1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright (C) 1996-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "extract-store-integer.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
26 #include "cli/cli-cmds.h"
34 #include "arch-utils.h"
36 #include "trad-frame.h"
38 #include "m32r-tdep.h"
41 /* The size of the argument registers (r0 - r3) in bytes. */
42 #define M32R_ARG_REGISTER_SIZE 4
47 m32r_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
49 /* Align to the size of an instruction (so that they can safely be
50 pushed onto the stack. */
57 The little endian mode of M32R is unique. In most of architectures,
58 two 16-bit instructions, A and B, are placed as the following:
66 In M32R, they are placed like this:
74 This is because M32R always fetches instructions in 32-bit.
76 The following functions take care of this behavior. */
79 m32r_memory_insert_breakpoint (struct gdbarch
*gdbarch
,
80 struct bp_target_info
*bp_tgt
)
82 CORE_ADDR addr
= bp_tgt
->placed_address
= bp_tgt
->reqstd_address
;
85 gdb_byte contents_cache
[4];
86 gdb_byte bp_entry
[] = { 0x10, 0xf1 }; /* dpt */
88 /* Save the memory contents. */
89 val
= target_read_memory (addr
& 0xfffffffc, contents_cache
, 4);
91 return val
; /* return error */
93 memcpy (bp_tgt
->shadow_contents
, contents_cache
, 4);
94 bp_tgt
->shadow_len
= 4;
96 /* Determine appropriate breakpoint contents and size for this address. */
97 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
101 buf
[0] = bp_entry
[0];
102 buf
[1] = bp_entry
[1];
103 buf
[2] = contents_cache
[2] & 0x7f;
104 buf
[3] = contents_cache
[3];
108 buf
[0] = contents_cache
[0];
109 buf
[1] = contents_cache
[1];
110 buf
[2] = bp_entry
[0];
111 buf
[3] = bp_entry
[1];
114 else /* little-endian */
118 buf
[0] = contents_cache
[0];
119 buf
[1] = contents_cache
[1] & 0x7f;
120 buf
[2] = bp_entry
[1];
121 buf
[3] = bp_entry
[0];
125 buf
[0] = bp_entry
[1];
126 buf
[1] = bp_entry
[0];
127 buf
[2] = contents_cache
[2];
128 buf
[3] = contents_cache
[3];
132 /* Write the breakpoint. */
133 val
= target_write_memory (addr
& 0xfffffffc, buf
, 4);
138 m32r_memory_remove_breakpoint (struct gdbarch
*gdbarch
,
139 struct bp_target_info
*bp_tgt
)
141 CORE_ADDR addr
= bp_tgt
->placed_address
;
144 gdb_byte
*contents_cache
= bp_tgt
->shadow_contents
;
146 buf
[0] = contents_cache
[0];
147 buf
[1] = contents_cache
[1];
148 buf
[2] = contents_cache
[2];
149 buf
[3] = contents_cache
[3];
151 /* Remove parallel bit. */
152 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
154 if ((buf
[0] & 0x80) == 0 && (buf
[2] & 0x80) != 0)
157 else /* little-endian */
159 if ((buf
[3] & 0x80) == 0 && (buf
[1] & 0x80) != 0)
163 /* Write contents. */
164 val
= target_write_raw_memory (addr
& 0xfffffffc, buf
, 4);
168 /* Implement the breakpoint_kind_from_pc gdbarch method. */
171 m32r_breakpoint_kind_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
)
173 if ((*pcptr
& 3) == 0)
179 /* Implement the sw_breakpoint_from_kind gdbarch method. */
181 static const gdb_byte
*
182 m32r_sw_breakpoint_from_kind (struct gdbarch
*gdbarch
, int kind
, int *size
)
184 static gdb_byte be_bp_entry
[] = {
185 0x10, 0xf1, 0x70, 0x00
187 static gdb_byte le_bp_entry
[] = {
188 0x00, 0x70, 0xf1, 0x10
193 /* Determine appropriate breakpoint. */
194 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
201 return le_bp_entry
+ 2;
205 static const char * const m32r_register_names
[] = {
206 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
207 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
208 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
213 m32r_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
215 static_assert (ARRAY_SIZE (m32r_register_names
) == M32R_NUM_REGS
);
216 return m32r_register_names
[reg_nr
];
220 /* Return the GDB type object for the "standard" data type
221 of data in register N. */
224 m32r_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
226 if (reg_nr
== M32R_PC_REGNUM
)
227 return builtin_type (gdbarch
)->builtin_func_ptr
;
228 else if (reg_nr
== M32R_SP_REGNUM
|| reg_nr
== M32R_FP_REGNUM
)
229 return builtin_type (gdbarch
)->builtin_data_ptr
;
231 return builtin_type (gdbarch
)->builtin_int32
;
235 /* Write into appropriate registers a function return value
236 of type TYPE, given in virtual format.
238 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
241 m32r_store_return_value (struct type
*type
, struct regcache
*regcache
,
242 const gdb_byte
*valbuf
)
244 struct gdbarch
*gdbarch
= regcache
->arch ();
245 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
247 int len
= type
->length ();
249 regval
= extract_unsigned_integer (valbuf
, len
> 4 ? 4 : len
, byte_order
);
250 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
, regval
);
254 regval
= extract_unsigned_integer (valbuf
+ 4,
255 len
- 4, byte_order
);
256 regcache_cooked_write_unsigned (regcache
, RET1_REGNUM
+ 1, regval
);
260 /* This is required by skip_prologue. The results of decoding a prologue
261 should be cached because this thrashing is getting nuts. */
264 decode_prologue (struct gdbarch
*gdbarch
,
265 CORE_ADDR start_pc
, CORE_ADDR scan_limit
,
266 CORE_ADDR
*pl_endptr
, unsigned long *framelength
)
268 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
269 unsigned long framesize
;
272 CORE_ADDR after_prologue
= 0;
273 CORE_ADDR after_push
= 0;
274 CORE_ADDR after_stack_adjust
= 0;
275 CORE_ADDR current_pc
;
276 LONGEST return_value
;
281 for (current_pc
= start_pc
; current_pc
< scan_limit
; current_pc
+= 2)
283 /* Check if current pc's location is readable. */
284 if (!safe_read_memory_integer (current_pc
, 2, byte_order
, &return_value
))
287 insn
= read_memory_unsigned_integer (current_pc
, 2, byte_order
);
292 /* If this is a 32 bit instruction, we dont want to examine its
293 immediate data as though it were an instruction. */
294 if (current_pc
& 0x02)
296 /* Decode this instruction further. */
303 if (current_pc
== scan_limit
)
304 scan_limit
+= 2; /* extend the search */
306 current_pc
+= 2; /* skip the immediate data */
308 /* Check if current pc's location is readable. */
309 if (!safe_read_memory_integer (current_pc
, 2, byte_order
,
313 if (insn
== 0x8faf) /* add3 sp, sp, xxxx */
314 /* add 16 bit sign-extended offset */
317 -((short) read_memory_unsigned_integer (current_pc
,
322 if (((insn
>> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
323 && safe_read_memory_integer (current_pc
+ 2,
326 && read_memory_unsigned_integer (current_pc
+ 2,
330 /* Subtract 24 bit sign-extended negative-offset. */
331 insn
= read_memory_unsigned_integer (current_pc
- 2,
333 if (insn
& 0x00800000) /* sign extend */
334 insn
|= 0xff000000; /* negative */
336 insn
&= 0x00ffffff; /* positive */
340 after_push
= current_pc
+ 2;
344 op1
= insn
& 0xf000; /* Isolate just the first nibble. */
346 if ((insn
& 0xf0ff) == 0x207f)
352 if ((insn
>> 8) == 0x4f) /* addi sp, xx */
353 /* Add 8 bit sign-extended offset. */
355 int stack_adjust
= (signed char) (insn
& 0xff);
357 /* there are probably two of these stack adjustments:
358 1) A negative one in the prologue, and
359 2) A positive one in the epilogue.
360 We are only interested in the first one. */
362 if (stack_adjust
< 0)
364 framesize
-= stack_adjust
;
366 /* A frameless function may have no "mv fp, sp".
367 In that case, this is the end of the prologue. */
368 after_stack_adjust
= current_pc
+ 2;
374 after_prologue
= current_pc
+ 2;
375 break; /* end of stack adjustments */
378 /* Nop looks like a branch, continue explicitly. */
381 after_prologue
= current_pc
+ 2;
382 continue; /* nop occurs between pushes. */
384 /* End of prolog if any of these are trap instructions. */
385 if ((insn
& 0xfff0) == 0x10f0)
387 after_prologue
= current_pc
;
390 /* End of prolog if any of these are branch instructions. */
391 if ((op1
== 0x7000) || (op1
== 0xb000) || (op1
== 0xf000))
393 after_prologue
= current_pc
;
396 /* Some of the branch instructions are mixed with other types. */
399 int subop
= insn
& 0x0ff0;
400 if ((subop
== 0x0ec0) || (subop
== 0x0fc0))
402 after_prologue
= current_pc
;
403 continue; /* jmp , jl */
409 *framelength
= framesize
;
411 if (current_pc
>= scan_limit
)
415 if (after_stack_adjust
!= 0)
416 /* We did not find a "mv fp,sp", but we DID find
417 a stack_adjust. Is it safe to use that as the
418 end of the prologue? I just don't know. */
420 *pl_endptr
= after_stack_adjust
;
422 else if (after_push
!= 0)
423 /* We did not find a "mv fp,sp", but we DID find
424 a push. Is it safe to use that as the
425 end of the prologue? I just don't know. */
427 *pl_endptr
= after_push
;
430 /* We reached the end of the loop without finding the end
431 of the prologue. No way to win -- we should report
432 failure. The way we do that is to return the original
433 start_pc. GDB will set a breakpoint at the start of
434 the function (etc.) */
435 *pl_endptr
= start_pc
;
440 if (after_prologue
== 0)
441 after_prologue
= current_pc
;
444 *pl_endptr
= after_prologue
;
447 } /* decode_prologue */
449 /* Function: skip_prologue
450 Find end of function prologue. */
452 #define DEFAULT_SEARCH_LIMIT 128
455 m32r_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
457 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
458 CORE_ADDR func_addr
, func_end
;
459 struct symtab_and_line sal
;
460 LONGEST return_value
;
462 /* See what the symbol table says. */
464 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
466 sal
= find_pc_line (func_addr
, 0);
468 if (sal
.line
!= 0 && sal
.end
<= func_end
)
473 /* Either there's no line info, or the line after the prologue is after
474 the end of the function. In this case, there probably isn't a
477 func_end
= std::min (func_end
, func_addr
+ DEFAULT_SEARCH_LIMIT
);
481 func_end
= pc
+ DEFAULT_SEARCH_LIMIT
;
483 /* If pc's location is not readable, just quit. */
484 if (!safe_read_memory_integer (pc
, 4, byte_order
, &return_value
))
487 /* Find the end of prologue. */
488 if (decode_prologue (gdbarch
, pc
, func_end
, &sal
.end
, NULL
) < 0)
494 struct m32r_unwind_cache
496 /* The previous frame's inner most stack address. Used as this
497 frame ID's stack_addr. */
499 /* The frame's base, optionally used by the high-level debug info. */
502 /* How far the SP and r13 (FP) have been offset from the start of
503 the stack frame (as defined by the previous frame's stack
508 /* Table indicating the location of each and every register. */
509 trad_frame_saved_reg
*saved_regs
;
512 /* Put here the code to store, into fi->saved_regs, the addresses of
513 the saved registers of frame described by FRAME_INFO. This
514 includes special registers such as pc and fp saved in special ways
515 in the stack frame. sp is even more special: the address we return
516 for it IS the sp for the next frame. */
518 static struct m32r_unwind_cache
*
519 m32r_frame_unwind_cache (const frame_info_ptr
&this_frame
,
520 void **this_prologue_cache
)
522 CORE_ADDR pc
, scan_limit
;
527 struct m32r_unwind_cache
*info
;
530 if ((*this_prologue_cache
))
531 return (struct m32r_unwind_cache
*) (*this_prologue_cache
);
533 info
= FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache
);
534 (*this_prologue_cache
) = info
;
535 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
539 info
->uses_frame
= 0;
541 scan_limit
= get_frame_pc (this_frame
);
542 for (pc
= get_frame_func (this_frame
);
543 pc
> 0 && pc
< scan_limit
; pc
+= 2)
547 op
= get_frame_memory_unsigned (this_frame
, pc
, 4);
548 if ((op
& 0x80000000) == 0x80000000)
550 /* 32-bit instruction */
551 if ((op
& 0xffff0000) == 0x8faf0000)
553 /* add3 sp,sp,xxxx */
554 short n
= op
& 0xffff;
555 info
->sp_offset
+= n
;
557 else if (((op
>> 8) == 0xe4)
558 && get_frame_memory_unsigned (this_frame
, pc
+ 2,
561 /* ld24 r4, xxxxxx; sub sp, r4 */
562 unsigned long n
= op
& 0xffffff;
563 info
->sp_offset
+= n
;
564 pc
+= 2; /* skip sub instruction */
567 if (pc
== scan_limit
)
568 scan_limit
+= 2; /* extend the search */
569 pc
+= 2; /* skip the immediate data */
574 /* 16-bit instructions */
575 op
= get_frame_memory_unsigned (this_frame
, pc
, 2) & 0x7fff;
576 if ((op
& 0xf0ff) == 0x207f)
579 int regno
= ((op
>> 8) & 0xf);
580 info
->sp_offset
-= 4;
581 info
->saved_regs
[regno
].set_addr (info
->sp_offset
);
583 else if ((op
& 0xff00) == 0x4f00)
586 int n
= (signed char) (op
& 0xff);
587 info
->sp_offset
+= n
;
589 else if (op
== 0x1d8f)
592 info
->uses_frame
= 1;
593 info
->r13_offset
= info
->sp_offset
;
594 break; /* end of stack adjustments */
596 else if ((op
& 0xfff0) == 0x10f0)
598 /* End of prologue if this is a trap instruction. */
599 break; /* End of stack adjustments. */
603 info
->size
= -info
->sp_offset
;
605 /* Compute the previous frame's stack pointer (which is also the
606 frame's ID's stack address), and this frame's base pointer. */
607 if (info
->uses_frame
)
609 /* The SP was moved to the FP. This indicates that a new frame
610 was created. Get THIS frame's FP value by unwinding it from
612 this_base
= get_frame_register_unsigned (this_frame
, M32R_FP_REGNUM
);
613 /* The FP points at the last saved register. Adjust the FP back
614 to before the first saved register giving the SP. */
615 prev_sp
= this_base
+ info
->size
;
619 /* Assume that the FP is this frame's SP but with that pushed
620 stack space added back. */
621 this_base
= get_frame_register_unsigned (this_frame
, M32R_SP_REGNUM
);
622 prev_sp
= this_base
+ info
->size
;
625 /* Convert that SP/BASE into real addresses. */
626 info
->prev_sp
= prev_sp
;
627 info
->base
= this_base
;
629 /* Adjust all the saved registers so that they contain addresses and
631 for (i
= 0; i
< gdbarch_num_regs (get_frame_arch (this_frame
)) - 1; i
++)
632 if (info
->saved_regs
[i
].is_addr ())
633 info
->saved_regs
[i
].set_addr (info
->prev_sp
634 + info
->saved_regs
[i
].addr ());
636 /* The call instruction moves the caller's PC in the callee's LR.
637 Since this is an unwind, do the reverse. Copy the location of LR
638 into PC (the address / regnum) so that a request for PC will be
639 converted into a request for the LR. */
640 info
->saved_regs
[M32R_PC_REGNUM
] = info
->saved_regs
[LR_REGNUM
];
642 /* The previous frame's SP needed to be computed. Save the computed
644 info
->saved_regs
[M32R_SP_REGNUM
].set_value (prev_sp
);
650 m32r_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
651 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
652 struct value
**args
, CORE_ADDR sp
,
653 function_call_return_method return_method
,
654 CORE_ADDR struct_addr
)
656 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
657 int stack_offset
, stack_alloc
;
658 int argreg
= ARG1_REGNUM
;
661 enum type_code typecode
;
664 gdb_byte valbuf
[M32R_ARG_REGISTER_SIZE
];
667 /* First force sp to a 4-byte alignment. */
670 /* Set the return address. For the m32r, the return breakpoint is
671 always at BP_ADDR. */
672 regcache_cooked_write_unsigned (regcache
, LR_REGNUM
, bp_addr
);
674 /* If STRUCT_RETURN is true, then the struct return address (in
675 STRUCT_ADDR) will consume the first argument-passing register.
676 Both adjust the register count and store that value. */
677 if (return_method
== return_method_struct
)
679 regcache_cooked_write_unsigned (regcache
, argreg
, struct_addr
);
683 /* Now make sure there's space on the stack. */
684 for (argnum
= 0, stack_alloc
= 0; argnum
< nargs
; argnum
++)
685 stack_alloc
+= ((args
[argnum
]->type ()->length () + 3) & ~3);
686 sp
-= stack_alloc
; /* Make room on stack for args. */
688 for (argnum
= 0, stack_offset
= 0; argnum
< nargs
; argnum
++)
690 type
= args
[argnum
]->type ();
691 typecode
= type
->code ();
692 len
= type
->length ();
694 memset (valbuf
, 0, sizeof (valbuf
));
696 /* Passes structures that do not fit in 2 registers by reference. */
698 && (typecode
== TYPE_CODE_STRUCT
|| typecode
== TYPE_CODE_UNION
))
700 store_unsigned_integer (valbuf
, 4, byte_order
,
701 args
[argnum
]->address ());
702 typecode
= TYPE_CODE_PTR
;
708 /* Value gets right-justified in the register or stack word. */
709 memcpy (valbuf
+ (register_size (gdbarch
, argreg
) - len
),
710 (gdb_byte
*) args
[argnum
]->contents ().data (), len
);
714 val
= (gdb_byte
*) args
[argnum
]->contents ().data ();
718 if (argreg
> ARGN_REGNUM
)
720 /* Must go on the stack. */
721 write_memory (sp
+ stack_offset
, val
, 4);
724 else if (argreg
<= ARGN_REGNUM
)
726 /* There's room in a register. */
728 extract_unsigned_integer (val
,
729 register_size (gdbarch
, argreg
),
731 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
734 /* Store the value 4 bytes at a time. This means that things
735 larger than 4 bytes may go partly in registers and partly
737 len
-= register_size (gdbarch
, argreg
);
738 val
+= register_size (gdbarch
, argreg
);
742 /* Finally, update the SP register. */
743 regcache_cooked_write_unsigned (regcache
, M32R_SP_REGNUM
, sp
);
749 /* Given a return value in `regbuf' with a type `valtype',
750 extract and copy its value into `valbuf'. */
753 m32r_extract_return_value (struct type
*type
, struct regcache
*regcache
,
756 struct gdbarch
*gdbarch
= regcache
->arch ();
757 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
758 int len
= type
->length ();
761 /* By using store_unsigned_integer we avoid having to do
762 anything special for small big-endian values. */
763 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
, &tmp
);
764 store_unsigned_integer (dst
, (len
> 4 ? len
- 4 : len
), byte_order
, tmp
);
766 /* Ignore return values more than 8 bytes in size because the m32r
767 returns anything more than 8 bytes in the stack. */
770 regcache_cooked_read_unsigned (regcache
, RET1_REGNUM
+ 1, &tmp
);
771 store_unsigned_integer (dst
+ len
- 4, 4, byte_order
, tmp
);
775 static enum return_value_convention
776 m32r_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
777 struct type
*valtype
, struct regcache
*regcache
,
778 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
780 if (valtype
->length () > 8)
781 return RETURN_VALUE_STRUCT_CONVENTION
;
785 m32r_extract_return_value (valtype
, regcache
, readbuf
);
786 if (writebuf
!= NULL
)
787 m32r_store_return_value (valtype
, regcache
, writebuf
);
788 return RETURN_VALUE_REGISTER_CONVENTION
;
792 /* Given a GDB frame, determine the address of the calling function's
793 frame. This will be used to create a new GDB frame struct. */
796 m32r_frame_this_id (const frame_info_ptr
&this_frame
,
797 void **this_prologue_cache
, struct frame_id
*this_id
)
799 struct m32r_unwind_cache
*info
800 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
805 /* The FUNC is easy. */
806 func
= get_frame_func (this_frame
);
808 /* Check if the stack is empty. */
809 bound_minimal_symbol msym_stack
810 = lookup_minimal_symbol (current_program_space
, "_stack");
811 if (msym_stack
.minsym
&& info
->base
== msym_stack
.value_address ())
814 /* Hopefully the prologue analysis either correctly determined the
815 frame's base (which is the SP from the previous frame), or set
816 that base to "NULL". */
817 base
= info
->prev_sp
;
821 id
= frame_id_build (base
, func
);
825 static struct value
*
826 m32r_frame_prev_register (const frame_info_ptr
&this_frame
,
827 void **this_prologue_cache
, int regnum
)
829 struct m32r_unwind_cache
*info
830 = m32r_frame_unwind_cache (this_frame
, this_prologue_cache
);
831 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
834 static const struct frame_unwind_legacy
m32r_frame_unwind (
838 default_frame_unwind_stop_reason
,
840 m32r_frame_prev_register
,
842 default_frame_sniffer
846 m32r_frame_base_address (const frame_info_ptr
&this_frame
, void **this_cache
)
848 struct m32r_unwind_cache
*info
849 = m32r_frame_unwind_cache (this_frame
, this_cache
);
853 static const struct frame_base m32r_frame_base
= {
855 m32r_frame_base_address
,
856 m32r_frame_base_address
,
857 m32r_frame_base_address
860 static gdbarch_init_ftype m32r_gdbarch_init
;
862 static struct gdbarch
*
863 m32r_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
865 /* If there is already a candidate, use it. */
866 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
868 return arches
->gdbarch
;
870 /* Allocate space for the new architecture. */
872 = gdbarch_alloc (&info
, gdbarch_tdep_up (new m32r_gdbarch_tdep
));
874 set_gdbarch_wchar_bit (gdbarch
, 16);
875 set_gdbarch_wchar_signed (gdbarch
, 0);
877 set_gdbarch_num_regs (gdbarch
, M32R_NUM_REGS
);
878 set_gdbarch_pc_regnum (gdbarch
, M32R_PC_REGNUM
);
879 set_gdbarch_sp_regnum (gdbarch
, M32R_SP_REGNUM
);
880 set_gdbarch_register_name (gdbarch
, m32r_register_name
);
881 set_gdbarch_register_type (gdbarch
, m32r_register_type
);
883 set_gdbarch_push_dummy_call (gdbarch
, m32r_push_dummy_call
);
884 set_gdbarch_return_value (gdbarch
, m32r_return_value
);
886 set_gdbarch_skip_prologue (gdbarch
, m32r_skip_prologue
);
887 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
888 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, m32r_breakpoint_kind_from_pc
);
889 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, m32r_sw_breakpoint_from_kind
);
890 set_gdbarch_memory_insert_breakpoint (gdbarch
,
891 m32r_memory_insert_breakpoint
);
892 set_gdbarch_memory_remove_breakpoint (gdbarch
,
893 m32r_memory_remove_breakpoint
);
895 set_gdbarch_frame_align (gdbarch
, m32r_frame_align
);
897 frame_base_set_default (gdbarch
, &m32r_frame_base
);
899 /* Hook in ABI-specific overrides, if they have been registered. */
900 gdbarch_init_osabi (info
, gdbarch
);
902 /* Hook in the default unwinders. */
903 frame_unwind_append_unwinder (gdbarch
, &m32r_frame_unwind
);
905 /* Support simple overlay manager. */
906 set_gdbarch_overlay_update (gdbarch
, simple_overlay_update
);
911 void _initialize_m32r_tdep ();
913 _initialize_m32r_tdep ()
915 gdbarch_register (bfd_arch_m32r
, m32r_gdbarch_init
);