[PATCH 47/57][Arm][OBJDUMP] Add support for MVE instructions: vaddv, vmlaldav, vmlada...
[binutils-gdb.git] / gdb / gdbserver / linux-low.h
blobd5d074efc509981919e05724888cac71263855a2
1 /* Internal interfaces for the GNU/Linux specific target code for gdbserver.
2 Copyright (C) 2002-2019 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 #ifndef GDBSERVER_LINUX_LOW_H
20 #define GDBSERVER_LINUX_LOW_H
22 #include "nat/linux-nat.h"
23 #include "nat/gdb_thread_db.h"
24 #include <signal.h>
26 #include "gdbthread.h"
27 #include "gdb_proc_service.h"
29 /* Included for ptrace type definitions. */
30 #include "nat/linux-ptrace.h"
31 #include "target/waitstatus.h" /* For enum target_stop_reason. */
32 #include "tracepoint.h"
34 #define PTRACE_XFER_TYPE long
36 #ifdef HAVE_LINUX_REGSETS
37 typedef void (*regset_fill_func) (struct regcache *, void *);
38 typedef void (*regset_store_func) (struct regcache *, const void *);
39 enum regset_type {
40 GENERAL_REGS,
41 FP_REGS,
42 EXTENDED_REGS,
43 OPTIONAL_REGS, /* Do not error if the regset cannot be accessed. */
46 /* The arch's regsets array initializer must be terminated with a NULL
47 regset. */
48 #define NULL_REGSET \
49 { 0, 0, 0, -1, (enum regset_type) -1, NULL, NULL }
51 struct regset_info
53 int get_request, set_request;
54 /* If NT_TYPE isn't 0, it will be passed to ptrace as the 3rd
55 argument and the 4th argument should be "const struct iovec *". */
56 int nt_type;
57 int size;
58 enum regset_type type;
59 regset_fill_func fill_function;
60 regset_store_func store_function;
63 /* Aggregation of all the supported regsets of a given
64 architecture/mode. */
66 struct regsets_info
68 /* The regsets array. */
69 struct regset_info *regsets;
71 /* The number of regsets in the REGSETS array. */
72 int num_regsets;
74 /* If we get EIO on a regset, do not try it again. Note the set of
75 supported regsets may depend on processor mode on biarch
76 machines. This is a (lazily allocated) array holding one boolean
77 byte (0/1) per regset, with each element corresponding to the
78 regset in the REGSETS array above at the same offset. */
79 char *disabled_regsets;
82 #endif
84 /* Mapping between the general-purpose registers in `struct user'
85 format and GDB's register array layout. */
87 struct usrregs_info
89 /* The number of registers accessible. */
90 int num_regs;
92 /* The registers map. */
93 int *regmap;
96 /* All info needed to access an architecture/mode's registers. */
98 struct regs_info
100 /* Regset support bitmap: 1 for registers that are transferred as a part
101 of a regset, 0 for ones that need to be handled individually. This
102 can be NULL if all registers are transferred with regsets or regsets
103 are not supported. */
104 unsigned char *regset_bitmap;
106 /* Info used when accessing registers with PTRACE_PEEKUSER /
107 PTRACE_POKEUSER. This can be NULL if all registers are
108 transferred with regsets .*/
109 struct usrregs_info *usrregs;
111 #ifdef HAVE_LINUX_REGSETS
112 /* Info used when accessing registers with regsets. */
113 struct regsets_info *regsets_info;
114 #endif
117 struct process_info_private
119 /* Arch-specific additions. */
120 struct arch_process_info *arch_private;
122 /* libthread_db-specific additions. Not NULL if this process has loaded
123 thread_db, and it is active. */
124 struct thread_db *thread_db;
126 /* &_r_debug. 0 if not yet determined. -1 if no PT_DYNAMIC in Phdrs. */
127 CORE_ADDR r_debug;
130 struct lwp_info;
132 struct linux_target_ops
134 /* Architecture-specific setup. */
135 void (*arch_setup) (void);
137 const struct regs_info *(*regs_info) (void);
138 int (*cannot_fetch_register) (int);
140 /* Returns 0 if we can store the register, 1 if we can not
141 store the register, and 2 if failure to store the register
142 is acceptable. */
143 int (*cannot_store_register) (int);
145 /* Hook to fetch a register in some non-standard way. Used for
146 example by backends that have read-only registers with hardcoded
147 values (e.g., IA64's gr0/fr0/fr1). Returns true if register
148 REGNO was supplied, false if not, and we should fallback to the
149 standard ptrace methods. */
150 int (*fetch_register) (struct regcache *regcache, int regno);
152 CORE_ADDR (*get_pc) (struct regcache *regcache);
153 void (*set_pc) (struct regcache *regcache, CORE_ADDR newpc);
155 /* See target.h for details. */
156 int (*breakpoint_kind_from_pc) (CORE_ADDR *pcptr);
158 /* See target.h for details. */
159 const gdb_byte *(*sw_breakpoint_from_kind) (int kind, int *size);
161 /* Find the next possible PCs after the current instruction executes. */
162 std::vector<CORE_ADDR> (*get_next_pcs) (struct regcache *regcache);
164 int decr_pc_after_break;
165 int (*breakpoint_at) (CORE_ADDR pc);
167 /* Breakpoint and watchpoint related functions. See target.h for
168 comments. */
169 int (*supports_z_point_type) (char z_type);
170 int (*insert_point) (enum raw_bkpt_type type, CORE_ADDR addr,
171 int size, struct raw_breakpoint *bp);
172 int (*remove_point) (enum raw_bkpt_type type, CORE_ADDR addr,
173 int size, struct raw_breakpoint *bp);
175 int (*stopped_by_watchpoint) (void);
176 CORE_ADDR (*stopped_data_address) (void);
178 /* Hooks to reformat register data for PEEKUSR/POKEUSR (in particular
179 for registers smaller than an xfer unit). */
180 void (*collect_ptrace_register) (struct regcache *regcache,
181 int regno, char *buf);
182 void (*supply_ptrace_register) (struct regcache *regcache,
183 int regno, const char *buf);
185 /* Hook to convert from target format to ptrace format and back.
186 Returns true if any conversion was done; false otherwise.
187 If DIRECTION is 1, then copy from INF to NATIVE.
188 If DIRECTION is 0, copy from NATIVE to INF. */
189 int (*siginfo_fixup) (siginfo_t *native, gdb_byte *inf, int direction);
191 /* Hook to call when a new process is created or attached to.
192 If extra per-process architecture-specific data is needed,
193 allocate it here. */
194 struct arch_process_info * (*new_process) (void);
196 /* Hook to call when a process is being deleted. If extra per-process
197 architecture-specific data is needed, delete it here. */
198 void (*delete_process) (struct arch_process_info *info);
200 /* Hook to call when a new thread is detected.
201 If extra per-thread architecture-specific data is needed,
202 allocate it here. */
203 void (*new_thread) (struct lwp_info *);
205 /* Hook to call when a thread is being deleted. If extra per-thread
206 architecture-specific data is needed, delete it here. */
207 void (*delete_thread) (struct arch_lwp_info *);
209 /* Hook to call, if any, when a new fork is attached. */
210 void (*new_fork) (struct process_info *parent, struct process_info *child);
212 /* Hook to call prior to resuming a thread. */
213 void (*prepare_to_resume) (struct lwp_info *);
215 /* Hook to support target specific qSupported. */
216 void (*process_qsupported) (char **, int count);
218 /* Returns true if the low target supports tracepoints. */
219 int (*supports_tracepoints) (void);
221 /* Fill ADDRP with the thread area address of LWPID. Returns 0 on
222 success, -1 on failure. */
223 int (*get_thread_area) (int lwpid, CORE_ADDR *addrp);
225 /* Install a fast tracepoint jump pad. See target.h for
226 comments. */
227 int (*install_fast_tracepoint_jump_pad) (CORE_ADDR tpoint, CORE_ADDR tpaddr,
228 CORE_ADDR collector,
229 CORE_ADDR lockaddr,
230 ULONGEST orig_size,
231 CORE_ADDR *jump_entry,
232 CORE_ADDR *trampoline,
233 ULONGEST *trampoline_size,
234 unsigned char *jjump_pad_insn,
235 ULONGEST *jjump_pad_insn_size,
236 CORE_ADDR *adjusted_insn_addr,
237 CORE_ADDR *adjusted_insn_addr_end,
238 char *err);
240 /* Return the bytecode operations vector for the current inferior.
241 Returns NULL if bytecode compilation is not supported. */
242 struct emit_ops *(*emit_ops) (void);
244 /* Return the minimum length of an instruction that can be safely overwritten
245 for use as a fast tracepoint. */
246 int (*get_min_fast_tracepoint_insn_len) (void);
248 /* Returns true if the low target supports range stepping. */
249 int (*supports_range_stepping) (void);
251 /* See target.h. */
252 int (*breakpoint_kind_from_current_state) (CORE_ADDR *pcptr);
254 /* See target.h. */
255 int (*supports_hardware_single_step) (void);
257 /* Fill *SYSNO with the syscall nr trapped. Only to be called when
258 inferior is stopped due to SYSCALL_SIGTRAP. */
259 void (*get_syscall_trapinfo) (struct regcache *regcache, int *sysno);
261 /* See target.h. */
262 int (*get_ipa_tdesc_idx) (void);
265 extern struct linux_target_ops the_low_target;
267 #define get_thread_lwp(thr) ((struct lwp_info *) (thread_target_data (thr)))
268 #define get_lwp_thread(lwp) ((lwp)->thread)
270 /* This struct is recorded in the target_data field of struct thread_info.
272 On linux ``all_threads'' is keyed by the LWP ID, which we use as the
273 GDB protocol representation of the thread ID. Threads also have
274 a "process ID" (poorly named) which is (presently) the same as the
275 LWP ID.
277 There is also ``all_processes'' is keyed by the "overall process ID",
278 which GNU/Linux calls tgid, "thread group ID". */
280 struct lwp_info
282 /* Backlink to the parent object. */
283 struct thread_info *thread;
285 /* If this flag is set, the next SIGSTOP will be ignored (the
286 process will be immediately resumed). This means that either we
287 sent the SIGSTOP to it ourselves and got some other pending event
288 (so the SIGSTOP is still pending), or that we stopped the
289 inferior implicitly via PTRACE_ATTACH and have not waited for it
290 yet. */
291 int stop_expected;
293 /* When this is true, we shall not try to resume this thread, even
294 if last_resume_kind isn't resume_stop. */
295 int suspended;
297 /* If this flag is set, the lwp is known to be stopped right now (stop
298 event already received in a wait()). */
299 int stopped;
301 /* Signal whether we are in a SYSCALL_ENTRY or
302 in a SYSCALL_RETURN event.
303 Values:
304 - TARGET_WAITKIND_SYSCALL_ENTRY
305 - TARGET_WAITKIND_SYSCALL_RETURN */
306 enum target_waitkind syscall_state;
308 /* When stopped is set, the last wait status recorded for this lwp. */
309 int last_status;
311 /* If WAITSTATUS->KIND != TARGET_WAITKIND_IGNORE, the waitstatus for
312 this LWP's last event, to pass to GDB without any further
313 processing. This is used to store extended ptrace event
314 information or exit status until it can be reported to GDB. */
315 struct target_waitstatus waitstatus;
317 /* A pointer to the fork child/parent relative. Valid only while
318 the parent fork event is not reported to higher layers. Used to
319 avoid wildcard vCont actions resuming a fork child before GDB is
320 notified about the parent's fork event. */
321 struct lwp_info *fork_relative;
323 /* When stopped is set, this is where the lwp last stopped, with
324 decr_pc_after_break already accounted for. If the LWP is
325 running, this is the address at which the lwp was resumed. */
326 CORE_ADDR stop_pc;
328 /* If this flag is set, STATUS_PENDING is a waitstatus that has not yet
329 been reported. */
330 int status_pending_p;
331 int status_pending;
333 /* The reason the LWP last stopped, if we need to track it
334 (breakpoint, watchpoint, etc.) */
335 enum target_stop_reason stop_reason;
337 /* On architectures where it is possible to know the data address of
338 a triggered watchpoint, STOPPED_DATA_ADDRESS is non-zero, and
339 contains such data address. Only valid if STOPPED_BY_WATCHPOINT
340 is true. */
341 CORE_ADDR stopped_data_address;
343 /* If this is non-zero, it is a breakpoint to be reinserted at our next
344 stop (SIGTRAP stops only). */
345 CORE_ADDR bp_reinsert;
347 /* If this flag is set, the last continue operation at the ptrace
348 level on this process was a single-step. */
349 int stepping;
351 /* Range to single step within. This is a copy of the step range
352 passed along the last resume request. See 'struct
353 thread_resume'. */
354 CORE_ADDR step_range_start; /* Inclusive */
355 CORE_ADDR step_range_end; /* Exclusive */
357 /* If this flag is set, we need to set the event request flags the
358 next time we see this LWP stop. */
359 int must_set_ptrace_flags;
361 /* If this is non-zero, it points to a chain of signals which need to
362 be delivered to this process. */
363 struct pending_signals *pending_signals;
365 /* A link used when resuming. It is initialized from the resume request,
366 and then processed and cleared in linux_resume_one_lwp. */
367 struct thread_resume *resume;
369 /* Information bout this lwp's fast tracepoint collection status (is it
370 currently stopped in the jump pad, and if so, before or at/after the
371 relocated instruction). Normally, we won't care about this, but we will
372 if a signal arrives to this lwp while it is collecting. */
373 fast_tpoint_collect_result collecting_fast_tracepoint;
375 /* If this is non-zero, it points to a chain of signals which need
376 to be reported to GDB. These were deferred because the thread
377 was doing a fast tracepoint collect when they arrived. */
378 struct pending_signals *pending_signals_to_report;
380 /* When collecting_fast_tracepoint is first found to be 1, we insert
381 a exit-jump-pad-quickly breakpoint. This is it. */
382 struct breakpoint *exit_jump_pad_bkpt;
384 #ifdef USE_THREAD_DB
385 int thread_known;
386 /* The thread handle, used for e.g. TLS access. Only valid if
387 THREAD_KNOWN is set. */
388 td_thrhandle_t th;
390 /* The pthread_t handle. */
391 thread_t thread_handle;
392 #endif
394 /* Arch-specific additions. */
395 struct arch_lwp_info *arch_private;
398 int linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine);
400 /* Attach to PTID. Returns 0 on success, non-zero otherwise (an
401 errno). */
402 int linux_attach_lwp (ptid_t ptid);
404 struct lwp_info *find_lwp_pid (ptid_t ptid);
405 /* For linux_stop_lwp see nat/linux-nat.h. */
407 #ifdef HAVE_LINUX_REGSETS
408 void initialize_regsets_info (struct regsets_info *regsets_info);
409 #endif
411 void initialize_low_arch (void);
413 void linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc);
414 CORE_ADDR linux_get_pc_32bit (struct regcache *regcache);
416 void linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc);
417 CORE_ADDR linux_get_pc_64bit (struct regcache *regcache);
419 /* From thread-db.c */
420 int thread_db_init (void);
421 void thread_db_detach (struct process_info *);
422 void thread_db_mourn (struct process_info *);
423 int thread_db_handle_monitor_command (char *);
424 int thread_db_get_tls_address (struct thread_info *thread, CORE_ADDR offset,
425 CORE_ADDR load_module, CORE_ADDR *address);
426 int thread_db_look_up_one_symbol (const char *name, CORE_ADDR *addrp);
428 /* Called from linux-low.c when a clone event is detected. Upon entry,
429 both the clone and the parent should be stopped. This function does
430 whatever is required have the clone under thread_db's control. */
432 void thread_db_notice_clone (struct thread_info *parent_thr, ptid_t child_ptid);
434 bool thread_db_thread_handle (ptid_t ptid, gdb_byte **handle, int *handle_len);
436 extern int have_ptrace_getregset;
438 /* Search for the value with type MATCH in the auxv vector with
439 entries of length WORDSIZE bytes. If found, store the value in
440 *VALP and return 1. If not found or if there is an error, return
441 0. */
443 int linux_get_auxv (int wordsize, CORE_ADDR match,
444 CORE_ADDR *valp);
446 /* Fetch the AT_HWCAP entry from the auxv vector, where entries are length
447 WORDSIZE. If no entry was found, return zero. */
449 CORE_ADDR linux_get_hwcap (int wordsize);
451 /* Fetch the AT_HWCAP2 entry from the auxv vector, where entries are length
452 WORDSIZE. If no entry was found, return zero. */
454 CORE_ADDR linux_get_hwcap2 (int wordsize);
456 #endif /* GDBSERVER_LINUX_LOW_H */