1 // layout.cc -- lay out output file sections for gold
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
42 #include "parameters.h"
46 #include "script-sections.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
56 #include "descriptors.h"
58 #include "incremental.h"
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists
= 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes
= 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes
= 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits
= 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates
= 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits
= 0;
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
85 Free_list::init(off_t len
, bool extend
)
87 this->list_
.push_front(Free_list_node(0, len
));
88 this->last_remove_
= this->list_
.begin();
89 this->extend_
= extend
;
91 ++Free_list::num_lists
;
92 ++Free_list::num_nodes
;
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
105 Free_list::remove(off_t start
, off_t end
)
109 gold_assert(start
< end
);
111 ++Free_list::num_removes
;
113 Iterator p
= this->last_remove_
;
114 if (p
->start_
> start
)
115 p
= this->list_
.begin();
117 for (; p
!= this->list_
.end(); ++p
)
119 ++Free_list::num_remove_visits
;
120 // Find a node that wholly contains the indicated region.
121 if (p
->start_
<= start
&& p
->end_
>= end
)
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p
->start_
+ 3 >= start
&& p
->end_
<= end
+ 3)
126 p
= this->list_
.erase(p
);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p
->start_
+ 3 >= start
)
130 // Case 3: remove a chunk from the end of the node.
131 else if (p
->end_
<= end
+ 3)
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
137 Free_list_node
newnode(p
->start_
, start
);
139 this->list_
.insert(p
, newnode
);
140 ++Free_list::num_nodes
;
142 this->last_remove_
= p
;
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL
,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start
), static_cast<int>(end
));
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
159 Free_list::allocate(off_t len
, uint64_t align
, off_t minoff
)
161 gold_debug(DEBUG_INCREMENTAL
,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len
), static_cast<int>(align
),
164 static_cast<long>(minoff
));
166 return align_address(minoff
, align
);
168 ++Free_list::num_allocates
;
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz
= this->min_hole_
> 0 ? 0 : 3;
175 for (Iterator p
= this->list_
.begin(); p
!= this->list_
.end(); ++p
)
177 ++Free_list::num_allocate_visits
;
178 off_t start
= p
->start_
> minoff
? p
->start_
: minoff
;
179 start
= align_address(start
, align
);
180 off_t end
= start
+ len
;
181 if (end
> p
->end_
&& p
->end_
== this->length_
&& this->extend_
)
186 if (end
== p
->end_
|| (end
<= p
->end_
- this->min_hole_
))
188 if (p
->start_
+ fuzz
>= start
&& p
->end_
<= end
+ fuzz
)
189 this->list_
.erase(p
);
190 else if (p
->start_
+ fuzz
>= start
)
192 else if (p
->end_
<= end
+ fuzz
)
196 Free_list_node
newnode(p
->start_
, start
);
198 this->list_
.insert(p
, newnode
);
199 ++Free_list::num_nodes
;
206 off_t start
= align_address(this->length_
, align
);
207 this->length_
= start
+ len
;
213 // Dump the free list (for debugging).
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p
= this->list_
.begin(); p
!= this->list_
.end(); ++p
)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p
->start_
),
220 static_cast<long>(p
->end_
),
221 static_cast<long>(p
->end_
- p
->start_
));
224 // Print the statistics for the free lists.
226 Free_list::print_stats()
228 fprintf(stderr
, _("%s: total free lists: %u\n"),
229 program_name
, Free_list::num_lists
);
230 fprintf(stderr
, _("%s: total free list nodes: %u\n"),
231 program_name
, Free_list::num_nodes
);
232 fprintf(stderr
, _("%s: calls to Free_list::remove: %u\n"),
233 program_name
, Free_list::num_removes
);
234 fprintf(stderr
, _("%s: nodes visited: %u\n"),
235 program_name
, Free_list::num_remove_visits
);
236 fprintf(stderr
, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name
, Free_list::num_allocates
);
238 fprintf(stderr
, _("%s: nodes visited: %u\n"),
239 program_name
, Free_list::num_allocate_visits
);
242 // A Hash_task computes the MD5 checksum of an array of char.
244 class Hash_task
: public Task
247 Hash_task(Output_file
* of
,
251 Task_token
* final_blocker
)
252 : of_(of
), offset_(offset
), size_(size
), dst_(dst
),
253 final_blocker_(final_blocker
)
259 const unsigned char* iv
=
260 this->of_
->get_input_view(this->offset_
, this->size_
);
261 md5_buffer(reinterpret_cast<const char*>(iv
), this->size_
, this->dst_
);
262 this->of_
->free_input_view(this->offset_
, this->size_
, iv
);
269 // Unblock FINAL_BLOCKER_ when done.
271 locks(Task_locker
* tl
)
272 { tl
->add(this, this->final_blocker_
); }
276 { return "Hash_task"; }
280 const size_t offset_
;
282 unsigned char* const dst_
;
283 Task_token
* const final_blocker_
;
286 // Layout::Relaxation_debug_check methods.
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list
& sections
,
295 const Layout::Data_list
& special_outputs
,
296 const Layout::Data_list
& relax_outputs
)
298 for(Layout::Section_list::const_iterator p
= sections
.begin();
301 gold_assert((*p
)->address_and_file_offset_have_reset_values());
303 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
304 p
!= special_outputs
.end();
306 gold_assert((*p
)->address_and_file_offset_have_reset_values());
308 gold_assert(relax_outputs
.empty());
311 // Save information of SECTIONS for checking later.
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list
& sections
)
317 for(Layout::Section_list::const_iterator p
= sections
.begin();
321 Output_section
* os
= *p
;
323 info
.output_section
= os
;
324 info
.address
= os
->is_address_valid() ? os
->address() : 0;
325 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
326 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
327 this->section_infos_
.push_back(info
);
331 // Verify SECTIONS using previously recorded information.
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list
& sections
)
338 for(Layout::Section_list::const_iterator p
= sections
.begin();
342 Output_section
* os
= *p
;
343 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
344 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
345 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
347 if (i
>= this->section_infos_
.size())
349 gold_fatal("Section_info of %s missing.\n", os
->name());
351 const Section_info
& info
= this->section_infos_
[i
];
352 if (os
!= info
.output_section
)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info
.output_section
->name(), os
->name());
355 if (address
!= info
.address
356 || data_size
!= info
.data_size
357 || offset
!= info
.offset
)
358 gold_fatal("Section %s changed.\n", os
->name());
362 // Layout_task_runner methods.
364 // Lay out the sections. This is called after all the input objects
368 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_
->detect_odr_violations(task
, this->options_
.output_file_name());
374 Layout
* layout
= this->layout_
;
375 off_t file_size
= layout
->finalize(this->input_objects_
,
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
383 if (this->mapfile_
!= NULL
)
385 this->mapfile_
->print_discarded_sections(this->input_objects_
);
386 layout
->print_to_mapfile(this->mapfile_
);
390 if (layout
->incremental_base() == NULL
)
392 of
= new Output_file(parameters
->options().output_file_name());
393 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
394 of
->set_is_temporary();
399 of
= layout
->incremental_base()->output_file();
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
406 if (parameters
->incremental_update())
407 layout
->incremental_base()->apply_incremental_relocs(this->symtab_
,
411 of
->resize(file_size
);
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_
, this->input_objects_
,
416 this->symtab_
, layout
, workqueue
, of
);
421 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
422 : number_of_input_files_(number_of_input_files
),
423 script_options_(script_options
),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL
),
436 relro_segment_(NULL
),
437 interp_segment_(NULL
),
439 symtab_section_(NULL
),
440 symtab_xindex_(NULL
),
441 dynsym_section_(NULL
),
442 dynsym_xindex_(NULL
),
443 dynamic_section_(NULL
),
444 dynamic_symbol_(NULL
),
446 eh_frame_section_(NULL
),
447 eh_frame_data_(NULL
),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL
),
450 gdb_index_data_(NULL
),
451 build_id_note_(NULL
),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL
),
468 record_output_section_data_from_script_(false),
469 lto_slim_object_(false),
470 script_output_section_data_list_(),
471 segment_states_(NULL
),
472 relaxation_debug_check_(NULL
),
473 section_order_map_(),
474 section_segment_map_(),
475 input_section_position_(),
476 input_section_glob_(),
477 incremental_base_(NULL
),
481 // Make space for more than enough segments for a typical file.
482 // This is just for efficiency--it's OK if we wind up needing more.
483 this->segment_list_
.reserve(12);
485 // We expect two unattached Output_data objects: the file header and
486 // the segment headers.
487 this->special_output_list_
.reserve(2);
489 // Initialize structure needed for an incremental build.
490 if (parameters
->incremental())
491 this->incremental_inputs_
= new Incremental_inputs
;
493 // The section name pool is worth optimizing in all cases, because
494 // it is small, but there are often overlaps due to .rel sections.
495 this->namepool_
.set_optimize();
498 // For incremental links, record the base file to be modified.
501 Layout::set_incremental_base(Incremental_binary
* base
)
503 this->incremental_base_
= base
;
504 this->free_list_
.init(base
->output_file()->filesize(), true);
507 // Hash a key we use to look up an output section mapping.
510 Layout::Hash_key::operator()(const Layout::Key
& k
) const
512 return k
.first
+ k
.second
.first
+ k
.second
.second
;
515 // These are the debug sections that are actually used by gdb.
516 // Currently, we've checked versions of gdb up to and including 7.4.
517 // We only check the part of the name that follows ".debug_" or
520 static const char* gdb_sections
[] =
523 "addr", // Fission extension
524 // "aranges", // not used by gdb as of 7.4
533 // "pubnames", // not used by gdb as of 7.4
534 // "pubtypes", // not used by gdb as of 7.4
535 // "gnu_pubnames", // Fission extension
536 // "gnu_pubtypes", // Fission extension
542 // This is the minimum set of sections needed for line numbers.
544 static const char* lines_only_debug_sections
[] =
547 // "addr", // Fission extension
548 // "aranges", // not used by gdb as of 7.4
557 // "pubnames", // not used by gdb as of 7.4
558 // "pubtypes", // not used by gdb as of 7.4
559 // "gnu_pubnames", // Fission extension
560 // "gnu_pubtypes", // Fission extension
563 "str_offsets", // Fission extension
566 // These sections are the DWARF fast-lookup tables, and are not needed
567 // when building a .gdb_index section.
569 static const char* gdb_fast_lookup_sections
[] =
578 // Returns whether the given debug section is in the list of
579 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
580 // portion of the name following ".debug_" or ".zdebug_".
583 is_gdb_debug_section(const char* suffix
)
585 // We can do this faster: binary search or a hashtable. But why bother?
586 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
587 if (strcmp(suffix
, gdb_sections
[i
]) == 0)
592 // Returns whether the given section is needed for lines-only debugging.
595 is_lines_only_debug_section(const char* suffix
)
597 // We can do this faster: binary search or a hashtable. But why bother?
599 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
601 if (strcmp(suffix
, lines_only_debug_sections
[i
]) == 0)
606 // Returns whether the given section is a fast-lookup section that
607 // will not be needed when building a .gdb_index section.
610 is_gdb_fast_lookup_section(const char* suffix
)
612 // We can do this faster: binary search or a hashtable. But why bother?
614 i
< sizeof(gdb_fast_lookup_sections
)/sizeof(*gdb_fast_lookup_sections
);
616 if (strcmp(suffix
, gdb_fast_lookup_sections
[i
]) == 0)
621 // Sometimes we compress sections. This is typically done for
622 // sections that are not part of normal program execution (such as
623 // .debug_* sections), and where the readers of these sections know
624 // how to deal with compressed sections. This routine doesn't say for
625 // certain whether we'll compress -- it depends on commandline options
626 // as well -- just whether this section is a candidate for compression.
627 // (The Output_compressed_section class decides whether to compress
628 // a given section, and picks the name of the compressed section.)
631 is_compressible_debug_section(const char* secname
)
633 return (is_prefix_of(".debug", secname
));
636 // We may see compressed debug sections in input files. Return TRUE
637 // if this is the name of a compressed debug section.
640 is_compressed_debug_section(const char* secname
)
642 return (is_prefix_of(".zdebug", secname
));
646 corresponding_uncompressed_section_name(std::string secname
)
648 gold_assert(secname
[0] == '.' && secname
[1] == 'z');
649 std::string
ret(".");
650 ret
.append(secname
, 2, std::string::npos
);
654 // Whether to include this section in the link.
656 template<int size
, bool big_endian
>
658 Layout::include_section(Sized_relobj_file
<size
, big_endian
>*, const char* name
,
659 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
661 if (!parameters
->options().relocatable()
662 && (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
))
665 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
667 if ((sh_type
>= elfcpp::SHT_LOOS
&& sh_type
<= elfcpp::SHT_HIOS
)
668 || (sh_type
>= elfcpp::SHT_LOPROC
&& sh_type
<= elfcpp::SHT_HIPROC
))
669 return parameters
->target().should_include_section(sh_type
);
673 case elfcpp::SHT_NULL
:
674 case elfcpp::SHT_SYMTAB
:
675 case elfcpp::SHT_DYNSYM
:
676 case elfcpp::SHT_HASH
:
677 case elfcpp::SHT_DYNAMIC
:
678 case elfcpp::SHT_SYMTAB_SHNDX
:
681 case elfcpp::SHT_STRTAB
:
682 // Discard the sections which have special meanings in the ELF
683 // ABI. Keep others (e.g., .stabstr). We could also do this by
684 // checking the sh_link fields of the appropriate sections.
685 return (strcmp(name
, ".dynstr") != 0
686 && strcmp(name
, ".strtab") != 0
687 && strcmp(name
, ".shstrtab") != 0);
689 case elfcpp::SHT_RELA
:
690 case elfcpp::SHT_REL
:
691 case elfcpp::SHT_GROUP
:
692 // If we are emitting relocations these should be handled
694 gold_assert(!parameters
->options().relocatable());
697 case elfcpp::SHT_PROGBITS
:
698 if (parameters
->options().strip_debug()
699 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
701 if (is_debug_info_section(name
))
704 if (parameters
->options().strip_debug_non_line()
705 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
707 // Debugging sections can only be recognized by name.
708 if (is_prefix_of(".debug_", name
)
709 && !is_lines_only_debug_section(name
+ 7))
711 if (is_prefix_of(".zdebug_", name
)
712 && !is_lines_only_debug_section(name
+ 8))
715 if (parameters
->options().strip_debug_gdb()
716 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
718 // Debugging sections can only be recognized by name.
719 if (is_prefix_of(".debug_", name
)
720 && !is_gdb_debug_section(name
+ 7))
722 if (is_prefix_of(".zdebug_", name
)
723 && !is_gdb_debug_section(name
+ 8))
726 if (parameters
->options().gdb_index()
727 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
729 // When building .gdb_index, we can strip .debug_pubnames,
730 // .debug_pubtypes, and .debug_aranges sections.
731 if (is_prefix_of(".debug_", name
)
732 && is_gdb_fast_lookup_section(name
+ 7))
734 if (is_prefix_of(".zdebug_", name
)
735 && is_gdb_fast_lookup_section(name
+ 8))
738 if (parameters
->options().strip_lto_sections()
739 && !parameters
->options().relocatable()
740 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
742 // Ignore LTO sections containing intermediate code.
743 if (is_prefix_of(".gnu.lto_", name
))
746 // The GNU linker strips .gnu_debuglink sections, so we do too.
747 // This is a feature used to keep debugging information in
749 if (strcmp(name
, ".gnu_debuglink") == 0)
758 // Return an output section named NAME, or NULL if there is none.
761 Layout::find_output_section(const char* name
) const
763 for (Section_list::const_iterator p
= this->section_list_
.begin();
764 p
!= this->section_list_
.end();
766 if (strcmp((*p
)->name(), name
) == 0)
771 // Return an output segment of type TYPE, with segment flags SET set
772 // and segment flags CLEAR clear. Return NULL if there is none.
775 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
776 elfcpp::Elf_Word clear
) const
778 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
779 p
!= this->segment_list_
.end();
781 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
782 && ((*p
)->flags() & set
) == set
783 && ((*p
)->flags() & clear
) == 0)
788 // When we put a .ctors or .dtors section with more than one word into
789 // a .init_array or .fini_array section, we need to reverse the words
790 // in the .ctors/.dtors section. This is because .init_array executes
791 // constructors front to back, where .ctors executes them back to
792 // front, and vice-versa for .fini_array/.dtors. Although we do want
793 // to remap .ctors/.dtors into .init_array/.fini_array because it can
794 // be more efficient, we don't want to change the order in which
795 // constructors/destructors are run. This set just keeps track of
796 // these sections which need to be reversed. It is only changed by
797 // Layout::layout. It should be a private member of Layout, but that
798 // would require layout.h to #include object.h to get the definition
800 static Unordered_set
<Section_id
, Section_id_hash
> ctors_sections_in_init_array
;
802 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
803 // .init_array/.fini_array section.
806 Layout::is_ctors_in_init_array(Relobj
* relobj
, unsigned int shndx
) const
808 return (ctors_sections_in_init_array
.find(Section_id(relobj
, shndx
))
809 != ctors_sections_in_init_array
.end());
812 // Return the output section to use for section NAME with type TYPE
813 // and section flags FLAGS. NAME must be canonicalized in the string
814 // pool, and NAME_KEY is the key. ORDER is where this should appear
815 // in the output sections. IS_RELRO is true for a relro section.
818 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
819 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
820 Output_section_order order
, bool is_relro
)
822 elfcpp::Elf_Word lookup_type
= type
;
824 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
825 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
826 // .init_array, .fini_array, and .preinit_array sections by name
827 // whatever their type in the input file. We do this because the
828 // types are not always right in the input files.
829 if (lookup_type
== elfcpp::SHT_INIT_ARRAY
830 || lookup_type
== elfcpp::SHT_FINI_ARRAY
831 || lookup_type
== elfcpp::SHT_PREINIT_ARRAY
)
832 lookup_type
= elfcpp::SHT_PROGBITS
;
834 elfcpp::Elf_Xword lookup_flags
= flags
;
836 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
837 // read-write with read-only sections. Some other ELF linkers do
838 // not do this. FIXME: Perhaps there should be an option
840 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
842 const Key
key(name_key
, std::make_pair(lookup_type
, lookup_flags
));
843 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
844 std::pair
<Section_name_map::iterator
, bool> ins(
845 this->section_name_map_
.insert(v
));
848 return ins
.first
->second
;
851 // This is the first time we've seen this name/type/flags
852 // combination. For compatibility with the GNU linker, we
853 // combine sections with contents and zero flags with sections
854 // with non-zero flags. This is a workaround for cases where
855 // assembler code forgets to set section flags. FIXME: Perhaps
856 // there should be an option to control this.
857 Output_section
* os
= NULL
;
859 if (lookup_type
== elfcpp::SHT_PROGBITS
)
863 Output_section
* same_name
= this->find_output_section(name
);
864 if (same_name
!= NULL
865 && (same_name
->type() == elfcpp::SHT_PROGBITS
866 || same_name
->type() == elfcpp::SHT_INIT_ARRAY
867 || same_name
->type() == elfcpp::SHT_FINI_ARRAY
868 || same_name
->type() == elfcpp::SHT_PREINIT_ARRAY
)
869 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
872 else if ((flags
& elfcpp::SHF_TLS
) == 0)
874 elfcpp::Elf_Xword zero_flags
= 0;
875 const Key
zero_key(name_key
, std::make_pair(lookup_type
,
877 Section_name_map::iterator p
=
878 this->section_name_map_
.find(zero_key
);
879 if (p
!= this->section_name_map_
.end())
885 os
= this->make_output_section(name
, type
, flags
, order
, is_relro
);
887 ins
.first
->second
= os
;
892 // Returns TRUE iff NAME (an input section from RELOBJ) will
893 // be mapped to an output section that should be KEPT.
896 Layout::keep_input_section(const Relobj
* relobj
, const char* name
)
898 if (! this->script_options_
->saw_sections_clause())
901 Script_sections
* ss
= this->script_options_
->script_sections();
902 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
903 Output_section
** output_section_slot
;
904 Script_sections::Section_type script_section_type
;
907 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
908 &script_section_type
, &keep
, true);
909 return name
!= NULL
&& keep
;
912 // Clear the input section flags that should not be copied to the
916 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags
)
918 // Some flags in the input section should not be automatically
919 // copied to the output section.
920 input_section_flags
&= ~ (elfcpp::SHF_INFO_LINK
922 | elfcpp::SHF_COMPRESSED
924 | elfcpp::SHF_STRINGS
);
926 // We only clear the SHF_LINK_ORDER flag in for
927 // a non-relocatable link.
928 if (!parameters
->options().relocatable())
929 input_section_flags
&= ~elfcpp::SHF_LINK_ORDER
;
931 return input_section_flags
;
934 // Pick the output section to use for section NAME, in input file
935 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
936 // linker created section. IS_INPUT_SECTION is true if we are
937 // choosing an output section for an input section found in a input
938 // file. ORDER is where this section should appear in the output
939 // sections. IS_RELRO is true for a relro section. This will return
940 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
941 // is true if the section name should be matched against input specs
942 // in a linker script.
945 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
946 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
947 bool is_input_section
, Output_section_order order
,
948 bool is_relro
, bool is_reloc
,
949 bool match_input_spec
)
951 // We should not see any input sections after we have attached
952 // sections to segments.
953 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
955 flags
= this->get_output_section_flags(flags
);
957 if (this->script_options_
->saw_sections_clause() && !is_reloc
)
959 // We are using a SECTIONS clause, so the output section is
960 // chosen based only on the name.
962 Script_sections
* ss
= this->script_options_
->script_sections();
963 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
964 Output_section
** output_section_slot
;
965 Script_sections::Section_type script_section_type
;
966 const char* orig_name
= name
;
968 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
969 &script_section_type
, &keep
,
974 gold_debug(DEBUG_SCRIPT
, _("Unable to create output section '%s' "
975 "because it is not allowed by the "
976 "SECTIONS clause of the linker script"),
978 // The SECTIONS clause says to discard this input section.
982 // We can only handle script section types ST_NONE and ST_NOLOAD.
983 switch (script_section_type
)
985 case Script_sections::ST_NONE
:
987 case Script_sections::ST_NOLOAD
:
988 flags
&= elfcpp::SHF_ALLOC
;
994 // If this is an orphan section--one not mentioned in the linker
995 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
996 // default processing below.
998 if (output_section_slot
!= NULL
)
1000 if (*output_section_slot
!= NULL
)
1002 (*output_section_slot
)->update_flags_for_input_section(flags
);
1003 return *output_section_slot
;
1006 // We don't put sections found in the linker script into
1007 // SECTION_NAME_MAP_. That keeps us from getting confused
1008 // if an orphan section is mapped to a section with the same
1009 // name as one in the linker script.
1011 name
= this->namepool_
.add(name
, false, NULL
);
1013 Output_section
* os
= this->make_output_section(name
, type
, flags
,
1016 os
->set_found_in_sections_clause();
1018 // Special handling for NOLOAD sections.
1019 if (script_section_type
== Script_sections::ST_NOLOAD
)
1021 os
->set_is_noload();
1023 // The constructor of Output_section sets addresses of non-ALLOC
1024 // sections to 0 by default. We don't want that for NOLOAD
1025 // sections even if they have no SHF_ALLOC flag.
1026 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0
1027 && os
->is_address_valid())
1029 gold_assert(os
->address() == 0
1030 && !os
->is_offset_valid()
1031 && !os
->is_data_size_valid());
1032 os
->reset_address_and_file_offset();
1036 *output_section_slot
= os
;
1041 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1043 size_t len
= strlen(name
);
1044 std::string uncompressed_name
;
1046 // Compressed debug sections should be mapped to the corresponding
1047 // uncompressed section.
1048 if (is_compressed_debug_section(name
))
1051 corresponding_uncompressed_section_name(std::string(name
, len
));
1052 name
= uncompressed_name
.c_str();
1053 len
= uncompressed_name
.length();
1056 // Turn NAME from the name of the input section into the name of the
1058 if (is_input_section
1059 && !this->script_options_
->saw_sections_clause()
1060 && !parameters
->options().relocatable())
1062 const char *orig_name
= name
;
1063 name
= parameters
->target().output_section_name(relobj
, name
, &len
);
1065 name
= Layout::output_section_name(relobj
, orig_name
, &len
);
1068 Stringpool::Key name_key
;
1069 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
1071 // Find or make the output section. The output section is selected
1072 // based on the section name, type, and flags.
1073 return this->get_output_section(name
, name_key
, type
, flags
, order
, is_relro
);
1076 // For incremental links, record the initial fixed layout of a section
1077 // from the base file, and return a pointer to the Output_section.
1079 template<int size
, bool big_endian
>
1081 Layout::init_fixed_output_section(const char* name
,
1082 elfcpp::Shdr
<size
, big_endian
>& shdr
)
1084 unsigned int sh_type
= shdr
.get_sh_type();
1086 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1087 // PRE_INIT_ARRAY, and NOTE sections.
1088 // All others will be created from scratch and reallocated.
1089 if (!can_incremental_update(sh_type
))
1092 // If we're generating a .gdb_index section, we need to regenerate
1094 if (parameters
->options().gdb_index()
1095 && sh_type
== elfcpp::SHT_PROGBITS
1096 && strcmp(name
, ".gdb_index") == 0)
1099 typename
elfcpp::Elf_types
<size
>::Elf_Addr sh_addr
= shdr
.get_sh_addr();
1100 typename
elfcpp::Elf_types
<size
>::Elf_Off sh_offset
= shdr
.get_sh_offset();
1101 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
1102 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
1103 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_addralign
=
1104 shdr
.get_sh_addralign();
1106 // Make the output section.
1107 Stringpool::Key name_key
;
1108 name
= this->namepool_
.add(name
, true, &name_key
);
1109 Output_section
* os
= this->get_output_section(name
, name_key
, sh_type
,
1110 sh_flags
, ORDER_INVALID
, false);
1111 os
->set_fixed_layout(sh_addr
, sh_offset
, sh_size
, sh_addralign
);
1112 if (sh_type
!= elfcpp::SHT_NOBITS
)
1113 this->free_list_
.remove(sh_offset
, sh_offset
+ sh_size
);
1117 // Return the index by which an input section should be ordered. This
1118 // is used to sort some .text sections, for compatibility with GNU ld.
1121 Layout::special_ordering_of_input_section(const char* name
)
1123 // The GNU linker has some special handling for some sections that
1124 // wind up in the .text section. Sections that start with these
1125 // prefixes must appear first, and must appear in the order listed
1127 static const char* const text_section_sort
[] =
1137 i
< sizeof(text_section_sort
) / sizeof(text_section_sort
[0]);
1139 if (is_prefix_of(text_section_sort
[i
], name
))
1145 // Return the output section to use for input section SHNDX, with name
1146 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1147 // index of a relocation section which applies to this section, or 0
1148 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1149 // relocation section if there is one. Set *OFF to the offset of this
1150 // input section without the output section. Return NULL if the
1151 // section should be discarded. Set *OFF to -1 if the section
1152 // contents should not be written directly to the output file, but
1153 // will instead receive special handling.
1155 template<int size
, bool big_endian
>
1157 Layout::layout(Sized_relobj_file
<size
, big_endian
>* object
, unsigned int shndx
,
1158 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1159 unsigned int sh_type
, unsigned int reloc_shndx
,
1160 unsigned int, off_t
* off
)
1164 if (!this->include_section(object
, name
, shdr
))
1167 // In a relocatable link a grouped section must not be combined with
1168 // any other sections.
1170 if (parameters
->options().relocatable()
1171 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
1173 // Some flags in the input section should not be automatically
1174 // copied to the output section.
1175 elfcpp::Elf_Xword flags
= (shdr
.get_sh_flags()
1176 & ~ elfcpp::SHF_COMPRESSED
);
1177 name
= this->namepool_
.add(name
, true, NULL
);
1178 os
= this->make_output_section(name
, sh_type
, flags
,
1179 ORDER_INVALID
, false);
1183 // All ".text.unlikely.*" sections can be moved to a unique
1184 // segment with --text-unlikely-segment option.
1185 bool text_unlikely_segment
1186 = (parameters
->options().text_unlikely_segment()
1187 && is_prefix_of(".text.unlikely",
1188 object
->section_name(shndx
).c_str()));
1189 if (text_unlikely_segment
)
1191 elfcpp::Elf_Xword flags
1192 = this->get_output_section_flags(shdr
.get_sh_flags());
1194 Stringpool::Key name_key
;
1195 const char* os_name
= this->namepool_
.add(".text.unlikely", true,
1197 os
= this->get_output_section(os_name
, name_key
, sh_type
, flags
,
1198 ORDER_INVALID
, false);
1199 // Map this output section to a unique segment. This is done to
1200 // separate "text" that is not likely to be executed from "text"
1201 // that is likely executed.
1202 os
->set_is_unique_segment();
1206 // Plugins can choose to place one or more subsets of sections in
1207 // unique segments and this is done by mapping these section subsets
1208 // to unique output sections. Check if this section needs to be
1209 // remapped to a unique output section.
1210 Section_segment_map::iterator it
1211 = this->section_segment_map_
.find(Const_section_id(object
, shndx
));
1212 if (it
== this->section_segment_map_
.end())
1214 os
= this->choose_output_section(object
, name
, sh_type
,
1215 shdr
.get_sh_flags(), true,
1216 ORDER_INVALID
, false, false,
1221 // We know the name of the output section, directly call
1222 // get_output_section here by-passing choose_output_section.
1223 elfcpp::Elf_Xword flags
1224 = this->get_output_section_flags(shdr
.get_sh_flags());
1226 const char* os_name
= it
->second
->name
;
1227 Stringpool::Key name_key
;
1228 os_name
= this->namepool_
.add(os_name
, true, &name_key
);
1229 os
= this->get_output_section(os_name
, name_key
, sh_type
, flags
,
1230 ORDER_INVALID
, false);
1231 if (!os
->is_unique_segment())
1233 os
->set_is_unique_segment();
1234 os
->set_extra_segment_flags(it
->second
->flags
);
1235 os
->set_segment_alignment(it
->second
->align
);
1243 // By default the GNU linker sorts input sections whose names match
1244 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1245 // sections are sorted by name. This is used to implement
1246 // constructor priority ordering. We are compatible. When we put
1247 // .ctor sections in .init_array and .dtor sections in .fini_array,
1248 // we must also sort plain .ctor and .dtor sections.
1249 if (!this->script_options_
->saw_sections_clause()
1250 && !parameters
->options().relocatable()
1251 && (is_prefix_of(".ctors.", name
)
1252 || is_prefix_of(".dtors.", name
)
1253 || is_prefix_of(".init_array.", name
)
1254 || is_prefix_of(".fini_array.", name
)
1255 || (parameters
->options().ctors_in_init_array()
1256 && (strcmp(name
, ".ctors") == 0
1257 || strcmp(name
, ".dtors") == 0))))
1258 os
->set_must_sort_attached_input_sections();
1260 // By default the GNU linker sorts some special text sections ahead
1261 // of others. We are compatible.
1262 if (parameters
->options().text_reorder()
1263 && !this->script_options_
->saw_sections_clause()
1264 && !this->is_section_ordering_specified()
1265 && !parameters
->options().relocatable()
1266 && Layout::special_ordering_of_input_section(name
) >= 0)
1267 os
->set_must_sort_attached_input_sections();
1269 // If this is a .ctors or .ctors.* section being mapped to a
1270 // .init_array section, or a .dtors or .dtors.* section being mapped
1271 // to a .fini_array section, we will need to reverse the words if
1272 // there is more than one. Record this section for later. See
1273 // ctors_sections_in_init_array above.
1274 if (!this->script_options_
->saw_sections_clause()
1275 && !parameters
->options().relocatable()
1276 && shdr
.get_sh_size() > size
/ 8
1277 && (((strcmp(name
, ".ctors") == 0
1278 || is_prefix_of(".ctors.", name
))
1279 && strcmp(os
->name(), ".init_array") == 0)
1280 || ((strcmp(name
, ".dtors") == 0
1281 || is_prefix_of(".dtors.", name
))
1282 && strcmp(os
->name(), ".fini_array") == 0)))
1283 ctors_sections_in_init_array
.insert(Section_id(object
, shndx
));
1285 // FIXME: Handle SHF_LINK_ORDER somewhere.
1287 elfcpp::Elf_Xword orig_flags
= os
->flags();
1289 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
1290 this->script_options_
->saw_sections_clause());
1292 // If the flags changed, we may have to change the order.
1293 if ((orig_flags
& elfcpp::SHF_ALLOC
) != 0)
1295 orig_flags
&= (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
1296 elfcpp::Elf_Xword new_flags
=
1297 os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
1298 if (orig_flags
!= new_flags
)
1299 os
->set_order(this->default_section_order(os
, false));
1302 this->have_added_input_section_
= true;
1307 // Maps section SECN to SEGMENT s.
1309 Layout::insert_section_segment_map(Const_section_id secn
,
1310 Unique_segment_info
*s
)
1312 gold_assert(this->unique_segment_for_sections_specified_
);
1313 this->section_segment_map_
[secn
] = s
;
1316 // Handle a relocation section when doing a relocatable link.
1318 template<int size
, bool big_endian
>
1320 Layout::layout_reloc(Sized_relobj_file
<size
, big_endian
>*,
1322 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1323 Output_section
* data_section
,
1324 Relocatable_relocs
* rr
)
1326 gold_assert(parameters
->options().relocatable()
1327 || parameters
->options().emit_relocs());
1329 int sh_type
= shdr
.get_sh_type();
1332 if (sh_type
== elfcpp::SHT_REL
)
1334 else if (sh_type
== elfcpp::SHT_RELA
)
1338 name
+= data_section
->name();
1340 // If the output data section already has a reloc section, use that;
1341 // otherwise, make a new one.
1342 Output_section
* os
= data_section
->reloc_section();
1345 const char* n
= this->namepool_
.add(name
.c_str(), true, NULL
);
1346 os
= this->make_output_section(n
, sh_type
, shdr
.get_sh_flags(),
1347 ORDER_INVALID
, false);
1348 os
->set_should_link_to_symtab();
1349 os
->set_info_section(data_section
);
1350 data_section
->set_reloc_section(os
);
1353 Output_section_data
* posd
;
1354 if (sh_type
== elfcpp::SHT_REL
)
1356 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1357 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
1361 else if (sh_type
== elfcpp::SHT_RELA
)
1363 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1364 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
1371 os
->add_output_section_data(posd
);
1372 rr
->set_output_data(posd
);
1377 // Handle a group section when doing a relocatable link.
1379 template<int size
, bool big_endian
>
1381 Layout::layout_group(Symbol_table
* symtab
,
1382 Sized_relobj_file
<size
, big_endian
>* object
,
1384 const char* group_section_name
,
1385 const char* signature
,
1386 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1387 elfcpp::Elf_Word flags
,
1388 std::vector
<unsigned int>* shndxes
)
1390 gold_assert(parameters
->options().relocatable());
1391 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
1392 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
1393 Output_section
* os
= this->make_output_section(group_section_name
,
1395 shdr
.get_sh_flags(),
1396 ORDER_INVALID
, false);
1398 // We need to find a symbol with the signature in the symbol table.
1399 // If we don't find one now, we need to look again later.
1400 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
1402 os
->set_info_symndx(sym
);
1405 // Reserve some space to minimize reallocations.
1406 if (this->group_signatures_
.empty())
1407 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
1409 // We will wind up using a symbol whose name is the signature.
1410 // So just put the signature in the symbol name pool to save it.
1411 signature
= symtab
->canonicalize_name(signature
);
1412 this->group_signatures_
.push_back(Group_signature(os
, signature
));
1415 os
->set_should_link_to_symtab();
1418 section_size_type entry_count
=
1419 convert_to_section_size_type(shdr
.get_sh_size() / 4);
1420 Output_section_data
* posd
=
1421 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
1423 os
->add_output_section_data(posd
);
1426 // Special GNU handling of sections name .eh_frame. They will
1427 // normally hold exception frame data as defined by the C++ ABI
1428 // (http://codesourcery.com/cxx-abi/).
1430 template<int size
, bool big_endian
>
1432 Layout::layout_eh_frame(Sized_relobj_file
<size
, big_endian
>* object
,
1433 const unsigned char* symbols
,
1435 const unsigned char* symbol_names
,
1436 off_t symbol_names_size
,
1438 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1439 unsigned int reloc_shndx
, unsigned int reloc_type
,
1442 const unsigned int unwind_section_type
=
1443 parameters
->target().unwind_section_type();
1445 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
1446 || shdr
.get_sh_type() == unwind_section_type
);
1447 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
1449 Output_section
* os
= this->make_eh_frame_section(object
);
1453 gold_assert(this->eh_frame_section_
== os
);
1455 elfcpp::Elf_Xword orig_flags
= os
->flags();
1457 Eh_frame::Eh_frame_section_disposition disp
=
1458 Eh_frame::EH_UNRECOGNIZED_SECTION
;
1459 if (!parameters
->incremental())
1461 disp
= this->eh_frame_data_
->add_ehframe_input_section(object
,
1471 if (disp
== Eh_frame::EH_OPTIMIZABLE_SECTION
)
1473 os
->update_flags_for_input_section(shdr
.get_sh_flags());
1475 // A writable .eh_frame section is a RELRO section.
1476 if ((orig_flags
& (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
))
1477 != (os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
)))
1480 os
->set_order(ORDER_RELRO
);
1487 if (disp
== Eh_frame::EH_END_MARKER_SECTION
&& !this->added_eh_frame_data_
)
1489 // We found the end marker section, so now we can add the set of
1490 // optimized sections to the output section. We need to postpone
1491 // adding this until we've found a section we can optimize so that
1492 // the .eh_frame section in crtbeginT.o winds up at the start of
1493 // the output section.
1494 os
->add_output_section_data(this->eh_frame_data_
);
1495 this->added_eh_frame_data_
= true;
1498 // We couldn't handle this .eh_frame section for some reason.
1499 // Add it as a normal section.
1500 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
1501 *off
= os
->add_input_section(this, object
, shndx
, ".eh_frame", shdr
,
1502 reloc_shndx
, saw_sections_clause
);
1503 this->have_added_input_section_
= true;
1505 if ((orig_flags
& (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
))
1506 != (os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
)))
1507 os
->set_order(this->default_section_order(os
, false));
1513 Layout::finalize_eh_frame_section()
1515 // If we never found an end marker section, we need to add the
1516 // optimized eh sections to the output section now.
1517 if (!parameters
->incremental()
1518 && this->eh_frame_section_
!= NULL
1519 && !this->added_eh_frame_data_
)
1521 this->eh_frame_section_
->add_output_section_data(this->eh_frame_data_
);
1522 this->added_eh_frame_data_
= true;
1526 // Create and return the magic .eh_frame section. Create
1527 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1528 // input .eh_frame section; it may be NULL.
1531 Layout::make_eh_frame_section(const Relobj
* object
)
1533 const unsigned int unwind_section_type
=
1534 parameters
->target().unwind_section_type();
1536 Output_section
* os
= this->choose_output_section(object
, ".eh_frame",
1537 unwind_section_type
,
1538 elfcpp::SHF_ALLOC
, false,
1539 ORDER_EHFRAME
, false, false,
1544 if (this->eh_frame_section_
== NULL
)
1546 this->eh_frame_section_
= os
;
1547 this->eh_frame_data_
= new Eh_frame();
1549 // For incremental linking, we do not optimize .eh_frame sections
1550 // or create a .eh_frame_hdr section.
1551 if (parameters
->options().eh_frame_hdr() && !parameters
->incremental())
1553 Output_section
* hdr_os
=
1554 this->choose_output_section(NULL
, ".eh_frame_hdr",
1555 unwind_section_type
,
1556 elfcpp::SHF_ALLOC
, false,
1557 ORDER_EHFRAME
, false, false,
1562 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
1563 this->eh_frame_data_
);
1564 hdr_os
->add_output_section_data(hdr_posd
);
1566 hdr_os
->set_after_input_sections();
1568 if (!this->script_options_
->saw_phdrs_clause())
1570 Output_segment
* hdr_oseg
;
1571 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
1573 hdr_oseg
->add_output_section_to_nonload(hdr_os
,
1577 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
1585 // Add an exception frame for a PLT. This is called from target code.
1588 Layout::add_eh_frame_for_plt(Output_data
* plt
, const unsigned char* cie_data
,
1589 size_t cie_length
, const unsigned char* fde_data
,
1592 if (parameters
->incremental())
1594 // FIXME: Maybe this could work some day....
1597 Output_section
* os
= this->make_eh_frame_section(NULL
);
1600 this->eh_frame_data_
->add_ehframe_for_plt(plt
, cie_data
, cie_length
,
1601 fde_data
, fde_length
);
1602 if (!this->added_eh_frame_data_
)
1604 os
->add_output_section_data(this->eh_frame_data_
);
1605 this->added_eh_frame_data_
= true;
1609 // Remove all post-map .eh_frame information for a PLT.
1612 Layout::remove_eh_frame_for_plt(Output_data
* plt
, const unsigned char* cie_data
,
1615 if (parameters
->incremental())
1617 // FIXME: Maybe this could work some day....
1620 this->eh_frame_data_
->remove_ehframe_for_plt(plt
, cie_data
, cie_length
);
1623 // Scan a .debug_info or .debug_types section, and add summary
1624 // information to the .gdb_index section.
1626 template<int size
, bool big_endian
>
1628 Layout::add_to_gdb_index(bool is_type_unit
,
1629 Sized_relobj
<size
, big_endian
>* object
,
1630 const unsigned char* symbols
,
1633 unsigned int reloc_shndx
,
1634 unsigned int reloc_type
)
1636 if (this->gdb_index_data_
== NULL
)
1638 Output_section
* os
= this->choose_output_section(NULL
, ".gdb_index",
1639 elfcpp::SHT_PROGBITS
, 0,
1640 false, ORDER_INVALID
,
1641 false, false, false);
1645 this->gdb_index_data_
= new Gdb_index(os
);
1646 os
->add_output_section_data(this->gdb_index_data_
);
1647 os
->set_after_input_sections();
1650 this->gdb_index_data_
->scan_debug_info(is_type_unit
, object
, symbols
,
1651 symbols_size
, shndx
, reloc_shndx
,
1655 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1656 // the output section.
1659 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
1660 elfcpp::Elf_Xword flags
,
1661 Output_section_data
* posd
,
1662 Output_section_order order
, bool is_relro
)
1664 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
1665 false, order
, is_relro
,
1668 os
->add_output_section_data(posd
);
1672 // Map section flags to segment flags.
1675 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
1677 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
1678 if ((flags
& elfcpp::SHF_WRITE
) != 0)
1679 ret
|= elfcpp::PF_W
;
1680 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
1681 ret
|= elfcpp::PF_X
;
1685 // Make a new Output_section, and attach it to segments as
1686 // appropriate. ORDER is the order in which this section should
1687 // appear in the output segment. IS_RELRO is true if this is a relro
1688 // (read-only after relocations) section.
1691 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
1692 elfcpp::Elf_Xword flags
,
1693 Output_section_order order
, bool is_relro
)
1696 if ((flags
& elfcpp::SHF_ALLOC
) == 0
1697 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
1698 && is_compressible_debug_section(name
))
1699 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
1701 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
1702 && parameters
->options().strip_debug_non_line()
1703 && strcmp(".debug_abbrev", name
) == 0)
1705 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
1707 if (this->debug_info_
)
1708 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
1710 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
1711 && parameters
->options().strip_debug_non_line()
1712 && strcmp(".debug_info", name
) == 0)
1714 os
= this->debug_info_
= new Output_reduced_debug_info_section(
1716 if (this->debug_abbrev_
)
1717 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
1721 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1722 // not have correct section types. Force them here.
1723 if (type
== elfcpp::SHT_PROGBITS
)
1725 if (is_prefix_of(".init_array", name
))
1726 type
= elfcpp::SHT_INIT_ARRAY
;
1727 else if (is_prefix_of(".preinit_array", name
))
1728 type
= elfcpp::SHT_PREINIT_ARRAY
;
1729 else if (is_prefix_of(".fini_array", name
))
1730 type
= elfcpp::SHT_FINI_ARRAY
;
1733 // FIXME: const_cast is ugly.
1734 Target
* target
= const_cast<Target
*>(¶meters
->target());
1735 os
= target
->make_output_section(name
, type
, flags
);
1738 // With -z relro, we have to recognize the special sections by name.
1739 // There is no other way.
1740 bool is_relro_local
= false;
1741 if (!this->script_options_
->saw_sections_clause()
1742 && parameters
->options().relro()
1743 && (flags
& elfcpp::SHF_ALLOC
) != 0
1744 && (flags
& elfcpp::SHF_WRITE
) != 0)
1746 if (type
== elfcpp::SHT_PROGBITS
)
1748 if ((flags
& elfcpp::SHF_TLS
) != 0)
1750 else if (strcmp(name
, ".data.rel.ro") == 0)
1752 else if (strcmp(name
, ".data.rel.ro.local") == 0)
1755 is_relro_local
= true;
1757 else if (strcmp(name
, ".ctors") == 0
1758 || strcmp(name
, ".dtors") == 0
1759 || strcmp(name
, ".jcr") == 0)
1762 else if (type
== elfcpp::SHT_INIT_ARRAY
1763 || type
== elfcpp::SHT_FINI_ARRAY
1764 || type
== elfcpp::SHT_PREINIT_ARRAY
)
1771 if (order
== ORDER_INVALID
&& (flags
& elfcpp::SHF_ALLOC
) != 0)
1772 order
= this->default_section_order(os
, is_relro_local
);
1774 os
->set_order(order
);
1776 parameters
->target().new_output_section(os
);
1778 this->section_list_
.push_back(os
);
1780 // The GNU linker by default sorts some sections by priority, so we
1781 // do the same. We need to know that this might happen before we
1782 // attach any input sections.
1783 if (!this->script_options_
->saw_sections_clause()
1784 && !parameters
->options().relocatable()
1785 && (strcmp(name
, ".init_array") == 0
1786 || strcmp(name
, ".fini_array") == 0
1787 || (!parameters
->options().ctors_in_init_array()
1788 && (strcmp(name
, ".ctors") == 0
1789 || strcmp(name
, ".dtors") == 0))))
1790 os
->set_may_sort_attached_input_sections();
1792 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1793 // sections before other .text sections. We are compatible. We
1794 // need to know that this might happen before we attach any input
1796 if (parameters
->options().text_reorder()
1797 && !this->script_options_
->saw_sections_clause()
1798 && !this->is_section_ordering_specified()
1799 && !parameters
->options().relocatable()
1800 && strcmp(name
, ".text") == 0)
1801 os
->set_may_sort_attached_input_sections();
1803 // GNU linker sorts section by name with --sort-section=name.
1804 if (strcmp(parameters
->options().sort_section(), "name") == 0)
1805 os
->set_must_sort_attached_input_sections();
1807 // Check for .stab*str sections, as .stab* sections need to link to
1809 if (type
== elfcpp::SHT_STRTAB
1810 && !this->have_stabstr_section_
1811 && strncmp(name
, ".stab", 5) == 0
1812 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
1813 this->have_stabstr_section_
= true;
1815 // During a full incremental link, we add patch space to most
1816 // PROGBITS and NOBITS sections. Flag those that may be
1817 // arbitrarily padded.
1818 if ((type
== elfcpp::SHT_PROGBITS
|| type
== elfcpp::SHT_NOBITS
)
1819 && order
!= ORDER_INTERP
1820 && order
!= ORDER_INIT
1821 && order
!= ORDER_PLT
1822 && order
!= ORDER_FINI
1823 && order
!= ORDER_RELRO_LAST
1824 && order
!= ORDER_NON_RELRO_FIRST
1825 && strcmp(name
, ".eh_frame") != 0
1826 && strcmp(name
, ".ctors") != 0
1827 && strcmp(name
, ".dtors") != 0
1828 && strcmp(name
, ".jcr") != 0)
1830 os
->set_is_patch_space_allowed();
1832 // Certain sections require "holes" to be filled with
1833 // specific fill patterns. These fill patterns may have
1834 // a minimum size, so we must prevent allocations from the
1835 // free list that leave a hole smaller than the minimum.
1836 if (strcmp(name
, ".debug_info") == 0)
1837 os
->set_free_space_fill(new Output_fill_debug_info(false));
1838 else if (strcmp(name
, ".debug_types") == 0)
1839 os
->set_free_space_fill(new Output_fill_debug_info(true));
1840 else if (strcmp(name
, ".debug_line") == 0)
1841 os
->set_free_space_fill(new Output_fill_debug_line());
1844 // If we have already attached the sections to segments, then we
1845 // need to attach this one now. This happens for sections created
1846 // directly by the linker.
1847 if (this->sections_are_attached_
)
1848 this->attach_section_to_segment(¶meters
->target(), os
);
1853 // Return the default order in which a section should be placed in an
1854 // output segment. This function captures a lot of the ideas in
1855 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1856 // linker created section is normally set when the section is created;
1857 // this function is used for input sections.
1859 Output_section_order
1860 Layout::default_section_order(Output_section
* os
, bool is_relro_local
)
1862 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
1863 bool is_write
= (os
->flags() & elfcpp::SHF_WRITE
) != 0;
1864 bool is_execinstr
= (os
->flags() & elfcpp::SHF_EXECINSTR
) != 0;
1865 bool is_bss
= false;
1870 case elfcpp::SHT_PROGBITS
:
1872 case elfcpp::SHT_NOBITS
:
1875 case elfcpp::SHT_RELA
:
1876 case elfcpp::SHT_REL
:
1878 return ORDER_DYNAMIC_RELOCS
;
1880 case elfcpp::SHT_HASH
:
1881 case elfcpp::SHT_DYNAMIC
:
1882 case elfcpp::SHT_SHLIB
:
1883 case elfcpp::SHT_DYNSYM
:
1884 case elfcpp::SHT_GNU_HASH
:
1885 case elfcpp::SHT_GNU_verdef
:
1886 case elfcpp::SHT_GNU_verneed
:
1887 case elfcpp::SHT_GNU_versym
:
1889 return ORDER_DYNAMIC_LINKER
;
1891 case elfcpp::SHT_NOTE
:
1892 return is_write
? ORDER_RW_NOTE
: ORDER_RO_NOTE
;
1895 if ((os
->flags() & elfcpp::SHF_TLS
) != 0)
1896 return is_bss
? ORDER_TLS_BSS
: ORDER_TLS_DATA
;
1898 if (!is_bss
&& !is_write
)
1902 if (strcmp(os
->name(), ".init") == 0)
1904 else if (strcmp(os
->name(), ".fini") == 0)
1906 else if (parameters
->options().keep_text_section_prefix())
1908 // -z,keep-text-section-prefix introduces additional
1910 if (strcmp(os
->name(), ".text.hot") == 0)
1911 return ORDER_TEXT_HOT
;
1912 else if (strcmp(os
->name(), ".text.startup") == 0)
1913 return ORDER_TEXT_STARTUP
;
1914 else if (strcmp(os
->name(), ".text.exit") == 0)
1915 return ORDER_TEXT_EXIT
;
1916 else if (strcmp(os
->name(), ".text.unlikely") == 0)
1917 return ORDER_TEXT_UNLIKELY
;
1920 return is_execinstr
? ORDER_TEXT
: ORDER_READONLY
;
1924 return is_relro_local
? ORDER_RELRO_LOCAL
: ORDER_RELRO
;
1926 if (os
->is_small_section())
1927 return is_bss
? ORDER_SMALL_BSS
: ORDER_SMALL_DATA
;
1928 if (os
->is_large_section())
1929 return is_bss
? ORDER_LARGE_BSS
: ORDER_LARGE_DATA
;
1931 return is_bss
? ORDER_BSS
: ORDER_DATA
;
1934 // Attach output sections to segments. This is called after we have
1935 // seen all the input sections.
1938 Layout::attach_sections_to_segments(const Target
* target
)
1940 for (Section_list::iterator p
= this->section_list_
.begin();
1941 p
!= this->section_list_
.end();
1943 this->attach_section_to_segment(target
, *p
);
1945 this->sections_are_attached_
= true;
1948 // Attach an output section to a segment.
1951 Layout::attach_section_to_segment(const Target
* target
, Output_section
* os
)
1953 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1954 this->unattached_section_list_
.push_back(os
);
1956 this->attach_allocated_section_to_segment(target
, os
);
1959 // Attach an allocated output section to a segment.
1962 Layout::attach_allocated_section_to_segment(const Target
* target
,
1965 elfcpp::Elf_Xword flags
= os
->flags();
1966 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1968 if (parameters
->options().relocatable())
1971 // If we have a SECTIONS clause, we can't handle the attachment to
1972 // segments until after we've seen all the sections.
1973 if (this->script_options_
->saw_sections_clause())
1976 gold_assert(!this->script_options_
->saw_phdrs_clause());
1978 // This output section goes into a PT_LOAD segment.
1980 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1982 // If this output section's segment has extra flags that need to be set,
1983 // coming from a linker plugin, do that.
1984 seg_flags
|= os
->extra_segment_flags();
1986 // Check for --section-start.
1988 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1990 // In general the only thing we really care about for PT_LOAD
1991 // segments is whether or not they are writable or executable,
1992 // so that is how we search for them.
1993 // Large data sections also go into their own PT_LOAD segment.
1994 // People who need segments sorted on some other basis will
1995 // have to use a linker script.
1997 Segment_list::const_iterator p
;
1998 if (!os
->is_unique_segment())
2000 for (p
= this->segment_list_
.begin();
2001 p
!= this->segment_list_
.end();
2004 if ((*p
)->type() != elfcpp::PT_LOAD
)
2006 if ((*p
)->is_unique_segment())
2008 if (!parameters
->options().omagic()
2009 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
2011 if ((target
->isolate_execinstr() || parameters
->options().rosegment())
2012 && ((*p
)->flags() & elfcpp::PF_X
) != (seg_flags
& elfcpp::PF_X
))
2014 // If -Tbss was specified, we need to separate the data and BSS
2016 if (parameters
->options().user_set_Tbss())
2018 if ((os
->type() == elfcpp::SHT_NOBITS
)
2019 == (*p
)->has_any_data_sections())
2022 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
2027 if ((*p
)->are_addresses_set())
2030 (*p
)->add_initial_output_data(os
);
2031 (*p
)->update_flags_for_output_section(seg_flags
);
2032 (*p
)->set_addresses(addr
, addr
);
2036 (*p
)->add_output_section_to_load(this, os
, seg_flags
);
2041 if (p
== this->segment_list_
.end()
2042 || os
->is_unique_segment())
2044 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
2046 if (os
->is_large_data_section())
2047 oseg
->set_is_large_data_segment();
2048 oseg
->add_output_section_to_load(this, os
, seg_flags
);
2050 oseg
->set_addresses(addr
, addr
);
2051 // Check if segment should be marked unique. For segments marked
2052 // unique by linker plugins, set the new alignment if specified.
2053 if (os
->is_unique_segment())
2055 oseg
->set_is_unique_segment();
2056 if (os
->segment_alignment() != 0)
2057 oseg
->set_minimum_p_align(os
->segment_alignment());
2061 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2063 if (os
->type() == elfcpp::SHT_NOTE
)
2065 uint64_t os_align
= os
->addralign();
2067 // See if we already have an equivalent PT_NOTE segment.
2068 for (p
= this->segment_list_
.begin();
2069 p
!= segment_list_
.end();
2072 if ((*p
)->type() == elfcpp::PT_NOTE
2073 && (*p
)->align() == os_align
2074 && (((*p
)->flags() & elfcpp::PF_W
)
2075 == (seg_flags
& elfcpp::PF_W
)))
2077 (*p
)->add_output_section_to_nonload(os
, seg_flags
);
2082 if (p
== this->segment_list_
.end())
2084 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
2086 oseg
->add_output_section_to_nonload(os
, seg_flags
);
2087 oseg
->set_align(os_align
);
2091 // If we see a loadable SHF_TLS section, we create a PT_TLS
2092 // segment. There can only be one such segment.
2093 if ((flags
& elfcpp::SHF_TLS
) != 0)
2095 if (this->tls_segment_
== NULL
)
2096 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
2097 this->tls_segment_
->add_output_section_to_nonload(os
, seg_flags
);
2100 // If -z relro is in effect, and we see a relro section, we create a
2101 // PT_GNU_RELRO segment. There can only be one such segment.
2102 if (os
->is_relro() && parameters
->options().relro())
2104 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
2105 if (this->relro_segment_
== NULL
)
2106 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
2107 this->relro_segment_
->add_output_section_to_nonload(os
, seg_flags
);
2110 // If we see a section named .interp, put it into a PT_INTERP
2111 // segment. This seems broken to me, but this is what GNU ld does,
2112 // and glibc expects it.
2113 if (strcmp(os
->name(), ".interp") == 0
2114 && !this->script_options_
->saw_phdrs_clause())
2116 if (this->interp_segment_
== NULL
)
2117 this->make_output_segment(elfcpp::PT_INTERP
, seg_flags
);
2119 gold_warning(_("multiple '.interp' sections in input files "
2120 "may cause confusing PT_INTERP segment"));
2121 this->interp_segment_
->add_output_section_to_nonload(os
, seg_flags
);
2125 // Make an output section for a script.
2128 Layout::make_output_section_for_script(
2130 Script_sections::Section_type section_type
)
2132 name
= this->namepool_
.add(name
, false, NULL
);
2133 elfcpp::Elf_Xword sh_flags
= elfcpp::SHF_ALLOC
;
2134 if (section_type
== Script_sections::ST_NOLOAD
)
2136 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
2137 sh_flags
, ORDER_INVALID
,
2139 os
->set_found_in_sections_clause();
2140 if (section_type
== Script_sections::ST_NOLOAD
)
2141 os
->set_is_noload();
2145 // Return the number of segments we expect to see.
2148 Layout::expected_segment_count() const
2150 size_t ret
= this->segment_list_
.size();
2152 // If we didn't see a SECTIONS clause in a linker script, we should
2153 // already have the complete list of segments. Otherwise we ask the
2154 // SECTIONS clause how many segments it expects, and add in the ones
2155 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2157 if (!this->script_options_
->saw_sections_clause())
2161 const Script_sections
* ss
= this->script_options_
->script_sections();
2162 return ret
+ ss
->expected_segment_count(this);
2166 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2167 // is whether we saw a .note.GNU-stack section in the object file.
2168 // GNU_STACK_FLAGS is the section flags. The flags give the
2169 // protection required for stack memory. We record this in an
2170 // executable as a PT_GNU_STACK segment. If an object file does not
2171 // have a .note.GNU-stack segment, we must assume that it is an old
2172 // object. On some targets that will force an executable stack.
2175 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
,
2178 if (!seen_gnu_stack
)
2180 this->input_without_gnu_stack_note_
= true;
2181 if (parameters
->options().warn_execstack()
2182 && parameters
->target().is_default_stack_executable())
2183 gold_warning(_("%s: missing .note.GNU-stack section"
2184 " implies executable stack"),
2185 obj
->name().c_str());
2189 this->input_with_gnu_stack_note_
= true;
2190 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
2192 this->input_requires_executable_stack_
= true;
2193 if (parameters
->options().warn_execstack())
2194 gold_warning(_("%s: requires executable stack"),
2195 obj
->name().c_str());
2200 // Read a value with given size and endianness.
2202 static inline uint64_t
2203 read_sized_value(size_t size
, const unsigned char* buf
, bool is_big_endian
,
2204 const Object
* object
)
2210 val
= elfcpp::Swap
<32, true>::readval(buf
);
2212 val
= elfcpp::Swap
<32, false>::readval(buf
);
2217 val
= elfcpp::Swap
<64, true>::readval(buf
);
2219 val
= elfcpp::Swap
<64, false>::readval(buf
);
2223 gold_warning(_("%s: in .note.gnu.property section, "
2224 "pr_datasz must be 4 or 8"),
2225 object
->name().c_str());
2230 // Write a value with given size and endianness.
2233 write_sized_value(uint64_t value
, size_t size
, unsigned char* buf
,
2239 elfcpp::Swap
<32, true>::writeval(buf
, static_cast<uint32_t>(value
));
2241 elfcpp::Swap
<32, false>::writeval(buf
, static_cast<uint32_t>(value
));
2246 elfcpp::Swap
<64, true>::writeval(buf
, value
);
2248 elfcpp::Swap
<64, false>::writeval(buf
, value
);
2252 // We will have already complained about this.
2256 // Handle the .note.gnu.property section at layout time.
2259 Layout::layout_gnu_property(unsigned int note_type
,
2260 unsigned int pr_type
,
2262 const unsigned char* pr_data
,
2263 const Object
* object
)
2265 // We currently support only the one note type.
2266 gold_assert(note_type
== elfcpp::NT_GNU_PROPERTY_TYPE_0
);
2268 if (pr_type
>= elfcpp::GNU_PROPERTY_LOPROC
2269 && pr_type
< elfcpp::GNU_PROPERTY_HIPROC
)
2271 // Target-dependent property value; call the target to record.
2272 const int size
= parameters
->target().get_size();
2273 const bool is_big_endian
= parameters
->target().is_big_endian();
2278 #ifdef HAVE_TARGET_32_BIG
2279 parameters
->sized_target
<32, true>()->
2280 record_gnu_property(note_type
, pr_type
, pr_datasz
, pr_data
,
2288 #ifdef HAVE_TARGET_32_LITTLE
2289 parameters
->sized_target
<32, false>()->
2290 record_gnu_property(note_type
, pr_type
, pr_datasz
, pr_data
,
2297 else if (size
== 64)
2301 #ifdef HAVE_TARGET_64_BIG
2302 parameters
->sized_target
<64, true>()->
2303 record_gnu_property(note_type
, pr_type
, pr_datasz
, pr_data
,
2311 #ifdef HAVE_TARGET_64_LITTLE
2312 parameters
->sized_target
<64, false>()->
2313 record_gnu_property(note_type
, pr_type
, pr_datasz
, pr_data
,
2325 Gnu_properties::iterator pprop
= this->gnu_properties_
.find(pr_type
);
2326 if (pprop
== this->gnu_properties_
.end())
2329 prop
.pr_datasz
= pr_datasz
;
2330 prop
.pr_data
= new unsigned char[pr_datasz
];
2331 memcpy(prop
.pr_data
, pr_data
, pr_datasz
);
2332 this->gnu_properties_
[pr_type
] = prop
;
2336 const bool is_big_endian
= parameters
->target().is_big_endian();
2339 case elfcpp::GNU_PROPERTY_STACK_SIZE
:
2340 // Record the maximum value seen.
2342 uint64_t val1
= read_sized_value(pprop
->second
.pr_datasz
,
2343 pprop
->second
.pr_data
,
2344 is_big_endian
, object
);
2345 uint64_t val2
= read_sized_value(pr_datasz
, pr_data
,
2346 is_big_endian
, object
);
2348 write_sized_value(val2
, pprop
->second
.pr_datasz
,
2349 pprop
->second
.pr_data
, is_big_endian
);
2352 case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED
:
2353 // No data to merge.
2356 gold_warning(_("%s: unknown program property type %d "
2357 "in .note.gnu.property section"),
2358 object
->name().c_str(), pr_type
);
2363 // Merge per-object properties with program properties.
2364 // This lets the target identify objects that are missing certain
2365 // properties, in cases where properties must be ANDed together.
2368 Layout::merge_gnu_properties(const Object
* object
)
2370 const int size
= parameters
->target().get_size();
2371 const bool is_big_endian
= parameters
->target().is_big_endian();
2376 #ifdef HAVE_TARGET_32_BIG
2377 parameters
->sized_target
<32, true>()->merge_gnu_properties(object
);
2384 #ifdef HAVE_TARGET_32_LITTLE
2385 parameters
->sized_target
<32, false>()->merge_gnu_properties(object
);
2391 else if (size
== 64)
2395 #ifdef HAVE_TARGET_64_BIG
2396 parameters
->sized_target
<64, true>()->merge_gnu_properties(object
);
2403 #ifdef HAVE_TARGET_64_LITTLE
2404 parameters
->sized_target
<64, false>()->merge_gnu_properties(object
);
2414 // Add a target-specific property for the output .note.gnu.property section.
2417 Layout::add_gnu_property(unsigned int note_type
,
2418 unsigned int pr_type
,
2420 const unsigned char* pr_data
)
2422 gold_assert(note_type
== elfcpp::NT_GNU_PROPERTY_TYPE_0
);
2425 prop
.pr_datasz
= pr_datasz
;
2426 prop
.pr_data
= new unsigned char[pr_datasz
];
2427 memcpy(prop
.pr_data
, pr_data
, pr_datasz
);
2428 this->gnu_properties_
[pr_type
] = prop
;
2431 // Create automatic note sections.
2434 Layout::create_notes()
2436 this->create_gnu_properties_note();
2437 this->create_gold_note();
2438 this->create_stack_segment();
2439 this->create_build_id();
2442 // Create the dynamic sections which are needed before we read the
2446 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
2448 if (parameters
->doing_static_link())
2451 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
2452 elfcpp::SHT_DYNAMIC
,
2454 | elfcpp::SHF_WRITE
),
2456 true, false, false);
2458 // A linker script may discard .dynamic, so check for NULL.
2459 if (this->dynamic_section_
!= NULL
)
2461 this->dynamic_symbol_
=
2462 symtab
->define_in_output_data("_DYNAMIC", NULL
,
2463 Symbol_table::PREDEFINED
,
2464 this->dynamic_section_
, 0, 0,
2465 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
2466 elfcpp::STV_HIDDEN
, 0, false, false);
2468 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
2470 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
2474 // For each output section whose name can be represented as C symbol,
2475 // define __start and __stop symbols for the section. This is a GNU
2479 Layout::define_section_symbols(Symbol_table
* symtab
)
2481 const elfcpp::STV visibility
= parameters
->options().start_stop_visibility_enum();
2482 for (Section_list::const_iterator p
= this->section_list_
.begin();
2483 p
!= this->section_list_
.end();
2486 const char* const name
= (*p
)->name();
2487 if (is_cident(name
))
2489 const std::string
name_string(name
);
2490 const std::string
start_name(cident_section_start_prefix
2492 const std::string
stop_name(cident_section_stop_prefix
2495 symtab
->define_in_output_data(start_name
.c_str(),
2497 Symbol_table::PREDEFINED
,
2505 false, // offset_is_from_end
2506 true); // only_if_ref
2508 symtab
->define_in_output_data(stop_name
.c_str(),
2510 Symbol_table::PREDEFINED
,
2518 true, // offset_is_from_end
2519 true); // only_if_ref
2524 // Define symbols for group signatures.
2527 Layout::define_group_signatures(Symbol_table
* symtab
)
2529 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
2530 p
!= this->group_signatures_
.end();
2533 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
2535 p
->section
->set_info_symndx(sym
);
2538 // Force the name of the group section to the group
2539 // signature, and use the group's section symbol as the
2540 // signature symbol.
2541 if (strcmp(p
->section
->name(), p
->signature
) != 0)
2543 const char* name
= this->namepool_
.add(p
->signature
,
2545 p
->section
->set_name(name
);
2547 p
->section
->set_needs_symtab_index();
2548 p
->section
->set_info_section_symndx(p
->section
);
2552 this->group_signatures_
.clear();
2555 // Find the first read-only PT_LOAD segment, creating one if
2559 Layout::find_first_load_seg(const Target
* target
)
2561 Output_segment
* best
= NULL
;
2562 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2563 p
!= this->segment_list_
.end();
2566 if ((*p
)->type() == elfcpp::PT_LOAD
2567 && ((*p
)->flags() & elfcpp::PF_R
) != 0
2568 && (parameters
->options().omagic()
2569 || ((*p
)->flags() & elfcpp::PF_W
) == 0)
2570 && (!target
->isolate_execinstr()
2571 || ((*p
)->flags() & elfcpp::PF_X
) == 0))
2573 if (best
== NULL
|| this->segment_precedes(*p
, best
))
2580 gold_assert(!this->script_options_
->saw_phdrs_clause());
2582 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
2587 // Save states of all current output segments. Store saved states
2588 // in SEGMENT_STATES.
2591 Layout::save_segments(Segment_states
* segment_states
)
2593 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2594 p
!= this->segment_list_
.end();
2597 Output_segment
* segment
= *p
;
2599 Output_segment
* copy
= new Output_segment(*segment
);
2600 (*segment_states
)[segment
] = copy
;
2604 // Restore states of output segments and delete any segment not found in
2608 Layout::restore_segments(const Segment_states
* segment_states
)
2610 // Go through the segment list and remove any segment added in the
2612 this->tls_segment_
= NULL
;
2613 this->relro_segment_
= NULL
;
2614 Segment_list::iterator list_iter
= this->segment_list_
.begin();
2615 while (list_iter
!= this->segment_list_
.end())
2617 Output_segment
* segment
= *list_iter
;
2618 Segment_states::const_iterator states_iter
=
2619 segment_states
->find(segment
);
2620 if (states_iter
!= segment_states
->end())
2622 const Output_segment
* copy
= states_iter
->second
;
2623 // Shallow copy to restore states.
2626 // Also fix up TLS and RELRO segment pointers as appropriate.
2627 if (segment
->type() == elfcpp::PT_TLS
)
2628 this->tls_segment_
= segment
;
2629 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
2630 this->relro_segment_
= segment
;
2636 list_iter
= this->segment_list_
.erase(list_iter
);
2637 // This is a segment created during section layout. It should be
2638 // safe to remove it since we should have removed all pointers to it.
2644 // Clean up after relaxation so that sections can be laid out again.
2647 Layout::clean_up_after_relaxation()
2649 // Restore the segments to point state just prior to the relaxation loop.
2650 Script_sections
* script_section
= this->script_options_
->script_sections();
2651 script_section
->release_segments();
2652 this->restore_segments(this->segment_states_
);
2654 // Reset section addresses and file offsets
2655 for (Section_list::iterator p
= this->section_list_
.begin();
2656 p
!= this->section_list_
.end();
2659 (*p
)->restore_states();
2661 // If an input section changes size because of relaxation,
2662 // we need to adjust the section offsets of all input sections.
2663 // after such a section.
2664 if ((*p
)->section_offsets_need_adjustment())
2665 (*p
)->adjust_section_offsets();
2667 (*p
)->reset_address_and_file_offset();
2670 // Reset special output object address and file offsets.
2671 for (Data_list::iterator p
= this->special_output_list_
.begin();
2672 p
!= this->special_output_list_
.end();
2674 (*p
)->reset_address_and_file_offset();
2676 // A linker script may have created some output section data objects.
2677 // They are useless now.
2678 for (Output_section_data_list::const_iterator p
=
2679 this->script_output_section_data_list_
.begin();
2680 p
!= this->script_output_section_data_list_
.end();
2683 this->script_output_section_data_list_
.clear();
2685 // Special-case fill output objects are recreated each time through
2686 // the relaxation loop.
2687 this->reset_relax_output();
2691 Layout::reset_relax_output()
2693 for (Data_list::const_iterator p
= this->relax_output_list_
.begin();
2694 p
!= this->relax_output_list_
.end();
2697 this->relax_output_list_
.clear();
2700 // Prepare for relaxation.
2703 Layout::prepare_for_relaxation()
2705 // Create an relaxation debug check if in debugging mode.
2706 if (is_debugging_enabled(DEBUG_RELAXATION
))
2707 this->relaxation_debug_check_
= new Relaxation_debug_check();
2709 // Save segment states.
2710 this->segment_states_
= new Segment_states();
2711 this->save_segments(this->segment_states_
);
2713 for(Section_list::const_iterator p
= this->section_list_
.begin();
2714 p
!= this->section_list_
.end();
2716 (*p
)->save_states();
2718 if (is_debugging_enabled(DEBUG_RELAXATION
))
2719 this->relaxation_debug_check_
->check_output_data_for_reset_values(
2720 this->section_list_
, this->special_output_list_
,
2721 this->relax_output_list_
);
2723 // Also enable recording of output section data from scripts.
2724 this->record_output_section_data_from_script_
= true;
2727 // If the user set the address of the text segment, that may not be
2728 // compatible with putting the segment headers and file headers into
2729 // that segment. For isolate_execinstr() targets, it's the rodata
2730 // segment rather than text where we might put the headers.
2732 load_seg_unusable_for_headers(const Target
* target
)
2734 const General_options
& options
= parameters
->options();
2735 if (target
->isolate_execinstr())
2736 return (options
.user_set_Trodata_segment()
2737 && options
.Trodata_segment() % target
->abi_pagesize() != 0);
2739 return (options
.user_set_Ttext()
2740 && options
.Ttext() % target
->abi_pagesize() != 0);
2743 // Relaxation loop body: If target has no relaxation, this runs only once
2744 // Otherwise, the target relaxation hook is called at the end of
2745 // each iteration. If the hook returns true, it means re-layout of
2746 // section is required.
2748 // The number of segments created by a linking script without a PHDRS
2749 // clause may be affected by section sizes and alignments. There is
2750 // a remote chance that relaxation causes different number of PT_LOAD
2751 // segments are created and sections are attached to different segments.
2752 // Therefore, we always throw away all segments created during section
2753 // layout. In order to be able to restart the section layout, we keep
2754 // a copy of the segment list right before the relaxation loop and use
2755 // that to restore the segments.
2757 // PASS is the current relaxation pass number.
2758 // SYMTAB is a symbol table.
2759 // PLOAD_SEG is the address of a pointer for the load segment.
2760 // PHDR_SEG is a pointer to the PHDR segment.
2761 // SEGMENT_HEADERS points to the output segment header.
2762 // FILE_HEADER points to the output file header.
2763 // PSHNDX is the address to store the output section index.
2766 Layout::relaxation_loop_body(
2769 Symbol_table
* symtab
,
2770 Output_segment
** pload_seg
,
2771 Output_segment
* phdr_seg
,
2772 Output_segment_headers
* segment_headers
,
2773 Output_file_header
* file_header
,
2774 unsigned int* pshndx
)
2776 // If this is not the first iteration, we need to clean up after
2777 // relaxation so that we can lay out the sections again.
2779 this->clean_up_after_relaxation();
2781 // If there is a SECTIONS clause, put all the input sections into
2782 // the required order.
2783 Output_segment
* load_seg
;
2784 if (this->script_options_
->saw_sections_clause())
2785 load_seg
= this->set_section_addresses_from_script(symtab
);
2786 else if (parameters
->options().relocatable())
2789 load_seg
= this->find_first_load_seg(target
);
2791 if (parameters
->options().oformat_enum()
2792 != General_options::OBJECT_FORMAT_ELF
)
2795 if (load_seg_unusable_for_headers(target
))
2801 gold_assert(phdr_seg
== NULL
2803 || this->script_options_
->saw_sections_clause());
2805 // If the address of the load segment we found has been set by
2806 // --section-start rather than by a script, then adjust the VMA and
2807 // LMA downward if possible to include the file and section headers.
2808 uint64_t header_gap
= 0;
2809 if (load_seg
!= NULL
2810 && load_seg
->are_addresses_set()
2811 && !this->script_options_
->saw_sections_clause()
2812 && !parameters
->options().relocatable())
2814 file_header
->finalize_data_size();
2815 segment_headers
->finalize_data_size();
2816 size_t sizeof_headers
= (file_header
->data_size()
2817 + segment_headers
->data_size());
2818 const uint64_t abi_pagesize
= target
->abi_pagesize();
2819 uint64_t hdr_paddr
= load_seg
->paddr() - sizeof_headers
;
2820 hdr_paddr
&= ~(abi_pagesize
- 1);
2821 uint64_t subtract
= load_seg
->paddr() - hdr_paddr
;
2822 if (load_seg
->paddr() < subtract
|| load_seg
->vaddr() < subtract
)
2826 load_seg
->set_addresses(load_seg
->vaddr() - subtract
,
2827 load_seg
->paddr() - subtract
);
2828 header_gap
= subtract
- sizeof_headers
;
2832 // Lay out the segment headers.
2833 if (!parameters
->options().relocatable())
2835 gold_assert(segment_headers
!= NULL
);
2836 if (header_gap
!= 0 && load_seg
!= NULL
)
2838 Output_data_zero_fill
* z
= new Output_data_zero_fill(header_gap
, 1);
2839 load_seg
->add_initial_output_data(z
);
2841 if (load_seg
!= NULL
)
2842 load_seg
->add_initial_output_data(segment_headers
);
2843 if (phdr_seg
!= NULL
)
2844 phdr_seg
->add_initial_output_data(segment_headers
);
2847 // Lay out the file header.
2848 if (load_seg
!= NULL
)
2849 load_seg
->add_initial_output_data(file_header
);
2851 if (this->script_options_
->saw_phdrs_clause()
2852 && !parameters
->options().relocatable())
2854 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2855 // clause in a linker script.
2856 Script_sections
* ss
= this->script_options_
->script_sections();
2857 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
2860 // We set the output section indexes in set_segment_offsets and
2861 // set_section_indexes.
2864 // Set the file offsets of all the segments, and all the sections
2867 if (!parameters
->options().relocatable())
2868 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
2870 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
2872 // Verify that the dummy relaxation does not change anything.
2873 if (is_debugging_enabled(DEBUG_RELAXATION
))
2876 this->relaxation_debug_check_
->read_sections(this->section_list_
);
2878 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
2881 *pload_seg
= load_seg
;
2885 // Search the list of patterns and find the position of the given section
2886 // name in the output section. If the section name matches a glob
2887 // pattern and a non-glob name, then the non-glob position takes
2888 // precedence. Return 0 if no match is found.
2891 Layout::find_section_order_index(const std::string
& section_name
)
2893 Unordered_map
<std::string
, unsigned int>::iterator map_it
;
2894 map_it
= this->input_section_position_
.find(section_name
);
2895 if (map_it
!= this->input_section_position_
.end())
2896 return map_it
->second
;
2898 // Absolute match failed. Linear search the glob patterns.
2899 std::vector
<std::string
>::iterator it
;
2900 for (it
= this->input_section_glob_
.begin();
2901 it
!= this->input_section_glob_
.end();
2904 if (fnmatch((*it
).c_str(), section_name
.c_str(), FNM_NOESCAPE
) == 0)
2906 map_it
= this->input_section_position_
.find(*it
);
2907 gold_assert(map_it
!= this->input_section_position_
.end());
2908 return map_it
->second
;
2914 // Read the sequence of input sections from the file specified with
2915 // option --section-ordering-file.
2918 Layout::read_layout_from_file()
2920 const char* filename
= parameters
->options().section_ordering_file();
2926 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2927 filename
, strerror(errno
));
2929 File_read::record_file_read(filename
);
2931 std::getline(in
, line
); // this chops off the trailing \n, if any
2932 unsigned int position
= 1;
2933 this->set_section_ordering_specified();
2937 if (!line
.empty() && line
[line
.length() - 1] == '\r') // Windows
2938 line
.resize(line
.length() - 1);
2939 // Ignore comments, beginning with '#'
2942 std::getline(in
, line
);
2945 this->input_section_position_
[line
] = position
;
2946 // Store all glob patterns in a vector.
2947 if (is_wildcard_string(line
.c_str()))
2948 this->input_section_glob_
.push_back(line
);
2950 std::getline(in
, line
);
2954 // Finalize the layout. When this is called, we have created all the
2955 // output sections and all the output segments which are based on
2956 // input sections. We have several things to do, and we have to do
2957 // them in the right order, so that we get the right results correctly
2960 // 1) Finalize the list of output segments and create the segment
2963 // 2) Finalize the dynamic symbol table and associated sections.
2965 // 3) Determine the final file offset of all the output segments.
2967 // 4) Determine the final file offset of all the SHF_ALLOC output
2970 // 5) Create the symbol table sections and the section name table
2973 // 6) Finalize the symbol table: set symbol values to their final
2974 // value and make a final determination of which symbols are going
2975 // into the output symbol table.
2977 // 7) Create the section table header.
2979 // 8) Determine the final file offset of all the output sections which
2980 // are not SHF_ALLOC, including the section table header.
2982 // 9) Finalize the ELF file header.
2984 // This function returns the size of the output file.
2987 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
2988 Target
* target
, const Task
* task
)
2990 unsigned int local_dynamic_count
= 0;
2991 unsigned int forced_local_dynamic_count
= 0;
2993 target
->finalize_sections(this, input_objects
, symtab
);
2995 this->count_local_symbols(task
, input_objects
);
2997 this->link_stabs_sections();
2999 Output_segment
* phdr_seg
= NULL
;
3000 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
3002 // There was a dynamic object in the link. We need to create
3003 // some information for the dynamic linker.
3005 // Create the PT_PHDR segment which will hold the program
3007 if (!this->script_options_
->saw_phdrs_clause())
3008 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
3010 // Create the dynamic symbol table, including the hash table.
3011 Output_section
* dynstr
;
3012 std::vector
<Symbol
*> dynamic_symbols
;
3013 Versions
versions(*this->script_options()->version_script_info(),
3015 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
3016 &local_dynamic_count
,
3017 &forced_local_dynamic_count
,
3021 // Create the .interp section to hold the name of the
3022 // interpreter, and put it in a PT_INTERP segment. Don't do it
3023 // if we saw a .interp section in an input file.
3024 if ((!parameters
->options().shared()
3025 || parameters
->options().dynamic_linker() != NULL
)
3026 && this->interp_segment_
== NULL
)
3027 this->create_interp(target
);
3029 // Finish the .dynamic section to hold the dynamic data, and put
3030 // it in a PT_DYNAMIC segment.
3031 this->finish_dynamic_section(input_objects
, symtab
);
3033 // We should have added everything we need to the dynamic string
3035 this->dynpool_
.set_string_offsets();
3037 // Create the version sections. We can't do this until the
3038 // dynamic string table is complete.
3039 this->create_version_sections(&versions
, symtab
,
3040 (local_dynamic_count
3041 + forced_local_dynamic_count
),
3042 dynamic_symbols
, dynstr
);
3044 // Set the size of the _DYNAMIC symbol. We can't do this until
3045 // after we call create_version_sections.
3046 this->set_dynamic_symbol_size(symtab
);
3049 // Create segment headers.
3050 Output_segment_headers
* segment_headers
=
3051 (parameters
->options().relocatable()
3053 : new Output_segment_headers(this->segment_list_
));
3055 // Lay out the file header.
3056 Output_file_header
* file_header
= new Output_file_header(target
, symtab
,
3059 this->special_output_list_
.push_back(file_header
);
3060 if (segment_headers
!= NULL
)
3061 this->special_output_list_
.push_back(segment_headers
);
3063 // Find approriate places for orphan output sections if we are using
3065 if (this->script_options_
->saw_sections_clause())
3066 this->place_orphan_sections_in_script();
3068 Output_segment
* load_seg
;
3073 // Take a snapshot of the section layout as needed.
3074 if (target
->may_relax())
3075 this->prepare_for_relaxation();
3077 // Run the relaxation loop to lay out sections.
3080 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
3081 phdr_seg
, segment_headers
, file_header
,
3085 while (target
->may_relax()
3086 && target
->relax(pass
, input_objects
, symtab
, this, task
));
3088 // If there is a load segment that contains the file and program headers,
3089 // provide a symbol __ehdr_start pointing there.
3090 // A program can use this to examine itself robustly.
3091 Symbol
*ehdr_start
= symtab
->lookup("__ehdr_start");
3092 if (ehdr_start
!= NULL
&& ehdr_start
->is_predefined())
3094 if (load_seg
!= NULL
)
3095 ehdr_start
->set_output_segment(load_seg
, Symbol::SEGMENT_START
);
3097 ehdr_start
->set_undefined();
3100 // Set the file offsets of all the non-data sections we've seen so
3101 // far which don't have to wait for the input sections. We need
3102 // this in order to finalize local symbols in non-allocated
3104 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
3106 // Set the section indexes of all unallocated sections seen so far,
3107 // in case any of them are somehow referenced by a symbol.
3108 shndx
= this->set_section_indexes(shndx
);
3110 // Create the symbol table sections.
3111 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
,
3112 local_dynamic_count
);
3113 if (!parameters
->doing_static_link())
3114 this->assign_local_dynsym_offsets(input_objects
);
3116 // Process any symbol assignments from a linker script. This must
3117 // be called after the symbol table has been finalized.
3118 this->script_options_
->finalize_symbols(symtab
, this);
3120 // Create the incremental inputs sections.
3121 if (this->incremental_inputs_
)
3123 this->incremental_inputs_
->finalize();
3124 this->create_incremental_info_sections(symtab
);
3127 // Create the .shstrtab section.
3128 Output_section
* shstrtab_section
= this->create_shstrtab();
3130 // Set the file offsets of the rest of the non-data sections which
3131 // don't have to wait for the input sections.
3132 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
3134 // Now that all sections have been created, set the section indexes
3135 // for any sections which haven't been done yet.
3136 shndx
= this->set_section_indexes(shndx
);
3138 // Create the section table header.
3139 this->create_shdrs(shstrtab_section
, &off
);
3141 // If there are no sections which require postprocessing, we can
3142 // handle the section names now, and avoid a resize later.
3143 if (!this->any_postprocessing_sections_
)
3145 off
= this->set_section_offsets(off
,
3146 POSTPROCESSING_SECTIONS_PASS
);
3148 this->set_section_offsets(off
,
3149 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3152 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
3154 // Now we know exactly where everything goes in the output file
3155 // (except for non-allocated sections which require postprocessing).
3156 Output_data::layout_complete();
3158 this->output_file_size_
= off
;
3163 // Create a note header following the format defined in the ELF ABI.
3164 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3165 // of the section to create, DESCSZ is the size of the descriptor.
3166 // ALLOCATE is true if the section should be allocated in memory.
3167 // This returns the new note section. It sets *TRAILING_PADDING to
3168 // the number of trailing zero bytes required.
3171 Layout::create_note(const char* name
, int note_type
,
3172 const char* section_name
, size_t descsz
,
3173 bool allocate
, size_t* trailing_padding
)
3175 // Authorities all agree that the values in a .note field should
3176 // be aligned on 4-byte boundaries for 32-bit binaries. However,
3177 // they differ on what the alignment is for 64-bit binaries.
3178 // The GABI says unambiguously they take 8-byte alignment:
3179 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3180 // Other documentation says alignment should always be 4 bytes:
3181 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3182 // GNU ld and GNU readelf both support the latter (at least as of
3183 // version 2.16.91), and glibc always generates the latter for
3184 // .note.ABI-tag (as of version 1.6), so that's the one we go with
3186 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
3187 const int size
= parameters
->target().get_size();
3189 const int size
= 32;
3191 // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size.
3192 const int addralign
= ((note_type
== elfcpp::NT_GNU_PROPERTY_TYPE_0
3193 ? parameters
->target().get_size()
3196 // The contents of the .note section.
3197 size_t namesz
= strlen(name
) + 1;
3198 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
3199 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
3201 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
3203 unsigned char* buffer
= new unsigned char[notehdrsz
];
3204 memset(buffer
, 0, notehdrsz
);
3206 bool is_big_endian
= parameters
->target().is_big_endian();
3212 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
3213 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
3214 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
3218 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
3219 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
3220 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
3223 else if (size
== 64)
3227 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
3228 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
3229 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
3233 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
3234 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
3235 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
3241 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
3243 elfcpp::Elf_Xword flags
= 0;
3244 Output_section_order order
= ORDER_INVALID
;
3247 flags
= elfcpp::SHF_ALLOC
;
3248 order
= ORDER_RO_NOTE
;
3250 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
3252 flags
, false, order
, false,
3257 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
3260 os
->add_output_section_data(posd
);
3262 *trailing_padding
= aligned_descsz
- descsz
;
3267 // Create a .note.gnu.property section to record program properties
3268 // accumulated from the input files.
3271 Layout::create_gnu_properties_note()
3273 parameters
->target().finalize_gnu_properties(this);
3275 if (this->gnu_properties_
.empty())
3278 const unsigned int size
= parameters
->target().get_size();
3279 const bool is_big_endian
= parameters
->target().is_big_endian();
3281 // Compute the total size of the properties array.
3283 for (Gnu_properties::const_iterator prop
= this->gnu_properties_
.begin();
3284 prop
!= this->gnu_properties_
.end();
3287 descsz
= align_address(descsz
+ 8 + prop
->second
.pr_datasz
, size
/ 8);
3290 // Create the note section.
3291 size_t trailing_padding
;
3292 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0
,
3293 ".note.gnu.property", descsz
,
3294 true, &trailing_padding
);
3297 gold_assert(trailing_padding
== 0);
3299 // Allocate and fill the properties array.
3300 unsigned char* desc
= new unsigned char[descsz
];
3301 unsigned char* p
= desc
;
3302 for (Gnu_properties::const_iterator prop
= this->gnu_properties_
.begin();
3303 prop
!= this->gnu_properties_
.end();
3306 size_t datasz
= prop
->second
.pr_datasz
;
3307 size_t aligned_datasz
= align_address(prop
->second
.pr_datasz
, size
/ 8);
3308 write_sized_value(prop
->first
, 4, p
, is_big_endian
);
3309 write_sized_value(datasz
, 4, p
+ 4, is_big_endian
);
3310 memcpy(p
+ 8, prop
->second
.pr_data
, datasz
);
3311 if (aligned_datasz
> datasz
)
3312 memset(p
+ 8 + datasz
, 0, aligned_datasz
- datasz
);
3313 p
+= 8 + aligned_datasz
;
3315 Output_section_data
* posd
= new Output_data_const(desc
, descsz
, 4);
3316 os
->add_output_section_data(posd
);
3319 // For an executable or shared library, create a note to record the
3320 // version of gold used to create the binary.
3323 Layout::create_gold_note()
3325 if (parameters
->options().relocatable()
3326 || parameters
->incremental_update())
3329 std::string desc
= std::string("gold ") + gold::get_version_string();
3331 size_t trailing_padding
;
3332 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
3333 ".note.gnu.gold-version", desc
.size(),
3334 false, &trailing_padding
);
3338 Output_section_data
* posd
= new Output_data_const(desc
, 4);
3339 os
->add_output_section_data(posd
);
3341 if (trailing_padding
> 0)
3343 posd
= new Output_data_zero_fill(trailing_padding
, 0);
3344 os
->add_output_section_data(posd
);
3348 // Record whether the stack should be executable. This can be set
3349 // from the command line using the -z execstack or -z noexecstack
3350 // options. Otherwise, if any input file has a .note.GNU-stack
3351 // section with the SHF_EXECINSTR flag set, the stack should be
3352 // executable. Otherwise, if at least one input file a
3353 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3354 // section, we use the target default for whether the stack should be
3355 // executable. If -z stack-size was used to set a p_memsz value for
3356 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3357 // don't generate a stack note. When generating a object file, we
3358 // create a .note.GNU-stack section with the appropriate marking.
3359 // When generating an executable or shared library, we create a
3360 // PT_GNU_STACK segment.
3363 Layout::create_stack_segment()
3365 bool is_stack_executable
;
3366 if (parameters
->options().is_execstack_set())
3368 is_stack_executable
= parameters
->options().is_stack_executable();
3369 if (!is_stack_executable
3370 && this->input_requires_executable_stack_
3371 && parameters
->options().warn_execstack())
3372 gold_warning(_("one or more inputs require executable stack, "
3373 "but -z noexecstack was given"));
3375 else if (!this->input_with_gnu_stack_note_
3376 && (!parameters
->options().user_set_stack_size()
3377 || parameters
->options().relocatable()))
3381 if (this->input_requires_executable_stack_
)
3382 is_stack_executable
= true;
3383 else if (this->input_without_gnu_stack_note_
)
3384 is_stack_executable
=
3385 parameters
->target().is_default_stack_executable();
3387 is_stack_executable
= false;
3390 if (parameters
->options().relocatable())
3392 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
3393 elfcpp::Elf_Xword flags
= 0;
3394 if (is_stack_executable
)
3395 flags
|= elfcpp::SHF_EXECINSTR
;
3396 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
,
3397 ORDER_INVALID
, false);
3401 if (this->script_options_
->saw_phdrs_clause())
3403 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
3404 if (is_stack_executable
)
3405 flags
|= elfcpp::PF_X
;
3406 Output_segment
* seg
=
3407 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
3408 seg
->set_size(parameters
->options().stack_size());
3409 // BFD lets targets override this default alignment, but the only
3410 // targets that do so are ones that Gold does not support so far.
3411 seg
->set_minimum_p_align(16);
3415 // If --build-id was used, set up the build ID note.
3418 Layout::create_build_id()
3420 if (!parameters
->options().user_set_build_id())
3423 const char* style
= parameters
->options().build_id();
3424 if (strcmp(style
, "none") == 0)
3427 // Set DESCSZ to the size of the note descriptor. When possible,
3428 // set DESC to the note descriptor contents.
3431 if (strcmp(style
, "md5") == 0)
3433 else if ((strcmp(style
, "sha1") == 0) || (strcmp(style
, "tree") == 0))
3435 else if (strcmp(style
, "uuid") == 0)
3438 const size_t uuidsz
= 128 / 8;
3440 char buffer
[uuidsz
];
3441 memset(buffer
, 0, uuidsz
);
3443 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
3445 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3449 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
3450 release_descriptor(descriptor
, true);
3452 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
3453 else if (static_cast<size_t>(got
) != uuidsz
)
3454 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3458 desc
.assign(buffer
, uuidsz
);
3460 #else // __MINGW32__
3462 typedef RPC_STATUS (RPC_ENTRY
*UuidCreateFn
)(UUID
*Uuid
);
3464 HMODULE rpc_library
= LoadLibrary("rpcrt4.dll");
3466 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3469 UuidCreateFn uuid_create
= reinterpret_cast<UuidCreateFn
>(
3470 GetProcAddress(rpc_library
, "UuidCreate"));
3472 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3473 else if (uuid_create(&uuid
) != RPC_S_OK
)
3474 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3475 FreeLibrary(rpc_library
);
3477 desc
.assign(reinterpret_cast<const char *>(&uuid
), sizeof(UUID
));
3478 descsz
= sizeof(UUID
);
3479 #endif // __MINGW32__
3481 else if (strncmp(style
, "0x", 2) == 0)
3484 const char* p
= style
+ 2;
3487 if (hex_p(p
[0]) && hex_p(p
[1]))
3489 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
3493 else if (*p
== '-' || *p
== ':')
3496 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3499 descsz
= desc
.size();
3502 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
3505 size_t trailing_padding
;
3506 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
3507 ".note.gnu.build-id", descsz
, true,
3514 // We know the value already, so we fill it in now.
3515 gold_assert(desc
.size() == descsz
);
3517 Output_section_data
* posd
= new Output_data_const(desc
, 4);
3518 os
->add_output_section_data(posd
);
3520 if (trailing_padding
!= 0)
3522 posd
= new Output_data_zero_fill(trailing_padding
, 0);
3523 os
->add_output_section_data(posd
);
3528 // We need to compute a checksum after we have completed the
3530 gold_assert(trailing_padding
== 0);
3531 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
3532 os
->add_output_section_data(this->build_id_note_
);
3536 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3537 // field of the former should point to the latter. I'm not sure who
3538 // started this, but the GNU linker does it, and some tools depend
3542 Layout::link_stabs_sections()
3544 if (!this->have_stabstr_section_
)
3547 for (Section_list::iterator p
= this->section_list_
.begin();
3548 p
!= this->section_list_
.end();
3551 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
3554 const char* name
= (*p
)->name();
3555 if (strncmp(name
, ".stab", 5) != 0)
3558 size_t len
= strlen(name
);
3559 if (strcmp(name
+ len
- 3, "str") != 0)
3562 std::string
stab_name(name
, len
- 3);
3563 Output_section
* stab_sec
;
3564 stab_sec
= this->find_output_section(stab_name
.c_str());
3565 if (stab_sec
!= NULL
)
3566 stab_sec
->set_link_section(*p
);
3570 // Create .gnu_incremental_inputs and related sections needed
3571 // for the next run of incremental linking to check what has changed.
3574 Layout::create_incremental_info_sections(Symbol_table
* symtab
)
3576 Incremental_inputs
* incr
= this->incremental_inputs_
;
3578 gold_assert(incr
!= NULL
);
3580 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3581 incr
->create_data_sections(symtab
);
3583 // Add the .gnu_incremental_inputs section.
3584 const char* incremental_inputs_name
=
3585 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
3586 Output_section
* incremental_inputs_os
=
3587 this->make_output_section(incremental_inputs_name
,
3588 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
3589 ORDER_INVALID
, false);
3590 incremental_inputs_os
->add_output_section_data(incr
->inputs_section());
3592 // Add the .gnu_incremental_symtab section.
3593 const char* incremental_symtab_name
=
3594 this->namepool_
.add(".gnu_incremental_symtab", false, NULL
);
3595 Output_section
* incremental_symtab_os
=
3596 this->make_output_section(incremental_symtab_name
,
3597 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB
, 0,
3598 ORDER_INVALID
, false);
3599 incremental_symtab_os
->add_output_section_data(incr
->symtab_section());
3600 incremental_symtab_os
->set_entsize(4);
3602 // Add the .gnu_incremental_relocs section.
3603 const char* incremental_relocs_name
=
3604 this->namepool_
.add(".gnu_incremental_relocs", false, NULL
);
3605 Output_section
* incremental_relocs_os
=
3606 this->make_output_section(incremental_relocs_name
,
3607 elfcpp::SHT_GNU_INCREMENTAL_RELOCS
, 0,
3608 ORDER_INVALID
, false);
3609 incremental_relocs_os
->add_output_section_data(incr
->relocs_section());
3610 incremental_relocs_os
->set_entsize(incr
->relocs_entsize());
3612 // Add the .gnu_incremental_got_plt section.
3613 const char* incremental_got_plt_name
=
3614 this->namepool_
.add(".gnu_incremental_got_plt", false, NULL
);
3615 Output_section
* incremental_got_plt_os
=
3616 this->make_output_section(incremental_got_plt_name
,
3617 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT
, 0,
3618 ORDER_INVALID
, false);
3619 incremental_got_plt_os
->add_output_section_data(incr
->got_plt_section());
3621 // Add the .gnu_incremental_strtab section.
3622 const char* incremental_strtab_name
=
3623 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
3624 Output_section
* incremental_strtab_os
= this->make_output_section(incremental_strtab_name
,
3625 elfcpp::SHT_STRTAB
, 0,
3626 ORDER_INVALID
, false);
3627 Output_data_strtab
* strtab_data
=
3628 new Output_data_strtab(incr
->get_stringpool());
3629 incremental_strtab_os
->add_output_section_data(strtab_data
);
3631 incremental_inputs_os
->set_after_input_sections();
3632 incremental_symtab_os
->set_after_input_sections();
3633 incremental_relocs_os
->set_after_input_sections();
3634 incremental_got_plt_os
->set_after_input_sections();
3636 incremental_inputs_os
->set_link_section(incremental_strtab_os
);
3637 incremental_symtab_os
->set_link_section(incremental_inputs_os
);
3638 incremental_relocs_os
->set_link_section(incremental_inputs_os
);
3639 incremental_got_plt_os
->set_link_section(incremental_inputs_os
);
3642 // Return whether SEG1 should be before SEG2 in the output file. This
3643 // is based entirely on the segment type and flags. When this is
3644 // called the segment addresses have normally not yet been set.
3647 Layout::segment_precedes(const Output_segment
* seg1
,
3648 const Output_segment
* seg2
)
3650 // In order to produce a stable ordering if we're called with the same pointer
3655 elfcpp::Elf_Word type1
= seg1
->type();
3656 elfcpp::Elf_Word type2
= seg2
->type();
3658 // The single PT_PHDR segment is required to precede any loadable
3659 // segment. We simply make it always first.
3660 if (type1
== elfcpp::PT_PHDR
)
3662 gold_assert(type2
!= elfcpp::PT_PHDR
);
3665 if (type2
== elfcpp::PT_PHDR
)
3668 // The single PT_INTERP segment is required to precede any loadable
3669 // segment. We simply make it always second.
3670 if (type1
== elfcpp::PT_INTERP
)
3672 gold_assert(type2
!= elfcpp::PT_INTERP
);
3675 if (type2
== elfcpp::PT_INTERP
)
3678 // We then put PT_LOAD segments before any other segments.
3679 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
3681 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
3684 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3685 // segment, because that is where the dynamic linker expects to find
3686 // it (this is just for efficiency; other positions would also work
3688 if (type1
== elfcpp::PT_TLS
3689 && type2
!= elfcpp::PT_TLS
3690 && type2
!= elfcpp::PT_GNU_RELRO
)
3692 if (type2
== elfcpp::PT_TLS
3693 && type1
!= elfcpp::PT_TLS
3694 && type1
!= elfcpp::PT_GNU_RELRO
)
3697 // We put the PT_GNU_RELRO segment last, because that is where the
3698 // dynamic linker expects to find it (as with PT_TLS, this is just
3700 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
3702 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
3705 const elfcpp::Elf_Word flags1
= seg1
->flags();
3706 const elfcpp::Elf_Word flags2
= seg2
->flags();
3708 // The order of non-PT_LOAD segments is unimportant. We simply sort
3709 // by the numeric segment type and flags values. There should not
3710 // be more than one segment with the same type and flags, except
3711 // when a linker script specifies such.
3712 if (type1
!= elfcpp::PT_LOAD
)
3715 return type1
< type2
;
3716 uint64_t align1
= seg1
->align();
3717 uint64_t align2
= seg2
->align();
3718 // Place segments with larger alignments first.
3719 if (align1
!= align2
)
3720 return align1
> align2
;
3721 gold_assert(flags1
!= flags2
3722 || this->script_options_
->saw_phdrs_clause());
3723 return flags1
< flags2
;
3726 // If the addresses are set already, sort by load address.
3727 if (seg1
->are_addresses_set())
3729 if (!seg2
->are_addresses_set())
3732 unsigned int section_count1
= seg1
->output_section_count();
3733 unsigned int section_count2
= seg2
->output_section_count();
3734 if (section_count1
== 0 && section_count2
> 0)
3736 if (section_count1
> 0 && section_count2
== 0)
3739 uint64_t paddr1
= (seg1
->are_addresses_set()
3741 : seg1
->first_section_load_address());
3742 uint64_t paddr2
= (seg2
->are_addresses_set()
3744 : seg2
->first_section_load_address());
3746 if (paddr1
!= paddr2
)
3747 return paddr1
< paddr2
;
3749 else if (seg2
->are_addresses_set())
3752 // A segment which holds large data comes after a segment which does
3753 // not hold large data.
3754 if (seg1
->is_large_data_segment())
3756 if (!seg2
->is_large_data_segment())
3759 else if (seg2
->is_large_data_segment())
3762 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3763 // segments come before writable segments. Then writable segments
3764 // with data come before writable segments without data. Then
3765 // executable segments come before non-executable segments. Then
3766 // the unlikely case of a non-readable segment comes before the
3767 // normal case of a readable segment. If there are multiple
3768 // segments with the same type and flags, we require that the
3769 // address be set, and we sort by virtual address and then physical
3771 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
3772 return (flags1
& elfcpp::PF_W
) == 0;
3773 if ((flags1
& elfcpp::PF_W
) != 0
3774 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
3775 return seg1
->has_any_data_sections();
3776 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
3777 return (flags1
& elfcpp::PF_X
) != 0;
3778 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
3779 return (flags1
& elfcpp::PF_R
) == 0;
3781 // We shouldn't get here--we shouldn't create segments which we
3782 // can't distinguish. Unless of course we are using a weird linker
3783 // script or overlapping --section-start options. We could also get
3784 // here if plugins want unique segments for subsets of sections.
3785 gold_assert(this->script_options_
->saw_phdrs_clause()
3786 || parameters
->options().any_section_start()
3787 || this->is_unique_segment_for_sections_specified()
3788 || parameters
->options().text_unlikely_segment());
3792 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3795 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
3797 uint64_t unsigned_off
= off
;
3798 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
3799 | (addr
& (abi_pagesize
- 1)));
3800 if (aligned_off
< unsigned_off
)
3801 aligned_off
+= abi_pagesize
;
3805 // On targets where the text segment contains only executable code,
3806 // a non-executable segment is never the text segment.
3809 is_text_segment(const Target
* target
, const Output_segment
* seg
)
3811 elfcpp::Elf_Xword flags
= seg
->flags();
3812 if ((flags
& elfcpp::PF_W
) != 0)
3814 if ((flags
& elfcpp::PF_X
) == 0)
3815 return !target
->isolate_execinstr();
3819 // Set the file offsets of all the segments, and all the sections they
3820 // contain. They have all been created. LOAD_SEG must be laid out
3821 // first. Return the offset of the data to follow.
3824 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
3825 unsigned int* pshndx
)
3827 // Sort them into the final order. We use a stable sort so that we
3828 // don't randomize the order of indistinguishable segments created
3829 // by linker scripts.
3830 std::stable_sort(this->segment_list_
.begin(), this->segment_list_
.end(),
3831 Layout::Compare_segments(this));
3833 // Find the PT_LOAD segments, and set their addresses and offsets
3834 // and their section's addresses and offsets.
3835 uint64_t start_addr
;
3836 if (parameters
->options().user_set_Ttext())
3837 start_addr
= parameters
->options().Ttext();
3838 else if (parameters
->options().output_is_position_independent())
3841 start_addr
= target
->default_text_segment_address();
3843 uint64_t addr
= start_addr
;
3846 // If LOAD_SEG is NULL, then the file header and segment headers
3847 // will not be loadable. But they still need to be at offset 0 in
3848 // the file. Set their offsets now.
3849 if (load_seg
== NULL
)
3851 for (Data_list::iterator p
= this->special_output_list_
.begin();
3852 p
!= this->special_output_list_
.end();
3855 off
= align_address(off
, (*p
)->addralign());
3856 (*p
)->set_address_and_file_offset(0, off
);
3857 off
+= (*p
)->data_size();
3861 unsigned int increase_relro
= this->increase_relro_
;
3862 if (this->script_options_
->saw_sections_clause())
3865 const bool check_sections
= parameters
->options().check_sections();
3866 Output_segment
* last_load_segment
= NULL
;
3868 unsigned int shndx_begin
= *pshndx
;
3869 unsigned int shndx_load_seg
= *pshndx
;
3871 for (Segment_list::iterator p
= this->segment_list_
.begin();
3872 p
!= this->segment_list_
.end();
3875 if ((*p
)->type() == elfcpp::PT_LOAD
)
3877 if (target
->isolate_execinstr())
3879 // When we hit the segment that should contain the
3880 // file headers, reset the file offset so we place
3881 // it and subsequent segments appropriately.
3882 // We'll fix up the preceding segments below.
3890 shndx_load_seg
= *pshndx
;
3896 // Verify that the file headers fall into the first segment.
3897 if (load_seg
!= NULL
&& load_seg
!= *p
)
3902 bool are_addresses_set
= (*p
)->are_addresses_set();
3903 if (are_addresses_set
)
3905 // When it comes to setting file offsets, we care about
3906 // the physical address.
3907 addr
= (*p
)->paddr();
3909 else if (parameters
->options().user_set_Ttext()
3910 && (parameters
->options().omagic()
3911 || is_text_segment(target
, *p
)))
3913 are_addresses_set
= true;
3915 else if (parameters
->options().user_set_Trodata_segment()
3916 && ((*p
)->flags() & (elfcpp::PF_W
| elfcpp::PF_X
)) == 0)
3918 addr
= parameters
->options().Trodata_segment();
3919 are_addresses_set
= true;
3921 else if (parameters
->options().user_set_Tdata()
3922 && ((*p
)->flags() & elfcpp::PF_W
) != 0
3923 && (!parameters
->options().user_set_Tbss()
3924 || (*p
)->has_any_data_sections()))
3926 addr
= parameters
->options().Tdata();
3927 are_addresses_set
= true;
3929 else if (parameters
->options().user_set_Tbss()
3930 && ((*p
)->flags() & elfcpp::PF_W
) != 0
3931 && !(*p
)->has_any_data_sections())
3933 addr
= parameters
->options().Tbss();
3934 are_addresses_set
= true;
3937 uint64_t orig_addr
= addr
;
3938 uint64_t orig_off
= off
;
3940 uint64_t aligned_addr
= 0;
3941 uint64_t abi_pagesize
= target
->abi_pagesize();
3942 uint64_t common_pagesize
= target
->common_pagesize();
3944 if (!parameters
->options().nmagic()
3945 && !parameters
->options().omagic())
3946 (*p
)->set_minimum_p_align(abi_pagesize
);
3948 if (!are_addresses_set
)
3950 // Skip the address forward one page, maintaining the same
3951 // position within the page. This lets us store both segments
3952 // overlapping on a single page in the file, but the loader will
3953 // put them on different pages in memory. We will revisit this
3954 // decision once we know the size of the segment.
3956 uint64_t max_align
= (*p
)->maximum_alignment();
3957 if (max_align
> abi_pagesize
)
3958 addr
= align_address(addr
, max_align
);
3959 aligned_addr
= addr
;
3963 // This is the segment that will contain the file
3964 // headers, so its offset will have to be exactly zero.
3965 gold_assert(orig_off
== 0);
3967 // If the target wants a fixed minimum distance from the
3968 // text segment to the read-only segment, move up now.
3970 start_addr
+ (parameters
->options().user_set_rosegment_gap()
3971 ? parameters
->options().rosegment_gap()
3972 : target
->rosegment_gap());
3973 if (addr
< min_addr
)
3976 // But this is not the first segment! To make its
3977 // address congruent with its offset, that address better
3978 // be aligned to the ABI-mandated page size.
3979 addr
= align_address(addr
, abi_pagesize
);
3980 aligned_addr
= addr
;
3984 if ((addr
& (abi_pagesize
- 1)) != 0)
3985 addr
= addr
+ abi_pagesize
;
3987 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
3991 if (!parameters
->options().nmagic()
3992 && !parameters
->options().omagic())
3994 // Here we are also taking care of the case when
3995 // the maximum segment alignment is larger than the page size.
3996 off
= align_file_offset(off
, addr
,
3997 std::max(abi_pagesize
,
3998 (*p
)->maximum_alignment()));
4002 // This is -N or -n with a section script which prevents
4003 // us from using a load segment. We need to ensure that
4004 // the file offset is aligned to the alignment of the
4005 // segment. This is because the linker script
4006 // implicitly assumed a zero offset. If we don't align
4007 // here, then the alignment of the sections in the
4008 // linker script may not match the alignment of the
4009 // sections in the set_section_addresses call below,
4010 // causing an error about dot moving backward.
4011 off
= align_address(off
, (*p
)->maximum_alignment());
4014 unsigned int shndx_hold
= *pshndx
;
4015 bool has_relro
= false;
4016 uint64_t new_addr
= (*p
)->set_section_addresses(target
, this,
4022 // Now that we know the size of this segment, we may be able
4023 // to save a page in memory, at the cost of wasting some
4024 // file space, by instead aligning to the start of a new
4025 // page. Here we use the real machine page size rather than
4026 // the ABI mandated page size. If the segment has been
4027 // aligned so that the relro data ends at a page boundary,
4028 // we do not try to realign it.
4030 if (!are_addresses_set
4032 && aligned_addr
!= addr
4033 && !parameters
->incremental())
4035 uint64_t first_off
= (common_pagesize
4037 & (common_pagesize
- 1)));
4038 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
4041 && ((aligned_addr
& ~ (common_pagesize
- 1))
4042 != (new_addr
& ~ (common_pagesize
- 1)))
4043 && first_off
+ last_off
<= common_pagesize
)
4045 *pshndx
= shndx_hold
;
4046 addr
= align_address(aligned_addr
, common_pagesize
);
4047 addr
= align_address(addr
, (*p
)->maximum_alignment());
4048 if ((addr
& (abi_pagesize
- 1)) != 0)
4049 addr
= addr
+ abi_pagesize
;
4050 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
4051 off
= align_file_offset(off
, addr
, abi_pagesize
);
4053 increase_relro
= this->increase_relro_
;
4054 if (this->script_options_
->saw_sections_clause())
4058 new_addr
= (*p
)->set_section_addresses(target
, this,
4068 // Implement --check-sections. We know that the segments
4069 // are sorted by LMA.
4070 if (check_sections
&& last_load_segment
!= NULL
)
4072 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
4073 if (last_load_segment
->paddr() + last_load_segment
->memsz()
4076 unsigned long long lb1
= last_load_segment
->paddr();
4077 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
4078 unsigned long long lb2
= (*p
)->paddr();
4079 unsigned long long le2
= lb2
+ (*p
)->memsz();
4080 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4081 "[0x%llx -> 0x%llx]"),
4082 lb1
, le1
, lb2
, le2
);
4085 last_load_segment
= *p
;
4089 if (load_seg
!= NULL
&& target
->isolate_execinstr())
4091 // Process the early segments again, setting their file offsets
4092 // so they land after the segments starting at LOAD_SEG.
4093 off
= align_file_offset(off
, 0, target
->abi_pagesize());
4095 this->reset_relax_output();
4097 for (Segment_list::iterator p
= this->segment_list_
.begin();
4101 if ((*p
)->type() == elfcpp::PT_LOAD
)
4103 // We repeat the whole job of assigning addresses and
4104 // offsets, but we really only want to change the offsets and
4105 // must ensure that the addresses all come out the same as
4106 // they did the first time through.
4107 bool has_relro
= false;
4108 const uint64_t old_addr
= (*p
)->vaddr();
4109 const uint64_t old_end
= old_addr
+ (*p
)->memsz();
4110 uint64_t new_addr
= (*p
)->set_section_addresses(target
, this,
4116 gold_assert(new_addr
== old_end
);
4120 gold_assert(shndx_begin
== shndx_load_seg
);
4123 // Handle the non-PT_LOAD segments, setting their offsets from their
4124 // section's offsets.
4125 for (Segment_list::iterator p
= this->segment_list_
.begin();
4126 p
!= this->segment_list_
.end();
4129 // PT_GNU_STACK was set up correctly when it was created.
4130 if ((*p
)->type() != elfcpp::PT_LOAD
4131 && (*p
)->type() != elfcpp::PT_GNU_STACK
)
4132 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
4137 // Set the TLS offsets for each section in the PT_TLS segment.
4138 if (this->tls_segment_
!= NULL
)
4139 this->tls_segment_
->set_tls_offsets();
4144 // Set the offsets of all the allocated sections when doing a
4145 // relocatable link. This does the same jobs as set_segment_offsets,
4146 // only for a relocatable link.
4149 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
4150 unsigned int* pshndx
)
4154 file_header
->set_address_and_file_offset(0, 0);
4155 off
+= file_header
->data_size();
4157 for (Section_list::iterator p
= this->section_list_
.begin();
4158 p
!= this->section_list_
.end();
4161 // We skip unallocated sections here, except that group sections
4162 // have to come first.
4163 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
4164 && (*p
)->type() != elfcpp::SHT_GROUP
)
4167 off
= align_address(off
, (*p
)->addralign());
4169 // The linker script might have set the address.
4170 if (!(*p
)->is_address_valid())
4171 (*p
)->set_address(0);
4172 (*p
)->set_file_offset(off
);
4173 (*p
)->finalize_data_size();
4174 if ((*p
)->type() != elfcpp::SHT_NOBITS
)
4175 off
+= (*p
)->data_size();
4177 (*p
)->set_out_shndx(*pshndx
);
4184 // Set the file offset of all the sections not associated with a
4188 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
4190 off_t startoff
= off
;
4193 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
4194 p
!= this->unattached_section_list_
.end();
4197 // The symtab section is handled in create_symtab_sections.
4198 if (*p
== this->symtab_section_
)
4201 // If we've already set the data size, don't set it again.
4202 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
4205 if (pass
== BEFORE_INPUT_SECTIONS_PASS
4206 && (*p
)->requires_postprocessing())
4208 (*p
)->create_postprocessing_buffer();
4209 this->any_postprocessing_sections_
= true;
4212 if (pass
== BEFORE_INPUT_SECTIONS_PASS
4213 && (*p
)->after_input_sections())
4215 else if (pass
== POSTPROCESSING_SECTIONS_PASS
4216 && (!(*p
)->after_input_sections()
4217 || (*p
)->type() == elfcpp::SHT_STRTAB
))
4219 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4220 && (!(*p
)->after_input_sections()
4221 || (*p
)->type() != elfcpp::SHT_STRTAB
))
4224 if (!parameters
->incremental_update())
4226 off
= align_address(off
, (*p
)->addralign());
4227 (*p
)->set_file_offset(off
);
4228 (*p
)->finalize_data_size();
4232 // Incremental update: allocate file space from free list.
4233 (*p
)->pre_finalize_data_size();
4234 off_t current_size
= (*p
)->current_data_size();
4235 off
= this->allocate(current_size
, (*p
)->addralign(), startoff
);
4238 if (is_debugging_enabled(DEBUG_INCREMENTAL
))
4239 this->free_list_
.dump();
4240 gold_assert((*p
)->output_section() != NULL
);
4241 gold_fallback(_("out of patch space for section %s; "
4242 "relink with --incremental-full"),
4243 (*p
)->output_section()->name());
4245 (*p
)->set_file_offset(off
);
4246 (*p
)->finalize_data_size();
4247 if ((*p
)->data_size() > current_size
)
4249 gold_assert((*p
)->output_section() != NULL
);
4250 gold_fallback(_("%s: section changed size; "
4251 "relink with --incremental-full"),
4252 (*p
)->output_section()->name());
4254 gold_debug(DEBUG_INCREMENTAL
,
4255 "set_section_offsets: %08lx %08lx %s",
4256 static_cast<long>(off
),
4257 static_cast<long>((*p
)->data_size()),
4258 ((*p
)->output_section() != NULL
4259 ? (*p
)->output_section()->name() : "(special)"));
4262 off
+= (*p
)->data_size();
4266 // At this point the name must be set.
4267 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
4268 this->namepool_
.add((*p
)->name(), false, NULL
);
4273 // Set the section indexes of all the sections not associated with a
4277 Layout::set_section_indexes(unsigned int shndx
)
4279 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
4280 p
!= this->unattached_section_list_
.end();
4283 if (!(*p
)->has_out_shndx())
4285 (*p
)->set_out_shndx(shndx
);
4292 // Set the section addresses according to the linker script. This is
4293 // only called when we see a SECTIONS clause. This returns the
4294 // program segment which should hold the file header and segment
4295 // headers, if any. It will return NULL if they should not be in a
4299 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
4301 Script_sections
* ss
= this->script_options_
->script_sections();
4302 gold_assert(ss
->saw_sections_clause());
4303 return this->script_options_
->set_section_addresses(symtab
, this);
4306 // Place the orphan sections in the linker script.
4309 Layout::place_orphan_sections_in_script()
4311 Script_sections
* ss
= this->script_options_
->script_sections();
4312 gold_assert(ss
->saw_sections_clause());
4314 // Place each orphaned output section in the script.
4315 for (Section_list::iterator p
= this->section_list_
.begin();
4316 p
!= this->section_list_
.end();
4319 if (!(*p
)->found_in_sections_clause())
4320 ss
->place_orphan(*p
);
4324 // Count the local symbols in the regular symbol table and the dynamic
4325 // symbol table, and build the respective string pools.
4328 Layout::count_local_symbols(const Task
* task
,
4329 const Input_objects
* input_objects
)
4331 // First, figure out an upper bound on the number of symbols we'll
4332 // be inserting into each pool. This helps us create the pools with
4333 // the right size, to avoid unnecessary hashtable resizing.
4334 unsigned int symbol_count
= 0;
4335 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
4336 p
!= input_objects
->relobj_end();
4338 symbol_count
+= (*p
)->local_symbol_count();
4340 // Go from "upper bound" to "estimate." We overcount for two
4341 // reasons: we double-count symbols that occur in more than one
4342 // object file, and we count symbols that are dropped from the
4343 // output. Add it all together and assume we overcount by 100%.
4346 // We assume all symbols will go into both the sympool and dynpool.
4347 this->sympool_
.reserve(symbol_count
);
4348 this->dynpool_
.reserve(symbol_count
);
4350 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
4351 p
!= input_objects
->relobj_end();
4354 Task_lock_obj
<Object
> tlo(task
, *p
);
4355 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
4359 // Create the symbol table sections. Here we also set the final
4360 // values of the symbols. At this point all the loadable sections are
4361 // fully laid out. SHNUM is the number of sections so far.
4364 Layout::create_symtab_sections(const Input_objects
* input_objects
,
4365 Symbol_table
* symtab
,
4368 unsigned int local_dynamic_count
)
4372 if (parameters
->target().get_size() == 32)
4374 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
4377 else if (parameters
->target().get_size() == 64)
4379 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
4385 // Compute file offsets relative to the start of the symtab section.
4388 // Save space for the dummy symbol at the start of the section. We
4389 // never bother to write this out--it will just be left as zero.
4391 unsigned int local_symbol_index
= 1;
4393 // Add STT_SECTION symbols for each Output section which needs one.
4394 for (Section_list::iterator p
= this->section_list_
.begin();
4395 p
!= this->section_list_
.end();
4398 if (!(*p
)->needs_symtab_index())
4399 (*p
)->set_symtab_index(-1U);
4402 (*p
)->set_symtab_index(local_symbol_index
);
4403 ++local_symbol_index
;
4408 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
4409 p
!= input_objects
->relobj_end();
4412 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
4414 off
+= (index
- local_symbol_index
) * symsize
;
4415 local_symbol_index
= index
;
4418 unsigned int local_symcount
= local_symbol_index
;
4419 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
);
4423 if (this->dynsym_section_
== NULL
)
4430 off_t locsize
= local_dynamic_count
* this->dynsym_section_
->entsize();
4431 dynoff
= this->dynsym_section_
->offset() + locsize
;
4432 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
4433 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
4434 == this->dynsym_section_
->data_size() - locsize
);
4437 off_t global_off
= off
;
4438 off
= symtab
->finalize(off
, dynoff
, local_dynamic_count
, dyncount
,
4439 &this->sympool_
, &local_symcount
);
4441 if (!parameters
->options().strip_all())
4443 this->sympool_
.set_string_offsets();
4445 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
4446 Output_section
* osymtab
= this->make_output_section(symtab_name
,
4450 this->symtab_section_
= osymtab
;
4452 Output_section_data
* pos
= new Output_data_fixed_space(off
, align
,
4454 osymtab
->add_output_section_data(pos
);
4456 // We generate a .symtab_shndx section if we have more than
4457 // SHN_LORESERVE sections. Technically it is possible that we
4458 // don't need one, because it is possible that there are no
4459 // symbols in any of sections with indexes larger than
4460 // SHN_LORESERVE. That is probably unusual, though, and it is
4461 // easier to always create one than to compute section indexes
4462 // twice (once here, once when writing out the symbols).
4463 if (shnum
>= elfcpp::SHN_LORESERVE
)
4465 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
4467 Output_section
* osymtab_xindex
=
4468 this->make_output_section(symtab_xindex_name
,
4469 elfcpp::SHT_SYMTAB_SHNDX
, 0,
4470 ORDER_INVALID
, false);
4472 size_t symcount
= off
/ symsize
;
4473 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
4475 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
4477 osymtab_xindex
->set_link_section(osymtab
);
4478 osymtab_xindex
->set_addralign(4);
4479 osymtab_xindex
->set_entsize(4);
4481 osymtab_xindex
->set_after_input_sections();
4483 // This tells the driver code to wait until the symbol table
4484 // has written out before writing out the postprocessing
4485 // sections, including the .symtab_shndx section.
4486 this->any_postprocessing_sections_
= true;
4489 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
4490 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
4495 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
4496 ostrtab
->add_output_section_data(pstr
);
4499 if (!parameters
->incremental_update())
4500 symtab_off
= align_address(*poff
, align
);
4503 symtab_off
= this->allocate(off
, align
, *poff
);
4505 gold_fallback(_("out of patch space for symbol table; "
4506 "relink with --incremental-full"));
4507 gold_debug(DEBUG_INCREMENTAL
,
4508 "create_symtab_sections: %08lx %08lx .symtab",
4509 static_cast<long>(symtab_off
),
4510 static_cast<long>(off
));
4513 symtab
->set_file_offset(symtab_off
+ global_off
);
4514 osymtab
->set_file_offset(symtab_off
);
4515 osymtab
->finalize_data_size();
4516 osymtab
->set_link_section(ostrtab
);
4517 osymtab
->set_info(local_symcount
);
4518 osymtab
->set_entsize(symsize
);
4520 if (symtab_off
+ off
> *poff
)
4521 *poff
= symtab_off
+ off
;
4525 // Create the .shstrtab section, which holds the names of the
4526 // sections. At the time this is called, we have created all the
4527 // output sections except .shstrtab itself.
4530 Layout::create_shstrtab()
4532 // FIXME: We don't need to create a .shstrtab section if we are
4533 // stripping everything.
4535 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
4537 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
4538 ORDER_INVALID
, false);
4540 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
4542 // We can't write out this section until we've set all the
4543 // section names, and we don't set the names of compressed
4544 // output sections until relocations are complete. FIXME: With
4545 // the current names we use, this is unnecessary.
4546 os
->set_after_input_sections();
4549 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
4550 os
->add_output_section_data(posd
);
4555 // Create the section headers. SIZE is 32 or 64. OFF is the file
4559 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
4561 Output_section_headers
* oshdrs
;
4562 oshdrs
= new Output_section_headers(this,
4563 &this->segment_list_
,
4564 &this->section_list_
,
4565 &this->unattached_section_list_
,
4569 if (!parameters
->incremental_update())
4570 off
= align_address(*poff
, oshdrs
->addralign());
4573 oshdrs
->pre_finalize_data_size();
4574 off
= this->allocate(oshdrs
->data_size(), oshdrs
->addralign(), *poff
);
4576 gold_fallback(_("out of patch space for section header table; "
4577 "relink with --incremental-full"));
4578 gold_debug(DEBUG_INCREMENTAL
,
4579 "create_shdrs: %08lx %08lx (section header table)",
4580 static_cast<long>(off
),
4581 static_cast<long>(off
+ oshdrs
->data_size()));
4583 oshdrs
->set_address_and_file_offset(0, off
);
4584 off
+= oshdrs
->data_size();
4587 this->section_headers_
= oshdrs
;
4590 // Count the allocated sections.
4593 Layout::allocated_output_section_count() const
4595 size_t section_count
= 0;
4596 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4597 p
!= this->segment_list_
.end();
4599 section_count
+= (*p
)->output_section_count();
4600 return section_count
;
4603 // Create the dynamic symbol table.
4604 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4605 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4606 // to the number of global symbols that have been forced local.
4607 // We need to remember the former because the forced-local symbols are
4608 // written along with the global symbols in Symtab::write_globals().
4611 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
4612 Symbol_table
* symtab
,
4613 Output_section
** pdynstr
,
4614 unsigned int* plocal_dynamic_count
,
4615 unsigned int* pforced_local_dynamic_count
,
4616 std::vector
<Symbol
*>* pdynamic_symbols
,
4617 Versions
* pversions
)
4619 // Count all the symbols in the dynamic symbol table, and set the
4620 // dynamic symbol indexes.
4622 // Skip symbol 0, which is always all zeroes.
4623 unsigned int index
= 1;
4625 // Add STT_SECTION symbols for each Output section which needs one.
4626 for (Section_list::iterator p
= this->section_list_
.begin();
4627 p
!= this->section_list_
.end();
4630 if (!(*p
)->needs_dynsym_index())
4631 (*p
)->set_dynsym_index(-1U);
4634 (*p
)->set_dynsym_index(index
);
4639 // Count the local symbols that need to go in the dynamic symbol table,
4640 // and set the dynamic symbol indexes.
4641 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
4642 p
!= input_objects
->relobj_end();
4645 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
4649 unsigned int local_symcount
= index
;
4650 unsigned int forced_local_count
= 0;
4652 index
= symtab
->set_dynsym_indexes(index
, &forced_local_count
,
4653 pdynamic_symbols
, &this->dynpool_
,
4656 *plocal_dynamic_count
= local_symcount
;
4657 *pforced_local_dynamic_count
= forced_local_count
;
4661 const int size
= parameters
->target().get_size();
4664 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
4667 else if (size
== 64)
4669 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
4675 // Create the dynamic symbol table section.
4677 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
4681 ORDER_DYNAMIC_LINKER
,
4682 false, false, false);
4684 // Check for NULL as a linker script may discard .dynsym.
4687 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
4690 dynsym
->add_output_section_data(odata
);
4692 dynsym
->set_info(local_symcount
+ forced_local_count
);
4693 dynsym
->set_entsize(symsize
);
4694 dynsym
->set_addralign(align
);
4696 this->dynsym_section_
= dynsym
;
4699 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
4702 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
4703 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
4706 // If there are more than SHN_LORESERVE allocated sections, we
4707 // create a .dynsym_shndx section. It is possible that we don't
4708 // need one, because it is possible that there are no dynamic
4709 // symbols in any of the sections with indexes larger than
4710 // SHN_LORESERVE. This is probably unusual, though, and at this
4711 // time we don't know the actual section indexes so it is
4712 // inconvenient to check.
4713 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
4715 Output_section
* dynsym_xindex
=
4716 this->choose_output_section(NULL
, ".dynsym_shndx",
4717 elfcpp::SHT_SYMTAB_SHNDX
,
4719 false, ORDER_DYNAMIC_LINKER
, false, false,
4722 if (dynsym_xindex
!= NULL
)
4724 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
4726 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
4728 dynsym_xindex
->set_link_section(dynsym
);
4729 dynsym_xindex
->set_addralign(4);
4730 dynsym_xindex
->set_entsize(4);
4732 dynsym_xindex
->set_after_input_sections();
4734 // This tells the driver code to wait until the symbol table
4735 // has written out before writing out the postprocessing
4736 // sections, including the .dynsym_shndx section.
4737 this->any_postprocessing_sections_
= true;
4741 // Create the dynamic string table section.
4743 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
4747 ORDER_DYNAMIC_LINKER
,
4748 false, false, false);
4752 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
4753 dynstr
->add_output_section_data(strdata
);
4756 dynsym
->set_link_section(dynstr
);
4757 if (this->dynamic_section_
!= NULL
)
4758 this->dynamic_section_
->set_link_section(dynstr
);
4762 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
4763 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
4767 // Create the hash tables. The Gnu-style hash table must be
4768 // built first, because it changes the order of the symbols
4769 // in the dynamic symbol table.
4771 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
4772 || strcmp(parameters
->options().hash_style(), "both") == 0)
4774 unsigned char* phash
;
4775 unsigned int hashlen
;
4776 Dynobj::create_gnu_hash_table(*pdynamic_symbols
,
4777 local_symcount
+ forced_local_count
,
4780 Output_section
* hashsec
=
4781 this->choose_output_section(NULL
, ".gnu.hash", elfcpp::SHT_GNU_HASH
,
4782 elfcpp::SHF_ALLOC
, false,
4783 ORDER_DYNAMIC_LINKER
, false, false,
4786 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
4790 if (hashsec
!= NULL
&& hashdata
!= NULL
)
4791 hashsec
->add_output_section_data(hashdata
);
4793 if (hashsec
!= NULL
)
4796 hashsec
->set_link_section(dynsym
);
4798 // For a 64-bit target, the entries in .gnu.hash do not have
4799 // a uniform size, so we only set the entry size for a
4801 if (parameters
->target().get_size() == 32)
4802 hashsec
->set_entsize(4);
4805 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
4809 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
4810 || strcmp(parameters
->options().hash_style(), "both") == 0)
4812 unsigned char* phash
;
4813 unsigned int hashlen
;
4814 Dynobj::create_elf_hash_table(*pdynamic_symbols
,
4815 local_symcount
+ forced_local_count
,
4818 Output_section
* hashsec
=
4819 this->choose_output_section(NULL
, ".hash", elfcpp::SHT_HASH
,
4820 elfcpp::SHF_ALLOC
, false,
4821 ORDER_DYNAMIC_LINKER
, false, false,
4824 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
4828 if (hashsec
!= NULL
&& hashdata
!= NULL
)
4829 hashsec
->add_output_section_data(hashdata
);
4831 if (hashsec
!= NULL
)
4834 hashsec
->set_link_section(dynsym
);
4835 hashsec
->set_entsize(parameters
->target().hash_entry_size() / 8);
4839 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
4843 // Assign offsets to each local portion of the dynamic symbol table.
4846 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
4848 Output_section
* dynsym
= this->dynsym_section_
;
4852 off_t off
= dynsym
->offset();
4854 // Skip the dummy symbol at the start of the section.
4855 off
+= dynsym
->entsize();
4857 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
4858 p
!= input_objects
->relobj_end();
4861 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
4862 off
+= count
* dynsym
->entsize();
4866 // Create the version sections.
4869 Layout::create_version_sections(const Versions
* versions
,
4870 const Symbol_table
* symtab
,
4871 unsigned int local_symcount
,
4872 const std::vector
<Symbol
*>& dynamic_symbols
,
4873 const Output_section
* dynstr
)
4875 if (!versions
->any_defs() && !versions
->any_needs())
4878 switch (parameters
->size_and_endianness())
4880 #ifdef HAVE_TARGET_32_LITTLE
4881 case Parameters::TARGET_32_LITTLE
:
4882 this->sized_create_version_sections
<32, false>(versions
, symtab
,
4884 dynamic_symbols
, dynstr
);
4887 #ifdef HAVE_TARGET_32_BIG
4888 case Parameters::TARGET_32_BIG
:
4889 this->sized_create_version_sections
<32, true>(versions
, symtab
,
4891 dynamic_symbols
, dynstr
);
4894 #ifdef HAVE_TARGET_64_LITTLE
4895 case Parameters::TARGET_64_LITTLE
:
4896 this->sized_create_version_sections
<64, false>(versions
, symtab
,
4898 dynamic_symbols
, dynstr
);
4901 #ifdef HAVE_TARGET_64_BIG
4902 case Parameters::TARGET_64_BIG
:
4903 this->sized_create_version_sections
<64, true>(versions
, symtab
,
4905 dynamic_symbols
, dynstr
);
4913 // Create the version sections, sized version.
4915 template<int size
, bool big_endian
>
4917 Layout::sized_create_version_sections(
4918 const Versions
* versions
,
4919 const Symbol_table
* symtab
,
4920 unsigned int local_symcount
,
4921 const std::vector
<Symbol
*>& dynamic_symbols
,
4922 const Output_section
* dynstr
)
4924 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
4925 elfcpp::SHT_GNU_versym
,
4928 ORDER_DYNAMIC_LINKER
,
4929 false, false, false);
4931 // Check for NULL since a linker script may discard this section.
4934 unsigned char* vbuf
;
4936 versions
->symbol_section_contents
<size
, big_endian
>(symtab
,
4942 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
4945 vsec
->add_output_section_data(vdata
);
4946 vsec
->set_entsize(2);
4947 vsec
->set_link_section(this->dynsym_section_
);
4950 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
4951 if (odyn
!= NULL
&& vsec
!= NULL
)
4952 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
4954 if (versions
->any_defs())
4956 Output_section
* vdsec
;
4957 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
4958 elfcpp::SHT_GNU_verdef
,
4960 false, ORDER_DYNAMIC_LINKER
, false,
4965 unsigned char* vdbuf
;
4966 unsigned int vdsize
;
4967 unsigned int vdentries
;
4968 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
,
4972 Output_section_data
* vddata
=
4973 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
4975 vdsec
->add_output_section_data(vddata
);
4976 vdsec
->set_link_section(dynstr
);
4977 vdsec
->set_info(vdentries
);
4981 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
4982 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
4987 if (versions
->any_needs())
4989 Output_section
* vnsec
;
4990 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
4991 elfcpp::SHT_GNU_verneed
,
4993 false, ORDER_DYNAMIC_LINKER
, false,
4998 unsigned char* vnbuf
;
4999 unsigned int vnsize
;
5000 unsigned int vnentries
;
5001 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
5005 Output_section_data
* vndata
=
5006 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
5008 vnsec
->add_output_section_data(vndata
);
5009 vnsec
->set_link_section(dynstr
);
5010 vnsec
->set_info(vnentries
);
5014 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
5015 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
5021 // Create the .interp section and PT_INTERP segment.
5024 Layout::create_interp(const Target
* target
)
5026 gold_assert(this->interp_segment_
== NULL
);
5028 const char* interp
= parameters
->options().dynamic_linker();
5031 interp
= target
->dynamic_linker();
5032 gold_assert(interp
!= NULL
);
5035 size_t len
= strlen(interp
) + 1;
5037 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
5039 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
5040 elfcpp::SHT_PROGBITS
,
5042 false, ORDER_INTERP
,
5043 false, false, false);
5045 osec
->add_output_section_data(odata
);
5048 // Add dynamic tags for the PLT and the dynamic relocs. This is
5049 // called by the target-specific code. This does nothing if not doing
5052 // USE_REL is true for REL relocs rather than RELA relocs.
5054 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5056 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5057 // and we also set DT_PLTREL. We use PLT_REL's output section, since
5058 // some targets have multiple reloc sections in PLT_REL.
5060 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5061 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
5064 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5068 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
5069 const Output_data
* plt_rel
,
5070 const Output_data_reloc_generic
* dyn_rel
,
5071 bool add_debug
, bool dynrel_includes_plt
)
5073 Output_data_dynamic
* odyn
= this->dynamic_data_
;
5077 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
5078 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
5080 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
5082 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
5083 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
5084 odyn
->add_constant(elfcpp::DT_PLTREL
,
5085 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
5088 if ((dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
5089 || (dynrel_includes_plt
5091 && plt_rel
->output_section() != NULL
))
5093 bool have_dyn_rel
= dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
;
5094 bool have_plt_rel
= plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
;
5095 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
5097 ? dyn_rel
->output_section()
5098 : plt_rel
->output_section()));
5099 elfcpp::DT size_tag
= use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
;
5100 if (have_dyn_rel
&& have_plt_rel
&& dynrel_includes_plt
)
5101 odyn
->add_section_size(size_tag
,
5102 dyn_rel
->output_section(),
5103 plt_rel
->output_section());
5104 else if (have_dyn_rel
)
5105 odyn
->add_section_size(size_tag
, dyn_rel
->output_section());
5107 odyn
->add_section_size(size_tag
, plt_rel
->output_section());
5108 const int size
= parameters
->target().get_size();
5113 rel_tag
= elfcpp::DT_RELENT
;
5115 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
5116 else if (size
== 64)
5117 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
5123 rel_tag
= elfcpp::DT_RELAENT
;
5125 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
5126 else if (size
== 64)
5127 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
5131 odyn
->add_constant(rel_tag
, rel_size
);
5133 if (parameters
->options().combreloc() && have_dyn_rel
)
5135 size_t c
= dyn_rel
->relative_reloc_count();
5137 odyn
->add_constant((use_rel
5138 ? elfcpp::DT_RELCOUNT
5139 : elfcpp::DT_RELACOUNT
),
5144 if (add_debug
&& !parameters
->options().shared())
5146 // The value of the DT_DEBUG tag is filled in by the dynamic
5147 // linker at run time, and used by the debugger.
5148 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
5153 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag
, unsigned int val
)
5155 Output_data_dynamic
* odyn
= this->dynamic_data_
;
5158 odyn
->add_constant(tag
, val
);
5161 // Finish the .dynamic section and PT_DYNAMIC segment.
5164 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
5165 const Symbol_table
* symtab
)
5167 if (!this->script_options_
->saw_phdrs_clause()
5168 && this->dynamic_section_
!= NULL
)
5170 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
5173 oseg
->add_output_section_to_nonload(this->dynamic_section_
,
5174 elfcpp::PF_R
| elfcpp::PF_W
);
5177 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
5181 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
5182 p
!= input_objects
->dynobj_end();
5185 if (!(*p
)->is_needed() && (*p
)->as_needed())
5187 // This dynamic object was linked with --as-needed, but it
5192 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
5195 if (parameters
->options().shared())
5197 const char* soname
= parameters
->options().soname();
5199 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
5202 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
5203 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
5204 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
5206 sym
= symtab
->lookup(parameters
->options().fini());
5207 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
5208 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
5210 // Look for .init_array, .preinit_array and .fini_array by checking
5212 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
5213 p
!= this->section_list_
.end();
5215 switch((*p
)->type())
5217 case elfcpp::SHT_FINI_ARRAY
:
5218 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
5219 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
5221 case elfcpp::SHT_INIT_ARRAY
:
5222 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
5223 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
5225 case elfcpp::SHT_PREINIT_ARRAY
:
5226 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
5227 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
5233 // Add a DT_RPATH entry if needed.
5234 const General_options::Dir_list
& rpath(parameters
->options().rpath());
5237 std::string rpath_val
;
5238 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
5242 if (rpath_val
.empty())
5243 rpath_val
= p
->name();
5246 // Eliminate duplicates.
5247 General_options::Dir_list::const_iterator q
;
5248 for (q
= rpath
.begin(); q
!= p
; ++q
)
5249 if (q
->name() == p
->name())
5254 rpath_val
+= p
->name();
5259 if (!parameters
->options().enable_new_dtags())
5260 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
5262 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
5265 // Look for text segments that have dynamic relocations.
5266 bool have_textrel
= false;
5267 if (!this->script_options_
->saw_sections_clause())
5269 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
5270 p
!= this->segment_list_
.end();
5273 if ((*p
)->type() == elfcpp::PT_LOAD
5274 && ((*p
)->flags() & elfcpp::PF_W
) == 0
5275 && (*p
)->has_dynamic_reloc())
5277 have_textrel
= true;
5284 // We don't know the section -> segment mapping, so we are
5285 // conservative and just look for readonly sections with
5286 // relocations. If those sections wind up in writable segments,
5287 // then we have created an unnecessary DT_TEXTREL entry.
5288 for (Section_list::const_iterator p
= this->section_list_
.begin();
5289 p
!= this->section_list_
.end();
5292 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
5293 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
5294 && (*p
)->has_dynamic_reloc())
5296 have_textrel
= true;
5302 if (parameters
->options().filter() != NULL
)
5303 odyn
->add_string(elfcpp::DT_FILTER
, parameters
->options().filter());
5304 if (parameters
->options().any_auxiliary())
5306 for (options::String_set::const_iterator p
=
5307 parameters
->options().auxiliary_begin();
5308 p
!= parameters
->options().auxiliary_end();
5310 odyn
->add_string(elfcpp::DT_AUXILIARY
, *p
);
5313 // Add a DT_FLAGS entry if necessary.
5314 unsigned int flags
= 0;
5317 // Add a DT_TEXTREL for compatibility with older loaders.
5318 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
5319 flags
|= elfcpp::DF_TEXTREL
;
5321 if (parameters
->options().text())
5322 gold_error(_("read-only segment has dynamic relocations"));
5323 else if (parameters
->options().warn_shared_textrel()
5324 && parameters
->options().shared())
5325 gold_warning(_("shared library text segment is not shareable"));
5327 if (parameters
->options().shared() && this->has_static_tls())
5328 flags
|= elfcpp::DF_STATIC_TLS
;
5329 if (parameters
->options().origin())
5330 flags
|= elfcpp::DF_ORIGIN
;
5331 if (parameters
->options().Bsymbolic()
5332 && !parameters
->options().have_dynamic_list())
5334 flags
|= elfcpp::DF_SYMBOLIC
;
5335 // Add DT_SYMBOLIC for compatibility with older loaders.
5336 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
5338 if (parameters
->options().now())
5339 flags
|= elfcpp::DF_BIND_NOW
;
5341 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
5344 if (parameters
->options().global())
5345 flags
|= elfcpp::DF_1_GLOBAL
;
5346 if (parameters
->options().initfirst())
5347 flags
|= elfcpp::DF_1_INITFIRST
;
5348 if (parameters
->options().interpose())
5349 flags
|= elfcpp::DF_1_INTERPOSE
;
5350 if (parameters
->options().loadfltr())
5351 flags
|= elfcpp::DF_1_LOADFLTR
;
5352 if (parameters
->options().nodefaultlib())
5353 flags
|= elfcpp::DF_1_NODEFLIB
;
5354 if (parameters
->options().nodelete())
5355 flags
|= elfcpp::DF_1_NODELETE
;
5356 if (parameters
->options().nodlopen())
5357 flags
|= elfcpp::DF_1_NOOPEN
;
5358 if (parameters
->options().nodump())
5359 flags
|= elfcpp::DF_1_NODUMP
;
5360 if (!parameters
->options().shared())
5361 flags
&= ~(elfcpp::DF_1_INITFIRST
5362 | elfcpp::DF_1_NODELETE
5363 | elfcpp::DF_1_NOOPEN
);
5364 if (parameters
->options().origin())
5365 flags
|= elfcpp::DF_1_ORIGIN
;
5366 if (parameters
->options().now())
5367 flags
|= elfcpp::DF_1_NOW
;
5368 if (parameters
->options().Bgroup())
5369 flags
|= elfcpp::DF_1_GROUP
;
5370 if (parameters
->options().pie())
5371 flags
|= elfcpp::DF_1_PIE
;
5373 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
5376 // Set the size of the _DYNAMIC symbol table to be the size of the
5380 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
5382 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
5385 odyn
->finalize_data_size();
5386 if (this->dynamic_symbol_
== NULL
)
5388 off_t data_size
= odyn
->data_size();
5389 const int size
= parameters
->target().get_size();
5391 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
5392 else if (size
== 64)
5393 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
5398 // The mapping of input section name prefixes to output section names.
5399 // In some cases one prefix is itself a prefix of another prefix; in
5400 // such a case the longer prefix must come first. These prefixes are
5401 // based on the GNU linker default ELF linker script.
5403 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5404 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5405 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
5407 MAPPING_INIT(".text.", ".text"),
5408 MAPPING_INIT(".rodata.", ".rodata"),
5409 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5410 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5411 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5412 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5413 MAPPING_INIT(".data.", ".data"),
5414 MAPPING_INIT(".bss.", ".bss"),
5415 MAPPING_INIT(".tdata.", ".tdata"),
5416 MAPPING_INIT(".tbss.", ".tbss"),
5417 MAPPING_INIT(".init_array.", ".init_array"),
5418 MAPPING_INIT(".fini_array.", ".fini_array"),
5419 MAPPING_INIT(".sdata.", ".sdata"),
5420 MAPPING_INIT(".sbss.", ".sbss"),
5421 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5422 // differently depending on whether it is creating a shared library.
5423 MAPPING_INIT(".sdata2.", ".sdata"),
5424 MAPPING_INIT(".sbss2.", ".sbss"),
5425 MAPPING_INIT(".lrodata.", ".lrodata"),
5426 MAPPING_INIT(".ldata.", ".ldata"),
5427 MAPPING_INIT(".lbss.", ".lbss"),
5428 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5429 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5430 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5431 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5432 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5433 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5434 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5435 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5436 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5437 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5438 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5439 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5440 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5441 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5442 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5443 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5444 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5445 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5446 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5447 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5448 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5449 MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5452 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5453 const Layout::Section_name_mapping
Layout::text_section_name_mapping
[] =
5455 MAPPING_INIT(".text.hot.", ".text.hot"),
5456 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5457 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5458 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5459 MAPPING_INIT(".text.startup.", ".text.startup"),
5460 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5461 MAPPING_INIT(".text.exit.", ".text.exit"),
5462 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5463 MAPPING_INIT(".text.", ".text"),
5466 #undef MAPPING_INIT_EXACT
5468 const int Layout::section_name_mapping_count
=
5469 (sizeof(Layout::section_name_mapping
)
5470 / sizeof(Layout::section_name_mapping
[0]));
5472 const int Layout::text_section_name_mapping_count
=
5473 (sizeof(Layout::text_section_name_mapping
)
5474 / sizeof(Layout::text_section_name_mapping
[0]));
5476 // Find section name NAME in PSNM and return the mapped name if found
5477 // with the length set in PLEN.
5479 Layout::match_section_name(const Layout::Section_name_mapping
* psnm
,
5481 const char* name
, size_t* plen
)
5483 for (int i
= 0; i
< count
; ++i
, ++psnm
)
5485 if (psnm
->fromlen
> 0)
5487 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
5489 *plen
= psnm
->tolen
;
5495 if (strcmp(name
, psnm
->from
) == 0)
5497 *plen
= psnm
->tolen
;
5505 // Choose the output section name to use given an input section name.
5506 // Set *PLEN to the length of the name. *PLEN is initialized to the
5510 Layout::output_section_name(const Relobj
* relobj
, const char* name
,
5513 // gcc 4.3 generates the following sorts of section names when it
5514 // needs a section name specific to a function:
5520 // .data.rel.local.FN
5522 // .data.rel.ro.local.FN
5529 // The GNU linker maps all of those to the part before the .FN,
5530 // except that .data.rel.local.FN is mapped to .data, and
5531 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5532 // beginning with .data.rel.ro.local are grouped together.
5534 // For an anonymous namespace, the string FN can contain a '.'.
5536 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5537 // GNU linker maps to .rodata.
5539 // The .data.rel.ro sections are used with -z relro. The sections
5540 // are recognized by name. We use the same names that the GNU
5541 // linker does for these sections.
5543 // It is hard to handle this in a principled way, so we don't even
5544 // try. We use a table of mappings. If the input section name is
5545 // not found in the table, we simply use it as the output section
5548 if (parameters
->options().keep_text_section_prefix()
5549 && is_prefix_of(".text", name
))
5551 const char* match
= match_section_name(text_section_name_mapping
,
5552 text_section_name_mapping_count
,
5558 const char* match
= match_section_name(section_name_mapping
,
5559 section_name_mapping_count
, name
, plen
);
5563 // As an additional complication, .ctors sections are output in
5564 // either .ctors or .init_array sections, and .dtors sections are
5565 // output in either .dtors or .fini_array sections.
5566 if (is_prefix_of(".ctors.", name
) || is_prefix_of(".dtors.", name
))
5568 if (parameters
->options().ctors_in_init_array())
5571 return name
[1] == 'c' ? ".init_array" : ".fini_array";
5576 return name
[1] == 'c' ? ".ctors" : ".dtors";
5579 if (parameters
->options().ctors_in_init_array()
5580 && (strcmp(name
, ".ctors") == 0 || strcmp(name
, ".dtors") == 0))
5582 // To make .init_array/.fini_array work with gcc we must exclude
5583 // .ctors and .dtors sections from the crtbegin and crtend
5586 || (!Layout::match_file_name(relobj
, "crtbegin")
5587 && !Layout::match_file_name(relobj
, "crtend")))
5590 return name
[1] == 'c' ? ".init_array" : ".fini_array";
5597 // Return true if RELOBJ is an input file whose base name matches
5598 // FILE_NAME. The base name must have an extension of ".o", and must
5599 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5600 // to match crtbegin.o as well as crtbeginS.o without getting confused
5601 // by other possibilities. Overall matching the file name this way is
5602 // a dreadful hack, but the GNU linker does it in order to better
5603 // support gcc, and we need to be compatible.
5606 Layout::match_file_name(const Relobj
* relobj
, const char* match
)
5608 const std::string
& file_name(relobj
->name());
5609 const char* base_name
= lbasename(file_name
.c_str());
5610 size_t match_len
= strlen(match
);
5611 if (strncmp(base_name
, match
, match_len
) != 0)
5613 size_t base_len
= strlen(base_name
);
5614 if (base_len
!= match_len
+ 2 && base_len
!= match_len
+ 3)
5616 return memcmp(base_name
+ base_len
- 2, ".o", 2) == 0;
5619 // Check if a comdat group or .gnu.linkonce section with the given
5620 // NAME is selected for the link. If there is already a section,
5621 // *KEPT_SECTION is set to point to the existing section and the
5622 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5623 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5624 // *KEPT_SECTION is set to the internal copy and the function returns
5628 Layout::find_or_add_kept_section(const std::string
& name
,
5633 Kept_section
** kept_section
)
5635 // It's normal to see a couple of entries here, for the x86 thunk
5636 // sections. If we see more than a few, we're linking a C++
5637 // program, and we resize to get more space to minimize rehashing.
5638 if (this->signatures_
.size() > 4
5639 && !this->resized_signatures_
)
5641 reserve_unordered_map(&this->signatures_
,
5642 this->number_of_input_files_
* 64);
5643 this->resized_signatures_
= true;
5646 Kept_section candidate
;
5647 std::pair
<Signatures::iterator
, bool> ins
=
5648 this->signatures_
.insert(std::make_pair(name
, candidate
));
5650 if (kept_section
!= NULL
)
5651 *kept_section
= &ins
.first
->second
;
5654 // This is the first time we've seen this signature.
5655 ins
.first
->second
.set_object(object
);
5656 ins
.first
->second
.set_shndx(shndx
);
5658 ins
.first
->second
.set_is_comdat();
5660 ins
.first
->second
.set_is_group_name();
5664 // We have already seen this signature.
5666 if (ins
.first
->second
.is_group_name())
5668 // We've already seen a real section group with this signature.
5669 // If the kept group is from a plugin object, and we're in the
5670 // replacement phase, accept the new one as a replacement.
5671 if (ins
.first
->second
.object() == NULL
5672 && parameters
->options().plugins()->in_replacement_phase())
5674 ins
.first
->second
.set_object(object
);
5675 ins
.first
->second
.set_shndx(shndx
);
5680 else if (is_group_name
)
5682 // This is a real section group, and we've already seen a
5683 // linkonce section with this signature. Record that we've seen
5684 // a section group, and don't include this section group.
5685 ins
.first
->second
.set_is_group_name();
5690 // We've already seen a linkonce section and this is a linkonce
5691 // section. These don't block each other--this may be the same
5692 // symbol name with different section types.
5697 // Store the allocated sections into the section list.
5700 Layout::get_allocated_sections(Section_list
* section_list
) const
5702 for (Section_list::const_iterator p
= this->section_list_
.begin();
5703 p
!= this->section_list_
.end();
5705 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
5706 section_list
->push_back(*p
);
5709 // Store the executable sections into the section list.
5712 Layout::get_executable_sections(Section_list
* section_list
) const
5714 for (Section_list::const_iterator p
= this->section_list_
.begin();
5715 p
!= this->section_list_
.end();
5717 if (((*p
)->flags() & (elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR
))
5718 == (elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR
))
5719 section_list
->push_back(*p
);
5722 // Create an output segment.
5725 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
5727 gold_assert(!parameters
->options().relocatable());
5728 Output_segment
* oseg
= new Output_segment(type
, flags
);
5729 this->segment_list_
.push_back(oseg
);
5731 if (type
== elfcpp::PT_TLS
)
5732 this->tls_segment_
= oseg
;
5733 else if (type
== elfcpp::PT_GNU_RELRO
)
5734 this->relro_segment_
= oseg
;
5735 else if (type
== elfcpp::PT_INTERP
)
5736 this->interp_segment_
= oseg
;
5741 // Return the file offset of the normal symbol table.
5744 Layout::symtab_section_offset() const
5746 if (this->symtab_section_
!= NULL
)
5747 return this->symtab_section_
->offset();
5751 // Return the section index of the normal symbol table. It may have
5752 // been stripped by the -s/--strip-all option.
5755 Layout::symtab_section_shndx() const
5757 if (this->symtab_section_
!= NULL
)
5758 return this->symtab_section_
->out_shndx();
5762 // Write out the Output_sections. Most won't have anything to write,
5763 // since most of the data will come from input sections which are
5764 // handled elsewhere. But some Output_sections do have Output_data.
5767 Layout::write_output_sections(Output_file
* of
) const
5769 for (Section_list::const_iterator p
= this->section_list_
.begin();
5770 p
!= this->section_list_
.end();
5773 if (!(*p
)->after_input_sections())
5778 // Write out data not associated with a section or the symbol table.
5781 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
5783 if (!parameters
->options().strip_all())
5785 const Output_section
* symtab_section
= this->symtab_section_
;
5786 for (Section_list::const_iterator p
= this->section_list_
.begin();
5787 p
!= this->section_list_
.end();
5790 if ((*p
)->needs_symtab_index())
5792 gold_assert(symtab_section
!= NULL
);
5793 unsigned int index
= (*p
)->symtab_index();
5794 gold_assert(index
> 0 && index
!= -1U);
5795 off_t off
= (symtab_section
->offset()
5796 + index
* symtab_section
->entsize());
5797 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
5802 const Output_section
* dynsym_section
= this->dynsym_section_
;
5803 for (Section_list::const_iterator p
= this->section_list_
.begin();
5804 p
!= this->section_list_
.end();
5807 if ((*p
)->needs_dynsym_index())
5809 gold_assert(dynsym_section
!= NULL
);
5810 unsigned int index
= (*p
)->dynsym_index();
5811 gold_assert(index
> 0 && index
!= -1U);
5812 off_t off
= (dynsym_section
->offset()
5813 + index
* dynsym_section
->entsize());
5814 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
5818 // Write out the Output_data which are not in an Output_section.
5819 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
5820 p
!= this->special_output_list_
.end();
5824 // Write out the Output_data which are not in an Output_section
5825 // and are regenerated in each iteration of relaxation.
5826 for (Data_list::const_iterator p
= this->relax_output_list_
.begin();
5827 p
!= this->relax_output_list_
.end();
5832 // Write out the Output_sections which can only be written after the
5833 // input sections are complete.
5836 Layout::write_sections_after_input_sections(Output_file
* of
)
5838 // Determine the final section offsets, and thus the final output
5839 // file size. Note we finalize the .shstrab last, to allow the
5840 // after_input_section sections to modify their section-names before
5842 if (this->any_postprocessing_sections_
)
5844 off_t off
= this->output_file_size_
;
5845 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
5847 // Now that we've finalized the names, we can finalize the shstrab.
5849 this->set_section_offsets(off
,
5850 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
5852 if (off
> this->output_file_size_
)
5855 this->output_file_size_
= off
;
5859 for (Section_list::const_iterator p
= this->section_list_
.begin();
5860 p
!= this->section_list_
.end();
5863 if ((*p
)->after_input_sections())
5867 this->section_headers_
->write(of
);
5870 // If a tree-style build ID was requested, the parallel part of that computation
5871 // is already done, and the final hash-of-hashes is computed here. For other
5872 // types of build IDs, all the work is done here.
5875 Layout::write_build_id(Output_file
* of
, unsigned char* array_of_hashes
,
5876 size_t size_of_hashes
) const
5878 if (this->build_id_note_
== NULL
)
5881 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
5882 this->build_id_note_
->data_size());
5884 if (array_of_hashes
== NULL
)
5886 const size_t output_file_size
= this->output_file_size();
5887 const unsigned char* iv
= of
->get_input_view(0, output_file_size
);
5888 const char* style
= parameters
->options().build_id();
5890 // If we get here with style == "tree" then the output must be
5891 // too small for chunking, and we use SHA-1 in that case.
5892 if ((strcmp(style
, "sha1") == 0) || (strcmp(style
, "tree") == 0))
5893 sha1_buffer(reinterpret_cast<const char*>(iv
), output_file_size
, ov
);
5894 else if (strcmp(style
, "md5") == 0)
5895 md5_buffer(reinterpret_cast<const char*>(iv
), output_file_size
, ov
);
5899 of
->free_input_view(0, output_file_size
, iv
);
5903 // Non-overlapping substrings of the output file have been hashed.
5904 // Compute SHA-1 hash of the hashes.
5905 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes
),
5906 size_of_hashes
, ov
);
5907 delete[] array_of_hashes
;
5910 of
->write_output_view(this->build_id_note_
->offset(),
5911 this->build_id_note_
->data_size(),
5915 // Write out a binary file. This is called after the link is
5916 // complete. IN is the temporary output file we used to generate the
5917 // ELF code. We simply walk through the segments, read them from
5918 // their file offset in IN, and write them to their load address in
5919 // the output file. FIXME: with a bit more work, we could support
5920 // S-records and/or Intel hex format here.
5923 Layout::write_binary(Output_file
* in
) const
5925 gold_assert(parameters
->options().oformat_enum()
5926 == General_options::OBJECT_FORMAT_BINARY
);
5928 // Get the size of the binary file.
5929 uint64_t max_load_address
= 0;
5930 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
5931 p
!= this->segment_list_
.end();
5934 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
5936 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
5937 if (max_paddr
> max_load_address
)
5938 max_load_address
= max_paddr
;
5942 Output_file
out(parameters
->options().output_file_name());
5943 out
.open(max_load_address
);
5945 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
5946 p
!= this->segment_list_
.end();
5949 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
5951 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
5953 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
5955 memcpy(vout
, vin
, (*p
)->filesz());
5956 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
5957 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
5964 // Print the output sections to the map file.
5967 Layout::print_to_mapfile(Mapfile
* mapfile
) const
5969 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
5970 p
!= this->segment_list_
.end();
5972 (*p
)->print_sections_to_mapfile(mapfile
);
5973 for (Section_list::const_iterator p
= this->unattached_section_list_
.begin();
5974 p
!= this->unattached_section_list_
.end();
5976 (*p
)->print_to_mapfile(mapfile
);
5979 // Print statistical information to stderr. This is used for --stats.
5982 Layout::print_stats() const
5984 this->namepool_
.print_stats("section name pool");
5985 this->sympool_
.print_stats("output symbol name pool");
5986 this->dynpool_
.print_stats("dynamic name pool");
5988 for (Section_list::const_iterator p
= this->section_list_
.begin();
5989 p
!= this->section_list_
.end();
5991 (*p
)->print_merge_stats();
5994 // Write_sections_task methods.
5996 // We can always run this task.
5999 Write_sections_task::is_runnable()
6004 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
6008 Write_sections_task::locks(Task_locker
* tl
)
6010 tl
->add(this, this->output_sections_blocker_
);
6011 if (this->input_sections_blocker_
!= NULL
)
6012 tl
->add(this, this->input_sections_blocker_
);
6013 tl
->add(this, this->final_blocker_
);
6016 // Run the task--write out the data.
6019 Write_sections_task::run(Workqueue
*)
6021 this->layout_
->write_output_sections(this->of_
);
6024 // Write_data_task methods.
6026 // We can always run this task.
6029 Write_data_task::is_runnable()
6034 // We need to unlock FINAL_BLOCKER when finished.
6037 Write_data_task::locks(Task_locker
* tl
)
6039 tl
->add(this, this->final_blocker_
);
6042 // Run the task--write out the data.
6045 Write_data_task::run(Workqueue
*)
6047 this->layout_
->write_data(this->symtab_
, this->of_
);
6050 // Write_symbols_task methods.
6052 // We can always run this task.
6055 Write_symbols_task::is_runnable()
6060 // We need to unlock FINAL_BLOCKER when finished.
6063 Write_symbols_task::locks(Task_locker
* tl
)
6065 tl
->add(this, this->final_blocker_
);
6068 // Run the task--write out the symbols.
6071 Write_symbols_task::run(Workqueue
*)
6073 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
6074 this->layout_
->symtab_xindex(),
6075 this->layout_
->dynsym_xindex(), this->of_
);
6078 // Write_after_input_sections_task methods.
6080 // We can only run this task after the input sections have completed.
6083 Write_after_input_sections_task::is_runnable()
6085 if (this->input_sections_blocker_
->is_blocked())
6086 return this->input_sections_blocker_
;
6090 // We need to unlock FINAL_BLOCKER when finished.
6093 Write_after_input_sections_task::locks(Task_locker
* tl
)
6095 tl
->add(this, this->final_blocker_
);
6101 Write_after_input_sections_task::run(Workqueue
*)
6103 this->layout_
->write_sections_after_input_sections(this->of_
);
6106 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6107 // or as a "tree" where each chunk of the string is hashed and then those
6108 // hashes are put into a (much smaller) string which is hashed with sha1.
6109 // We compute a checksum over the entire file because that is simplest.
6112 Build_id_task_runner::run(Workqueue
* workqueue
, const Task
*)
6114 Task_token
* post_hash_tasks_blocker
= new Task_token(true);
6115 const Layout
* layout
= this->layout_
;
6116 Output_file
* of
= this->of_
;
6117 const size_t filesize
= (layout
->output_file_size() <= 0 ? 0
6118 : static_cast<size_t>(layout
->output_file_size()));
6119 unsigned char* array_of_hashes
= NULL
;
6120 size_t size_of_hashes
= 0;
6122 if (strcmp(this->options_
->build_id(), "tree") == 0
6123 && this->options_
->build_id_chunk_size_for_treehash() > 0
6125 && (filesize
>= this->options_
->build_id_min_file_size_for_treehash()))
6127 static const size_t MD5_OUTPUT_SIZE_IN_BYTES
= 16;
6128 const size_t chunk_size
=
6129 this->options_
->build_id_chunk_size_for_treehash();
6130 const size_t num_hashes
= ((filesize
- 1) / chunk_size
) + 1;
6131 post_hash_tasks_blocker
->add_blockers(num_hashes
);
6132 size_of_hashes
= num_hashes
* MD5_OUTPUT_SIZE_IN_BYTES
;
6133 array_of_hashes
= new unsigned char[size_of_hashes
];
6134 unsigned char *dst
= array_of_hashes
;
6135 for (size_t i
= 0, src_offset
= 0; i
< num_hashes
;
6136 i
++, dst
+= MD5_OUTPUT_SIZE_IN_BYTES
, src_offset
+= chunk_size
)
6138 size_t size
= std::min(chunk_size
, filesize
- src_offset
);
6139 workqueue
->queue(new Hash_task(of
,
6143 post_hash_tasks_blocker
));
6147 // Queue the final task to write the build id and close the output file.
6148 workqueue
->queue(new Task_function(new Close_task_runner(this->options_
,
6153 post_hash_tasks_blocker
,
6154 "Task_function Close_task_runner"));
6157 // Close_task_runner methods.
6159 // Finish up the build ID computation, if necessary, and write a binary file,
6160 // if necessary. Then close the output file.
6163 Close_task_runner::run(Workqueue
*, const Task
*)
6165 // At this point the multi-threaded part of the build ID computation,
6166 // if any, is done. See Build_id_task_runner.
6167 this->layout_
->write_build_id(this->of_
, this->array_of_hashes_
,
6168 this->size_of_hashes_
);
6170 // If we've been asked to create a binary file, we do so here.
6171 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
6172 this->layout_
->write_binary(this->of_
);
6174 if (this->options_
->dependency_file())
6175 File_read::write_dependency_file(this->options_
->dependency_file(),
6176 this->options_
->output_file_name());
6181 // Instantiate the templates we need. We could use the configure
6182 // script to restrict this to only the ones for implemented targets.
6184 #ifdef HAVE_TARGET_32_LITTLE
6187 Layout::init_fixed_output_section
<32, false>(
6189 elfcpp::Shdr
<32, false>& shdr
);
6192 #ifdef HAVE_TARGET_32_BIG
6195 Layout::init_fixed_output_section
<32, true>(
6197 elfcpp::Shdr
<32, true>& shdr
);
6200 #ifdef HAVE_TARGET_64_LITTLE
6203 Layout::init_fixed_output_section
<64, false>(
6205 elfcpp::Shdr
<64, false>& shdr
);
6208 #ifdef HAVE_TARGET_64_BIG
6211 Layout::init_fixed_output_section
<64, true>(
6213 elfcpp::Shdr
<64, true>& shdr
);
6216 #ifdef HAVE_TARGET_32_LITTLE
6219 Layout::layout
<32, false>(Sized_relobj_file
<32, false>* object
,
6222 const elfcpp::Shdr
<32, false>& shdr
,
6223 unsigned int, unsigned int, unsigned int, off_t
*);
6226 #ifdef HAVE_TARGET_32_BIG
6229 Layout::layout
<32, true>(Sized_relobj_file
<32, true>* object
,
6232 const elfcpp::Shdr
<32, true>& shdr
,
6233 unsigned int, unsigned int, unsigned int, off_t
*);
6236 #ifdef HAVE_TARGET_64_LITTLE
6239 Layout::layout
<64, false>(Sized_relobj_file
<64, false>* object
,
6242 const elfcpp::Shdr
<64, false>& shdr
,
6243 unsigned int, unsigned int, unsigned int, off_t
*);
6246 #ifdef HAVE_TARGET_64_BIG
6249 Layout::layout
<64, true>(Sized_relobj_file
<64, true>* object
,
6252 const elfcpp::Shdr
<64, true>& shdr
,
6253 unsigned int, unsigned int, unsigned int, off_t
*);
6256 #ifdef HAVE_TARGET_32_LITTLE
6259 Layout::layout_reloc
<32, false>(Sized_relobj_file
<32, false>* object
,
6260 unsigned int reloc_shndx
,
6261 const elfcpp::Shdr
<32, false>& shdr
,
6262 Output_section
* data_section
,
6263 Relocatable_relocs
* rr
);
6266 #ifdef HAVE_TARGET_32_BIG
6269 Layout::layout_reloc
<32, true>(Sized_relobj_file
<32, true>* object
,
6270 unsigned int reloc_shndx
,
6271 const elfcpp::Shdr
<32, true>& shdr
,
6272 Output_section
* data_section
,
6273 Relocatable_relocs
* rr
);
6276 #ifdef HAVE_TARGET_64_LITTLE
6279 Layout::layout_reloc
<64, false>(Sized_relobj_file
<64, false>* object
,
6280 unsigned int reloc_shndx
,
6281 const elfcpp::Shdr
<64, false>& shdr
,
6282 Output_section
* data_section
,
6283 Relocatable_relocs
* rr
);
6286 #ifdef HAVE_TARGET_64_BIG
6289 Layout::layout_reloc
<64, true>(Sized_relobj_file
<64, true>* object
,
6290 unsigned int reloc_shndx
,
6291 const elfcpp::Shdr
<64, true>& shdr
,
6292 Output_section
* data_section
,
6293 Relocatable_relocs
* rr
);
6296 #ifdef HAVE_TARGET_32_LITTLE
6299 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
6300 Sized_relobj_file
<32, false>* object
,
6302 const char* group_section_name
,
6303 const char* signature
,
6304 const elfcpp::Shdr
<32, false>& shdr
,
6305 elfcpp::Elf_Word flags
,
6306 std::vector
<unsigned int>* shndxes
);
6309 #ifdef HAVE_TARGET_32_BIG
6312 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
6313 Sized_relobj_file
<32, true>* object
,
6315 const char* group_section_name
,
6316 const char* signature
,
6317 const elfcpp::Shdr
<32, true>& shdr
,
6318 elfcpp::Elf_Word flags
,
6319 std::vector
<unsigned int>* shndxes
);
6322 #ifdef HAVE_TARGET_64_LITTLE
6325 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
6326 Sized_relobj_file
<64, false>* object
,
6328 const char* group_section_name
,
6329 const char* signature
,
6330 const elfcpp::Shdr
<64, false>& shdr
,
6331 elfcpp::Elf_Word flags
,
6332 std::vector
<unsigned int>* shndxes
);
6335 #ifdef HAVE_TARGET_64_BIG
6338 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
6339 Sized_relobj_file
<64, true>* object
,
6341 const char* group_section_name
,
6342 const char* signature
,
6343 const elfcpp::Shdr
<64, true>& shdr
,
6344 elfcpp::Elf_Word flags
,
6345 std::vector
<unsigned int>* shndxes
);
6348 #ifdef HAVE_TARGET_32_LITTLE
6351 Layout::layout_eh_frame
<32, false>(Sized_relobj_file
<32, false>* object
,
6352 const unsigned char* symbols
,
6354 const unsigned char* symbol_names
,
6355 off_t symbol_names_size
,
6357 const elfcpp::Shdr
<32, false>& shdr
,
6358 unsigned int reloc_shndx
,
6359 unsigned int reloc_type
,
6363 #ifdef HAVE_TARGET_32_BIG
6366 Layout::layout_eh_frame
<32, true>(Sized_relobj_file
<32, true>* object
,
6367 const unsigned char* symbols
,
6369 const unsigned char* symbol_names
,
6370 off_t symbol_names_size
,
6372 const elfcpp::Shdr
<32, true>& shdr
,
6373 unsigned int reloc_shndx
,
6374 unsigned int reloc_type
,
6378 #ifdef HAVE_TARGET_64_LITTLE
6381 Layout::layout_eh_frame
<64, false>(Sized_relobj_file
<64, false>* object
,
6382 const unsigned char* symbols
,
6384 const unsigned char* symbol_names
,
6385 off_t symbol_names_size
,
6387 const elfcpp::Shdr
<64, false>& shdr
,
6388 unsigned int reloc_shndx
,
6389 unsigned int reloc_type
,
6393 #ifdef HAVE_TARGET_64_BIG
6396 Layout::layout_eh_frame
<64, true>(Sized_relobj_file
<64, true>* object
,
6397 const unsigned char* symbols
,
6399 const unsigned char* symbol_names
,
6400 off_t symbol_names_size
,
6402 const elfcpp::Shdr
<64, true>& shdr
,
6403 unsigned int reloc_shndx
,
6404 unsigned int reloc_type
,
6408 #ifdef HAVE_TARGET_32_LITTLE
6411 Layout::add_to_gdb_index(bool is_type_unit
,
6412 Sized_relobj
<32, false>* object
,
6413 const unsigned char* symbols
,
6416 unsigned int reloc_shndx
,
6417 unsigned int reloc_type
);
6420 #ifdef HAVE_TARGET_32_BIG
6423 Layout::add_to_gdb_index(bool is_type_unit
,
6424 Sized_relobj
<32, true>* object
,
6425 const unsigned char* symbols
,
6428 unsigned int reloc_shndx
,
6429 unsigned int reloc_type
);
6432 #ifdef HAVE_TARGET_64_LITTLE
6435 Layout::add_to_gdb_index(bool is_type_unit
,
6436 Sized_relobj
<64, false>* object
,
6437 const unsigned char* symbols
,
6440 unsigned int reloc_shndx
,
6441 unsigned int reloc_type
);
6444 #ifdef HAVE_TARGET_64_BIG
6447 Layout::add_to_gdb_index(bool is_type_unit
,
6448 Sized_relobj
<64, true>* object
,
6449 const unsigned char* symbols
,
6452 unsigned int reloc_shndx
,
6453 unsigned int reloc_type
);
6456 } // End namespace gold.