[PATCH 47/57][Arm][OBJDUMP] Add support for MVE instructions: vaddv, vmlaldav, vmlada...
[binutils-gdb.git] / gdb / mn10300-tdep.c
blob1a08ea0cceba87158ca724c10200b1165ef60eaa
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
3 Copyright (C) 1996-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "gdbtypes.h"
24 #include "regcache.h"
25 #include "gdbcore.h" /* For write_memory_unsigned_integer. */
26 #include "value.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "symtab.h"
31 #include "dwarf2-frame.h"
32 #include "osabi.h"
33 #include "infcall.h"
34 #include "prologue-value.h"
35 #include "target.h"
37 #include "mn10300-tdep.h"
40 /* The am33-2 has 64 registers. */
41 #define MN10300_MAX_NUM_REGS 64
43 /* Big enough to hold the size of the largest register in bytes. */
44 #define MN10300_MAX_REGISTER_SIZE 64
46 /* This structure holds the results of a prologue analysis. */
47 struct mn10300_prologue
49 /* The architecture for which we generated this prologue info. */
50 struct gdbarch *gdbarch;
52 /* The offset from the frame base to the stack pointer --- always
53 zero or negative.
55 Calling this a "size" is a bit misleading, but given that the
56 stack grows downwards, using offsets for everything keeps one
57 from going completely sign-crazy: you never change anything's
58 sign for an ADD instruction; always change the second operand's
59 sign for a SUB instruction; and everything takes care of
60 itself. */
61 int frame_size;
63 /* Non-zero if this function has initialized the frame pointer from
64 the stack pointer, zero otherwise. */
65 int has_frame_ptr;
67 /* If has_frame_ptr is non-zero, this is the offset from the frame
68 base to where the frame pointer points. This is always zero or
69 negative. */
70 int frame_ptr_offset;
72 /* The address of the first instruction at which the frame has been
73 set up and the arguments are where the debug info says they are
74 --- as best as we can tell. */
75 CORE_ADDR prologue_end;
77 /* reg_offset[R] is the offset from the CFA at which register R is
78 saved, or 1 if register R has not been saved. (Real values are
79 always zero or negative.) */
80 int reg_offset[MN10300_MAX_NUM_REGS];
84 /* Compute the alignment required by a type. */
86 static int
87 mn10300_type_align (struct type *type)
89 int i, align = 1;
91 switch (TYPE_CODE (type))
93 case TYPE_CODE_INT:
94 case TYPE_CODE_ENUM:
95 case TYPE_CODE_SET:
96 case TYPE_CODE_RANGE:
97 case TYPE_CODE_CHAR:
98 case TYPE_CODE_BOOL:
99 case TYPE_CODE_FLT:
100 case TYPE_CODE_PTR:
101 case TYPE_CODE_REF:
102 case TYPE_CODE_RVALUE_REF:
103 return TYPE_LENGTH (type);
105 case TYPE_CODE_COMPLEX:
106 return TYPE_LENGTH (type) / 2;
108 case TYPE_CODE_STRUCT:
109 case TYPE_CODE_UNION:
110 for (i = 0; i < TYPE_NFIELDS (type); i++)
112 int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
113 while (align < falign)
114 align <<= 1;
116 return align;
118 case TYPE_CODE_ARRAY:
119 /* HACK! Structures containing arrays, even small ones, are not
120 elligible for returning in registers. */
121 return 256;
123 case TYPE_CODE_TYPEDEF:
124 return mn10300_type_align (check_typedef (type));
126 default:
127 internal_error (__FILE__, __LINE__, _("bad switch"));
131 /* Should call_function allocate stack space for a struct return? */
132 static int
133 mn10300_use_struct_convention (struct type *type)
135 /* Structures bigger than a pair of words can't be returned in
136 registers. */
137 if (TYPE_LENGTH (type) > 8)
138 return 1;
140 switch (TYPE_CODE (type))
142 case TYPE_CODE_STRUCT:
143 case TYPE_CODE_UNION:
144 /* Structures with a single field are handled as the field
145 itself. */
146 if (TYPE_NFIELDS (type) == 1)
147 return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
149 /* Structures with word or double-word size are passed in memory, as
150 long as they require at least word alignment. */
151 if (mn10300_type_align (type) >= 4)
152 return 0;
154 return 1;
156 /* Arrays are addressable, so they're never returned in
157 registers. This condition can only hold when the array is
158 the only field of a struct or union. */
159 case TYPE_CODE_ARRAY:
160 return 1;
162 case TYPE_CODE_TYPEDEF:
163 return mn10300_use_struct_convention (check_typedef (type));
165 default:
166 return 0;
170 static void
171 mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
172 struct regcache *regcache, const gdb_byte *valbuf)
174 int len = TYPE_LENGTH (type);
175 int reg, regsz;
177 if (TYPE_CODE (type) == TYPE_CODE_PTR)
178 reg = 4;
179 else
180 reg = 0;
182 regsz = register_size (gdbarch, reg);
184 if (len <= regsz)
185 regcache->raw_write_part (reg, 0, len, valbuf);
186 else if (len <= 2 * regsz)
188 regcache->raw_write (reg, valbuf);
189 gdb_assert (regsz == register_size (gdbarch, reg + 1));
190 regcache->raw_write_part (reg + 1, 0, len - regsz, valbuf + regsz);
192 else
193 internal_error (__FILE__, __LINE__,
194 _("Cannot store return value %d bytes long."), len);
197 static void
198 mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
199 struct regcache *regcache, void *valbuf)
201 gdb_byte buf[MN10300_MAX_REGISTER_SIZE];
202 int len = TYPE_LENGTH (type);
203 int reg, regsz;
205 if (TYPE_CODE (type) == TYPE_CODE_PTR)
206 reg = 4;
207 else
208 reg = 0;
210 regsz = register_size (gdbarch, reg);
211 gdb_assert (regsz <= MN10300_MAX_REGISTER_SIZE);
212 if (len <= regsz)
214 regcache->raw_read (reg, buf);
215 memcpy (valbuf, buf, len);
217 else if (len <= 2 * regsz)
219 regcache->raw_read (reg, buf);
220 memcpy (valbuf, buf, regsz);
221 gdb_assert (regsz == register_size (gdbarch, reg + 1));
222 regcache->raw_read (reg + 1, buf);
223 memcpy ((char *) valbuf + regsz, buf, len - regsz);
225 else
226 internal_error (__FILE__, __LINE__,
227 _("Cannot extract return value %d bytes long."), len);
230 /* Determine, for architecture GDBARCH, how a return value of TYPE
231 should be returned. If it is supposed to be returned in registers,
232 and READBUF is non-zero, read the appropriate value from REGCACHE,
233 and copy it into READBUF. If WRITEBUF is non-zero, write the value
234 from WRITEBUF into REGCACHE. */
236 static enum return_value_convention
237 mn10300_return_value (struct gdbarch *gdbarch, struct value *function,
238 struct type *type, struct regcache *regcache,
239 gdb_byte *readbuf, const gdb_byte *writebuf)
241 if (mn10300_use_struct_convention (type))
242 return RETURN_VALUE_STRUCT_CONVENTION;
244 if (readbuf)
245 mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
246 if (writebuf)
247 mn10300_store_return_value (gdbarch, type, regcache, writebuf);
249 return RETURN_VALUE_REGISTER_CONVENTION;
252 static const char *
253 register_name (int reg, const char **regs, long sizeof_regs)
255 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
256 return NULL;
257 else
258 return regs[reg];
261 static const char *
262 mn10300_generic_register_name (struct gdbarch *gdbarch, int reg)
264 static const char *regs[] =
265 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
266 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
267 "", "", "", "", "", "", "", "",
268 "", "", "", "", "", "", "", "fp"
270 return register_name (reg, regs, sizeof regs);
274 static const char *
275 am33_register_name (struct gdbarch *gdbarch, int reg)
277 static const char *regs[] =
278 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
279 "sp", "pc", "mdr", "psw", "lir", "lar", "",
280 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
281 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
283 return register_name (reg, regs, sizeof regs);
286 static const char *
287 am33_2_register_name (struct gdbarch *gdbarch, int reg)
289 static const char *regs[] =
291 "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
292 "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
293 "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
294 "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
295 "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
296 "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
297 "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
298 "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
300 return register_name (reg, regs, sizeof regs);
303 static struct type *
304 mn10300_register_type (struct gdbarch *gdbarch, int reg)
306 return builtin_type (gdbarch)->builtin_int;
309 /* The breakpoint instruction must be the same size as the smallest
310 instruction in the instruction set.
312 The Matsushita mn10x00 processors have single byte instructions
313 so we need a single byte breakpoint. Matsushita hasn't defined
314 one, so we defined it ourselves. */
315 constexpr gdb_byte mn10300_break_insn[] = {0xff};
317 typedef BP_MANIPULATION (mn10300_break_insn) mn10300_breakpoint;
319 /* Model the semantics of pushing a register onto the stack. This
320 is a helper function for mn10300_analyze_prologue, below. */
321 static void
322 push_reg (pv_t *regs, struct pv_area *stack, int regnum)
324 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
325 stack->store (regs[E_SP_REGNUM], 4, regs[regnum]);
328 /* Translate an "r" register number extracted from an instruction encoding
329 into a GDB register number. Adapted from a simulator function
330 of the same name; see am33.igen. */
331 static int
332 translate_rreg (int rreg)
334 /* The higher register numbers actually correspond to the
335 basic machine's address and data registers. */
336 if (rreg > 7 && rreg < 12)
337 return E_A0_REGNUM + rreg - 8;
338 else if (rreg > 11 && rreg < 16)
339 return E_D0_REGNUM + rreg - 12;
340 else
341 return E_E0_REGNUM + rreg;
344 /* Find saved registers in a 'struct pv_area'; we pass this to pv_area::scan.
346 If VALUE is a saved register, ADDR says it was saved at a constant
347 offset from the frame base, and SIZE indicates that the whole
348 register was saved, record its offset in RESULT_UNTYPED. */
349 static void
350 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
352 struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped;
354 if (value.kind == pvk_register
355 && value.k == 0
356 && pv_is_register (addr, E_SP_REGNUM)
357 && size == register_size (result->gdbarch, value.reg))
358 result->reg_offset[value.reg] = addr.k;
361 /* Analyze the prologue to determine where registers are saved,
362 the end of the prologue, etc. The result of this analysis is
363 returned in RESULT. See struct mn10300_prologue above for more
364 information. */
365 static void
366 mn10300_analyze_prologue (struct gdbarch *gdbarch,
367 CORE_ADDR start_pc, CORE_ADDR limit_pc,
368 struct mn10300_prologue *result)
370 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
371 CORE_ADDR pc;
372 int rn;
373 pv_t regs[MN10300_MAX_NUM_REGS];
374 CORE_ADDR after_last_frame_setup_insn = start_pc;
375 int am33_mode = AM33_MODE (gdbarch);
377 memset (result, 0, sizeof (*result));
378 result->gdbarch = gdbarch;
380 for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++)
382 regs[rn] = pv_register (rn, 0);
383 result->reg_offset[rn] = 1;
385 pv_area stack (E_SP_REGNUM, gdbarch_addr_bit (gdbarch));
387 /* The typical call instruction will have saved the return address on the
388 stack. Space for the return address has already been preallocated in
389 the caller's frame. It's possible, such as when using -mrelax with gcc
390 that other registers were saved as well. If this happens, we really
391 have no chance of deciphering the frame. DWARF info can save the day
392 when this happens. */
393 stack.store (regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]);
395 pc = start_pc;
396 while (pc < limit_pc)
398 int status;
399 gdb_byte instr[2];
401 /* Instructions can be as small as one byte; however, we usually
402 need at least two bytes to do the decoding, so fetch that many
403 to begin with. */
404 status = target_read_memory (pc, instr, 2);
405 if (status != 0)
406 break;
408 /* movm [regs], sp */
409 if (instr[0] == 0xcf)
411 gdb_byte save_mask;
413 save_mask = instr[1];
415 if ((save_mask & movm_exreg0_bit) && am33_mode)
417 push_reg (regs, &stack, E_E2_REGNUM);
418 push_reg (regs, &stack, E_E3_REGNUM);
420 if ((save_mask & movm_exreg1_bit) && am33_mode)
422 push_reg (regs, &stack, E_E4_REGNUM);
423 push_reg (regs, &stack, E_E5_REGNUM);
424 push_reg (regs, &stack, E_E6_REGNUM);
425 push_reg (regs, &stack, E_E7_REGNUM);
427 if ((save_mask & movm_exother_bit) && am33_mode)
429 push_reg (regs, &stack, E_E0_REGNUM);
430 push_reg (regs, &stack, E_E1_REGNUM);
431 push_reg (regs, &stack, E_MDRQ_REGNUM);
432 push_reg (regs, &stack, E_MCRH_REGNUM);
433 push_reg (regs, &stack, E_MCRL_REGNUM);
434 push_reg (regs, &stack, E_MCVF_REGNUM);
436 if (save_mask & movm_d2_bit)
437 push_reg (regs, &stack, E_D2_REGNUM);
438 if (save_mask & movm_d3_bit)
439 push_reg (regs, &stack, E_D3_REGNUM);
440 if (save_mask & movm_a2_bit)
441 push_reg (regs, &stack, E_A2_REGNUM);
442 if (save_mask & movm_a3_bit)
443 push_reg (regs, &stack, E_A3_REGNUM);
444 if (save_mask & movm_other_bit)
446 push_reg (regs, &stack, E_D0_REGNUM);
447 push_reg (regs, &stack, E_D1_REGNUM);
448 push_reg (regs, &stack, E_A0_REGNUM);
449 push_reg (regs, &stack, E_A1_REGNUM);
450 push_reg (regs, &stack, E_MDR_REGNUM);
451 push_reg (regs, &stack, E_LIR_REGNUM);
452 push_reg (regs, &stack, E_LAR_REGNUM);
453 /* The `other' bit leaves a blank area of four bytes at
454 the beginning of its block of saved registers, making
455 it 32 bytes long in total. */
456 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
459 pc += 2;
460 after_last_frame_setup_insn = pc;
462 /* mov sp, aN */
463 else if ((instr[0] & 0xfc) == 0x3c)
465 int aN = instr[0] & 0x03;
467 regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM];
469 pc += 1;
470 if (aN == 3)
471 after_last_frame_setup_insn = pc;
473 /* mov aM, aN */
474 else if ((instr[0] & 0xf0) == 0x90
475 && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
477 int aN = instr[0] & 0x03;
478 int aM = (instr[0] & 0x0c) >> 2;
480 regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM];
482 pc += 1;
484 /* mov dM, dN */
485 else if ((instr[0] & 0xf0) == 0x80
486 && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
488 int dN = instr[0] & 0x03;
489 int dM = (instr[0] & 0x0c) >> 2;
491 regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM];
493 pc += 1;
495 /* mov aM, dN */
496 else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0)
498 int dN = instr[1] & 0x03;
499 int aM = (instr[1] & 0x0c) >> 2;
501 regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM];
503 pc += 2;
505 /* mov dM, aN */
506 else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0)
508 int aN = instr[1] & 0x03;
509 int dM = (instr[1] & 0x0c) >> 2;
511 regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM];
513 pc += 2;
515 /* add imm8, SP */
516 else if (instr[0] == 0xf8 && instr[1] == 0xfe)
518 gdb_byte buf[1];
519 LONGEST imm8;
522 status = target_read_memory (pc + 2, buf, 1);
523 if (status != 0)
524 break;
526 imm8 = extract_signed_integer (buf, 1, byte_order);
527 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8);
529 pc += 3;
530 /* Stack pointer adjustments are frame related. */
531 after_last_frame_setup_insn = pc;
533 /* add imm16, SP */
534 else if (instr[0] == 0xfa && instr[1] == 0xfe)
536 gdb_byte buf[2];
537 LONGEST imm16;
539 status = target_read_memory (pc + 2, buf, 2);
540 if (status != 0)
541 break;
543 imm16 = extract_signed_integer (buf, 2, byte_order);
544 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16);
546 pc += 4;
547 /* Stack pointer adjustments are frame related. */
548 after_last_frame_setup_insn = pc;
550 /* add imm32, SP */
551 else if (instr[0] == 0xfc && instr[1] == 0xfe)
553 gdb_byte buf[4];
554 LONGEST imm32;
556 status = target_read_memory (pc + 2, buf, 4);
557 if (status != 0)
558 break;
561 imm32 = extract_signed_integer (buf, 4, byte_order);
562 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32);
564 pc += 6;
565 /* Stack pointer adjustments are frame related. */
566 after_last_frame_setup_insn = pc;
568 /* add imm8, aN */
569 else if ((instr[0] & 0xfc) == 0x20)
571 int aN;
572 LONGEST imm8;
574 aN = instr[0] & 0x03;
575 imm8 = extract_signed_integer (&instr[1], 1, byte_order);
577 regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
578 imm8);
580 pc += 2;
582 /* add imm16, aN */
583 else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0)
585 int aN;
586 LONGEST imm16;
587 gdb_byte buf[2];
589 aN = instr[1] & 0x03;
591 status = target_read_memory (pc + 2, buf, 2);
592 if (status != 0)
593 break;
596 imm16 = extract_signed_integer (buf, 2, byte_order);
598 regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
599 imm16);
601 pc += 4;
603 /* add imm32, aN */
604 else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0)
606 int aN;
607 LONGEST imm32;
608 gdb_byte buf[4];
610 aN = instr[1] & 0x03;
612 status = target_read_memory (pc + 2, buf, 4);
613 if (status != 0)
614 break;
616 imm32 = extract_signed_integer (buf, 2, byte_order);
618 regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
619 imm32);
620 pc += 6;
622 /* fmov fsM, (rN) */
623 else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30)
625 int fsM, sM, Y, rN;
626 gdb_byte buf[1];
628 Y = (instr[1] & 0x02) >> 1;
630 status = target_read_memory (pc + 2, buf, 1);
631 if (status != 0)
632 break;
634 sM = (buf[0] & 0xf0) >> 4;
635 rN = buf[0] & 0x0f;
636 fsM = (Y << 4) | sM;
638 stack.store (regs[translate_rreg (rN)], 4,
639 regs[E_FS0_REGNUM + fsM]);
641 pc += 3;
643 /* fmov fsM, (sp) */
644 else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34)
646 int fsM, sM, Y;
647 gdb_byte buf[1];
649 Y = (instr[1] & 0x02) >> 1;
651 status = target_read_memory (pc + 2, buf, 1);
652 if (status != 0)
653 break;
655 sM = (buf[0] & 0xf0) >> 4;
656 fsM = (Y << 4) | sM;
658 stack.store (regs[E_SP_REGNUM], 4,
659 regs[E_FS0_REGNUM + fsM]);
661 pc += 3;
663 /* fmov fsM, (rN, rI) */
664 else if (instr[0] == 0xfb && instr[1] == 0x37)
666 int fsM, sM, Z, rN, rI;
667 gdb_byte buf[2];
670 status = target_read_memory (pc + 2, buf, 2);
671 if (status != 0)
672 break;
674 rI = (buf[0] & 0xf0) >> 4;
675 rN = buf[0] & 0x0f;
676 sM = (buf[1] & 0xf0) >> 4;
677 Z = (buf[1] & 0x02) >> 1;
678 fsM = (Z << 4) | sM;
680 stack.store (pv_add (regs[translate_rreg (rN)],
681 regs[translate_rreg (rI)]),
682 4, regs[E_FS0_REGNUM + fsM]);
684 pc += 4;
686 /* fmov fsM, (d8, rN) */
687 else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30)
689 int fsM, sM, Y, rN;
690 LONGEST d8;
691 gdb_byte buf[2];
693 Y = (instr[1] & 0x02) >> 1;
695 status = target_read_memory (pc + 2, buf, 2);
696 if (status != 0)
697 break;
699 sM = (buf[0] & 0xf0) >> 4;
700 rN = buf[0] & 0x0f;
701 fsM = (Y << 4) | sM;
702 d8 = extract_signed_integer (&buf[1], 1, byte_order);
704 stack.store (pv_add_constant (regs[translate_rreg (rN)], d8),
705 4, regs[E_FS0_REGNUM + fsM]);
707 pc += 4;
709 /* fmov fsM, (d24, rN) */
710 else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30)
712 int fsM, sM, Y, rN;
713 LONGEST d24;
714 gdb_byte buf[4];
716 Y = (instr[1] & 0x02) >> 1;
718 status = target_read_memory (pc + 2, buf, 4);
719 if (status != 0)
720 break;
722 sM = (buf[0] & 0xf0) >> 4;
723 rN = buf[0] & 0x0f;
724 fsM = (Y << 4) | sM;
725 d24 = extract_signed_integer (&buf[1], 3, byte_order);
727 stack.store (pv_add_constant (regs[translate_rreg (rN)], d24),
728 4, regs[E_FS0_REGNUM + fsM]);
730 pc += 6;
732 /* fmov fsM, (d32, rN) */
733 else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30)
735 int fsM, sM, Y, rN;
736 LONGEST d32;
737 gdb_byte buf[5];
739 Y = (instr[1] & 0x02) >> 1;
741 status = target_read_memory (pc + 2, buf, 5);
742 if (status != 0)
743 break;
745 sM = (buf[0] & 0xf0) >> 4;
746 rN = buf[0] & 0x0f;
747 fsM = (Y << 4) | sM;
748 d32 = extract_signed_integer (&buf[1], 4, byte_order);
750 stack.store (pv_add_constant (regs[translate_rreg (rN)], d32),
751 4, regs[E_FS0_REGNUM + fsM]);
753 pc += 7;
755 /* fmov fsM, (d8, SP) */
756 else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34)
758 int fsM, sM, Y;
759 LONGEST d8;
760 gdb_byte buf[2];
762 Y = (instr[1] & 0x02) >> 1;
764 status = target_read_memory (pc + 2, buf, 2);
765 if (status != 0)
766 break;
768 sM = (buf[0] & 0xf0) >> 4;
769 fsM = (Y << 4) | sM;
770 d8 = extract_signed_integer (&buf[1], 1, byte_order);
772 stack.store (pv_add_constant (regs[E_SP_REGNUM], d8),
773 4, regs[E_FS0_REGNUM + fsM]);
775 pc += 4;
777 /* fmov fsM, (d24, SP) */
778 else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34)
780 int fsM, sM, Y;
781 LONGEST d24;
782 gdb_byte buf[4];
784 Y = (instr[1] & 0x02) >> 1;
786 status = target_read_memory (pc + 2, buf, 4);
787 if (status != 0)
788 break;
790 sM = (buf[0] & 0xf0) >> 4;
791 fsM = (Y << 4) | sM;
792 d24 = extract_signed_integer (&buf[1], 3, byte_order);
794 stack.store (pv_add_constant (regs[E_SP_REGNUM], d24),
795 4, regs[E_FS0_REGNUM + fsM]);
797 pc += 6;
799 /* fmov fsM, (d32, SP) */
800 else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34)
802 int fsM, sM, Y;
803 LONGEST d32;
804 gdb_byte buf[5];
806 Y = (instr[1] & 0x02) >> 1;
808 status = target_read_memory (pc + 2, buf, 5);
809 if (status != 0)
810 break;
812 sM = (buf[0] & 0xf0) >> 4;
813 fsM = (Y << 4) | sM;
814 d32 = extract_signed_integer (&buf[1], 4, byte_order);
816 stack.store (pv_add_constant (regs[E_SP_REGNUM], d32),
817 4, regs[E_FS0_REGNUM + fsM]);
819 pc += 7;
821 /* fmov fsM, (rN+) */
822 else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31)
824 int fsM, sM, Y, rN, rN_regnum;
825 gdb_byte buf[1];
827 Y = (instr[1] & 0x02) >> 1;
829 status = target_read_memory (pc + 2, buf, 1);
830 if (status != 0)
831 break;
833 sM = (buf[0] & 0xf0) >> 4;
834 rN = buf[0] & 0x0f;
835 fsM = (Y << 4) | sM;
837 rN_regnum = translate_rreg (rN);
839 stack.store (regs[rN_regnum], 4,
840 regs[E_FS0_REGNUM + fsM]);
841 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4);
843 pc += 3;
845 /* fmov fsM, (rN+, imm8) */
846 else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31)
848 int fsM, sM, Y, rN, rN_regnum;
849 LONGEST imm8;
850 gdb_byte buf[2];
852 Y = (instr[1] & 0x02) >> 1;
854 status = target_read_memory (pc + 2, buf, 2);
855 if (status != 0)
856 break;
858 sM = (buf[0] & 0xf0) >> 4;
859 rN = buf[0] & 0x0f;
860 fsM = (Y << 4) | sM;
861 imm8 = extract_signed_integer (&buf[1], 1, byte_order);
863 rN_regnum = translate_rreg (rN);
865 stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
866 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8);
868 pc += 4;
870 /* fmov fsM, (rN+, imm24) */
871 else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31)
873 int fsM, sM, Y, rN, rN_regnum;
874 LONGEST imm24;
875 gdb_byte buf[4];
877 Y = (instr[1] & 0x02) >> 1;
879 status = target_read_memory (pc + 2, buf, 4);
880 if (status != 0)
881 break;
883 sM = (buf[0] & 0xf0) >> 4;
884 rN = buf[0] & 0x0f;
885 fsM = (Y << 4) | sM;
886 imm24 = extract_signed_integer (&buf[1], 3, byte_order);
888 rN_regnum = translate_rreg (rN);
890 stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
891 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24);
893 pc += 6;
895 /* fmov fsM, (rN+, imm32) */
896 else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31)
898 int fsM, sM, Y, rN, rN_regnum;
899 LONGEST imm32;
900 gdb_byte buf[5];
902 Y = (instr[1] & 0x02) >> 1;
904 status = target_read_memory (pc + 2, buf, 5);
905 if (status != 0)
906 break;
908 sM = (buf[0] & 0xf0) >> 4;
909 rN = buf[0] & 0x0f;
910 fsM = (Y << 4) | sM;
911 imm32 = extract_signed_integer (&buf[1], 4, byte_order);
913 rN_regnum = translate_rreg (rN);
915 stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
916 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32);
918 pc += 7;
920 /* mov imm8, aN */
921 else if ((instr[0] & 0xf0) == 0x90)
923 int aN = instr[0] & 0x03;
924 LONGEST imm8;
926 imm8 = extract_signed_integer (&instr[1], 1, byte_order);
928 regs[E_A0_REGNUM + aN] = pv_constant (imm8);
929 pc += 2;
931 /* mov imm16, aN */
932 else if ((instr[0] & 0xfc) == 0x24)
934 int aN = instr[0] & 0x03;
935 gdb_byte buf[2];
936 LONGEST imm16;
938 status = target_read_memory (pc + 1, buf, 2);
939 if (status != 0)
940 break;
942 imm16 = extract_signed_integer (buf, 2, byte_order);
943 regs[E_A0_REGNUM + aN] = pv_constant (imm16);
944 pc += 3;
946 /* mov imm32, aN */
947 else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc))
949 int aN = instr[1] & 0x03;
950 gdb_byte buf[4];
951 LONGEST imm32;
953 status = target_read_memory (pc + 2, buf, 4);
954 if (status != 0)
955 break;
957 imm32 = extract_signed_integer (buf, 4, byte_order);
958 regs[E_A0_REGNUM + aN] = pv_constant (imm32);
959 pc += 6;
961 /* mov imm8, dN */
962 else if ((instr[0] & 0xf0) == 0x80)
964 int dN = instr[0] & 0x03;
965 LONGEST imm8;
967 imm8 = extract_signed_integer (&instr[1], 1, byte_order);
969 regs[E_D0_REGNUM + dN] = pv_constant (imm8);
970 pc += 2;
972 /* mov imm16, dN */
973 else if ((instr[0] & 0xfc) == 0x2c)
975 int dN = instr[0] & 0x03;
976 gdb_byte buf[2];
977 LONGEST imm16;
979 status = target_read_memory (pc + 1, buf, 2);
980 if (status != 0)
981 break;
983 imm16 = extract_signed_integer (buf, 2, byte_order);
984 regs[E_D0_REGNUM + dN] = pv_constant (imm16);
985 pc += 3;
987 /* mov imm32, dN */
988 else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc))
990 int dN = instr[1] & 0x03;
991 gdb_byte buf[4];
992 LONGEST imm32;
994 status = target_read_memory (pc + 2, buf, 4);
995 if (status != 0)
996 break;
998 imm32 = extract_signed_integer (buf, 4, byte_order);
999 regs[E_D0_REGNUM + dN] = pv_constant (imm32);
1000 pc += 6;
1002 else
1004 /* We've hit some instruction that we don't recognize. Hopefully,
1005 we have enough to do prologue analysis. */
1006 break;
1010 /* Is the frame size (offset, really) a known constant? */
1011 if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM))
1012 result->frame_size = regs[E_SP_REGNUM].k;
1014 /* Was the frame pointer initialized? */
1015 if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM))
1017 result->has_frame_ptr = 1;
1018 result->frame_ptr_offset = regs[E_A3_REGNUM].k;
1021 /* Record where all the registers were saved. */
1022 stack.scan (check_for_saved, (void *) result);
1024 result->prologue_end = after_last_frame_setup_insn;
1027 /* Function: skip_prologue
1028 Return the address of the first inst past the prologue of the function. */
1030 static CORE_ADDR
1031 mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1033 const char *name;
1034 CORE_ADDR func_addr, func_end;
1035 struct mn10300_prologue p;
1037 /* Try to find the extent of the function that contains PC. */
1038 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1039 return pc;
1041 mn10300_analyze_prologue (gdbarch, pc, func_end, &p);
1042 return p.prologue_end;
1045 /* Wrapper for mn10300_analyze_prologue: find the function start;
1046 use the current frame PC as the limit, then
1047 invoke mn10300_analyze_prologue and return its result. */
1048 static struct mn10300_prologue *
1049 mn10300_analyze_frame_prologue (struct frame_info *this_frame,
1050 void **this_prologue_cache)
1052 if (!*this_prologue_cache)
1054 CORE_ADDR func_start, stop_addr;
1056 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue);
1058 func_start = get_frame_func (this_frame);
1059 stop_addr = get_frame_pc (this_frame);
1061 /* If we couldn't find any function containing the PC, then
1062 just initialize the prologue cache, but don't do anything. */
1063 if (!func_start)
1064 stop_addr = func_start;
1066 mn10300_analyze_prologue (get_frame_arch (this_frame),
1067 func_start, stop_addr,
1068 ((struct mn10300_prologue *)
1069 *this_prologue_cache));
1072 return (struct mn10300_prologue *) *this_prologue_cache;
1075 /* Given the next frame and a prologue cache, return this frame's
1076 base. */
1077 static CORE_ADDR
1078 mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
1080 struct mn10300_prologue *p
1081 = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
1083 /* In functions that use alloca, the distance between the stack
1084 pointer and the frame base varies dynamically, so we can't use
1085 the SP plus static information like prologue analysis to find the
1086 frame base. However, such functions must have a frame pointer,
1087 to be able to restore the SP on exit. So whenever we do have a
1088 frame pointer, use that to find the base. */
1089 if (p->has_frame_ptr)
1091 CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM);
1092 return fp - p->frame_ptr_offset;
1094 else
1096 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1097 return sp - p->frame_size;
1101 static void
1102 mn10300_frame_this_id (struct frame_info *this_frame,
1103 void **this_prologue_cache,
1104 struct frame_id *this_id)
1106 *this_id = frame_id_build (mn10300_frame_base (this_frame,
1107 this_prologue_cache),
1108 get_frame_func (this_frame));
1112 static struct value *
1113 mn10300_frame_prev_register (struct frame_info *this_frame,
1114 void **this_prologue_cache, int regnum)
1116 struct mn10300_prologue *p
1117 = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
1118 CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache);
1120 if (regnum == E_SP_REGNUM)
1121 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1123 /* If prologue analysis says we saved this register somewhere,
1124 return a description of the stack slot holding it. */
1125 if (p->reg_offset[regnum] != 1)
1126 return frame_unwind_got_memory (this_frame, regnum,
1127 frame_base + p->reg_offset[regnum]);
1129 /* Otherwise, presume we haven't changed the value of this
1130 register, and get it from the next frame. */
1131 return frame_unwind_got_register (this_frame, regnum, regnum);
1134 static const struct frame_unwind mn10300_frame_unwind = {
1135 NORMAL_FRAME,
1136 default_frame_unwind_stop_reason,
1137 mn10300_frame_this_id,
1138 mn10300_frame_prev_register,
1139 NULL,
1140 default_frame_sniffer
1143 static void
1144 mn10300_frame_unwind_init (struct gdbarch *gdbarch)
1146 dwarf2_append_unwinders (gdbarch);
1147 frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind);
1150 /* Function: push_dummy_call
1152 * Set up machine state for a target call, including
1153 * function arguments, stack, return address, etc.
1157 static CORE_ADDR
1158 mn10300_push_dummy_call (struct gdbarch *gdbarch,
1159 struct value *target_func,
1160 struct regcache *regcache,
1161 CORE_ADDR bp_addr,
1162 int nargs, struct value **args,
1163 CORE_ADDR sp,
1164 function_call_return_method return_method,
1165 CORE_ADDR struct_addr)
1167 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1168 const int push_size = register_size (gdbarch, E_PC_REGNUM);
1169 int regs_used;
1170 int len, arg_len;
1171 int stack_offset = 0;
1172 int argnum;
1173 const gdb_byte *val;
1174 gdb_byte valbuf[MN10300_MAX_REGISTER_SIZE];
1176 /* This should be a nop, but align the stack just in case something
1177 went wrong. Stacks are four byte aligned on the mn10300. */
1178 sp &= ~3;
1180 /* Now make space on the stack for the args.
1182 XXX This doesn't appear to handle pass-by-invisible reference
1183 arguments. */
1184 regs_used = (return_method == return_method_struct) ? 1 : 0;
1185 for (len = 0, argnum = 0; argnum < nargs; argnum++)
1187 arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
1188 while (regs_used < 2 && arg_len > 0)
1190 regs_used++;
1191 arg_len -= push_size;
1193 len += arg_len;
1196 /* Allocate stack space. */
1197 sp -= len;
1199 if (return_method == return_method_struct)
1201 regs_used = 1;
1202 regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr);
1204 else
1205 regs_used = 0;
1207 /* Push all arguments onto the stack. */
1208 for (argnum = 0; argnum < nargs; argnum++)
1210 /* FIXME what about structs? Unions? */
1211 if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
1212 && TYPE_LENGTH (value_type (*args)) > 8)
1214 /* Change to pointer-to-type. */
1215 arg_len = push_size;
1216 gdb_assert (push_size <= MN10300_MAX_REGISTER_SIZE);
1217 store_unsigned_integer (valbuf, push_size, byte_order,
1218 value_address (*args));
1219 val = &valbuf[0];
1221 else
1223 arg_len = TYPE_LENGTH (value_type (*args));
1224 val = value_contents (*args);
1227 while (regs_used < 2 && arg_len > 0)
1229 regcache_cooked_write_unsigned (regcache, regs_used,
1230 extract_unsigned_integer (val, push_size, byte_order));
1231 val += push_size;
1232 arg_len -= push_size;
1233 regs_used++;
1236 while (arg_len > 0)
1238 write_memory (sp + stack_offset, val, push_size);
1239 arg_len -= push_size;
1240 val += push_size;
1241 stack_offset += push_size;
1244 args++;
1247 /* Make space for the flushback area. */
1248 sp -= 8;
1250 /* Push the return address that contains the magic breakpoint. */
1251 sp -= 4;
1252 write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr);
1254 /* The CPU also writes the return address always into the
1255 MDR register on "call". */
1256 regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr);
1258 /* Update $sp. */
1259 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1261 /* On the mn10300, it's possible to move some of the stack adjustment
1262 and saving of the caller-save registers out of the prologue and
1263 into the call sites. (When using gcc, this optimization can
1264 occur when using the -mrelax switch.) If this occurs, the dwarf2
1265 info will reflect this fact. We can test to see if this is the
1266 case by creating a new frame using the current stack pointer and
1267 the address of the function that we're about to call. We then
1268 unwind SP and see if it's different than the SP of our newly
1269 created frame. If the SP values are the same, the caller is not
1270 expected to allocate any additional stack. On the other hand, if
1271 the SP values are different, the difference determines the
1272 additional stack that must be allocated.
1274 Note that we don't update the return value though because that's
1275 the value of the stack just after pushing the arguments, but prior
1276 to performing the call. This value is needed in order to
1277 construct the frame ID of the dummy call. */
1279 CORE_ADDR func_addr = find_function_addr (target_func, NULL);
1280 CORE_ADDR unwound_sp
1281 = gdbarch_unwind_sp (gdbarch, create_new_frame (sp, func_addr));
1282 if (sp != unwound_sp)
1283 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM,
1284 sp - (unwound_sp - sp));
1287 return sp;
1290 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
1291 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
1292 register number. Why don't Dwarf2 and GDB use the same numbering?
1293 Who knows? But since people have object files lying around with
1294 the existing Dwarf2 numbering, and other people have written stubs
1295 to work with the existing GDB, neither of them can change. So we
1296 just have to cope. */
1297 static int
1298 mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2)
1300 /* This table is supposed to be shaped like the gdbarch_register_name
1301 initializer in gcc/config/mn10300/mn10300.h. Registers which
1302 appear in GCC's numbering, but have no counterpart in GDB's
1303 world, are marked with a -1. */
1304 static int dwarf2_to_gdb[] = {
1305 E_D0_REGNUM, E_D1_REGNUM, E_D2_REGNUM, E_D3_REGNUM,
1306 E_A0_REGNUM, E_A1_REGNUM, E_A2_REGNUM, E_A3_REGNUM,
1307 -1, E_SP_REGNUM,
1309 E_E0_REGNUM, E_E1_REGNUM, E_E2_REGNUM, E_E3_REGNUM,
1310 E_E4_REGNUM, E_E5_REGNUM, E_E6_REGNUM, E_E7_REGNUM,
1312 E_FS0_REGNUM + 0, E_FS0_REGNUM + 1, E_FS0_REGNUM + 2, E_FS0_REGNUM + 3,
1313 E_FS0_REGNUM + 4, E_FS0_REGNUM + 5, E_FS0_REGNUM + 6, E_FS0_REGNUM + 7,
1315 E_FS0_REGNUM + 8, E_FS0_REGNUM + 9, E_FS0_REGNUM + 10, E_FS0_REGNUM + 11,
1316 E_FS0_REGNUM + 12, E_FS0_REGNUM + 13, E_FS0_REGNUM + 14, E_FS0_REGNUM + 15,
1318 E_FS0_REGNUM + 16, E_FS0_REGNUM + 17, E_FS0_REGNUM + 18, E_FS0_REGNUM + 19,
1319 E_FS0_REGNUM + 20, E_FS0_REGNUM + 21, E_FS0_REGNUM + 22, E_FS0_REGNUM + 23,
1321 E_FS0_REGNUM + 24, E_FS0_REGNUM + 25, E_FS0_REGNUM + 26, E_FS0_REGNUM + 27,
1322 E_FS0_REGNUM + 28, E_FS0_REGNUM + 29, E_FS0_REGNUM + 30, E_FS0_REGNUM + 31,
1324 E_MDR_REGNUM, E_PSW_REGNUM, E_PC_REGNUM
1327 if (dwarf2 < 0
1328 || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb))
1329 return -1;
1331 return dwarf2_to_gdb[dwarf2];
1334 static struct gdbarch *
1335 mn10300_gdbarch_init (struct gdbarch_info info,
1336 struct gdbarch_list *arches)
1338 struct gdbarch *gdbarch;
1339 struct gdbarch_tdep *tdep;
1340 int num_regs;
1342 arches = gdbarch_list_lookup_by_info (arches, &info);
1343 if (arches != NULL)
1344 return arches->gdbarch;
1346 tdep = XCNEW (struct gdbarch_tdep);
1347 gdbarch = gdbarch_alloc (&info, tdep);
1349 switch (info.bfd_arch_info->mach)
1351 case 0:
1352 case bfd_mach_mn10300:
1353 set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
1354 tdep->am33_mode = 0;
1355 num_regs = 32;
1356 break;
1357 case bfd_mach_am33:
1358 set_gdbarch_register_name (gdbarch, am33_register_name);
1359 tdep->am33_mode = 1;
1360 num_regs = 32;
1361 break;
1362 case bfd_mach_am33_2:
1363 set_gdbarch_register_name (gdbarch, am33_2_register_name);
1364 tdep->am33_mode = 2;
1365 num_regs = 64;
1366 set_gdbarch_fp0_regnum (gdbarch, 32);
1367 break;
1368 default:
1369 internal_error (__FILE__, __LINE__,
1370 _("mn10300_gdbarch_init: Unknown mn10300 variant"));
1371 break;
1374 /* By default, chars are unsigned. */
1375 set_gdbarch_char_signed (gdbarch, 0);
1377 /* Registers. */
1378 set_gdbarch_num_regs (gdbarch, num_regs);
1379 set_gdbarch_register_type (gdbarch, mn10300_register_type);
1380 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1381 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1382 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1383 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1385 /* Stack unwinding. */
1386 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1387 /* Breakpoints. */
1388 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1389 mn10300_breakpoint::kind_from_pc);
1390 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1391 mn10300_breakpoint::bp_from_kind);
1392 /* decr_pc_after_break? */
1394 /* Stage 2 */
1395 set_gdbarch_return_value (gdbarch, mn10300_return_value);
1397 /* Stage 3 -- get target calls working. */
1398 set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
1399 /* set_gdbarch_return_value (store, extract) */
1402 mn10300_frame_unwind_init (gdbarch);
1404 /* Hook in ABI-specific overrides, if they have been registered. */
1405 gdbarch_init_osabi (info, gdbarch);
1407 return gdbarch;
1410 /* Dump out the mn10300 specific architecture information. */
1412 static void
1413 mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1416 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1417 tdep->am33_mode);
1420 void
1421 _initialize_mn10300_tdep (void)
1423 gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);