1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993-1997, 1998 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 static reloc_howto_type
*elf_i386_reloc_type_lookup
27 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
28 static void elf_i386_info_to_howto
29 PARAMS ((bfd
*, arelent
*, Elf32_Internal_Rela
*));
30 static void elf_i386_info_to_howto_rel
31 PARAMS ((bfd
*, arelent
*, Elf32_Internal_Rel
*));
32 static boolean elf_i386_is_local_label_name
PARAMS ((bfd
*, const char *));
33 static struct bfd_hash_entry
*elf_i386_link_hash_newfunc
34 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
35 static struct bfd_link_hash_table
*elf_i386_link_hash_table_create
37 static boolean elf_i386_check_relocs
38 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
39 const Elf_Internal_Rela
*));
40 static boolean elf_i386_adjust_dynamic_symbol
41 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
42 static boolean elf_i386_size_dynamic_sections
43 PARAMS ((bfd
*, struct bfd_link_info
*));
44 static boolean elf_i386_relocate_section
45 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
46 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
47 static boolean elf_i386_finish_dynamic_symbol
48 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
50 static boolean elf_i386_finish_dynamic_sections
51 PARAMS ((bfd
*, struct bfd_link_info
*));
53 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
57 static reloc_howto_type elf_howto_table
[]=
59 HOWTO(R_386_NONE
, 0,0, 0,false,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_NONE", true,0x00000000,0x00000000,false),
60 HOWTO(R_386_32
, 0,2,32,false,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_32", true,0xffffffff,0xffffffff,false),
61 HOWTO(R_386_PC32
, 0,2,32,true, 0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_PC32", true,0xffffffff,0xffffffff,true),
62 HOWTO(R_386_GOT32
, 0,2,32,false,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_GOT32", true,0xffffffff,0xffffffff,false),
63 HOWTO(R_386_PLT32
, 0,2,32,true,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_PLT32", true,0xffffffff,0xffffffff,true),
64 HOWTO(R_386_COPY
, 0,2,32,false,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_COPY", true,0xffffffff,0xffffffff,false),
65 HOWTO(R_386_GLOB_DAT
, 0,2,32,false,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_GLOB_DAT", true,0xffffffff,0xffffffff,false),
66 HOWTO(R_386_JUMP_SLOT
, 0,2,32,false,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_JUMP_SLOT",true,0xffffffff,0xffffffff,false),
67 HOWTO(R_386_RELATIVE
, 0,2,32,false,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_RELATIVE", true,0xffffffff,0xffffffff,false),
68 HOWTO(R_386_GOTOFF
, 0,2,32,false,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_GOTOFF", true,0xffffffff,0xffffffff,false),
69 HOWTO(R_386_GOTPC
, 0,2,32,true,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_GOTPC", true,0xffffffff,0xffffffff,true),
79 /* The remaining relocs are a GNU extension. */
80 HOWTO(R_386_16
, 0,1,16,false,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_16", true,0xffff,0xffff,false),
81 HOWTO(R_386_PC16
, 0,1,16,true, 0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_PC16", true,0xffff,0xffff,true),
82 HOWTO(R_386_8
, 0,0,8,false,0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_8", true,0xff,0xff,false),
83 HOWTO(R_386_PC8
, 0,0,8,true, 0,complain_overflow_bitfield
, bfd_elf_generic_reloc
,"R_386_PC8", true,0xff,0xff,true),
86 /* GNU extension to record C++ vtable hierarchy. */
87 static reloc_howto_type elf32_i386_vtinherit_howto
=
88 HOWTO (R_386_GNU_VTINHERIT
, /* type */
90 2, /* size (0 = byte, 1 = short, 2 = long) */
92 false, /* pc_relative */
94 complain_overflow_dont
, /* complain_on_overflow */
95 NULL
, /* special_function */
96 "R_386_GNU_VTINHERIT", /* name */
97 false, /* partial_inplace */
102 /* GNU extension to record C++ vtable member usage. */
103 static reloc_howto_type elf32_i386_vtentry_howto
=
104 HOWTO (R_386_GNU_VTENTRY
, /* type */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
108 false, /* pc_relative */
110 complain_overflow_dont
, /* complain_on_overflow */
111 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
112 "R_386_GNU_VTENTRY", /* name */
113 false, /* partial_inplace */
118 #ifdef DEBUG_GEN_RELOC
119 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
124 static reloc_howto_type
*
125 elf_i386_reloc_type_lookup (abfd
, code
)
127 bfd_reloc_code_real_type code
;
132 TRACE ("BFD_RELOC_NONE");
133 return &elf_howto_table
[ (int)R_386_NONE
];
136 TRACE ("BFD_RELOC_32");
137 return &elf_howto_table
[ (int)R_386_32
];
139 case BFD_RELOC_32_PCREL
:
140 TRACE ("BFD_RELOC_PC32");
141 return &elf_howto_table
[ (int)R_386_PC32
];
143 case BFD_RELOC_386_GOT32
:
144 TRACE ("BFD_RELOC_386_GOT32");
145 return &elf_howto_table
[ (int)R_386_GOT32
];
147 case BFD_RELOC_386_PLT32
:
148 TRACE ("BFD_RELOC_386_PLT32");
149 return &elf_howto_table
[ (int)R_386_PLT32
];
151 case BFD_RELOC_386_COPY
:
152 TRACE ("BFD_RELOC_386_COPY");
153 return &elf_howto_table
[ (int)R_386_COPY
];
155 case BFD_RELOC_386_GLOB_DAT
:
156 TRACE ("BFD_RELOC_386_GLOB_DAT");
157 return &elf_howto_table
[ (int)R_386_GLOB_DAT
];
159 case BFD_RELOC_386_JUMP_SLOT
:
160 TRACE ("BFD_RELOC_386_JUMP_SLOT");
161 return &elf_howto_table
[ (int)R_386_JUMP_SLOT
];
163 case BFD_RELOC_386_RELATIVE
:
164 TRACE ("BFD_RELOC_386_RELATIVE");
165 return &elf_howto_table
[ (int)R_386_RELATIVE
];
167 case BFD_RELOC_386_GOTOFF
:
168 TRACE ("BFD_RELOC_386_GOTOFF");
169 return &elf_howto_table
[ (int)R_386_GOTOFF
];
171 case BFD_RELOC_386_GOTPC
:
172 TRACE ("BFD_RELOC_386_GOTPC");
173 return &elf_howto_table
[ (int)R_386_GOTPC
];
175 /* The remaining relocs are a GNU extension. */
177 TRACE ("BFD_RELOC_16");
178 return &elf_howto_table
[(int) R_386_16
];
180 case BFD_RELOC_16_PCREL
:
181 TRACE ("BFD_RELOC_16_PCREL");
182 return &elf_howto_table
[(int) R_386_PC16
];
185 TRACE ("BFD_RELOC_8");
186 return &elf_howto_table
[(int) R_386_8
];
188 case BFD_RELOC_8_PCREL
:
189 TRACE ("BFD_RELOC_8_PCREL");
190 return &elf_howto_table
[(int) R_386_PC8
];
192 case BFD_RELOC_VTABLE_INHERIT
:
193 TRACE ("BFD_RELOC_VTABLE_INHERIT");
194 return &elf32_i386_vtinherit_howto
;
196 case BFD_RELOC_VTABLE_ENTRY
:
197 TRACE ("BFD_RELOC_VTABLE_ENTRY");
198 return &elf32_i386_vtentry_howto
;
209 elf_i386_info_to_howto (abfd
, cache_ptr
, dst
)
212 Elf32_Internal_Rela
*dst
;
218 elf_i386_info_to_howto_rel (abfd
, cache_ptr
, dst
)
221 Elf32_Internal_Rel
*dst
;
223 enum elf_i386_reloc_type type
;
225 type
= (enum elf_i386_reloc_type
) ELF32_R_TYPE (dst
->r_info
);
226 if (type
== R_386_GNU_VTINHERIT
)
227 cache_ptr
->howto
= &elf32_i386_vtinherit_howto
;
228 else if (type
== R_386_GNU_VTENTRY
)
229 cache_ptr
->howto
= &elf32_i386_vtentry_howto
;
232 BFD_ASSERT (type
< R_386_max
);
233 BFD_ASSERT (type
< FIRST_INVALID_RELOC
|| type
> LAST_INVALID_RELOC
);
234 cache_ptr
->howto
= &elf_howto_table
[(int) type
];
238 /* Return whether a symbol name implies a local label. The UnixWare
239 2.1 cc generates temporary symbols that start with .X, so we
240 recognize them here. FIXME: do other SVR4 compilers also use .X?.
241 If so, we should move the .X recognition into
242 _bfd_elf_is_local_label_name. */
245 elf_i386_is_local_label_name (abfd
, name
)
249 if (name
[0] == '.' && name
[1] == 'X')
252 return _bfd_elf_is_local_label_name (abfd
, name
);
255 /* Functions for the i386 ELF linker. */
257 /* The name of the dynamic interpreter. This is put in the .interp
260 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
262 /* The size in bytes of an entry in the procedure linkage table. */
264 #define PLT_ENTRY_SIZE 16
266 /* The first entry in an absolute procedure linkage table looks like
267 this. See the SVR4 ABI i386 supplement to see how this works. */
269 static const bfd_byte elf_i386_plt0_entry
[PLT_ENTRY_SIZE
] =
271 0xff, 0x35, /* pushl contents of address */
272 0, 0, 0, 0, /* replaced with address of .got + 4. */
273 0xff, 0x25, /* jmp indirect */
274 0, 0, 0, 0, /* replaced with address of .got + 8. */
275 0, 0, 0, 0 /* pad out to 16 bytes. */
278 /* Subsequent entries in an absolute procedure linkage table look like
281 static const bfd_byte elf_i386_plt_entry
[PLT_ENTRY_SIZE
] =
283 0xff, 0x25, /* jmp indirect */
284 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
285 0x68, /* pushl immediate */
286 0, 0, 0, 0, /* replaced with offset into relocation table. */
287 0xe9, /* jmp relative */
288 0, 0, 0, 0 /* replaced with offset to start of .plt. */
291 /* The first entry in a PIC procedure linkage table look like this. */
293 static const bfd_byte elf_i386_pic_plt0_entry
[PLT_ENTRY_SIZE
] =
295 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
296 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
297 0, 0, 0, 0 /* pad out to 16 bytes. */
300 /* Subsequent entries in a PIC procedure linkage table look like this. */
302 static const bfd_byte elf_i386_pic_plt_entry
[PLT_ENTRY_SIZE
] =
304 0xff, 0xa3, /* jmp *offset(%ebx) */
305 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
306 0x68, /* pushl immediate */
307 0, 0, 0, 0, /* replaced with offset into relocation table. */
308 0xe9, /* jmp relative */
309 0, 0, 0, 0 /* replaced with offset to start of .plt. */
312 /* The i386 linker needs to keep track of the number of relocs that it
313 decides to copy in check_relocs for each symbol. This is so that
314 it can discard PC relative relocs if it doesn't need them when
315 linking with -Bsymbolic. We store the information in a field
316 extending the regular ELF linker hash table. */
318 /* This structure keeps track of the number of PC relative relocs we
319 have copied for a given symbol. */
321 struct elf_i386_pcrel_relocs_copied
324 struct elf_i386_pcrel_relocs_copied
*next
;
325 /* A section in dynobj. */
327 /* Number of relocs copied in this section. */
331 /* i386 ELF linker hash entry. */
333 struct elf_i386_link_hash_entry
335 struct elf_link_hash_entry root
;
337 /* Number of PC relative relocs copied for this symbol. */
338 struct elf_i386_pcrel_relocs_copied
*pcrel_relocs_copied
;
341 /* i386 ELF linker hash table. */
343 struct elf_i386_link_hash_table
345 struct elf_link_hash_table root
;
348 /* Declare this now that the above structures are defined. */
350 static boolean elf_i386_discard_copies
351 PARAMS ((struct elf_i386_link_hash_entry
*, PTR
));
353 /* Traverse an i386 ELF linker hash table. */
355 #define elf_i386_link_hash_traverse(table, func, info) \
356 (elf_link_hash_traverse \
358 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
361 /* Get the i386 ELF linker hash table from a link_info structure. */
363 #define elf_i386_hash_table(p) \
364 ((struct elf_i386_link_hash_table *) ((p)->hash))
366 /* Create an entry in an i386 ELF linker hash table. */
368 static struct bfd_hash_entry
*
369 elf_i386_link_hash_newfunc (entry
, table
, string
)
370 struct bfd_hash_entry
*entry
;
371 struct bfd_hash_table
*table
;
374 struct elf_i386_link_hash_entry
*ret
=
375 (struct elf_i386_link_hash_entry
*) entry
;
377 /* Allocate the structure if it has not already been allocated by a
379 if (ret
== (struct elf_i386_link_hash_entry
*) NULL
)
380 ret
= ((struct elf_i386_link_hash_entry
*)
381 bfd_hash_allocate (table
,
382 sizeof (struct elf_i386_link_hash_entry
)));
383 if (ret
== (struct elf_i386_link_hash_entry
*) NULL
)
384 return (struct bfd_hash_entry
*) ret
;
386 /* Call the allocation method of the superclass. */
387 ret
= ((struct elf_i386_link_hash_entry
*)
388 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
390 if (ret
!= (struct elf_i386_link_hash_entry
*) NULL
)
392 ret
->pcrel_relocs_copied
= NULL
;
395 return (struct bfd_hash_entry
*) ret
;
398 /* Create an i386 ELF linker hash table. */
400 static struct bfd_link_hash_table
*
401 elf_i386_link_hash_table_create (abfd
)
404 struct elf_i386_link_hash_table
*ret
;
406 ret
= ((struct elf_i386_link_hash_table
*)
407 bfd_alloc (abfd
, sizeof (struct elf_i386_link_hash_table
)));
408 if (ret
== (struct elf_i386_link_hash_table
*) NULL
)
411 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
412 elf_i386_link_hash_newfunc
))
414 bfd_release (abfd
, ret
);
418 return &ret
->root
.root
;
421 /* Look through the relocs for a section during the first phase, and
422 allocate space in the global offset table or procedure linkage
426 elf_i386_check_relocs (abfd
, info
, sec
, relocs
)
428 struct bfd_link_info
*info
;
430 const Elf_Internal_Rela
*relocs
;
433 Elf_Internal_Shdr
*symtab_hdr
;
434 struct elf_link_hash_entry
**sym_hashes
;
435 bfd_vma
*local_got_offsets
;
436 const Elf_Internal_Rela
*rel
;
437 const Elf_Internal_Rela
*rel_end
;
442 if (info
->relocateable
)
445 dynobj
= elf_hash_table (info
)->dynobj
;
446 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
447 sym_hashes
= elf_sym_hashes (abfd
);
448 local_got_offsets
= elf_local_got_offsets (abfd
);
454 rel_end
= relocs
+ sec
->reloc_count
;
455 for (rel
= relocs
; rel
< rel_end
; rel
++)
457 unsigned long r_symndx
;
458 struct elf_link_hash_entry
*h
;
460 r_symndx
= ELF32_R_SYM (rel
->r_info
);
462 if (r_symndx
< symtab_hdr
->sh_info
)
465 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
467 /* Some relocs require a global offset table. */
470 switch (ELF32_R_TYPE (rel
->r_info
))
475 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
476 if (! _bfd_elf_create_got_section (dynobj
, info
))
485 switch (ELF32_R_TYPE (rel
->r_info
))
488 /* This symbol requires a global offset table entry. */
492 sgot
= bfd_get_section_by_name (dynobj
, ".got");
493 BFD_ASSERT (sgot
!= NULL
);
497 && (h
!= NULL
|| info
->shared
))
499 const char *srelgot_name
;
501 srelgot_name
= info
->combine_reloc
? ".gnu.reloc" : ".rel.got";
503 srelgot
= bfd_get_section_by_name (dynobj
, srelgot_name
);
506 srelgot
= bfd_make_section (dynobj
, srelgot_name
);
508 || ! bfd_set_section_flags (dynobj
, srelgot
,
515 || ! bfd_set_section_alignment (dynobj
, srelgot
, 2))
522 if (h
->got
.offset
!= (bfd_vma
) -1)
524 /* We have already allocated space in the .got. */
527 h
->got
.offset
= sgot
->_raw_size
;
529 /* Make sure this symbol is output as a dynamic symbol. */
530 if (h
->dynindx
== -1)
532 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
536 srelgot
->_raw_size
+= sizeof (Elf32_External_Rel
);
540 /* This is a global offset table entry for a local
542 if (local_got_offsets
== NULL
)
545 register unsigned int i
;
547 size
= symtab_hdr
->sh_info
* sizeof (bfd_vma
);
548 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
549 if (local_got_offsets
== NULL
)
551 elf_local_got_offsets (abfd
) = local_got_offsets
;
552 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
553 local_got_offsets
[i
] = (bfd_vma
) -1;
555 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
557 /* We have already allocated space in the .got. */
560 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
564 /* If we are generating a shared object, we need to
565 output a R_386_RELATIVE reloc so that the dynamic
566 linker can adjust this GOT entry. */
567 srelgot
->_raw_size
+= sizeof (Elf32_External_Rel
);
571 sgot
->_raw_size
+= 4;
576 /* This symbol requires a procedure linkage table entry. We
577 actually build the entry in adjust_dynamic_symbol,
578 because this might be a case of linking PIC code which is
579 never referenced by a dynamic object, in which case we
580 don't need to generate a procedure linkage table entry
583 /* If this is a local symbol, we resolve it directly without
584 creating a procedure linkage table entry. */
588 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
594 /* If we are creating a shared library, and this is a reloc
595 against a global symbol, or a non PC relative reloc
596 against a local symbol, then we need to copy the reloc
597 into the shared library. However, if we are linking with
598 -Bsymbolic, we do not need to copy a reloc against a
599 global symbol which is defined in an object we are
600 including in the link (i.e., DEF_REGULAR is set). At
601 this point we have not seen all the input files, so it is
602 possible that DEF_REGULAR is not set now but will be set
603 later (it is never cleared). We account for that
604 possibility below by storing information in the
605 pcrel_relocs_copied field of the hash table entry. */
607 && (sec
->flags
& SEC_ALLOC
) != 0
608 && (ELF32_R_TYPE (rel
->r_info
) != R_386_PC32
611 || (h
->elf_link_hash_flags
612 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
614 /* When creating a shared object, we must copy these
615 reloc types into the output file. We create a reloc
616 section in dynobj and make room for this reloc. */
621 name
= (bfd_elf_string_from_elf_section
623 elf_elfheader (abfd
)->e_shstrndx
,
624 elf_section_data (sec
)->rel_hdr
.sh_name
));
628 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
629 && strcmp (bfd_get_section_name (abfd
, sec
),
632 if (info
->combine_reloc
)
633 /* If we combine the relocation sections use change
637 sreloc
= bfd_get_section_by_name (dynobj
, name
);
642 sreloc
= bfd_make_section (dynobj
, name
);
643 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
644 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
645 if ((sec
->flags
& SEC_ALLOC
) != 0)
646 flags
|= SEC_ALLOC
| SEC_LOAD
;
648 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
649 || ! bfd_set_section_alignment (dynobj
, sreloc
, 2))
654 sreloc
->_raw_size
+= sizeof (Elf32_External_Rel
);
656 /* If we are linking with -Bsymbolic, and this is a
657 global symbol, we count the number of PC relative
658 relocations we have entered for this symbol, so that
659 we can discard them again if the symbol is later
660 defined by a regular object. Note that this function
661 is only called if we are using an elf_i386 linker
662 hash table, which means that h is really a pointer to
663 an elf_i386_link_hash_entry. */
664 if (h
!= NULL
&& info
->symbolic
665 && ELF32_R_TYPE (rel
->r_info
) == R_386_PC32
)
667 struct elf_i386_link_hash_entry
*eh
;
668 struct elf_i386_pcrel_relocs_copied
*p
;
670 eh
= (struct elf_i386_link_hash_entry
*) h
;
672 for (p
= eh
->pcrel_relocs_copied
; p
!= NULL
; p
= p
->next
)
673 if (p
->section
== sreloc
)
678 p
= ((struct elf_i386_pcrel_relocs_copied
*)
679 bfd_alloc (dynobj
, sizeof *p
));
682 p
->next
= eh
->pcrel_relocs_copied
;
683 eh
->pcrel_relocs_copied
= p
;
694 /* This relocation describes the C++ object vtable hierarchy.
695 Reconstruct it for later use during GC. */
696 case R_386_GNU_VTINHERIT
:
697 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
701 /* This relocation describes which C++ vtable entries are actually
702 used. Record for later use during GC. */
703 case R_386_GNU_VTENTRY
:
704 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
716 /* Return the section that should be marked against GC for a given
720 elf_i386_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
722 struct bfd_link_info
*info
;
723 Elf_Internal_Rela
*rel
;
724 struct elf_link_hash_entry
*h
;
725 Elf_Internal_Sym
*sym
;
729 switch (ELF32_R_TYPE (rel
->r_info
))
731 case R_386_GNU_VTINHERIT
:
732 case R_386_GNU_VTENTRY
:
736 switch (h
->root
.type
)
738 case bfd_link_hash_defined
:
739 case bfd_link_hash_defweak
:
740 return h
->root
.u
.def
.section
;
742 case bfd_link_hash_common
:
743 return h
->root
.u
.c
.p
->section
;
749 if (!(elf_bad_symtab (abfd
)
750 && ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
751 && ! ((sym
->st_shndx
<= 0 || sym
->st_shndx
>= SHN_LORESERVE
)
752 && sym
->st_shndx
!= SHN_COMMON
))
754 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
761 /* Update the got entry reference counts for the section being removed. */
764 elf_i386_gc_sweep_hook (abfd
, info
, sec
, relocs
)
766 struct bfd_link_info
*info
;
768 const Elf_Internal_Rela
*relocs
;
770 /* ??? It would seem that the existing i386 code does no sort
771 of reference counting or whatnot on its GOT and PLT entries,
772 so it is not possible to garbage collect them at this time. */
777 /* Adjust a symbol defined by a dynamic object and referenced by a
778 regular object. The current definition is in some section of the
779 dynamic object, but we're not including those sections. We have to
780 change the definition to something the rest of the link can
784 elf_i386_adjust_dynamic_symbol (info
, h
)
785 struct bfd_link_info
*info
;
786 struct elf_link_hash_entry
*h
;
790 unsigned int power_of_two
;
792 dynobj
= elf_hash_table (info
)->dynobj
;
794 /* Make sure we know what is going on here. */
795 BFD_ASSERT (dynobj
!= NULL
796 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
797 || h
->weakdef
!= NULL
798 || ((h
->elf_link_hash_flags
799 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
800 && (h
->elf_link_hash_flags
801 & ELF_LINK_HASH_REF_REGULAR
) != 0
802 && (h
->elf_link_hash_flags
803 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
805 /* If this is a function, put it in the procedure linkage table. We
806 will fill in the contents of the procedure linkage table later,
807 when we know the address of the .got section. */
808 if (h
->type
== STT_FUNC
809 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
812 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
813 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) == 0)
815 /* This case can occur if we saw a PLT32 reloc in an input
816 file, but the symbol was never referred to by a dynamic
817 object. In such a case, we don't actually need to build
818 a procedure linkage table, and we can just do a PC32
820 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
824 /* Make sure this symbol is output as a dynamic symbol. */
825 if (h
->dynindx
== -1)
827 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
831 s
= bfd_get_section_by_name (dynobj
, ".plt");
832 BFD_ASSERT (s
!= NULL
);
834 /* If this is the first .plt entry, make room for the special
836 if (s
->_raw_size
== 0)
837 s
->_raw_size
+= PLT_ENTRY_SIZE
;
839 /* If this symbol is not defined in a regular file, and we are
840 not generating a shared library, then set the symbol to this
841 location in the .plt. This is required to make function
842 pointers compare as equal between the normal executable and
843 the shared library. */
845 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
847 h
->root
.u
.def
.section
= s
;
848 h
->root
.u
.def
.value
= s
->_raw_size
;
851 h
->plt
.offset
= s
->_raw_size
;
853 /* Make room for this entry. */
854 s
->_raw_size
+= PLT_ENTRY_SIZE
;
856 /* We also need to make an entry in the .got.plt section, which
857 will be placed in the .got section by the linker script. */
859 s
= bfd_get_section_by_name (dynobj
, ".got.plt");
860 BFD_ASSERT (s
!= NULL
);
863 /* We also need to make an entry in the .rel.plt section. */
865 s
= bfd_get_section_by_name (dynobj
, ".rel.plt");
866 BFD_ASSERT (s
!= NULL
);
867 s
->_raw_size
+= sizeof (Elf32_External_Rel
);
872 /* If this is a weak symbol, and there is a real definition, the
873 processor independent code will have arranged for us to see the
874 real definition first, and we can just use the same value. */
875 if (h
->weakdef
!= NULL
)
877 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
878 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
879 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
880 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
884 /* This is a reference to a symbol defined by a dynamic object which
885 is not a function. */
887 /* If we are creating a shared library, we must presume that the
888 only references to the symbol are via the global offset table.
889 For such cases we need not do anything here; the relocations will
890 be handled correctly by relocate_section. */
894 /* We must allocate the symbol in our .dynbss section, which will
895 become part of the .bss section of the executable. There will be
896 an entry for this symbol in the .dynsym section. The dynamic
897 object will contain position independent code, so all references
898 from the dynamic object to this symbol will go through the global
899 offset table. The dynamic linker will use the .dynsym entry to
900 determine the address it must put in the global offset table, so
901 both the dynamic object and the regular object will refer to the
902 same memory location for the variable. */
904 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
905 BFD_ASSERT (s
!= NULL
);
907 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
908 copy the initial value out of the dynamic object and into the
909 runtime process image. We need to remember the offset into the
910 .rel.bss section we are going to use. */
911 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
914 const char *srel_name
= info
->combine_reloc
? ".gnu.reloc" : ".rel.bss";
916 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
917 BFD_ASSERT (srel
!= NULL
);
918 srel
->_raw_size
+= sizeof (Elf32_External_Rel
);
919 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
922 /* We need to figure out the alignment required for this symbol. I
923 have no idea how ELF linkers handle this. */
924 power_of_two
= bfd_log2 (h
->size
);
925 if (power_of_two
> 3)
928 /* Apply the required alignment. */
929 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
930 (bfd_size_type
) (1 << power_of_two
));
931 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
933 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
937 /* Define the symbol as being at this point in the section. */
938 h
->root
.u
.def
.section
= s
;
939 h
->root
.u
.def
.value
= s
->_raw_size
;
941 /* Increment the section size to make room for the symbol. */
942 s
->_raw_size
+= h
->size
;
947 /* Set the sizes of the dynamic sections. */
950 elf_i386_size_dynamic_sections (output_bfd
, info
)
952 struct bfd_link_info
*info
;
960 dynobj
= elf_hash_table (info
)->dynobj
;
961 BFD_ASSERT (dynobj
!= NULL
);
963 if (elf_hash_table (info
)->dynamic_sections_created
)
965 /* Set the contents of the .interp section to the interpreter. */
968 s
= bfd_get_section_by_name (dynobj
, ".interp");
969 BFD_ASSERT (s
!= NULL
);
970 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
971 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
976 /* We may have created entries in the .rel.got section.
977 However, if we are not creating the dynamic sections, we will
978 not actually use these entries. Reset the size of .rel.got,
979 which will cause it to get stripped from the output file
981 const char *s_name
= info
->combine_reloc
? ".gnu.reloc" : ".rel.got";
983 s
= bfd_get_section_by_name (dynobj
, s_name
);
988 /* If this is a -Bsymbolic shared link, then we need to discard all
989 PC relative relocs against symbols defined in a regular object.
990 We allocated space for them in the check_relocs routine, but we
991 will not fill them in in the relocate_section routine. */
992 if (info
->shared
&& info
->symbolic
)
993 elf_i386_link_hash_traverse (elf_i386_hash_table (info
),
994 elf_i386_discard_copies
,
997 /* The check_relocs and adjust_dynamic_symbol entry points have
998 determined the sizes of the various dynamic sections. Allocate
1003 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1008 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1011 /* It's OK to base decisions on the section name, because none
1012 of the dynobj section names depend upon the input files. */
1013 name
= bfd_get_section_name (dynobj
, s
);
1017 if (strcmp (name
, ".plt") == 0)
1019 if (s
->_raw_size
== 0)
1021 /* Strip this section if we don't need it; see the
1027 /* Remember whether there is a PLT. */
1031 else if (strncmp (name
, ".rel", 4) == 0
1032 || strcmp (name
, ".gnu.reloc") == 0)
1034 if (s
->_raw_size
== 0)
1036 /* If we don't need this section, strip it from the
1037 output file. This is mostly to handle .rel.bss and
1038 .rel.plt. We must create both sections in
1039 create_dynamic_sections, because they must be created
1040 before the linker maps input sections to output
1041 sections. The linker does that before
1042 adjust_dynamic_symbol is called, and it is that
1043 function which decides whether anything needs to go
1044 into these sections. */
1051 /* Remember whether there are any reloc sections other
1053 if (strcmp (name
, ".rel.plt") != 0)
1055 const char *outname
;
1059 /* If this relocation section applies to a read only
1060 section, then we probably need a DT_TEXTREL
1061 entry. The entries in the .rel.plt section
1062 really apply to the .got section, which we
1063 created ourselves and so know is not readonly. */
1064 outname
= bfd_get_section_name (output_bfd
,
1066 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
1068 && (target
->flags
& SEC_READONLY
) != 0
1069 && (target
->flags
& SEC_ALLOC
) != 0)
1073 /* We use the reloc_count field as a counter if we need
1074 to copy relocs into the output file. */
1078 else if (strncmp (name
, ".got", 4) != 0)
1080 /* It's not one of our sections, so don't allocate space. */
1088 for (spp
= &s
->output_section
->owner
->sections
;
1089 *spp
!= s
->output_section
;
1090 spp
= &(*spp
)->next
)
1092 *spp
= s
->output_section
->next
;
1093 --s
->output_section
->owner
->section_count
;
1098 /* Allocate memory for the section contents. */
1099 s
->contents
= (bfd_byte
*) bfd_alloc (dynobj
, s
->_raw_size
);
1100 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1104 if (elf_hash_table (info
)->dynamic_sections_created
)
1106 /* Add some entries to the .dynamic section. We fill in the
1107 values later, in elf_i386_finish_dynamic_sections, but we
1108 must add the entries now so that we get the correct size for
1109 the .dynamic section. The DT_DEBUG entry is filled in by the
1110 dynamic linker and used by the debugger. */
1113 if (! bfd_elf32_add_dynamic_entry (info
, DT_DEBUG
, 0))
1119 if (! bfd_elf32_add_dynamic_entry (info
, DT_PLTGOT
, 0)
1120 || ! bfd_elf32_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
1121 || ! bfd_elf32_add_dynamic_entry (info
, DT_PLTREL
, DT_REL
)
1122 || ! bfd_elf32_add_dynamic_entry (info
, DT_JMPREL
, 0))
1128 if (! bfd_elf32_add_dynamic_entry (info
, DT_REL
, 0)
1129 || ! bfd_elf32_add_dynamic_entry (info
, DT_RELSZ
, 0)
1130 || ! bfd_elf32_add_dynamic_entry (info
, DT_RELENT
,
1131 sizeof (Elf32_External_Rel
)))
1137 if (! bfd_elf32_add_dynamic_entry (info
, DT_TEXTREL
, 0))
1145 /* This function is called via elf_i386_link_hash_traverse if we are
1146 creating a shared object with -Bsymbolic. It discards the space
1147 allocated to copy PC relative relocs against symbols which are
1148 defined in regular objects. We allocated space for them in the
1149 check_relocs routine, but we won't fill them in in the
1150 relocate_section routine. */
1154 elf_i386_discard_copies (h
, ignore
)
1155 struct elf_i386_link_hash_entry
*h
;
1158 struct elf_i386_pcrel_relocs_copied
*s
;
1160 /* We only discard relocs for symbols defined in a regular object. */
1161 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1164 for (s
= h
->pcrel_relocs_copied
; s
!= NULL
; s
= s
->next
)
1165 s
->section
->_raw_size
-= s
->count
* sizeof (Elf32_External_Rel
);
1170 /* Relocate an i386 ELF section. */
1173 elf_i386_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1174 contents
, relocs
, local_syms
, local_sections
)
1176 struct bfd_link_info
*info
;
1178 asection
*input_section
;
1180 Elf_Internal_Rela
*relocs
;
1181 Elf_Internal_Sym
*local_syms
;
1182 asection
**local_sections
;
1185 Elf_Internal_Shdr
*symtab_hdr
;
1186 struct elf_link_hash_entry
**sym_hashes
;
1187 bfd_vma
*local_got_offsets
;
1191 Elf_Internal_Rela
*rel
;
1192 Elf_Internal_Rela
*relend
;
1194 dynobj
= elf_hash_table (info
)->dynobj
;
1195 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1196 sym_hashes
= elf_sym_hashes (input_bfd
);
1197 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1204 relend
= relocs
+ input_section
->reloc_count
;
1205 for (; rel
< relend
; rel
++)
1208 reloc_howto_type
*howto
;
1209 unsigned long r_symndx
;
1210 struct elf_link_hash_entry
*h
;
1211 Elf_Internal_Sym
*sym
;
1214 bfd_reloc_status_type r
;
1216 r_type
= ELF32_R_TYPE (rel
->r_info
);
1217 if (r_type
== R_386_GNU_VTINHERIT
1218 || r_type
== R_386_GNU_VTENTRY
)
1221 || r_type
>= (int) R_386_max
1222 || (r_type
>= (int) FIRST_INVALID_RELOC
1223 && r_type
<= (int) LAST_INVALID_RELOC
))
1225 bfd_set_error (bfd_error_bad_value
);
1228 howto
= elf_howto_table
+ r_type
;
1230 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1232 if (info
->relocateable
)
1234 /* This is a relocateable link. We don't have to change
1235 anything, unless the reloc is against a section symbol,
1236 in which case we have to adjust according to where the
1237 section symbol winds up in the output section. */
1238 if (r_symndx
< symtab_hdr
->sh_info
)
1240 sym
= local_syms
+ r_symndx
;
1241 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1245 sec
= local_sections
[r_symndx
];
1246 val
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
1247 val
+= sec
->output_offset
+ sym
->st_value
;
1248 bfd_put_32 (input_bfd
, val
, contents
+ rel
->r_offset
);
1255 /* This is a final link. */
1259 if (r_symndx
< symtab_hdr
->sh_info
)
1261 sym
= local_syms
+ r_symndx
;
1262 sec
= local_sections
[r_symndx
];
1263 relocation
= (sec
->output_section
->vma
1264 + sec
->output_offset
1269 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1270 while (h
->root
.type
== bfd_link_hash_indirect
1271 || h
->root
.type
== bfd_link_hash_warning
)
1272 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1273 if (h
->root
.type
== bfd_link_hash_defined
1274 || h
->root
.type
== bfd_link_hash_defweak
)
1276 sec
= h
->root
.u
.def
.section
;
1277 if (r_type
== R_386_GOTPC
1278 || (r_type
== R_386_PLT32
1279 && h
->plt
.offset
!= (bfd_vma
) -1)
1280 || (r_type
== R_386_GOT32
1281 && elf_hash_table (info
)->dynamic_sections_created
1283 || (! info
->symbolic
&& h
->dynindx
!= -1)
1284 || (h
->elf_link_hash_flags
1285 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
1287 && ((! info
->symbolic
&& h
->dynindx
!= -1)
1288 || (h
->elf_link_hash_flags
1289 & ELF_LINK_HASH_DEF_REGULAR
) == 0)
1290 && (r_type
== R_386_32
1291 || r_type
== R_386_PC32
)
1292 && ((input_section
->flags
& SEC_ALLOC
) != 0
1293 /* DWARF will emit R_386_32 relocations in its
1294 sections against symbols defined externally
1295 in shared libraries. We can't do anything
1297 || (input_section
->flags
& SEC_DEBUGGING
) != 0)))
1299 /* In these cases, we don't need the relocation
1300 value. We check specially because in some
1301 obscure cases sec->output_section will be NULL. */
1304 else if (sec
->output_section
== NULL
)
1306 (*_bfd_error_handler
)
1307 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1308 bfd_get_filename (input_bfd
), h
->root
.root
.string
,
1309 bfd_get_section_name (input_bfd
, input_section
));
1313 relocation
= (h
->root
.u
.def
.value
1314 + sec
->output_section
->vma
1315 + sec
->output_offset
);
1317 else if (h
->root
.type
== bfd_link_hash_undefweak
)
1319 else if (info
->shared
&& !info
->symbolic
)
1323 if (! ((*info
->callbacks
->undefined_symbol
)
1324 (info
, h
->root
.root
.string
, input_bfd
,
1325 input_section
, rel
->r_offset
)))
1334 /* Relocation is to the entry for this symbol in the global
1338 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1339 BFD_ASSERT (sgot
!= NULL
);
1346 off
= h
->got
.offset
;
1347 BFD_ASSERT (off
!= (bfd_vma
) -1);
1349 if (! elf_hash_table (info
)->dynamic_sections_created
1351 && (info
->symbolic
|| h
->dynindx
== -1)
1352 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
1354 /* This is actually a static link, or it is a
1355 -Bsymbolic link and the symbol is defined
1356 locally, or the symbol was forced to be local
1357 because of a version file. We must initialize
1358 this entry in the global offset table. Since the
1359 offset must always be a multiple of 4, we use the
1360 least significant bit to record whether we have
1361 initialized it already.
1363 When doing a dynamic link, we create a .rel.got
1364 relocation entry to initialize the value. This
1365 is done in the finish_dynamic_symbol routine. */
1370 bfd_put_32 (output_bfd
, relocation
,
1371 sgot
->contents
+ off
);
1376 relocation
= sgot
->output_offset
+ off
;
1382 BFD_ASSERT (local_got_offsets
!= NULL
1383 && local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
1385 off
= local_got_offsets
[r_symndx
];
1387 /* The offset must always be a multiple of 4. We use
1388 the least significant bit to record whether we have
1389 already generated the necessary reloc. */
1394 bfd_put_32 (output_bfd
, relocation
, sgot
->contents
+ off
);
1399 Elf_Internal_Rel outrel
;
1400 const char *srelgot_name
;
1402 srelgot_name
= (info
->combine_reloc
1403 ? ".gnu.reloc" : ".rel.got");
1405 srelgot
= bfd_get_section_by_name (dynobj
, srelgot_name
);
1406 BFD_ASSERT (srelgot
!= NULL
);
1408 outrel
.r_offset
= (sgot
->output_section
->vma
1409 + sgot
->output_offset
1411 outrel
.r_info
= ELF32_R_INFO (0, R_386_RELATIVE
);
1412 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
1413 (((Elf32_External_Rel
*)
1415 + srelgot
->reloc_count
));
1416 ++srelgot
->reloc_count
;
1419 local_got_offsets
[r_symndx
] |= 1;
1422 relocation
= sgot
->output_offset
+ off
;
1428 /* Relocation is relative to the start of the global offset
1433 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1434 BFD_ASSERT (sgot
!= NULL
);
1437 /* Note that sgot->output_offset is not involved in this
1438 calculation. We always want the start of .got. If we
1439 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1440 permitted by the ABI, we might have to change this
1442 relocation
-= sgot
->output_section
->vma
;
1447 /* Use global offset table as symbol value. */
1451 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1452 BFD_ASSERT (sgot
!= NULL
);
1455 relocation
= sgot
->output_section
->vma
;
1460 /* Relocation is to the entry for this symbol in the
1461 procedure linkage table. */
1463 /* Resolve a PLT32 reloc again a local symbol directly,
1464 without using the procedure linkage table. */
1468 if (h
->plt
.offset
== (bfd_vma
) -1)
1470 /* We didn't make a PLT entry for this symbol. This
1471 happens when statically linking PIC code, or when
1472 using -Bsymbolic. */
1478 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1479 BFD_ASSERT (splt
!= NULL
);
1482 relocation
= (splt
->output_section
->vma
1483 + splt
->output_offset
1491 && (input_section
->flags
& SEC_ALLOC
) != 0
1492 && (r_type
!= R_386_PC32
1495 && (! info
->symbolic
1496 || (h
->elf_link_hash_flags
1497 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
1499 Elf_Internal_Rel outrel
;
1500 boolean skip
, relocate
;
1502 /* When generating a shared object, these relocations
1503 are copied into the output file to be resolved at run
1510 name
= (bfd_elf_string_from_elf_section
1512 elf_elfheader (input_bfd
)->e_shstrndx
,
1513 elf_section_data (input_section
)->rel_hdr
.sh_name
));
1517 if (info
->combine_reloc
)
1518 name
= ".gnu.reloc";
1520 BFD_ASSERT ((strncmp (name
, ".rel", 4) == 0
1521 && strcmp (bfd_get_section_name (input_bfd
,
1524 || strcmp (name
, ".gnu.reloc") == 0);
1526 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1527 BFD_ASSERT (sreloc
!= NULL
);
1532 if (elf_section_data (input_section
)->stab_info
== NULL
)
1533 outrel
.r_offset
= rel
->r_offset
;
1538 off
= (_bfd_stab_section_offset
1539 (output_bfd
, &elf_hash_table (info
)->stab_info
,
1541 &elf_section_data (input_section
)->stab_info
,
1543 if (off
== (bfd_vma
) -1)
1545 outrel
.r_offset
= off
;
1548 outrel
.r_offset
+= (input_section
->output_section
->vma
1549 + input_section
->output_offset
);
1553 memset (&outrel
, 0, sizeof outrel
);
1556 else if (r_type
== R_386_PC32
)
1558 BFD_ASSERT (h
!= NULL
&& h
->dynindx
!= -1);
1560 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_386_PC32
);
1564 /* h->dynindx may be -1 if this symbol was marked to
1567 || ((info
->symbolic
|| h
->dynindx
== -1)
1568 && (h
->elf_link_hash_flags
1569 & ELF_LINK_HASH_DEF_REGULAR
) != 0))
1572 outrel
.r_info
= ELF32_R_INFO (0, R_386_RELATIVE
);
1576 BFD_ASSERT (h
->dynindx
!= -1);
1578 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_386_32
);
1582 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
1583 (((Elf32_External_Rel
*)
1585 + sreloc
->reloc_count
));
1586 ++sreloc
->reloc_count
;
1588 /* If this reloc is against an external symbol, we do
1589 not want to fiddle with the addend. Otherwise, we
1590 need to include the symbol value so that it becomes
1591 an addend for the dynamic reloc. */
1602 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1603 contents
, rel
->r_offset
,
1604 relocation
, (bfd_vma
) 0);
1606 if (r
!= bfd_reloc_ok
)
1611 case bfd_reloc_outofrange
:
1613 case bfd_reloc_overflow
:
1618 name
= h
->root
.root
.string
;
1621 name
= bfd_elf_string_from_elf_section (input_bfd
,
1622 symtab_hdr
->sh_link
,
1627 name
= bfd_section_name (input_bfd
, sec
);
1629 if (! ((*info
->callbacks
->reloc_overflow
)
1630 (info
, name
, howto
->name
, (bfd_vma
) 0,
1631 input_bfd
, input_section
, rel
->r_offset
)))
1642 /* Finish up dynamic symbol handling. We set the contents of various
1643 dynamic sections here. */
1646 elf_i386_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
1648 struct bfd_link_info
*info
;
1649 struct elf_link_hash_entry
*h
;
1650 Elf_Internal_Sym
*sym
;
1654 dynobj
= elf_hash_table (info
)->dynobj
;
1656 if (h
->plt
.offset
!= (bfd_vma
) -1)
1663 Elf_Internal_Rel rel
;
1665 /* This symbol has an entry in the procedure linkage table. Set
1668 BFD_ASSERT (h
->dynindx
!= -1);
1670 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1671 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
1672 srel
= bfd_get_section_by_name (dynobj
, ".rel.plt");
1673 BFD_ASSERT (splt
!= NULL
&& sgot
!= NULL
&& srel
!= NULL
);
1675 /* Get the index in the procedure linkage table which
1676 corresponds to this symbol. This is the index of this symbol
1677 in all the symbols for which we are making plt entries. The
1678 first entry in the procedure linkage table is reserved. */
1679 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
1681 /* Get the offset into the .got table of the entry that
1682 corresponds to this function. Each .got entry is 4 bytes.
1683 The first three are reserved. */
1684 got_offset
= (plt_index
+ 3) * 4;
1686 /* Fill in the entry in the procedure linkage table. */
1689 memcpy (splt
->contents
+ h
->plt
.offset
, elf_i386_plt_entry
,
1691 bfd_put_32 (output_bfd
,
1692 (sgot
->output_section
->vma
1693 + sgot
->output_offset
1695 splt
->contents
+ h
->plt
.offset
+ 2);
1699 memcpy (splt
->contents
+ h
->plt
.offset
, elf_i386_pic_plt_entry
,
1701 bfd_put_32 (output_bfd
, got_offset
,
1702 splt
->contents
+ h
->plt
.offset
+ 2);
1705 bfd_put_32 (output_bfd
, plt_index
* sizeof (Elf32_External_Rel
),
1706 splt
->contents
+ h
->plt
.offset
+ 7);
1707 bfd_put_32 (output_bfd
, - (h
->plt
.offset
+ PLT_ENTRY_SIZE
),
1708 splt
->contents
+ h
->plt
.offset
+ 12);
1710 /* Fill in the entry in the global offset table. */
1711 bfd_put_32 (output_bfd
,
1712 (splt
->output_section
->vma
1713 + splt
->output_offset
1716 sgot
->contents
+ got_offset
);
1718 /* Fill in the entry in the .rel.plt section. */
1719 rel
.r_offset
= (sgot
->output_section
->vma
1720 + sgot
->output_offset
1722 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_386_JUMP_SLOT
);
1723 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
1724 ((Elf32_External_Rel
*) srel
->contents
1727 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1729 /* Mark the symbol as undefined, rather than as defined in
1730 the .plt section. Leave the value alone. */
1731 sym
->st_shndx
= SHN_UNDEF
;
1735 if (h
->got
.offset
!= (bfd_vma
) -1)
1739 Elf_Internal_Rel rel
;
1740 const char *srel_name
= info
->combine_reloc
? ".gnu.reloc" : ".rel.got";
1742 /* This symbol has an entry in the global offset table. Set it
1745 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1746 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
1747 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
1749 rel
.r_offset
= (sgot
->output_section
->vma
1750 + sgot
->output_offset
1751 + (h
->got
.offset
&~ 1));
1753 /* If this is a -Bsymbolic link, and the symbol is defined
1754 locally, we just want to emit a RELATIVE reloc. Likewise if
1755 the symbol was forced to be local because of a version file.
1756 The entry in the global offset table will already have been
1757 initialized in the relocate_section function. */
1759 && (info
->symbolic
|| h
->dynindx
== -1)
1760 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
1761 rel
.r_info
= ELF32_R_INFO (0, R_386_RELATIVE
);
1764 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
1765 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_386_GLOB_DAT
);
1768 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
1769 ((Elf32_External_Rel
*) srel
->contents
1770 + srel
->reloc_count
));
1771 ++srel
->reloc_count
;
1774 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
1777 Elf_Internal_Rel rel
;
1778 const char *s_name
= info
->combine_reloc
? ".gnu.reloc" : ".rel.bss";
1780 /* This symbol needs a copy reloc. Set it up. */
1782 BFD_ASSERT (h
->dynindx
!= -1
1783 && (h
->root
.type
== bfd_link_hash_defined
1784 || h
->root
.type
== bfd_link_hash_defweak
));
1786 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
, s_name
);
1787 BFD_ASSERT (s
!= NULL
);
1789 rel
.r_offset
= (h
->root
.u
.def
.value
1790 + h
->root
.u
.def
.section
->output_section
->vma
1791 + h
->root
.u
.def
.section
->output_offset
);
1792 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_386_COPY
);
1793 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
1794 ((Elf32_External_Rel
*) s
->contents
1799 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1800 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
1801 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1802 sym
->st_shndx
= SHN_ABS
;
1807 /* Finish up the dynamic sections. */
1810 elf_i386_finish_dynamic_sections (output_bfd
, info
)
1812 struct bfd_link_info
*info
;
1818 dynobj
= elf_hash_table (info
)->dynobj
;
1820 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
1821 BFD_ASSERT (sgot
!= NULL
);
1822 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
1824 if (elf_hash_table (info
)->dynamic_sections_created
)
1827 Elf32_External_Dyn
*dyncon
, *dynconend
;
1829 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1830 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
1832 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
1833 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
1834 for (; dyncon
< dynconend
; dyncon
++)
1836 Elf_Internal_Dyn dyn
;
1840 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
1853 s
= bfd_get_section_by_name (output_bfd
, name
);
1854 BFD_ASSERT (s
!= NULL
);
1855 dyn
.d_un
.d_ptr
= s
->vma
;
1856 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
1860 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
1861 BFD_ASSERT (s
!= NULL
);
1862 if (s
->_cooked_size
!= 0)
1863 dyn
.d_un
.d_val
= s
->_cooked_size
;
1865 dyn
.d_un
.d_val
= s
->_raw_size
;
1866 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
1870 /* My reading of the SVR4 ABI indicates that the
1871 procedure linkage table relocs (DT_JMPREL) should be
1872 included in the overall relocs (DT_REL). This is
1873 what Solaris does. However, UnixWare can not handle
1874 that case. Therefore, we override the DT_RELSZ entry
1875 here to make it not include the JMPREL relocs. Since
1876 the linker script arranges for .rel.plt to follow all
1877 other relocation sections, we don't have to worry
1878 about changing the DT_REL entry. */
1879 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
1882 if (s
->_cooked_size
!= 0)
1883 dyn
.d_un
.d_val
-= s
->_cooked_size
;
1885 dyn
.d_un
.d_val
-= s
->_raw_size
;
1887 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
1892 /* Fill in the first entry in the procedure linkage table. */
1893 if (splt
->_raw_size
> 0)
1896 memcpy (splt
->contents
, elf_i386_pic_plt0_entry
, PLT_ENTRY_SIZE
);
1899 memcpy (splt
->contents
, elf_i386_plt0_entry
, PLT_ENTRY_SIZE
);
1900 bfd_put_32 (output_bfd
,
1901 sgot
->output_section
->vma
+ sgot
->output_offset
+ 4,
1902 splt
->contents
+ 2);
1903 bfd_put_32 (output_bfd
,
1904 sgot
->output_section
->vma
+ sgot
->output_offset
+ 8,
1905 splt
->contents
+ 8);
1909 /* UnixWare sets the entsize of .plt to 4, although that doesn't
1910 really seem like the right value. */
1911 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
1914 /* Fill in the first three entries in the global offset table. */
1915 if (sgot
->_raw_size
> 0)
1918 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
1920 bfd_put_32 (output_bfd
,
1921 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
1923 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
1924 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
1927 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
1932 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
1933 #define TARGET_LITTLE_NAME "elf32-i386"
1934 #define ELF_ARCH bfd_arch_i386
1935 #define ELF_MACHINE_CODE EM_386
1936 #define ELF_MAXPAGESIZE 0x1000
1937 #define elf_info_to_howto elf_i386_info_to_howto
1938 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
1939 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
1940 #define bfd_elf32_bfd_is_local_label_name \
1941 elf_i386_is_local_label_name
1942 #define elf_backend_create_dynamic_sections \
1943 _bfd_elf_create_dynamic_sections
1944 #define bfd_elf32_bfd_link_hash_table_create \
1945 elf_i386_link_hash_table_create
1946 #define elf_backend_check_relocs elf_i386_check_relocs
1947 #define elf_backend_adjust_dynamic_symbol \
1948 elf_i386_adjust_dynamic_symbol
1949 #define elf_backend_size_dynamic_sections \
1950 elf_i386_size_dynamic_sections
1951 #define elf_backend_relocate_section elf_i386_relocate_section
1952 #define elf_backend_finish_dynamic_symbol \
1953 elf_i386_finish_dynamic_symbol
1954 #define elf_backend_finish_dynamic_sections \
1955 elf_i386_finish_dynamic_sections
1956 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
1957 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
1959 #define elf_backend_can_gc_sections 1
1960 #define elf_backend_want_got_plt 1
1961 #define elf_backend_plt_readonly 1
1962 #define elf_backend_want_plt_sym 0
1963 #define elf_backend_got_header_size 12
1964 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
1966 #include "elf32-target.h"