2 Copyright 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 /* ELF linker code. */
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
25 struct elf_info_failed
28 struct bfd_link_info
*info
;
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd
*, struct bfd_link_info
*));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd
*, struct bfd_link_info
*));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd
*, struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
37 asection
**, bfd_vma
*, struct elf_link_hash_entry
**,
38 boolean
*, boolean
*, boolean
*));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry
*, PTR
));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry
*, struct elf_info_failed
*));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry
*, PTR
));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry
*, PTR
));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry
*, PTR
));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry
*, PTR
));
51 static boolean elf_link_renumber_dynsyms
52 PARAMS ((struct elf_link_hash_entry
*, PTR
));
53 static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry
*, PTR
));
56 /* Given an ELF BFD, add symbols to the global hash table as
60 elf_bfd_link_add_symbols (abfd
, info
)
62 struct bfd_link_info
*info
;
64 switch (bfd_get_format (abfd
))
67 return elf_link_add_object_symbols (abfd
, info
);
69 return elf_link_add_archive_symbols (abfd
, info
);
71 bfd_set_error (bfd_error_wrong_format
);
77 /* Add symbols from an ELF archive file to the linker hash table. We
78 don't use _bfd_generic_link_add_archive_symbols because of a
79 problem which arises on UnixWare. The UnixWare libc.so is an
80 archive which includes an entry libc.so.1 which defines a bunch of
81 symbols. The libc.so archive also includes a number of other
82 object files, which also define symbols, some of which are the same
83 as those defined in libc.so.1. Correct linking requires that we
84 consider each object file in turn, and include it if it defines any
85 symbols we need. _bfd_generic_link_add_archive_symbols does not do
86 this; it looks through the list of undefined symbols, and includes
87 any object file which defines them. When this algorithm is used on
88 UnixWare, it winds up pulling in libc.so.1 early and defining a
89 bunch of symbols. This means that some of the other objects in the
90 archive are not included in the link, which is incorrect since they
91 precede libc.so.1 in the archive.
93 Fortunately, ELF archive handling is simpler than that done by
94 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
95 oddities. In ELF, if we find a symbol in the archive map, and the
96 symbol is currently undefined, we know that we must pull in that
99 Unfortunately, we do have to make multiple passes over the symbol
100 table until nothing further is resolved. */
103 elf_link_add_archive_symbols (abfd
, info
)
105 struct bfd_link_info
*info
;
108 boolean
*defined
= NULL
;
109 boolean
*included
= NULL
;
113 if (! bfd_has_map (abfd
))
115 /* An empty archive is a special case. */
116 if (bfd_openr_next_archived_file (abfd
, (bfd
*) NULL
) == NULL
)
118 bfd_set_error (bfd_error_no_armap
);
122 /* Keep track of all symbols we know to be already defined, and all
123 files we know to be already included. This is to speed up the
124 second and subsequent passes. */
125 c
= bfd_ardata (abfd
)->symdef_count
;
128 defined
= (boolean
*) bfd_malloc (c
* sizeof (boolean
));
129 included
= (boolean
*) bfd_malloc (c
* sizeof (boolean
));
130 if (defined
== (boolean
*) NULL
|| included
== (boolean
*) NULL
)
132 memset (defined
, 0, c
* sizeof (boolean
));
133 memset (included
, 0, c
* sizeof (boolean
));
135 symdefs
= bfd_ardata (abfd
)->symdefs
;
148 symdefend
= symdef
+ c
;
149 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
151 struct elf_link_hash_entry
*h
;
153 struct bfd_link_hash_entry
*undefs_tail
;
156 if (defined
[i
] || included
[i
])
158 if (symdef
->file_offset
== last
)
164 h
= elf_link_hash_lookup (elf_hash_table (info
), symdef
->name
,
165 false, false, false);
171 /* If this is a default version (the name contains @@),
172 look up the symbol again without the version. The
173 effect is that references to the symbol without the
174 version will be matched by the default symbol in the
177 p
= strchr (symdef
->name
, ELF_VER_CHR
);
178 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
181 copy
= bfd_alloc (abfd
, p
- symdef
->name
+ 1);
184 memcpy (copy
, symdef
->name
, p
- symdef
->name
);
185 copy
[p
- symdef
->name
] = '\0';
187 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
188 false, false, false);
190 bfd_release (abfd
, copy
);
196 if (h
->root
.type
!= bfd_link_hash_undefined
)
198 if (h
->root
.type
!= bfd_link_hash_undefweak
)
203 /* We need to include this archive member. */
205 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
206 if (element
== (bfd
*) NULL
)
209 if (! bfd_check_format (element
, bfd_object
))
212 /* Doublecheck that we have not included this object
213 already--it should be impossible, but there may be
214 something wrong with the archive. */
215 if (element
->archive_pass
!= 0)
217 bfd_set_error (bfd_error_bad_value
);
220 element
->archive_pass
= 1;
222 undefs_tail
= info
->hash
->undefs_tail
;
224 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
227 if (! elf_link_add_object_symbols (element
, info
))
230 /* If there are any new undefined symbols, we need to make
231 another pass through the archive in order to see whether
232 they can be defined. FIXME: This isn't perfect, because
233 common symbols wind up on undefs_tail and because an
234 undefined symbol which is defined later on in this pass
235 does not require another pass. This isn't a bug, but it
236 does make the code less efficient than it could be. */
237 if (undefs_tail
!= info
->hash
->undefs_tail
)
240 /* Look backward to mark all symbols from this object file
241 which we have already seen in this pass. */
245 included
[mark
] = true;
250 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
252 /* We mark subsequent symbols from this object file as we go
253 on through the loop. */
254 last
= symdef
->file_offset
;
265 if (defined
!= (boolean
*) NULL
)
267 if (included
!= (boolean
*) NULL
)
272 /* This function is called when we want to define a new symbol. It
273 handles the various cases which arise when we find a definition in
274 a dynamic object, or when there is already a definition in a
275 dynamic object. The new symbol is described by NAME, SYM, PSEC,
276 and PVALUE. We set SYM_HASH to the hash table entry. We set
277 OVERRIDE if the old symbol is overriding a new definition. We set
278 TYPE_CHANGE_OK if it is OK for the type to change. We set
279 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
280 change, we mean that we shouldn't warn if the type or size does
284 elf_merge_symbol (abfd
, info
, name
, sym
, psec
, pvalue
, sym_hash
,
285 override
, type_change_ok
, size_change_ok
)
287 struct bfd_link_info
*info
;
289 Elf_Internal_Sym
*sym
;
292 struct elf_link_hash_entry
**sym_hash
;
294 boolean
*type_change_ok
;
295 boolean
*size_change_ok
;
298 struct elf_link_hash_entry
*h
;
301 boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
306 bind
= ELF_ST_BIND (sym
->st_info
);
308 if (! bfd_is_und_section (sec
))
309 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, false, false);
311 h
= ((struct elf_link_hash_entry
*)
312 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, true, false, false));
317 /* This code is for coping with dynamic objects, and is only useful
318 if we are doing an ELF link. */
319 if (info
->hash
->creator
!= abfd
->xvec
)
322 /* For merging, we only care about real symbols. */
324 while (h
->root
.type
== bfd_link_hash_indirect
325 || h
->root
.type
== bfd_link_hash_warning
)
326 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
328 /* If we just created the symbol, mark it as being an ELF symbol.
329 Other than that, there is nothing to do--there is no merge issue
330 with a newly defined symbol--so we just return. */
332 if (h
->root
.type
== bfd_link_hash_new
)
334 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
338 /* OLDBFD is a BFD associated with the existing symbol. */
340 switch (h
->root
.type
)
346 case bfd_link_hash_undefined
:
347 case bfd_link_hash_undefweak
:
348 oldbfd
= h
->root
.u
.undef
.abfd
;
351 case bfd_link_hash_defined
:
352 case bfd_link_hash_defweak
:
353 oldbfd
= h
->root
.u
.def
.section
->owner
;
356 case bfd_link_hash_common
:
357 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
361 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
362 respectively, is from a dynamic object. */
364 if ((abfd
->flags
& DYNAMIC
) != 0)
369 if (oldbfd
== NULL
|| (oldbfd
->flags
& DYNAMIC
) == 0)
374 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
375 respectively, appear to be a definition rather than reference. */
377 if (bfd_is_und_section (sec
) || bfd_is_com_section (sec
))
382 if (h
->root
.type
== bfd_link_hash_undefined
383 || h
->root
.type
== bfd_link_hash_undefweak
384 || h
->root
.type
== bfd_link_hash_common
)
389 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
390 symbol, respectively, appears to be a common symbol in a dynamic
391 object. If a symbol appears in an uninitialized section, and is
392 not weak, and is not a function, then it may be a common symbol
393 which was resolved when the dynamic object was created. We want
394 to treat such symbols specially, because they raise special
395 considerations when setting the symbol size: if the symbol
396 appears as a common symbol in a regular object, and the size in
397 the regular object is larger, we must make sure that we use the
398 larger size. This problematic case can always be avoided in C,
399 but it must be handled correctly when using Fortran shared
402 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
403 likewise for OLDDYNCOMMON and OLDDEF.
405 Note that this test is just a heuristic, and that it is quite
406 possible to have an uninitialized symbol in a shared object which
407 is really a definition, rather than a common symbol. This could
408 lead to some minor confusion when the symbol really is a common
409 symbol in some regular object. However, I think it will be
414 && (sec
->flags
& SEC_ALLOC
) != 0
415 && (sec
->flags
& SEC_LOAD
) == 0
418 && ELF_ST_TYPE (sym
->st_info
) != STT_FUNC
)
421 newdyncommon
= false;
425 && h
->root
.type
== bfd_link_hash_defined
426 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
427 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
428 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
430 && h
->type
!= STT_FUNC
)
433 olddyncommon
= false;
435 /* It's OK to change the type if either the existing symbol or the
436 new symbol is weak. */
438 if (h
->root
.type
== bfd_link_hash_defweak
439 || h
->root
.type
== bfd_link_hash_undefweak
441 *type_change_ok
= true;
443 /* It's OK to change the size if either the existing symbol or the
444 new symbol is weak, or if the old symbol is undefined. */
447 || h
->root
.type
== bfd_link_hash_undefined
)
448 *size_change_ok
= true;
450 /* If both the old and the new symbols look like common symbols in a
451 dynamic object, set the size of the symbol to the larger of the
456 && sym
->st_size
!= h
->size
)
458 /* Since we think we have two common symbols, issue a multiple
459 common warning if desired. Note that we only warn if the
460 size is different. If the size is the same, we simply let
461 the old symbol override the new one as normally happens with
462 symbols defined in dynamic objects. */
464 if (! ((*info
->callbacks
->multiple_common
)
465 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
466 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
469 if (sym
->st_size
> h
->size
)
470 h
->size
= sym
->st_size
;
472 *size_change_ok
= true;
475 /* If we are looking at a dynamic object, and we have found a
476 definition, we need to see if the symbol was already defined by
477 some other object. If so, we want to use the existing
478 definition, and we do not want to report a multiple symbol
479 definition error; we do this by clobbering *PSEC to be
482 We treat a common symbol as a definition if the symbol in the
483 shared library is a function, since common symbols always
484 represent variables; this can cause confusion in principle, but
485 any such confusion would seem to indicate an erroneous program or
486 shared library. We also permit a common symbol in a regular
487 object to override a weak symbol in a shared object. */
492 || (h
->root
.type
== bfd_link_hash_common
494 || ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
))))
498 newdyncommon
= false;
500 *psec
= sec
= bfd_und_section_ptr
;
501 *size_change_ok
= true;
503 /* If we get here when the old symbol is a common symbol, then
504 we are explicitly letting it override a weak symbol or
505 function in a dynamic object, and we don't want to warn about
506 a type change. If the old symbol is a defined symbol, a type
507 change warning may still be appropriate. */
509 if (h
->root
.type
== bfd_link_hash_common
)
510 *type_change_ok
= true;
513 /* Handle the special case of an old common symbol merging with a
514 new symbol which looks like a common symbol in a shared object.
515 We change *PSEC and *PVALUE to make the new symbol look like a
516 common symbol, and let _bfd_generic_link_add_one_symbol will do
520 && h
->root
.type
== bfd_link_hash_common
)
524 newdyncommon
= false;
525 *pvalue
= sym
->st_size
;
526 *psec
= sec
= bfd_com_section_ptr
;
527 *size_change_ok
= true;
530 /* If the old symbol is from a dynamic object, and the new symbol is
531 a definition which is not from a dynamic object, then the new
532 symbol overrides the old symbol. Symbols from regular files
533 always take precedence over symbols from dynamic objects, even if
534 they are defined after the dynamic object in the link.
536 As above, we again permit a common symbol in a regular object to
537 override a definition in a shared object if the shared object
538 symbol is a function or is weak. */
542 || (bfd_is_com_section (sec
)
543 && (h
->root
.type
== bfd_link_hash_defweak
544 || h
->type
== STT_FUNC
)))
547 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
549 /* Change the hash table entry to undefined, and let
550 _bfd_generic_link_add_one_symbol do the right thing with the
553 h
->root
.type
= bfd_link_hash_undefined
;
554 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
555 *size_change_ok
= true;
558 olddyncommon
= false;
560 /* We again permit a type change when a common symbol may be
561 overriding a function. */
563 if (bfd_is_com_section (sec
))
564 *type_change_ok
= true;
566 /* This union may have been set to be non-NULL when this symbol
567 was seen in a dynamic object. We must force the union to be
568 NULL, so that it is correct for a regular symbol. */
570 h
->verinfo
.vertree
= NULL
;
572 /* In this special case, if H is the target of an indirection,
573 we want the caller to frob with H rather than with the
574 indirect symbol. That will permit the caller to redefine the
575 target of the indirection, rather than the indirect symbol
576 itself. FIXME: This will break the -y option if we store a
577 symbol with a different name. */
581 /* Handle the special case of a new common symbol merging with an
582 old symbol that looks like it might be a common symbol defined in
583 a shared object. Note that we have already handled the case in
584 which a new common symbol should simply override the definition
585 in the shared library. */
588 && bfd_is_com_section (sec
)
591 /* It would be best if we could set the hash table entry to a
592 common symbol, but we don't know what to use for the section
594 if (! ((*info
->callbacks
->multiple_common
)
595 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
596 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
599 /* If the predumed common symbol in the dynamic object is
600 larger, pretend that the new symbol has its size. */
602 if (h
->size
> *pvalue
)
605 /* FIXME: We no longer know the alignment required by the symbol
606 in the dynamic object, so we just wind up using the one from
607 the regular object. */
610 olddyncommon
= false;
612 h
->root
.type
= bfd_link_hash_undefined
;
613 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
615 *size_change_ok
= true;
616 *type_change_ok
= true;
618 h
->verinfo
.vertree
= NULL
;
624 /* Add symbols from an ELF object file to the linker hash table. */
627 elf_link_add_object_symbols (abfd
, info
)
629 struct bfd_link_info
*info
;
631 boolean (*add_symbol_hook
) PARAMS ((bfd
*, struct bfd_link_info
*,
632 const Elf_Internal_Sym
*,
633 const char **, flagword
*,
634 asection
**, bfd_vma
*));
635 boolean (*check_relocs
) PARAMS ((bfd
*, struct bfd_link_info
*,
636 asection
*, const Elf_Internal_Rela
*));
638 Elf_Internal_Shdr
*hdr
;
642 Elf_External_Sym
*buf
= NULL
;
643 struct elf_link_hash_entry
**sym_hash
;
645 bfd_byte
*dynver
= NULL
;
646 Elf_External_Versym
*extversym
= NULL
;
647 Elf_External_Versym
*ever
;
648 Elf_External_Dyn
*dynbuf
= NULL
;
649 struct elf_link_hash_entry
*weaks
;
650 Elf_External_Sym
*esym
;
651 Elf_External_Sym
*esymend
;
653 add_symbol_hook
= get_elf_backend_data (abfd
)->elf_add_symbol_hook
;
654 collect
= get_elf_backend_data (abfd
)->collect
;
656 if ((abfd
->flags
& DYNAMIC
) == 0)
662 /* You can't use -r against a dynamic object. Also, there's no
663 hope of using a dynamic object which does not exactly match
664 the format of the output file. */
665 if (info
->relocateable
|| info
->hash
->creator
!= abfd
->xvec
)
667 bfd_set_error (bfd_error_invalid_operation
);
672 /* As a GNU extension, any input sections which are named
673 .gnu.warning.SYMBOL are treated as warning symbols for the given
674 symbol. This differs from .gnu.warning sections, which generate
675 warnings when they are included in an output file. */
680 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
684 name
= bfd_get_section_name (abfd
, s
);
685 if (strncmp (name
, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
690 name
+= sizeof ".gnu.warning." - 1;
692 /* If this is a shared object, then look up the symbol
693 in the hash table. If it is there, and it is already
694 been defined, then we will not be using the entry
695 from this shared object, so we don't need to warn.
696 FIXME: If we see the definition in a regular object
697 later on, we will warn, but we shouldn't. The only
698 fix is to keep track of what warnings we are supposed
699 to emit, and then handle them all at the end of the
701 if (dynamic
&& abfd
->xvec
== info
->hash
->creator
)
703 struct elf_link_hash_entry
*h
;
705 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
708 /* FIXME: What about bfd_link_hash_common? */
710 && (h
->root
.type
== bfd_link_hash_defined
711 || h
->root
.type
== bfd_link_hash_defweak
))
713 /* We don't want to issue this warning. Clobber
714 the section size so that the warning does not
715 get copied into the output file. */
721 sz
= bfd_section_size (abfd
, s
);
722 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
726 if (! bfd_get_section_contents (abfd
, s
, msg
, (file_ptr
) 0, sz
))
731 if (! (_bfd_generic_link_add_one_symbol
732 (info
, abfd
, name
, BSF_WARNING
, s
, (bfd_vma
) 0, msg
,
733 false, collect
, (struct bfd_link_hash_entry
**) NULL
)))
736 if (! info
->relocateable
)
738 /* Clobber the section size so that the warning does
739 not get copied into the output file. */
746 /* If this is a dynamic object, we always link against the .dynsym
747 symbol table, not the .symtab symbol table. The dynamic linker
748 will only see the .dynsym symbol table, so there is no reason to
749 look at .symtab for a dynamic object. */
751 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
752 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
754 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
758 /* Read in any version definitions. */
760 if (! _bfd_elf_slurp_version_tables (abfd
))
763 /* Read in the symbol versions, but don't bother to convert them
764 to internal format. */
765 if (elf_dynversym (abfd
) != 0)
767 Elf_Internal_Shdr
*versymhdr
;
769 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
770 extversym
= (Elf_External_Versym
*) bfd_malloc (hdr
->sh_size
);
771 if (extversym
== NULL
)
773 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
774 || (bfd_read ((PTR
) extversym
, 1, versymhdr
->sh_size
, abfd
)
775 != versymhdr
->sh_size
))
780 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
782 /* The sh_info field of the symtab header tells us where the
783 external symbols start. We don't care about the local symbols at
785 if (elf_bad_symtab (abfd
))
787 extsymcount
= symcount
;
792 extsymcount
= symcount
- hdr
->sh_info
;
793 extsymoff
= hdr
->sh_info
;
796 buf
= ((Elf_External_Sym
*)
797 bfd_malloc (extsymcount
* sizeof (Elf_External_Sym
)));
798 if (buf
== NULL
&& extsymcount
!= 0)
801 /* We store a pointer to the hash table entry for each external
803 sym_hash
= ((struct elf_link_hash_entry
**)
805 extsymcount
* sizeof (struct elf_link_hash_entry
*)));
806 if (sym_hash
== NULL
)
808 elf_sym_hashes (abfd
) = sym_hash
;
812 /* If we are creating a shared library, create all the dynamic
813 sections immediately. We need to attach them to something,
814 so we attach them to this BFD, provided it is the right
815 format. FIXME: If there are no input BFD's of the same
816 format as the output, we can't make a shared library. */
818 && ! elf_hash_table (info
)->dynamic_sections_created
819 && abfd
->xvec
== info
->hash
->creator
)
821 if (! elf_link_create_dynamic_sections (abfd
, info
))
830 bfd_size_type oldsize
;
831 bfd_size_type strindex
;
833 /* Find the name to use in a DT_NEEDED entry that refers to this
834 object. If the object has a DT_SONAME entry, we use it.
835 Otherwise, if the generic linker stuck something in
836 elf_dt_name, we use that. Otherwise, we just use the file
837 name. If the generic linker put a null string into
838 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
839 there is a DT_SONAME entry. */
841 name
= bfd_get_filename (abfd
);
842 if (elf_dt_name (abfd
) != NULL
)
844 name
= elf_dt_name (abfd
);
848 s
= bfd_get_section_by_name (abfd
, ".dynamic");
851 Elf_External_Dyn
*extdyn
;
852 Elf_External_Dyn
*extdynend
;
856 dynbuf
= (Elf_External_Dyn
*) bfd_malloc ((size_t) s
->_raw_size
);
860 if (! bfd_get_section_contents (abfd
, s
, (PTR
) dynbuf
,
861 (file_ptr
) 0, s
->_raw_size
))
864 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
867 link
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
870 extdynend
= extdyn
+ s
->_raw_size
/ sizeof (Elf_External_Dyn
);
871 for (; extdyn
< extdynend
; extdyn
++)
873 Elf_Internal_Dyn dyn
;
875 elf_swap_dyn_in (abfd
, extdyn
, &dyn
);
876 if (dyn
.d_tag
== DT_SONAME
)
878 name
= bfd_elf_string_from_elf_section (abfd
, link
,
883 if (dyn
.d_tag
== DT_NEEDED
)
885 struct bfd_link_needed_list
*n
, **pn
;
888 n
= ((struct bfd_link_needed_list
*)
889 bfd_alloc (abfd
, sizeof (struct bfd_link_needed_list
)));
890 fnm
= bfd_elf_string_from_elf_section (abfd
, link
,
892 if (n
== NULL
|| fnm
== NULL
)
894 anm
= bfd_alloc (abfd
, strlen (fnm
) + 1);
901 for (pn
= &elf_hash_table (info
)->needed
;
913 /* We do not want to include any of the sections in a dynamic
914 object in the output file. We hack by simply clobbering the
915 list of sections in the BFD. This could be handled more
916 cleanly by, say, a new section flag; the existing
917 SEC_NEVER_LOAD flag is not the one we want, because that one
918 still implies that the section takes up space in the output
920 abfd
->sections
= NULL
;
921 abfd
->section_count
= 0;
923 /* If this is the first dynamic object found in the link, create
924 the special sections required for dynamic linking. */
925 if (! elf_hash_table (info
)->dynamic_sections_created
)
927 if (! elf_link_create_dynamic_sections (abfd
, info
))
933 /* Add a DT_NEEDED entry for this dynamic object. */
934 oldsize
= _bfd_stringtab_size (elf_hash_table (info
)->dynstr
);
935 strindex
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
, name
,
937 if (strindex
== (bfd_size_type
) -1)
940 if (oldsize
== _bfd_stringtab_size (elf_hash_table (info
)->dynstr
))
943 Elf_External_Dyn
*dyncon
, *dynconend
;
945 /* The hash table size did not change, which means that
946 the dynamic object name was already entered. If we
947 have already included this dynamic object in the
948 link, just ignore it. There is no reason to include
949 a particular dynamic object more than once. */
950 sdyn
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
952 BFD_ASSERT (sdyn
!= NULL
);
954 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
955 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
957 for (; dyncon
< dynconend
; dyncon
++)
959 Elf_Internal_Dyn dyn
;
961 elf_swap_dyn_in (elf_hash_table (info
)->dynobj
, dyncon
,
963 if (dyn
.d_tag
== DT_NEEDED
964 && dyn
.d_un
.d_val
== strindex
)
968 if (extversym
!= NULL
)
975 if (! elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
979 /* Save the SONAME, if there is one, because sometimes the
980 linker emulation code will need to know it. */
982 name
= bfd_get_filename (abfd
);
983 elf_dt_name (abfd
) = name
;
987 hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym
),
989 || (bfd_read ((PTR
) buf
, sizeof (Elf_External_Sym
), extsymcount
, abfd
)
990 != extsymcount
* sizeof (Elf_External_Sym
)))
995 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
996 esymend
= buf
+ extsymcount
;
999 esym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
1001 Elf_Internal_Sym sym
;
1007 struct elf_link_hash_entry
*h
;
1009 boolean size_change_ok
, type_change_ok
;
1010 boolean new_weakdef
;
1011 unsigned int old_alignment
;
1013 elf_swap_symbol_in (abfd
, esym
, &sym
);
1015 flags
= BSF_NO_FLAGS
;
1017 value
= sym
.st_value
;
1020 bind
= ELF_ST_BIND (sym
.st_info
);
1021 if (bind
== STB_LOCAL
)
1023 /* This should be impossible, since ELF requires that all
1024 global symbols follow all local symbols, and that sh_info
1025 point to the first global symbol. Unfortunatealy, Irix 5
1029 else if (bind
== STB_GLOBAL
)
1031 if (sym
.st_shndx
!= SHN_UNDEF
1032 && sym
.st_shndx
!= SHN_COMMON
)
1037 else if (bind
== STB_WEAK
)
1041 /* Leave it up to the processor backend. */
1044 if (sym
.st_shndx
== SHN_UNDEF
)
1045 sec
= bfd_und_section_ptr
;
1046 else if (sym
.st_shndx
> 0 && sym
.st_shndx
< SHN_LORESERVE
)
1048 sec
= section_from_elf_index (abfd
, sym
.st_shndx
);
1050 sec
= bfd_abs_section_ptr
;
1051 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
1054 else if (sym
.st_shndx
== SHN_ABS
)
1055 sec
= bfd_abs_section_ptr
;
1056 else if (sym
.st_shndx
== SHN_COMMON
)
1058 sec
= bfd_com_section_ptr
;
1059 /* What ELF calls the size we call the value. What ELF
1060 calls the value we call the alignment. */
1061 value
= sym
.st_size
;
1065 /* Leave it up to the processor backend. */
1068 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
, sym
.st_name
);
1069 if (name
== (const char *) NULL
)
1072 if (add_symbol_hook
)
1074 if (! (*add_symbol_hook
) (abfd
, info
, &sym
, &name
, &flags
, &sec
,
1078 /* The hook function sets the name to NULL if this symbol
1079 should be skipped for some reason. */
1080 if (name
== (const char *) NULL
)
1084 /* Sanity check that all possibilities were handled. */
1085 if (sec
== (asection
*) NULL
)
1087 bfd_set_error (bfd_error_bad_value
);
1091 if (bfd_is_und_section (sec
)
1092 || bfd_is_com_section (sec
))
1097 size_change_ok
= false;
1098 type_change_ok
= get_elf_backend_data (abfd
)->type_change_ok
;
1100 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1102 Elf_Internal_Versym iver
;
1103 unsigned int vernum
= 0;
1108 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
1109 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
1111 /* If this is a hidden symbol, or if it is not version
1112 1, we append the version name to the symbol name.
1113 However, we do not modify a non-hidden absolute
1114 symbol, because it might be the version symbol
1115 itself. FIXME: What if it isn't? */
1116 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
1117 || (vernum
> 1 && ! bfd_is_abs_section (sec
)))
1120 int namelen
, newlen
;
1123 if (sym
.st_shndx
!= SHN_UNDEF
)
1125 if (vernum
> elf_tdata (abfd
)->dynverdef_hdr
.sh_info
)
1127 (*_bfd_error_handler
)
1128 (_("%s: %s: invalid version %u (max %d)"),
1129 abfd
->filename
, name
, vernum
,
1130 elf_tdata (abfd
)->dynverdef_hdr
.sh_info
);
1131 bfd_set_error (bfd_error_bad_value
);
1134 else if (vernum
> 1)
1136 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1142 /* We cannot simply test for the number of
1143 entries in the VERNEED section since the
1144 numbers for the needed versions do not start
1146 Elf_Internal_Verneed
*t
;
1149 for (t
= elf_tdata (abfd
)->verref
;
1153 Elf_Internal_Vernaux
*a
;
1155 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1157 if (a
->vna_other
== vernum
)
1159 verstr
= a
->vna_nodename
;
1168 (*_bfd_error_handler
)
1169 (_("%s: %s: invalid needed version %d"),
1170 abfd
->filename
, name
, vernum
);
1171 bfd_set_error (bfd_error_bad_value
);
1176 namelen
= strlen (name
);
1177 newlen
= namelen
+ strlen (verstr
) + 2;
1178 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
1181 newname
= (char *) bfd_alloc (abfd
, newlen
);
1182 if (newname
== NULL
)
1184 strcpy (newname
, name
);
1185 p
= newname
+ namelen
;
1187 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
1195 if (! elf_merge_symbol (abfd
, info
, name
, &sym
, &sec
, &value
,
1196 sym_hash
, &override
, &type_change_ok
,
1204 while (h
->root
.type
== bfd_link_hash_indirect
1205 || h
->root
.type
== bfd_link_hash_warning
)
1206 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1208 /* Remember the old alignment if this is a common symbol, so
1209 that we don't reduce the alignment later on. We can't
1210 check later, because _bfd_generic_link_add_one_symbol
1211 will set a default for the alignment which we want to
1213 if (h
->root
.type
== bfd_link_hash_common
)
1214 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
1216 if (elf_tdata (abfd
)->verdef
!= NULL
1220 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
1223 if (! (_bfd_generic_link_add_one_symbol
1224 (info
, abfd
, name
, flags
, sec
, value
, (const char *) NULL
,
1225 false, collect
, (struct bfd_link_hash_entry
**) sym_hash
)))
1229 while (h
->root
.type
== bfd_link_hash_indirect
1230 || h
->root
.type
== bfd_link_hash_warning
)
1231 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1234 new_weakdef
= false;
1237 && (flags
& BSF_WEAK
) != 0
1238 && ELF_ST_TYPE (sym
.st_info
) != STT_FUNC
1239 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
1240 && h
->weakdef
== NULL
)
1242 /* Keep a list of all weak defined non function symbols from
1243 a dynamic object, using the weakdef field. Later in this
1244 function we will set the weakdef field to the correct
1245 value. We only put non-function symbols from dynamic
1246 objects on this list, because that happens to be the only
1247 time we need to know the normal symbol corresponding to a
1248 weak symbol, and the information is time consuming to
1249 figure out. If the weakdef field is not already NULL,
1250 then this symbol was already defined by some previous
1251 dynamic object, and we will be using that previous
1252 definition anyhow. */
1259 /* Set the alignment of a common symbol. */
1260 if (sym
.st_shndx
== SHN_COMMON
1261 && h
->root
.type
== bfd_link_hash_common
)
1265 align
= bfd_log2 (sym
.st_value
);
1266 if (align
> old_alignment
)
1267 h
->root
.u
.c
.p
->alignment_power
= align
;
1270 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1276 /* Remember the symbol size and type. */
1277 if (sym
.st_size
!= 0
1278 && (definition
|| h
->size
== 0))
1280 if (h
->size
!= 0 && h
->size
!= sym
.st_size
&& ! size_change_ok
)
1281 (*_bfd_error_handler
)
1282 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1283 name
, (unsigned long) h
->size
, (unsigned long) sym
.st_size
,
1284 bfd_get_filename (abfd
));
1286 h
->size
= sym
.st_size
;
1289 /* If this is a common symbol, then we always want H->SIZE
1290 to be the size of the common symbol. The code just above
1291 won't fix the size if a common symbol becomes larger. We
1292 don't warn about a size change here, because that is
1293 covered by --warn-common. */
1294 if (h
->root
.type
== bfd_link_hash_common
)
1295 h
->size
= h
->root
.u
.c
.size
;
1297 if (ELF_ST_TYPE (sym
.st_info
) != STT_NOTYPE
1298 && (definition
|| h
->type
== STT_NOTYPE
))
1300 if (h
->type
!= STT_NOTYPE
1301 && h
->type
!= ELF_ST_TYPE (sym
.st_info
)
1302 && ! type_change_ok
)
1303 (*_bfd_error_handler
)
1304 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1305 name
, h
->type
, ELF_ST_TYPE (sym
.st_info
),
1306 bfd_get_filename (abfd
));
1308 h
->type
= ELF_ST_TYPE (sym
.st_info
);
1311 if (sym
.st_other
!= 0
1312 && (definition
|| h
->other
== 0))
1313 h
->other
= sym
.st_other
;
1315 /* Set a flag in the hash table entry indicating the type of
1316 reference or definition we just found. Keep a count of
1317 the number of dynamic symbols we find. A dynamic symbol
1318 is one which is referenced or defined by both a regular
1319 object and a shared object. */
1320 old_flags
= h
->elf_link_hash_flags
;
1325 new_flag
= ELF_LINK_HASH_REF_REGULAR
;
1327 new_flag
= ELF_LINK_HASH_DEF_REGULAR
;
1329 || (old_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
1330 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0)
1336 new_flag
= ELF_LINK_HASH_REF_DYNAMIC
;
1338 new_flag
= ELF_LINK_HASH_DEF_DYNAMIC
;
1339 if ((old_flags
& (ELF_LINK_HASH_DEF_REGULAR
1340 | ELF_LINK_HASH_REF_REGULAR
)) != 0
1341 || (h
->weakdef
!= NULL
1343 && h
->weakdef
->dynindx
!= -1))
1347 h
->elf_link_hash_flags
|= new_flag
;
1349 /* If this symbol has a version, and it is the default
1350 version, we create an indirect symbol from the default
1351 name to the fully decorated name. This will cause
1352 external references which do not specify a version to be
1353 bound to this version of the symbol. */
1358 p
= strchr (name
, ELF_VER_CHR
);
1359 if (p
!= NULL
&& p
[1] == ELF_VER_CHR
)
1362 struct elf_link_hash_entry
*hi
;
1365 shortname
= bfd_hash_allocate (&info
->hash
->table
,
1367 if (shortname
== NULL
)
1369 strncpy (shortname
, name
, p
- name
);
1370 shortname
[p
- name
] = '\0';
1372 /* We are going to create a new symbol. Merge it
1373 with any existing symbol with this name. For the
1374 purposes of the merge, act as though we were
1375 defining the symbol we just defined, although we
1376 actually going to define an indirect symbol. */
1377 type_change_ok
= false;
1378 size_change_ok
= false;
1379 if (! elf_merge_symbol (abfd
, info
, shortname
, &sym
, &sec
,
1380 &value
, &hi
, &override
,
1381 &type_change_ok
, &size_change_ok
))
1386 if (! (_bfd_generic_link_add_one_symbol
1387 (info
, abfd
, shortname
, BSF_INDIRECT
,
1388 bfd_ind_section_ptr
, (bfd_vma
) 0, name
, false,
1389 collect
, (struct bfd_link_hash_entry
**) &hi
)))
1394 /* In this case the symbol named SHORTNAME is
1395 overriding the indirect symbol we want to
1396 add. We were planning on making SHORTNAME an
1397 indirect symbol referring to NAME. SHORTNAME
1398 is the name without a version. NAME is the
1399 fully versioned name, and it is the default
1402 Overriding means that we already saw a
1403 definition for the symbol SHORTNAME in a
1404 regular object, and it is overriding the
1405 symbol defined in the dynamic object.
1407 When this happens, we actually want to change
1408 NAME, the symbol we just added, to refer to
1409 SHORTNAME. This will cause references to
1410 NAME in the shared object to become
1411 references to SHORTNAME in the regular
1412 object. This is what we expect when we
1413 override a function in a shared object: that
1414 the references in the shared object will be
1415 mapped to the definition in the regular
1418 while (hi
->root
.type
== bfd_link_hash_indirect
1419 || hi
->root
.type
== bfd_link_hash_warning
)
1420 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1422 h
->root
.type
= bfd_link_hash_indirect
;
1423 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1424 if (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
1426 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_DEF_DYNAMIC
;
1427 hi
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
1428 if (hi
->elf_link_hash_flags
1429 & (ELF_LINK_HASH_REF_REGULAR
1430 | ELF_LINK_HASH_DEF_REGULAR
))
1432 if (! _bfd_elf_link_record_dynamic_symbol (info
,
1438 /* Now set HI to H, so that the following code
1439 will set the other fields correctly. */
1443 /* If there is a duplicate definition somewhere,
1444 then HI may not point to an indirect symbol. We
1445 will have reported an error to the user in that
1448 if (hi
->root
.type
== bfd_link_hash_indirect
)
1450 struct elf_link_hash_entry
*ht
;
1452 /* If the symbol became indirect, then we assume
1453 that we have not seen a definition before. */
1454 BFD_ASSERT ((hi
->elf_link_hash_flags
1455 & (ELF_LINK_HASH_DEF_DYNAMIC
1456 | ELF_LINK_HASH_DEF_REGULAR
))
1459 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1461 /* Copy down any references that we may have
1462 already seen to the symbol which just became
1464 ht
->elf_link_hash_flags
|=
1465 (hi
->elf_link_hash_flags
1466 & (ELF_LINK_HASH_REF_DYNAMIC
1467 | ELF_LINK_HASH_REF_REGULAR
));
1469 /* Copy over the global and procedure linkage table
1470 offset entries. These may have been already set
1471 up by a check_relocs routine. */
1472 if (ht
->got
.offset
== (bfd_vma
) -1)
1474 ht
->got
.offset
= hi
->got
.offset
;
1475 hi
->got
.offset
= (bfd_vma
) -1;
1477 BFD_ASSERT (hi
->got
.offset
== (bfd_vma
) -1);
1479 if (ht
->plt
.offset
== (bfd_vma
) -1)
1481 ht
->plt
.offset
= hi
->plt
.offset
;
1482 hi
->plt
.offset
= (bfd_vma
) -1;
1484 BFD_ASSERT (hi
->plt
.offset
== (bfd_vma
) -1);
1486 if (ht
->dynindx
== -1)
1488 ht
->dynindx
= hi
->dynindx
;
1489 ht
->dynstr_index
= hi
->dynstr_index
;
1491 hi
->dynstr_index
= 0;
1493 BFD_ASSERT (hi
->dynindx
== -1);
1495 /* FIXME: There may be other information to copy
1496 over for particular targets. */
1498 /* See if the new flags lead us to realize that
1499 the symbol must be dynamic. */
1505 || ((hi
->elf_link_hash_flags
1506 & ELF_LINK_HASH_REF_DYNAMIC
)
1512 if ((hi
->elf_link_hash_flags
1513 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1519 /* We also need to define an indirection from the
1520 nondefault version of the symbol. */
1522 shortname
= bfd_hash_allocate (&info
->hash
->table
,
1524 if (shortname
== NULL
)
1526 strncpy (shortname
, name
, p
- name
);
1527 strcpy (shortname
+ (p
- name
), p
+ 1);
1529 /* Once again, merge with any existing symbol. */
1530 type_change_ok
= false;
1531 size_change_ok
= false;
1532 if (! elf_merge_symbol (abfd
, info
, shortname
, &sym
, &sec
,
1533 &value
, &hi
, &override
,
1534 &type_change_ok
, &size_change_ok
))
1539 /* Here SHORTNAME is a versioned name, so we
1540 don't expect to see the type of override we
1541 do in the case above. */
1542 (*_bfd_error_handler
)
1543 (_("%s: warning: unexpected redefinition of `%s'"),
1544 bfd_get_filename (abfd
), shortname
);
1548 if (! (_bfd_generic_link_add_one_symbol
1549 (info
, abfd
, shortname
, BSF_INDIRECT
,
1550 bfd_ind_section_ptr
, (bfd_vma
) 0, name
, false,
1551 collect
, (struct bfd_link_hash_entry
**) &hi
)))
1554 /* If there is a duplicate definition somewhere,
1555 then HI may not point to an indirect symbol.
1556 We will have reported an error to the user in
1559 if (hi
->root
.type
== bfd_link_hash_indirect
)
1561 /* If the symbol became indirect, then we
1562 assume that we have not seen a definition
1564 BFD_ASSERT ((hi
->elf_link_hash_flags
1565 & (ELF_LINK_HASH_DEF_DYNAMIC
1566 | ELF_LINK_HASH_DEF_REGULAR
))
1569 /* Copy down any references that we may have
1570 already seen to the symbol which just
1572 h
->elf_link_hash_flags
|=
1573 (hi
->elf_link_hash_flags
1574 & (ELF_LINK_HASH_REF_DYNAMIC
1575 | ELF_LINK_HASH_REF_REGULAR
));
1577 /* Copy over the global and procedure linkage
1578 table offset entries. These may have been
1579 already set up by a check_relocs routine. */
1580 if (h
->got
.offset
== (bfd_vma
) -1)
1582 h
->got
.offset
= hi
->got
.offset
;
1583 hi
->got
.offset
= (bfd_vma
) -1;
1585 BFD_ASSERT (hi
->got
.offset
== (bfd_vma
) -1);
1587 if (h
->plt
.offset
== (bfd_vma
) -1)
1589 h
->plt
.offset
= hi
->plt
.offset
;
1590 hi
->plt
.offset
= (bfd_vma
) -1;
1592 BFD_ASSERT (hi
->got
.offset
== (bfd_vma
) -1);
1594 if (h
->dynindx
== -1)
1596 h
->dynindx
= hi
->dynindx
;
1597 h
->dynstr_index
= hi
->dynstr_index
;
1599 hi
->dynstr_index
= 0;
1601 BFD_ASSERT (hi
->dynindx
== -1);
1603 /* FIXME: There may be other information to
1604 copy over for particular targets. */
1606 /* See if the new flags lead us to realize
1607 that the symbol must be dynamic. */
1613 || ((hi
->elf_link_hash_flags
1614 & ELF_LINK_HASH_REF_DYNAMIC
)
1620 if ((hi
->elf_link_hash_flags
1621 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1630 if (dynsym
&& h
->dynindx
== -1)
1632 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
1634 if (h
->weakdef
!= NULL
1636 && h
->weakdef
->dynindx
== -1)
1638 if (! _bfd_elf_link_record_dynamic_symbol (info
,
1646 /* Now set the weakdefs field correctly for all the weak defined
1647 symbols we found. The only way to do this is to search all the
1648 symbols. Since we only need the information for non functions in
1649 dynamic objects, that's the only time we actually put anything on
1650 the list WEAKS. We need this information so that if a regular
1651 object refers to a symbol defined weakly in a dynamic object, the
1652 real symbol in the dynamic object is also put in the dynamic
1653 symbols; we also must arrange for both symbols to point to the
1654 same memory location. We could handle the general case of symbol
1655 aliasing, but a general symbol alias can only be generated in
1656 assembler code, handling it correctly would be very time
1657 consuming, and other ELF linkers don't handle general aliasing
1659 while (weaks
!= NULL
)
1661 struct elf_link_hash_entry
*hlook
;
1664 struct elf_link_hash_entry
**hpp
;
1665 struct elf_link_hash_entry
**hppend
;
1668 weaks
= hlook
->weakdef
;
1669 hlook
->weakdef
= NULL
;
1671 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
1672 || hlook
->root
.type
== bfd_link_hash_defweak
1673 || hlook
->root
.type
== bfd_link_hash_common
1674 || hlook
->root
.type
== bfd_link_hash_indirect
);
1675 slook
= hlook
->root
.u
.def
.section
;
1676 vlook
= hlook
->root
.u
.def
.value
;
1678 hpp
= elf_sym_hashes (abfd
);
1679 hppend
= hpp
+ extsymcount
;
1680 for (; hpp
< hppend
; hpp
++)
1682 struct elf_link_hash_entry
*h
;
1685 if (h
!= NULL
&& h
!= hlook
1686 && h
->root
.type
== bfd_link_hash_defined
1687 && h
->root
.u
.def
.section
== slook
1688 && h
->root
.u
.def
.value
== vlook
)
1692 /* If the weak definition is in the list of dynamic
1693 symbols, make sure the real definition is put there
1695 if (hlook
->dynindx
!= -1
1696 && h
->dynindx
== -1)
1698 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
1702 /* If the real definition is in the list of dynamic
1703 symbols, make sure the weak definition is put there
1704 as well. If we don't do this, then the dynamic
1705 loader might not merge the entries for the real
1706 definition and the weak definition. */
1707 if (h
->dynindx
!= -1
1708 && hlook
->dynindx
== -1)
1710 if (! _bfd_elf_link_record_dynamic_symbol (info
, hlook
))
1725 if (extversym
!= NULL
)
1731 /* If this object is the same format as the output object, and it is
1732 not a shared library, then let the backend look through the
1735 This is required to build global offset table entries and to
1736 arrange for dynamic relocs. It is not required for the
1737 particular common case of linking non PIC code, even when linking
1738 against shared libraries, but unfortunately there is no way of
1739 knowing whether an object file has been compiled PIC or not.
1740 Looking through the relocs is not particularly time consuming.
1741 The problem is that we must either (1) keep the relocs in memory,
1742 which causes the linker to require additional runtime memory or
1743 (2) read the relocs twice from the input file, which wastes time.
1744 This would be a good case for using mmap.
1746 I have no idea how to handle linking PIC code into a file of a
1747 different format. It probably can't be done. */
1748 check_relocs
= get_elf_backend_data (abfd
)->check_relocs
;
1750 && abfd
->xvec
== info
->hash
->creator
1751 && check_relocs
!= NULL
)
1755 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
1757 Elf_Internal_Rela
*internal_relocs
;
1760 if ((o
->flags
& SEC_RELOC
) == 0
1761 || o
->reloc_count
== 0
1762 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
1763 && (o
->flags
& SEC_DEBUGGING
) != 0)
1764 || bfd_is_abs_section (o
->output_section
))
1767 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
1768 (abfd
, o
, (PTR
) NULL
,
1769 (Elf_Internal_Rela
*) NULL
,
1770 info
->keep_memory
));
1771 if (internal_relocs
== NULL
)
1774 ok
= (*check_relocs
) (abfd
, info
, o
, internal_relocs
);
1776 if (! info
->keep_memory
)
1777 free (internal_relocs
);
1784 /* If this is a non-traditional, non-relocateable link, try to
1785 optimize the handling of the .stab/.stabstr sections. */
1787 && ! info
->relocateable
1788 && ! info
->traditional_format
1789 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
1790 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
1792 asection
*stab
, *stabstr
;
1794 stab
= bfd_get_section_by_name (abfd
, ".stab");
1797 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
1799 if (stabstr
!= NULL
)
1801 struct bfd_elf_section_data
*secdata
;
1803 secdata
= elf_section_data (stab
);
1804 if (! _bfd_link_section_stabs (abfd
,
1805 &elf_hash_table (info
)->stab_info
,
1807 &secdata
->stab_info
))
1822 if (extversym
!= NULL
)
1827 /* Create some sections which will be filled in with dynamic linking
1828 information. ABFD is an input file which requires dynamic sections
1829 to be created. The dynamic sections take up virtual memory space
1830 when the final executable is run, so we need to create them before
1831 addresses are assigned to the output sections. We work out the
1832 actual contents and size of these sections later. */
1835 elf_link_create_dynamic_sections (abfd
, info
)
1837 struct bfd_link_info
*info
;
1840 register asection
*s
;
1841 struct elf_link_hash_entry
*h
;
1842 struct elf_backend_data
*bed
;
1844 if (elf_hash_table (info
)->dynamic_sections_created
)
1847 /* Make sure that all dynamic sections use the same input BFD. */
1848 if (elf_hash_table (info
)->dynobj
== NULL
)
1849 elf_hash_table (info
)->dynobj
= abfd
;
1851 abfd
= elf_hash_table (info
)->dynobj
;
1853 /* Note that we set the SEC_IN_MEMORY flag for all of these
1855 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
1856 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1858 /* A dynamically linked executable has a .interp section, but a
1859 shared library does not. */
1862 s
= bfd_make_section (abfd
, ".interp");
1864 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
1868 /* Create sections to hold version informations. These are removed
1869 if they are not needed. */
1870 s
= bfd_make_section (abfd
, ".gnu.version_d");
1872 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
1873 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
1876 s
= bfd_make_section (abfd
, ".gnu.version");
1878 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
1879 || ! bfd_set_section_alignment (abfd
, s
, 1))
1882 s
= bfd_make_section (abfd
, ".gnu.version_r");
1884 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
1885 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
1888 s
= bfd_make_section (abfd
, ".dynsym");
1890 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
1891 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
1894 s
= bfd_make_section (abfd
, ".dynstr");
1896 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
1899 /* Create a strtab to hold the dynamic symbol names. */
1900 if (elf_hash_table (info
)->dynstr
== NULL
)
1902 elf_hash_table (info
)->dynstr
= elf_stringtab_init ();
1903 if (elf_hash_table (info
)->dynstr
== NULL
)
1907 s
= bfd_make_section (abfd
, ".dynamic");
1909 || ! bfd_set_section_flags (abfd
, s
, flags
)
1910 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
1913 /* The special symbol _DYNAMIC is always set to the start of the
1914 .dynamic section. This call occurs before we have processed the
1915 symbols for any dynamic object, so we don't have to worry about
1916 overriding a dynamic definition. We could set _DYNAMIC in a
1917 linker script, but we only want to define it if we are, in fact,
1918 creating a .dynamic section. We don't want to define it if there
1919 is no .dynamic section, since on some ELF platforms the start up
1920 code examines it to decide how to initialize the process. */
1922 if (! (_bfd_generic_link_add_one_symbol
1923 (info
, abfd
, "_DYNAMIC", BSF_GLOBAL
, s
, (bfd_vma
) 0,
1924 (const char *) NULL
, false, get_elf_backend_data (abfd
)->collect
,
1925 (struct bfd_link_hash_entry
**) &h
)))
1927 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
1928 h
->type
= STT_OBJECT
;
1931 && ! _bfd_elf_link_record_dynamic_symbol (info
, h
))
1934 s
= bfd_make_section (abfd
, ".hash");
1936 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
1937 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
1940 /* Let the backend create the rest of the sections. This lets the
1941 backend set the right flags. The backend will normally create
1942 the .got and .plt sections. */
1943 bed
= get_elf_backend_data (abfd
);
1944 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
1947 elf_hash_table (info
)->dynamic_sections_created
= true;
1952 /* Add an entry to the .dynamic table. */
1955 elf_add_dynamic_entry (info
, tag
, val
)
1956 struct bfd_link_info
*info
;
1960 Elf_Internal_Dyn dyn
;
1964 bfd_byte
*newcontents
;
1966 dynobj
= elf_hash_table (info
)->dynobj
;
1968 s
= bfd_get_section_by_name (dynobj
, ".dynamic");
1969 BFD_ASSERT (s
!= NULL
);
1971 newsize
= s
->_raw_size
+ sizeof (Elf_External_Dyn
);
1972 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
1973 if (newcontents
== NULL
)
1977 dyn
.d_un
.d_val
= val
;
1978 elf_swap_dyn_out (dynobj
, &dyn
,
1979 (Elf_External_Dyn
*) (newcontents
+ s
->_raw_size
));
1981 s
->_raw_size
= newsize
;
1982 s
->contents
= newcontents
;
1988 /* Read and swap the relocs for a section. They may have been cached.
1989 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
1990 they are used as buffers to read into. They are known to be large
1991 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
1992 value is allocated using either malloc or bfd_alloc, according to
1993 the KEEP_MEMORY argument. */
1996 NAME(_bfd_elf
,link_read_relocs
) (abfd
, o
, external_relocs
, internal_relocs
,
2000 PTR external_relocs
;
2001 Elf_Internal_Rela
*internal_relocs
;
2002 boolean keep_memory
;
2004 Elf_Internal_Shdr
*rel_hdr
;
2006 Elf_Internal_Rela
*alloc2
= NULL
;
2008 if (elf_section_data (o
)->relocs
!= NULL
)
2009 return elf_section_data (o
)->relocs
;
2011 if (o
->reloc_count
== 0)
2014 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2016 if (internal_relocs
== NULL
)
2020 size
= o
->reloc_count
* sizeof (Elf_Internal_Rela
);
2022 internal_relocs
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2024 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2025 if (internal_relocs
== NULL
)
2029 if (external_relocs
== NULL
)
2031 alloc1
= (PTR
) bfd_malloc ((size_t) rel_hdr
->sh_size
);
2034 external_relocs
= alloc1
;
2037 if ((bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0)
2038 || (bfd_read (external_relocs
, 1, rel_hdr
->sh_size
, abfd
)
2039 != rel_hdr
->sh_size
))
2042 /* Swap in the relocs. For convenience, we always produce an
2043 Elf_Internal_Rela array; if the relocs are Rel, we set the addend
2045 if (rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
2047 Elf_External_Rel
*erel
;
2048 Elf_External_Rel
*erelend
;
2049 Elf_Internal_Rela
*irela
;
2051 erel
= (Elf_External_Rel
*) external_relocs
;
2052 erelend
= erel
+ o
->reloc_count
;
2053 irela
= internal_relocs
;
2054 for (; erel
< erelend
; erel
++, irela
++)
2056 Elf_Internal_Rel irel
;
2058 elf_swap_reloc_in (abfd
, erel
, &irel
);
2059 irela
->r_offset
= irel
.r_offset
;
2060 irela
->r_info
= irel
.r_info
;
2061 irela
->r_addend
= 0;
2066 Elf_External_Rela
*erela
;
2067 Elf_External_Rela
*erelaend
;
2068 Elf_Internal_Rela
*irela
;
2070 BFD_ASSERT (rel_hdr
->sh_entsize
== sizeof (Elf_External_Rela
));
2072 erela
= (Elf_External_Rela
*) external_relocs
;
2073 erelaend
= erela
+ o
->reloc_count
;
2074 irela
= internal_relocs
;
2075 for (; erela
< erelaend
; erela
++, irela
++)
2076 elf_swap_reloca_in (abfd
, erela
, irela
);
2079 /* Cache the results for next time, if we can. */
2081 elf_section_data (o
)->relocs
= internal_relocs
;
2086 /* Don't free alloc2, since if it was allocated we are passing it
2087 back (under the name of internal_relocs). */
2089 return internal_relocs
;
2100 /* Record an assignment to a symbol made by a linker script. We need
2101 this in case some dynamic object refers to this symbol. */
2105 NAME(bfd_elf
,record_link_assignment
) (output_bfd
, info
, name
, provide
)
2107 struct bfd_link_info
*info
;
2111 struct elf_link_hash_entry
*h
;
2113 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2116 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, true, false);
2120 if (h
->root
.type
== bfd_link_hash_new
)
2121 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
2123 /* If this symbol is being provided by the linker script, and it is
2124 currently defined by a dynamic object, but not by a regular
2125 object, then mark it as undefined so that the generic linker will
2126 force the correct value. */
2128 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2129 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2130 h
->root
.type
= bfd_link_hash_undefined
;
2132 /* If this symbol is not being provided by the linker script, and it is
2133 currently defined by a dynamic object, but not by a regular object,
2134 then clear out any version information because the symbol will not be
2135 associated with the dynamic object any more. */
2137 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2138 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2139 h
->verinfo
.verdef
= NULL
;
2141 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2142 h
->type
= STT_OBJECT
;
2144 if (((h
->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
2145 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0
2147 && h
->dynindx
== -1)
2149 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2152 /* If this is a weak defined symbol, and we know a corresponding
2153 real symbol from the same dynamic object, make sure the real
2154 symbol is also made into a dynamic symbol. */
2155 if (h
->weakdef
!= NULL
2156 && h
->weakdef
->dynindx
== -1)
2158 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2166 /* This structure is used to pass information to
2167 elf_link_assign_sym_version. */
2169 struct elf_assign_sym_version_info
2173 /* General link information. */
2174 struct bfd_link_info
*info
;
2176 struct bfd_elf_version_tree
*verdefs
;
2177 /* Whether we are exporting all dynamic symbols. */
2178 boolean export_dynamic
;
2179 /* Whether we removed any symbols from the dynamic symbol table. */
2180 boolean removed_dynamic
;
2181 /* Whether we had a failure. */
2185 /* This structure is used to pass information to
2186 elf_link_find_version_dependencies. */
2188 struct elf_find_verdep_info
2192 /* General link information. */
2193 struct bfd_link_info
*info
;
2194 /* The number of dependencies. */
2196 /* Whether we had a failure. */
2200 /* Array used to determine the number of hash table buckets to use
2201 based on the number of symbols there are. If there are fewer than
2202 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2203 fewer than 37 we use 17 buckets, and so forth. We never use more
2204 than 32771 buckets. */
2206 static const size_t elf_buckets
[] =
2208 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2212 /* Compute bucket count for hashing table. We do not use a static set
2213 of possible tables sizes anymore. Instead we determine for all
2214 possible reasonable sizes of the table the outcome (i.e., the
2215 number of collisions etc) and choose the best solution. The
2216 weighting functions are not too simple to allow the table to grow
2217 without bounds. Instead one of the weighting factors is the size.
2218 Therefore the result is always a good payoff between few collisions
2219 (= short chain lengths) and table size. */
2221 compute_bucket_count (info
)
2222 struct bfd_link_info
*info
;
2224 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
2226 unsigned long int *hashcodes
;
2227 unsigned long int *hashcodesp
;
2228 unsigned long int i
;
2230 /* Compute the hash values for all exported symbols. At the same
2231 time store the values in an array so that we could use them for
2233 hashcodes
= (unsigned long int *) bfd_malloc (dynsymcount
2234 * sizeof (unsigned long int));
2235 if (hashcodes
== NULL
)
2237 hashcodesp
= hashcodes
;
2239 /* Put all hash values in HASHCODES. */
2240 elf_link_hash_traverse (elf_hash_table (info
),
2241 elf_collect_hash_codes
, &hashcodesp
);
2243 /* We have a problem here. The following code to optimize the table
2244 size requires an integer type with more the 32 bits. If
2245 BFD_HOST_U_64_BIT is set we know about such a type. */
2246 #ifdef BFD_HOST_U_64_BIT
2247 if (info
->optimize
== true)
2249 unsigned long int nsyms
= hashcodesp
- hashcodes
;
2252 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
2253 unsigned long int *counts
;
2255 /* Possible optimization parameters: if we have NSYMS symbols we say
2256 that the hashing table must at least have NSYMS/4 and at most
2258 minsize
= nsyms
/ 4;
2261 best_size
= maxsize
= nsyms
* 2;
2263 /* Create array where we count the collisions in. We must use bfd_malloc
2264 since the size could be large. */
2265 counts
= (unsigned long int *) bfd_malloc (maxsize
2266 * sizeof (unsigned long int));
2273 /* Compute the "optimal" size for the hash table. The criteria is a
2274 minimal chain length. The minor criteria is (of course) the size
2276 for (i
= minsize
; i
< maxsize
; ++i
)
2278 /* Walk through the array of hashcodes and count the collisions. */
2279 BFD_HOST_U_64_BIT max
;
2280 unsigned long int j
;
2281 unsigned long int fact
;
2283 memset (counts
, '\0', i
* sizeof (unsigned long int));
2285 /* Determine how often each hash bucket is used. */
2286 for (j
= 0; j
< nsyms
; ++j
)
2287 ++counts
[hashcodes
[j
] % i
];
2289 /* For the weight function we need some information about the
2290 pagesize on the target. This is information need not be 100%
2291 accurate. Since this information is not available (so far) we
2292 define it here to a reasonable default value. If it is crucial
2293 to have a better value some day simply define this value. */
2294 # ifndef BFD_TARGET_PAGESIZE
2295 # define BFD_TARGET_PAGESIZE (4096)
2298 /* We in any case need 2 + NSYMS entries for the size values and
2300 max
= (2 + nsyms
) * (ARCH_SIZE
/ 8);
2303 /* Variant 1: optimize for short chains. We add the squares
2304 of all the chain lengths (which favous many small chain
2305 over a few long chains). */
2306 for (j
= 0; j
< i
; ++j
)
2307 max
+= counts
[j
] * counts
[j
];
2309 /* This adds penalties for the overall size of the table. */
2310 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2313 /* Variant 2: Optimize a lot more for small table. Here we
2314 also add squares of the size but we also add penalties for
2315 empty slots (the +1 term). */
2316 for (j
= 0; j
< i
; ++j
)
2317 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
2319 /* The overall size of the table is considered, but not as
2320 strong as in variant 1, where it is squared. */
2321 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2325 /* Compare with current best results. */
2326 if (max
< best_chlen
)
2336 #endif /* defined (BFD_HOST_U_64_BIT) */
2338 /* This is the fallback solution if no 64bit type is available or if we
2339 are not supposed to spend much time on optimizations. We select the
2340 bucket count using a fixed set of numbers. */
2341 for (i
= 0; elf_buckets
[i
] != 0; i
++)
2343 best_size
= elf_buckets
[i
];
2344 if (dynsymcount
< elf_buckets
[i
+ 1])
2349 /* Free the arrays we needed. */
2355 /* Set up the sizes and contents of the ELF dynamic sections. This is
2356 called by the ELF linker emulation before_allocation routine. We
2357 must set the sizes of the sections before the linker sets the
2358 addresses of the various sections. */
2361 NAME(bfd_elf
,size_dynamic_sections
) (output_bfd
, soname
, rpath
,
2362 export_dynamic
, filter_shlib
,
2363 auxiliary_filters
, info
, sinterpptr
,
2368 boolean export_dynamic
;
2369 const char *filter_shlib
;
2370 const char * const *auxiliary_filters
;
2371 struct bfd_link_info
*info
;
2372 asection
**sinterpptr
;
2373 struct bfd_elf_version_tree
*verdefs
;
2375 bfd_size_type soname_indx
;
2377 struct elf_backend_data
*bed
;
2378 bfd_size_type old_dynsymcount
;
2379 struct elf_assign_sym_version_info asvinfo
;
2383 soname_indx
= (bfd_size_type
) -1;
2385 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2388 /* The backend may have to create some sections regardless of whether
2389 we're dynamic or not. */
2390 bed
= get_elf_backend_data (output_bfd
);
2391 if (bed
->elf_backend_always_size_sections
2392 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
2395 dynobj
= elf_hash_table (info
)->dynobj
;
2397 /* If there were no dynamic objects in the link, there is nothing to
2402 /* If we are supposed to export all symbols into the dynamic symbol
2403 table (this is not the normal case), then do so. */
2406 struct elf_info_failed eif
;
2410 elf_link_hash_traverse (elf_hash_table (info
), elf_export_symbol
,
2416 if (elf_hash_table (info
)->dynamic_sections_created
)
2418 struct elf_info_failed eif
;
2419 struct elf_link_hash_entry
*h
;
2420 bfd_size_type strsize
;
2422 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
2423 BFD_ASSERT (*sinterpptr
!= NULL
|| info
->shared
);
2427 soname_indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
2428 soname
, true, true);
2429 if (soname_indx
== (bfd_size_type
) -1
2430 || ! elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
2436 if (! elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
2444 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
, rpath
,
2446 if (indx
== (bfd_size_type
) -1
2447 || ! elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
2451 if (filter_shlib
!= NULL
)
2455 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
2456 filter_shlib
, true, true);
2457 if (indx
== (bfd_size_type
) -1
2458 || ! elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
2462 if (auxiliary_filters
!= NULL
)
2464 const char * const *p
;
2466 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
2470 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
2472 if (indx
== (bfd_size_type
) -1
2473 || ! elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
2478 /* Attach all the symbols to their version information. */
2479 asvinfo
.output_bfd
= output_bfd
;
2480 asvinfo
.info
= info
;
2481 asvinfo
.verdefs
= verdefs
;
2482 asvinfo
.export_dynamic
= export_dynamic
;
2483 asvinfo
.removed_dynamic
= false;
2484 asvinfo
.failed
= false;
2486 elf_link_hash_traverse (elf_hash_table (info
),
2487 elf_link_assign_sym_version
,
2492 /* Find all symbols which were defined in a dynamic object and make
2493 the backend pick a reasonable value for them. */
2496 elf_link_hash_traverse (elf_hash_table (info
),
2497 elf_adjust_dynamic_symbol
,
2502 /* Add some entries to the .dynamic section. We fill in some of the
2503 values later, in elf_bfd_final_link, but we must add the entries
2504 now so that we know the final size of the .dynamic section. */
2505 h
= elf_link_hash_lookup (elf_hash_table (info
), "_init", false,
2508 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
2509 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
2511 if (! elf_add_dynamic_entry (info
, DT_INIT
, 0))
2514 h
= elf_link_hash_lookup (elf_hash_table (info
), "_fini", false,
2517 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
2518 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
2520 if (! elf_add_dynamic_entry (info
, DT_FINI
, 0))
2523 strsize
= _bfd_stringtab_size (elf_hash_table (info
)->dynstr
);
2524 if (! elf_add_dynamic_entry (info
, DT_HASH
, 0)
2525 || ! elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
2526 || ! elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
2527 || ! elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
2528 || ! elf_add_dynamic_entry (info
, DT_SYMENT
,
2529 sizeof (Elf_External_Sym
)))
2533 /* The backend must work out the sizes of all the other dynamic
2535 old_dynsymcount
= elf_hash_table (info
)->dynsymcount
;
2536 if (bed
->elf_backend_size_dynamic_sections
2537 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
2540 if (elf_hash_table (info
)->dynamic_sections_created
)
2545 size_t bucketcount
= 0;
2546 Elf_Internal_Sym isym
;
2548 /* Set up the version definition section. */
2549 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
2550 BFD_ASSERT (s
!= NULL
);
2552 /* We may have created additional version definitions if we are
2553 just linking a regular application. */
2554 verdefs
= asvinfo
.verdefs
;
2556 if (verdefs
== NULL
)
2560 /* Don't include this section in the output file. */
2561 for (spp
= &output_bfd
->sections
;
2562 *spp
!= s
->output_section
;
2563 spp
= &(*spp
)->next
)
2565 *spp
= s
->output_section
->next
;
2566 --output_bfd
->section_count
;
2572 struct bfd_elf_version_tree
*t
;
2574 Elf_Internal_Verdef def
;
2575 Elf_Internal_Verdaux defaux
;
2577 if (asvinfo
.removed_dynamic
)
2579 /* Some dynamic symbols were changed to be local
2580 symbols. In this case, we renumber all of the
2581 dynamic symbols, so that we don't have a hole. If
2582 the backend changed dynsymcount, then assume that the
2583 new symbols are at the start. This is the case on
2584 the MIPS. FIXME: The names of the removed symbols
2585 will still be in the dynamic string table, wasting
2587 elf_hash_table (info
)->dynsymcount
=
2588 1 + (elf_hash_table (info
)->dynsymcount
- old_dynsymcount
);
2589 elf_link_hash_traverse (elf_hash_table (info
),
2590 elf_link_renumber_dynsyms
,
2597 /* Make space for the base version. */
2598 size
+= sizeof (Elf_External_Verdef
);
2599 size
+= sizeof (Elf_External_Verdaux
);
2602 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
2604 struct bfd_elf_version_deps
*n
;
2606 size
+= sizeof (Elf_External_Verdef
);
2607 size
+= sizeof (Elf_External_Verdaux
);
2610 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
2611 size
+= sizeof (Elf_External_Verdaux
);
2614 s
->_raw_size
= size
;
2615 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
2616 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
2619 /* Fill in the version definition section. */
2623 def
.vd_version
= VER_DEF_CURRENT
;
2624 def
.vd_flags
= VER_FLG_BASE
;
2627 def
.vd_aux
= sizeof (Elf_External_Verdef
);
2628 def
.vd_next
= (sizeof (Elf_External_Verdef
)
2629 + sizeof (Elf_External_Verdaux
));
2631 if (soname_indx
!= (bfd_size_type
) -1)
2633 def
.vd_hash
= bfd_elf_hash ((const unsigned char *) soname
);
2634 defaux
.vda_name
= soname_indx
;
2641 name
= output_bfd
->filename
;
2642 def
.vd_hash
= bfd_elf_hash ((const unsigned char *) name
);
2643 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
2645 if (indx
== (bfd_size_type
) -1)
2647 defaux
.vda_name
= indx
;
2649 defaux
.vda_next
= 0;
2651 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
2652 (Elf_External_Verdef
*)p
);
2653 p
+= sizeof (Elf_External_Verdef
);
2654 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
2655 (Elf_External_Verdaux
*) p
);
2656 p
+= sizeof (Elf_External_Verdaux
);
2658 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
2661 struct bfd_elf_version_deps
*n
;
2662 struct elf_link_hash_entry
*h
;
2665 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
2668 /* Add a symbol representing this version. */
2670 if (! (_bfd_generic_link_add_one_symbol
2671 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
2672 (bfd_vma
) 0, (const char *) NULL
, false,
2673 get_elf_backend_data (dynobj
)->collect
,
2674 (struct bfd_link_hash_entry
**) &h
)))
2676 h
->elf_link_hash_flags
&= ~ ELF_LINK_NON_ELF
;
2677 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2678 h
->type
= STT_OBJECT
;
2679 h
->verinfo
.vertree
= t
;
2681 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2684 def
.vd_version
= VER_DEF_CURRENT
;
2686 if (t
->globals
== NULL
&& t
->locals
== NULL
&& ! t
->used
)
2687 def
.vd_flags
|= VER_FLG_WEAK
;
2688 def
.vd_ndx
= t
->vernum
+ 1;
2689 def
.vd_cnt
= cdeps
+ 1;
2690 def
.vd_hash
= bfd_elf_hash ((const unsigned char *) t
->name
);
2691 def
.vd_aux
= sizeof (Elf_External_Verdef
);
2692 if (t
->next
!= NULL
)
2693 def
.vd_next
= (sizeof (Elf_External_Verdef
)
2694 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
2698 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
2699 (Elf_External_Verdef
*) p
);
2700 p
+= sizeof (Elf_External_Verdef
);
2702 defaux
.vda_name
= h
->dynstr_index
;
2703 if (t
->deps
== NULL
)
2704 defaux
.vda_next
= 0;
2706 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
2707 t
->name_indx
= defaux
.vda_name
;
2709 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
2710 (Elf_External_Verdaux
*) p
);
2711 p
+= sizeof (Elf_External_Verdaux
);
2713 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
2715 if (n
->version_needed
== NULL
)
2717 /* This can happen if there was an error in the
2719 defaux
.vda_name
= 0;
2722 defaux
.vda_name
= n
->version_needed
->name_indx
;
2723 if (n
->next
== NULL
)
2724 defaux
.vda_next
= 0;
2726 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
2728 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
2729 (Elf_External_Verdaux
*) p
);
2730 p
+= sizeof (Elf_External_Verdaux
);
2734 if (! elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
2735 || ! elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
2738 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
2741 /* Work out the size of the version reference section. */
2743 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
2744 BFD_ASSERT (s
!= NULL
);
2746 struct elf_find_verdep_info sinfo
;
2748 sinfo
.output_bfd
= output_bfd
;
2750 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
2751 if (sinfo
.vers
== 0)
2753 sinfo
.failed
= false;
2755 elf_link_hash_traverse (elf_hash_table (info
),
2756 elf_link_find_version_dependencies
,
2759 if (elf_tdata (output_bfd
)->verref
== NULL
)
2763 /* We don't have any version definitions, so we can just
2764 remove the section. */
2766 for (spp
= &output_bfd
->sections
;
2767 *spp
!= s
->output_section
;
2768 spp
= &(*spp
)->next
)
2770 *spp
= s
->output_section
->next
;
2771 --output_bfd
->section_count
;
2775 Elf_Internal_Verneed
*t
;
2780 /* Build the version definition section. */
2783 for (t
= elf_tdata (output_bfd
)->verref
;
2787 Elf_Internal_Vernaux
*a
;
2789 size
+= sizeof (Elf_External_Verneed
);
2791 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
2792 size
+= sizeof (Elf_External_Vernaux
);
2795 s
->_raw_size
= size
;
2796 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, size
);
2797 if (s
->contents
== NULL
)
2801 for (t
= elf_tdata (output_bfd
)->verref
;
2806 Elf_Internal_Vernaux
*a
;
2810 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
2813 t
->vn_version
= VER_NEED_CURRENT
;
2815 if (elf_dt_name (t
->vn_bfd
) != NULL
)
2816 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
2817 elf_dt_name (t
->vn_bfd
),
2820 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
2821 t
->vn_bfd
->filename
, true, false);
2822 if (indx
== (bfd_size_type
) -1)
2825 t
->vn_aux
= sizeof (Elf_External_Verneed
);
2826 if (t
->vn_nextref
== NULL
)
2829 t
->vn_next
= (sizeof (Elf_External_Verneed
)
2830 + caux
* sizeof (Elf_External_Vernaux
));
2832 _bfd_elf_swap_verneed_out (output_bfd
, t
,
2833 (Elf_External_Verneed
*) p
);
2834 p
+= sizeof (Elf_External_Verneed
);
2836 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
2838 a
->vna_hash
= bfd_elf_hash ((const unsigned char *)
2840 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
2841 a
->vna_nodename
, true, false);
2842 if (indx
== (bfd_size_type
) -1)
2845 if (a
->vna_nextptr
== NULL
)
2848 a
->vna_next
= sizeof (Elf_External_Vernaux
);
2850 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
2851 (Elf_External_Vernaux
*) p
);
2852 p
+= sizeof (Elf_External_Vernaux
);
2856 if (! elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
2857 || ! elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
2860 elf_tdata (output_bfd
)->cverrefs
= crefs
;
2864 dynsymcount
= elf_hash_table (info
)->dynsymcount
;
2866 /* Work out the size of the symbol version section. */
2867 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
2868 BFD_ASSERT (s
!= NULL
);
2869 if (dynsymcount
== 0
2870 || (verdefs
== NULL
&& elf_tdata (output_bfd
)->verref
== NULL
))
2874 /* We don't need any symbol versions; just discard the
2876 for (spp
= &output_bfd
->sections
;
2877 *spp
!= s
->output_section
;
2878 spp
= &(*spp
)->next
)
2880 *spp
= s
->output_section
->next
;
2881 --output_bfd
->section_count
;
2885 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Versym
);
2886 s
->contents
= (bfd_byte
*) bfd_zalloc (output_bfd
, s
->_raw_size
);
2887 if (s
->contents
== NULL
)
2890 if (! elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
2894 /* Set the size of the .dynsym and .hash sections. We counted
2895 the number of dynamic symbols in elf_link_add_object_symbols.
2896 We will build the contents of .dynsym and .hash when we build
2897 the final symbol table, because until then we do not know the
2898 correct value to give the symbols. We built the .dynstr
2899 section as we went along in elf_link_add_object_symbols. */
2900 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
2901 BFD_ASSERT (s
!= NULL
);
2902 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Sym
);
2903 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
2904 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
2907 /* The first entry in .dynsym is a dummy symbol. */
2914 elf_swap_symbol_out (output_bfd
, &isym
,
2915 (PTR
) (Elf_External_Sym
*) s
->contents
);
2917 /* Compute the size of the hashing table. As a side effect this
2918 computes the hash values for all the names we export. */
2919 bucketcount
= compute_bucket_count (info
);
2921 s
= bfd_get_section_by_name (dynobj
, ".hash");
2922 BFD_ASSERT (s
!= NULL
);
2923 s
->_raw_size
= (2 + bucketcount
+ dynsymcount
) * (ARCH_SIZE
/ 8);
2924 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
2925 if (s
->contents
== NULL
)
2927 memset (s
->contents
, 0, (size_t) s
->_raw_size
);
2929 put_word (output_bfd
, bucketcount
, s
->contents
);
2930 put_word (output_bfd
, dynsymcount
, s
->contents
+ (ARCH_SIZE
/ 8));
2932 elf_hash_table (info
)->bucketcount
= bucketcount
;
2934 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
2935 BFD_ASSERT (s
!= NULL
);
2936 s
->_raw_size
= _bfd_stringtab_size (elf_hash_table (info
)->dynstr
);
2938 if (! elf_add_dynamic_entry (info
, DT_NULL
, 0))
2945 /* Fix up the flags for a symbol. This handles various cases which
2946 can only be fixed after all the input files are seen. This is
2947 currently called by both adjust_dynamic_symbol and
2948 assign_sym_version, which is unnecessary but perhaps more robust in
2949 the face of future changes. */
2952 elf_fix_symbol_flags (h
, eif
)
2953 struct elf_link_hash_entry
*h
;
2954 struct elf_info_failed
*eif
;
2956 /* If this symbol was mentioned in a non-ELF file, try to set
2957 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2958 permit a non-ELF file to correctly refer to a symbol defined in
2959 an ELF dynamic object. */
2960 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_ELF
) != 0)
2962 if (h
->root
.type
!= bfd_link_hash_defined
2963 && h
->root
.type
!= bfd_link_hash_defweak
)
2964 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
2967 if (h
->root
.u
.def
.section
->owner
!= NULL
2968 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2969 == bfd_target_elf_flavour
))
2970 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
2972 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2975 if (h
->dynindx
== -1
2976 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2977 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0))
2979 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2988 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2989 was first seen in a non-ELF file. Fortunately, if the symbol
2990 was first seen in an ELF file, we're probably OK unless the
2991 symbol was defined in a non-ELF file. Catch that case here.
2992 FIXME: We're still in trouble if the symbol was first seen in
2993 a dynamic object, and then later in a non-ELF regular object. */
2994 if ((h
->root
.type
== bfd_link_hash_defined
2995 || h
->root
.type
== bfd_link_hash_defweak
)
2996 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
2997 && (h
->root
.u
.def
.section
->owner
!= NULL
2998 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2999 != bfd_target_elf_flavour
)
3000 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
3001 && (h
->elf_link_hash_flags
3002 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)))
3003 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3006 /* If this is a final link, and the symbol was defined as a common
3007 symbol in a regular object file, and there was no definition in
3008 any dynamic object, then the linker will have allocated space for
3009 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3010 flag will not have been set. */
3011 if (h
->root
.type
== bfd_link_hash_defined
3012 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3013 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
3014 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3015 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
3016 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3018 /* If -Bsymbolic was used (which means to bind references to global
3019 symbols to the definition within the shared object), and this
3020 symbol was defined in a regular object, then it actually doesn't
3021 need a PLT entry. */
3022 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
3023 && eif
->info
->shared
3024 && eif
->info
->symbolic
3025 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3027 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_NEEDS_PLT
;
3028 h
->plt
.offset
= (bfd_vma
) -1;
3034 /* Make the backend pick a good value for a dynamic symbol. This is
3035 called via elf_link_hash_traverse, and also calls itself
3039 elf_adjust_dynamic_symbol (h
, data
)
3040 struct elf_link_hash_entry
*h
;
3043 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3045 struct elf_backend_data
*bed
;
3047 /* Ignore indirect symbols. These are added by the versioning code. */
3048 if (h
->root
.type
== bfd_link_hash_indirect
)
3051 /* Fix the symbol flags. */
3052 if (! elf_fix_symbol_flags (h
, eif
))
3055 /* If this symbol does not require a PLT entry, and it is not
3056 defined by a dynamic object, or is not referenced by a regular
3057 object, ignore it. We do have to handle a weak defined symbol,
3058 even if no regular object refers to it, if we decided to add it
3059 to the dynamic symbol table. FIXME: Do we normally need to worry
3060 about symbols which are defined by one dynamic object and
3061 referenced by another one? */
3062 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0
3063 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
3064 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3065 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
3066 && (h
->weakdef
== NULL
|| h
->weakdef
->dynindx
== -1))))
3068 h
->plt
.offset
= (bfd_vma
) -1;
3072 /* If we've already adjusted this symbol, don't do it again. This
3073 can happen via a recursive call. */
3074 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DYNAMIC_ADJUSTED
) != 0)
3077 /* Don't look at this symbol again. Note that we must set this
3078 after checking the above conditions, because we may look at a
3079 symbol once, decide not to do anything, and then get called
3080 recursively later after REF_REGULAR is set below. */
3081 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DYNAMIC_ADJUSTED
;
3083 /* If this is a weak definition, and we know a real definition, and
3084 the real symbol is not itself defined by a regular object file,
3085 then get a good value for the real definition. We handle the
3086 real symbol first, for the convenience of the backend routine.
3088 Note that there is a confusing case here. If the real definition
3089 is defined by a regular object file, we don't get the real symbol
3090 from the dynamic object, but we do get the weak symbol. If the
3091 processor backend uses a COPY reloc, then if some routine in the
3092 dynamic object changes the real symbol, we will not see that
3093 change in the corresponding weak symbol. This is the way other
3094 ELF linkers work as well, and seems to be a result of the shared
3097 I will clarify this issue. Most SVR4 shared libraries define the
3098 variable _timezone and define timezone as a weak synonym. The
3099 tzset call changes _timezone. If you write
3100 extern int timezone;
3102 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3103 you might expect that, since timezone is a synonym for _timezone,
3104 the same number will print both times. However, if the processor
3105 backend uses a COPY reloc, then actually timezone will be copied
3106 into your process image, and, since you define _timezone
3107 yourself, _timezone will not. Thus timezone and _timezone will
3108 wind up at different memory locations. The tzset call will set
3109 _timezone, leaving timezone unchanged. */
3111 if (h
->weakdef
!= NULL
)
3113 struct elf_link_hash_entry
*weakdef
;
3115 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
3116 || h
->root
.type
== bfd_link_hash_defweak
);
3117 weakdef
= h
->weakdef
;
3118 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
3119 || weakdef
->root
.type
== bfd_link_hash_defweak
);
3120 BFD_ASSERT (weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
);
3121 if ((weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3123 /* This symbol is defined by a regular object file, so we
3124 will not do anything special. Clear weakdef for the
3125 convenience of the processor backend. */
3130 /* There is an implicit reference by a regular object file
3131 via the weak symbol. */
3132 weakdef
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
3133 if (! elf_adjust_dynamic_symbol (weakdef
, (PTR
) eif
))
3138 /* If a symbol has no type and no size and does not require a PLT
3139 entry, then we are probably about to do the wrong thing here: we
3140 are probably going to create a COPY reloc for an empty object.
3141 This case can arise when a shared object is built with assembly
3142 code, and the assembly code fails to set the symbol type. */
3144 && h
->type
== STT_NOTYPE
3145 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
3146 (*_bfd_error_handler
)
3147 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3148 h
->root
.root
.string
);
3150 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
3151 bed
= get_elf_backend_data (dynobj
);
3152 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
3161 /* This routine is used to export all defined symbols into the dynamic
3162 symbol table. It is called via elf_link_hash_traverse. */
3165 elf_export_symbol (h
, data
)
3166 struct elf_link_hash_entry
*h
;
3169 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3171 /* Ignore indirect symbols. These are added by the versioning code. */
3172 if (h
->root
.type
== bfd_link_hash_indirect
)
3175 if (h
->dynindx
== -1
3176 && (h
->elf_link_hash_flags
3177 & (ELF_LINK_HASH_DEF_REGULAR
| ELF_LINK_HASH_REF_REGULAR
)) != 0)
3179 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
3189 /* Look through the symbols which are defined in other shared
3190 libraries and referenced here. Update the list of version
3191 dependencies. This will be put into the .gnu.version_r section.
3192 This function is called via elf_link_hash_traverse. */
3195 elf_link_find_version_dependencies (h
, data
)
3196 struct elf_link_hash_entry
*h
;
3199 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
3200 Elf_Internal_Verneed
*t
;
3201 Elf_Internal_Vernaux
*a
;
3203 /* We only care about symbols defined in shared objects with version
3205 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3206 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
3208 || h
->verinfo
.verdef
== NULL
)
3211 /* See if we already know about this version. */
3212 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
3214 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
3217 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3218 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
3224 /* This is a new version. Add it to tree we are building. */
3228 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->output_bfd
, sizeof *t
);
3231 rinfo
->failed
= true;
3235 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
3236 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
3237 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
3240 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->output_bfd
, sizeof *a
);
3242 /* Note that we are copying a string pointer here, and testing it
3243 above. If bfd_elf_string_from_elf_section is ever changed to
3244 discard the string data when low in memory, this will have to be
3246 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
3248 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
3249 a
->vna_nextptr
= t
->vn_auxptr
;
3251 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
3254 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
3261 /* Figure out appropriate versions for all the symbols. We may not
3262 have the version number script until we have read all of the input
3263 files, so until that point we don't know which symbols should be
3264 local. This function is called via elf_link_hash_traverse. */
3267 elf_link_assign_sym_version (h
, data
)
3268 struct elf_link_hash_entry
*h
;
3271 struct elf_assign_sym_version_info
*sinfo
=
3272 (struct elf_assign_sym_version_info
*) data
;
3273 struct bfd_link_info
*info
= sinfo
->info
;
3274 struct elf_info_failed eif
;
3277 /* Fix the symbol flags. */
3280 if (! elf_fix_symbol_flags (h
, &eif
))
3283 sinfo
->failed
= true;
3287 /* We only need version numbers for symbols defined in regular
3289 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
3292 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
3293 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
3295 struct bfd_elf_version_tree
*t
;
3300 /* There are two consecutive ELF_VER_CHR characters if this is
3301 not a hidden symbol. */
3303 if (*p
== ELF_VER_CHR
)
3309 /* If there is no version string, we can just return out. */
3313 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
3317 /* Look for the version. If we find it, it is no longer weak. */
3318 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
3320 if (strcmp (t
->name
, p
) == 0)
3324 struct bfd_elf_version_expr
*d
;
3326 len
= p
- h
->root
.root
.string
;
3327 alc
= bfd_alloc (sinfo
->output_bfd
, len
);
3330 strncpy (alc
, h
->root
.root
.string
, len
- 1);
3331 alc
[len
- 1] = '\0';
3332 if (alc
[len
- 2] == ELF_VER_CHR
)
3333 alc
[len
- 2] = '\0';
3335 h
->verinfo
.vertree
= t
;
3339 if (t
->globals
!= NULL
)
3341 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
3343 if ((d
->match
[0] == '*' && d
->match
[1] == '\0')
3344 || fnmatch (d
->match
, alc
, 0) == 0)
3349 /* See if there is anything to force this symbol to
3351 if (d
== NULL
&& t
->locals
!= NULL
)
3353 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
3355 if ((d
->match
[0] == '*' && d
->match
[1] == '\0')
3356 || fnmatch (d
->match
, alc
, 0) == 0)
3358 if (h
->dynindx
!= -1
3360 && ! sinfo
->export_dynamic
)
3362 sinfo
->removed_dynamic
= true;
3363 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
3364 h
->elf_link_hash_flags
&=~
3365 ELF_LINK_HASH_NEEDS_PLT
;
3367 h
->plt
.offset
= (bfd_vma
) -1;
3368 /* FIXME: The name of the symbol has
3369 already been recorded in the dynamic
3370 string table section. */
3378 bfd_release (sinfo
->output_bfd
, alc
);
3383 /* If we are building an application, we need to create a
3384 version node for this version. */
3385 if (t
== NULL
&& ! info
->shared
)
3387 struct bfd_elf_version_tree
**pp
;
3390 /* If we aren't going to export this symbol, we don't need
3391 to worry about it. */
3392 if (h
->dynindx
== -1)
3395 t
= ((struct bfd_elf_version_tree
*)
3396 bfd_alloc (sinfo
->output_bfd
, sizeof *t
));
3399 sinfo
->failed
= true;
3408 t
->name_indx
= (unsigned int) -1;
3412 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
3414 t
->vernum
= version_index
;
3418 h
->verinfo
.vertree
= t
;
3422 /* We could not find the version for a symbol when
3423 generating a shared archive. Return an error. */
3424 (*_bfd_error_handler
)
3425 (_("%s: undefined versioned symbol name %s"),
3426 bfd_get_filename (sinfo
->output_bfd
), h
->root
.root
.string
);
3427 bfd_set_error (bfd_error_bad_value
);
3428 sinfo
->failed
= true;
3433 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
3436 /* If we don't have a version for this symbol, see if we can find
3438 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
3440 struct bfd_elf_version_tree
*t
;
3441 struct bfd_elf_version_tree
*deflt
;
3442 struct bfd_elf_version_expr
*d
;
3444 /* See if can find what version this symbol is in. If the
3445 symbol is supposed to be local, then don't actually register
3448 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
3450 if (t
->globals
!= NULL
)
3452 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
3454 if (fnmatch (d
->match
, h
->root
.root
.string
, 0) == 0)
3456 h
->verinfo
.vertree
= t
;
3465 if (t
->locals
!= NULL
)
3467 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
3469 if (d
->match
[0] == '*' && d
->match
[1] == '\0')
3471 else if (fnmatch (d
->match
, h
->root
.root
.string
, 0) == 0)
3473 h
->verinfo
.vertree
= t
;
3474 if (h
->dynindx
!= -1
3476 && ! sinfo
->export_dynamic
)
3478 sinfo
->removed_dynamic
= true;
3479 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
3480 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_NEEDS_PLT
;
3482 h
->plt
.offset
= (bfd_vma
) -1;
3483 /* FIXME: The name of the symbol has already
3484 been recorded in the dynamic string table
3496 if (deflt
!= NULL
&& h
->verinfo
.vertree
== NULL
)
3498 h
->verinfo
.vertree
= deflt
;
3499 if (h
->dynindx
!= -1
3501 && ! sinfo
->export_dynamic
)
3503 sinfo
->removed_dynamic
= true;
3504 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
3505 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_NEEDS_PLT
;
3507 h
->plt
.offset
= (bfd_vma
) -1;
3508 /* FIXME: The name of the symbol has already been
3509 recorded in the dynamic string table section. */
3517 /* This function is used to renumber the dynamic symbols, if some of
3518 them are removed because they are marked as local. This is called
3519 via elf_link_hash_traverse. */
3522 elf_link_renumber_dynsyms (h
, data
)
3523 struct elf_link_hash_entry
*h
;
3526 struct bfd_link_info
*info
= (struct bfd_link_info
*) data
;
3528 if (h
->dynindx
!= -1)
3530 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
3531 ++elf_hash_table (info
)->dynsymcount
;
3537 /* Final phase of ELF linker. */
3539 /* A structure we use to avoid passing large numbers of arguments. */
3541 struct elf_final_link_info
3543 /* General link information. */
3544 struct bfd_link_info
*info
;
3547 /* Symbol string table. */
3548 struct bfd_strtab_hash
*symstrtab
;
3549 /* .dynsym section. */
3550 asection
*dynsym_sec
;
3551 /* .hash section. */
3553 /* symbol version section (.gnu.version). */
3554 asection
*symver_sec
;
3555 /* Buffer large enough to hold contents of any section. */
3557 /* Buffer large enough to hold external relocs of any section. */
3558 PTR external_relocs
;
3559 /* Buffer large enough to hold internal relocs of any section. */
3560 Elf_Internal_Rela
*internal_relocs
;
3561 /* Buffer large enough to hold external local symbols of any input
3563 Elf_External_Sym
*external_syms
;
3564 /* Buffer large enough to hold internal local symbols of any input
3566 Elf_Internal_Sym
*internal_syms
;
3567 /* Array large enough to hold a symbol index for each local symbol
3568 of any input BFD. */
3570 /* Array large enough to hold a section pointer for each local
3571 symbol of any input BFD. */
3572 asection
**sections
;
3573 /* Buffer to hold swapped out symbols. */
3574 Elf_External_Sym
*symbuf
;
3575 /* Number of swapped out symbols in buffer. */
3576 size_t symbuf_count
;
3577 /* Number of symbols which fit in symbuf. */
3581 static boolean elf_link_output_sym
3582 PARAMS ((struct elf_final_link_info
*, const char *,
3583 Elf_Internal_Sym
*, asection
*));
3584 static boolean elf_link_flush_output_syms
3585 PARAMS ((struct elf_final_link_info
*));
3586 static boolean elf_link_output_extsym
3587 PARAMS ((struct elf_link_hash_entry
*, PTR
));
3588 static boolean elf_link_input_bfd
3589 PARAMS ((struct elf_final_link_info
*, bfd
*));
3590 static boolean elf_reloc_link_order
3591 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
3592 struct bfd_link_order
*));
3594 /* This struct is used to pass information to elf_link_output_extsym. */
3596 struct elf_outext_info
3600 struct elf_final_link_info
*finfo
;
3603 /* Do the final step of an ELF link. */
3606 elf_bfd_final_link (abfd
, info
)
3608 struct bfd_link_info
*info
;
3612 struct elf_final_link_info finfo
;
3613 register asection
*o
;
3614 register struct bfd_link_order
*p
;
3616 size_t max_contents_size
;
3617 size_t max_external_reloc_size
;
3618 size_t max_internal_reloc_count
;
3619 size_t max_sym_count
;
3621 Elf_Internal_Sym elfsym
;
3623 Elf_Internal_Shdr
*symtab_hdr
;
3624 Elf_Internal_Shdr
*symstrtab_hdr
;
3625 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3626 struct elf_outext_info eoinfo
;
3629 abfd
->flags
|= DYNAMIC
;
3631 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
3632 dynobj
= elf_hash_table (info
)->dynobj
;
3635 finfo
.output_bfd
= abfd
;
3636 finfo
.symstrtab
= elf_stringtab_init ();
3637 if (finfo
.symstrtab
== NULL
)
3642 finfo
.dynsym_sec
= NULL
;
3643 finfo
.hash_sec
= NULL
;
3644 finfo
.symver_sec
= NULL
;
3648 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
3649 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
3650 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
&& finfo
.hash_sec
!= NULL
);
3651 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
3652 /* Note that it is OK if symver_sec is NULL. */
3655 finfo
.contents
= NULL
;
3656 finfo
.external_relocs
= NULL
;
3657 finfo
.internal_relocs
= NULL
;
3658 finfo
.external_syms
= NULL
;
3659 finfo
.internal_syms
= NULL
;
3660 finfo
.indices
= NULL
;
3661 finfo
.sections
= NULL
;
3662 finfo
.symbuf
= NULL
;
3663 finfo
.symbuf_count
= 0;
3665 /* Count up the number of relocations we will output for each output
3666 section, so that we know the sizes of the reloc sections. We
3667 also figure out some maximum sizes. */
3668 max_contents_size
= 0;
3669 max_external_reloc_size
= 0;
3670 max_internal_reloc_count
= 0;
3672 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
3676 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
3678 if (p
->type
== bfd_section_reloc_link_order
3679 || p
->type
== bfd_symbol_reloc_link_order
)
3681 else if (p
->type
== bfd_indirect_link_order
)
3685 sec
= p
->u
.indirect
.section
;
3687 /* Mark all sections which are to be included in the
3688 link. This will normally be every section. We need
3689 to do this so that we can identify any sections which
3690 the linker has decided to not include. */
3691 sec
->linker_mark
= true;
3693 if (info
->relocateable
)
3694 o
->reloc_count
+= sec
->reloc_count
;
3696 if (sec
->_raw_size
> max_contents_size
)
3697 max_contents_size
= sec
->_raw_size
;
3698 if (sec
->_cooked_size
> max_contents_size
)
3699 max_contents_size
= sec
->_cooked_size
;
3701 /* We are interested in just local symbols, not all
3703 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
3704 && (sec
->owner
->flags
& DYNAMIC
) == 0)
3708 if (elf_bad_symtab (sec
->owner
))
3709 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
3710 / sizeof (Elf_External_Sym
));
3712 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
3714 if (sym_count
> max_sym_count
)
3715 max_sym_count
= sym_count
;
3717 if ((sec
->flags
& SEC_RELOC
) != 0)
3721 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
3722 if (ext_size
> max_external_reloc_size
)
3723 max_external_reloc_size
= ext_size
;
3724 if (sec
->reloc_count
> max_internal_reloc_count
)
3725 max_internal_reloc_count
= sec
->reloc_count
;
3731 if (o
->reloc_count
> 0)
3732 o
->flags
|= SEC_RELOC
;
3735 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3736 set it (this is probably a bug) and if it is set
3737 assign_section_numbers will create a reloc section. */
3738 o
->flags
&=~ SEC_RELOC
;
3741 /* If the SEC_ALLOC flag is not set, force the section VMA to
3742 zero. This is done in elf_fake_sections as well, but forcing
3743 the VMA to 0 here will ensure that relocs against these
3744 sections are handled correctly. */
3745 if ((o
->flags
& SEC_ALLOC
) == 0
3746 && ! o
->user_set_vma
)
3750 /* Figure out the file positions for everything but the symbol table
3751 and the relocs. We set symcount to force assign_section_numbers
3752 to create a symbol table. */
3753 abfd
->symcount
= info
->strip
== strip_all
? 0 : 1;
3754 BFD_ASSERT (! abfd
->output_has_begun
);
3755 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
3758 /* That created the reloc sections. Set their sizes, and assign
3759 them file positions, and allocate some buffers. */
3760 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
3762 if ((o
->flags
& SEC_RELOC
) != 0)
3764 Elf_Internal_Shdr
*rel_hdr
;
3765 register struct elf_link_hash_entry
**p
, **pend
;
3767 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
3769 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* o
->reloc_count
;
3771 /* The contents field must last into write_object_contents,
3772 so we allocate it with bfd_alloc rather than malloc. */
3773 rel_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rel_hdr
->sh_size
);
3774 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
3777 p
= ((struct elf_link_hash_entry
**)
3778 bfd_malloc (o
->reloc_count
3779 * sizeof (struct elf_link_hash_entry
*)));
3780 if (p
== NULL
&& o
->reloc_count
!= 0)
3782 elf_section_data (o
)->rel_hashes
= p
;
3783 pend
= p
+ o
->reloc_count
;
3784 for (; p
< pend
; p
++)
3787 /* Use the reloc_count field as an index when outputting the
3793 _bfd_elf_assign_file_positions_for_relocs (abfd
);
3795 /* We have now assigned file positions for all the sections except
3796 .symtab and .strtab. We start the .symtab section at the current
3797 file position, and write directly to it. We build the .strtab
3798 section in memory. */
3800 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3801 /* sh_name is set in prep_headers. */
3802 symtab_hdr
->sh_type
= SHT_SYMTAB
;
3803 symtab_hdr
->sh_flags
= 0;
3804 symtab_hdr
->sh_addr
= 0;
3805 symtab_hdr
->sh_size
= 0;
3806 symtab_hdr
->sh_entsize
= sizeof (Elf_External_Sym
);
3807 /* sh_link is set in assign_section_numbers. */
3808 /* sh_info is set below. */
3809 /* sh_offset is set just below. */
3810 symtab_hdr
->sh_addralign
= 4; /* FIXME: system dependent? */
3812 off
= elf_tdata (abfd
)->next_file_pos
;
3813 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, true);
3815 /* Note that at this point elf_tdata (abfd)->next_file_pos is
3816 incorrect. We do not yet know the size of the .symtab section.
3817 We correct next_file_pos below, after we do know the size. */
3819 /* Allocate a buffer to hold swapped out symbols. This is to avoid
3820 continuously seeking to the right position in the file. */
3821 if (! info
->keep_memory
|| max_sym_count
< 20)
3822 finfo
.symbuf_size
= 20;
3824 finfo
.symbuf_size
= max_sym_count
;
3825 finfo
.symbuf
= ((Elf_External_Sym
*)
3826 bfd_malloc (finfo
.symbuf_size
* sizeof (Elf_External_Sym
)));
3827 if (finfo
.symbuf
== NULL
)
3830 /* Start writing out the symbol table. The first symbol is always a
3832 if (info
->strip
!= strip_all
|| info
->relocateable
)
3834 elfsym
.st_value
= 0;
3837 elfsym
.st_other
= 0;
3838 elfsym
.st_shndx
= SHN_UNDEF
;
3839 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
3840 &elfsym
, bfd_und_section_ptr
))
3845 /* Some standard ELF linkers do this, but we don't because it causes
3846 bootstrap comparison failures. */
3847 /* Output a file symbol for the output file as the second symbol.
3848 We output this even if we are discarding local symbols, although
3849 I'm not sure if this is correct. */
3850 elfsym
.st_value
= 0;
3852 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
3853 elfsym
.st_other
= 0;
3854 elfsym
.st_shndx
= SHN_ABS
;
3855 if (! elf_link_output_sym (&finfo
, bfd_get_filename (abfd
),
3856 &elfsym
, bfd_abs_section_ptr
))
3860 /* Output a symbol for each section. We output these even if we are
3861 discarding local symbols, since they are used for relocs. These
3862 symbols have no names. We store the index of each one in the
3863 index field of the section, so that we can find it again when
3864 outputting relocs. */
3865 if (info
->strip
!= strip_all
|| info
->relocateable
)
3868 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
3869 elfsym
.st_other
= 0;
3870 for (i
= 1; i
< elf_elfheader (abfd
)->e_shnum
; i
++)
3872 o
= section_from_elf_index (abfd
, i
);
3874 o
->target_index
= abfd
->symcount
;
3875 elfsym
.st_shndx
= i
;
3876 if (info
->relocateable
|| o
== NULL
)
3877 elfsym
.st_value
= 0;
3879 elfsym
.st_value
= o
->vma
;
3880 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
3886 /* Allocate some memory to hold information read in from the input
3888 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
3889 finfo
.external_relocs
= (PTR
) bfd_malloc (max_external_reloc_size
);
3890 finfo
.internal_relocs
= ((Elf_Internal_Rela
*)
3891 bfd_malloc (max_internal_reloc_count
3892 * sizeof (Elf_Internal_Rela
)));
3893 finfo
.external_syms
= ((Elf_External_Sym
*)
3894 bfd_malloc (max_sym_count
3895 * sizeof (Elf_External_Sym
)));
3896 finfo
.internal_syms
= ((Elf_Internal_Sym
*)
3897 bfd_malloc (max_sym_count
3898 * sizeof (Elf_Internal_Sym
)));
3899 finfo
.indices
= (long *) bfd_malloc (max_sym_count
* sizeof (long));
3900 finfo
.sections
= ((asection
**)
3901 bfd_malloc (max_sym_count
* sizeof (asection
*)));
3902 if ((finfo
.contents
== NULL
&& max_contents_size
!= 0)
3903 || (finfo
.external_relocs
== NULL
&& max_external_reloc_size
!= 0)
3904 || (finfo
.internal_relocs
== NULL
&& max_internal_reloc_count
!= 0)
3905 || (finfo
.external_syms
== NULL
&& max_sym_count
!= 0)
3906 || (finfo
.internal_syms
== NULL
&& max_sym_count
!= 0)
3907 || (finfo
.indices
== NULL
&& max_sym_count
!= 0)
3908 || (finfo
.sections
== NULL
&& max_sym_count
!= 0))
3911 /* Since ELF permits relocations to be against local symbols, we
3912 must have the local symbols available when we do the relocations.
3913 Since we would rather only read the local symbols once, and we
3914 would rather not keep them in memory, we handle all the
3915 relocations for a single input file at the same time.
3917 Unfortunately, there is no way to know the total number of local
3918 symbols until we have seen all of them, and the local symbol
3919 indices precede the global symbol indices. This means that when
3920 we are generating relocateable output, and we see a reloc against
3921 a global symbol, we can not know the symbol index until we have
3922 finished examining all the local symbols to see which ones we are
3923 going to output. To deal with this, we keep the relocations in
3924 memory, and don't output them until the end of the link. This is
3925 an unfortunate waste of memory, but I don't see a good way around
3926 it. Fortunately, it only happens when performing a relocateable
3927 link, which is not the common case. FIXME: If keep_memory is set
3928 we could write the relocs out and then read them again; I don't
3929 know how bad the memory loss will be. */
3931 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
3932 sub
->output_has_begun
= false;
3933 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
3935 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
3937 if (p
->type
== bfd_indirect_link_order
3938 && (bfd_get_flavour (p
->u
.indirect
.section
->owner
)
3939 == bfd_target_elf_flavour
))
3941 sub
= p
->u
.indirect
.section
->owner
;
3942 if (! sub
->output_has_begun
)
3944 if (! elf_link_input_bfd (&finfo
, sub
))
3946 sub
->output_has_begun
= true;
3949 else if (p
->type
== bfd_section_reloc_link_order
3950 || p
->type
== bfd_symbol_reloc_link_order
)
3952 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
3957 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
3963 /* That wrote out all the local symbols. Finish up the symbol table
3964 with the global symbols. */
3966 if (info
->strip
!= strip_all
&& info
->shared
)
3968 /* Output any global symbols that got converted to local in a
3969 version script. We do this in a separate step since ELF
3970 requires all local symbols to appear prior to any global
3971 symbols. FIXME: We should only do this if some global
3972 symbols were, in fact, converted to become local. FIXME:
3973 Will this work correctly with the Irix 5 linker? */
3974 eoinfo
.failed
= false;
3975 eoinfo
.finfo
= &finfo
;
3976 eoinfo
.localsyms
= true;
3977 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
3983 /* The sh_info field records the index of the first non local
3985 symtab_hdr
->sh_info
= abfd
->symcount
;
3987 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
= 1;
3989 /* We get the global symbols from the hash table. */
3990 eoinfo
.failed
= false;
3991 eoinfo
.localsyms
= false;
3992 eoinfo
.finfo
= &finfo
;
3993 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
3998 /* Flush all symbols to the file. */
3999 if (! elf_link_flush_output_syms (&finfo
))
4002 /* Now we know the size of the symtab section. */
4003 off
+= symtab_hdr
->sh_size
;
4005 /* Finish up and write out the symbol string table (.strtab)
4007 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
4008 /* sh_name was set in prep_headers. */
4009 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
4010 symstrtab_hdr
->sh_flags
= 0;
4011 symstrtab_hdr
->sh_addr
= 0;
4012 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
4013 symstrtab_hdr
->sh_entsize
= 0;
4014 symstrtab_hdr
->sh_link
= 0;
4015 symstrtab_hdr
->sh_info
= 0;
4016 /* sh_offset is set just below. */
4017 symstrtab_hdr
->sh_addralign
= 1;
4019 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, true);
4020 elf_tdata (abfd
)->next_file_pos
= off
;
4022 if (abfd
->symcount
> 0)
4024 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
4025 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
4029 /* Adjust the relocs to have the correct symbol indices. */
4030 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4032 struct elf_link_hash_entry
**rel_hash
;
4033 Elf_Internal_Shdr
*rel_hdr
;
4035 if ((o
->flags
& SEC_RELOC
) == 0)
4038 rel_hash
= elf_section_data (o
)->rel_hashes
;
4039 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
4040 for (i
= 0; i
< o
->reloc_count
; i
++, rel_hash
++)
4042 if (*rel_hash
== NULL
)
4045 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
4047 if (rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
4049 Elf_External_Rel
*erel
;
4050 Elf_Internal_Rel irel
;
4052 erel
= (Elf_External_Rel
*) rel_hdr
->contents
+ i
;
4053 elf_swap_reloc_in (abfd
, erel
, &irel
);
4054 irel
.r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4055 ELF_R_TYPE (irel
.r_info
));
4056 elf_swap_reloc_out (abfd
, &irel
, erel
);
4060 Elf_External_Rela
*erela
;
4061 Elf_Internal_Rela irela
;
4063 BFD_ASSERT (rel_hdr
->sh_entsize
4064 == sizeof (Elf_External_Rela
));
4066 erela
= (Elf_External_Rela
*) rel_hdr
->contents
+ i
;
4067 elf_swap_reloca_in (abfd
, erela
, &irela
);
4068 irela
.r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4069 ELF_R_TYPE (irela
.r_info
));
4070 elf_swap_reloca_out (abfd
, &irela
, erela
);
4074 /* Set the reloc_count field to 0 to prevent write_relocs from
4075 trying to swap the relocs out itself. */
4079 /* If we are linking against a dynamic object, or generating a
4080 shared library, finish up the dynamic linking information. */
4083 Elf_External_Dyn
*dyncon
, *dynconend
;
4085 /* Fix up .dynamic entries. */
4086 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
4087 BFD_ASSERT (o
!= NULL
);
4089 dyncon
= (Elf_External_Dyn
*) o
->contents
;
4090 dynconend
= (Elf_External_Dyn
*) (o
->contents
+ o
->_raw_size
);
4091 for (; dyncon
< dynconend
; dyncon
++)
4093 Elf_Internal_Dyn dyn
;
4097 elf_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4104 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
4105 magic _init and _fini symbols. This is pretty ugly,
4106 but we are compatible. */
4114 struct elf_link_hash_entry
*h
;
4116 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
4117 false, false, true);
4119 && (h
->root
.type
== bfd_link_hash_defined
4120 || h
->root
.type
== bfd_link_hash_defweak
))
4122 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
4123 o
= h
->root
.u
.def
.section
;
4124 if (o
->output_section
!= NULL
)
4125 dyn
.d_un
.d_val
+= (o
->output_section
->vma
4126 + o
->output_offset
);
4129 /* The symbol is imported from another shared
4130 library and does not apply to this one. */
4134 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
4149 name
= ".gnu.version_d";
4152 name
= ".gnu.version_r";
4155 name
= ".gnu.version";
4157 o
= bfd_get_section_by_name (abfd
, name
);
4158 BFD_ASSERT (o
!= NULL
);
4159 dyn
.d_un
.d_ptr
= o
->vma
;
4160 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
4167 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
4172 for (i
= 1; i
< elf_elfheader (abfd
)->e_shnum
; i
++)
4174 Elf_Internal_Shdr
*hdr
;
4176 hdr
= elf_elfsections (abfd
)[i
];
4177 if (hdr
->sh_type
== type
4178 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
4180 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
4181 dyn
.d_un
.d_val
+= hdr
->sh_size
;
4184 if (dyn
.d_un
.d_val
== 0
4185 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
4186 dyn
.d_un
.d_val
= hdr
->sh_addr
;
4190 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
4196 /* If we have created any dynamic sections, then output them. */
4199 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
4202 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4204 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
4205 || o
->_raw_size
== 0)
4207 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
4209 /* At this point, we are only interested in sections
4210 created by elf_link_create_dynamic_sections. */
4213 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
4215 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
4217 if (! bfd_set_section_contents (abfd
, o
->output_section
,
4218 o
->contents
, o
->output_offset
,
4226 /* The contents of the .dynstr section are actually in a
4228 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
4229 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
4230 || ! _bfd_stringtab_emit (abfd
,
4231 elf_hash_table (info
)->dynstr
))
4237 /* If we have optimized stabs strings, output them. */
4238 if (elf_hash_table (info
)->stab_info
!= NULL
)
4240 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
4244 if (finfo
.symstrtab
!= NULL
)
4245 _bfd_stringtab_free (finfo
.symstrtab
);
4246 if (finfo
.contents
!= NULL
)
4247 free (finfo
.contents
);
4248 if (finfo
.external_relocs
!= NULL
)
4249 free (finfo
.external_relocs
);
4250 if (finfo
.internal_relocs
!= NULL
)
4251 free (finfo
.internal_relocs
);
4252 if (finfo
.external_syms
!= NULL
)
4253 free (finfo
.external_syms
);
4254 if (finfo
.internal_syms
!= NULL
)
4255 free (finfo
.internal_syms
);
4256 if (finfo
.indices
!= NULL
)
4257 free (finfo
.indices
);
4258 if (finfo
.sections
!= NULL
)
4259 free (finfo
.sections
);
4260 if (finfo
.symbuf
!= NULL
)
4261 free (finfo
.symbuf
);
4262 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4264 if ((o
->flags
& SEC_RELOC
) != 0
4265 && elf_section_data (o
)->rel_hashes
!= NULL
)
4266 free (elf_section_data (o
)->rel_hashes
);
4269 elf_tdata (abfd
)->linker
= true;
4274 if (finfo
.symstrtab
!= NULL
)
4275 _bfd_stringtab_free (finfo
.symstrtab
);
4276 if (finfo
.contents
!= NULL
)
4277 free (finfo
.contents
);
4278 if (finfo
.external_relocs
!= NULL
)
4279 free (finfo
.external_relocs
);
4280 if (finfo
.internal_relocs
!= NULL
)
4281 free (finfo
.internal_relocs
);
4282 if (finfo
.external_syms
!= NULL
)
4283 free (finfo
.external_syms
);
4284 if (finfo
.internal_syms
!= NULL
)
4285 free (finfo
.internal_syms
);
4286 if (finfo
.indices
!= NULL
)
4287 free (finfo
.indices
);
4288 if (finfo
.sections
!= NULL
)
4289 free (finfo
.sections
);
4290 if (finfo
.symbuf
!= NULL
)
4291 free (finfo
.symbuf
);
4292 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4294 if ((o
->flags
& SEC_RELOC
) != 0
4295 && elf_section_data (o
)->rel_hashes
!= NULL
)
4296 free (elf_section_data (o
)->rel_hashes
);
4302 /* Add a symbol to the output symbol table. */
4305 elf_link_output_sym (finfo
, name
, elfsym
, input_sec
)
4306 struct elf_final_link_info
*finfo
;
4308 Elf_Internal_Sym
*elfsym
;
4309 asection
*input_sec
;
4311 boolean (*output_symbol_hook
) PARAMS ((bfd
*,
4312 struct bfd_link_info
*info
,
4317 output_symbol_hook
= get_elf_backend_data (finfo
->output_bfd
)->
4318 elf_backend_link_output_symbol_hook
;
4319 if (output_symbol_hook
!= NULL
)
4321 if (! ((*output_symbol_hook
)
4322 (finfo
->output_bfd
, finfo
->info
, name
, elfsym
, input_sec
)))
4326 if (name
== (const char *) NULL
|| *name
== '\0')
4327 elfsym
->st_name
= 0;
4328 else if (input_sec
->flags
& SEC_EXCLUDE
)
4329 elfsym
->st_name
= 0;
4332 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
4335 if (elfsym
->st_name
== (unsigned long) -1)
4339 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
4341 if (! elf_link_flush_output_syms (finfo
))
4345 elf_swap_symbol_out (finfo
->output_bfd
, elfsym
,
4346 (PTR
) (finfo
->symbuf
+ finfo
->symbuf_count
));
4347 ++finfo
->symbuf_count
;
4349 ++finfo
->output_bfd
->symcount
;
4354 /* Flush the output symbols to the file. */
4357 elf_link_flush_output_syms (finfo
)
4358 struct elf_final_link_info
*finfo
;
4360 if (finfo
->symbuf_count
> 0)
4362 Elf_Internal_Shdr
*symtab
;
4364 symtab
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
4366 if (bfd_seek (finfo
->output_bfd
, symtab
->sh_offset
+ symtab
->sh_size
,
4368 || (bfd_write ((PTR
) finfo
->symbuf
, finfo
->symbuf_count
,
4369 sizeof (Elf_External_Sym
), finfo
->output_bfd
)
4370 != finfo
->symbuf_count
* sizeof (Elf_External_Sym
)))
4373 symtab
->sh_size
+= finfo
->symbuf_count
* sizeof (Elf_External_Sym
);
4375 finfo
->symbuf_count
= 0;
4381 /* Add an external symbol to the symbol table. This is called from
4382 the hash table traversal routine. When generating a shared object,
4383 we go through the symbol table twice. The first time we output
4384 anything that might have been forced to local scope in a version
4385 script. The second time we output the symbols that are still
4389 elf_link_output_extsym (h
, data
)
4390 struct elf_link_hash_entry
*h
;
4393 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
4394 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
4396 Elf_Internal_Sym sym
;
4397 asection
*input_sec
;
4399 /* Decide whether to output this symbol in this pass. */
4400 if (eoinfo
->localsyms
)
4402 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
4407 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
4411 /* If we are not creating a shared library, and this symbol is
4412 referenced by a shared library but is not defined anywhere, then
4413 warn that it is undefined. If we do not do this, the runtime
4414 linker will complain that the symbol is undefined when the
4415 program is run. We don't have to worry about symbols that are
4416 referenced by regular files, because we will already have issued
4417 warnings for them. */
4418 if (! finfo
->info
->relocateable
4419 && ! finfo
->info
->shared
4420 && h
->root
.type
== bfd_link_hash_undefined
4421 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0
4422 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
4424 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
4425 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
4426 (asection
*) NULL
, 0)))
4428 eoinfo
->failed
= true;
4433 /* We don't want to output symbols that have never been mentioned by
4434 a regular file, or that we have been told to strip. However, if
4435 h->indx is set to -2, the symbol is used by a reloc and we must
4439 else if (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
4440 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
4441 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
4442 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
4444 else if (finfo
->info
->strip
== strip_all
4445 || (finfo
->info
->strip
== strip_some
4446 && bfd_hash_lookup (finfo
->info
->keep_hash
,
4447 h
->root
.root
.string
,
4448 false, false) == NULL
))
4453 /* If we're stripping it, and it's not a dynamic symbol, there's
4454 nothing else to do. */
4455 if (strip
&& h
->dynindx
== -1)
4459 sym
.st_size
= h
->size
;
4460 sym
.st_other
= h
->other
;
4461 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
4462 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
4463 else if (h
->root
.type
== bfd_link_hash_undefweak
4464 || h
->root
.type
== bfd_link_hash_defweak
)
4465 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
4467 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
4469 switch (h
->root
.type
)
4472 case bfd_link_hash_new
:
4476 case bfd_link_hash_undefined
:
4477 input_sec
= bfd_und_section_ptr
;
4478 sym
.st_shndx
= SHN_UNDEF
;
4481 case bfd_link_hash_undefweak
:
4482 input_sec
= bfd_und_section_ptr
;
4483 sym
.st_shndx
= SHN_UNDEF
;
4486 case bfd_link_hash_defined
:
4487 case bfd_link_hash_defweak
:
4489 input_sec
= h
->root
.u
.def
.section
;
4490 if (input_sec
->output_section
!= NULL
)
4493 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
4494 input_sec
->output_section
);
4495 if (sym
.st_shndx
== (unsigned short) -1)
4497 (*_bfd_error_handler
)
4498 (_("%s: could not find output section %s for input section %s"),
4499 bfd_get_filename (finfo
->output_bfd
),
4500 input_sec
->output_section
->name
,
4502 eoinfo
->failed
= true;
4506 /* ELF symbols in relocateable files are section relative,
4507 but in nonrelocateable files they are virtual
4509 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
4510 if (! finfo
->info
->relocateable
)
4511 sym
.st_value
+= input_sec
->output_section
->vma
;
4515 BFD_ASSERT (input_sec
->owner
== NULL
4516 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
4517 sym
.st_shndx
= SHN_UNDEF
;
4518 input_sec
= bfd_und_section_ptr
;
4523 case bfd_link_hash_common
:
4524 input_sec
= h
->root
.u
.c
.p
->section
;
4525 sym
.st_shndx
= SHN_COMMON
;
4526 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
4529 case bfd_link_hash_indirect
:
4530 /* These symbols are created by symbol versioning. They point
4531 to the decorated version of the name. For example, if the
4532 symbol foo@@GNU_1.2 is the default, which should be used when
4533 foo is used with no version, then we add an indirect symbol
4534 foo which points to foo@@GNU_1.2. We ignore these symbols,
4535 since the indirected symbol is already in the hash table. If
4536 the indirect symbol is non-ELF, fall through and output it. */
4537 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_ELF
) == 0)
4541 case bfd_link_hash_warning
:
4542 /* We can't represent these symbols in ELF, although a warning
4543 symbol may have come from a .gnu.warning.SYMBOL section. We
4544 just put the target symbol in the hash table. If the target
4545 symbol does not really exist, don't do anything. */
4546 if (h
->root
.u
.i
.link
->type
== bfd_link_hash_new
)
4548 return (elf_link_output_extsym
4549 ((struct elf_link_hash_entry
*) h
->root
.u
.i
.link
, data
));
4552 /* Give the processor backend a chance to tweak the symbol value,
4553 and also to finish up anything that needs to be done for this
4555 if ((h
->dynindx
!= -1
4556 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
4557 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
4559 struct elf_backend_data
*bed
;
4561 bed
= get_elf_backend_data (finfo
->output_bfd
);
4562 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
4563 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
4565 eoinfo
->failed
= true;
4570 /* If this symbol should be put in the .dynsym section, then put it
4571 there now. We have already know the symbol index. We also fill
4572 in the entry in the .hash section. */
4573 if (h
->dynindx
!= -1
4574 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
4578 bfd_byte
*bucketpos
;
4581 sym
.st_name
= h
->dynstr_index
;
4583 elf_swap_symbol_out (finfo
->output_bfd
, &sym
,
4584 (PTR
) (((Elf_External_Sym
*)
4585 finfo
->dynsym_sec
->contents
)
4588 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
4589 bucket
= h
->elf_hash_value
% bucketcount
;
4590 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
4591 + (bucket
+ 2) * (ARCH_SIZE
/ 8));
4592 chain
= get_word (finfo
->output_bfd
, bucketpos
);
4593 put_word (finfo
->output_bfd
, h
->dynindx
, bucketpos
);
4594 put_word (finfo
->output_bfd
, chain
,
4595 ((bfd_byte
*) finfo
->hash_sec
->contents
4596 + (bucketcount
+ 2 + h
->dynindx
) * (ARCH_SIZE
/ 8)));
4598 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
4600 Elf_Internal_Versym iversym
;
4602 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
4604 if (h
->verinfo
.verdef
== NULL
)
4605 iversym
.vs_vers
= 0;
4607 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
4611 if (h
->verinfo
.vertree
== NULL
)
4612 iversym
.vs_vers
= 1;
4614 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
4617 if ((h
->elf_link_hash_flags
& ELF_LINK_HIDDEN
) != 0)
4618 iversym
.vs_vers
|= VERSYM_HIDDEN
;
4620 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
,
4621 (((Elf_External_Versym
*)
4622 finfo
->symver_sec
->contents
)
4627 /* If we're stripping it, then it was just a dynamic symbol, and
4628 there's nothing else to do. */
4632 h
->indx
= finfo
->output_bfd
->symcount
;
4634 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
))
4636 eoinfo
->failed
= true;
4643 /* Link an input file into the linker output file. This function
4644 handles all the sections and relocations of the input file at once.
4645 This is so that we only have to read the local symbols once, and
4646 don't have to keep them in memory. */
4649 elf_link_input_bfd (finfo
, input_bfd
)
4650 struct elf_final_link_info
*finfo
;
4653 boolean (*relocate_section
) PARAMS ((bfd
*, struct bfd_link_info
*,
4654 bfd
*, asection
*, bfd_byte
*,
4655 Elf_Internal_Rela
*,
4656 Elf_Internal_Sym
*, asection
**));
4658 Elf_Internal_Shdr
*symtab_hdr
;
4661 Elf_External_Sym
*external_syms
;
4662 Elf_External_Sym
*esym
;
4663 Elf_External_Sym
*esymend
;
4664 Elf_Internal_Sym
*isym
;
4666 asection
**ppsection
;
4669 output_bfd
= finfo
->output_bfd
;
4671 get_elf_backend_data (output_bfd
)->elf_backend_relocate_section
;
4673 /* If this is a dynamic object, we don't want to do anything here:
4674 we don't want the local symbols, and we don't want the section
4676 if ((input_bfd
->flags
& DYNAMIC
) != 0)
4679 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4680 if (elf_bad_symtab (input_bfd
))
4682 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
4687 locsymcount
= symtab_hdr
->sh_info
;
4688 extsymoff
= symtab_hdr
->sh_info
;
4691 /* Read the local symbols. */
4692 if (symtab_hdr
->contents
!= NULL
)
4693 external_syms
= (Elf_External_Sym
*) symtab_hdr
->contents
;
4694 else if (locsymcount
== 0)
4695 external_syms
= NULL
;
4698 external_syms
= finfo
->external_syms
;
4699 if (bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
4700 || (bfd_read (external_syms
, sizeof (Elf_External_Sym
),
4701 locsymcount
, input_bfd
)
4702 != locsymcount
* sizeof (Elf_External_Sym
)))
4706 /* Swap in the local symbols and write out the ones which we know
4707 are going into the output file. */
4708 esym
= external_syms
;
4709 esymend
= esym
+ locsymcount
;
4710 isym
= finfo
->internal_syms
;
4711 pindex
= finfo
->indices
;
4712 ppsection
= finfo
->sections
;
4713 for (; esym
< esymend
; esym
++, isym
++, pindex
++, ppsection
++)
4717 Elf_Internal_Sym osym
;
4719 elf_swap_symbol_in (input_bfd
, esym
, isym
);
4722 if (elf_bad_symtab (input_bfd
))
4724 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
4731 if (isym
->st_shndx
== SHN_UNDEF
)
4732 isec
= bfd_und_section_ptr
;
4733 else if (isym
->st_shndx
> 0 && isym
->st_shndx
< SHN_LORESERVE
)
4734 isec
= section_from_elf_index (input_bfd
, isym
->st_shndx
);
4735 else if (isym
->st_shndx
== SHN_ABS
)
4736 isec
= bfd_abs_section_ptr
;
4737 else if (isym
->st_shndx
== SHN_COMMON
)
4738 isec
= bfd_com_section_ptr
;
4747 /* Don't output the first, undefined, symbol. */
4748 if (esym
== external_syms
)
4751 /* If we are stripping all symbols, we don't want to output this
4753 if (finfo
->info
->strip
== strip_all
)
4756 /* We never output section symbols. Instead, we use the section
4757 symbol of the corresponding section in the output file. */
4758 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
4761 /* If we are discarding all local symbols, we don't want to
4762 output this one. If we are generating a relocateable output
4763 file, then some of the local symbols may be required by
4764 relocs; we output them below as we discover that they are
4766 if (finfo
->info
->discard
== discard_all
)
4769 /* If this symbol is defined in a section which we are
4770 discarding, we don't need to keep it, but note that
4771 linker_mark is only reliable for sections that have contents.
4772 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
4773 as well as linker_mark. */
4774 if (isym
->st_shndx
> 0
4775 && isym
->st_shndx
< SHN_LORESERVE
4777 && ((! isec
->linker_mark
&& (isec
->flags
& SEC_HAS_CONTENTS
) != 0)
4778 || (! finfo
->info
->relocateable
4779 && (isec
->flags
& SEC_EXCLUDE
) != 0)))
4782 /* Get the name of the symbol. */
4783 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
4788 /* See if we are discarding symbols with this name. */
4789 if ((finfo
->info
->strip
== strip_some
4790 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, false, false)
4792 || (finfo
->info
->discard
== discard_l
4793 && bfd_is_local_label_name (input_bfd
, name
)))
4796 /* If we get here, we are going to output this symbol. */
4800 /* Adjust the section index for the output file. */
4801 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
4802 isec
->output_section
);
4803 if (osym
.st_shndx
== (unsigned short) -1)
4806 *pindex
= output_bfd
->symcount
;
4808 /* ELF symbols in relocateable files are section relative, but
4809 in executable files they are virtual addresses. Note that
4810 this code assumes that all ELF sections have an associated
4811 BFD section with a reasonable value for output_offset; below
4812 we assume that they also have a reasonable value for
4813 output_section. Any special sections must be set up to meet
4814 these requirements. */
4815 osym
.st_value
+= isec
->output_offset
;
4816 if (! finfo
->info
->relocateable
)
4817 osym
.st_value
+= isec
->output_section
->vma
;
4819 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
))
4823 /* Relocate the contents of each section. */
4824 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
4828 if (! o
->linker_mark
)
4830 /* This section was omitted from the link. */
4834 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
4835 || (o
->_raw_size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
4838 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
4840 /* Section was created by elf_link_create_dynamic_sections
4845 /* Get the contents of the section. They have been cached by a
4846 relaxation routine. Note that o is a section in an input
4847 file, so the contents field will not have been set by any of
4848 the routines which work on output files. */
4849 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
4850 contents
= elf_section_data (o
)->this_hdr
.contents
;
4853 contents
= finfo
->contents
;
4854 if (! bfd_get_section_contents (input_bfd
, o
, contents
,
4855 (file_ptr
) 0, o
->_raw_size
))
4859 if ((o
->flags
& SEC_RELOC
) != 0)
4861 Elf_Internal_Rela
*internal_relocs
;
4863 /* Get the swapped relocs. */
4864 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
4865 (input_bfd
, o
, finfo
->external_relocs
,
4866 finfo
->internal_relocs
, false));
4867 if (internal_relocs
== NULL
4868 && o
->reloc_count
> 0)
4871 /* Relocate the section by invoking a back end routine.
4873 The back end routine is responsible for adjusting the
4874 section contents as necessary, and (if using Rela relocs
4875 and generating a relocateable output file) adjusting the
4876 reloc addend as necessary.
4878 The back end routine does not have to worry about setting
4879 the reloc address or the reloc symbol index.
4881 The back end routine is given a pointer to the swapped in
4882 internal symbols, and can access the hash table entries
4883 for the external symbols via elf_sym_hashes (input_bfd).
4885 When generating relocateable output, the back end routine
4886 must handle STB_LOCAL/STT_SECTION symbols specially. The
4887 output symbol is going to be a section symbol
4888 corresponding to the output section, which will require
4889 the addend to be adjusted. */
4891 if (! (*relocate_section
) (output_bfd
, finfo
->info
,
4892 input_bfd
, o
, contents
,
4894 finfo
->internal_syms
,
4898 if (finfo
->info
->relocateable
)
4900 Elf_Internal_Rela
*irela
;
4901 Elf_Internal_Rela
*irelaend
;
4902 struct elf_link_hash_entry
**rel_hash
;
4903 Elf_Internal_Shdr
*input_rel_hdr
;
4904 Elf_Internal_Shdr
*output_rel_hdr
;
4906 /* Adjust the reloc addresses and symbol indices. */
4908 irela
= internal_relocs
;
4909 irelaend
= irela
+ o
->reloc_count
;
4910 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
4911 + o
->output_section
->reloc_count
);
4912 for (; irela
< irelaend
; irela
++, rel_hash
++)
4914 unsigned long r_symndx
;
4915 Elf_Internal_Sym
*isym
;
4918 irela
->r_offset
+= o
->output_offset
;
4920 r_symndx
= ELF_R_SYM (irela
->r_info
);
4925 if (r_symndx
>= locsymcount
4926 || (elf_bad_symtab (input_bfd
)
4927 && finfo
->sections
[r_symndx
] == NULL
))
4929 struct elf_link_hash_entry
*rh
;
4932 /* This is a reloc against a global symbol. We
4933 have not yet output all the local symbols, so
4934 we do not know the symbol index of any global
4935 symbol. We set the rel_hash entry for this
4936 reloc to point to the global hash table entry
4937 for this symbol. The symbol index is then
4938 set at the end of elf_bfd_final_link. */
4939 indx
= r_symndx
- extsymoff
;
4940 rh
= elf_sym_hashes (input_bfd
)[indx
];
4941 while (rh
->root
.type
== bfd_link_hash_indirect
4942 || rh
->root
.type
== bfd_link_hash_warning
)
4943 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
4945 /* Setting the index to -2 tells
4946 elf_link_output_extsym that this symbol is
4948 BFD_ASSERT (rh
->indx
< 0);
4956 /* This is a reloc against a local symbol. */
4959 isym
= finfo
->internal_syms
+ r_symndx
;
4960 sec
= finfo
->sections
[r_symndx
];
4961 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
4963 /* I suppose the backend ought to fill in the
4964 section of any STT_SECTION symbol against a
4965 processor specific section. If we have
4966 discarded a section, the output_section will
4967 be the absolute section. */
4969 && (bfd_is_abs_section (sec
)
4970 || (sec
->output_section
!= NULL
4971 && bfd_is_abs_section (sec
->output_section
))))
4973 else if (sec
== NULL
|| sec
->owner
== NULL
)
4975 bfd_set_error (bfd_error_bad_value
);
4980 r_symndx
= sec
->output_section
->target_index
;
4981 BFD_ASSERT (r_symndx
!= 0);
4986 if (finfo
->indices
[r_symndx
] == -1)
4992 if (finfo
->info
->strip
== strip_all
)
4994 /* You can't do ld -r -s. */
4995 bfd_set_error (bfd_error_invalid_operation
);
4999 /* This symbol was skipped earlier, but
5000 since it is needed by a reloc, we
5001 must output it now. */
5002 link
= symtab_hdr
->sh_link
;
5003 name
= bfd_elf_string_from_elf_section (input_bfd
,
5009 osec
= sec
->output_section
;
5011 _bfd_elf_section_from_bfd_section (output_bfd
,
5013 if (isym
->st_shndx
== (unsigned short) -1)
5016 isym
->st_value
+= sec
->output_offset
;
5017 if (! finfo
->info
->relocateable
)
5018 isym
->st_value
+= osec
->vma
;
5020 finfo
->indices
[r_symndx
] = output_bfd
->symcount
;
5022 if (! elf_link_output_sym (finfo
, name
, isym
, sec
))
5026 r_symndx
= finfo
->indices
[r_symndx
];
5029 irela
->r_info
= ELF_R_INFO (r_symndx
,
5030 ELF_R_TYPE (irela
->r_info
));
5033 /* Swap out the relocs. */
5034 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
5035 output_rel_hdr
= &elf_section_data (o
->output_section
)->rel_hdr
;
5036 BFD_ASSERT (output_rel_hdr
->sh_entsize
5037 == input_rel_hdr
->sh_entsize
);
5038 irela
= internal_relocs
;
5039 irelaend
= irela
+ o
->reloc_count
;
5040 if (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
5042 Elf_External_Rel
*erel
;
5044 erel
= ((Elf_External_Rel
*) output_rel_hdr
->contents
5045 + o
->output_section
->reloc_count
);
5046 for (; irela
< irelaend
; irela
++, erel
++)
5048 Elf_Internal_Rel irel
;
5050 irel
.r_offset
= irela
->r_offset
;
5051 irel
.r_info
= irela
->r_info
;
5052 BFD_ASSERT (irela
->r_addend
== 0);
5053 elf_swap_reloc_out (output_bfd
, &irel
, erel
);
5058 Elf_External_Rela
*erela
;
5060 BFD_ASSERT (input_rel_hdr
->sh_entsize
5061 == sizeof (Elf_External_Rela
));
5062 erela
= ((Elf_External_Rela
*) output_rel_hdr
->contents
5063 + o
->output_section
->reloc_count
);
5064 for (; irela
< irelaend
; irela
++, erela
++)
5065 elf_swap_reloca_out (output_bfd
, irela
, erela
);
5068 o
->output_section
->reloc_count
+= o
->reloc_count
;
5072 /* Write out the modified section contents. */
5073 if (elf_section_data (o
)->stab_info
== NULL
)
5075 if (! (o
->flags
& SEC_EXCLUDE
) &&
5076 ! bfd_set_section_contents (output_bfd
, o
->output_section
,
5077 contents
, o
->output_offset
,
5078 (o
->_cooked_size
!= 0
5085 if (! (_bfd_write_section_stabs
5086 (output_bfd
, &elf_hash_table (finfo
->info
)->stab_info
,
5087 o
, &elf_section_data (o
)->stab_info
, contents
)))
5095 /* Generate a reloc when linking an ELF file. This is a reloc
5096 requested by the linker, and does come from any input file. This
5097 is used to build constructor and destructor tables when linking
5101 elf_reloc_link_order (output_bfd
, info
, output_section
, link_order
)
5103 struct bfd_link_info
*info
;
5104 asection
*output_section
;
5105 struct bfd_link_order
*link_order
;
5107 reloc_howto_type
*howto
;
5111 struct elf_link_hash_entry
**rel_hash_ptr
;
5112 Elf_Internal_Shdr
*rel_hdr
;
5114 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
5117 bfd_set_error (bfd_error_bad_value
);
5121 addend
= link_order
->u
.reloc
.p
->addend
;
5123 /* Figure out the symbol index. */
5124 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
5125 + output_section
->reloc_count
);
5126 if (link_order
->type
== bfd_section_reloc_link_order
)
5128 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
5129 BFD_ASSERT (indx
!= 0);
5130 *rel_hash_ptr
= NULL
;
5134 struct elf_link_hash_entry
*h
;
5136 /* Treat a reloc against a defined symbol as though it were
5137 actually against the section. */
5138 h
= ((struct elf_link_hash_entry
*)
5139 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
5140 link_order
->u
.reloc
.p
->u
.name
,
5141 false, false, true));
5143 && (h
->root
.type
== bfd_link_hash_defined
5144 || h
->root
.type
== bfd_link_hash_defweak
))
5148 section
= h
->root
.u
.def
.section
;
5149 indx
= section
->output_section
->target_index
;
5150 *rel_hash_ptr
= NULL
;
5151 /* It seems that we ought to add the symbol value to the
5152 addend here, but in practice it has already been added
5153 because it was passed to constructor_callback. */
5154 addend
+= section
->output_section
->vma
+ section
->output_offset
;
5158 /* Setting the index to -2 tells elf_link_output_extsym that
5159 this symbol is used by a reloc. */
5166 if (! ((*info
->callbacks
->unattached_reloc
)
5167 (info
, link_order
->u
.reloc
.p
->u
.name
, (bfd
*) NULL
,
5168 (asection
*) NULL
, (bfd_vma
) 0)))
5174 /* If this is an inplace reloc, we must write the addend into the
5176 if (howto
->partial_inplace
&& addend
!= 0)
5179 bfd_reloc_status_type rstat
;
5183 size
= bfd_get_reloc_size (howto
);
5184 buf
= (bfd_byte
*) bfd_zmalloc (size
);
5185 if (buf
== (bfd_byte
*) NULL
)
5187 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
5193 case bfd_reloc_outofrange
:
5195 case bfd_reloc_overflow
:
5196 if (! ((*info
->callbacks
->reloc_overflow
)
5198 (link_order
->type
== bfd_section_reloc_link_order
5199 ? bfd_section_name (output_bfd
,
5200 link_order
->u
.reloc
.p
->u
.section
)
5201 : link_order
->u
.reloc
.p
->u
.name
),
5202 howto
->name
, addend
, (bfd
*) NULL
, (asection
*) NULL
,
5210 ok
= bfd_set_section_contents (output_bfd
, output_section
, (PTR
) buf
,
5211 (file_ptr
) link_order
->offset
, size
);
5217 /* The address of a reloc is relative to the section in a
5218 relocateable file, and is a virtual address in an executable
5220 offset
= link_order
->offset
;
5221 if (! info
->relocateable
)
5222 offset
+= output_section
->vma
;
5224 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
5226 if (rel_hdr
->sh_type
== SHT_REL
)
5228 Elf_Internal_Rel irel
;
5229 Elf_External_Rel
*erel
;
5231 irel
.r_offset
= offset
;
5232 irel
.r_info
= ELF_R_INFO (indx
, howto
->type
);
5233 erel
= ((Elf_External_Rel
*) rel_hdr
->contents
5234 + output_section
->reloc_count
);
5235 elf_swap_reloc_out (output_bfd
, &irel
, erel
);
5239 Elf_Internal_Rela irela
;
5240 Elf_External_Rela
*erela
;
5242 irela
.r_offset
= offset
;
5243 irela
.r_info
= ELF_R_INFO (indx
, howto
->type
);
5244 irela
.r_addend
= addend
;
5245 erela
= ((Elf_External_Rela
*) rel_hdr
->contents
5246 + output_section
->reloc_count
);
5247 elf_swap_reloca_out (output_bfd
, &irela
, erela
);
5250 ++output_section
->reloc_count
;
5256 /* Allocate a pointer to live in a linker created section. */
5259 elf_create_pointer_linker_section (abfd
, info
, lsect
, h
, rel
)
5261 struct bfd_link_info
*info
;
5262 elf_linker_section_t
*lsect
;
5263 struct elf_link_hash_entry
*h
;
5264 const Elf_Internal_Rela
*rel
;
5266 elf_linker_section_pointers_t
**ptr_linker_section_ptr
= NULL
;
5267 elf_linker_section_pointers_t
*linker_section_ptr
;
5268 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);;
5270 BFD_ASSERT (lsect
!= NULL
);
5272 /* Is this a global symbol? */
5275 /* Has this symbol already been allocated, if so, our work is done */
5276 if (_bfd_elf_find_pointer_linker_section (h
->linker_section_pointer
,
5281 ptr_linker_section_ptr
= &h
->linker_section_pointer
;
5282 /* Make sure this symbol is output as a dynamic symbol. */
5283 if (h
->dynindx
== -1)
5285 if (! elf_link_record_dynamic_symbol (info
, h
))
5289 if (lsect
->rel_section
)
5290 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
5293 else /* Allocation of a pointer to a local symbol */
5295 elf_linker_section_pointers_t
**ptr
= elf_local_ptr_offsets (abfd
);
5297 /* Allocate a table to hold the local symbols if first time */
5300 unsigned int num_symbols
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
5301 register unsigned int i
;
5303 ptr
= (elf_linker_section_pointers_t
**)
5304 bfd_alloc (abfd
, num_symbols
* sizeof (elf_linker_section_pointers_t
*));
5309 elf_local_ptr_offsets (abfd
) = ptr
;
5310 for (i
= 0; i
< num_symbols
; i
++)
5311 ptr
[i
] = (elf_linker_section_pointers_t
*)0;
5314 /* Has this symbol already been allocated, if so, our work is done */
5315 if (_bfd_elf_find_pointer_linker_section (ptr
[r_symndx
],
5320 ptr_linker_section_ptr
= &ptr
[r_symndx
];
5324 /* If we are generating a shared object, we need to
5325 output a R_<xxx>_RELATIVE reloc so that the
5326 dynamic linker can adjust this GOT entry. */
5327 BFD_ASSERT (lsect
->rel_section
!= NULL
);
5328 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
5332 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5333 from internal memory. */
5334 BFD_ASSERT (ptr_linker_section_ptr
!= NULL
);
5335 linker_section_ptr
= (elf_linker_section_pointers_t
*)
5336 bfd_alloc (abfd
, sizeof (elf_linker_section_pointers_t
));
5338 if (!linker_section_ptr
)
5341 linker_section_ptr
->next
= *ptr_linker_section_ptr
;
5342 linker_section_ptr
->addend
= rel
->r_addend
;
5343 linker_section_ptr
->which
= lsect
->which
;
5344 linker_section_ptr
->written_address_p
= false;
5345 *ptr_linker_section_ptr
= linker_section_ptr
;
5348 if (lsect
->hole_size
&& lsect
->hole_offset
< lsect
->max_hole_offset
)
5350 linker_section_ptr
->offset
= lsect
->section
->_raw_size
- lsect
->hole_size
+ (ARCH_SIZE
/ 8);
5351 lsect
->hole_offset
+= ARCH_SIZE
/ 8;
5352 lsect
->sym_offset
+= ARCH_SIZE
/ 8;
5353 if (lsect
->sym_hash
) /* Bump up symbol value if needed */
5355 lsect
->sym_hash
->root
.u
.def
.value
+= ARCH_SIZE
/ 8;
5357 fprintf (stderr
, "Bump up %s by %ld, current value = %ld\n",
5358 lsect
->sym_hash
->root
.root
.string
,
5359 (long)ARCH_SIZE
/ 8,
5360 (long)lsect
->sym_hash
->root
.u
.def
.value
);
5366 linker_section_ptr
->offset
= lsect
->section
->_raw_size
;
5368 lsect
->section
->_raw_size
+= ARCH_SIZE
/ 8;
5371 fprintf (stderr
, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5372 lsect
->name
, (long)linker_section_ptr
->offset
, (long)lsect
->section
->_raw_size
);
5380 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5383 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5386 /* Fill in the address for a pointer generated in alinker section. */
5389 elf_finish_pointer_linker_section (output_bfd
, input_bfd
, info
, lsect
, h
, relocation
, rel
, relative_reloc
)
5392 struct bfd_link_info
*info
;
5393 elf_linker_section_t
*lsect
;
5394 struct elf_link_hash_entry
*h
;
5396 const Elf_Internal_Rela
*rel
;
5399 elf_linker_section_pointers_t
*linker_section_ptr
;
5401 BFD_ASSERT (lsect
!= NULL
);
5403 if (h
!= NULL
) /* global symbol */
5405 linker_section_ptr
= _bfd_elf_find_pointer_linker_section (h
->linker_section_pointer
,
5409 BFD_ASSERT (linker_section_ptr
!= NULL
);
5411 if (! elf_hash_table (info
)->dynamic_sections_created
5414 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
5416 /* This is actually a static link, or it is a
5417 -Bsymbolic link and the symbol is defined
5418 locally. We must initialize this entry in the
5421 When doing a dynamic link, we create a .rela.<xxx>
5422 relocation entry to initialize the value. This
5423 is done in the finish_dynamic_symbol routine. */
5424 if (!linker_section_ptr
->written_address_p
)
5426 linker_section_ptr
->written_address_p
= true;
5427 bfd_put_ptr (output_bfd
, relocation
+ linker_section_ptr
->addend
,
5428 lsect
->section
->contents
+ linker_section_ptr
->offset
);
5432 else /* local symbol */
5434 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
5435 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
) != NULL
);
5436 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
)[r_symndx
] != NULL
);
5437 linker_section_ptr
= _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd
)[r_symndx
],
5441 BFD_ASSERT (linker_section_ptr
!= NULL
);
5443 /* Write out pointer if it hasn't been rewritten out before */
5444 if (!linker_section_ptr
->written_address_p
)
5446 linker_section_ptr
->written_address_p
= true;
5447 bfd_put_ptr (output_bfd
, relocation
+ linker_section_ptr
->addend
,
5448 lsect
->section
->contents
+ linker_section_ptr
->offset
);
5452 asection
*srel
= lsect
->rel_section
;
5453 Elf_Internal_Rela outrel
;
5455 /* We need to generate a relative reloc for the dynamic linker. */
5457 lsect
->rel_section
= srel
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
5460 BFD_ASSERT (srel
!= NULL
);
5462 outrel
.r_offset
= (lsect
->section
->output_section
->vma
5463 + lsect
->section
->output_offset
5464 + linker_section_ptr
->offset
);
5465 outrel
.r_info
= ELF_R_INFO (0, relative_reloc
);
5466 outrel
.r_addend
= 0;
5467 elf_swap_reloca_out (output_bfd
, &outrel
,
5468 (((Elf_External_Rela
*)
5469 lsect
->section
->contents
)
5470 + lsect
->section
->reloc_count
));
5471 ++lsect
->section
->reloc_count
;
5476 relocation
= (lsect
->section
->output_offset
5477 + linker_section_ptr
->offset
5478 - lsect
->hole_offset
5479 - lsect
->sym_offset
);
5482 fprintf (stderr
, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5483 lsect
->name
, (long)relocation
, (long)relocation
);
5486 /* Subtract out the addend, because it will get added back in by the normal
5488 return relocation
- linker_section_ptr
->addend
;
5491 /* Garbage collect unused sections. */
5493 static boolean elf_gc_mark
5494 PARAMS ((struct bfd_link_info
*info
, asection
*sec
,
5495 asection
* (*gc_mark_hook
)
5496 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
5497 struct elf_link_hash_entry
*, Elf_Internal_Sym
*))));
5499 static boolean elf_gc_sweep
5500 PARAMS ((struct bfd_link_info
*info
,
5501 boolean (*gc_sweep_hook
)
5502 PARAMS ((bfd
*abfd
, struct bfd_link_info
*info
, asection
*o
,
5503 const Elf_Internal_Rela
*relocs
))));
5505 static boolean elf_gc_sweep_symbol
5506 PARAMS ((struct elf_link_hash_entry
*h
, PTR idxptr
));
5508 static boolean elf_gc_allocate_got_offsets
5509 PARAMS ((struct elf_link_hash_entry
*h
, PTR offarg
));
5511 static boolean elf_gc_propagate_vtable_entries_used
5512 PARAMS ((struct elf_link_hash_entry
*h
, PTR dummy
));
5514 static boolean elf_gc_smash_unused_vtentry_relocs
5515 PARAMS ((struct elf_link_hash_entry
*h
, PTR dummy
));
5517 /* The mark phase of garbage collection. For a given section, mark
5518 it, and all the sections which define symbols to which it refers. */
5521 elf_gc_mark (info
, sec
, gc_mark_hook
)
5522 struct bfd_link_info
*info
;
5524 asection
* (*gc_mark_hook
)
5525 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
5526 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
5532 /* Look through the section relocs. */
5534 if ((sec
->flags
& SEC_RELOC
) != 0 && sec
->reloc_count
> 0)
5536 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
5537 Elf_Internal_Shdr
*symtab_hdr
;
5538 struct elf_link_hash_entry
**sym_hashes
;
5541 Elf_External_Sym
*locsyms
, *freesyms
= NULL
;
5542 bfd
*input_bfd
= sec
->owner
;
5544 /* GCFIXME: how to arrange so that relocs and symbols are not
5545 reread continually? */
5547 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5548 sym_hashes
= elf_sym_hashes (input_bfd
);
5550 /* Read the local symbols. */
5551 if (elf_bad_symtab (input_bfd
))
5553 nlocsyms
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
5557 extsymoff
= nlocsyms
= symtab_hdr
->sh_info
;
5558 if (symtab_hdr
->contents
)
5559 locsyms
= (Elf_External_Sym
*) symtab_hdr
->contents
;
5560 else if (nlocsyms
== 0)
5564 locsyms
= freesyms
=
5565 bfd_malloc (nlocsyms
* sizeof (Elf_External_Sym
));
5566 if (freesyms
== NULL
5567 || bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
5568 || (bfd_read (locsyms
, sizeof (Elf_External_Sym
),
5569 nlocsyms
, input_bfd
)
5570 != nlocsyms
* sizeof (Elf_External_Sym
)))
5577 /* Read the relocations. */
5578 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
5579 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
5580 info
->keep_memory
));
5581 if (relstart
== NULL
)
5586 relend
= relstart
+ sec
->reloc_count
;
5588 for (rel
= relstart
; rel
< relend
; rel
++)
5590 unsigned long r_symndx
;
5592 struct elf_link_hash_entry
*h
;
5595 r_symndx
= ELF_R_SYM (rel
->r_info
);
5599 if (elf_bad_symtab (sec
->owner
))
5601 elf_swap_symbol_in (input_bfd
, &locsyms
[r_symndx
], &s
);
5602 if (ELF_ST_BIND (s
.st_info
) == STB_LOCAL
)
5603 rsec
= (*gc_mark_hook
)(sec
->owner
, info
, rel
, NULL
, &s
);
5606 h
= sym_hashes
[r_symndx
- extsymoff
];
5607 rsec
= (*gc_mark_hook
)(sec
->owner
, info
, rel
, h
, NULL
);
5610 else if (r_symndx
>= nlocsyms
)
5612 h
= sym_hashes
[r_symndx
- extsymoff
];
5613 rsec
= (*gc_mark_hook
)(sec
->owner
, info
, rel
, h
, NULL
);
5617 elf_swap_symbol_in (input_bfd
, &locsyms
[r_symndx
], &s
);
5618 rsec
= (*gc_mark_hook
)(sec
->owner
, info
, rel
, NULL
, &s
);
5621 if (rsec
&& !rsec
->gc_mark
)
5622 if (!elf_gc_mark (info
, rsec
, gc_mark_hook
))
5630 if (!info
->keep_memory
)
5640 /* The sweep phase of garbage collection. Remove all garbage sections. */
5643 elf_gc_sweep (info
, gc_sweep_hook
)
5644 struct bfd_link_info
*info
;
5645 boolean (*gc_sweep_hook
)
5646 PARAMS ((bfd
*abfd
, struct bfd_link_info
*info
, asection
*o
,
5647 const Elf_Internal_Rela
*relocs
));
5651 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
5655 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5657 /* Keep special sections. Keep .debug sections. */
5658 if ((o
->flags
& SEC_LINKER_CREATED
)
5659 || (o
->flags
& SEC_DEBUGGING
))
5665 /* Skip sweeping sections already excluded. */
5666 if (o
->flags
& SEC_EXCLUDE
)
5669 /* Since this is early in the link process, it is simple
5670 to remove a section from the output. */
5671 o
->flags
|= SEC_EXCLUDE
;
5673 /* But we also have to update some of the relocation
5674 info we collected before. */
5676 && (o
->flags
& SEC_RELOC
) && o
->reloc_count
> 0)
5678 Elf_Internal_Rela
*internal_relocs
;
5681 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
5682 (o
->owner
, o
, NULL
, NULL
, info
->keep_memory
));
5683 if (internal_relocs
== NULL
)
5686 r
= (*gc_sweep_hook
)(o
->owner
, info
, o
, internal_relocs
);
5688 if (!info
->keep_memory
)
5689 free (internal_relocs
);
5697 /* Remove the symbols that were in the swept sections from the dynamic
5698 symbol table. GCFIXME: Anyone know how to get them out of the
5699 static symbol table as well? */
5703 elf_link_hash_traverse (elf_hash_table (info
),
5704 elf_gc_sweep_symbol
,
5707 elf_hash_table (info
)->dynsymcount
= i
;
5713 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5716 elf_gc_sweep_symbol (h
, idxptr
)
5717 struct elf_link_hash_entry
*h
;
5720 int *idx
= (int *) idxptr
;
5722 if (h
->dynindx
!= -1
5723 && ((h
->root
.type
!= bfd_link_hash_defined
5724 && h
->root
.type
!= bfd_link_hash_defweak
)
5725 || h
->root
.u
.def
.section
->gc_mark
))
5726 h
->dynindx
= (*idx
)++;
5731 /* Propogate collected vtable information. This is called through
5732 elf_link_hash_traverse. */
5735 elf_gc_propagate_vtable_entries_used (h
, okp
)
5736 struct elf_link_hash_entry
*h
;
5739 /* Those that are not vtables. */
5740 if (h
->vtable_parent
== NULL
)
5743 /* Those vtables that do not have parents, we cannot merge. */
5744 if (h
->vtable_parent
== (struct elf_link_hash_entry
*) -1)
5747 /* If we've already been done, exit. */
5748 if (h
->vtable_entries_used
&& h
->vtable_entries_used
[-1])
5751 /* Make sure the parent's table is up to date. */
5752 elf_gc_propagate_vtable_entries_used (h
->vtable_parent
, okp
);
5754 if (h
->vtable_entries_used
== NULL
)
5756 /* None of this table's entries were referenced. Re-use the
5758 h
->vtable_entries_used
= h
->vtable_parent
->vtable_entries_used
;
5759 h
->vtable_entries_size
= h
->vtable_parent
->vtable_entries_size
;
5766 /* Or the parent's entries into ours. */
5767 cu
= h
->vtable_entries_used
;
5769 pu
= h
->vtable_parent
->vtable_entries_used
;
5772 n
= h
->vtable_parent
->vtable_entries_size
/ FILE_ALIGN
;
5775 if (*pu
) *cu
= true;
5785 elf_gc_smash_unused_vtentry_relocs (h
, okp
)
5786 struct elf_link_hash_entry
*h
;
5790 bfd_vma hstart
, hend
;
5791 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
5793 /* Take care of both those symbols that do not describe vtables as
5794 well as those that are not loaded. */
5795 if (h
->vtable_parent
== NULL
)
5798 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
5799 || h
->root
.type
== bfd_link_hash_defweak
);
5801 sec
= h
->root
.u
.def
.section
;
5802 hstart
= h
->root
.u
.def
.value
;
5803 hend
= hstart
+ h
->size
;
5805 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
5806 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
, true));
5808 return *(boolean
*)okp
= false;
5809 relend
= relstart
+ sec
->reloc_count
;
5811 for (rel
= relstart
; rel
< relend
; ++rel
)
5812 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
5814 /* If the entry is in use, do nothing. */
5815 if (h
->vtable_entries_used
5816 && (rel
->r_offset
- hstart
) < h
->vtable_entries_size
)
5818 bfd_vma entry
= (rel
->r_offset
- hstart
) / FILE_ALIGN
;
5819 if (h
->vtable_entries_used
[entry
])
5822 /* Otherwise, kill it. */
5823 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
5829 /* Do mark and sweep of unused sections. */
5832 elf_gc_sections (abfd
, info
)
5834 struct bfd_link_info
*info
;
5838 asection
* (*gc_mark_hook
)
5839 PARAMS ((bfd
*abfd
, struct bfd_link_info
*, Elf_Internal_Rela
*,
5840 struct elf_link_hash_entry
*h
, Elf_Internal_Sym
*));
5842 if (!get_elf_backend_data (abfd
)->can_gc_sections
5843 || info
->relocateable
5844 || elf_hash_table (info
)->dynamic_sections_created
)
5847 /* Apply transitive closure to the vtable entry usage info. */
5848 elf_link_hash_traverse (elf_hash_table (info
),
5849 elf_gc_propagate_vtable_entries_used
,
5854 /* Kill the vtable relocations that were not used. */
5855 elf_link_hash_traverse (elf_hash_table (info
),
5856 elf_gc_smash_unused_vtentry_relocs
,
5861 /* Grovel through relocs to find out who stays ... */
5863 gc_mark_hook
= get_elf_backend_data (abfd
)->gc_mark_hook
;
5864 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
5867 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5869 if (o
->flags
& SEC_KEEP
)
5870 if (!elf_gc_mark (info
, o
, gc_mark_hook
))
5875 /* ... and mark SEC_EXCLUDE for those that go. */
5876 if (!elf_gc_sweep(info
, get_elf_backend_data (abfd
)->gc_sweep_hook
))
5882 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
5885 elf_gc_record_vtinherit (abfd
, sec
, h
, offset
)
5888 struct elf_link_hash_entry
*h
;
5891 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
5892 struct elf_link_hash_entry
**search
, *child
;
5893 bfd_size_type extsymcount
;
5895 /* The sh_info field of the symtab header tells us where the
5896 external symbols start. We don't care about the local symbols at
5898 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/sizeof (Elf_External_Sym
);
5899 if (!elf_bad_symtab (abfd
))
5900 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
5902 sym_hashes
= elf_sym_hashes (abfd
);
5903 sym_hashes_end
= sym_hashes
+ extsymcount
;
5905 /* Hunt down the child symbol, which is in this section at the same
5906 offset as the relocation. */
5907 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
5909 if ((child
= *search
) != NULL
5910 && (child
->root
.type
== bfd_link_hash_defined
5911 || child
->root
.type
== bfd_link_hash_defweak
)
5912 && child
->root
.u
.def
.section
== sec
5913 && child
->root
.u
.def
.value
== offset
)
5917 (*_bfd_error_handler
) ("%s: %s+%lu: No symbol found for INHERIT",
5918 bfd_get_filename (abfd
), sec
->name
,
5919 (unsigned long)offset
);
5920 bfd_set_error (bfd_error_invalid_operation
);
5926 /* This *should* only be the absolute section. It could potentially
5927 be that someone has defined a non-global vtable though, which
5928 would be bad. It isn't worth paging in the local symbols to be
5929 sure though; that case should simply be handled by the assembler. */
5931 child
->vtable_parent
= (struct elf_link_hash_entry
*) -1;
5934 child
->vtable_parent
= h
;
5939 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
5942 elf_gc_record_vtentry (abfd
, sec
, h
, addend
)
5945 struct elf_link_hash_entry
*h
;
5948 if (addend
>= h
->vtable_entries_size
)
5951 boolean
*ptr
= h
->vtable_entries_used
;
5953 /* While the symbol is undefined, we have to be prepared to handle
5955 if (h
->root
.type
== bfd_link_hash_undefined
)
5962 /* Oops! We've got a reference past the defined end of
5963 the table. This is probably a bug -- shall we warn? */
5968 /* Allocate one extra entry for use as a "done" flag for the
5969 consolidation pass. */
5970 bytes
= (size
/ FILE_ALIGN
+ 1) * sizeof(boolean
);
5976 ptr
= realloc (ptr
-1, bytes
);
5980 oldbytes
= (h
->vtable_entries_size
/FILE_ALIGN
+ 1) * sizeof(boolean
);
5981 memset (ptr
+ oldbytes
, 0, bytes
- oldbytes
);
5985 ptr
= calloc (1, bytes
);
5990 /* And arrange for that done flag to be at index -1. */
5991 h
->vtable_entries_used
= ptr
+1;
5992 h
->vtable_entries_size
= size
;
5994 h
->vtable_entries_used
[addend
/ FILE_ALIGN
] = true;
5999 /* And an accompanying bit to work out final got entry offsets once
6000 we're done. Should be called from final_link. */
6003 elf_gc_common_finalize_got_offsets (abfd
, info
)
6005 struct bfd_link_info
*info
;
6008 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6011 /* The GOT offset is relative to the .got section, but the GOT header is
6012 put into the .got.plt section, if the backend uses it. */
6013 if (bed
->want_got_plt
)
6016 gotoff
= bed
->got_header_size
;
6018 /* Do the local .got entries first. */
6019 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
6021 bfd_signed_vma
*local_got
= elf_local_got_refcounts (i
);
6022 bfd_size_type j
, locsymcount
;
6023 Elf_Internal_Shdr
*symtab_hdr
;
6028 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
6029 if (elf_bad_symtab (i
))
6030 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
6032 locsymcount
= symtab_hdr
->sh_info
;
6034 for (j
= 0; j
< locsymcount
; ++j
)
6036 if (local_got
[j
] > 0)
6038 local_got
[j
] = gotoff
;
6039 gotoff
+= ARCH_SIZE
/ 8;
6042 local_got
[j
] = (bfd_vma
) -1;
6046 /* Then the global .got and .plt entries. */
6047 elf_link_hash_traverse (elf_hash_table (info
),
6048 elf_gc_allocate_got_offsets
,
6053 /* We need a special top-level link routine to convert got reference counts
6054 to real got offsets. */
6057 elf_gc_allocate_got_offsets (h
, offarg
)
6058 struct elf_link_hash_entry
*h
;
6061 bfd_vma
*off
= (bfd_vma
*) offarg
;
6063 if (h
->got
.refcount
> 0)
6065 h
->got
.offset
= off
[0];
6066 off
[0] += ARCH_SIZE
/ 8;
6069 h
->got
.offset
= (bfd_vma
) -1;
6074 /* Many folk need no more in the way of final link than this, once
6075 got entry reference counting is enabled. */
6078 elf_gc_common_final_link (abfd
, info
)
6080 struct bfd_link_info
*info
;
6082 if (!elf_gc_common_finalize_got_offsets (abfd
, info
))
6085 /* Invoke the regular ELF backend linker to do all the work. */
6086 return elf_bfd_final_link (abfd
, info
);
6089 /* This function will be called though elf_link_hash_traverse to store
6090 all hash value of the exported symbols in an array. */
6093 elf_collect_hash_codes (h
, data
)
6094 struct elf_link_hash_entry
*h
;
6097 unsigned long **valuep
= (unsigned long **) data
;
6103 /* Ignore indirect symbols. These are added by the versioning code. */
6104 if (h
->dynindx
== -1)
6107 name
= h
->root
.root
.string
;
6108 p
= strchr (name
, ELF_VER_CHR
);
6111 alc
= bfd_malloc (p
- name
+ 1);
6112 memcpy (alc
, name
, p
- name
);
6113 alc
[p
- name
] = '\0';
6117 /* Compute the hash value. */
6118 ha
= bfd_elf_hash (name
);
6120 /* Store the found hash value in the array given as the argument. */
6123 /* And store it in the struct so that we can put it in the hash table
6125 h
->elf_hash_value
= ha
;