector<Symbol*>& dynamic_symbols,
4907 const Output_section* dynstr)
4909 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4910 elfcpp::SHT_GNU_versym,
4911 elfcpp::SHF_ALLOC,
4912 false,
4913 ORDER_DYNAMIC_LINKER,
4914 false, false, false);
4916 // Check for NULL since a linker script may discard this section.
4917 if (vsec != NULL)
4919 unsigned char* vbuf;
4920 unsigned int vsize;
4921 versions->symbol_section_contents<size, big_endian>(symtab,
4922 &this->dynpool_,
4923 local_symcount,
4924 dynamic_symbols,
4925 &vbuf, &vsize);
4927 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4928 "** versions");
4930 vsec->add_output_section_data(vdata);
4931 vsec->set_entsize(2);
4932 vsec->set_link_section(this->dynsym_section_);
4935 Output_data_dynamic* const odyn = this->dynamic_data_;
4936 if (odyn != NULL && vsec != NULL)
4937 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4939 if (versions->any_defs())
4941 Output_section* vdsec;
4942 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4943 elfcpp::SHT_GNU_verdef,
4944 elfcpp::SHF_ALLOC,
4945 false, ORDER_DYNAMIC_LINKER, false,
4946 false, false);
4948 if (vdsec != NULL)
4950 unsigned char* vdbuf;
4951 unsigned int vdsize;
4952 unsigned int vdentries;
4953 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4954 &vdbuf, &vdsize,
4955 &vdentries);
4957 Output_section_data* vddata =
4958 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4960 vdsec->add_output_section_data(vddata);
4961 vdsec->set_link_section(dynstr);
4962 vdsec->set_info(vdentries);
4964 if (odyn != NULL)
4966 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4967 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4972 if (versions->any_needs())
4974 Output_section* vnsec;
4975 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4976 elfcpp::SHT_GNU_verneed,
4977 elfcpp::SHF_ALLOC,
4978 false, ORDER_DYNAMIC_LINKER, false,
4979 false, false);
4981 if (vnsec != NULL)
4983 unsigned char* vnbuf;
4984 unsigned int vnsize;
4985 unsigned int vnentries;
4986 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4987 &vnbuf, &vnsize,
4988 &vnentries);
4990 Output_section_data* vndata =
4991 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4993 vnsec->add_output_section_data(vndata);
4994 vnsec->set_link_section(dynstr);
4995 vnsec->set_info(vnentries);
4997 if (odyn != NULL)
4999 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
5000 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
5006 // Create the .interp section and PT_INTERP segment.
5008 void
5009 Layout::create_interp(const Target* target)
5011 gold_assert(this->interp_segment_ == NULL);
5013 const char* interp = parameters->options().dynamic_linker();
5014 if (interp == NULL)
5016 interp = target->dynamic_linker();
5017 gold_assert(interp != NULL);
5020 size_t len = strlen(interp) + 1;
5022 Output_section_data* odata = new Output_data_const(interp, len, 1);
5024 Output_section* osec = this->choose_output_section(NULL, ".interp",
5025 elfcpp::SHT_PROGBITS,
5026 elfcpp::SHF_ALLOC,
5027 false, ORDER_INTERP,
5028 false, false, false);
5029 if (osec != NULL)
5030 osec->add_output_section_data(odata);
5033 // Add dynamic tags for the PLT and the dynamic relocs. This is
5034 // called by the target-specific code. This does nothing if not doing
5035 // a dynamic link.
5037 // USE_REL is true for REL relocs rather than RELA relocs.
5039 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5041 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5042 // and we also set DT_PLTREL. We use PLT_REL's output section, since
5043 // some targets have multiple reloc sections in PLT_REL.
5045 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5046 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
5047 // section.
5049 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5050 // executable.
5052 void
5053 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5054 const Output_data* plt_rel,
5055 const Output_data_reloc_generic* dyn_rel,
5056 bool add_debug, bool dynrel_includes_plt)
5058 Output_data_dynamic* odyn = this->dynamic_data_;
5059 if (odyn == NULL)
5060 return;
5062 if (plt_got != NULL && plt_got->output_section() != NULL)
5063 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5065 if (plt_rel != NULL && plt_rel->output_section() != NULL)
5067 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5068 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5069 odyn->add_constant(elfcpp::DT_PLTREL,
5070 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5073 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5074 || (dynrel_includes_plt
5075 && plt_rel != NULL
5076 && plt_rel->output_section() != NULL))
5078 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5079 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5080 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5081 (have_dyn_rel
5082 ? dyn_rel->output_section()
5083 : plt_rel->output_section()));
5084 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5085 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5086 odyn->add_section_size(size_tag,
5087 dyn_rel->output_section(),
5088 plt_rel->output_section());
5089 else if (have_dyn_rel)
5090 odyn->add_section_size(size_tag, dyn_rel->output_section());
5091 else
5092 odyn->add_section_size(size_tag, plt_rel->output_section());
5093 const int size = parameters->target().get_size();
5094 elfcpp::DT rel_tag;
5095 int rel_size;
5096 if (use_rel)
5098 rel_tag = elfcpp::DT_RELENT;
5099 if (size == 32)
5100 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5101 else if (size == 64)
5102 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5103 else
5104 gold_unreachable();
5106 else
5108 rel_tag = elfcpp::DT_RELAENT;
5109 if (size == 32)
5110 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5111 else if (size == 64)
5112 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5113 else
5114 gold_unreachable();
5116 odyn->add_constant(rel_tag, rel_size);
5118 if (parameters->options().combreloc() && have_dyn_rel)
5120 size_t c = dyn_rel->relative_reloc_count();
5121 if (c > 0)
5122 odyn->add_constant((use_rel
5123 ? elfcpp::DT_RELCOUNT
5124 : elfcpp::DT_RELACOUNT),
5129 if (add_debug && !parameters->options().shared())
5131 // The value of the DT_DEBUG tag is filled in by the dynamic
5132 // linker at run time, and used by the debugger.
5133 odyn->add_constant(elfcpp::DT_DEBUG, 0);
5137 void
5138 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5140 Output_data_dynamic* odyn = this->dynamic_data_;
5141 if (odyn == NULL)
5142 return;
5143 odyn->add_constant(tag, val);
5146 // Finish the .dynamic section and PT_DYNAMIC segment.
5148 void
5149 Layout::finish_dynamic_section(const Input_objects* input_objects,
5150 const Symbol_table* symtab)
5152 if (!this->script_options_->saw_phdrs_clause()
5153 && this->dynamic_section_ != NULL)
5155 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5156 (elfcpp::PF_R
5157 | elfcpp::PF_W));
5158 oseg->add_output_section_to_nonload(this->dynamic_section_,
5159 elfcpp::PF_R | elfcpp::PF_W);
5162 Output_data_dynamic* const odyn = this->dynamic_data_;
5163 if (odyn == NULL)
5164 return;
5166 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5167 p != input_objects->dynobj_end();
5168 ++p)
5170 if (!(*p)->is_needed() && (*p)->as_needed())
5172 // This dynamic object was linked with --as-needed, but it
5173 // is not needed.
5174 continue;
5177 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5180 if (parameters->options().shared())
5182 const char* soname = parameters->options().soname();
5183 if (soname != NULL)
5184 odyn->add_string(elfcpp::DT_SONAME, soname);
5187 Symbol* sym = symtab->lookup(parameters->options().init());
5188 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5189 odyn->add_symbol(elfcpp::DT_INIT, sym);
5191 sym = symtab->lookup(parameters->options().fini());
5192 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5193 odyn->add_symbol(elfcpp::DT_FINI, sym);
5195 // Look for .init_array, .preinit_array and .fini_array by checking
5196 // section types.
5197 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5198 p != this->section_list_.end();
5199 ++p)
5200 switch((*p)->type())
5202 case elfcpp::SHT_FINI_ARRAY:
5203 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5204 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5205 break;
5206 case elfcpp::SHT_INIT_ARRAY:
5207 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5208 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5209 break;
5210 case elfcpp::SHT_PREINIT_ARRAY:
5211 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5212 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5213 break;
5214 default:
5215 break;
5218 // Add a DT_RPATH entry if needed.
5219 const General_options::Dir_list& rpath(parameters->options().rpath());
5220 if (!rpath.empty())
5222 std::string rpath_val;
5223 for (General_options::Dir_list::const_iterator p = rpath.begin();
5224 p != rpath.end();
5225 ++p)
5227 if (rpath_val.empty())
5228 rpath_val = p->name();
5229 else
5231 // Eliminate duplicates.
5232 General_options::Dir_list::const_iterator q;
5233 for (q = rpath.begin(); q != p; ++q)
5234 if (q->name() == p->name())
5235 break;
5236 if (q == p)
5238 rpath_val += ':';
5239 rpath_val += p->name();
5244 if (!parameters->options().enable_new_dtags())
5245 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5246 else
5247 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5250 // Look for text segments that have dynamic relocations.
5251 bool have_textrel = false;
5252 if (!this->script_options_->saw_sections_clause())
5254 for (Segment_list::const_iterator p = this->segment_list_.begin();
5255 p != this->segment_list_.end();
5256 ++p)
5258 if ((*p)->type() == elfcpp::PT_LOAD
5259 && ((*p)->flags() & elfcpp::PF_W) == 0
5260 && (*p)->has_dynamic_reloc())
5262 have_textrel = true;
5263 break;
5267 else
5269 // We don't know the section -> segment mapping, so we are
5270 // conservative and just look for readonly sections with
5271 // relocations. If those sections wind up in writable segments,
5272 // then we have created an unnecessary DT_TEXTREL entry.
5273 for (Section_list::const_iterator p = this->section_list_.begin();
5274 p != this->section_list_.end();
5275 ++p)
5277 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5278 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5279 && (*p)->has_dynamic_reloc())
5281 have_textrel = true;
5282 break;
5287 if (parameters->options().filter() != NULL)
5288 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5289 if (parameters->options().any_auxiliary())
5291 for (options::String_set::const_iterator p =
5292 parameters->options().auxiliary_begin();
5293 p != parameters->options().auxiliary_end();
5294 ++p)
5295 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5298 // Add a DT_FLAGS entry if necessary.
5299 unsigned int flags = 0;
5300 if (have_textrel)
5302 // Add a DT_TEXTREL for compatibility with older loaders.
5303 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5304 flags |= elfcpp::DF_TEXTREL;
5306 if (parameters->options().text())
5307 gold_error(_("read-only segment has dynamic relocations"));
5308 else if (parameters->options().warn_shared_textrel()
5309 && parameters->options().shared())
5310 gold_warning(_("shared library text segment is not shareable"));
5312 if (parameters->options().shared() && this->has_static_tls())
5313 flags |= elfcpp::DF_STATIC_TLS;
5314 if (parameters->options().origin())
5315 flags |= elfcpp::DF_ORIGIN;
5316 if (parameters->options().Bsymbolic()
5317 && !parameters->options().have_dynamic_list())
5319 flags |= elfcpp::DF_SYMBOLIC;
5320 // Add DT_SYMBOLIC for compatibility with older loaders.
5321 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5323 if (parameters->options().now())
5324 flags |= elfcpp::DF_BIND_NOW;
5325 if (flags != 0)
5326 odyn->add_constant(elfcpp::DT_FLAGS, flags);
5328 flags = 0;
5329 if (parameters->options().global())
5330 flags |= elfcpp::DF_1_GLOBAL;
5331 if (parameters->options().initfirst())
5332 flags |= elfcpp::DF_1_INITFIRST;
5333 if (parameters->options().interpose())
5334 flags |= elfcpp::DF_1_INTERPOSE;
5335 if (parameters->options().loadfltr())
5336 flags |= elfcpp::DF_1_LOADFLTR;
5337 if (parameters->options().nodefaultlib())
5338 flags |= elfcpp::DF_1_NODEFLIB;
5339 if (parameters->options().nodelete())
5340 flags |= elfcpp::DF_1_NODELETE;
5341 if (parameters->options().nodlopen())
5342 flags |= elfcpp::DF_1_NOOPEN;
5343 if (parameters->options().nodump())
5344 flags |= elfcpp::DF_1_NODUMP;
5345 if (!parameters->options().shared())
5346 flags &= ~(elfcpp::DF_1_INITFIRST
5347 | elfcpp::DF_1_NODELETE
5348 | elfcpp::DF_1_NOOPEN);
5349 if (parameters->options().origin())
5350 flags |= elfcpp::DF_1_ORIGIN;
5351 if (parameters->options().now())
5352 flags |= elfcpp::DF_1_NOW;
5353 if (parameters->options().Bgroup())
5354 flags |= elfcpp::DF_1_GROUP;
5355 if (flags != 0)
5356 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5359 // Set the size of the _DYNAMIC symbol table to be the size of the
5360 // dynamic data.
5362 void
5363 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5365 Output_data_dynamic* const odyn = this->dynamic_data_;
5366 if (odyn == NULL)
5367 return;
5368 odyn->finalize_data_size();
5369 if (this->dynamic_symbol_ == NULL)
5370 return;
5371 off_t data_size = odyn->data_size();
5372 const int size = parameters->target().get_size();
5373 if (size == 32)
5374 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5375 else if (size == 64)
5376 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5377 else
5378 gold_unreachable();
5381 // The mapping of input section name prefixes to output section names.
5382 // In some cases one prefix is itself a prefix of another prefix; in
5383 // such a case the longer prefix must come first. These prefixes are
5384 // based on the GNU linker default ELF linker script.
5386 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5387 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5388 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5390 MAPPING_INIT(".text.", ".text"),
5391 MAPPING_INIT(".rodata.", ".rodata"),
5392 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5393 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5394 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5395 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5396 MAPPING_INIT(".data.", ".data"),
5397 MAPPING_INIT(".bss.", ".bss"),
5398 MAPPING_INIT(".tdata.", ".tdata"),
5399 MAPPING_INIT(".tbss.", ".tbss"),
5400 MAPPING_INIT(".init_array.", ".init_array"),
5401 MAPPING_INIT(".fini_array.", ".fini_array"),
5402 MAPPING_INIT(".sdata.", ".sdata"),
5403 MAPPING_INIT(".sbss.", ".sbss"),
5404 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5405 // differently depending on whether it is creating a shared library.
5406 MAPPING_INIT(".sdata2.", ".sdata"),
5407 MAPPING_INIT(".sbss2.", ".sbss"),
5408 MAPPING_INIT(".lrodata.", ".lrodata"),
5409 MAPPING_INIT(".ldata.", ".ldata"),
5410 MAPPING_INIT(".lbss.", ".lbss"),
5411 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5412 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5413 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5414 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5415 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5416 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5417 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5418 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5419 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5420 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5421 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5422 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5423 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5424 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5425 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5426 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5427 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5428 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5429 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5430 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5431 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5432 MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5435 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5436 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5438 MAPPING_INIT(".text.hot.", ".text.hot"),
5439 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5440 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5441 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5442 MAPPING_INIT(".text.startup.", ".text.startup"),
5443 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5444 MAPPING_INIT(".text.exit.", ".text.exit"),
5445 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5446 MAPPING_INIT(".text.", ".text"),
5448 #undef MAPPING_INIT
5449 #undef MAPPING_INIT_EXACT
5451 const int Layout::section_name_mapping_count =
5452 (sizeof(Layout::section_name_mapping)
5453 / sizeof(Layout::section_name_mapping[0]));
5455 const int Layout::text_section_name_mapping_count =
5456 (sizeof(Layout::text_section_name_mapping)
5457 / sizeof(Layout::text_section_name_mapping[0]));
5459 // Find section name NAME in PSNM and return the mapped name if found
5460 // with the length set in PLEN.
5461 const char *
5462 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5463 const int count,
5464 const char* name, size_t* plen)
5466 for (int i = 0; i < count; ++i, ++psnm)
5468 if (psnm->fromlen > 0)
5470 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5472 *plen = psnm->tolen;
5473 return psnm->to;
5476 else
5478 if (strcmp(name, psnm->from) == 0)
5480 *plen = psnm->tolen;
5481 return psnm->to;
5485 return NULL;
5488 // Choose the output section name to use given an input section name.
5489 // Set *PLEN to the length of the name. *PLEN is initialized to the
5490 // length of NAME.
5492 const char*
5493 Layout::output_section_name(const Relobj* relobj, const char* name,
5494 size_t* plen)
5496 // gcc 4.3 generates the following sorts of section names when it
5497 // needs a section name specific to a function:
5498 // .text.FN
5499 // .rodata.FN
5500 // .sdata2.FN
5501 // .data.FN
5502 // .data.rel.FN
5503 // .data.rel.local.FN
5504 // .data.rel.ro.FN
5505 // .data.rel.ro.local.FN
5506 // .sdata.FN
5507 // .bss.FN
5508 // .sbss.FN
5509 // .tdata.FN
5510 // .tbss.FN
5512 // The GNU linker maps all of those to the part before the .FN,
5513 // except that .data.rel.local.FN is mapped to .data, and
5514 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5515 // beginning with .data.rel.ro.local are grouped together.
5517 // For an anonymous namespace, the string FN can contain a '.'.
5519 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5520 // GNU linker maps to .rodata.
5522 // The .data.rel.ro sections are used with -z relro. The sections
5523 // are recognized by name. We use the same names that the GNU
5524 // linker does for these sections.
5526 // It is hard to handle this in a principled way, so we don't even
5527 // try. We use a table of mappings. If the input section name is
5528 // not found in the table, we simply use it as the output section
5529 // name.
5531 if (parameters->options().keep_text_section_prefix()
5532 && is_prefix_of(".text", name))
5534 const char* match = match_section_name(text_section_name_mapping,
5535 text_section_name_mapping_count,
5536 name, plen);
5537 if (match != NULL)
5538 return match;
5541 const char* match = match_section_name(section_name_mapping,
5542 section_name_mapping_count, name, plen);
5543 if (match != NULL)
5544 return match;
5546 // As an additional complication, .ctors sections are output in
5547 // either .ctors or .init_array sections, and .dtors sections are
5548 // output in either .dtors or .fini_array sections.
5549 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5551 if (parameters->options().ctors_in_init_array())
5553 *plen = 11;
5554 return name[1] == 'c' ? ".init_array" : ".fini_array";
5556 else
5558 *plen = 6;
5559 return name[1] == 'c' ? ".ctors" : ".dtors";
5562 if (parameters->options().ctors_in_init_array()
5563 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5565 // To make .init_array/.fini_array work with gcc we must exclude
5566 // .ctors and .dtors sections from the crtbegin and crtend
5567 // files.
5568 if (relobj == NULL
5569 || (!Layout::match_file_name(relobj, "crtbegin")
5570 && !Layout::match_file_name(relobj, "crtend")))
5572 *plen = 11;
5573 return name[1] == 'c' ? ".init_array" : ".fini_array";
5577 return name;
5580 // Return true if RELOBJ is an input file whose base name matches
5581 // FILE_NAME. The base name must have an extension of ".o", and must
5582 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5583 // to match crtbegin.o as well as crtbeginS.o without getting confused
5584 // by other possibilities. Overall matching the file name this way is
5585 // a dreadful hack, but the GNU linker does it in order to better
5586 // support gcc, and we need to be compatible.
5588 bool
5589 Layout::match_file_name(const Relobj* relobj, const char* match)
5591 const std::string& file_name(relobj->name());
5592 const char* base_name = lbasename(file_name.c_str());
5593 size_t match_len = strlen(match);
5594 if (strncmp(base_name, match, match_len) != 0)
5595 return false;
5596 size_t base_len = strlen(base_name);
5597 if (base_len != match_len + 2 && base_len != match_len + 3)
5598 return false;
5599 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5602 // Check if a comdat group or .gnu.linkonce section with the given
5603 // NAME is selected for the link. If there is already a section,
5604 // *KEPT_SECTION is set to point to the existing section and the
5605 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5606 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5607 // *KEPT_SECTION is set to the internal copy and the function returns
5608 // true.
5610 bool
5611 Layout::find_or_add_kept_section(const std::string& name,
5612 Relobj* object,
5613 unsigned int shndx,
5614 bool is_comdat,
5615 bool is_group_name,
5616 Kept_section** kept_section)
5618 // It's normal to see a couple of entries here, for the x86 thunk
5619 // sections. If we see more than a few, we're linking a C++
5620 // program, and we resize to get more space to minimize rehashing.
5621 if (this->signatures_.size() > 4
5622 && !this->resized_signatures_)
5624 reserve_unordered_map(&this->signatures_,
5625 this->number_of_input_files_ * 64);
5626 this->resized_signatures_ = true;
5629 Kept_section candidate;
5630 std::pair<Signatures::iterator, bool> ins =
5631 this->signatures_.insert(std::make_pair(name, candidate));
5633 if (kept_section != NULL)
5634 *kept_section = &ins.first->second;
5635 if (ins.second)
5637 // This is the first time we've seen this signature.
5638 ins.first->second.set_object(object);
5639 ins.first->second.set_shndx(shndx);
5640 if (is_comdat)
5641 ins.first->second.set_is_comdat();
5642 if (is_group_name)
5643 ins.first->second.set_is_group_name();
5644 return true;
5647 // We have already seen this signature.
5649 if (ins.first->second.is_group_name())
5651 // We've already seen a real section group with this signature.
5652 // If the kept group is from a plugin object, and we're in the
5653 // replacement phase, accept the new one as a replacement.
5654 if (ins.first->second.object() == NULL
5655 && parameters->options().plugins()->in_replacement_phase())
5657 ins.first->second.set_object(object);
5658 ins.first->second.set_shndx(shndx);
5659 return true;
5661 return false;
5663 else if (is_group_name)
5665 // This is a real section group, and we've already seen a
5666 // linkonce section with this signature. Record that we've seen
5667 // a section group, and don't include this section group.
5668 ins.first->second.set_is_group_name();
5669 return false;
5671 else
5673 // We've already seen a linkonce section and this is a linkonce
5674 // section. These don't block each other--this may be the same
5675 // symbol name with different section types.
5676 return true;
5680 // Store the allocated sections into the section list.
5682 void
5683 Layout::get_allocated_sections(Section_list* section_list) const
5685 for (Section_list::const_iterator p = this->section_list_.begin();
5686 p != this->section_list_.end();
5687 ++p)
5688 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5689 section_list->push_back(*p);
5692 // Store the executable sections into the section list.
5694 void
5695 Layout::get_executable_sections(Section_list* section_list) const
5697 for (Section_list::const_iterator p = this->section_list_.begin();
5698 p != this->section_list_.end();
5699 ++p)
5700 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5701 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5702 section_list->push_back(*p);
5705 // Create an output segment.
5707 Output_segment*
5708 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5710 gold_assert(!parameters->options().relocatable());
5711 Output_segment* oseg = new Output_segment(type, flags);
5712 this->segment_list_.push_back(oseg);
5714 if (type == elfcpp::PT_TLS)
5715 this->tls_segment_ = oseg;
5716 else if (type == elfcpp::PT_GNU_RELRO)
5717 this->relro_segment_ = oseg;
5718 else if (type == elfcpp::PT_INTERP)
5719 this->interp_segment_ = oseg;
5721 return oseg;
5724 // Return the file offset of the normal symbol table.
5726 off_t
5727 Layout::symtab_section_offset() const
5729 if (this->symtab_section_ != NULL)
5730 return this->symtab_section_->offset();
5731 return 0;
5734 // Return the section index of the normal symbol table. It may have
5735 // been stripped by the -s/--strip-all option.
5737 unsigned int
5738 Layout::symtab_section_shndx() const
5740 if (this->symtab_section_ != NULL)
5741 return this->symtab_section_->out_shndx();
5742 return 0;
5745 // Write out the Output_sections. Most won't have anything to write,
5746 // since most of the data will come from input sections which are
5747 // handled elsewhere. But some Output_sections do have Output_data.
5749 void
5750 Layout::write_output_sections(Output_file* of) const
5752 for (Section_list::const_iterator p = this->section_list_.begin();
5753 p != this->section_list_.end();
5754 ++p)
5756 if (!(*p)->after_input_sections())
5757 (*p)->write(of);
5761 // Write out data not associated with a section or the symbol table.
5763 void
5764 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5766 if (!parameters->options().strip_all())
5768 const Output_section* symtab_section = this->symtab_section_;
5769 for (Section_list::const_iterator p = this->section_list_.begin();
5770 p != this->section_list_.end();
5771 ++p)
5773 if ((*p)->needs_symtab_index())
5775 gold_assert(symtab_section != NULL);
5776 unsigned int index = (*p)->symtab_index();
5777 gold_assert(index > 0 && index != -1U);
5778 off_t off = (symtab_section->offset()
5779 + index * symtab_section->entsize());
5780 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5785 const Output_section* dynsym_section = this->dynsym_section_;
5786 for (Section_list::const_iterator p = this->section_list_.begin();
5787 p != this->section_list_.end();
5788 ++p)
5790 if ((*p)->needs_dynsym_index())
5792 gold_assert(dynsym_section != NULL);
5793 unsigned int index = (*p)->dynsym_index();
5794 gold_assert(index > 0 && index != -1U);
5795 off_t off = (dynsym_section->offset()
5796 + index * dynsym_section->entsize());
5797 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5801 // Write out the Output_data which are not in an Output_section.
5802 for (Data_list::const_iterator p = this->special_output_list_.begin();
5803 p != this->special_output_list_.end();
5804 ++p)
5805 (*p)->write(of);
5807 // Write out the Output_data which are not in an Output_section
5808 // and are regenerated in each iteration of relaxation.
5809 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5810 p != this->relax_output_list_.end();
5811 ++p)
5812 (*p)->write(of);
5815 // Write out the Output_sections which can only be written after the
5816 // input sections are complete.
5818 void
5819 Layout::write_sections_after_input_sections(Output_file* of)
5821 // Determine the final section offsets, and thus the final output
5822 // file size. Note we finalize the .shstrab last, to allow the
5823 // after_input_section sections to modify their section-names before
5824 // writing.
5825 if (this->any_postprocessing_sections_)
5827 off_t off = this->output_file_size_;
5828 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5830 // Now that we've finalized the names, we can finalize the shstrab.
5831 off =
5832 this->set_section_offsets(off,
5833 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5835 if (off > this->output_file_size_)
5837 of->resize(off);
5838 this->output_file_size_ = off;
5842 for (Section_list::const_iterator p = this->section_list_.begin();
5843 p != this->section_list_.end();
5844 ++p)
5846 if ((*p)->after_input_sections())
5847 (*p)->write(of);
5850 this->section_headers_->write(of);
5853 // If a tree-style build ID was requested, the parallel part of that computation
5854 // is already done, and the final hash-of-hashes is computed here. For other
5855 // types of build IDs, all the work is done here.
5857 void
5858 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5859 size_t size_of_hashes) const
5861 if (this->build_id_note_ == NULL)
5862 return;
5864 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5865 this->build_id_note_->data_size());
5867 if (array_of_hashes == NULL)
5869 const size_t output_file_size = this->output_file_size();
5870 const unsigned char* iv = of->get_input_view(0, output_file_size);
5871 const char* style = parameters->options().build_id();
5873 // If we get here with style == "tree" then the output must be
5874 // too small for chunking, and we use SHA-1 in that case.
5875 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5876 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5877 else if (strcmp(style, "md5") == 0)
5878 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5879 else
5880 gold_unreachable();
5882 of->free_input_view(0, output_file_size, iv);
5884 else
5886 // Non-overlapping substrings of the output file have been hashed.
5887 // Compute SHA-1 hash of the hashes.
5888 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5889 size_of_hashes, ov);
5890 delete[] array_of_hashes;
5893 of->write_output_view(this->build_id_note_->offset(),
5894 this->build_id_note_->data_size(),
5895 ov);
5898 // Write out a binary file. This is called after the link is
5899 // complete. IN is the temporary output file we used to generate the
5900 // ELF code. We simply walk through the segments, read them from
5901 // their file offset in IN, and write them to their load address in
5902 // the output file. FIXME: with a bit more work, we could support
5903 // S-records and/or Intel hex format here.
5905 void
5906 Layout::write_binary(Output_file* in) const
5908 gold_assert(parameters->options().oformat_enum()
5909 == General_options::OBJECT_FORMAT_BINARY);
5911 // Get the size of the binary file.
5912 uint64_t max_load_address = 0;
5913 for (Segment_list::const_iterator p = this->segment_list_.begin();
5914 p != this->segment_list_.end();
5915 ++p)
5917 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5919 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5920 if (max_paddr > max_load_address)
5921 max_load_address = max_paddr;
5925 Output_file out(parameters->options().output_file_name());
5926 out.open(max_load_address);
5928 for (Segment_list::const_iterator p = this->segment_list_.begin();
5929 p != this->segment_list_.end();
5930 ++p)
5932 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5934 const unsigned char* vin = in->get_input_view((*p)->offset(),
5935 (*p)->filesz());
5936 unsigned char* vout = out.get_output_view((*p)->paddr(),
5937 (*p)->filesz());
5938 memcpy(vout, vin, (*p)->filesz());
5939 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5940 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5944 out.close();
5947 // Print the output sections to the map file.
5949 void
5950 Layout::print_to_mapfile(Mapfile* mapfile) const
5952 for (Segment_list::const_iterator p = this->segment_list_.begin();
5953 p != this->segment_list_.end();
5954 ++p)
5955 (*p)->print_sections_to_mapfile(mapfile);
5956 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5957 p != this->unattached_section_list_.end();
5958 ++p)
5959 (*p)->print_to_mapfile(mapfile);
5962 // Print statistical information to stderr. This is used for --stats.
5964 void
5965 Layout::print_stats() const
5967 this->namepool_.print_stats("section name pool");
5968 this->sympool_.print_stats("output symbol name pool");
5969 this->dynpool_.print_stats("dynamic name pool");
5971 for (Section_list::const_iterator p = this->section_list_.begin();
5972 p != this->section_list_.end();
5973 ++p)
5974 (*p)->print_merge_stats();
5977 // Write_sections_task methods.
5979 // We can always run this task.
5981 Task_token*
5982 Write_sections_task::is_runnable()
5984 return NULL;
5987 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5988 // when finished.
5990 void
5991 Write_sections_task::locks(Task_locker* tl)
5993 tl->add(this, this->output_sections_blocker_);
5994 if (this->input_sections_blocker_ != NULL)
5995 tl->add(this, this->input_sections_blocker_);
5996 tl->add(this, this->final_blocker_);
5999 // Run the task--write out the data.
6001 void
6002 Write_sections_task::run(Workqueue*)
6004 this->layout_->write_output_sections(this->of_);
6007 // Write_data_task methods.
6009 // We can always run this task.
6011 Task_token*
6012 Write_data_task::is_runnable()
6014 return NULL;
6017 // We need to unlock FINAL_BLOCKER when finished.
6019 void
6020 Write_data_task::locks(Task_locker* tl)
6022 tl->add(this, this->final_blocker_);
6025 // Run the task--write out the data.
6027 void
6028 Write_data_task::run(Workqueue*)
6030 this->layout_->write_data(this->symtab_, this->of_);
6033 // Write_symbols_task methods.
6035 // We can always run this task.
6037 Task_token*
6038 Write_symbols_task::is_runnable()
6040 return NULL;
6043 // We need to unlock FINAL_BLOCKER when finished.
6045 void
6046 Write_symbols_task::locks(Task_locker* tl)
6048 tl->add(this, this->final_blocker_);
6051 // Run the task--write out the symbols.
6053 void
6054 Write_symbols_task::run(Workqueue*)
6056 this->symtab_->write_globals(this->sympool_, this->dynpool_,
6057 this->layout_->symtab_xindex(),
6058 this->layout_->dynsym_xindex(), this->of_);
6061 // Write_after_input_sections_task methods.
6063 // We can only run this task after the input sections have completed.
6065 Task_token*
6066 Write_after_input_sections_task::is_runnable()
6068 if (this->input_sections_blocker_->is_blocked())
6069 return this->input_sections_blocker_;
6070 return NULL;
6073 // We need to unlock FINAL_BLOCKER when finished.
6075 void
6076 Write_after_input_sections_task::locks(Task_locker* tl)
6078 tl->add(this, this->final_blocker_);
6081 // Run the task.
6083 void
6084 Write_after_input_sections_task::run(Workqueue*)
6086 this->layout_->write_sections_after_input_sections(this->of_);
6089 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6090 // or as a "tree" where each chunk of the string is hashed and then those
6091 // hashes are put into a (much smaller) string which is hashed with sha1.
6092 // We compute a checksum over the entire file because that is simplest.
6094 void
6095 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6097 Task_token* post_hash_tasks_blocker = new Task_token(true);
6098 const Layout* layout = this->layout_;
6099 Output_file* of = this->of_;
6100 const size_t filesize = (layout->output_file_size() <= 0 ? 0
6101 : static_cast<size_t>(layout->output_file_size()));
6102 unsigned char* array_of_hashes = NULL;
6103 size_t size_of_hashes = 0;
6105 if (strcmp(this->options_->build_id(), "tree") == 0
6106 && this->options_->build_id_chunk_size_for_treehash() > 0
6107 && filesize > 0
6108 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6110 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6111 const size_t chunk_size =
6112 this->options_->build_id_chunk_size_for_treehash();
6113 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6114 post_hash_tasks_blocker->add_blockers(num_hashes);
6115 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6116 array_of_hashes = new unsigned char[size_of_hashes];
6117 unsigned char *dst = array_of_hashes;
6118 for (size_t i = 0, src_offset = 0; i < num_hashes;
6119 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6121 size_t size = std::min(chunk_size, filesize - src_offset);
6122 workqueue->queue(new Hash_task(of,
6123 src_offset,
6124 size,
6125 dst,
6126 post_hash_tasks_blocker));
6130 // Queue the final task to write the build id and close the output file.
6131 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6132 layout,
6134 array_of_hashes,
6135 size_of_hashes),
6136 post_hash_tasks_blocker,
6137 "Task_function Close_task_runner"));
6140 // Close_task_runner methods.
6142 // Finish up the build ID computation, if necessary, and write a binary file,
6143 // if necessary. Then close the output file.
6145 void
6146 Close_task_runner::run(Workqueue*, const Task*)
6148 // At this point the multi-threaded part of the build ID computation,
6149 // if any, is done. See Build_id_task_runner.
6150 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6151 this->size_of_hashes_);
6153 // If we've been asked to create a binary file, we do so here.
6154 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6155 this->layout_->write_binary(this->of_);
6157 this->of_->close();
6160 // Instantiate the templates we need. We could use the configure
6161 // script to restrict this to only the ones for implemented targets.
6163 #ifdef HAVE_TARGET_32_LITTLE
6164 template
6165 Output_section*
6166 Layout::init_fixed_output_section<32, false>(
6167 const char* name,
6168 elfcpp::Shdr<32, false>& shdr);
6169 #endif
6171 #ifdef HAVE_TARGET_32_BIG
6172 template
6173 Output_section*
6174 Layout::init_fixed_output_section<32, true>(
6175 const char* name,
6176 elfcpp::Shdr<32, true>& shdr);
6177 #endif
6179 #ifdef HAVE_TARGET_64_LITTLE
6180 template
6181 Output_section*
6182 Layout::init_fixed_output_section<64, false>(
6183 const char* name,
6184 elfcpp::Shdr<64, false>& shdr);
6185 #endif
6187 #ifdef HAVE_TARGET_64_BIG
6188 template
6189 Output_section*
6190 Layout::init_fixed_output_section<64, true>(
6191 const char* name,
6192 elfcpp::Shdr<64, true>& shdr);
6193 #endif
6195 #ifdef HAVE_TARGET_32_LITTLE
6196 template
6197 Output_section*
6198 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6199 unsigned int shndx,
6200 const char* name,
6201 const elfcpp::Shdr<32, false>& shdr,
6202 unsigned int, unsigned int, unsigned int, off_t*);
6203 #endif
6205 #ifdef HAVE_TARGET_32_BIG
6206 template
6207 Output_section*
6208 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6209 unsigned int shndx,
6210 const char* name,
6211 const elfcpp::Shdr<32, true>& shdr,
6212 unsigned int, unsigned int, unsigned int, off_t*);
6213 #endif
6215 #ifdef HAVE_TARGET_64_LITTLE
6216 template
6217 Output_section*
6218 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6219 unsigned int shndx,
6220 const char* name,
6221 const elfcpp::Shdr<64, false>& shdr,
6222 unsigned int, unsigned int, unsigned int, off_t*);
6223 #endif
6225 #ifdef HAVE_TARGET_64_BIG
6226 template
6227 Output_section*
6228 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6229 unsigned int shndx,
6230 const char* name,
6231 const elfcpp::Shdr<64, true>& shdr,
6232 unsigned int, unsigned int, unsigned int, off_t*);
6233 #endif
6235 #ifdef HAVE_TARGET_32_LITTLE
6236 template
6237 Output_section*
6238 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6239 unsigned int reloc_shndx,
6240 const elfcpp::Shdr<32, false>& shdr,
6241 Output_section* data_section,
6242 Relocatable_relocs* rr);
6243 #endif
6245 #ifdef HAVE_TARGET_32_BIG
6246 template
6247 Output_section*
6248 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6249 unsigned int reloc_shndx,
6250 const elfcpp::Shdr<32, true>& shdr,
6251 Output_section* data_section,
6252 Relocatable_relocs* rr);
6253 #endif
6255 #ifdef HAVE_TARGET_64_LITTLE
6256 template
6257 Output_section*
6258 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6259 unsigned int reloc_shndx,
6260 const elfcpp::Shdr<64, false>& shdr,
6261 Output_section* data_section,
6262 Relocatable_relocs* rr);
6263 #endif
6265 #ifdef HAVE_TARGET_64_BIG
6266 template
6267 Output_section*
6268 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6269 unsigned int reloc_shndx,
6270 const elfcpp::Shdr<64, true>& shdr,
6271 Output_section* data_section,
6272 Relocatable_relocs* rr);
6273 #endif
6275 #ifdef HAVE_TARGET_32_LITTLE
6276 template
6277 void
6278 Layout::layout_group<32, false>(Symbol_table* symtab,
6279 Sized_relobj_file<32, false>* object,
6280 unsigned int,
6281 const char* group_section_name,
6282 const char* signature,
6283 const elfcpp::Shdr<32, false>& shdr,
6284 elfcpp::Elf_Word flags,
6285 std::vector<unsigned int>* shndxes);
6286 #endif
6288 #ifdef HAVE_TARGET_32_BIG
6289 template
6290 void
6291 Layout::layout_group<32, true>(Symbol_table* symtab,
6292 Sized_relobj_file<32, true>* object,
6293 unsigned int,
6294 const char* group_section_name,
6295 const char* signature,
6296 const elfcpp::Shdr<32, true>& shdr,
6297 elfcpp::Elf_Word flags,
6298 std::vector<unsigned int>* shndxes);
6299 #endif
6301 #ifdef HAVE_TARGET_64_LITTLE
6302 template
6303 void
6304 Layout::layout_group<64, false>(Symbol_table* symtab,
6305 Sized_relobj_file<64, false>* object,
6306 unsigned int,
6307 const char* group_section_name,
6308 const char* signature,
6309 const elfcpp::Shdr<64, false>& shdr,
6310 elfcpp::Elf_Word flags,
6311 std::vector<unsigned int>* shndxes);
6312 #endif
6314 #ifdef HAVE_TARGET_64_BIG
6315 template
6316 void
6317 Layout::layout_group<64, true>(Symbol_table* symtab,
6318 Sized_relobj_file<64, true>* object,
6319 unsigned int,
6320 const char* group_section_name,
6321 const char* signature,
6322 const elfcpp::Shdr<64, true>& shdr,
6323 elfcpp::Elf_Word flags,
6324 std::vector<unsigned int>* shndxes);
6325 #endif
6327 #ifdef HAVE_TARGET_32_LITTLE
6328 template
6329 Output_section*
6330 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6331 const unsigned char* symbols,
6332 off_t symbols_size,
6333 const unsigned char* symbol_names,
6334 off_t symbol_names_size,
6335 unsigned int shndx,
6336 const elfcpp::Shdr<32, false>& shdr,
6337 unsigned int reloc_shndx,
6338 unsigned int reloc_type,
6339 off_t* off);
6340 #endif
6342 #ifdef HAVE_TARGET_32_BIG
6343 template
6344 Output_section*
6345 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6346 const unsigned char* symbols,
6347 off_t symbols_size,
6348 const unsigned char* symbol_names,
6349 off_t symbol_names_size,
6350 unsigned int shndx,
6351 const elfcpp::Shdr<32, true>& shdr,
6352 unsigned int reloc_shndx,
6353 unsigned int reloc_type,
6354 off_t* off);
6355 #endif
6357 #ifdef HAVE_TARGET_64_LITTLE
6358 template
6359 Output_section*
6360 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6361 const unsigned char* symbols,
6362 off_t symbols_size,
6363 const unsigned char* symbol_names,
6364 off_t symbol_names_size,
6365 unsigned int shndx,
6366 const elfcpp::Shdr<64, false>& shdr,
6367 unsigned int reloc_shndx,
6368 unsigned int reloc_type,
6369 off_t* off);
6370 #endif
6372 #ifdef HAVE_TARGET_64_BIG
6373 template
6374 Output_section*
6375 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6376 const unsigned char* symbols,
6377 off_t symbols_size,
6378 const unsigned char* symbol_names,
6379 off_t symbol_names_size,
6380 unsigned int shndx,
6381 const elfcpp::Shdr<64, true>& shdr,
6382 unsigned int reloc_shndx,
6383 unsigned int reloc_type,
6384 off_t* off);
6385 #endif
6387 #ifdef HAVE_TARGET_32_LITTLE
6388 template
6389 void
6390 Layout::add_to_gdb_index(bool is_type_unit,
6391 Sized_relobj<32, false>* object,
6392 const unsigned char* symbols,
6393 off_t symbols_size,
6394 unsigned int shndx,
6395 unsigned int reloc_shndx,
6396 unsigned int reloc_type);
6397 #endif
6399 #ifdef HAVE_TARGET_32_BIG
6400 template
6401 void
6402 Layout::add_to_gdb_index(bool is_type_unit,
6403 Sized_relobj<32, true>* object,
6404 const unsigned char* symbols,
6405 off_t symbols_size,
6406 unsigned int shndx,
6407 unsigned int reloc_shndx,
6408 unsigned int reloc_type);
6409 #endif
6411 #ifdef HAVE_TARGET_64_LITTLE
6412 template
6413 void
6414 Layout::add_to_gdb_index(bool is_type_unit,
6415 Sized_relobj<64, false>* object,
6416 const unsigned char* symbols,
6417 off_t symbols_size,
6418 unsigned int shndx,
6419 unsigned int reloc_shndx,
6420 unsigned int reloc_type);
6421 #endif
6423 #ifdef HAVE_TARGET_64_BIG
6424 template
6425 void
6426 Layout::add_to_gdb_index(bool is_type_unit,
6427 Sized_relobj<64, true>* object,
6428 const unsigned char* symbols,
6429 off_t symbols_size,
6430 unsigned int shndx,
6431 unsigned int reloc_shndx,
6432 unsigned int reloc_type);
6433 #endif
6435 } // End namespace gold.