1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
37 #include "reggroups.h"
42 #include "target-float.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
67 #include <unordered_set>
72 static const char * const i386_register_names
[] =
74 "eax", "ecx", "edx", "ebx",
75 "esp", "ebp", "esi", "edi",
76 "eip", "eflags", "cs", "ss",
77 "ds", "es", "fs", "gs",
78 "st0", "st1", "st2", "st3",
79 "st4", "st5", "st6", "st7",
80 "fctrl", "fstat", "ftag", "fiseg",
81 "fioff", "foseg", "fooff", "fop",
82 "xmm0", "xmm1", "xmm2", "xmm3",
83 "xmm4", "xmm5", "xmm6", "xmm7",
87 static const char * const i386_zmm_names
[] =
89 "zmm0", "zmm1", "zmm2", "zmm3",
90 "zmm4", "zmm5", "zmm6", "zmm7"
93 static const char * const i386_zmmh_names
[] =
95 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
96 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 static const char * const i386_k_names
[] =
101 "k0", "k1", "k2", "k3",
102 "k4", "k5", "k6", "k7"
105 static const char * const i386_ymm_names
[] =
107 "ymm0", "ymm1", "ymm2", "ymm3",
108 "ymm4", "ymm5", "ymm6", "ymm7",
111 static const char * const i386_ymmh_names
[] =
113 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
114 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 static const char * const i386_mpx_names
[] =
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 static const char * const i386_pkeys_names
[] =
127 /* Register names for MPX pseudo-registers. */
129 static const char * const i386_bnd_names
[] =
131 "bnd0", "bnd1", "bnd2", "bnd3"
134 /* Register names for MMX pseudo-registers. */
136 static const char * const i386_mmx_names
[] =
138 "mm0", "mm1", "mm2", "mm3",
139 "mm4", "mm5", "mm6", "mm7"
142 /* Register names for byte pseudo-registers. */
144 static const char * const i386_byte_names
[] =
146 "al", "cl", "dl", "bl",
147 "ah", "ch", "dh", "bh"
150 /* Register names for word pseudo-registers. */
152 static const char * const i386_word_names
[] =
154 "ax", "cx", "dx", "bx",
158 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
159 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
160 we have 16 upper ZMM regs that have to be handled differently. */
162 const int num_lower_zmm_regs
= 16;
167 i386_mmx_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
169 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
170 int mm0_regnum
= tdep
->mm0_regnum
;
175 regnum
-= mm0_regnum
;
176 return regnum
>= 0 && regnum
< tdep
->num_mmx_regs
;
182 i386_byte_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
184 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
186 regnum
-= tdep
->al_regnum
;
187 return regnum
>= 0 && regnum
< tdep
->num_byte_regs
;
193 i386_word_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
195 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
197 regnum
-= tdep
->ax_regnum
;
198 return regnum
>= 0 && regnum
< tdep
->num_word_regs
;
201 /* Dword register? */
204 i386_dword_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
206 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
207 int eax_regnum
= tdep
->eax_regnum
;
212 regnum
-= eax_regnum
;
213 return regnum
>= 0 && regnum
< tdep
->num_dword_regs
;
216 /* AVX512 register? */
219 i386_zmmh_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
221 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
222 int zmm0h_regnum
= tdep
->zmm0h_regnum
;
224 if (zmm0h_regnum
< 0)
227 regnum
-= zmm0h_regnum
;
228 return regnum
>= 0 && regnum
< tdep
->num_zmm_regs
;
232 i386_zmm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
234 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
235 int zmm0_regnum
= tdep
->zmm0_regnum
;
240 regnum
-= zmm0_regnum
;
241 return regnum
>= 0 && regnum
< tdep
->num_zmm_regs
;
245 i386_k_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
247 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
248 int k0_regnum
= tdep
->k0_regnum
;
254 return regnum
>= 0 && regnum
< I387_NUM_K_REGS
;
258 i386_ymmh_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
260 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
261 int ymm0h_regnum
= tdep
->ymm0h_regnum
;
263 if (ymm0h_regnum
< 0)
266 regnum
-= ymm0h_regnum
;
267 return regnum
>= 0 && regnum
< tdep
->num_ymm_regs
;
273 i386_ymm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
275 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
276 int ymm0_regnum
= tdep
->ymm0_regnum
;
281 regnum
-= ymm0_regnum
;
282 return regnum
>= 0 && regnum
< tdep
->num_ymm_regs
;
286 i386_ymmh_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
288 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
289 int ymm16h_regnum
= tdep
->ymm16h_regnum
;
291 if (ymm16h_regnum
< 0)
294 regnum
-= ymm16h_regnum
;
295 return regnum
>= 0 && regnum
< tdep
->num_ymm_avx512_regs
;
299 i386_ymm_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
301 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
302 int ymm16_regnum
= tdep
->ymm16_regnum
;
304 if (ymm16_regnum
< 0)
307 regnum
-= ymm16_regnum
;
308 return regnum
>= 0 && regnum
< tdep
->num_ymm_avx512_regs
;
314 i386_bnd_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
316 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
317 int bnd0_regnum
= tdep
->bnd0_regnum
;
322 regnum
-= bnd0_regnum
;
323 return regnum
>= 0 && regnum
< I387_NUM_BND_REGS
;
329 i386_xmm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
331 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
332 int num_xmm_regs
= I387_NUM_XMM_REGS (tdep
);
334 if (num_xmm_regs
== 0)
337 regnum
-= I387_XMM0_REGNUM (tdep
);
338 return regnum
>= 0 && regnum
< num_xmm_regs
;
341 /* XMM_512 register? */
344 i386_xmm_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
346 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
347 int num_xmm_avx512_regs
= I387_NUM_XMM_AVX512_REGS (tdep
);
349 if (num_xmm_avx512_regs
== 0)
352 regnum
-= I387_XMM16_REGNUM (tdep
);
353 return regnum
>= 0 && regnum
< num_xmm_avx512_regs
;
357 i386_mxcsr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
359 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
361 if (I387_NUM_XMM_REGS (tdep
) == 0)
364 return (regnum
== I387_MXCSR_REGNUM (tdep
));
370 i386_fp_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
372 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
374 if (I387_ST0_REGNUM (tdep
) < 0)
377 return (I387_ST0_REGNUM (tdep
) <= regnum
378 && regnum
< I387_FCTRL_REGNUM (tdep
));
382 i386_fpc_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
384 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
386 if (I387_ST0_REGNUM (tdep
) < 0)
389 return (I387_FCTRL_REGNUM (tdep
) <= regnum
390 && regnum
< I387_XMM0_REGNUM (tdep
));
393 /* BNDr (raw) register? */
396 i386_bndr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
398 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
400 if (I387_BND0R_REGNUM (tdep
) < 0)
403 regnum
-= tdep
->bnd0r_regnum
;
404 return regnum
>= 0 && regnum
< I387_NUM_BND_REGS
;
407 /* BND control register? */
410 i386_mpx_ctrl_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
412 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
414 if (I387_BNDCFGU_REGNUM (tdep
) < 0)
417 regnum
-= I387_BNDCFGU_REGNUM (tdep
);
418 return regnum
>= 0 && regnum
< I387_NUM_MPX_CTRL_REGS
;
424 i386_pkru_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
426 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
427 int pkru_regnum
= tdep
->pkru_regnum
;
432 regnum
-= pkru_regnum
;
433 return regnum
>= 0 && regnum
< I387_NUM_PKEYS_REGS
;
436 /* Return the name of register REGNUM, or the empty string if it is
437 an anonymous register. */
440 i386_register_name (struct gdbarch
*gdbarch
, int regnum
)
442 /* Hide the upper YMM registers. */
443 if (i386_ymmh_regnum_p (gdbarch
, regnum
))
446 /* Hide the upper YMM16-31 registers. */
447 if (i386_ymmh_avx512_regnum_p (gdbarch
, regnum
))
450 /* Hide the upper ZMM registers. */
451 if (i386_zmmh_regnum_p (gdbarch
, regnum
))
454 return tdesc_register_name (gdbarch
, regnum
);
457 /* Return the name of register REGNUM. */
460 i386_pseudo_register_name (struct gdbarch
*gdbarch
, int regnum
)
462 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
463 if (i386_bnd_regnum_p (gdbarch
, regnum
))
464 return i386_bnd_names
[regnum
- tdep
->bnd0_regnum
];
465 if (i386_mmx_regnum_p (gdbarch
, regnum
))
466 return i386_mmx_names
[regnum
- I387_MM0_REGNUM (tdep
)];
467 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
468 return i386_ymm_names
[regnum
- tdep
->ymm0_regnum
];
469 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
470 return i386_zmm_names
[regnum
- tdep
->zmm0_regnum
];
471 else if (i386_byte_regnum_p (gdbarch
, regnum
))
472 return i386_byte_names
[regnum
- tdep
->al_regnum
];
473 else if (i386_word_regnum_p (gdbarch
, regnum
))
474 return i386_word_names
[regnum
- tdep
->ax_regnum
];
476 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
479 /* Convert a dbx register number REG to the appropriate register
480 number used by GDB. */
483 i386_dbx_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
485 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
487 /* This implements what GCC calls the "default" register map
488 (dbx_register_map[]). */
490 if (reg
>= 0 && reg
<= 7)
492 /* General-purpose registers. The debug info calls %ebp
493 register 4, and %esp register 5. */
500 else if (reg
>= 12 && reg
<= 19)
502 /* Floating-point registers. */
503 return reg
- 12 + I387_ST0_REGNUM (tdep
);
505 else if (reg
>= 21 && reg
<= 28)
508 int ymm0_regnum
= tdep
->ymm0_regnum
;
511 && i386_xmm_regnum_p (gdbarch
, reg
))
512 return reg
- 21 + ymm0_regnum
;
514 return reg
- 21 + I387_XMM0_REGNUM (tdep
);
516 else if (reg
>= 29 && reg
<= 36)
519 return reg
- 29 + I387_MM0_REGNUM (tdep
);
522 /* This will hopefully provoke a warning. */
523 return gdbarch_num_cooked_regs (gdbarch
);
526 /* Convert SVR4 DWARF register number REG to the appropriate register number
530 i386_svr4_dwarf_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
532 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
534 /* This implements the GCC register map that tries to be compatible
535 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
537 /* The SVR4 register numbering includes %eip and %eflags, and
538 numbers the floating point registers differently. */
539 if (reg
>= 0 && reg
<= 9)
541 /* General-purpose registers. */
544 else if (reg
>= 11 && reg
<= 18)
546 /* Floating-point registers. */
547 return reg
- 11 + I387_ST0_REGNUM (tdep
);
549 else if (reg
>= 21 && reg
<= 36)
551 /* The SSE and MMX registers have the same numbers as with dbx. */
552 return i386_dbx_reg_to_regnum (gdbarch
, reg
);
557 case 37: return I387_FCTRL_REGNUM (tdep
);
558 case 38: return I387_FSTAT_REGNUM (tdep
);
559 case 39: return I387_MXCSR_REGNUM (tdep
);
560 case 40: return I386_ES_REGNUM
;
561 case 41: return I386_CS_REGNUM
;
562 case 42: return I386_SS_REGNUM
;
563 case 43: return I386_DS_REGNUM
;
564 case 44: return I386_FS_REGNUM
;
565 case 45: return I386_GS_REGNUM
;
571 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
572 num_regs + num_pseudo_regs for other debug formats. */
575 i386_svr4_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
577 int regnum
= i386_svr4_dwarf_reg_to_regnum (gdbarch
, reg
);
580 return gdbarch_num_cooked_regs (gdbarch
);
586 /* This is the variable that is set with "set disassembly-flavor", and
587 its legitimate values. */
588 static const char att_flavor
[] = "att";
589 static const char intel_flavor
[] = "intel";
590 static const char *const valid_flavors
[] =
596 static const char *disassembly_flavor
= att_flavor
;
599 /* Use the program counter to determine the contents and size of a
600 breakpoint instruction. Return a pointer to a string of bytes that
601 encode a breakpoint instruction, store the length of the string in
602 *LEN and optionally adjust *PC to point to the correct memory
603 location for inserting the breakpoint.
605 On the i386 we have a single breakpoint that fits in a single byte
606 and can be inserted anywhere.
608 This function is 64-bit safe. */
610 constexpr gdb_byte i386_break_insn
[] = { 0xcc }; /* int 3 */
612 typedef BP_MANIPULATION (i386_break_insn
) i386_breakpoint
;
615 /* Displaced instruction handling. */
617 /* Skip the legacy instruction prefixes in INSN.
618 Not all prefixes are valid for any particular insn
619 but we needn't care, the insn will fault if it's invalid.
620 The result is a pointer to the first opcode byte,
621 or NULL if we run off the end of the buffer. */
624 i386_skip_prefixes (gdb_byte
*insn
, size_t max_len
)
626 gdb_byte
*end
= insn
+ max_len
;
632 case DATA_PREFIX_OPCODE
:
633 case ADDR_PREFIX_OPCODE
:
634 case CS_PREFIX_OPCODE
:
635 case DS_PREFIX_OPCODE
:
636 case ES_PREFIX_OPCODE
:
637 case FS_PREFIX_OPCODE
:
638 case GS_PREFIX_OPCODE
:
639 case SS_PREFIX_OPCODE
:
640 case LOCK_PREFIX_OPCODE
:
641 case REPE_PREFIX_OPCODE
:
642 case REPNE_PREFIX_OPCODE
:
654 i386_absolute_jmp_p (const gdb_byte
*insn
)
656 /* jmp far (absolute address in operand). */
662 /* jump near, absolute indirect (/4). */
663 if ((insn
[1] & 0x38) == 0x20)
666 /* jump far, absolute indirect (/5). */
667 if ((insn
[1] & 0x38) == 0x28)
674 /* Return non-zero if INSN is a jump, zero otherwise. */
677 i386_jmp_p (const gdb_byte
*insn
)
679 /* jump short, relative. */
683 /* jump near, relative. */
687 return i386_absolute_jmp_p (insn
);
691 i386_absolute_call_p (const gdb_byte
*insn
)
693 /* call far, absolute. */
699 /* Call near, absolute indirect (/2). */
700 if ((insn
[1] & 0x38) == 0x10)
703 /* Call far, absolute indirect (/3). */
704 if ((insn
[1] & 0x38) == 0x18)
712 i386_ret_p (const gdb_byte
*insn
)
716 case 0xc2: /* ret near, pop N bytes. */
717 case 0xc3: /* ret near */
718 case 0xca: /* ret far, pop N bytes. */
719 case 0xcb: /* ret far */
720 case 0xcf: /* iret */
729 i386_call_p (const gdb_byte
*insn
)
731 if (i386_absolute_call_p (insn
))
734 /* call near, relative. */
741 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
742 length in bytes. Otherwise, return zero. */
745 i386_syscall_p (const gdb_byte
*insn
, int *lengthp
)
747 /* Is it 'int $0x80'? */
748 if ((insn
[0] == 0xcd && insn
[1] == 0x80)
749 /* Or is it 'sysenter'? */
750 || (insn
[0] == 0x0f && insn
[1] == 0x34)
751 /* Or is it 'syscall'? */
752 || (insn
[0] == 0x0f && insn
[1] == 0x05))
761 /* The gdbarch insn_is_call method. */
764 i386_insn_is_call (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
766 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
768 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
769 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
771 return i386_call_p (insn
);
774 /* The gdbarch insn_is_ret method. */
777 i386_insn_is_ret (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
779 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
781 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
782 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
784 return i386_ret_p (insn
);
787 /* The gdbarch insn_is_jump method. */
790 i386_insn_is_jump (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
792 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
794 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
795 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
797 return i386_jmp_p (insn
);
800 /* Some kernels may run one past a syscall insn, so we have to cope. */
802 displaced_step_closure_up
803 i386_displaced_step_copy_insn (struct gdbarch
*gdbarch
,
804 CORE_ADDR from
, CORE_ADDR to
,
805 struct regcache
*regs
)
807 size_t len
= gdbarch_max_insn_length (gdbarch
);
808 std::unique_ptr
<i386_displaced_step_closure
> closure
809 (new i386_displaced_step_closure (len
));
810 gdb_byte
*buf
= closure
->buf
.data ();
812 read_memory (from
, buf
, len
);
814 /* GDB may get control back after the insn after the syscall.
815 Presumably this is a kernel bug.
816 If this is a syscall, make sure there's a nop afterwards. */
821 insn
= i386_skip_prefixes (buf
, len
);
822 if (insn
!= NULL
&& i386_syscall_p (insn
, &syscall_length
))
823 insn
[syscall_length
] = NOP_OPCODE
;
826 write_memory (to
, buf
, len
);
828 displaced_debug_printf ("%s->%s: %s",
829 paddress (gdbarch
, from
), paddress (gdbarch
, to
),
830 displaced_step_dump_bytes (buf
, len
).c_str ());
832 /* This is a work around for a problem with g++ 4.8. */
833 return displaced_step_closure_up (closure
.release ());
836 /* Fix up the state of registers and memory after having single-stepped
837 a displaced instruction. */
840 i386_displaced_step_fixup (struct gdbarch
*gdbarch
,
841 struct displaced_step_closure
*closure_
,
842 CORE_ADDR from
, CORE_ADDR to
,
843 struct regcache
*regs
)
845 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
847 /* The offset we applied to the instruction's address.
848 This could well be negative (when viewed as a signed 32-bit
849 value), but ULONGEST won't reflect that, so take care when
851 ULONGEST insn_offset
= to
- from
;
853 i386_displaced_step_closure
*closure
854 = (i386_displaced_step_closure
*) closure_
;
855 gdb_byte
*insn
= closure
->buf
.data ();
856 /* The start of the insn, needed in case we see some prefixes. */
857 gdb_byte
*insn_start
= insn
;
859 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
860 paddress (gdbarch
, from
), paddress (gdbarch
, to
),
863 /* The list of issues to contend with here is taken from
864 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
865 Yay for Free Software! */
867 /* Relocate the %eip, if necessary. */
869 /* The instruction recognizers we use assume any leading prefixes
870 have been skipped. */
872 /* This is the size of the buffer in closure. */
873 size_t max_insn_len
= gdbarch_max_insn_length (gdbarch
);
874 gdb_byte
*opcode
= i386_skip_prefixes (insn
, max_insn_len
);
875 /* If there are too many prefixes, just ignore the insn.
876 It will fault when run. */
881 /* Except in the case of absolute or indirect jump or call
882 instructions, or a return instruction, the new eip is relative to
883 the displaced instruction; make it relative. Well, signal
884 handler returns don't need relocation either, but we use the
885 value of %eip to recognize those; see below. */
886 if (! i386_absolute_jmp_p (insn
)
887 && ! i386_absolute_call_p (insn
)
888 && ! i386_ret_p (insn
))
893 regcache_cooked_read_unsigned (regs
, I386_EIP_REGNUM
, &orig_eip
);
895 /* A signal trampoline system call changes the %eip, resuming
896 execution of the main program after the signal handler has
897 returned. That makes them like 'return' instructions; we
898 shouldn't relocate %eip.
900 But most system calls don't, and we do need to relocate %eip.
902 Our heuristic for distinguishing these cases: if stepping
903 over the system call instruction left control directly after
904 the instruction, the we relocate --- control almost certainly
905 doesn't belong in the displaced copy. Otherwise, we assume
906 the instruction has put control where it belongs, and leave
907 it unrelocated. Goodness help us if there are PC-relative
909 if (i386_syscall_p (insn
, &insn_len
)
910 && orig_eip
!= to
+ (insn
- insn_start
) + insn_len
911 /* GDB can get control back after the insn after the syscall.
912 Presumably this is a kernel bug.
913 i386_displaced_step_copy_insn ensures its a nop,
914 we add one to the length for it. */
915 && orig_eip
!= to
+ (insn
- insn_start
) + insn_len
+ 1)
916 displaced_debug_printf ("syscall changed %%eip; not relocating");
919 ULONGEST eip
= (orig_eip
- insn_offset
) & 0xffffffffUL
;
921 /* If we just stepped over a breakpoint insn, we don't backup
922 the pc on purpose; this is to match behaviour without
925 regcache_cooked_write_unsigned (regs
, I386_EIP_REGNUM
, eip
);
927 displaced_debug_printf ("relocated %%eip from %s to %s",
928 paddress (gdbarch
, orig_eip
),
929 paddress (gdbarch
, eip
));
933 /* If the instruction was PUSHFL, then the TF bit will be set in the
934 pushed value, and should be cleared. We'll leave this for later,
935 since GDB already messes up the TF flag when stepping over a
938 /* If the instruction was a call, the return address now atop the
939 stack is the address following the copied instruction. We need
940 to make it the address following the original instruction. */
941 if (i386_call_p (insn
))
945 const ULONGEST retaddr_len
= 4;
947 regcache_cooked_read_unsigned (regs
, I386_ESP_REGNUM
, &esp
);
948 retaddr
= read_memory_unsigned_integer (esp
, retaddr_len
, byte_order
);
949 retaddr
= (retaddr
- insn_offset
) & 0xffffffffUL
;
950 write_memory_unsigned_integer (esp
, retaddr_len
, byte_order
, retaddr
);
952 displaced_debug_printf ("relocated return addr at %s to %s",
953 paddress (gdbarch
, esp
),
954 paddress (gdbarch
, retaddr
));
959 append_insns (CORE_ADDR
*to
, ULONGEST len
, const gdb_byte
*buf
)
961 target_write_memory (*to
, buf
, len
);
966 i386_relocate_instruction (struct gdbarch
*gdbarch
,
967 CORE_ADDR
*to
, CORE_ADDR oldloc
)
969 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
970 gdb_byte buf
[I386_MAX_INSN_LEN
];
971 int offset
= 0, rel32
, newrel
;
973 gdb_byte
*insn
= buf
;
975 read_memory (oldloc
, buf
, I386_MAX_INSN_LEN
);
977 insn_length
= gdb_buffered_insn_length (gdbarch
, insn
,
978 I386_MAX_INSN_LEN
, oldloc
);
980 /* Get past the prefixes. */
981 insn
= i386_skip_prefixes (insn
, I386_MAX_INSN_LEN
);
983 /* Adjust calls with 32-bit relative addresses as push/jump, with
984 the address pushed being the location where the original call in
985 the user program would return to. */
988 gdb_byte push_buf
[16];
989 unsigned int ret_addr
;
991 /* Where "ret" in the original code will return to. */
992 ret_addr
= oldloc
+ insn_length
;
993 push_buf
[0] = 0x68; /* pushq $... */
994 store_unsigned_integer (&push_buf
[1], 4, byte_order
, ret_addr
);
996 append_insns (to
, 5, push_buf
);
998 /* Convert the relative call to a relative jump. */
1001 /* Adjust the destination offset. */
1002 rel32
= extract_signed_integer (insn
+ 1, 4, byte_order
);
1003 newrel
= (oldloc
- *to
) + rel32
;
1004 store_signed_integer (insn
+ 1, 4, byte_order
, newrel
);
1006 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1007 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1008 hex_string (newrel
), paddress (gdbarch
, *to
));
1010 /* Write the adjusted jump into its displaced location. */
1011 append_insns (to
, 5, insn
);
1015 /* Adjust jumps with 32-bit relative addresses. Calls are already
1017 if (insn
[0] == 0xe9)
1019 /* Adjust conditional jumps. */
1020 else if (insn
[0] == 0x0f && (insn
[1] & 0xf0) == 0x80)
1025 rel32
= extract_signed_integer (insn
+ offset
, 4, byte_order
);
1026 newrel
= (oldloc
- *to
) + rel32
;
1027 store_signed_integer (insn
+ offset
, 4, byte_order
, newrel
);
1028 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1029 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1030 hex_string (newrel
), paddress (gdbarch
, *to
));
1033 /* Write the adjusted instructions into their displaced
1035 append_insns (to
, insn_length
, buf
);
1039 #ifdef I386_REGNO_TO_SYMMETRY
1040 #error "The Sequent Symmetry is no longer supported."
1043 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1044 and %esp "belong" to the calling function. Therefore these
1045 registers should be saved if they're going to be modified. */
1047 /* The maximum number of saved registers. This should include all
1048 registers mentioned above, and %eip. */
1049 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1051 struct i386_frame_cache
1059 /* Saved registers. */
1060 CORE_ADDR saved_regs
[I386_NUM_SAVED_REGS
];
1065 /* Stack space reserved for local variables. */
1069 /* Allocate and initialize a frame cache. */
1071 static struct i386_frame_cache
*
1072 i386_alloc_frame_cache (void)
1074 struct i386_frame_cache
*cache
;
1077 cache
= FRAME_OBSTACK_ZALLOC (struct i386_frame_cache
);
1082 cache
->sp_offset
= -4;
1085 /* Saved registers. We initialize these to -1 since zero is a valid
1086 offset (that's where %ebp is supposed to be stored). */
1087 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
1088 cache
->saved_regs
[i
] = -1;
1089 cache
->saved_sp
= 0;
1090 cache
->saved_sp_reg
= -1;
1091 cache
->pc_in_eax
= 0;
1093 /* Frameless until proven otherwise. */
1099 /* If the instruction at PC is a jump, return the address of its
1100 target. Otherwise, return PC. */
1103 i386_follow_jump (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1105 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1110 if (target_read_code (pc
, &op
, 1))
1117 op
= read_code_unsigned_integer (pc
+ 1, 1, byte_order
);
1123 /* Relative jump: if data16 == 0, disp32, else disp16. */
1126 delta
= read_memory_integer (pc
+ 2, 2, byte_order
);
1128 /* Include the size of the jmp instruction (including the
1134 delta
= read_memory_integer (pc
+ 1, 4, byte_order
);
1136 /* Include the size of the jmp instruction. */
1141 /* Relative jump, disp8 (ignore data16). */
1142 delta
= read_memory_integer (pc
+ data16
+ 1, 1, byte_order
);
1144 delta
+= data16
+ 2;
1151 /* Check whether PC points at a prologue for a function returning a
1152 structure or union. If so, it updates CACHE and returns the
1153 address of the first instruction after the code sequence that
1154 removes the "hidden" argument from the stack or CURRENT_PC,
1155 whichever is smaller. Otherwise, return PC. */
1158 i386_analyze_struct_return (CORE_ADDR pc
, CORE_ADDR current_pc
,
1159 struct i386_frame_cache
*cache
)
1161 /* Functions that return a structure or union start with:
1164 xchgl %eax, (%esp) 0x87 0x04 0x24
1165 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1167 (the System V compiler puts out the second `xchg' instruction,
1168 and the assembler doesn't try to optimize it, so the 'sib' form
1169 gets generated). This sequence is used to get the address of the
1170 return buffer for a function that returns a structure. */
1171 static gdb_byte proto1
[3] = { 0x87, 0x04, 0x24 };
1172 static gdb_byte proto2
[4] = { 0x87, 0x44, 0x24, 0x00 };
1176 if (current_pc
<= pc
)
1179 if (target_read_code (pc
, &op
, 1))
1182 if (op
!= 0x58) /* popl %eax */
1185 if (target_read_code (pc
+ 1, buf
, 4))
1188 if (memcmp (buf
, proto1
, 3) != 0 && memcmp (buf
, proto2
, 4) != 0)
1191 if (current_pc
== pc
)
1193 cache
->sp_offset
+= 4;
1197 if (current_pc
== pc
+ 1)
1199 cache
->pc_in_eax
= 1;
1203 if (buf
[1] == proto1
[1])
1210 i386_skip_probe (CORE_ADDR pc
)
1212 /* A function may start with
1226 if (target_read_code (pc
, &op
, 1))
1229 if (op
== 0x68 || op
== 0x6a)
1233 /* Skip past the `pushl' instruction; it has either a one-byte or a
1234 four-byte operand, depending on the opcode. */
1240 /* Read the following 8 bytes, which should be `call _probe' (6
1241 bytes) followed by `addl $4,%esp' (2 bytes). */
1242 read_memory (pc
+ delta
, buf
, sizeof (buf
));
1243 if (buf
[0] == 0xe8 && buf
[6] == 0xc4 && buf
[7] == 0x4)
1244 pc
+= delta
+ sizeof (buf
);
1250 /* GCC 4.1 and later, can put code in the prologue to realign the
1251 stack pointer. Check whether PC points to such code, and update
1252 CACHE accordingly. Return the first instruction after the code
1253 sequence or CURRENT_PC, whichever is smaller. If we don't
1254 recognize the code, return PC. */
1257 i386_analyze_stack_align (CORE_ADDR pc
, CORE_ADDR current_pc
,
1258 struct i386_frame_cache
*cache
)
1260 /* There are 2 code sequences to re-align stack before the frame
1263 1. Use a caller-saved saved register:
1269 2. Use a callee-saved saved register:
1276 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1278 0x83 0xe4 0xf0 andl $-16, %esp
1279 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1284 int offset
, offset_and
;
1285 static int regnums
[8] = {
1286 I386_EAX_REGNUM
, /* %eax */
1287 I386_ECX_REGNUM
, /* %ecx */
1288 I386_EDX_REGNUM
, /* %edx */
1289 I386_EBX_REGNUM
, /* %ebx */
1290 I386_ESP_REGNUM
, /* %esp */
1291 I386_EBP_REGNUM
, /* %ebp */
1292 I386_ESI_REGNUM
, /* %esi */
1293 I386_EDI_REGNUM
/* %edi */
1296 if (target_read_code (pc
, buf
, sizeof buf
))
1299 /* Check caller-saved saved register. The first instruction has
1300 to be "leal 4(%esp), %reg". */
1301 if (buf
[0] == 0x8d && buf
[2] == 0x24 && buf
[3] == 0x4)
1303 /* MOD must be binary 10 and R/M must be binary 100. */
1304 if ((buf
[1] & 0xc7) != 0x44)
1307 /* REG has register number. */
1308 reg
= (buf
[1] >> 3) & 7;
1313 /* Check callee-saved saved register. The first instruction
1314 has to be "pushl %reg". */
1315 if ((buf
[0] & 0xf8) != 0x50)
1321 /* The next instruction has to be "leal 8(%esp), %reg". */
1322 if (buf
[1] != 0x8d || buf
[3] != 0x24 || buf
[4] != 0x8)
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf
[2] & 0xc7) != 0x44)
1329 /* REG has register number. Registers in pushl and leal have to
1331 if (reg
!= ((buf
[2] >> 3) & 7))
1337 /* Rigister can't be %esp nor %ebp. */
1338 if (reg
== 4 || reg
== 5)
1341 /* The next instruction has to be "andl $-XXX, %esp". */
1342 if (buf
[offset
+ 1] != 0xe4
1343 || (buf
[offset
] != 0x81 && buf
[offset
] != 0x83))
1346 offset_and
= offset
;
1347 offset
+= buf
[offset
] == 0x81 ? 6 : 3;
1349 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1350 0xfc. REG must be binary 110 and MOD must be binary 01. */
1351 if (buf
[offset
] != 0xff
1352 || buf
[offset
+ 2] != 0xfc
1353 || (buf
[offset
+ 1] & 0xf8) != 0x70)
1356 /* R/M has register. Registers in leal and pushl have to be the
1358 if (reg
!= (buf
[offset
+ 1] & 7))
1361 if (current_pc
> pc
+ offset_and
)
1362 cache
->saved_sp_reg
= regnums
[reg
];
1364 return std::min (pc
+ offset
+ 3, current_pc
);
1367 /* Maximum instruction length we need to handle. */
1368 #define I386_MAX_MATCHED_INSN_LEN 6
1370 /* Instruction description. */
1374 gdb_byte insn
[I386_MAX_MATCHED_INSN_LEN
];
1375 gdb_byte mask
[I386_MAX_MATCHED_INSN_LEN
];
1378 /* Return whether instruction at PC matches PATTERN. */
1381 i386_match_pattern (CORE_ADDR pc
, struct i386_insn pattern
)
1385 if (target_read_code (pc
, &op
, 1))
1388 if ((op
& pattern
.mask
[0]) == pattern
.insn
[0])
1390 gdb_byte buf
[I386_MAX_MATCHED_INSN_LEN
- 1];
1391 int insn_matched
= 1;
1394 gdb_assert (pattern
.len
> 1);
1395 gdb_assert (pattern
.len
<= I386_MAX_MATCHED_INSN_LEN
);
1397 if (target_read_code (pc
+ 1, buf
, pattern
.len
- 1))
1400 for (i
= 1; i
< pattern
.len
; i
++)
1402 if ((buf
[i
- 1] & pattern
.mask
[i
]) != pattern
.insn
[i
])
1405 return insn_matched
;
1410 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1411 the first instruction description that matches. Otherwise, return
1414 static struct i386_insn
*
1415 i386_match_insn (CORE_ADDR pc
, struct i386_insn
*insn_patterns
)
1417 struct i386_insn
*pattern
;
1419 for (pattern
= insn_patterns
; pattern
->len
> 0; pattern
++)
1421 if (i386_match_pattern (pc
, *pattern
))
1428 /* Return whether PC points inside a sequence of instructions that
1429 matches INSN_PATTERNS. */
1432 i386_match_insn_block (CORE_ADDR pc
, struct i386_insn
*insn_patterns
)
1434 CORE_ADDR current_pc
;
1436 struct i386_insn
*insn
;
1438 insn
= i386_match_insn (pc
, insn_patterns
);
1443 ix
= insn
- insn_patterns
;
1444 for (i
= ix
- 1; i
>= 0; i
--)
1446 current_pc
-= insn_patterns
[i
].len
;
1448 if (!i386_match_pattern (current_pc
, insn_patterns
[i
]))
1452 current_pc
= pc
+ insn
->len
;
1453 for (insn
= insn_patterns
+ ix
+ 1; insn
->len
> 0; insn
++)
1455 if (!i386_match_pattern (current_pc
, *insn
))
1458 current_pc
+= insn
->len
;
1464 /* Some special instructions that might be migrated by GCC into the
1465 part of the prologue that sets up the new stack frame. Because the
1466 stack frame hasn't been setup yet, no registers have been saved
1467 yet, and only the scratch registers %eax, %ecx and %edx can be
1470 struct i386_insn i386_frame_setup_skip_insns
[] =
1472 /* Check for `movb imm8, r' and `movl imm32, r'.
1474 ??? Should we handle 16-bit operand-sizes here? */
1476 /* `movb imm8, %al' and `movb imm8, %ah' */
1477 /* `movb imm8, %cl' and `movb imm8, %ch' */
1478 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1479 /* `movb imm8, %dl' and `movb imm8, %dh' */
1480 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1481 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1482 { 5, { 0xb8 }, { 0xfe } },
1483 /* `movl imm32, %edx' */
1484 { 5, { 0xba }, { 0xff } },
1486 /* Check for `mov imm32, r32'. Note that there is an alternative
1487 encoding for `mov m32, %eax'.
1489 ??? Should we handle SIB addressing here?
1490 ??? Should we handle 16-bit operand-sizes here? */
1492 /* `movl m32, %eax' */
1493 { 5, { 0xa1 }, { 0xff } },
1494 /* `movl m32, %eax' and `mov; m32, %ecx' */
1495 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1496 /* `movl m32, %edx' */
1497 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1499 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1500 Because of the symmetry, there are actually two ways to encode
1501 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1502 opcode bytes 0x31 and 0x33 for `xorl'. */
1504 /* `subl %eax, %eax' */
1505 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1506 /* `subl %ecx, %ecx' */
1507 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1508 /* `subl %edx, %edx' */
1509 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1510 /* `xorl %eax, %eax' */
1511 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1512 /* `xorl %ecx, %ecx' */
1513 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1514 /* `xorl %edx, %edx' */
1515 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519 /* Check whether PC points to an endbr32 instruction. */
1521 i386_skip_endbr (CORE_ADDR pc
)
1523 static const gdb_byte endbr32
[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1525 gdb_byte buf
[sizeof (endbr32
)];
1527 /* Stop there if we can't read the code */
1528 if (target_read_code (pc
, buf
, sizeof (endbr32
)))
1531 /* If the instruction isn't an endbr32, stop */
1532 if (memcmp (buf
, endbr32
, sizeof (endbr32
)) != 0)
1535 return pc
+ sizeof (endbr32
);
1538 /* Check whether PC points to a no-op instruction. */
1540 i386_skip_noop (CORE_ADDR pc
)
1545 if (target_read_code (pc
, &op
, 1))
1551 /* Ignore `nop' instruction. */
1555 if (target_read_code (pc
, &op
, 1))
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1570 else if (op
== 0x8b)
1572 if (target_read_code (pc
+ 1, &op
, 1))
1578 if (target_read_code (pc
, &op
, 1))
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1594 i386_analyze_frame_setup (struct gdbarch
*gdbarch
,
1595 CORE_ADDR pc
, CORE_ADDR limit
,
1596 struct i386_frame_cache
*cache
)
1598 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1599 struct i386_insn
*insn
;
1606 if (target_read_code (pc
, &op
, 1))
1609 if (op
== 0x55) /* pushl %ebp */
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
1614 cache
->sp_offset
+= 4;
1617 /* If that's all, return now. */
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of possibilities is sheer,
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc
+ skip
< limit
)
1631 insn
= i386_match_insn (pc
+ skip
, i386_frame_setup_skip_insns
);
1638 /* If that's all, return now. */
1639 if (limit
<= pc
+ skip
)
1642 if (target_read_code (pc
+ skip
, &op
, 1))
1645 /* The i386 prologue looks like
1651 and a different prologue can be generated for atom.
1655 lea -0x10(%esp),%esp
1657 We handle both of them here. */
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 if (read_code_unsigned_integer (pc
+ skip
+ 1, 1, byte_order
)
1669 if (read_code_unsigned_integer (pc
+ skip
+ 1, 1, byte_order
)
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc
+ skip
+ 1, 2, byte_order
)
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1690 /* If that's all, return now. */
1694 /* Check for stack adjustment
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc
, &op
, 1))
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache
->locals
= read_code_integer (pc
+ 2, 1, byte_order
);
1716 else if (op
== 0x81)
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache
->locals
= read_code_integer (pc
+ 2, 4, byte_order
);
1727 else if (op
== 0x8d)
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0x64)
1732 /* 'lea' with 8-bit displacement. */
1733 cache
->locals
= -1 * read_code_integer (pc
+ 3, 1, byte_order
);
1738 /* Some instruction other than `subl' nor 'lea'. */
1742 else if (op
== 0xc8) /* enter */
1744 cache
->locals
= read_code_unsigned_integer (pc
+ 1, 2, byte_order
);
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1757 i386_analyze_register_saves (CORE_ADDR pc
, CORE_ADDR current_pc
,
1758 struct i386_frame_cache
*cache
)
1760 CORE_ADDR offset
= 0;
1764 if (cache
->locals
> 0)
1765 offset
-= cache
->locals
;
1766 for (i
= 0; i
< 8 && pc
< current_pc
; i
++)
1768 if (target_read_code (pc
, &op
, 1))
1770 if (op
< 0x50 || op
> 0x57)
1774 cache
->saved_regs
[op
- 0x50] = offset
;
1775 cache
->sp_offset
+= 4;
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1786 We handle these cases:
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1810 i386_analyze_prologue (struct gdbarch
*gdbarch
,
1811 CORE_ADDR pc
, CORE_ADDR current_pc
,
1812 struct i386_frame_cache
*cache
)
1814 pc
= i386_skip_endbr (pc
);
1815 pc
= i386_skip_noop (pc
);
1816 pc
= i386_follow_jump (gdbarch
, pc
);
1817 pc
= i386_analyze_struct_return (pc
, current_pc
, cache
);
1818 pc
= i386_skip_probe (pc
);
1819 pc
= i386_analyze_stack_align (pc
, current_pc
, cache
);
1820 pc
= i386_analyze_frame_setup (gdbarch
, pc
, current_pc
, cache
);
1821 return i386_analyze_register_saves (pc
, current_pc
, cache
);
1824 /* Return PC of first real instruction. */
1827 i386_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
1829 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1831 static gdb_byte pic_pat
[6] =
1833 0xe8, 0, 0, 0, 0, /* call 0x0 */
1834 0x5b, /* popl %ebx */
1836 struct i386_frame_cache cache
;
1840 CORE_ADDR func_addr
;
1842 if (find_pc_partial_function (start_pc
, NULL
, &func_addr
, NULL
))
1844 CORE_ADDR post_prologue_pc
1845 = skip_prologue_using_sal (gdbarch
, func_addr
);
1846 struct compunit_symtab
*cust
= find_pc_compunit_symtab (func_addr
);
1848 /* LLVM backend (Clang/Flang) always emits a line note before the
1849 prologue and another one after. We trust clang to emit usable
1851 if (post_prologue_pc
1853 && COMPUNIT_PRODUCER (cust
) != NULL
1854 && producer_is_llvm (COMPUNIT_PRODUCER (cust
))))
1855 return std::max (start_pc
, post_prologue_pc
);
1859 pc
= i386_analyze_prologue (gdbarch
, start_pc
, 0xffffffff, &cache
);
1860 if (cache
.locals
< 0)
1863 /* Found valid frame setup. */
1865 /* The native cc on SVR4 in -K PIC mode inserts the following code
1866 to get the address of the global offset table (GOT) into register
1871 movl %ebx,x(%ebp) (optional)
1874 This code is with the rest of the prologue (at the end of the
1875 function), so we have to skip it to get to the first real
1876 instruction at the start of the function. */
1878 for (i
= 0; i
< 6; i
++)
1880 if (target_read_code (pc
+ i
, &op
, 1))
1883 if (pic_pat
[i
] != op
)
1890 if (target_read_code (pc
+ delta
, &op
, 1))
1893 if (op
== 0x89) /* movl %ebx, x(%ebp) */
1895 op
= read_code_unsigned_integer (pc
+ delta
+ 1, 1, byte_order
);
1897 if (op
== 0x5d) /* One byte offset from %ebp. */
1899 else if (op
== 0x9d) /* Four byte offset from %ebp. */
1901 else /* Unexpected instruction. */
1904 if (target_read_code (pc
+ delta
, &op
, 1))
1909 if (delta
> 0 && op
== 0x81
1910 && read_code_unsigned_integer (pc
+ delta
+ 1, 1, byte_order
)
1917 /* If the function starts with a branch (to startup code at the end)
1918 the last instruction should bring us back to the first
1919 instruction of the real code. */
1920 if (i386_follow_jump (gdbarch
, start_pc
) != start_pc
)
1921 pc
= i386_follow_jump (gdbarch
, pc
);
1926 /* Check that the code pointed to by PC corresponds to a call to
1927 __main, skip it if so. Return PC otherwise. */
1930 i386_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1932 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1935 if (target_read_code (pc
, &op
, 1))
1941 if (target_read_code (pc
+ 1, buf
, sizeof buf
) == 0)
1943 /* Make sure address is computed correctly as a 32bit
1944 integer even if CORE_ADDR is 64 bit wide. */
1945 struct bound_minimal_symbol s
;
1946 CORE_ADDR call_dest
;
1948 call_dest
= pc
+ 5 + extract_signed_integer (buf
, 4, byte_order
);
1949 call_dest
= call_dest
& 0xffffffffU
;
1950 s
= lookup_minimal_symbol_by_pc (call_dest
);
1951 if (s
.minsym
!= NULL
1952 && s
.minsym
->linkage_name () != NULL
1953 && strcmp (s
.minsym
->linkage_name (), "__main") == 0)
1961 /* This function is 64-bit safe. */
1964 i386_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1968 frame_unwind_register (next_frame
, gdbarch_pc_regnum (gdbarch
), buf
);
1969 return extract_typed_address (buf
, builtin_type (gdbarch
)->builtin_func_ptr
);
1973 /* Normal frames. */
1976 i386_frame_cache_1 (struct frame_info
*this_frame
,
1977 struct i386_frame_cache
*cache
)
1979 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1980 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1984 cache
->pc
= get_frame_func (this_frame
);
1986 /* In principle, for normal frames, %ebp holds the frame pointer,
1987 which holds the base address for the current stack frame.
1988 However, for functions that don't need it, the frame pointer is
1989 optional. For these "frameless" functions the frame pointer is
1990 actually the frame pointer of the calling frame. Signal
1991 trampolines are just a special case of a "frameless" function.
1992 They (usually) share their frame pointer with the frame that was
1993 in progress when the signal occurred. */
1995 get_frame_register (this_frame
, I386_EBP_REGNUM
, buf
);
1996 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
);
1997 if (cache
->base
== 0)
2003 /* For normal frames, %eip is stored at 4(%ebp). */
2004 cache
->saved_regs
[I386_EIP_REGNUM
] = 4;
2007 i386_analyze_prologue (gdbarch
, cache
->pc
, get_frame_pc (this_frame
),
2010 if (cache
->locals
< 0)
2012 /* We didn't find a valid frame, which means that CACHE->base
2013 currently holds the frame pointer for our calling frame. If
2014 we're at the start of a function, or somewhere half-way its
2015 prologue, the function's frame probably hasn't been fully
2016 setup yet. Try to reconstruct the base address for the stack
2017 frame by looking at the stack pointer. For truly "frameless"
2018 functions this might work too. */
2020 if (cache
->saved_sp_reg
!= -1)
2022 /* Saved stack pointer has been saved. */
2023 get_frame_register (this_frame
, cache
->saved_sp_reg
, buf
);
2024 cache
->saved_sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2026 /* We're halfway aligning the stack. */
2027 cache
->base
= ((cache
->saved_sp
- 4) & 0xfffffff0) - 4;
2028 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->saved_sp
- 4;
2030 /* This will be added back below. */
2031 cache
->saved_regs
[I386_EIP_REGNUM
] -= cache
->base
;
2033 else if (cache
->pc
!= 0
2034 || target_read_code (get_frame_pc (this_frame
), buf
, 1))
2036 /* We're in a known function, but did not find a frame
2037 setup. Assume that the function does not use %ebp.
2038 Alternatively, we may have jumped to an invalid
2039 address; in that case there is definitely no new
2041 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
2042 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
)
2046 /* We're in an unknown function. We could not find the start
2047 of the function to analyze the prologue; our best option is
2048 to assume a typical frame layout with the caller's %ebp
2050 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
2053 if (cache
->saved_sp_reg
!= -1)
2055 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2056 register may be unavailable). */
2057 if (cache
->saved_sp
== 0
2058 && deprecated_frame_register_read (this_frame
,
2059 cache
->saved_sp_reg
, buf
))
2060 cache
->saved_sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2062 /* Now that we have the base address for the stack frame we can
2063 calculate the value of %esp in the calling frame. */
2064 else if (cache
->saved_sp
== 0)
2065 cache
->saved_sp
= cache
->base
+ 8;
2067 /* Adjust all the saved registers such that they contain addresses
2068 instead of offsets. */
2069 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
2070 if (cache
->saved_regs
[i
] != -1)
2071 cache
->saved_regs
[i
] += cache
->base
;
2076 static struct i386_frame_cache
*
2077 i386_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2079 struct i386_frame_cache
*cache
;
2082 return (struct i386_frame_cache
*) *this_cache
;
2084 cache
= i386_alloc_frame_cache ();
2085 *this_cache
= cache
;
2089 i386_frame_cache_1 (this_frame
, cache
);
2091 catch (const gdb_exception_error
&ex
)
2093 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2101 i386_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2102 struct frame_id
*this_id
)
2104 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2107 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2108 else if (cache
->base
== 0)
2110 /* This marks the outermost frame. */
2114 /* See the end of i386_push_dummy_call. */
2115 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2119 static enum unwind_stop_reason
2120 i386_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2123 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2126 return UNWIND_UNAVAILABLE
;
2128 /* This marks the outermost frame. */
2129 if (cache
->base
== 0)
2130 return UNWIND_OUTERMOST
;
2132 return UNWIND_NO_REASON
;
2135 static struct value
*
2136 i386_frame_prev_register (struct frame_info
*this_frame
, void **this_cache
,
2139 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2141 gdb_assert (regnum
>= 0);
2143 /* The System V ABI says that:
2145 "The flags register contains the system flags, such as the
2146 direction flag and the carry flag. The direction flag must be
2147 set to the forward (that is, zero) direction before entry and
2148 upon exit from a function. Other user flags have no specified
2149 role in the standard calling sequence and are not preserved."
2151 To guarantee the "upon exit" part of that statement we fake a
2152 saved flags register that has its direction flag cleared.
2154 Note that GCC doesn't seem to rely on the fact that the direction
2155 flag is cleared after a function return; it always explicitly
2156 clears the flag before operations where it matters.
2158 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2159 right thing to do. The way we fake the flags register here makes
2160 it impossible to change it. */
2162 if (regnum
== I386_EFLAGS_REGNUM
)
2166 val
= get_frame_register_unsigned (this_frame
, regnum
);
2168 return frame_unwind_got_constant (this_frame
, regnum
, val
);
2171 if (regnum
== I386_EIP_REGNUM
&& cache
->pc_in_eax
)
2172 return frame_unwind_got_register (this_frame
, regnum
, I386_EAX_REGNUM
);
2174 if (regnum
== I386_ESP_REGNUM
2175 && (cache
->saved_sp
!= 0 || cache
->saved_sp_reg
!= -1))
2177 /* If the SP has been saved, but we don't know where, then this
2178 means that SAVED_SP_REG register was found unavailable back
2179 when we built the cache. */
2180 if (cache
->saved_sp
== 0)
2181 return frame_unwind_got_register (this_frame
, regnum
,
2182 cache
->saved_sp_reg
);
2184 return frame_unwind_got_constant (this_frame
, regnum
,
2188 if (regnum
< I386_NUM_SAVED_REGS
&& cache
->saved_regs
[regnum
] != -1)
2189 return frame_unwind_got_memory (this_frame
, regnum
,
2190 cache
->saved_regs
[regnum
]);
2192 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
2195 static const struct frame_unwind i386_frame_unwind
=
2198 i386_frame_unwind_stop_reason
,
2200 i386_frame_prev_register
,
2202 default_frame_sniffer
2205 /* Normal frames, but in a function epilogue. */
2207 /* Implement the stack_frame_destroyed_p gdbarch method.
2209 The epilogue is defined here as the 'ret' instruction, which will
2210 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2211 the function's stack frame. */
2214 i386_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2217 struct compunit_symtab
*cust
;
2219 cust
= find_pc_compunit_symtab (pc
);
2220 if (cust
!= NULL
&& COMPUNIT_EPILOGUE_UNWIND_VALID (cust
))
2223 if (target_read_memory (pc
, &insn
, 1))
2224 return 0; /* Can't read memory at pc. */
2226 if (insn
!= 0xc3) /* 'ret' instruction. */
2233 i386_epilogue_frame_sniffer (const struct frame_unwind
*self
,
2234 struct frame_info
*this_frame
,
2235 void **this_prologue_cache
)
2237 if (frame_relative_level (this_frame
) == 0)
2238 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame
),
2239 get_frame_pc (this_frame
));
2244 static struct i386_frame_cache
*
2245 i386_epilogue_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2247 struct i386_frame_cache
*cache
;
2251 return (struct i386_frame_cache
*) *this_cache
;
2253 cache
= i386_alloc_frame_cache ();
2254 *this_cache
= cache
;
2258 cache
->pc
= get_frame_func (this_frame
);
2260 /* At this point the stack looks as if we just entered the
2261 function, with the return address at the top of the
2263 sp
= get_frame_register_unsigned (this_frame
, I386_ESP_REGNUM
);
2264 cache
->base
= sp
+ cache
->sp_offset
;
2265 cache
->saved_sp
= cache
->base
+ 8;
2266 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->base
+ 4;
2270 catch (const gdb_exception_error
&ex
)
2272 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2283 struct i386_frame_cache
*cache
=
2284 i386_epilogue_frame_cache (this_frame
, this_cache
);
2287 return UNWIND_UNAVAILABLE
;
2289 return UNWIND_NO_REASON
;
2293 i386_epilogue_frame_this_id (struct frame_info
*this_frame
,
2295 struct frame_id
*this_id
)
2297 struct i386_frame_cache
*cache
=
2298 i386_epilogue_frame_cache (this_frame
, this_cache
);
2301 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2303 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2306 static struct value
*
2307 i386_epilogue_frame_prev_register (struct frame_info
*this_frame
,
2308 void **this_cache
, int regnum
)
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame
, this_cache
);
2313 return i386_frame_prev_register (this_frame
, this_cache
, regnum
);
2316 static const struct frame_unwind i386_epilogue_frame_unwind
=
2319 i386_epilogue_frame_unwind_stop_reason
,
2320 i386_epilogue_frame_this_id
,
2321 i386_epilogue_frame_prev_register
,
2323 i386_epilogue_frame_sniffer
2327 /* Stack-based trampolines. */
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2334 /* Static chain passed in register. */
2336 struct i386_insn i386_tramp_chain_in_reg_insns
[] =
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2342 { 5, { 0xe9 }, { 0xff } },
2347 /* Static chain passed on stack (when regparm=3). */
2349 struct i386_insn i386_tramp_chain_on_stack_insns
[] =
2352 { 5, { 0x68 }, { 0xff } },
2355 { 5, { 0xe9 }, { 0xff } },
2360 /* Return whether PC points inside a stack trampoline. */
2363 i386_in_stack_tramp_p (CORE_ADDR pc
)
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2372 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
2376 if (target_read_memory (pc
, &insn
, 1))
2379 if (!i386_match_insn_block (pc
, i386_tramp_chain_in_reg_insns
)
2380 && !i386_match_insn_block (pc
, i386_tramp_chain_on_stack_insns
))
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind
*self
,
2388 struct frame_info
*this_frame
,
2391 if (frame_relative_level (this_frame
) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame
));
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind
=
2400 i386_epilogue_frame_unwind_stop_reason
,
2401 i386_epilogue_frame_this_id
,
2402 i386_epilogue_frame_prev_register
,
2404 i386_stack_tramp_frame_sniffer
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2410 i386_gen_return_address (struct gdbarch
*gdbarch
,
2411 struct agent_expr
*ax
, struct axs_value
*value
,
2414 /* The following sequence assumes the traditional use of the base
2416 ax_reg (ax
, I386_EBP_REGNUM
);
2418 ax_simple (ax
, aop_add
);
2419 value
->type
= register_type (gdbarch
, I386_EIP_REGNUM
);
2420 value
->kind
= axs_lvalue_memory
;
2424 /* Signal trampolines. */
2426 static struct i386_frame_cache
*
2427 i386_sigtramp_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2429 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2430 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2431 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2432 struct i386_frame_cache
*cache
;
2437 return (struct i386_frame_cache
*) *this_cache
;
2439 cache
= i386_alloc_frame_cache ();
2443 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
2444 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
) - 4;
2446 addr
= tdep
->sigcontext_addr (this_frame
);
2447 if (tdep
->sc_reg_offset
)
2451 gdb_assert (tdep
->sc_num_regs
<= I386_NUM_SAVED_REGS
);
2453 for (i
= 0; i
< tdep
->sc_num_regs
; i
++)
2454 if (tdep
->sc_reg_offset
[i
] != -1)
2455 cache
->saved_regs
[i
] = addr
+ tdep
->sc_reg_offset
[i
];
2459 cache
->saved_regs
[I386_EIP_REGNUM
] = addr
+ tdep
->sc_pc_offset
;
2460 cache
->saved_regs
[I386_ESP_REGNUM
] = addr
+ tdep
->sc_sp_offset
;
2465 catch (const gdb_exception_error
&ex
)
2467 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2471 *this_cache
= cache
;
2475 static enum unwind_stop_reason
2476 i386_sigtramp_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2479 struct i386_frame_cache
*cache
=
2480 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2483 return UNWIND_UNAVAILABLE
;
2485 return UNWIND_NO_REASON
;
2489 i386_sigtramp_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2490 struct frame_id
*this_id
)
2492 struct i386_frame_cache
*cache
=
2493 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2496 (*this_id
) = frame_id_build_unavailable_stack (get_frame_pc (this_frame
));
2499 /* See the end of i386_push_dummy_call. */
2500 (*this_id
) = frame_id_build (cache
->base
+ 8, get_frame_pc (this_frame
));
2504 static struct value
*
2505 i386_sigtramp_frame_prev_register (struct frame_info
*this_frame
,
2506 void **this_cache
, int regnum
)
2508 /* Make sure we've initialized the cache. */
2509 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2511 return i386_frame_prev_register (this_frame
, this_cache
, regnum
);
2515 i386_sigtramp_frame_sniffer (const struct frame_unwind
*self
,
2516 struct frame_info
*this_frame
,
2517 void **this_prologue_cache
)
2519 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_frame_arch (this_frame
));
2521 /* We shouldn't even bother if we don't have a sigcontext_addr
2523 if (tdep
->sigcontext_addr
== NULL
)
2526 if (tdep
->sigtramp_p
!= NULL
)
2528 if (tdep
->sigtramp_p (this_frame
))
2532 if (tdep
->sigtramp_start
!= 0)
2534 CORE_ADDR pc
= get_frame_pc (this_frame
);
2536 gdb_assert (tdep
->sigtramp_end
!= 0);
2537 if (pc
>= tdep
->sigtramp_start
&& pc
< tdep
->sigtramp_end
)
2544 static const struct frame_unwind i386_sigtramp_frame_unwind
=
2547 i386_sigtramp_frame_unwind_stop_reason
,
2548 i386_sigtramp_frame_this_id
,
2549 i386_sigtramp_frame_prev_register
,
2551 i386_sigtramp_frame_sniffer
2556 i386_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
2558 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2563 static const struct frame_base i386_frame_base
=
2566 i386_frame_base_address
,
2567 i386_frame_base_address
,
2568 i386_frame_base_address
2571 static struct frame_id
2572 i386_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
2576 fp
= get_frame_register_unsigned (this_frame
, I386_EBP_REGNUM
);
2578 /* See the end of i386_push_dummy_call. */
2579 return frame_id_build (fp
+ 8, get_frame_pc (this_frame
));
2582 /* _Decimal128 function return values need 16-byte alignment on the
2586 i386_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
2588 return sp
& -(CORE_ADDR
)16;
2592 /* Figure out where the longjmp will land. Slurp the args out of the
2593 stack. We expect the first arg to be a pointer to the jmp_buf
2594 structure from which we extract the address that we will land at.
2595 This address is copied into PC. This routine returns non-zero on
2599 i386_get_longjmp_target (struct frame_info
*frame
, CORE_ADDR
*pc
)
2602 CORE_ADDR sp
, jb_addr
;
2603 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2604 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2605 int jb_pc_offset
= gdbarch_tdep (gdbarch
)->jb_pc_offset
;
2607 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2608 longjmp will land. */
2609 if (jb_pc_offset
== -1)
2612 get_frame_register (frame
, I386_ESP_REGNUM
, buf
);
2613 sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2614 if (target_read_memory (sp
+ 4, buf
, 4))
2617 jb_addr
= extract_unsigned_integer (buf
, 4, byte_order
);
2618 if (target_read_memory (jb_addr
+ jb_pc_offset
, buf
, 4))
2621 *pc
= extract_unsigned_integer (buf
, 4, byte_order
);
2626 /* Check whether TYPE must be 16-byte-aligned when passed as a
2627 function argument. 16-byte vectors, _Decimal128 and structures or
2628 unions containing such types must be 16-byte-aligned; other
2629 arguments are 4-byte-aligned. */
2632 i386_16_byte_align_p (struct type
*type
)
2634 type
= check_typedef (type
);
2635 if ((type
->code () == TYPE_CODE_DECFLOAT
2636 || (type
->code () == TYPE_CODE_ARRAY
&& type
->is_vector ()))
2637 && TYPE_LENGTH (type
) == 16)
2639 if (type
->code () == TYPE_CODE_ARRAY
)
2640 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type
));
2641 if (type
->code () == TYPE_CODE_STRUCT
2642 || type
->code () == TYPE_CODE_UNION
)
2645 for (i
= 0; i
< type
->num_fields (); i
++)
2647 if (i386_16_byte_align_p (type
->field (i
).type ()))
2654 /* Implementation for set_gdbarch_push_dummy_code. */
2657 i386_push_dummy_code (struct gdbarch
*gdbarch
, CORE_ADDR sp
, CORE_ADDR funaddr
,
2658 struct value
**args
, int nargs
, struct type
*value_type
,
2659 CORE_ADDR
*real_pc
, CORE_ADDR
*bp_addr
,
2660 struct regcache
*regcache
)
2662 /* Use 0xcc breakpoint - 1 byte. */
2666 /* Keep the stack aligned. */
2670 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2671 calling convention. */
2674 i386_thiscall_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2675 struct regcache
*regcache
, CORE_ADDR bp_addr
,
2676 int nargs
, struct value
**args
, CORE_ADDR sp
,
2677 function_call_return_method return_method
,
2678 CORE_ADDR struct_addr
, bool thiscall
)
2680 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2686 /* BND registers can be in arbitrary values at the moment of the
2687 inferior call. This can cause boundary violations that are not
2688 due to a real bug or even desired by the user. The best to be done
2689 is set the BND registers to allow access to the whole memory, INIT
2690 state, before pushing the inferior call. */
2691 i387_reset_bnd_regs (gdbarch
, regcache
);
2693 /* Determine the total space required for arguments and struct
2694 return address in a first pass (allowing for 16-byte-aligned
2695 arguments), then push arguments in a second pass. */
2697 for (write_pass
= 0; write_pass
< 2; write_pass
++)
2699 int args_space_used
= 0;
2701 if (return_method
== return_method_struct
)
2705 /* Push value address. */
2706 store_unsigned_integer (buf
, 4, byte_order
, struct_addr
);
2707 write_memory (sp
, buf
, 4);
2708 args_space_used
+= 4;
2714 for (i
= thiscall
? 1 : 0; i
< nargs
; i
++)
2716 int len
= TYPE_LENGTH (value_enclosing_type (args
[i
]));
2720 if (i386_16_byte_align_p (value_enclosing_type (args
[i
])))
2721 args_space_used
= align_up (args_space_used
, 16);
2723 write_memory (sp
+ args_space_used
,
2724 value_contents_all (args
[i
]), len
);
2725 /* The System V ABI says that:
2727 "An argument's size is increased, if necessary, to make it a
2728 multiple of [32-bit] words. This may require tail padding,
2729 depending on the size of the argument."
2731 This makes sure the stack stays word-aligned. */
2732 args_space_used
+= align_up (len
, 4);
2736 if (i386_16_byte_align_p (value_enclosing_type (args
[i
])))
2737 args_space
= align_up (args_space
, 16);
2738 args_space
+= align_up (len
, 4);
2746 /* The original System V ABI only requires word alignment,
2747 but modern incarnations need 16-byte alignment in order
2748 to support SSE. Since wasting a few bytes here isn't
2749 harmful we unconditionally enforce 16-byte alignment. */
2754 /* Store return address. */
2756 store_unsigned_integer (buf
, 4, byte_order
, bp_addr
);
2757 write_memory (sp
, buf
, 4);
2759 /* Finally, update the stack pointer... */
2760 store_unsigned_integer (buf
, 4, byte_order
, sp
);
2761 regcache
->cooked_write (I386_ESP_REGNUM
, buf
);
2763 /* ...and fake a frame pointer. */
2764 regcache
->cooked_write (I386_EBP_REGNUM
, buf
);
2766 /* The 'this' pointer needs to be in ECX. */
2768 regcache
->cooked_write (I386_ECX_REGNUM
, value_contents_all (args
[0]));
2770 /* MarkK wrote: This "+ 8" is all over the place:
2771 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2772 i386_dummy_id). It's there, since all frame unwinders for
2773 a given target have to agree (within a certain margin) on the
2774 definition of the stack address of a frame. Otherwise frame id
2775 comparison might not work correctly. Since DWARF2/GCC uses the
2776 stack address *before* the function call as a frame's CFA. On
2777 the i386, when %ebp is used as a frame pointer, the offset
2778 between the contents %ebp and the CFA as defined by GCC. */
2782 /* Implement the "push_dummy_call" gdbarch method. */
2785 i386_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2786 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
2787 struct value
**args
, CORE_ADDR sp
,
2788 function_call_return_method return_method
,
2789 CORE_ADDR struct_addr
)
2791 return i386_thiscall_push_dummy_call (gdbarch
, function
, regcache
, bp_addr
,
2792 nargs
, args
, sp
, return_method
,
2793 struct_addr
, false);
2796 /* These registers are used for returning integers (and on some
2797 targets also for returning `struct' and `union' values when their
2798 size and alignment match an integer type). */
2799 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2800 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2802 /* Read, for architecture GDBARCH, a function return value of TYPE
2803 from REGCACHE, and copy that into VALBUF. */
2806 i386_extract_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2807 struct regcache
*regcache
, gdb_byte
*valbuf
)
2809 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2810 int len
= TYPE_LENGTH (type
);
2811 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
2813 if (type
->code () == TYPE_CODE_FLT
)
2815 if (tdep
->st0_regnum
< 0)
2817 warning (_("Cannot find floating-point return value."));
2818 memset (valbuf
, 0, len
);
2822 /* Floating-point return values can be found in %st(0). Convert
2823 its contents to the desired type. This is probably not
2824 exactly how it would happen on the target itself, but it is
2825 the best we can do. */
2826 regcache
->raw_read (I386_ST0_REGNUM
, buf
);
2827 target_float_convert (buf
, i387_ext_type (gdbarch
), valbuf
, type
);
2831 int low_size
= register_size (gdbarch
, LOW_RETURN_REGNUM
);
2832 int high_size
= register_size (gdbarch
, HIGH_RETURN_REGNUM
);
2834 if (len
<= low_size
)
2836 regcache
->raw_read (LOW_RETURN_REGNUM
, buf
);
2837 memcpy (valbuf
, buf
, len
);
2839 else if (len
<= (low_size
+ high_size
))
2841 regcache
->raw_read (LOW_RETURN_REGNUM
, buf
);
2842 memcpy (valbuf
, buf
, low_size
);
2843 regcache
->raw_read (HIGH_RETURN_REGNUM
, buf
);
2844 memcpy (valbuf
+ low_size
, buf
, len
- low_size
);
2847 internal_error (__FILE__
, __LINE__
,
2848 _("Cannot extract return value of %d bytes long."),
2853 /* Write, for architecture GDBARCH, a function return value of TYPE
2854 from VALBUF into REGCACHE. */
2857 i386_store_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2858 struct regcache
*regcache
, const gdb_byte
*valbuf
)
2860 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2861 int len
= TYPE_LENGTH (type
);
2863 if (type
->code () == TYPE_CODE_FLT
)
2866 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
2868 if (tdep
->st0_regnum
< 0)
2870 warning (_("Cannot set floating-point return value."));
2874 /* Returning floating-point values is a bit tricky. Apart from
2875 storing the return value in %st(0), we have to simulate the
2876 state of the FPU at function return point. */
2878 /* Convert the value found in VALBUF to the extended
2879 floating-point format used by the FPU. This is probably
2880 not exactly how it would happen on the target itself, but
2881 it is the best we can do. */
2882 target_float_convert (valbuf
, type
, buf
, i387_ext_type (gdbarch
));
2883 regcache
->raw_write (I386_ST0_REGNUM
, buf
);
2885 /* Set the top of the floating-point register stack to 7. The
2886 actual value doesn't really matter, but 7 is what a normal
2887 function return would end up with if the program started out
2888 with a freshly initialized FPU. */
2889 regcache_raw_read_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), &fstat
);
2891 regcache_raw_write_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), fstat
);
2893 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2894 the floating-point register stack to 7, the appropriate value
2895 for the tag word is 0x3fff. */
2896 regcache_raw_write_unsigned (regcache
, I387_FTAG_REGNUM (tdep
), 0x3fff);
2900 int low_size
= register_size (gdbarch
, LOW_RETURN_REGNUM
);
2901 int high_size
= register_size (gdbarch
, HIGH_RETURN_REGNUM
);
2903 if (len
<= low_size
)
2904 regcache
->raw_write_part (LOW_RETURN_REGNUM
, 0, len
, valbuf
);
2905 else if (len
<= (low_size
+ high_size
))
2907 regcache
->raw_write (LOW_RETURN_REGNUM
, valbuf
);
2908 regcache
->raw_write_part (HIGH_RETURN_REGNUM
, 0, len
- low_size
,
2912 internal_error (__FILE__
, __LINE__
,
2913 _("Cannot store return value of %d bytes long."), len
);
2918 /* This is the variable that is set with "set struct-convention", and
2919 its legitimate values. */
2920 static const char default_struct_convention
[] = "default";
2921 static const char pcc_struct_convention
[] = "pcc";
2922 static const char reg_struct_convention
[] = "reg";
2923 static const char *const valid_conventions
[] =
2925 default_struct_convention
,
2926 pcc_struct_convention
,
2927 reg_struct_convention
,
2930 static const char *struct_convention
= default_struct_convention
;
2932 /* Return non-zero if TYPE, which is assumed to be a structure,
2933 a union type, or an array type, should be returned in registers
2934 for architecture GDBARCH. */
2937 i386_reg_struct_return_p (struct gdbarch
*gdbarch
, struct type
*type
)
2939 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2940 enum type_code code
= type
->code ();
2941 int len
= TYPE_LENGTH (type
);
2943 gdb_assert (code
== TYPE_CODE_STRUCT
2944 || code
== TYPE_CODE_UNION
2945 || code
== TYPE_CODE_ARRAY
);
2947 if (struct_convention
== pcc_struct_convention
2948 || (struct_convention
== default_struct_convention
2949 && tdep
->struct_return
== pcc_struct_return
))
2952 /* Structures consisting of a single `float', `double' or 'long
2953 double' member are returned in %st(0). */
2954 if (code
== TYPE_CODE_STRUCT
&& type
->num_fields () == 1)
2956 type
= check_typedef (type
->field (0).type ());
2957 if (type
->code () == TYPE_CODE_FLT
)
2958 return (len
== 4 || len
== 8 || len
== 12);
2961 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
2964 /* Determine, for architecture GDBARCH, how a return value of TYPE
2965 should be returned. If it is supposed to be returned in registers,
2966 and READBUF is non-zero, read the appropriate value from REGCACHE,
2967 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2968 from WRITEBUF into REGCACHE. */
2970 static enum return_value_convention
2971 i386_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
2972 struct type
*type
, struct regcache
*regcache
,
2973 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
2975 enum type_code code
= type
->code ();
2977 if (((code
== TYPE_CODE_STRUCT
2978 || code
== TYPE_CODE_UNION
2979 || code
== TYPE_CODE_ARRAY
)
2980 && !i386_reg_struct_return_p (gdbarch
, type
))
2981 /* Complex double and long double uses the struct return convention. */
2982 || (code
== TYPE_CODE_COMPLEX
&& TYPE_LENGTH (type
) == 16)
2983 || (code
== TYPE_CODE_COMPLEX
&& TYPE_LENGTH (type
) == 24)
2984 /* 128-bit decimal float uses the struct return convention. */
2985 || (code
== TYPE_CODE_DECFLOAT
&& TYPE_LENGTH (type
) == 16))
2987 /* The System V ABI says that:
2989 "A function that returns a structure or union also sets %eax
2990 to the value of the original address of the caller's area
2991 before it returns. Thus when the caller receives control
2992 again, the address of the returned object resides in register
2993 %eax and can be used to access the object."
2995 So the ABI guarantees that we can always find the return
2996 value just after the function has returned. */
2998 /* Note that the ABI doesn't mention functions returning arrays,
2999 which is something possible in certain languages such as Ada.
3000 In this case, the value is returned as if it was wrapped in
3001 a record, so the convention applied to records also applies
3008 regcache_raw_read_unsigned (regcache
, I386_EAX_REGNUM
, &addr
);
3009 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
3012 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
3015 /* This special case is for structures consisting of a single
3016 `float', `double' or 'long double' member. These structures are
3017 returned in %st(0). For these structures, we call ourselves
3018 recursively, changing TYPE into the type of the first member of
3019 the structure. Since that should work for all structures that
3020 have only one member, we don't bother to check the member's type
3022 if (code
== TYPE_CODE_STRUCT
&& type
->num_fields () == 1)
3024 type
= check_typedef (type
->field (0).type ());
3025 return i386_return_value (gdbarch
, function
, type
, regcache
,
3030 i386_extract_return_value (gdbarch
, type
, regcache
, readbuf
);
3032 i386_store_return_value (gdbarch
, type
, regcache
, writebuf
);
3034 return RETURN_VALUE_REGISTER_CONVENTION
;
3039 i387_ext_type (struct gdbarch
*gdbarch
)
3041 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3043 if (!tdep
->i387_ext_type
)
3045 tdep
->i387_ext_type
= tdesc_find_type (gdbarch
, "i387_ext");
3046 gdb_assert (tdep
->i387_ext_type
!= NULL
);
3049 return tdep
->i387_ext_type
;
3052 /* Construct type for pseudo BND registers. We can't use
3053 tdesc_find_type since a complement of one value has to be used
3054 to describe the upper bound. */
3056 static struct type
*
3057 i386_bnd_type (struct gdbarch
*gdbarch
)
3059 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3062 if (!tdep
->i386_bnd_type
)
3065 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3067 /* The type we're building is described bellow: */
3072 void *ubound
; /* One complement of raw ubound field. */
3076 t
= arch_composite_type (gdbarch
,
3077 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT
);
3079 append_composite_type_field (t
, "lbound", bt
->builtin_data_ptr
);
3080 append_composite_type_field (t
, "ubound", bt
->builtin_data_ptr
);
3082 t
->set_name ("builtin_type_bound128");
3083 tdep
->i386_bnd_type
= t
;
3086 return tdep
->i386_bnd_type
;
3089 /* Construct vector type for pseudo ZMM registers. We can't use
3090 tdesc_find_type since ZMM isn't described in target description. */
3092 static struct type
*
3093 i386_zmm_type (struct gdbarch
*gdbarch
)
3095 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3097 if (!tdep
->i386_zmm_type
)
3099 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3101 /* The type we're building is this: */
3103 union __gdb_builtin_type_vec512i
3105 int128_t v4_int128
[4];
3106 int64_t v8_int64
[8];
3107 int32_t v16_int32
[16];
3108 int16_t v32_int16
[32];
3109 int8_t v64_int8
[64];
3110 double v8_double
[8];
3111 float v16_float
[16];
3112 bfloat16_t v32_bfloat16
[32];
3118 t
= arch_composite_type (gdbarch
,
3119 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION
);
3120 append_composite_type_field (t
, "v32_bfloat16",
3121 init_vector_type (bt
->builtin_bfloat16
, 32));
3122 append_composite_type_field (t
, "v16_float",
3123 init_vector_type (bt
->builtin_float
, 16));
3124 append_composite_type_field (t
, "v8_double",
3125 init_vector_type (bt
->builtin_double
, 8));
3126 append_composite_type_field (t
, "v64_int8",
3127 init_vector_type (bt
->builtin_int8
, 64));
3128 append_composite_type_field (t
, "v32_int16",
3129 init_vector_type (bt
->builtin_int16
, 32));
3130 append_composite_type_field (t
, "v16_int32",
3131 init_vector_type (bt
->builtin_int32
, 16));
3132 append_composite_type_field (t
, "v8_int64",
3133 init_vector_type (bt
->builtin_int64
, 8));
3134 append_composite_type_field (t
, "v4_int128",
3135 init_vector_type (bt
->builtin_int128
, 4));
3137 t
->set_is_vector (true);
3138 t
->set_name ("builtin_type_vec512i");
3139 tdep
->i386_zmm_type
= t
;
3142 return tdep
->i386_zmm_type
;
3145 /* Construct vector type for pseudo YMM registers. We can't use
3146 tdesc_find_type since YMM isn't described in target description. */
3148 static struct type
*
3149 i386_ymm_type (struct gdbarch
*gdbarch
)
3151 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3153 if (!tdep
->i386_ymm_type
)
3155 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3157 /* The type we're building is this: */
3159 union __gdb_builtin_type_vec256i
3161 int128_t v2_int128
[2];
3162 int64_t v4_int64
[4];
3163 int32_t v8_int32
[8];
3164 int16_t v16_int16
[16];
3165 int8_t v32_int8
[32];
3166 double v4_double
[4];
3168 bfloat16_t v16_bfloat16
[16];
3174 t
= arch_composite_type (gdbarch
,
3175 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION
);
3176 append_composite_type_field (t
, "v16_bfloat16",
3177 init_vector_type (bt
->builtin_bfloat16
, 16));
3178 append_composite_type_field (t
, "v8_float",
3179 init_vector_type (bt
->builtin_float
, 8));
3180 append_composite_type_field (t
, "v4_double",
3181 init_vector_type (bt
->builtin_double
, 4));
3182 append_composite_type_field (t
, "v32_int8",
3183 init_vector_type (bt
->builtin_int8
, 32));
3184 append_composite_type_field (t
, "v16_int16",
3185 init_vector_type (bt
->builtin_int16
, 16));
3186 append_composite_type_field (t
, "v8_int32",
3187 init_vector_type (bt
->builtin_int32
, 8));
3188 append_composite_type_field (t
, "v4_int64",
3189 init_vector_type (bt
->builtin_int64
, 4));
3190 append_composite_type_field (t
, "v2_int128",
3191 init_vector_type (bt
->builtin_int128
, 2));
3193 t
->set_is_vector (true);
3194 t
->set_name ("builtin_type_vec256i");
3195 tdep
->i386_ymm_type
= t
;
3198 return tdep
->i386_ymm_type
;
3201 /* Construct vector type for MMX registers. */
3202 static struct type
*
3203 i386_mmx_type (struct gdbarch
*gdbarch
)
3205 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3207 if (!tdep
->i386_mmx_type
)
3209 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3211 /* The type we're building is this: */
3213 union __gdb_builtin_type_vec64i
3216 int32_t v2_int32
[2];
3217 int16_t v4_int16
[4];
3224 t
= arch_composite_type (gdbarch
,
3225 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION
);
3227 append_composite_type_field (t
, "uint64", bt
->builtin_int64
);
3228 append_composite_type_field (t
, "v2_int32",
3229 init_vector_type (bt
->builtin_int32
, 2));
3230 append_composite_type_field (t
, "v4_int16",
3231 init_vector_type (bt
->builtin_int16
, 4));
3232 append_composite_type_field (t
, "v8_int8",
3233 init_vector_type (bt
->builtin_int8
, 8));
3235 t
->set_is_vector (true);
3236 t
->set_name ("builtin_type_vec64i");
3237 tdep
->i386_mmx_type
= t
;
3240 return tdep
->i386_mmx_type
;
3243 /* Return the GDB type object for the "standard" data type of data in
3247 i386_pseudo_register_type (struct gdbarch
*gdbarch
, int regnum
)
3249 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3250 return i386_bnd_type (gdbarch
);
3251 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3252 return i386_mmx_type (gdbarch
);
3253 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3254 return i386_ymm_type (gdbarch
);
3255 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3256 return i386_ymm_type (gdbarch
);
3257 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3258 return i386_zmm_type (gdbarch
);
3261 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3262 if (i386_byte_regnum_p (gdbarch
, regnum
))
3263 return bt
->builtin_int8
;
3264 else if (i386_word_regnum_p (gdbarch
, regnum
))
3265 return bt
->builtin_int16
;
3266 else if (i386_dword_regnum_p (gdbarch
, regnum
))
3267 return bt
->builtin_int32
;
3268 else if (i386_k_regnum_p (gdbarch
, regnum
))
3269 return bt
->builtin_int64
;
3272 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3275 /* Map a cooked register onto a raw register or memory. For the i386,
3276 the MMX registers need to be mapped onto floating point registers. */
3279 i386_mmx_regnum_to_fp_regnum (readable_regcache
*regcache
, int regnum
)
3281 struct gdbarch_tdep
*tdep
= gdbarch_tdep (regcache
->arch ());
3286 mmxreg
= regnum
- tdep
->mm0_regnum
;
3287 regcache
->raw_read (I387_FSTAT_REGNUM (tdep
), &fstat
);
3288 tos
= (fstat
>> 11) & 0x7;
3289 fpreg
= (mmxreg
+ tos
) % 8;
3291 return (I387_ST0_REGNUM (tdep
) + fpreg
);
3294 /* A helper function for us by i386_pseudo_register_read_value and
3295 amd64_pseudo_register_read_value. It does all the work but reads
3296 the data into an already-allocated value. */
3299 i386_pseudo_register_read_into_value (struct gdbarch
*gdbarch
,
3300 readable_regcache
*regcache
,
3302 struct value
*result_value
)
3304 gdb_byte raw_buf
[I386_MAX_REGISTER_SIZE
];
3305 enum register_status status
;
3306 gdb_byte
*buf
= value_contents_raw (result_value
);
3308 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3310 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
3312 /* Extract (always little endian). */
3313 status
= regcache
->raw_read (fpnum
, raw_buf
);
3314 if (status
!= REG_VALID
)
3315 mark_value_bytes_unavailable (result_value
, 0,
3316 TYPE_LENGTH (value_type (result_value
)));
3318 memcpy (buf
, raw_buf
, register_size (gdbarch
, regnum
));
3322 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3323 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3325 regnum
-= tdep
->bnd0_regnum
;
3327 /* Extract (always little endian). Read lower 128bits. */
3328 status
= regcache
->raw_read (I387_BND0R_REGNUM (tdep
) + regnum
,
3330 if (status
!= REG_VALID
)
3331 mark_value_bytes_unavailable (result_value
, 0, 16);
3334 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
3335 LONGEST upper
, lower
;
3336 int size
= TYPE_LENGTH (builtin_type (gdbarch
)->builtin_data_ptr
);
3338 lower
= extract_unsigned_integer (raw_buf
, 8, byte_order
);
3339 upper
= extract_unsigned_integer (raw_buf
+ 8, 8, byte_order
);
3342 memcpy (buf
, &lower
, size
);
3343 memcpy (buf
+ size
, &upper
, size
);
3346 else if (i386_k_regnum_p (gdbarch
, regnum
))
3348 regnum
-= tdep
->k0_regnum
;
3350 /* Extract (always little endian). */
3351 status
= regcache
->raw_read (tdep
->k0_regnum
+ regnum
, raw_buf
);
3352 if (status
!= REG_VALID
)
3353 mark_value_bytes_unavailable (result_value
, 0, 8);
3355 memcpy (buf
, raw_buf
, 8);
3357 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3359 regnum
-= tdep
->zmm0_regnum
;
3361 if (regnum
< num_lower_zmm_regs
)
3363 /* Extract (always little endian). Read lower 128bits. */
3364 status
= regcache
->raw_read (I387_XMM0_REGNUM (tdep
) + regnum
,
3366 if (status
!= REG_VALID
)
3367 mark_value_bytes_unavailable (result_value
, 0, 16);
3369 memcpy (buf
, raw_buf
, 16);
3371 /* Extract (always little endian). Read upper 128bits. */
3372 status
= regcache
->raw_read (tdep
->ymm0h_regnum
+ regnum
,
3374 if (status
!= REG_VALID
)
3375 mark_value_bytes_unavailable (result_value
, 16, 16);
3377 memcpy (buf
+ 16, raw_buf
, 16);
3381 /* Extract (always little endian). Read lower 128bits. */
3382 status
= regcache
->raw_read (I387_XMM16_REGNUM (tdep
) + regnum
3383 - num_lower_zmm_regs
,
3385 if (status
!= REG_VALID
)
3386 mark_value_bytes_unavailable (result_value
, 0, 16);
3388 memcpy (buf
, raw_buf
, 16);
3390 /* Extract (always little endian). Read upper 128bits. */
3391 status
= regcache
->raw_read (I387_YMM16H_REGNUM (tdep
) + regnum
3392 - num_lower_zmm_regs
,
3394 if (status
!= REG_VALID
)
3395 mark_value_bytes_unavailable (result_value
, 16, 16);
3397 memcpy (buf
+ 16, raw_buf
, 16);
3400 /* Read upper 256bits. */
3401 status
= regcache
->raw_read (tdep
->zmm0h_regnum
+ regnum
,
3403 if (status
!= REG_VALID
)
3404 mark_value_bytes_unavailable (result_value
, 32, 32);
3406 memcpy (buf
+ 32, raw_buf
, 32);
3408 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3410 regnum
-= tdep
->ymm0_regnum
;
3412 /* Extract (always little endian). Read lower 128bits. */
3413 status
= regcache
->raw_read (I387_XMM0_REGNUM (tdep
) + regnum
,
3415 if (status
!= REG_VALID
)
3416 mark_value_bytes_unavailable (result_value
, 0, 16);
3418 memcpy (buf
, raw_buf
, 16);
3419 /* Read upper 128bits. */
3420 status
= regcache
->raw_read (tdep
->ymm0h_regnum
+ regnum
,
3422 if (status
!= REG_VALID
)
3423 mark_value_bytes_unavailable (result_value
, 16, 32);
3425 memcpy (buf
+ 16, raw_buf
, 16);
3427 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3429 regnum
-= tdep
->ymm16_regnum
;
3430 /* Extract (always little endian). Read lower 128bits. */
3431 status
= regcache
->raw_read (I387_XMM16_REGNUM (tdep
) + regnum
,
3433 if (status
!= REG_VALID
)
3434 mark_value_bytes_unavailable (result_value
, 0, 16);
3436 memcpy (buf
, raw_buf
, 16);
3437 /* Read upper 128bits. */
3438 status
= regcache
->raw_read (tdep
->ymm16h_regnum
+ regnum
,
3440 if (status
!= REG_VALID
)
3441 mark_value_bytes_unavailable (result_value
, 16, 16);
3443 memcpy (buf
+ 16, raw_buf
, 16);
3445 else if (i386_word_regnum_p (gdbarch
, regnum
))
3447 int gpnum
= regnum
- tdep
->ax_regnum
;
3449 /* Extract (always little endian). */
3450 status
= regcache
->raw_read (gpnum
, raw_buf
);
3451 if (status
!= REG_VALID
)
3452 mark_value_bytes_unavailable (result_value
, 0,
3453 TYPE_LENGTH (value_type (result_value
)));
3455 memcpy (buf
, raw_buf
, 2);
3457 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3459 int gpnum
= regnum
- tdep
->al_regnum
;
3461 /* Extract (always little endian). We read both lower and
3463 status
= regcache
->raw_read (gpnum
% 4, raw_buf
);
3464 if (status
!= REG_VALID
)
3465 mark_value_bytes_unavailable (result_value
, 0,
3466 TYPE_LENGTH (value_type (result_value
)));
3467 else if (gpnum
>= 4)
3468 memcpy (buf
, raw_buf
+ 1, 1);
3470 memcpy (buf
, raw_buf
, 1);
3473 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3477 static struct value
*
3478 i386_pseudo_register_read_value (struct gdbarch
*gdbarch
,
3479 readable_regcache
*regcache
,
3482 struct value
*result
;
3484 result
= allocate_value (register_type (gdbarch
, regnum
));
3485 VALUE_LVAL (result
) = lval_register
;
3486 VALUE_REGNUM (result
) = regnum
;
3488 i386_pseudo_register_read_into_value (gdbarch
, regcache
, regnum
, result
);
3494 i386_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
3495 int regnum
, const gdb_byte
*buf
)
3497 gdb_byte raw_buf
[I386_MAX_REGISTER_SIZE
];
3499 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3501 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
3504 regcache
->raw_read (fpnum
, raw_buf
);
3505 /* ... Modify ... (always little endian). */
3506 memcpy (raw_buf
, buf
, register_size (gdbarch
, regnum
));
3508 regcache
->raw_write (fpnum
, raw_buf
);
3512 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3514 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3516 ULONGEST upper
, lower
;
3517 int size
= TYPE_LENGTH (builtin_type (gdbarch
)->builtin_data_ptr
);
3518 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
3520 /* New values from input value. */
3521 regnum
-= tdep
->bnd0_regnum
;
3522 lower
= extract_unsigned_integer (buf
, size
, byte_order
);
3523 upper
= extract_unsigned_integer (buf
+ size
, size
, byte_order
);
3525 /* Fetching register buffer. */
3526 regcache
->raw_read (I387_BND0R_REGNUM (tdep
) + regnum
,
3531 /* Set register bits. */
3532 memcpy (raw_buf
, &lower
, 8);
3533 memcpy (raw_buf
+ 8, &upper
, 8);
3535 regcache
->raw_write (I387_BND0R_REGNUM (tdep
) + regnum
, raw_buf
);
3537 else if (i386_k_regnum_p (gdbarch
, regnum
))
3539 regnum
-= tdep
->k0_regnum
;
3541 regcache
->raw_write (tdep
->k0_regnum
+ regnum
, buf
);
3543 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3545 regnum
-= tdep
->zmm0_regnum
;
3547 if (regnum
< num_lower_zmm_regs
)
3549 /* Write lower 128bits. */
3550 regcache
->raw_write (I387_XMM0_REGNUM (tdep
) + regnum
, buf
);
3551 /* Write upper 128bits. */
3552 regcache
->raw_write (I387_YMM0_REGNUM (tdep
) + regnum
, buf
+ 16);
3556 /* Write lower 128bits. */
3557 regcache
->raw_write (I387_XMM16_REGNUM (tdep
) + regnum
3558 - num_lower_zmm_regs
, buf
);
3559 /* Write upper 128bits. */
3560 regcache
->raw_write (I387_YMM16H_REGNUM (tdep
) + regnum
3561 - num_lower_zmm_regs
, buf
+ 16);
3563 /* Write upper 256bits. */
3564 regcache
->raw_write (tdep
->zmm0h_regnum
+ regnum
, buf
+ 32);
3566 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3568 regnum
-= tdep
->ymm0_regnum
;
3570 /* ... Write lower 128bits. */
3571 regcache
->raw_write (I387_XMM0_REGNUM (tdep
) + regnum
, buf
);
3572 /* ... Write upper 128bits. */
3573 regcache
->raw_write (tdep
->ymm0h_regnum
+ regnum
, buf
+ 16);
3575 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3577 regnum
-= tdep
->ymm16_regnum
;
3579 /* ... Write lower 128bits. */
3580 regcache
->raw_write (I387_XMM16_REGNUM (tdep
) + regnum
, buf
);
3581 /* ... Write upper 128bits. */
3582 regcache
->raw_write (tdep
->ymm16h_regnum
+ regnum
, buf
+ 16);
3584 else if (i386_word_regnum_p (gdbarch
, regnum
))
3586 int gpnum
= regnum
- tdep
->ax_regnum
;
3589 regcache
->raw_read (gpnum
, raw_buf
);
3590 /* ... Modify ... (always little endian). */
3591 memcpy (raw_buf
, buf
, 2);
3593 regcache
->raw_write (gpnum
, raw_buf
);
3595 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3597 int gpnum
= regnum
- tdep
->al_regnum
;
3599 /* Read ... We read both lower and upper registers. */
3600 regcache
->raw_read (gpnum
% 4, raw_buf
);
3601 /* ... Modify ... (always little endian). */
3603 memcpy (raw_buf
+ 1, buf
, 1);
3605 memcpy (raw_buf
, buf
, 1);
3607 regcache
->raw_write (gpnum
% 4, raw_buf
);
3610 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3614 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3617 i386_ax_pseudo_register_collect (struct gdbarch
*gdbarch
,
3618 struct agent_expr
*ax
, int regnum
)
3620 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3622 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3624 /* MMX to FPU register mapping depends on current TOS. Let's just
3625 not care and collect everything... */
3628 ax_reg_mask (ax
, I387_FSTAT_REGNUM (tdep
));
3629 for (i
= 0; i
< 8; i
++)
3630 ax_reg_mask (ax
, I387_ST0_REGNUM (tdep
) + i
);
3633 else if (i386_bnd_regnum_p (gdbarch
, regnum
))
3635 regnum
-= tdep
->bnd0_regnum
;
3636 ax_reg_mask (ax
, I387_BND0R_REGNUM (tdep
) + regnum
);
3639 else if (i386_k_regnum_p (gdbarch
, regnum
))
3641 regnum
-= tdep
->k0_regnum
;
3642 ax_reg_mask (ax
, tdep
->k0_regnum
+ regnum
);
3645 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3647 regnum
-= tdep
->zmm0_regnum
;
3648 if (regnum
< num_lower_zmm_regs
)
3650 ax_reg_mask (ax
, I387_XMM0_REGNUM (tdep
) + regnum
);
3651 ax_reg_mask (ax
, tdep
->ymm0h_regnum
+ regnum
);
3655 ax_reg_mask (ax
, I387_XMM16_REGNUM (tdep
) + regnum
3656 - num_lower_zmm_regs
);
3657 ax_reg_mask (ax
, I387_YMM16H_REGNUM (tdep
) + regnum
3658 - num_lower_zmm_regs
);
3660 ax_reg_mask (ax
, tdep
->zmm0h_regnum
+ regnum
);
3663 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3665 regnum
-= tdep
->ymm0_regnum
;
3666 ax_reg_mask (ax
, I387_XMM0_REGNUM (tdep
) + regnum
);
3667 ax_reg_mask (ax
, tdep
->ymm0h_regnum
+ regnum
);
3670 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3672 regnum
-= tdep
->ymm16_regnum
;
3673 ax_reg_mask (ax
, I387_XMM16_REGNUM (tdep
) + regnum
);
3674 ax_reg_mask (ax
, tdep
->ymm16h_regnum
+ regnum
);
3677 else if (i386_word_regnum_p (gdbarch
, regnum
))
3679 int gpnum
= regnum
- tdep
->ax_regnum
;
3681 ax_reg_mask (ax
, gpnum
);
3684 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3686 int gpnum
= regnum
- tdep
->al_regnum
;
3688 ax_reg_mask (ax
, gpnum
% 4);
3692 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3697 /* Return the register number of the register allocated by GCC after
3698 REGNUM, or -1 if there is no such register. */
3701 i386_next_regnum (int regnum
)
3703 /* GCC allocates the registers in the order:
3705 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3707 Since storing a variable in %esp doesn't make any sense we return
3708 -1 for %ebp and for %esp itself. */
3709 static int next_regnum
[] =
3711 I386_EDX_REGNUM
, /* Slot for %eax. */
3712 I386_EBX_REGNUM
, /* Slot for %ecx. */
3713 I386_ECX_REGNUM
, /* Slot for %edx. */
3714 I386_ESI_REGNUM
, /* Slot for %ebx. */
3715 -1, -1, /* Slots for %esp and %ebp. */
3716 I386_EDI_REGNUM
, /* Slot for %esi. */
3717 I386_EBP_REGNUM
/* Slot for %edi. */
3720 if (regnum
>= 0 && regnum
< sizeof (next_regnum
) / sizeof (next_regnum
[0]))
3721 return next_regnum
[regnum
];
3726 /* Return nonzero if a value of type TYPE stored in register REGNUM
3727 needs any special handling. */
3730 i386_convert_register_p (struct gdbarch
*gdbarch
,
3731 int regnum
, struct type
*type
)
3733 int len
= TYPE_LENGTH (type
);
3735 /* Values may be spread across multiple registers. Most debugging
3736 formats aren't expressive enough to specify the locations, so
3737 some heuristics is involved. Right now we only handle types that
3738 have a length that is a multiple of the word size, since GCC
3739 doesn't seem to put any other types into registers. */
3740 if (len
> 4 && len
% 4 == 0)
3742 int last_regnum
= regnum
;
3746 last_regnum
= i386_next_regnum (last_regnum
);
3750 if (last_regnum
!= -1)
3754 return i387_convert_register_p (gdbarch
, regnum
, type
);
3757 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3758 return its contents in TO. */
3761 i386_register_to_value (struct frame_info
*frame
, int regnum
,
3762 struct type
*type
, gdb_byte
*to
,
3763 int *optimizedp
, int *unavailablep
)
3765 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
3766 int len
= TYPE_LENGTH (type
);
3768 if (i386_fp_regnum_p (gdbarch
, regnum
))
3769 return i387_register_to_value (frame
, regnum
, type
, to
,
3770 optimizedp
, unavailablep
);
3772 /* Read a value spread across multiple registers. */
3774 gdb_assert (len
> 4 && len
% 4 == 0);
3778 gdb_assert (regnum
!= -1);
3779 gdb_assert (register_size (gdbarch
, regnum
) == 4);
3781 if (!get_frame_register_bytes (frame
, regnum
, 0,
3782 register_size (gdbarch
, regnum
),
3783 to
, optimizedp
, unavailablep
))
3786 regnum
= i386_next_regnum (regnum
);
3791 *optimizedp
= *unavailablep
= 0;
3795 /* Write the contents FROM of a value of type TYPE into register
3796 REGNUM in frame FRAME. */
3799 i386_value_to_register (struct frame_info
*frame
, int regnum
,
3800 struct type
*type
, const gdb_byte
*from
)
3802 int len
= TYPE_LENGTH (type
);
3804 if (i386_fp_regnum_p (get_frame_arch (frame
), regnum
))
3806 i387_value_to_register (frame
, regnum
, type
, from
);
3810 /* Write a value spread across multiple registers. */
3812 gdb_assert (len
> 4 && len
% 4 == 0);
3816 gdb_assert (regnum
!= -1);
3817 gdb_assert (register_size (get_frame_arch (frame
), regnum
) == 4);
3819 put_frame_register (frame
, regnum
, from
);
3820 regnum
= i386_next_regnum (regnum
);
3826 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3827 in the general-purpose register set REGSET to register cache
3828 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3831 i386_supply_gregset (const struct regset
*regset
, struct regcache
*regcache
,
3832 int regnum
, const void *gregs
, size_t len
)
3834 struct gdbarch
*gdbarch
= regcache
->arch ();
3835 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3836 const gdb_byte
*regs
= (const gdb_byte
*) gregs
;
3839 gdb_assert (len
>= tdep
->sizeof_gregset
);
3841 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
3843 if ((regnum
== i
|| regnum
== -1)
3844 && tdep
->gregset_reg_offset
[i
] != -1)
3845 regcache
->raw_supply (i
, regs
+ tdep
->gregset_reg_offset
[i
]);
3849 /* Collect register REGNUM from the register cache REGCACHE and store
3850 it in the buffer specified by GREGS and LEN as described by the
3851 general-purpose register set REGSET. If REGNUM is -1, do this for
3852 all registers in REGSET. */
3855 i386_collect_gregset (const struct regset
*regset
,
3856 const struct regcache
*regcache
,
3857 int regnum
, void *gregs
, size_t len
)
3859 struct gdbarch
*gdbarch
= regcache
->arch ();
3860 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3861 gdb_byte
*regs
= (gdb_byte
*) gregs
;
3864 gdb_assert (len
>= tdep
->sizeof_gregset
);
3866 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
3868 if ((regnum
== i
|| regnum
== -1)
3869 && tdep
->gregset_reg_offset
[i
] != -1)
3870 regcache
->raw_collect (i
, regs
+ tdep
->gregset_reg_offset
[i
]);
3874 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3875 in the floating-point register set REGSET to register cache
3876 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3879 i386_supply_fpregset (const struct regset
*regset
, struct regcache
*regcache
,
3880 int regnum
, const void *fpregs
, size_t len
)
3882 struct gdbarch
*gdbarch
= regcache
->arch ();
3883 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3885 if (len
== I387_SIZEOF_FXSAVE
)
3887 i387_supply_fxsave (regcache
, regnum
, fpregs
);
3891 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3892 i387_supply_fsave (regcache
, regnum
, fpregs
);
3895 /* Collect register REGNUM from the register cache REGCACHE and store
3896 it in the buffer specified by FPREGS and LEN as described by the
3897 floating-point register set REGSET. If REGNUM is -1, do this for
3898 all registers in REGSET. */
3901 i386_collect_fpregset (const struct regset
*regset
,
3902 const struct regcache
*regcache
,
3903 int regnum
, void *fpregs
, size_t len
)
3905 struct gdbarch
*gdbarch
= regcache
->arch ();
3906 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3908 if (len
== I387_SIZEOF_FXSAVE
)
3910 i387_collect_fxsave (regcache
, regnum
, fpregs
);
3914 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3915 i387_collect_fsave (regcache
, regnum
, fpregs
);
3918 /* Register set definitions. */
3920 const struct regset i386_gregset
=
3922 NULL
, i386_supply_gregset
, i386_collect_gregset
3925 const struct regset i386_fpregset
=
3927 NULL
, i386_supply_fpregset
, i386_collect_fpregset
3930 /* Default iterator over core file register note sections. */
3933 i386_iterate_over_regset_sections (struct gdbarch
*gdbarch
,
3934 iterate_over_regset_sections_cb
*cb
,
3936 const struct regcache
*regcache
)
3938 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3940 cb (".reg", tdep
->sizeof_gregset
, tdep
->sizeof_gregset
, &i386_gregset
, NULL
,
3942 if (tdep
->sizeof_fpregset
)
3943 cb (".reg2", tdep
->sizeof_fpregset
, tdep
->sizeof_fpregset
, tdep
->fpregset
,
3948 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3951 i386_pe_skip_trampoline_code (struct frame_info
*frame
,
3952 CORE_ADDR pc
, char *name
)
3954 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
3955 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
3958 if (pc
&& read_memory_unsigned_integer (pc
, 2, byte_order
) == 0x25ff)
3960 unsigned long indirect
=
3961 read_memory_unsigned_integer (pc
+ 2, 4, byte_order
);
3962 struct minimal_symbol
*indsym
=
3963 indirect
? lookup_minimal_symbol_by_pc (indirect
).minsym
: 0;
3964 const char *symname
= indsym
? indsym
->linkage_name () : 0;
3968 if (startswith (symname
, "__imp_")
3969 || startswith (symname
, "_imp_"))
3971 read_memory_unsigned_integer (indirect
, 4, byte_order
);
3974 return 0; /* Not a trampoline. */
3978 /* Return whether the THIS_FRAME corresponds to a sigtramp
3982 i386_sigtramp_p (struct frame_info
*this_frame
)
3984 CORE_ADDR pc
= get_frame_pc (this_frame
);
3987 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
3988 return (name
&& strcmp ("_sigtramp", name
) == 0);
3992 /* We have two flavours of disassembly. The machinery on this page
3993 deals with switching between those. */
3996 i386_print_insn (bfd_vma pc
, struct disassemble_info
*info
)
3998 gdb_assert (disassembly_flavor
== att_flavor
3999 || disassembly_flavor
== intel_flavor
);
4001 info
->disassembler_options
= disassembly_flavor
;
4003 return default_print_insn (pc
, info
);
4007 /* There are a few i386 architecture variants that differ only
4008 slightly from the generic i386 target. For now, we don't give them
4009 their own source file, but include them here. As a consequence,
4010 they'll always be included. */
4012 /* System V Release 4 (SVR4). */
4014 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4018 i386_svr4_sigtramp_p (struct frame_info
*this_frame
)
4020 CORE_ADDR pc
= get_frame_pc (this_frame
);
4023 /* The origin of these symbols is currently unknown. */
4024 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
4025 return (name
&& (strcmp ("_sigreturn", name
) == 0
4026 || strcmp ("sigvechandler", name
) == 0));
4029 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4030 address of the associated sigcontext (ucontext) structure. */
4033 i386_svr4_sigcontext_addr (struct frame_info
*this_frame
)
4035 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
4036 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4040 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
4041 sp
= extract_unsigned_integer (buf
, 4, byte_order
);
4043 return read_memory_unsigned_integer (sp
+ 8, 4, byte_order
);
4048 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4052 i386_stap_is_single_operand (struct gdbarch
*gdbarch
, const char *s
)
4054 return (*s
== '$' /* Literal number. */
4055 || (isdigit (*s
) && s
[1] == '(' && s
[2] == '%') /* Displacement. */
4056 || (*s
== '(' && s
[1] == '%') /* Register indirection. */
4057 || (*s
== '%' && isalpha (s
[1]))); /* Register access. */
4060 /* Helper function for i386_stap_parse_special_token.
4062 This function parses operands of the form `-8+3+1(%rbp)', which
4063 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4065 Return true if the operand was parsed successfully, false
4069 i386_stap_parse_special_token_triplet (struct gdbarch
*gdbarch
,
4070 struct stap_parse_info
*p
)
4072 const char *s
= p
->arg
;
4074 if (isdigit (*s
) || *s
== '-' || *s
== '+')
4078 long displacements
[3];
4085 got_minus
[0] = false;
4091 got_minus
[0] = true;
4094 if (!isdigit ((unsigned char) *s
))
4097 displacements
[0] = strtol (s
, &endp
, 10);
4100 if (*s
!= '+' && *s
!= '-')
4102 /* We are not dealing with a triplet. */
4106 got_minus
[1] = false;
4112 got_minus
[1] = true;
4115 if (!isdigit ((unsigned char) *s
))
4118 displacements
[1] = strtol (s
, &endp
, 10);
4121 if (*s
!= '+' && *s
!= '-')
4123 /* We are not dealing with a triplet. */
4127 got_minus
[2] = false;
4133 got_minus
[2] = true;
4136 if (!isdigit ((unsigned char) *s
))
4139 displacements
[2] = strtol (s
, &endp
, 10);
4142 if (*s
!= '(' || s
[1] != '%')
4148 while (isalnum (*s
))
4154 len
= s
- start
- 1;
4155 regname
= (char *) alloca (len
+ 1);
4157 strncpy (regname
, start
, len
);
4158 regname
[len
] = '\0';
4160 if (user_reg_map_name_to_regnum (gdbarch
, regname
, len
) == -1)
4161 error (_("Invalid register name `%s' on expression `%s'."),
4162 regname
, p
->saved_arg
);
4164 for (i
= 0; i
< 3; i
++)
4166 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4168 (&p
->pstate
, builtin_type (gdbarch
)->builtin_long
);
4169 write_exp_elt_longcst (&p
->pstate
, displacements
[i
]);
4170 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4172 write_exp_elt_opcode (&p
->pstate
, UNOP_NEG
);
4175 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4178 write_exp_string (&p
->pstate
, str
);
4179 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4181 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4182 write_exp_elt_type (&p
->pstate
,
4183 builtin_type (gdbarch
)->builtin_data_ptr
);
4184 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4186 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4187 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4188 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4190 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4191 write_exp_elt_type (&p
->pstate
,
4192 lookup_pointer_type (p
->arg_type
));
4193 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4195 write_exp_elt_opcode (&p
->pstate
, UNOP_IND
);
4205 /* Helper function for i386_stap_parse_special_token.
4207 This function parses operands of the form `register base +
4208 (register index * size) + offset', as represented in
4209 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4211 Return true if the operand was parsed successfully, false
4215 i386_stap_parse_special_token_three_arg_disp (struct gdbarch
*gdbarch
,
4216 struct stap_parse_info
*p
)
4218 const char *s
= p
->arg
;
4220 if (isdigit (*s
) || *s
== '(' || *s
== '-' || *s
== '+')
4222 bool offset_minus
= false;
4224 bool size_minus
= false;
4231 struct stoken base_token
, index_token
;
4238 offset_minus
= true;
4241 if (offset_minus
&& !isdigit (*s
))
4248 offset
= strtol (s
, &endp
, 10);
4252 if (*s
!= '(' || s
[1] != '%')
4258 while (isalnum (*s
))
4261 if (*s
!= ',' || s
[1] != '%')
4264 len_base
= s
- start
;
4265 base
= (char *) alloca (len_base
+ 1);
4266 strncpy (base
, start
, len_base
);
4267 base
[len_base
] = '\0';
4269 if (user_reg_map_name_to_regnum (gdbarch
, base
, len_base
) == -1)
4270 error (_("Invalid register name `%s' on expression `%s'."),
4271 base
, p
->saved_arg
);
4276 while (isalnum (*s
))
4279 len_index
= s
- start
;
4280 index
= (char *) alloca (len_index
+ 1);
4281 strncpy (index
, start
, len_index
);
4282 index
[len_index
] = '\0';
4284 if (user_reg_map_name_to_regnum (gdbarch
, index
, len_index
) == -1)
4285 error (_("Invalid register name `%s' on expression `%s'."),
4286 index
, p
->saved_arg
);
4288 if (*s
!= ',' && *s
!= ')')
4304 size
= strtol (s
, &endp
, 10);
4315 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4316 write_exp_elt_type (&p
->pstate
,
4317 builtin_type (gdbarch
)->builtin_long
);
4318 write_exp_elt_longcst (&p
->pstate
, offset
);
4319 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4321 write_exp_elt_opcode (&p
->pstate
, UNOP_NEG
);
4324 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4325 base_token
.ptr
= base
;
4326 base_token
.length
= len_base
;
4327 write_exp_string (&p
->pstate
, base_token
);
4328 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4331 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4333 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4334 index_token
.ptr
= index
;
4335 index_token
.length
= len_index
;
4336 write_exp_string (&p
->pstate
, index_token
);
4337 write_exp_elt_opcode (&p
->pstate
, OP_REGISTER
);
4341 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4342 write_exp_elt_type (&p
->pstate
,
4343 builtin_type (gdbarch
)->builtin_long
);
4344 write_exp_elt_longcst (&p
->pstate
, size
);
4345 write_exp_elt_opcode (&p
->pstate
, OP_LONG
);
4347 write_exp_elt_opcode (&p
->pstate
, UNOP_NEG
);
4348 write_exp_elt_opcode (&p
->pstate
, BINOP_MUL
);
4351 write_exp_elt_opcode (&p
->pstate
, BINOP_ADD
);
4353 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4354 write_exp_elt_type (&p
->pstate
,
4355 lookup_pointer_type (p
->arg_type
));
4356 write_exp_elt_opcode (&p
->pstate
, UNOP_CAST
);
4358 write_exp_elt_opcode (&p
->pstate
, UNOP_IND
);
4368 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4372 i386_stap_parse_special_token (struct gdbarch
*gdbarch
,
4373 struct stap_parse_info
*p
)
4375 /* In order to parse special tokens, we use a state-machine that go
4376 through every known token and try to get a match. */
4380 THREE_ARG_DISPLACEMENT
,
4385 current_state
= TRIPLET
;
4387 /* The special tokens to be parsed here are:
4389 - `register base + (register index * size) + offset', as represented
4390 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4392 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4393 `*(-8 + 3 - 1 + (void *) $eax)'. */
4395 while (current_state
!= DONE
)
4397 switch (current_state
)
4400 if (i386_stap_parse_special_token_triplet (gdbarch
, p
))
4404 case THREE_ARG_DISPLACEMENT
:
4405 if (i386_stap_parse_special_token_three_arg_disp (gdbarch
, p
))
4410 /* Advancing to the next state. */
4417 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4421 i386_stap_adjust_register (struct gdbarch
*gdbarch
, struct stap_parse_info
*p
,
4422 const std::string
®name
, int regnum
)
4424 static const std::unordered_set
<std::string
> reg_assoc
4425 = { "ax", "bx", "cx", "dx",
4426 "si", "di", "bp", "sp" };
4428 /* If we are dealing with a register whose size is less than the size
4429 specified by the "[-]N@" prefix, and it is one of the registers that
4430 we know has an extended variant available, then use the extended
4431 version of the register instead. */
4432 if (register_size (gdbarch
, regnum
) < TYPE_LENGTH (p
->arg_type
)
4433 && reg_assoc
.find (regname
) != reg_assoc
.end ())
4434 return "e" + regname
;
4436 /* Otherwise, just use the requested register. */
4442 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4443 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4446 i386_gnu_triplet_regexp (struct gdbarch
*gdbarch
)
4448 return "(x86_64|i.86)";
4453 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4456 i386_in_indirect_branch_thunk (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
4458 return x86_in_indirect_branch_thunk (pc
, i386_register_names
,
4459 I386_EAX_REGNUM
, I386_EIP_REGNUM
);
4465 i386_elf_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
4467 static const char *const stap_integer_prefixes
[] = { "$", NULL
};
4468 static const char *const stap_register_prefixes
[] = { "%", NULL
};
4469 static const char *const stap_register_indirection_prefixes
[] = { "(",
4471 static const char *const stap_register_indirection_suffixes
[] = { ")",
4474 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4475 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_svr4_reg_to_regnum
);
4477 /* Registering SystemTap handlers. */
4478 set_gdbarch_stap_integer_prefixes (gdbarch
, stap_integer_prefixes
);
4479 set_gdbarch_stap_register_prefixes (gdbarch
, stap_register_prefixes
);
4480 set_gdbarch_stap_register_indirection_prefixes (gdbarch
,
4481 stap_register_indirection_prefixes
);
4482 set_gdbarch_stap_register_indirection_suffixes (gdbarch
,
4483 stap_register_indirection_suffixes
);
4484 set_gdbarch_stap_is_single_operand (gdbarch
,
4485 i386_stap_is_single_operand
);
4486 set_gdbarch_stap_parse_special_token (gdbarch
,
4487 i386_stap_parse_special_token
);
4488 set_gdbarch_stap_adjust_register (gdbarch
,
4489 i386_stap_adjust_register
);
4491 set_gdbarch_in_indirect_branch_thunk (gdbarch
,
4492 i386_in_indirect_branch_thunk
);
4495 /* System V Release 4 (SVR4). */
4498 i386_svr4_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
4500 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
4502 /* System V Release 4 uses ELF. */
4503 i386_elf_init_abi (info
, gdbarch
);
4505 /* System V Release 4 has shared libraries. */
4506 set_gdbarch_skip_trampoline_code (gdbarch
, find_solib_trampoline_target
);
4508 tdep
->sigtramp_p
= i386_svr4_sigtramp_p
;
4509 tdep
->sigcontext_addr
= i386_svr4_sigcontext_addr
;
4510 tdep
->sc_pc_offset
= 36 + 14 * 4;
4511 tdep
->sc_sp_offset
= 36 + 17 * 4;
4513 tdep
->jb_pc_offset
= 20;
4518 /* i386 register groups. In addition to the normal groups, add "mmx"
4521 static struct reggroup
*i386_sse_reggroup
;
4522 static struct reggroup
*i386_mmx_reggroup
;
4525 i386_init_reggroups (void)
4527 i386_sse_reggroup
= reggroup_new ("sse", USER_REGGROUP
);
4528 i386_mmx_reggroup
= reggroup_new ("mmx", USER_REGGROUP
);
4532 i386_add_reggroups (struct gdbarch
*gdbarch
)
4534 reggroup_add (gdbarch
, i386_sse_reggroup
);
4535 reggroup_add (gdbarch
, i386_mmx_reggroup
);
4536 reggroup_add (gdbarch
, general_reggroup
);
4537 reggroup_add (gdbarch
, float_reggroup
);
4538 reggroup_add (gdbarch
, all_reggroup
);
4539 reggroup_add (gdbarch
, save_reggroup
);
4540 reggroup_add (gdbarch
, restore_reggroup
);
4541 reggroup_add (gdbarch
, vector_reggroup
);
4542 reggroup_add (gdbarch
, system_reggroup
);
4546 i386_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
4547 struct reggroup
*group
)
4549 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
4550 int fp_regnum_p
, mmx_regnum_p
, xmm_regnum_p
, mxcsr_regnum_p
,
4551 ymm_regnum_p
, ymmh_regnum_p
, ymm_avx512_regnum_p
, ymmh_avx512_regnum_p
,
4552 bndr_regnum_p
, bnd_regnum_p
, zmm_regnum_p
, zmmh_regnum_p
,
4553 mpx_ctrl_regnum_p
, xmm_avx512_regnum_p
,
4554 avx512_p
, avx_p
, sse_p
, pkru_regnum_p
;
4556 /* Don't include pseudo registers, except for MMX, in any register
4558 if (i386_byte_regnum_p (gdbarch
, regnum
))
4561 if (i386_word_regnum_p (gdbarch
, regnum
))
4564 if (i386_dword_regnum_p (gdbarch
, regnum
))
4567 mmx_regnum_p
= i386_mmx_regnum_p (gdbarch
, regnum
);
4568 if (group
== i386_mmx_reggroup
)
4569 return mmx_regnum_p
;
4571 pkru_regnum_p
= i386_pkru_regnum_p(gdbarch
, regnum
);
4572 xmm_regnum_p
= i386_xmm_regnum_p (gdbarch
, regnum
);
4573 xmm_avx512_regnum_p
= i386_xmm_avx512_regnum_p (gdbarch
, regnum
);
4574 mxcsr_regnum_p
= i386_mxcsr_regnum_p (gdbarch
, regnum
);
4575 if (group
== i386_sse_reggroup
)
4576 return xmm_regnum_p
|| xmm_avx512_regnum_p
|| mxcsr_regnum_p
;
4578 ymm_regnum_p
= i386_ymm_regnum_p (gdbarch
, regnum
);
4579 ymm_avx512_regnum_p
= i386_ymm_avx512_regnum_p (gdbarch
, regnum
);
4580 zmm_regnum_p
= i386_zmm_regnum_p (gdbarch
, regnum
);
4582 avx512_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4583 == X86_XSTATE_AVX_AVX512_MASK
);
4584 avx_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4585 == X86_XSTATE_AVX_MASK
) && !avx512_p
;
4586 sse_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4587 == X86_XSTATE_SSE_MASK
) && !avx512_p
&& ! avx_p
;
4589 if (group
== vector_reggroup
)
4590 return (mmx_regnum_p
4591 || (zmm_regnum_p
&& avx512_p
)
4592 || ((ymm_regnum_p
|| ymm_avx512_regnum_p
) && avx_p
)
4593 || ((xmm_regnum_p
|| xmm_avx512_regnum_p
) && sse_p
)
4596 fp_regnum_p
= (i386_fp_regnum_p (gdbarch
, regnum
)
4597 || i386_fpc_regnum_p (gdbarch
, regnum
));
4598 if (group
== float_reggroup
)
4601 /* For "info reg all", don't include upper YMM registers nor XMM
4602 registers when AVX is supported. */
4603 ymmh_regnum_p
= i386_ymmh_regnum_p (gdbarch
, regnum
);
4604 ymmh_avx512_regnum_p
= i386_ymmh_avx512_regnum_p (gdbarch
, regnum
);
4605 zmmh_regnum_p
= i386_zmmh_regnum_p (gdbarch
, regnum
);
4606 if (group
== all_reggroup
4607 && (((xmm_regnum_p
|| xmm_avx512_regnum_p
) && !sse_p
)
4608 || ((ymm_regnum_p
|| ymm_avx512_regnum_p
) && !avx_p
)
4610 || ymmh_avx512_regnum_p
4614 bnd_regnum_p
= i386_bnd_regnum_p (gdbarch
, regnum
);
4615 if (group
== all_reggroup
4616 && ((bnd_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4617 return bnd_regnum_p
;
4619 bndr_regnum_p
= i386_bndr_regnum_p (gdbarch
, regnum
);
4620 if (group
== all_reggroup
4621 && ((bndr_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4624 mpx_ctrl_regnum_p
= i386_mpx_ctrl_regnum_p (gdbarch
, regnum
);
4625 if (group
== all_reggroup
4626 && ((mpx_ctrl_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4627 return mpx_ctrl_regnum_p
;
4629 if (group
== general_reggroup
)
4630 return (!fp_regnum_p
4634 && !xmm_avx512_regnum_p
4637 && !ymm_avx512_regnum_p
4638 && !ymmh_avx512_regnum_p
4641 && !mpx_ctrl_regnum_p
4646 return default_register_reggroup_p (gdbarch
, regnum
, group
);
4650 /* Get the ARGIth function argument for the current function. */
4653 i386_fetch_pointer_argument (struct frame_info
*frame
, int argi
,
4656 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4657 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4658 CORE_ADDR sp
= get_frame_register_unsigned (frame
, I386_ESP_REGNUM
);
4659 return read_memory_unsigned_integer (sp
+ (4 * (argi
+ 1)), 4, byte_order
);
4662 #define PREFIX_REPZ 0x01
4663 #define PREFIX_REPNZ 0x02
4664 #define PREFIX_LOCK 0x04
4665 #define PREFIX_DATA 0x08
4666 #define PREFIX_ADDR 0x10
4678 /* i386 arith/logic operations */
4691 struct i386_record_s
4693 struct gdbarch
*gdbarch
;
4694 struct regcache
*regcache
;
4695 CORE_ADDR orig_addr
;
4701 uint8_t mod
, reg
, rm
;
4710 /* Parse the "modrm" part of the memory address irp->addr points at.
4711 Returns -1 if something goes wrong, 0 otherwise. */
4714 i386_record_modrm (struct i386_record_s
*irp
)
4716 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4718 if (record_read_memory (gdbarch
, irp
->addr
, &irp
->modrm
, 1))
4722 irp
->mod
= (irp
->modrm
>> 6) & 3;
4723 irp
->reg
= (irp
->modrm
>> 3) & 7;
4724 irp
->rm
= irp
->modrm
& 7;
4729 /* Extract the memory address that the current instruction writes to,
4730 and return it in *ADDR. Return -1 if something goes wrong. */
4733 i386_record_lea_modrm_addr (struct i386_record_s
*irp
, uint64_t *addr
)
4735 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4736 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4741 if (irp
->aflag
|| irp
->regmap
[X86_RECORD_R8_REGNUM
])
4748 uint8_t base
= irp
->rm
;
4753 if (record_read_memory (gdbarch
, irp
->addr
, &byte
, 1))
4756 scale
= (byte
>> 6) & 3;
4757 index
= ((byte
>> 3) & 7) | irp
->rex_x
;
4765 if ((base
& 7) == 5)
4768 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 4))
4771 *addr
= extract_signed_integer (buf
, 4, byte_order
);
4772 if (irp
->regmap
[X86_RECORD_R8_REGNUM
] && !havesib
)
4773 *addr
+= irp
->addr
+ irp
->rip_offset
;
4777 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 1))
4780 *addr
= (int8_t) buf
[0];
4783 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 4))
4785 *addr
= extract_signed_integer (buf
, 4, byte_order
);
4793 if (base
== 4 && irp
->popl_esp_hack
)
4794 *addr
+= irp
->popl_esp_hack
;
4795 regcache_raw_read_unsigned (irp
->regcache
, irp
->regmap
[base
],
4798 if (irp
->aflag
== 2)
4803 *addr
= (uint32_t) (offset64
+ *addr
);
4805 if (havesib
&& (index
!= 4 || scale
!= 0))
4807 regcache_raw_read_unsigned (irp
->regcache
, irp
->regmap
[index
],
4809 if (irp
->aflag
== 2)
4810 *addr
+= offset64
<< scale
;
4812 *addr
= (uint32_t) (*addr
+ (offset64
<< scale
));
4817 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4818 address from 32-bit to 64-bit. */
4819 *addr
= (uint32_t) *addr
;
4830 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 2))
4833 *addr
= extract_signed_integer (buf
, 2, byte_order
);
4839 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 1))
4842 *addr
= (int8_t) buf
[0];
4845 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 2))
4848 *addr
= extract_signed_integer (buf
, 2, byte_order
);
4855 regcache_raw_read_unsigned (irp
->regcache
,
4856 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4858 *addr
= (uint32_t) (*addr
+ offset64
);
4859 regcache_raw_read_unsigned (irp
->regcache
,
4860 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4862 *addr
= (uint32_t) (*addr
+ offset64
);
4865 regcache_raw_read_unsigned (irp
->regcache
,
4866 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4868 *addr
= (uint32_t) (*addr
+ offset64
);
4869 regcache_raw_read_unsigned (irp
->regcache
,
4870 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4872 *addr
= (uint32_t) (*addr
+ offset64
);
4875 regcache_raw_read_unsigned (irp
->regcache
,
4876 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4878 *addr
= (uint32_t) (*addr
+ offset64
);
4879 regcache_raw_read_unsigned (irp
->regcache
,
4880 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4882 *addr
= (uint32_t) (*addr
+ offset64
);
4885 regcache_raw_read_unsigned (irp
->regcache
,
4886 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4888 *addr
= (uint32_t) (*addr
+ offset64
);
4889 regcache_raw_read_unsigned (irp
->regcache
,
4890 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4892 *addr
= (uint32_t) (*addr
+ offset64
);
4895 regcache_raw_read_unsigned (irp
->regcache
,
4896 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4898 *addr
= (uint32_t) (*addr
+ offset64
);
4901 regcache_raw_read_unsigned (irp
->regcache
,
4902 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4904 *addr
= (uint32_t) (*addr
+ offset64
);
4907 regcache_raw_read_unsigned (irp
->regcache
,
4908 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4910 *addr
= (uint32_t) (*addr
+ offset64
);
4913 regcache_raw_read_unsigned (irp
->regcache
,
4914 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4916 *addr
= (uint32_t) (*addr
+ offset64
);
4926 /* Record the address and contents of the memory that will be changed
4927 by the current instruction. Return -1 if something goes wrong, 0
4931 i386_record_lea_modrm (struct i386_record_s
*irp
)
4933 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4936 if (irp
->override
>= 0)
4938 if (record_full_memory_query
)
4941 Process record ignores the memory change of instruction at address %s\n\
4942 because it can't get the value of the segment register.\n\
4943 Do you want to stop the program?"),
4944 paddress (gdbarch
, irp
->orig_addr
)))
4951 if (i386_record_lea_modrm_addr (irp
, &addr
))
4954 if (record_full_arch_list_add_mem (addr
, 1 << irp
->ot
))
4960 /* Record the effects of a push operation. Return -1 if something
4961 goes wrong, 0 otherwise. */
4964 i386_record_push (struct i386_record_s
*irp
, int size
)
4968 if (record_full_arch_list_add_reg (irp
->regcache
,
4969 irp
->regmap
[X86_RECORD_RESP_REGNUM
]))
4971 regcache_raw_read_unsigned (irp
->regcache
,
4972 irp
->regmap
[X86_RECORD_RESP_REGNUM
],
4974 if (record_full_arch_list_add_mem ((CORE_ADDR
) addr
- size
, size
))
4981 /* Defines contents to record. */
4982 #define I386_SAVE_FPU_REGS 0xfffd
4983 #define I386_SAVE_FPU_ENV 0xfffe
4984 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4986 /* Record the values of the floating point registers which will be
4987 changed by the current instruction. Returns -1 if something is
4988 wrong, 0 otherwise. */
4990 static int i386_record_floats (struct gdbarch
*gdbarch
,
4991 struct i386_record_s
*ir
,
4994 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
4997 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4998 happen. Currently we store st0-st7 registers, but we need not store all
4999 registers all the time, in future we use ftag register and record only
5000 those who are not marked as an empty. */
5002 if (I386_SAVE_FPU_REGS
== iregnum
)
5004 for (i
= I387_ST0_REGNUM (tdep
); i
<= I387_ST0_REGNUM (tdep
) + 7; i
++)
5006 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5010 else if (I386_SAVE_FPU_ENV
== iregnum
)
5012 for (i
= I387_FCTRL_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5014 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5018 else if (I386_SAVE_FPU_ENV_REG_STACK
== iregnum
)
5020 for (i
= I387_ST0_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5022 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5026 else if ((iregnum
>= I387_ST0_REGNUM (tdep
)) &&
5027 (iregnum
<= I387_FOP_REGNUM (tdep
)))
5029 if (record_full_arch_list_add_reg (ir
->regcache
,iregnum
))
5034 /* Parameter error. */
5037 if(I386_SAVE_FPU_ENV
!= iregnum
)
5039 for (i
= I387_FCTRL_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5041 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5048 /* Parse the current instruction, and record the values of the
5049 registers and memory that will be changed by the current
5050 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5052 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5053 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5056 i386_process_record (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
5057 CORE_ADDR input_addr
)
5059 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
5065 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
5066 struct i386_record_s ir
;
5067 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
5071 memset (&ir
, 0, sizeof (struct i386_record_s
));
5072 ir
.regcache
= regcache
;
5073 ir
.addr
= input_addr
;
5074 ir
.orig_addr
= input_addr
;
5078 ir
.popl_esp_hack
= 0;
5079 ir
.regmap
= tdep
->record_regmap
;
5080 ir
.gdbarch
= gdbarch
;
5082 if (record_debug
> 1)
5083 fprintf_unfiltered (gdb_stdlog
, "Process record: i386_process_record "
5085 paddress (gdbarch
, ir
.addr
));
5090 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
5093 switch (opcode8
) /* Instruction prefixes */
5095 case REPE_PREFIX_OPCODE
:
5096 prefixes
|= PREFIX_REPZ
;
5098 case REPNE_PREFIX_OPCODE
:
5099 prefixes
|= PREFIX_REPNZ
;
5101 case LOCK_PREFIX_OPCODE
:
5102 prefixes
|= PREFIX_LOCK
;
5104 case CS_PREFIX_OPCODE
:
5105 ir
.override
= X86_RECORD_CS_REGNUM
;
5107 case SS_PREFIX_OPCODE
:
5108 ir
.override
= X86_RECORD_SS_REGNUM
;
5110 case DS_PREFIX_OPCODE
:
5111 ir
.override
= X86_RECORD_DS_REGNUM
;
5113 case ES_PREFIX_OPCODE
:
5114 ir
.override
= X86_RECORD_ES_REGNUM
;
5116 case FS_PREFIX_OPCODE
:
5117 ir
.override
= X86_RECORD_FS_REGNUM
;
5119 case GS_PREFIX_OPCODE
:
5120 ir
.override
= X86_RECORD_GS_REGNUM
;
5122 case DATA_PREFIX_OPCODE
:
5123 prefixes
|= PREFIX_DATA
;
5125 case ADDR_PREFIX_OPCODE
:
5126 prefixes
|= PREFIX_ADDR
;
5128 case 0x40: /* i386 inc %eax */
5129 case 0x41: /* i386 inc %ecx */
5130 case 0x42: /* i386 inc %edx */
5131 case 0x43: /* i386 inc %ebx */
5132 case 0x44: /* i386 inc %esp */
5133 case 0x45: /* i386 inc %ebp */
5134 case 0x46: /* i386 inc %esi */
5135 case 0x47: /* i386 inc %edi */
5136 case 0x48: /* i386 dec %eax */
5137 case 0x49: /* i386 dec %ecx */
5138 case 0x4a: /* i386 dec %edx */
5139 case 0x4b: /* i386 dec %ebx */
5140 case 0x4c: /* i386 dec %esp */
5141 case 0x4d: /* i386 dec %ebp */
5142 case 0x4e: /* i386 dec %esi */
5143 case 0x4f: /* i386 dec %edi */
5144 if (ir
.regmap
[X86_RECORD_R8_REGNUM
]) /* 64 bit target */
5147 rex_w
= (opcode8
>> 3) & 1;
5148 rex_r
= (opcode8
& 0x4) << 1;
5149 ir
.rex_x
= (opcode8
& 0x2) << 2;
5150 ir
.rex_b
= (opcode8
& 0x1) << 3;
5152 else /* 32 bit target */
5161 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && rex_w
== 1)
5167 if (prefixes
& PREFIX_DATA
)
5170 if (prefixes
& PREFIX_ADDR
)
5172 else if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5175 /* Now check op code. */
5176 opcode
= (uint32_t) opcode8
;
5181 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
5184 opcode
= (uint32_t) opcode8
| 0x0f00;
5188 case 0x00: /* arith & logic */
5236 if (((opcode
>> 3) & 7) != OP_CMPL
)
5238 if ((opcode
& 1) == 0)
5241 ir
.ot
= ir
.dflag
+ OT_WORD
;
5243 switch ((opcode
>> 1) & 3)
5245 case 0: /* OP Ev, Gv */
5246 if (i386_record_modrm (&ir
))
5250 if (i386_record_lea_modrm (&ir
))
5256 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5261 case 1: /* OP Gv, Ev */
5262 if (i386_record_modrm (&ir
))
5265 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5269 case 2: /* OP A, Iv */
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5277 case 0x80: /* GRP1 */
5281 if (i386_record_modrm (&ir
))
5284 if (ir
.reg
!= OP_CMPL
)
5286 if ((opcode
& 1) == 0)
5289 ir
.ot
= ir
.dflag
+ OT_WORD
;
5296 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5297 if (i386_record_lea_modrm (&ir
))
5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5306 case 0x40: /* inc */
5315 case 0x48: /* dec */
5324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode
& 7);
5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5328 case 0xf6: /* GRP3 */
5330 if ((opcode
& 1) == 0)
5333 ir
.ot
= ir
.dflag
+ OT_WORD
;
5334 if (i386_record_modrm (&ir
))
5337 if (ir
.mod
!= 3 && ir
.reg
== 0)
5338 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5349 if (i386_record_lea_modrm (&ir
))
5355 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5359 if (ir
.reg
== 3) /* neg */
5360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5367 if (ir
.ot
!= OT_BYTE
)
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5373 opcode
= opcode
<< 8 | ir
.modrm
;
5379 case 0xfe: /* GRP4 */
5380 case 0xff: /* GRP5 */
5381 if (i386_record_modrm (&ir
))
5383 if (ir
.reg
>= 2 && opcode
== 0xfe)
5386 opcode
= opcode
<< 8 | ir
.modrm
;
5393 if ((opcode
& 1) == 0)
5396 ir
.ot
= ir
.dflag
+ OT_WORD
;
5399 if (i386_record_lea_modrm (&ir
))
5405 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5412 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5414 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
5420 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5429 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5431 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5436 opcode
= opcode
<< 8 | ir
.modrm
;
5442 case 0x84: /* test */
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5449 case 0x98: /* CWDE/CBW */
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5453 case 0x99: /* CDQ/CWD */
5454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5458 case 0x0faf: /* imul */
5461 ir
.ot
= ir
.dflag
+ OT_WORD
;
5462 if (i386_record_modrm (&ir
))
5465 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5466 else if (opcode
== 0x6b)
5469 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5475 case 0x0fc0: /* xadd */
5477 if ((opcode
& 1) == 0)
5480 ir
.ot
= ir
.dflag
+ OT_WORD
;
5481 if (i386_record_modrm (&ir
))
5486 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5489 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5495 if (i386_record_lea_modrm (&ir
))
5497 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5504 case 0x0fb0: /* cmpxchg */
5506 if ((opcode
& 1) == 0)
5509 ir
.ot
= ir
.dflag
+ OT_WORD
;
5510 if (i386_record_modrm (&ir
))
5515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5516 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5523 if (i386_record_lea_modrm (&ir
))
5526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5529 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5530 if (i386_record_modrm (&ir
))
5534 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5535 an extended opcode. rdrand has bits 110 (/6) and rdseed
5536 has bits 111 (/7). */
5537 if (ir
.reg
== 6 || ir
.reg
== 7)
5539 /* The storage register is described by the 3 R/M bits, but the
5540 REX.B prefix may be used to give access to registers
5541 R8~R15. In this case ir.rex_b + R/M will give us the register
5542 in the range R8~R15.
5544 REX.W may also be used to access 64-bit registers, but we
5545 already record entire registers and not just partial bits
5547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rex_b
+ ir
.rm
);
5548 /* These instructions also set conditional bits. */
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5554 /* We don't handle this particular instruction yet. */
5556 opcode
= opcode
<< 8 | ir
.modrm
;
5560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5562 if (i386_record_lea_modrm (&ir
))
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5567 case 0x50: /* push */
5577 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5579 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5583 case 0x06: /* push es */
5584 case 0x0e: /* push cs */
5585 case 0x16: /* push ss */
5586 case 0x1e: /* push ds */
5587 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5592 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5596 case 0x0fa0: /* push fs */
5597 case 0x0fa8: /* push gs */
5598 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5603 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5607 case 0x60: /* pusha */
5608 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5613 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 4)))
5617 case 0x58: /* pop */
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 0x7) | ir
.rex_b
);
5629 case 0x61: /* popa */
5630 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5635 for (regnum
= X86_RECORD_REAX_REGNUM
;
5636 regnum
<= X86_RECORD_REDI_REGNUM
;
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5641 case 0x8f: /* pop */
5642 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5643 ir
.ot
= ir
.dflag
? OT_QUAD
: OT_WORD
;
5645 ir
.ot
= ir
.dflag
+ OT_WORD
;
5646 if (i386_record_modrm (&ir
))
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
5652 ir
.popl_esp_hack
= 1 << ir
.ot
;
5653 if (i386_record_lea_modrm (&ir
))
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5659 case 0xc8: /* enter */
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
5661 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5663 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5667 case 0xc9: /* leave */
5668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
5672 case 0x07: /* pop es */
5673 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM
);
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5683 case 0x17: /* pop ss */
5684 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM
);
5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5694 case 0x1f: /* pop ds */
5695 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5701 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM
);
5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5705 case 0x0fa1: /* pop fs */
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM
);
5708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5711 case 0x0fa9: /* pop gs */
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM
);
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5717 case 0x88: /* mov */
5721 if ((opcode
& 1) == 0)
5724 ir
.ot
= ir
.dflag
+ OT_WORD
;
5726 if (i386_record_modrm (&ir
))
5731 if (opcode
== 0xc6 || opcode
== 0xc7)
5732 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5733 if (i386_record_lea_modrm (&ir
))
5738 if (opcode
== 0xc6 || opcode
== 0xc7)
5740 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5746 case 0x8a: /* mov */
5748 if ((opcode
& 1) == 0)
5751 ir
.ot
= ir
.dflag
+ OT_WORD
;
5752 if (i386_record_modrm (&ir
))
5755 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5757 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5760 case 0x8c: /* mov seg */
5761 if (i386_record_modrm (&ir
))
5766 opcode
= opcode
<< 8 | ir
.modrm
;
5771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5775 if (i386_record_lea_modrm (&ir
))
5780 case 0x8e: /* mov seg */
5781 if (i386_record_modrm (&ir
))
5786 regnum
= X86_RECORD_ES_REGNUM
;
5789 regnum
= X86_RECORD_SS_REGNUM
;
5792 regnum
= X86_RECORD_DS_REGNUM
;
5795 regnum
= X86_RECORD_FS_REGNUM
;
5798 regnum
= X86_RECORD_GS_REGNUM
;
5802 opcode
= opcode
<< 8 | ir
.modrm
;
5806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5810 case 0x0fb6: /* movzbS */
5811 case 0x0fb7: /* movzwS */
5812 case 0x0fbe: /* movsbS */
5813 case 0x0fbf: /* movswS */
5814 if (i386_record_modrm (&ir
))
5816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
5819 case 0x8d: /* lea */
5820 if (i386_record_modrm (&ir
))
5825 opcode
= opcode
<< 8 | ir
.modrm
;
5830 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5835 case 0xa0: /* mov EAX */
5838 case 0xd7: /* xlat */
5839 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5842 case 0xa2: /* mov EAX */
5844 if (ir
.override
>= 0)
5846 if (record_full_memory_query
)
5849 Process record ignores the memory change of instruction at address %s\n\
5850 because it can't get the value of the segment register.\n\
5851 Do you want to stop the program?"),
5852 paddress (gdbarch
, ir
.orig_addr
)))
5858 if ((opcode
& 1) == 0)
5861 ir
.ot
= ir
.dflag
+ OT_WORD
;
5864 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 8))
5867 addr
= extract_unsigned_integer (buf
, 8, byte_order
);
5871 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 4))
5874 addr
= extract_unsigned_integer (buf
, 4, byte_order
);
5878 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 2))
5881 addr
= extract_unsigned_integer (buf
, 2, byte_order
);
5883 if (record_full_arch_list_add_mem (addr
, 1 << ir
.ot
))
5888 case 0xb0: /* mov R, Ib */
5896 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir
.regmap
[X86_RECORD_R8_REGNUM
])
5897 ? ((opcode
& 0x7) | ir
.rex_b
)
5898 : ((opcode
& 0x7) & 0x3));
5901 case 0xb8: /* mov R, Iv */
5909 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 0x7) | ir
.rex_b
);
5912 case 0x91: /* xchg R, EAX */
5919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode
& 0x7);
5923 case 0x86: /* xchg Ev, Gv */
5925 if ((opcode
& 1) == 0)
5928 ir
.ot
= ir
.dflag
+ OT_WORD
;
5929 if (i386_record_modrm (&ir
))
5934 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5940 if (i386_record_lea_modrm (&ir
))
5944 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5949 case 0xc4: /* les Gv */
5950 case 0xc5: /* lds Gv */
5951 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5957 case 0x0fb2: /* lss Gv */
5958 case 0x0fb4: /* lfs Gv */
5959 case 0x0fb5: /* lgs Gv */
5960 if (i386_record_modrm (&ir
))
5968 opcode
= opcode
<< 8 | ir
.modrm
;
5973 case 0xc4: /* les Gv */
5974 regnum
= X86_RECORD_ES_REGNUM
;
5976 case 0xc5: /* lds Gv */
5977 regnum
= X86_RECORD_DS_REGNUM
;
5979 case 0x0fb2: /* lss Gv */
5980 regnum
= X86_RECORD_SS_REGNUM
;
5982 case 0x0fb4: /* lfs Gv */
5983 regnum
= X86_RECORD_FS_REGNUM
;
5985 case 0x0fb5: /* lgs Gv */
5986 regnum
= X86_RECORD_GS_REGNUM
;
5989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
5991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5994 case 0xc0: /* shifts */
6000 if ((opcode
& 1) == 0)
6003 ir
.ot
= ir
.dflag
+ OT_WORD
;
6004 if (i386_record_modrm (&ir
))
6006 if (ir
.mod
!= 3 && (opcode
== 0xd2 || opcode
== 0xd3))
6008 if (i386_record_lea_modrm (&ir
))
6014 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
6016 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
6018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6025 if (i386_record_modrm (&ir
))
6029 if (record_full_arch_list_add_reg (ir
.regcache
, ir
.rm
))
6034 if (i386_record_lea_modrm (&ir
))
6039 case 0xd8: /* Floats. */
6047 if (i386_record_modrm (&ir
))
6049 ir
.reg
|= ((opcode
& 7) << 3);
6055 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
6063 /* For fcom, ficom nothing to do. */
6069 /* For fcomp, ficomp pop FPU stack, store all. */
6070 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6097 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6098 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6099 of code, always affects st(0) register. */
6100 if (i386_record_floats (gdbarch
, &ir
, I387_ST0_REGNUM (tdep
)))
6124 /* Handling fld, fild. */
6125 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6129 switch (ir
.reg
>> 4)
6132 if (record_full_arch_list_add_mem (addr64
, 4))
6136 if (record_full_arch_list_add_mem (addr64
, 8))
6142 if (record_full_arch_list_add_mem (addr64
, 2))
6148 switch (ir
.reg
>> 4)
6151 if (record_full_arch_list_add_mem (addr64
, 4))
6153 if (3 == (ir
.reg
& 7))
6155 /* For fstp m32fp. */
6156 if (i386_record_floats (gdbarch
, &ir
,
6157 I386_SAVE_FPU_REGS
))
6162 if (record_full_arch_list_add_mem (addr64
, 4))
6164 if ((3 == (ir
.reg
& 7))
6165 || (5 == (ir
.reg
& 7))
6166 || (7 == (ir
.reg
& 7)))
6168 /* For fstp insn. */
6169 if (i386_record_floats (gdbarch
, &ir
,
6170 I386_SAVE_FPU_REGS
))
6175 if (record_full_arch_list_add_mem (addr64
, 8))
6177 if (3 == (ir
.reg
& 7))
6179 /* For fstp m64fp. */
6180 if (i386_record_floats (gdbarch
, &ir
,
6181 I386_SAVE_FPU_REGS
))
6186 if ((3 <= (ir
.reg
& 7)) && (6 <= (ir
.reg
& 7)))
6188 /* For fistp, fbld, fild, fbstp. */
6189 if (i386_record_floats (gdbarch
, &ir
,
6190 I386_SAVE_FPU_REGS
))
6195 if (record_full_arch_list_add_mem (addr64
, 2))
6204 if (i386_record_floats (gdbarch
, &ir
,
6205 I386_SAVE_FPU_ENV_REG_STACK
))
6210 if (i386_record_floats (gdbarch
, &ir
, I387_FCTRL_REGNUM (tdep
)))
6215 if (i386_record_floats (gdbarch
, &ir
,
6216 I386_SAVE_FPU_ENV_REG_STACK
))
6222 if (record_full_arch_list_add_mem (addr64
, 28))
6227 if (record_full_arch_list_add_mem (addr64
, 14))
6233 if (record_full_arch_list_add_mem (addr64
, 2))
6235 /* Insn fstp, fbstp. */
6236 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6241 if (record_full_arch_list_add_mem (addr64
, 10))
6247 if (record_full_arch_list_add_mem (addr64
, 28))
6253 if (record_full_arch_list_add_mem (addr64
, 14))
6257 if (record_full_arch_list_add_mem (addr64
, 80))
6260 if (i386_record_floats (gdbarch
, &ir
,
6261 I386_SAVE_FPU_ENV_REG_STACK
))
6265 if (record_full_arch_list_add_mem (addr64
, 8))
6268 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6273 opcode
= opcode
<< 8 | ir
.modrm
;
6278 /* Opcode is an extension of modR/M byte. */
6284 if (i386_record_floats (gdbarch
, &ir
, I387_ST0_REGNUM (tdep
)))
6288 if (0x0c == (ir
.modrm
>> 4))
6290 if ((ir
.modrm
& 0x0f) <= 7)
6292 if (i386_record_floats (gdbarch
, &ir
,
6293 I386_SAVE_FPU_REGS
))
6298 if (i386_record_floats (gdbarch
, &ir
,
6299 I387_ST0_REGNUM (tdep
)))
6301 /* If only st(0) is changing, then we have already
6303 if ((ir
.modrm
& 0x0f) - 0x08)
6305 if (i386_record_floats (gdbarch
, &ir
,
6306 I387_ST0_REGNUM (tdep
) +
6307 ((ir
.modrm
& 0x0f) - 0x08)))
6325 if (i386_record_floats (gdbarch
, &ir
,
6326 I387_ST0_REGNUM (tdep
)))
6344 if (i386_record_floats (gdbarch
, &ir
,
6345 I386_SAVE_FPU_REGS
))
6349 if (i386_record_floats (gdbarch
, &ir
,
6350 I387_ST0_REGNUM (tdep
)))
6352 if (i386_record_floats (gdbarch
, &ir
,
6353 I387_ST0_REGNUM (tdep
) + 1))
6360 if (0xe9 == ir
.modrm
)
6362 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6365 else if ((0x0c == ir
.modrm
>> 4) || (0x0d == ir
.modrm
>> 4))
6367 if (i386_record_floats (gdbarch
, &ir
,
6368 I387_ST0_REGNUM (tdep
)))
6370 if (((ir
.modrm
& 0x0f) > 0) && ((ir
.modrm
& 0x0f) <= 7))
6372 if (i386_record_floats (gdbarch
, &ir
,
6373 I387_ST0_REGNUM (tdep
) +
6377 else if ((ir
.modrm
& 0x0f) - 0x08)
6379 if (i386_record_floats (gdbarch
, &ir
,
6380 I387_ST0_REGNUM (tdep
) +
6381 ((ir
.modrm
& 0x0f) - 0x08)))
6387 if (0xe3 == ir
.modrm
)
6389 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_ENV
))
6392 else if ((0x0c == ir
.modrm
>> 4) || (0x0d == ir
.modrm
>> 4))
6394 if (i386_record_floats (gdbarch
, &ir
,
6395 I387_ST0_REGNUM (tdep
)))
6397 if (((ir
.modrm
& 0x0f) > 0) && ((ir
.modrm
& 0x0f) <= 7))
6399 if (i386_record_floats (gdbarch
, &ir
,
6400 I387_ST0_REGNUM (tdep
) +
6404 else if ((ir
.modrm
& 0x0f) - 0x08)
6406 if (i386_record_floats (gdbarch
, &ir
,
6407 I387_ST0_REGNUM (tdep
) +
6408 ((ir
.modrm
& 0x0f) - 0x08)))
6414 if ((0x0c == ir
.modrm
>> 4)
6415 || (0x0d == ir
.modrm
>> 4)
6416 || (0x0f == ir
.modrm
>> 4))
6418 if ((ir
.modrm
& 0x0f) <= 7)
6420 if (i386_record_floats (gdbarch
, &ir
,
6421 I387_ST0_REGNUM (tdep
) +
6427 if (i386_record_floats (gdbarch
, &ir
,
6428 I387_ST0_REGNUM (tdep
) +
6429 ((ir
.modrm
& 0x0f) - 0x08)))
6435 if (0x0c == ir
.modrm
>> 4)
6437 if (i386_record_floats (gdbarch
, &ir
,
6438 I387_FTAG_REGNUM (tdep
)))
6441 else if ((0x0d == ir
.modrm
>> 4) || (0x0e == ir
.modrm
>> 4))
6443 if ((ir
.modrm
& 0x0f) <= 7)
6445 if (i386_record_floats (gdbarch
, &ir
,
6446 I387_ST0_REGNUM (tdep
) +
6452 if (i386_record_floats (gdbarch
, &ir
,
6453 I386_SAVE_FPU_REGS
))
6459 if ((0x0c == ir
.modrm
>> 4)
6460 || (0x0e == ir
.modrm
>> 4)
6461 || (0x0f == ir
.modrm
>> 4)
6462 || (0xd9 == ir
.modrm
))
6464 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6469 if (0xe0 == ir
.modrm
)
6471 if (record_full_arch_list_add_reg (ir
.regcache
,
6475 else if ((0x0f == ir
.modrm
>> 4) || (0x0e == ir
.modrm
>> 4))
6477 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6485 case 0xa4: /* movsS */
6487 case 0xaa: /* stosS */
6489 case 0x6c: /* insS */
6491 regcache_raw_read_unsigned (ir
.regcache
,
6492 ir
.regmap
[X86_RECORD_RECX_REGNUM
],
6498 if ((opcode
& 1) == 0)
6501 ir
.ot
= ir
.dflag
+ OT_WORD
;
6502 regcache_raw_read_unsigned (ir
.regcache
,
6503 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
6506 regcache_raw_read_unsigned (ir
.regcache
,
6507 ir
.regmap
[X86_RECORD_ES_REGNUM
],
6509 regcache_raw_read_unsigned (ir
.regcache
,
6510 ir
.regmap
[X86_RECORD_DS_REGNUM
],
6512 if (ir
.aflag
&& (es
!= ds
))
6514 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6515 if (record_full_memory_query
)
6518 Process record ignores the memory change of instruction at address %s\n\
6519 because it can't get the value of the segment register.\n\
6520 Do you want to stop the program?"),
6521 paddress (gdbarch
, ir
.orig_addr
)))
6527 if (record_full_arch_list_add_mem (addr
, 1 << ir
.ot
))
6531 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6533 if (opcode
== 0xa4 || opcode
== 0xa5)
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6540 case 0xa6: /* cmpsS */
6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6544 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6549 case 0xac: /* lodsS */
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6553 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6558 case 0xae: /* scasS */
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6561 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6566 case 0x6e: /* outsS */
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6569 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6574 case 0xe4: /* port I/O */
6578 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6589 case 0xc2: /* ret im */
6590 case 0xc3: /* ret */
6591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6595 case 0xca: /* lret im */
6596 case 0xcb: /* lret */
6597 case 0xcf: /* iret */
6598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
6599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6603 case 0xe8: /* call im */
6604 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
6606 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6610 case 0x9a: /* lcall im */
6611 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
6617 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6621 case 0xe9: /* jmp im */
6622 case 0xea: /* ljmp im */
6623 case 0xeb: /* jmp Jb */
6624 case 0x70: /* jcc Jb */
6640 case 0x0f80: /* jcc Jv */
6658 case 0x0f90: /* setcc Gv */
6674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6676 if (i386_record_modrm (&ir
))
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rex_b
? (ir
.rm
| ir
.rex_b
)
6683 if (i386_record_lea_modrm (&ir
))
6688 case 0x0f40: /* cmov Gv, Ev */
6704 if (i386_record_modrm (&ir
))
6707 if (ir
.dflag
== OT_BYTE
)
6709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
6713 case 0x9c: /* pushf */
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6715 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
6717 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6721 case 0x9d: /* popf */
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6726 case 0x9e: /* sahf */
6727 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6733 case 0xf5: /* cmc */
6734 case 0xf8: /* clc */
6735 case 0xf9: /* stc */
6736 case 0xfc: /* cld */
6737 case 0xfd: /* std */
6738 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6741 case 0x9f: /* lahf */
6742 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6751 /* bit operations */
6752 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6753 ir
.ot
= ir
.dflag
+ OT_WORD
;
6754 if (i386_record_modrm (&ir
))
6759 opcode
= opcode
<< 8 | ir
.modrm
;
6765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
6768 if (i386_record_lea_modrm (&ir
))
6772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6775 case 0x0fa3: /* bt Gv, Ev */
6776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6779 case 0x0fab: /* bts */
6780 case 0x0fb3: /* btr */
6781 case 0x0fbb: /* btc */
6782 ir
.ot
= ir
.dflag
+ OT_WORD
;
6783 if (i386_record_modrm (&ir
))
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
6790 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
6792 regcache_raw_read_unsigned (ir
.regcache
,
6793 ir
.regmap
[ir
.reg
| rex_r
],
6798 addr64
+= ((int16_t) addr
>> 4) << 4;
6801 addr64
+= ((int32_t) addr
>> 5) << 5;
6804 addr64
+= ((int64_t) addr
>> 6) << 6;
6807 if (record_full_arch_list_add_mem (addr64
, 1 << ir
.ot
))
6809 if (i386_record_lea_modrm (&ir
))
6812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6815 case 0x0fbc: /* bsf */
6816 case 0x0fbd: /* bsr */
6817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
6818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6822 case 0x27: /* daa */
6823 case 0x2f: /* das */
6824 case 0x37: /* aaa */
6825 case 0x3f: /* aas */
6826 case 0xd4: /* aam */
6827 case 0xd5: /* aad */
6828 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6833 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6838 case 0x90: /* nop */
6839 if (prefixes
& PREFIX_LOCK
)
6846 case 0x9b: /* fwait */
6847 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
6849 opcode
= (uint32_t) opcode8
;
6855 case 0xcc: /* int3 */
6856 printf_unfiltered (_("Process record does not support instruction "
6863 case 0xcd: /* int */
6867 if (record_read_memory (gdbarch
, ir
.addr
, &interrupt
, 1))
6870 if (interrupt
!= 0x80
6871 || tdep
->i386_intx80_record
== NULL
)
6873 printf_unfiltered (_("Process record does not support "
6874 "instruction int 0x%02x.\n"),
6879 ret
= tdep
->i386_intx80_record (ir
.regcache
);
6886 case 0xce: /* into */
6887 printf_unfiltered (_("Process record does not support "
6888 "instruction into.\n"));
6893 case 0xfa: /* cli */
6894 case 0xfb: /* sti */
6897 case 0x62: /* bound */
6898 printf_unfiltered (_("Process record does not support "
6899 "instruction bound.\n"));
6904 case 0x0fc8: /* bswap reg */
6912 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 7) | ir
.rex_b
);
6915 case 0xd6: /* salc */
6916 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6925 case 0xe0: /* loopnz */
6926 case 0xe1: /* loopz */
6927 case 0xe2: /* loop */
6928 case 0xe3: /* jecxz */
6929 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6933 case 0x0f30: /* wrmsr */
6934 printf_unfiltered (_("Process record does not support "
6935 "instruction wrmsr.\n"));
6940 case 0x0f32: /* rdmsr */
6941 printf_unfiltered (_("Process record does not support "
6942 "instruction rdmsr.\n"));
6947 case 0x0f31: /* rdtsc */
6948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
6952 case 0x0f34: /* sysenter */
6955 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6960 if (tdep
->i386_sysenter_record
== NULL
)
6962 printf_unfiltered (_("Process record does not support "
6963 "instruction sysenter.\n"));
6967 ret
= tdep
->i386_sysenter_record (ir
.regcache
);
6973 case 0x0f35: /* sysexit */
6974 printf_unfiltered (_("Process record does not support "
6975 "instruction sysexit.\n"));
6980 case 0x0f05: /* syscall */
6983 if (tdep
->i386_syscall_record
== NULL
)
6985 printf_unfiltered (_("Process record does not support "
6986 "instruction syscall.\n"));
6990 ret
= tdep
->i386_syscall_record (ir
.regcache
);
6996 case 0x0f07: /* sysret */
6997 printf_unfiltered (_("Process record does not support "
6998 "instruction sysret.\n"));
7003 case 0x0fa2: /* cpuid */
7004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7005 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
7006 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM
);
7010 case 0xf4: /* hlt */
7011 printf_unfiltered (_("Process record does not support "
7012 "instruction hlt.\n"));
7018 if (i386_record_modrm (&ir
))
7025 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7029 if (i386_record_lea_modrm (&ir
))
7038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7042 opcode
= opcode
<< 8 | ir
.modrm
;
7049 if (i386_record_modrm (&ir
))
7060 opcode
= opcode
<< 8 | ir
.modrm
;
7063 if (ir
.override
>= 0)
7065 if (record_full_memory_query
)
7068 Process record ignores the memory change of instruction at address %s\n\
7069 because it can't get the value of the segment register.\n\
7070 Do you want to stop the program?"),
7071 paddress (gdbarch
, ir
.orig_addr
)))
7077 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
7079 if (record_full_arch_list_add_mem (addr64
, 2))
7082 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
7084 if (record_full_arch_list_add_mem (addr64
, 8))
7089 if (record_full_arch_list_add_mem (addr64
, 4))
7100 case 0: /* monitor */
7103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7107 opcode
= opcode
<< 8 | ir
.modrm
;
7115 if (ir
.override
>= 0)
7117 if (record_full_memory_query
)
7120 Process record ignores the memory change of instruction at address %s\n\
7121 because it can't get the value of the segment register.\n\
7122 Do you want to stop the program?"),
7123 paddress (gdbarch
, ir
.orig_addr
)))
7131 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
7133 if (record_full_arch_list_add_mem (addr64
, 2))
7136 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
7138 if (record_full_arch_list_add_mem (addr64
, 8))
7143 if (record_full_arch_list_add_mem (addr64
, 4))
7155 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7160 else if (ir
.rm
== 1)
7168 opcode
= opcode
<< 8 | ir
.modrm
;
7175 if (record_full_arch_list_add_reg (ir
.regcache
, ir
.rm
| ir
.rex_b
))
7181 if (i386_record_lea_modrm (&ir
))
7184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7189 case 7: /* invlpg */
7192 if (ir
.rm
== 0 && ir
.regmap
[X86_RECORD_R8_REGNUM
])
7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM
);
7197 opcode
= opcode
<< 8 | ir
.modrm
;
7202 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7206 opcode
= opcode
<< 8 | ir
.modrm
;
7212 case 0x0f08: /* invd */
7213 case 0x0f09: /* wbinvd */
7216 case 0x63: /* arpl */
7217 if (i386_record_modrm (&ir
))
7219 if (ir
.mod
== 3 || ir
.regmap
[X86_RECORD_R8_REGNUM
])
7221 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.regmap
[X86_RECORD_R8_REGNUM
]
7222 ? (ir
.reg
| rex_r
) : ir
.rm
);
7226 ir
.ot
= ir
.dflag
? OT_LONG
: OT_WORD
;
7227 if (i386_record_lea_modrm (&ir
))
7230 if (!ir
.regmap
[X86_RECORD_R8_REGNUM
])
7231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7234 case 0x0f02: /* lar */
7235 case 0x0f03: /* lsl */
7236 if (i386_record_modrm (&ir
))
7238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
7239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7243 if (i386_record_modrm (&ir
))
7245 if (ir
.mod
== 3 && ir
.reg
== 3)
7248 opcode
= opcode
<< 8 | ir
.modrm
;
7260 /* nop (multi byte) */
7263 case 0x0f20: /* mov reg, crN */
7264 case 0x0f22: /* mov crN, reg */
7265 if (i386_record_modrm (&ir
))
7267 if ((ir
.modrm
& 0xc0) != 0xc0)
7270 opcode
= opcode
<< 8 | ir
.modrm
;
7281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7287 opcode
= opcode
<< 8 | ir
.modrm
;
7293 case 0x0f21: /* mov reg, drN */
7294 case 0x0f23: /* mov drN, reg */
7295 if (i386_record_modrm (&ir
))
7297 if ((ir
.modrm
& 0xc0) != 0xc0 || ir
.reg
== 4
7298 || ir
.reg
== 5 || ir
.reg
>= 8)
7301 opcode
= opcode
<< 8 | ir
.modrm
;
7305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7310 case 0x0f06: /* clts */
7311 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7314 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7316 case 0x0f0d: /* 3DNow! prefetch */
7319 case 0x0f0e: /* 3DNow! femms */
7320 case 0x0f77: /* emms */
7321 if (i386_fpc_regnum_p (gdbarch
, I387_FTAG_REGNUM(tdep
)))
7323 record_full_arch_list_add_reg (ir
.regcache
, I387_FTAG_REGNUM(tdep
));
7326 case 0x0f0f: /* 3DNow! data */
7327 if (i386_record_modrm (&ir
))
7329 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
7334 case 0x0c: /* 3DNow! pi2fw */
7335 case 0x0d: /* 3DNow! pi2fd */
7336 case 0x1c: /* 3DNow! pf2iw */
7337 case 0x1d: /* 3DNow! pf2id */
7338 case 0x8a: /* 3DNow! pfnacc */
7339 case 0x8e: /* 3DNow! pfpnacc */
7340 case 0x90: /* 3DNow! pfcmpge */
7341 case 0x94: /* 3DNow! pfmin */
7342 case 0x96: /* 3DNow! pfrcp */
7343 case 0x97: /* 3DNow! pfrsqrt */
7344 case 0x9a: /* 3DNow! pfsub */
7345 case 0x9e: /* 3DNow! pfadd */
7346 case 0xa0: /* 3DNow! pfcmpgt */
7347 case 0xa4: /* 3DNow! pfmax */
7348 case 0xa6: /* 3DNow! pfrcpit1 */
7349 case 0xa7: /* 3DNow! pfrsqit1 */
7350 case 0xaa: /* 3DNow! pfsubr */
7351 case 0xae: /* 3DNow! pfacc */
7352 case 0xb0: /* 3DNow! pfcmpeq */
7353 case 0xb4: /* 3DNow! pfmul */
7354 case 0xb6: /* 3DNow! pfrcpit2 */
7355 case 0xb7: /* 3DNow! pmulhrw */
7356 case 0xbb: /* 3DNow! pswapd */
7357 case 0xbf: /* 3DNow! pavgusb */
7358 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.reg
))
7359 goto no_support_3dnow_data
;
7360 record_full_arch_list_add_reg (ir
.regcache
, ir
.reg
);
7364 no_support_3dnow_data
:
7365 opcode
= (opcode
<< 8) | opcode8
;
7371 case 0x0faa: /* rsm */
7372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM
);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
7384 if (i386_record_modrm (&ir
))
7388 case 0: /* fxsave */
7392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7393 if (i386_record_lea_modrm_addr (&ir
, &tmpu64
))
7395 if (record_full_arch_list_add_mem (tmpu64
, 512))
7400 case 1: /* fxrstor */
7404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7406 for (i
= I387_MM0_REGNUM (tdep
);
7407 i386_mmx_regnum_p (gdbarch
, i
); i
++)
7408 record_full_arch_list_add_reg (ir
.regcache
, i
);
7410 for (i
= I387_XMM0_REGNUM (tdep
);
7411 i386_xmm_regnum_p (gdbarch
, i
); i
++)
7412 record_full_arch_list_add_reg (ir
.regcache
, i
);
7414 if (i386_mxcsr_regnum_p (gdbarch
, I387_MXCSR_REGNUM(tdep
)))
7415 record_full_arch_list_add_reg (ir
.regcache
,
7416 I387_MXCSR_REGNUM(tdep
));
7418 for (i
= I387_ST0_REGNUM (tdep
);
7419 i386_fp_regnum_p (gdbarch
, i
); i
++)
7420 record_full_arch_list_add_reg (ir
.regcache
, i
);
7422 for (i
= I387_FCTRL_REGNUM (tdep
);
7423 i386_fpc_regnum_p (gdbarch
, i
); i
++)
7424 record_full_arch_list_add_reg (ir
.regcache
, i
);
7428 case 2: /* ldmxcsr */
7429 if (!i386_mxcsr_regnum_p (gdbarch
, I387_MXCSR_REGNUM(tdep
)))
7431 record_full_arch_list_add_reg (ir
.regcache
, I387_MXCSR_REGNUM(tdep
));
7434 case 3: /* stmxcsr */
7436 if (i386_record_lea_modrm (&ir
))
7440 case 5: /* lfence */
7441 case 6: /* mfence */
7442 case 7: /* sfence clflush */
7446 opcode
= (opcode
<< 8) | ir
.modrm
;
7452 case 0x0fc3: /* movnti */
7453 ir
.ot
= (ir
.dflag
== 2) ? OT_QUAD
: OT_LONG
;
7454 if (i386_record_modrm (&ir
))
7459 if (i386_record_lea_modrm (&ir
))
7463 /* Add prefix to opcode. */
7578 /* Mask out PREFIX_ADDR. */
7579 switch ((prefixes
& ~PREFIX_ADDR
))
7591 reswitch_prefix_add
:
7599 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
7602 opcode
= (uint32_t) opcode8
| opcode
<< 8;
7603 goto reswitch_prefix_add
;
7606 case 0x0f10: /* movups */
7607 case 0x660f10: /* movupd */
7608 case 0xf30f10: /* movss */
7609 case 0xf20f10: /* movsd */
7610 case 0x0f12: /* movlps */
7611 case 0x660f12: /* movlpd */
7612 case 0xf30f12: /* movsldup */
7613 case 0xf20f12: /* movddup */
7614 case 0x0f14: /* unpcklps */
7615 case 0x660f14: /* unpcklpd */
7616 case 0x0f15: /* unpckhps */
7617 case 0x660f15: /* unpckhpd */
7618 case 0x0f16: /* movhps */
7619 case 0x660f16: /* movhpd */
7620 case 0xf30f16: /* movshdup */
7621 case 0x0f28: /* movaps */
7622 case 0x660f28: /* movapd */
7623 case 0x0f2a: /* cvtpi2ps */
7624 case 0x660f2a: /* cvtpi2pd */
7625 case 0xf30f2a: /* cvtsi2ss */
7626 case 0xf20f2a: /* cvtsi2sd */
7627 case 0x0f2c: /* cvttps2pi */
7628 case 0x660f2c: /* cvttpd2pi */
7629 case 0x0f2d: /* cvtps2pi */
7630 case 0x660f2d: /* cvtpd2pi */
7631 case 0x660f3800: /* pshufb */
7632 case 0x660f3801: /* phaddw */
7633 case 0x660f3802: /* phaddd */
7634 case 0x660f3803: /* phaddsw */
7635 case 0x660f3804: /* pmaddubsw */
7636 case 0x660f3805: /* phsubw */
7637 case 0x660f3806: /* phsubd */
7638 case 0x660f3807: /* phsubsw */
7639 case 0x660f3808: /* psignb */
7640 case 0x660f3809: /* psignw */
7641 case 0x660f380a: /* psignd */
7642 case 0x660f380b: /* pmulhrsw */
7643 case 0x660f3810: /* pblendvb */
7644 case 0x660f3814: /* blendvps */
7645 case 0x660f3815: /* blendvpd */
7646 case 0x660f381c: /* pabsb */
7647 case 0x660f381d: /* pabsw */
7648 case 0x660f381e: /* pabsd */
7649 case 0x660f3820: /* pmovsxbw */
7650 case 0x660f3821: /* pmovsxbd */
7651 case 0x660f3822: /* pmovsxbq */
7652 case 0x660f3823: /* pmovsxwd */
7653 case 0x660f3824: /* pmovsxwq */
7654 case 0x660f3825: /* pmovsxdq */
7655 case 0x660f3828: /* pmuldq */
7656 case 0x660f3829: /* pcmpeqq */
7657 case 0x660f382a: /* movntdqa */
7658 case 0x660f3a08: /* roundps */
7659 case 0x660f3a09: /* roundpd */
7660 case 0x660f3a0a: /* roundss */
7661 case 0x660f3a0b: /* roundsd */
7662 case 0x660f3a0c: /* blendps */
7663 case 0x660f3a0d: /* blendpd */
7664 case 0x660f3a0e: /* pblendw */
7665 case 0x660f3a0f: /* palignr */
7666 case 0x660f3a20: /* pinsrb */
7667 case 0x660f3a21: /* insertps */
7668 case 0x660f3a22: /* pinsrd pinsrq */
7669 case 0x660f3a40: /* dpps */
7670 case 0x660f3a41: /* dppd */
7671 case 0x660f3a42: /* mpsadbw */
7672 case 0x660f3a60: /* pcmpestrm */
7673 case 0x660f3a61: /* pcmpestri */
7674 case 0x660f3a62: /* pcmpistrm */
7675 case 0x660f3a63: /* pcmpistri */
7676 case 0x0f51: /* sqrtps */
7677 case 0x660f51: /* sqrtpd */
7678 case 0xf20f51: /* sqrtsd */
7679 case 0xf30f51: /* sqrtss */
7680 case 0x0f52: /* rsqrtps */
7681 case 0xf30f52: /* rsqrtss */
7682 case 0x0f53: /* rcpps */
7683 case 0xf30f53: /* rcpss */
7684 case 0x0f54: /* andps */
7685 case 0x660f54: /* andpd */
7686 case 0x0f55: /* andnps */
7687 case 0x660f55: /* andnpd */
7688 case 0x0f56: /* orps */
7689 case 0x660f56: /* orpd */
7690 case 0x0f57: /* xorps */
7691 case 0x660f57: /* xorpd */
7692 case 0x0f58: /* addps */
7693 case 0x660f58: /* addpd */
7694 case 0xf20f58: /* addsd */
7695 case 0xf30f58: /* addss */
7696 case 0x0f59: /* mulps */
7697 case 0x660f59: /* mulpd */
7698 case 0xf20f59: /* mulsd */
7699 case 0xf30f59: /* mulss */
7700 case 0x0f5a: /* cvtps2pd */
7701 case 0x660f5a: /* cvtpd2ps */
7702 case 0xf20f5a: /* cvtsd2ss */
7703 case 0xf30f5a: /* cvtss2sd */
7704 case 0x0f5b: /* cvtdq2ps */
7705 case 0x660f5b: /* cvtps2dq */
7706 case 0xf30f5b: /* cvttps2dq */
7707 case 0x0f5c: /* subps */
7708 case 0x660f5c: /* subpd */
7709 case 0xf20f5c: /* subsd */
7710 case 0xf30f5c: /* subss */
7711 case 0x0f5d: /* minps */
7712 case 0x660f5d: /* minpd */
7713 case 0xf20f5d: /* minsd */
7714 case 0xf30f5d: /* minss */
7715 case 0x0f5e: /* divps */
7716 case 0x660f5e: /* divpd */
7717 case 0xf20f5e: /* divsd */
7718 case 0xf30f5e: /* divss */
7719 case 0x0f5f: /* maxps */
7720 case 0x660f5f: /* maxpd */
7721 case 0xf20f5f: /* maxsd */
7722 case 0xf30f5f: /* maxss */
7723 case 0x660f60: /* punpcklbw */
7724 case 0x660f61: /* punpcklwd */
7725 case 0x660f62: /* punpckldq */
7726 case 0x660f63: /* packsswb */
7727 case 0x660f64: /* pcmpgtb */
7728 case 0x660f65: /* pcmpgtw */
7729 case 0x660f66: /* pcmpgtd */
7730 case 0x660f67: /* packuswb */
7731 case 0x660f68: /* punpckhbw */
7732 case 0x660f69: /* punpckhwd */
7733 case 0x660f6a: /* punpckhdq */
7734 case 0x660f6b: /* packssdw */
7735 case 0x660f6c: /* punpcklqdq */
7736 case 0x660f6d: /* punpckhqdq */
7737 case 0x660f6e: /* movd */
7738 case 0x660f6f: /* movdqa */
7739 case 0xf30f6f: /* movdqu */
7740 case 0x660f70: /* pshufd */
7741 case 0xf20f70: /* pshuflw */
7742 case 0xf30f70: /* pshufhw */
7743 case 0x660f74: /* pcmpeqb */
7744 case 0x660f75: /* pcmpeqw */
7745 case 0x660f76: /* pcmpeqd */
7746 case 0x660f7c: /* haddpd */
7747 case 0xf20f7c: /* haddps */
7748 case 0x660f7d: /* hsubpd */
7749 case 0xf20f7d: /* hsubps */
7750 case 0xf30f7e: /* movq */
7751 case 0x0fc2: /* cmpps */
7752 case 0x660fc2: /* cmppd */
7753 case 0xf20fc2: /* cmpsd */
7754 case 0xf30fc2: /* cmpss */
7755 case 0x660fc4: /* pinsrw */
7756 case 0x0fc6: /* shufps */
7757 case 0x660fc6: /* shufpd */
7758 case 0x660fd0: /* addsubpd */
7759 case 0xf20fd0: /* addsubps */
7760 case 0x660fd1: /* psrlw */
7761 case 0x660fd2: /* psrld */
7762 case 0x660fd3: /* psrlq */
7763 case 0x660fd4: /* paddq */
7764 case 0x660fd5: /* pmullw */
7765 case 0xf30fd6: /* movq2dq */
7766 case 0x660fd8: /* psubusb */
7767 case 0x660fd9: /* psubusw */
7768 case 0x660fda: /* pminub */
7769 case 0x660fdb: /* pand */
7770 case 0x660fdc: /* paddusb */
7771 case 0x660fdd: /* paddusw */
7772 case 0x660fde: /* pmaxub */
7773 case 0x660fdf: /* pandn */
7774 case 0x660fe0: /* pavgb */
7775 case 0x660fe1: /* psraw */
7776 case 0x660fe2: /* psrad */
7777 case 0x660fe3: /* pavgw */
7778 case 0x660fe4: /* pmulhuw */
7779 case 0x660fe5: /* pmulhw */
7780 case 0x660fe6: /* cvttpd2dq */
7781 case 0xf20fe6: /* cvtpd2dq */
7782 case 0xf30fe6: /* cvtdq2pd */
7783 case 0x660fe8: /* psubsb */
7784 case 0x660fe9: /* psubsw */
7785 case 0x660fea: /* pminsw */
7786 case 0x660feb: /* por */
7787 case 0x660fec: /* paddsb */
7788 case 0x660fed: /* paddsw */
7789 case 0x660fee: /* pmaxsw */
7790 case 0x660fef: /* pxor */
7791 case 0xf20ff0: /* lddqu */
7792 case 0x660ff1: /* psllw */
7793 case 0x660ff2: /* pslld */
7794 case 0x660ff3: /* psllq */
7795 case 0x660ff4: /* pmuludq */
7796 case 0x660ff5: /* pmaddwd */
7797 case 0x660ff6: /* psadbw */
7798 case 0x660ff8: /* psubb */
7799 case 0x660ff9: /* psubw */
7800 case 0x660ffa: /* psubd */
7801 case 0x660ffb: /* psubq */
7802 case 0x660ffc: /* paddb */
7803 case 0x660ffd: /* paddw */
7804 case 0x660ffe: /* paddd */
7805 if (i386_record_modrm (&ir
))
7808 if (!i386_xmm_regnum_p (gdbarch
, I387_XMM0_REGNUM (tdep
) + ir
.reg
))
7810 record_full_arch_list_add_reg (ir
.regcache
,
7811 I387_XMM0_REGNUM (tdep
) + ir
.reg
);
7812 if ((opcode
& 0xfffffffc) == 0x660f3a60)
7813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7816 case 0x0f11: /* movups */
7817 case 0x660f11: /* movupd */
7818 case 0xf30f11: /* movss */
7819 case 0xf20f11: /* movsd */
7820 case 0x0f13: /* movlps */
7821 case 0x660f13: /* movlpd */
7822 case 0x0f17: /* movhps */
7823 case 0x660f17: /* movhpd */
7824 case 0x0f29: /* movaps */
7825 case 0x660f29: /* movapd */
7826 case 0x660f3a14: /* pextrb */
7827 case 0x660f3a15: /* pextrw */
7828 case 0x660f3a16: /* pextrd pextrq */
7829 case 0x660f3a17: /* extractps */
7830 case 0x660f7f: /* movdqa */
7831 case 0xf30f7f: /* movdqu */
7832 if (i386_record_modrm (&ir
))
7836 if (opcode
== 0x0f13 || opcode
== 0x660f13
7837 || opcode
== 0x0f17 || opcode
== 0x660f17)
7840 if (!i386_xmm_regnum_p (gdbarch
,
7841 I387_XMM0_REGNUM (tdep
) + ir
.rm
))
7843 record_full_arch_list_add_reg (ir
.regcache
,
7844 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
7866 if (i386_record_lea_modrm (&ir
))
7871 case 0x0f2b: /* movntps */
7872 case 0x660f2b: /* movntpd */
7873 case 0x0fe7: /* movntq */
7874 case 0x660fe7: /* movntdq */
7877 if (opcode
== 0x0fe7)
7881 if (i386_record_lea_modrm (&ir
))
7885 case 0xf30f2c: /* cvttss2si */
7886 case 0xf20f2c: /* cvttsd2si */
7887 case 0xf30f2d: /* cvtss2si */
7888 case 0xf20f2d: /* cvtsd2si */
7889 case 0xf20f38f0: /* crc32 */
7890 case 0xf20f38f1: /* crc32 */
7891 case 0x0f50: /* movmskps */
7892 case 0x660f50: /* movmskpd */
7893 case 0x0fc5: /* pextrw */
7894 case 0x660fc5: /* pextrw */
7895 case 0x0fd7: /* pmovmskb */
7896 case 0x660fd7: /* pmovmskb */
7897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
7900 case 0x0f3800: /* pshufb */
7901 case 0x0f3801: /* phaddw */
7902 case 0x0f3802: /* phaddd */
7903 case 0x0f3803: /* phaddsw */
7904 case 0x0f3804: /* pmaddubsw */
7905 case 0x0f3805: /* phsubw */
7906 case 0x0f3806: /* phsubd */
7907 case 0x0f3807: /* phsubsw */
7908 case 0x0f3808: /* psignb */
7909 case 0x0f3809: /* psignw */
7910 case 0x0f380a: /* psignd */
7911 case 0x0f380b: /* pmulhrsw */
7912 case 0x0f381c: /* pabsb */
7913 case 0x0f381d: /* pabsw */
7914 case 0x0f381e: /* pabsd */
7915 case 0x0f382b: /* packusdw */
7916 case 0x0f3830: /* pmovzxbw */
7917 case 0x0f3831: /* pmovzxbd */
7918 case 0x0f3832: /* pmovzxbq */
7919 case 0x0f3833: /* pmovzxwd */
7920 case 0x0f3834: /* pmovzxwq */
7921 case 0x0f3835: /* pmovzxdq */
7922 case 0x0f3837: /* pcmpgtq */
7923 case 0x0f3838: /* pminsb */
7924 case 0x0f3839: /* pminsd */
7925 case 0x0f383a: /* pminuw */
7926 case 0x0f383b: /* pminud */
7927 case 0x0f383c: /* pmaxsb */
7928 case 0x0f383d: /* pmaxsd */
7929 case 0x0f383e: /* pmaxuw */
7930 case 0x0f383f: /* pmaxud */
7931 case 0x0f3840: /* pmulld */
7932 case 0x0f3841: /* phminposuw */
7933 case 0x0f3a0f: /* palignr */
7934 case 0x0f60: /* punpcklbw */
7935 case 0x0f61: /* punpcklwd */
7936 case 0x0f62: /* punpckldq */
7937 case 0x0f63: /* packsswb */
7938 case 0x0f64: /* pcmpgtb */
7939 case 0x0f65: /* pcmpgtw */
7940 case 0x0f66: /* pcmpgtd */
7941 case 0x0f67: /* packuswb */
7942 case 0x0f68: /* punpckhbw */
7943 case 0x0f69: /* punpckhwd */
7944 case 0x0f6a: /* punpckhdq */
7945 case 0x0f6b: /* packssdw */
7946 case 0x0f6e: /* movd */
7947 case 0x0f6f: /* movq */
7948 case 0x0f70: /* pshufw */
7949 case 0x0f74: /* pcmpeqb */
7950 case 0x0f75: /* pcmpeqw */
7951 case 0x0f76: /* pcmpeqd */
7952 case 0x0fc4: /* pinsrw */
7953 case 0x0fd1: /* psrlw */
7954 case 0x0fd2: /* psrld */
7955 case 0x0fd3: /* psrlq */
7956 case 0x0fd4: /* paddq */
7957 case 0x0fd5: /* pmullw */
7958 case 0xf20fd6: /* movdq2q */
7959 case 0x0fd8: /* psubusb */
7960 case 0x0fd9: /* psubusw */
7961 case 0x0fda: /* pminub */
7962 case 0x0fdb: /* pand */
7963 case 0x0fdc: /* paddusb */
7964 case 0x0fdd: /* paddusw */
7965 case 0x0fde: /* pmaxub */
7966 case 0x0fdf: /* pandn */
7967 case 0x0fe0: /* pavgb */
7968 case 0x0fe1: /* psraw */
7969 case 0x0fe2: /* psrad */
7970 case 0x0fe3: /* pavgw */
7971 case 0x0fe4: /* pmulhuw */
7972 case 0x0fe5: /* pmulhw */
7973 case 0x0fe8: /* psubsb */
7974 case 0x0fe9: /* psubsw */
7975 case 0x0fea: /* pminsw */
7976 case 0x0feb: /* por */
7977 case 0x0fec: /* paddsb */
7978 case 0x0fed: /* paddsw */
7979 case 0x0fee: /* pmaxsw */
7980 case 0x0fef: /* pxor */
7981 case 0x0ff1: /* psllw */
7982 case 0x0ff2: /* pslld */
7983 case 0x0ff3: /* psllq */
7984 case 0x0ff4: /* pmuludq */
7985 case 0x0ff5: /* pmaddwd */
7986 case 0x0ff6: /* psadbw */
7987 case 0x0ff8: /* psubb */
7988 case 0x0ff9: /* psubw */
7989 case 0x0ffa: /* psubd */
7990 case 0x0ffb: /* psubq */
7991 case 0x0ffc: /* paddb */
7992 case 0x0ffd: /* paddw */
7993 case 0x0ffe: /* paddd */
7994 if (i386_record_modrm (&ir
))
7996 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.reg
))
7998 record_full_arch_list_add_reg (ir
.regcache
,
7999 I387_MM0_REGNUM (tdep
) + ir
.reg
);
8002 case 0x0f71: /* psllw */
8003 case 0x0f72: /* pslld */
8004 case 0x0f73: /* psllq */
8005 if (i386_record_modrm (&ir
))
8007 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.rm
))
8009 record_full_arch_list_add_reg (ir
.regcache
,
8010 I387_MM0_REGNUM (tdep
) + ir
.rm
);
8013 case 0x660f71: /* psllw */
8014 case 0x660f72: /* pslld */
8015 case 0x660f73: /* psllq */
8016 if (i386_record_modrm (&ir
))
8019 if (!i386_xmm_regnum_p (gdbarch
, I387_XMM0_REGNUM (tdep
) + ir
.rm
))
8021 record_full_arch_list_add_reg (ir
.regcache
,
8022 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
8025 case 0x0f7e: /* movd */
8026 case 0x660f7e: /* movd */
8027 if (i386_record_modrm (&ir
))
8030 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
8037 if (i386_record_lea_modrm (&ir
))
8042 case 0x0f7f: /* movq */
8043 if (i386_record_modrm (&ir
))
8047 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.rm
))
8049 record_full_arch_list_add_reg (ir
.regcache
,
8050 I387_MM0_REGNUM (tdep
) + ir
.rm
);
8055 if (i386_record_lea_modrm (&ir
))
8060 case 0xf30fb8: /* popcnt */
8061 if (i386_record_modrm (&ir
))
8063 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
8064 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
8067 case 0x660fd6: /* movq */
8068 if (i386_record_modrm (&ir
))
8073 if (!i386_xmm_regnum_p (gdbarch
,
8074 I387_XMM0_REGNUM (tdep
) + ir
.rm
))
8076 record_full_arch_list_add_reg (ir
.regcache
,
8077 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
8082 if (i386_record_lea_modrm (&ir
))
8087 case 0x660f3817: /* ptest */
8088 case 0x0f2e: /* ucomiss */
8089 case 0x660f2e: /* ucomisd */
8090 case 0x0f2f: /* comiss */
8091 case 0x660f2f: /* comisd */
8092 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
8095 case 0x0ff7: /* maskmovq */
8096 regcache_raw_read_unsigned (ir
.regcache
,
8097 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
8099 if (record_full_arch_list_add_mem (addr
, 64))
8103 case 0x660ff7: /* maskmovdqu */
8104 regcache_raw_read_unsigned (ir
.regcache
,
8105 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
8107 if (record_full_arch_list_add_mem (addr
, 128))
8122 /* In the future, maybe still need to deal with need_dasm. */
8123 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM
);
8124 if (record_full_arch_list_add_end ())
8130 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8131 "at address %s.\n"),
8132 (unsigned int) (opcode
),
8133 paddress (gdbarch
, ir
.orig_addr
));
8137 static const int i386_record_regmap
[] =
8139 I386_EAX_REGNUM
, I386_ECX_REGNUM
, I386_EDX_REGNUM
, I386_EBX_REGNUM
,
8140 I386_ESP_REGNUM
, I386_EBP_REGNUM
, I386_ESI_REGNUM
, I386_EDI_REGNUM
,
8141 0, 0, 0, 0, 0, 0, 0, 0,
8142 I386_EIP_REGNUM
, I386_EFLAGS_REGNUM
, I386_CS_REGNUM
, I386_SS_REGNUM
,
8143 I386_DS_REGNUM
, I386_ES_REGNUM
, I386_FS_REGNUM
, I386_GS_REGNUM
8146 /* Check that the given address appears suitable for a fast
8147 tracepoint, which on x86-64 means that we need an instruction of at
8148 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8149 jump and not have to worry about program jumps to an address in the
8150 middle of the tracepoint jump. On x86, it may be possible to use
8151 4-byte jumps with a 2-byte offset to a trampoline located in the
8152 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8153 of instruction to replace, and 0 if not, plus an explanatory
8157 i386_fast_tracepoint_valid_at (struct gdbarch
*gdbarch
, CORE_ADDR addr
,
8162 /* Ask the target for the minimum instruction length supported. */
8163 jumplen
= target_get_min_fast_tracepoint_insn_len ();
8167 /* If the target does not support the get_min_fast_tracepoint_insn_len
8168 operation, assume that fast tracepoints will always be implemented
8169 using 4-byte relative jumps on both x86 and x86-64. */
8172 else if (jumplen
== 0)
8174 /* If the target does support get_min_fast_tracepoint_insn_len but
8175 returns zero, then the IPA has not loaded yet. In this case,
8176 we optimistically assume that truncated 2-byte relative jumps
8177 will be available on x86, and compensate later if this assumption
8178 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8179 jumps will always be used. */
8180 jumplen
= (register_size (gdbarch
, 0) == 8) ? 5 : 4;
8183 /* Check for fit. */
8184 len
= gdb_insn_length (gdbarch
, addr
);
8188 /* Return a bit of target-specific detail to add to the caller's
8189 generic failure message. */
8191 *msg
= string_printf (_("; instruction is only %d bytes long, "
8192 "need at least %d bytes for the jump"),
8204 /* Return a floating-point format for a floating-point variable of
8205 length LEN in bits. If non-NULL, NAME is the name of its type.
8206 If no suitable type is found, return NULL. */
8208 static const struct floatformat
**
8209 i386_floatformat_for_type (struct gdbarch
*gdbarch
,
8210 const char *name
, int len
)
8212 if (len
== 128 && name
)
8213 if (strcmp (name
, "__float128") == 0
8214 || strcmp (name
, "_Float128") == 0
8215 || strcmp (name
, "complex _Float128") == 0
8216 || strcmp (name
, "complex(kind=16)") == 0
8217 || strcmp (name
, "quad complex") == 0
8218 || strcmp (name
, "real(kind=16)") == 0
8219 || strcmp (name
, "real*16") == 0)
8220 return floatformats_ia64_quad
;
8222 return default_floatformat_for_type (gdbarch
, name
, len
);
8226 i386_validate_tdesc_p (struct gdbarch_tdep
*tdep
,
8227 struct tdesc_arch_data
*tdesc_data
)
8229 const struct target_desc
*tdesc
= tdep
->tdesc
;
8230 const struct tdesc_feature
*feature_core
;
8232 const struct tdesc_feature
*feature_sse
, *feature_avx
, *feature_mpx
,
8233 *feature_avx512
, *feature_pkeys
, *feature_segments
;
8234 int i
, num_regs
, valid_p
;
8236 if (! tdesc_has_registers (tdesc
))
8239 /* Get core registers. */
8240 feature_core
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.core");
8241 if (feature_core
== NULL
)
8244 /* Get SSE registers. */
8245 feature_sse
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.sse");
8247 /* Try AVX registers. */
8248 feature_avx
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx");
8250 /* Try MPX registers. */
8251 feature_mpx
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx");
8253 /* Try AVX512 registers. */
8254 feature_avx512
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx512");
8256 /* Try segment base registers. */
8257 feature_segments
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.segments");
8260 feature_pkeys
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.pkeys");
8264 /* The XCR0 bits. */
8267 /* AVX512 register description requires AVX register description. */
8271 tdep
->xcr0
= X86_XSTATE_AVX_AVX512_MASK
;
8273 /* It may have been set by OSABI initialization function. */
8274 if (tdep
->k0_regnum
< 0)
8276 tdep
->k_register_names
= i386_k_names
;
8277 tdep
->k0_regnum
= I386_K0_REGNUM
;
8280 for (i
= 0; i
< I387_NUM_K_REGS
; i
++)
8281 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8282 tdep
->k0_regnum
+ i
,
8285 if (tdep
->num_zmm_regs
== 0)
8287 tdep
->zmmh_register_names
= i386_zmmh_names
;
8288 tdep
->num_zmm_regs
= 8;
8289 tdep
->zmm0h_regnum
= I386_ZMM0H_REGNUM
;
8292 for (i
= 0; i
< tdep
->num_zmm_regs
; i
++)
8293 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8294 tdep
->zmm0h_regnum
+ i
,
8295 tdep
->zmmh_register_names
[i
]);
8297 for (i
= 0; i
< tdep
->num_xmm_avx512_regs
; i
++)
8298 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8299 tdep
->xmm16_regnum
+ i
,
8300 tdep
->xmm_avx512_register_names
[i
]);
8302 for (i
= 0; i
< tdep
->num_ymm_avx512_regs
; i
++)
8303 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8304 tdep
->ymm16h_regnum
+ i
,
8305 tdep
->ymm16h_register_names
[i
]);
8309 /* AVX register description requires SSE register description. */
8313 if (!feature_avx512
)
8314 tdep
->xcr0
= X86_XSTATE_AVX_MASK
;
8316 /* It may have been set by OSABI initialization function. */
8317 if (tdep
->num_ymm_regs
== 0)
8319 tdep
->ymmh_register_names
= i386_ymmh_names
;
8320 tdep
->num_ymm_regs
= 8;
8321 tdep
->ymm0h_regnum
= I386_YMM0H_REGNUM
;
8324 for (i
= 0; i
< tdep
->num_ymm_regs
; i
++)
8325 valid_p
&= tdesc_numbered_register (feature_avx
, tdesc_data
,
8326 tdep
->ymm0h_regnum
+ i
,
8327 tdep
->ymmh_register_names
[i
]);
8329 else if (feature_sse
)
8330 tdep
->xcr0
= X86_XSTATE_SSE_MASK
;
8333 tdep
->xcr0
= X86_XSTATE_X87_MASK
;
8334 tdep
->num_xmm_regs
= 0;
8337 num_regs
= tdep
->num_core_regs
;
8338 for (i
= 0; i
< num_regs
; i
++)
8339 valid_p
&= tdesc_numbered_register (feature_core
, tdesc_data
, i
,
8340 tdep
->register_names
[i
]);
8344 /* Need to include %mxcsr, so add one. */
8345 num_regs
+= tdep
->num_xmm_regs
+ 1;
8346 for (; i
< num_regs
; i
++)
8347 valid_p
&= tdesc_numbered_register (feature_sse
, tdesc_data
, i
,
8348 tdep
->register_names
[i
]);
8353 tdep
->xcr0
|= X86_XSTATE_MPX_MASK
;
8355 if (tdep
->bnd0r_regnum
< 0)
8357 tdep
->mpx_register_names
= i386_mpx_names
;
8358 tdep
->bnd0r_regnum
= I386_BND0R_REGNUM
;
8359 tdep
->bndcfgu_regnum
= I386_BNDCFGU_REGNUM
;
8362 for (i
= 0; i
< I387_NUM_MPX_REGS
; i
++)
8363 valid_p
&= tdesc_numbered_register (feature_mpx
, tdesc_data
,
8364 I387_BND0R_REGNUM (tdep
) + i
,
8365 tdep
->mpx_register_names
[i
]);
8368 if (feature_segments
)
8370 if (tdep
->fsbase_regnum
< 0)
8371 tdep
->fsbase_regnum
= I386_FSBASE_REGNUM
;
8372 valid_p
&= tdesc_numbered_register (feature_segments
, tdesc_data
,
8373 tdep
->fsbase_regnum
, "fs_base");
8374 valid_p
&= tdesc_numbered_register (feature_segments
, tdesc_data
,
8375 tdep
->fsbase_regnum
+ 1, "gs_base");
8380 tdep
->xcr0
|= X86_XSTATE_PKRU
;
8381 if (tdep
->pkru_regnum
< 0)
8383 tdep
->pkeys_register_names
= i386_pkeys_names
;
8384 tdep
->pkru_regnum
= I386_PKRU_REGNUM
;
8385 tdep
->num_pkeys_regs
= 1;
8388 for (i
= 0; i
< I387_NUM_PKEYS_REGS
; i
++)
8389 valid_p
&= tdesc_numbered_register (feature_pkeys
, tdesc_data
,
8390 I387_PKRU_REGNUM (tdep
) + i
,
8391 tdep
->pkeys_register_names
[i
]);
8399 /* Implement the type_align gdbarch function. */
8402 i386_type_align (struct gdbarch
*gdbarch
, struct type
*type
)
8404 type
= check_typedef (type
);
8406 if (gdbarch_ptr_bit (gdbarch
) == 32)
8408 if ((type
->code () == TYPE_CODE_INT
8409 || type
->code () == TYPE_CODE_FLT
)
8410 && TYPE_LENGTH (type
) > 4)
8413 /* Handle x86's funny long double. */
8414 if (type
->code () == TYPE_CODE_FLT
8415 && gdbarch_long_double_bit (gdbarch
) == TYPE_LENGTH (type
) * 8)
8423 /* Note: This is called for both i386 and amd64. */
8425 static struct gdbarch
*
8426 i386_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
8428 struct gdbarch_tdep
*tdep
;
8429 struct gdbarch
*gdbarch
;
8430 const struct target_desc
*tdesc
;
8436 /* If there is already a candidate, use it. */
8437 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
8439 return arches
->gdbarch
;
8441 /* Allocate space for the new architecture. Assume i386 for now. */
8442 tdep
= XCNEW (struct gdbarch_tdep
);
8443 gdbarch
= gdbarch_alloc (&info
, tdep
);
8445 /* General-purpose registers. */
8446 tdep
->gregset_reg_offset
= NULL
;
8447 tdep
->gregset_num_regs
= I386_NUM_GREGS
;
8448 tdep
->sizeof_gregset
= 0;
8450 /* Floating-point registers. */
8451 tdep
->sizeof_fpregset
= I387_SIZEOF_FSAVE
;
8452 tdep
->fpregset
= &i386_fpregset
;
8454 /* The default settings include the FPU registers, the MMX registers
8455 and the SSE registers. This can be overridden for a specific ABI
8456 by adjusting the members `st0_regnum', `mm0_regnum' and
8457 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8458 will show up in the output of "info all-registers". */
8460 tdep
->st0_regnum
= I386_ST0_REGNUM
;
8462 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8463 tdep
->num_xmm_regs
= I386_NUM_XREGS
- 1;
8465 tdep
->jb_pc_offset
= -1;
8466 tdep
->struct_return
= pcc_struct_return
;
8467 tdep
->sigtramp_start
= 0;
8468 tdep
->sigtramp_end
= 0;
8469 tdep
->sigtramp_p
= i386_sigtramp_p
;
8470 tdep
->sigcontext_addr
= NULL
;
8471 tdep
->sc_reg_offset
= NULL
;
8472 tdep
->sc_pc_offset
= -1;
8473 tdep
->sc_sp_offset
= -1;
8475 tdep
->xsave_xcr0_offset
= -1;
8477 tdep
->record_regmap
= i386_record_regmap
;
8479 set_gdbarch_type_align (gdbarch
, i386_type_align
);
8481 /* The format used for `long double' on almost all i386 targets is
8482 the i387 extended floating-point format. In fact, of all targets
8483 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8484 on having a `long double' that's not `long' at all. */
8485 set_gdbarch_long_double_format (gdbarch
, floatformats_i387_ext
);
8487 /* Although the i387 extended floating-point has only 80 significant
8488 bits, a `long double' actually takes up 96, probably to enforce
8490 set_gdbarch_long_double_bit (gdbarch
, 96);
8492 /* Support of bfloat16 format. */
8493 set_gdbarch_bfloat16_format (gdbarch
, floatformats_bfloat16
);
8495 /* Support for floating-point data type variants. */
8496 set_gdbarch_floatformat_for_type (gdbarch
, i386_floatformat_for_type
);
8498 /* Register numbers of various important registers. */
8499 set_gdbarch_sp_regnum (gdbarch
, I386_ESP_REGNUM
); /* %esp */
8500 set_gdbarch_pc_regnum (gdbarch
, I386_EIP_REGNUM
); /* %eip */
8501 set_gdbarch_ps_regnum (gdbarch
, I386_EFLAGS_REGNUM
); /* %eflags */
8502 set_gdbarch_fp0_regnum (gdbarch
, I386_ST0_REGNUM
); /* %st(0) */
8504 /* NOTE: kettenis/20040418: GCC does have two possible register
8505 numbering schemes on the i386: dbx and SVR4. These schemes
8506 differ in how they number %ebp, %esp, %eflags, and the
8507 floating-point registers, and are implemented by the arrays
8508 dbx_register_map[] and svr4_dbx_register_map in
8509 gcc/config/i386.c. GCC also defines a third numbering scheme in
8510 gcc/config/i386.c, which it designates as the "default" register
8511 map used in 64bit mode. This last register numbering scheme is
8512 implemented in dbx64_register_map, and is used for AMD64; see
8515 Currently, each GCC i386 target always uses the same register
8516 numbering scheme across all its supported debugging formats
8517 i.e. SDB (COFF), stabs and DWARF 2. This is because
8518 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8519 DBX_REGISTER_NUMBER macro which is defined by each target's
8520 respective config header in a manner independent of the requested
8521 output debugging format.
8523 This does not match the arrangement below, which presumes that
8524 the SDB and stabs numbering schemes differ from the DWARF and
8525 DWARF 2 ones. The reason for this arrangement is that it is
8526 likely to get the numbering scheme for the target's
8527 default/native debug format right. For targets where GCC is the
8528 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8529 targets where the native toolchain uses a different numbering
8530 scheme for a particular debug format (stabs-in-ELF on Solaris)
8531 the defaults below will have to be overridden, like
8532 i386_elf_init_abi() does. */
8534 /* Use the dbx register numbering scheme for stabs and COFF. */
8535 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
8536 set_gdbarch_sdb_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
8538 /* Use the SVR4 register numbering scheme for DWARF 2. */
8539 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, i386_svr4_dwarf_reg_to_regnum
);
8541 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8542 be in use on any of the supported i386 targets. */
8544 set_gdbarch_print_float_info (gdbarch
, i387_print_float_info
);
8546 set_gdbarch_get_longjmp_target (gdbarch
, i386_get_longjmp_target
);
8548 /* Call dummy code. */
8549 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
8550 set_gdbarch_push_dummy_code (gdbarch
, i386_push_dummy_code
);
8551 set_gdbarch_push_dummy_call (gdbarch
, i386_push_dummy_call
);
8552 set_gdbarch_frame_align (gdbarch
, i386_frame_align
);
8554 set_gdbarch_convert_register_p (gdbarch
, i386_convert_register_p
);
8555 set_gdbarch_register_to_value (gdbarch
, i386_register_to_value
);
8556 set_gdbarch_value_to_register (gdbarch
, i386_value_to_register
);
8558 set_gdbarch_return_value (gdbarch
, i386_return_value
);
8560 set_gdbarch_skip_prologue (gdbarch
, i386_skip_prologue
);
8562 /* Stack grows downward. */
8563 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
8565 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, i386_breakpoint::kind_from_pc
);
8566 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, i386_breakpoint::bp_from_kind
);
8568 set_gdbarch_decr_pc_after_break (gdbarch
, 1);
8569 set_gdbarch_max_insn_length (gdbarch
, I386_MAX_INSN_LEN
);
8571 set_gdbarch_frame_args_skip (gdbarch
, 8);
8573 set_gdbarch_print_insn (gdbarch
, i386_print_insn
);
8575 set_gdbarch_dummy_id (gdbarch
, i386_dummy_id
);
8577 set_gdbarch_unwind_pc (gdbarch
, i386_unwind_pc
);
8579 /* Add the i386 register groups. */
8580 i386_add_reggroups (gdbarch
);
8581 tdep
->register_reggroup_p
= i386_register_reggroup_p
;
8583 /* Helper for function argument information. */
8584 set_gdbarch_fetch_pointer_argument (gdbarch
, i386_fetch_pointer_argument
);
8586 /* Hook the function epilogue frame unwinder. This unwinder is
8587 appended to the list first, so that it supercedes the DWARF
8588 unwinder in function epilogues (where the DWARF unwinder
8589 currently fails). */
8590 frame_unwind_append_unwinder (gdbarch
, &i386_epilogue_frame_unwind
);
8592 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8593 to the list before the prologue-based unwinders, so that DWARF
8594 CFI info will be used if it is available. */
8595 dwarf2_append_unwinders (gdbarch
);
8597 frame_base_set_default (gdbarch
, &i386_frame_base
);
8599 /* Pseudo registers may be changed by amd64_init_abi. */
8600 set_gdbarch_pseudo_register_read_value (gdbarch
,
8601 i386_pseudo_register_read_value
);
8602 set_gdbarch_pseudo_register_write (gdbarch
, i386_pseudo_register_write
);
8603 set_gdbarch_ax_pseudo_register_collect (gdbarch
,
8604 i386_ax_pseudo_register_collect
);
8606 set_tdesc_pseudo_register_type (gdbarch
, i386_pseudo_register_type
);
8607 set_tdesc_pseudo_register_name (gdbarch
, i386_pseudo_register_name
);
8609 /* Override the normal target description method to make the AVX
8610 upper halves anonymous. */
8611 set_gdbarch_register_name (gdbarch
, i386_register_name
);
8613 /* Even though the default ABI only includes general-purpose registers,
8614 floating-point registers and the SSE registers, we have to leave a
8615 gap for the upper AVX, MPX and AVX512 registers. */
8616 set_gdbarch_num_regs (gdbarch
, I386_NUM_REGS
);
8618 set_gdbarch_gnu_triplet_regexp (gdbarch
, i386_gnu_triplet_regexp
);
8620 /* Get the x86 target description from INFO. */
8621 tdesc
= info
.target_desc
;
8622 if (! tdesc_has_registers (tdesc
))
8623 tdesc
= i386_target_description (X86_XSTATE_SSE_MASK
, false);
8624 tdep
->tdesc
= tdesc
;
8626 tdep
->num_core_regs
= I386_NUM_GREGS
+ I387_NUM_REGS
;
8627 tdep
->register_names
= i386_register_names
;
8629 /* No upper YMM registers. */
8630 tdep
->ymmh_register_names
= NULL
;
8631 tdep
->ymm0h_regnum
= -1;
8633 /* No upper ZMM registers. */
8634 tdep
->zmmh_register_names
= NULL
;
8635 tdep
->zmm0h_regnum
= -1;
8637 /* No high XMM registers. */
8638 tdep
->xmm_avx512_register_names
= NULL
;
8639 tdep
->xmm16_regnum
= -1;
8641 /* No upper YMM16-31 registers. */
8642 tdep
->ymm16h_register_names
= NULL
;
8643 tdep
->ymm16h_regnum
= -1;
8645 tdep
->num_byte_regs
= 8;
8646 tdep
->num_word_regs
= 8;
8647 tdep
->num_dword_regs
= 0;
8648 tdep
->num_mmx_regs
= 8;
8649 tdep
->num_ymm_regs
= 0;
8651 /* No MPX registers. */
8652 tdep
->bnd0r_regnum
= -1;
8653 tdep
->bndcfgu_regnum
= -1;
8655 /* No AVX512 registers. */
8656 tdep
->k0_regnum
= -1;
8657 tdep
->num_zmm_regs
= 0;
8658 tdep
->num_ymm_avx512_regs
= 0;
8659 tdep
->num_xmm_avx512_regs
= 0;
8661 /* No PKEYS registers */
8662 tdep
->pkru_regnum
= -1;
8663 tdep
->num_pkeys_regs
= 0;
8665 /* No segment base registers. */
8666 tdep
->fsbase_regnum
= -1;
8668 tdesc_arch_data_up tdesc_data
= tdesc_data_alloc ();
8670 set_gdbarch_relocate_instruction (gdbarch
, i386_relocate_instruction
);
8672 set_gdbarch_gen_return_address (gdbarch
, i386_gen_return_address
);
8674 set_gdbarch_insn_is_call (gdbarch
, i386_insn_is_call
);
8675 set_gdbarch_insn_is_ret (gdbarch
, i386_insn_is_ret
);
8676 set_gdbarch_insn_is_jump (gdbarch
, i386_insn_is_jump
);
8678 /* Hook in ABI-specific overrides, if they have been registered.
8679 Note: If INFO specifies a 64 bit arch, this is where we turn
8680 a 32-bit i386 into a 64-bit amd64. */
8681 info
.tdesc_data
= tdesc_data
.get ();
8682 gdbarch_init_osabi (info
, gdbarch
);
8684 if (!i386_validate_tdesc_p (tdep
, tdesc_data
.get ()))
8687 gdbarch_free (gdbarch
);
8691 num_bnd_cooked
= (tdep
->bnd0r_regnum
> 0 ? I387_NUM_BND_REGS
: 0);
8693 /* Wire in pseudo registers. Number of pseudo registers may be
8695 set_gdbarch_num_pseudo_regs (gdbarch
, (tdep
->num_byte_regs
8696 + tdep
->num_word_regs
8697 + tdep
->num_dword_regs
8698 + tdep
->num_mmx_regs
8699 + tdep
->num_ymm_regs
8701 + tdep
->num_ymm_avx512_regs
8702 + tdep
->num_zmm_regs
));
8704 /* Target description may be changed. */
8705 tdesc
= tdep
->tdesc
;
8707 tdesc_use_registers (gdbarch
, tdesc
, std::move (tdesc_data
));
8709 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8710 set_gdbarch_register_reggroup_p (gdbarch
, tdep
->register_reggroup_p
);
8712 /* Make %al the first pseudo-register. */
8713 tdep
->al_regnum
= gdbarch_num_regs (gdbarch
);
8714 tdep
->ax_regnum
= tdep
->al_regnum
+ tdep
->num_byte_regs
;
8716 ymm0_regnum
= tdep
->ax_regnum
+ tdep
->num_word_regs
;
8717 if (tdep
->num_dword_regs
)
8719 /* Support dword pseudo-register if it hasn't been disabled. */
8720 tdep
->eax_regnum
= ymm0_regnum
;
8721 ymm0_regnum
+= tdep
->num_dword_regs
;
8724 tdep
->eax_regnum
= -1;
8726 mm0_regnum
= ymm0_regnum
;
8727 if (tdep
->num_ymm_regs
)
8729 /* Support YMM pseudo-register if it is available. */
8730 tdep
->ymm0_regnum
= ymm0_regnum
;
8731 mm0_regnum
+= tdep
->num_ymm_regs
;
8734 tdep
->ymm0_regnum
= -1;
8736 if (tdep
->num_ymm_avx512_regs
)
8738 /* Support YMM16-31 pseudo registers if available. */
8739 tdep
->ymm16_regnum
= mm0_regnum
;
8740 mm0_regnum
+= tdep
->num_ymm_avx512_regs
;
8743 tdep
->ymm16_regnum
= -1;
8745 if (tdep
->num_zmm_regs
)
8747 /* Support ZMM pseudo-register if it is available. */
8748 tdep
->zmm0_regnum
= mm0_regnum
;
8749 mm0_regnum
+= tdep
->num_zmm_regs
;
8752 tdep
->zmm0_regnum
= -1;
8754 bnd0_regnum
= mm0_regnum
;
8755 if (tdep
->num_mmx_regs
!= 0)
8757 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8758 tdep
->mm0_regnum
= mm0_regnum
;
8759 bnd0_regnum
+= tdep
->num_mmx_regs
;
8762 tdep
->mm0_regnum
= -1;
8764 if (tdep
->bnd0r_regnum
> 0)
8765 tdep
->bnd0_regnum
= bnd0_regnum
;
8767 tdep
-> bnd0_regnum
= -1;
8769 /* Hook in the legacy prologue-based unwinders last (fallback). */
8770 frame_unwind_append_unwinder (gdbarch
, &i386_stack_tramp_frame_unwind
);
8771 frame_unwind_append_unwinder (gdbarch
, &i386_sigtramp_frame_unwind
);
8772 frame_unwind_append_unwinder (gdbarch
, &i386_frame_unwind
);
8774 /* If we have a register mapping, enable the generic core file
8775 support, unless it has already been enabled. */
8776 if (tdep
->gregset_reg_offset
8777 && !gdbarch_iterate_over_regset_sections_p (gdbarch
))
8778 set_gdbarch_iterate_over_regset_sections
8779 (gdbarch
, i386_iterate_over_regset_sections
);
8781 set_gdbarch_fast_tracepoint_valid_at (gdbarch
,
8782 i386_fast_tracepoint_valid_at
);
8789 /* Return the target description for a specified XSAVE feature mask. */
8791 const struct target_desc
*
8792 i386_target_description (uint64_t xcr0
, bool segments
)
8794 static target_desc
*i386_tdescs \
8795 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8796 target_desc
**tdesc
;
8798 tdesc
= &i386_tdescs
[(xcr0
& X86_XSTATE_SSE
) ? 1 : 0]
8799 [(xcr0
& X86_XSTATE_AVX
) ? 1 : 0]
8800 [(xcr0
& X86_XSTATE_MPX
) ? 1 : 0]
8801 [(xcr0
& X86_XSTATE_AVX512
) ? 1 : 0]
8802 [(xcr0
& X86_XSTATE_PKRU
) ? 1 : 0]
8806 *tdesc
= i386_create_target_description (xcr0
, false, segments
);
8811 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8813 /* Find the bound directory base address. */
8815 static unsigned long
8816 i386_mpx_bd_base (void)
8818 struct regcache
*rcache
;
8819 struct gdbarch_tdep
*tdep
;
8821 enum register_status regstatus
;
8823 rcache
= get_current_regcache ();
8824 tdep
= gdbarch_tdep (rcache
->arch ());
8826 regstatus
= regcache_raw_read_unsigned (rcache
, tdep
->bndcfgu_regnum
, &ret
);
8828 if (regstatus
!= REG_VALID
)
8829 error (_("BNDCFGU register invalid, read status %d."), regstatus
);
8831 return ret
& MPX_BASE_MASK
;
8835 i386_mpx_enabled (void)
8837 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_current_arch ());
8838 const struct target_desc
*tdesc
= tdep
->tdesc
;
8840 return (tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx") != NULL
);
8843 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8844 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8845 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8846 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8848 /* Find the bound table entry given the pointer location and the base
8849 address of the table. */
8852 i386_mpx_get_bt_entry (CORE_ADDR ptr
, CORE_ADDR bd_base
)
8856 CORE_ADDR mpx_bd_mask
, bd_ptr_r_shift
, bd_ptr_l_shift
;
8857 CORE_ADDR bt_mask
, bt_select_r_shift
, bt_select_l_shift
;
8858 CORE_ADDR bd_entry_addr
;
8861 struct gdbarch
*gdbarch
= get_current_arch ();
8862 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8865 if (gdbarch_ptr_bit (gdbarch
) == 64)
8867 mpx_bd_mask
= (CORE_ADDR
) MPX_BD_MASK
;
8868 bd_ptr_r_shift
= 20;
8870 bt_select_r_shift
= 3;
8871 bt_select_l_shift
= 5;
8872 bt_mask
= (CORE_ADDR
) MPX_BT_MASK
;
8874 if ( sizeof (CORE_ADDR
) == 4)
8875 error (_("bound table examination not supported\
8876 for 64-bit process with 32-bit GDB"));
8880 mpx_bd_mask
= MPX_BD_MASK_32
;
8881 bd_ptr_r_shift
= 12;
8883 bt_select_r_shift
= 2;
8884 bt_select_l_shift
= 4;
8885 bt_mask
= MPX_BT_MASK_32
;
8888 offset1
= ((ptr
& mpx_bd_mask
) >> bd_ptr_r_shift
) << bd_ptr_l_shift
;
8889 bd_entry_addr
= bd_base
+ offset1
;
8890 bd_entry
= read_memory_typed_address (bd_entry_addr
, data_ptr_type
);
8892 if ((bd_entry
& 0x1) == 0)
8893 error (_("Invalid bounds directory entry at %s."),
8894 paddress (get_current_arch (), bd_entry_addr
));
8896 /* Clearing status bit. */
8898 bt_addr
= bd_entry
& ~bt_select_r_shift
;
8899 offset2
= ((ptr
& bt_mask
) >> bt_select_r_shift
) << bt_select_l_shift
;
8901 return bt_addr
+ offset2
;
8904 /* Print routine for the mpx bounds. */
8907 i386_mpx_print_bounds (const CORE_ADDR bt_entry
[4])
8909 struct ui_out
*uiout
= current_uiout
;
8911 struct gdbarch
*gdbarch
= get_current_arch ();
8912 CORE_ADDR onecompl
= ~((CORE_ADDR
) 0);
8913 int bounds_in_map
= ((~bt_entry
[1] == 0 && bt_entry
[0] == onecompl
) ? 1 : 0);
8915 if (bounds_in_map
== 1)
8917 uiout
->text ("Null bounds on map:");
8918 uiout
->text (" pointer value = ");
8919 uiout
->field_core_addr ("pointer-value", gdbarch
, bt_entry
[2]);
8925 uiout
->text ("{lbound = ");
8926 uiout
->field_core_addr ("lower-bound", gdbarch
, bt_entry
[0]);
8927 uiout
->text (", ubound = ");
8929 /* The upper bound is stored in 1's complement. */
8930 uiout
->field_core_addr ("upper-bound", gdbarch
, ~bt_entry
[1]);
8931 uiout
->text ("}: pointer value = ");
8932 uiout
->field_core_addr ("pointer-value", gdbarch
, bt_entry
[2]);
8934 if (gdbarch_ptr_bit (gdbarch
) == 64)
8935 size
= ( (~(int64_t) bt_entry
[1]) - (int64_t) bt_entry
[0]);
8937 size
= ( ~((int32_t) bt_entry
[1]) - (int32_t) bt_entry
[0]);
8939 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8940 -1 represents in this sense full memory access, and there is no need
8943 size
= (size
> -1 ? size
+ 1 : size
);
8944 uiout
->text (", size = ");
8945 uiout
->field_string ("size", plongest (size
));
8947 uiout
->text (", metadata = ");
8948 uiout
->field_core_addr ("metadata", gdbarch
, bt_entry
[3]);
8953 /* Implement the command "show mpx bound". */
8956 i386_mpx_info_bounds (const char *args
, int from_tty
)
8958 CORE_ADDR bd_base
= 0;
8960 CORE_ADDR bt_entry_addr
= 0;
8961 CORE_ADDR bt_entry
[4];
8963 struct gdbarch
*gdbarch
= get_current_arch ();
8964 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8966 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_i386
8967 || !i386_mpx_enabled ())
8969 printf_unfiltered (_("Intel Memory Protection Extensions not "
8970 "supported on this target.\n"));
8976 printf_unfiltered (_("Address of pointer variable expected.\n"));
8980 addr
= parse_and_eval_address (args
);
8982 bd_base
= i386_mpx_bd_base ();
8983 bt_entry_addr
= i386_mpx_get_bt_entry (addr
, bd_base
);
8985 memset (bt_entry
, 0, sizeof (bt_entry
));
8987 for (i
= 0; i
< 4; i
++)
8988 bt_entry
[i
] = read_memory_typed_address (bt_entry_addr
8989 + i
* TYPE_LENGTH (data_ptr_type
),
8992 i386_mpx_print_bounds (bt_entry
);
8995 /* Implement the command "set mpx bound". */
8998 i386_mpx_set_bounds (const char *args
, int from_tty
)
9000 CORE_ADDR bd_base
= 0;
9001 CORE_ADDR addr
, lower
, upper
;
9002 CORE_ADDR bt_entry_addr
= 0;
9003 CORE_ADDR bt_entry
[2];
9004 const char *input
= args
;
9006 struct gdbarch
*gdbarch
= get_current_arch ();
9007 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
9008 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
9010 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_i386
9011 || !i386_mpx_enabled ())
9012 error (_("Intel Memory Protection Extensions not supported\
9016 error (_("Pointer value expected."));
9018 addr
= value_as_address (parse_to_comma_and_eval (&input
));
9020 if (input
[0] == ',')
9022 if (input
[0] == '\0')
9023 error (_("wrong number of arguments: missing lower and upper bound."));
9024 lower
= value_as_address (parse_to_comma_and_eval (&input
));
9026 if (input
[0] == ',')
9028 if (input
[0] == '\0')
9029 error (_("Wrong number of arguments; Missing upper bound."));
9030 upper
= value_as_address (parse_to_comma_and_eval (&input
));
9032 bd_base
= i386_mpx_bd_base ();
9033 bt_entry_addr
= i386_mpx_get_bt_entry (addr
, bd_base
);
9034 for (i
= 0; i
< 2; i
++)
9035 bt_entry
[i
] = read_memory_typed_address (bt_entry_addr
9036 + i
* TYPE_LENGTH (data_ptr_type
),
9038 bt_entry
[0] = (uint64_t) lower
;
9039 bt_entry
[1] = ~(uint64_t) upper
;
9041 for (i
= 0; i
< 2; i
++)
9042 write_memory_unsigned_integer (bt_entry_addr
9043 + i
* TYPE_LENGTH (data_ptr_type
),
9044 TYPE_LENGTH (data_ptr_type
), byte_order
,
9048 static struct cmd_list_element
*mpx_set_cmdlist
, *mpx_show_cmdlist
;
9050 void _initialize_i386_tdep ();
9052 _initialize_i386_tdep ()
9054 register_gdbarch_init (bfd_arch_i386
, i386_gdbarch_init
);
9056 /* Add the variable that controls the disassembly flavor. */
9057 add_setshow_enum_cmd ("disassembly-flavor", no_class
, valid_flavors
,
9058 &disassembly_flavor
, _("\
9059 Set the disassembly flavor."), _("\
9060 Show the disassembly flavor."), _("\
9061 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9063 NULL
, /* FIXME: i18n: */
9064 &setlist
, &showlist
);
9066 /* Add the variable that controls the convention for returning
9068 add_setshow_enum_cmd ("struct-convention", no_class
, valid_conventions
,
9069 &struct_convention
, _("\
9070 Set the convention for returning small structs."), _("\
9071 Show the convention for returning small structs."), _("\
9072 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9075 NULL
, /* FIXME: i18n: */
9076 &setlist
, &showlist
);
9078 /* Add "mpx" prefix for the set commands. */
9080 add_basic_prefix_cmd ("mpx", class_support
, _("\
9081 Set Intel Memory Protection Extensions specific variables."),
9082 &mpx_set_cmdlist
, "set mpx ",
9083 0 /* allow-unknown */, &setlist
);
9085 /* Add "mpx" prefix for the show commands. */
9087 add_show_prefix_cmd ("mpx", class_support
, _("\
9088 Show Intel Memory Protection Extensions specific variables."),
9089 &mpx_show_cmdlist
, "show mpx ",
9090 0 /* allow-unknown */, &showlist
);
9092 /* Add "bound" command for the show mpx commands list. */
9094 add_cmd ("bound", no_class
, i386_mpx_info_bounds
,
9095 "Show the memory bounds for a given array/pointer storage\
9096 in the bound table.",
9099 /* Add "bound" command for the set mpx commands list. */
9101 add_cmd ("bound", no_class
, i386_mpx_set_bounds
,
9102 "Set the memory bounds for a given array/pointer storage\
9103 in the bound table.",
9106 gdbarch_register_osabi (bfd_arch_i386
, 0, GDB_OSABI_SVR4
,
9107 i386_svr4_init_abi
);
9109 /* Initialize the i386-specific register groups. */
9110 i386_init_reggroups ();
9112 /* Tell remote stub that we support XML target description. */
9113 register_remote_support_xml ("i386");