1 /* Support for HPPA 64-bit ELF
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
22 #include "alloca-conf.h"
28 #include "elf64-hppa.h"
29 #include "libiberty.h"
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
39 /* The stub is supposed to load the target address and target's DP
40 value out of the PLT, then do an external branch to the target
45 LDD PLTOFF+8(%r27),%r27
47 Note that we must use the LDD with a 14 bit displacement, not the one
48 with a 5 bit displacement. */
49 static char plt_stub
[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 0x53, 0x7b, 0x00, 0x00 };
52 struct elf64_hppa_link_hash_entry
54 struct elf_link_hash_entry eh
;
56 /* Offsets for this symbol in various linker sections. */
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry
*next
;
84 /* The type of the relocation. */
87 /* The input section of the relocation. */
90 /* Number of relocs copied in this section. */
93 /* The index of the section symbol for the input section of
94 the relocation. Only needed when building shared libraries. */
97 /* The offset within the input section of the relocation. */
100 /* The addend for the relocation. */
105 /* Nonzero if this symbol needs an entry in one of the linker
113 struct elf64_hppa_link_hash_table
115 struct elf_link_hash_table root
;
117 /* Shortcuts to get to the various linker defined sections. */
119 asection
*dlt_rel_sec
;
121 asection
*opd_rel_sec
;
122 asection
*other_rel_sec
;
124 /* Offset of __gp within .plt section. When the PLT gets large we want
125 to slide __gp into the PLT section so that we can continue to use
126 single DP relative instructions to load values out of the PLT. */
129 /* Note this is not strictly correct. We should create a stub section for
130 each input section with calls. The stub section should be placed before
131 the section with the call. */
134 bfd_vma text_segment_base
;
135 bfd_vma data_segment_base
;
137 /* We build tables to map from an input section back to its
138 symbol index. This is the BFD for which we currently have
140 bfd
*section_syms_bfd
;
142 /* Array of symbol numbers for each input section attached to the
147 #define hppa_link_hash_table(p) \
148 ((is_elf_hash_table ((p)->hash) \
149 && elf_hash_table_id (elf_hash_table (p)) == HPPA64_ELF_DATA) \
150 ? (struct elf64_hppa_link_hash_table *) (p)->hash : NULL)
152 #define hppa_elf_hash_entry(ent) \
153 ((struct elf64_hppa_link_hash_entry *)(ent))
155 #define eh_name(eh) \
156 (eh ? eh->root.root.string : "<undef>")
158 typedef struct bfd_hash_entry
*(*new_hash_entry_func
)
159 (struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *);
161 static struct bfd_link_hash_table
*elf64_hppa_hash_table_create
164 /* This must follow the definitions of the various derived linker
165 hash tables and shared functions. */
166 #include "elf-hppa.h"
168 static bfd_boolean elf64_hppa_object_p
171 static bfd_boolean elf64_hppa_create_dynamic_sections
172 (bfd
*, struct bfd_link_info
*);
174 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
175 (struct bfd_link_info
*, struct elf_link_hash_entry
*);
177 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
178 (struct elf_link_hash_entry
*, void *);
180 static bfd_boolean elf64_hppa_size_dynamic_sections
181 (bfd
*, struct bfd_link_info
*);
183 static int elf64_hppa_link_output_symbol_hook
184 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
185 asection
*, struct elf_link_hash_entry
*);
187 static bfd_boolean elf64_hppa_finish_dynamic_symbol
188 (bfd
*, struct bfd_link_info
*,
189 struct elf_link_hash_entry
*, Elf_Internal_Sym
*);
191 static bfd_boolean elf64_hppa_finish_dynamic_sections
192 (bfd
*, struct bfd_link_info
*);
194 static bfd_boolean elf64_hppa_check_relocs
195 (bfd
*, struct bfd_link_info
*,
196 asection
*, const Elf_Internal_Rela
*);
198 static bfd_boolean elf64_hppa_dynamic_symbol_p
199 (struct elf_link_hash_entry
*, struct bfd_link_info
*);
201 static bfd_boolean elf64_hppa_mark_exported_functions
202 (struct elf_link_hash_entry
*, void *);
204 static bfd_boolean elf64_hppa_finalize_opd
205 (struct elf_link_hash_entry
*, void *);
207 static bfd_boolean elf64_hppa_finalize_dlt
208 (struct elf_link_hash_entry
*, void *);
210 static bfd_boolean allocate_global_data_dlt
211 (struct elf_link_hash_entry
*, void *);
213 static bfd_boolean allocate_global_data_plt
214 (struct elf_link_hash_entry
*, void *);
216 static bfd_boolean allocate_global_data_stub
217 (struct elf_link_hash_entry
*, void *);
219 static bfd_boolean allocate_global_data_opd
220 (struct elf_link_hash_entry
*, void *);
222 static bfd_boolean get_reloc_section
223 (bfd
*, struct elf64_hppa_link_hash_table
*, asection
*);
225 static bfd_boolean count_dyn_reloc
226 (bfd
*, struct elf64_hppa_link_hash_entry
*,
227 int, asection
*, int, bfd_vma
, bfd_vma
);
229 static bfd_boolean allocate_dynrel_entries
230 (struct elf_link_hash_entry
*, void *);
232 static bfd_boolean elf64_hppa_finalize_dynreloc
233 (struct elf_link_hash_entry
*, void *);
235 static bfd_boolean get_opd
236 (bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*);
238 static bfd_boolean get_plt
239 (bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*);
241 static bfd_boolean get_dlt
242 (bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*);
244 static bfd_boolean get_stub
245 (bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*);
247 static int elf64_hppa_elf_get_symbol_type
248 (Elf_Internal_Sym
*, int);
250 /* Initialize an entry in the link hash table. */
252 static struct bfd_hash_entry
*
253 hppa64_link_hash_newfunc (struct bfd_hash_entry
*entry
,
254 struct bfd_hash_table
*table
,
257 /* Allocate the structure if it has not already been allocated by a
261 entry
= bfd_hash_allocate (table
,
262 sizeof (struct elf64_hppa_link_hash_entry
));
267 /* Call the allocation method of the superclass. */
268 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
271 struct elf64_hppa_link_hash_entry
*hh
;
273 /* Initialize our local data. All zeros. */
274 hh
= hppa_elf_hash_entry (entry
);
275 memset (&hh
->dlt_offset
, 0,
276 (sizeof (struct elf64_hppa_link_hash_entry
)
277 - offsetof (struct elf64_hppa_link_hash_entry
, dlt_offset
)));
283 /* Create the derived linker hash table. The PA64 ELF port uses this
284 derived hash table to keep information specific to the PA ElF
285 linker (without using static variables). */
287 static struct bfd_link_hash_table
*
288 elf64_hppa_hash_table_create (bfd
*abfd
)
290 struct elf64_hppa_link_hash_table
*htab
;
291 size_t amt
= sizeof (*htab
);
293 htab
= bfd_zmalloc (amt
);
297 if (!_bfd_elf_link_hash_table_init (&htab
->root
, abfd
,
298 hppa64_link_hash_newfunc
,
299 sizeof (struct elf64_hppa_link_hash_entry
),
306 htab
->root
.dt_pltgot_required
= TRUE
;
307 htab
->text_segment_base
= (bfd_vma
) -1;
308 htab
->data_segment_base
= (bfd_vma
) -1;
310 return &htab
->root
.root
;
313 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
315 Additionally we set the default architecture and machine. */
317 elf64_hppa_object_p (bfd
*abfd
)
319 Elf_Internal_Ehdr
* i_ehdrp
;
322 i_ehdrp
= elf_elfheader (abfd
);
323 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
325 /* GCC on hppa-linux produces binaries with OSABI=GNU,
326 but the kernel produces corefiles with OSABI=SysV. */
327 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_GNU
328 && i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
333 /* HPUX produces binaries with OSABI=HPUX,
334 but the kernel produces corefiles with OSABI=SysV. */
335 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
336 && i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
340 flags
= i_ehdrp
->e_flags
;
341 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
344 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
346 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
348 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
349 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
351 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
352 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
353 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
355 /* Don't be fussy. */
359 /* Given section type (hdr->sh_type), return a boolean indicating
360 whether or not the section is an elf64-hppa specific section. */
362 elf64_hppa_section_from_shdr (bfd
*abfd
,
363 Elf_Internal_Shdr
*hdr
,
367 switch (hdr
->sh_type
)
370 if (strcmp (name
, ".PARISC.archext") != 0)
373 case SHT_PARISC_UNWIND
:
374 if (strcmp (name
, ".PARISC.unwind") != 0)
378 case SHT_PARISC_ANNOT
:
383 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
386 return ((hdr
->sh_flags
& SHF_PARISC_SHORT
) == 0
387 || bfd_set_section_flags (hdr
->bfd_section
,
388 hdr
->bfd_section
->flags
| SEC_SMALL_DATA
));
391 /* SEC is a section containing relocs for an input BFD when linking; return
392 a suitable section for holding relocs in the output BFD for a link. */
395 get_reloc_section (bfd
*abfd
,
396 struct elf64_hppa_link_hash_table
*hppa_info
,
399 const char *srel_name
;
403 srel_name
= (bfd_elf_string_from_elf_section
404 (abfd
, elf_elfheader(abfd
)->e_shstrndx
,
405 _bfd_elf_single_rel_hdr(sec
)->sh_name
));
406 if (srel_name
== NULL
)
409 dynobj
= hppa_info
->root
.dynobj
;
411 hppa_info
->root
.dynobj
= dynobj
= abfd
;
413 srel
= bfd_get_linker_section (dynobj
, srel_name
);
416 srel
= bfd_make_section_anyway_with_flags (dynobj
, srel_name
,
424 || !bfd_set_section_alignment (srel
, 3))
428 hppa_info
->other_rel_sec
= srel
;
432 /* Add a new entry to the list of dynamic relocations against DYN_H.
434 We use this to keep a record of all the FPTR relocations against a
435 particular symbol so that we can create FPTR relocations in the
439 count_dyn_reloc (bfd
*abfd
,
440 struct elf64_hppa_link_hash_entry
*hh
,
447 struct elf64_hppa_dyn_reloc_entry
*rent
;
449 rent
= (struct elf64_hppa_dyn_reloc_entry
*)
450 bfd_alloc (abfd
, (bfd_size_type
) sizeof (*rent
));
454 rent
->next
= hh
->reloc_entries
;
457 rent
->sec_symndx
= sec_symndx
;
458 rent
->offset
= offset
;
459 rent
->addend
= addend
;
460 hh
->reloc_entries
= rent
;
465 /* Return a pointer to the local DLT, PLT and OPD reference counts
466 for ABFD. Returns NULL if the storage allocation fails. */
468 static bfd_signed_vma
*
469 hppa64_elf_local_refcounts (bfd
*abfd
)
471 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
472 bfd_signed_vma
*local_refcounts
;
474 local_refcounts
= elf_local_got_refcounts (abfd
);
475 if (local_refcounts
== NULL
)
479 /* Allocate space for local DLT, PLT and OPD reference
480 counts. Done this way to save polluting elf_obj_tdata
481 with another target specific pointer. */
482 size
= symtab_hdr
->sh_info
;
483 size
*= 3 * sizeof (bfd_signed_vma
);
484 local_refcounts
= bfd_zalloc (abfd
, size
);
485 elf_local_got_refcounts (abfd
) = local_refcounts
;
487 return local_refcounts
;
490 /* Scan the RELOCS and record the type of dynamic entries that each
491 referenced symbol needs. */
494 elf64_hppa_check_relocs (bfd
*abfd
,
495 struct bfd_link_info
*info
,
497 const Elf_Internal_Rela
*relocs
)
499 struct elf64_hppa_link_hash_table
*hppa_info
;
500 const Elf_Internal_Rela
*relend
;
501 Elf_Internal_Shdr
*symtab_hdr
;
502 const Elf_Internal_Rela
*rel
;
503 unsigned int sec_symndx
;
505 if (bfd_link_relocatable (info
))
508 /* If this is the first dynamic object found in the link, create
509 the special sections required for dynamic linking. */
510 if (! elf_hash_table (info
)->dynamic_sections_created
)
512 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
516 hppa_info
= hppa_link_hash_table (info
);
517 if (hppa_info
== NULL
)
519 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
521 /* If necessary, build a new table holding section symbols indices
524 if (bfd_link_pic (info
) && hppa_info
->section_syms_bfd
!= abfd
)
527 unsigned int highest_shndx
;
528 Elf_Internal_Sym
*local_syms
= NULL
;
529 Elf_Internal_Sym
*isym
, *isymend
;
532 /* We're done with the old cache of section index to section symbol
533 index information. Free it.
535 ?!? Note we leak the last section_syms array. Presumably we
536 could free it in one of the later routines in this file. */
537 free (hppa_info
->section_syms
);
539 /* Read this BFD's local symbols. */
540 if (symtab_hdr
->sh_info
!= 0)
542 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
543 if (local_syms
== NULL
)
544 local_syms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
545 symtab_hdr
->sh_info
, 0,
547 if (local_syms
== NULL
)
551 /* Record the highest section index referenced by the local symbols. */
553 isymend
= local_syms
+ symtab_hdr
->sh_info
;
554 for (isym
= local_syms
; isym
< isymend
; isym
++)
556 if (isym
->st_shndx
> highest_shndx
557 && isym
->st_shndx
< SHN_LORESERVE
)
558 highest_shndx
= isym
->st_shndx
;
561 /* Allocate an array to hold the section index to section symbol index
562 mapping. Bump by one since we start counting at zero. */
566 hppa_info
->section_syms
= (int *) bfd_malloc (amt
);
568 /* Now walk the local symbols again. If we find a section symbol,
569 record the index of the symbol into the section_syms array. */
570 for (i
= 0, isym
= local_syms
; isym
< isymend
; i
++, isym
++)
572 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
573 hppa_info
->section_syms
[isym
->st_shndx
] = i
;
576 /* We are finished with the local symbols. */
577 if (local_syms
!= NULL
578 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
580 if (! info
->keep_memory
)
584 /* Cache the symbols for elf_link_input_bfd. */
585 symtab_hdr
->contents
= (unsigned char *) local_syms
;
589 /* Record which BFD we built the section_syms mapping for. */
590 hppa_info
->section_syms_bfd
= abfd
;
593 /* Record the symbol index for this input section. We may need it for
594 relocations when building shared libraries. When not building shared
595 libraries this value is never really used, but assign it to zero to
596 prevent out of bounds memory accesses in other routines. */
597 if (bfd_link_pic (info
))
599 sec_symndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
601 /* If we did not find a section symbol for this section, then
602 something went terribly wrong above. */
603 if (sec_symndx
== SHN_BAD
)
606 if (sec_symndx
< SHN_LORESERVE
)
607 sec_symndx
= hppa_info
->section_syms
[sec_symndx
];
614 relend
= relocs
+ sec
->reloc_count
;
615 for (rel
= relocs
; rel
< relend
; ++rel
)
626 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
627 struct elf64_hppa_link_hash_entry
*hh
;
629 bfd_boolean maybe_dynamic
;
630 int dynrel_type
= R_PARISC_NONE
;
631 static reloc_howto_type
*howto
;
633 if (r_symndx
>= symtab_hdr
->sh_info
)
635 /* We're dealing with a global symbol -- find its hash entry
636 and mark it as being referenced. */
637 long indx
= r_symndx
- symtab_hdr
->sh_info
;
638 hh
= hppa_elf_hash_entry (elf_sym_hashes (abfd
)[indx
]);
639 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
640 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
641 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
643 /* PR15323, ref flags aren't set for references in the same
645 hh
->eh
.ref_regular
= 1;
650 /* We can only get preliminary data on whether a symbol is
651 locally or externally defined, as not all of the input files
652 have yet been processed. Do something with what we know, as
653 this may help reduce memory usage and processing time later. */
654 maybe_dynamic
= FALSE
;
655 if (hh
&& ((bfd_link_pic (info
)
657 || info
->unresolved_syms_in_shared_libs
== RM_IGNORE
))
658 || !hh
->eh
.def_regular
659 || hh
->eh
.root
.type
== bfd_link_hash_defweak
))
660 maybe_dynamic
= TRUE
;
662 howto
= elf_hppa_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
666 /* These are simple indirect references to symbols through the
667 DLT. We need to create a DLT entry for any symbols which
668 appears in a DLTIND relocation. */
669 case R_PARISC_DLTIND21L
:
670 case R_PARISC_DLTIND14R
:
671 case R_PARISC_DLTIND14F
:
672 case R_PARISC_DLTIND14WR
:
673 case R_PARISC_DLTIND14DR
:
674 need_entry
= NEED_DLT
;
677 /* ?!? These need a DLT entry. But I have no idea what to do with
678 the "link time TP value. */
679 case R_PARISC_LTOFF_TP21L
:
680 case R_PARISC_LTOFF_TP14R
:
681 case R_PARISC_LTOFF_TP14F
:
682 case R_PARISC_LTOFF_TP64
:
683 case R_PARISC_LTOFF_TP14WR
:
684 case R_PARISC_LTOFF_TP14DR
:
685 case R_PARISC_LTOFF_TP16F
:
686 case R_PARISC_LTOFF_TP16WF
:
687 case R_PARISC_LTOFF_TP16DF
:
688 need_entry
= NEED_DLT
;
691 /* These are function calls. Depending on their precise target we
692 may need to make a stub for them. The stub uses the PLT, so we
693 need to create PLT entries for these symbols too. */
694 case R_PARISC_PCREL12F
:
695 case R_PARISC_PCREL17F
:
696 case R_PARISC_PCREL22F
:
697 case R_PARISC_PCREL32
:
698 case R_PARISC_PCREL64
:
699 case R_PARISC_PCREL21L
:
700 case R_PARISC_PCREL17R
:
701 case R_PARISC_PCREL17C
:
702 case R_PARISC_PCREL14R
:
703 case R_PARISC_PCREL14F
:
704 case R_PARISC_PCREL22C
:
705 case R_PARISC_PCREL14WR
:
706 case R_PARISC_PCREL14DR
:
707 case R_PARISC_PCREL16F
:
708 case R_PARISC_PCREL16WF
:
709 case R_PARISC_PCREL16DF
:
710 /* Function calls might need to go through the .plt, and
711 might need a long branch stub. */
712 if (hh
!= NULL
&& hh
->eh
.type
!= STT_PARISC_MILLI
)
713 need_entry
= (NEED_PLT
| NEED_STUB
);
718 case R_PARISC_PLTOFF21L
:
719 case R_PARISC_PLTOFF14R
:
720 case R_PARISC_PLTOFF14F
:
721 case R_PARISC_PLTOFF14WR
:
722 case R_PARISC_PLTOFF14DR
:
723 case R_PARISC_PLTOFF16F
:
724 case R_PARISC_PLTOFF16WF
:
725 case R_PARISC_PLTOFF16DF
:
726 need_entry
= (NEED_PLT
);
730 if (bfd_link_pic (info
) || maybe_dynamic
)
731 need_entry
= (NEED_DYNREL
);
732 dynrel_type
= R_PARISC_DIR64
;
735 /* This is an indirect reference through the DLT to get the address
736 of a OPD descriptor. Thus we need to make a DLT entry that points
738 case R_PARISC_LTOFF_FPTR21L
:
739 case R_PARISC_LTOFF_FPTR14R
:
740 case R_PARISC_LTOFF_FPTR14WR
:
741 case R_PARISC_LTOFF_FPTR14DR
:
742 case R_PARISC_LTOFF_FPTR32
:
743 case R_PARISC_LTOFF_FPTR64
:
744 case R_PARISC_LTOFF_FPTR16F
:
745 case R_PARISC_LTOFF_FPTR16WF
:
746 case R_PARISC_LTOFF_FPTR16DF
:
747 if (bfd_link_pic (info
) || maybe_dynamic
)
748 need_entry
= (NEED_DLT
| NEED_OPD
| NEED_PLT
);
750 need_entry
= (NEED_DLT
| NEED_OPD
| NEED_PLT
);
751 dynrel_type
= R_PARISC_FPTR64
;
754 /* This is a simple OPD entry. */
755 case R_PARISC_FPTR64
:
756 if (bfd_link_pic (info
) || maybe_dynamic
)
757 need_entry
= (NEED_OPD
| NEED_PLT
| NEED_DYNREL
);
759 need_entry
= (NEED_OPD
| NEED_PLT
);
760 dynrel_type
= R_PARISC_FPTR64
;
763 /* Add more cases as needed. */
771 /* Stash away enough information to be able to find this symbol
772 regardless of whether or not it is local or global. */
774 hh
->sym_indx
= r_symndx
;
777 /* Create what's needed. */
778 if (need_entry
& NEED_DLT
)
780 /* Allocate space for a DLT entry, as well as a dynamic
781 relocation for this entry. */
782 if (! hppa_info
->dlt_sec
783 && ! get_dlt (abfd
, info
, hppa_info
))
789 hh
->eh
.got
.refcount
+= 1;
793 bfd_signed_vma
*local_dlt_refcounts
;
795 /* This is a DLT entry for a local symbol. */
796 local_dlt_refcounts
= hppa64_elf_local_refcounts (abfd
);
797 if (local_dlt_refcounts
== NULL
)
799 local_dlt_refcounts
[r_symndx
] += 1;
803 if (need_entry
& NEED_PLT
)
805 if (! hppa_info
->root
.splt
806 && ! get_plt (abfd
, info
, hppa_info
))
812 hh
->eh
.needs_plt
= 1;
813 hh
->eh
.plt
.refcount
+= 1;
817 bfd_signed_vma
*local_dlt_refcounts
;
818 bfd_signed_vma
*local_plt_refcounts
;
820 /* This is a PLT entry for a local symbol. */
821 local_dlt_refcounts
= hppa64_elf_local_refcounts (abfd
);
822 if (local_dlt_refcounts
== NULL
)
824 local_plt_refcounts
= local_dlt_refcounts
+ symtab_hdr
->sh_info
;
825 local_plt_refcounts
[r_symndx
] += 1;
829 if (need_entry
& NEED_STUB
)
831 if (! hppa_info
->stub_sec
832 && ! get_stub (abfd
, info
, hppa_info
))
838 if (need_entry
& NEED_OPD
)
840 if (! hppa_info
->opd_sec
841 && ! get_opd (abfd
, info
, hppa_info
))
844 /* FPTRs are not allocated by the dynamic linker for PA64,
845 though it is possible that will change in the future. */
851 bfd_signed_vma
*local_dlt_refcounts
;
852 bfd_signed_vma
*local_opd_refcounts
;
854 /* This is a OPD for a local symbol. */
855 local_dlt_refcounts
= hppa64_elf_local_refcounts (abfd
);
856 if (local_dlt_refcounts
== NULL
)
858 local_opd_refcounts
= (local_dlt_refcounts
859 + 2 * symtab_hdr
->sh_info
);
860 local_opd_refcounts
[r_symndx
] += 1;
864 /* Add a new dynamic relocation to the chain of dynamic
865 relocations for this symbol. */
866 if ((need_entry
& NEED_DYNREL
) && (sec
->flags
& SEC_ALLOC
))
868 if (! hppa_info
->other_rel_sec
869 && ! get_reloc_section (abfd
, hppa_info
, sec
))
872 /* Count dynamic relocations against global symbols. */
874 && !count_dyn_reloc (abfd
, hh
, dynrel_type
, sec
,
875 sec_symndx
, rel
->r_offset
, rel
->r_addend
))
878 /* If we are building a shared library and we just recorded
879 a dynamic R_PARISC_FPTR64 relocation, then make sure the
880 section symbol for this section ends up in the dynamic
882 if (bfd_link_pic (info
) && dynrel_type
== R_PARISC_FPTR64
883 && ! (bfd_elf_link_record_local_dynamic_symbol
884 (info
, abfd
, sec_symndx
)))
895 struct elf64_hppa_allocate_data
897 struct bfd_link_info
*info
;
901 /* Should we do dynamic things to this symbol? */
904 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry
*eh
,
905 struct bfd_link_info
*info
)
907 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
908 and relocations that retrieve a function descriptor? Assume the
910 if (_bfd_elf_dynamic_symbol_p (eh
, info
, 1))
912 /* ??? Why is this here and not elsewhere is_local_label_name. */
913 if (eh
->root
.root
.string
[0] == '$' && eh
->root
.root
.string
[1] == '$')
922 /* Mark all functions exported by this file so that we can later allocate
923 entries in .opd for them. */
926 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry
*eh
, void *data
)
928 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
929 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
930 struct elf64_hppa_link_hash_table
*hppa_info
;
932 hppa_info
= hppa_link_hash_table (info
);
933 if (hppa_info
== NULL
)
937 && (eh
->root
.type
== bfd_link_hash_defined
938 || eh
->root
.type
== bfd_link_hash_defweak
)
939 && eh
->root
.u
.def
.section
->output_section
!= NULL
940 && eh
->type
== STT_FUNC
)
942 if (! hppa_info
->opd_sec
943 && ! get_opd (hppa_info
->root
.dynobj
, info
, hppa_info
))
948 /* Put a flag here for output_symbol_hook. */
956 /* Allocate space for a DLT entry. */
959 allocate_global_data_dlt (struct elf_link_hash_entry
*eh
, void *data
)
961 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
962 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
966 if (bfd_link_pic (x
->info
))
968 /* Possibly add the symbol to the local dynamic symbol
969 table since we might need to create a dynamic relocation
971 if (eh
->dynindx
== -1 && eh
->type
!= STT_PARISC_MILLI
)
973 bfd
*owner
= eh
->root
.u
.def
.section
->owner
;
975 if (! (bfd_elf_link_record_local_dynamic_symbol
976 (x
->info
, owner
, hh
->sym_indx
)))
981 hh
->dlt_offset
= x
->ofs
;
982 x
->ofs
+= DLT_ENTRY_SIZE
;
987 /* Allocate space for a DLT.PLT entry. */
990 allocate_global_data_plt (struct elf_link_hash_entry
*eh
, void *data
)
992 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
993 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*) data
;
996 && elf64_hppa_dynamic_symbol_p (eh
, x
->info
)
997 && !((eh
->root
.type
== bfd_link_hash_defined
998 || eh
->root
.type
== bfd_link_hash_defweak
)
999 && eh
->root
.u
.def
.section
->output_section
!= NULL
))
1001 hh
->plt_offset
= x
->ofs
;
1002 x
->ofs
+= PLT_ENTRY_SIZE
;
1003 if (hh
->plt_offset
< 0x2000)
1005 struct elf64_hppa_link_hash_table
*hppa_info
;
1007 hppa_info
= hppa_link_hash_table (x
->info
);
1008 if (hppa_info
== NULL
)
1011 hppa_info
->gp_offset
= hh
->plt_offset
;
1020 /* Allocate space for a STUB entry. */
1023 allocate_global_data_stub (struct elf_link_hash_entry
*eh
, void *data
)
1025 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
1026 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1029 && elf64_hppa_dynamic_symbol_p (eh
, x
->info
)
1030 && !((eh
->root
.type
== bfd_link_hash_defined
1031 || eh
->root
.type
== bfd_link_hash_defweak
)
1032 && eh
->root
.u
.def
.section
->output_section
!= NULL
))
1034 hh
->stub_offset
= x
->ofs
;
1035 x
->ofs
+= sizeof (plt_stub
);
1042 /* Allocate space for a FPTR entry. */
1045 allocate_global_data_opd (struct elf_link_hash_entry
*eh
, void *data
)
1047 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
1048 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1050 if (hh
&& hh
->want_opd
)
1052 /* We never need an opd entry for a symbol which is not
1053 defined by this output file. */
1054 if (hh
&& (hh
->eh
.root
.type
== bfd_link_hash_undefined
1055 || hh
->eh
.root
.type
== bfd_link_hash_undefweak
1056 || hh
->eh
.root
.u
.def
.section
->output_section
== NULL
))
1059 /* If we are creating a shared library, took the address of a local
1060 function or might export this function from this object file, then
1061 we have to create an opd descriptor. */
1062 else if (bfd_link_pic (x
->info
)
1064 || (hh
->eh
.dynindx
== -1 && hh
->eh
.type
!= STT_PARISC_MILLI
)
1065 || (hh
->eh
.root
.type
== bfd_link_hash_defined
1066 || hh
->eh
.root
.type
== bfd_link_hash_defweak
))
1068 /* If we are creating a shared library, then we will have to
1069 create a runtime relocation for the symbol to properly
1070 initialize the .opd entry. Make sure the symbol gets
1071 added to the dynamic symbol table. */
1072 if (bfd_link_pic (x
->info
)
1073 && (hh
== NULL
|| (hh
->eh
.dynindx
== -1)))
1076 /* PR 6511: Default to using the dynamic symbol table. */
1077 owner
= (hh
->owner
? hh
->owner
: eh
->root
.u
.def
.section
->owner
);
1079 if (!bfd_elf_link_record_local_dynamic_symbol
1080 (x
->info
, owner
, hh
->sym_indx
))
1084 /* This may not be necessary or desirable anymore now that
1085 we have some support for dealing with section symbols
1086 in dynamic relocs. But name munging does make the result
1087 much easier to debug. ie, the EPLT reloc will reference
1088 a symbol like .foobar, instead of .text + offset. */
1089 if (bfd_link_pic (x
->info
) && eh
)
1092 struct elf_link_hash_entry
*nh
;
1094 new_name
= concat (".", eh
->root
.root
.string
, NULL
);
1096 nh
= elf_link_hash_lookup (elf_hash_table (x
->info
),
1097 new_name
, TRUE
, TRUE
, TRUE
);
1100 nh
->root
.type
= eh
->root
.type
;
1101 nh
->root
.u
.def
.value
= eh
->root
.u
.def
.value
;
1102 nh
->root
.u
.def
.section
= eh
->root
.u
.def
.section
;
1104 if (! bfd_elf_link_record_dynamic_symbol (x
->info
, nh
))
1107 hh
->opd_offset
= x
->ofs
;
1108 x
->ofs
+= OPD_ENTRY_SIZE
;
1111 /* Otherwise we do not need an opd entry. */
1118 /* HP requires the EI_OSABI field to be filled in. The assignment to
1119 EI_ABIVERSION may not be strictly necessary. */
1122 elf64_hppa_init_file_header (bfd
*abfd
, struct bfd_link_info
*info
)
1124 Elf_Internal_Ehdr
*i_ehdrp
;
1126 if (!_bfd_elf_init_file_header (abfd
, info
))
1129 i_ehdrp
= elf_elfheader (abfd
);
1130 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
1131 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;
1135 /* Create function descriptor section (.opd). This section is called .opd
1136 because it contains "official procedure descriptors". The "official"
1137 refers to the fact that these descriptors are used when taking the address
1138 of a procedure, thus ensuring a unique address for each procedure. */
1142 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1143 struct elf64_hppa_link_hash_table
*hppa_info
)
1148 opd
= hppa_info
->opd_sec
;
1151 dynobj
= hppa_info
->root
.dynobj
;
1153 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1155 opd
= bfd_make_section_anyway_with_flags (dynobj
, ".opd",
1160 | SEC_LINKER_CREATED
));
1162 || !bfd_set_section_alignment (opd
, 3))
1168 hppa_info
->opd_sec
= opd
;
1174 /* Create the PLT section. */
1178 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1179 struct elf64_hppa_link_hash_table
*hppa_info
)
1184 plt
= hppa_info
->root
.splt
;
1187 dynobj
= hppa_info
->root
.dynobj
;
1189 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1191 plt
= bfd_make_section_anyway_with_flags (dynobj
, ".plt",
1196 | SEC_LINKER_CREATED
));
1198 || !bfd_set_section_alignment (plt
, 3))
1204 hppa_info
->root
.splt
= plt
;
1210 /* Create the DLT section. */
1214 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1215 struct elf64_hppa_link_hash_table
*hppa_info
)
1220 dlt
= hppa_info
->dlt_sec
;
1223 dynobj
= hppa_info
->root
.dynobj
;
1225 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1227 dlt
= bfd_make_section_anyway_with_flags (dynobj
, ".dlt",
1232 | SEC_LINKER_CREATED
));
1234 || !bfd_set_section_alignment (dlt
, 3))
1240 hppa_info
->dlt_sec
= dlt
;
1246 /* Create the stubs section. */
1249 get_stub (bfd
*abfd
,
1250 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1251 struct elf64_hppa_link_hash_table
*hppa_info
)
1256 stub
= hppa_info
->stub_sec
;
1259 dynobj
= hppa_info
->root
.dynobj
;
1261 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1263 stub
= bfd_make_section_anyway_with_flags (dynobj
, ".stub",
1264 (SEC_ALLOC
| SEC_LOAD
1268 | SEC_LINKER_CREATED
));
1270 || !bfd_set_section_alignment (stub
, 3))
1276 hppa_info
->stub_sec
= stub
;
1282 /* Create sections necessary for dynamic linking. This is only a rough
1283 cut and will likely change as we learn more about the somewhat
1284 unusual dynamic linking scheme HP uses.
1287 Contains code to implement cross-space calls. The first time one
1288 of the stubs is used it will call into the dynamic linker, later
1289 calls will go straight to the target.
1291 The only stub we support right now looks like
1295 ldd OFFSET+8(%dp),%dp
1297 Other stubs may be needed in the future. We may want the remove
1298 the break/nop instruction. It is only used right now to keep the
1299 offset of a .plt entry and a .stub entry in sync.
1302 This is what most people call the .got. HP used a different name.
1306 Relocations for the DLT.
1309 Function pointers as address,gp pairs.
1312 Should contain dynamic IPLT (and EPLT?) relocations.
1318 EPLT relocations for symbols exported from shared libraries. */
1321 elf64_hppa_create_dynamic_sections (bfd
*abfd
,
1322 struct bfd_link_info
*info
)
1325 struct elf64_hppa_link_hash_table
*hppa_info
;
1327 hppa_info
= hppa_link_hash_table (info
);
1328 if (hppa_info
== NULL
)
1331 if (! get_stub (abfd
, info
, hppa_info
))
1334 if (! get_dlt (abfd
, info
, hppa_info
))
1337 if (! get_plt (abfd
, info
, hppa_info
))
1340 if (! get_opd (abfd
, info
, hppa_info
))
1343 s
= bfd_make_section_anyway_with_flags (abfd
, ".rela.dlt",
1344 (SEC_ALLOC
| SEC_LOAD
1348 | SEC_LINKER_CREATED
));
1350 || !bfd_set_section_alignment (s
, 3))
1352 hppa_info
->dlt_rel_sec
= s
;
1354 s
= bfd_make_section_anyway_with_flags (abfd
, ".rela.plt",
1355 (SEC_ALLOC
| SEC_LOAD
1359 | SEC_LINKER_CREATED
));
1361 || !bfd_set_section_alignment (s
, 3))
1363 hppa_info
->root
.srelplt
= s
;
1365 s
= bfd_make_section_anyway_with_flags (abfd
, ".rela.data",
1366 (SEC_ALLOC
| SEC_LOAD
1370 | SEC_LINKER_CREATED
));
1372 || !bfd_set_section_alignment (s
, 3))
1374 hppa_info
->other_rel_sec
= s
;
1376 s
= bfd_make_section_anyway_with_flags (abfd
, ".rela.opd",
1377 (SEC_ALLOC
| SEC_LOAD
1381 | SEC_LINKER_CREATED
));
1383 || !bfd_set_section_alignment (s
, 3))
1385 hppa_info
->opd_rel_sec
= s
;
1390 /* Allocate dynamic relocations for those symbols that turned out
1394 allocate_dynrel_entries (struct elf_link_hash_entry
*eh
, void *data
)
1396 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
1397 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1398 struct elf64_hppa_link_hash_table
*hppa_info
;
1399 struct elf64_hppa_dyn_reloc_entry
*rent
;
1400 bfd_boolean dynamic_symbol
, shared
;
1402 hppa_info
= hppa_link_hash_table (x
->info
);
1403 if (hppa_info
== NULL
)
1406 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (eh
, x
->info
);
1407 shared
= bfd_link_pic (x
->info
);
1409 /* We may need to allocate relocations for a non-dynamic symbol
1410 when creating a shared library. */
1411 if (!dynamic_symbol
&& !shared
)
1414 /* Take care of the normal data relocations. */
1416 for (rent
= hh
->reloc_entries
; rent
; rent
= rent
->next
)
1418 /* Allocate one iff we are building a shared library, the relocation
1419 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1420 if (!shared
&& rent
->type
== R_PARISC_FPTR64
&& hh
->want_opd
)
1423 hppa_info
->other_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1425 /* Make sure this symbol gets into the dynamic symbol table if it is
1426 not already recorded. ?!? This should not be in the loop since
1427 the symbol need only be added once. */
1428 if (eh
->dynindx
== -1 && eh
->type
!= STT_PARISC_MILLI
)
1429 if (!bfd_elf_link_record_local_dynamic_symbol
1430 (x
->info
, rent
->sec
->owner
, hh
->sym_indx
))
1434 /* Take care of the GOT and PLT relocations. */
1436 if ((dynamic_symbol
|| shared
) && hh
->want_dlt
)
1437 hppa_info
->dlt_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1439 /* If we are building a shared library, then every symbol that has an
1440 opd entry will need an EPLT relocation to relocate the symbol's address
1441 and __gp value based on the runtime load address. */
1442 if (shared
&& hh
->want_opd
)
1443 hppa_info
->opd_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1445 if (hh
->want_plt
&& dynamic_symbol
)
1447 bfd_size_type t
= 0;
1449 /* Dynamic symbols get one IPLT relocation. Local symbols in
1450 shared libraries get two REL relocations. Local symbols in
1451 main applications get nothing. */
1453 t
= sizeof (Elf64_External_Rela
);
1455 t
= 2 * sizeof (Elf64_External_Rela
);
1457 hppa_info
->root
.srelplt
->size
+= t
;
1463 /* Adjust a symbol defined by a dynamic object and referenced by a
1467 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1468 struct elf_link_hash_entry
*eh
)
1470 /* ??? Undefined symbols with PLT entries should be re-defined
1471 to be the PLT entry. */
1473 /* If this is a weak symbol, and there is a real definition, the
1474 processor independent code will have arranged for us to see the
1475 real definition first, and we can just use the same value. */
1476 if (eh
->is_weakalias
)
1478 struct elf_link_hash_entry
*def
= weakdef (eh
);
1479 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
1480 eh
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
1481 eh
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
1485 /* If this is a reference to a symbol defined by a dynamic object which
1486 is not a function, we might allocate the symbol in our .dynbss section
1487 and allocate a COPY dynamic relocation.
1489 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1495 /* This function is called via elf_link_hash_traverse to mark millicode
1496 symbols with a dynindx of -1 and to remove the string table reference
1497 from the dynamic symbol table. If the symbol is not a millicode symbol,
1498 elf64_hppa_mark_exported_functions is called. */
1501 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry
*eh
,
1504 struct bfd_link_info
*info
= (struct bfd_link_info
*) data
;
1506 if (eh
->type
== STT_PARISC_MILLI
)
1508 if (eh
->dynindx
!= -1)
1511 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1517 return elf64_hppa_mark_exported_functions (eh
, data
);
1520 /* Set the final sizes of the dynamic sections and allocate memory for
1521 the contents of our special sections. */
1524 elf64_hppa_size_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
1526 struct elf64_hppa_link_hash_table
*hppa_info
;
1527 struct elf64_hppa_allocate_data data
;
1533 hppa_info
= hppa_link_hash_table (info
);
1534 if (hppa_info
== NULL
)
1537 dynobj
= hppa_info
->root
.dynobj
;
1538 BFD_ASSERT (dynobj
!= NULL
);
1540 /* Mark each function this program exports so that we will allocate
1541 space in the .opd section for each function's FPTR. If we are
1542 creating dynamic sections, change the dynamic index of millicode
1543 symbols to -1 and remove them from the string table for .dynstr.
1545 We have to traverse the main linker hash table since we have to
1546 find functions which may not have been mentioned in any relocs. */
1547 elf_link_hash_traverse (&hppa_info
->root
,
1548 (hppa_info
->root
.dynamic_sections_created
1549 ? elf64_hppa_mark_milli_and_exported_functions
1550 : elf64_hppa_mark_exported_functions
),
1553 if (hppa_info
->root
.dynamic_sections_created
)
1555 /* Set the contents of the .interp section to the interpreter. */
1556 if (bfd_link_executable (info
) && !info
->nointerp
)
1558 sec
= bfd_get_linker_section (dynobj
, ".interp");
1559 BFD_ASSERT (sec
!= NULL
);
1560 sec
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1561 sec
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1566 /* We may have created entries in the .rela.got section.
1567 However, if we are not creating the dynamic sections, we will
1568 not actually use these entries. Reset the size of .rela.dlt,
1569 which will cause it to get stripped from the output file
1571 sec
= hppa_info
->dlt_rel_sec
;
1576 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1578 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
1580 bfd_signed_vma
*local_dlt
;
1581 bfd_signed_vma
*end_local_dlt
;
1582 bfd_signed_vma
*local_plt
;
1583 bfd_signed_vma
*end_local_plt
;
1584 bfd_signed_vma
*local_opd
;
1585 bfd_signed_vma
*end_local_opd
;
1586 bfd_size_type locsymcount
;
1587 Elf_Internal_Shdr
*symtab_hdr
;
1590 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
1593 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1595 struct elf64_hppa_dyn_reloc_entry
*hdh_p
;
1597 for (hdh_p
= ((struct elf64_hppa_dyn_reloc_entry
*)
1598 elf_section_data (sec
)->local_dynrel
);
1600 hdh_p
= hdh_p
->next
)
1602 if (!bfd_is_abs_section (hdh_p
->sec
)
1603 && bfd_is_abs_section (hdh_p
->sec
->output_section
))
1605 /* Input section has been discarded, either because
1606 it is a copy of a linkonce section or due to
1607 linker script /DISCARD/, so we'll be discarding
1610 else if (hdh_p
->count
!= 0)
1612 srel
= elf_section_data (hdh_p
->sec
)->sreloc
;
1613 srel
->size
+= hdh_p
->count
* sizeof (Elf64_External_Rela
);
1614 if ((hdh_p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
1615 info
->flags
|= DF_TEXTREL
;
1620 local_dlt
= elf_local_got_refcounts (ibfd
);
1624 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
1625 locsymcount
= symtab_hdr
->sh_info
;
1626 end_local_dlt
= local_dlt
+ locsymcount
;
1627 sec
= hppa_info
->dlt_sec
;
1628 srel
= hppa_info
->dlt_rel_sec
;
1629 for (; local_dlt
< end_local_dlt
; ++local_dlt
)
1633 *local_dlt
= sec
->size
;
1634 sec
->size
+= DLT_ENTRY_SIZE
;
1635 if (bfd_link_pic (info
))
1637 srel
->size
+= sizeof (Elf64_External_Rela
);
1641 *local_dlt
= (bfd_vma
) -1;
1644 local_plt
= end_local_dlt
;
1645 end_local_plt
= local_plt
+ locsymcount
;
1646 if (! hppa_info
->root
.dynamic_sections_created
)
1648 /* Won't be used, but be safe. */
1649 for (; local_plt
< end_local_plt
; ++local_plt
)
1650 *local_plt
= (bfd_vma
) -1;
1654 sec
= hppa_info
->root
.splt
;
1655 srel
= hppa_info
->root
.srelplt
;
1656 for (; local_plt
< end_local_plt
; ++local_plt
)
1660 *local_plt
= sec
->size
;
1661 sec
->size
+= PLT_ENTRY_SIZE
;
1662 if (bfd_link_pic (info
))
1663 srel
->size
+= sizeof (Elf64_External_Rela
);
1666 *local_plt
= (bfd_vma
) -1;
1670 local_opd
= end_local_plt
;
1671 end_local_opd
= local_opd
+ locsymcount
;
1672 if (! hppa_info
->root
.dynamic_sections_created
)
1674 /* Won't be used, but be safe. */
1675 for (; local_opd
< end_local_opd
; ++local_opd
)
1676 *local_opd
= (bfd_vma
) -1;
1680 sec
= hppa_info
->opd_sec
;
1681 srel
= hppa_info
->opd_rel_sec
;
1682 for (; local_opd
< end_local_opd
; ++local_opd
)
1686 *local_opd
= sec
->size
;
1687 sec
->size
+= OPD_ENTRY_SIZE
;
1688 if (bfd_link_pic (info
))
1689 srel
->size
+= sizeof (Elf64_External_Rela
);
1692 *local_opd
= (bfd_vma
) -1;
1697 /* Allocate the GOT entries. */
1700 if (hppa_info
->dlt_sec
)
1702 data
.ofs
= hppa_info
->dlt_sec
->size
;
1703 elf_link_hash_traverse (&hppa_info
->root
,
1704 allocate_global_data_dlt
, &data
);
1705 hppa_info
->dlt_sec
->size
= data
.ofs
;
1708 if (hppa_info
->root
.splt
)
1710 data
.ofs
= hppa_info
->root
.splt
->size
;
1711 elf_link_hash_traverse (&hppa_info
->root
,
1712 allocate_global_data_plt
, &data
);
1713 hppa_info
->root
.splt
->size
= data
.ofs
;
1716 if (hppa_info
->stub_sec
)
1719 elf_link_hash_traverse (&hppa_info
->root
,
1720 allocate_global_data_stub
, &data
);
1721 hppa_info
->stub_sec
->size
= data
.ofs
;
1724 /* Allocate space for entries in the .opd section. */
1725 if (hppa_info
->opd_sec
)
1727 data
.ofs
= hppa_info
->opd_sec
->size
;
1728 elf_link_hash_traverse (&hppa_info
->root
,
1729 allocate_global_data_opd
, &data
);
1730 hppa_info
->opd_sec
->size
= data
.ofs
;
1733 /* Now allocate space for dynamic relocations, if necessary. */
1734 if (hppa_info
->root
.dynamic_sections_created
)
1735 elf_link_hash_traverse (&hppa_info
->root
,
1736 allocate_dynrel_entries
, &data
);
1738 /* The sizes of all the sections are set. Allocate memory for them. */
1740 for (sec
= dynobj
->sections
; sec
!= NULL
; sec
= sec
->next
)
1744 if ((sec
->flags
& SEC_LINKER_CREATED
) == 0)
1747 /* It's OK to base decisions on the section name, because none
1748 of the dynobj section names depend upon the input files. */
1749 name
= bfd_section_name (sec
);
1751 if (strcmp (name
, ".plt") == 0)
1753 /* Remember whether there is a PLT. */
1756 else if (strcmp (name
, ".opd") == 0
1757 || CONST_STRNEQ (name
, ".dlt")
1758 || strcmp (name
, ".stub") == 0
1759 || strcmp (name
, ".got") == 0)
1761 /* Strip this section if we don't need it; see the comment below. */
1763 else if (CONST_STRNEQ (name
, ".rela"))
1767 /* Remember whether there are any reloc sections other
1769 if (strcmp (name
, ".rela.plt") != 0)
1772 /* We use the reloc_count field as a counter if we need
1773 to copy relocs into the output file. */
1774 sec
->reloc_count
= 0;
1779 /* It's not one of our sections, so don't allocate space. */
1785 /* If we don't need this section, strip it from the
1786 output file. This is mostly to handle .rela.bss and
1787 .rela.plt. We must create both sections in
1788 create_dynamic_sections, because they must be created
1789 before the linker maps input sections to output
1790 sections. The linker does that before
1791 adjust_dynamic_symbol is called, and it is that
1792 function which decides whether anything needs to go
1793 into these sections. */
1794 sec
->flags
|= SEC_EXCLUDE
;
1798 if ((sec
->flags
& SEC_HAS_CONTENTS
) == 0)
1801 /* Allocate memory for the section contents if it has not
1802 been allocated already. We use bfd_zalloc here in case
1803 unused entries are not reclaimed before the section's
1804 contents are written out. This should not happen, but this
1805 way if it does, we get a R_PARISC_NONE reloc instead of
1807 if (sec
->contents
== NULL
)
1809 sec
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, sec
->size
);
1810 if (sec
->contents
== NULL
)
1815 if (hppa_info
->root
.dynamic_sections_created
)
1817 /* Always create a DT_PLTGOT. It actually has nothing to do with
1818 the PLT, it is how we communicate the __gp value of a load
1819 module to the dynamic linker. */
1820 #define add_dynamic_entry(TAG, VAL) \
1821 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1823 if (!add_dynamic_entry (DT_HP_DLD_FLAGS
, 0))
1826 /* Add some entries to the .dynamic section. We fill in the
1827 values later, in elf64_hppa_finish_dynamic_sections, but we
1828 must add the entries now so that we get the correct size for
1829 the .dynamic section. The DT_DEBUG entry is filled in by the
1830 dynamic linker and used by the debugger. */
1831 if (! bfd_link_pic (info
))
1833 if (!add_dynamic_entry (DT_HP_DLD_HOOK
, 0)
1834 || !add_dynamic_entry (DT_HP_LOAD_MAP
, 0))
1838 /* Force DT_FLAGS to always be set.
1839 Required by HPUX 11.00 patch PHSS_26559. */
1840 if (!add_dynamic_entry (DT_FLAGS
, (info
)->flags
))
1843 #undef add_dynamic_entry
1845 return _bfd_elf_add_dynamic_tags (output_bfd
, info
, relocs
);
1848 /* Called after we have output the symbol into the dynamic symbol
1849 table, but before we output the symbol into the normal symbol
1852 For some symbols we had to change their address when outputting
1853 the dynamic symbol table. We undo that change here so that
1854 the symbols have their expected value in the normal symbol
1858 elf64_hppa_link_output_symbol_hook (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1860 Elf_Internal_Sym
*sym
,
1861 asection
*input_sec ATTRIBUTE_UNUSED
,
1862 struct elf_link_hash_entry
*eh
)
1864 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
1866 /* We may be called with the file symbol or section symbols.
1867 They never need munging, so it is safe to ignore them. */
1871 /* Function symbols for which we created .opd entries *may* have been
1872 munged by finish_dynamic_symbol and have to be un-munged here.
1874 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1875 into non-dynamic ones, so we initialize st_shndx to -1 in
1876 mark_exported_functions and check to see if it was overwritten
1877 here instead of just checking eh->dynindx. */
1878 if (hh
->want_opd
&& hh
->st_shndx
!= -1)
1880 /* Restore the saved value and section index. */
1881 sym
->st_value
= hh
->st_value
;
1882 sym
->st_shndx
= hh
->st_shndx
;
1888 /* Finish up dynamic symbol handling. We set the contents of various
1889 dynamic sections here. */
1892 elf64_hppa_finish_dynamic_symbol (bfd
*output_bfd
,
1893 struct bfd_link_info
*info
,
1894 struct elf_link_hash_entry
*eh
,
1895 Elf_Internal_Sym
*sym
)
1897 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
1898 asection
*stub
, *splt
, *sopd
, *spltrel
;
1899 struct elf64_hppa_link_hash_table
*hppa_info
;
1901 hppa_info
= hppa_link_hash_table (info
);
1902 if (hppa_info
== NULL
)
1905 stub
= hppa_info
->stub_sec
;
1906 splt
= hppa_info
->root
.splt
;
1907 sopd
= hppa_info
->opd_sec
;
1908 spltrel
= hppa_info
->root
.srelplt
;
1910 /* Incredible. It is actually necessary to NOT use the symbol's real
1911 value when building the dynamic symbol table for a shared library.
1912 At least for symbols that refer to functions.
1914 We will store a new value and section index into the symbol long
1915 enough to output it into the dynamic symbol table, then we restore
1916 the original values (in elf64_hppa_link_output_symbol_hook). */
1919 BFD_ASSERT (sopd
!= NULL
);
1921 /* Save away the original value and section index so that we
1922 can restore them later. */
1923 hh
->st_value
= sym
->st_value
;
1924 hh
->st_shndx
= sym
->st_shndx
;
1926 /* For the dynamic symbol table entry, we want the value to be
1927 address of this symbol's entry within the .opd section. */
1928 sym
->st_value
= (hh
->opd_offset
1929 + sopd
->output_offset
1930 + sopd
->output_section
->vma
);
1931 sym
->st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
1932 sopd
->output_section
);
1935 /* Initialize a .plt entry if requested. */
1937 && elf64_hppa_dynamic_symbol_p (eh
, info
))
1940 Elf_Internal_Rela rel
;
1943 BFD_ASSERT (splt
!= NULL
&& spltrel
!= NULL
);
1945 /* We do not actually care about the value in the PLT entry
1946 if we are creating a shared library and the symbol is
1947 still undefined, we create a dynamic relocation to fill
1948 in the correct value. */
1949 if (bfd_link_pic (info
) && eh
->root
.type
== bfd_link_hash_undefined
)
1952 value
= (eh
->root
.u
.def
.value
+ eh
->root
.u
.def
.section
->vma
);
1954 /* Fill in the entry in the procedure linkage table.
1956 The format of a plt entry is
1959 plt_offset is the offset within the PLT section at which to
1960 install the PLT entry.
1962 We are modifying the in-memory PLT contents here, so we do not add
1963 in the output_offset of the PLT section. */
1965 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ hh
->plt_offset
);
1966 value
= _bfd_get_gp_value (info
->output_bfd
);
1967 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ hh
->plt_offset
+ 0x8);
1969 /* Create a dynamic IPLT relocation for this entry.
1971 We are creating a relocation in the output file's PLT section,
1972 which is included within the DLT secton. So we do need to include
1973 the PLT's output_offset in the computation of the relocation's
1975 rel
.r_offset
= (hh
->plt_offset
+ splt
->output_offset
1976 + splt
->output_section
->vma
);
1977 rel
.r_info
= ELF64_R_INFO (hh
->eh
.dynindx
, R_PARISC_IPLT
);
1980 loc
= spltrel
->contents
;
1981 loc
+= spltrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
1982 bfd_elf64_swap_reloca_out (info
->output_bfd
, &rel
, loc
);
1985 /* Initialize an external call stub entry if requested. */
1987 && elf64_hppa_dynamic_symbol_p (eh
, info
))
1991 unsigned int max_offset
;
1993 BFD_ASSERT (stub
!= NULL
);
1995 /* Install the generic stub template.
1997 We are modifying the contents of the stub section, so we do not
1998 need to include the stub section's output_offset here. */
1999 memcpy (stub
->contents
+ hh
->stub_offset
, plt_stub
, sizeof (plt_stub
));
2001 /* Fix up the first ldd instruction.
2003 We are modifying the contents of the STUB section in memory,
2004 so we do not need to include its output offset in this computation.
2006 Note the plt_offset value is the value of the PLT entry relative to
2007 the start of the PLT section. These instructions will reference
2008 data relative to the value of __gp, which may not necessarily have
2009 the same address as the start of the PLT section.
2011 gp_offset contains the offset of __gp within the PLT section. */
2012 value
= hh
->plt_offset
- hppa_info
->gp_offset
;
2014 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ hh
->stub_offset
);
2015 if (output_bfd
->arch_info
->mach
>= 25)
2017 /* Wide mode allows 16 bit offsets. */
2020 insn
|= re_assemble_16 ((int) value
);
2026 insn
|= re_assemble_14 ((int) value
);
2029 if ((value
& 7) || value
+ max_offset
>= 2*max_offset
- 8)
2032 /* xgettext:c-format */
2033 (_("stub entry for %s cannot load .plt, dp offset = %" PRId64
),
2034 hh
->eh
.root
.root
.string
, (int64_t) value
);
2038 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2039 stub
->contents
+ hh
->stub_offset
);
2041 /* Fix up the second ldd instruction. */
2043 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ hh
->stub_offset
+ 8);
2044 if (output_bfd
->arch_info
->mach
>= 25)
2047 insn
|= re_assemble_16 ((int) value
);
2052 insn
|= re_assemble_14 ((int) value
);
2054 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2055 stub
->contents
+ hh
->stub_offset
+ 8);
2061 /* The .opd section contains FPTRs for each function this file
2062 exports. Initialize the FPTR entries. */
2065 elf64_hppa_finalize_opd (struct elf_link_hash_entry
*eh
, void *data
)
2067 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
2068 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2069 struct elf64_hppa_link_hash_table
*hppa_info
;
2073 hppa_info
= hppa_link_hash_table (info
);
2074 if (hppa_info
== NULL
)
2077 sopd
= hppa_info
->opd_sec
;
2078 sopdrel
= hppa_info
->opd_rel_sec
;
2084 /* The first two words of an .opd entry are zero.
2086 We are modifying the contents of the OPD section in memory, so we
2087 do not need to include its output offset in this computation. */
2088 memset (sopd
->contents
+ hh
->opd_offset
, 0, 16);
2090 value
= (eh
->root
.u
.def
.value
2091 + eh
->root
.u
.def
.section
->output_section
->vma
2092 + eh
->root
.u
.def
.section
->output_offset
);
2094 /* The next word is the address of the function. */
2095 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ hh
->opd_offset
+ 16);
2097 /* The last word is our local __gp value. */
2098 value
= _bfd_get_gp_value (info
->output_bfd
);
2099 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ hh
->opd_offset
+ 24);
2102 /* If we are generating a shared library, we must generate EPLT relocations
2103 for each entry in the .opd, even for static functions (they may have
2104 had their address taken). */
2105 if (bfd_link_pic (info
) && hh
->want_opd
)
2107 Elf_Internal_Rela rel
;
2111 /* We may need to do a relocation against a local symbol, in
2112 which case we have to look up it's dynamic symbol index off
2113 the local symbol hash table. */
2114 if (eh
->dynindx
!= -1)
2115 dynindx
= eh
->dynindx
;
2118 = _bfd_elf_link_lookup_local_dynindx (info
, hh
->owner
,
2121 /* The offset of this relocation is the absolute address of the
2122 .opd entry for this symbol. */
2123 rel
.r_offset
= (hh
->opd_offset
+ sopd
->output_offset
2124 + sopd
->output_section
->vma
);
2126 /* If H is non-null, then we have an external symbol.
2128 It is imperative that we use a different dynamic symbol for the
2129 EPLT relocation if the symbol has global scope.
2131 In the dynamic symbol table, the function symbol will have a value
2132 which is address of the function's .opd entry.
2134 Thus, we can not use that dynamic symbol for the EPLT relocation
2135 (if we did, the data in the .opd would reference itself rather
2136 than the actual address of the function). Instead we have to use
2137 a new dynamic symbol which has the same value as the original global
2140 We prefix the original symbol with a "." and use the new symbol in
2141 the EPLT relocation. This new symbol has already been recorded in
2142 the symbol table, we just have to look it up and use it.
2144 We do not have such problems with static functions because we do
2145 not make their addresses in the dynamic symbol table point to
2146 the .opd entry. Ultimately this should be safe since a static
2147 function can not be directly referenced outside of its shared
2150 We do have to play similar games for FPTR relocations in shared
2151 libraries, including those for static symbols. See the FPTR
2152 handling in elf64_hppa_finalize_dynreloc. */
2156 struct elf_link_hash_entry
*nh
;
2158 new_name
= concat (".", eh
->root
.root
.string
, NULL
);
2160 nh
= elf_link_hash_lookup (elf_hash_table (info
),
2161 new_name
, TRUE
, TRUE
, FALSE
);
2163 /* All we really want from the new symbol is its dynamic
2166 dynindx
= nh
->dynindx
;
2171 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_EPLT
);
2173 loc
= sopdrel
->contents
;
2174 loc
+= sopdrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2175 bfd_elf64_swap_reloca_out (info
->output_bfd
, &rel
, loc
);
2180 /* The .dlt section contains addresses for items referenced through the
2181 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2182 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2185 elf64_hppa_finalize_dlt (struct elf_link_hash_entry
*eh
, void *data
)
2187 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
2188 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2189 struct elf64_hppa_link_hash_table
*hppa_info
;
2190 asection
*sdlt
, *sdltrel
;
2192 hppa_info
= hppa_link_hash_table (info
);
2193 if (hppa_info
== NULL
)
2196 sdlt
= hppa_info
->dlt_sec
;
2197 sdltrel
= hppa_info
->dlt_rel_sec
;
2199 /* H/DYN_H may refer to a local variable and we know it's
2200 address, so there is no need to create a relocation. Just install
2201 the proper value into the DLT, note this shortcut can not be
2202 skipped when building a shared library. */
2203 if (! bfd_link_pic (info
) && hh
&& hh
->want_dlt
)
2207 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2208 to point to the FPTR entry in the .opd section.
2210 We include the OPD's output offset in this computation as
2211 we are referring to an absolute address in the resulting
2215 value
= (hh
->opd_offset
2216 + hppa_info
->opd_sec
->output_offset
2217 + hppa_info
->opd_sec
->output_section
->vma
);
2219 else if ((eh
->root
.type
== bfd_link_hash_defined
2220 || eh
->root
.type
== bfd_link_hash_defweak
)
2221 && eh
->root
.u
.def
.section
)
2223 value
= eh
->root
.u
.def
.value
+ eh
->root
.u
.def
.section
->output_offset
;
2224 if (eh
->root
.u
.def
.section
->output_section
)
2225 value
+= eh
->root
.u
.def
.section
->output_section
->vma
;
2227 value
+= eh
->root
.u
.def
.section
->vma
;
2230 /* We have an undefined function reference. */
2233 /* We do not need to include the output offset of the DLT section
2234 here because we are modifying the in-memory contents. */
2235 bfd_put_64 (sdlt
->owner
, value
, sdlt
->contents
+ hh
->dlt_offset
);
2238 /* Create a relocation for the DLT entry associated with this symbol.
2239 When building a shared library the symbol does not have to be dynamic. */
2241 && (elf64_hppa_dynamic_symbol_p (eh
, info
) || bfd_link_pic (info
)))
2243 Elf_Internal_Rela rel
;
2247 /* We may need to do a relocation against a local symbol, in
2248 which case we have to look up it's dynamic symbol index off
2249 the local symbol hash table. */
2250 if (eh
&& eh
->dynindx
!= -1)
2251 dynindx
= eh
->dynindx
;
2254 = _bfd_elf_link_lookup_local_dynindx (info
, hh
->owner
,
2257 /* Create a dynamic relocation for this entry. Do include the output
2258 offset of the DLT entry since we need an absolute address in the
2259 resulting object file. */
2260 rel
.r_offset
= (hh
->dlt_offset
+ sdlt
->output_offset
2261 + sdlt
->output_section
->vma
);
2262 if (eh
&& eh
->type
== STT_FUNC
)
2263 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_FPTR64
);
2265 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_DIR64
);
2268 loc
= sdltrel
->contents
;
2269 loc
+= sdltrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2270 bfd_elf64_swap_reloca_out (info
->output_bfd
, &rel
, loc
);
2275 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2276 for dynamic functions used to initialize static data. */
2279 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry
*eh
,
2282 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
2283 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2284 struct elf64_hppa_link_hash_table
*hppa_info
;
2287 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (eh
, info
);
2289 if (!dynamic_symbol
&& !bfd_link_pic (info
))
2292 if (hh
->reloc_entries
)
2294 struct elf64_hppa_dyn_reloc_entry
*rent
;
2297 hppa_info
= hppa_link_hash_table (info
);
2298 if (hppa_info
== NULL
)
2301 /* We may need to do a relocation against a local symbol, in
2302 which case we have to look up it's dynamic symbol index off
2303 the local symbol hash table. */
2304 if (eh
->dynindx
!= -1)
2305 dynindx
= eh
->dynindx
;
2308 = _bfd_elf_link_lookup_local_dynindx (info
, hh
->owner
,
2311 for (rent
= hh
->reloc_entries
; rent
; rent
= rent
->next
)
2313 Elf_Internal_Rela rel
;
2316 /* Allocate one iff we are building a shared library, the relocation
2317 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2318 if (!bfd_link_pic (info
)
2319 && rent
->type
== R_PARISC_FPTR64
&& hh
->want_opd
)
2322 /* Create a dynamic relocation for this entry.
2324 We need the output offset for the reloc's section because
2325 we are creating an absolute address in the resulting object
2327 rel
.r_offset
= (rent
->offset
+ rent
->sec
->output_offset
2328 + rent
->sec
->output_section
->vma
);
2330 /* An FPTR64 relocation implies that we took the address of
2331 a function and that the function has an entry in the .opd
2332 section. We want the FPTR64 relocation to reference the
2335 We could munge the symbol value in the dynamic symbol table
2336 (in fact we already do for functions with global scope) to point
2337 to the .opd entry. Then we could use that dynamic symbol in
2340 Or we could do something sensible, not munge the symbol's
2341 address and instead just use a different symbol to reference
2342 the .opd entry. At least that seems sensible until you
2343 realize there's no local dynamic symbols we can use for that
2344 purpose. Thus the hair in the check_relocs routine.
2346 We use a section symbol recorded by check_relocs as the
2347 base symbol for the relocation. The addend is the difference
2348 between the section symbol and the address of the .opd entry. */
2349 if (bfd_link_pic (info
)
2350 && rent
->type
== R_PARISC_FPTR64
&& hh
->want_opd
)
2352 bfd_vma value
, value2
;
2354 /* First compute the address of the opd entry for this symbol. */
2355 value
= (hh
->opd_offset
2356 + hppa_info
->opd_sec
->output_section
->vma
2357 + hppa_info
->opd_sec
->output_offset
);
2359 /* Compute the value of the start of the section with
2361 value2
= (rent
->sec
->output_section
->vma
2362 + rent
->sec
->output_offset
);
2364 /* Compute the difference between the start of the section
2365 with the relocation and the opd entry. */
2368 /* The result becomes the addend of the relocation. */
2369 rel
.r_addend
= value
;
2371 /* The section symbol becomes the symbol for the dynamic
2374 = _bfd_elf_link_lookup_local_dynindx (info
,
2379 rel
.r_addend
= rent
->addend
;
2381 rel
.r_info
= ELF64_R_INFO (dynindx
, rent
->type
);
2383 loc
= hppa_info
->other_rel_sec
->contents
;
2384 loc
+= (hppa_info
->other_rel_sec
->reloc_count
++
2385 * sizeof (Elf64_External_Rela
));
2386 bfd_elf64_swap_reloca_out (info
->output_bfd
, &rel
, loc
);
2393 /* Used to decide how to sort relocs in an optimal manner for the
2394 dynamic linker, before writing them out. */
2396 static enum elf_reloc_type_class
2397 elf64_hppa_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2398 const asection
*rel_sec ATTRIBUTE_UNUSED
,
2399 const Elf_Internal_Rela
*rela
)
2401 if (ELF64_R_SYM (rela
->r_info
) == STN_UNDEF
)
2402 return reloc_class_relative
;
2404 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2407 return reloc_class_plt
;
2409 return reloc_class_copy
;
2411 return reloc_class_normal
;
2415 /* Finish up the dynamic sections. */
2418 elf64_hppa_finish_dynamic_sections (bfd
*output_bfd
,
2419 struct bfd_link_info
*info
)
2423 struct elf64_hppa_link_hash_table
*hppa_info
;
2425 hppa_info
= hppa_link_hash_table (info
);
2426 if (hppa_info
== NULL
)
2429 /* Finalize the contents of the .opd section. */
2430 elf_link_hash_traverse (elf_hash_table (info
),
2431 elf64_hppa_finalize_opd
,
2434 elf_link_hash_traverse (elf_hash_table (info
),
2435 elf64_hppa_finalize_dynreloc
,
2438 /* Finalize the contents of the .dlt section. */
2439 dynobj
= elf_hash_table (info
)->dynobj
;
2440 /* Finalize the contents of the .dlt section. */
2441 elf_link_hash_traverse (elf_hash_table (info
),
2442 elf64_hppa_finalize_dlt
,
2445 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
2447 if (elf_hash_table (info
)->dynamic_sections_created
)
2449 Elf64_External_Dyn
*dyncon
, *dynconend
;
2451 BFD_ASSERT (sdyn
!= NULL
);
2453 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2454 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2455 for (; dyncon
< dynconend
; dyncon
++)
2457 Elf_Internal_Dyn dyn
;
2460 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2467 case DT_HP_LOAD_MAP
:
2468 /* Compute the absolute address of 16byte scratchpad area
2469 for the dynamic linker.
2471 By convention the linker script will allocate the scratchpad
2472 area at the start of the .data section. So all we have to
2473 to is find the start of the .data section. */
2474 s
= bfd_get_section_by_name (output_bfd
, ".data");
2477 dyn
.d_un
.d_ptr
= s
->vma
;
2478 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2482 /* HP's use PLTGOT to set the GOT register. */
2483 dyn
.d_un
.d_ptr
= _bfd_get_gp_value (output_bfd
);
2484 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2488 s
= hppa_info
->root
.srelplt
;
2489 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2490 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2494 s
= hppa_info
->root
.srelplt
;
2495 dyn
.d_un
.d_val
= s
->size
;
2496 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2500 s
= hppa_info
->other_rel_sec
;
2501 if (! s
|| ! s
->size
)
2502 s
= hppa_info
->dlt_rel_sec
;
2503 if (! s
|| ! s
->size
)
2504 s
= hppa_info
->opd_rel_sec
;
2505 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2506 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2510 s
= hppa_info
->other_rel_sec
;
2511 dyn
.d_un
.d_val
= s
->size
;
2512 s
= hppa_info
->dlt_rel_sec
;
2513 dyn
.d_un
.d_val
+= s
->size
;
2514 s
= hppa_info
->opd_rel_sec
;
2515 dyn
.d_un
.d_val
+= s
->size
;
2516 /* There is some question about whether or not the size of
2517 the PLT relocs should be included here. HP's tools do
2518 it, so we'll emulate them. */
2519 s
= hppa_info
->root
.srelplt
;
2520 dyn
.d_un
.d_val
+= s
->size
;
2521 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2531 /* Support for core dump NOTE sections. */
2534 elf64_hppa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
2539 switch (note
->descsz
)
2544 case 760: /* Linux/hppa */
2546 elf_tdata (abfd
)->core
->signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
2549 elf_tdata (abfd
)->core
->lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 32);
2558 /* Make a ".reg/999" section. */
2559 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
2560 size
, note
->descpos
+ offset
);
2564 elf64_hppa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
2569 switch (note
->descsz
)
2574 case 136: /* Linux/hppa elf_prpsinfo. */
2575 elf_tdata (abfd
)->core
->program
2576 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 40, 16);
2577 elf_tdata (abfd
)->core
->command
2578 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 56, 80);
2581 /* Note that for some reason, a spurious space is tacked
2582 onto the end of the args in some (at least one anyway)
2583 implementations, so strip it off if it exists. */
2584 command
= elf_tdata (abfd
)->core
->command
;
2585 n
= strlen (command
);
2587 if (0 < n
&& command
[n
- 1] == ' ')
2588 command
[n
- 1] = '\0';
2593 /* Return the number of additional phdrs we will need.
2595 The generic ELF code only creates PT_PHDRs for executables. The HP
2596 dynamic linker requires PT_PHDRs for dynamic libraries too.
2598 This routine indicates that the backend needs one additional program
2599 header for that case.
2601 Note we do not have access to the link info structure here, so we have
2602 to guess whether or not we are building a shared library based on the
2603 existence of a .interp section. */
2606 elf64_hppa_additional_program_headers (bfd
*abfd
,
2607 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
2611 /* If we are creating a shared library, then we have to create a
2612 PT_PHDR segment. HP's dynamic linker chokes without it. */
2613 s
= bfd_get_section_by_name (abfd
, ".interp");
2620 elf64_hppa_allow_non_load_phdr (bfd
*abfd ATTRIBUTE_UNUSED
,
2621 const Elf_Internal_Phdr
*phdr ATTRIBUTE_UNUSED
,
2622 unsigned int count ATTRIBUTE_UNUSED
)
2627 /* Allocate and initialize any program headers required by this
2630 The generic ELF code only creates PT_PHDRs for executables. The HP
2631 dynamic linker requires PT_PHDRs for dynamic libraries too.
2633 This allocates the PT_PHDR and initializes it in a manner suitable
2636 Note we do not have access to the link info structure here, so we have
2637 to guess whether or not we are building a shared library based on the
2638 existence of a .interp section. */
2641 elf64_hppa_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
2643 struct elf_segment_map
*m
;
2645 m
= elf_seg_map (abfd
);
2646 if (info
!= NULL
&& !info
->user_phdrs
&& m
!= NULL
&& m
->p_type
!= PT_PHDR
)
2648 m
= ((struct elf_segment_map
*)
2649 bfd_zalloc (abfd
, (bfd_size_type
) sizeof *m
));
2653 m
->p_type
= PT_PHDR
;
2654 m
->p_flags
= PF_R
| PF_X
;
2655 m
->p_flags_valid
= 1;
2656 m
->p_paddr_valid
= 1;
2657 m
->includes_phdrs
= 1;
2659 m
->next
= elf_seg_map (abfd
);
2660 elf_seg_map (abfd
) = m
;
2663 for (m
= elf_seg_map (abfd
) ; m
!= NULL
; m
= m
->next
)
2664 if (m
->p_type
== PT_LOAD
)
2668 for (i
= 0; i
< m
->count
; i
++)
2670 /* The code "hint" is not really a hint. It is a requirement
2671 for certain versions of the HP dynamic linker. Worse yet,
2672 it must be set even if the shared library does not have
2673 any code in its "text" segment (thus the check for .hash
2674 to catch this situation). */
2675 if (m
->sections
[i
]->flags
& SEC_CODE
2676 || (strcmp (m
->sections
[i
]->name
, ".hash") == 0))
2677 m
->p_flags
|= (PF_X
| PF_HP_CODE
);
2684 /* Called when writing out an object file to decide the type of a
2687 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym
*elf_sym
,
2690 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
2691 return STT_PARISC_MILLI
;
2696 /* Support HP specific sections for core files. */
2699 elf64_hppa_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int sec_index
,
2700 const char *typename
)
2702 if (hdr
->p_type
== PT_HP_CORE_KERNEL
)
2706 if (!_bfd_elf_make_section_from_phdr (abfd
, hdr
, sec_index
, typename
))
2709 sect
= bfd_make_section_anyway (abfd
, ".kernel");
2712 sect
->size
= hdr
->p_filesz
;
2713 sect
->filepos
= hdr
->p_offset
;
2714 sect
->flags
= SEC_HAS_CONTENTS
| SEC_READONLY
;
2718 if (hdr
->p_type
== PT_HP_CORE_PROC
)
2722 if (bfd_seek (abfd
, hdr
->p_offset
, SEEK_SET
) != 0)
2724 if (bfd_bread (&sig
, 4, abfd
) != 4)
2727 elf_tdata (abfd
)->core
->signal
= sig
;
2729 if (!_bfd_elf_make_section_from_phdr (abfd
, hdr
, sec_index
, typename
))
2732 /* GDB uses the ".reg" section to read register contents. */
2733 return _bfd_elfcore_make_pseudosection (abfd
, ".reg", hdr
->p_filesz
,
2737 if (hdr
->p_type
== PT_HP_CORE_LOADABLE
2738 || hdr
->p_type
== PT_HP_CORE_STACK
2739 || hdr
->p_type
== PT_HP_CORE_MMF
)
2740 hdr
->p_type
= PT_LOAD
;
2742 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, sec_index
, typename
);
2745 /* Hook called by the linker routine which adds symbols from an object
2746 file. HP's libraries define symbols with HP specific section
2747 indices, which we have to handle. */
2750 elf_hppa_add_symbol_hook (bfd
*abfd
,
2751 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2752 Elf_Internal_Sym
*sym
,
2753 const char **namep ATTRIBUTE_UNUSED
,
2754 flagword
*flagsp ATTRIBUTE_UNUSED
,
2758 unsigned int sec_index
= sym
->st_shndx
;
2762 case SHN_PARISC_ANSI_COMMON
:
2763 *secp
= bfd_make_section_old_way (abfd
, ".PARISC.ansi.common");
2764 (*secp
)->flags
|= SEC_IS_COMMON
;
2765 *valp
= sym
->st_size
;
2768 case SHN_PARISC_HUGE_COMMON
:
2769 *secp
= bfd_make_section_old_way (abfd
, ".PARISC.huge.common");
2770 (*secp
)->flags
|= SEC_IS_COMMON
;
2771 *valp
= sym
->st_size
;
2779 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry
*h
,
2782 struct bfd_link_info
*info
= data
;
2784 /* If we are not creating a shared library, and this symbol is
2785 referenced by a shared library but is not defined anywhere, then
2786 the generic code will warn that it is undefined.
2788 This behavior is undesirable on HPs since the standard shared
2789 libraries contain references to undefined symbols.
2791 So we twiddle the flags associated with such symbols so that they
2792 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2794 Ultimately we should have better controls over the generic ELF BFD
2796 if (! bfd_link_relocatable (info
)
2797 && info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
2798 && h
->root
.type
== bfd_link_hash_undefined
2803 h
->pointer_equality_needed
= 1;
2810 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry
*h
,
2813 struct bfd_link_info
*info
= data
;
2815 /* If we are not creating a shared library, and this symbol is
2816 referenced by a shared library but is not defined anywhere, then
2817 the generic code will warn that it is undefined.
2819 This behavior is undesirable on HPs since the standard shared
2820 libraries contain references to undefined symbols.
2822 So we twiddle the flags associated with such symbols so that they
2823 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2825 Ultimately we should have better controls over the generic ELF BFD
2827 if (! bfd_link_relocatable (info
)
2828 && info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
2829 && h
->root
.type
== bfd_link_hash_undefined
2832 && h
->pointer_equality_needed
)
2835 h
->pointer_equality_needed
= 0;
2842 elf_hppa_is_dynamic_loader_symbol (const char *name
)
2844 return (! strcmp (name
, "__CPU_REVISION")
2845 || ! strcmp (name
, "__CPU_KEYBITS_1")
2846 || ! strcmp (name
, "__SYSTEM_ID_D")
2847 || ! strcmp (name
, "__FPU_MODEL")
2848 || ! strcmp (name
, "__FPU_REVISION")
2849 || ! strcmp (name
, "__ARGC")
2850 || ! strcmp (name
, "__ARGV")
2851 || ! strcmp (name
, "__ENVP")
2852 || ! strcmp (name
, "__TLS_SIZE_D")
2853 || ! strcmp (name
, "__LOAD_INFO")
2854 || ! strcmp (name
, "__systab"));
2857 /* Record the lowest address for the data and text segments. */
2859 elf_hppa_record_segment_addrs (bfd
*abfd
,
2863 struct elf64_hppa_link_hash_table
*hppa_info
= data
;
2865 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
)) == (SEC_ALLOC
| SEC_LOAD
))
2868 Elf_Internal_Phdr
*p
;
2870 p
= _bfd_elf_find_segment_containing_section (abfd
, section
->output_section
);
2871 BFD_ASSERT (p
!= NULL
);
2874 if (section
->flags
& SEC_READONLY
)
2876 if (value
< hppa_info
->text_segment_base
)
2877 hppa_info
->text_segment_base
= value
;
2881 if (value
< hppa_info
->data_segment_base
)
2882 hppa_info
->data_segment_base
= value
;
2887 /* Called after we have seen all the input files/sections, but before
2888 final symbol resolution and section placement has been determined.
2890 We use this hook to (possibly) provide a value for __gp, then we
2891 fall back to the generic ELF final link routine. */
2894 elf_hppa_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
2897 struct elf64_hppa_link_hash_table
*hppa_info
= hppa_link_hash_table (info
);
2899 if (hppa_info
== NULL
)
2902 if (! bfd_link_relocatable (info
))
2904 struct elf_link_hash_entry
*gp
;
2907 /* The linker script defines a value for __gp iff it was referenced
2908 by one of the objects being linked. First try to find the symbol
2909 in the hash table. If that fails, just compute the value __gp
2911 gp
= elf_link_hash_lookup (elf_hash_table (info
), "__gp", FALSE
,
2917 /* Adjust the value of __gp as we may want to slide it into the
2918 .plt section so that the stubs can access PLT entries without
2919 using an addil sequence. */
2920 gp
->root
.u
.def
.value
+= hppa_info
->gp_offset
;
2922 gp_val
= (gp
->root
.u
.def
.section
->output_section
->vma
2923 + gp
->root
.u
.def
.section
->output_offset
2924 + gp
->root
.u
.def
.value
);
2930 /* First look for a .plt section. If found, then __gp is the
2931 address of the .plt + gp_offset.
2933 If no .plt is found, then look for .dlt, .opd and .data (in
2934 that order) and set __gp to the base address of whichever
2935 section is found first. */
2937 sec
= hppa_info
->root
.splt
;
2938 if (sec
&& ! (sec
->flags
& SEC_EXCLUDE
))
2939 gp_val
= (sec
->output_offset
2940 + sec
->output_section
->vma
2941 + hppa_info
->gp_offset
);
2944 sec
= hppa_info
->dlt_sec
;
2945 if (!sec
|| (sec
->flags
& SEC_EXCLUDE
))
2946 sec
= hppa_info
->opd_sec
;
2947 if (!sec
|| (sec
->flags
& SEC_EXCLUDE
))
2948 sec
= bfd_get_section_by_name (abfd
, ".data");
2949 if (!sec
|| (sec
->flags
& SEC_EXCLUDE
))
2952 gp_val
= sec
->output_offset
+ sec
->output_section
->vma
;
2956 /* Install whatever value we found/computed for __gp. */
2957 _bfd_set_gp_value (abfd
, gp_val
);
2960 /* We need to know the base of the text and data segments so that we
2961 can perform SEGREL relocations. We will record the base addresses
2962 when we encounter the first SEGREL relocation. */
2963 hppa_info
->text_segment_base
= (bfd_vma
)-1;
2964 hppa_info
->data_segment_base
= (bfd_vma
)-1;
2966 /* HP's shared libraries have references to symbols that are not
2967 defined anywhere. The generic ELF BFD linker code will complain
2970 So we detect the losing case and arrange for the flags on the symbol
2971 to indicate that it was never referenced. This keeps the generic
2972 ELF BFD link code happy and appears to not create any secondary
2973 problems. Ultimately we need a way to control the behavior of the
2974 generic ELF BFD link code better. */
2975 elf_link_hash_traverse (elf_hash_table (info
),
2976 elf_hppa_unmark_useless_dynamic_symbols
,
2979 /* Invoke the regular ELF backend linker to do all the work. */
2980 if (!bfd_elf_final_link (abfd
, info
))
2983 elf_link_hash_traverse (elf_hash_table (info
),
2984 elf_hppa_remark_useless_dynamic_symbols
,
2987 /* If we're producing a final executable, sort the contents of the
2989 if (bfd_link_relocatable (info
))
2992 /* Do not attempt to sort non-regular files. This is here
2993 especially for configure scripts and kernel builds which run
2994 tests with "ld [...] -o /dev/null". */
2995 if (stat (bfd_get_filename (abfd
), &buf
) != 0
2996 || !S_ISREG(buf
.st_mode
))
2999 return elf_hppa_sort_unwind (abfd
);
3002 /* Relocate the given INSN. VALUE should be the actual value we want
3003 to insert into the instruction, ie by this point we should not be
3004 concerned with computing an offset relative to the DLT, PC, etc.
3005 Instead this routine is meant to handle the bit manipulations needed
3006 to insert the relocation into the given instruction. */
3009 elf_hppa_relocate_insn (int insn
, int sym_value
, unsigned int r_type
)
3013 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3014 the "B" instruction. */
3015 case R_PARISC_PCREL22F
:
3016 case R_PARISC_PCREL22C
:
3017 return (insn
& ~0x3ff1ffd) | re_assemble_22 (sym_value
);
3019 /* This is any 12 bit branch. */
3020 case R_PARISC_PCREL12F
:
3021 return (insn
& ~0x1ffd) | re_assemble_12 (sym_value
);
3023 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3024 to the "B" instruction as well as BE. */
3025 case R_PARISC_PCREL17F
:
3026 case R_PARISC_DIR17F
:
3027 case R_PARISC_DIR17R
:
3028 case R_PARISC_PCREL17C
:
3029 case R_PARISC_PCREL17R
:
3030 return (insn
& ~0x1f1ffd) | re_assemble_17 (sym_value
);
3032 /* ADDIL or LDIL instructions. */
3033 case R_PARISC_DLTREL21L
:
3034 case R_PARISC_DLTIND21L
:
3035 case R_PARISC_LTOFF_FPTR21L
:
3036 case R_PARISC_PCREL21L
:
3037 case R_PARISC_LTOFF_TP21L
:
3038 case R_PARISC_DPREL21L
:
3039 case R_PARISC_PLTOFF21L
:
3040 case R_PARISC_DIR21L
:
3041 return (insn
& ~0x1fffff) | re_assemble_21 (sym_value
);
3043 /* LDO and integer loads/stores with 14 bit displacements. */
3044 case R_PARISC_DLTREL14R
:
3045 case R_PARISC_DLTREL14F
:
3046 case R_PARISC_DLTIND14R
:
3047 case R_PARISC_DLTIND14F
:
3048 case R_PARISC_LTOFF_FPTR14R
:
3049 case R_PARISC_PCREL14R
:
3050 case R_PARISC_PCREL14F
:
3051 case R_PARISC_LTOFF_TP14R
:
3052 case R_PARISC_LTOFF_TP14F
:
3053 case R_PARISC_DPREL14R
:
3054 case R_PARISC_DPREL14F
:
3055 case R_PARISC_PLTOFF14R
:
3056 case R_PARISC_PLTOFF14F
:
3057 case R_PARISC_DIR14R
:
3058 case R_PARISC_DIR14F
:
3059 return (insn
& ~0x3fff) | low_sign_unext (sym_value
, 14);
3061 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3062 case R_PARISC_LTOFF_FPTR16F
:
3063 case R_PARISC_PCREL16F
:
3064 case R_PARISC_LTOFF_TP16F
:
3065 case R_PARISC_GPREL16F
:
3066 case R_PARISC_PLTOFF16F
:
3067 case R_PARISC_DIR16F
:
3068 case R_PARISC_LTOFF16F
:
3069 return (insn
& ~0xffff) | re_assemble_16 (sym_value
);
3071 /* Doubleword loads and stores with a 14 bit displacement. */
3072 case R_PARISC_DLTREL14DR
:
3073 case R_PARISC_DLTIND14DR
:
3074 case R_PARISC_LTOFF_FPTR14DR
:
3075 case R_PARISC_LTOFF_FPTR16DF
:
3076 case R_PARISC_PCREL14DR
:
3077 case R_PARISC_PCREL16DF
:
3078 case R_PARISC_LTOFF_TP14DR
:
3079 case R_PARISC_LTOFF_TP16DF
:
3080 case R_PARISC_DPREL14DR
:
3081 case R_PARISC_GPREL16DF
:
3082 case R_PARISC_PLTOFF14DR
:
3083 case R_PARISC_PLTOFF16DF
:
3084 case R_PARISC_DIR14DR
:
3085 case R_PARISC_DIR16DF
:
3086 case R_PARISC_LTOFF16DF
:
3087 return (insn
& ~0x3ff1) | (((sym_value
& 0x2000) >> 13)
3088 | ((sym_value
& 0x1ff8) << 1));
3090 /* Floating point single word load/store instructions. */
3091 case R_PARISC_DLTREL14WR
:
3092 case R_PARISC_DLTIND14WR
:
3093 case R_PARISC_LTOFF_FPTR14WR
:
3094 case R_PARISC_LTOFF_FPTR16WF
:
3095 case R_PARISC_PCREL14WR
:
3096 case R_PARISC_PCREL16WF
:
3097 case R_PARISC_LTOFF_TP14WR
:
3098 case R_PARISC_LTOFF_TP16WF
:
3099 case R_PARISC_DPREL14WR
:
3100 case R_PARISC_GPREL16WF
:
3101 case R_PARISC_PLTOFF14WR
:
3102 case R_PARISC_PLTOFF16WF
:
3103 case R_PARISC_DIR16WF
:
3104 case R_PARISC_DIR14WR
:
3105 case R_PARISC_LTOFF16WF
:
3106 return (insn
& ~0x3ff9) | (((sym_value
& 0x2000) >> 13)
3107 | ((sym_value
& 0x1ffc) << 1));
3114 /* Compute the value for a relocation (REL) during a final link stage,
3115 then insert the value into the proper location in CONTENTS.
3117 VALUE is a tentative value for the relocation and may be overridden
3118 and modified here based on the specific relocation to be performed.
3120 For example we do conversions for PC-relative branches in this routine
3121 or redirection of calls to external routines to stubs.
3123 The work of actually applying the relocation is left to a helper
3124 routine in an attempt to reduce the complexity and size of this
3127 static bfd_reloc_status_type
3128 elf_hppa_final_link_relocate (Elf_Internal_Rela
*rel
,
3131 asection
*input_section
,
3134 struct bfd_link_info
*info
,
3136 struct elf_link_hash_entry
*eh
)
3138 struct elf64_hppa_link_hash_table
*hppa_info
= hppa_link_hash_table (info
);
3139 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
3140 bfd_vma
*local_offsets
;
3141 Elf_Internal_Shdr
*symtab_hdr
;
3143 bfd_vma max_branch_offset
= 0;
3144 bfd_vma offset
= rel
->r_offset
;
3145 bfd_signed_vma addend
= rel
->r_addend
;
3146 reloc_howto_type
*howto
= elf_hppa_howto_table
+ ELF_R_TYPE (rel
->r_info
);
3147 unsigned int r_symndx
= ELF_R_SYM (rel
->r_info
);
3148 unsigned int r_type
= howto
->type
;
3149 bfd_byte
*hit_data
= contents
+ offset
;
3151 if (hppa_info
== NULL
)
3152 return bfd_reloc_notsupported
;
3154 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3155 local_offsets
= elf_local_got_offsets (input_bfd
);
3156 insn
= bfd_get_32 (input_bfd
, hit_data
);
3163 /* Basic function call support.
3165 Note for a call to a function defined in another dynamic library
3166 we want to redirect the call to a stub. */
3168 /* PC relative relocs without an implicit offset. */
3169 case R_PARISC_PCREL21L
:
3170 case R_PARISC_PCREL14R
:
3171 case R_PARISC_PCREL14F
:
3172 case R_PARISC_PCREL14WR
:
3173 case R_PARISC_PCREL14DR
:
3174 case R_PARISC_PCREL16F
:
3175 case R_PARISC_PCREL16WF
:
3176 case R_PARISC_PCREL16DF
:
3178 /* If this is a call to a function defined in another dynamic
3179 library, then redirect the call to the local stub for this
3181 if (sym_sec
== NULL
|| sym_sec
->output_section
== NULL
)
3182 value
= (hh
->stub_offset
+ hppa_info
->stub_sec
->output_offset
3183 + hppa_info
->stub_sec
->output_section
->vma
);
3185 /* Turn VALUE into a proper PC relative address. */
3186 value
-= (offset
+ input_section
->output_offset
3187 + input_section
->output_section
->vma
);
3189 /* Adjust for any field selectors. */
3190 if (r_type
== R_PARISC_PCREL21L
)
3191 value
= hppa_field_adjust (value
, -8 + addend
, e_lsel
);
3192 else if (r_type
== R_PARISC_PCREL14F
3193 || r_type
== R_PARISC_PCREL16F
3194 || r_type
== R_PARISC_PCREL16WF
3195 || r_type
== R_PARISC_PCREL16DF
)
3196 value
= hppa_field_adjust (value
, -8 + addend
, e_fsel
);
3198 value
= hppa_field_adjust (value
, -8 + addend
, e_rsel
);
3200 /* Apply the relocation to the given instruction. */
3201 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3205 case R_PARISC_PCREL12F
:
3206 case R_PARISC_PCREL22F
:
3207 case R_PARISC_PCREL17F
:
3208 case R_PARISC_PCREL22C
:
3209 case R_PARISC_PCREL17C
:
3210 case R_PARISC_PCREL17R
:
3212 /* If this is a call to a function defined in another dynamic
3213 library, then redirect the call to the local stub for this
3215 if (sym_sec
== NULL
|| sym_sec
->output_section
== NULL
)
3216 value
= (hh
->stub_offset
+ hppa_info
->stub_sec
->output_offset
3217 + hppa_info
->stub_sec
->output_section
->vma
);
3219 /* Turn VALUE into a proper PC relative address. */
3220 value
-= (offset
+ input_section
->output_offset
3221 + input_section
->output_section
->vma
);
3224 if (r_type
== (unsigned int) R_PARISC_PCREL22F
)
3225 max_branch_offset
= (1 << (22-1)) << 2;
3226 else if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
3227 max_branch_offset
= (1 << (17-1)) << 2;
3228 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
3229 max_branch_offset
= (1 << (12-1)) << 2;
3231 /* Make sure we can reach the branch target. */
3232 if (max_branch_offset
!= 0
3233 && value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3236 /* xgettext:c-format */
3237 (_("%pB(%pA+%#" PRIx64
"): cannot reach %s"),
3241 eh
? eh
->root
.root
.string
: "unknown");
3242 bfd_set_error (bfd_error_bad_value
);
3243 return bfd_reloc_overflow
;
3246 /* Adjust for any field selectors. */
3247 if (r_type
== R_PARISC_PCREL17R
)
3248 value
= hppa_field_adjust (value
, addend
, e_rsel
);
3250 value
= hppa_field_adjust (value
, addend
, e_fsel
);
3252 /* All branches are implicitly shifted by 2 places. */
3255 /* Apply the relocation to the given instruction. */
3256 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3260 /* Indirect references to data through the DLT. */
3261 case R_PARISC_DLTIND14R
:
3262 case R_PARISC_DLTIND14F
:
3263 case R_PARISC_DLTIND14DR
:
3264 case R_PARISC_DLTIND14WR
:
3265 case R_PARISC_DLTIND21L
:
3266 case R_PARISC_LTOFF_FPTR14R
:
3267 case R_PARISC_LTOFF_FPTR14DR
:
3268 case R_PARISC_LTOFF_FPTR14WR
:
3269 case R_PARISC_LTOFF_FPTR21L
:
3270 case R_PARISC_LTOFF_FPTR16F
:
3271 case R_PARISC_LTOFF_FPTR16WF
:
3272 case R_PARISC_LTOFF_FPTR16DF
:
3273 case R_PARISC_LTOFF_TP21L
:
3274 case R_PARISC_LTOFF_TP14R
:
3275 case R_PARISC_LTOFF_TP14F
:
3276 case R_PARISC_LTOFF_TP14WR
:
3277 case R_PARISC_LTOFF_TP14DR
:
3278 case R_PARISC_LTOFF_TP16F
:
3279 case R_PARISC_LTOFF_TP16WF
:
3280 case R_PARISC_LTOFF_TP16DF
:
3281 case R_PARISC_LTOFF16F
:
3282 case R_PARISC_LTOFF16WF
:
3283 case R_PARISC_LTOFF16DF
:
3287 /* If this relocation was against a local symbol, then we still
3288 have not set up the DLT entry (it's not convenient to do so
3289 in the "finalize_dlt" routine because it is difficult to get
3290 to the local symbol's value).
3292 So, if this is a local symbol (h == NULL), then we need to
3293 fill in its DLT entry.
3295 Similarly we may still need to set up an entry in .opd for
3296 a local function which had its address taken. */
3299 bfd_vma
*local_opd_offsets
, *local_dlt_offsets
;
3301 if (local_offsets
== NULL
)
3304 /* Now do .opd creation if needed. */
3305 if (r_type
== R_PARISC_LTOFF_FPTR14R
3306 || r_type
== R_PARISC_LTOFF_FPTR14DR
3307 || r_type
== R_PARISC_LTOFF_FPTR14WR
3308 || r_type
== R_PARISC_LTOFF_FPTR21L
3309 || r_type
== R_PARISC_LTOFF_FPTR16F
3310 || r_type
== R_PARISC_LTOFF_FPTR16WF
3311 || r_type
== R_PARISC_LTOFF_FPTR16DF
)
3313 local_opd_offsets
= local_offsets
+ 2 * symtab_hdr
->sh_info
;
3314 off
= local_opd_offsets
[r_symndx
];
3316 /* The last bit records whether we've already initialised
3317 this local .opd entry. */
3320 BFD_ASSERT (off
!= (bfd_vma
) -1);
3325 local_opd_offsets
[r_symndx
] |= 1;
3327 /* The first two words of an .opd entry are zero. */
3328 memset (hppa_info
->opd_sec
->contents
+ off
, 0, 16);
3330 /* The next word is the address of the function. */
3331 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
+ addend
,
3332 (hppa_info
->opd_sec
->contents
+ off
+ 16));
3334 /* The last word is our local __gp value. */
3335 value
= _bfd_get_gp_value (info
->output_bfd
);
3336 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
,
3337 (hppa_info
->opd_sec
->contents
+ off
+ 24));
3340 /* The DLT value is the address of the .opd entry. */
3342 + hppa_info
->opd_sec
->output_offset
3343 + hppa_info
->opd_sec
->output_section
->vma
);
3347 local_dlt_offsets
= local_offsets
;
3348 off
= local_dlt_offsets
[r_symndx
];
3352 BFD_ASSERT (off
!= (bfd_vma
) -1);
3357 local_dlt_offsets
[r_symndx
] |= 1;
3358 bfd_put_64 (hppa_info
->dlt_sec
->owner
,
3360 hppa_info
->dlt_sec
->contents
+ off
);
3364 off
= hh
->dlt_offset
;
3366 /* We want the value of the DLT offset for this symbol, not
3367 the symbol's actual address. Note that __gp may not point
3368 to the start of the DLT, so we have to compute the absolute
3369 address, then subtract out the value of __gp. */
3371 + hppa_info
->dlt_sec
->output_offset
3372 + hppa_info
->dlt_sec
->output_section
->vma
);
3373 value
-= _bfd_get_gp_value (output_bfd
);
3375 /* All DLTIND relocations are basically the same at this point,
3376 except that we need different field selectors for the 21bit
3377 version vs the 14bit versions. */
3378 if (r_type
== R_PARISC_DLTIND21L
3379 || r_type
== R_PARISC_LTOFF_FPTR21L
3380 || r_type
== R_PARISC_LTOFF_TP21L
)
3381 value
= hppa_field_adjust (value
, 0, e_lsel
);
3382 else if (r_type
== R_PARISC_DLTIND14F
3383 || r_type
== R_PARISC_LTOFF_FPTR16F
3384 || r_type
== R_PARISC_LTOFF_FPTR16WF
3385 || r_type
== R_PARISC_LTOFF_FPTR16DF
3386 || r_type
== R_PARISC_LTOFF16F
3387 || r_type
== R_PARISC_LTOFF16DF
3388 || r_type
== R_PARISC_LTOFF16WF
3389 || r_type
== R_PARISC_LTOFF_TP16F
3390 || r_type
== R_PARISC_LTOFF_TP16WF
3391 || r_type
== R_PARISC_LTOFF_TP16DF
)
3392 value
= hppa_field_adjust (value
, 0, e_fsel
);
3394 value
= hppa_field_adjust (value
, 0, e_rsel
);
3396 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3400 case R_PARISC_DLTREL14R
:
3401 case R_PARISC_DLTREL14F
:
3402 case R_PARISC_DLTREL14DR
:
3403 case R_PARISC_DLTREL14WR
:
3404 case R_PARISC_DLTREL21L
:
3405 case R_PARISC_DPREL21L
:
3406 case R_PARISC_DPREL14WR
:
3407 case R_PARISC_DPREL14DR
:
3408 case R_PARISC_DPREL14R
:
3409 case R_PARISC_DPREL14F
:
3410 case R_PARISC_GPREL16F
:
3411 case R_PARISC_GPREL16WF
:
3412 case R_PARISC_GPREL16DF
:
3414 /* Subtract out the global pointer value to make value a DLT
3415 relative address. */
3416 value
-= _bfd_get_gp_value (output_bfd
);
3418 /* All DLTREL relocations are basically the same at this point,
3419 except that we need different field selectors for the 21bit
3420 version vs the 14bit versions. */
3421 if (r_type
== R_PARISC_DLTREL21L
3422 || r_type
== R_PARISC_DPREL21L
)
3423 value
= hppa_field_adjust (value
, addend
, e_lrsel
);
3424 else if (r_type
== R_PARISC_DLTREL14F
3425 || r_type
== R_PARISC_DPREL14F
3426 || r_type
== R_PARISC_GPREL16F
3427 || r_type
== R_PARISC_GPREL16WF
3428 || r_type
== R_PARISC_GPREL16DF
)
3429 value
= hppa_field_adjust (value
, addend
, e_fsel
);
3431 value
= hppa_field_adjust (value
, addend
, e_rrsel
);
3433 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3437 case R_PARISC_DIR21L
:
3438 case R_PARISC_DIR17R
:
3439 case R_PARISC_DIR17F
:
3440 case R_PARISC_DIR14R
:
3441 case R_PARISC_DIR14F
:
3442 case R_PARISC_DIR14WR
:
3443 case R_PARISC_DIR14DR
:
3444 case R_PARISC_DIR16F
:
3445 case R_PARISC_DIR16WF
:
3446 case R_PARISC_DIR16DF
:
3448 /* All DIR relocations are basically the same at this point,
3449 except that branch offsets need to be divided by four, and
3450 we need different field selectors. Note that we don't
3451 redirect absolute calls to local stubs. */
3453 if (r_type
== R_PARISC_DIR21L
)
3454 value
= hppa_field_adjust (value
, addend
, e_lrsel
);
3455 else if (r_type
== R_PARISC_DIR17F
3456 || r_type
== R_PARISC_DIR16F
3457 || r_type
== R_PARISC_DIR16WF
3458 || r_type
== R_PARISC_DIR16DF
3459 || r_type
== R_PARISC_DIR14F
)
3460 value
= hppa_field_adjust (value
, addend
, e_fsel
);
3462 value
= hppa_field_adjust (value
, addend
, e_rrsel
);
3464 if (r_type
== R_PARISC_DIR17R
|| r_type
== R_PARISC_DIR17F
)
3465 /* All branches are implicitly shifted by 2 places. */
3468 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3472 case R_PARISC_PLTOFF21L
:
3473 case R_PARISC_PLTOFF14R
:
3474 case R_PARISC_PLTOFF14F
:
3475 case R_PARISC_PLTOFF14WR
:
3476 case R_PARISC_PLTOFF14DR
:
3477 case R_PARISC_PLTOFF16F
:
3478 case R_PARISC_PLTOFF16WF
:
3479 case R_PARISC_PLTOFF16DF
:
3481 /* We want the value of the PLT offset for this symbol, not
3482 the symbol's actual address. Note that __gp may not point
3483 to the start of the DLT, so we have to compute the absolute
3484 address, then subtract out the value of __gp. */
3485 value
= (hh
->plt_offset
3486 + hppa_info
->root
.splt
->output_offset
3487 + hppa_info
->root
.splt
->output_section
->vma
);
3488 value
-= _bfd_get_gp_value (output_bfd
);
3490 /* All PLTOFF relocations are basically the same at this point,
3491 except that we need different field selectors for the 21bit
3492 version vs the 14bit versions. */
3493 if (r_type
== R_PARISC_PLTOFF21L
)
3494 value
= hppa_field_adjust (value
, addend
, e_lrsel
);
3495 else if (r_type
== R_PARISC_PLTOFF14F
3496 || r_type
== R_PARISC_PLTOFF16F
3497 || r_type
== R_PARISC_PLTOFF16WF
3498 || r_type
== R_PARISC_PLTOFF16DF
)
3499 value
= hppa_field_adjust (value
, addend
, e_fsel
);
3501 value
= hppa_field_adjust (value
, addend
, e_rrsel
);
3503 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3507 case R_PARISC_LTOFF_FPTR32
:
3509 /* FIXME: There used to be code here to create the FPTR itself if
3510 the relocation was against a local symbol. But the code could
3511 never have worked. If the assert below is ever triggered then
3512 the code will need to be reinstated and fixed so that it does
3514 BFD_ASSERT (hh
!= NULL
);
3516 /* We want the value of the DLT offset for this symbol, not
3517 the symbol's actual address. Note that __gp may not point
3518 to the start of the DLT, so we have to compute the absolute
3519 address, then subtract out the value of __gp. */
3520 value
= (hh
->dlt_offset
3521 + hppa_info
->dlt_sec
->output_offset
3522 + hppa_info
->dlt_sec
->output_section
->vma
);
3523 value
-= _bfd_get_gp_value (output_bfd
);
3524 bfd_put_32 (input_bfd
, value
, hit_data
);
3525 return bfd_reloc_ok
;
3528 case R_PARISC_LTOFF_FPTR64
:
3529 case R_PARISC_LTOFF_TP64
:
3531 /* We may still need to create the FPTR itself if it was for
3533 if (eh
== NULL
&& r_type
== R_PARISC_LTOFF_FPTR64
)
3535 /* The first two words of an .opd entry are zero. */
3536 memset (hppa_info
->opd_sec
->contents
+ hh
->opd_offset
, 0, 16);
3538 /* The next word is the address of the function. */
3539 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
+ addend
,
3540 (hppa_info
->opd_sec
->contents
3541 + hh
->opd_offset
+ 16));
3543 /* The last word is our local __gp value. */
3544 value
= _bfd_get_gp_value (info
->output_bfd
);
3545 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
,
3546 hppa_info
->opd_sec
->contents
+ hh
->opd_offset
+ 24);
3548 /* The DLT value is the address of the .opd entry. */
3549 value
= (hh
->opd_offset
3550 + hppa_info
->opd_sec
->output_offset
3551 + hppa_info
->opd_sec
->output_section
->vma
);
3553 bfd_put_64 (hppa_info
->dlt_sec
->owner
,
3555 hppa_info
->dlt_sec
->contents
+ hh
->dlt_offset
);
3558 /* We want the value of the DLT offset for this symbol, not
3559 the symbol's actual address. Note that __gp may not point
3560 to the start of the DLT, so we have to compute the absolute
3561 address, then subtract out the value of __gp. */
3562 value
= (hh
->dlt_offset
3563 + hppa_info
->dlt_sec
->output_offset
3564 + hppa_info
->dlt_sec
->output_section
->vma
);
3565 value
-= _bfd_get_gp_value (output_bfd
);
3566 bfd_put_64 (input_bfd
, value
, hit_data
);
3567 return bfd_reloc_ok
;
3570 case R_PARISC_DIR32
:
3571 bfd_put_32 (input_bfd
, value
+ addend
, hit_data
);
3572 return bfd_reloc_ok
;
3574 case R_PARISC_DIR64
:
3575 bfd_put_64 (input_bfd
, value
+ addend
, hit_data
);
3576 return bfd_reloc_ok
;
3578 case R_PARISC_GPREL64
:
3579 /* Subtract out the global pointer value to make value a DLT
3580 relative address. */
3581 value
-= _bfd_get_gp_value (output_bfd
);
3583 bfd_put_64 (input_bfd
, value
+ addend
, hit_data
);
3584 return bfd_reloc_ok
;
3586 case R_PARISC_LTOFF64
:
3587 /* We want the value of the DLT offset for this symbol, not
3588 the symbol's actual address. Note that __gp may not point
3589 to the start of the DLT, so we have to compute the absolute
3590 address, then subtract out the value of __gp. */
3591 value
= (hh
->dlt_offset
3592 + hppa_info
->dlt_sec
->output_offset
3593 + hppa_info
->dlt_sec
->output_section
->vma
);
3594 value
-= _bfd_get_gp_value (output_bfd
);
3596 bfd_put_64 (input_bfd
, value
+ addend
, hit_data
);
3597 return bfd_reloc_ok
;
3599 case R_PARISC_PCREL32
:
3601 /* If this is a call to a function defined in another dynamic
3602 library, then redirect the call to the local stub for this
3604 if (sym_sec
== NULL
|| sym_sec
->output_section
== NULL
)
3605 value
= (hh
->stub_offset
+ hppa_info
->stub_sec
->output_offset
3606 + hppa_info
->stub_sec
->output_section
->vma
);
3608 /* Turn VALUE into a proper PC relative address. */
3609 value
-= (offset
+ input_section
->output_offset
3610 + input_section
->output_section
->vma
);
3614 bfd_put_32 (input_bfd
, value
, hit_data
);
3615 return bfd_reloc_ok
;
3618 case R_PARISC_PCREL64
:
3620 /* If this is a call to a function defined in another dynamic
3621 library, then redirect the call to the local stub for this
3623 if (sym_sec
== NULL
|| sym_sec
->output_section
== NULL
)
3624 value
= (hh
->stub_offset
+ hppa_info
->stub_sec
->output_offset
3625 + hppa_info
->stub_sec
->output_section
->vma
);
3627 /* Turn VALUE into a proper PC relative address. */
3628 value
-= (offset
+ input_section
->output_offset
3629 + input_section
->output_section
->vma
);
3633 bfd_put_64 (input_bfd
, value
, hit_data
);
3634 return bfd_reloc_ok
;
3637 case R_PARISC_FPTR64
:
3641 /* We may still need to create the FPTR itself if it was for
3645 bfd_vma
*local_opd_offsets
;
3647 if (local_offsets
== NULL
)
3650 local_opd_offsets
= local_offsets
+ 2 * symtab_hdr
->sh_info
;
3651 off
= local_opd_offsets
[r_symndx
];
3653 /* The last bit records whether we've already initialised
3654 this local .opd entry. */
3657 BFD_ASSERT (off
!= (bfd_vma
) -1);
3662 /* The first two words of an .opd entry are zero. */
3663 memset (hppa_info
->opd_sec
->contents
+ off
, 0, 16);
3665 /* The next word is the address of the function. */
3666 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
+ addend
,
3667 (hppa_info
->opd_sec
->contents
+ off
+ 16));
3669 /* The last word is our local __gp value. */
3670 value
= _bfd_get_gp_value (info
->output_bfd
);
3671 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
,
3672 hppa_info
->opd_sec
->contents
+ off
+ 24);
3676 off
= hh
->opd_offset
;
3678 if (hh
== NULL
|| hh
->want_opd
)
3679 /* We want the value of the OPD offset for this symbol. */
3681 + hppa_info
->opd_sec
->output_offset
3682 + hppa_info
->opd_sec
->output_section
->vma
);
3684 /* We want the address of the symbol. */
3687 bfd_put_64 (input_bfd
, value
, hit_data
);
3688 return bfd_reloc_ok
;
3691 case R_PARISC_SECREL32
:
3692 if (sym_sec
&& sym_sec
->output_section
)
3693 value
-= sym_sec
->output_section
->vma
;
3694 bfd_put_32 (input_bfd
, value
+ addend
, hit_data
);
3695 return bfd_reloc_ok
;
3697 case R_PARISC_SEGREL32
:
3698 case R_PARISC_SEGREL64
:
3700 /* If this is the first SEGREL relocation, then initialize
3701 the segment base values. */
3702 if (hppa_info
->text_segment_base
== (bfd_vma
) -1)
3703 bfd_map_over_sections (output_bfd
, elf_hppa_record_segment_addrs
,
3706 /* VALUE holds the absolute address. We want to include the
3707 addend, then turn it into a segment relative address.
3709 The segment is derived from SYM_SEC. We assume that there are
3710 only two segments of note in the resulting executable/shlib.
3711 A readonly segment (.text) and a readwrite segment (.data). */
3714 if (sym_sec
->flags
& SEC_CODE
)
3715 value
-= hppa_info
->text_segment_base
;
3717 value
-= hppa_info
->data_segment_base
;
3719 if (r_type
== R_PARISC_SEGREL32
)
3720 bfd_put_32 (input_bfd
, value
, hit_data
);
3722 bfd_put_64 (input_bfd
, value
, hit_data
);
3723 return bfd_reloc_ok
;
3726 /* Something we don't know how to handle. */
3728 return bfd_reloc_notsupported
;
3731 /* Update the instruction word. */
3732 bfd_put_32 (input_bfd
, (bfd_vma
) insn
, hit_data
);
3733 return bfd_reloc_ok
;
3736 /* Relocate an HPPA ELF section. */
3739 elf64_hppa_relocate_section (bfd
*output_bfd
,
3740 struct bfd_link_info
*info
,
3742 asection
*input_section
,
3744 Elf_Internal_Rela
*relocs
,
3745 Elf_Internal_Sym
*local_syms
,
3746 asection
**local_sections
)
3748 Elf_Internal_Shdr
*symtab_hdr
;
3749 Elf_Internal_Rela
*rel
;
3750 Elf_Internal_Rela
*relend
;
3751 struct elf64_hppa_link_hash_table
*hppa_info
;
3753 hppa_info
= hppa_link_hash_table (info
);
3754 if (hppa_info
== NULL
)
3757 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3760 relend
= relocs
+ input_section
->reloc_count
;
3761 for (; rel
< relend
; rel
++)
3764 reloc_howto_type
*howto
= elf_hppa_howto_table
+ ELF_R_TYPE (rel
->r_info
);
3765 unsigned long r_symndx
;
3766 struct elf_link_hash_entry
*eh
;
3767 Elf_Internal_Sym
*sym
;
3770 bfd_reloc_status_type r
;
3772 r_type
= ELF_R_TYPE (rel
->r_info
);
3773 if (r_type
< 0 || r_type
>= (int) R_PARISC_UNIMPLEMENTED
)
3775 bfd_set_error (bfd_error_bad_value
);
3778 if (r_type
== (unsigned int) R_PARISC_GNU_VTENTRY
3779 || r_type
== (unsigned int) R_PARISC_GNU_VTINHERIT
)
3782 /* This is a final link. */
3783 r_symndx
= ELF_R_SYM (rel
->r_info
);
3787 if (r_symndx
< symtab_hdr
->sh_info
)
3789 /* This is a local symbol, hh defaults to NULL. */
3790 sym
= local_syms
+ r_symndx
;
3791 sym_sec
= local_sections
[r_symndx
];
3792 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sym_sec
, rel
);
3796 /* This is not a local symbol. */
3797 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (input_bfd
);
3799 /* It seems this can happen with erroneous or unsupported
3800 input (mixing a.out and elf in an archive, for example.) */
3801 if (sym_hashes
== NULL
)
3804 eh
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
3806 if (info
->wrap_hash
!= NULL
3807 && (input_section
->flags
& SEC_DEBUGGING
) != 0)
3808 eh
= ((struct elf_link_hash_entry
*)
3809 unwrap_hash_lookup (info
, input_bfd
, &eh
->root
));
3811 while (eh
->root
.type
== bfd_link_hash_indirect
3812 || eh
->root
.type
== bfd_link_hash_warning
)
3813 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
3816 if (eh
->root
.type
== bfd_link_hash_defined
3817 || eh
->root
.type
== bfd_link_hash_defweak
)
3819 sym_sec
= eh
->root
.u
.def
.section
;
3821 && sym_sec
->output_section
!= NULL
)
3822 relocation
= (eh
->root
.u
.def
.value
3823 + sym_sec
->output_section
->vma
3824 + sym_sec
->output_offset
);
3826 else if (eh
->root
.type
== bfd_link_hash_undefweak
)
3828 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
3829 && ELF_ST_VISIBILITY (eh
->other
) == STV_DEFAULT
)
3831 else if (!bfd_link_relocatable (info
)
3832 && elf_hppa_is_dynamic_loader_symbol (eh
->root
.root
.string
))
3834 else if (!bfd_link_relocatable (info
))
3838 err
= (info
->unresolved_syms_in_objects
== RM_DIAGNOSE
3839 && !info
->warn_unresolved_syms
)
3840 || ELF_ST_VISIBILITY (eh
->other
) != STV_DEFAULT
;
3842 info
->callbacks
->undefined_symbol
3843 (info
, eh
->root
.root
.string
, input_bfd
,
3844 input_section
, rel
->r_offset
, err
);
3847 if (!bfd_link_relocatable (info
)
3849 && eh
->root
.type
!= bfd_link_hash_defined
3850 && eh
->root
.type
!= bfd_link_hash_defweak
3851 && eh
->root
.type
!= bfd_link_hash_undefweak
)
3853 if (info
->unresolved_syms_in_objects
== RM_IGNORE
3854 && ELF_ST_VISIBILITY (eh
->other
) == STV_DEFAULT
3855 && eh
->type
== STT_PARISC_MILLI
)
3856 info
->callbacks
->undefined_symbol
3857 (info
, eh_name (eh
), input_bfd
,
3858 input_section
, rel
->r_offset
, FALSE
);
3862 if (sym_sec
!= NULL
&& discarded_section (sym_sec
))
3863 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
3864 rel
, 1, relend
, howto
, 0, contents
);
3866 if (bfd_link_relocatable (info
))
3869 r
= elf_hppa_final_link_relocate (rel
, input_bfd
, output_bfd
,
3870 input_section
, contents
,
3871 relocation
, info
, sym_sec
,
3874 if (r
!= bfd_reloc_ok
)
3880 case bfd_reloc_overflow
:
3882 const char *sym_name
;
3888 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
3889 symtab_hdr
->sh_link
,
3891 if (sym_name
== NULL
)
3893 if (*sym_name
== '\0')
3894 sym_name
= bfd_section_name (sym_sec
);
3897 (*info
->callbacks
->reloc_overflow
)
3898 (info
, (eh
? &eh
->root
: NULL
), sym_name
, howto
->name
,
3899 (bfd_vma
) 0, input_bfd
, input_section
, rel
->r_offset
);
3908 static const struct bfd_elf_special_section elf64_hppa_special_sections
[] =
3910 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_HP_TLS
},
3911 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
3912 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
3913 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
3914 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
3915 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
3916 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
3917 { NULL
, 0, 0, 0, 0 }
3920 /* The hash bucket size is the standard one, namely 4. */
3922 const struct elf_size_info hppa64_elf_size_info
=
3924 sizeof (Elf64_External_Ehdr
),
3925 sizeof (Elf64_External_Phdr
),
3926 sizeof (Elf64_External_Shdr
),
3927 sizeof (Elf64_External_Rel
),
3928 sizeof (Elf64_External_Rela
),
3929 sizeof (Elf64_External_Sym
),
3930 sizeof (Elf64_External_Dyn
),
3931 sizeof (Elf_External_Note
),
3935 ELFCLASS64
, EV_CURRENT
,
3936 bfd_elf64_write_out_phdrs
,
3937 bfd_elf64_write_shdrs_and_ehdr
,
3938 bfd_elf64_checksum_contents
,
3939 bfd_elf64_write_relocs
,
3940 bfd_elf64_swap_symbol_in
,
3941 bfd_elf64_swap_symbol_out
,
3942 bfd_elf64_slurp_reloc_table
,
3943 bfd_elf64_slurp_symbol_table
,
3944 bfd_elf64_swap_dyn_in
,
3945 bfd_elf64_swap_dyn_out
,
3946 bfd_elf64_swap_reloc_in
,
3947 bfd_elf64_swap_reloc_out
,
3948 bfd_elf64_swap_reloca_in
,
3949 bfd_elf64_swap_reloca_out
3952 #define TARGET_BIG_SYM hppa_elf64_vec
3953 #define TARGET_BIG_NAME "elf64-hppa"
3954 #define ELF_ARCH bfd_arch_hppa
3955 #define ELF_TARGET_ID HPPA64_ELF_DATA
3956 #define ELF_MACHINE_CODE EM_PARISC
3957 /* This is not strictly correct. The maximum page size for PA2.0 is
3958 64M. But everything still uses 4k. */
3959 #define ELF_MAXPAGESIZE 0x1000
3960 #define ELF_OSABI ELFOSABI_HPUX
3962 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
3963 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
3964 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
3965 #define elf_info_to_howto elf_hppa_info_to_howto
3966 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
3968 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
3969 #define elf_backend_object_p elf64_hppa_object_p
3970 #define elf_backend_final_write_processing \
3971 elf_hppa_final_write_processing
3972 #define elf_backend_fake_sections elf_hppa_fake_sections
3973 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
3975 #define elf_backend_relocate_section elf_hppa_relocate_section
3977 #define bfd_elf64_bfd_final_link elf_hppa_final_link
3979 #define elf_backend_create_dynamic_sections \
3980 elf64_hppa_create_dynamic_sections
3981 #define elf_backend_init_file_header elf64_hppa_init_file_header
3983 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
3985 #define elf_backend_adjust_dynamic_symbol \
3986 elf64_hppa_adjust_dynamic_symbol
3988 #define elf_backend_size_dynamic_sections \
3989 elf64_hppa_size_dynamic_sections
3991 #define elf_backend_finish_dynamic_symbol \
3992 elf64_hppa_finish_dynamic_symbol
3993 #define elf_backend_finish_dynamic_sections \
3994 elf64_hppa_finish_dynamic_sections
3995 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
3996 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
3998 /* Stuff for the BFD linker: */
3999 #define bfd_elf64_bfd_link_hash_table_create \
4000 elf64_hppa_hash_table_create
4002 #define elf_backend_check_relocs \
4003 elf64_hppa_check_relocs
4005 #define elf_backend_size_info \
4006 hppa64_elf_size_info
4008 #define elf_backend_additional_program_headers \
4009 elf64_hppa_additional_program_headers
4011 #define elf_backend_modify_segment_map \
4012 elf64_hppa_modify_segment_map
4014 #define elf_backend_allow_non_load_phdr \
4015 elf64_hppa_allow_non_load_phdr
4017 #define elf_backend_link_output_symbol_hook \
4018 elf64_hppa_link_output_symbol_hook
4020 #define elf_backend_want_got_plt 0
4021 #define elf_backend_plt_readonly 0
4022 #define elf_backend_want_plt_sym 0
4023 #define elf_backend_got_header_size 0
4024 #define elf_backend_type_change_ok TRUE
4025 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4026 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4027 #define elf_backend_rela_normal 1
4028 #define elf_backend_special_sections elf64_hppa_special_sections
4029 #define elf_backend_action_discarded elf_hppa_action_discarded
4030 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4032 #define elf64_bed elf64_hppa_hpux_bed
4034 #include "elf64-target.h"
4036 #undef TARGET_BIG_SYM
4037 #define TARGET_BIG_SYM hppa_elf64_linux_vec
4038 #undef TARGET_BIG_NAME
4039 #define TARGET_BIG_NAME "elf64-hppa-linux"
4041 #define ELF_OSABI ELFOSABI_GNU
4043 #define elf64_bed elf64_hppa_linux_bed
4044 #undef elf_backend_special_sections
4045 #define elf_backend_special_sections (elf64_hppa_special_sections + 1)
4047 #include "elf64-target.h"