1 /* Interface to hashtable implementations.
2 Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 This file is part of libctf.
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "libiberty.h"
25 /* We have three hashtable implementations:
27 - ctf_hash_* is an interface to a fixed-size hash from const char * ->
28 ctf_id_t with number of elements specified at creation time, that should
29 support addition of items but need not support removal.
31 - ctf_dynhash_* is an interface to a dynamically-expanding hash with
32 unknown size that should support addition of large numbers of items, and
33 removal as well, and is used only at type-insertion time and during
36 - ctf_dynset_* is an interface to a dynamically-expanding hash that contains
39 These can be implemented by the same underlying hashmap if you wish. */
41 /* The helem is used for general key/value mappings in both the ctf_hash and
42 ctf_dynhash: the owner may not have space allocated for it, and will be
43 garbage (not NULL!) in that case. */
45 typedef struct ctf_helem
47 void *key
; /* Either a pointer, or a coerced ctf_id_t. */
48 void *value
; /* The value (possibly a coerced int). */
49 ctf_dynhash_t
*owner
; /* The hash that owns us. */
52 /* Equally, the key_free and value_free may not exist. */
57 ctf_hash_free_fun key_free
;
58 ctf_hash_free_fun value_free
;
61 /* Hash and eq functions for the dynhash and hash. */
64 ctf_hash_integer (const void *ptr
)
66 ctf_helem_t
*hep
= (ctf_helem_t
*) ptr
;
68 return htab_hash_pointer (hep
->key
);
72 ctf_hash_eq_integer (const void *a
, const void *b
)
74 ctf_helem_t
*hep_a
= (ctf_helem_t
*) a
;
75 ctf_helem_t
*hep_b
= (ctf_helem_t
*) b
;
77 return htab_eq_pointer (hep_a
->key
, hep_b
->key
);
81 ctf_hash_string (const void *ptr
)
83 ctf_helem_t
*hep
= (ctf_helem_t
*) ptr
;
85 return htab_hash_string (hep
->key
);
89 ctf_hash_eq_string (const void *a
, const void *b
)
91 ctf_helem_t
*hep_a
= (ctf_helem_t
*) a
;
92 ctf_helem_t
*hep_b
= (ctf_helem_t
*) b
;
94 return !strcmp((const char *) hep_a
->key
, (const char *) hep_b
->key
);
97 /* Hash a type_key. */
99 ctf_hash_type_key (const void *ptr
)
101 ctf_helem_t
*hep
= (ctf_helem_t
*) ptr
;
102 ctf_link_type_key_t
*k
= (ctf_link_type_key_t
*) hep
->key
;
104 return htab_hash_pointer (k
->cltk_fp
) + 59
105 * htab_hash_pointer ((void *) (uintptr_t) k
->cltk_idx
);
109 ctf_hash_eq_type_key (const void *a
, const void *b
)
111 ctf_helem_t
*hep_a
= (ctf_helem_t
*) a
;
112 ctf_helem_t
*hep_b
= (ctf_helem_t
*) b
;
113 ctf_link_type_key_t
*key_a
= (ctf_link_type_key_t
*) hep_a
->key
;
114 ctf_link_type_key_t
*key_b
= (ctf_link_type_key_t
*) hep_b
->key
;
116 return (key_a
->cltk_fp
== key_b
->cltk_fp
)
117 && (key_a
->cltk_idx
== key_b
->cltk_idx
);
120 /* Hash a type_id_key. */
122 ctf_hash_type_id_key (const void *ptr
)
124 ctf_helem_t
*hep
= (ctf_helem_t
*) ptr
;
125 ctf_type_id_key_t
*k
= (ctf_type_id_key_t
*) hep
->key
;
127 return htab_hash_pointer ((void *) (uintptr_t) k
->ctii_input_num
)
128 + 59 * htab_hash_pointer ((void *) (uintptr_t) k
->ctii_type
);
132 ctf_hash_eq_type_id_key (const void *a
, const void *b
)
134 ctf_helem_t
*hep_a
= (ctf_helem_t
*) a
;
135 ctf_helem_t
*hep_b
= (ctf_helem_t
*) b
;
136 ctf_type_id_key_t
*key_a
= (ctf_type_id_key_t
*) hep_a
->key
;
137 ctf_type_id_key_t
*key_b
= (ctf_type_id_key_t
*) hep_b
->key
;
139 return (key_a
->ctii_input_num
== key_b
->ctii_input_num
)
140 && (key_a
->ctii_type
== key_b
->ctii_type
);
143 /* Hash and eq functions for the dynset. Most of these can just use the
144 underlying hashtab functions directly. */
147 ctf_dynset_eq_string (const void *a
, const void *b
)
149 return !strcmp((const char *) a
, (const char *) b
);
152 /* The dynhash, used for hashes whose size is not known at creation time. */
154 /* Free a single ctf_helem with arbitrary key/value functions. */
157 ctf_dynhash_item_free (void *item
)
159 ctf_helem_t
*helem
= item
;
161 if (helem
->owner
->key_free
&& helem
->key
)
162 helem
->owner
->key_free (helem
->key
);
163 if (helem
->owner
->value_free
&& helem
->value
)
164 helem
->owner
->value_free (helem
->value
);
169 ctf_dynhash_create (ctf_hash_fun hash_fun
, ctf_hash_eq_fun eq_fun
,
170 ctf_hash_free_fun key_free
, ctf_hash_free_fun value_free
)
172 ctf_dynhash_t
*dynhash
;
173 htab_del del
= ctf_dynhash_item_free
;
175 if (key_free
|| value_free
)
176 dynhash
= malloc (sizeof (ctf_dynhash_t
));
178 dynhash
= malloc (offsetof (ctf_dynhash_t
, key_free
));
182 if (key_free
== NULL
&& value_free
== NULL
)
185 /* 7 is arbitrary and untested for now. */
186 if ((dynhash
->htab
= htab_create_alloc (7, (htab_hash
) hash_fun
, eq_fun
,
187 del
, xcalloc
, free
)) == NULL
)
193 if (key_free
|| value_free
)
195 dynhash
->key_free
= key_free
;
196 dynhash
->value_free
= value_free
;
202 static ctf_helem_t
**
203 ctf_hashtab_lookup (struct htab
*htab
, const void *key
, enum insert_option insert
)
205 ctf_helem_t tmp
= { .key
= (void *) key
};
206 return (ctf_helem_t
**) htab_find_slot (htab
, &tmp
, insert
);
210 ctf_hashtab_insert (struct htab
*htab
, void *key
, void *value
,
211 ctf_hash_free_fun key_free
,
212 ctf_hash_free_fun value_free
)
216 slot
= ctf_hashtab_lookup (htab
, key
, INSERT
);
226 /* Only spend space on the owner if we're going to use it: if there is a
227 key or value freeing function. */
228 if (key_free
|| value_free
)
229 *slot
= malloc (sizeof (ctf_helem_t
));
231 *slot
= malloc (offsetof (ctf_helem_t
, owner
));
241 value_free ((*slot
)->value
);
243 (*slot
)->value
= value
;
248 ctf_dynhash_insert (ctf_dynhash_t
*hp
, void *key
, void *value
)
251 ctf_hash_free_fun key_free
= NULL
, value_free
= NULL
;
253 if (hp
->htab
->del_f
== ctf_dynhash_item_free
)
255 key_free
= hp
->key_free
;
256 value_free
= hp
->value_free
;
258 slot
= ctf_hashtab_insert (hp
->htab
, key
, value
,
259 key_free
, value_free
);
264 /* Keep track of the owner, so that the del function can get at the key_free
265 and value_free functions. Only do this if one of those functions is set:
266 if not, the owner is not even present in the helem. */
268 if (key_free
|| value_free
)
275 ctf_dynhash_remove (ctf_dynhash_t
*hp
, const void *key
)
277 ctf_helem_t hep
= { (void *) key
, NULL
, NULL
};
278 htab_remove_elt (hp
->htab
, &hep
);
282 ctf_dynhash_empty (ctf_dynhash_t
*hp
)
284 htab_empty (hp
->htab
);
288 ctf_dynhash_elements (ctf_dynhash_t
*hp
)
290 return htab_elements (hp
->htab
);
294 ctf_dynhash_lookup (ctf_dynhash_t
*hp
, const void *key
)
298 slot
= ctf_hashtab_lookup (hp
->htab
, key
, NO_INSERT
);
301 return (*slot
)->value
;
306 /* TRUE/FALSE return. */
308 ctf_dynhash_lookup_kv (ctf_dynhash_t
*hp
, const void *key
,
309 const void **orig_key
, void **value
)
313 slot
= ctf_hashtab_lookup (hp
->htab
, key
, NO_INSERT
);
318 *orig_key
= (*slot
)->key
;
320 *value
= (*slot
)->value
;
326 typedef struct ctf_traverse_cb_arg
330 } ctf_traverse_cb_arg_t
;
333 ctf_hashtab_traverse (void **slot
, void *arg_
)
335 ctf_helem_t
*helem
= *((ctf_helem_t
**) slot
);
336 ctf_traverse_cb_arg_t
*arg
= (ctf_traverse_cb_arg_t
*) arg_
;
338 arg
->fun (helem
->key
, helem
->value
, arg
->arg
);
343 ctf_dynhash_iter (ctf_dynhash_t
*hp
, ctf_hash_iter_f fun
, void *arg_
)
345 ctf_traverse_cb_arg_t arg
= { fun
, arg_
};
346 htab_traverse (hp
->htab
, ctf_hashtab_traverse
, &arg
);
349 typedef struct ctf_traverse_find_cb_arg
351 ctf_hash_iter_find_f fun
;
354 } ctf_traverse_find_cb_arg_t
;
357 ctf_hashtab_traverse_find (void **slot
, void *arg_
)
359 ctf_helem_t
*helem
= *((ctf_helem_t
**) slot
);
360 ctf_traverse_find_cb_arg_t
*arg
= (ctf_traverse_find_cb_arg_t
*) arg_
;
362 if (arg
->fun (helem
->key
, helem
->value
, arg
->arg
))
364 arg
->found_key
= helem
->key
;
371 ctf_dynhash_iter_find (ctf_dynhash_t
*hp
, ctf_hash_iter_find_f fun
, void *arg_
)
373 ctf_traverse_find_cb_arg_t arg
= { fun
, arg_
, NULL
};
374 htab_traverse (hp
->htab
, ctf_hashtab_traverse_find
, &arg
);
375 return arg
.found_key
;
378 typedef struct ctf_traverse_remove_cb_arg
381 ctf_hash_iter_remove_f fun
;
383 } ctf_traverse_remove_cb_arg_t
;
386 ctf_hashtab_traverse_remove (void **slot
, void *arg_
)
388 ctf_helem_t
*helem
= *((ctf_helem_t
**) slot
);
389 ctf_traverse_remove_cb_arg_t
*arg
= (ctf_traverse_remove_cb_arg_t
*) arg_
;
391 if (arg
->fun (helem
->key
, helem
->value
, arg
->arg
))
392 htab_clear_slot (arg
->htab
, slot
);
397 ctf_dynhash_iter_remove (ctf_dynhash_t
*hp
, ctf_hash_iter_remove_f fun
,
400 ctf_traverse_remove_cb_arg_t arg
= { hp
->htab
, fun
, arg_
};
401 htab_traverse (hp
->htab
, ctf_hashtab_traverse_remove
, &arg
);
404 /* Traverse a dynhash in arbitrary order, in _next iterator form.
406 Mutating the dynhash while iterating is not supported (just as it isn't for
409 Note: unusually, this returns zero on success and a *positive* value on
410 error, because it does not take an fp, taking an error pointer would be
411 incredibly clunky, and nearly all error-handling ends up stuffing the result
412 of this into some sort of errno or ctf_errno, which is invariably
413 positive. So doing this simplifies essentially all callers. */
415 ctf_dynhash_next (ctf_dynhash_t
*h
, ctf_next_t
**it
, void **key
, void **value
)
422 size_t size
= htab_size (h
->htab
);
424 /* If the table has too many entries to fit in an ssize_t, just give up.
425 This might be spurious, but if any type-related hashtable has ever been
426 nearly as large as that then something very odd is going on. */
427 if (((ssize_t
) size
) < 0)
430 if ((i
= ctf_next_create ()) == NULL
)
433 i
->u
.ctn_hash_slot
= h
->htab
->entries
;
436 i
->ctn_size
= (ssize_t
) size
;
437 i
->ctn_iter_fun
= (void (*) (void)) ctf_dynhash_next
;
441 if ((void (*) (void)) ctf_dynhash_next
!= i
->ctn_iter_fun
)
442 return ECTF_NEXT_WRONGFUN
;
444 if (h
!= i
->cu
.ctn_h
)
445 return ECTF_NEXT_WRONGFP
;
447 if ((ssize_t
) i
->ctn_n
== i
->ctn_size
)
450 while ((ssize_t
) i
->ctn_n
< i
->ctn_size
451 && (*i
->u
.ctn_hash_slot
== HTAB_EMPTY_ENTRY
452 || *i
->u
.ctn_hash_slot
== HTAB_DELETED_ENTRY
))
454 i
->u
.ctn_hash_slot
++;
458 if ((ssize_t
) i
->ctn_n
== i
->ctn_size
)
461 slot
= *i
->u
.ctn_hash_slot
;
466 *value
= slot
->value
;
468 i
->u
.ctn_hash_slot
++;
474 ctf_next_destroy (i
);
476 return ECTF_NEXT_END
;
480 ctf_dynhash_sort_by_name (const ctf_next_hkv_t
*one
, const ctf_next_hkv_t
*two
,
481 void *unused _libctf_unused_
)
483 return strcmp ((char *) one
->hkv_key
, (char *) two
->hkv_key
);
486 /* Traverse a sorted dynhash, in _next iterator form.
488 See ctf_dynhash_next for notes on error returns, etc.
490 Sort keys before iterating over them using the SORT_FUN and SORT_ARG.
492 If SORT_FUN is null, thunks to ctf_dynhash_next. */
494 ctf_dynhash_next_sorted (ctf_dynhash_t
*h
, ctf_next_t
**it
, void **key
,
495 void **value
, ctf_hash_sort_f sort_fun
, void *sort_arg
)
499 if (sort_fun
== NULL
)
500 return ctf_dynhash_next (h
, it
, key
, value
);
504 size_t els
= ctf_dynhash_elements (h
);
505 ctf_next_t
*accum_i
= NULL
;
508 ctf_next_hkv_t
*walk
;
510 if (((ssize_t
) els
) < 0)
513 if ((i
= ctf_next_create ()) == NULL
)
516 if ((i
->u
.ctn_sorted_hkv
= calloc (els
, sizeof (ctf_next_hkv_t
))) == NULL
)
518 ctf_next_destroy (i
);
521 walk
= i
->u
.ctn_sorted_hkv
;
525 while ((err
= ctf_dynhash_next (h
, &accum_i
, &key
, &value
)) == 0)
528 walk
->hkv_value
= value
;
531 if (err
!= ECTF_NEXT_END
)
533 ctf_next_destroy (i
);
538 ctf_qsort_r (i
->u
.ctn_sorted_hkv
, els
, sizeof (ctf_next_hkv_t
),
539 (int (*) (const void *, const void *, void *)) sort_fun
,
542 i
->ctn_size
= (ssize_t
) els
;
543 i
->ctn_iter_fun
= (void (*) (void)) ctf_dynhash_next_sorted
;
547 if ((void (*) (void)) ctf_dynhash_next_sorted
!= i
->ctn_iter_fun
)
548 return ECTF_NEXT_WRONGFUN
;
550 if (h
!= i
->cu
.ctn_h
)
551 return ECTF_NEXT_WRONGFP
;
553 if ((ssize_t
) i
->ctn_n
== i
->ctn_size
)
555 ctf_next_destroy (i
);
557 return ECTF_NEXT_END
;
561 *key
= i
->u
.ctn_sorted_hkv
[i
->ctn_n
].hkv_key
;
563 *value
= i
->u
.ctn_sorted_hkv
[i
->ctn_n
].hkv_value
;
569 ctf_dynhash_destroy (ctf_dynhash_t
*hp
)
572 htab_delete (hp
->htab
);
576 /* The dynset, used for sets of keys with no value. The implementation of this
577 can be much simpler, because without a value the slot can simply be the
578 stored key, which means we don't need to store the freeing functions and the
579 dynset itself is just a htab. */
582 ctf_dynset_create (htab_hash hash_fun
, htab_eq eq_fun
,
583 ctf_hash_free_fun key_free
)
585 /* 7 is arbitrary and untested for now. */
586 return (ctf_dynset_t
*) htab_create_alloc (7, (htab_hash
) hash_fun
, eq_fun
,
587 key_free
, xcalloc
, free
);
590 /* The dynset has one complexity: the underlying implementation reserves two
591 values for internal hash table implementation details (empty versus deleted
592 entries). These values are otherwise very useful for pointers cast to ints,
593 so transform the ctf_dynset_inserted value to allow for it. (This
594 introduces an ambiguity in that one can no longer store these two values in
595 the dynset, but if we pick high enough values this is very unlikely to be a
598 We leak this implementation detail to the freeing functions on the grounds
599 that any use of these functions is overwhelmingly likely to be in sets using
600 real pointers, which will be unaffected. */
602 #define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64)
603 #define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63)
606 key_to_internal (const void *key
)
608 if (key
== HTAB_EMPTY_ENTRY
)
609 return DYNSET_EMPTY_ENTRY_REPLACEMENT
;
610 else if (key
== HTAB_DELETED_ENTRY
)
611 return DYNSET_DELETED_ENTRY_REPLACEMENT
;
617 internal_to_key (const void *internal
)
619 if (internal
== DYNSET_EMPTY_ENTRY_REPLACEMENT
)
620 return HTAB_EMPTY_ENTRY
;
621 else if (internal
== DYNSET_DELETED_ENTRY_REPLACEMENT
)
622 return HTAB_DELETED_ENTRY
;
623 return (void *) internal
;
627 ctf_dynset_insert (ctf_dynset_t
*hp
, void *key
)
629 struct htab
*htab
= (struct htab
*) hp
;
632 slot
= htab_find_slot (htab
, key
, INSERT
);
643 (*htab
->del_f
) (*slot
);
646 *slot
= key_to_internal (key
);
652 ctf_dynset_remove (ctf_dynset_t
*hp
, const void *key
)
654 htab_remove_elt ((struct htab
*) hp
, key_to_internal (key
));
658 ctf_dynset_destroy (ctf_dynset_t
*hp
)
661 htab_delete ((struct htab
*) hp
);
665 ctf_dynset_lookup (ctf_dynset_t
*hp
, const void *key
)
667 void **slot
= htab_find_slot ((struct htab
*) hp
,
668 key_to_internal (key
), NO_INSERT
);
671 return internal_to_key (*slot
);
675 /* TRUE/FALSE return. */
677 ctf_dynset_exists (ctf_dynset_t
*hp
, const void *key
, const void **orig_key
)
679 void **slot
= htab_find_slot ((struct htab
*) hp
,
680 key_to_internal (key
), NO_INSERT
);
682 if (orig_key
&& slot
)
683 *orig_key
= internal_to_key (*slot
);
684 return (slot
!= NULL
);
687 /* Look up a completely random value from the set, if any exist.
688 Keys with value zero cannot be distinguished from a nonexistent key. */
690 ctf_dynset_lookup_any (ctf_dynset_t
*hp
)
692 struct htab
*htab
= (struct htab
*) hp
;
693 void **slot
= htab
->entries
;
694 void **limit
= slot
+ htab_size (htab
);
697 && (*slot
== HTAB_EMPTY_ENTRY
|| *slot
== HTAB_DELETED_ENTRY
))
701 return internal_to_key (*slot
);
705 /* Traverse a dynset in arbitrary order, in _next iterator form.
707 Otherwise, just like ctf_dynhash_next. */
709 ctf_dynset_next (ctf_dynset_t
*hp
, ctf_next_t
**it
, void **key
)
711 struct htab
*htab
= (struct htab
*) hp
;
717 size_t size
= htab_size (htab
);
719 /* If the table has too many entries to fit in an ssize_t, just give up.
720 This might be spurious, but if any type-related hashtable has ever been
721 nearly as large as that then somthing very odd is going on. */
723 if (((ssize_t
) size
) < 0)
726 if ((i
= ctf_next_create ()) == NULL
)
729 i
->u
.ctn_hash_slot
= htab
->entries
;
732 i
->ctn_size
= (ssize_t
) size
;
733 i
->ctn_iter_fun
= (void (*) (void)) ctf_dynset_next
;
737 if ((void (*) (void)) ctf_dynset_next
!= i
->ctn_iter_fun
)
738 return ECTF_NEXT_WRONGFUN
;
740 if (hp
!= i
->cu
.ctn_s
)
741 return ECTF_NEXT_WRONGFP
;
743 if ((ssize_t
) i
->ctn_n
== i
->ctn_size
)
746 while ((ssize_t
) i
->ctn_n
< i
->ctn_size
747 && (*i
->u
.ctn_hash_slot
== HTAB_EMPTY_ENTRY
748 || *i
->u
.ctn_hash_slot
== HTAB_DELETED_ENTRY
))
750 i
->u
.ctn_hash_slot
++;
754 if ((ssize_t
) i
->ctn_n
== i
->ctn_size
)
757 slot
= *i
->u
.ctn_hash_slot
;
760 *key
= internal_to_key (slot
);
762 i
->u
.ctn_hash_slot
++;
768 ctf_next_destroy (i
);
770 return ECTF_NEXT_END
;
773 /* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without
774 removal. This is a straight cast of a hashtab. */
777 ctf_hash_create (unsigned long nelems
, ctf_hash_fun hash_fun
,
778 ctf_hash_eq_fun eq_fun
)
780 return (ctf_hash_t
*) htab_create_alloc (nelems
, (htab_hash
) hash_fun
,
781 eq_fun
, free
, xcalloc
, free
);
785 ctf_hash_size (const ctf_hash_t
*hp
)
787 return htab_elements ((struct htab
*) hp
);
791 ctf_hash_insert_type (ctf_hash_t
*hp
, ctf_dict_t
*fp
, uint32_t type
,
794 const char *str
= ctf_strraw (fp
, name
);
800 && CTF_NAME_STID (name
) == CTF_STRTAB_1
801 && fp
->ctf_syn_ext_strtab
== NULL
802 && fp
->ctf_str
[CTF_NAME_STID (name
)].cts_strs
== NULL
)
809 return 0; /* Just ignore empty strings on behalf of caller. */
811 if (ctf_hashtab_insert ((struct htab
*) hp
, (char *) str
,
812 (void *) (ptrdiff_t) type
, NULL
, NULL
) != NULL
)
817 /* if the key is already in the hash, override the previous definition with
818 this new official definition. If the key is not present, then call
819 ctf_hash_insert_type and hash it in. */
821 ctf_hash_define_type (ctf_hash_t
*hp
, ctf_dict_t
*fp
, uint32_t type
,
824 /* This matches the semantics of ctf_hash_insert_type in this
825 implementation anyway. */
827 return ctf_hash_insert_type (hp
, fp
, type
, name
);
831 ctf_hash_lookup_type (ctf_hash_t
*hp
, ctf_dict_t
*fp
__attribute__ ((__unused__
)),
836 slot
= ctf_hashtab_lookup ((struct htab
*) hp
, key
, NO_INSERT
);
839 return (ctf_id_t
) (uintptr_t) ((*slot
)->value
);
845 ctf_hash_destroy (ctf_hash_t
*hp
)
848 htab_delete ((struct htab
*) hp
);