1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
38 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
39 #define OCTETS_PER_BYTE(ABFD, SEC) 1
41 static bfd_reloc_status_type ppc64_elf_ha_reloc
42 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
43 static bfd_reloc_status_type ppc64_elf_branch_reloc
44 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
45 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
46 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
48 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
49 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
50 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_reloc
52 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
53 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
54 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
55 static bfd_reloc_status_type ppc64_elf_toc64_reloc
56 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
57 static bfd_reloc_status_type ppc64_elf_prefix_reloc
58 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
59 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
60 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
61 static bfd_vma opd_entry_value
62 (asection
*, bfd_vma
, asection
**, bfd_vma
*, bfd_boolean
);
64 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
65 #define TARGET_LITTLE_NAME "elf64-powerpcle"
66 #define TARGET_BIG_SYM powerpc_elf64_vec
67 #define TARGET_BIG_NAME "elf64-powerpc"
68 #define ELF_ARCH bfd_arch_powerpc
69 #define ELF_TARGET_ID PPC64_ELF_DATA
70 #define ELF_MACHINE_CODE EM_PPC64
71 #define ELF_MAXPAGESIZE 0x10000
72 #define ELF_COMMONPAGESIZE 0x1000
73 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
74 #define elf_info_to_howto ppc64_elf_info_to_howto
76 #define elf_backend_want_got_sym 0
77 #define elf_backend_want_plt_sym 0
78 #define elf_backend_plt_alignment 3
79 #define elf_backend_plt_not_loaded 1
80 #define elf_backend_got_header_size 8
81 #define elf_backend_want_dynrelro 1
82 #define elf_backend_can_gc_sections 1
83 #define elf_backend_can_refcount 1
84 #define elf_backend_rela_normal 1
85 #define elf_backend_dtrel_excludes_plt 1
86 #define elf_backend_default_execstack 0
88 #define bfd_elf64_mkobject ppc64_elf_mkobject
89 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
90 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
91 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
92 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
93 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
94 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
95 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
96 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
97 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
99 #define elf_backend_object_p ppc64_elf_object_p
100 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
101 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
102 #define elf_backend_write_core_note ppc64_elf_write_core_note
103 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
104 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
105 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
106 #define elf_backend_check_directives ppc64_elf_before_check_relocs
107 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
108 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
109 #define elf_backend_check_relocs ppc64_elf_check_relocs
110 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
111 #define elf_backend_gc_keep ppc64_elf_gc_keep
112 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
113 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
114 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
115 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
116 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
117 #define elf_backend_always_size_sections ppc64_elf_edit
118 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
119 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
120 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
121 #define elf_backend_action_discarded ppc64_elf_action_discarded
122 #define elf_backend_relocate_section ppc64_elf_relocate_section
123 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
124 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
125 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
126 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
127 #define elf_backend_special_sections ppc64_elf_special_sections
128 #define elf_backend_section_flags ppc64_elf_section_flags
129 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
130 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
131 #define elf_backend_get_reloc_section bfd_get_section_by_name
133 /* The name of the dynamic interpreter. This is put in the .interp
135 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
137 /* The size in bytes of an entry in the procedure linkage table. */
138 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
139 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
141 /* The initial size of the plt reserved for the dynamic linker. */
142 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
144 /* Offsets to some stack save slots. */
146 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
147 /* This one is dodgy. ELFv2 does not have a linker word, so use the
148 CR save slot. Used only by optimised __tls_get_addr call stub,
149 relying on __tls_get_addr_opt not saving CR.. */
150 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
152 /* TOC base pointers offset from start of TOC. */
153 #define TOC_BASE_OFF 0x8000
154 /* TOC base alignment. */
155 #define TOC_BASE_ALIGN 256
157 /* Offset of tp and dtp pointers from start of TLS block. */
158 #define TP_OFFSET 0x7000
159 #define DTP_OFFSET 0x8000
161 /* .plt call stub instructions. The normal stub is like this, but
162 sometimes the .plt entry crosses a 64k boundary and we need to
163 insert an addi to adjust r11. */
164 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
165 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
166 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
167 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
168 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
169 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
170 #define BCTR 0x4e800420 /* bctr */
172 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
173 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
174 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
175 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
176 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
178 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
179 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
180 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
181 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
182 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
183 #define BNECTR 0x4ca20420 /* bnectr+ */
184 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
186 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
187 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
188 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
190 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
191 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
192 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
194 #define LI_R11_0 0x39600000 /* li %r11,0 */
195 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
196 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
197 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
198 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
199 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
200 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
201 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
202 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
203 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
204 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
205 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
206 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
207 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
208 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
209 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
210 #define PADDI_R12_PC 0x0610000039800000ULL
211 #define PLD_R12_PC 0x04100000e5800000ULL
212 #define PNOP 0x0700000000000000ULL
214 /* __glink_PLTresolve stub instructions. We enter with the index in
215 R0 for ELFv1, and the address of a glink branch in R12 for ELFv2. */
216 #define GLINK_PLTRESOLVE_SIZE(htab) \
217 (8u + (htab->opd_abi ? 11 * 4 : htab->has_plt_localentry0 ? 14 * 4 : 13 * 4))
221 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
222 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
224 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
225 /* ld %2,(0b-1b)(%11) */
226 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
227 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
234 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
235 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
236 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
237 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
238 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
239 #define LD_R0_0R11 0xe80b0000 /* ld %r0,0(%r11) */
240 #define ADD_R11_R0_R11 0x7d605a14 /* add %r11,%r0,%r11 */
243 #define NOP 0x60000000
245 /* Some other nops. */
246 #define CROR_151515 0x4def7b82
247 #define CROR_313131 0x4ffffb82
249 /* .glink entries for the first 32k functions are two instructions. */
250 #define LI_R0_0 0x38000000 /* li %r0,0 */
251 #define B_DOT 0x48000000 /* b . */
253 /* After that, we need two instructions to load the index, followed by
255 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
256 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
258 /* Instructions used by the save and restore reg functions. */
259 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
260 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
261 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
262 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
263 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
264 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
265 #define LI_R12_0 0x39800000 /* li %r12,0 */
266 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
267 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
268 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
269 #define BLR 0x4e800020 /* blr */
271 /* Since .opd is an array of descriptors and each entry will end up
272 with identical R_PPC64_RELATIVE relocs, there is really no need to
273 propagate .opd relocs; The dynamic linker should be taught to
274 relocate .opd without reloc entries. */
275 #ifndef NO_OPD_RELOCS
276 #define NO_OPD_RELOCS 0
280 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
284 abiversion (bfd
*abfd
)
286 return elf_elfheader (abfd
)->e_flags
& EF_PPC64_ABI
;
290 set_abiversion (bfd
*abfd
, int ver
)
292 elf_elfheader (abfd
)->e_flags
&= ~EF_PPC64_ABI
;
293 elf_elfheader (abfd
)->e_flags
|= ver
& EF_PPC64_ABI
;
296 /* Relocation HOWTO's. */
297 /* Like other ELF RELA targets that don't apply multiple
298 field-altering relocations to the same localation, src_mask is
299 always zero and pcrel_offset is the same as pc_relative.
300 PowerPC can always use a zero bitpos, even when the field is not at
301 the LSB. For example, a REL24 could use rightshift=2, bisize=24
302 and bitpos=2 which matches the ABI description, or as we do here,
303 rightshift=0, bitsize=26 and bitpos=0. */
304 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
305 complain, special_func) \
306 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
307 complain_overflow_ ## complain, special_func, \
308 #type, FALSE, 0, mask, pc_relative)
310 static reloc_howto_type
*ppc64_elf_howto_table
[(int) R_PPC64_max
];
312 static reloc_howto_type ppc64_elf_howto_raw
[] =
314 /* This reloc does nothing. */
315 HOW (R_PPC64_NONE
, 3, 0, 0, 0, FALSE
, dont
,
316 bfd_elf_generic_reloc
),
318 /* A standard 32 bit relocation. */
319 HOW (R_PPC64_ADDR32
, 2, 32, 0xffffffff, 0, FALSE
, bitfield
,
320 bfd_elf_generic_reloc
),
322 /* An absolute 26 bit branch; the lower two bits must be zero.
323 FIXME: we don't check that, we just clear them. */
324 HOW (R_PPC64_ADDR24
, 2, 26, 0x03fffffc, 0, FALSE
, bitfield
,
325 bfd_elf_generic_reloc
),
327 /* A standard 16 bit relocation. */
328 HOW (R_PPC64_ADDR16
, 1, 16, 0xffff, 0, FALSE
, bitfield
,
329 bfd_elf_generic_reloc
),
331 /* A 16 bit relocation without overflow. */
332 HOW (R_PPC64_ADDR16_LO
, 1, 16, 0xffff, 0, FALSE
, dont
,
333 bfd_elf_generic_reloc
),
335 /* Bits 16-31 of an address. */
336 HOW (R_PPC64_ADDR16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
337 bfd_elf_generic_reloc
),
339 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
340 bits, treated as a signed number, is negative. */
341 HOW (R_PPC64_ADDR16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
344 /* An absolute 16 bit branch; the lower two bits must be zero.
345 FIXME: we don't check that, we just clear them. */
346 HOW (R_PPC64_ADDR14
, 2, 16, 0x0000fffc, 0, FALSE
, signed,
347 ppc64_elf_branch_reloc
),
349 /* An absolute 16 bit branch, for which bit 10 should be set to
350 indicate that the branch is expected to be taken. The lower two
351 bits must be zero. */
352 HOW (R_PPC64_ADDR14_BRTAKEN
, 2, 16, 0x0000fffc, 0, FALSE
, signed,
353 ppc64_elf_brtaken_reloc
),
355 /* An absolute 16 bit branch, for which bit 10 should be set to
356 indicate that the branch is not expected to be taken. The lower
357 two bits must be zero. */
358 HOW (R_PPC64_ADDR14_BRNTAKEN
, 2, 16, 0x0000fffc, 0, FALSE
, signed,
359 ppc64_elf_brtaken_reloc
),
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOW (R_PPC64_REL24
, 2, 26, 0x03fffffc, 0, TRUE
, signed,
363 ppc64_elf_branch_reloc
),
365 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
366 HOW (R_PPC64_REL24_NOTOC
, 2, 26, 0x03fffffc, 0, TRUE
, signed,
367 ppc64_elf_branch_reloc
),
369 /* A relative 16 bit branch; the lower two bits must be zero. */
370 HOW (R_PPC64_REL14
, 2, 16, 0x0000fffc, 0, TRUE
, signed,
371 ppc64_elf_branch_reloc
),
373 /* A relative 16 bit branch. Bit 10 should be set to indicate that
374 the branch is expected to be taken. The lower two bits must be
376 HOW (R_PPC64_REL14_BRTAKEN
, 2, 16, 0x0000fffc, 0, TRUE
, signed,
377 ppc64_elf_brtaken_reloc
),
379 /* A relative 16 bit branch. Bit 10 should be set to indicate that
380 the branch is not expected to be taken. The lower two bits must
382 HOW (R_PPC64_REL14_BRNTAKEN
, 2, 16, 0x0000fffc, 0, TRUE
, signed,
383 ppc64_elf_brtaken_reloc
),
385 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
387 HOW (R_PPC64_GOT16
, 1, 16, 0xffff, 0, FALSE
, signed,
388 ppc64_elf_unhandled_reloc
),
390 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
392 HOW (R_PPC64_GOT16_LO
, 1, 16, 0xffff, 0, FALSE
, dont
,
393 ppc64_elf_unhandled_reloc
),
395 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
397 HOW (R_PPC64_GOT16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
398 ppc64_elf_unhandled_reloc
),
400 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
402 HOW (R_PPC64_GOT16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
403 ppc64_elf_unhandled_reloc
),
405 /* This is used only by the dynamic linker. The symbol should exist
406 both in the object being run and in some shared library. The
407 dynamic linker copies the data addressed by the symbol from the
408 shared library into the object, because the object being
409 run has to have the data at some particular address. */
410 HOW (R_PPC64_COPY
, 0, 0, 0, 0, FALSE
, dont
,
411 ppc64_elf_unhandled_reloc
),
413 /* Like R_PPC64_ADDR64, but used when setting global offset table
415 HOW (R_PPC64_GLOB_DAT
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
416 ppc64_elf_unhandled_reloc
),
418 /* Created by the link editor. Marks a procedure linkage table
419 entry for a symbol. */
420 HOW (R_PPC64_JMP_SLOT
, 0, 0, 0, 0, FALSE
, dont
,
421 ppc64_elf_unhandled_reloc
),
423 /* Used only by the dynamic linker. When the object is run, this
424 doubleword64 is set to the load address of the object, plus the
426 HOW (R_PPC64_RELATIVE
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
427 bfd_elf_generic_reloc
),
429 /* Like R_PPC64_ADDR32, but may be unaligned. */
430 HOW (R_PPC64_UADDR32
, 2, 32, 0xffffffff, 0, FALSE
, bitfield
,
431 bfd_elf_generic_reloc
),
433 /* Like R_PPC64_ADDR16, but may be unaligned. */
434 HOW (R_PPC64_UADDR16
, 1, 16, 0xffff, 0, FALSE
, bitfield
,
435 bfd_elf_generic_reloc
),
437 /* 32-bit PC relative. */
438 HOW (R_PPC64_REL32
, 2, 32, 0xffffffff, 0, TRUE
, signed,
439 bfd_elf_generic_reloc
),
441 /* 32-bit relocation to the symbol's procedure linkage table. */
442 HOW (R_PPC64_PLT32
, 2, 32, 0xffffffff, 0, FALSE
, bitfield
,
443 ppc64_elf_unhandled_reloc
),
445 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
446 FIXME: R_PPC64_PLTREL32 not supported. */
447 HOW (R_PPC64_PLTREL32
, 2, 32, 0xffffffff, 0, TRUE
, signed,
448 ppc64_elf_unhandled_reloc
),
450 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
452 HOW (R_PPC64_PLT16_LO
, 1, 16, 0xffff, 0, FALSE
, dont
,
453 ppc64_elf_unhandled_reloc
),
455 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
457 HOW (R_PPC64_PLT16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
458 ppc64_elf_unhandled_reloc
),
460 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
462 HOW (R_PPC64_PLT16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
463 ppc64_elf_unhandled_reloc
),
465 /* 16-bit section relative relocation. */
466 HOW (R_PPC64_SECTOFF
, 1, 16, 0xffff, 0, FALSE
, signed,
467 ppc64_elf_sectoff_reloc
),
469 /* Like R_PPC64_SECTOFF, but no overflow warning. */
470 HOW (R_PPC64_SECTOFF_LO
, 1, 16, 0xffff, 0, FALSE
, dont
,
471 ppc64_elf_sectoff_reloc
),
473 /* 16-bit upper half section relative relocation. */
474 HOW (R_PPC64_SECTOFF_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
475 ppc64_elf_sectoff_reloc
),
477 /* 16-bit upper half adjusted section relative relocation. */
478 HOW (R_PPC64_SECTOFF_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
479 ppc64_elf_sectoff_ha_reloc
),
481 /* Like R_PPC64_REL24 without touching the two least significant bits. */
482 HOW (R_PPC64_REL30
, 2, 30, 0xfffffffc, 2, TRUE
, dont
,
483 bfd_elf_generic_reloc
),
485 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
487 /* A standard 64-bit relocation. */
488 HOW (R_PPC64_ADDR64
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
489 bfd_elf_generic_reloc
),
491 /* The bits 32-47 of an address. */
492 HOW (R_PPC64_ADDR16_HIGHER
, 1, 16, 0xffff, 32, FALSE
, dont
,
493 bfd_elf_generic_reloc
),
495 /* The bits 32-47 of an address, plus 1 if the contents of the low
496 16 bits, treated as a signed number, is negative. */
497 HOW (R_PPC64_ADDR16_HIGHERA
, 1, 16, 0xffff, 32, FALSE
, dont
,
500 /* The bits 48-63 of an address. */
501 HOW (R_PPC64_ADDR16_HIGHEST
, 1, 16, 0xffff, 48, FALSE
, dont
,
502 bfd_elf_generic_reloc
),
504 /* The bits 48-63 of an address, plus 1 if the contents of the low
505 16 bits, treated as a signed number, is negative. */
506 HOW (R_PPC64_ADDR16_HIGHESTA
, 1, 16, 0xffff, 48, FALSE
, dont
,
509 /* Like ADDR64, but may be unaligned. */
510 HOW (R_PPC64_UADDR64
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
511 bfd_elf_generic_reloc
),
513 /* 64-bit relative relocation. */
514 HOW (R_PPC64_REL64
, 4, 64, 0xffffffffffffffffULL
, 0, TRUE
, dont
,
515 bfd_elf_generic_reloc
),
517 /* 64-bit relocation to the symbol's procedure linkage table. */
518 HOW (R_PPC64_PLT64
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
519 ppc64_elf_unhandled_reloc
),
521 /* 64-bit PC relative relocation to the symbol's procedure linkage
523 /* FIXME: R_PPC64_PLTREL64 not supported. */
524 HOW (R_PPC64_PLTREL64
, 4, 64, 0xffffffffffffffffULL
, 0, TRUE
, dont
,
525 ppc64_elf_unhandled_reloc
),
527 /* 16 bit TOC-relative relocation. */
528 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
529 HOW (R_PPC64_TOC16
, 1, 16, 0xffff, 0, FALSE
, signed,
530 ppc64_elf_toc_reloc
),
532 /* 16 bit TOC-relative relocation without overflow. */
533 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
534 HOW (R_PPC64_TOC16_LO
, 1, 16, 0xffff, 0, FALSE
, dont
,
535 ppc64_elf_toc_reloc
),
537 /* 16 bit TOC-relative relocation, high 16 bits. */
538 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
539 HOW (R_PPC64_TOC16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
540 ppc64_elf_toc_reloc
),
542 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
543 contents of the low 16 bits, treated as a signed number, is
545 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
546 HOW (R_PPC64_TOC16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
547 ppc64_elf_toc_ha_reloc
),
549 /* 64-bit relocation; insert value of TOC base (.TOC.). */
550 /* R_PPC64_TOC 51 doubleword64 .TOC. */
551 HOW (R_PPC64_TOC
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
552 ppc64_elf_toc64_reloc
),
554 /* Like R_PPC64_GOT16, but also informs the link editor that the
555 value to relocate may (!) refer to a PLT entry which the link
556 editor (a) may replace with the symbol value. If the link editor
557 is unable to fully resolve the symbol, it may (b) create a PLT
558 entry and store the address to the new PLT entry in the GOT.
559 This permits lazy resolution of function symbols at run time.
560 The link editor may also skip all of this and just (c) emit a
561 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
562 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
563 HOW (R_PPC64_PLTGOT16
, 1, 16, 0xffff, 0, FALSE
,signed,
564 ppc64_elf_unhandled_reloc
),
566 /* Like R_PPC64_PLTGOT16, but without overflow. */
567 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
568 HOW (R_PPC64_PLTGOT16_LO
, 1, 16, 0xffff, 0, FALSE
, dont
,
569 ppc64_elf_unhandled_reloc
),
571 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
572 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
573 HOW (R_PPC64_PLTGOT16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
574 ppc64_elf_unhandled_reloc
),
576 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
577 1 if the contents of the low 16 bits, treated as a signed number,
579 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
580 HOW (R_PPC64_PLTGOT16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
581 ppc64_elf_unhandled_reloc
),
583 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
584 HOW (R_PPC64_ADDR16_DS
, 1, 16, 0xfffc, 0, FALSE
, signed,
585 bfd_elf_generic_reloc
),
587 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
588 HOW (R_PPC64_ADDR16_LO_DS
, 1, 16, 0xfffc, 0, FALSE
, dont
,
589 bfd_elf_generic_reloc
),
591 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
592 HOW (R_PPC64_GOT16_DS
, 1, 16, 0xfffc, 0, FALSE
, signed,
593 ppc64_elf_unhandled_reloc
),
595 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
596 HOW (R_PPC64_GOT16_LO_DS
, 1, 16, 0xfffc, 0, FALSE
, dont
,
597 ppc64_elf_unhandled_reloc
),
599 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
600 HOW (R_PPC64_PLT16_LO_DS
, 1, 16, 0xfffc, 0, FALSE
, dont
,
601 ppc64_elf_unhandled_reloc
),
603 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
604 HOW (R_PPC64_SECTOFF_DS
, 1, 16, 0xfffc, 0, FALSE
, signed,
605 ppc64_elf_sectoff_reloc
),
607 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
608 HOW (R_PPC64_SECTOFF_LO_DS
, 1, 16, 0xfffc, 0, FALSE
, dont
,
609 ppc64_elf_sectoff_reloc
),
611 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
612 HOW (R_PPC64_TOC16_DS
, 1, 16, 0xfffc, 0, FALSE
, signed,
613 ppc64_elf_toc_reloc
),
615 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
616 HOW (R_PPC64_TOC16_LO_DS
, 1, 16, 0xfffc, 0, FALSE
, dont
,
617 ppc64_elf_toc_reloc
),
619 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
620 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
621 HOW (R_PPC64_PLTGOT16_DS
, 1, 16, 0xfffc, 0, FALSE
, signed,
622 ppc64_elf_unhandled_reloc
),
624 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
625 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
626 HOW (R_PPC64_PLTGOT16_LO_DS
, 1, 16, 0xfffc, 0, FALSE
, dont
,
627 ppc64_elf_unhandled_reloc
),
629 /* Marker relocs for TLS. */
630 HOW (R_PPC64_TLS
, 2, 32, 0, 0, FALSE
, dont
,
631 bfd_elf_generic_reloc
),
633 HOW (R_PPC64_TLSGD
, 2, 32, 0, 0, FALSE
, dont
,
634 bfd_elf_generic_reloc
),
636 HOW (R_PPC64_TLSLD
, 2, 32, 0, 0, FALSE
, dont
,
637 bfd_elf_generic_reloc
),
639 /* Marker reloc for optimizing r2 save in prologue rather than on
640 each plt call stub. */
641 HOW (R_PPC64_TOCSAVE
, 2, 32, 0, 0, FALSE
, dont
,
642 bfd_elf_generic_reloc
),
644 /* Marker relocs on inline plt call instructions. */
645 HOW (R_PPC64_PLTSEQ
, 2, 32, 0, 0, FALSE
, dont
,
646 bfd_elf_generic_reloc
),
648 HOW (R_PPC64_PLTCALL
, 2, 32, 0, 0, FALSE
, dont
,
649 bfd_elf_generic_reloc
),
651 /* Computes the load module index of the load module that contains the
652 definition of its TLS sym. */
653 HOW (R_PPC64_DTPMOD64
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
654 ppc64_elf_unhandled_reloc
),
656 /* Computes a dtv-relative displacement, the difference between the value
657 of sym+add and the base address of the thread-local storage block that
658 contains the definition of sym, minus 0x8000. */
659 HOW (R_PPC64_DTPREL64
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
660 ppc64_elf_unhandled_reloc
),
662 /* A 16 bit dtprel reloc. */
663 HOW (R_PPC64_DTPREL16
, 1, 16, 0xffff, 0, FALSE
, signed,
664 ppc64_elf_unhandled_reloc
),
666 /* Like DTPREL16, but no overflow. */
667 HOW (R_PPC64_DTPREL16_LO
, 1, 16, 0xffff, 0, FALSE
, dont
,
668 ppc64_elf_unhandled_reloc
),
670 /* Like DTPREL16_LO, but next higher group of 16 bits. */
671 HOW (R_PPC64_DTPREL16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
672 ppc64_elf_unhandled_reloc
),
674 /* Like DTPREL16_HI, but adjust for low 16 bits. */
675 HOW (R_PPC64_DTPREL16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
676 ppc64_elf_unhandled_reloc
),
678 /* Like DTPREL16_HI, but next higher group of 16 bits. */
679 HOW (R_PPC64_DTPREL16_HIGHER
, 1, 16, 0xffff, 32, FALSE
, dont
,
680 ppc64_elf_unhandled_reloc
),
682 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
683 HOW (R_PPC64_DTPREL16_HIGHERA
, 1, 16, 0xffff, 32, FALSE
, dont
,
684 ppc64_elf_unhandled_reloc
),
686 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
687 HOW (R_PPC64_DTPREL16_HIGHEST
, 1, 16, 0xffff, 48, FALSE
, dont
,
688 ppc64_elf_unhandled_reloc
),
690 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
691 HOW (R_PPC64_DTPREL16_HIGHESTA
, 1, 16, 0xffff, 48, FALSE
, dont
,
692 ppc64_elf_unhandled_reloc
),
694 /* Like DTPREL16, but for insns with a DS field. */
695 HOW (R_PPC64_DTPREL16_DS
, 1, 16, 0xfffc, 0, FALSE
, signed,
696 ppc64_elf_unhandled_reloc
),
698 /* Like DTPREL16_DS, but no overflow. */
699 HOW (R_PPC64_DTPREL16_LO_DS
, 1, 16, 0xfffc, 0, FALSE
, dont
,
700 ppc64_elf_unhandled_reloc
),
702 /* Computes a tp-relative displacement, the difference between the value of
703 sym+add and the value of the thread pointer (r13). */
704 HOW (R_PPC64_TPREL64
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
705 ppc64_elf_unhandled_reloc
),
707 /* A 16 bit tprel reloc. */
708 HOW (R_PPC64_TPREL16
, 1, 16, 0xffff, 0, FALSE
, signed,
709 ppc64_elf_unhandled_reloc
),
711 /* Like TPREL16, but no overflow. */
712 HOW (R_PPC64_TPREL16_LO
, 1, 16, 0xffff, 0, FALSE
, dont
,
713 ppc64_elf_unhandled_reloc
),
715 /* Like TPREL16_LO, but next higher group of 16 bits. */
716 HOW (R_PPC64_TPREL16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
717 ppc64_elf_unhandled_reloc
),
719 /* Like TPREL16_HI, but adjust for low 16 bits. */
720 HOW (R_PPC64_TPREL16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
721 ppc64_elf_unhandled_reloc
),
723 /* Like TPREL16_HI, but next higher group of 16 bits. */
724 HOW (R_PPC64_TPREL16_HIGHER
, 1, 16, 0xffff, 32, FALSE
, dont
,
725 ppc64_elf_unhandled_reloc
),
727 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
728 HOW (R_PPC64_TPREL16_HIGHERA
, 1, 16, 0xffff, 32, FALSE
, dont
,
729 ppc64_elf_unhandled_reloc
),
731 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
732 HOW (R_PPC64_TPREL16_HIGHEST
, 1, 16, 0xffff, 48, FALSE
, dont
,
733 ppc64_elf_unhandled_reloc
),
735 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
736 HOW (R_PPC64_TPREL16_HIGHESTA
, 1, 16, 0xffff, 48, FALSE
, dont
,
737 ppc64_elf_unhandled_reloc
),
739 /* Like TPREL16, but for insns with a DS field. */
740 HOW (R_PPC64_TPREL16_DS
, 1, 16, 0xfffc, 0, FALSE
, signed,
741 ppc64_elf_unhandled_reloc
),
743 /* Like TPREL16_DS, but no overflow. */
744 HOW (R_PPC64_TPREL16_LO_DS
, 1, 16, 0xfffc, 0, FALSE
, dont
,
745 ppc64_elf_unhandled_reloc
),
747 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
748 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
749 to the first entry relative to the TOC base (r2). */
750 HOW (R_PPC64_GOT_TLSGD16
, 1, 16, 0xffff, 0, FALSE
, signed,
751 ppc64_elf_unhandled_reloc
),
753 /* Like GOT_TLSGD16, but no overflow. */
754 HOW (R_PPC64_GOT_TLSGD16_LO
, 1, 16, 0xffff, 0, FALSE
, dont
,
755 ppc64_elf_unhandled_reloc
),
757 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
758 HOW (R_PPC64_GOT_TLSGD16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
759 ppc64_elf_unhandled_reloc
),
761 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
762 HOW (R_PPC64_GOT_TLSGD16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
763 ppc64_elf_unhandled_reloc
),
765 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
766 with values (sym+add)@dtpmod and zero, and computes the offset to the
767 first entry relative to the TOC base (r2). */
768 HOW (R_PPC64_GOT_TLSLD16
, 1, 16, 0xffff, 0, FALSE
, signed,
769 ppc64_elf_unhandled_reloc
),
771 /* Like GOT_TLSLD16, but no overflow. */
772 HOW (R_PPC64_GOT_TLSLD16_LO
, 1, 16, 0xffff, 0, FALSE
, dont
,
773 ppc64_elf_unhandled_reloc
),
775 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
776 HOW (R_PPC64_GOT_TLSLD16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
777 ppc64_elf_unhandled_reloc
),
779 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
780 HOW (R_PPC64_GOT_TLSLD16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
781 ppc64_elf_unhandled_reloc
),
783 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
784 the offset to the entry relative to the TOC base (r2). */
785 HOW (R_PPC64_GOT_DTPREL16_DS
, 1, 16, 0xfffc, 0, FALSE
, signed,
786 ppc64_elf_unhandled_reloc
),
788 /* Like GOT_DTPREL16_DS, but no overflow. */
789 HOW (R_PPC64_GOT_DTPREL16_LO_DS
, 1, 16, 0xfffc, 0, FALSE
, dont
,
790 ppc64_elf_unhandled_reloc
),
792 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
793 HOW (R_PPC64_GOT_DTPREL16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
794 ppc64_elf_unhandled_reloc
),
796 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
797 HOW (R_PPC64_GOT_DTPREL16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
798 ppc64_elf_unhandled_reloc
),
800 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
801 offset to the entry relative to the TOC base (r2). */
802 HOW (R_PPC64_GOT_TPREL16_DS
, 1, 16, 0xfffc, 0, FALSE
, signed,
803 ppc64_elf_unhandled_reloc
),
805 /* Like GOT_TPREL16_DS, but no overflow. */
806 HOW (R_PPC64_GOT_TPREL16_LO_DS
, 1, 16, 0xfffc, 0, FALSE
, dont
,
807 ppc64_elf_unhandled_reloc
),
809 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
810 HOW (R_PPC64_GOT_TPREL16_HI
, 1, 16, 0xffff, 16, FALSE
, signed,
811 ppc64_elf_unhandled_reloc
),
813 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
814 HOW (R_PPC64_GOT_TPREL16_HA
, 1, 16, 0xffff, 16, FALSE
, signed,
815 ppc64_elf_unhandled_reloc
),
817 HOW (R_PPC64_JMP_IREL
, 0, 0, 0, 0, FALSE
, dont
,
818 ppc64_elf_unhandled_reloc
),
820 HOW (R_PPC64_IRELATIVE
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
821 bfd_elf_generic_reloc
),
823 /* A 16 bit relative relocation. */
824 HOW (R_PPC64_REL16
, 1, 16, 0xffff, 0, TRUE
, signed,
825 bfd_elf_generic_reloc
),
827 /* A 16 bit relative relocation without overflow. */
828 HOW (R_PPC64_REL16_LO
, 1, 16, 0xffff, 0, TRUE
, dont
,
829 bfd_elf_generic_reloc
),
831 /* The high order 16 bits of a relative address. */
832 HOW (R_PPC64_REL16_HI
, 1, 16, 0xffff, 16, TRUE
, signed,
833 bfd_elf_generic_reloc
),
835 /* The high order 16 bits of a relative address, plus 1 if the contents of
836 the low 16 bits, treated as a signed number, is negative. */
837 HOW (R_PPC64_REL16_HA
, 1, 16, 0xffff, 16, TRUE
, signed,
840 HOW (R_PPC64_REL16_HIGH
, 1, 16, 0xffff, 16, TRUE
, dont
,
841 bfd_elf_generic_reloc
),
843 HOW (R_PPC64_REL16_HIGHA
, 1, 16, 0xffff, 16, TRUE
, dont
,
846 HOW (R_PPC64_REL16_HIGHER
, 1, 16, 0xffff, 32, TRUE
, dont
,
847 bfd_elf_generic_reloc
),
849 HOW (R_PPC64_REL16_HIGHERA
, 1, 16, 0xffff, 32, TRUE
, dont
,
852 HOW (R_PPC64_REL16_HIGHEST
, 1, 16, 0xffff, 48, TRUE
, dont
,
853 bfd_elf_generic_reloc
),
855 HOW (R_PPC64_REL16_HIGHESTA
, 1, 16, 0xffff, 48, TRUE
, dont
,
858 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
859 HOW (R_PPC64_REL16DX_HA
, 2, 16, 0x1fffc1, 16, TRUE
, signed,
862 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
863 HOW (R_PPC64_16DX_HA
, 2, 16, 0x1fffc1, 16, FALSE
, signed,
866 /* Like R_PPC64_ADDR16_HI, but no overflow. */
867 HOW (R_PPC64_ADDR16_HIGH
, 1, 16, 0xffff, 16, FALSE
, dont
,
868 bfd_elf_generic_reloc
),
870 /* Like R_PPC64_ADDR16_HA, but no overflow. */
871 HOW (R_PPC64_ADDR16_HIGHA
, 1, 16, 0xffff, 16, FALSE
, dont
,
874 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
875 HOW (R_PPC64_DTPREL16_HIGH
, 1, 16, 0xffff, 16, FALSE
, dont
,
876 ppc64_elf_unhandled_reloc
),
878 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
879 HOW (R_PPC64_DTPREL16_HIGHA
, 1, 16, 0xffff, 16, FALSE
, dont
,
880 ppc64_elf_unhandled_reloc
),
882 /* Like R_PPC64_TPREL16_HI, but no overflow. */
883 HOW (R_PPC64_TPREL16_HIGH
, 1, 16, 0xffff, 16, FALSE
, dont
,
884 ppc64_elf_unhandled_reloc
),
886 /* Like R_PPC64_TPREL16_HA, but no overflow. */
887 HOW (R_PPC64_TPREL16_HIGHA
, 1, 16, 0xffff, 16, FALSE
, dont
,
888 ppc64_elf_unhandled_reloc
),
890 /* Marker reloc on ELFv2 large-model function entry. */
891 HOW (R_PPC64_ENTRY
, 2, 32, 0, 0, FALSE
, dont
,
892 bfd_elf_generic_reloc
),
894 /* Like ADDR64, but use local entry point of function. */
895 HOW (R_PPC64_ADDR64_LOCAL
, 4, 64, 0xffffffffffffffffULL
, 0, FALSE
, dont
,
896 bfd_elf_generic_reloc
),
898 HOW (R_PPC64_PLTSEQ_NOTOC
, 2, 32, 0, 0, FALSE
, dont
,
899 bfd_elf_generic_reloc
),
901 HOW (R_PPC64_PLTCALL_NOTOC
, 2, 32, 0, 0, FALSE
, dont
,
902 bfd_elf_generic_reloc
),
904 HOW (R_PPC64_PCREL_OPT
, 2, 32, 0, 0, FALSE
, dont
,
905 bfd_elf_generic_reloc
),
907 HOW (R_PPC64_D34
, 4, 34, 0x3ffff0000ffffULL
, 0, FALSE
, signed,
908 ppc64_elf_prefix_reloc
),
910 HOW (R_PPC64_D34_LO
, 4, 34, 0x3ffff0000ffffULL
, 0, FALSE
, dont
,
911 ppc64_elf_prefix_reloc
),
913 HOW (R_PPC64_D34_HI30
, 4, 34, 0x3ffff0000ffffULL
, 34, FALSE
, dont
,
914 ppc64_elf_prefix_reloc
),
916 HOW (R_PPC64_D34_HA30
, 4, 34, 0x3ffff0000ffffULL
, 34, FALSE
, dont
,
917 ppc64_elf_prefix_reloc
),
919 HOW (R_PPC64_PCREL34
, 4, 34, 0x3ffff0000ffffULL
, 0, TRUE
, signed,
920 ppc64_elf_prefix_reloc
),
922 HOW (R_PPC64_GOT_PCREL34
, 4, 34, 0x3ffff0000ffffULL
, 0, TRUE
, signed,
923 ppc64_elf_unhandled_reloc
),
925 HOW (R_PPC64_PLT_PCREL34
, 4, 34, 0x3ffff0000ffffULL
, 0, TRUE
, signed,
926 ppc64_elf_unhandled_reloc
),
928 HOW (R_PPC64_PLT_PCREL34_NOTOC
, 4, 34, 0x3ffff0000ffffULL
, 0, TRUE
, signed,
929 ppc64_elf_unhandled_reloc
),
931 HOW (R_PPC64_TPREL34
, 4, 34, 0x3ffff0000ffffULL
, 0, FALSE
, signed,
932 ppc64_elf_unhandled_reloc
),
934 HOW (R_PPC64_DTPREL34
, 4, 34, 0x3ffff0000ffffULL
, 0, FALSE
, signed,
935 ppc64_elf_unhandled_reloc
),
937 HOW (R_PPC64_GOT_TLSGD_PCREL34
, 4, 34, 0x3ffff0000ffffULL
, 0, TRUE
, signed,
938 ppc64_elf_unhandled_reloc
),
940 HOW (R_PPC64_GOT_TLSLD_PCREL34
, 4, 34, 0x3ffff0000ffffULL
, 0, TRUE
, signed,
941 ppc64_elf_unhandled_reloc
),
943 HOW (R_PPC64_GOT_TPREL_PCREL34
, 4, 34, 0x3ffff0000ffffULL
, 0, TRUE
, signed,
944 ppc64_elf_unhandled_reloc
),
946 HOW (R_PPC64_GOT_DTPREL_PCREL34
, 4, 34, 0x3ffff0000ffffULL
, 0, TRUE
, signed,
947 ppc64_elf_unhandled_reloc
),
949 HOW (R_PPC64_ADDR16_HIGHER34
, 1, 16, 0xffff, 34, FALSE
, dont
,
950 bfd_elf_generic_reloc
),
952 HOW (R_PPC64_ADDR16_HIGHERA34
, 1, 16, 0xffff, 34, FALSE
, dont
,
955 HOW (R_PPC64_ADDR16_HIGHEST34
, 1, 16, 0xffff, 50, FALSE
, dont
,
956 bfd_elf_generic_reloc
),
958 HOW (R_PPC64_ADDR16_HIGHESTA34
, 1, 16, 0xffff, 50, FALSE
, dont
,
961 HOW (R_PPC64_REL16_HIGHER34
, 1, 16, 0xffff, 34, TRUE
, dont
,
962 bfd_elf_generic_reloc
),
964 HOW (R_PPC64_REL16_HIGHERA34
, 1, 16, 0xffff, 34, TRUE
, dont
,
967 HOW (R_PPC64_REL16_HIGHEST34
, 1, 16, 0xffff, 50, TRUE
, dont
,
968 bfd_elf_generic_reloc
),
970 HOW (R_PPC64_REL16_HIGHESTA34
, 1, 16, 0xffff, 50, TRUE
, dont
,
973 HOW (R_PPC64_D28
, 4, 28, 0xfff0000ffffULL
, 0, FALSE
, signed,
974 ppc64_elf_prefix_reloc
),
976 HOW (R_PPC64_PCREL28
, 4, 28, 0xfff0000ffffULL
, 0, TRUE
, signed,
977 ppc64_elf_prefix_reloc
),
979 /* GNU extension to record C++ vtable hierarchy. */
980 HOW (R_PPC64_GNU_VTINHERIT
, 0, 0, 0, 0, FALSE
, dont
,
983 /* GNU extension to record C++ vtable member usage. */
984 HOW (R_PPC64_GNU_VTENTRY
, 0, 0, 0, 0, FALSE
, dont
,
989 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
993 ppc_howto_init (void)
995 unsigned int i
, type
;
997 for (i
= 0; i
< ARRAY_SIZE (ppc64_elf_howto_raw
); i
++)
999 type
= ppc64_elf_howto_raw
[i
].type
;
1000 BFD_ASSERT (type
< ARRAY_SIZE (ppc64_elf_howto_table
));
1001 ppc64_elf_howto_table
[type
] = &ppc64_elf_howto_raw
[i
];
1005 static reloc_howto_type
*
1006 ppc64_elf_reloc_type_lookup (bfd
*abfd
, bfd_reloc_code_real_type code
)
1008 enum elf_ppc64_reloc_type r
= R_PPC64_NONE
;
1010 if (!ppc64_elf_howto_table
[R_PPC64_ADDR32
])
1011 /* Initialize howto table if needed. */
1017 /* xgettext:c-format */
1018 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd
,
1020 bfd_set_error (bfd_error_bad_value
);
1023 case BFD_RELOC_NONE
: r
= R_PPC64_NONE
;
1025 case BFD_RELOC_32
: r
= R_PPC64_ADDR32
;
1027 case BFD_RELOC_PPC_BA26
: r
= R_PPC64_ADDR24
;
1029 case BFD_RELOC_16
: r
= R_PPC64_ADDR16
;
1031 case BFD_RELOC_LO16
: r
= R_PPC64_ADDR16_LO
;
1033 case BFD_RELOC_HI16
: r
= R_PPC64_ADDR16_HI
;
1035 case BFD_RELOC_PPC64_ADDR16_HIGH
: r
= R_PPC64_ADDR16_HIGH
;
1037 case BFD_RELOC_HI16_S
: r
= R_PPC64_ADDR16_HA
;
1039 case BFD_RELOC_PPC64_ADDR16_HIGHA
: r
= R_PPC64_ADDR16_HIGHA
;
1041 case BFD_RELOC_PPC_BA16
: r
= R_PPC64_ADDR14
;
1043 case BFD_RELOC_PPC_BA16_BRTAKEN
: r
= R_PPC64_ADDR14_BRTAKEN
;
1045 case BFD_RELOC_PPC_BA16_BRNTAKEN
: r
= R_PPC64_ADDR14_BRNTAKEN
;
1047 case BFD_RELOC_PPC_B26
: r
= R_PPC64_REL24
;
1049 case BFD_RELOC_PPC64_REL24_NOTOC
: r
= R_PPC64_REL24_NOTOC
;
1051 case BFD_RELOC_PPC_B16
: r
= R_PPC64_REL14
;
1053 case BFD_RELOC_PPC_B16_BRTAKEN
: r
= R_PPC64_REL14_BRTAKEN
;
1055 case BFD_RELOC_PPC_B16_BRNTAKEN
: r
= R_PPC64_REL14_BRNTAKEN
;
1057 case BFD_RELOC_16_GOTOFF
: r
= R_PPC64_GOT16
;
1059 case BFD_RELOC_LO16_GOTOFF
: r
= R_PPC64_GOT16_LO
;
1061 case BFD_RELOC_HI16_GOTOFF
: r
= R_PPC64_GOT16_HI
;
1063 case BFD_RELOC_HI16_S_GOTOFF
: r
= R_PPC64_GOT16_HA
;
1065 case BFD_RELOC_PPC_COPY
: r
= R_PPC64_COPY
;
1067 case BFD_RELOC_PPC_GLOB_DAT
: r
= R_PPC64_GLOB_DAT
;
1069 case BFD_RELOC_32_PCREL
: r
= R_PPC64_REL32
;
1071 case BFD_RELOC_32_PLTOFF
: r
= R_PPC64_PLT32
;
1073 case BFD_RELOC_32_PLT_PCREL
: r
= R_PPC64_PLTREL32
;
1075 case BFD_RELOC_LO16_PLTOFF
: r
= R_PPC64_PLT16_LO
;
1077 case BFD_RELOC_HI16_PLTOFF
: r
= R_PPC64_PLT16_HI
;
1079 case BFD_RELOC_HI16_S_PLTOFF
: r
= R_PPC64_PLT16_HA
;
1081 case BFD_RELOC_16_BASEREL
: r
= R_PPC64_SECTOFF
;
1083 case BFD_RELOC_LO16_BASEREL
: r
= R_PPC64_SECTOFF_LO
;
1085 case BFD_RELOC_HI16_BASEREL
: r
= R_PPC64_SECTOFF_HI
;
1087 case BFD_RELOC_HI16_S_BASEREL
: r
= R_PPC64_SECTOFF_HA
;
1089 case BFD_RELOC_CTOR
: r
= R_PPC64_ADDR64
;
1091 case BFD_RELOC_64
: r
= R_PPC64_ADDR64
;
1093 case BFD_RELOC_PPC64_HIGHER
: r
= R_PPC64_ADDR16_HIGHER
;
1095 case BFD_RELOC_PPC64_HIGHER_S
: r
= R_PPC64_ADDR16_HIGHERA
;
1097 case BFD_RELOC_PPC64_HIGHEST
: r
= R_PPC64_ADDR16_HIGHEST
;
1099 case BFD_RELOC_PPC64_HIGHEST_S
: r
= R_PPC64_ADDR16_HIGHESTA
;
1101 case BFD_RELOC_64_PCREL
: r
= R_PPC64_REL64
;
1103 case BFD_RELOC_64_PLTOFF
: r
= R_PPC64_PLT64
;
1105 case BFD_RELOC_64_PLT_PCREL
: r
= R_PPC64_PLTREL64
;
1107 case BFD_RELOC_PPC_TOC16
: r
= R_PPC64_TOC16
;
1109 case BFD_RELOC_PPC64_TOC16_LO
: r
= R_PPC64_TOC16_LO
;
1111 case BFD_RELOC_PPC64_TOC16_HI
: r
= R_PPC64_TOC16_HI
;
1113 case BFD_RELOC_PPC64_TOC16_HA
: r
= R_PPC64_TOC16_HA
;
1115 case BFD_RELOC_PPC64_TOC
: r
= R_PPC64_TOC
;
1117 case BFD_RELOC_PPC64_PLTGOT16
: r
= R_PPC64_PLTGOT16
;
1119 case BFD_RELOC_PPC64_PLTGOT16_LO
: r
= R_PPC64_PLTGOT16_LO
;
1121 case BFD_RELOC_PPC64_PLTGOT16_HI
: r
= R_PPC64_PLTGOT16_HI
;
1123 case BFD_RELOC_PPC64_PLTGOT16_HA
: r
= R_PPC64_PLTGOT16_HA
;
1125 case BFD_RELOC_PPC64_ADDR16_DS
: r
= R_PPC64_ADDR16_DS
;
1127 case BFD_RELOC_PPC64_ADDR16_LO_DS
: r
= R_PPC64_ADDR16_LO_DS
;
1129 case BFD_RELOC_PPC64_GOT16_DS
: r
= R_PPC64_GOT16_DS
;
1131 case BFD_RELOC_PPC64_GOT16_LO_DS
: r
= R_PPC64_GOT16_LO_DS
;
1133 case BFD_RELOC_PPC64_PLT16_LO_DS
: r
= R_PPC64_PLT16_LO_DS
;
1135 case BFD_RELOC_PPC64_SECTOFF_DS
: r
= R_PPC64_SECTOFF_DS
;
1137 case BFD_RELOC_PPC64_SECTOFF_LO_DS
: r
= R_PPC64_SECTOFF_LO_DS
;
1139 case BFD_RELOC_PPC64_TOC16_DS
: r
= R_PPC64_TOC16_DS
;
1141 case BFD_RELOC_PPC64_TOC16_LO_DS
: r
= R_PPC64_TOC16_LO_DS
;
1143 case BFD_RELOC_PPC64_PLTGOT16_DS
: r
= R_PPC64_PLTGOT16_DS
;
1145 case BFD_RELOC_PPC64_PLTGOT16_LO_DS
: r
= R_PPC64_PLTGOT16_LO_DS
;
1147 case BFD_RELOC_PPC64_TLS_PCREL
:
1148 case BFD_RELOC_PPC_TLS
: r
= R_PPC64_TLS
;
1150 case BFD_RELOC_PPC_TLSGD
: r
= R_PPC64_TLSGD
;
1152 case BFD_RELOC_PPC_TLSLD
: r
= R_PPC64_TLSLD
;
1154 case BFD_RELOC_PPC_DTPMOD
: r
= R_PPC64_DTPMOD64
;
1156 case BFD_RELOC_PPC_TPREL16
: r
= R_PPC64_TPREL16
;
1158 case BFD_RELOC_PPC_TPREL16_LO
: r
= R_PPC64_TPREL16_LO
;
1160 case BFD_RELOC_PPC_TPREL16_HI
: r
= R_PPC64_TPREL16_HI
;
1162 case BFD_RELOC_PPC64_TPREL16_HIGH
: r
= R_PPC64_TPREL16_HIGH
;
1164 case BFD_RELOC_PPC_TPREL16_HA
: r
= R_PPC64_TPREL16_HA
;
1166 case BFD_RELOC_PPC64_TPREL16_HIGHA
: r
= R_PPC64_TPREL16_HIGHA
;
1168 case BFD_RELOC_PPC_TPREL
: r
= R_PPC64_TPREL64
;
1170 case BFD_RELOC_PPC_DTPREL16
: r
= R_PPC64_DTPREL16
;
1172 case BFD_RELOC_PPC_DTPREL16_LO
: r
= R_PPC64_DTPREL16_LO
;
1174 case BFD_RELOC_PPC_DTPREL16_HI
: r
= R_PPC64_DTPREL16_HI
;
1176 case BFD_RELOC_PPC64_DTPREL16_HIGH
: r
= R_PPC64_DTPREL16_HIGH
;
1178 case BFD_RELOC_PPC_DTPREL16_HA
: r
= R_PPC64_DTPREL16_HA
;
1180 case BFD_RELOC_PPC64_DTPREL16_HIGHA
: r
= R_PPC64_DTPREL16_HIGHA
;
1182 case BFD_RELOC_PPC_DTPREL
: r
= R_PPC64_DTPREL64
;
1184 case BFD_RELOC_PPC_GOT_TLSGD16
: r
= R_PPC64_GOT_TLSGD16
;
1186 case BFD_RELOC_PPC_GOT_TLSGD16_LO
: r
= R_PPC64_GOT_TLSGD16_LO
;
1188 case BFD_RELOC_PPC_GOT_TLSGD16_HI
: r
= R_PPC64_GOT_TLSGD16_HI
;
1190 case BFD_RELOC_PPC_GOT_TLSGD16_HA
: r
= R_PPC64_GOT_TLSGD16_HA
;
1192 case BFD_RELOC_PPC_GOT_TLSLD16
: r
= R_PPC64_GOT_TLSLD16
;
1194 case BFD_RELOC_PPC_GOT_TLSLD16_LO
: r
= R_PPC64_GOT_TLSLD16_LO
;
1196 case BFD_RELOC_PPC_GOT_TLSLD16_HI
: r
= R_PPC64_GOT_TLSLD16_HI
;
1198 case BFD_RELOC_PPC_GOT_TLSLD16_HA
: r
= R_PPC64_GOT_TLSLD16_HA
;
1200 case BFD_RELOC_PPC_GOT_TPREL16
: r
= R_PPC64_GOT_TPREL16_DS
;
1202 case BFD_RELOC_PPC_GOT_TPREL16_LO
: r
= R_PPC64_GOT_TPREL16_LO_DS
;
1204 case BFD_RELOC_PPC_GOT_TPREL16_HI
: r
= R_PPC64_GOT_TPREL16_HI
;
1206 case BFD_RELOC_PPC_GOT_TPREL16_HA
: r
= R_PPC64_GOT_TPREL16_HA
;
1208 case BFD_RELOC_PPC_GOT_DTPREL16
: r
= R_PPC64_GOT_DTPREL16_DS
;
1210 case BFD_RELOC_PPC_GOT_DTPREL16_LO
: r
= R_PPC64_GOT_DTPREL16_LO_DS
;
1212 case BFD_RELOC_PPC_GOT_DTPREL16_HI
: r
= R_PPC64_GOT_DTPREL16_HI
;
1214 case BFD_RELOC_PPC_GOT_DTPREL16_HA
: r
= R_PPC64_GOT_DTPREL16_HA
;
1216 case BFD_RELOC_PPC64_TPREL16_DS
: r
= R_PPC64_TPREL16_DS
;
1218 case BFD_RELOC_PPC64_TPREL16_LO_DS
: r
= R_PPC64_TPREL16_LO_DS
;
1220 case BFD_RELOC_PPC64_TPREL16_HIGHER
: r
= R_PPC64_TPREL16_HIGHER
;
1222 case BFD_RELOC_PPC64_TPREL16_HIGHERA
: r
= R_PPC64_TPREL16_HIGHERA
;
1224 case BFD_RELOC_PPC64_TPREL16_HIGHEST
: r
= R_PPC64_TPREL16_HIGHEST
;
1226 case BFD_RELOC_PPC64_TPREL16_HIGHESTA
: r
= R_PPC64_TPREL16_HIGHESTA
;
1228 case BFD_RELOC_PPC64_DTPREL16_DS
: r
= R_PPC64_DTPREL16_DS
;
1230 case BFD_RELOC_PPC64_DTPREL16_LO_DS
: r
= R_PPC64_DTPREL16_LO_DS
;
1232 case BFD_RELOC_PPC64_DTPREL16_HIGHER
: r
= R_PPC64_DTPREL16_HIGHER
;
1234 case BFD_RELOC_PPC64_DTPREL16_HIGHERA
: r
= R_PPC64_DTPREL16_HIGHERA
;
1236 case BFD_RELOC_PPC64_DTPREL16_HIGHEST
: r
= R_PPC64_DTPREL16_HIGHEST
;
1238 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA
: r
= R_PPC64_DTPREL16_HIGHESTA
;
1240 case BFD_RELOC_16_PCREL
: r
= R_PPC64_REL16
;
1242 case BFD_RELOC_LO16_PCREL
: r
= R_PPC64_REL16_LO
;
1244 case BFD_RELOC_HI16_PCREL
: r
= R_PPC64_REL16_HI
;
1246 case BFD_RELOC_HI16_S_PCREL
: r
= R_PPC64_REL16_HA
;
1248 case BFD_RELOC_PPC64_REL16_HIGH
: r
= R_PPC64_REL16_HIGH
;
1250 case BFD_RELOC_PPC64_REL16_HIGHA
: r
= R_PPC64_REL16_HIGHA
;
1252 case BFD_RELOC_PPC64_REL16_HIGHER
: r
= R_PPC64_REL16_HIGHER
;
1254 case BFD_RELOC_PPC64_REL16_HIGHERA
: r
= R_PPC64_REL16_HIGHERA
;
1256 case BFD_RELOC_PPC64_REL16_HIGHEST
: r
= R_PPC64_REL16_HIGHEST
;
1258 case BFD_RELOC_PPC64_REL16_HIGHESTA
: r
= R_PPC64_REL16_HIGHESTA
;
1260 case BFD_RELOC_PPC_16DX_HA
: r
= R_PPC64_16DX_HA
;
1262 case BFD_RELOC_PPC_REL16DX_HA
: r
= R_PPC64_REL16DX_HA
;
1264 case BFD_RELOC_PPC64_ENTRY
: r
= R_PPC64_ENTRY
;
1266 case BFD_RELOC_PPC64_ADDR64_LOCAL
: r
= R_PPC64_ADDR64_LOCAL
;
1268 case BFD_RELOC_PPC64_D34
: r
= R_PPC64_D34
;
1270 case BFD_RELOC_PPC64_D34_LO
: r
= R_PPC64_D34_LO
;
1272 case BFD_RELOC_PPC64_D34_HI30
: r
= R_PPC64_D34_HI30
;
1274 case BFD_RELOC_PPC64_D34_HA30
: r
= R_PPC64_D34_HA30
;
1276 case BFD_RELOC_PPC64_PCREL34
: r
= R_PPC64_PCREL34
;
1278 case BFD_RELOC_PPC64_GOT_PCREL34
: r
= R_PPC64_GOT_PCREL34
;
1280 case BFD_RELOC_PPC64_PLT_PCREL34
: r
= R_PPC64_PLT_PCREL34
;
1282 case BFD_RELOC_PPC64_TPREL34
: r
= R_PPC64_TPREL34
;
1284 case BFD_RELOC_PPC64_DTPREL34
: r
= R_PPC64_DTPREL34
;
1286 case BFD_RELOC_PPC64_GOT_TLSGD_PCREL34
: r
= R_PPC64_GOT_TLSGD_PCREL34
;
1288 case BFD_RELOC_PPC64_GOT_TLSLD_PCREL34
: r
= R_PPC64_GOT_TLSLD_PCREL34
;
1290 case BFD_RELOC_PPC64_GOT_TPREL_PCREL34
: r
= R_PPC64_GOT_TPREL_PCREL34
;
1292 case BFD_RELOC_PPC64_GOT_DTPREL_PCREL34
: r
= R_PPC64_GOT_DTPREL_PCREL34
;
1294 case BFD_RELOC_PPC64_ADDR16_HIGHER34
: r
= R_PPC64_ADDR16_HIGHER34
;
1296 case BFD_RELOC_PPC64_ADDR16_HIGHERA34
: r
= R_PPC64_ADDR16_HIGHERA34
;
1298 case BFD_RELOC_PPC64_ADDR16_HIGHEST34
: r
= R_PPC64_ADDR16_HIGHEST34
;
1300 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34
: r
= R_PPC64_ADDR16_HIGHESTA34
;
1302 case BFD_RELOC_PPC64_REL16_HIGHER34
: r
= R_PPC64_REL16_HIGHER34
;
1304 case BFD_RELOC_PPC64_REL16_HIGHERA34
: r
= R_PPC64_REL16_HIGHERA34
;
1306 case BFD_RELOC_PPC64_REL16_HIGHEST34
: r
= R_PPC64_REL16_HIGHEST34
;
1308 case BFD_RELOC_PPC64_REL16_HIGHESTA34
: r
= R_PPC64_REL16_HIGHESTA34
;
1310 case BFD_RELOC_PPC64_D28
: r
= R_PPC64_D28
;
1312 case BFD_RELOC_PPC64_PCREL28
: r
= R_PPC64_PCREL28
;
1314 case BFD_RELOC_VTABLE_INHERIT
: r
= R_PPC64_GNU_VTINHERIT
;
1316 case BFD_RELOC_VTABLE_ENTRY
: r
= R_PPC64_GNU_VTENTRY
;
1320 return ppc64_elf_howto_table
[r
];
1323 static reloc_howto_type
*
1324 ppc64_elf_reloc_name_lookup (bfd
*abfd
, const char *r_name
)
1327 static char *compat_map
[][2] = {
1328 { "R_PPC64_GOT_TLSGD34", "R_PPC64_GOT_TLSGD_PCREL34" },
1329 { "R_PPC64_GOT_TLSLD34", "R_PPC64_GOT_TLSLD_PCREL34" },
1330 { "R_PPC64_GOT_TPREL34", "R_PPC64_GOT_TPREL_PCREL34" },
1331 { "R_PPC64_GOT_DTPREL34", "R_PPC64_GOT_DTPREL_PCREL34" }
1334 for (i
= 0; i
< ARRAY_SIZE (ppc64_elf_howto_raw
); i
++)
1335 if (ppc64_elf_howto_raw
[i
].name
!= NULL
1336 && strcasecmp (ppc64_elf_howto_raw
[i
].name
, r_name
) == 0)
1337 return &ppc64_elf_howto_raw
[i
];
1339 /* Handle old names of relocations in case they were used by
1341 FIXME: Remove this soon. Mapping the reloc names is very likely
1342 completely unnecessary. */
1343 for (i
= 0; i
< ARRAY_SIZE (compat_map
); i
++)
1344 if (strcasecmp (compat_map
[i
][0], r_name
) == 0)
1346 _bfd_error_handler (_("warning: %s should be used rather than %s"),
1347 compat_map
[i
][1], compat_map
[i
][0]);
1348 return ppc64_elf_reloc_name_lookup (abfd
, compat_map
[i
][1]);
1354 /* Set the howto pointer for a PowerPC ELF reloc. */
1357 ppc64_elf_info_to_howto (bfd
*abfd
, arelent
*cache_ptr
,
1358 Elf_Internal_Rela
*dst
)
1362 /* Initialize howto table if needed. */
1363 if (!ppc64_elf_howto_table
[R_PPC64_ADDR32
])
1366 type
= ELF64_R_TYPE (dst
->r_info
);
1367 if (type
>= ARRAY_SIZE (ppc64_elf_howto_table
))
1369 /* xgettext:c-format */
1370 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1372 bfd_set_error (bfd_error_bad_value
);
1375 cache_ptr
->howto
= ppc64_elf_howto_table
[type
];
1376 if (cache_ptr
->howto
== NULL
|| cache_ptr
->howto
->name
== NULL
)
1378 /* xgettext:c-format */
1379 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1381 bfd_set_error (bfd_error_bad_value
);
1388 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1390 static bfd_reloc_status_type
1391 ppc64_elf_ha_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1392 void *data
, asection
*input_section
,
1393 bfd
*output_bfd
, char **error_message
)
1395 enum elf_ppc64_reloc_type r_type
;
1397 bfd_size_type octets
;
1400 /* If this is a relocatable link (output_bfd test tells us), just
1401 call the generic function. Any adjustment will be done at final
1403 if (output_bfd
!= NULL
)
1404 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1405 input_section
, output_bfd
, error_message
);
1407 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1408 We won't actually be using the low bits, so trashing them
1410 r_type
= reloc_entry
->howto
->type
;
1411 if (r_type
== R_PPC64_ADDR16_HIGHERA34
1412 || r_type
== R_PPC64_ADDR16_HIGHESTA34
1413 || r_type
== R_PPC64_REL16_HIGHERA34
1414 || r_type
== R_PPC64_REL16_HIGHESTA34
)
1415 reloc_entry
->addend
+= 1ULL << 33;
1417 reloc_entry
->addend
+= 1U << 15;
1418 if (r_type
!= R_PPC64_REL16DX_HA
)
1419 return bfd_reloc_continue
;
1422 if (!bfd_is_com_section (symbol
->section
))
1423 value
= symbol
->value
;
1424 value
+= (reloc_entry
->addend
1425 + symbol
->section
->output_offset
1426 + symbol
->section
->output_section
->vma
);
1427 value
-= (reloc_entry
->address
1428 + input_section
->output_offset
1429 + input_section
->output_section
->vma
);
1430 value
= (bfd_signed_vma
) value
>> 16;
1432 octets
= reloc_entry
->address
* OCTETS_PER_BYTE (abfd
, input_section
);
1433 insn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ octets
);
1435 insn
|= (value
& 0xffc1) | ((value
& 0x3e) << 15);
1436 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ octets
);
1437 if (value
+ 0x8000 > 0xffff)
1438 return bfd_reloc_overflow
;
1439 return bfd_reloc_ok
;
1442 static bfd_reloc_status_type
1443 ppc64_elf_branch_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1444 void *data
, asection
*input_section
,
1445 bfd
*output_bfd
, char **error_message
)
1447 if (output_bfd
!= NULL
)
1448 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1449 input_section
, output_bfd
, error_message
);
1451 if (strcmp (symbol
->section
->name
, ".opd") == 0
1452 && (symbol
->section
->owner
->flags
& DYNAMIC
) == 0)
1454 bfd_vma dest
= opd_entry_value (symbol
->section
,
1455 symbol
->value
+ reloc_entry
->addend
,
1457 if (dest
!= (bfd_vma
) -1)
1458 reloc_entry
->addend
= dest
- (symbol
->value
1459 + symbol
->section
->output_section
->vma
1460 + symbol
->section
->output_offset
);
1464 elf_symbol_type
*elfsym
= (elf_symbol_type
*) symbol
;
1466 if (symbol
->section
->owner
!= abfd
1467 && symbol
->section
->owner
!= NULL
1468 && abiversion (symbol
->section
->owner
) >= 2)
1472 for (i
= 0; i
< symbol
->section
->owner
->symcount
; ++i
)
1474 asymbol
*symdef
= symbol
->section
->owner
->outsymbols
[i
];
1476 if (strcmp (symdef
->name
, symbol
->name
) == 0)
1478 elfsym
= (elf_symbol_type
*) symdef
;
1484 += PPC64_LOCAL_ENTRY_OFFSET (elfsym
->internal_elf_sym
.st_other
);
1486 return bfd_reloc_continue
;
1489 static bfd_reloc_status_type
1490 ppc64_elf_brtaken_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1491 void *data
, asection
*input_section
,
1492 bfd
*output_bfd
, char **error_message
)
1495 enum elf_ppc64_reloc_type r_type
;
1496 bfd_size_type octets
;
1497 /* Assume 'at' branch hints. */
1498 bfd_boolean is_isa_v2
= TRUE
;
1500 /* If this is a relocatable link (output_bfd test tells us), just
1501 call the generic function. Any adjustment will be done at final
1503 if (output_bfd
!= NULL
)
1504 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1505 input_section
, output_bfd
, error_message
);
1507 octets
= reloc_entry
->address
* OCTETS_PER_BYTE (abfd
, input_section
);
1508 insn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ octets
);
1509 insn
&= ~(0x01 << 21);
1510 r_type
= reloc_entry
->howto
->type
;
1511 if (r_type
== R_PPC64_ADDR14_BRTAKEN
1512 || r_type
== R_PPC64_REL14_BRTAKEN
)
1513 insn
|= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1517 /* Set 'a' bit. This is 0b00010 in BO field for branch
1518 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1519 for branch on CTR insns (BO == 1a00t or 1a01t). */
1520 if ((insn
& (0x14 << 21)) == (0x04 << 21))
1522 else if ((insn
& (0x14 << 21)) == (0x10 << 21))
1532 if (!bfd_is_com_section (symbol
->section
))
1533 target
= symbol
->value
;
1534 target
+= symbol
->section
->output_section
->vma
;
1535 target
+= symbol
->section
->output_offset
;
1536 target
+= reloc_entry
->addend
;
1538 from
= (reloc_entry
->address
1539 + input_section
->output_offset
1540 + input_section
->output_section
->vma
);
1542 /* Invert 'y' bit if not the default. */
1543 if ((bfd_signed_vma
) (target
- from
) < 0)
1546 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ octets
);
1548 return ppc64_elf_branch_reloc (abfd
, reloc_entry
, symbol
, data
,
1549 input_section
, output_bfd
, error_message
);
1552 static bfd_reloc_status_type
1553 ppc64_elf_sectoff_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1554 void *data
, asection
*input_section
,
1555 bfd
*output_bfd
, char **error_message
)
1557 /* If this is a relocatable link (output_bfd test tells us), just
1558 call the generic function. Any adjustment will be done at final
1560 if (output_bfd
!= NULL
)
1561 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1562 input_section
, output_bfd
, error_message
);
1564 /* Subtract the symbol section base address. */
1565 reloc_entry
->addend
-= symbol
->section
->output_section
->vma
;
1566 return bfd_reloc_continue
;
1569 static bfd_reloc_status_type
1570 ppc64_elf_sectoff_ha_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1571 void *data
, asection
*input_section
,
1572 bfd
*output_bfd
, char **error_message
)
1574 /* If this is a relocatable link (output_bfd test tells us), just
1575 call the generic function. Any adjustment will be done at final
1577 if (output_bfd
!= NULL
)
1578 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1579 input_section
, output_bfd
, error_message
);
1581 /* Subtract the symbol section base address. */
1582 reloc_entry
->addend
-= symbol
->section
->output_section
->vma
;
1584 /* Adjust the addend for sign extension of the low 16 bits. */
1585 reloc_entry
->addend
+= 0x8000;
1586 return bfd_reloc_continue
;
1589 static bfd_reloc_status_type
1590 ppc64_elf_toc_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1591 void *data
, asection
*input_section
,
1592 bfd
*output_bfd
, char **error_message
)
1596 /* If this is a relocatable link (output_bfd test tells us), just
1597 call the generic function. Any adjustment will be done at final
1599 if (output_bfd
!= NULL
)
1600 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1601 input_section
, output_bfd
, error_message
);
1603 TOCstart
= _bfd_get_gp_value (input_section
->output_section
->owner
);
1605 TOCstart
= ppc64_elf_set_toc (NULL
, input_section
->output_section
->owner
);
1607 /* Subtract the TOC base address. */
1608 reloc_entry
->addend
-= TOCstart
+ TOC_BASE_OFF
;
1609 return bfd_reloc_continue
;
1612 static bfd_reloc_status_type
1613 ppc64_elf_toc_ha_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1614 void *data
, asection
*input_section
,
1615 bfd
*output_bfd
, char **error_message
)
1619 /* If this is a relocatable link (output_bfd test tells us), just
1620 call the generic function. Any adjustment will be done at final
1622 if (output_bfd
!= NULL
)
1623 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1624 input_section
, output_bfd
, error_message
);
1626 TOCstart
= _bfd_get_gp_value (input_section
->output_section
->owner
);
1628 TOCstart
= ppc64_elf_set_toc (NULL
, input_section
->output_section
->owner
);
1630 /* Subtract the TOC base address. */
1631 reloc_entry
->addend
-= TOCstart
+ TOC_BASE_OFF
;
1633 /* Adjust the addend for sign extension of the low 16 bits. */
1634 reloc_entry
->addend
+= 0x8000;
1635 return bfd_reloc_continue
;
1638 static bfd_reloc_status_type
1639 ppc64_elf_toc64_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1640 void *data
, asection
*input_section
,
1641 bfd
*output_bfd
, char **error_message
)
1644 bfd_size_type octets
;
1646 /* If this is a relocatable link (output_bfd test tells us), just
1647 call the generic function. Any adjustment will be done at final
1649 if (output_bfd
!= NULL
)
1650 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1651 input_section
, output_bfd
, error_message
);
1653 TOCstart
= _bfd_get_gp_value (input_section
->output_section
->owner
);
1655 TOCstart
= ppc64_elf_set_toc (NULL
, input_section
->output_section
->owner
);
1657 octets
= reloc_entry
->address
* OCTETS_PER_BYTE (abfd
, input_section
);
1658 bfd_put_64 (abfd
, TOCstart
+ TOC_BASE_OFF
, (bfd_byte
*) data
+ octets
);
1659 return bfd_reloc_ok
;
1662 static bfd_reloc_status_type
1663 ppc64_elf_prefix_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1664 void *data
, asection
*input_section
,
1665 bfd
*output_bfd
, char **error_message
)
1670 if (output_bfd
!= NULL
)
1671 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1672 input_section
, output_bfd
, error_message
);
1674 insn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1676 insn
|= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
+ 4);
1678 targ
= (symbol
->section
->output_section
->vma
1679 + symbol
->section
->output_offset
1680 + reloc_entry
->addend
);
1681 if (!bfd_is_com_section (symbol
->section
))
1682 targ
+= symbol
->value
;
1683 if (reloc_entry
->howto
->type
== R_PPC64_D34_HA30
)
1685 if (reloc_entry
->howto
->pc_relative
)
1687 bfd_vma from
= (reloc_entry
->address
1688 + input_section
->output_offset
1689 + input_section
->output_section
->vma
);
1692 targ
>>= reloc_entry
->howto
->rightshift
;
1693 insn
&= ~reloc_entry
->howto
->dst_mask
;
1694 insn
|= ((targ
<< 16) | (targ
& 0xffff)) & reloc_entry
->howto
->dst_mask
;
1695 bfd_put_32 (abfd
, insn
>> 32, (bfd_byte
*) data
+ reloc_entry
->address
);
1696 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
+ 4);
1697 if (reloc_entry
->howto
->complain_on_overflow
== complain_overflow_signed
1698 && (targ
+ (1ULL << (reloc_entry
->howto
->bitsize
- 1))
1699 >= 1ULL << reloc_entry
->howto
->bitsize
))
1700 return bfd_reloc_overflow
;
1701 return bfd_reloc_ok
;
1704 static bfd_reloc_status_type
1705 ppc64_elf_unhandled_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1706 void *data
, asection
*input_section
,
1707 bfd
*output_bfd
, char **error_message
)
1709 /* If this is a relocatable link (output_bfd test tells us), just
1710 call the generic function. Any adjustment will be done at final
1712 if (output_bfd
!= NULL
)
1713 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1714 input_section
, output_bfd
, error_message
);
1716 if (error_message
!= NULL
)
1718 static char buf
[60];
1719 sprintf (buf
, "generic linker can't handle %s",
1720 reloc_entry
->howto
->name
);
1721 *error_message
= buf
;
1723 return bfd_reloc_dangerous
;
1726 /* Track GOT entries needed for a given symbol. We might need more
1727 than one got entry per symbol. */
1730 struct got_entry
*next
;
1732 /* The symbol addend that we'll be placing in the GOT. */
1735 /* Unlike other ELF targets, we use separate GOT entries for the same
1736 symbol referenced from different input files. This is to support
1737 automatic multiple TOC/GOT sections, where the TOC base can vary
1738 from one input file to another. After partitioning into TOC groups
1739 we merge entries within the group.
1741 Point to the BFD owning this GOT entry. */
1744 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1745 TLS_TPREL or TLS_DTPREL for tls entries. */
1746 unsigned char tls_type
;
1748 /* Non-zero if got.ent points to real entry. */
1749 unsigned char is_indirect
;
1751 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1754 bfd_signed_vma refcount
;
1756 struct got_entry
*ent
;
1760 /* The same for PLT. */
1763 struct plt_entry
*next
;
1769 bfd_signed_vma refcount
;
1774 struct ppc64_elf_obj_tdata
1776 struct elf_obj_tdata elf
;
1778 /* Shortcuts to dynamic linker sections. */
1782 /* Used during garbage collection. We attach global symbols defined
1783 on removed .opd entries to this section so that the sym is removed. */
1784 asection
*deleted_section
;
1786 /* TLS local dynamic got entry handling. Support for multiple GOT
1787 sections means we potentially need one of these for each input bfd. */
1788 struct got_entry tlsld_got
;
1792 /* A copy of relocs before they are modified for --emit-relocs. */
1793 Elf_Internal_Rela
*relocs
;
1795 /* Section contents. */
1799 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1800 the reloc to be in the range -32768 to 32767. */
1801 unsigned int has_small_toc_reloc
: 1;
1803 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1804 instruction not one we handle. */
1805 unsigned int unexpected_toc_insn
: 1;
1807 /* Set if PLT/GOT/TOC relocs that can be optimised are present in
1809 unsigned int has_optrel
: 1;
1812 #define ppc64_elf_tdata(bfd) \
1813 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1815 #define ppc64_tlsld_got(bfd) \
1816 (&ppc64_elf_tdata (bfd)->tlsld_got)
1818 #define is_ppc64_elf(bfd) \
1819 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1820 && elf_object_id (bfd) == PPC64_ELF_DATA)
1822 /* Override the generic function because we store some extras. */
1825 ppc64_elf_mkobject (bfd
*abfd
)
1827 return bfd_elf_allocate_object (abfd
, sizeof (struct ppc64_elf_obj_tdata
),
1831 /* Fix bad default arch selected for a 64 bit input bfd when the
1832 default is 32 bit. Also select arch based on apuinfo. */
1835 ppc64_elf_object_p (bfd
*abfd
)
1837 if (!abfd
->arch_info
->the_default
)
1840 if (abfd
->arch_info
->bits_per_word
== 32)
1842 Elf_Internal_Ehdr
*i_ehdr
= elf_elfheader (abfd
);
1844 if (i_ehdr
->e_ident
[EI_CLASS
] == ELFCLASS64
)
1846 /* Relies on arch after 32 bit default being 64 bit default. */
1847 abfd
->arch_info
= abfd
->arch_info
->next
;
1848 BFD_ASSERT (abfd
->arch_info
->bits_per_word
== 64);
1851 return _bfd_elf_ppc_set_arch (abfd
);
1854 /* Support for core dump NOTE sections. */
1857 ppc64_elf_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1859 size_t offset
, size
;
1861 if (note
->descsz
!= 504)
1865 elf_tdata (abfd
)->core
->signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1868 elf_tdata (abfd
)->core
->lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 32);
1874 /* Make a ".reg/999" section. */
1875 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1876 size
, note
->descpos
+ offset
);
1880 ppc64_elf_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1882 if (note
->descsz
!= 136)
1885 elf_tdata (abfd
)->core
->pid
1886 = bfd_get_32 (abfd
, note
->descdata
+ 24);
1887 elf_tdata (abfd
)->core
->program
1888 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 40, 16);
1889 elf_tdata (abfd
)->core
->command
1890 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 56, 80);
1896 ppc64_elf_write_core_note (bfd
*abfd
, char *buf
, int *bufsiz
, int note_type
,
1906 char data
[136] ATTRIBUTE_NONSTRING
;
1909 va_start (ap
, note_type
);
1910 memset (data
, 0, sizeof (data
));
1911 strncpy (data
+ 40, va_arg (ap
, const char *), 16);
1912 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1914 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1915 -Wstringop-truncation:
1916 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1918 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION
;
1920 strncpy (data
+ 56, va_arg (ap
, const char *), 80);
1921 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1925 return elfcore_write_note (abfd
, buf
, bufsiz
,
1926 "CORE", note_type
, data
, sizeof (data
));
1937 va_start (ap
, note_type
);
1938 memset (data
, 0, 112);
1939 pid
= va_arg (ap
, long);
1940 bfd_put_32 (abfd
, pid
, data
+ 32);
1941 cursig
= va_arg (ap
, int);
1942 bfd_put_16 (abfd
, cursig
, data
+ 12);
1943 greg
= va_arg (ap
, const void *);
1944 memcpy (data
+ 112, greg
, 384);
1945 memset (data
+ 496, 0, 8);
1947 return elfcore_write_note (abfd
, buf
, bufsiz
,
1948 "CORE", note_type
, data
, sizeof (data
));
1953 /* Add extra PPC sections. */
1955 static const struct bfd_elf_special_section ppc64_elf_special_sections
[] =
1957 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS
, 0 },
1958 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
1959 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1960 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1961 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1962 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
1963 { NULL
, 0, 0, 0, 0 }
1966 enum _ppc64_sec_type
{
1972 struct _ppc64_elf_section_data
1974 struct bfd_elf_section_data elf
;
1978 /* An array with one entry for each opd function descriptor,
1979 and some spares since opd entries may be either 16 or 24 bytes. */
1980 #define OPD_NDX(OFF) ((OFF) >> 4)
1981 struct _opd_sec_data
1983 /* Points to the function code section for local opd entries. */
1984 asection
**func_sec
;
1986 /* After editing .opd, adjust references to opd local syms. */
1990 /* An array for toc sections, indexed by offset/8. */
1991 struct _toc_sec_data
1993 /* Specifies the relocation symbol index used at a given toc offset. */
1996 /* And the relocation addend. */
2001 enum _ppc64_sec_type sec_type
:2;
2003 /* Flag set when small branches are detected. Used to
2004 select suitable defaults for the stub group size. */
2005 unsigned int has_14bit_branch
:1;
2007 /* Flag set when PLTCALL relocs are detected. */
2008 unsigned int has_pltcall
:1;
2010 /* Flag set when section has PLT/GOT/TOC relocations that can be
2012 unsigned int has_optrel
:1;
2015 #define ppc64_elf_section_data(sec) \
2016 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2019 ppc64_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2021 if (!sec
->used_by_bfd
)
2023 struct _ppc64_elf_section_data
*sdata
;
2024 size_t amt
= sizeof (*sdata
);
2026 sdata
= bfd_zalloc (abfd
, amt
);
2029 sec
->used_by_bfd
= sdata
;
2032 return _bfd_elf_new_section_hook (abfd
, sec
);
2036 ppc64_elf_section_flags (const Elf_Internal_Shdr
*hdr
)
2038 const char *name
= hdr
->bfd_section
->name
;
2040 if (strncmp (name
, ".sbss", 5) == 0
2041 || strncmp (name
, ".sdata", 6) == 0)
2042 hdr
->bfd_section
->flags
|= SEC_SMALL_DATA
;
2047 static struct _opd_sec_data
*
2048 get_opd_info (asection
* sec
)
2051 && ppc64_elf_section_data (sec
) != NULL
2052 && ppc64_elf_section_data (sec
)->sec_type
== sec_opd
)
2053 return &ppc64_elf_section_data (sec
)->u
.opd
;
2057 /* Parameters for the qsort hook. */
2058 static bfd_boolean synthetic_relocatable
;
2059 static asection
*synthetic_opd
;
2061 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2064 compare_symbols (const void *ap
, const void *bp
)
2066 const asymbol
*a
= *(const asymbol
**) ap
;
2067 const asymbol
*b
= *(const asymbol
**) bp
;
2069 /* Section symbols first. */
2070 if ((a
->flags
& BSF_SECTION_SYM
) && !(b
->flags
& BSF_SECTION_SYM
))
2072 if (!(a
->flags
& BSF_SECTION_SYM
) && (b
->flags
& BSF_SECTION_SYM
))
2075 /* then .opd symbols. */
2076 if (synthetic_opd
!= NULL
)
2078 if (strcmp (a
->section
->name
, ".opd") == 0
2079 && strcmp (b
->section
->name
, ".opd") != 0)
2081 if (strcmp (a
->section
->name
, ".opd") != 0
2082 && strcmp (b
->section
->name
, ".opd") == 0)
2086 /* then other code symbols. */
2087 if (((a
->section
->flags
& (SEC_CODE
| SEC_ALLOC
| SEC_THREAD_LOCAL
))
2088 == (SEC_CODE
| SEC_ALLOC
))
2089 && ((b
->section
->flags
& (SEC_CODE
| SEC_ALLOC
| SEC_THREAD_LOCAL
))
2090 != (SEC_CODE
| SEC_ALLOC
)))
2093 if (((a
->section
->flags
& (SEC_CODE
| SEC_ALLOC
| SEC_THREAD_LOCAL
))
2094 != (SEC_CODE
| SEC_ALLOC
))
2095 && ((b
->section
->flags
& (SEC_CODE
| SEC_ALLOC
| SEC_THREAD_LOCAL
))
2096 == (SEC_CODE
| SEC_ALLOC
)))
2099 if (synthetic_relocatable
)
2101 if (a
->section
->id
< b
->section
->id
)
2104 if (a
->section
->id
> b
->section
->id
)
2108 if (a
->value
+ a
->section
->vma
< b
->value
+ b
->section
->vma
)
2111 if (a
->value
+ a
->section
->vma
> b
->value
+ b
->section
->vma
)
2114 /* For syms with the same value, prefer strong dynamic global function
2115 syms over other syms. */
2116 if ((a
->flags
& BSF_GLOBAL
) != 0 && (b
->flags
& BSF_GLOBAL
) == 0)
2119 if ((a
->flags
& BSF_GLOBAL
) == 0 && (b
->flags
& BSF_GLOBAL
) != 0)
2122 if ((a
->flags
& BSF_FUNCTION
) != 0 && (b
->flags
& BSF_FUNCTION
) == 0)
2125 if ((a
->flags
& BSF_FUNCTION
) == 0 && (b
->flags
& BSF_FUNCTION
) != 0)
2128 if ((a
->flags
& BSF_WEAK
) == 0 && (b
->flags
& BSF_WEAK
) != 0)
2131 if ((a
->flags
& BSF_WEAK
) != 0 && (b
->flags
& BSF_WEAK
) == 0)
2134 if ((a
->flags
& BSF_DYNAMIC
) != 0 && (b
->flags
& BSF_DYNAMIC
) == 0)
2137 if ((a
->flags
& BSF_DYNAMIC
) == 0 && (b
->flags
& BSF_DYNAMIC
) != 0)
2140 /* Finally, sort on where the symbol is in memory. The symbols will
2141 be in at most two malloc'd blocks, one for static syms, one for
2142 dynamic syms, and we distinguish the two blocks above by testing
2143 BSF_DYNAMIC. Since we are sorting the symbol pointers which were
2144 originally in the same order as the symbols (and we're not
2145 sorting the symbols themselves), this ensures a stable sort. */
2153 /* Search SYMS for a symbol of the given VALUE. */
2156 sym_exists_at (asymbol
**syms
, size_t lo
, size_t hi
, unsigned int id
,
2161 if (id
== (unsigned) -1)
2165 mid
= (lo
+ hi
) >> 1;
2166 if (syms
[mid
]->value
+ syms
[mid
]->section
->vma
< value
)
2168 else if (syms
[mid
]->value
+ syms
[mid
]->section
->vma
> value
)
2178 mid
= (lo
+ hi
) >> 1;
2179 if (syms
[mid
]->section
->id
< id
)
2181 else if (syms
[mid
]->section
->id
> id
)
2183 else if (syms
[mid
]->value
< value
)
2185 else if (syms
[mid
]->value
> value
)
2195 section_covers_vma (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*section
, void *ptr
)
2197 bfd_vma vma
= *(bfd_vma
*) ptr
;
2198 return ((section
->flags
& SEC_ALLOC
) != 0
2199 && section
->vma
<= vma
2200 && vma
< section
->vma
+ section
->size
);
2203 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2204 entry syms. Also generate @plt symbols for the glink branch table.
2205 Returns count of synthetic symbols in RET or -1 on error. */
2208 ppc64_elf_get_synthetic_symtab (bfd
*abfd
,
2209 long static_count
, asymbol
**static_syms
,
2210 long dyn_count
, asymbol
**dyn_syms
,
2216 size_t symcount
, codesecsym
, codesecsymend
, secsymend
, opdsymend
;
2217 asection
*opd
= NULL
;
2218 bfd_boolean relocatable
= (abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0;
2220 int abi
= abiversion (abfd
);
2226 opd
= bfd_get_section_by_name (abfd
, ".opd");
2227 if (opd
== NULL
&& abi
== 1)
2239 symcount
= static_count
;
2241 symcount
+= dyn_count
;
2245 syms
= bfd_malloc ((symcount
+ 1) * sizeof (*syms
));
2249 if (!relocatable
&& static_count
!= 0 && dyn_count
!= 0)
2251 /* Use both symbol tables. */
2252 memcpy (syms
, static_syms
, static_count
* sizeof (*syms
));
2253 memcpy (syms
+ static_count
, dyn_syms
,
2254 (dyn_count
+ 1) * sizeof (*syms
));
2256 else if (!relocatable
&& static_count
== 0)
2257 memcpy (syms
, dyn_syms
, (symcount
+ 1) * sizeof (*syms
));
2259 memcpy (syms
, static_syms
, (symcount
+ 1) * sizeof (*syms
));
2261 /* Trim uninteresting symbols. Interesting symbols are section,
2262 function, and notype symbols. */
2263 for (i
= 0, j
= 0; i
< symcount
; ++i
)
2264 if ((syms
[i
]->flags
& (BSF_FILE
| BSF_OBJECT
| BSF_THREAD_LOCAL
2265 | BSF_RELC
| BSF_SRELC
)) == 0)
2266 syms
[j
++] = syms
[i
];
2269 synthetic_relocatable
= relocatable
;
2270 synthetic_opd
= opd
;
2271 qsort (syms
, symcount
, sizeof (*syms
), compare_symbols
);
2273 if (!relocatable
&& symcount
> 1)
2275 /* Trim duplicate syms, since we may have merged the normal
2276 and dynamic symbols. Actually, we only care about syms
2277 that have different values, so trim any with the same
2278 value. Don't consider ifunc and ifunc resolver symbols
2279 duplicates however, because GDB wants to know whether a
2280 text symbol is an ifunc resolver. */
2281 for (i
= 1, j
= 1; i
< symcount
; ++i
)
2283 const asymbol
*s0
= syms
[i
- 1];
2284 const asymbol
*s1
= syms
[i
];
2286 if ((s0
->value
+ s0
->section
->vma
2287 != s1
->value
+ s1
->section
->vma
)
2288 || ((s0
->flags
& BSF_GNU_INDIRECT_FUNCTION
)
2289 != (s1
->flags
& BSF_GNU_INDIRECT_FUNCTION
)))
2290 syms
[j
++] = syms
[i
];
2296 /* Note that here and in compare_symbols we can't compare opd and
2297 sym->section directly. With separate debug info files, the
2298 symbols will be extracted from the debug file while abfd passed
2299 to this function is the real binary. */
2300 if (strcmp (syms
[i
]->section
->name
, ".opd") == 0)
2304 for (; i
< symcount
; ++i
)
2305 if (((syms
[i
]->section
->flags
& (SEC_CODE
| SEC_ALLOC
2306 | SEC_THREAD_LOCAL
))
2307 != (SEC_CODE
| SEC_ALLOC
))
2308 || (syms
[i
]->flags
& BSF_SECTION_SYM
) == 0)
2312 for (; i
< symcount
; ++i
)
2313 if ((syms
[i
]->flags
& BSF_SECTION_SYM
) == 0)
2317 for (; i
< symcount
; ++i
)
2318 if (strcmp (syms
[i
]->section
->name
, ".opd") != 0)
2322 for (; i
< symcount
; ++i
)
2323 if (((syms
[i
]->section
->flags
2324 & (SEC_CODE
| SEC_ALLOC
| SEC_THREAD_LOCAL
)))
2325 != (SEC_CODE
| SEC_ALLOC
))
2333 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
2338 if (opdsymend
== secsymend
)
2341 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
2342 relcount
= (opd
->flags
& SEC_RELOC
) ? opd
->reloc_count
: 0;
2346 if (!(*slurp_relocs
) (abfd
, opd
, static_syms
, FALSE
))
2353 for (i
= secsymend
, r
= opd
->relocation
; i
< opdsymend
; ++i
)
2357 while (r
< opd
->relocation
+ relcount
2358 && r
->address
< syms
[i
]->value
+ opd
->vma
)
2361 if (r
== opd
->relocation
+ relcount
)
2364 if (r
->address
!= syms
[i
]->value
+ opd
->vma
)
2367 if (r
->howto
->type
!= R_PPC64_ADDR64
)
2370 sym
= *r
->sym_ptr_ptr
;
2371 if (!sym_exists_at (syms
, opdsymend
, symcount
,
2372 sym
->section
->id
, sym
->value
+ r
->addend
))
2375 size
+= sizeof (asymbol
);
2376 size
+= strlen (syms
[i
]->name
) + 2;
2382 s
= *ret
= bfd_malloc (size
);
2389 names
= (char *) (s
+ count
);
2391 for (i
= secsymend
, r
= opd
->relocation
; i
< opdsymend
; ++i
)
2395 while (r
< opd
->relocation
+ relcount
2396 && r
->address
< syms
[i
]->value
+ opd
->vma
)
2399 if (r
== opd
->relocation
+ relcount
)
2402 if (r
->address
!= syms
[i
]->value
+ opd
->vma
)
2405 if (r
->howto
->type
!= R_PPC64_ADDR64
)
2408 sym
= *r
->sym_ptr_ptr
;
2409 if (!sym_exists_at (syms
, opdsymend
, symcount
,
2410 sym
->section
->id
, sym
->value
+ r
->addend
))
2415 s
->flags
|= BSF_SYNTHETIC
;
2416 s
->section
= sym
->section
;
2417 s
->value
= sym
->value
+ r
->addend
;
2420 len
= strlen (syms
[i
]->name
);
2421 memcpy (names
, syms
[i
]->name
, len
+ 1);
2423 /* Have udata.p point back to the original symbol this
2424 synthetic symbol was derived from. */
2425 s
->udata
.p
= syms
[i
];
2432 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
2433 bfd_byte
*contents
= NULL
;
2435 size_t plt_count
= 0;
2436 bfd_vma glink_vma
= 0, resolv_vma
= 0;
2437 asection
*dynamic
, *glink
= NULL
, *relplt
= NULL
;
2440 if (opd
!= NULL
&& !bfd_malloc_and_get_section (abfd
, opd
, &contents
))
2442 free_contents_and_exit_err
:
2444 free_contents_and_exit
:
2450 for (i
= secsymend
; i
< opdsymend
; ++i
)
2454 /* Ignore bogus symbols. */
2455 if (syms
[i
]->value
> opd
->size
- 8)
2458 ent
= bfd_get_64 (abfd
, contents
+ syms
[i
]->value
);
2459 if (!sym_exists_at (syms
, opdsymend
, symcount
, -1, ent
))
2462 size
+= sizeof (asymbol
);
2463 size
+= strlen (syms
[i
]->name
) + 2;
2467 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2469 && (dynamic
= bfd_get_section_by_name (abfd
, ".dynamic")) != NULL
)
2471 bfd_byte
*dynbuf
, *extdyn
, *extdynend
;
2473 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
2475 if (!bfd_malloc_and_get_section (abfd
, dynamic
, &dynbuf
))
2476 goto free_contents_and_exit_err
;
2478 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
2479 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
2482 extdynend
= extdyn
+ dynamic
->size
;
2483 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
2485 Elf_Internal_Dyn dyn
;
2486 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
2488 if (dyn
.d_tag
== DT_NULL
)
2491 if (dyn
.d_tag
== DT_PPC64_GLINK
)
2493 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2494 See comment in ppc64_elf_finish_dynamic_sections. */
2495 glink_vma
= dyn
.d_un
.d_val
+ 8 * 4;
2496 /* The .glink section usually does not survive the final
2497 link; search for the section (usually .text) where the
2498 glink stubs now reside. */
2499 glink
= bfd_sections_find_if (abfd
, section_covers_vma
,
2510 /* Determine __glink trampoline by reading the relative branch
2511 from the first glink stub. */
2513 unsigned int off
= 0;
2515 while (bfd_get_section_contents (abfd
, glink
, buf
,
2516 glink_vma
+ off
- glink
->vma
, 4))
2518 unsigned int insn
= bfd_get_32 (abfd
, buf
);
2520 if ((insn
& ~0x3fffffc) == 0)
2523 = glink_vma
+ off
+ (insn
^ 0x2000000) - 0x2000000;
2532 size
+= sizeof (asymbol
) + sizeof ("__glink_PLTresolve");
2534 relplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
2537 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
2538 if (!(*slurp_relocs
) (abfd
, relplt
, dyn_syms
, TRUE
))
2539 goto free_contents_and_exit_err
;
2541 plt_count
= relplt
->size
/ sizeof (Elf64_External_Rela
);
2542 size
+= plt_count
* sizeof (asymbol
);
2544 p
= relplt
->relocation
;
2545 for (i
= 0; i
< plt_count
; i
++, p
++)
2547 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
2549 size
+= sizeof ("+0x") - 1 + 16;
2555 goto free_contents_and_exit
;
2556 s
= *ret
= bfd_malloc (size
);
2558 goto free_contents_and_exit_err
;
2560 names
= (char *) (s
+ count
+ plt_count
+ (resolv_vma
!= 0));
2562 for (i
= secsymend
; i
< opdsymend
; ++i
)
2566 if (syms
[i
]->value
> opd
->size
- 8)
2569 ent
= bfd_get_64 (abfd
, contents
+ syms
[i
]->value
);
2570 if (!sym_exists_at (syms
, opdsymend
, symcount
, -1, ent
))
2574 asection
*sec
= abfd
->sections
;
2581 size_t mid
= (lo
+ hi
) >> 1;
2582 if (syms
[mid
]->section
->vma
< ent
)
2584 else if (syms
[mid
]->section
->vma
> ent
)
2588 sec
= syms
[mid
]->section
;
2593 if (lo
>= hi
&& lo
> codesecsym
)
2594 sec
= syms
[lo
- 1]->section
;
2596 for (; sec
!= NULL
; sec
= sec
->next
)
2600 /* SEC_LOAD may not be set if SEC is from a separate debug
2602 if ((sec
->flags
& SEC_ALLOC
) == 0)
2604 if ((sec
->flags
& SEC_CODE
) != 0)
2607 s
->flags
|= BSF_SYNTHETIC
;
2608 s
->value
= ent
- s
->section
->vma
;
2611 len
= strlen (syms
[i
]->name
);
2612 memcpy (names
, syms
[i
]->name
, len
+ 1);
2614 /* Have udata.p point back to the original symbol this
2615 synthetic symbol was derived from. */
2616 s
->udata
.p
= syms
[i
];
2622 if (glink
!= NULL
&& relplt
!= NULL
)
2626 /* Add a symbol for the main glink trampoline. */
2627 memset (s
, 0, sizeof *s
);
2629 s
->flags
= BSF_GLOBAL
| BSF_SYNTHETIC
;
2631 s
->value
= resolv_vma
- glink
->vma
;
2633 memcpy (names
, "__glink_PLTresolve",
2634 sizeof ("__glink_PLTresolve"));
2635 names
+= sizeof ("__glink_PLTresolve");
2640 /* FIXME: It would be very much nicer to put sym@plt on the
2641 stub rather than on the glink branch table entry. The
2642 objdump disassembler would then use a sensible symbol
2643 name on plt calls. The difficulty in doing so is
2644 a) finding the stubs, and,
2645 b) matching stubs against plt entries, and,
2646 c) there can be multiple stubs for a given plt entry.
2648 Solving (a) could be done by code scanning, but older
2649 ppc64 binaries used different stubs to current code.
2650 (b) is the tricky one since you need to known the toc
2651 pointer for at least one function that uses a pic stub to
2652 be able to calculate the plt address referenced.
2653 (c) means gdb would need to set multiple breakpoints (or
2654 find the glink branch itself) when setting breakpoints
2655 for pending shared library loads. */
2656 p
= relplt
->relocation
;
2657 for (i
= 0; i
< plt_count
; i
++, p
++)
2661 *s
= **p
->sym_ptr_ptr
;
2662 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2663 we are defining a symbol, ensure one of them is set. */
2664 if ((s
->flags
& BSF_LOCAL
) == 0)
2665 s
->flags
|= BSF_GLOBAL
;
2666 s
->flags
|= BSF_SYNTHETIC
;
2668 s
->value
= glink_vma
- glink
->vma
;
2671 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
2672 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
2676 memcpy (names
, "+0x", sizeof ("+0x") - 1);
2677 names
+= sizeof ("+0x") - 1;
2678 bfd_sprintf_vma (abfd
, names
, p
->addend
);
2679 names
+= strlen (names
);
2681 memcpy (names
, "@plt", sizeof ("@plt"));
2682 names
+= sizeof ("@plt");
2702 /* The following functions are specific to the ELF linker, while
2703 functions above are used generally. Those named ppc64_elf_* are
2704 called by the main ELF linker code. They appear in this file more
2705 or less in the order in which they are called. eg.
2706 ppc64_elf_check_relocs is called early in the link process,
2707 ppc64_elf_finish_dynamic_sections is one of the last functions
2710 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2711 functions have both a function code symbol and a function descriptor
2712 symbol. A call to foo in a relocatable object file looks like:
2719 The function definition in another object file might be:
2723 . .quad .TOC.@tocbase
2729 When the linker resolves the call during a static link, the branch
2730 unsurprisingly just goes to .foo and the .opd information is unused.
2731 If the function definition is in a shared library, things are a little
2732 different: The call goes via a plt call stub, the opd information gets
2733 copied to the plt, and the linker patches the nop.
2741 . std 2,40(1) # in practice, the call stub
2742 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2743 . addi 11,11,Lfoo@toc@l # this is the general idea
2751 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2753 The "reloc ()" notation is supposed to indicate that the linker emits
2754 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2757 What are the difficulties here? Well, firstly, the relocations
2758 examined by the linker in check_relocs are against the function code
2759 sym .foo, while the dynamic relocation in the plt is emitted against
2760 the function descriptor symbol, foo. Somewhere along the line, we need
2761 to carefully copy dynamic link information from one symbol to the other.
2762 Secondly, the generic part of the elf linker will make .foo a dynamic
2763 symbol as is normal for most other backends. We need foo dynamic
2764 instead, at least for an application final link. However, when
2765 creating a shared library containing foo, we need to have both symbols
2766 dynamic so that references to .foo are satisfied during the early
2767 stages of linking. Otherwise the linker might decide to pull in a
2768 definition from some other object, eg. a static library.
2770 Update: As of August 2004, we support a new convention. Function
2771 calls may use the function descriptor symbol, ie. "bl foo". This
2772 behaves exactly as "bl .foo". */
2774 /* Of those relocs that might be copied as dynamic relocs, this
2775 function selects those that must be copied when linking a shared
2776 library or PIE, even when the symbol is local. */
2779 must_be_dyn_reloc (struct bfd_link_info
*info
,
2780 enum elf_ppc64_reloc_type r_type
)
2785 /* Only relative relocs can be resolved when the object load
2786 address isn't fixed. DTPREL64 is excluded because the
2787 dynamic linker needs to differentiate global dynamic from
2788 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2795 case R_PPC64_TOC16_DS
:
2796 case R_PPC64_TOC16_LO
:
2797 case R_PPC64_TOC16_HI
:
2798 case R_PPC64_TOC16_HA
:
2799 case R_PPC64_TOC16_LO_DS
:
2802 case R_PPC64_TPREL16
:
2803 case R_PPC64_TPREL16_LO
:
2804 case R_PPC64_TPREL16_HI
:
2805 case R_PPC64_TPREL16_HA
:
2806 case R_PPC64_TPREL16_DS
:
2807 case R_PPC64_TPREL16_LO_DS
:
2808 case R_PPC64_TPREL16_HIGH
:
2809 case R_PPC64_TPREL16_HIGHA
:
2810 case R_PPC64_TPREL16_HIGHER
:
2811 case R_PPC64_TPREL16_HIGHERA
:
2812 case R_PPC64_TPREL16_HIGHEST
:
2813 case R_PPC64_TPREL16_HIGHESTA
:
2814 case R_PPC64_TPREL64
:
2815 case R_PPC64_TPREL34
:
2816 /* These relocations are relative but in a shared library the
2817 linker doesn't know the thread pointer base. */
2818 return bfd_link_dll (info
);
2822 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2823 copying dynamic variables from a shared lib into an app's .dynbss
2824 section, and instead use a dynamic relocation to point into the
2825 shared lib. With code that gcc generates it is vital that this be
2826 enabled; In the PowerPC64 ELFv1 ABI the address of a function is
2827 actually the address of a function descriptor which resides in the
2828 .opd section. gcc uses the descriptor directly rather than going
2829 via the GOT as some other ABIs do, which means that initialized
2830 function pointers reference the descriptor. Thus, a function
2831 pointer initialized to the address of a function in a shared
2832 library will either require a .dynbss copy and a copy reloc, or a
2833 dynamic reloc. Using a .dynbss copy redefines the function
2834 descriptor symbol to point to the copy. This presents a problem as
2835 a PLT entry for that function is also initialized from the function
2836 descriptor symbol and the copy may not be initialized first. */
2837 #define ELIMINATE_COPY_RELOCS 1
2839 /* Section name for stubs is the associated section name plus this
2841 #define STUB_SUFFIX ".stub"
2844 ppc_stub_long_branch:
2845 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2846 destination, but a 24 bit branch in a stub section will reach.
2849 ppc_stub_plt_branch:
2850 Similar to the above, but a 24 bit branch in the stub section won't
2851 reach its destination.
2852 . addis %r12,%r2,xxx@toc@ha
2853 . ld %r12,xxx@toc@l(%r12)
2858 Used to call a function in a shared library. If it so happens that
2859 the plt entry referenced crosses a 64k boundary, then an extra
2860 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2861 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2862 . addis %r11,%r2,xxx@toc@ha
2863 . ld %r12,xxx+0@toc@l(%r11)
2865 . ld %r2,xxx+8@toc@l(%r11)
2866 . ld %r11,xxx+16@toc@l(%r11)
2869 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2870 code to adjust the value and save r2 to support multiple toc sections.
2871 A ppc_stub_long_branch with an r2 offset looks like:
2873 . addis %r2,%r2,off@ha
2874 . addi %r2,%r2,off@l
2877 A ppc_stub_plt_branch with an r2 offset looks like:
2879 . addis %r12,%r2,xxx@toc@ha
2880 . ld %r12,xxx@toc@l(%r12)
2881 . addis %r2,%r2,off@ha
2882 . addi %r2,%r2,off@l
2886 All of the above stubs are shown as their ELFv1 variants. ELFv2
2887 variants exist too, simpler for plt calls since a new toc pointer
2888 and static chain are not loaded by the stub. In addition, ELFv2
2889 has some more complex stubs to handle calls marked with NOTOC
2890 relocs from functions where r2 is not a valid toc pointer. These
2891 come in two flavours, the ones shown below, and _both variants that
2892 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2893 one call is from a function where r2 is used as the toc pointer but
2894 needs a toc adjusting stub for small-model multi-toc, and another
2895 call is from a function where r2 is not valid.
2896 ppc_stub_long_branch_notoc:
2902 . addis %r12,%r11,dest-1b@ha
2903 . addi %r12,%r12,dest-1b@l
2906 ppc_stub_plt_branch_notoc:
2912 . lis %r12,xxx-1b@highest
2913 . ori %r12,%r12,xxx-1b@higher
2915 . oris %r12,%r12,xxx-1b@high
2916 . ori %r12,%r12,xxx-1b@l
2917 . add %r12,%r11,%r12
2921 ppc_stub_plt_call_notoc:
2927 . lis %r12,xxx-1b@highest
2928 . ori %r12,%r12,xxx-1b@higher
2930 . oris %r12,%r12,xxx-1b@high
2931 . ori %r12,%r12,xxx-1b@l
2932 . ldx %r12,%r11,%r12
2936 There are also ELFv1 power10 variants of these stubs.
2937 ppc_stub_long_branch_notoc:
2938 . pla %r12,dest@pcrel
2940 ppc_stub_plt_branch_notoc:
2941 . lis %r11,(dest-1f)@highesta34
2942 . ori %r11,%r11,(dest-1f)@highera34
2944 . 1: pla %r12,dest@pcrel
2945 . add %r12,%r11,%r12
2948 ppc_stub_plt_call_notoc:
2949 . lis %r11,(xxx-1f)@highesta34
2950 . ori %r11,%r11,(xxx-1f)@highera34
2952 . 1: pla %r12,xxx@pcrel
2953 . ldx %r12,%r11,%r12
2957 In cases where the high instructions would add zero, they are
2958 omitted and following instructions modified in some cases.
2959 For example, a power10 ppc_stub_plt_call_notoc might simplify down
2961 . pld %r12,xxx@pcrel
2965 For a given stub group (a set of sections all using the same toc
2966 pointer value) there will be just one stub type used for any
2967 particular function symbol. For example, if printf is called from
2968 code with the tocsave optimization (ie. r2 saved in function
2969 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2970 and from other code without the tocsave optimization requiring a
2971 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2972 type will be created. Calls with the tocsave optimization will
2973 enter this stub after the instruction saving r2. A similar
2974 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2975 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2976 to call an external function like printf. If other calls to printf
2977 require a ppc_stub_plt_call linkage stub then a single
2978 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2979 call. If other calls to printf require a ppc_stub_plt_call_r2save
2980 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2981 be created and calls not requiring r2 to be saved will enter the
2982 stub after the r2 save instruction. There is an analogous
2983 hierarchy of long branch and plt branch stubs for local call
2989 ppc_stub_long_branch
,
2990 ppc_stub_long_branch_r2off
,
2991 ppc_stub_long_branch_notoc
,
2992 ppc_stub_long_branch_both
, /* r2off and notoc variants both needed. */
2993 ppc_stub_plt_branch
,
2994 ppc_stub_plt_branch_r2off
,
2995 ppc_stub_plt_branch_notoc
,
2996 ppc_stub_plt_branch_both
,
2998 ppc_stub_plt_call_r2save
,
2999 ppc_stub_plt_call_notoc
,
3000 ppc_stub_plt_call_both
,
3001 ppc_stub_global_entry
,
3005 /* Information on stub grouping. */
3008 /* The stub section. */
3010 /* This is the section to which stubs in the group will be attached. */
3013 struct map_stub
*next
;
3014 /* Whether to emit a copy of register save/restore functions in this
3017 /* Current offset within stubs after the insn restoring lr in a
3018 _notoc or _both stub using bcl for pc-relative addressing, or
3019 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
3020 unsigned int lr_restore
;
3021 /* Accumulated size of EH info emitted to describe return address
3022 if stubs modify lr. Does not include 17 byte FDE header. */
3023 unsigned int eh_size
;
3024 /* Offset in glink_eh_frame to the start of EH info for this group. */
3025 unsigned int eh_base
;
3028 struct ppc_stub_hash_entry
3030 /* Base hash table entry structure. */
3031 struct bfd_hash_entry root
;
3033 enum ppc_stub_type stub_type
;
3035 /* Group information. */
3036 struct map_stub
*group
;
3038 /* Offset within stub_sec of the beginning of this stub. */
3039 bfd_vma stub_offset
;
3041 /* Given the symbol's value and its section we can determine its final
3042 value when building the stubs (so the stub knows where to jump. */
3043 bfd_vma target_value
;
3044 asection
*target_section
;
3046 /* The symbol table entry, if any, that this was derived from. */
3047 struct ppc_link_hash_entry
*h
;
3048 struct plt_entry
*plt_ent
;
3051 unsigned char symtype
;
3053 /* Symbol st_other. */
3054 unsigned char other
;
3057 struct ppc_branch_hash_entry
3059 /* Base hash table entry structure. */
3060 struct bfd_hash_entry root
;
3062 /* Offset within branch lookup table. */
3063 unsigned int offset
;
3065 /* Generation marker. */
3069 /* Used to track dynamic relocations for local symbols. */
3070 struct ppc_dyn_relocs
3072 struct ppc_dyn_relocs
*next
;
3074 /* The input section of the reloc. */
3077 /* Total number of relocs copied for the input section. */
3078 unsigned int count
: 31;
3080 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3081 unsigned int ifunc
: 1;
3084 struct ppc_link_hash_entry
3086 struct elf_link_hash_entry elf
;
3090 /* A pointer to the most recently used stub hash entry against this
3092 struct ppc_stub_hash_entry
*stub_cache
;
3094 /* A pointer to the next symbol starting with a '.' */
3095 struct ppc_link_hash_entry
*next_dot_sym
;
3098 /* Link between function code and descriptor symbols. */
3099 struct ppc_link_hash_entry
*oh
;
3101 /* Flag function code and descriptor symbols. */
3102 unsigned int is_func
:1;
3103 unsigned int is_func_descriptor
:1;
3104 unsigned int fake
:1;
3106 /* Whether global opd/toc sym has been adjusted or not.
3107 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3108 should be set for all globals defined in any opd/toc section. */
3109 unsigned int adjust_done
:1;
3111 /* Set if this is an out-of-line register save/restore function,
3112 with non-standard calling convention. */
3113 unsigned int save_res
:1;
3115 /* Set if a duplicate symbol with non-zero localentry is detected,
3116 even when the duplicate symbol does not provide a definition. */
3117 unsigned int non_zero_localentry
:1;
3119 /* Contexts in which symbol is used in the GOT (or TOC).
3120 Bits are or'd into the mask as the corresponding relocs are
3121 encountered during check_relocs, with TLS_TLS being set when any
3122 of the other TLS bits are set. tls_optimize clears bits when
3123 optimizing to indicate the corresponding GOT entry type is not
3124 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3125 set TLS_GDIE when a GD reloc turns into an IE one.
3126 These flags are also kept for local symbols. */
3127 #define TLS_TLS 1 /* Any TLS reloc. */
3128 #define TLS_GD 2 /* GD reloc. */
3129 #define TLS_LD 4 /* LD reloc. */
3130 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3131 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3132 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3133 #define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
3134 #define TLS_EXPLICIT 256 /* TOC section TLS reloc, not stored. */
3135 unsigned char tls_mask
;
3137 /* The above field is also used to mark function symbols. In which
3138 case TLS_TLS will be 0. */
3139 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3140 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3141 #define NON_GOT 256 /* local symbol plt, not stored. */
3144 static inline struct ppc_link_hash_entry
*
3145 ppc_elf_hash_entry (struct elf_link_hash_entry
*ent
)
3147 return (struct ppc_link_hash_entry
*) ent
;
3150 /* ppc64 ELF linker hash table. */
3152 struct ppc_link_hash_table
3154 struct elf_link_hash_table elf
;
3156 /* The stub hash table. */
3157 struct bfd_hash_table stub_hash_table
;
3159 /* Another hash table for plt_branch stubs. */
3160 struct bfd_hash_table branch_hash_table
;
3162 /* Hash table for function prologue tocsave. */
3163 htab_t tocsave_htab
;
3165 /* Various options and other info passed from the linker. */
3166 struct ppc64_elf_params
*params
;
3168 /* The size of sec_info below. */
3169 unsigned int sec_info_arr_size
;
3171 /* Per-section array of extra section info. Done this way rather
3172 than as part of ppc64_elf_section_data so we have the info for
3173 non-ppc64 sections. */
3176 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3181 /* The section group that this section belongs to. */
3182 struct map_stub
*group
;
3183 /* A temp section list pointer. */
3188 /* Linked list of groups. */
3189 struct map_stub
*group
;
3191 /* Temp used when calculating TOC pointers. */
3194 asection
*toc_first_sec
;
3196 /* Used when adding symbols. */
3197 struct ppc_link_hash_entry
*dot_syms
;
3199 /* Shortcuts to get to dynamic linker sections. */
3201 asection
*global_entry
;
3204 asection
*relpltlocal
;
3207 asection
*glink_eh_frame
;
3209 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3210 struct ppc_link_hash_entry
*tls_get_addr
;
3211 struct ppc_link_hash_entry
*tls_get_addr_fd
;
3212 struct ppc_link_hash_entry
*tga_desc
;
3213 struct ppc_link_hash_entry
*tga_desc_fd
;
3214 struct map_stub
*tga_group
;
3216 /* The size of reliplt used by got entry relocs. */
3217 bfd_size_type got_reli_size
;
3220 unsigned long stub_count
[ppc_stub_global_entry
];
3222 /* Number of stubs against global syms. */
3223 unsigned long stub_globals
;
3225 /* Set if we're linking code with function descriptors. */
3226 unsigned int opd_abi
:1;
3228 /* Support for multiple toc sections. */
3229 unsigned int do_multi_toc
:1;
3230 unsigned int multi_toc_needed
:1;
3231 unsigned int second_toc_pass
:1;
3232 unsigned int do_toc_opt
:1;
3234 /* Set if tls optimization is enabled. */
3235 unsigned int do_tls_opt
:1;
3237 /* Set if inline plt calls should be converted to direct calls. */
3238 unsigned int can_convert_all_inline_plt
:1;
3241 unsigned int stub_error
:1;
3243 /* Whether func_desc_adjust needs to be run over symbols. */
3244 unsigned int need_func_desc_adj
:1;
3246 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3247 unsigned int has_plt_localentry0
:1;
3249 /* Whether calls are made via the PLT from NOTOC functions. */
3250 unsigned int notoc_plt
:1;
3252 /* Whether any code linked seems to be Power10. */
3253 unsigned int has_power10_relocs
:1;
3255 /* Incremented every time we size stubs. */
3256 unsigned int stub_iteration
;
3259 /* Rename some of the generic section flags to better document how they
3262 /* Nonzero if this section has TLS related relocations. */
3263 #define has_tls_reloc sec_flg0
3265 /* Nonzero if this section has a call to __tls_get_addr lacking marker
3267 #define nomark_tls_get_addr sec_flg1
3269 /* Nonzero if this section has any toc or got relocs. */
3270 #define has_toc_reloc sec_flg2
3272 /* Nonzero if this section has a call to another section that uses
3274 #define makes_toc_func_call sec_flg3
3276 /* Recursion protection when determining above flag. */
3277 #define call_check_in_progress sec_flg4
3278 #define call_check_done sec_flg5
3280 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3282 #define ppc_hash_table(p) \
3283 ((is_elf_hash_table ((p)->hash) \
3284 && elf_hash_table_id (elf_hash_table (p)) == PPC64_ELF_DATA) \
3285 ? (struct ppc_link_hash_table *) (p)->hash : NULL)
3287 #define ppc_stub_hash_lookup(table, string, create, copy) \
3288 ((struct ppc_stub_hash_entry *) \
3289 bfd_hash_lookup ((table), (string), (create), (copy)))
3291 #define ppc_branch_hash_lookup(table, string, create, copy) \
3292 ((struct ppc_branch_hash_entry *) \
3293 bfd_hash_lookup ((table), (string), (create), (copy)))
3295 /* Create an entry in the stub hash table. */
3297 static struct bfd_hash_entry
*
3298 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
3299 struct bfd_hash_table
*table
,
3302 /* Allocate the structure if it has not already been allocated by a
3306 entry
= bfd_hash_allocate (table
, sizeof (struct ppc_stub_hash_entry
));
3311 /* Call the allocation method of the superclass. */
3312 entry
= bfd_hash_newfunc (entry
, table
, string
);
3315 struct ppc_stub_hash_entry
*eh
;
3317 /* Initialize the local fields. */
3318 eh
= (struct ppc_stub_hash_entry
*) entry
;
3319 eh
->stub_type
= ppc_stub_none
;
3321 eh
->stub_offset
= 0;
3322 eh
->target_value
= 0;
3323 eh
->target_section
= NULL
;
3332 /* Create an entry in the branch hash table. */
3334 static struct bfd_hash_entry
*
3335 branch_hash_newfunc (struct bfd_hash_entry
*entry
,
3336 struct bfd_hash_table
*table
,
3339 /* Allocate the structure if it has not already been allocated by a
3343 entry
= bfd_hash_allocate (table
, sizeof (struct ppc_branch_hash_entry
));
3348 /* Call the allocation method of the superclass. */
3349 entry
= bfd_hash_newfunc (entry
, table
, string
);
3352 struct ppc_branch_hash_entry
*eh
;
3354 /* Initialize the local fields. */
3355 eh
= (struct ppc_branch_hash_entry
*) entry
;
3363 /* Create an entry in a ppc64 ELF linker hash table. */
3365 static struct bfd_hash_entry
*
3366 link_hash_newfunc (struct bfd_hash_entry
*entry
,
3367 struct bfd_hash_table
*table
,
3370 /* Allocate the structure if it has not already been allocated by a
3374 entry
= bfd_hash_allocate (table
, sizeof (struct ppc_link_hash_entry
));
3379 /* Call the allocation method of the superclass. */
3380 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
3383 struct ppc_link_hash_entry
*eh
= (struct ppc_link_hash_entry
*) entry
;
3385 memset (&eh
->u
.stub_cache
, 0,
3386 (sizeof (struct ppc_link_hash_entry
)
3387 - offsetof (struct ppc_link_hash_entry
, u
.stub_cache
)));
3389 /* When making function calls, old ABI code references function entry
3390 points (dot symbols), while new ABI code references the function
3391 descriptor symbol. We need to make any combination of reference and
3392 definition work together, without breaking archive linking.
3394 For a defined function "foo" and an undefined call to "bar":
3395 An old object defines "foo" and ".foo", references ".bar" (possibly
3397 A new object defines "foo" and references "bar".
3399 A new object thus has no problem with its undefined symbols being
3400 satisfied by definitions in an old object. On the other hand, the
3401 old object won't have ".bar" satisfied by a new object.
3403 Keep a list of newly added dot-symbols. */
3405 if (string
[0] == '.')
3407 struct ppc_link_hash_table
*htab
;
3409 htab
= (struct ppc_link_hash_table
*) table
;
3410 eh
->u
.next_dot_sym
= htab
->dot_syms
;
3411 htab
->dot_syms
= eh
;
3418 struct tocsave_entry
3425 tocsave_htab_hash (const void *p
)
3427 const struct tocsave_entry
*e
= (const struct tocsave_entry
*) p
;
3428 return ((bfd_vma
) (intptr_t) e
->sec
^ e
->offset
) >> 3;
3432 tocsave_htab_eq (const void *p1
, const void *p2
)
3434 const struct tocsave_entry
*e1
= (const struct tocsave_entry
*) p1
;
3435 const struct tocsave_entry
*e2
= (const struct tocsave_entry
*) p2
;
3436 return e1
->sec
== e2
->sec
&& e1
->offset
== e2
->offset
;
3439 /* Destroy a ppc64 ELF linker hash table. */
3442 ppc64_elf_link_hash_table_free (bfd
*obfd
)
3444 struct ppc_link_hash_table
*htab
;
3446 htab
= (struct ppc_link_hash_table
*) obfd
->link
.hash
;
3447 if (htab
->tocsave_htab
)
3448 htab_delete (htab
->tocsave_htab
);
3449 bfd_hash_table_free (&htab
->branch_hash_table
);
3450 bfd_hash_table_free (&htab
->stub_hash_table
);
3451 _bfd_elf_link_hash_table_free (obfd
);
3454 /* Create a ppc64 ELF linker hash table. */
3456 static struct bfd_link_hash_table
*
3457 ppc64_elf_link_hash_table_create (bfd
*abfd
)
3459 struct ppc_link_hash_table
*htab
;
3460 size_t amt
= sizeof (struct ppc_link_hash_table
);
3462 htab
= bfd_zmalloc (amt
);
3466 if (!_bfd_elf_link_hash_table_init (&htab
->elf
, abfd
, link_hash_newfunc
,
3467 sizeof (struct ppc_link_hash_entry
),
3474 /* Init the stub hash table too. */
3475 if (!bfd_hash_table_init (&htab
->stub_hash_table
, stub_hash_newfunc
,
3476 sizeof (struct ppc_stub_hash_entry
)))
3478 _bfd_elf_link_hash_table_free (abfd
);
3482 /* And the branch hash table. */
3483 if (!bfd_hash_table_init (&htab
->branch_hash_table
, branch_hash_newfunc
,
3484 sizeof (struct ppc_branch_hash_entry
)))
3486 bfd_hash_table_free (&htab
->stub_hash_table
);
3487 _bfd_elf_link_hash_table_free (abfd
);
3491 htab
->tocsave_htab
= htab_try_create (1024,
3495 if (htab
->tocsave_htab
== NULL
)
3497 ppc64_elf_link_hash_table_free (abfd
);
3500 htab
->elf
.root
.hash_table_free
= ppc64_elf_link_hash_table_free
;
3502 /* Initializing two fields of the union is just cosmetic. We really
3503 only care about glist, but when compiled on a 32-bit host the
3504 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3505 debugger inspection of these fields look nicer. */
3506 htab
->elf
.init_got_refcount
.refcount
= 0;
3507 htab
->elf
.init_got_refcount
.glist
= NULL
;
3508 htab
->elf
.init_plt_refcount
.refcount
= 0;
3509 htab
->elf
.init_plt_refcount
.glist
= NULL
;
3510 htab
->elf
.init_got_offset
.offset
= 0;
3511 htab
->elf
.init_got_offset
.glist
= NULL
;
3512 htab
->elf
.init_plt_offset
.offset
= 0;
3513 htab
->elf
.init_plt_offset
.glist
= NULL
;
3515 return &htab
->elf
.root
;
3518 /* Create sections for linker generated code. */
3521 create_linkage_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
3523 struct ppc_link_hash_table
*htab
;
3526 htab
= ppc_hash_table (info
);
3528 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_CODE
| SEC_READONLY
3529 | SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
3530 if (htab
->params
->save_restore_funcs
)
3532 /* Create .sfpr for code to save and restore fp regs. */
3533 htab
->sfpr
= bfd_make_section_anyway_with_flags (dynobj
, ".sfpr",
3535 if (htab
->sfpr
== NULL
3536 || !bfd_set_section_alignment (htab
->sfpr
, 2))
3540 if (bfd_link_relocatable (info
))
3543 /* Create .glink for lazy dynamic linking support. */
3544 htab
->glink
= bfd_make_section_anyway_with_flags (dynobj
, ".glink",
3546 if (htab
->glink
== NULL
3547 || !bfd_set_section_alignment (htab
->glink
, 3))
3550 /* The part of .glink used by global entry stubs, separate so that
3551 it can be aligned appropriately without affecting htab->glink. */
3552 htab
->global_entry
= bfd_make_section_anyway_with_flags (dynobj
, ".glink",
3554 if (htab
->global_entry
== NULL
3555 || !bfd_set_section_alignment (htab
->global_entry
, 2))
3558 if (!info
->no_ld_generated_unwind_info
)
3560 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
| SEC_HAS_CONTENTS
3561 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
3562 htab
->glink_eh_frame
= bfd_make_section_anyway_with_flags (dynobj
,
3565 if (htab
->glink_eh_frame
== NULL
3566 || !bfd_set_section_alignment (htab
->glink_eh_frame
, 2))
3570 flags
= SEC_ALLOC
| SEC_LINKER_CREATED
;
3571 htab
->elf
.iplt
= bfd_make_section_anyway_with_flags (dynobj
, ".iplt", flags
);
3572 if (htab
->elf
.iplt
== NULL
3573 || !bfd_set_section_alignment (htab
->elf
.iplt
, 3))
3576 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
3577 | SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
3579 = bfd_make_section_anyway_with_flags (dynobj
, ".rela.iplt", flags
);
3580 if (htab
->elf
.irelplt
== NULL
3581 || !bfd_set_section_alignment (htab
->elf
.irelplt
, 3))
3584 /* Create branch lookup table for plt_branch stubs. */
3585 flags
= (SEC_ALLOC
| SEC_LOAD
3586 | SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
3587 htab
->brlt
= bfd_make_section_anyway_with_flags (dynobj
, ".branch_lt",
3589 if (htab
->brlt
== NULL
3590 || !bfd_set_section_alignment (htab
->brlt
, 3))
3593 /* Local plt entries, put in .branch_lt but a separate section for
3595 htab
->pltlocal
= bfd_make_section_anyway_with_flags (dynobj
, ".branch_lt",
3597 if (htab
->pltlocal
== NULL
3598 || !bfd_set_section_alignment (htab
->pltlocal
, 3))
3601 if (!bfd_link_pic (info
))
3604 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
3605 | SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
3607 = bfd_make_section_anyway_with_flags (dynobj
, ".rela.branch_lt", flags
);
3608 if (htab
->relbrlt
== NULL
3609 || !bfd_set_section_alignment (htab
->relbrlt
, 3))
3613 = bfd_make_section_anyway_with_flags (dynobj
, ".rela.branch_lt", flags
);
3614 if (htab
->relpltlocal
== NULL
3615 || !bfd_set_section_alignment (htab
->relpltlocal
, 3))
3621 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3624 ppc64_elf_init_stub_bfd (struct bfd_link_info
*info
,
3625 struct ppc64_elf_params
*params
)
3627 struct ppc_link_hash_table
*htab
;
3629 elf_elfheader (params
->stub_bfd
)->e_ident
[EI_CLASS
] = ELFCLASS64
;
3631 /* Always hook our dynamic sections into the first bfd, which is the
3632 linker created stub bfd. This ensures that the GOT header is at
3633 the start of the output TOC section. */
3634 htab
= ppc_hash_table (info
);
3635 htab
->elf
.dynobj
= params
->stub_bfd
;
3636 htab
->params
= params
;
3638 return create_linkage_sections (htab
->elf
.dynobj
, info
);
3641 /* Build a name for an entry in the stub hash table. */
3644 ppc_stub_name (const asection
*input_section
,
3645 const asection
*sym_sec
,
3646 const struct ppc_link_hash_entry
*h
,
3647 const Elf_Internal_Rela
*rel
)
3652 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3653 offsets from a sym as a branch target? In fact, we could
3654 probably assume the addend is always zero. */
3655 BFD_ASSERT (((int) rel
->r_addend
& 0xffffffff) == rel
->r_addend
);
3659 len
= 8 + 1 + strlen (h
->elf
.root
.root
.string
) + 1 + 8 + 1;
3660 stub_name
= bfd_malloc (len
);
3661 if (stub_name
== NULL
)
3664 len
= sprintf (stub_name
, "%08x.%s+%x",
3665 input_section
->id
& 0xffffffff,
3666 h
->elf
.root
.root
.string
,
3667 (int) rel
->r_addend
& 0xffffffff);
3671 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3672 stub_name
= bfd_malloc (len
);
3673 if (stub_name
== NULL
)
3676 len
= sprintf (stub_name
, "%08x.%x:%x+%x",
3677 input_section
->id
& 0xffffffff,
3678 sym_sec
->id
& 0xffffffff,
3679 (int) ELF64_R_SYM (rel
->r_info
) & 0xffffffff,
3680 (int) rel
->r_addend
& 0xffffffff);
3682 if (len
> 2 && stub_name
[len
- 2] == '+' && stub_name
[len
- 1] == '0')
3683 stub_name
[len
- 2] = 0;
3687 /* If mixing power10 with non-power10 code and --power10-stubs is not
3688 specified (or is auto) then calls using @notoc relocations that
3689 need a stub will utilize power10 instructions in the stub, and
3690 calls without @notoc relocations will not use power10 instructions.
3691 The two classes of stubs are stored in separate stub_hash_table
3692 entries having the same key string. The two entries will always be
3693 adjacent on entry->root.next chain, even if hash table resizing
3694 occurs. This function selects the correct entry to use. */
3696 static struct ppc_stub_hash_entry
*
3697 select_alt_stub (struct ppc_stub_hash_entry
*entry
, bfd_boolean notoc
)
3699 bfd_boolean have_notoc
;
3701 have_notoc
= (entry
->stub_type
== ppc_stub_plt_call_notoc
3702 || entry
->stub_type
== ppc_stub_plt_branch_notoc
3703 || entry
->stub_type
== ppc_stub_long_branch_notoc
);
3705 if (have_notoc
!= notoc
)
3707 const char *stub_name
= entry
->root
.string
;
3709 entry
= (struct ppc_stub_hash_entry
*) entry
->root
.next
;
3711 && entry
->root
.string
!= stub_name
)
3718 /* Look up an entry in the stub hash. Stub entries are cached because
3719 creating the stub name takes a bit of time. */
3721 static struct ppc_stub_hash_entry
*
3722 ppc_get_stub_entry (const asection
*input_section
,
3723 const asection
*sym_sec
,
3724 struct ppc_link_hash_entry
*h
,
3725 const Elf_Internal_Rela
*rel
,
3726 struct ppc_link_hash_table
*htab
)
3728 struct ppc_stub_hash_entry
*stub_entry
;
3729 struct map_stub
*group
;
3731 /* If this input section is part of a group of sections sharing one
3732 stub section, then use the id of the first section in the group.
3733 Stub names need to include a section id, as there may well be
3734 more than one stub used to reach say, printf, and we need to
3735 distinguish between them. */
3736 group
= htab
->sec_info
[input_section
->id
].u
.group
;
3740 if (h
!= NULL
&& h
->u
.stub_cache
!= NULL
3741 && h
->u
.stub_cache
->h
== h
3742 && h
->u
.stub_cache
->group
== group
)
3744 stub_entry
= h
->u
.stub_cache
;
3750 stub_name
= ppc_stub_name (group
->link_sec
, sym_sec
, h
, rel
);
3751 if (stub_name
== NULL
)
3754 stub_entry
= ppc_stub_hash_lookup (&htab
->stub_hash_table
,
3755 stub_name
, FALSE
, FALSE
);
3757 h
->u
.stub_cache
= stub_entry
;
3762 if (stub_entry
!= NULL
&& htab
->params
->power10_stubs
== -1)
3764 bfd_boolean notoc
= ELF64_R_TYPE (rel
->r_info
) == R_PPC64_REL24_NOTOC
;
3766 stub_entry
= select_alt_stub (stub_entry
, notoc
);
3772 /* Add a new stub entry to the stub hash. Not all fields of the new
3773 stub entry are initialised. */
3775 static struct ppc_stub_hash_entry
*
3776 ppc_add_stub (const char *stub_name
,
3778 struct bfd_link_info
*info
)
3780 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
3781 struct map_stub
*group
;
3784 struct ppc_stub_hash_entry
*stub_entry
;
3786 group
= htab
->sec_info
[section
->id
].u
.group
;
3787 link_sec
= group
->link_sec
;
3788 stub_sec
= group
->stub_sec
;
3789 if (stub_sec
== NULL
)
3795 namelen
= strlen (link_sec
->name
);
3796 len
= namelen
+ sizeof (STUB_SUFFIX
);
3797 s_name
= bfd_alloc (htab
->params
->stub_bfd
, len
);
3801 memcpy (s_name
, link_sec
->name
, namelen
);
3802 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3803 stub_sec
= (*htab
->params
->add_stub_section
) (s_name
, link_sec
);
3804 if (stub_sec
== NULL
)
3806 group
->stub_sec
= stub_sec
;
3809 /* Enter this entry into the linker stub hash table. */
3810 stub_entry
= ppc_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3812 if (stub_entry
== NULL
)
3814 /* xgettext:c-format */
3815 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3816 section
->owner
, stub_name
);
3820 stub_entry
->group
= group
;
3821 stub_entry
->stub_offset
= 0;
3825 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3826 not already done. */
3829 create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
3831 asection
*got
, *relgot
;
3833 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
3835 if (!is_ppc64_elf (abfd
))
3841 && !_bfd_elf_create_got_section (htab
->elf
.dynobj
, info
))
3844 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
3845 | SEC_LINKER_CREATED
);
3847 got
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
3849 || !bfd_set_section_alignment (got
, 3))
3852 relgot
= bfd_make_section_anyway_with_flags (abfd
, ".rela.got",
3853 flags
| SEC_READONLY
);
3855 || !bfd_set_section_alignment (relgot
, 3))
3858 ppc64_elf_tdata (abfd
)->got
= got
;
3859 ppc64_elf_tdata (abfd
)->relgot
= relgot
;
3863 /* Follow indirect and warning symbol links. */
3865 static inline struct bfd_link_hash_entry
*
3866 follow_link (struct bfd_link_hash_entry
*h
)
3868 while (h
->type
== bfd_link_hash_indirect
3869 || h
->type
== bfd_link_hash_warning
)
3874 static inline struct elf_link_hash_entry
*
3875 elf_follow_link (struct elf_link_hash_entry
*h
)
3877 return (struct elf_link_hash_entry
*) follow_link (&h
->root
);
3880 static inline struct ppc_link_hash_entry
*
3881 ppc_follow_link (struct ppc_link_hash_entry
*h
)
3883 return ppc_elf_hash_entry (elf_follow_link (&h
->elf
));
3886 /* Merge PLT info on FROM with that on TO. */
3889 move_plt_plist (struct ppc_link_hash_entry
*from
,
3890 struct ppc_link_hash_entry
*to
)
3892 if (from
->elf
.plt
.plist
!= NULL
)
3894 if (to
->elf
.plt
.plist
!= NULL
)
3896 struct plt_entry
**entp
;
3897 struct plt_entry
*ent
;
3899 for (entp
= &from
->elf
.plt
.plist
; (ent
= *entp
) != NULL
; )
3901 struct plt_entry
*dent
;
3903 for (dent
= to
->elf
.plt
.plist
; dent
!= NULL
; dent
= dent
->next
)
3904 if (dent
->addend
== ent
->addend
)
3906 dent
->plt
.refcount
+= ent
->plt
.refcount
;
3913 *entp
= to
->elf
.plt
.plist
;
3916 to
->elf
.plt
.plist
= from
->elf
.plt
.plist
;
3917 from
->elf
.plt
.plist
= NULL
;
3921 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3924 ppc64_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
3925 struct elf_link_hash_entry
*dir
,
3926 struct elf_link_hash_entry
*ind
)
3928 struct ppc_link_hash_entry
*edir
, *eind
;
3930 edir
= ppc_elf_hash_entry (dir
);
3931 eind
= ppc_elf_hash_entry (ind
);
3933 edir
->is_func
|= eind
->is_func
;
3934 edir
->is_func_descriptor
|= eind
->is_func_descriptor
;
3935 edir
->tls_mask
|= eind
->tls_mask
;
3936 if (eind
->oh
!= NULL
)
3937 edir
->oh
= ppc_follow_link (eind
->oh
);
3939 if (edir
->elf
.versioned
!= versioned_hidden
)
3940 edir
->elf
.ref_dynamic
|= eind
->elf
.ref_dynamic
;
3941 edir
->elf
.ref_regular
|= eind
->elf
.ref_regular
;
3942 edir
->elf
.ref_regular_nonweak
|= eind
->elf
.ref_regular_nonweak
;
3943 edir
->elf
.non_got_ref
|= eind
->elf
.non_got_ref
;
3944 edir
->elf
.needs_plt
|= eind
->elf
.needs_plt
;
3945 edir
->elf
.pointer_equality_needed
|= eind
->elf
.pointer_equality_needed
;
3947 /* If we were called to copy over info for a weak sym, don't copy
3948 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3949 in order to simplify readonly_dynrelocs and save a field in the
3950 symbol hash entry, but that means dyn_relocs can't be used in any
3951 tests about a specific symbol, or affect other symbol flags which
3953 if (eind
->elf
.root
.type
!= bfd_link_hash_indirect
)
3956 /* Copy over any dynamic relocs we may have on the indirect sym. */
3957 if (ind
->dyn_relocs
!= NULL
)
3959 if (dir
->dyn_relocs
!= NULL
)
3961 struct elf_dyn_relocs
**pp
;
3962 struct elf_dyn_relocs
*p
;
3964 /* Add reloc counts against the indirect sym to the direct sym
3965 list. Merge any entries against the same section. */
3966 for (pp
= &ind
->dyn_relocs
; (p
= *pp
) != NULL
; )
3968 struct elf_dyn_relocs
*q
;
3970 for (q
= dir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
3971 if (q
->sec
== p
->sec
)
3973 q
->pc_count
+= p
->pc_count
;
3974 q
->count
+= p
->count
;
3981 *pp
= dir
->dyn_relocs
;
3984 dir
->dyn_relocs
= ind
->dyn_relocs
;
3985 ind
->dyn_relocs
= NULL
;
3988 /* Copy over got entries that we may have already seen to the
3989 symbol which just became indirect. */
3990 if (eind
->elf
.got
.glist
!= NULL
)
3992 if (edir
->elf
.got
.glist
!= NULL
)
3994 struct got_entry
**entp
;
3995 struct got_entry
*ent
;
3997 for (entp
= &eind
->elf
.got
.glist
; (ent
= *entp
) != NULL
; )
3999 struct got_entry
*dent
;
4001 for (dent
= edir
->elf
.got
.glist
; dent
!= NULL
; dent
= dent
->next
)
4002 if (dent
->addend
== ent
->addend
4003 && dent
->owner
== ent
->owner
4004 && dent
->tls_type
== ent
->tls_type
)
4006 dent
->got
.refcount
+= ent
->got
.refcount
;
4013 *entp
= edir
->elf
.got
.glist
;
4016 edir
->elf
.got
.glist
= eind
->elf
.got
.glist
;
4017 eind
->elf
.got
.glist
= NULL
;
4020 /* And plt entries. */
4021 move_plt_plist (eind
, edir
);
4023 if (eind
->elf
.dynindx
!= -1)
4025 if (edir
->elf
.dynindx
!= -1)
4026 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
4027 edir
->elf
.dynstr_index
);
4028 edir
->elf
.dynindx
= eind
->elf
.dynindx
;
4029 edir
->elf
.dynstr_index
= eind
->elf
.dynstr_index
;
4030 eind
->elf
.dynindx
= -1;
4031 eind
->elf
.dynstr_index
= 0;
4035 /* Find the function descriptor hash entry from the given function code
4036 hash entry FH. Link the entries via their OH fields. */
4038 static struct ppc_link_hash_entry
*
4039 lookup_fdh (struct ppc_link_hash_entry
*fh
, struct ppc_link_hash_table
*htab
)
4041 struct ppc_link_hash_entry
*fdh
= fh
->oh
;
4045 const char *fd_name
= fh
->elf
.root
.root
.string
+ 1;
4047 fdh
= ppc_elf_hash_entry (elf_link_hash_lookup (&htab
->elf
, fd_name
,
4048 FALSE
, FALSE
, FALSE
));
4052 fdh
->is_func_descriptor
= 1;
4058 fdh
= ppc_follow_link (fdh
);
4059 fdh
->is_func_descriptor
= 1;
4064 /* Make a fake function descriptor sym for the undefined code sym FH. */
4066 static struct ppc_link_hash_entry
*
4067 make_fdh (struct bfd_link_info
*info
,
4068 struct ppc_link_hash_entry
*fh
)
4070 bfd
*abfd
= fh
->elf
.root
.u
.undef
.abfd
;
4071 struct bfd_link_hash_entry
*bh
= NULL
;
4072 struct ppc_link_hash_entry
*fdh
;
4073 flagword flags
= (fh
->elf
.root
.type
== bfd_link_hash_undefweak
4077 if (!_bfd_generic_link_add_one_symbol (info
, abfd
,
4078 fh
->elf
.root
.root
.string
+ 1,
4079 flags
, bfd_und_section_ptr
, 0,
4080 NULL
, FALSE
, FALSE
, &bh
))
4083 fdh
= (struct ppc_link_hash_entry
*) bh
;
4084 fdh
->elf
.non_elf
= 0;
4086 fdh
->is_func_descriptor
= 1;
4093 /* Fix function descriptor symbols defined in .opd sections to be
4097 ppc64_elf_add_symbol_hook (bfd
*ibfd
,
4098 struct bfd_link_info
*info
,
4099 Elf_Internal_Sym
*isym
,
4101 flagword
*flags ATTRIBUTE_UNUSED
,
4106 && strcmp ((*sec
)->name
, ".opd") == 0)
4110 if (!(ELF_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
4111 || ELF_ST_TYPE (isym
->st_info
) == STT_FUNC
))
4112 isym
->st_info
= ELF_ST_INFO (ELF_ST_BIND (isym
->st_info
), STT_FUNC
);
4114 /* If the symbol is a function defined in .opd, and the function
4115 code is in a discarded group, let it appear to be undefined. */
4116 if (!bfd_link_relocatable (info
)
4117 && (*sec
)->reloc_count
!= 0
4118 && opd_entry_value (*sec
, *value
, &code_sec
, NULL
,
4119 FALSE
) != (bfd_vma
) -1
4120 && discarded_section (code_sec
))
4122 *sec
= bfd_und_section_ptr
;
4123 isym
->st_shndx
= SHN_UNDEF
;
4126 else if (*sec
!= NULL
4127 && strcmp ((*sec
)->name
, ".toc") == 0
4128 && ELF_ST_TYPE (isym
->st_info
) == STT_OBJECT
)
4130 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
4132 htab
->params
->object_in_toc
= 1;
4135 if ((STO_PPC64_LOCAL_MASK
& isym
->st_other
) != 0)
4137 if (abiversion (ibfd
) == 0)
4138 set_abiversion (ibfd
, 2);
4139 else if (abiversion (ibfd
) == 1)
4141 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4142 " for ABI version 1"), *name
);
4143 bfd_set_error (bfd_error_bad_value
);
4151 /* Merge non-visibility st_other attributes: local entry point. */
4154 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
4155 const Elf_Internal_Sym
*isym
,
4156 bfd_boolean definition
,
4157 bfd_boolean dynamic
)
4159 if (definition
&& (!dynamic
|| !h
->def_regular
))
4160 h
->other
= ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1))
4161 | ELF_ST_VISIBILITY (h
->other
));
4164 /* Hook called on merging a symbol. We use this to clear "fake" since
4165 we now have a real symbol. */
4168 ppc64_elf_merge_symbol (struct elf_link_hash_entry
*h
,
4169 const Elf_Internal_Sym
*isym
,
4170 asection
**psec ATTRIBUTE_UNUSED
,
4171 bfd_boolean newdef ATTRIBUTE_UNUSED
,
4172 bfd_boolean olddef ATTRIBUTE_UNUSED
,
4173 bfd
*oldbfd ATTRIBUTE_UNUSED
,
4174 const asection
*oldsec ATTRIBUTE_UNUSED
)
4176 ppc_elf_hash_entry (h
)->fake
= 0;
4177 if ((STO_PPC64_LOCAL_MASK
& isym
->st_other
) != 0)
4178 ppc_elf_hash_entry (h
)->non_zero_localentry
= 1;
4182 /* This function makes an old ABI object reference to ".bar" cause the
4183 inclusion of a new ABI object archive that defines "bar".
4184 NAME is a symbol defined in an archive. Return a symbol in the hash
4185 table that might be satisfied by the archive symbols. */
4187 static struct elf_link_hash_entry
*
4188 ppc64_elf_archive_symbol_lookup (bfd
*abfd
,
4189 struct bfd_link_info
*info
,
4192 struct elf_link_hash_entry
*h
;
4196 h
= _bfd_elf_archive_symbol_lookup (abfd
, info
, name
);
4198 /* Don't return this sym if it is a fake function descriptor
4199 created by add_symbol_adjust. */
4200 && !ppc_elf_hash_entry (h
)->fake
)
4206 len
= strlen (name
);
4207 dot_name
= bfd_alloc (abfd
, len
+ 2);
4208 if (dot_name
== NULL
)
4209 return (struct elf_link_hash_entry
*) -1;
4211 memcpy (dot_name
+ 1, name
, len
+ 1);
4212 h
= _bfd_elf_archive_symbol_lookup (abfd
, info
, dot_name
);
4213 bfd_release (abfd
, dot_name
);
4217 if (strcmp (name
, "__tls_get_addr_opt") == 0)
4218 h
= _bfd_elf_archive_symbol_lookup (abfd
, info
, "__tls_get_addr_desc");
4222 /* This function satisfies all old ABI object references to ".bar" if a
4223 new ABI object defines "bar". Well, at least, undefined dot symbols
4224 are made weak. This stops later archive searches from including an
4225 object if we already have a function descriptor definition. It also
4226 prevents the linker complaining about undefined symbols.
4227 We also check and correct mismatched symbol visibility here. The
4228 most restrictive visibility of the function descriptor and the
4229 function entry symbol is used. */
4232 add_symbol_adjust (struct ppc_link_hash_entry
*eh
, struct bfd_link_info
*info
)
4234 struct ppc_link_hash_table
*htab
;
4235 struct ppc_link_hash_entry
*fdh
;
4237 if (eh
->elf
.root
.type
== bfd_link_hash_warning
)
4238 eh
= (struct ppc_link_hash_entry
*) eh
->elf
.root
.u
.i
.link
;
4240 if (eh
->elf
.root
.type
== bfd_link_hash_indirect
)
4243 if (eh
->elf
.root
.root
.string
[0] != '.')
4246 htab
= ppc_hash_table (info
);
4250 fdh
= lookup_fdh (eh
, htab
);
4252 && !bfd_link_relocatable (info
)
4253 && (eh
->elf
.root
.type
== bfd_link_hash_undefined
4254 || eh
->elf
.root
.type
== bfd_link_hash_undefweak
)
4255 && eh
->elf
.ref_regular
)
4257 /* Make an undefined function descriptor sym, in order to
4258 pull in an --as-needed shared lib. Archives are handled
4260 fdh
= make_fdh (info
, eh
);
4267 unsigned entry_vis
= ELF_ST_VISIBILITY (eh
->elf
.other
) - 1;
4268 unsigned descr_vis
= ELF_ST_VISIBILITY (fdh
->elf
.other
) - 1;
4270 /* Make both descriptor and entry symbol have the most
4271 constraining visibility of either symbol. */
4272 if (entry_vis
< descr_vis
)
4273 fdh
->elf
.other
+= entry_vis
- descr_vis
;
4274 else if (entry_vis
> descr_vis
)
4275 eh
->elf
.other
+= descr_vis
- entry_vis
;
4277 /* Propagate reference flags from entry symbol to function
4278 descriptor symbol. */
4279 fdh
->elf
.root
.non_ir_ref_regular
|= eh
->elf
.root
.non_ir_ref_regular
;
4280 fdh
->elf
.root
.non_ir_ref_dynamic
|= eh
->elf
.root
.non_ir_ref_dynamic
;
4281 fdh
->elf
.ref_regular
|= eh
->elf
.ref_regular
;
4282 fdh
->elf
.ref_regular_nonweak
|= eh
->elf
.ref_regular_nonweak
;
4284 if (!fdh
->elf
.forced_local
4285 && fdh
->elf
.dynindx
== -1
4286 && fdh
->elf
.versioned
!= versioned_hidden
4287 && (bfd_link_dll (info
)
4288 || fdh
->elf
.def_dynamic
4289 || fdh
->elf
.ref_dynamic
)
4290 && (eh
->elf
.ref_regular
4291 || eh
->elf
.def_regular
))
4293 if (!bfd_elf_link_record_dynamic_symbol (info
, &fdh
->elf
))
4301 /* Set up opd section info and abiversion for IBFD, and process list
4302 of dot-symbols we made in link_hash_newfunc. */
4305 ppc64_elf_before_check_relocs (bfd
*ibfd
, struct bfd_link_info
*info
)
4307 struct ppc_link_hash_table
*htab
;
4308 struct ppc_link_hash_entry
**p
, *eh
;
4309 asection
*opd
= bfd_get_section_by_name (ibfd
, ".opd");
4311 if (opd
!= NULL
&& opd
->size
!= 0)
4313 BFD_ASSERT (ppc64_elf_section_data (opd
)->sec_type
== sec_normal
);
4314 ppc64_elf_section_data (opd
)->sec_type
= sec_opd
;
4316 if (abiversion (ibfd
) == 0)
4317 set_abiversion (ibfd
, 1);
4318 else if (abiversion (ibfd
) >= 2)
4320 /* xgettext:c-format */
4321 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4322 ibfd
, abiversion (ibfd
));
4323 bfd_set_error (bfd_error_bad_value
);
4328 if (is_ppc64_elf (info
->output_bfd
))
4330 /* For input files without an explicit abiversion in e_flags
4331 we should have flagged any with symbol st_other bits set
4332 as ELFv1 and above flagged those with .opd as ELFv2.
4333 Set the output abiversion if not yet set, and for any input
4334 still ambiguous, take its abiversion from the output.
4335 Differences in ABI are reported later. */
4336 if (abiversion (info
->output_bfd
) == 0)
4337 set_abiversion (info
->output_bfd
, abiversion (ibfd
));
4338 else if (abiversion (ibfd
) == 0)
4339 set_abiversion (ibfd
, abiversion (info
->output_bfd
));
4342 htab
= ppc_hash_table (info
);
4346 if (opd
!= NULL
&& opd
->size
!= 0
4347 && (ibfd
->flags
& DYNAMIC
) == 0
4348 && (opd
->flags
& SEC_RELOC
) != 0
4349 && opd
->reloc_count
!= 0
4350 && !bfd_is_abs_section (opd
->output_section
)
4351 && info
->gc_sections
)
4353 /* Garbage collection needs some extra help with .opd sections.
4354 We don't want to necessarily keep everything referenced by
4355 relocs in .opd, as that would keep all functions. Instead,
4356 if we reference an .opd symbol (a function descriptor), we
4357 want to keep the function code symbol's section. This is
4358 easy for global symbols, but for local syms we need to keep
4359 information about the associated function section. */
4361 asection
**opd_sym_map
;
4362 Elf_Internal_Shdr
*symtab_hdr
;
4363 Elf_Internal_Rela
*relocs
, *rel_end
, *rel
;
4365 amt
= OPD_NDX (opd
->size
) * sizeof (*opd_sym_map
);
4366 opd_sym_map
= bfd_zalloc (ibfd
, amt
);
4367 if (opd_sym_map
== NULL
)
4369 ppc64_elf_section_data (opd
)->u
.opd
.func_sec
= opd_sym_map
;
4370 relocs
= _bfd_elf_link_read_relocs (ibfd
, opd
, NULL
, NULL
,
4374 symtab_hdr
= &elf_symtab_hdr (ibfd
);
4375 rel_end
= relocs
+ opd
->reloc_count
- 1;
4376 for (rel
= relocs
; rel
< rel_end
; rel
++)
4378 enum elf_ppc64_reloc_type r_type
= ELF64_R_TYPE (rel
->r_info
);
4379 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
4381 if (r_type
== R_PPC64_ADDR64
4382 && ELF64_R_TYPE ((rel
+ 1)->r_info
) == R_PPC64_TOC
4383 && r_symndx
< symtab_hdr
->sh_info
)
4385 Elf_Internal_Sym
*isym
;
4388 isym
= bfd_sym_from_r_symndx (&htab
->elf
.sym_cache
, ibfd
,
4392 if (elf_section_data (opd
)->relocs
!= relocs
)
4397 s
= bfd_section_from_elf_index (ibfd
, isym
->st_shndx
);
4398 if (s
!= NULL
&& s
!= opd
)
4399 opd_sym_map
[OPD_NDX (rel
->r_offset
)] = s
;
4402 if (elf_section_data (opd
)->relocs
!= relocs
)
4406 p
= &htab
->dot_syms
;
4407 while ((eh
= *p
) != NULL
)
4410 if (&eh
->elf
== htab
->elf
.hgot
)
4412 else if (htab
->elf
.hgot
== NULL
4413 && strcmp (eh
->elf
.root
.root
.string
, ".TOC.") == 0)
4414 htab
->elf
.hgot
= &eh
->elf
;
4415 else if (abiversion (ibfd
) <= 1)
4417 htab
->need_func_desc_adj
= 1;
4418 if (!add_symbol_adjust (eh
, info
))
4421 p
= &eh
->u
.next_dot_sym
;
4426 /* Undo hash table changes when an --as-needed input file is determined
4427 not to be needed. */
4430 ppc64_elf_notice_as_needed (bfd
*ibfd
,
4431 struct bfd_link_info
*info
,
4432 enum notice_asneeded_action act
)
4434 if (act
== notice_not_needed
)
4436 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
4441 htab
->dot_syms
= NULL
;
4443 return _bfd_elf_notice_as_needed (ibfd
, info
, act
);
4446 /* If --just-symbols against a final linked binary, then assume we need
4447 toc adjusting stubs when calling functions defined there. */
4450 ppc64_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
4452 if ((sec
->flags
& SEC_CODE
) != 0
4453 && (sec
->owner
->flags
& (EXEC_P
| DYNAMIC
)) != 0
4454 && is_ppc64_elf (sec
->owner
))
4456 if (abiversion (sec
->owner
) >= 2
4457 || bfd_get_section_by_name (sec
->owner
, ".opd") != NULL
)
4458 sec
->has_toc_reloc
= 1;
4460 _bfd_elf_link_just_syms (sec
, info
);
4463 static struct plt_entry
**
4464 update_local_sym_info (bfd
*abfd
, Elf_Internal_Shdr
*symtab_hdr
,
4465 unsigned long r_symndx
, bfd_vma r_addend
, int tls_type
)
4467 struct got_entry
**local_got_ents
= elf_local_got_ents (abfd
);
4468 struct plt_entry
**local_plt
;
4469 unsigned char *local_got_tls_masks
;
4471 if (local_got_ents
== NULL
)
4473 bfd_size_type size
= symtab_hdr
->sh_info
;
4475 size
*= (sizeof (*local_got_ents
)
4476 + sizeof (*local_plt
)
4477 + sizeof (*local_got_tls_masks
));
4478 local_got_ents
= bfd_zalloc (abfd
, size
);
4479 if (local_got_ents
== NULL
)
4481 elf_local_got_ents (abfd
) = local_got_ents
;
4484 if ((tls_type
& (NON_GOT
| TLS_EXPLICIT
)) == 0)
4486 struct got_entry
*ent
;
4488 for (ent
= local_got_ents
[r_symndx
]; ent
!= NULL
; ent
= ent
->next
)
4489 if (ent
->addend
== r_addend
4490 && ent
->owner
== abfd
4491 && ent
->tls_type
== tls_type
)
4495 size_t amt
= sizeof (*ent
);
4496 ent
= bfd_alloc (abfd
, amt
);
4499 ent
->next
= local_got_ents
[r_symndx
];
4500 ent
->addend
= r_addend
;
4502 ent
->tls_type
= tls_type
;
4503 ent
->is_indirect
= FALSE
;
4504 ent
->got
.refcount
= 0;
4505 local_got_ents
[r_symndx
] = ent
;
4507 ent
->got
.refcount
+= 1;
4510 local_plt
= (struct plt_entry
**) (local_got_ents
+ symtab_hdr
->sh_info
);
4511 local_got_tls_masks
= (unsigned char *) (local_plt
+ symtab_hdr
->sh_info
);
4512 local_got_tls_masks
[r_symndx
] |= tls_type
& 0xff;
4514 return local_plt
+ r_symndx
;
4518 update_plt_info (bfd
*abfd
, struct plt_entry
**plist
, bfd_vma addend
)
4520 struct plt_entry
*ent
;
4522 for (ent
= *plist
; ent
!= NULL
; ent
= ent
->next
)
4523 if (ent
->addend
== addend
)
4527 size_t amt
= sizeof (*ent
);
4528 ent
= bfd_alloc (abfd
, amt
);
4532 ent
->addend
= addend
;
4533 ent
->plt
.refcount
= 0;
4536 ent
->plt
.refcount
+= 1;
4541 is_branch_reloc (enum elf_ppc64_reloc_type r_type
)
4543 return (r_type
== R_PPC64_REL24
4544 || r_type
== R_PPC64_REL24_NOTOC
4545 || r_type
== R_PPC64_REL14
4546 || r_type
== R_PPC64_REL14_BRTAKEN
4547 || r_type
== R_PPC64_REL14_BRNTAKEN
4548 || r_type
== R_PPC64_ADDR24
4549 || r_type
== R_PPC64_ADDR14
4550 || r_type
== R_PPC64_ADDR14_BRTAKEN
4551 || r_type
== R_PPC64_ADDR14_BRNTAKEN
4552 || r_type
== R_PPC64_PLTCALL
4553 || r_type
== R_PPC64_PLTCALL_NOTOC
);
4556 /* Relocs on inline plt call sequence insns prior to the call. */
4559 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type
)
4561 return (r_type
== R_PPC64_PLT16_HA
4562 || r_type
== R_PPC64_PLT16_HI
4563 || r_type
== R_PPC64_PLT16_LO
4564 || r_type
== R_PPC64_PLT16_LO_DS
4565 || r_type
== R_PPC64_PLT_PCREL34
4566 || r_type
== R_PPC64_PLT_PCREL34_NOTOC
4567 || r_type
== R_PPC64_PLTSEQ
4568 || r_type
== R_PPC64_PLTSEQ_NOTOC
);
4571 /* Look through the relocs for a section during the first phase, and
4572 calculate needed space in the global offset table, procedure
4573 linkage table, and dynamic reloc sections. */
4576 ppc64_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
4577 asection
*sec
, const Elf_Internal_Rela
*relocs
)
4579 struct ppc_link_hash_table
*htab
;
4580 Elf_Internal_Shdr
*symtab_hdr
;
4581 struct elf_link_hash_entry
**sym_hashes
;
4582 const Elf_Internal_Rela
*rel
;
4583 const Elf_Internal_Rela
*rel_end
;
4585 struct elf_link_hash_entry
*tga
, *dottga
;
4588 if (bfd_link_relocatable (info
))
4591 BFD_ASSERT (is_ppc64_elf (abfd
));
4593 htab
= ppc_hash_table (info
);
4597 tga
= elf_link_hash_lookup (&htab
->elf
, "__tls_get_addr",
4598 FALSE
, FALSE
, TRUE
);
4599 dottga
= elf_link_hash_lookup (&htab
->elf
, ".__tls_get_addr",
4600 FALSE
, FALSE
, TRUE
);
4601 symtab_hdr
= &elf_symtab_hdr (abfd
);
4602 sym_hashes
= elf_sym_hashes (abfd
);
4604 is_opd
= ppc64_elf_section_data (sec
)->sec_type
== sec_opd
;
4605 rel_end
= relocs
+ sec
->reloc_count
;
4606 for (rel
= relocs
; rel
< rel_end
; rel
++)
4608 unsigned long r_symndx
;
4609 struct elf_link_hash_entry
*h
;
4610 enum elf_ppc64_reloc_type r_type
;
4612 struct _ppc64_elf_section_data
*ppc64_sec
;
4613 struct plt_entry
**ifunc
, **plt_list
;
4615 r_symndx
= ELF64_R_SYM (rel
->r_info
);
4616 if (r_symndx
< symtab_hdr
->sh_info
)
4620 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
4621 h
= elf_follow_link (h
);
4623 if (h
== htab
->elf
.hgot
)
4624 sec
->has_toc_reloc
= 1;
4627 r_type
= ELF64_R_TYPE (rel
->r_info
);
4631 case R_PPC64_D34_LO
:
4632 case R_PPC64_D34_HI30
:
4633 case R_PPC64_D34_HA30
:
4635 case R_PPC64_TPREL34
:
4636 case R_PPC64_DTPREL34
:
4637 case R_PPC64_PCREL34
:
4638 case R_PPC64_GOT_PCREL34
:
4639 case R_PPC64_GOT_TLSGD_PCREL34
:
4640 case R_PPC64_GOT_TLSLD_PCREL34
:
4641 case R_PPC64_GOT_TPREL_PCREL34
:
4642 case R_PPC64_GOT_DTPREL_PCREL34
:
4643 case R_PPC64_PLT_PCREL34
:
4644 case R_PPC64_PLT_PCREL34_NOTOC
:
4645 case R_PPC64_PCREL28
:
4646 htab
->has_power10_relocs
= 1;
4654 case R_PPC64_PLT16_HA
:
4655 case R_PPC64_GOT_TLSLD16_HA
:
4656 case R_PPC64_GOT_TLSGD16_HA
:
4657 case R_PPC64_GOT_TPREL16_HA
:
4658 case R_PPC64_GOT_DTPREL16_HA
:
4659 case R_PPC64_GOT16_HA
:
4660 case R_PPC64_TOC16_HA
:
4661 case R_PPC64_PLT16_LO
:
4662 case R_PPC64_PLT16_LO_DS
:
4663 case R_PPC64_GOT_TLSLD16_LO
:
4664 case R_PPC64_GOT_TLSGD16_LO
:
4665 case R_PPC64_GOT_TPREL16_LO_DS
:
4666 case R_PPC64_GOT_DTPREL16_LO_DS
:
4667 case R_PPC64_GOT16_LO
:
4668 case R_PPC64_GOT16_LO_DS
:
4669 case R_PPC64_TOC16_LO
:
4670 case R_PPC64_TOC16_LO_DS
:
4671 case R_PPC64_GOT_PCREL34
:
4672 ppc64_elf_tdata (abfd
)->has_optrel
= 1;
4673 ppc64_elf_section_data (sec
)->has_optrel
= 1;
4682 if (h
->type
== STT_GNU_IFUNC
)
4685 ifunc
= &h
->plt
.plist
;
4690 Elf_Internal_Sym
*isym
= bfd_sym_from_r_symndx (&htab
->elf
.sym_cache
,
4695 if (ELF_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
4697 ifunc
= update_local_sym_info (abfd
, symtab_hdr
, r_symndx
,
4699 NON_GOT
| PLT_IFUNC
);
4710 /* These special tls relocs tie a call to __tls_get_addr with
4711 its parameter symbol. */
4713 ppc_elf_hash_entry (h
)->tls_mask
|= TLS_TLS
| TLS_MARK
;
4715 if (!update_local_sym_info (abfd
, symtab_hdr
, r_symndx
,
4717 NON_GOT
| TLS_TLS
| TLS_MARK
))
4719 sec
->has_tls_reloc
= 1;
4722 case R_PPC64_GOT_TLSLD16
:
4723 case R_PPC64_GOT_TLSLD16_LO
:
4724 case R_PPC64_GOT_TLSLD16_HI
:
4725 case R_PPC64_GOT_TLSLD16_HA
:
4726 case R_PPC64_GOT_TLSLD_PCREL34
:
4727 tls_type
= TLS_TLS
| TLS_LD
;
4730 case R_PPC64_GOT_TLSGD16
:
4731 case R_PPC64_GOT_TLSGD16_LO
:
4732 case R_PPC64_GOT_TLSGD16_HI
:
4733 case R_PPC64_GOT_TLSGD16_HA
:
4734 case R_PPC64_GOT_TLSGD_PCREL34
:
4735 tls_type
= TLS_TLS
| TLS_GD
;
4738 case R_PPC64_GOT_TPREL16_DS
:
4739 case R_PPC64_GOT_TPREL16_LO_DS
:
4740 case R_PPC64_GOT_TPREL16_HI
:
4741 case R_PPC64_GOT_TPREL16_HA
:
4742 case R_PPC64_GOT_TPREL_PCREL34
:
4743 if (bfd_link_dll (info
))
4744 info
->flags
|= DF_STATIC_TLS
;
4745 tls_type
= TLS_TLS
| TLS_TPREL
;
4748 case R_PPC64_GOT_DTPREL16_DS
:
4749 case R_PPC64_GOT_DTPREL16_LO_DS
:
4750 case R_PPC64_GOT_DTPREL16_HI
:
4751 case R_PPC64_GOT_DTPREL16_HA
:
4752 case R_PPC64_GOT_DTPREL_PCREL34
:
4753 tls_type
= TLS_TLS
| TLS_DTPREL
;
4755 sec
->has_tls_reloc
= 1;
4759 case R_PPC64_GOT16_LO
:
4760 case R_PPC64_GOT16_HI
:
4761 case R_PPC64_GOT16_HA
:
4762 case R_PPC64_GOT16_DS
:
4763 case R_PPC64_GOT16_LO_DS
:
4764 case R_PPC64_GOT_PCREL34
:
4766 /* This symbol requires a global offset table entry. */
4767 sec
->has_toc_reloc
= 1;
4768 if (r_type
== R_PPC64_GOT_TLSLD16
4769 || r_type
== R_PPC64_GOT_TLSGD16
4770 || r_type
== R_PPC64_GOT_TPREL16_DS
4771 || r_type
== R_PPC64_GOT_DTPREL16_DS
4772 || r_type
== R_PPC64_GOT16
4773 || r_type
== R_PPC64_GOT16_DS
)
4775 htab
->do_multi_toc
= 1;
4776 ppc64_elf_tdata (abfd
)->has_small_toc_reloc
= 1;
4779 if (ppc64_elf_tdata (abfd
)->got
== NULL
4780 && !create_got_section (abfd
, info
))
4785 struct ppc_link_hash_entry
*eh
;
4786 struct got_entry
*ent
;
4788 eh
= ppc_elf_hash_entry (h
);
4789 for (ent
= eh
->elf
.got
.glist
; ent
!= NULL
; ent
= ent
->next
)
4790 if (ent
->addend
== rel
->r_addend
4791 && ent
->owner
== abfd
4792 && ent
->tls_type
== tls_type
)
4796 size_t amt
= sizeof (*ent
);
4797 ent
= bfd_alloc (abfd
, amt
);
4800 ent
->next
= eh
->elf
.got
.glist
;
4801 ent
->addend
= rel
->r_addend
;
4803 ent
->tls_type
= tls_type
;
4804 ent
->is_indirect
= FALSE
;
4805 ent
->got
.refcount
= 0;
4806 eh
->elf
.got
.glist
= ent
;
4808 ent
->got
.refcount
+= 1;
4809 eh
->tls_mask
|= tls_type
;
4812 /* This is a global offset table entry for a local symbol. */
4813 if (!update_local_sym_info (abfd
, symtab_hdr
, r_symndx
,
4814 rel
->r_addend
, tls_type
))
4818 case R_PPC64_PLT16_HA
:
4819 case R_PPC64_PLT16_HI
:
4820 case R_PPC64_PLT16_LO
:
4821 case R_PPC64_PLT16_LO_DS
:
4822 case R_PPC64_PLT_PCREL34
:
4823 case R_PPC64_PLT_PCREL34_NOTOC
:
4826 /* This symbol requires a procedure linkage table entry. */
4831 if (h
->root
.root
.string
[0] == '.'
4832 && h
->root
.root
.string
[1] != '\0')
4833 ppc_elf_hash_entry (h
)->is_func
= 1;
4834 ppc_elf_hash_entry (h
)->tls_mask
|= PLT_KEEP
;
4835 plt_list
= &h
->plt
.plist
;
4837 if (plt_list
== NULL
)
4838 plt_list
= update_local_sym_info (abfd
, symtab_hdr
, r_symndx
,
4840 NON_GOT
| PLT_KEEP
);
4841 if (!update_plt_info (abfd
, plt_list
, rel
->r_addend
))
4845 /* The following relocations don't need to propagate the
4846 relocation if linking a shared object since they are
4847 section relative. */
4848 case R_PPC64_SECTOFF
:
4849 case R_PPC64_SECTOFF_LO
:
4850 case R_PPC64_SECTOFF_HI
:
4851 case R_PPC64_SECTOFF_HA
:
4852 case R_PPC64_SECTOFF_DS
:
4853 case R_PPC64_SECTOFF_LO_DS
:
4854 case R_PPC64_DTPREL16
:
4855 case R_PPC64_DTPREL16_LO
:
4856 case R_PPC64_DTPREL16_HI
:
4857 case R_PPC64_DTPREL16_HA
:
4858 case R_PPC64_DTPREL16_DS
:
4859 case R_PPC64_DTPREL16_LO_DS
:
4860 case R_PPC64_DTPREL16_HIGH
:
4861 case R_PPC64_DTPREL16_HIGHA
:
4862 case R_PPC64_DTPREL16_HIGHER
:
4863 case R_PPC64_DTPREL16_HIGHERA
:
4864 case R_PPC64_DTPREL16_HIGHEST
:
4865 case R_PPC64_DTPREL16_HIGHESTA
:
4870 case R_PPC64_REL16_LO
:
4871 case R_PPC64_REL16_HI
:
4872 case R_PPC64_REL16_HA
:
4873 case R_PPC64_REL16_HIGH
:
4874 case R_PPC64_REL16_HIGHA
:
4875 case R_PPC64_REL16_HIGHER
:
4876 case R_PPC64_REL16_HIGHERA
:
4877 case R_PPC64_REL16_HIGHEST
:
4878 case R_PPC64_REL16_HIGHESTA
:
4879 case R_PPC64_REL16_HIGHER34
:
4880 case R_PPC64_REL16_HIGHERA34
:
4881 case R_PPC64_REL16_HIGHEST34
:
4882 case R_PPC64_REL16_HIGHESTA34
:
4883 case R_PPC64_REL16DX_HA
:
4886 /* Not supported as a dynamic relocation. */
4887 case R_PPC64_ADDR64_LOCAL
:
4888 if (bfd_link_pic (info
))
4890 if (!ppc64_elf_howto_table
[R_PPC64_ADDR32
])
4892 /* xgettext:c-format */
4893 info
->callbacks
->einfo (_("%H: %s reloc unsupported "
4894 "in shared libraries and PIEs\n"),
4895 abfd
, sec
, rel
->r_offset
,
4896 ppc64_elf_howto_table
[r_type
]->name
);
4897 bfd_set_error (bfd_error_bad_value
);
4903 case R_PPC64_TOC16_DS
:
4904 htab
->do_multi_toc
= 1;
4905 ppc64_elf_tdata (abfd
)->has_small_toc_reloc
= 1;
4907 case R_PPC64_TOC16_LO
:
4908 case R_PPC64_TOC16_HI
:
4909 case R_PPC64_TOC16_HA
:
4910 case R_PPC64_TOC16_LO_DS
:
4911 sec
->has_toc_reloc
= 1;
4912 if (h
!= NULL
&& bfd_link_executable (info
))
4914 /* We may need a copy reloc. */
4916 /* Strongly prefer a copy reloc over a dynamic reloc.
4917 glibc ld.so as of 2019-08 will error out if one of
4918 these relocations is emitted. */
4928 /* This relocation describes the C++ object vtable hierarchy.
4929 Reconstruct it for later use during GC. */
4930 case R_PPC64_GNU_VTINHERIT
:
4931 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
4935 /* This relocation describes which C++ vtable entries are actually
4936 used. Record for later use during GC. */
4937 case R_PPC64_GNU_VTENTRY
:
4938 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
4943 case R_PPC64_REL14_BRTAKEN
:
4944 case R_PPC64_REL14_BRNTAKEN
:
4946 asection
*dest
= NULL
;
4948 /* Heuristic: If jumping outside our section, chances are
4949 we are going to need a stub. */
4952 /* If the sym is weak it may be overridden later, so
4953 don't assume we know where a weak sym lives. */
4954 if (h
->root
.type
== bfd_link_hash_defined
)
4955 dest
= h
->root
.u
.def
.section
;
4959 Elf_Internal_Sym
*isym
;
4961 isym
= bfd_sym_from_r_symndx (&htab
->elf
.sym_cache
,
4966 dest
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
4970 ppc64_elf_section_data (sec
)->has_14bit_branch
= 1;
4974 case R_PPC64_PLTCALL
:
4975 case R_PPC64_PLTCALL_NOTOC
:
4976 ppc64_elf_section_data (sec
)->has_pltcall
= 1;
4980 case R_PPC64_REL24_NOTOC
:
4986 if (h
->root
.root
.string
[0] == '.'
4987 && h
->root
.root
.string
[1] != '\0')
4988 ppc_elf_hash_entry (h
)->is_func
= 1;
4990 if (h
== tga
|| h
== dottga
)
4992 sec
->has_tls_reloc
= 1;
4994 && (ELF64_R_TYPE (rel
[-1].r_info
) == R_PPC64_TLSGD
4995 || ELF64_R_TYPE (rel
[-1].r_info
) == R_PPC64_TLSLD
))
4996 /* We have a new-style __tls_get_addr call with
5000 /* Mark this section as having an old-style call. */
5001 sec
->nomark_tls_get_addr
= 1;
5003 plt_list
= &h
->plt
.plist
;
5006 /* We may need a .plt entry if the function this reloc
5007 refers to is in a shared lib. */
5009 && !update_plt_info (abfd
, plt_list
, rel
->r_addend
))
5013 case R_PPC64_ADDR14
:
5014 case R_PPC64_ADDR14_BRNTAKEN
:
5015 case R_PPC64_ADDR14_BRTAKEN
:
5016 case R_PPC64_ADDR24
:
5019 case R_PPC64_TPREL64
:
5020 tls_type
= TLS_EXPLICIT
| TLS_TLS
| TLS_TPREL
;
5021 if (bfd_link_dll (info
))
5022 info
->flags
|= DF_STATIC_TLS
;
5025 case R_PPC64_DTPMOD64
:
5026 if (rel
+ 1 < rel_end
5027 && rel
[1].r_info
== ELF64_R_INFO (r_symndx
, R_PPC64_DTPREL64
)
5028 && rel
[1].r_offset
== rel
->r_offset
+ 8)
5029 tls_type
= TLS_EXPLICIT
| TLS_TLS
| TLS_GD
;
5031 tls_type
= TLS_EXPLICIT
| TLS_TLS
| TLS_LD
;
5034 case R_PPC64_DTPREL64
:
5035 tls_type
= TLS_EXPLICIT
| TLS_TLS
| TLS_DTPREL
;
5037 && rel
[-1].r_info
== ELF64_R_INFO (r_symndx
, R_PPC64_DTPMOD64
)
5038 && rel
[-1].r_offset
== rel
->r_offset
- 8)
5039 /* This is the second reloc of a dtpmod, dtprel pair.
5040 Don't mark with TLS_DTPREL. */
5044 sec
->has_tls_reloc
= 1;
5046 ppc_elf_hash_entry (h
)->tls_mask
|= tls_type
& 0xff;
5048 if (!update_local_sym_info (abfd
, symtab_hdr
, r_symndx
,
5049 rel
->r_addend
, tls_type
))
5052 ppc64_sec
= ppc64_elf_section_data (sec
);
5053 if (ppc64_sec
->sec_type
!= sec_toc
)
5057 /* One extra to simplify get_tls_mask. */
5058 amt
= sec
->size
* sizeof (unsigned) / 8 + sizeof (unsigned);
5059 ppc64_sec
->u
.toc
.symndx
= bfd_zalloc (abfd
, amt
);
5060 if (ppc64_sec
->u
.toc
.symndx
== NULL
)
5062 amt
= sec
->size
* sizeof (bfd_vma
) / 8;
5063 ppc64_sec
->u
.toc
.add
= bfd_zalloc (abfd
, amt
);
5064 if (ppc64_sec
->u
.toc
.add
== NULL
)
5066 BFD_ASSERT (ppc64_sec
->sec_type
== sec_normal
);
5067 ppc64_sec
->sec_type
= sec_toc
;
5069 BFD_ASSERT (rel
->r_offset
% 8 == 0);
5070 ppc64_sec
->u
.toc
.symndx
[rel
->r_offset
/ 8] = r_symndx
;
5071 ppc64_sec
->u
.toc
.add
[rel
->r_offset
/ 8] = rel
->r_addend
;
5073 /* Mark the second slot of a GD or LD entry.
5074 -1 to indicate GD and -2 to indicate LD. */
5075 if (tls_type
== (TLS_EXPLICIT
| TLS_TLS
| TLS_GD
))
5076 ppc64_sec
->u
.toc
.symndx
[rel
->r_offset
/ 8 + 1] = -1;
5077 else if (tls_type
== (TLS_EXPLICIT
| TLS_TLS
| TLS_LD
))
5078 ppc64_sec
->u
.toc
.symndx
[rel
->r_offset
/ 8 + 1] = -2;
5081 case R_PPC64_TPREL16_HI
:
5082 case R_PPC64_TPREL16_HA
:
5083 case R_PPC64_TPREL16_HIGH
:
5084 case R_PPC64_TPREL16_HIGHA
:
5085 case R_PPC64_TPREL16_HIGHER
:
5086 case R_PPC64_TPREL16_HIGHERA
:
5087 case R_PPC64_TPREL16_HIGHEST
:
5088 case R_PPC64_TPREL16_HIGHESTA
:
5089 sec
->has_tls_reloc
= 1;
5091 case R_PPC64_TPREL34
:
5092 case R_PPC64_TPREL16
:
5093 case R_PPC64_TPREL16_DS
:
5094 case R_PPC64_TPREL16_LO
:
5095 case R_PPC64_TPREL16_LO_DS
:
5096 if (bfd_link_dll (info
))
5097 info
->flags
|= DF_STATIC_TLS
;
5100 case R_PPC64_ADDR64
:
5102 && rel
+ 1 < rel_end
5103 && ELF64_R_TYPE ((rel
+ 1)->r_info
) == R_PPC64_TOC
)
5106 ppc_elf_hash_entry (h
)->is_func
= 1;
5110 case R_PPC64_ADDR16
:
5111 case R_PPC64_ADDR16_DS
:
5112 case R_PPC64_ADDR16_HA
:
5113 case R_PPC64_ADDR16_HI
:
5114 case R_PPC64_ADDR16_HIGH
:
5115 case R_PPC64_ADDR16_HIGHA
:
5116 case R_PPC64_ADDR16_HIGHER
:
5117 case R_PPC64_ADDR16_HIGHERA
:
5118 case R_PPC64_ADDR16_HIGHEST
:
5119 case R_PPC64_ADDR16_HIGHESTA
:
5120 case R_PPC64_ADDR16_LO
:
5121 case R_PPC64_ADDR16_LO_DS
:
5123 case R_PPC64_D34_LO
:
5124 case R_PPC64_D34_HI30
:
5125 case R_PPC64_D34_HA30
:
5126 case R_PPC64_ADDR16_HIGHER34
:
5127 case R_PPC64_ADDR16_HIGHERA34
:
5128 case R_PPC64_ADDR16_HIGHEST34
:
5129 case R_PPC64_ADDR16_HIGHESTA34
:
5131 if (h
!= NULL
&& !bfd_link_pic (info
) && abiversion (abfd
) != 1
5132 && rel
->r_addend
== 0)
5134 /* We may need a .plt entry if this reloc refers to a
5135 function in a shared lib. */
5136 if (!update_plt_info (abfd
, &h
->plt
.plist
, 0))
5138 h
->pointer_equality_needed
= 1;
5145 case R_PPC64_ADDR32
:
5146 case R_PPC64_UADDR16
:
5147 case R_PPC64_UADDR32
:
5148 case R_PPC64_UADDR64
:
5150 if (h
!= NULL
&& bfd_link_executable (info
))
5151 /* We may need a copy reloc. */
5154 /* Don't propagate .opd relocs. */
5155 if (NO_OPD_RELOCS
&& is_opd
)
5158 /* If we are creating a shared library, and this is a reloc
5159 against a global symbol, or a non PC relative reloc
5160 against a local symbol, then we need to copy the reloc
5161 into the shared library. However, if we are linking with
5162 -Bsymbolic, we do not need to copy a reloc against a
5163 global symbol which is defined in an object we are
5164 including in the link (i.e., DEF_REGULAR is set). At
5165 this point we have not seen all the input files, so it is
5166 possible that DEF_REGULAR is not set now but will be set
5167 later (it is never cleared). In case of a weak definition,
5168 DEF_REGULAR may be cleared later by a strong definition in
5169 a shared library. We account for that possibility below by
5170 storing information in the dyn_relocs field of the hash
5171 table entry. A similar situation occurs when creating
5172 shared libraries and symbol visibility changes render the
5175 If on the other hand, we are creating an executable, we
5176 may need to keep relocations for symbols satisfied by a
5177 dynamic library if we manage to avoid copy relocs for the
5181 && (h
->root
.type
== bfd_link_hash_defweak
5182 || !h
->def_regular
))
5184 && !bfd_link_executable (info
)
5185 && !SYMBOLIC_BIND (info
, h
))
5186 || (bfd_link_pic (info
)
5187 && must_be_dyn_reloc (info
, r_type
))
5188 || (!bfd_link_pic (info
)
5191 /* We must copy these reloc types into the output file.
5192 Create a reloc section in dynobj and make room for
5196 sreloc
= _bfd_elf_make_dynamic_reloc_section
5197 (sec
, htab
->elf
.dynobj
, 3, abfd
, /*rela?*/ TRUE
);
5203 /* If this is a global symbol, we count the number of
5204 relocations we need for this symbol. */
5207 struct elf_dyn_relocs
*p
;
5208 struct elf_dyn_relocs
**head
;
5210 head
= &h
->dyn_relocs
;
5212 if (p
== NULL
|| p
->sec
!= sec
)
5214 p
= bfd_alloc (htab
->elf
.dynobj
, sizeof *p
);
5224 if (!must_be_dyn_reloc (info
, r_type
))
5229 /* Track dynamic relocs needed for local syms too.
5230 We really need local syms available to do this
5232 struct ppc_dyn_relocs
*p
;
5233 struct ppc_dyn_relocs
**head
;
5234 bfd_boolean is_ifunc
;
5237 Elf_Internal_Sym
*isym
;
5239 isym
= bfd_sym_from_r_symndx (&htab
->elf
.sym_cache
,
5244 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
5248 vpp
= &elf_section_data (s
)->local_dynrel
;
5249 head
= (struct ppc_dyn_relocs
**) vpp
;
5250 is_ifunc
= ELF_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
;
5252 if (p
!= NULL
&& p
->sec
== sec
&& p
->ifunc
!= is_ifunc
)
5254 if (p
== NULL
|| p
->sec
!= sec
|| p
->ifunc
!= is_ifunc
)
5256 p
= bfd_alloc (htab
->elf
.dynobj
, sizeof *p
);
5262 p
->ifunc
= is_ifunc
;
5278 /* Merge backend specific data from an object file to the output
5279 object file when linking. */
5282 ppc64_elf_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
5284 bfd
*obfd
= info
->output_bfd
;
5285 unsigned long iflags
, oflags
;
5287 if ((ibfd
->flags
& BFD_LINKER_CREATED
) != 0)
5290 if (!is_ppc64_elf (ibfd
) || !is_ppc64_elf (obfd
))
5293 if (!_bfd_generic_verify_endian_match (ibfd
, info
))
5296 iflags
= elf_elfheader (ibfd
)->e_flags
;
5297 oflags
= elf_elfheader (obfd
)->e_flags
;
5299 if (iflags
& ~EF_PPC64_ABI
)
5302 /* xgettext:c-format */
5303 (_("%pB uses unknown e_flags 0x%lx"), ibfd
, iflags
);
5304 bfd_set_error (bfd_error_bad_value
);
5307 else if (iflags
!= oflags
&& iflags
!= 0)
5310 /* xgettext:c-format */
5311 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5312 ibfd
, iflags
, oflags
);
5313 bfd_set_error (bfd_error_bad_value
);
5317 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd
, info
))
5320 /* Merge Tag_compatibility attributes and any common GNU ones. */
5321 return _bfd_elf_merge_object_attributes (ibfd
, info
);
5325 ppc64_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
5327 /* Print normal ELF private data. */
5328 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
5330 if (elf_elfheader (abfd
)->e_flags
!= 0)
5334 fprintf (file
, _("private flags = 0x%lx:"),
5335 elf_elfheader (abfd
)->e_flags
);
5337 if ((elf_elfheader (abfd
)->e_flags
& EF_PPC64_ABI
) != 0)
5338 fprintf (file
, _(" [abiv%ld]"),
5339 elf_elfheader (abfd
)->e_flags
& EF_PPC64_ABI
);
5346 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5347 of the code entry point, and its section, which must be in the same
5348 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5351 opd_entry_value (asection
*opd_sec
,
5353 asection
**code_sec
,
5355 bfd_boolean in_code_sec
)
5357 bfd
*opd_bfd
= opd_sec
->owner
;
5358 Elf_Internal_Rela
*relocs
;
5359 Elf_Internal_Rela
*lo
, *hi
, *look
;
5362 /* No relocs implies we are linking a --just-symbols object, or looking
5363 at a final linked executable with addr2line or somesuch. */
5364 if (opd_sec
->reloc_count
== 0)
5366 bfd_byte
*contents
= ppc64_elf_tdata (opd_bfd
)->opd
.contents
;
5368 if (contents
== NULL
)
5370 if (!bfd_malloc_and_get_section (opd_bfd
, opd_sec
, &contents
))
5371 return (bfd_vma
) -1;
5372 ppc64_elf_tdata (opd_bfd
)->opd
.contents
= contents
;
5375 /* PR 17512: file: 64b9dfbb. */
5376 if (offset
+ 7 >= opd_sec
->size
|| offset
+ 7 < offset
)
5377 return (bfd_vma
) -1;
5379 val
= bfd_get_64 (opd_bfd
, contents
+ offset
);
5380 if (code_sec
!= NULL
)
5382 asection
*sec
, *likely
= NULL
;
5388 && val
< sec
->vma
+ sec
->size
)
5394 for (sec
= opd_bfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5396 && (sec
->flags
& SEC_LOAD
) != 0
5397 && (sec
->flags
& SEC_ALLOC
) != 0)
5402 if (code_off
!= NULL
)
5403 *code_off
= val
- likely
->vma
;
5409 BFD_ASSERT (is_ppc64_elf (opd_bfd
));
5411 relocs
= ppc64_elf_tdata (opd_bfd
)->opd
.relocs
;
5413 relocs
= _bfd_elf_link_read_relocs (opd_bfd
, opd_sec
, NULL
, NULL
, TRUE
);
5414 /* PR 17512: file: df8e1fd6. */
5416 return (bfd_vma
) -1;
5418 /* Go find the opd reloc at the sym address. */
5420 hi
= lo
+ opd_sec
->reloc_count
- 1; /* ignore last reloc */
5424 look
= lo
+ (hi
- lo
) / 2;
5425 if (look
->r_offset
< offset
)
5427 else if (look
->r_offset
> offset
)
5431 Elf_Internal_Shdr
*symtab_hdr
= &elf_symtab_hdr (opd_bfd
);
5433 if (ELF64_R_TYPE (look
->r_info
) == R_PPC64_ADDR64
5434 && ELF64_R_TYPE ((look
+ 1)->r_info
) == R_PPC64_TOC
)
5436 unsigned long symndx
= ELF64_R_SYM (look
->r_info
);
5437 asection
*sec
= NULL
;
5439 if (symndx
>= symtab_hdr
->sh_info
5440 && elf_sym_hashes (opd_bfd
) != NULL
)
5442 struct elf_link_hash_entry
**sym_hashes
;
5443 struct elf_link_hash_entry
*rh
;
5445 sym_hashes
= elf_sym_hashes (opd_bfd
);
5446 rh
= sym_hashes
[symndx
- symtab_hdr
->sh_info
];
5449 rh
= elf_follow_link (rh
);
5450 if (rh
->root
.type
!= bfd_link_hash_defined
5451 && rh
->root
.type
!= bfd_link_hash_defweak
)
5453 if (rh
->root
.u
.def
.section
->owner
== opd_bfd
)
5455 val
= rh
->root
.u
.def
.value
;
5456 sec
= rh
->root
.u
.def
.section
;
5463 Elf_Internal_Sym
*sym
;
5465 if (symndx
< symtab_hdr
->sh_info
)
5467 sym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5470 size_t symcnt
= symtab_hdr
->sh_info
;
5471 sym
= bfd_elf_get_elf_syms (opd_bfd
, symtab_hdr
,
5476 symtab_hdr
->contents
= (bfd_byte
*) sym
;
5482 sym
= bfd_elf_get_elf_syms (opd_bfd
, symtab_hdr
,
5488 sec
= bfd_section_from_elf_index (opd_bfd
, sym
->st_shndx
);
5491 BFD_ASSERT ((sec
->flags
& SEC_MERGE
) == 0);
5492 val
= sym
->st_value
;
5495 val
+= look
->r_addend
;
5496 if (code_off
!= NULL
)
5498 if (code_sec
!= NULL
)
5500 if (in_code_sec
&& *code_sec
!= sec
)
5505 if (sec
->output_section
!= NULL
)
5506 val
+= sec
->output_section
->vma
+ sec
->output_offset
;
5515 /* If the ELF symbol SYM might be a function in SEC, return the
5516 function size and set *CODE_OFF to the function's entry point,
5517 otherwise return zero. */
5519 static bfd_size_type
5520 ppc64_elf_maybe_function_sym (const asymbol
*sym
, asection
*sec
,
5525 if ((sym
->flags
& (BSF_SECTION_SYM
| BSF_FILE
| BSF_OBJECT
5526 | BSF_THREAD_LOCAL
| BSF_RELC
| BSF_SRELC
)) != 0)
5530 if (!(sym
->flags
& BSF_SYNTHETIC
))
5531 size
= ((elf_symbol_type
*) sym
)->internal_elf_sym
.st_size
;
5533 if (strcmp (sym
->section
->name
, ".opd") == 0)
5535 struct _opd_sec_data
*opd
= get_opd_info (sym
->section
);
5536 bfd_vma symval
= sym
->value
;
5539 && opd
->adjust
!= NULL
5540 && elf_section_data (sym
->section
)->relocs
!= NULL
)
5542 /* opd_entry_value will use cached relocs that have been
5543 adjusted, but with raw symbols. That means both local
5544 and global symbols need adjusting. */
5545 long adjust
= opd
->adjust
[OPD_NDX (symval
)];
5551 if (opd_entry_value (sym
->section
, symval
,
5552 &sec
, code_off
, TRUE
) == (bfd_vma
) -1)
5554 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5555 symbol. This size has nothing to do with the code size of the
5556 function, which is what we're supposed to return, but the
5557 code size isn't available without looking up the dot-sym.
5558 However, doing that would be a waste of time particularly
5559 since elf_find_function will look at the dot-sym anyway.
5560 Now, elf_find_function will keep the largest size of any
5561 function sym found at the code address of interest, so return
5562 1 here to avoid it incorrectly caching a larger function size
5563 for a small function. This does mean we return the wrong
5564 size for a new-ABI function of size 24, but all that does is
5565 disable caching for such functions. */
5571 if (sym
->section
!= sec
)
5573 *code_off
= sym
->value
;
5580 /* Return true if symbol is a strong function defined in an ELFv2
5581 object with st_other localentry bits of zero, ie. its local entry
5582 point coincides with its global entry point. */
5585 is_elfv2_localentry0 (struct elf_link_hash_entry
*h
)
5588 && h
->type
== STT_FUNC
5589 && h
->root
.type
== bfd_link_hash_defined
5590 && (STO_PPC64_LOCAL_MASK
& h
->other
) == 0
5591 && !ppc_elf_hash_entry (h
)->non_zero_localentry
5592 && is_ppc64_elf (h
->root
.u
.def
.section
->owner
)
5593 && abiversion (h
->root
.u
.def
.section
->owner
) >= 2);
5596 /* Return true if symbol is defined in a regular object file. */
5599 is_static_defined (struct elf_link_hash_entry
*h
)
5601 return ((h
->root
.type
== bfd_link_hash_defined
5602 || h
->root
.type
== bfd_link_hash_defweak
)
5603 && h
->root
.u
.def
.section
!= NULL
5604 && h
->root
.u
.def
.section
->output_section
!= NULL
);
5607 /* If FDH is a function descriptor symbol, return the associated code
5608 entry symbol if it is defined. Return NULL otherwise. */
5610 static struct ppc_link_hash_entry
*
5611 defined_code_entry (struct ppc_link_hash_entry
*fdh
)
5613 if (fdh
->is_func_descriptor
)
5615 struct ppc_link_hash_entry
*fh
= ppc_follow_link (fdh
->oh
);
5616 if (fh
->elf
.root
.type
== bfd_link_hash_defined
5617 || fh
->elf
.root
.type
== bfd_link_hash_defweak
)
5623 /* If FH is a function code entry symbol, return the associated
5624 function descriptor symbol if it is defined. Return NULL otherwise. */
5626 static struct ppc_link_hash_entry
*
5627 defined_func_desc (struct ppc_link_hash_entry
*fh
)
5630 && fh
->oh
->is_func_descriptor
)
5632 struct ppc_link_hash_entry
*fdh
= ppc_follow_link (fh
->oh
);
5633 if (fdh
->elf
.root
.type
== bfd_link_hash_defined
5634 || fdh
->elf
.root
.type
== bfd_link_hash_defweak
)
5640 /* Given H is a symbol that satisfies is_static_defined, return the
5641 value in the output file. */
5644 defined_sym_val (struct elf_link_hash_entry
*h
)
5646 return (h
->root
.u
.def
.section
->output_section
->vma
5647 + h
->root
.u
.def
.section
->output_offset
5648 + h
->root
.u
.def
.value
);
5651 /* Return true if H matches __tls_get_addr or one of its variants. */
5654 is_tls_get_addr (struct elf_link_hash_entry
*h
,
5655 struct ppc_link_hash_table
*htab
)
5657 return (h
== (struct elf_link_hash_entry
*) htab
->tls_get_addr_fd
5658 || h
== (struct elf_link_hash_entry
*) htab
->tga_desc_fd
5659 || h
== (struct elf_link_hash_entry
*) htab
->tls_get_addr
5660 || h
== (struct elf_link_hash_entry
*) htab
->tga_desc
);
5663 static bfd_boolean
func_desc_adjust (struct elf_link_hash_entry
*, void *);
5665 /* Garbage collect sections, after first dealing with dot-symbols. */
5668 ppc64_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
5670 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
5672 if (htab
!= NULL
&& htab
->need_func_desc_adj
)
5674 elf_link_hash_traverse (&htab
->elf
, func_desc_adjust
, info
);
5675 htab
->need_func_desc_adj
= 0;
5677 return bfd_elf_gc_sections (abfd
, info
);
5680 /* Mark all our entry sym sections, both opd and code section. */
5683 ppc64_elf_gc_keep (struct bfd_link_info
*info
)
5685 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
5686 struct bfd_sym_chain
*sym
;
5691 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
5693 struct ppc_link_hash_entry
*eh
, *fh
;
5696 eh
= ppc_elf_hash_entry (elf_link_hash_lookup (&htab
->elf
, sym
->name
,
5697 FALSE
, FALSE
, TRUE
));
5700 if (eh
->elf
.root
.type
!= bfd_link_hash_defined
5701 && eh
->elf
.root
.type
!= bfd_link_hash_defweak
)
5704 fh
= defined_code_entry (eh
);
5707 sec
= fh
->elf
.root
.u
.def
.section
;
5708 sec
->flags
|= SEC_KEEP
;
5710 else if (get_opd_info (eh
->elf
.root
.u
.def
.section
) != NULL
5711 && opd_entry_value (eh
->elf
.root
.u
.def
.section
,
5712 eh
->elf
.root
.u
.def
.value
,
5713 &sec
, NULL
, FALSE
) != (bfd_vma
) -1)
5714 sec
->flags
|= SEC_KEEP
;
5716 sec
= eh
->elf
.root
.u
.def
.section
;
5717 sec
->flags
|= SEC_KEEP
;
5721 /* Mark sections containing dynamically referenced symbols. When
5722 building shared libraries, we must assume that any visible symbol is
5726 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry
*h
, void *inf
)
5728 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
5729 struct ppc_link_hash_entry
*eh
= ppc_elf_hash_entry (h
);
5730 struct ppc_link_hash_entry
*fdh
;
5731 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
5733 /* Dynamic linking info is on the func descriptor sym. */
5734 fdh
= defined_func_desc (eh
);
5738 if ((eh
->elf
.root
.type
== bfd_link_hash_defined
5739 || eh
->elf
.root
.type
== bfd_link_hash_defweak
)
5740 && ((eh
->elf
.ref_dynamic
&& !eh
->elf
.forced_local
)
5741 || ((eh
->elf
.def_regular
|| ELF_COMMON_DEF_P (&eh
->elf
))
5742 && ELF_ST_VISIBILITY (eh
->elf
.other
) != STV_INTERNAL
5743 && ELF_ST_VISIBILITY (eh
->elf
.other
) != STV_HIDDEN
5744 && (!bfd_link_executable (info
)
5745 || info
->gc_keep_exported
5746 || info
->export_dynamic
5749 && (*d
->match
) (&d
->head
, NULL
,
5750 eh
->elf
.root
.root
.string
)))
5751 && (eh
->elf
.versioned
>= versioned
5752 || !bfd_hide_sym_by_version (info
->version_info
,
5753 eh
->elf
.root
.root
.string
)))))
5756 struct ppc_link_hash_entry
*fh
;
5758 eh
->elf
.root
.u
.def
.section
->flags
|= SEC_KEEP
;
5760 /* Function descriptor syms cause the associated
5761 function code sym section to be marked. */
5762 fh
= defined_code_entry (eh
);
5765 code_sec
= fh
->elf
.root
.u
.def
.section
;
5766 code_sec
->flags
|= SEC_KEEP
;
5768 else if (get_opd_info (eh
->elf
.root
.u
.def
.section
) != NULL
5769 && opd_entry_value (eh
->elf
.root
.u
.def
.section
,
5770 eh
->elf
.root
.u
.def
.value
,
5771 &code_sec
, NULL
, FALSE
) != (bfd_vma
) -1)
5772 code_sec
->flags
|= SEC_KEEP
;
5778 /* Return the section that should be marked against GC for a given
5782 ppc64_elf_gc_mark_hook (asection
*sec
,
5783 struct bfd_link_info
*info
,
5784 Elf_Internal_Rela
*rel
,
5785 struct elf_link_hash_entry
*h
,
5786 Elf_Internal_Sym
*sym
)
5790 /* Syms return NULL if we're marking .opd, so we avoid marking all
5791 function sections, as all functions are referenced in .opd. */
5793 if (get_opd_info (sec
) != NULL
)
5798 enum elf_ppc64_reloc_type r_type
;
5799 struct ppc_link_hash_entry
*eh
, *fh
, *fdh
;
5801 r_type
= ELF64_R_TYPE (rel
->r_info
);
5804 case R_PPC64_GNU_VTINHERIT
:
5805 case R_PPC64_GNU_VTENTRY
:
5809 switch (h
->root
.type
)
5811 case bfd_link_hash_defined
:
5812 case bfd_link_hash_defweak
:
5813 eh
= ppc_elf_hash_entry (h
);
5814 fdh
= defined_func_desc (eh
);
5817 /* -mcall-aixdesc code references the dot-symbol on
5818 a call reloc. Mark the function descriptor too
5819 against garbage collection. */
5821 if (fdh
->elf
.is_weakalias
)
5822 weakdef (&fdh
->elf
)->mark
= 1;
5826 /* Function descriptor syms cause the associated
5827 function code sym section to be marked. */
5828 fh
= defined_code_entry (eh
);
5831 /* They also mark their opd section. */
5832 eh
->elf
.root
.u
.def
.section
->gc_mark
= 1;
5834 rsec
= fh
->elf
.root
.u
.def
.section
;
5836 else if (get_opd_info (eh
->elf
.root
.u
.def
.section
) != NULL
5837 && opd_entry_value (eh
->elf
.root
.u
.def
.section
,
5838 eh
->elf
.root
.u
.def
.value
,
5839 &rsec
, NULL
, FALSE
) != (bfd_vma
) -1)
5840 eh
->elf
.root
.u
.def
.section
->gc_mark
= 1;
5842 rsec
= h
->root
.u
.def
.section
;
5845 case bfd_link_hash_common
:
5846 rsec
= h
->root
.u
.c
.p
->section
;
5850 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
5856 struct _opd_sec_data
*opd
;
5858 rsec
= bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
5859 opd
= get_opd_info (rsec
);
5860 if (opd
!= NULL
&& opd
->func_sec
!= NULL
)
5864 rsec
= opd
->func_sec
[OPD_NDX (sym
->st_value
+ rel
->r_addend
)];
5871 /* The maximum size of .sfpr. */
5872 #define SFPR_MAX (218*4)
5874 struct sfpr_def_parms
5876 const char name
[12];
5877 unsigned char lo
, hi
;
5878 bfd_byte
*(*write_ent
) (bfd
*, bfd_byte
*, int);
5879 bfd_byte
*(*write_tail
) (bfd
*, bfd_byte
*, int);
5882 /* Auto-generate _save*, _rest* functions in .sfpr.
5883 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5887 sfpr_define (struct bfd_link_info
*info
,
5888 const struct sfpr_def_parms
*parm
,
5891 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
5893 size_t len
= strlen (parm
->name
);
5894 bfd_boolean writing
= FALSE
;
5900 memcpy (sym
, parm
->name
, len
);
5903 for (i
= parm
->lo
; i
<= parm
->hi
; i
++)
5905 struct ppc_link_hash_entry
*h
;
5907 sym
[len
+ 0] = i
/ 10 + '0';
5908 sym
[len
+ 1] = i
% 10 + '0';
5909 h
= ppc_elf_hash_entry (elf_link_hash_lookup (&htab
->elf
, sym
,
5910 writing
, TRUE
, TRUE
));
5911 if (stub_sec
!= NULL
)
5914 && h
->elf
.root
.type
== bfd_link_hash_defined
5915 && h
->elf
.root
.u
.def
.section
== htab
->sfpr
)
5917 struct elf_link_hash_entry
*s
;
5919 sprintf (buf
, "%08x.%s", stub_sec
->id
& 0xffffffff, sym
);
5920 s
= elf_link_hash_lookup (&htab
->elf
, buf
, TRUE
, TRUE
, FALSE
);
5923 if (s
->root
.type
== bfd_link_hash_new
)
5925 s
->root
.type
= bfd_link_hash_defined
;
5926 s
->root
.u
.def
.section
= stub_sec
;
5927 s
->root
.u
.def
.value
= (stub_sec
->size
- htab
->sfpr
->size
5928 + h
->elf
.root
.u
.def
.value
);
5931 s
->ref_regular_nonweak
= 1;
5932 s
->forced_local
= 1;
5934 s
->root
.linker_def
= 1;
5942 if (!h
->elf
.def_regular
)
5944 h
->elf
.root
.type
= bfd_link_hash_defined
;
5945 h
->elf
.root
.u
.def
.section
= htab
->sfpr
;
5946 h
->elf
.root
.u
.def
.value
= htab
->sfpr
->size
;
5947 h
->elf
.type
= STT_FUNC
;
5948 h
->elf
.def_regular
= 1;
5950 _bfd_elf_link_hash_hide_symbol (info
, &h
->elf
, TRUE
);
5952 if (htab
->sfpr
->contents
== NULL
)
5954 htab
->sfpr
->contents
5955 = bfd_alloc (htab
->elf
.dynobj
, SFPR_MAX
);
5956 if (htab
->sfpr
->contents
== NULL
)
5963 bfd_byte
*p
= htab
->sfpr
->contents
+ htab
->sfpr
->size
;
5965 p
= (*parm
->write_ent
) (htab
->elf
.dynobj
, p
, i
);
5967 p
= (*parm
->write_tail
) (htab
->elf
.dynobj
, p
, i
);
5968 htab
->sfpr
->size
= p
- htab
->sfpr
->contents
;
5976 savegpr0 (bfd
*abfd
, bfd_byte
*p
, int r
)
5978 bfd_put_32 (abfd
, STD_R0_0R1
+ (r
<< 21) + (1 << 16) - (32 - r
) * 8, p
);
5983 savegpr0_tail (bfd
*abfd
, bfd_byte
*p
, int r
)
5985 p
= savegpr0 (abfd
, p
, r
);
5986 bfd_put_32 (abfd
, STD_R0_0R1
+ STK_LR
, p
);
5988 bfd_put_32 (abfd
, BLR
, p
);
5993 restgpr0 (bfd
*abfd
, bfd_byte
*p
, int r
)
5995 bfd_put_32 (abfd
, LD_R0_0R1
+ (r
<< 21) + (1 << 16) - (32 - r
) * 8, p
);
6000 restgpr0_tail (bfd
*abfd
, bfd_byte
*p
, int r
)
6002 bfd_put_32 (abfd
, LD_R0_0R1
+ STK_LR
, p
);
6004 p
= restgpr0 (abfd
, p
, r
);
6005 bfd_put_32 (abfd
, MTLR_R0
, p
);
6009 p
= restgpr0 (abfd
, p
, 30);
6010 p
= restgpr0 (abfd
, p
, 31);
6012 bfd_put_32 (abfd
, BLR
, p
);
6017 savegpr1 (bfd
*abfd
, bfd_byte
*p
, int r
)
6019 bfd_put_32 (abfd
, STD_R0_0R12
+ (r
<< 21) + (1 << 16) - (32 - r
) * 8, p
);
6024 savegpr1_tail (bfd
*abfd
, bfd_byte
*p
, int r
)
6026 p
= savegpr1 (abfd
, p
, r
);
6027 bfd_put_32 (abfd
, BLR
, p
);
6032 restgpr1 (bfd
*abfd
, bfd_byte
*p
, int r
)
6034 bfd_put_32 (abfd
, LD_R0_0R12
+ (r
<< 21) + (1 << 16) - (32 - r
) * 8, p
);
6039 restgpr1_tail (bfd
*abfd
, bfd_byte
*p
, int r
)
6041 p
= restgpr1 (abfd
, p
, r
);
6042 bfd_put_32 (abfd
, BLR
, p
);
6047 savefpr (bfd
*abfd
, bfd_byte
*p
, int r
)
6049 bfd_put_32 (abfd
, STFD_FR0_0R1
+ (r
<< 21) + (1 << 16) - (32 - r
) * 8, p
);
6054 savefpr0_tail (bfd
*abfd
, bfd_byte
*p
, int r
)
6056 p
= savefpr (abfd
, p
, r
);
6057 bfd_put_32 (abfd
, STD_R0_0R1
+ STK_LR
, p
);
6059 bfd_put_32 (abfd
, BLR
, p
);
6064 restfpr (bfd
*abfd
, bfd_byte
*p
, int r
)
6066 bfd_put_32 (abfd
, LFD_FR0_0R1
+ (r
<< 21) + (1 << 16) - (32 - r
) * 8, p
);
6071 restfpr0_tail (bfd
*abfd
, bfd_byte
*p
, int r
)
6073 bfd_put_32 (abfd
, LD_R0_0R1
+ STK_LR
, p
);
6075 p
= restfpr (abfd
, p
, r
);
6076 bfd_put_32 (abfd
, MTLR_R0
, p
);
6080 p
= restfpr (abfd
, p
, 30);
6081 p
= restfpr (abfd
, p
, 31);
6083 bfd_put_32 (abfd
, BLR
, p
);
6088 savefpr1_tail (bfd
*abfd
, bfd_byte
*p
, int r
)
6090 p
= savefpr (abfd
, p
, r
);
6091 bfd_put_32 (abfd
, BLR
, p
);
6096 restfpr1_tail (bfd
*abfd
, bfd_byte
*p
, int r
)
6098 p
= restfpr (abfd
, p
, r
);
6099 bfd_put_32 (abfd
, BLR
, p
);
6104 savevr (bfd
*abfd
, bfd_byte
*p
, int r
)
6106 bfd_put_32 (abfd
, LI_R12_0
+ (1 << 16) - (32 - r
) * 16, p
);
6108 bfd_put_32 (abfd
, STVX_VR0_R12_R0
+ (r
<< 21), p
);
6113 savevr_tail (bfd
*abfd
, bfd_byte
*p
, int r
)
6115 p
= savevr (abfd
, p
, r
);
6116 bfd_put_32 (abfd
, BLR
, p
);
6121 restvr (bfd
*abfd
, bfd_byte
*p
, int r
)
6123 bfd_put_32 (abfd
, LI_R12_0
+ (1 << 16) - (32 - r
) * 16, p
);
6125 bfd_put_32 (abfd
, LVX_VR0_R12_R0
+ (r
<< 21), p
);
6130 restvr_tail (bfd
*abfd
, bfd_byte
*p
, int r
)
6132 p
= restvr (abfd
, p
, r
);
6133 bfd_put_32 (abfd
, BLR
, p
);
6137 #define STDU_R1_0R1 0xf8210001
6138 #define ADDI_R1_R1 0x38210000
6140 /* Emit prologue of wrapper preserving regs around a call to
6141 __tls_get_addr_opt. */
6144 tls_get_addr_prologue (bfd
*obfd
, bfd_byte
*p
, struct ppc_link_hash_table
*htab
)
6148 bfd_put_32 (obfd
, MFLR_R0
, p
);
6150 bfd_put_32 (obfd
, STD_R0_0R1
+ 16, p
);
6155 for (i
= 4; i
< 12; i
++)
6158 STD_R0_0R1
| i
<< 21 | (-(13 - i
) * 8 & 0xffff), p
);
6161 bfd_put_32 (obfd
, STDU_R1_0R1
| (-128 & 0xffff), p
);
6166 for (i
= 4; i
< 12; i
++)
6169 STD_R0_0R1
| i
<< 21 | (-(12 - i
) * 8 & 0xffff), p
);
6172 bfd_put_32 (obfd
, STDU_R1_0R1
| (-96 & 0xffff), p
);
6178 /* Emit epilogue of wrapper preserving regs around a call to
6179 __tls_get_addr_opt. */
6182 tls_get_addr_epilogue (bfd
*obfd
, bfd_byte
*p
, struct ppc_link_hash_table
*htab
)
6188 for (i
= 4; i
< 12; i
++)
6190 bfd_put_32 (obfd
, LD_R0_0R1
| i
<< 21 | (128 - (13 - i
) * 8), p
);
6193 bfd_put_32 (obfd
, ADDI_R1_R1
| 128, p
);
6198 for (i
= 4; i
< 12; i
++)
6200 bfd_put_32 (obfd
, LD_R0_0R1
| i
<< 21 | (96 - (12 - i
) * 8), p
);
6203 bfd_put_32 (obfd
, ADDI_R1_R1
| 96, p
);
6206 bfd_put_32 (obfd
, LD_R0_0R1
| 16, p
);
6208 bfd_put_32 (obfd
, MTLR_R0
, p
);
6210 bfd_put_32 (obfd
, BLR
, p
);
6215 /* Called via elf_link_hash_traverse to transfer dynamic linking
6216 information on function code symbol entries to their corresponding
6217 function descriptor symbol entries. */
6220 func_desc_adjust (struct elf_link_hash_entry
*h
, void *inf
)
6222 struct bfd_link_info
*info
;
6223 struct ppc_link_hash_table
*htab
;
6224 struct ppc_link_hash_entry
*fh
;
6225 struct ppc_link_hash_entry
*fdh
;
6226 bfd_boolean force_local
;
6228 fh
= ppc_elf_hash_entry (h
);
6229 if (fh
->elf
.root
.type
== bfd_link_hash_indirect
)
6235 if (fh
->elf
.root
.root
.string
[0] != '.'
6236 || fh
->elf
.root
.root
.string
[1] == '\0')
6240 htab
= ppc_hash_table (info
);
6244 /* Find the corresponding function descriptor symbol. */
6245 fdh
= lookup_fdh (fh
, htab
);
6247 /* Resolve undefined references to dot-symbols as the value
6248 in the function descriptor, if we have one in a regular object.
6249 This is to satisfy cases like ".quad .foo". Calls to functions
6250 in dynamic objects are handled elsewhere. */
6251 if ((fh
->elf
.root
.type
== bfd_link_hash_undefined
6252 || fh
->elf
.root
.type
== bfd_link_hash_undefweak
)
6253 && (fdh
->elf
.root
.type
== bfd_link_hash_defined
6254 || fdh
->elf
.root
.type
== bfd_link_hash_defweak
)
6255 && get_opd_info (fdh
->elf
.root
.u
.def
.section
) != NULL
6256 && opd_entry_value (fdh
->elf
.root
.u
.def
.section
,
6257 fdh
->elf
.root
.u
.def
.value
,
6258 &fh
->elf
.root
.u
.def
.section
,
6259 &fh
->elf
.root
.u
.def
.value
, FALSE
) != (bfd_vma
) -1)
6261 fh
->elf
.root
.type
= fdh
->elf
.root
.type
;
6262 fh
->elf
.forced_local
= 1;
6263 fh
->elf
.def_regular
= fdh
->elf
.def_regular
;
6264 fh
->elf
.def_dynamic
= fdh
->elf
.def_dynamic
;
6267 if (!fh
->elf
.dynamic
)
6269 struct plt_entry
*ent
;
6271 for (ent
= fh
->elf
.plt
.plist
; ent
!= NULL
; ent
= ent
->next
)
6272 if (ent
->plt
.refcount
> 0)
6278 /* Create a descriptor as undefined if necessary. */
6280 && !bfd_link_executable (info
)
6281 && (fh
->elf
.root
.type
== bfd_link_hash_undefined
6282 || fh
->elf
.root
.type
== bfd_link_hash_undefweak
))
6284 fdh
= make_fdh (info
, fh
);
6289 /* We can't support overriding of symbols on a fake descriptor. */
6292 && (fh
->elf
.root
.type
== bfd_link_hash_defined
6293 || fh
->elf
.root
.type
== bfd_link_hash_defweak
))
6294 _bfd_elf_link_hash_hide_symbol (info
, &fdh
->elf
, TRUE
);
6296 /* Transfer dynamic linking information to the function descriptor. */
6299 fdh
->elf
.ref_regular
|= fh
->elf
.ref_regular
;
6300 fdh
->elf
.ref_dynamic
|= fh
->elf
.ref_dynamic
;
6301 fdh
->elf
.ref_regular_nonweak
|= fh
->elf
.ref_regular_nonweak
;
6302 fdh
->elf
.non_got_ref
|= fh
->elf
.non_got_ref
;
6303 fdh
->elf
.dynamic
|= fh
->elf
.dynamic
;
6304 fdh
->elf
.needs_plt
|= (fh
->elf
.needs_plt
6305 || fh
->elf
.type
== STT_FUNC
6306 || fh
->elf
.type
== STT_GNU_IFUNC
);
6307 move_plt_plist (fh
, fdh
);
6309 if (!fdh
->elf
.forced_local
6310 && fh
->elf
.dynindx
!= -1)
6311 if (!bfd_elf_link_record_dynamic_symbol (info
, &fdh
->elf
))
6315 /* Now that the info is on the function descriptor, clear the
6316 function code sym info. Any function code syms for which we
6317 don't have a definition in a regular file, we force local.
6318 This prevents a shared library from exporting syms that have
6319 been imported from another library. Function code syms that
6320 are really in the library we must leave global to prevent the
6321 linker dragging in a definition from a static library. */
6322 force_local
= (!fh
->elf
.def_regular
6324 || !fdh
->elf
.def_regular
6325 || fdh
->elf
.forced_local
);
6326 _bfd_elf_link_hash_hide_symbol (info
, &fh
->elf
, force_local
);
6331 static const struct sfpr_def_parms save_res_funcs
[] =
6333 { "_savegpr0_", 14, 31, savegpr0
, savegpr0_tail
},
6334 { "_restgpr0_", 14, 29, restgpr0
, restgpr0_tail
},
6335 { "_restgpr0_", 30, 31, restgpr0
, restgpr0_tail
},
6336 { "_savegpr1_", 14, 31, savegpr1
, savegpr1_tail
},
6337 { "_restgpr1_", 14, 31, restgpr1
, restgpr1_tail
},
6338 { "_savefpr_", 14, 31, savefpr
, savefpr0_tail
},
6339 { "_restfpr_", 14, 29, restfpr
, restfpr0_tail
},
6340 { "_restfpr_", 30, 31, restfpr
, restfpr0_tail
},
6341 { "._savef", 14, 31, savefpr
, savefpr1_tail
},
6342 { "._restf", 14, 31, restfpr
, restfpr1_tail
},
6343 { "_savevr_", 20, 31, savevr
, savevr_tail
},
6344 { "_restvr_", 20, 31, restvr
, restvr_tail
}
6347 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6348 this hook to a) run the edit functions in this file, b) provide
6349 some gcc support functions, and c) transfer dynamic linking
6350 information gathered so far on function code symbol entries, to
6351 their corresponding function descriptor symbol entries. */
6354 ppc64_elf_edit (bfd
*obfd ATTRIBUTE_UNUSED
, struct bfd_link_info
*info
)
6356 struct ppc_link_hash_table
*htab
;
6358 htab
= ppc_hash_table (info
);
6362 /* Call back into the linker, which then runs the edit functions. */
6363 htab
->params
->edit ();
6365 /* Provide any missing _save* and _rest* functions. */
6366 if (htab
->sfpr
!= NULL
)
6370 htab
->sfpr
->size
= 0;
6371 for (i
= 0; i
< ARRAY_SIZE (save_res_funcs
); i
++)
6372 if (!sfpr_define (info
, &save_res_funcs
[i
], NULL
))
6374 if (htab
->sfpr
->size
== 0)
6375 htab
->sfpr
->flags
|= SEC_EXCLUDE
;
6378 if (bfd_link_relocatable (info
))
6381 if (htab
->elf
.hgot
!= NULL
)
6383 _bfd_elf_link_hash_hide_symbol (info
, htab
->elf
.hgot
, TRUE
);
6384 /* Make .TOC. defined so as to prevent it being made dynamic.
6385 The wrong value here is fixed later in ppc64_elf_set_toc. */
6386 if (!htab
->elf
.hgot
->def_regular
6387 || htab
->elf
.hgot
->root
.type
!= bfd_link_hash_defined
)
6389 htab
->elf
.hgot
->root
.type
= bfd_link_hash_defined
;
6390 htab
->elf
.hgot
->root
.u
.def
.value
= 0;
6391 htab
->elf
.hgot
->root
.u
.def
.section
= bfd_abs_section_ptr
;
6392 htab
->elf
.hgot
->def_regular
= 1;
6393 htab
->elf
.hgot
->root
.linker_def
= 1;
6395 htab
->elf
.hgot
->type
= STT_OBJECT
;
6396 htab
->elf
.hgot
->other
6397 = (htab
->elf
.hgot
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
6400 if (htab
->need_func_desc_adj
)
6402 elf_link_hash_traverse (&htab
->elf
, func_desc_adjust
, info
);
6403 htab
->need_func_desc_adj
= 0;
6409 /* Return true if we have dynamic relocs against H or any of its weak
6410 aliases, that apply to read-only sections. Cannot be used after
6411 size_dynamic_sections. */
6414 alias_readonly_dynrelocs (struct elf_link_hash_entry
*h
)
6416 struct ppc_link_hash_entry
*eh
= ppc_elf_hash_entry (h
);
6419 if (_bfd_elf_readonly_dynrelocs (&eh
->elf
))
6421 eh
= ppc_elf_hash_entry (eh
->elf
.u
.alias
);
6423 while (eh
!= NULL
&& &eh
->elf
!= h
);
6428 /* Return whether EH has pc-relative dynamic relocs. */
6431 pc_dynrelocs (struct ppc_link_hash_entry
*eh
)
6433 struct elf_dyn_relocs
*p
;
6435 for (p
= eh
->elf
.dyn_relocs
; p
!= NULL
; p
= p
->next
)
6436 if (p
->pc_count
!= 0)
6441 /* Return true if a global entry stub will be created for H. Valid
6442 for ELFv2 before plt entries have been allocated. */
6445 global_entry_stub (struct elf_link_hash_entry
*h
)
6447 struct plt_entry
*pent
;
6449 if (!h
->pointer_equality_needed
6453 for (pent
= h
->plt
.plist
; pent
!= NULL
; pent
= pent
->next
)
6454 if (pent
->plt
.refcount
> 0
6455 && pent
->addend
== 0)
6461 /* Adjust a symbol defined by a dynamic object and referenced by a
6462 regular object. The current definition is in some section of the
6463 dynamic object, but we're not including those sections. We have to
6464 change the definition to something the rest of the link can
6468 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
6469 struct elf_link_hash_entry
*h
)
6471 struct ppc_link_hash_table
*htab
;
6474 htab
= ppc_hash_table (info
);
6478 /* Deal with function syms. */
6479 if (h
->type
== STT_FUNC
6480 || h
->type
== STT_GNU_IFUNC
6483 bfd_boolean local
= (ppc_elf_hash_entry (h
)->save_res
6484 || SYMBOL_CALLS_LOCAL (info
, h
)
6485 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
));
6486 /* Discard dyn_relocs when non-pic if we've decided that a
6487 function symbol is local and not an ifunc. We keep dynamic
6488 relocs for ifuncs when local rather than always emitting a
6489 plt call stub for them and defining the symbol on the call
6490 stub. We can't do that for ELFv1 anyway (a function symbol
6491 is defined on a descriptor, not code) and it can be faster at
6492 run-time due to not needing to bounce through a stub. The
6493 dyn_relocs for ifuncs will be applied even in a static
6495 if (!bfd_link_pic (info
)
6496 && h
->type
!= STT_GNU_IFUNC
6498 h
->dyn_relocs
= NULL
;
6500 /* Clear procedure linkage table information for any symbol that
6501 won't need a .plt entry. */
6502 struct plt_entry
*ent
;
6503 for (ent
= h
->plt
.plist
; ent
!= NULL
; ent
= ent
->next
)
6504 if (ent
->plt
.refcount
> 0)
6507 || (h
->type
!= STT_GNU_IFUNC
6509 && (htab
->can_convert_all_inline_plt
6510 || (ppc_elf_hash_entry (h
)->tls_mask
6511 & (TLS_TLS
| PLT_KEEP
)) != PLT_KEEP
)))
6513 h
->plt
.plist
= NULL
;
6515 h
->pointer_equality_needed
= 0;
6517 else if (abiversion (info
->output_bfd
) >= 2)
6519 /* Taking a function's address in a read/write section
6520 doesn't require us to define the function symbol in the
6521 executable on a global entry stub. A dynamic reloc can
6522 be used instead. The reason we prefer a few more dynamic
6523 relocs is that calling via a global entry stub costs a
6524 few more instructions, and pointer_equality_needed causes
6525 extra work in ld.so when resolving these symbols. */
6526 if (global_entry_stub (h
))
6528 if (!_bfd_elf_readonly_dynrelocs (h
))
6530 h
->pointer_equality_needed
= 0;
6531 /* If we haven't seen a branch reloc and the symbol
6532 isn't an ifunc then we don't need a plt entry. */
6534 h
->plt
.plist
= NULL
;
6536 else if (!bfd_link_pic (info
))
6537 /* We are going to be defining the function symbol on the
6538 plt stub, so no dyn_relocs needed when non-pic. */
6539 h
->dyn_relocs
= NULL
;
6542 /* ELFv2 function symbols can't have copy relocs. */
6545 else if (!h
->needs_plt
6546 && !_bfd_elf_readonly_dynrelocs (h
))
6548 /* If we haven't seen a branch reloc and the symbol isn't an
6549 ifunc then we don't need a plt entry. */
6550 h
->plt
.plist
= NULL
;
6551 h
->pointer_equality_needed
= 0;
6556 h
->plt
.plist
= NULL
;
6558 /* If this is a weak symbol, and there is a real definition, the
6559 processor independent code will have arranged for us to see the
6560 real definition first, and we can just use the same value. */
6561 if (h
->is_weakalias
)
6563 struct elf_link_hash_entry
*def
= weakdef (h
);
6564 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
6565 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
6566 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
6567 if (def
->root
.u
.def
.section
== htab
->elf
.sdynbss
6568 || def
->root
.u
.def
.section
== htab
->elf
.sdynrelro
)
6569 h
->dyn_relocs
= NULL
;
6573 /* If we are creating a shared library, we must presume that the
6574 only references to the symbol are via the global offset table.
6575 For such cases we need not do anything here; the relocations will
6576 be handled correctly by relocate_section. */
6577 if (!bfd_link_executable (info
))
6580 /* If there are no references to this symbol that do not use the
6581 GOT, we don't need to generate a copy reloc. */
6582 if (!h
->non_got_ref
)
6585 /* Don't generate a copy reloc for symbols defined in the executable. */
6586 if (!h
->def_dynamic
|| !h
->ref_regular
|| h
->def_regular
6588 /* If -z nocopyreloc was given, don't generate them either. */
6589 || info
->nocopyreloc
6591 /* If we don't find any dynamic relocs in read-only sections, then
6592 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6593 || (ELIMINATE_COPY_RELOCS
6595 && !alias_readonly_dynrelocs (h
))
6597 /* Protected variables do not work with .dynbss. The copy in
6598 .dynbss won't be used by the shared library with the protected
6599 definition for the variable. Text relocations are preferable
6600 to an incorrect program. */
6601 || h
->protected_def
)
6604 if (h
->type
== STT_FUNC
6605 || h
->type
== STT_GNU_IFUNC
)
6607 /* .dynbss copies of function symbols only work if we have
6608 ELFv1 dot-symbols. ELFv1 compilers since 2004 default to not
6609 use dot-symbols and set the function symbol size to the text
6610 size of the function rather than the size of the descriptor.
6611 That's wrong for copying a descriptor. */
6612 if (ppc_elf_hash_entry (h
)->oh
== NULL
6613 || !(h
->size
== 24 || h
->size
== 16))
6616 /* We should never get here, but unfortunately there are old
6617 versions of gcc (circa gcc-3.2) that improperly for the
6618 ELFv1 ABI put initialized function pointers, vtable refs and
6619 suchlike in read-only sections. Allow them to proceed, but
6620 warn that this might break at runtime. */
6621 info
->callbacks
->einfo
6622 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6623 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6624 h
->root
.root
.string
);
6627 /* This is a reference to a symbol defined by a dynamic object which
6628 is not a function. */
6630 /* We must allocate the symbol in our .dynbss section, which will
6631 become part of the .bss section of the executable. There will be
6632 an entry for this symbol in the .dynsym section. The dynamic
6633 object will contain position independent code, so all references
6634 from the dynamic object to this symbol will go through the global
6635 offset table. The dynamic linker will use the .dynsym entry to
6636 determine the address it must put in the global offset table, so
6637 both the dynamic object and the regular object will refer to the
6638 same memory location for the variable. */
6639 if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
6641 s
= htab
->elf
.sdynrelro
;
6642 srel
= htab
->elf
.sreldynrelro
;
6646 s
= htab
->elf
.sdynbss
;
6647 srel
= htab
->elf
.srelbss
;
6649 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0 && h
->size
!= 0)
6651 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6652 linker to copy the initial value out of the dynamic object
6653 and into the runtime process image. */
6654 srel
->size
+= sizeof (Elf64_External_Rela
);
6658 /* We no longer want dyn_relocs. */
6659 h
->dyn_relocs
= NULL
;
6660 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
6663 /* If given a function descriptor symbol, hide both the function code
6664 sym and the descriptor. */
6666 ppc64_elf_hide_symbol (struct bfd_link_info
*info
,
6667 struct elf_link_hash_entry
*h
,
6668 bfd_boolean force_local
)
6670 struct ppc_link_hash_entry
*eh
;
6671 _bfd_elf_link_hash_hide_symbol (info
, h
, force_local
);
6673 if (ppc_hash_table (info
) == NULL
)
6676 eh
= ppc_elf_hash_entry (h
);
6677 if (eh
->is_func_descriptor
)
6679 struct ppc_link_hash_entry
*fh
= eh
->oh
;
6684 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6687 /* We aren't supposed to use alloca in BFD because on
6688 systems which do not have alloca the version in libiberty
6689 calls xmalloc, which might cause the program to crash
6690 when it runs out of memory. This function doesn't have a
6691 return status, so there's no way to gracefully return an
6692 error. So cheat. We know that string[-1] can be safely
6693 accessed; It's either a string in an ELF string table,
6694 or allocated in an objalloc structure. */
6696 p
= eh
->elf
.root
.root
.string
- 1;
6699 fh
= ppc_elf_hash_entry (elf_link_hash_lookup (htab
, p
, FALSE
,
6703 /* Unfortunately, if it so happens that the string we were
6704 looking for was allocated immediately before this string,
6705 then we overwrote the string terminator. That's the only
6706 reason the lookup should fail. */
6709 q
= eh
->elf
.root
.root
.string
+ strlen (eh
->elf
.root
.root
.string
);
6710 while (q
>= eh
->elf
.root
.root
.string
&& *q
== *p
)
6712 if (q
< eh
->elf
.root
.root
.string
&& *p
== '.')
6713 fh
= ppc_elf_hash_entry (elf_link_hash_lookup (htab
, p
, FALSE
,
6723 _bfd_elf_link_hash_hide_symbol (info
, &fh
->elf
, force_local
);
6728 get_sym_h (struct elf_link_hash_entry
**hp
,
6729 Elf_Internal_Sym
**symp
,
6731 unsigned char **tls_maskp
,
6732 Elf_Internal_Sym
**locsymsp
,
6733 unsigned long r_symndx
,
6736 Elf_Internal_Shdr
*symtab_hdr
= &elf_symtab_hdr (ibfd
);
6738 if (r_symndx
>= symtab_hdr
->sh_info
)
6740 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (ibfd
);
6741 struct elf_link_hash_entry
*h
;
6743 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
6744 h
= elf_follow_link (h
);
6752 if (symsecp
!= NULL
)
6754 asection
*symsec
= NULL
;
6755 if (h
->root
.type
== bfd_link_hash_defined
6756 || h
->root
.type
== bfd_link_hash_defweak
)
6757 symsec
= h
->root
.u
.def
.section
;
6761 if (tls_maskp
!= NULL
)
6762 *tls_maskp
= &ppc_elf_hash_entry (h
)->tls_mask
;
6766 Elf_Internal_Sym
*sym
;
6767 Elf_Internal_Sym
*locsyms
= *locsymsp
;
6769 if (locsyms
== NULL
)
6771 locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6772 if (locsyms
== NULL
)
6773 locsyms
= bfd_elf_get_elf_syms (ibfd
, symtab_hdr
,
6774 symtab_hdr
->sh_info
,
6775 0, NULL
, NULL
, NULL
);
6776 if (locsyms
== NULL
)
6778 *locsymsp
= locsyms
;
6780 sym
= locsyms
+ r_symndx
;
6788 if (symsecp
!= NULL
)
6789 *symsecp
= bfd_section_from_elf_index (ibfd
, sym
->st_shndx
);
6791 if (tls_maskp
!= NULL
)
6793 struct got_entry
**lgot_ents
;
6794 unsigned char *tls_mask
;
6797 lgot_ents
= elf_local_got_ents (ibfd
);
6798 if (lgot_ents
!= NULL
)
6800 struct plt_entry
**local_plt
= (struct plt_entry
**)
6801 (lgot_ents
+ symtab_hdr
->sh_info
);
6802 unsigned char *lgot_masks
= (unsigned char *)
6803 (local_plt
+ symtab_hdr
->sh_info
);
6804 tls_mask
= &lgot_masks
[r_symndx
];
6806 *tls_maskp
= tls_mask
;
6812 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6813 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6814 type suitable for optimization, and 1 otherwise. */
6817 get_tls_mask (unsigned char **tls_maskp
,
6818 unsigned long *toc_symndx
,
6819 bfd_vma
*toc_addend
,
6820 Elf_Internal_Sym
**locsymsp
,
6821 const Elf_Internal_Rela
*rel
,
6824 unsigned long r_symndx
;
6826 struct elf_link_hash_entry
*h
;
6827 Elf_Internal_Sym
*sym
;
6831 r_symndx
= ELF64_R_SYM (rel
->r_info
);
6832 if (!get_sym_h (&h
, &sym
, &sec
, tls_maskp
, locsymsp
, r_symndx
, ibfd
))
6835 if ((*tls_maskp
!= NULL
6836 && (**tls_maskp
& TLS_TLS
) != 0
6837 && **tls_maskp
!= (TLS_TLS
| TLS_MARK
))
6839 || ppc64_elf_section_data (sec
) == NULL
6840 || ppc64_elf_section_data (sec
)->sec_type
!= sec_toc
)
6843 /* Look inside a TOC section too. */
6846 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
);
6847 off
= h
->root
.u
.def
.value
;
6850 off
= sym
->st_value
;
6851 off
+= rel
->r_addend
;
6852 BFD_ASSERT (off
% 8 == 0);
6853 r_symndx
= ppc64_elf_section_data (sec
)->u
.toc
.symndx
[off
/ 8];
6854 next_r
= ppc64_elf_section_data (sec
)->u
.toc
.symndx
[off
/ 8 + 1];
6855 if (toc_symndx
!= NULL
)
6856 *toc_symndx
= r_symndx
;
6857 if (toc_addend
!= NULL
)
6858 *toc_addend
= ppc64_elf_section_data (sec
)->u
.toc
.add
[off
/ 8];
6859 if (!get_sym_h (&h
, &sym
, &sec
, tls_maskp
, locsymsp
, r_symndx
, ibfd
))
6861 if ((h
== NULL
|| is_static_defined (h
))
6862 && (next_r
== -1 || next_r
== -2))
6867 /* Find (or create) an entry in the tocsave hash table. */
6869 static struct tocsave_entry
*
6870 tocsave_find (struct ppc_link_hash_table
*htab
,
6871 enum insert_option insert
,
6872 Elf_Internal_Sym
**local_syms
,
6873 const Elf_Internal_Rela
*irela
,
6876 unsigned long r_indx
;
6877 struct elf_link_hash_entry
*h
;
6878 Elf_Internal_Sym
*sym
;
6879 struct tocsave_entry ent
, *p
;
6881 struct tocsave_entry
**slot
;
6883 r_indx
= ELF64_R_SYM (irela
->r_info
);
6884 if (!get_sym_h (&h
, &sym
, &ent
.sec
, NULL
, local_syms
, r_indx
, ibfd
))
6886 if (ent
.sec
== NULL
|| ent
.sec
->output_section
== NULL
)
6889 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd
);
6894 ent
.offset
= h
->root
.u
.def
.value
;
6896 ent
.offset
= sym
->st_value
;
6897 ent
.offset
+= irela
->r_addend
;
6899 hash
= tocsave_htab_hash (&ent
);
6900 slot
= ((struct tocsave_entry
**)
6901 htab_find_slot_with_hash (htab
->tocsave_htab
, &ent
, hash
, insert
));
6907 p
= (struct tocsave_entry
*) bfd_alloc (ibfd
, sizeof (*p
));
6916 /* Adjust all global syms defined in opd sections. In gcc generated
6917 code for the old ABI, these will already have been done. */
6920 adjust_opd_syms (struct elf_link_hash_entry
*h
, void *inf ATTRIBUTE_UNUSED
)
6922 struct ppc_link_hash_entry
*eh
;
6924 struct _opd_sec_data
*opd
;
6926 if (h
->root
.type
== bfd_link_hash_indirect
)
6929 if (h
->root
.type
!= bfd_link_hash_defined
6930 && h
->root
.type
!= bfd_link_hash_defweak
)
6933 eh
= ppc_elf_hash_entry (h
);
6934 if (eh
->adjust_done
)
6937 sym_sec
= eh
->elf
.root
.u
.def
.section
;
6938 opd
= get_opd_info (sym_sec
);
6939 if (opd
!= NULL
&& opd
->adjust
!= NULL
)
6941 long adjust
= opd
->adjust
[OPD_NDX (eh
->elf
.root
.u
.def
.value
)];
6944 /* This entry has been deleted. */
6945 asection
*dsec
= ppc64_elf_tdata (sym_sec
->owner
)->deleted_section
;
6948 for (dsec
= sym_sec
->owner
->sections
; dsec
; dsec
= dsec
->next
)
6949 if (discarded_section (dsec
))
6951 ppc64_elf_tdata (sym_sec
->owner
)->deleted_section
= dsec
;
6955 eh
->elf
.root
.u
.def
.value
= 0;
6956 eh
->elf
.root
.u
.def
.section
= dsec
;
6959 eh
->elf
.root
.u
.def
.value
+= adjust
;
6960 eh
->adjust_done
= 1;
6965 /* Handles decrementing dynamic reloc counts for the reloc specified by
6966 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6967 have already been determined. */
6970 dec_dynrel_count (bfd_vma r_info
,
6972 struct bfd_link_info
*info
,
6973 Elf_Internal_Sym
**local_syms
,
6974 struct elf_link_hash_entry
*h
,
6975 Elf_Internal_Sym
*sym
)
6977 enum elf_ppc64_reloc_type r_type
;
6978 asection
*sym_sec
= NULL
;
6980 /* Can this reloc be dynamic? This switch, and later tests here
6981 should be kept in sync with the code in check_relocs. */
6982 r_type
= ELF64_R_TYPE (r_info
);
6989 case R_PPC64_TOC16_DS
:
6990 case R_PPC64_TOC16_LO
:
6991 case R_PPC64_TOC16_HI
:
6992 case R_PPC64_TOC16_HA
:
6993 case R_PPC64_TOC16_LO_DS
:
6998 case R_PPC64_TPREL16
:
6999 case R_PPC64_TPREL16_LO
:
7000 case R_PPC64_TPREL16_HI
:
7001 case R_PPC64_TPREL16_HA
:
7002 case R_PPC64_TPREL16_DS
:
7003 case R_PPC64_TPREL16_LO_DS
:
7004 case R_PPC64_TPREL16_HIGH
:
7005 case R_PPC64_TPREL16_HIGHA
:
7006 case R_PPC64_TPREL16_HIGHER
:
7007 case R_PPC64_TPREL16_HIGHERA
:
7008 case R_PPC64_TPREL16_HIGHEST
:
7009 case R_PPC64_TPREL16_HIGHESTA
:
7010 case R_PPC64_TPREL64
:
7011 case R_PPC64_TPREL34
:
7012 case R_PPC64_DTPMOD64
:
7013 case R_PPC64_DTPREL64
:
7014 case R_PPC64_ADDR64
:
7018 case R_PPC64_ADDR14
:
7019 case R_PPC64_ADDR14_BRNTAKEN
:
7020 case R_PPC64_ADDR14_BRTAKEN
:
7021 case R_PPC64_ADDR16
:
7022 case R_PPC64_ADDR16_DS
:
7023 case R_PPC64_ADDR16_HA
:
7024 case R_PPC64_ADDR16_HI
:
7025 case R_PPC64_ADDR16_HIGH
:
7026 case R_PPC64_ADDR16_HIGHA
:
7027 case R_PPC64_ADDR16_HIGHER
:
7028 case R_PPC64_ADDR16_HIGHERA
:
7029 case R_PPC64_ADDR16_HIGHEST
:
7030 case R_PPC64_ADDR16_HIGHESTA
:
7031 case R_PPC64_ADDR16_LO
:
7032 case R_PPC64_ADDR16_LO_DS
:
7033 case R_PPC64_ADDR24
:
7034 case R_PPC64_ADDR32
:
7035 case R_PPC64_UADDR16
:
7036 case R_PPC64_UADDR32
:
7037 case R_PPC64_UADDR64
:
7040 case R_PPC64_D34_LO
:
7041 case R_PPC64_D34_HI30
:
7042 case R_PPC64_D34_HA30
:
7043 case R_PPC64_ADDR16_HIGHER34
:
7044 case R_PPC64_ADDR16_HIGHERA34
:
7045 case R_PPC64_ADDR16_HIGHEST34
:
7046 case R_PPC64_ADDR16_HIGHESTA34
:
7051 if (local_syms
!= NULL
)
7053 unsigned long r_symndx
;
7054 bfd
*ibfd
= sec
->owner
;
7056 r_symndx
= ELF64_R_SYM (r_info
);
7057 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, local_syms
, r_symndx
, ibfd
))
7062 && (h
->root
.type
== bfd_link_hash_defweak
7063 || !h
->def_regular
))
7065 && !bfd_link_executable (info
)
7066 && !SYMBOLIC_BIND (info
, h
))
7067 || (bfd_link_pic (info
)
7068 && must_be_dyn_reloc (info
, r_type
))
7069 || (!bfd_link_pic (info
)
7071 ? h
->type
== STT_GNU_IFUNC
7072 : ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)))
7079 struct elf_dyn_relocs
*p
;
7080 struct elf_dyn_relocs
**pp
;
7081 pp
= &h
->dyn_relocs
;
7083 /* elf_gc_sweep may have already removed all dyn relocs associated
7084 with local syms for a given section. Also, symbol flags are
7085 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7086 report a dynreloc miscount. */
7087 if (*pp
== NULL
&& info
->gc_sections
)
7090 while ((p
= *pp
) != NULL
)
7094 if (!must_be_dyn_reloc (info
, r_type
))
7106 struct ppc_dyn_relocs
*p
;
7107 struct ppc_dyn_relocs
**pp
;
7109 bfd_boolean is_ifunc
;
7111 if (local_syms
== NULL
)
7112 sym_sec
= bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
7113 if (sym_sec
== NULL
)
7116 vpp
= &elf_section_data (sym_sec
)->local_dynrel
;
7117 pp
= (struct ppc_dyn_relocs
**) vpp
;
7119 if (*pp
== NULL
&& info
->gc_sections
)
7122 is_ifunc
= ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
;
7123 while ((p
= *pp
) != NULL
)
7125 if (p
->sec
== sec
&& p
->ifunc
== is_ifunc
)
7136 /* xgettext:c-format */
7137 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
7139 bfd_set_error (bfd_error_bad_value
);
7143 /* Remove unused Official Procedure Descriptor entries. Currently we
7144 only remove those associated with functions in discarded link-once
7145 sections, or weakly defined functions that have been overridden. It
7146 would be possible to remove many more entries for statically linked
7150 ppc64_elf_edit_opd (struct bfd_link_info
*info
)
7153 bfd_boolean some_edited
= FALSE
;
7154 asection
*need_pad
= NULL
;
7155 struct ppc_link_hash_table
*htab
;
7157 htab
= ppc_hash_table (info
);
7161 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
7164 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
7165 Elf_Internal_Shdr
*symtab_hdr
;
7166 Elf_Internal_Sym
*local_syms
;
7167 struct _opd_sec_data
*opd
;
7168 bfd_boolean need_edit
, add_aux_fields
, broken
;
7169 bfd_size_type cnt_16b
= 0;
7171 if (!is_ppc64_elf (ibfd
))
7174 sec
= bfd_get_section_by_name (ibfd
, ".opd");
7175 if (sec
== NULL
|| sec
->size
== 0)
7178 if (sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
7181 if (sec
->output_section
== bfd_abs_section_ptr
)
7184 /* Look through the section relocs. */
7185 if ((sec
->flags
& SEC_RELOC
) == 0 || sec
->reloc_count
== 0)
7189 symtab_hdr
= &elf_symtab_hdr (ibfd
);
7191 /* Read the relocations. */
7192 relstart
= _bfd_elf_link_read_relocs (ibfd
, sec
, NULL
, NULL
,
7194 if (relstart
== NULL
)
7197 /* First run through the relocs to check they are sane, and to
7198 determine whether we need to edit this opd section. */
7202 relend
= relstart
+ sec
->reloc_count
;
7203 for (rel
= relstart
; rel
< relend
; )
7205 enum elf_ppc64_reloc_type r_type
;
7206 unsigned long r_symndx
;
7208 struct elf_link_hash_entry
*h
;
7209 Elf_Internal_Sym
*sym
;
7212 /* .opd contains an array of 16 or 24 byte entries. We're
7213 only interested in the reloc pointing to a function entry
7215 offset
= rel
->r_offset
;
7216 if (rel
+ 1 == relend
7217 || rel
[1].r_offset
!= offset
+ 8)
7219 /* If someone messes with .opd alignment then after a
7220 "ld -r" we might have padding in the middle of .opd.
7221 Also, there's nothing to prevent someone putting
7222 something silly in .opd with the assembler. No .opd
7223 optimization for them! */
7226 (_("%pB: .opd is not a regular array of opd entries"), ibfd
);
7231 if ((r_type
= ELF64_R_TYPE (rel
->r_info
)) != R_PPC64_ADDR64
7232 || (r_type
= ELF64_R_TYPE ((rel
+ 1)->r_info
)) != R_PPC64_TOC
)
7235 /* xgettext:c-format */
7236 (_("%pB: unexpected reloc type %u in .opd section"),
7242 r_symndx
= ELF64_R_SYM (rel
->r_info
);
7243 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, &local_syms
,
7247 if (sym_sec
== NULL
|| sym_sec
->owner
== NULL
)
7249 const char *sym_name
;
7251 sym_name
= h
->root
.root
.string
;
7253 sym_name
= bfd_elf_sym_name (ibfd
, symtab_hdr
, sym
,
7257 /* xgettext:c-format */
7258 (_("%pB: undefined sym `%s' in .opd section"),
7264 /* opd entries are always for functions defined in the
7265 current input bfd. If the symbol isn't defined in the
7266 input bfd, then we won't be using the function in this
7267 bfd; It must be defined in a linkonce section in another
7268 bfd, or is weak. It's also possible that we are
7269 discarding the function due to a linker script /DISCARD/,
7270 which we test for via the output_section. */
7271 if (sym_sec
->owner
!= ibfd
7272 || sym_sec
->output_section
== bfd_abs_section_ptr
)
7276 if (rel
+ 1 == relend
7277 || (rel
+ 2 < relend
7278 && ELF64_R_TYPE (rel
[2].r_info
) == R_PPC64_TOC
))
7283 if (sec
->size
== offset
+ 24)
7288 if (sec
->size
== offset
+ 16)
7295 else if (rel
+ 1 < relend
7296 && ELF64_R_TYPE (rel
[0].r_info
) == R_PPC64_ADDR64
7297 && ELF64_R_TYPE (rel
[1].r_info
) == R_PPC64_TOC
)
7299 if (rel
[0].r_offset
== offset
+ 16)
7301 else if (rel
[0].r_offset
!= offset
+ 24)
7308 add_aux_fields
= htab
->params
->non_overlapping_opd
&& cnt_16b
> 0;
7310 if (!broken
&& (need_edit
|| add_aux_fields
))
7312 Elf_Internal_Rela
*write_rel
;
7313 Elf_Internal_Shdr
*rel_hdr
;
7314 bfd_byte
*rptr
, *wptr
;
7315 bfd_byte
*new_contents
;
7318 new_contents
= NULL
;
7319 amt
= OPD_NDX (sec
->size
) * sizeof (long);
7320 opd
= &ppc64_elf_section_data (sec
)->u
.opd
;
7321 opd
->adjust
= bfd_zalloc (sec
->owner
, amt
);
7322 if (opd
->adjust
== NULL
)
7325 /* This seems a waste of time as input .opd sections are all
7326 zeros as generated by gcc, but I suppose there's no reason
7327 this will always be so. We might start putting something in
7328 the third word of .opd entries. */
7329 if ((sec
->flags
& SEC_IN_MEMORY
) == 0)
7332 if (!bfd_malloc_and_get_section (ibfd
, sec
, &loc
))
7336 if (symtab_hdr
->contents
!= (unsigned char *) local_syms
)
7338 if (elf_section_data (sec
)->relocs
!= relstart
)
7342 sec
->contents
= loc
;
7343 sec
->flags
|= (SEC_IN_MEMORY
| SEC_HAS_CONTENTS
);
7346 elf_section_data (sec
)->relocs
= relstart
;
7348 new_contents
= sec
->contents
;
7351 new_contents
= bfd_malloc (sec
->size
+ cnt_16b
* 8);
7352 if (new_contents
== NULL
)
7356 wptr
= new_contents
;
7357 rptr
= sec
->contents
;
7358 write_rel
= relstart
;
7359 for (rel
= relstart
; rel
< relend
; )
7361 unsigned long r_symndx
;
7363 struct elf_link_hash_entry
*h
;
7364 struct ppc_link_hash_entry
*fdh
= NULL
;
7365 Elf_Internal_Sym
*sym
;
7367 Elf_Internal_Rela
*next_rel
;
7370 r_symndx
= ELF64_R_SYM (rel
->r_info
);
7371 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, &local_syms
,
7376 if (next_rel
+ 1 == relend
7377 || (next_rel
+ 2 < relend
7378 && ELF64_R_TYPE (next_rel
[2].r_info
) == R_PPC64_TOC
))
7381 /* See if the .opd entry is full 24 byte or
7382 16 byte (with fd_aux entry overlapped with next
7385 if (next_rel
== relend
)
7387 if (sec
->size
== rel
->r_offset
+ 16)
7390 else if (next_rel
->r_offset
== rel
->r_offset
+ 16)
7394 && h
->root
.root
.string
[0] == '.')
7396 fdh
= ppc_elf_hash_entry (h
)->oh
;
7399 fdh
= ppc_follow_link (fdh
);
7400 if (fdh
->elf
.root
.type
!= bfd_link_hash_defined
7401 && fdh
->elf
.root
.type
!= bfd_link_hash_defweak
)
7406 skip
= (sym_sec
->owner
!= ibfd
7407 || sym_sec
->output_section
== bfd_abs_section_ptr
);
7410 if (fdh
!= NULL
&& sym_sec
->owner
== ibfd
)
7412 /* Arrange for the function descriptor sym
7414 fdh
->elf
.root
.u
.def
.value
= 0;
7415 fdh
->elf
.root
.u
.def
.section
= sym_sec
;
7417 opd
->adjust
[OPD_NDX (rel
->r_offset
)] = -1;
7419 if (NO_OPD_RELOCS
|| bfd_link_relocatable (info
))
7424 if (!dec_dynrel_count (rel
->r_info
, sec
, info
,
7428 if (++rel
== next_rel
)
7431 r_symndx
= ELF64_R_SYM (rel
->r_info
);
7432 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, &local_syms
,
7439 /* We'll be keeping this opd entry. */
7444 /* Redefine the function descriptor symbol to
7445 this location in the opd section. It is
7446 necessary to update the value here rather
7447 than using an array of adjustments as we do
7448 for local symbols, because various places
7449 in the generic ELF code use the value
7450 stored in u.def.value. */
7451 fdh
->elf
.root
.u
.def
.value
= wptr
- new_contents
;
7452 fdh
->adjust_done
= 1;
7455 /* Local syms are a bit tricky. We could
7456 tweak them as they can be cached, but
7457 we'd need to look through the local syms
7458 for the function descriptor sym which we
7459 don't have at the moment. So keep an
7460 array of adjustments. */
7461 adjust
= (wptr
- new_contents
) - (rptr
- sec
->contents
);
7462 opd
->adjust
[OPD_NDX (rel
->r_offset
)] = adjust
;
7465 memcpy (wptr
, rptr
, opd_ent_size
);
7466 wptr
+= opd_ent_size
;
7467 if (add_aux_fields
&& opd_ent_size
== 16)
7469 memset (wptr
, '\0', 8);
7473 /* We need to adjust any reloc offsets to point to the
7475 for ( ; rel
!= next_rel
; ++rel
)
7477 rel
->r_offset
+= adjust
;
7478 if (write_rel
!= rel
)
7479 memcpy (write_rel
, rel
, sizeof (*rel
));
7484 rptr
+= opd_ent_size
;
7487 sec
->size
= wptr
- new_contents
;
7488 sec
->reloc_count
= write_rel
- relstart
;
7491 free (sec
->contents
);
7492 sec
->contents
= new_contents
;
7495 /* Fudge the header size too, as this is used later in
7496 elf_bfd_final_link if we are emitting relocs. */
7497 rel_hdr
= _bfd_elf_single_rel_hdr (sec
);
7498 rel_hdr
->sh_size
= sec
->reloc_count
* rel_hdr
->sh_entsize
;
7501 else if (elf_section_data (sec
)->relocs
!= relstart
)
7504 if (local_syms
!= NULL
7505 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
7507 if (!info
->keep_memory
)
7510 symtab_hdr
->contents
= (unsigned char *) local_syms
;
7515 elf_link_hash_traverse (elf_hash_table (info
), adjust_opd_syms
, NULL
);
7517 /* If we are doing a final link and the last .opd entry is just 16 byte
7518 long, add a 8 byte padding after it. */
7519 if (need_pad
!= NULL
&& !bfd_link_relocatable (info
))
7523 if ((need_pad
->flags
& SEC_IN_MEMORY
) == 0)
7525 BFD_ASSERT (need_pad
->size
> 0);
7527 p
= bfd_malloc (need_pad
->size
+ 8);
7531 if (!bfd_get_section_contents (need_pad
->owner
, need_pad
,
7532 p
, 0, need_pad
->size
))
7535 need_pad
->contents
= p
;
7536 need_pad
->flags
|= (SEC_IN_MEMORY
| SEC_HAS_CONTENTS
);
7540 p
= bfd_realloc (need_pad
->contents
, need_pad
->size
+ 8);
7544 need_pad
->contents
= p
;
7547 memset (need_pad
->contents
+ need_pad
->size
, 0, 8);
7548 need_pad
->size
+= 8;
7554 /* Analyze inline PLT call relocations to see whether calls to locally
7555 defined functions can be converted to direct calls. */
7558 ppc64_elf_inline_plt (struct bfd_link_info
*info
)
7560 struct ppc_link_hash_table
*htab
;
7563 bfd_vma low_vma
, high_vma
, limit
;
7565 htab
= ppc_hash_table (info
);
7569 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7570 reduced somewhat to cater for possible stubs that might be added
7571 between the call and its destination. */
7572 if (htab
->params
->group_size
< 0)
7574 limit
= -htab
->params
->group_size
;
7580 limit
= htab
->params
->group_size
;
7587 for (sec
= info
->output_bfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
7588 if ((sec
->flags
& (SEC_ALLOC
| SEC_CODE
)) == (SEC_ALLOC
| SEC_CODE
))
7590 if (low_vma
> sec
->vma
)
7592 if (high_vma
< sec
->vma
+ sec
->size
)
7593 high_vma
= sec
->vma
+ sec
->size
;
7596 /* If a "bl" can reach anywhere in local code sections, then we can
7597 convert all inline PLT sequences to direct calls when the symbol
7599 if (high_vma
- low_vma
< limit
)
7601 htab
->can_convert_all_inline_plt
= 1;
7605 /* Otherwise, go looking through relocs for cases where a direct
7606 call won't reach. Mark the symbol on any such reloc to disable
7607 the optimization and keep the PLT entry as it seems likely that
7608 this will be better than creating trampolines. Note that this
7609 will disable the optimization for all inline PLT calls to a
7610 particular symbol, not just those that won't reach. The
7611 difficulty in doing a more precise optimization is that the
7612 linker needs to make a decision depending on whether a
7613 particular R_PPC64_PLTCALL insn can be turned into a direct
7614 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7615 the sequence, and there is nothing that ties those relocs
7616 together except their symbol. */
7618 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
7620 Elf_Internal_Shdr
*symtab_hdr
;
7621 Elf_Internal_Sym
*local_syms
;
7623 if (!is_ppc64_elf (ibfd
))
7627 symtab_hdr
= &elf_symtab_hdr (ibfd
);
7629 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
7630 if (ppc64_elf_section_data (sec
)->has_pltcall
7631 && !bfd_is_abs_section (sec
->output_section
))
7633 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
7635 /* Read the relocations. */
7636 relstart
= _bfd_elf_link_read_relocs (ibfd
, sec
, NULL
, NULL
,
7638 if (relstart
== NULL
)
7641 relend
= relstart
+ sec
->reloc_count
;
7642 for (rel
= relstart
; rel
< relend
; rel
++)
7644 enum elf_ppc64_reloc_type r_type
;
7645 unsigned long r_symndx
;
7647 struct elf_link_hash_entry
*h
;
7648 Elf_Internal_Sym
*sym
;
7649 unsigned char *tls_maskp
;
7651 r_type
= ELF64_R_TYPE (rel
->r_info
);
7652 if (r_type
!= R_PPC64_PLTCALL
7653 && r_type
!= R_PPC64_PLTCALL_NOTOC
)
7656 r_symndx
= ELF64_R_SYM (rel
->r_info
);
7657 if (!get_sym_h (&h
, &sym
, &sym_sec
, &tls_maskp
, &local_syms
,
7660 if (elf_section_data (sec
)->relocs
!= relstart
)
7662 if (symtab_hdr
->contents
!= (bfd_byte
*) local_syms
)
7667 if (sym_sec
!= NULL
&& sym_sec
->output_section
!= NULL
)
7671 to
= h
->root
.u
.def
.value
;
7674 to
+= (rel
->r_addend
7675 + sym_sec
->output_offset
7676 + sym_sec
->output_section
->vma
);
7677 from
= (rel
->r_offset
7678 + sec
->output_offset
7679 + sec
->output_section
->vma
);
7680 if (to
- from
+ limit
< 2 * limit
7681 && !(r_type
== R_PPC64_PLTCALL_NOTOC
7682 && (((h
? h
->other
: sym
->st_other
)
7683 & STO_PPC64_LOCAL_MASK
)
7684 > 1 << STO_PPC64_LOCAL_BIT
)))
7685 *tls_maskp
&= ~PLT_KEEP
;
7688 if (elf_section_data (sec
)->relocs
!= relstart
)
7692 if (local_syms
!= NULL
7693 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
7695 if (!info
->keep_memory
)
7698 symtab_hdr
->contents
= (unsigned char *) local_syms
;
7705 /* Set htab->tls_get_addr and various other info specific to TLS.
7706 This needs to run before dynamic symbols are processed in
7707 bfd_elf_size_dynamic_sections. */
7710 ppc64_elf_tls_setup (struct bfd_link_info
*info
)
7712 struct ppc_link_hash_table
*htab
;
7713 struct elf_link_hash_entry
*tga
, *tga_fd
, *desc
, *desc_fd
;
7715 htab
= ppc_hash_table (info
);
7719 if (abiversion (info
->output_bfd
) == 1)
7722 if (htab
->params
->no_multi_toc
)
7723 htab
->do_multi_toc
= 0;
7724 else if (!htab
->do_multi_toc
)
7725 htab
->params
->no_multi_toc
= 1;
7727 /* Default to --no-plt-localentry, as this option can cause problems
7728 with symbol interposition. For example, glibc libpthread.so and
7729 libc.so duplicate many pthread symbols, with a fallback
7730 implementation in libc.so. In some cases the fallback does more
7731 work than the pthread implementation. __pthread_condattr_destroy
7732 is one such symbol: the libpthread.so implementation is
7733 localentry:0 while the libc.so implementation is localentry:8.
7734 An app that "cleverly" uses dlopen to only load necessary
7735 libraries at runtime may omit loading libpthread.so when not
7736 running multi-threaded, which then results in the libc.so
7737 fallback symbols being used and ld.so complaining. Now there
7738 are workarounds in ld (see non_zero_localentry) to detect the
7739 pthread situation, but that may not be the only case where
7740 --plt-localentry can cause trouble. */
7741 if (htab
->params
->plt_localentry0
< 0)
7742 htab
->params
->plt_localentry0
= 0;
7743 if (htab
->params
->plt_localentry0
&& htab
->has_power10_relocs
)
7745 /* The issue is that __glink_PLTresolve saves r2, which is done
7746 because glibc ld.so _dl_runtime_resolve restores r2 to support
7747 a glibc plt call optimisation where global entry code is
7748 skipped on calls that resolve to the same binary. The
7749 __glink_PLTresolve save of r2 is incompatible with code
7750 making tail calls, because the tail call might go via the
7751 resolver and thus overwrite the proper saved r2. */
7752 _bfd_error_handler (_("warning: --plt-localentry is incompatible with "
7753 "power10 pc-relative code"));
7754 htab
->params
->plt_localentry0
= 0;
7756 if (htab
->params
->plt_localentry0
7757 && elf_link_hash_lookup (&htab
->elf
, "GLIBC_2.26",
7758 FALSE
, FALSE
, FALSE
) == NULL
)
7760 (_("warning: --plt-localentry is especially dangerous without "
7761 "ld.so support to detect ABI violations"));
7763 tga
= elf_link_hash_lookup (&htab
->elf
, ".__tls_get_addr",
7764 FALSE
, FALSE
, TRUE
);
7765 htab
->tls_get_addr
= ppc_elf_hash_entry (tga
);
7767 /* Move dynamic linking info to the function descriptor sym. */
7769 func_desc_adjust (tga
, info
);
7770 tga_fd
= elf_link_hash_lookup (&htab
->elf
, "__tls_get_addr",
7771 FALSE
, FALSE
, TRUE
);
7772 htab
->tls_get_addr_fd
= ppc_elf_hash_entry (tga_fd
);
7774 desc
= elf_link_hash_lookup (&htab
->elf
, ".__tls_get_addr_desc",
7775 FALSE
, FALSE
, TRUE
);
7776 htab
->tga_desc
= ppc_elf_hash_entry (desc
);
7778 func_desc_adjust (desc
, info
);
7779 desc_fd
= elf_link_hash_lookup (&htab
->elf
, "__tls_get_addr_desc",
7780 FALSE
, FALSE
, TRUE
);
7781 htab
->tga_desc_fd
= ppc_elf_hash_entry (desc_fd
);
7783 if (htab
->params
->tls_get_addr_opt
)
7785 struct elf_link_hash_entry
*opt
, *opt_fd
;
7787 opt
= elf_link_hash_lookup (&htab
->elf
, ".__tls_get_addr_opt",
7788 FALSE
, FALSE
, TRUE
);
7790 func_desc_adjust (opt
, info
);
7791 opt_fd
= elf_link_hash_lookup (&htab
->elf
, "__tls_get_addr_opt",
7792 FALSE
, FALSE
, TRUE
);
7794 && (opt_fd
->root
.type
== bfd_link_hash_defined
7795 || opt_fd
->root
.type
== bfd_link_hash_defweak
))
7797 /* If glibc supports an optimized __tls_get_addr call stub,
7798 signalled by the presence of __tls_get_addr_opt, and we'll
7799 be calling __tls_get_addr via a plt call stub, then
7800 make __tls_get_addr point to __tls_get_addr_opt. */
7801 if (!(htab
->elf
.dynamic_sections_created
7803 && (tga_fd
->type
== STT_FUNC
7804 || tga_fd
->needs_plt
)
7805 && !(SYMBOL_CALLS_LOCAL (info
, tga_fd
)
7806 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, tga_fd
))))
7808 if (!(htab
->elf
.dynamic_sections_created
7810 && (desc_fd
->type
== STT_FUNC
7811 || desc_fd
->needs_plt
)
7812 && !(SYMBOL_CALLS_LOCAL (info
, desc_fd
)
7813 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, desc_fd
))))
7816 if (tga_fd
!= NULL
|| desc_fd
!= NULL
)
7818 struct plt_entry
*ent
= NULL
;
7821 for (ent
= tga_fd
->plt
.plist
; ent
!= NULL
; ent
= ent
->next
)
7822 if (ent
->plt
.refcount
> 0)
7824 if (ent
== NULL
&& desc_fd
!= NULL
)
7825 for (ent
= desc_fd
->plt
.plist
; ent
!= NULL
; ent
= ent
->next
)
7826 if (ent
->plt
.refcount
> 0)
7832 tga_fd
->root
.type
= bfd_link_hash_indirect
;
7833 tga_fd
->root
.u
.i
.link
= &opt_fd
->root
;
7834 tga_fd
->root
.u
.i
.warning
= NULL
;
7835 ppc64_elf_copy_indirect_symbol (info
, opt_fd
, tga_fd
);
7837 if (desc_fd
!= NULL
)
7839 desc_fd
->root
.type
= bfd_link_hash_indirect
;
7840 desc_fd
->root
.u
.i
.link
= &opt_fd
->root
;
7841 desc_fd
->root
.u
.i
.warning
= NULL
;
7842 ppc64_elf_copy_indirect_symbol (info
, opt_fd
, desc_fd
);
7845 if (opt_fd
->dynindx
!= -1)
7847 /* Use __tls_get_addr_opt in dynamic relocations. */
7848 opt_fd
->dynindx
= -1;
7849 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
7850 opt_fd
->dynstr_index
);
7851 if (!bfd_elf_link_record_dynamic_symbol (info
, opt_fd
))
7856 htab
->tls_get_addr_fd
= ppc_elf_hash_entry (opt_fd
);
7857 tga
= (struct elf_link_hash_entry
*) htab
->tls_get_addr
;
7858 if (opt
!= NULL
&& tga
!= NULL
)
7860 tga
->root
.type
= bfd_link_hash_indirect
;
7861 tga
->root
.u
.i
.link
= &opt
->root
;
7862 tga
->root
.u
.i
.warning
= NULL
;
7863 ppc64_elf_copy_indirect_symbol (info
, opt
, tga
);
7865 _bfd_elf_link_hash_hide_symbol (info
, opt
,
7867 htab
->tls_get_addr
= ppc_elf_hash_entry (opt
);
7869 htab
->tls_get_addr_fd
->oh
= htab
->tls_get_addr
;
7870 htab
->tls_get_addr_fd
->is_func_descriptor
= 1;
7871 if (htab
->tls_get_addr
!= NULL
)
7873 htab
->tls_get_addr
->oh
= htab
->tls_get_addr_fd
;
7874 htab
->tls_get_addr
->is_func
= 1;
7877 if (desc_fd
!= NULL
)
7879 htab
->tga_desc_fd
= ppc_elf_hash_entry (opt_fd
);
7880 if (opt
!= NULL
&& desc
!= NULL
)
7882 desc
->root
.type
= bfd_link_hash_indirect
;
7883 desc
->root
.u
.i
.link
= &opt
->root
;
7884 desc
->root
.u
.i
.warning
= NULL
;
7885 ppc64_elf_copy_indirect_symbol (info
, opt
, desc
);
7887 _bfd_elf_link_hash_hide_symbol (info
, opt
,
7888 desc
->forced_local
);
7889 htab
->tga_desc
= ppc_elf_hash_entry (opt
);
7891 htab
->tga_desc_fd
->oh
= htab
->tga_desc
;
7892 htab
->tga_desc_fd
->is_func_descriptor
= 1;
7893 if (htab
->tga_desc
!= NULL
)
7895 htab
->tga_desc
->oh
= htab
->tga_desc_fd
;
7896 htab
->tga_desc
->is_func
= 1;
7902 else if (htab
->params
->tls_get_addr_opt
< 0)
7903 htab
->params
->tls_get_addr_opt
= 0;
7906 if (htab
->tga_desc_fd
!= NULL
7907 && htab
->params
->tls_get_addr_opt
7908 && htab
->params
->no_tls_get_addr_regsave
== -1)
7909 htab
->params
->no_tls_get_addr_regsave
= 0;
7914 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7915 any of HASH1, HASH2, HASH3, or HASH4. */
7918 branch_reloc_hash_match (const bfd
*ibfd
,
7919 const Elf_Internal_Rela
*rel
,
7920 const struct ppc_link_hash_entry
*hash1
,
7921 const struct ppc_link_hash_entry
*hash2
,
7922 const struct ppc_link_hash_entry
*hash3
,
7923 const struct ppc_link_hash_entry
*hash4
)
7925 Elf_Internal_Shdr
*symtab_hdr
= &elf_symtab_hdr (ibfd
);
7926 enum elf_ppc64_reloc_type r_type
= ELF64_R_TYPE (rel
->r_info
);
7927 unsigned int r_symndx
= ELF64_R_SYM (rel
->r_info
);
7929 if (r_symndx
>= symtab_hdr
->sh_info
&& is_branch_reloc (r_type
))
7931 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (ibfd
);
7932 struct elf_link_hash_entry
*h
;
7934 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
7935 h
= elf_follow_link (h
);
7936 if (h
== (struct elf_link_hash_entry
*) hash1
7937 || h
== (struct elf_link_hash_entry
*) hash2
7938 || h
== (struct elf_link_hash_entry
*) hash3
7939 || h
== (struct elf_link_hash_entry
*) hash4
)
7945 /* Run through all the TLS relocs looking for optimization
7946 opportunities. The linker has been hacked (see ppc64elf.em) to do
7947 a preliminary section layout so that we know the TLS segment
7948 offsets. We can't optimize earlier because some optimizations need
7949 to know the tp offset, and we need to optimize before allocating
7950 dynamic relocations. */
7953 ppc64_elf_tls_optimize (struct bfd_link_info
*info
)
7957 struct ppc_link_hash_table
*htab
;
7958 unsigned char *toc_ref
;
7961 if (!bfd_link_executable (info
))
7964 htab
= ppc_hash_table (info
);
7968 htab
->do_tls_opt
= 1;
7970 /* Make two passes over the relocs. On the first pass, mark toc
7971 entries involved with tls relocs, and check that tls relocs
7972 involved in setting up a tls_get_addr call are indeed followed by
7973 such a call. If they are not, we can't do any tls optimization.
7974 On the second pass twiddle tls_mask flags to notify
7975 relocate_section that optimization can be done, and adjust got
7976 and plt refcounts. */
7978 for (pass
= 0; pass
< 2; ++pass
)
7979 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
7981 Elf_Internal_Sym
*locsyms
= NULL
;
7982 asection
*toc
= bfd_get_section_by_name (ibfd
, ".toc");
7984 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
7985 if (sec
->has_tls_reloc
&& !bfd_is_abs_section (sec
->output_section
))
7987 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
7988 bfd_boolean found_tls_get_addr_arg
= 0;
7990 /* Read the relocations. */
7991 relstart
= _bfd_elf_link_read_relocs (ibfd
, sec
, NULL
, NULL
,
7993 if (relstart
== NULL
)
7999 relend
= relstart
+ sec
->reloc_count
;
8000 for (rel
= relstart
; rel
< relend
; rel
++)
8002 enum elf_ppc64_reloc_type r_type
;
8003 unsigned long r_symndx
;
8004 struct elf_link_hash_entry
*h
;
8005 Elf_Internal_Sym
*sym
;
8007 unsigned char *tls_mask
;
8008 unsigned int tls_set
, tls_clear
, tls_type
= 0;
8010 bfd_boolean ok_tprel
, is_local
;
8011 long toc_ref_index
= 0;
8012 int expecting_tls_get_addr
= 0;
8013 bfd_boolean ret
= FALSE
;
8015 r_symndx
= ELF64_R_SYM (rel
->r_info
);
8016 if (!get_sym_h (&h
, &sym
, &sym_sec
, &tls_mask
, &locsyms
,
8020 if (elf_section_data (sec
)->relocs
!= relstart
)
8023 if (elf_symtab_hdr (ibfd
).contents
8024 != (unsigned char *) locsyms
)
8031 if (h
->root
.type
== bfd_link_hash_defined
8032 || h
->root
.type
== bfd_link_hash_defweak
)
8033 value
= h
->root
.u
.def
.value
;
8034 else if (h
->root
.type
== bfd_link_hash_undefweak
)
8038 found_tls_get_addr_arg
= 0;
8043 /* Symbols referenced by TLS relocs must be of type
8044 STT_TLS. So no need for .opd local sym adjust. */
8045 value
= sym
->st_value
;
8048 is_local
= SYMBOL_REFERENCES_LOCAL (info
, h
);
8052 && h
->root
.type
== bfd_link_hash_undefweak
)
8054 else if (sym_sec
!= NULL
8055 && sym_sec
->output_section
!= NULL
)
8057 value
+= sym_sec
->output_offset
;
8058 value
+= sym_sec
->output_section
->vma
;
8059 value
-= htab
->elf
.tls_sec
->vma
+ TP_OFFSET
;
8060 /* Note that even though the prefix insns
8061 allow a 1<<33 offset we use the same test
8062 as for addis;addi. There may be a mix of
8063 pcrel and non-pcrel code and the decision
8064 to optimise is per symbol, not per TLS
8066 ok_tprel
= value
+ 0x80008000ULL
< 1ULL << 32;
8070 r_type
= ELF64_R_TYPE (rel
->r_info
);
8071 /* If this section has old-style __tls_get_addr calls
8072 without marker relocs, then check that each
8073 __tls_get_addr call reloc is preceded by a reloc
8074 that conceivably belongs to the __tls_get_addr arg
8075 setup insn. If we don't find matching arg setup
8076 relocs, don't do any tls optimization. */
8078 && sec
->nomark_tls_get_addr
8080 && is_tls_get_addr (h
, htab
)
8081 && !found_tls_get_addr_arg
8082 && is_branch_reloc (r_type
))
8084 info
->callbacks
->minfo (_("%H __tls_get_addr lost arg, "
8085 "TLS optimization disabled\n"),
8086 ibfd
, sec
, rel
->r_offset
);
8091 found_tls_get_addr_arg
= 0;
8094 case R_PPC64_GOT_TLSLD16
:
8095 case R_PPC64_GOT_TLSLD16_LO
:
8096 case R_PPC64_GOT_TLSLD_PCREL34
:
8097 expecting_tls_get_addr
= 1;
8098 found_tls_get_addr_arg
= 1;
8101 case R_PPC64_GOT_TLSLD16_HI
:
8102 case R_PPC64_GOT_TLSLD16_HA
:
8103 /* These relocs should never be against a symbol
8104 defined in a shared lib. Leave them alone if
8105 that turns out to be the case. */
8112 tls_type
= TLS_TLS
| TLS_LD
;
8115 case R_PPC64_GOT_TLSGD16
:
8116 case R_PPC64_GOT_TLSGD16_LO
:
8117 case R_PPC64_GOT_TLSGD_PCREL34
:
8118 expecting_tls_get_addr
= 1;
8119 found_tls_get_addr_arg
= 1;
8122 case R_PPC64_GOT_TLSGD16_HI
:
8123 case R_PPC64_GOT_TLSGD16_HA
:
8129 tls_set
= TLS_TLS
| TLS_GDIE
;
8131 tls_type
= TLS_TLS
| TLS_GD
;
8134 case R_PPC64_GOT_TPREL_PCREL34
:
8135 case R_PPC64_GOT_TPREL16_DS
:
8136 case R_PPC64_GOT_TPREL16_LO_DS
:
8137 case R_PPC64_GOT_TPREL16_HI
:
8138 case R_PPC64_GOT_TPREL16_HA
:
8143 tls_clear
= TLS_TPREL
;
8144 tls_type
= TLS_TLS
| TLS_TPREL
;
8154 if (rel
+ 1 < relend
8155 && is_plt_seq_reloc (ELF64_R_TYPE (rel
[1].r_info
)))
8158 && (ELF64_R_TYPE (rel
[1].r_info
)
8160 && (ELF64_R_TYPE (rel
[1].r_info
)
8161 != R_PPC64_PLTSEQ_NOTOC
))
8163 r_symndx
= ELF64_R_SYM (rel
[1].r_info
);
8164 if (!get_sym_h (&h
, NULL
, NULL
, NULL
, &locsyms
,
8169 struct plt_entry
*ent
= NULL
;
8171 for (ent
= h
->plt
.plist
;
8174 if (ent
->addend
== rel
[1].r_addend
)
8178 && ent
->plt
.refcount
> 0)
8179 ent
->plt
.refcount
-= 1;
8184 found_tls_get_addr_arg
= 1;
8189 case R_PPC64_TOC16_LO
:
8190 if (sym_sec
== NULL
|| sym_sec
!= toc
)
8193 /* Mark this toc entry as referenced by a TLS
8194 code sequence. We can do that now in the
8195 case of R_PPC64_TLS, and after checking for
8196 tls_get_addr for the TOC16 relocs. */
8197 if (toc_ref
== NULL
)
8199 = bfd_zmalloc (toc
->output_section
->rawsize
/ 8);
8200 if (toc_ref
== NULL
)
8204 value
= h
->root
.u
.def
.value
;
8206 value
= sym
->st_value
;
8207 value
+= rel
->r_addend
;
8210 BFD_ASSERT (value
< toc
->size
8211 && toc
->output_offset
% 8 == 0);
8212 toc_ref_index
= (value
+ toc
->output_offset
) / 8;
8213 if (r_type
== R_PPC64_TLS
8214 || r_type
== R_PPC64_TLSGD
8215 || r_type
== R_PPC64_TLSLD
)
8217 toc_ref
[toc_ref_index
] = 1;
8221 if (pass
!= 0 && toc_ref
[toc_ref_index
] == 0)
8226 expecting_tls_get_addr
= 2;
8229 case R_PPC64_TPREL64
:
8233 || !toc_ref
[(rel
->r_offset
+ toc
->output_offset
) / 8])
8238 tls_set
= TLS_EXPLICIT
;
8239 tls_clear
= TLS_TPREL
;
8244 case R_PPC64_DTPMOD64
:
8248 || !toc_ref
[(rel
->r_offset
+ toc
->output_offset
) / 8])
8250 if (rel
+ 1 < relend
8252 == ELF64_R_INFO (r_symndx
, R_PPC64_DTPREL64
))
8253 && rel
[1].r_offset
== rel
->r_offset
+ 8)
8257 tls_set
= TLS_EXPLICIT
| TLS_GD
;
8260 tls_set
= TLS_EXPLICIT
| TLS_GD
| TLS_GDIE
;
8269 tls_set
= TLS_EXPLICIT
;
8274 case R_PPC64_TPREL16_HA
:
8277 unsigned char buf
[4];
8279 bfd_vma off
= rel
->r_offset
& ~3;
8280 if (!bfd_get_section_contents (ibfd
, sec
, buf
,
8283 insn
= bfd_get_32 (ibfd
, buf
);
8284 /* addis rt,13,imm */
8285 if ((insn
& ((0x3fu
<< 26) | 0x1f << 16))
8286 != ((15u << 26) | (13 << 16)))
8288 /* xgettext:c-format */
8289 info
->callbacks
->minfo
8290 (_("%H: warning: %s unexpected insn %#x.\n"),
8291 ibfd
, sec
, off
, "R_PPC64_TPREL16_HA", insn
);
8292 htab
->do_tls_opt
= 0;
8297 case R_PPC64_TPREL16_HI
:
8298 case R_PPC64_TPREL16_HIGH
:
8299 case R_PPC64_TPREL16_HIGHA
:
8300 case R_PPC64_TPREL16_HIGHER
:
8301 case R_PPC64_TPREL16_HIGHERA
:
8302 case R_PPC64_TPREL16_HIGHEST
:
8303 case R_PPC64_TPREL16_HIGHESTA
:
8304 /* These can all be used in sequences along with
8305 TPREL16_LO or TPREL16_LO_DS in ways we aren't
8306 able to verify easily. */
8307 htab
->do_tls_opt
= 0;
8316 if (!expecting_tls_get_addr
8317 || !sec
->nomark_tls_get_addr
)
8320 if (rel
+ 1 < relend
8321 && branch_reloc_hash_match (ibfd
, rel
+ 1,
8322 htab
->tls_get_addr_fd
,
8327 if (expecting_tls_get_addr
== 2)
8329 /* Check for toc tls entries. */
8330 unsigned char *toc_tls
;
8333 retval
= get_tls_mask (&toc_tls
, NULL
, NULL
,
8338 if (toc_tls
!= NULL
)
8340 if ((*toc_tls
& TLS_TLS
) != 0
8341 && ((*toc_tls
& (TLS_GD
| TLS_LD
)) != 0))
8342 found_tls_get_addr_arg
= 1;
8344 toc_ref
[toc_ref_index
] = 1;
8350 /* Uh oh, we didn't find the expected call. We
8351 could just mark this symbol to exclude it
8352 from tls optimization but it's safer to skip
8353 the entire optimization. */
8354 /* xgettext:c-format */
8355 info
->callbacks
->minfo (_("%H arg lost __tls_get_addr, "
8356 "TLS optimization disabled\n"),
8357 ibfd
, sec
, rel
->r_offset
);
8362 /* If we don't have old-style __tls_get_addr calls
8363 without TLSGD/TLSLD marker relocs, and we haven't
8364 found a new-style __tls_get_addr call with a
8365 marker for this symbol, then we either have a
8366 broken object file or an -mlongcall style
8367 indirect call to __tls_get_addr without a marker.
8368 Disable optimization in this case. */
8369 if ((tls_clear
& (TLS_GD
| TLS_LD
)) != 0
8370 && (tls_set
& TLS_EXPLICIT
) == 0
8371 && !sec
->nomark_tls_get_addr
8372 && ((*tls_mask
& (TLS_TLS
| TLS_MARK
))
8373 != (TLS_TLS
| TLS_MARK
)))
8376 if (expecting_tls_get_addr
== 1 + !sec
->nomark_tls_get_addr
)
8378 struct plt_entry
*ent
= NULL
;
8380 if (htab
->tls_get_addr_fd
!= NULL
)
8381 for (ent
= htab
->tls_get_addr_fd
->elf
.plt
.plist
;
8384 if (ent
->addend
== 0)
8387 if (ent
== NULL
&& htab
->tga_desc_fd
!= NULL
)
8388 for (ent
= htab
->tga_desc_fd
->elf
.plt
.plist
;
8391 if (ent
->addend
== 0)
8394 if (ent
== NULL
&& htab
->tls_get_addr
!= NULL
)
8395 for (ent
= htab
->tls_get_addr
->elf
.plt
.plist
;
8398 if (ent
->addend
== 0)
8401 if (ent
== NULL
&& htab
->tga_desc
!= NULL
)
8402 for (ent
= htab
->tga_desc
->elf
.plt
.plist
;
8405 if (ent
->addend
== 0)
8409 && ent
->plt
.refcount
> 0)
8410 ent
->plt
.refcount
-= 1;
8416 if ((tls_set
& TLS_EXPLICIT
) == 0)
8418 struct got_entry
*ent
;
8420 /* Adjust got entry for this reloc. */
8424 ent
= elf_local_got_ents (ibfd
)[r_symndx
];
8426 for (; ent
!= NULL
; ent
= ent
->next
)
8427 if (ent
->addend
== rel
->r_addend
8428 && ent
->owner
== ibfd
8429 && ent
->tls_type
== tls_type
)
8436 /* We managed to get rid of a got entry. */
8437 if (ent
->got
.refcount
> 0)
8438 ent
->got
.refcount
-= 1;
8443 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8444 we'll lose one or two dyn relocs. */
8445 if (!dec_dynrel_count (rel
->r_info
, sec
, info
,
8449 if (tls_set
== (TLS_EXPLICIT
| TLS_GD
))
8451 if (!dec_dynrel_count ((rel
+ 1)->r_info
, sec
, info
,
8457 *tls_mask
|= tls_set
& 0xff;
8458 *tls_mask
&= ~tls_clear
;
8461 if (elf_section_data (sec
)->relocs
!= relstart
)
8466 && (elf_symtab_hdr (ibfd
).contents
!= (unsigned char *) locsyms
))
8468 if (!info
->keep_memory
)
8471 elf_symtab_hdr (ibfd
).contents
= (unsigned char *) locsyms
;
8479 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8480 the values of any global symbols in a toc section that has been
8481 edited. Globals in toc sections should be a rarity, so this function
8482 sets a flag if any are found in toc sections other than the one just
8483 edited, so that further hash table traversals can be avoided. */
8485 struct adjust_toc_info
8488 unsigned long *skip
;
8489 bfd_boolean global_toc_syms
;
8492 enum toc_skip_enum
{ ref_from_discarded
= 1, can_optimize
= 2 };
8495 adjust_toc_syms (struct elf_link_hash_entry
*h
, void *inf
)
8497 struct ppc_link_hash_entry
*eh
;
8498 struct adjust_toc_info
*toc_inf
= (struct adjust_toc_info
*) inf
;
8501 if (h
->root
.type
!= bfd_link_hash_defined
8502 && h
->root
.type
!= bfd_link_hash_defweak
)
8505 eh
= ppc_elf_hash_entry (h
);
8506 if (eh
->adjust_done
)
8509 if (eh
->elf
.root
.u
.def
.section
== toc_inf
->toc
)
8511 if (eh
->elf
.root
.u
.def
.value
> toc_inf
->toc
->rawsize
)
8512 i
= toc_inf
->toc
->rawsize
>> 3;
8514 i
= eh
->elf
.root
.u
.def
.value
>> 3;
8516 if ((toc_inf
->skip
[i
] & (ref_from_discarded
| can_optimize
)) != 0)
8519 (_("%s defined on removed toc entry"), eh
->elf
.root
.root
.string
);
8522 while ((toc_inf
->skip
[i
] & (ref_from_discarded
| can_optimize
)) != 0);
8523 eh
->elf
.root
.u
.def
.value
= (bfd_vma
) i
<< 3;
8526 eh
->elf
.root
.u
.def
.value
-= toc_inf
->skip
[i
];
8527 eh
->adjust_done
= 1;
8529 else if (strcmp (eh
->elf
.root
.u
.def
.section
->name
, ".toc") == 0)
8530 toc_inf
->global_toc_syms
= TRUE
;
8535 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8536 on a _LO variety toc/got reloc. */
8539 ok_lo_toc_insn (unsigned int insn
, enum elf_ppc64_reloc_type r_type
)
8541 return ((insn
& (0x3fu
<< 26)) == 12u << 26 /* addic */
8542 || (insn
& (0x3fu
<< 26)) == 14u << 26 /* addi */
8543 || (insn
& (0x3fu
<< 26)) == 32u << 26 /* lwz */
8544 || (insn
& (0x3fu
<< 26)) == 34u << 26 /* lbz */
8545 || (insn
& (0x3fu
<< 26)) == 36u << 26 /* stw */
8546 || (insn
& (0x3fu
<< 26)) == 38u << 26 /* stb */
8547 || (insn
& (0x3fu
<< 26)) == 40u << 26 /* lhz */
8548 || (insn
& (0x3fu
<< 26)) == 42u << 26 /* lha */
8549 || (insn
& (0x3fu
<< 26)) == 44u << 26 /* sth */
8550 || (insn
& (0x3fu
<< 26)) == 46u << 26 /* lmw */
8551 || (insn
& (0x3fu
<< 26)) == 47u << 26 /* stmw */
8552 || (insn
& (0x3fu
<< 26)) == 48u << 26 /* lfs */
8553 || (insn
& (0x3fu
<< 26)) == 50u << 26 /* lfd */
8554 || (insn
& (0x3fu
<< 26)) == 52u << 26 /* stfs */
8555 || (insn
& (0x3fu
<< 26)) == 54u << 26 /* stfd */
8556 || (insn
& (0x3fu
<< 26)) == 56u << 26 /* lq,lfq */
8557 || ((insn
& (0x3fu
<< 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8558 /* Exclude lfqu by testing reloc. If relocs are ever
8559 defined for the reduced D field in psq_lu then those
8560 will need testing too. */
8561 && r_type
!= R_PPC64_TOC16_LO
&& r_type
!= R_PPC64_GOT16_LO
)
8562 || ((insn
& (0x3fu
<< 26)) == 58u << 26 /* ld,lwa */
8564 || (insn
& (0x3fu
<< 26)) == 60u << 26 /* stfq */
8565 || ((insn
& (0x3fu
<< 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8566 /* Exclude stfqu. psq_stu as above for psq_lu. */
8567 && r_type
!= R_PPC64_TOC16_LO
&& r_type
!= R_PPC64_GOT16_LO
)
8568 || ((insn
& (0x3fu
<< 26)) == 62u << 26 /* std,stq */
8569 && (insn
& 1) == 0));
8572 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8573 pld ra,symbol@got@pcrel
8574 load/store rt,off(ra)
8577 load/store rt,off(ra)
8578 may be translated to
8579 pload/pstore rt,symbol+off@pcrel
8581 This function returns true if the optimization is possible, placing
8582 the prefix insn in *PINSN1, a NOP in *PINSN2 and the offset in *POFF.
8584 On entry to this function, the linker has already determined that
8585 the pld can be replaced with pla: *PINSN1 is that pla insn,
8586 while *PINSN2 is the second instruction. */
8589 xlate_pcrel_opt (uint64_t *pinsn1
, uint64_t *pinsn2
, bfd_signed_vma
*poff
)
8591 uint64_t insn1
= *pinsn1
;
8592 uint64_t insn2
= *pinsn2
;
8595 if ((insn2
& (63ULL << 58)) == 1ULL << 58)
8597 /* Check that regs match. */
8598 if (((insn2
>> 16) & 31) != ((insn1
>> 21) & 31))
8601 /* P8LS or PMLS form, non-pcrel. */
8602 if ((insn2
& (-1ULL << 50) & ~(1ULL << 56)) != (1ULL << 58))
8605 *pinsn1
= (insn2
& ~(31 << 16) & ~0x3ffff0000ffffULL
) | (1ULL << 52);
8607 off
= ((insn2
>> 16) & 0x3ffff0000ULL
) | (insn2
& 0xffff);
8608 *poff
= (off
^ 0x200000000ULL
) - 0x200000000ULL
;
8614 /* Check that regs match. */
8615 if (((insn2
>> 16) & 31) != ((insn1
>> 21) & 31))
8618 switch ((insn2
>> 26) & 63)
8634 /* These are the PMLS cases, where we just need to tack a prefix
8636 insn1
= ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8637 | (insn2
& ((63ULL << 26) | (31ULL << 21))));
8638 off
= insn2
& 0xffff;
8641 case 58: /* lwa, ld */
8642 if ((insn2
& 1) != 0)
8644 insn1
= ((1ULL << 58) | (1ULL << 52)
8645 | (insn2
& 2 ? 41ULL << 26 : 57ULL << 26)
8646 | (insn2
& (31ULL << 21)));
8647 off
= insn2
& 0xfffc;
8650 case 57: /* lxsd, lxssp */
8651 if ((insn2
& 3) < 2)
8653 insn1
= ((1ULL << 58) | (1ULL << 52)
8654 | ((40ULL | (insn2
& 3)) << 26)
8655 | (insn2
& (31ULL << 21)));
8656 off
= insn2
& 0xfffc;
8659 case 61: /* stxsd, stxssp, lxv, stxv */
8660 if ((insn2
& 3) == 0)
8662 else if ((insn2
& 3) >= 2)
8664 insn1
= ((1ULL << 58) | (1ULL << 52)
8665 | ((44ULL | (insn2
& 3)) << 26)
8666 | (insn2
& (31ULL << 21)));
8667 off
= insn2
& 0xfffc;
8671 insn1
= ((1ULL << 58) | (1ULL << 52)
8672 | ((50ULL | (insn2
& 4) | ((insn2
& 8) >> 3)) << 26)
8673 | (insn2
& (31ULL << 21)));
8674 off
= insn2
& 0xfff0;
8679 insn1
= ((1ULL << 58) | (1ULL << 52)
8680 | (insn2
& ((63ULL << 26) | (31ULL << 21))));
8681 off
= insn2
& 0xffff;
8684 case 6: /* lxvp, stxvp */
8685 if ((insn2
& 0xe) != 0)
8687 insn1
= ((1ULL << 58) | (1ULL << 52)
8688 | ((insn2
& 1) == 0 ? 58ULL << 26 : 62ULL << 26)
8689 | (insn2
& (31ULL << 21)));
8690 off
= insn2
& 0xfff0;
8693 case 62: /* std, stq */
8694 if ((insn2
& 1) != 0)
8696 insn1
= ((1ULL << 58) | (1ULL << 52)
8697 | ((insn2
& 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8698 | (insn2
& (31ULL << 21)));
8699 off
= insn2
& 0xfffc;
8704 *pinsn2
= (uint64_t) NOP
<< 32;
8705 *poff
= (off
^ 0x8000) - 0x8000;
8709 /* Examine all relocs referencing .toc sections in order to remove
8710 unused .toc entries. */
8713 ppc64_elf_edit_toc (struct bfd_link_info
*info
)
8716 struct adjust_toc_info toc_inf
;
8717 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
8719 htab
->do_toc_opt
= 1;
8720 toc_inf
.global_toc_syms
= TRUE
;
8721 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
8723 asection
*toc
, *sec
;
8724 Elf_Internal_Shdr
*symtab_hdr
;
8725 Elf_Internal_Sym
*local_syms
;
8726 Elf_Internal_Rela
*relstart
, *rel
, *toc_relocs
;
8727 unsigned long *skip
, *drop
;
8728 unsigned char *used
;
8729 unsigned char *keep
, last
, some_unused
;
8731 if (!is_ppc64_elf (ibfd
))
8734 toc
= bfd_get_section_by_name (ibfd
, ".toc");
8737 || toc
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
8738 || discarded_section (toc
))
8743 symtab_hdr
= &elf_symtab_hdr (ibfd
);
8745 /* Look at sections dropped from the final link. */
8748 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8750 if (sec
->reloc_count
== 0
8751 || !discarded_section (sec
)
8752 || get_opd_info (sec
)
8753 || (sec
->flags
& SEC_ALLOC
) == 0
8754 || (sec
->flags
& SEC_DEBUGGING
) != 0)
8757 relstart
= _bfd_elf_link_read_relocs (ibfd
, sec
, NULL
, NULL
, FALSE
);
8758 if (relstart
== NULL
)
8761 /* Run through the relocs to see which toc entries might be
8763 for (rel
= relstart
; rel
< relstart
+ sec
->reloc_count
; ++rel
)
8765 enum elf_ppc64_reloc_type r_type
;
8766 unsigned long r_symndx
;
8768 struct elf_link_hash_entry
*h
;
8769 Elf_Internal_Sym
*sym
;
8772 r_type
= ELF64_R_TYPE (rel
->r_info
);
8779 case R_PPC64_TOC16_LO
:
8780 case R_PPC64_TOC16_HI
:
8781 case R_PPC64_TOC16_HA
:
8782 case R_PPC64_TOC16_DS
:
8783 case R_PPC64_TOC16_LO_DS
:
8787 r_symndx
= ELF64_R_SYM (rel
->r_info
);
8788 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, &local_syms
,
8796 val
= h
->root
.u
.def
.value
;
8798 val
= sym
->st_value
;
8799 val
+= rel
->r_addend
;
8801 if (val
>= toc
->size
)
8804 /* Anything in the toc ought to be aligned to 8 bytes.
8805 If not, don't mark as unused. */
8811 skip
= bfd_zmalloc (sizeof (*skip
) * (toc
->size
+ 15) / 8);
8816 skip
[val
>> 3] = ref_from_discarded
;
8819 if (elf_section_data (sec
)->relocs
!= relstart
)
8823 /* For largetoc loads of address constants, we can convert
8824 . addis rx,2,addr@got@ha
8825 . ld ry,addr@got@l(rx)
8827 . addis rx,2,addr@toc@ha
8828 . addi ry,rx,addr@toc@l
8829 when addr is within 2G of the toc pointer. This then means
8830 that the word storing "addr" in the toc is no longer needed. */
8832 if (!ppc64_elf_tdata (ibfd
)->has_small_toc_reloc
8833 && toc
->output_section
->rawsize
< (bfd_vma
) 1 << 31
8834 && toc
->reloc_count
!= 0)
8836 /* Read toc relocs. */
8837 toc_relocs
= _bfd_elf_link_read_relocs (ibfd
, toc
, NULL
, NULL
,
8839 if (toc_relocs
== NULL
)
8842 for (rel
= toc_relocs
; rel
< toc_relocs
+ toc
->reloc_count
; ++rel
)
8844 enum elf_ppc64_reloc_type r_type
;
8845 unsigned long r_symndx
;
8847 struct elf_link_hash_entry
*h
;
8848 Elf_Internal_Sym
*sym
;
8851 r_type
= ELF64_R_TYPE (rel
->r_info
);
8852 if (r_type
!= R_PPC64_ADDR64
)
8855 r_symndx
= ELF64_R_SYM (rel
->r_info
);
8856 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, &local_syms
,
8861 || sym_sec
->output_section
== NULL
8862 || discarded_section (sym_sec
))
8865 if (!SYMBOL_REFERENCES_LOCAL (info
, h
))
8870 if (h
->type
== STT_GNU_IFUNC
)
8872 val
= h
->root
.u
.def
.value
;
8876 if (ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
8878 val
= sym
->st_value
;
8880 val
+= rel
->r_addend
;
8881 val
+= sym_sec
->output_section
->vma
+ sym_sec
->output_offset
;
8883 /* We don't yet know the exact toc pointer value, but we
8884 know it will be somewhere in the toc section. Don't
8885 optimize if the difference from any possible toc
8886 pointer is outside [ff..f80008000, 7fff7fff]. */
8887 addr
= toc
->output_section
->vma
+ TOC_BASE_OFF
;
8888 if (val
- addr
+ (bfd_vma
) 0x80008000 >= (bfd_vma
) 1 << 32)
8891 addr
= toc
->output_section
->vma
+ toc
->output_section
->rawsize
;
8892 if (val
- addr
+ (bfd_vma
) 0x80008000 >= (bfd_vma
) 1 << 32)
8897 skip
= bfd_zmalloc (sizeof (*skip
) * (toc
->size
+ 15) / 8);
8902 skip
[rel
->r_offset
>> 3]
8903 |= can_optimize
| ((rel
- toc_relocs
) << 2);
8910 used
= bfd_zmalloc (sizeof (*used
) * (toc
->size
+ 7) / 8);
8914 if (symtab_hdr
->contents
!= (unsigned char *) local_syms
)
8917 && elf_section_data (sec
)->relocs
!= relstart
)
8919 if (elf_section_data (toc
)->relocs
!= toc_relocs
)
8925 /* Now check all kept sections that might reference the toc.
8926 Check the toc itself last. */
8927 for (sec
= (ibfd
->sections
== toc
&& toc
->next
? toc
->next
8930 sec
= (sec
== toc
? NULL
8931 : sec
->next
== NULL
? toc
8932 : sec
->next
== toc
&& toc
->next
? toc
->next
8937 if (sec
->reloc_count
== 0
8938 || discarded_section (sec
)
8939 || get_opd_info (sec
)
8940 || (sec
->flags
& SEC_ALLOC
) == 0
8941 || (sec
->flags
& SEC_DEBUGGING
) != 0)
8944 relstart
= _bfd_elf_link_read_relocs (ibfd
, sec
, NULL
, NULL
,
8946 if (relstart
== NULL
)
8952 /* Mark toc entries referenced as used. */
8956 for (rel
= relstart
; rel
< relstart
+ sec
->reloc_count
; ++rel
)
8958 enum elf_ppc64_reloc_type r_type
;
8959 unsigned long r_symndx
;
8961 struct elf_link_hash_entry
*h
;
8962 Elf_Internal_Sym
*sym
;
8965 r_type
= ELF64_R_TYPE (rel
->r_info
);
8969 case R_PPC64_TOC16_LO
:
8970 case R_PPC64_TOC16_HI
:
8971 case R_PPC64_TOC16_HA
:
8972 case R_PPC64_TOC16_DS
:
8973 case R_PPC64_TOC16_LO_DS
:
8974 /* In case we're taking addresses of toc entries. */
8975 case R_PPC64_ADDR64
:
8982 r_symndx
= ELF64_R_SYM (rel
->r_info
);
8983 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, &local_syms
,
8994 val
= h
->root
.u
.def
.value
;
8996 val
= sym
->st_value
;
8997 val
+= rel
->r_addend
;
8999 if (val
>= toc
->size
)
9002 if ((skip
[val
>> 3] & can_optimize
) != 0)
9009 case R_PPC64_TOC16_HA
:
9012 case R_PPC64_TOC16_LO_DS
:
9013 off
= rel
->r_offset
;
9014 off
+= (bfd_big_endian (ibfd
) ? -2 : 3);
9015 if (!bfd_get_section_contents (ibfd
, sec
, &opc
,
9021 if ((opc
& (0x3f << 2)) == (58u << 2))
9026 /* Wrong sort of reloc, or not a ld. We may
9027 as well clear ref_from_discarded too. */
9034 /* For the toc section, we only mark as used if this
9035 entry itself isn't unused. */
9036 else if ((used
[rel
->r_offset
>> 3]
9037 || !(skip
[rel
->r_offset
>> 3] & ref_from_discarded
))
9040 /* Do all the relocs again, to catch reference
9049 if (elf_section_data (sec
)->relocs
!= relstart
)
9053 /* Merge the used and skip arrays. Assume that TOC
9054 doublewords not appearing as either used or unused belong
9055 to an entry more than one doubleword in size. */
9056 for (drop
= skip
, keep
= used
, last
= 0, some_unused
= 0;
9057 drop
< skip
+ (toc
->size
+ 7) / 8;
9062 *drop
&= ~ref_from_discarded
;
9063 if ((*drop
& can_optimize
) != 0)
9067 else if ((*drop
& ref_from_discarded
) != 0)
9070 last
= ref_from_discarded
;
9080 bfd_byte
*contents
, *src
;
9082 Elf_Internal_Sym
*sym
;
9083 bfd_boolean local_toc_syms
= FALSE
;
9085 /* Shuffle the toc contents, and at the same time convert the
9086 skip array from booleans into offsets. */
9087 if (!bfd_malloc_and_get_section (ibfd
, toc
, &contents
))
9090 elf_section_data (toc
)->this_hdr
.contents
= contents
;
9092 for (src
= contents
, off
= 0, drop
= skip
;
9093 src
< contents
+ toc
->size
;
9096 if ((*drop
& (can_optimize
| ref_from_discarded
)) != 0)
9101 memcpy (src
- off
, src
, 8);
9105 toc
->rawsize
= toc
->size
;
9106 toc
->size
= src
- contents
- off
;
9108 /* Adjust addends for relocs against the toc section sym,
9109 and optimize any accesses we can. */
9110 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
9112 if (sec
->reloc_count
== 0
9113 || discarded_section (sec
))
9116 relstart
= _bfd_elf_link_read_relocs (ibfd
, sec
, NULL
, NULL
,
9118 if (relstart
== NULL
)
9121 for (rel
= relstart
; rel
< relstart
+ sec
->reloc_count
; ++rel
)
9123 enum elf_ppc64_reloc_type r_type
;
9124 unsigned long r_symndx
;
9126 struct elf_link_hash_entry
*h
;
9129 r_type
= ELF64_R_TYPE (rel
->r_info
);
9136 case R_PPC64_TOC16_LO
:
9137 case R_PPC64_TOC16_HI
:
9138 case R_PPC64_TOC16_HA
:
9139 case R_PPC64_TOC16_DS
:
9140 case R_PPC64_TOC16_LO_DS
:
9141 case R_PPC64_ADDR64
:
9145 r_symndx
= ELF64_R_SYM (rel
->r_info
);
9146 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, &local_syms
,
9154 val
= h
->root
.u
.def
.value
;
9157 val
= sym
->st_value
;
9159 local_toc_syms
= TRUE
;
9162 val
+= rel
->r_addend
;
9164 if (val
> toc
->rawsize
)
9166 else if ((skip
[val
>> 3] & ref_from_discarded
) != 0)
9168 else if ((skip
[val
>> 3] & can_optimize
) != 0)
9170 Elf_Internal_Rela
*tocrel
9171 = toc_relocs
+ (skip
[val
>> 3] >> 2);
9172 unsigned long tsym
= ELF64_R_SYM (tocrel
->r_info
);
9176 case R_PPC64_TOC16_HA
:
9177 rel
->r_info
= ELF64_R_INFO (tsym
, R_PPC64_TOC16_HA
);
9180 case R_PPC64_TOC16_LO_DS
:
9181 rel
->r_info
= ELF64_R_INFO (tsym
, R_PPC64_LO_DS_OPT
);
9185 if (!ppc64_elf_howto_table
[R_PPC64_ADDR32
])
9187 info
->callbacks
->einfo
9188 /* xgettext:c-format */
9189 (_("%H: %s references "
9190 "optimized away TOC entry\n"),
9191 ibfd
, sec
, rel
->r_offset
,
9192 ppc64_elf_howto_table
[r_type
]->name
);
9193 bfd_set_error (bfd_error_bad_value
);
9196 rel
->r_addend
= tocrel
->r_addend
;
9197 elf_section_data (sec
)->relocs
= relstart
;
9201 if (h
!= NULL
|| sym
->st_value
!= 0)
9204 rel
->r_addend
-= skip
[val
>> 3];
9205 elf_section_data (sec
)->relocs
= relstart
;
9208 if (elf_section_data (sec
)->relocs
!= relstart
)
9212 /* We shouldn't have local or global symbols defined in the TOC,
9213 but handle them anyway. */
9214 if (local_syms
!= NULL
)
9215 for (sym
= local_syms
;
9216 sym
< local_syms
+ symtab_hdr
->sh_info
;
9218 if (sym
->st_value
!= 0
9219 && bfd_section_from_elf_index (ibfd
, sym
->st_shndx
) == toc
)
9223 if (sym
->st_value
> toc
->rawsize
)
9224 i
= toc
->rawsize
>> 3;
9226 i
= sym
->st_value
>> 3;
9228 if ((skip
[i
] & (ref_from_discarded
| can_optimize
)) != 0)
9232 (_("%s defined on removed toc entry"),
9233 bfd_elf_sym_name (ibfd
, symtab_hdr
, sym
, NULL
));
9236 while ((skip
[i
] & (ref_from_discarded
| can_optimize
)));
9237 sym
->st_value
= (bfd_vma
) i
<< 3;
9240 sym
->st_value
-= skip
[i
];
9241 symtab_hdr
->contents
= (unsigned char *) local_syms
;
9244 /* Adjust any global syms defined in this toc input section. */
9245 if (toc_inf
.global_toc_syms
)
9248 toc_inf
.skip
= skip
;
9249 toc_inf
.global_toc_syms
= FALSE
;
9250 elf_link_hash_traverse (elf_hash_table (info
), adjust_toc_syms
,
9254 if (toc
->reloc_count
!= 0)
9256 Elf_Internal_Shdr
*rel_hdr
;
9257 Elf_Internal_Rela
*wrel
;
9260 /* Remove unused toc relocs, and adjust those we keep. */
9261 if (toc_relocs
== NULL
)
9262 toc_relocs
= _bfd_elf_link_read_relocs (ibfd
, toc
, NULL
, NULL
,
9264 if (toc_relocs
== NULL
)
9268 for (rel
= toc_relocs
; rel
< toc_relocs
+ toc
->reloc_count
; ++rel
)
9269 if ((skip
[rel
->r_offset
>> 3]
9270 & (ref_from_discarded
| can_optimize
)) == 0)
9272 wrel
->r_offset
= rel
->r_offset
- skip
[rel
->r_offset
>> 3];
9273 wrel
->r_info
= rel
->r_info
;
9274 wrel
->r_addend
= rel
->r_addend
;
9277 else if (!dec_dynrel_count (rel
->r_info
, toc
, info
,
9278 &local_syms
, NULL
, NULL
))
9281 elf_section_data (toc
)->relocs
= toc_relocs
;
9282 toc
->reloc_count
= wrel
- toc_relocs
;
9283 rel_hdr
= _bfd_elf_single_rel_hdr (toc
);
9284 sz
= rel_hdr
->sh_entsize
;
9285 rel_hdr
->sh_size
= toc
->reloc_count
* sz
;
9288 else if (elf_section_data (toc
)->relocs
!= toc_relocs
)
9291 if (local_syms
!= NULL
9292 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
9294 if (!info
->keep_memory
)
9297 symtab_hdr
->contents
= (unsigned char *) local_syms
;
9302 /* Look for cases where we can change an indirect GOT access to
9303 a GOT relative or PC relative access, possibly reducing the
9304 number of GOT entries. */
9305 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
9308 Elf_Internal_Shdr
*symtab_hdr
;
9309 Elf_Internal_Sym
*local_syms
;
9310 Elf_Internal_Rela
*relstart
, *rel
;
9313 if (!is_ppc64_elf (ibfd
))
9316 if (!ppc64_elf_tdata (ibfd
)->has_optrel
)
9319 sec
= ppc64_elf_tdata (ibfd
)->got
;
9322 got
= sec
->output_section
->vma
+ sec
->output_offset
+ 0x8000;
9325 symtab_hdr
= &elf_symtab_hdr (ibfd
);
9327 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
9329 if (sec
->reloc_count
== 0
9330 || !ppc64_elf_section_data (sec
)->has_optrel
9331 || discarded_section (sec
))
9334 relstart
= _bfd_elf_link_read_relocs (ibfd
, sec
, NULL
, NULL
,
9336 if (relstart
== NULL
)
9339 if (symtab_hdr
->contents
!= (unsigned char *) local_syms
)
9342 && elf_section_data (sec
)->relocs
!= relstart
)
9347 for (rel
= relstart
; rel
< relstart
+ sec
->reloc_count
; ++rel
)
9349 enum elf_ppc64_reloc_type r_type
;
9350 unsigned long r_symndx
;
9351 Elf_Internal_Sym
*sym
;
9353 struct elf_link_hash_entry
*h
;
9354 struct got_entry
*ent
;
9356 unsigned char buf
[8];
9358 enum {no_check
, check_lo
, check_ha
} insn_check
;
9360 r_type
= ELF64_R_TYPE (rel
->r_info
);
9364 insn_check
= no_check
;
9367 case R_PPC64_PLT16_HA
:
9368 case R_PPC64_GOT_TLSLD16_HA
:
9369 case R_PPC64_GOT_TLSGD16_HA
:
9370 case R_PPC64_GOT_TPREL16_HA
:
9371 case R_PPC64_GOT_DTPREL16_HA
:
9372 case R_PPC64_GOT16_HA
:
9373 case R_PPC64_TOC16_HA
:
9374 insn_check
= check_ha
;
9377 case R_PPC64_PLT16_LO
:
9378 case R_PPC64_PLT16_LO_DS
:
9379 case R_PPC64_GOT_TLSLD16_LO
:
9380 case R_PPC64_GOT_TLSGD16_LO
:
9381 case R_PPC64_GOT_TPREL16_LO_DS
:
9382 case R_PPC64_GOT_DTPREL16_LO_DS
:
9383 case R_PPC64_GOT16_LO
:
9384 case R_PPC64_GOT16_LO_DS
:
9385 case R_PPC64_TOC16_LO
:
9386 case R_PPC64_TOC16_LO_DS
:
9387 insn_check
= check_lo
;
9391 if (insn_check
!= no_check
)
9393 bfd_vma off
= rel
->r_offset
& ~3;
9395 if (!bfd_get_section_contents (ibfd
, sec
, buf
, off
, 4))
9398 insn
= bfd_get_32 (ibfd
, buf
);
9399 if (insn_check
== check_lo
9400 ? !ok_lo_toc_insn (insn
, r_type
)
9401 : ((insn
& ((0x3fu
<< 26) | 0x1f << 16))
9402 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9406 ppc64_elf_tdata (ibfd
)->unexpected_toc_insn
= 1;
9407 sprintf (str
, "%#08x", insn
);
9408 info
->callbacks
->einfo
9409 /* xgettext:c-format */
9410 (_("%H: got/toc optimization is not supported for"
9411 " %s instruction\n"),
9412 ibfd
, sec
, rel
->r_offset
& ~3, str
);
9419 /* Note that we don't delete GOT entries for
9420 R_PPC64_GOT16_DS since we'd need a lot more
9421 analysis. For starters, the preliminary layout is
9422 before the GOT, PLT, dynamic sections and stubs are
9423 laid out. Then we'd need to allow for changes in
9424 distance between sections caused by alignment. */
9428 case R_PPC64_GOT16_HA
:
9429 case R_PPC64_GOT16_LO_DS
:
9430 case R_PPC64_GOT_PCREL34
:
9434 r_symndx
= ELF64_R_SYM (rel
->r_info
);
9435 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, &local_syms
,
9440 || sym_sec
->output_section
== NULL
9441 || discarded_section (sym_sec
))
9444 if ((h
? h
->type
: ELF_ST_TYPE (sym
->st_info
)) == STT_GNU_IFUNC
)
9447 if (!SYMBOL_REFERENCES_LOCAL (info
, h
))
9451 val
= h
->root
.u
.def
.value
;
9453 val
= sym
->st_value
;
9454 val
+= rel
->r_addend
;
9455 val
+= sym_sec
->output_section
->vma
+ sym_sec
->output_offset
;
9457 /* Fudge factor to allow for the fact that the preliminary layout
9458 isn't exact. Reduce limits by this factor. */
9459 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9466 case R_PPC64_GOT16_HA
:
9467 if (val
- got
+ LIMIT_ADJUST (0x80008000ULL
)
9468 >= LIMIT_ADJUST (0x100000000ULL
))
9471 if (!bfd_get_section_contents (ibfd
, sec
, buf
,
9472 rel
->r_offset
& ~3, 4))
9474 insn
= bfd_get_32 (ibfd
, buf
);
9475 if (((insn
& ((0x3fu
<< 26) | 0x1f << 16))
9476 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9480 case R_PPC64_GOT16_LO_DS
:
9481 if (val
- got
+ LIMIT_ADJUST (0x80008000ULL
)
9482 >= LIMIT_ADJUST (0x100000000ULL
))
9484 if (!bfd_get_section_contents (ibfd
, sec
, buf
,
9485 rel
->r_offset
& ~3, 4))
9487 insn
= bfd_get_32 (ibfd
, buf
);
9488 if ((insn
& (0x3fu
<< 26 | 0x3)) != 58u << 26 /* ld */)
9492 case R_PPC64_GOT_PCREL34
:
9494 pc
+= sec
->output_section
->vma
+ sec
->output_offset
;
9495 if (val
- pc
+ LIMIT_ADJUST (1ULL << 33)
9496 >= LIMIT_ADJUST (1ULL << 34))
9498 if (!bfd_get_section_contents (ibfd
, sec
, buf
,
9499 rel
->r_offset
& ~3, 8))
9501 insn
= bfd_get_32 (ibfd
, buf
);
9502 if ((insn
& (-1u << 18)) != ((1u << 26) | (1u << 20)))
9504 insn
= bfd_get_32 (ibfd
, buf
+ 4);
9505 if ((insn
& (0x3fu
<< 26)) != 57u << 26)
9515 struct got_entry
**local_got_ents
= elf_local_got_ents (ibfd
);
9516 ent
= local_got_ents
[r_symndx
];
9518 for (; ent
!= NULL
; ent
= ent
->next
)
9519 if (ent
->addend
== rel
->r_addend
9520 && ent
->owner
== ibfd
9521 && ent
->tls_type
== 0)
9523 BFD_ASSERT (ent
&& ent
->got
.refcount
> 0);
9524 ent
->got
.refcount
-= 1;
9527 if (elf_section_data (sec
)->relocs
!= relstart
)
9531 if (local_syms
!= NULL
9532 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
9534 if (!info
->keep_memory
)
9537 symtab_hdr
->contents
= (unsigned char *) local_syms
;
9544 /* Return true iff input section I references the TOC using
9545 instructions limited to +/-32k offsets. */
9548 ppc64_elf_has_small_toc_reloc (asection
*i
)
9550 return (is_ppc64_elf (i
->owner
)
9551 && ppc64_elf_tdata (i
->owner
)->has_small_toc_reloc
);
9554 /* Allocate space for one GOT entry. */
9557 allocate_got (struct elf_link_hash_entry
*h
,
9558 struct bfd_link_info
*info
,
9559 struct got_entry
*gent
)
9561 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
9562 struct ppc_link_hash_entry
*eh
= ppc_elf_hash_entry (h
);
9563 int entsize
= (gent
->tls_type
& eh
->tls_mask
& (TLS_GD
| TLS_LD
)
9565 int rentsize
= (gent
->tls_type
& eh
->tls_mask
& TLS_GD
9566 ? 2 : 1) * sizeof (Elf64_External_Rela
);
9567 asection
*got
= ppc64_elf_tdata (gent
->owner
)->got
;
9569 gent
->got
.offset
= got
->size
;
9570 got
->size
+= entsize
;
9572 if (h
->type
== STT_GNU_IFUNC
)
9574 htab
->elf
.irelplt
->size
+= rentsize
;
9575 htab
->got_reli_size
+= rentsize
;
9577 else if (((bfd_link_pic (info
)
9578 && !(gent
->tls_type
!= 0
9579 && bfd_link_executable (info
)
9580 && SYMBOL_REFERENCES_LOCAL (info
, h
)))
9581 || (htab
->elf
.dynamic_sections_created
9583 && !SYMBOL_REFERENCES_LOCAL (info
, h
)))
9584 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
9586 asection
*relgot
= ppc64_elf_tdata (gent
->owner
)->relgot
;
9587 relgot
->size
+= rentsize
;
9591 /* This function merges got entries in the same toc group. */
9594 merge_got_entries (struct got_entry
**pent
)
9596 struct got_entry
*ent
, *ent2
;
9598 for (ent
= *pent
; ent
!= NULL
; ent
= ent
->next
)
9599 if (!ent
->is_indirect
)
9600 for (ent2
= ent
->next
; ent2
!= NULL
; ent2
= ent2
->next
)
9601 if (!ent2
->is_indirect
9602 && ent2
->addend
== ent
->addend
9603 && ent2
->tls_type
== ent
->tls_type
9604 && elf_gp (ent2
->owner
) == elf_gp (ent
->owner
))
9606 ent2
->is_indirect
= TRUE
;
9607 ent2
->got
.ent
= ent
;
9611 /* If H is undefined, make it dynamic if that makes sense. */
9614 ensure_undef_dynamic (struct bfd_link_info
*info
,
9615 struct elf_link_hash_entry
*h
)
9617 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
9619 if (htab
->dynamic_sections_created
9620 && ((info
->dynamic_undefined_weak
!= 0
9621 && h
->root
.type
== bfd_link_hash_undefweak
)
9622 || h
->root
.type
== bfd_link_hash_undefined
)
9625 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
9626 return bfd_elf_link_record_dynamic_symbol (info
, h
);
9630 /* Allocate space in .plt, .got and associated reloc sections for
9634 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
9636 struct bfd_link_info
*info
;
9637 struct ppc_link_hash_table
*htab
;
9639 struct ppc_link_hash_entry
*eh
;
9640 struct got_entry
**pgent
, *gent
;
9642 if (h
->root
.type
== bfd_link_hash_indirect
)
9645 info
= (struct bfd_link_info
*) inf
;
9646 htab
= ppc_hash_table (info
);
9650 eh
= ppc_elf_hash_entry (h
);
9651 /* Run through the TLS GD got entries first if we're changing them
9653 if ((eh
->tls_mask
& (TLS_TLS
| TLS_GDIE
)) == (TLS_TLS
| TLS_GDIE
))
9654 for (gent
= h
->got
.glist
; gent
!= NULL
; gent
= gent
->next
)
9655 if (gent
->got
.refcount
> 0
9656 && (gent
->tls_type
& TLS_GD
) != 0)
9658 /* This was a GD entry that has been converted to TPREL. If
9659 there happens to be a TPREL entry we can use that one. */
9660 struct got_entry
*ent
;
9661 for (ent
= h
->got
.glist
; ent
!= NULL
; ent
= ent
->next
)
9662 if (ent
->got
.refcount
> 0
9663 && (ent
->tls_type
& TLS_TPREL
) != 0
9664 && ent
->addend
== gent
->addend
9665 && ent
->owner
== gent
->owner
)
9667 gent
->got
.refcount
= 0;
9671 /* If not, then we'll be using our own TPREL entry. */
9672 if (gent
->got
.refcount
!= 0)
9673 gent
->tls_type
= TLS_TLS
| TLS_TPREL
;
9676 /* Remove any list entry that won't generate a word in the GOT before
9677 we call merge_got_entries. Otherwise we risk merging to empty
9679 pgent
= &h
->got
.glist
;
9680 while ((gent
= *pgent
) != NULL
)
9681 if (gent
->got
.refcount
> 0)
9683 if ((gent
->tls_type
& TLS_LD
) != 0
9684 && SYMBOL_REFERENCES_LOCAL (info
, h
))
9686 ppc64_tlsld_got (gent
->owner
)->got
.refcount
+= 1;
9687 *pgent
= gent
->next
;
9690 pgent
= &gent
->next
;
9693 *pgent
= gent
->next
;
9695 if (!htab
->do_multi_toc
)
9696 merge_got_entries (&h
->got
.glist
);
9698 for (gent
= h
->got
.glist
; gent
!= NULL
; gent
= gent
->next
)
9699 if (!gent
->is_indirect
)
9701 /* Ensure we catch all the cases where this symbol should
9703 if (!ensure_undef_dynamic (info
, h
))
9706 if (!is_ppc64_elf (gent
->owner
))
9709 allocate_got (h
, info
, gent
);
9712 /* If no dynamic sections we can't have dynamic relocs, except for
9713 IFUNCs which are handled even in static executables. */
9714 if (!htab
->elf
.dynamic_sections_created
9715 && h
->type
!= STT_GNU_IFUNC
)
9716 h
->dyn_relocs
= NULL
;
9718 /* Discard relocs on undefined symbols that must be local. */
9719 else if (h
->root
.type
== bfd_link_hash_undefined
9720 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
9721 h
->dyn_relocs
= NULL
;
9723 /* Also discard relocs on undefined weak syms with non-default
9724 visibility, or when dynamic_undefined_weak says so. */
9725 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
9726 h
->dyn_relocs
= NULL
;
9728 if (h
->dyn_relocs
!= NULL
)
9730 struct elf_dyn_relocs
*p
, **pp
;
9732 /* In the shared -Bsymbolic case, discard space allocated for
9733 dynamic pc-relative relocs against symbols which turn out to
9734 be defined in regular objects. For the normal shared case,
9735 discard space for relocs that have become local due to symbol
9736 visibility changes. */
9737 if (bfd_link_pic (info
))
9739 /* Relocs that use pc_count are those that appear on a call
9740 insn, or certain REL relocs (see must_be_dyn_reloc) that
9741 can be generated via assembly. We want calls to
9742 protected symbols to resolve directly to the function
9743 rather than going via the plt. If people want function
9744 pointer comparisons to work as expected then they should
9745 avoid writing weird assembly. */
9746 if (SYMBOL_CALLS_LOCAL (info
, h
))
9748 for (pp
= &h
->dyn_relocs
; (p
= *pp
) != NULL
; )
9750 p
->count
-= p
->pc_count
;
9759 if (h
->dyn_relocs
!= NULL
)
9761 /* Ensure we catch all the cases where this symbol
9762 should be made dynamic. */
9763 if (!ensure_undef_dynamic (info
, h
))
9768 /* For a fixed position executable, discard space for
9769 relocs against symbols which are not dynamic. */
9770 else if (h
->type
!= STT_GNU_IFUNC
)
9772 if (h
->dynamic_adjusted
9774 && !ELF_COMMON_DEF_P (h
))
9776 /* Ensure we catch all the cases where this symbol
9777 should be made dynamic. */
9778 if (!ensure_undef_dynamic (info
, h
))
9781 /* But if that didn't work out, discard dynamic relocs. */
9782 if (h
->dynindx
== -1)
9783 h
->dyn_relocs
= NULL
;
9786 h
->dyn_relocs
= NULL
;
9789 /* Finally, allocate space. */
9790 for (p
= h
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
9792 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
9793 if (eh
->elf
.type
== STT_GNU_IFUNC
)
9794 sreloc
= htab
->elf
.irelplt
;
9795 sreloc
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
9799 /* We might need a PLT entry when the symbol
9802 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9803 d) has plt16 relocs and we are linking statically. */
9804 if ((htab
->elf
.dynamic_sections_created
&& h
->dynindx
!= -1)
9805 || h
->type
== STT_GNU_IFUNC
9806 || (h
->needs_plt
&& h
->dynamic_adjusted
)
9809 && !htab
->elf
.dynamic_sections_created
9810 && !htab
->can_convert_all_inline_plt
9811 && (ppc_elf_hash_entry (h
)->tls_mask
9812 & (TLS_TLS
| PLT_KEEP
)) == PLT_KEEP
))
9814 struct plt_entry
*pent
;
9815 bfd_boolean doneone
= FALSE
;
9816 for (pent
= h
->plt
.plist
; pent
!= NULL
; pent
= pent
->next
)
9817 if (pent
->plt
.refcount
> 0)
9819 if (!htab
->elf
.dynamic_sections_created
9820 || h
->dynindx
== -1)
9822 if (h
->type
== STT_GNU_IFUNC
)
9825 pent
->plt
.offset
= s
->size
;
9826 s
->size
+= PLT_ENTRY_SIZE (htab
);
9827 s
= htab
->elf
.irelplt
;
9832 pent
->plt
.offset
= s
->size
;
9833 s
->size
+= LOCAL_PLT_ENTRY_SIZE (htab
);
9834 s
= bfd_link_pic (info
) ? htab
->relpltlocal
: NULL
;
9839 /* If this is the first .plt entry, make room for the special
9843 s
->size
+= PLT_INITIAL_ENTRY_SIZE (htab
);
9845 pent
->plt
.offset
= s
->size
;
9847 /* Make room for this entry. */
9848 s
->size
+= PLT_ENTRY_SIZE (htab
);
9850 /* Make room for the .glink code. */
9853 s
->size
+= GLINK_PLTRESOLVE_SIZE (htab
);
9856 /* We need bigger stubs past index 32767. */
9857 if (s
->size
>= GLINK_PLTRESOLVE_SIZE (htab
) + 32768*2*4)
9864 /* We also need to make an entry in the .rela.plt section. */
9865 s
= htab
->elf
.srelplt
;
9868 s
->size
+= sizeof (Elf64_External_Rela
);
9872 pent
->plt
.offset
= (bfd_vma
) -1;
9875 h
->plt
.plist
= NULL
;
9881 h
->plt
.plist
= NULL
;
9888 #define PPC_LO(v) ((v) & 0xffff)
9889 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9890 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9892 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9893 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9895 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9896 to set up space for global entry stubs. These are put in glink,
9897 after the branch table. */
9900 size_global_entry_stubs (struct elf_link_hash_entry
*h
, void *inf
)
9902 struct bfd_link_info
*info
;
9903 struct ppc_link_hash_table
*htab
;
9904 struct plt_entry
*pent
;
9907 if (h
->root
.type
== bfd_link_hash_indirect
)
9910 if (!h
->pointer_equality_needed
)
9917 htab
= ppc_hash_table (info
);
9921 s
= htab
->global_entry
;
9922 plt
= htab
->elf
.splt
;
9923 for (pent
= h
->plt
.plist
; pent
!= NULL
; pent
= pent
->next
)
9924 if (pent
->plt
.offset
!= (bfd_vma
) -1
9925 && pent
->addend
== 0)
9927 /* For ELFv2, if this symbol is not defined in a regular file
9928 and we are not generating a shared library or pie, then we
9929 need to define the symbol in the executable on a call stub.
9930 This is to avoid text relocations. */
9931 bfd_vma off
, stub_align
, stub_off
, stub_size
;
9932 unsigned int align_power
;
9936 if (htab
->params
->plt_stub_align
>= 0)
9937 align_power
= htab
->params
->plt_stub_align
;
9939 align_power
= -htab
->params
->plt_stub_align
;
9940 /* Setting section alignment is delayed until we know it is
9941 non-empty. Otherwise the .text output section will be
9942 aligned at least to plt_stub_align even when no global
9943 entry stubs are needed. */
9944 if (s
->alignment_power
< align_power
)
9945 s
->alignment_power
= align_power
;
9946 stub_align
= (bfd_vma
) 1 << align_power
;
9947 if (htab
->params
->plt_stub_align
>= 0
9948 || ((((stub_off
+ stub_size
- 1) & -stub_align
)
9949 - (stub_off
& -stub_align
))
9950 > ((stub_size
- 1) & -stub_align
)))
9951 stub_off
= (stub_off
+ stub_align
- 1) & -stub_align
;
9952 off
= pent
->plt
.offset
+ plt
->output_offset
+ plt
->output_section
->vma
;
9953 off
-= stub_off
+ s
->output_offset
+ s
->output_section
->vma
;
9954 /* Note that for --plt-stub-align negative we have a possible
9955 dependency between stub offset and size. Break that
9956 dependency by assuming the max stub size when calculating
9958 if (PPC_HA (off
) == 0)
9960 h
->root
.type
= bfd_link_hash_defined
;
9961 h
->root
.u
.def
.section
= s
;
9962 h
->root
.u
.def
.value
= stub_off
;
9963 s
->size
= stub_off
+ stub_size
;
9969 /* Set the sizes of the dynamic sections. */
9972 ppc64_elf_size_dynamic_sections (bfd
*output_bfd
,
9973 struct bfd_link_info
*info
)
9975 struct ppc_link_hash_table
*htab
;
9980 struct got_entry
*first_tlsld
;
9982 htab
= ppc_hash_table (info
);
9986 dynobj
= htab
->elf
.dynobj
;
9990 if (htab
->elf
.dynamic_sections_created
)
9992 /* Set the contents of the .interp section to the interpreter. */
9993 if (bfd_link_executable (info
) && !info
->nointerp
)
9995 s
= bfd_get_linker_section (dynobj
, ".interp");
9998 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
9999 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
10003 /* Set up .got offsets for local syms, and space for local dynamic
10005 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
10007 struct got_entry
**lgot_ents
;
10008 struct got_entry
**end_lgot_ents
;
10009 struct plt_entry
**local_plt
;
10010 struct plt_entry
**end_local_plt
;
10011 unsigned char *lgot_masks
;
10012 bfd_size_type locsymcount
;
10013 Elf_Internal_Shdr
*symtab_hdr
;
10015 if (!is_ppc64_elf (ibfd
))
10018 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
10020 struct ppc_dyn_relocs
*p
;
10022 for (p
= elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
10024 if (!bfd_is_abs_section (p
->sec
)
10025 && bfd_is_abs_section (p
->sec
->output_section
))
10027 /* Input section has been discarded, either because
10028 it is a copy of a linkonce section or due to
10029 linker script /DISCARD/, so we'll be discarding
10032 else if (p
->count
!= 0)
10034 asection
*srel
= elf_section_data (p
->sec
)->sreloc
;
10036 srel
= htab
->elf
.irelplt
;
10037 srel
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
10038 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
10039 info
->flags
|= DF_TEXTREL
;
10044 lgot_ents
= elf_local_got_ents (ibfd
);
10048 symtab_hdr
= &elf_symtab_hdr (ibfd
);
10049 locsymcount
= symtab_hdr
->sh_info
;
10050 end_lgot_ents
= lgot_ents
+ locsymcount
;
10051 local_plt
= (struct plt_entry
**) end_lgot_ents
;
10052 end_local_plt
= local_plt
+ locsymcount
;
10053 lgot_masks
= (unsigned char *) end_local_plt
;
10054 s
= ppc64_elf_tdata (ibfd
)->got
;
10055 for (; lgot_ents
< end_lgot_ents
; ++lgot_ents
, ++lgot_masks
)
10057 struct got_entry
**pent
, *ent
;
10060 while ((ent
= *pent
) != NULL
)
10061 if (ent
->got
.refcount
> 0)
10063 if ((ent
->tls_type
& *lgot_masks
& TLS_LD
) != 0)
10065 ppc64_tlsld_got (ibfd
)->got
.refcount
+= 1;
10070 unsigned int ent_size
= 8;
10071 unsigned int rel_size
= sizeof (Elf64_External_Rela
);
10073 ent
->got
.offset
= s
->size
;
10074 if ((ent
->tls_type
& *lgot_masks
& TLS_GD
) != 0)
10079 s
->size
+= ent_size
;
10080 if ((*lgot_masks
& (TLS_TLS
| PLT_IFUNC
)) == PLT_IFUNC
)
10082 htab
->elf
.irelplt
->size
+= rel_size
;
10083 htab
->got_reli_size
+= rel_size
;
10085 else if (bfd_link_pic (info
)
10086 && !(ent
->tls_type
!= 0
10087 && bfd_link_executable (info
)))
10089 asection
*srel
= ppc64_elf_tdata (ibfd
)->relgot
;
10090 srel
->size
+= rel_size
;
10099 /* Allocate space for plt calls to local syms. */
10100 lgot_masks
= (unsigned char *) end_local_plt
;
10101 for (; local_plt
< end_local_plt
; ++local_plt
, ++lgot_masks
)
10103 struct plt_entry
*ent
;
10105 for (ent
= *local_plt
; ent
!= NULL
; ent
= ent
->next
)
10106 if (ent
->plt
.refcount
> 0)
10108 if ((*lgot_masks
& (TLS_TLS
| PLT_IFUNC
)) == PLT_IFUNC
)
10110 s
= htab
->elf
.iplt
;
10111 ent
->plt
.offset
= s
->size
;
10112 s
->size
+= PLT_ENTRY_SIZE (htab
);
10113 htab
->elf
.irelplt
->size
+= sizeof (Elf64_External_Rela
);
10115 else if (htab
->can_convert_all_inline_plt
10116 || (*lgot_masks
& (TLS_TLS
| PLT_KEEP
)) != PLT_KEEP
)
10117 ent
->plt
.offset
= (bfd_vma
) -1;
10120 s
= htab
->pltlocal
;
10121 ent
->plt
.offset
= s
->size
;
10122 s
->size
+= LOCAL_PLT_ENTRY_SIZE (htab
);
10123 if (bfd_link_pic (info
))
10124 htab
->relpltlocal
->size
+= sizeof (Elf64_External_Rela
);
10128 ent
->plt
.offset
= (bfd_vma
) -1;
10132 /* Allocate global sym .plt and .got entries, and space for global
10133 sym dynamic relocs. */
10134 elf_link_hash_traverse (&htab
->elf
, allocate_dynrelocs
, info
);
10136 if (!htab
->opd_abi
&& !bfd_link_pic (info
))
10137 elf_link_hash_traverse (&htab
->elf
, size_global_entry_stubs
, info
);
10139 first_tlsld
= NULL
;
10140 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
10142 struct got_entry
*ent
;
10144 if (!is_ppc64_elf (ibfd
))
10147 ent
= ppc64_tlsld_got (ibfd
);
10148 if (ent
->got
.refcount
> 0)
10150 if (!htab
->do_multi_toc
&& first_tlsld
!= NULL
)
10152 ent
->is_indirect
= TRUE
;
10153 ent
->got
.ent
= first_tlsld
;
10157 if (first_tlsld
== NULL
)
10159 s
= ppc64_elf_tdata (ibfd
)->got
;
10160 ent
->got
.offset
= s
->size
;
10163 if (bfd_link_dll (info
))
10165 asection
*srel
= ppc64_elf_tdata (ibfd
)->relgot
;
10166 srel
->size
+= sizeof (Elf64_External_Rela
);
10171 ent
->got
.offset
= (bfd_vma
) -1;
10174 /* We now have determined the sizes of the various dynamic sections.
10175 Allocate memory for them. */
10177 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
10179 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
10182 if (s
== htab
->brlt
|| s
== htab
->relbrlt
)
10183 /* These haven't been allocated yet; don't strip. */
10185 else if (s
== htab
->elf
.sgot
10186 || s
== htab
->elf
.splt
10187 || s
== htab
->elf
.iplt
10188 || s
== htab
->pltlocal
10189 || s
== htab
->glink
10190 || s
== htab
->global_entry
10191 || s
== htab
->elf
.sdynbss
10192 || s
== htab
->elf
.sdynrelro
)
10194 /* Strip this section if we don't need it; see the
10197 else if (s
== htab
->glink_eh_frame
)
10199 if (!bfd_is_abs_section (s
->output_section
))
10200 /* Not sized yet. */
10203 else if (CONST_STRNEQ (s
->name
, ".rela"))
10207 if (s
!= htab
->elf
.srelplt
)
10210 /* We use the reloc_count field as a counter if we need
10211 to copy relocs into the output file. */
10212 s
->reloc_count
= 0;
10217 /* It's not one of our sections, so don't allocate space. */
10223 /* If we don't need this section, strip it from the
10224 output file. This is mostly to handle .rela.bss and
10225 .rela.plt. We must create both sections in
10226 create_dynamic_sections, because they must be created
10227 before the linker maps input sections to output
10228 sections. The linker does that before
10229 adjust_dynamic_symbol is called, and it is that
10230 function which decides whether anything needs to go
10231 into these sections. */
10232 s
->flags
|= SEC_EXCLUDE
;
10236 if (bfd_is_abs_section (s
->output_section
))
10237 _bfd_error_handler (_("warning: discarding dynamic section %s"),
10240 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
10243 /* Allocate memory for the section contents. We use bfd_zalloc
10244 here in case unused entries are not reclaimed before the
10245 section's contents are written out. This should not happen,
10246 but this way if it does we get a R_PPC64_NONE reloc in .rela
10247 sections instead of garbage.
10248 We also rely on the section contents being zero when writing
10249 the GOT and .dynrelro. */
10250 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
10251 if (s
->contents
== NULL
)
10255 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
10257 if (!is_ppc64_elf (ibfd
))
10260 s
= ppc64_elf_tdata (ibfd
)->got
;
10261 if (s
!= NULL
&& s
!= htab
->elf
.sgot
)
10264 s
->flags
|= SEC_EXCLUDE
;
10267 s
->contents
= bfd_zalloc (ibfd
, s
->size
);
10268 if (s
->contents
== NULL
)
10272 s
= ppc64_elf_tdata (ibfd
)->relgot
;
10276 s
->flags
|= SEC_EXCLUDE
;
10279 s
->contents
= bfd_zalloc (ibfd
, s
->size
);
10280 if (s
->contents
== NULL
)
10283 s
->reloc_count
= 0;
10288 if (htab
->elf
.dynamic_sections_created
)
10290 bfd_boolean tls_opt
;
10292 /* Add some entries to the .dynamic section. We fill in the
10293 values later, in ppc64_elf_finish_dynamic_sections, but we
10294 must add the entries now so that we get the correct size for
10295 the .dynamic section. The DT_DEBUG entry is filled in by the
10296 dynamic linker and used by the debugger. */
10297 #define add_dynamic_entry(TAG, VAL) \
10298 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10300 if (bfd_link_executable (info
))
10302 if (!add_dynamic_entry (DT_DEBUG
, 0))
10306 if (htab
->elf
.splt
!= NULL
&& htab
->elf
.splt
->size
!= 0)
10308 if (!add_dynamic_entry (DT_PLTGOT
, 0)
10309 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
10310 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
10311 || !add_dynamic_entry (DT_JMPREL
, 0)
10312 || !add_dynamic_entry (DT_PPC64_GLINK
, 0))
10316 if (NO_OPD_RELOCS
&& abiversion (output_bfd
) <= 1)
10318 if (!add_dynamic_entry (DT_PPC64_OPD
, 0)
10319 || !add_dynamic_entry (DT_PPC64_OPDSZ
, 0))
10323 tls_opt
= (htab
->params
->tls_get_addr_opt
10324 && ((htab
->tls_get_addr_fd
!= NULL
10325 && htab
->tls_get_addr_fd
->elf
.plt
.plist
!= NULL
)
10326 || (htab
->tga_desc_fd
!= NULL
10327 && htab
->tga_desc_fd
->elf
.plt
.plist
!= NULL
)));
10328 if (tls_opt
|| !htab
->opd_abi
)
10330 if (!add_dynamic_entry (DT_PPC64_OPT
, tls_opt
? PPC64_OPT_TLS
: 0))
10336 if (!add_dynamic_entry (DT_RELA
, 0)
10337 || !add_dynamic_entry (DT_RELASZ
, 0)
10338 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
10341 /* If any dynamic relocs apply to a read-only section,
10342 then we need a DT_TEXTREL entry. */
10343 if ((info
->flags
& DF_TEXTREL
) == 0)
10344 elf_link_hash_traverse (&htab
->elf
,
10345 _bfd_elf_maybe_set_textrel
, info
);
10347 if ((info
->flags
& DF_TEXTREL
) != 0)
10349 if (!add_dynamic_entry (DT_TEXTREL
, 0))
10354 #undef add_dynamic_entry
10359 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10362 ppc64_elf_hash_symbol (struct elf_link_hash_entry
*h
)
10364 if (h
->plt
.plist
!= NULL
10366 && !h
->pointer_equality_needed
)
10369 return _bfd_elf_hash_symbol (h
);
10372 /* Determine the type of stub needed, if any, for a call. */
10374 static inline enum ppc_stub_type
10375 ppc_type_of_stub (asection
*input_sec
,
10376 const Elf_Internal_Rela
*rel
,
10377 struct ppc_link_hash_entry
**hash
,
10378 struct plt_entry
**plt_ent
,
10379 bfd_vma destination
,
10380 unsigned long local_off
)
10382 struct ppc_link_hash_entry
*h
= *hash
;
10384 bfd_vma branch_offset
;
10385 bfd_vma max_branch_offset
;
10386 enum elf_ppc64_reloc_type r_type
;
10390 struct plt_entry
*ent
;
10391 struct ppc_link_hash_entry
*fdh
= h
;
10393 && h
->oh
->is_func_descriptor
)
10395 fdh
= ppc_follow_link (h
->oh
);
10399 for (ent
= fdh
->elf
.plt
.plist
; ent
!= NULL
; ent
= ent
->next
)
10400 if (ent
->addend
== rel
->r_addend
10401 && ent
->plt
.offset
!= (bfd_vma
) -1)
10404 return ppc_stub_plt_call
;
10407 /* Here, we know we don't have a plt entry. If we don't have a
10408 either a defined function descriptor or a defined entry symbol
10409 in a regular object file, then it is pointless trying to make
10410 any other type of stub. */
10411 if (!is_static_defined (&fdh
->elf
)
10412 && !is_static_defined (&h
->elf
))
10413 return ppc_stub_none
;
10415 else if (elf_local_got_ents (input_sec
->owner
) != NULL
)
10417 Elf_Internal_Shdr
*symtab_hdr
= &elf_symtab_hdr (input_sec
->owner
);
10418 struct plt_entry
**local_plt
= (struct plt_entry
**)
10419 elf_local_got_ents (input_sec
->owner
) + symtab_hdr
->sh_info
;
10420 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
10422 if (local_plt
[r_symndx
] != NULL
)
10424 struct plt_entry
*ent
;
10426 for (ent
= local_plt
[r_symndx
]; ent
!= NULL
; ent
= ent
->next
)
10427 if (ent
->addend
== rel
->r_addend
10428 && ent
->plt
.offset
!= (bfd_vma
) -1)
10431 return ppc_stub_plt_call
;
10436 /* Determine where the call point is. */
10437 location
= (input_sec
->output_offset
10438 + input_sec
->output_section
->vma
10441 branch_offset
= destination
- location
;
10442 r_type
= ELF64_R_TYPE (rel
->r_info
);
10444 /* Determine if a long branch stub is needed. */
10445 max_branch_offset
= 1 << 25;
10446 if (r_type
== R_PPC64_REL14
10447 || r_type
== R_PPC64_REL14_BRTAKEN
10448 || r_type
== R_PPC64_REL14_BRNTAKEN
)
10449 max_branch_offset
= 1 << 15;
10451 if (branch_offset
+ max_branch_offset
>= 2 * max_branch_offset
- local_off
)
10452 /* We need a stub. Figure out whether a long_branch or plt_branch
10453 is needed later. */
10454 return ppc_stub_long_branch
;
10456 return ppc_stub_none
;
10459 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10460 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10465 . lis %r12,xxx-1b@highest
10466 . ori %r12,%r12,xxx-1b@higher
10467 . sldi %r12,%r12,32
10468 . oris %r12,%r12,xxx-1b@high
10469 . ori %r12,%r12,xxx-1b@l
10470 . add/ldx %r12,%r11,%r12 */
10473 build_offset (bfd
*abfd
, bfd_byte
*p
, bfd_vma off
, bfd_boolean load
)
10475 bfd_put_32 (abfd
, MFLR_R12
, p
);
10477 bfd_put_32 (abfd
, BCL_20_31
, p
);
10479 bfd_put_32 (abfd
, MFLR_R11
, p
);
10481 bfd_put_32 (abfd
, MTLR_R12
, p
);
10483 if (off
+ 0x8000 < 0x10000)
10486 bfd_put_32 (abfd
, LD_R12_0R11
+ PPC_LO (off
), p
);
10488 bfd_put_32 (abfd
, ADDI_R12_R11
+ PPC_LO (off
), p
);
10491 else if (off
+ 0x80008000ULL
< 0x100000000ULL
)
10493 bfd_put_32 (abfd
, ADDIS_R12_R11
+ PPC_HA (off
), p
);
10496 bfd_put_32 (abfd
, LD_R12_0R12
+ PPC_LO (off
), p
);
10498 bfd_put_32 (abfd
, ADDI_R12_R12
+ PPC_LO (off
), p
);
10503 if (off
+ 0x800000000000ULL
< 0x1000000000000ULL
)
10505 bfd_put_32 (abfd
, LI_R12_0
+ ((off
>> 32) & 0xffff), p
);
10510 bfd_put_32 (abfd
, LIS_R12
+ ((off
>> 48) & 0xffff), p
);
10512 if (((off
>> 32) & 0xffff) != 0)
10514 bfd_put_32 (abfd
, ORI_R12_R12_0
+ ((off
>> 32) & 0xffff), p
);
10518 if (((off
>> 32) & 0xffffffffULL
) != 0)
10520 bfd_put_32 (abfd
, SLDI_R12_R12_32
, p
);
10523 if (PPC_HI (off
) != 0)
10525 bfd_put_32 (abfd
, ORIS_R12_R12_0
+ PPC_HI (off
), p
);
10528 if (PPC_LO (off
) != 0)
10530 bfd_put_32 (abfd
, ORI_R12_R12_0
+ PPC_LO (off
), p
);
10534 bfd_put_32 (abfd
, LDX_R12_R11_R12
, p
);
10536 bfd_put_32 (abfd
, ADD_R12_R11_R12
, p
);
10542 static unsigned int
10543 size_offset (bfd_vma off
)
10546 if (off
+ 0x8000 < 0x10000)
10548 else if (off
+ 0x80008000ULL
< 0x100000000ULL
)
10552 if (off
+ 0x800000000000ULL
< 0x1000000000000ULL
)
10557 if (((off
>> 32) & 0xffff) != 0)
10560 if (((off
>> 32) & 0xffffffffULL
) != 0)
10562 if (PPC_HI (off
) != 0)
10564 if (PPC_LO (off
) != 0)
10571 static unsigned int
10572 num_relocs_for_offset (bfd_vma off
)
10574 unsigned int num_rel
;
10575 if (off
+ 0x8000 < 0x10000)
10577 else if (off
+ 0x80008000ULL
< 0x100000000ULL
)
10582 if (off
+ 0x800000000000ULL
>= 0x1000000000000ULL
10583 && ((off
>> 32) & 0xffff) != 0)
10585 if (PPC_HI (off
) != 0)
10587 if (PPC_LO (off
) != 0)
10593 static Elf_Internal_Rela
*
10594 emit_relocs_for_offset (struct bfd_link_info
*info
, Elf_Internal_Rela
*r
,
10595 bfd_vma roff
, bfd_vma targ
, bfd_vma off
)
10597 bfd_vma relative_targ
= targ
- (roff
- 8);
10598 if (bfd_big_endian (info
->output_bfd
))
10600 r
->r_offset
= roff
;
10601 r
->r_addend
= relative_targ
+ roff
;
10602 if (off
+ 0x8000 < 0x10000)
10603 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16
);
10604 else if (off
+ 0x80008000ULL
< 0x100000000ULL
)
10606 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16_HA
);
10609 r
->r_offset
= roff
;
10610 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16_LO
);
10611 r
->r_addend
= relative_targ
+ roff
;
10615 if (off
+ 0x800000000000ULL
< 0x1000000000000ULL
)
10616 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16_HIGHER
);
10619 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST
);
10620 if (((off
>> 32) & 0xffff) != 0)
10624 r
->r_offset
= roff
;
10625 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16_HIGHER
);
10626 r
->r_addend
= relative_targ
+ roff
;
10629 if (((off
>> 32) & 0xffffffffULL
) != 0)
10631 if (PPC_HI (off
) != 0)
10635 r
->r_offset
= roff
;
10636 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16_HIGH
);
10637 r
->r_addend
= relative_targ
+ roff
;
10639 if (PPC_LO (off
) != 0)
10643 r
->r_offset
= roff
;
10644 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16_LO
);
10645 r
->r_addend
= relative_targ
+ roff
;
10652 build_power10_offset (bfd
*abfd
, bfd_byte
*p
, bfd_vma off
, int odd
,
10656 if (off
- odd
+ (1ULL << 33) < 1ULL << 34)
10661 bfd_put_32 (abfd
, NOP
, p
);
10667 insn
= PADDI_R12_PC
;
10669 bfd_put_32 (abfd
, insn
>> 32, p
);
10671 bfd_put_32 (abfd
, insn
, p
);
10673 /* The minimum value for paddi is -0x200000000. The minimum value
10674 for li is -0x8000, which when shifted by 34 and added gives a
10675 minimum value of -0x2000200000000. The maximum value is
10676 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10677 else if (off
- (8 - odd
) + (0x20002ULL
<< 32) < 0x40004ULL
<< 32)
10680 bfd_put_32 (abfd
, LI_R11_0
| (HA34 (off
) & 0xffff), p
);
10684 bfd_put_32 (abfd
, SLDI_R11_R11_34
, p
);
10687 insn
= PADDI_R12_PC
| D34 (off
);
10688 bfd_put_32 (abfd
, insn
>> 32, p
);
10690 bfd_put_32 (abfd
, insn
, p
);
10694 bfd_put_32 (abfd
, SLDI_R11_R11_34
, p
);
10698 bfd_put_32 (abfd
, LDX_R12_R11_R12
, p
);
10700 bfd_put_32 (abfd
, ADD_R12_R11_R12
, p
);
10705 bfd_put_32 (abfd
, LIS_R11
| ((HA34 (off
) >> 16) & 0x3fff), p
);
10707 bfd_put_32 (abfd
, ORI_R11_R11_0
| (HA34 (off
) & 0xffff), p
);
10711 bfd_put_32 (abfd
, SLDI_R11_R11_34
, p
);
10714 insn
= PADDI_R12_PC
| D34 (off
);
10715 bfd_put_32 (abfd
, insn
>> 32, p
);
10717 bfd_put_32 (abfd
, insn
, p
);
10721 bfd_put_32 (abfd
, SLDI_R11_R11_34
, p
);
10725 bfd_put_32 (abfd
, LDX_R12_R11_R12
, p
);
10727 bfd_put_32 (abfd
, ADD_R12_R11_R12
, p
);
10733 static unsigned int
10734 size_power10_offset (bfd_vma off
, int odd
)
10736 if (off
- odd
+ (1ULL << 33) < 1ULL << 34)
10738 else if (off
- (8 - odd
) + (0x20002ULL
<< 32) < 0x40004ULL
<< 32)
10744 static unsigned int
10745 num_relocs_for_power10_offset (bfd_vma off
, int odd
)
10747 if (off
- odd
+ (1ULL << 33) < 1ULL << 34)
10749 else if (off
- (8 - odd
) + (0x20002ULL
<< 32) < 0x40004ULL
<< 32)
10755 static Elf_Internal_Rela
*
10756 emit_relocs_for_power10_offset (struct bfd_link_info
*info
,
10757 Elf_Internal_Rela
*r
, bfd_vma roff
,
10758 bfd_vma targ
, bfd_vma off
, int odd
)
10760 if (off
- odd
+ (1ULL << 33) < 1ULL << 34)
10762 else if (off
- (8 - odd
) + (0x20002ULL
<< 32) < 0x40004ULL
<< 32)
10764 int d_offset
= bfd_big_endian (info
->output_bfd
) ? 2 : 0;
10765 r
->r_offset
= roff
+ d_offset
;
10766 r
->r_addend
= targ
+ 8 - odd
- d_offset
;
10767 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34
);
10773 int d_offset
= bfd_big_endian (info
->output_bfd
) ? 2 : 0;
10774 r
->r_offset
= roff
+ d_offset
;
10775 r
->r_addend
= targ
+ 8 + odd
- d_offset
;
10776 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34
);
10779 r
->r_offset
= roff
+ d_offset
;
10780 r
->r_addend
= targ
+ 4 + odd
- d_offset
;
10781 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34
);
10785 r
->r_offset
= roff
;
10786 r
->r_addend
= targ
;
10787 r
->r_info
= ELF64_R_INFO (0, R_PPC64_PCREL34
);
10791 /* Emit .eh_frame opcode to advance pc by DELTA. */
10794 eh_advance (bfd
*abfd
, bfd_byte
*eh
, unsigned int delta
)
10798 *eh
++ = DW_CFA_advance_loc
+ delta
;
10799 else if (delta
< 256)
10801 *eh
++ = DW_CFA_advance_loc1
;
10804 else if (delta
< 65536)
10806 *eh
++ = DW_CFA_advance_loc2
;
10807 bfd_put_16 (abfd
, delta
, eh
);
10812 *eh
++ = DW_CFA_advance_loc4
;
10813 bfd_put_32 (abfd
, delta
, eh
);
10819 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10821 static unsigned int
10822 eh_advance_size (unsigned int delta
)
10824 if (delta
< 64 * 4)
10825 /* DW_CFA_advance_loc+[1..63]. */
10827 if (delta
< 256 * 4)
10828 /* DW_CFA_advance_loc1, byte. */
10830 if (delta
< 65536 * 4)
10831 /* DW_CFA_advance_loc2, 2 bytes. */
10833 /* DW_CFA_advance_loc4, 4 bytes. */
10837 /* With power7 weakly ordered memory model, it is possible for ld.so
10838 to update a plt entry in one thread and have another thread see a
10839 stale zero toc entry. To avoid this we need some sort of acquire
10840 barrier in the call stub. One solution is to make the load of the
10841 toc word seem to appear to depend on the load of the function entry
10842 word. Another solution is to test for r2 being zero, and branch to
10843 the appropriate glink entry if so.
10845 . fake dep barrier compare
10846 . ld 12,xxx(2) ld 12,xxx(2)
10847 . mtctr 12 mtctr 12
10848 . xor 11,12,12 ld 2,xxx+8(2)
10849 . add 2,2,11 cmpldi 2,0
10850 . ld 2,xxx+8(2) bnectr+
10851 . bctr b <glink_entry>
10853 The solution involving the compare turns out to be faster, so
10854 that's what we use unless the branch won't reach. */
10856 #define ALWAYS_USE_FAKE_DEP 0
10857 #define ALWAYS_EMIT_R2SAVE 0
10859 static inline unsigned int
10860 plt_stub_size (struct ppc_link_hash_table
*htab
,
10861 struct ppc_stub_hash_entry
*stub_entry
,
10867 if (stub_entry
->stub_type
>= ppc_stub_plt_call_notoc
)
10869 if (htab
->params
->power10_stubs
!= 0)
10870 size
= 8 + size_power10_offset (off
, odd
);
10872 size
= 8 + size_offset (off
- 8);
10873 if (stub_entry
->stub_type
> ppc_stub_plt_call_notoc
)
10879 if (ALWAYS_EMIT_R2SAVE
10880 || stub_entry
->stub_type
== ppc_stub_plt_call_r2save
)
10882 if (PPC_HA (off
) != 0)
10887 if (htab
->params
->plt_static_chain
)
10889 if (htab
->params
->plt_thread_safe
10890 && htab
->elf
.dynamic_sections_created
10891 && stub_entry
->h
!= NULL
10892 && stub_entry
->h
->elf
.dynindx
!= -1)
10894 if (PPC_HA (off
+ 8 + 8 * htab
->params
->plt_static_chain
)
10899 if (stub_entry
->h
!= NULL
10900 && is_tls_get_addr (&stub_entry
->h
->elf
, htab
)
10901 && htab
->params
->tls_get_addr_opt
)
10903 if (!htab
->params
->no_tls_get_addr_regsave
)
10906 if (stub_entry
->stub_type
== ppc_stub_plt_call_r2save
10907 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
10913 if (stub_entry
->stub_type
== ppc_stub_plt_call_r2save
10914 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
10921 /* Depending on the sign of plt_stub_align:
10922 If positive, return the padding to align to a 2**plt_stub_align
10924 If negative, if this stub would cross fewer 2**plt_stub_align
10925 boundaries if we align, then return the padding needed to do so. */
10927 static inline unsigned int
10928 plt_stub_pad (struct ppc_link_hash_table
*htab
,
10929 struct ppc_stub_hash_entry
*stub_entry
,
10934 unsigned stub_size
;
10935 bfd_vma stub_off
= stub_entry
->group
->stub_sec
->size
;
10937 if (htab
->params
->plt_stub_align
>= 0)
10939 stub_align
= 1 << htab
->params
->plt_stub_align
;
10940 if ((stub_off
& (stub_align
- 1)) != 0)
10941 return stub_align
- (stub_off
& (stub_align
- 1));
10945 stub_align
= 1 << -htab
->params
->plt_stub_align
;
10946 stub_size
= plt_stub_size (htab
, stub_entry
, plt_off
, odd
);
10947 if (((stub_off
+ stub_size
- 1) & -stub_align
) - (stub_off
& -stub_align
)
10948 > ((stub_size
- 1) & -stub_align
))
10949 return stub_align
- (stub_off
& (stub_align
- 1));
10953 /* Build a .plt call stub. */
10955 static inline bfd_byte
*
10956 build_plt_stub (struct ppc_link_hash_table
*htab
,
10957 struct ppc_stub_hash_entry
*stub_entry
,
10958 bfd_byte
*p
, bfd_vma offset
, Elf_Internal_Rela
*r
)
10960 bfd
*obfd
= htab
->params
->stub_bfd
;
10961 bfd_boolean plt_load_toc
= htab
->opd_abi
;
10962 bfd_boolean plt_static_chain
= htab
->params
->plt_static_chain
;
10963 bfd_boolean plt_thread_safe
= (htab
->params
->plt_thread_safe
10964 && htab
->elf
.dynamic_sections_created
10965 && stub_entry
->h
!= NULL
10966 && stub_entry
->h
->elf
.dynindx
!= -1);
10967 bfd_boolean use_fake_dep
= plt_thread_safe
;
10968 bfd_vma cmp_branch_off
= 0;
10970 if (!ALWAYS_USE_FAKE_DEP
10973 && !(stub_entry
->h
!= NULL
10974 && is_tls_get_addr (&stub_entry
->h
->elf
, htab
)
10975 && htab
->params
->tls_get_addr_opt
))
10977 bfd_vma pltoff
= stub_entry
->plt_ent
->plt
.offset
& ~1;
10978 bfd_vma pltindex
= ((pltoff
- PLT_INITIAL_ENTRY_SIZE (htab
))
10979 / PLT_ENTRY_SIZE (htab
));
10980 bfd_vma glinkoff
= GLINK_PLTRESOLVE_SIZE (htab
) + pltindex
* 8;
10983 if (pltindex
> 32768)
10984 glinkoff
+= (pltindex
- 32768) * 4;
10986 + htab
->glink
->output_offset
10987 + htab
->glink
->output_section
->vma
);
10988 from
= (p
- stub_entry
->group
->stub_sec
->contents
10989 + 4 * (ALWAYS_EMIT_R2SAVE
10990 || stub_entry
->stub_type
== ppc_stub_plt_call_r2save
)
10991 + 4 * (PPC_HA (offset
) != 0)
10992 + 4 * (PPC_HA (offset
+ 8 + 8 * plt_static_chain
)
10993 != PPC_HA (offset
))
10994 + 4 * (plt_static_chain
!= 0)
10996 + stub_entry
->group
->stub_sec
->output_offset
10997 + stub_entry
->group
->stub_sec
->output_section
->vma
);
10998 cmp_branch_off
= to
- from
;
10999 use_fake_dep
= cmp_branch_off
+ (1 << 25) >= (1 << 26);
11002 if (PPC_HA (offset
) != 0)
11006 if (ALWAYS_EMIT_R2SAVE
11007 || stub_entry
->stub_type
== ppc_stub_plt_call_r2save
)
11008 r
[0].r_offset
+= 4;
11009 r
[0].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_HA
);
11010 r
[1].r_offset
= r
[0].r_offset
+ 4;
11011 r
[1].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS
);
11012 r
[1].r_addend
= r
[0].r_addend
;
11015 if (PPC_HA (offset
+ 8 + 8 * plt_static_chain
) != PPC_HA (offset
))
11017 r
[2].r_offset
= r
[1].r_offset
+ 4;
11018 r
[2].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_LO
);
11019 r
[2].r_addend
= r
[0].r_addend
;
11023 r
[2].r_offset
= r
[1].r_offset
+ 8 + 8 * use_fake_dep
;
11024 r
[2].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS
);
11025 r
[2].r_addend
= r
[0].r_addend
+ 8;
11026 if (plt_static_chain
)
11028 r
[3].r_offset
= r
[2].r_offset
+ 4;
11029 r
[3].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS
);
11030 r
[3].r_addend
= r
[0].r_addend
+ 16;
11035 if (ALWAYS_EMIT_R2SAVE
11036 || stub_entry
->stub_type
== ppc_stub_plt_call_r2save
)
11037 bfd_put_32 (obfd
, STD_R2_0R1
+ STK_TOC (htab
), p
), p
+= 4;
11040 bfd_put_32 (obfd
, ADDIS_R11_R2
| PPC_HA (offset
), p
), p
+= 4;
11041 bfd_put_32 (obfd
, LD_R12_0R11
| PPC_LO (offset
), p
), p
+= 4;
11045 bfd_put_32 (obfd
, ADDIS_R12_R2
| PPC_HA (offset
), p
), p
+= 4;
11046 bfd_put_32 (obfd
, LD_R12_0R12
| PPC_LO (offset
), p
), p
+= 4;
11049 && PPC_HA (offset
+ 8 + 8 * plt_static_chain
) != PPC_HA (offset
))
11051 bfd_put_32 (obfd
, ADDI_R11_R11
| PPC_LO (offset
), p
), p
+= 4;
11054 bfd_put_32 (obfd
, MTCTR_R12
, p
), p
+= 4;
11059 bfd_put_32 (obfd
, XOR_R2_R12_R12
, p
), p
+= 4;
11060 bfd_put_32 (obfd
, ADD_R11_R11_R2
, p
), p
+= 4;
11062 bfd_put_32 (obfd
, LD_R2_0R11
| PPC_LO (offset
+ 8), p
), p
+= 4;
11063 if (plt_static_chain
)
11064 bfd_put_32 (obfd
, LD_R11_0R11
| PPC_LO (offset
+ 16), p
), p
+= 4;
11071 if (ALWAYS_EMIT_R2SAVE
11072 || stub_entry
->stub_type
== ppc_stub_plt_call_r2save
)
11073 r
[0].r_offset
+= 4;
11074 r
[0].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_DS
);
11077 if (PPC_HA (offset
+ 8 + 8 * plt_static_chain
) != PPC_HA (offset
))
11079 r
[1].r_offset
= r
[0].r_offset
+ 4;
11080 r
[1].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16
);
11081 r
[1].r_addend
= r
[0].r_addend
;
11085 r
[1].r_offset
= r
[0].r_offset
+ 8 + 8 * use_fake_dep
;
11086 r
[1].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_DS
);
11087 r
[1].r_addend
= r
[0].r_addend
+ 8 + 8 * plt_static_chain
;
11088 if (plt_static_chain
)
11090 r
[2].r_offset
= r
[1].r_offset
+ 4;
11091 r
[2].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_DS
);
11092 r
[2].r_addend
= r
[0].r_addend
+ 8;
11097 if (ALWAYS_EMIT_R2SAVE
11098 || stub_entry
->stub_type
== ppc_stub_plt_call_r2save
)
11099 bfd_put_32 (obfd
, STD_R2_0R1
+ STK_TOC (htab
), p
), p
+= 4;
11100 bfd_put_32 (obfd
, LD_R12_0R2
| PPC_LO (offset
), p
), p
+= 4;
11102 && PPC_HA (offset
+ 8 + 8 * plt_static_chain
) != PPC_HA (offset
))
11104 bfd_put_32 (obfd
, ADDI_R2_R2
| PPC_LO (offset
), p
), p
+= 4;
11107 bfd_put_32 (obfd
, MTCTR_R12
, p
), p
+= 4;
11112 bfd_put_32 (obfd
, XOR_R11_R12_R12
, p
), p
+= 4;
11113 bfd_put_32 (obfd
, ADD_R2_R2_R11
, p
), p
+= 4;
11115 if (plt_static_chain
)
11116 bfd_put_32 (obfd
, LD_R11_0R2
| PPC_LO (offset
+ 16), p
), p
+= 4;
11117 bfd_put_32 (obfd
, LD_R2_0R2
| PPC_LO (offset
+ 8), p
), p
+= 4;
11120 if (plt_load_toc
&& plt_thread_safe
&& !use_fake_dep
)
11122 bfd_put_32 (obfd
, CMPLDI_R2_0
, p
), p
+= 4;
11123 bfd_put_32 (obfd
, BNECTR_P4
, p
), p
+= 4;
11124 bfd_put_32 (obfd
, B_DOT
| (cmp_branch_off
& 0x3fffffc), p
), p
+= 4;
11127 bfd_put_32 (obfd
, BCTR
, p
), p
+= 4;
11131 /* Build a special .plt call stub for __tls_get_addr. */
11133 #define LD_R0_0R3 0xe8030000
11134 #define LD_R12_0R3 0xe9830000
11135 #define MR_R0_R3 0x7c601b78
11136 #define CMPDI_R0_0 0x2c200000
11137 #define ADD_R3_R12_R13 0x7c6c6a14
11138 #define BEQLR 0x4d820020
11139 #define MR_R3_R0 0x7c030378
11140 #define BCTRL 0x4e800421
11143 build_tls_get_addr_head (struct ppc_link_hash_table
*htab
,
11144 struct ppc_stub_hash_entry
*stub_entry
,
11147 bfd
*obfd
= htab
->params
->stub_bfd
;
11149 bfd_put_32 (obfd
, LD_R0_0R3
+ 0, p
), p
+= 4;
11150 bfd_put_32 (obfd
, LD_R12_0R3
+ 8, p
), p
+= 4;
11151 bfd_put_32 (obfd
, CMPDI_R0_0
, p
), p
+= 4;
11152 bfd_put_32 (obfd
, MR_R0_R3
, p
), p
+= 4;
11153 bfd_put_32 (obfd
, ADD_R3_R12_R13
, p
), p
+= 4;
11154 bfd_put_32 (obfd
, BEQLR
, p
), p
+= 4;
11155 bfd_put_32 (obfd
, MR_R3_R0
, p
), p
+= 4;
11157 if (!htab
->params
->no_tls_get_addr_regsave
)
11158 p
= tls_get_addr_prologue (obfd
, p
, htab
);
11159 else if (stub_entry
->stub_type
== ppc_stub_plt_call_r2save
11160 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
11162 bfd_put_32 (obfd
, MFLR_R0
, p
);
11164 bfd_put_32 (obfd
, STD_R0_0R1
+ STK_LINKER (htab
), p
);
11171 build_tls_get_addr_tail (struct ppc_link_hash_table
*htab
,
11172 struct ppc_stub_hash_entry
*stub_entry
,
11176 bfd
*obfd
= htab
->params
->stub_bfd
;
11178 if (!htab
->params
->no_tls_get_addr_regsave
)
11180 bfd_put_32 (obfd
, BCTRL
, p
- 4);
11182 if (stub_entry
->stub_type
== ppc_stub_plt_call_r2save
11183 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
11185 bfd_put_32 (obfd
, LD_R2_0R1
+ STK_TOC (htab
), p
);
11188 p
= tls_get_addr_epilogue (obfd
, p
, htab
);
11190 else if (stub_entry
->stub_type
== ppc_stub_plt_call_r2save
11191 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
11193 bfd_put_32 (obfd
, BCTRL
, p
- 4);
11195 bfd_put_32 (obfd
, LD_R2_0R1
+ STK_TOC (htab
), p
);
11197 bfd_put_32 (obfd
, LD_R0_0R1
+ STK_LINKER (htab
), p
);
11199 bfd_put_32 (obfd
, MTLR_R0
, p
);
11201 bfd_put_32 (obfd
, BLR
, p
);
11205 if (htab
->glink_eh_frame
!= NULL
11206 && htab
->glink_eh_frame
->size
!= 0)
11208 bfd_byte
*base
, *eh
;
11210 base
= htab
->glink_eh_frame
->contents
+ stub_entry
->group
->eh_base
+ 17;
11211 eh
= base
+ stub_entry
->group
->eh_size
;
11213 if (!htab
->params
->no_tls_get_addr_regsave
)
11215 unsigned int cfa_updt
, delta
, i
;
11217 /* After the bctrl, lr has been modified so we need to emit
11218 .eh_frame info saying the return address is on the stack. In
11219 fact we must put the EH info at or before the call rather
11220 than after it, because the EH info for a call needs to be
11221 specified by that point.
11222 See libgcc/unwind-dw2.c execute_cfa_program.
11223 Any stack pointer update must be described immediately after
11224 the instruction making the change, and since the stdu occurs
11225 after saving regs we put all the reg saves and the cfa
11227 cfa_updt
= stub_entry
->stub_offset
+ 18 * 4;
11228 delta
= cfa_updt
- stub_entry
->group
->lr_restore
;
11229 stub_entry
->group
->lr_restore
11230 = stub_entry
->stub_offset
+ (p
- loc
) - 4;
11231 eh
= eh_advance (htab
->elf
.dynobj
, eh
, delta
);
11232 *eh
++ = DW_CFA_def_cfa_offset
;
11240 *eh
++ = DW_CFA_offset_extended_sf
;
11242 *eh
++ = (-16 / 8) & 0x7f;
11243 for (i
= 4; i
< 12; i
++)
11245 *eh
++ = DW_CFA_offset
+ i
;
11246 *eh
++ = (htab
->opd_abi
? 13 : 12) - i
;
11248 *eh
++ = (DW_CFA_advance_loc
11249 + (stub_entry
->group
->lr_restore
- 8 - cfa_updt
) / 4);
11250 *eh
++ = DW_CFA_def_cfa_offset
;
11252 for (i
= 4; i
< 12; i
++)
11253 *eh
++ = DW_CFA_restore
+ i
;
11254 *eh
++ = DW_CFA_advance_loc
+ 2;
11255 *eh
++ = DW_CFA_restore_extended
;
11257 stub_entry
->group
->eh_size
= eh
- base
;
11259 else if (stub_entry
->stub_type
== ppc_stub_plt_call_r2save
11260 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
11262 unsigned int lr_used
, delta
;
11264 lr_used
= stub_entry
->stub_offset
+ (p
- 20 - loc
);
11265 delta
= lr_used
- stub_entry
->group
->lr_restore
;
11266 stub_entry
->group
->lr_restore
= lr_used
+ 16;
11267 eh
= eh_advance (htab
->elf
.dynobj
, eh
, delta
);
11268 *eh
++ = DW_CFA_offset_extended_sf
;
11270 *eh
++ = -(STK_LINKER (htab
) / 8) & 0x7f;
11271 *eh
++ = DW_CFA_advance_loc
+ 4;
11272 *eh
++ = DW_CFA_restore_extended
;
11274 stub_entry
->group
->eh_size
= eh
- base
;
11280 static Elf_Internal_Rela
*
11281 get_relocs (asection
*sec
, int count
)
11283 Elf_Internal_Rela
*relocs
;
11284 struct bfd_elf_section_data
*elfsec_data
;
11286 elfsec_data
= elf_section_data (sec
);
11287 relocs
= elfsec_data
->relocs
;
11288 if (relocs
== NULL
)
11290 bfd_size_type relsize
;
11291 relsize
= sec
->reloc_count
* sizeof (*relocs
);
11292 relocs
= bfd_alloc (sec
->owner
, relsize
);
11293 if (relocs
== NULL
)
11295 elfsec_data
->relocs
= relocs
;
11296 elfsec_data
->rela
.hdr
= bfd_zalloc (sec
->owner
,
11297 sizeof (Elf_Internal_Shdr
));
11298 if (elfsec_data
->rela
.hdr
== NULL
)
11300 elfsec_data
->rela
.hdr
->sh_size
= (sec
->reloc_count
11301 * sizeof (Elf64_External_Rela
));
11302 elfsec_data
->rela
.hdr
->sh_entsize
= sizeof (Elf64_External_Rela
);
11303 sec
->reloc_count
= 0;
11305 relocs
+= sec
->reloc_count
;
11306 sec
->reloc_count
+= count
;
11310 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
11311 forms, to the equivalent relocs against the global symbol given by
11315 use_global_in_relocs (struct ppc_link_hash_table
*htab
,
11316 struct ppc_stub_hash_entry
*stub_entry
,
11317 Elf_Internal_Rela
*r
, unsigned int num_rel
)
11319 struct elf_link_hash_entry
**hashes
;
11320 unsigned long symndx
;
11321 struct ppc_link_hash_entry
*h
;
11324 /* Relocs are always against symbols in their own object file. Fake
11325 up global sym hashes for the stub bfd (which has no symbols). */
11326 hashes
= elf_sym_hashes (htab
->params
->stub_bfd
);
11327 if (hashes
== NULL
)
11329 bfd_size_type hsize
;
11331 /* When called the first time, stub_globals will contain the
11332 total number of symbols seen during stub sizing. After
11333 allocating, stub_globals is used as an index to fill the
11335 hsize
= (htab
->stub_globals
+ 1) * sizeof (*hashes
);
11336 hashes
= bfd_zalloc (htab
->params
->stub_bfd
, hsize
);
11337 if (hashes
== NULL
)
11339 elf_sym_hashes (htab
->params
->stub_bfd
) = hashes
;
11340 htab
->stub_globals
= 1;
11342 symndx
= htab
->stub_globals
++;
11344 hashes
[symndx
] = &h
->elf
;
11345 if (h
->oh
!= NULL
&& h
->oh
->is_func
)
11346 h
= ppc_follow_link (h
->oh
);
11347 BFD_ASSERT (h
->elf
.root
.type
== bfd_link_hash_defined
11348 || h
->elf
.root
.type
== bfd_link_hash_defweak
);
11349 symval
= defined_sym_val (&h
->elf
);
11350 while (num_rel
-- != 0)
11352 r
->r_info
= ELF64_R_INFO (symndx
, ELF64_R_TYPE (r
->r_info
));
11353 if (h
->elf
.root
.u
.def
.section
!= stub_entry
->target_section
)
11355 /* H is an opd symbol. The addend must be zero, and the
11356 branch reloc is the only one we can convert. */
11361 r
->r_addend
-= symval
;
11368 get_r2off (struct bfd_link_info
*info
,
11369 struct ppc_stub_hash_entry
*stub_entry
)
11371 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
11372 bfd_vma r2off
= htab
->sec_info
[stub_entry
->target_section
->id
].toc_off
;
11376 /* Support linking -R objects. Get the toc pointer from the
11379 if (!htab
->opd_abi
)
11381 asection
*opd
= stub_entry
->h
->elf
.root
.u
.def
.section
;
11382 bfd_vma opd_off
= stub_entry
->h
->elf
.root
.u
.def
.value
;
11384 if (strcmp (opd
->name
, ".opd") != 0
11385 || opd
->reloc_count
!= 0)
11387 info
->callbacks
->einfo
11388 (_("%P: cannot find opd entry toc for `%pT'\n"),
11389 stub_entry
->h
->elf
.root
.root
.string
);
11390 bfd_set_error (bfd_error_bad_value
);
11391 return (bfd_vma
) -1;
11393 if (!bfd_get_section_contents (opd
->owner
, opd
, buf
, opd_off
+ 8, 8))
11394 return (bfd_vma
) -1;
11395 r2off
= bfd_get_64 (opd
->owner
, buf
);
11396 r2off
-= elf_gp (info
->output_bfd
);
11398 r2off
-= htab
->sec_info
[stub_entry
->group
->link_sec
->id
].toc_off
;
11403 ppc_build_one_stub (struct bfd_hash_entry
*gen_entry
, void *in_arg
)
11405 struct ppc_stub_hash_entry
*stub_entry
;
11406 struct ppc_branch_hash_entry
*br_entry
;
11407 struct bfd_link_info
*info
;
11408 struct ppc_link_hash_table
*htab
;
11411 bfd_byte
*p
, *relp
;
11413 Elf_Internal_Rela
*r
;
11417 bfd_boolean is_tga
;
11419 /* Massage our args to the form they really have. */
11420 stub_entry
= (struct ppc_stub_hash_entry
*) gen_entry
;
11423 /* Fail if the target section could not be assigned to an output
11424 section. The user should fix his linker script. */
11425 if (stub_entry
->target_section
!= NULL
11426 && stub_entry
->target_section
->output_section
== NULL
11427 && info
->non_contiguous_regions
)
11428 info
->callbacks
->einfo (_("%F%P: Could not assign '%pA' to an output section. "
11429 "Retry without --enable-non-contiguous-regions.\n"),
11430 stub_entry
->target_section
);
11432 /* Same for the group. */
11433 if (stub_entry
->group
->stub_sec
!= NULL
11434 && stub_entry
->group
->stub_sec
->output_section
== NULL
11435 && info
->non_contiguous_regions
)
11436 info
->callbacks
->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11437 "output section. Retry without "
11438 "--enable-non-contiguous-regions.\n"),
11439 stub_entry
->group
->stub_sec
,
11440 stub_entry
->target_section
);
11442 htab
= ppc_hash_table (info
);
11446 BFD_ASSERT (stub_entry
->stub_offset
>= stub_entry
->group
->stub_sec
->size
);
11447 loc
= stub_entry
->group
->stub_sec
->contents
+ stub_entry
->stub_offset
;
11449 htab
->stub_count
[stub_entry
->stub_type
- 1] += 1;
11450 switch (stub_entry
->stub_type
)
11452 case ppc_stub_long_branch
:
11453 case ppc_stub_long_branch_r2off
:
11454 /* Branches are relative. This is where we are going to. */
11455 targ
= (stub_entry
->target_value
11456 + stub_entry
->target_section
->output_offset
11457 + stub_entry
->target_section
->output_section
->vma
);
11458 targ
+= PPC64_LOCAL_ENTRY_OFFSET (stub_entry
->other
);
11460 /* And this is where we are coming from. */
11461 off
= (stub_entry
->stub_offset
11462 + stub_entry
->group
->stub_sec
->output_offset
11463 + stub_entry
->group
->stub_sec
->output_section
->vma
);
11467 obfd
= htab
->params
->stub_bfd
;
11468 if (stub_entry
->stub_type
== ppc_stub_long_branch_r2off
)
11470 bfd_vma r2off
= get_r2off (info
, stub_entry
);
11472 if (r2off
== (bfd_vma
) -1)
11474 htab
->stub_error
= TRUE
;
11477 bfd_put_32 (obfd
, STD_R2_0R1
+ STK_TOC (htab
), p
);
11479 if (PPC_HA (r2off
) != 0)
11481 bfd_put_32 (obfd
, ADDIS_R2_R2
| PPC_HA (r2off
), p
);
11484 if (PPC_LO (r2off
) != 0)
11486 bfd_put_32 (obfd
, ADDI_R2_R2
| PPC_LO (r2off
), p
);
11491 bfd_put_32 (obfd
, B_DOT
| (off
& 0x3fffffc), p
);
11494 if (off
+ (1 << 25) >= (bfd_vma
) (1 << 26))
11497 (_("long branch stub `%s' offset overflow"),
11498 stub_entry
->root
.string
);
11499 htab
->stub_error
= TRUE
;
11503 if (info
->emitrelocations
)
11505 r
= get_relocs (stub_entry
->group
->stub_sec
, 1);
11508 r
->r_offset
= p
- 4 - stub_entry
->group
->stub_sec
->contents
;
11509 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL24
);
11510 r
->r_addend
= targ
;
11511 if (stub_entry
->h
!= NULL
11512 && !use_global_in_relocs (htab
, stub_entry
, r
, 1))
11517 case ppc_stub_plt_branch
:
11518 case ppc_stub_plt_branch_r2off
:
11519 br_entry
= ppc_branch_hash_lookup (&htab
->branch_hash_table
,
11520 stub_entry
->root
.string
+ 9,
11522 if (br_entry
== NULL
)
11524 _bfd_error_handler (_("can't find branch stub `%s'"),
11525 stub_entry
->root
.string
);
11526 htab
->stub_error
= TRUE
;
11530 targ
= (stub_entry
->target_value
11531 + stub_entry
->target_section
->output_offset
11532 + stub_entry
->target_section
->output_section
->vma
);
11533 if (stub_entry
->stub_type
!= ppc_stub_plt_branch_r2off
)
11534 targ
+= PPC64_LOCAL_ENTRY_OFFSET (stub_entry
->other
);
11536 bfd_put_64 (htab
->brlt
->owner
, targ
,
11537 htab
->brlt
->contents
+ br_entry
->offset
);
11539 if (br_entry
->iter
== htab
->stub_iteration
)
11541 br_entry
->iter
= 0;
11543 if (htab
->relbrlt
!= NULL
)
11545 /* Create a reloc for the branch lookup table entry. */
11546 Elf_Internal_Rela rela
;
11549 rela
.r_offset
= (br_entry
->offset
11550 + htab
->brlt
->output_offset
11551 + htab
->brlt
->output_section
->vma
);
11552 rela
.r_info
= ELF64_R_INFO (0, R_PPC64_RELATIVE
);
11553 rela
.r_addend
= targ
;
11555 rl
= htab
->relbrlt
->contents
;
11556 rl
+= (htab
->relbrlt
->reloc_count
++
11557 * sizeof (Elf64_External_Rela
));
11558 bfd_elf64_swap_reloca_out (htab
->relbrlt
->owner
, &rela
, rl
);
11560 else if (info
->emitrelocations
)
11562 r
= get_relocs (htab
->brlt
, 1);
11565 /* brlt, being SEC_LINKER_CREATED does not go through the
11566 normal reloc processing. Symbols and offsets are not
11567 translated from input file to output file form, so
11568 set up the offset per the output file. */
11569 r
->r_offset
= (br_entry
->offset
11570 + htab
->brlt
->output_offset
11571 + htab
->brlt
->output_section
->vma
);
11572 r
->r_info
= ELF64_R_INFO (0, R_PPC64_RELATIVE
);
11573 r
->r_addend
= targ
;
11577 targ
= (br_entry
->offset
11578 + htab
->brlt
->output_offset
11579 + htab
->brlt
->output_section
->vma
);
11581 off
= (elf_gp (info
->output_bfd
)
11582 + htab
->sec_info
[stub_entry
->group
->link_sec
->id
].toc_off
);
11585 if (off
+ 0x80008000 > 0xffffffff || (off
& 7) != 0)
11587 info
->callbacks
->einfo
11588 (_("%P: linkage table error against `%pT'\n"),
11589 stub_entry
->root
.string
);
11590 bfd_set_error (bfd_error_bad_value
);
11591 htab
->stub_error
= TRUE
;
11595 if (info
->emitrelocations
)
11597 r
= get_relocs (stub_entry
->group
->stub_sec
, 1 + (PPC_HA (off
) != 0));
11600 r
[0].r_offset
= loc
- stub_entry
->group
->stub_sec
->contents
;
11601 if (bfd_big_endian (info
->output_bfd
))
11602 r
[0].r_offset
+= 2;
11603 if (stub_entry
->stub_type
== ppc_stub_plt_branch_r2off
)
11604 r
[0].r_offset
+= 4;
11605 r
[0].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_DS
);
11606 r
[0].r_addend
= targ
;
11607 if (PPC_HA (off
) != 0)
11609 r
[0].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_HA
);
11610 r
[1].r_offset
= r
[0].r_offset
+ 4;
11611 r
[1].r_info
= ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS
);
11612 r
[1].r_addend
= r
[0].r_addend
;
11617 obfd
= htab
->params
->stub_bfd
;
11618 if (stub_entry
->stub_type
!= ppc_stub_plt_branch_r2off
)
11620 if (PPC_HA (off
) != 0)
11622 bfd_put_32 (obfd
, ADDIS_R12_R2
| PPC_HA (off
), p
);
11624 bfd_put_32 (obfd
, LD_R12_0R12
| PPC_LO (off
), p
);
11627 bfd_put_32 (obfd
, LD_R12_0R2
| PPC_LO (off
), p
);
11631 bfd_vma r2off
= get_r2off (info
, stub_entry
);
11633 if (r2off
== (bfd_vma
) -1)
11635 htab
->stub_error
= TRUE
;
11639 bfd_put_32 (obfd
, STD_R2_0R1
+ STK_TOC (htab
), p
);
11641 if (PPC_HA (off
) != 0)
11643 bfd_put_32 (obfd
, ADDIS_R12_R2
| PPC_HA (off
), p
);
11645 bfd_put_32 (obfd
, LD_R12_0R12
| PPC_LO (off
), p
);
11648 bfd_put_32 (obfd
, LD_R12_0R2
| PPC_LO (off
), p
);
11650 if (PPC_HA (r2off
) != 0)
11653 bfd_put_32 (obfd
, ADDIS_R2_R2
| PPC_HA (r2off
), p
);
11655 if (PPC_LO (r2off
) != 0)
11658 bfd_put_32 (obfd
, ADDI_R2_R2
| PPC_LO (r2off
), p
);
11662 bfd_put_32 (obfd
, MTCTR_R12
, p
);
11664 bfd_put_32 (obfd
, BCTR
, p
);
11668 case ppc_stub_long_branch_notoc
:
11669 case ppc_stub_long_branch_both
:
11670 case ppc_stub_plt_branch_notoc
:
11671 case ppc_stub_plt_branch_both
:
11672 case ppc_stub_plt_call_notoc
:
11673 case ppc_stub_plt_call_both
:
11675 off
= (stub_entry
->stub_offset
11676 + stub_entry
->group
->stub_sec
->output_offset
11677 + stub_entry
->group
->stub_sec
->output_section
->vma
);
11678 obfd
= htab
->params
->stub_bfd
;
11679 is_tga
= ((stub_entry
->stub_type
== ppc_stub_plt_call_notoc
11680 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
11681 && stub_entry
->h
!= NULL
11682 && is_tls_get_addr (&stub_entry
->h
->elf
, htab
)
11683 && htab
->params
->tls_get_addr_opt
);
11686 p
= build_tls_get_addr_head (htab
, stub_entry
, p
);
11689 if (stub_entry
->stub_type
== ppc_stub_long_branch_both
11690 || stub_entry
->stub_type
== ppc_stub_plt_branch_both
11691 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
11694 bfd_put_32 (obfd
, STD_R2_0R1
+ STK_TOC (htab
), p
);
11697 if (stub_entry
->stub_type
>= ppc_stub_plt_call_notoc
)
11699 targ
= stub_entry
->plt_ent
->plt
.offset
& ~1;
11700 if (targ
>= (bfd_vma
) -2)
11703 plt
= htab
->elf
.splt
;
11704 if (!htab
->elf
.dynamic_sections_created
11705 || stub_entry
->h
== NULL
11706 || stub_entry
->h
->elf
.dynindx
== -1)
11708 if (stub_entry
->symtype
== STT_GNU_IFUNC
)
11709 plt
= htab
->elf
.iplt
;
11711 plt
= htab
->pltlocal
;
11713 targ
+= plt
->output_offset
+ plt
->output_section
->vma
;
11716 targ
= (stub_entry
->target_value
11717 + stub_entry
->target_section
->output_offset
11718 + stub_entry
->target_section
->output_section
->vma
);
11724 if (htab
->params
->power10_stubs
!= 0)
11726 bfd_boolean load
= stub_entry
->stub_type
>= ppc_stub_plt_call_notoc
;
11727 p
= build_power10_offset (obfd
, p
, off
, odd
, load
);
11731 if (htab
->glink_eh_frame
!= NULL
11732 && htab
->glink_eh_frame
->size
!= 0)
11734 bfd_byte
*base
, *eh
;
11735 unsigned int lr_used
, delta
;
11737 base
= (htab
->glink_eh_frame
->contents
11738 + stub_entry
->group
->eh_base
+ 17);
11739 eh
= base
+ stub_entry
->group
->eh_size
;
11740 lr_used
= stub_entry
->stub_offset
+ (p
- loc
) + 8;
11741 delta
= lr_used
- stub_entry
->group
->lr_restore
;
11742 stub_entry
->group
->lr_restore
= lr_used
+ 8;
11743 eh
= eh_advance (htab
->elf
.dynobj
, eh
, delta
);
11744 *eh
++ = DW_CFA_register
;
11747 *eh
++ = DW_CFA_advance_loc
+ 2;
11748 *eh
++ = DW_CFA_restore_extended
;
11750 stub_entry
->group
->eh_size
= eh
- base
;
11753 /* The notoc stubs calculate their target (either a PLT entry or
11754 the global entry point of a function) relative to the PC
11755 returned by the "bcl" two instructions past the start of the
11756 sequence emitted by build_offset. The offset is therefore 8
11757 less than calculated from the start of the sequence. */
11759 p
= build_offset (obfd
, p
, off
,
11760 stub_entry
->stub_type
>= ppc_stub_plt_call_notoc
);
11763 if (stub_entry
->stub_type
<= ppc_stub_long_branch_both
)
11767 from
= (stub_entry
->stub_offset
11768 + stub_entry
->group
->stub_sec
->output_offset
11769 + stub_entry
->group
->stub_sec
->output_section
->vma
11771 bfd_put_32 (obfd
, B_DOT
| ((targ
- from
) & 0x3fffffc), p
);
11775 bfd_put_32 (obfd
, MTCTR_R12
, p
);
11777 bfd_put_32 (obfd
, BCTR
, p
);
11782 p
= build_tls_get_addr_tail (htab
, stub_entry
, p
, loc
);
11784 if (info
->emitrelocations
)
11786 bfd_vma roff
= relp
- stub_entry
->group
->stub_sec
->contents
;
11787 if (htab
->params
->power10_stubs
!= 0)
11788 num_rel
+= num_relocs_for_power10_offset (off
, odd
);
11791 num_rel
+= num_relocs_for_offset (off
);
11794 r
= get_relocs (stub_entry
->group
->stub_sec
, num_rel
);
11797 if (htab
->params
->power10_stubs
!= 0)
11798 r
= emit_relocs_for_power10_offset (info
, r
, roff
, targ
, off
, odd
);
11800 r
= emit_relocs_for_offset (info
, r
, roff
, targ
, off
);
11801 if (stub_entry
->stub_type
== ppc_stub_long_branch_notoc
11802 || stub_entry
->stub_type
== ppc_stub_long_branch_both
)
11805 roff
= p
- 4 - stub_entry
->group
->stub_sec
->contents
;
11806 r
->r_offset
= roff
;
11807 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL24
);
11808 r
->r_addend
= targ
;
11809 if (stub_entry
->h
!= NULL
11810 && !use_global_in_relocs (htab
, stub_entry
, r
, num_rel
))
11816 case ppc_stub_plt_call
:
11817 case ppc_stub_plt_call_r2save
:
11818 if (stub_entry
->h
!= NULL
11819 && stub_entry
->h
->is_func_descriptor
11820 && stub_entry
->h
->oh
!= NULL
)
11822 struct ppc_link_hash_entry
*fh
= ppc_follow_link (stub_entry
->h
->oh
);
11824 /* If the old-ABI "dot-symbol" is undefined make it weak so
11825 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11826 if (fh
->elf
.root
.type
== bfd_link_hash_undefined
11827 && (stub_entry
->h
->elf
.root
.type
== bfd_link_hash_defined
11828 || stub_entry
->h
->elf
.root
.type
== bfd_link_hash_defweak
))
11829 fh
->elf
.root
.type
= bfd_link_hash_undefweak
;
11832 /* Now build the stub. */
11833 targ
= stub_entry
->plt_ent
->plt
.offset
& ~1;
11834 if (targ
>= (bfd_vma
) -2)
11837 plt
= htab
->elf
.splt
;
11838 if (!htab
->elf
.dynamic_sections_created
11839 || stub_entry
->h
== NULL
11840 || stub_entry
->h
->elf
.dynindx
== -1)
11842 if (stub_entry
->symtype
== STT_GNU_IFUNC
)
11843 plt
= htab
->elf
.iplt
;
11845 plt
= htab
->pltlocal
;
11847 targ
+= plt
->output_offset
+ plt
->output_section
->vma
;
11849 off
= (elf_gp (info
->output_bfd
)
11850 + htab
->sec_info
[stub_entry
->group
->link_sec
->id
].toc_off
);
11853 if (off
+ 0x80008000 > 0xffffffff || (off
& 7) != 0)
11855 info
->callbacks
->einfo
11856 /* xgettext:c-format */
11857 (_("%P: linkage table error against `%pT'\n"),
11858 stub_entry
->h
!= NULL
11859 ? stub_entry
->h
->elf
.root
.root
.string
11861 bfd_set_error (bfd_error_bad_value
);
11862 htab
->stub_error
= TRUE
;
11867 if (info
->emitrelocations
)
11869 r
= get_relocs (stub_entry
->group
->stub_sec
,
11870 ((PPC_HA (off
) != 0)
11872 ? 2 + (htab
->params
->plt_static_chain
11873 && PPC_HA (off
+ 16) == PPC_HA (off
))
11877 r
[0].r_offset
= loc
- stub_entry
->group
->stub_sec
->contents
;
11878 if (bfd_big_endian (info
->output_bfd
))
11879 r
[0].r_offset
+= 2;
11880 r
[0].r_addend
= targ
;
11883 obfd
= htab
->params
->stub_bfd
;
11884 is_tga
= (stub_entry
->h
!= NULL
11885 && is_tls_get_addr (&stub_entry
->h
->elf
, htab
)
11886 && htab
->params
->tls_get_addr_opt
);
11889 p
= build_tls_get_addr_head (htab
, stub_entry
, p
);
11891 r
[0].r_offset
+= p
- loc
;
11893 p
= build_plt_stub (htab
, stub_entry
, p
, off
, r
);
11895 p
= build_tls_get_addr_tail (htab
, stub_entry
, p
, loc
);
11898 case ppc_stub_save_res
:
11906 stub_entry
->group
->stub_sec
->size
= stub_entry
->stub_offset
+ (p
- loc
);
11908 if (htab
->params
->emit_stub_syms
)
11910 struct elf_link_hash_entry
*h
;
11913 const char *const stub_str
[] = { "long_branch",
11926 len1
= strlen (stub_str
[stub_entry
->stub_type
- 1]);
11927 len2
= strlen (stub_entry
->root
.string
);
11928 name
= bfd_malloc (len1
+ len2
+ 2);
11931 memcpy (name
, stub_entry
->root
.string
, 9);
11932 memcpy (name
+ 9, stub_str
[stub_entry
->stub_type
- 1], len1
);
11933 memcpy (name
+ len1
+ 9, stub_entry
->root
.string
+ 8, len2
- 8 + 1);
11934 h
= elf_link_hash_lookup (&htab
->elf
, name
, TRUE
, FALSE
, FALSE
);
11937 if (h
->root
.type
== bfd_link_hash_new
)
11939 h
->root
.type
= bfd_link_hash_defined
;
11940 h
->root
.u
.def
.section
= stub_entry
->group
->stub_sec
;
11941 h
->root
.u
.def
.value
= stub_entry
->stub_offset
;
11942 h
->ref_regular
= 1;
11943 h
->def_regular
= 1;
11944 h
->ref_regular_nonweak
= 1;
11945 h
->forced_local
= 1;
11947 h
->root
.linker_def
= 1;
11954 /* As above, but don't actually build the stub. Just bump offset so
11955 we know stub section sizes, and select plt_branch stubs where
11956 long_branch stubs won't do. */
11959 ppc_size_one_stub (struct bfd_hash_entry
*gen_entry
, void *in_arg
)
11961 struct ppc_stub_hash_entry
*stub_entry
;
11962 struct bfd_link_info
*info
;
11963 struct ppc_link_hash_table
*htab
;
11965 bfd_vma targ
, off
, r2off
;
11966 unsigned int size
, extra
, lr_used
, delta
, odd
;
11968 /* Massage our args to the form they really have. */
11969 stub_entry
= (struct ppc_stub_hash_entry
*) gen_entry
;
11972 htab
= ppc_hash_table (info
);
11976 /* Fail if the target section could not be assigned to an output
11977 section. The user should fix his linker script. */
11978 if (stub_entry
->target_section
!= NULL
11979 && stub_entry
->target_section
->output_section
== NULL
11980 && info
->non_contiguous_regions
)
11981 info
->callbacks
->einfo (_("%F%P: Could not assign %pA to an output section. "
11982 "Retry without --enable-non-contiguous-regions.\n"),
11983 stub_entry
->target_section
);
11985 /* Same for the group. */
11986 if (stub_entry
->group
->stub_sec
!= NULL
11987 && stub_entry
->group
->stub_sec
->output_section
== NULL
11988 && info
->non_contiguous_regions
)
11989 info
->callbacks
->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11990 "output section. Retry without "
11991 "--enable-non-contiguous-regions.\n"),
11992 stub_entry
->group
->stub_sec
,
11993 stub_entry
->target_section
);
11995 /* Make a note of the offset within the stubs for this entry. */
11996 stub_entry
->stub_offset
= stub_entry
->group
->stub_sec
->size
;
11998 if (stub_entry
->h
!= NULL
11999 && stub_entry
->h
->save_res
12000 && stub_entry
->h
->elf
.root
.type
== bfd_link_hash_defined
12001 && stub_entry
->h
->elf
.root
.u
.def
.section
== htab
->sfpr
)
12003 /* Don't make stubs to out-of-line register save/restore
12004 functions. Instead, emit copies of the functions. */
12005 stub_entry
->group
->needs_save_res
= 1;
12006 stub_entry
->stub_type
= ppc_stub_save_res
;
12010 switch (stub_entry
->stub_type
)
12012 case ppc_stub_plt_branch
:
12013 case ppc_stub_plt_branch_r2off
:
12014 /* Reset the stub type from the plt branch variant in case we now
12015 can reach with a shorter stub. */
12016 stub_entry
->stub_type
+= ppc_stub_long_branch
- ppc_stub_plt_branch
;
12017 /* Fall through. */
12018 case ppc_stub_long_branch
:
12019 case ppc_stub_long_branch_r2off
:
12020 targ
= (stub_entry
->target_value
12021 + stub_entry
->target_section
->output_offset
12022 + stub_entry
->target_section
->output_section
->vma
);
12023 targ
+= PPC64_LOCAL_ENTRY_OFFSET (stub_entry
->other
);
12024 off
= (stub_entry
->stub_offset
12025 + stub_entry
->group
->stub_sec
->output_offset
12026 + stub_entry
->group
->stub_sec
->output_section
->vma
);
12030 if (stub_entry
->stub_type
== ppc_stub_long_branch_r2off
)
12032 r2off
= get_r2off (info
, stub_entry
);
12033 if (r2off
== (bfd_vma
) -1)
12035 htab
->stub_error
= TRUE
;
12039 if (PPC_HA (r2off
) != 0)
12041 if (PPC_LO (r2off
) != 0)
12047 /* If the branch offset is too big, use a ppc_stub_plt_branch.
12048 Do the same for -R objects without function descriptors. */
12049 if ((stub_entry
->stub_type
== ppc_stub_long_branch_r2off
12051 && htab
->sec_info
[stub_entry
->target_section
->id
].toc_off
== 0)
12052 || off
+ (1 << 25) >= (bfd_vma
) (1 << 26))
12054 struct ppc_branch_hash_entry
*br_entry
;
12056 br_entry
= ppc_branch_hash_lookup (&htab
->branch_hash_table
,
12057 stub_entry
->root
.string
+ 9,
12059 if (br_entry
== NULL
)
12061 _bfd_error_handler (_("can't build branch stub `%s'"),
12062 stub_entry
->root
.string
);
12063 htab
->stub_error
= TRUE
;
12067 if (br_entry
->iter
!= htab
->stub_iteration
)
12069 br_entry
->iter
= htab
->stub_iteration
;
12070 br_entry
->offset
= htab
->brlt
->size
;
12071 htab
->brlt
->size
+= 8;
12073 if (htab
->relbrlt
!= NULL
)
12074 htab
->relbrlt
->size
+= sizeof (Elf64_External_Rela
);
12075 else if (info
->emitrelocations
)
12077 htab
->brlt
->reloc_count
+= 1;
12078 htab
->brlt
->flags
|= SEC_RELOC
;
12082 targ
= (br_entry
->offset
12083 + htab
->brlt
->output_offset
12084 + htab
->brlt
->output_section
->vma
);
12085 off
= (elf_gp (info
->output_bfd
)
12086 + htab
->sec_info
[stub_entry
->group
->link_sec
->id
].toc_off
);
12089 if (info
->emitrelocations
)
12091 stub_entry
->group
->stub_sec
->reloc_count
12092 += 1 + (PPC_HA (off
) != 0);
12093 stub_entry
->group
->stub_sec
->flags
|= SEC_RELOC
;
12096 stub_entry
->stub_type
+= ppc_stub_plt_branch
- ppc_stub_long_branch
;
12097 if (stub_entry
->stub_type
!= ppc_stub_plt_branch_r2off
)
12100 if (PPC_HA (off
) != 0)
12106 if (PPC_HA (off
) != 0)
12109 if (PPC_HA (r2off
) != 0)
12111 if (PPC_LO (r2off
) != 0)
12115 else if (info
->emitrelocations
)
12117 stub_entry
->group
->stub_sec
->reloc_count
+= 1;
12118 stub_entry
->group
->stub_sec
->flags
|= SEC_RELOC
;
12122 case ppc_stub_plt_branch_notoc
:
12123 case ppc_stub_plt_branch_both
:
12124 stub_entry
->stub_type
+= ppc_stub_long_branch
- ppc_stub_plt_branch
;
12125 /* Fall through. */
12126 case ppc_stub_long_branch_notoc
:
12127 case ppc_stub_long_branch_both
:
12128 off
= (stub_entry
->stub_offset
12129 + stub_entry
->group
->stub_sec
->output_offset
12130 + stub_entry
->group
->stub_sec
->output_section
->vma
);
12132 if (stub_entry
->stub_type
== ppc_stub_long_branch_both
)
12135 targ
= (stub_entry
->target_value
12136 + stub_entry
->target_section
->output_offset
12137 + stub_entry
->target_section
->output_section
->vma
);
12141 if (info
->emitrelocations
)
12143 unsigned int num_rel
;
12144 if (htab
->params
->power10_stubs
!= 0)
12145 num_rel
= num_relocs_for_power10_offset (off
, odd
);
12147 num_rel
= num_relocs_for_offset (off
- 8);
12148 stub_entry
->group
->stub_sec
->reloc_count
+= num_rel
;
12149 stub_entry
->group
->stub_sec
->flags
|= SEC_RELOC
;
12152 if (htab
->params
->power10_stubs
!= 0)
12153 extra
= size_power10_offset (off
, odd
);
12155 extra
= size_offset (off
- 8);
12156 /* Include branch insn plus those in the offset sequence. */
12158 /* The branch insn is at the end, or "extra" bytes along. So
12159 its offset will be "extra" bytes less that that already
12163 if (htab
->params
->power10_stubs
== 0)
12165 /* After the bcl, lr has been modified so we need to emit
12166 .eh_frame info saying the return address is in r12. */
12167 lr_used
= stub_entry
->stub_offset
+ 8;
12168 if (stub_entry
->stub_type
== ppc_stub_long_branch_both
)
12170 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12171 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12172 DW_CFA_restore_extended 65. */
12173 delta
= lr_used
- stub_entry
->group
->lr_restore
;
12174 stub_entry
->group
->eh_size
+= eh_advance_size (delta
) + 6;
12175 stub_entry
->group
->lr_restore
= lr_used
+ 8;
12178 /* If the branch can't reach, use a plt_branch. */
12179 if (off
+ (1 << 25) >= (bfd_vma
) (1 << 26))
12181 stub_entry
->stub_type
+= (ppc_stub_plt_branch_notoc
12182 - ppc_stub_long_branch_notoc
);
12185 else if (info
->emitrelocations
)
12186 stub_entry
->group
->stub_sec
->reloc_count
+=1;
12189 case ppc_stub_plt_call_notoc
:
12190 case ppc_stub_plt_call_both
:
12192 if (stub_entry
->h
!= NULL
12193 && is_tls_get_addr (&stub_entry
->h
->elf
, htab
)
12194 && htab
->params
->tls_get_addr_opt
)
12197 if (!htab
->params
->no_tls_get_addr_regsave
)
12199 else if (stub_entry
->stub_type
== ppc_stub_plt_call_both
)
12202 if (stub_entry
->stub_type
== ppc_stub_plt_call_both
)
12204 targ
= stub_entry
->plt_ent
->plt
.offset
& ~1;
12205 if (targ
>= (bfd_vma
) -2)
12208 plt
= htab
->elf
.splt
;
12209 if (!htab
->elf
.dynamic_sections_created
12210 || stub_entry
->h
== NULL
12211 || stub_entry
->h
->elf
.dynindx
== -1)
12213 if (stub_entry
->symtype
== STT_GNU_IFUNC
)
12214 plt
= htab
->elf
.iplt
;
12216 plt
= htab
->pltlocal
;
12218 targ
+= plt
->output_offset
+ plt
->output_section
->vma
;
12219 off
= (stub_entry
->stub_offset
12220 + stub_entry
->group
->stub_sec
->output_offset
12221 + stub_entry
->group
->stub_sec
->output_section
->vma
12226 if (htab
->params
->plt_stub_align
!= 0)
12228 unsigned pad
= plt_stub_pad (htab
, stub_entry
, off
, odd
);
12230 stub_entry
->group
->stub_sec
->size
+= pad
;
12231 stub_entry
->stub_offset
= stub_entry
->group
->stub_sec
->size
;
12236 if (info
->emitrelocations
)
12238 unsigned int num_rel
;
12239 if (htab
->params
->power10_stubs
!= 0)
12240 num_rel
= num_relocs_for_power10_offset (off
, odd
);
12242 num_rel
= num_relocs_for_offset (off
- 8);
12243 stub_entry
->group
->stub_sec
->reloc_count
+= num_rel
;
12244 stub_entry
->group
->stub_sec
->flags
|= SEC_RELOC
;
12247 size
= plt_stub_size (htab
, stub_entry
, off
, odd
);
12249 if (htab
->params
->power10_stubs
== 0)
12251 /* After the bcl, lr has been modified so we need to emit
12252 .eh_frame info saying the return address is in r12. */
12253 lr_used
+= stub_entry
->stub_offset
+ 8;
12254 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12255 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12256 DW_CFA_restore_extended 65. */
12257 delta
= lr_used
- stub_entry
->group
->lr_restore
;
12258 stub_entry
->group
->eh_size
+= eh_advance_size (delta
) + 6;
12259 stub_entry
->group
->lr_restore
= lr_used
+ 8;
12261 if ((stub_entry
->stub_type
== ppc_stub_plt_call_notoc
12262 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
12263 && stub_entry
->h
!= NULL
12264 && is_tls_get_addr (&stub_entry
->h
->elf
, htab
)
12265 && htab
->params
->tls_get_addr_opt
)
12267 if (!htab
->params
->no_tls_get_addr_regsave
)
12269 unsigned int cfa_updt
= stub_entry
->stub_offset
+ 18 * 4;
12270 delta
= cfa_updt
- stub_entry
->group
->lr_restore
;
12271 stub_entry
->group
->eh_size
+= eh_advance_size (delta
);
12272 stub_entry
->group
->eh_size
+= htab
->opd_abi
? 36 : 35;
12273 stub_entry
->group
->lr_restore
12274 = stub_entry
->stub_offset
+ size
- 4;
12276 else if (stub_entry
->stub_type
== ppc_stub_plt_call_both
)
12278 lr_used
= stub_entry
->stub_offset
+ size
- 20;
12279 delta
= lr_used
- stub_entry
->group
->lr_restore
;
12280 stub_entry
->group
->eh_size
+= eh_advance_size (delta
) + 6;
12281 stub_entry
->group
->lr_restore
12282 = stub_entry
->stub_offset
+ size
- 4;
12287 case ppc_stub_plt_call
:
12288 case ppc_stub_plt_call_r2save
:
12289 targ
= stub_entry
->plt_ent
->plt
.offset
& ~(bfd_vma
) 1;
12290 if (targ
>= (bfd_vma
) -2)
12292 plt
= htab
->elf
.splt
;
12293 if (!htab
->elf
.dynamic_sections_created
12294 || stub_entry
->h
== NULL
12295 || stub_entry
->h
->elf
.dynindx
== -1)
12297 if (stub_entry
->symtype
== STT_GNU_IFUNC
)
12298 plt
= htab
->elf
.iplt
;
12300 plt
= htab
->pltlocal
;
12302 targ
+= plt
->output_offset
+ plt
->output_section
->vma
;
12304 off
= (elf_gp (info
->output_bfd
)
12305 + htab
->sec_info
[stub_entry
->group
->link_sec
->id
].toc_off
);
12308 if (htab
->params
->plt_stub_align
!= 0)
12310 unsigned pad
= plt_stub_pad (htab
, stub_entry
, off
, 0);
12312 stub_entry
->group
->stub_sec
->size
+= pad
;
12313 stub_entry
->stub_offset
= stub_entry
->group
->stub_sec
->size
;
12316 if (info
->emitrelocations
)
12318 stub_entry
->group
->stub_sec
->reloc_count
12319 += ((PPC_HA (off
) != 0)
12321 ? 2 + (htab
->params
->plt_static_chain
12322 && PPC_HA (off
+ 16) == PPC_HA (off
))
12324 stub_entry
->group
->stub_sec
->flags
|= SEC_RELOC
;
12327 size
= plt_stub_size (htab
, stub_entry
, off
, 0);
12329 if (stub_entry
->h
!= NULL
12330 && is_tls_get_addr (&stub_entry
->h
->elf
, htab
)
12331 && htab
->params
->tls_get_addr_opt
12332 && stub_entry
->stub_type
== ppc_stub_plt_call_r2save
)
12334 if (!htab
->params
->no_tls_get_addr_regsave
)
12336 /* Adjustments to r1 need to be described. */
12337 unsigned int cfa_updt
= stub_entry
->stub_offset
+ 18 * 4;
12338 delta
= cfa_updt
- stub_entry
->group
->lr_restore
;
12339 stub_entry
->group
->eh_size
+= eh_advance_size (delta
);
12340 stub_entry
->group
->eh_size
+= htab
->opd_abi
? 36 : 35;
12344 lr_used
= stub_entry
->stub_offset
+ size
- 20;
12345 /* The eh_frame info will consist of a DW_CFA_advance_loc
12346 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
12347 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
12348 delta
= lr_used
- stub_entry
->group
->lr_restore
;
12349 stub_entry
->group
->eh_size
+= eh_advance_size (delta
) + 6;
12351 stub_entry
->group
->lr_restore
= stub_entry
->stub_offset
+ size
- 4;
12360 stub_entry
->group
->stub_sec
->size
+= size
;
12364 /* Set up various things so that we can make a list of input sections
12365 for each output section included in the link. Returns -1 on error,
12366 0 when no stubs will be needed, and 1 on success. */
12369 ppc64_elf_setup_section_lists (struct bfd_link_info
*info
)
12373 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
12378 htab
->sec_info_arr_size
= _bfd_section_id
;
12379 amt
= sizeof (*htab
->sec_info
) * (htab
->sec_info_arr_size
);
12380 htab
->sec_info
= bfd_zmalloc (amt
);
12381 if (htab
->sec_info
== NULL
)
12384 /* Set toc_off for com, und, abs and ind sections. */
12385 for (id
= 0; id
< 3; id
++)
12386 htab
->sec_info
[id
].toc_off
= TOC_BASE_OFF
;
12391 /* Set up for first pass at multitoc partitioning. */
12394 ppc64_elf_start_multitoc_partition (struct bfd_link_info
*info
)
12396 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
12398 htab
->toc_curr
= ppc64_elf_set_toc (info
, info
->output_bfd
);
12399 htab
->toc_bfd
= NULL
;
12400 htab
->toc_first_sec
= NULL
;
12403 /* The linker repeatedly calls this function for each TOC input section
12404 and linker generated GOT section. Group input bfds such that the toc
12405 within a group is less than 64k in size. */
12408 ppc64_elf_next_toc_section (struct bfd_link_info
*info
, asection
*isec
)
12410 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
12411 bfd_vma addr
, off
, limit
;
12416 if (!htab
->second_toc_pass
)
12418 /* Keep track of the first .toc or .got section for this input bfd. */
12419 bfd_boolean new_bfd
= htab
->toc_bfd
!= isec
->owner
;
12423 htab
->toc_bfd
= isec
->owner
;
12424 htab
->toc_first_sec
= isec
;
12427 addr
= isec
->output_offset
+ isec
->output_section
->vma
;
12428 off
= addr
- htab
->toc_curr
;
12429 limit
= 0x80008000;
12430 if (ppc64_elf_tdata (isec
->owner
)->has_small_toc_reloc
)
12432 if (off
+ isec
->size
> limit
)
12434 addr
= (htab
->toc_first_sec
->output_offset
12435 + htab
->toc_first_sec
->output_section
->vma
);
12436 htab
->toc_curr
= addr
;
12437 htab
->toc_curr
&= -TOC_BASE_ALIGN
;
12440 /* toc_curr is the base address of this toc group. Set elf_gp
12441 for the input section to be the offset relative to the
12442 output toc base plus 0x8000. Making the input elf_gp an
12443 offset allows us to move the toc as a whole without
12444 recalculating input elf_gp. */
12445 off
= htab
->toc_curr
- elf_gp (info
->output_bfd
);
12446 off
+= TOC_BASE_OFF
;
12448 /* Die if someone uses a linker script that doesn't keep input
12449 file .toc and .got together. */
12451 && elf_gp (isec
->owner
) != 0
12452 && elf_gp (isec
->owner
) != off
)
12455 elf_gp (isec
->owner
) = off
;
12459 /* During the second pass toc_first_sec points to the start of
12460 a toc group, and toc_curr is used to track the old elf_gp.
12461 We use toc_bfd to ensure we only look at each bfd once. */
12462 if (htab
->toc_bfd
== isec
->owner
)
12464 htab
->toc_bfd
= isec
->owner
;
12466 if (htab
->toc_first_sec
== NULL
12467 || htab
->toc_curr
!= elf_gp (isec
->owner
))
12469 htab
->toc_curr
= elf_gp (isec
->owner
);
12470 htab
->toc_first_sec
= isec
;
12472 addr
= (htab
->toc_first_sec
->output_offset
12473 + htab
->toc_first_sec
->output_section
->vma
);
12474 off
= addr
- elf_gp (info
->output_bfd
) + TOC_BASE_OFF
;
12475 elf_gp (isec
->owner
) = off
;
12480 /* Called via elf_link_hash_traverse to merge GOT entries for global
12484 merge_global_got (struct elf_link_hash_entry
*h
, void *inf ATTRIBUTE_UNUSED
)
12486 if (h
->root
.type
== bfd_link_hash_indirect
)
12489 merge_got_entries (&h
->got
.glist
);
12494 /* Called via elf_link_hash_traverse to allocate GOT entries for global
12498 reallocate_got (struct elf_link_hash_entry
*h
, void *inf
)
12500 struct got_entry
*gent
;
12502 if (h
->root
.type
== bfd_link_hash_indirect
)
12505 for (gent
= h
->got
.glist
; gent
!= NULL
; gent
= gent
->next
)
12506 if (!gent
->is_indirect
)
12507 allocate_got (h
, (struct bfd_link_info
*) inf
, gent
);
12511 /* Called on the first multitoc pass after the last call to
12512 ppc64_elf_next_toc_section. This function removes duplicate GOT
12516 ppc64_elf_layout_multitoc (struct bfd_link_info
*info
)
12518 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
12519 struct bfd
*ibfd
, *ibfd2
;
12520 bfd_boolean done_something
;
12522 htab
->multi_toc_needed
= htab
->toc_curr
!= elf_gp (info
->output_bfd
);
12524 if (!htab
->do_multi_toc
)
12527 /* Merge global sym got entries within a toc group. */
12528 elf_link_hash_traverse (&htab
->elf
, merge_global_got
, info
);
12530 /* And tlsld_got. */
12531 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
12533 struct got_entry
*ent
, *ent2
;
12535 if (!is_ppc64_elf (ibfd
))
12538 ent
= ppc64_tlsld_got (ibfd
);
12539 if (!ent
->is_indirect
12540 && ent
->got
.offset
!= (bfd_vma
) -1)
12542 for (ibfd2
= ibfd
->link
.next
; ibfd2
!= NULL
; ibfd2
= ibfd2
->link
.next
)
12544 if (!is_ppc64_elf (ibfd2
))
12547 ent2
= ppc64_tlsld_got (ibfd2
);
12548 if (!ent2
->is_indirect
12549 && ent2
->got
.offset
!= (bfd_vma
) -1
12550 && elf_gp (ibfd2
) == elf_gp (ibfd
))
12552 ent2
->is_indirect
= TRUE
;
12553 ent2
->got
.ent
= ent
;
12559 /* Zap sizes of got sections. */
12560 htab
->elf
.irelplt
->rawsize
= htab
->elf
.irelplt
->size
;
12561 htab
->elf
.irelplt
->size
-= htab
->got_reli_size
;
12562 htab
->got_reli_size
= 0;
12564 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
12566 asection
*got
, *relgot
;
12568 if (!is_ppc64_elf (ibfd
))
12571 got
= ppc64_elf_tdata (ibfd
)->got
;
12574 got
->rawsize
= got
->size
;
12576 relgot
= ppc64_elf_tdata (ibfd
)->relgot
;
12577 relgot
->rawsize
= relgot
->size
;
12582 /* Now reallocate the got, local syms first. We don't need to
12583 allocate section contents again since we never increase size. */
12584 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
12586 struct got_entry
**lgot_ents
;
12587 struct got_entry
**end_lgot_ents
;
12588 struct plt_entry
**local_plt
;
12589 struct plt_entry
**end_local_plt
;
12590 unsigned char *lgot_masks
;
12591 bfd_size_type locsymcount
;
12592 Elf_Internal_Shdr
*symtab_hdr
;
12595 if (!is_ppc64_elf (ibfd
))
12598 lgot_ents
= elf_local_got_ents (ibfd
);
12602 symtab_hdr
= &elf_symtab_hdr (ibfd
);
12603 locsymcount
= symtab_hdr
->sh_info
;
12604 end_lgot_ents
= lgot_ents
+ locsymcount
;
12605 local_plt
= (struct plt_entry
**) end_lgot_ents
;
12606 end_local_plt
= local_plt
+ locsymcount
;
12607 lgot_masks
= (unsigned char *) end_local_plt
;
12608 s
= ppc64_elf_tdata (ibfd
)->got
;
12609 for (; lgot_ents
< end_lgot_ents
; ++lgot_ents
, ++lgot_masks
)
12611 struct got_entry
*ent
;
12613 for (ent
= *lgot_ents
; ent
!= NULL
; ent
= ent
->next
)
12615 unsigned int ent_size
= 8;
12616 unsigned int rel_size
= sizeof (Elf64_External_Rela
);
12618 ent
->got
.offset
= s
->size
;
12619 if ((ent
->tls_type
& *lgot_masks
& TLS_GD
) != 0)
12624 s
->size
+= ent_size
;
12625 if ((*lgot_masks
& (TLS_TLS
| PLT_IFUNC
)) == PLT_IFUNC
)
12627 htab
->elf
.irelplt
->size
+= rel_size
;
12628 htab
->got_reli_size
+= rel_size
;
12630 else if (bfd_link_pic (info
)
12631 && !(ent
->tls_type
!= 0
12632 && bfd_link_executable (info
)))
12634 asection
*srel
= ppc64_elf_tdata (ibfd
)->relgot
;
12635 srel
->size
+= rel_size
;
12641 elf_link_hash_traverse (&htab
->elf
, reallocate_got
, info
);
12643 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
12645 struct got_entry
*ent
;
12647 if (!is_ppc64_elf (ibfd
))
12650 ent
= ppc64_tlsld_got (ibfd
);
12651 if (!ent
->is_indirect
12652 && ent
->got
.offset
!= (bfd_vma
) -1)
12654 asection
*s
= ppc64_elf_tdata (ibfd
)->got
;
12655 ent
->got
.offset
= s
->size
;
12657 if (bfd_link_dll (info
))
12659 asection
*srel
= ppc64_elf_tdata (ibfd
)->relgot
;
12660 srel
->size
+= sizeof (Elf64_External_Rela
);
12665 done_something
= htab
->elf
.irelplt
->rawsize
!= htab
->elf
.irelplt
->size
;
12666 if (!done_something
)
12667 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
12671 if (!is_ppc64_elf (ibfd
))
12674 got
= ppc64_elf_tdata (ibfd
)->got
;
12677 done_something
= got
->rawsize
!= got
->size
;
12678 if (done_something
)
12683 if (done_something
)
12684 (*htab
->params
->layout_sections_again
) ();
12686 /* Set up for second pass over toc sections to recalculate elf_gp
12687 on input sections. */
12688 htab
->toc_bfd
= NULL
;
12689 htab
->toc_first_sec
= NULL
;
12690 htab
->second_toc_pass
= TRUE
;
12691 return done_something
;
12694 /* Called after second pass of multitoc partitioning. */
12697 ppc64_elf_finish_multitoc_partition (struct bfd_link_info
*info
)
12699 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
12701 /* After the second pass, toc_curr tracks the TOC offset used
12702 for code sections below in ppc64_elf_next_input_section. */
12703 htab
->toc_curr
= TOC_BASE_OFF
;
12706 /* No toc references were found in ISEC. If the code in ISEC makes no
12707 calls, then there's no need to use toc adjusting stubs when branching
12708 into ISEC. Actually, indirect calls from ISEC are OK as they will
12709 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12710 needed, and 2 if a cyclical call-graph was found but no other reason
12711 for a stub was detected. If called from the top level, a return of
12712 2 means the same as a return of 0. */
12715 toc_adjusting_stub_needed (struct bfd_link_info
*info
, asection
*isec
)
12719 /* Mark this section as checked. */
12720 isec
->call_check_done
= 1;
12722 /* We know none of our code bearing sections will need toc stubs. */
12723 if ((isec
->flags
& SEC_LINKER_CREATED
) != 0)
12726 if (isec
->size
== 0)
12729 if (isec
->output_section
== NULL
)
12733 if (isec
->reloc_count
!= 0)
12735 Elf_Internal_Rela
*relstart
, *rel
;
12736 Elf_Internal_Sym
*local_syms
;
12737 struct ppc_link_hash_table
*htab
;
12739 relstart
= _bfd_elf_link_read_relocs (isec
->owner
, isec
, NULL
, NULL
,
12740 info
->keep_memory
);
12741 if (relstart
== NULL
)
12744 /* Look for branches to outside of this section. */
12746 htab
= ppc_hash_table (info
);
12750 for (rel
= relstart
; rel
< relstart
+ isec
->reloc_count
; ++rel
)
12752 enum elf_ppc64_reloc_type r_type
;
12753 unsigned long r_symndx
;
12754 struct elf_link_hash_entry
*h
;
12755 struct ppc_link_hash_entry
*eh
;
12756 Elf_Internal_Sym
*sym
;
12758 struct _opd_sec_data
*opd
;
12762 r_type
= ELF64_R_TYPE (rel
->r_info
);
12763 if (r_type
!= R_PPC64_REL24
12764 && r_type
!= R_PPC64_REL24_NOTOC
12765 && r_type
!= R_PPC64_REL14
12766 && r_type
!= R_PPC64_REL14_BRTAKEN
12767 && r_type
!= R_PPC64_REL14_BRNTAKEN
12768 && r_type
!= R_PPC64_PLTCALL
12769 && r_type
!= R_PPC64_PLTCALL_NOTOC
)
12772 r_symndx
= ELF64_R_SYM (rel
->r_info
);
12773 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, &local_syms
, r_symndx
,
12780 /* Calls to dynamic lib functions go through a plt call stub
12782 eh
= ppc_elf_hash_entry (h
);
12784 && (eh
->elf
.plt
.plist
!= NULL
12786 && ppc_follow_link (eh
->oh
)->elf
.plt
.plist
!= NULL
)))
12792 if (sym_sec
== NULL
)
12793 /* Ignore other undefined symbols. */
12796 /* Assume branches to other sections not included in the
12797 link need stubs too, to cover -R and absolute syms. */
12798 if (sym_sec
->output_section
== NULL
)
12805 sym_value
= sym
->st_value
;
12808 if (h
->root
.type
!= bfd_link_hash_defined
12809 && h
->root
.type
!= bfd_link_hash_defweak
)
12811 sym_value
= h
->root
.u
.def
.value
;
12813 sym_value
+= rel
->r_addend
;
12815 /* If this branch reloc uses an opd sym, find the code section. */
12816 opd
= get_opd_info (sym_sec
);
12819 if (h
== NULL
&& opd
->adjust
!= NULL
)
12823 adjust
= opd
->adjust
[OPD_NDX (sym_value
)];
12825 /* Assume deleted functions won't ever be called. */
12827 sym_value
+= adjust
;
12830 dest
= opd_entry_value (sym_sec
, sym_value
,
12831 &sym_sec
, NULL
, FALSE
);
12832 if (dest
== (bfd_vma
) -1)
12837 + sym_sec
->output_offset
12838 + sym_sec
->output_section
->vma
);
12840 /* Ignore branch to self. */
12841 if (sym_sec
== isec
)
12844 /* If the called function uses the toc, we need a stub. */
12845 if (sym_sec
->has_toc_reloc
12846 || sym_sec
->makes_toc_func_call
)
12852 /* Assume any branch that needs a long branch stub might in fact
12853 need a plt_branch stub. A plt_branch stub uses r2. */
12854 else if (dest
- (isec
->output_offset
12855 + isec
->output_section
->vma
12856 + rel
->r_offset
) + (1 << 25)
12857 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12865 /* If calling back to a section in the process of being
12866 tested, we can't say for sure that no toc adjusting stubs
12867 are needed, so don't return zero. */
12868 else if (sym_sec
->call_check_in_progress
)
12871 /* Branches to another section that itself doesn't have any TOC
12872 references are OK. Recursively call ourselves to check. */
12873 else if (!sym_sec
->call_check_done
)
12877 /* Mark current section as indeterminate, so that other
12878 sections that call back to current won't be marked as
12880 isec
->call_check_in_progress
= 1;
12881 recur
= toc_adjusting_stub_needed (info
, sym_sec
);
12882 isec
->call_check_in_progress
= 0;
12893 if (elf_symtab_hdr (isec
->owner
).contents
12894 != (unsigned char *) local_syms
)
12896 if (elf_section_data (isec
)->relocs
!= relstart
)
12901 && isec
->map_head
.s
!= NULL
12902 && (strcmp (isec
->output_section
->name
, ".init") == 0
12903 || strcmp (isec
->output_section
->name
, ".fini") == 0))
12905 if (isec
->map_head
.s
->has_toc_reloc
12906 || isec
->map_head
.s
->makes_toc_func_call
)
12908 else if (!isec
->map_head
.s
->call_check_done
)
12911 isec
->call_check_in_progress
= 1;
12912 recur
= toc_adjusting_stub_needed (info
, isec
->map_head
.s
);
12913 isec
->call_check_in_progress
= 0;
12920 isec
->makes_toc_func_call
= 1;
12925 /* The linker repeatedly calls this function for each input section,
12926 in the order that input sections are linked into output sections.
12927 Build lists of input sections to determine groupings between which
12928 we may insert linker stubs. */
12931 ppc64_elf_next_input_section (struct bfd_link_info
*info
, asection
*isec
)
12933 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
12938 if ((isec
->output_section
->flags
& SEC_CODE
) != 0
12939 && isec
->output_section
->id
< htab
->sec_info_arr_size
)
12941 /* This happens to make the list in reverse order,
12942 which is what we want. */
12943 htab
->sec_info
[isec
->id
].u
.list
12944 = htab
->sec_info
[isec
->output_section
->id
].u
.list
;
12945 htab
->sec_info
[isec
->output_section
->id
].u
.list
= isec
;
12948 if (htab
->multi_toc_needed
)
12950 /* Analyse sections that aren't already flagged as needing a
12951 valid toc pointer. Exclude .fixup for the linux kernel.
12952 .fixup contains branches, but only back to the function that
12953 hit an exception. */
12954 if (!(isec
->has_toc_reloc
12955 || (isec
->flags
& SEC_CODE
) == 0
12956 || strcmp (isec
->name
, ".fixup") == 0
12957 || isec
->call_check_done
))
12959 if (toc_adjusting_stub_needed (info
, isec
) < 0)
12962 /* Make all sections use the TOC assigned for this object file.
12963 This will be wrong for pasted sections; We fix that in
12964 check_pasted_section(). */
12965 if (elf_gp (isec
->owner
) != 0)
12966 htab
->toc_curr
= elf_gp (isec
->owner
);
12969 htab
->sec_info
[isec
->id
].toc_off
= htab
->toc_curr
;
12973 /* Check that all .init and .fini sections use the same toc, if they
12974 have toc relocs. */
12977 check_pasted_section (struct bfd_link_info
*info
, const char *name
)
12979 asection
*o
= bfd_get_section_by_name (info
->output_bfd
, name
);
12983 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
12984 bfd_vma toc_off
= 0;
12987 for (i
= o
->map_head
.s
; i
!= NULL
; i
= i
->map_head
.s
)
12988 if (i
->has_toc_reloc
)
12991 toc_off
= htab
->sec_info
[i
->id
].toc_off
;
12992 else if (toc_off
!= htab
->sec_info
[i
->id
].toc_off
)
12997 for (i
= o
->map_head
.s
; i
!= NULL
; i
= i
->map_head
.s
)
12998 if (i
->makes_toc_func_call
)
13000 toc_off
= htab
->sec_info
[i
->id
].toc_off
;
13004 /* Make sure the whole pasted function uses the same toc offset. */
13006 for (i
= o
->map_head
.s
; i
!= NULL
; i
= i
->map_head
.s
)
13007 htab
->sec_info
[i
->id
].toc_off
= toc_off
;
13013 ppc64_elf_check_init_fini (struct bfd_link_info
*info
)
13015 return (check_pasted_section (info
, ".init")
13016 & check_pasted_section (info
, ".fini"));
13019 /* See whether we can group stub sections together. Grouping stub
13020 sections may result in fewer stubs. More importantly, we need to
13021 put all .init* and .fini* stubs at the beginning of the .init or
13022 .fini output sections respectively, because glibc splits the
13023 _init and _fini functions into multiple parts. Putting a stub in
13024 the middle of a function is not a good idea. */
13027 group_sections (struct bfd_link_info
*info
,
13028 bfd_size_type stub_group_size
,
13029 bfd_boolean stubs_always_before_branch
)
13031 struct ppc_link_hash_table
*htab
;
13033 bfd_boolean suppress_size_errors
;
13035 htab
= ppc_hash_table (info
);
13039 suppress_size_errors
= FALSE
;
13040 if (stub_group_size
== 1)
13042 /* Default values. */
13043 if (stubs_always_before_branch
)
13044 stub_group_size
= 0x1e00000;
13046 stub_group_size
= 0x1c00000;
13047 suppress_size_errors
= TRUE
;
13050 for (osec
= info
->output_bfd
->sections
; osec
!= NULL
; osec
= osec
->next
)
13054 if (osec
->id
>= htab
->sec_info_arr_size
)
13057 tail
= htab
->sec_info
[osec
->id
].u
.list
;
13058 while (tail
!= NULL
)
13062 bfd_size_type total
;
13063 bfd_boolean big_sec
;
13065 struct map_stub
*group
;
13066 bfd_size_type group_size
;
13069 total
= tail
->size
;
13070 group_size
= (ppc64_elf_section_data (tail
) != NULL
13071 && ppc64_elf_section_data (tail
)->has_14bit_branch
13072 ? stub_group_size
>> 10 : stub_group_size
);
13074 big_sec
= total
> group_size
;
13075 if (big_sec
&& !suppress_size_errors
)
13076 /* xgettext:c-format */
13077 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
13078 tail
->owner
, tail
);
13079 curr_toc
= htab
->sec_info
[tail
->id
].toc_off
;
13081 while ((prev
= htab
->sec_info
[curr
->id
].u
.list
) != NULL
13082 && ((total
+= curr
->output_offset
- prev
->output_offset
)
13083 < (ppc64_elf_section_data (prev
) != NULL
13084 && ppc64_elf_section_data (prev
)->has_14bit_branch
13085 ? (group_size
= stub_group_size
>> 10) : group_size
))
13086 && htab
->sec_info
[prev
->id
].toc_off
== curr_toc
)
13089 /* OK, the size from the start of CURR to the end is less
13090 than group_size and thus can be handled by one stub
13091 section. (or the tail section is itself larger than
13092 group_size, in which case we may be toast.) We should
13093 really be keeping track of the total size of stubs added
13094 here, as stubs contribute to the final output section
13095 size. That's a little tricky, and this way will only
13096 break if stubs added make the total size more than 2^25,
13097 ie. for the default stub_group_size, if stubs total more
13098 than 2097152 bytes, or nearly 75000 plt call stubs. */
13099 group
= bfd_alloc (curr
->owner
, sizeof (*group
));
13102 group
->link_sec
= curr
;
13103 group
->stub_sec
= NULL
;
13104 group
->needs_save_res
= 0;
13105 group
->lr_restore
= 0;
13106 group
->eh_size
= 0;
13107 group
->eh_base
= 0;
13108 group
->next
= htab
->group
;
13109 htab
->group
= group
;
13112 prev
= htab
->sec_info
[tail
->id
].u
.list
;
13113 /* Set up this stub group. */
13114 htab
->sec_info
[tail
->id
].u
.group
= group
;
13116 while (tail
!= curr
&& (tail
= prev
) != NULL
);
13118 /* But wait, there's more! Input sections up to group_size
13119 bytes before the stub section can be handled by it too.
13120 Don't do this if we have a really large section after the
13121 stubs, as adding more stubs increases the chance that
13122 branches may not reach into the stub section. */
13123 if (!stubs_always_before_branch
&& !big_sec
)
13126 while (prev
!= NULL
13127 && ((total
+= tail
->output_offset
- prev
->output_offset
)
13128 < (ppc64_elf_section_data (prev
) != NULL
13129 && ppc64_elf_section_data (prev
)->has_14bit_branch
13130 ? (group_size
= stub_group_size
>> 10)
13132 && htab
->sec_info
[prev
->id
].toc_off
== curr_toc
)
13135 prev
= htab
->sec_info
[tail
->id
].u
.list
;
13136 htab
->sec_info
[tail
->id
].u
.group
= group
;
13145 static const unsigned char glink_eh_frame_cie
[] =
13147 0, 0, 0, 16, /* length. */
13148 0, 0, 0, 0, /* id. */
13149 1, /* CIE version. */
13150 'z', 'R', 0, /* Augmentation string. */
13151 4, /* Code alignment. */
13152 0x78, /* Data alignment. */
13154 1, /* Augmentation size. */
13155 DW_EH_PE_pcrel
| DW_EH_PE_sdata4
, /* FDE encoding. */
13156 DW_CFA_def_cfa
, 1, 0 /* def_cfa: r1 offset 0. */
13159 /* Stripping output sections is normally done before dynamic section
13160 symbols have been allocated. This function is called later, and
13161 handles cases like htab->brlt which is mapped to its own output
13165 maybe_strip_output (struct bfd_link_info
*info
, asection
*isec
)
13167 if (isec
->size
== 0
13168 && isec
->output_section
->size
== 0
13169 && !(isec
->output_section
->flags
& SEC_KEEP
)
13170 && !bfd_section_removed_from_list (info
->output_bfd
,
13171 isec
->output_section
)
13172 && elf_section_data (isec
->output_section
)->dynindx
== 0)
13174 isec
->output_section
->flags
|= SEC_EXCLUDE
;
13175 bfd_section_list_remove (info
->output_bfd
, isec
->output_section
);
13176 info
->output_bfd
->section_count
--;
13180 /* Determine and set the size of the stub section for a final link.
13182 The basic idea here is to examine all the relocations looking for
13183 PC-relative calls to a target that is unreachable with a "bl"
13187 ppc64_elf_size_stubs (struct bfd_link_info
*info
)
13189 bfd_size_type stub_group_size
;
13190 bfd_boolean stubs_always_before_branch
;
13191 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
13196 if (htab
->params
->power10_stubs
== -1 && !htab
->has_power10_relocs
)
13197 htab
->params
->power10_stubs
= 0;
13199 if (htab
->params
->plt_thread_safe
== -1 && !bfd_link_executable (info
))
13200 htab
->params
->plt_thread_safe
= 1;
13201 if (!htab
->opd_abi
)
13202 htab
->params
->plt_thread_safe
= 0;
13203 else if (htab
->params
->plt_thread_safe
== -1)
13205 static const char *const thread_starter
[] =
13209 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
13211 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
13212 "mq_notify", "create_timer",
13217 "GOMP_parallel_start",
13218 "GOMP_parallel_loop_static",
13219 "GOMP_parallel_loop_static_start",
13220 "GOMP_parallel_loop_dynamic",
13221 "GOMP_parallel_loop_dynamic_start",
13222 "GOMP_parallel_loop_guided",
13223 "GOMP_parallel_loop_guided_start",
13224 "GOMP_parallel_loop_runtime",
13225 "GOMP_parallel_loop_runtime_start",
13226 "GOMP_parallel_sections",
13227 "GOMP_parallel_sections_start",
13233 for (i
= 0; i
< ARRAY_SIZE (thread_starter
); i
++)
13235 struct elf_link_hash_entry
*h
;
13236 h
= elf_link_hash_lookup (&htab
->elf
, thread_starter
[i
],
13237 FALSE
, FALSE
, TRUE
);
13238 htab
->params
->plt_thread_safe
= h
!= NULL
&& h
->ref_regular
;
13239 if (htab
->params
->plt_thread_safe
)
13243 stubs_always_before_branch
= htab
->params
->group_size
< 0;
13244 if (htab
->params
->group_size
< 0)
13245 stub_group_size
= -htab
->params
->group_size
;
13247 stub_group_size
= htab
->params
->group_size
;
13249 if (!group_sections (info
, stub_group_size
, stubs_always_before_branch
))
13252 htab
->tga_group
= NULL
;
13253 if (!htab
->params
->no_tls_get_addr_regsave
13254 && htab
->tga_desc_fd
!= NULL
13255 && (htab
->tga_desc_fd
->elf
.root
.type
== bfd_link_hash_undefined
13256 || htab
->tga_desc_fd
->elf
.root
.type
== bfd_link_hash_undefweak
)
13257 && htab
->tls_get_addr_fd
!= NULL
13258 && is_static_defined (&htab
->tls_get_addr_fd
->elf
))
13260 asection
*sym_sec
, *code_sec
, *stub_sec
;
13262 struct _opd_sec_data
*opd
;
13264 sym_sec
= htab
->tls_get_addr_fd
->elf
.root
.u
.def
.section
;
13265 sym_value
= defined_sym_val (&htab
->tls_get_addr_fd
->elf
);
13266 code_sec
= sym_sec
;
13267 opd
= get_opd_info (sym_sec
);
13269 opd_entry_value (sym_sec
, sym_value
, &code_sec
, NULL
, FALSE
);
13270 htab
->tga_group
= htab
->sec_info
[code_sec
->id
].u
.group
;
13271 stub_sec
= (*htab
->params
->add_stub_section
) (".tga_desc.stub",
13272 htab
->tga_group
->link_sec
);
13273 if (stub_sec
== NULL
)
13275 htab
->tga_group
->stub_sec
= stub_sec
;
13277 htab
->tga_desc_fd
->elf
.root
.type
= bfd_link_hash_defined
;
13278 htab
->tga_desc_fd
->elf
.root
.u
.def
.section
= stub_sec
;
13279 htab
->tga_desc_fd
->elf
.root
.u
.def
.value
= 0;
13280 htab
->tga_desc_fd
->elf
.type
= STT_FUNC
;
13281 htab
->tga_desc_fd
->elf
.def_regular
= 1;
13282 htab
->tga_desc_fd
->elf
.non_elf
= 0;
13283 _bfd_elf_link_hash_hide_symbol (info
, &htab
->tga_desc_fd
->elf
, TRUE
);
13286 #define STUB_SHRINK_ITER 20
13287 /* Loop until no stubs added. After iteration 20 of this loop we may
13288 exit on a stub section shrinking. This is to break out of a
13289 pathological case where adding stubs on one iteration decreases
13290 section gaps (perhaps due to alignment), which then requires
13291 fewer or smaller stubs on the next iteration. */
13296 unsigned int bfd_indx
;
13297 struct map_stub
*group
;
13299 htab
->stub_iteration
+= 1;
13301 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
13303 input_bfd
= input_bfd
->link
.next
, bfd_indx
++)
13305 Elf_Internal_Shdr
*symtab_hdr
;
13307 Elf_Internal_Sym
*local_syms
= NULL
;
13309 if (!is_ppc64_elf (input_bfd
))
13312 /* We'll need the symbol table in a second. */
13313 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
13314 if (symtab_hdr
->sh_info
== 0)
13317 /* Walk over each section attached to the input bfd. */
13318 for (section
= input_bfd
->sections
;
13320 section
= section
->next
)
13322 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
13324 /* If there aren't any relocs, then there's nothing more
13326 if ((section
->flags
& SEC_RELOC
) == 0
13327 || (section
->flags
& SEC_ALLOC
) == 0
13328 || (section
->flags
& SEC_LOAD
) == 0
13329 || (section
->flags
& SEC_CODE
) == 0
13330 || section
->reloc_count
== 0)
13333 /* If this section is a link-once section that will be
13334 discarded, then don't create any stubs. */
13335 if (section
->output_section
== NULL
13336 || section
->output_section
->owner
!= info
->output_bfd
)
13339 /* Get the relocs. */
13341 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
, NULL
,
13342 info
->keep_memory
);
13343 if (internal_relocs
== NULL
)
13344 goto error_ret_free_local
;
13346 /* Now examine each relocation. */
13347 irela
= internal_relocs
;
13348 irelaend
= irela
+ section
->reloc_count
;
13349 for (; irela
< irelaend
; irela
++)
13351 enum elf_ppc64_reloc_type r_type
;
13352 unsigned int r_indx
;
13353 enum ppc_stub_type stub_type
;
13354 struct ppc_stub_hash_entry
*stub_entry
;
13355 asection
*sym_sec
, *code_sec
;
13356 bfd_vma sym_value
, code_value
;
13357 bfd_vma destination
;
13358 unsigned long local_off
;
13359 bfd_boolean ok_dest
;
13360 struct ppc_link_hash_entry
*hash
;
13361 struct ppc_link_hash_entry
*fdh
;
13362 struct elf_link_hash_entry
*h
;
13363 Elf_Internal_Sym
*sym
;
13365 const asection
*id_sec
;
13366 struct _opd_sec_data
*opd
;
13367 struct plt_entry
*plt_ent
;
13369 r_type
= ELF64_R_TYPE (irela
->r_info
);
13370 r_indx
= ELF64_R_SYM (irela
->r_info
);
13372 if (r_type
>= R_PPC64_max
)
13374 bfd_set_error (bfd_error_bad_value
);
13375 goto error_ret_free_internal
;
13378 /* Only look for stubs on branch instructions. */
13379 if (r_type
!= R_PPC64_REL24
13380 && r_type
!= R_PPC64_REL24_NOTOC
13381 && r_type
!= R_PPC64_REL14
13382 && r_type
!= R_PPC64_REL14_BRTAKEN
13383 && r_type
!= R_PPC64_REL14_BRNTAKEN
)
13386 /* Now determine the call target, its name, value,
13388 if (!get_sym_h (&h
, &sym
, &sym_sec
, NULL
, &local_syms
,
13389 r_indx
, input_bfd
))
13390 goto error_ret_free_internal
;
13391 hash
= ppc_elf_hash_entry (h
);
13398 sym_value
= sym
->st_value
;
13399 if (sym_sec
!= NULL
13400 && sym_sec
->output_section
!= NULL
)
13403 else if (hash
->elf
.root
.type
== bfd_link_hash_defined
13404 || hash
->elf
.root
.type
== bfd_link_hash_defweak
)
13406 sym_value
= hash
->elf
.root
.u
.def
.value
;
13407 if (sym_sec
->output_section
!= NULL
)
13410 else if (hash
->elf
.root
.type
== bfd_link_hash_undefweak
13411 || hash
->elf
.root
.type
== bfd_link_hash_undefined
)
13413 /* Recognise an old ABI func code entry sym, and
13414 use the func descriptor sym instead if it is
13416 if (hash
->elf
.root
.root
.string
[0] == '.'
13417 && hash
->oh
!= NULL
)
13419 fdh
= ppc_follow_link (hash
->oh
);
13420 if (fdh
->elf
.root
.type
== bfd_link_hash_defined
13421 || fdh
->elf
.root
.type
== bfd_link_hash_defweak
)
13423 sym_sec
= fdh
->elf
.root
.u
.def
.section
;
13424 sym_value
= fdh
->elf
.root
.u
.def
.value
;
13425 if (sym_sec
->output_section
!= NULL
)
13434 bfd_set_error (bfd_error_bad_value
);
13435 goto error_ret_free_internal
;
13442 sym_value
+= irela
->r_addend
;
13443 destination
= (sym_value
13444 + sym_sec
->output_offset
13445 + sym_sec
->output_section
->vma
);
13446 local_off
= PPC64_LOCAL_ENTRY_OFFSET (hash
13451 code_sec
= sym_sec
;
13452 code_value
= sym_value
;
13453 opd
= get_opd_info (sym_sec
);
13458 if (hash
== NULL
&& opd
->adjust
!= NULL
)
13460 long adjust
= opd
->adjust
[OPD_NDX (sym_value
)];
13463 code_value
+= adjust
;
13464 sym_value
+= adjust
;
13466 dest
= opd_entry_value (sym_sec
, sym_value
,
13467 &code_sec
, &code_value
, FALSE
);
13468 if (dest
!= (bfd_vma
) -1)
13470 destination
= dest
;
13473 /* Fixup old ABI sym to point at code
13475 hash
->elf
.root
.type
= bfd_link_hash_defweak
;
13476 hash
->elf
.root
.u
.def
.section
= code_sec
;
13477 hash
->elf
.root
.u
.def
.value
= code_value
;
13482 /* Determine what (if any) linker stub is needed. */
13484 stub_type
= ppc_type_of_stub (section
, irela
, &hash
,
13485 &plt_ent
, destination
,
13488 if (r_type
== R_PPC64_REL24_NOTOC
)
13490 if (stub_type
== ppc_stub_plt_call
)
13491 stub_type
= ppc_stub_plt_call_notoc
;
13492 else if (stub_type
== ppc_stub_long_branch
13493 || (code_sec
!= NULL
13494 && code_sec
->output_section
!= NULL
13495 && (((hash
? hash
->elf
.other
: sym
->st_other
)
13496 & STO_PPC64_LOCAL_MASK
)
13497 > 1 << STO_PPC64_LOCAL_BIT
)))
13498 stub_type
= ppc_stub_long_branch_notoc
;
13500 else if (stub_type
!= ppc_stub_plt_call
)
13502 /* Check whether we need a TOC adjusting stub.
13503 Since the linker pastes together pieces from
13504 different object files when creating the
13505 _init and _fini functions, it may be that a
13506 call to what looks like a local sym is in
13507 fact a call needing a TOC adjustment. */
13508 if ((code_sec
!= NULL
13509 && code_sec
->output_section
!= NULL
13510 && (code_sec
->has_toc_reloc
13511 || code_sec
->makes_toc_func_call
)
13512 && (htab
->sec_info
[code_sec
->id
].toc_off
13513 != htab
->sec_info
[section
->id
].toc_off
))
13514 || (((hash
? hash
->elf
.other
: sym
->st_other
)
13515 & STO_PPC64_LOCAL_MASK
)
13516 == 1 << STO_PPC64_LOCAL_BIT
))
13517 stub_type
= ppc_stub_long_branch_r2off
;
13520 if (stub_type
== ppc_stub_none
)
13523 /* __tls_get_addr calls might be eliminated. */
13524 if (stub_type
!= ppc_stub_plt_call
13525 && stub_type
!= ppc_stub_plt_call_notoc
13527 && is_tls_get_addr (&hash
->elf
, htab
)
13528 && section
->has_tls_reloc
13529 && irela
!= internal_relocs
)
13531 /* Get tls info. */
13532 unsigned char *tls_mask
;
13534 if (!get_tls_mask (&tls_mask
, NULL
, NULL
, &local_syms
,
13535 irela
- 1, input_bfd
))
13536 goto error_ret_free_internal
;
13537 if ((*tls_mask
& TLS_TLS
) != 0
13538 && (*tls_mask
& (TLS_GD
| TLS_LD
)) == 0)
13542 if (stub_type
== ppc_stub_plt_call
)
13545 && htab
->params
->plt_localentry0
!= 0
13546 && is_elfv2_localentry0 (&hash
->elf
))
13547 htab
->has_plt_localentry0
= 1;
13548 else if (irela
+ 1 < irelaend
13549 && irela
[1].r_offset
== irela
->r_offset
+ 4
13550 && (ELF64_R_TYPE (irela
[1].r_info
)
13551 == R_PPC64_TOCSAVE
))
13553 if (!tocsave_find (htab
, INSERT
,
13554 &local_syms
, irela
+ 1, input_bfd
))
13555 goto error_ret_free_internal
;
13558 stub_type
= ppc_stub_plt_call_r2save
;
13561 /* Support for grouping stub sections. */
13562 id_sec
= htab
->sec_info
[section
->id
].u
.group
->link_sec
;
13564 /* Get the name of this stub. */
13565 stub_name
= ppc_stub_name (id_sec
, sym_sec
, hash
, irela
);
13567 goto error_ret_free_internal
;
13569 stub_entry
= ppc_stub_hash_lookup (&htab
->stub_hash_table
,
13570 stub_name
, FALSE
, FALSE
);
13571 if (stub_entry
!= NULL
)
13573 enum ppc_stub_type old_type
;
13575 /* A stub has already been created, but it may
13576 not be the required type. We shouldn't be
13577 transitioning from plt_call to long_branch
13578 stubs or vice versa, but we might be
13579 upgrading from plt_call to plt_call_r2save or
13580 from long_branch to long_branch_r2off. */
13582 if (htab
->params
->power10_stubs
== -1)
13584 /* For --power10-stubs=auto, don't merge _notoc
13585 and other varieties of stubs. (The _both
13586 variety won't be created.) */
13587 bfd_boolean notoc
= r_type
== R_PPC64_REL24_NOTOC
;
13588 struct ppc_stub_hash_entry
*alt_stub
13589 = select_alt_stub (stub_entry
, notoc
);
13591 if (alt_stub
== NULL
)
13593 alt_stub
= (struct ppc_stub_hash_entry
*)
13594 stub_hash_newfunc (NULL
,
13595 &htab
->stub_hash_table
,
13596 stub_entry
->root
.string
);
13597 if (alt_stub
== NULL
)
13599 /* xgettext:c-format */
13601 (_("%pB: cannot create stub entry %s"),
13602 section
->owner
, stub_entry
->root
.string
);
13603 goto error_ret_free_internal
;
13605 *alt_stub
= *stub_entry
;
13606 stub_entry
->root
.next
= &alt_stub
->root
;
13608 /* Sort notoc stubs first, for no good
13610 alt_stub
= stub_entry
;
13611 alt_stub
->stub_type
= stub_type
;
13613 stub_entry
= alt_stub
;
13615 old_type
= stub_entry
->stub_type
;
13621 case ppc_stub_save_res
:
13624 case ppc_stub_plt_call
:
13625 case ppc_stub_plt_call_r2save
:
13626 case ppc_stub_plt_call_notoc
:
13627 case ppc_stub_plt_call_both
:
13628 if (stub_type
== ppc_stub_plt_call
)
13630 else if (stub_type
== ppc_stub_plt_call_r2save
)
13632 if (old_type
== ppc_stub_plt_call_notoc
)
13633 stub_type
= ppc_stub_plt_call_both
;
13635 else if (stub_type
== ppc_stub_plt_call_notoc
)
13637 if (old_type
== ppc_stub_plt_call_r2save
)
13638 stub_type
= ppc_stub_plt_call_both
;
13644 case ppc_stub_plt_branch
:
13645 case ppc_stub_plt_branch_r2off
:
13646 case ppc_stub_plt_branch_notoc
:
13647 case ppc_stub_plt_branch_both
:
13648 old_type
+= (ppc_stub_long_branch
13649 - ppc_stub_plt_branch
);
13650 /* Fall through. */
13651 case ppc_stub_long_branch
:
13652 case ppc_stub_long_branch_r2off
:
13653 case ppc_stub_long_branch_notoc
:
13654 case ppc_stub_long_branch_both
:
13655 if (stub_type
== ppc_stub_long_branch
)
13657 else if (stub_type
== ppc_stub_long_branch_r2off
)
13659 if (old_type
== ppc_stub_long_branch_notoc
)
13660 stub_type
= ppc_stub_long_branch_both
;
13662 else if (stub_type
== ppc_stub_long_branch_notoc
)
13664 if (old_type
== ppc_stub_long_branch_r2off
)
13665 stub_type
= ppc_stub_long_branch_both
;
13671 if (old_type
< stub_type
)
13672 stub_entry
->stub_type
= stub_type
;
13676 stub_entry
= ppc_add_stub (stub_name
, section
, info
);
13677 if (stub_entry
== NULL
)
13680 error_ret_free_internal
:
13681 if (elf_section_data (section
)->relocs
== NULL
)
13682 free (internal_relocs
);
13683 error_ret_free_local
:
13684 if (symtab_hdr
->contents
13685 != (unsigned char *) local_syms
)
13690 stub_entry
->stub_type
= stub_type
;
13691 if (stub_type
>= ppc_stub_plt_call
13692 && stub_type
<= ppc_stub_plt_call_both
)
13694 stub_entry
->target_value
= sym_value
;
13695 stub_entry
->target_section
= sym_sec
;
13699 stub_entry
->target_value
= code_value
;
13700 stub_entry
->target_section
= code_sec
;
13702 stub_entry
->h
= hash
;
13703 stub_entry
->plt_ent
= plt_ent
;
13704 stub_entry
->symtype
13705 = hash
? hash
->elf
.type
: ELF_ST_TYPE (sym
->st_info
);
13706 stub_entry
->other
= hash
? hash
->elf
.other
: sym
->st_other
;
13709 && (hash
->elf
.root
.type
== bfd_link_hash_defined
13710 || hash
->elf
.root
.type
== bfd_link_hash_defweak
))
13711 htab
->stub_globals
+= 1;
13714 /* We're done with the internal relocs, free them. */
13715 if (elf_section_data (section
)->relocs
!= internal_relocs
)
13716 free (internal_relocs
);
13719 if (local_syms
!= NULL
13720 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
13722 if (!info
->keep_memory
)
13725 symtab_hdr
->contents
= (unsigned char *) local_syms
;
13729 /* We may have added some stubs. Find out the new size of the
13731 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
13733 group
->lr_restore
= 0;
13734 group
->eh_size
= 0;
13735 if (group
->stub_sec
!= NULL
)
13737 asection
*stub_sec
= group
->stub_sec
;
13739 if (htab
->stub_iteration
<= STUB_SHRINK_ITER
13740 || stub_sec
->rawsize
< stub_sec
->size
)
13741 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13742 stub_sec
->rawsize
= stub_sec
->size
;
13743 stub_sec
->size
= 0;
13744 stub_sec
->reloc_count
= 0;
13745 stub_sec
->flags
&= ~SEC_RELOC
;
13748 if (htab
->tga_group
!= NULL
)
13750 /* See emit_tga_desc and emit_tga_desc_eh_frame. */
13751 htab
->tga_group
->eh_size
13752 = 1 + 2 + (htab
->opd_abi
!= 0) + 3 + 8 * 2 + 3 + 8 + 3;
13753 htab
->tga_group
->lr_restore
= 23 * 4;
13754 htab
->tga_group
->stub_sec
->size
= 24 * 4;
13757 if (htab
->stub_iteration
<= STUB_SHRINK_ITER
13758 || htab
->brlt
->rawsize
< htab
->brlt
->size
)
13759 htab
->brlt
->rawsize
= htab
->brlt
->size
;
13760 htab
->brlt
->size
= 0;
13761 htab
->brlt
->reloc_count
= 0;
13762 htab
->brlt
->flags
&= ~SEC_RELOC
;
13763 if (htab
->relbrlt
!= NULL
)
13764 htab
->relbrlt
->size
= 0;
13766 bfd_hash_traverse (&htab
->stub_hash_table
, ppc_size_one_stub
, info
);
13768 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
13769 if (group
->needs_save_res
)
13770 group
->stub_sec
->size
+= htab
->sfpr
->size
;
13772 if (info
->emitrelocations
13773 && htab
->glink
!= NULL
&& htab
->glink
->size
!= 0)
13775 htab
->glink
->reloc_count
= 1;
13776 htab
->glink
->flags
|= SEC_RELOC
;
13779 if (htab
->glink_eh_frame
!= NULL
13780 && !bfd_is_abs_section (htab
->glink_eh_frame
->output_section
)
13781 && htab
->glink_eh_frame
->output_section
->size
> 8)
13783 size_t size
= 0, align
= 4;
13785 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
13786 if (group
->eh_size
!= 0)
13787 size
+= (group
->eh_size
+ 17 + align
- 1) & -align
;
13788 if (htab
->glink
!= NULL
&& htab
->glink
->size
!= 0)
13789 size
+= (24 + align
- 1) & -align
;
13791 size
+= (sizeof (glink_eh_frame_cie
) + align
- 1) & -align
;
13792 align
= 1ul << htab
->glink_eh_frame
->output_section
->alignment_power
;
13793 size
= (size
+ align
- 1) & -align
;
13794 htab
->glink_eh_frame
->rawsize
= htab
->glink_eh_frame
->size
;
13795 htab
->glink_eh_frame
->size
= size
;
13798 if (htab
->params
->plt_stub_align
!= 0)
13799 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
13800 if (group
->stub_sec
!= NULL
)
13802 int align
= abs (htab
->params
->plt_stub_align
);
13803 group
->stub_sec
->size
13804 = (group
->stub_sec
->size
+ (1 << align
) - 1) & -(1 << align
);
13807 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
13808 if (group
->stub_sec
!= NULL
13809 && group
->stub_sec
->rawsize
!= group
->stub_sec
->size
13810 && (htab
->stub_iteration
<= STUB_SHRINK_ITER
13811 || group
->stub_sec
->rawsize
< group
->stub_sec
->size
))
13815 && (htab
->brlt
->rawsize
== htab
->brlt
->size
13816 || (htab
->stub_iteration
> STUB_SHRINK_ITER
13817 && htab
->brlt
->rawsize
> htab
->brlt
->size
))
13818 && (htab
->glink_eh_frame
== NULL
13819 || htab
->glink_eh_frame
->rawsize
== htab
->glink_eh_frame
->size
)
13820 && (htab
->tga_group
== NULL
13821 || htab
->stub_iteration
> 1))
13824 /* Ask the linker to do its stuff. */
13825 (*htab
->params
->layout_sections_again
) ();
13828 if (htab
->glink_eh_frame
!= NULL
13829 && htab
->glink_eh_frame
->size
!= 0)
13832 bfd_byte
*p
, *last_fde
;
13833 size_t last_fde_len
, size
, align
, pad
;
13834 struct map_stub
*group
;
13836 /* It is necessary to at least have a rough outline of the
13837 linker generated CIEs and FDEs written before
13838 bfd_elf_discard_info is run, in order for these FDEs to be
13839 indexed in .eh_frame_hdr. */
13840 p
= bfd_zalloc (htab
->glink_eh_frame
->owner
, htab
->glink_eh_frame
->size
);
13843 htab
->glink_eh_frame
->contents
= p
;
13847 memcpy (p
, glink_eh_frame_cie
, sizeof (glink_eh_frame_cie
));
13848 /* CIE length (rewrite in case little-endian). */
13849 last_fde_len
= ((sizeof (glink_eh_frame_cie
) + align
- 1) & -align
) - 4;
13850 bfd_put_32 (htab
->elf
.dynobj
, last_fde_len
, p
);
13851 p
+= last_fde_len
+ 4;
13853 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
13854 if (group
->eh_size
!= 0)
13856 group
->eh_base
= p
- htab
->glink_eh_frame
->contents
;
13858 last_fde_len
= ((group
->eh_size
+ 17 + align
- 1) & -align
) - 4;
13860 bfd_put_32 (htab
->elf
.dynobj
, last_fde_len
, p
);
13863 val
= p
- htab
->glink_eh_frame
->contents
;
13864 bfd_put_32 (htab
->elf
.dynobj
, val
, p
);
13866 /* Offset to stub section, written later. */
13868 /* stub section size. */
13869 bfd_put_32 (htab
->elf
.dynobj
, group
->stub_sec
->size
, p
);
13871 /* Augmentation. */
13873 /* Make sure we don't have all nops. This is enough for
13874 elf-eh-frame.c to detect the last non-nop opcode. */
13875 p
[group
->eh_size
- 1] = DW_CFA_advance_loc
+ 1;
13876 p
= last_fde
+ last_fde_len
+ 4;
13878 if (htab
->glink
!= NULL
&& htab
->glink
->size
!= 0)
13881 last_fde_len
= ((24 + align
- 1) & -align
) - 4;
13883 bfd_put_32 (htab
->elf
.dynobj
, last_fde_len
, p
);
13886 val
= p
- htab
->glink_eh_frame
->contents
;
13887 bfd_put_32 (htab
->elf
.dynobj
, val
, p
);
13889 /* Offset to .glink, written later. */
13892 bfd_put_32 (htab
->elf
.dynobj
, htab
->glink
->size
- 8, p
);
13894 /* Augmentation. */
13897 *p
++ = DW_CFA_advance_loc
+ (htab
->has_plt_localentry0
? 3 : 2);
13898 *p
++ = DW_CFA_register
;
13900 *p
++ = htab
->opd_abi
? 12 : 0;
13901 *p
++ = DW_CFA_advance_loc
+ (htab
->opd_abi
? 4 : 2);
13902 *p
++ = DW_CFA_restore_extended
;
13904 p
+= ((24 + align
- 1) & -align
) - 24;
13906 /* Subsume any padding into the last FDE if user .eh_frame
13907 sections are aligned more than glink_eh_frame. Otherwise any
13908 zero padding will be seen as a terminator. */
13909 align
= 1ul << htab
->glink_eh_frame
->output_section
->alignment_power
;
13910 size
= p
- htab
->glink_eh_frame
->contents
;
13911 pad
= ((size
+ align
- 1) & -align
) - size
;
13912 htab
->glink_eh_frame
->size
= size
+ pad
;
13913 bfd_put_32 (htab
->elf
.dynobj
, last_fde_len
+ pad
, last_fde
);
13916 maybe_strip_output (info
, htab
->brlt
);
13917 if (htab
->relbrlt
!= NULL
)
13918 maybe_strip_output (info
, htab
->relbrlt
);
13919 if (htab
->glink_eh_frame
!= NULL
)
13920 maybe_strip_output (info
, htab
->glink_eh_frame
);
13925 /* Called after we have determined section placement. If sections
13926 move, we'll be called again. Provide a value for TOCstart. */
13929 ppc64_elf_set_toc (struct bfd_link_info
*info
, bfd
*obfd
)
13932 bfd_vma TOCstart
, adjust
;
13936 struct elf_link_hash_entry
*h
;
13937 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
13939 if (is_elf_hash_table (htab
)
13940 && htab
->hgot
!= NULL
)
13944 h
= elf_link_hash_lookup (htab
, ".TOC.", FALSE
, FALSE
, TRUE
);
13945 if (is_elf_hash_table (htab
))
13949 && h
->root
.type
== bfd_link_hash_defined
13950 && !h
->root
.linker_def
13951 && (!is_elf_hash_table (htab
)
13952 || h
->def_regular
))
13954 TOCstart
= defined_sym_val (h
) - TOC_BASE_OFF
;
13955 _bfd_set_gp_value (obfd
, TOCstart
);
13960 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13961 order. The TOC starts where the first of these sections starts. */
13962 s
= bfd_get_section_by_name (obfd
, ".got");
13963 if (s
== NULL
|| (s
->flags
& SEC_EXCLUDE
) != 0)
13964 s
= bfd_get_section_by_name (obfd
, ".toc");
13965 if (s
== NULL
|| (s
->flags
& SEC_EXCLUDE
) != 0)
13966 s
= bfd_get_section_by_name (obfd
, ".tocbss");
13967 if (s
== NULL
|| (s
->flags
& SEC_EXCLUDE
) != 0)
13968 s
= bfd_get_section_by_name (obfd
, ".plt");
13969 if (s
== NULL
|| (s
->flags
& SEC_EXCLUDE
) != 0)
13971 /* This may happen for
13972 o references to TOC base (SYM@toc / TOC[tc0]) without a
13974 o bad linker script
13975 o --gc-sections and empty TOC sections
13977 FIXME: Warn user? */
13979 /* Look for a likely section. We probably won't even be
13981 for (s
= obfd
->sections
; s
!= NULL
; s
= s
->next
)
13982 if ((s
->flags
& (SEC_ALLOC
| SEC_SMALL_DATA
| SEC_READONLY
13984 == (SEC_ALLOC
| SEC_SMALL_DATA
))
13987 for (s
= obfd
->sections
; s
!= NULL
; s
= s
->next
)
13988 if ((s
->flags
& (SEC_ALLOC
| SEC_SMALL_DATA
| SEC_EXCLUDE
))
13989 == (SEC_ALLOC
| SEC_SMALL_DATA
))
13992 for (s
= obfd
->sections
; s
!= NULL
; s
= s
->next
)
13993 if ((s
->flags
& (SEC_ALLOC
| SEC_READONLY
| SEC_EXCLUDE
))
13997 for (s
= obfd
->sections
; s
!= NULL
; s
= s
->next
)
13998 if ((s
->flags
& (SEC_ALLOC
| SEC_EXCLUDE
)) == SEC_ALLOC
)
14004 TOCstart
= s
->output_section
->vma
+ s
->output_offset
;
14006 /* Force alignment. */
14007 adjust
= TOCstart
& (TOC_BASE_ALIGN
- 1);
14008 TOCstart
-= adjust
;
14009 _bfd_set_gp_value (obfd
, TOCstart
);
14011 if (info
!= NULL
&& s
!= NULL
)
14013 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
14017 if (htab
->elf
.hgot
!= NULL
)
14019 htab
->elf
.hgot
->root
.u
.def
.value
= TOC_BASE_OFF
- adjust
;
14020 htab
->elf
.hgot
->root
.u
.def
.section
= s
;
14025 struct bfd_link_hash_entry
*bh
= NULL
;
14026 _bfd_generic_link_add_one_symbol (info
, obfd
, ".TOC.", BSF_GLOBAL
,
14027 s
, TOC_BASE_OFF
- adjust
,
14028 NULL
, FALSE
, FALSE
, &bh
);
14034 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
14035 write out any global entry stubs, and PLT relocations. */
14038 build_global_entry_stubs_and_plt (struct elf_link_hash_entry
*h
, void *inf
)
14040 struct bfd_link_info
*info
;
14041 struct ppc_link_hash_table
*htab
;
14042 struct plt_entry
*ent
;
14045 if (h
->root
.type
== bfd_link_hash_indirect
)
14049 htab
= ppc_hash_table (info
);
14053 for (ent
= h
->plt
.plist
; ent
!= NULL
; ent
= ent
->next
)
14054 if (ent
->plt
.offset
!= (bfd_vma
) -1)
14056 /* This symbol has an entry in the procedure linkage
14057 table. Set it up. */
14058 Elf_Internal_Rela rela
;
14059 asection
*plt
, *relplt
;
14062 if (!htab
->elf
.dynamic_sections_created
14063 || h
->dynindx
== -1)
14065 if (!(h
->def_regular
14066 && (h
->root
.type
== bfd_link_hash_defined
14067 || h
->root
.type
== bfd_link_hash_defweak
)))
14069 if (h
->type
== STT_GNU_IFUNC
)
14071 plt
= htab
->elf
.iplt
;
14072 relplt
= htab
->elf
.irelplt
;
14073 htab
->elf
.ifunc_resolvers
= TRUE
;
14075 rela
.r_info
= ELF64_R_INFO (0, R_PPC64_JMP_IREL
);
14077 rela
.r_info
= ELF64_R_INFO (0, R_PPC64_IRELATIVE
);
14081 plt
= htab
->pltlocal
;
14082 if (bfd_link_pic (info
))
14084 relplt
= htab
->relpltlocal
;
14086 rela
.r_info
= ELF64_R_INFO (0, R_PPC64_JMP_SLOT
);
14088 rela
.r_info
= ELF64_R_INFO (0, R_PPC64_RELATIVE
);
14093 rela
.r_addend
= defined_sym_val (h
) + ent
->addend
;
14095 if (relplt
== NULL
)
14097 loc
= plt
->contents
+ ent
->plt
.offset
;
14098 bfd_put_64 (info
->output_bfd
, rela
.r_addend
, loc
);
14101 bfd_vma toc
= elf_gp (info
->output_bfd
);
14102 toc
+= htab
->sec_info
[h
->root
.u
.def
.section
->id
].toc_off
;
14103 bfd_put_64 (info
->output_bfd
, toc
, loc
+ 8);
14108 rela
.r_offset
= (plt
->output_section
->vma
14109 + plt
->output_offset
14110 + ent
->plt
.offset
);
14111 loc
= relplt
->contents
+ (relplt
->reloc_count
++
14112 * sizeof (Elf64_External_Rela
));
14113 bfd_elf64_swap_reloca_out (info
->output_bfd
, &rela
, loc
);
14118 rela
.r_offset
= (htab
->elf
.splt
->output_section
->vma
14119 + htab
->elf
.splt
->output_offset
14120 + ent
->plt
.offset
);
14121 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_PPC64_JMP_SLOT
);
14122 rela
.r_addend
= ent
->addend
;
14123 loc
= (htab
->elf
.srelplt
->contents
14124 + ((ent
->plt
.offset
- PLT_INITIAL_ENTRY_SIZE (htab
))
14125 / PLT_ENTRY_SIZE (htab
) * sizeof (Elf64_External_Rela
)));
14126 if (h
->type
== STT_GNU_IFUNC
&& is_static_defined (h
))
14127 htab
->elf
.ifunc_resolvers
= TRUE
;
14128 bfd_elf64_swap_reloca_out (info
->output_bfd
, &rela
, loc
);
14132 if (!h
->pointer_equality_needed
)
14135 if (h
->def_regular
)
14138 s
= htab
->global_entry
;
14139 if (s
== NULL
|| s
->size
== 0)
14142 for (ent
= h
->plt
.plist
; ent
!= NULL
; ent
= ent
->next
)
14143 if (ent
->plt
.offset
!= (bfd_vma
) -1
14144 && ent
->addend
== 0)
14150 p
= s
->contents
+ h
->root
.u
.def
.value
;
14151 plt
= htab
->elf
.splt
;
14152 if (!htab
->elf
.dynamic_sections_created
14153 || h
->dynindx
== -1)
14155 if (h
->type
== STT_GNU_IFUNC
)
14156 plt
= htab
->elf
.iplt
;
14158 plt
= htab
->pltlocal
;
14160 off
= ent
->plt
.offset
+ plt
->output_offset
+ plt
->output_section
->vma
;
14161 off
-= h
->root
.u
.def
.value
+ s
->output_offset
+ s
->output_section
->vma
;
14163 if (off
+ 0x80008000 > 0xffffffff || (off
& 3) != 0)
14165 info
->callbacks
->einfo
14166 (_("%P: linkage table error against `%pT'\n"),
14167 h
->root
.root
.string
);
14168 bfd_set_error (bfd_error_bad_value
);
14169 htab
->stub_error
= TRUE
;
14172 htab
->stub_count
[ppc_stub_global_entry
- 1] += 1;
14173 if (htab
->params
->emit_stub_syms
)
14175 size_t len
= strlen (h
->root
.root
.string
);
14176 char *name
= bfd_malloc (sizeof "12345678.global_entry." + len
);
14181 sprintf (name
, "%08x.global_entry.%s", s
->id
, h
->root
.root
.string
);
14182 h
= elf_link_hash_lookup (&htab
->elf
, name
, TRUE
, FALSE
, FALSE
);
14185 if (h
->root
.type
== bfd_link_hash_new
)
14187 h
->root
.type
= bfd_link_hash_defined
;
14188 h
->root
.u
.def
.section
= s
;
14189 h
->root
.u
.def
.value
= p
- s
->contents
;
14190 h
->ref_regular
= 1;
14191 h
->def_regular
= 1;
14192 h
->ref_regular_nonweak
= 1;
14193 h
->forced_local
= 1;
14195 h
->root
.linker_def
= 1;
14199 if (PPC_HA (off
) != 0)
14201 bfd_put_32 (s
->owner
, ADDIS_R12_R12
| PPC_HA (off
), p
);
14204 bfd_put_32 (s
->owner
, LD_R12_0R12
| PPC_LO (off
), p
);
14206 bfd_put_32 (s
->owner
, MTCTR_R12
, p
);
14208 bfd_put_32 (s
->owner
, BCTR
, p
);
14214 /* Write PLT relocs for locals. */
14217 write_plt_relocs_for_local_syms (struct bfd_link_info
*info
)
14219 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
14222 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
14224 struct got_entry
**lgot_ents
, **end_lgot_ents
;
14225 struct plt_entry
**local_plt
, **lplt
, **end_local_plt
;
14226 Elf_Internal_Shdr
*symtab_hdr
;
14227 bfd_size_type locsymcount
;
14228 Elf_Internal_Sym
*local_syms
= NULL
;
14229 struct plt_entry
*ent
;
14231 if (!is_ppc64_elf (ibfd
))
14234 lgot_ents
= elf_local_got_ents (ibfd
);
14238 symtab_hdr
= &elf_symtab_hdr (ibfd
);
14239 locsymcount
= symtab_hdr
->sh_info
;
14240 end_lgot_ents
= lgot_ents
+ locsymcount
;
14241 local_plt
= (struct plt_entry
**) end_lgot_ents
;
14242 end_local_plt
= local_plt
+ locsymcount
;
14243 for (lplt
= local_plt
; lplt
< end_local_plt
; ++lplt
)
14244 for (ent
= *lplt
; ent
!= NULL
; ent
= ent
->next
)
14245 if (ent
->plt
.offset
!= (bfd_vma
) -1)
14247 Elf_Internal_Sym
*sym
;
14249 asection
*plt
, *relplt
;
14253 if (!get_sym_h (NULL
, &sym
, &sym_sec
, NULL
, &local_syms
,
14254 lplt
- local_plt
, ibfd
))
14256 if (symtab_hdr
->contents
!= (unsigned char *) local_syms
)
14261 val
= sym
->st_value
+ ent
->addend
;
14262 if (sym_sec
!= NULL
&& sym_sec
->output_section
!= NULL
)
14263 val
+= sym_sec
->output_offset
+ sym_sec
->output_section
->vma
;
14265 if (ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
14267 htab
->elf
.ifunc_resolvers
= TRUE
;
14268 plt
= htab
->elf
.iplt
;
14269 relplt
= htab
->elf
.irelplt
;
14273 plt
= htab
->pltlocal
;
14274 relplt
= bfd_link_pic (info
) ? htab
->relpltlocal
: NULL
;
14277 if (relplt
== NULL
)
14279 loc
= plt
->contents
+ ent
->plt
.offset
;
14280 bfd_put_64 (info
->output_bfd
, val
, loc
);
14283 bfd_vma toc
= elf_gp (ibfd
);
14284 bfd_put_64 (info
->output_bfd
, toc
, loc
+ 8);
14289 Elf_Internal_Rela rela
;
14290 rela
.r_offset
= (ent
->plt
.offset
14291 + plt
->output_offset
14292 + plt
->output_section
->vma
);
14293 if (ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
14296 rela
.r_info
= ELF64_R_INFO (0, R_PPC64_JMP_IREL
);
14298 rela
.r_info
= ELF64_R_INFO (0, R_PPC64_IRELATIVE
);
14303 rela
.r_info
= ELF64_R_INFO (0, R_PPC64_JMP_SLOT
);
14305 rela
.r_info
= ELF64_R_INFO (0, R_PPC64_RELATIVE
);
14307 rela
.r_addend
= val
;
14308 loc
= relplt
->contents
+ (relplt
->reloc_count
++
14309 * sizeof (Elf64_External_Rela
));
14310 bfd_elf64_swap_reloca_out (info
->output_bfd
, &rela
, loc
);
14314 if (local_syms
!= NULL
14315 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
14317 if (!info
->keep_memory
)
14320 symtab_hdr
->contents
= (unsigned char *) local_syms
;
14326 /* Emit the static wrapper function preserving registers around a
14327 __tls_get_addr_opt call. */
14330 emit_tga_desc (struct ppc_link_hash_table
*htab
)
14332 asection
*stub_sec
= htab
->tga_group
->stub_sec
;
14333 unsigned int cfa_updt
= 11 * 4;
14335 bfd_vma to
, from
, delta
;
14337 BFD_ASSERT (htab
->tga_desc_fd
->elf
.root
.type
== bfd_link_hash_defined
14338 && htab
->tga_desc_fd
->elf
.root
.u
.def
.section
== stub_sec
14339 && htab
->tga_desc_fd
->elf
.root
.u
.def
.value
== 0);
14340 to
= defined_sym_val (&htab
->tls_get_addr_fd
->elf
);
14341 from
= defined_sym_val (&htab
->tga_desc_fd
->elf
) + cfa_updt
;
14343 if (delta
+ (1 << 25) >= 1 << 26)
14345 _bfd_error_handler (_("__tls_get_addr call offset overflow"));
14346 htab
->stub_error
= TRUE
;
14350 p
= stub_sec
->contents
;
14351 p
= tls_get_addr_prologue (htab
->elf
.dynobj
, p
, htab
);
14352 bfd_put_32 (stub_sec
->owner
, B_DOT
| 1 | (delta
& 0x3fffffc), p
);
14354 p
= tls_get_addr_epilogue (htab
->elf
.dynobj
, p
, htab
);
14355 return stub_sec
->size
== (bfd_size_type
) (p
- stub_sec
->contents
);
14358 /* Emit eh_frame describing the static wrapper function. */
14361 emit_tga_desc_eh_frame (struct ppc_link_hash_table
*htab
, bfd_byte
*p
)
14363 unsigned int cfa_updt
= 11 * 4;
14366 *p
++ = DW_CFA_advance_loc
+ cfa_updt
/ 4;
14367 *p
++ = DW_CFA_def_cfa_offset
;
14375 *p
++ = DW_CFA_offset_extended_sf
;
14377 *p
++ = (-16 / 8) & 0x7f;
14378 for (i
= 4; i
< 12; i
++)
14380 *p
++ = DW_CFA_offset
+ i
;
14381 *p
++ = (htab
->opd_abi
? 13 : 12) - i
;
14383 *p
++ = DW_CFA_advance_loc
+ 10;
14384 *p
++ = DW_CFA_def_cfa_offset
;
14386 for (i
= 4; i
< 12; i
++)
14387 *p
++ = DW_CFA_restore
+ i
;
14388 *p
++ = DW_CFA_advance_loc
+ 2;
14389 *p
++ = DW_CFA_restore_extended
;
14394 /* Build all the stubs associated with the current output file.
14395 The stubs are kept in a hash table attached to the main linker
14396 hash table. This function is called via gldelf64ppc_finish. */
14399 ppc64_elf_build_stubs (struct bfd_link_info
*info
,
14402 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
14403 struct map_stub
*group
;
14404 asection
*stub_sec
;
14406 int stub_sec_count
= 0;
14411 /* Allocate memory to hold the linker stubs. */
14412 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
14414 group
->eh_size
= 0;
14415 group
->lr_restore
= 0;
14416 if ((stub_sec
= group
->stub_sec
) != NULL
14417 && stub_sec
->size
!= 0)
14419 stub_sec
->contents
= bfd_zalloc (htab
->params
->stub_bfd
,
14421 if (stub_sec
->contents
== NULL
)
14423 stub_sec
->size
= 0;
14427 if (htab
->glink
!= NULL
&& htab
->glink
->size
!= 0)
14432 /* Build the .glink plt call stub. */
14433 if (htab
->params
->emit_stub_syms
)
14435 struct elf_link_hash_entry
*h
;
14436 h
= elf_link_hash_lookup (&htab
->elf
, "__glink_PLTresolve",
14437 TRUE
, FALSE
, FALSE
);
14440 if (h
->root
.type
== bfd_link_hash_new
)
14442 h
->root
.type
= bfd_link_hash_defined
;
14443 h
->root
.u
.def
.section
= htab
->glink
;
14444 h
->root
.u
.def
.value
= 8;
14445 h
->ref_regular
= 1;
14446 h
->def_regular
= 1;
14447 h
->ref_regular_nonweak
= 1;
14448 h
->forced_local
= 1;
14450 h
->root
.linker_def
= 1;
14453 plt0
= (htab
->elf
.splt
->output_section
->vma
14454 + htab
->elf
.splt
->output_offset
14456 if (info
->emitrelocations
)
14458 Elf_Internal_Rela
*r
= get_relocs (htab
->glink
, 1);
14461 r
->r_offset
= (htab
->glink
->output_offset
14462 + htab
->glink
->output_section
->vma
);
14463 r
->r_info
= ELF64_R_INFO (0, R_PPC64_REL64
);
14464 r
->r_addend
= plt0
;
14466 p
= htab
->glink
->contents
;
14467 plt0
-= htab
->glink
->output_section
->vma
+ htab
->glink
->output_offset
;
14468 bfd_put_64 (htab
->glink
->owner
, plt0
, p
);
14472 bfd_put_32 (htab
->glink
->owner
, MFLR_R12
, p
);
14474 bfd_put_32 (htab
->glink
->owner
, BCL_20_31
, p
);
14476 bfd_put_32 (htab
->glink
->owner
, MFLR_R11
, p
);
14478 bfd_put_32 (htab
->glink
->owner
, LD_R2_0R11
| (-16 & 0xfffc), p
);
14480 bfd_put_32 (htab
->glink
->owner
, MTLR_R12
, p
);
14482 bfd_put_32 (htab
->glink
->owner
, ADD_R11_R2_R11
, p
);
14484 bfd_put_32 (htab
->glink
->owner
, LD_R12_0R11
, p
);
14486 bfd_put_32 (htab
->glink
->owner
, LD_R2_0R11
| 8, p
);
14488 bfd_put_32 (htab
->glink
->owner
, MTCTR_R12
, p
);
14490 bfd_put_32 (htab
->glink
->owner
, LD_R11_0R11
| 16, p
);
14498 . .quad plt0-1f # plt0 entry relative to 1:
14500 # We get here with r12 initially @ a glink branch
14501 # Load the address of _dl_runtime_resolve from plt0 and
14502 # jump to it, with r0 set to the index of the PLT entry
14503 # to be resolved and r11 the link map.
14504 __glink_PLTresolve:
14505 . std %r2,24(%r1) # optional
14511 . ld %r0,(0b-1b)(%r11)
14512 . sub %r12,%r12,%r11
14513 . add %r11,%r0,%r11
14514 . addi %r0,%r12,1b-2f
14521 . b __glink_PLTresolve
14523 . b __glink_PLTresolve */
14525 if (htab
->has_plt_localentry0
)
14527 bfd_put_32 (htab
->glink
->owner
, STD_R2_0R1
+ 24, p
);
14530 bfd_put_32 (htab
->glink
->owner
, MFLR_R0
, p
);
14532 bfd_put_32 (htab
->glink
->owner
, BCL_20_31
, p
);
14534 bfd_put_32 (htab
->glink
->owner
, MFLR_R11
, p
);
14536 bfd_put_32 (htab
->glink
->owner
, MTLR_R0
, p
);
14538 if (htab
->has_plt_localentry0
)
14539 insn
= LD_R0_0R11
| (-20 & 0xfffc);
14541 insn
= LD_R0_0R11
| (-16 & 0xfffc);
14542 bfd_put_32 (htab
->glink
->owner
, insn
, p
);
14544 bfd_put_32 (htab
->glink
->owner
, SUB_R12_R12_R11
, p
);
14546 bfd_put_32 (htab
->glink
->owner
, ADD_R11_R0_R11
, p
);
14548 bfd_put_32 (htab
->glink
->owner
, ADDI_R0_R12
| (-44 & 0xffff), p
);
14550 bfd_put_32 (htab
->glink
->owner
, LD_R12_0R11
, p
);
14552 bfd_put_32 (htab
->glink
->owner
, SRDI_R0_R0_2
, p
);
14554 bfd_put_32 (htab
->glink
->owner
, MTCTR_R12
, p
);
14556 bfd_put_32 (htab
->glink
->owner
, LD_R11_0R11
| 8, p
);
14559 bfd_put_32 (htab
->glink
->owner
, BCTR
, p
);
14561 BFD_ASSERT (p
== htab
->glink
->contents
+ GLINK_PLTRESOLVE_SIZE (htab
));
14563 /* Build the .glink lazy link call stubs. */
14565 while (p
< htab
->glink
->contents
+ htab
->glink
->size
)
14571 bfd_put_32 (htab
->glink
->owner
, LI_R0_0
| indx
, p
);
14576 bfd_put_32 (htab
->glink
->owner
, LIS_R0_0
| PPC_HI (indx
), p
);
14578 bfd_put_32 (htab
->glink
->owner
, ORI_R0_R0_0
| PPC_LO (indx
),
14583 bfd_put_32 (htab
->glink
->owner
,
14584 B_DOT
| ((htab
->glink
->contents
- p
+ 8) & 0x3fffffc), p
);
14590 if (htab
->tga_group
!= NULL
)
14592 htab
->tga_group
->lr_restore
= 23 * 4;
14593 htab
->tga_group
->stub_sec
->size
= 24 * 4;
14594 if (!emit_tga_desc (htab
))
14596 if (htab
->glink_eh_frame
!= NULL
14597 && htab
->glink_eh_frame
->size
!= 0)
14601 p
= htab
->glink_eh_frame
->contents
;
14602 p
+= (sizeof (glink_eh_frame_cie
) + align
- 1) & -align
;
14604 htab
->tga_group
->eh_size
= emit_tga_desc_eh_frame (htab
, p
) - p
;
14608 /* Build .glink global entry stubs, and PLT relocs for globals. */
14609 elf_link_hash_traverse (&htab
->elf
, build_global_entry_stubs_and_plt
, info
);
14611 if (!write_plt_relocs_for_local_syms (info
))
14614 if (htab
->brlt
!= NULL
&& htab
->brlt
->size
!= 0)
14616 htab
->brlt
->contents
= bfd_zalloc (htab
->brlt
->owner
,
14618 if (htab
->brlt
->contents
== NULL
)
14621 if (htab
->relbrlt
!= NULL
&& htab
->relbrlt
->size
!= 0)
14623 htab
->relbrlt
->contents
= bfd_zalloc (htab
->relbrlt
->owner
,
14624 htab
->relbrlt
->size
);
14625 if (htab
->relbrlt
->contents
== NULL
)
14629 /* Build the stubs as directed by the stub hash table. */
14630 bfd_hash_traverse (&htab
->stub_hash_table
, ppc_build_one_stub
, info
);
14632 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
14633 if (group
->needs_save_res
)
14634 group
->stub_sec
->size
+= htab
->sfpr
->size
;
14636 if (htab
->relbrlt
!= NULL
)
14637 htab
->relbrlt
->reloc_count
= 0;
14639 if (htab
->params
->plt_stub_align
!= 0)
14640 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
14641 if ((stub_sec
= group
->stub_sec
) != NULL
)
14643 int align
= abs (htab
->params
->plt_stub_align
);
14644 stub_sec
->size
= (stub_sec
->size
+ (1 << align
) - 1) & -(1 << align
);
14647 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
14648 if (group
->needs_save_res
)
14650 stub_sec
= group
->stub_sec
;
14651 memcpy (stub_sec
->contents
+ stub_sec
->size
- htab
->sfpr
->size
,
14652 htab
->sfpr
->contents
, htab
->sfpr
->size
);
14653 if (htab
->params
->emit_stub_syms
)
14657 for (i
= 0; i
< ARRAY_SIZE (save_res_funcs
); i
++)
14658 if (!sfpr_define (info
, &save_res_funcs
[i
], stub_sec
))
14663 if (htab
->glink_eh_frame
!= NULL
14664 && htab
->glink_eh_frame
->size
!= 0)
14669 p
= htab
->glink_eh_frame
->contents
;
14670 p
+= (sizeof (glink_eh_frame_cie
) + align
- 1) & -align
;
14672 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
14673 if (group
->eh_size
!= 0)
14675 /* Offset to stub section. */
14676 val
= (group
->stub_sec
->output_section
->vma
14677 + group
->stub_sec
->output_offset
);
14678 val
-= (htab
->glink_eh_frame
->output_section
->vma
14679 + htab
->glink_eh_frame
->output_offset
14680 + (p
+ 8 - htab
->glink_eh_frame
->contents
));
14681 if (val
+ 0x80000000 > 0xffffffff)
14684 (_("%s offset too large for .eh_frame sdata4 encoding"),
14685 group
->stub_sec
->name
);
14688 bfd_put_32 (htab
->elf
.dynobj
, val
, p
+ 8);
14689 p
+= (group
->eh_size
+ 17 + 3) & -4;
14691 if (htab
->glink
!= NULL
&& htab
->glink
->size
!= 0)
14693 /* Offset to .glink. */
14694 val
= (htab
->glink
->output_section
->vma
14695 + htab
->glink
->output_offset
14697 val
-= (htab
->glink_eh_frame
->output_section
->vma
14698 + htab
->glink_eh_frame
->output_offset
14699 + (p
+ 8 - htab
->glink_eh_frame
->contents
));
14700 if (val
+ 0x80000000 > 0xffffffff)
14703 (_("%s offset too large for .eh_frame sdata4 encoding"),
14704 htab
->glink
->name
);
14707 bfd_put_32 (htab
->elf
.dynobj
, val
, p
+ 8);
14708 p
+= (24 + align
- 1) & -align
;
14712 for (group
= htab
->group
; group
!= NULL
; group
= group
->next
)
14713 if ((stub_sec
= group
->stub_sec
) != NULL
)
14715 stub_sec_count
+= 1;
14716 if (stub_sec
->rawsize
!= stub_sec
->size
14717 && (htab
->stub_iteration
<= STUB_SHRINK_ITER
14718 || stub_sec
->rawsize
< stub_sec
->size
))
14724 htab
->stub_error
= TRUE
;
14725 _bfd_error_handler (_("stubs don't match calculated size"));
14728 if (htab
->stub_error
)
14734 if (asprintf (&groupmsg
,
14735 ngettext ("linker stubs in %u group\n",
14736 "linker stubs in %u groups\n",
14738 stub_sec_count
) < 0)
14742 if (asprintf (stats
, _("%s"
14744 " branch toc adj %lu\n"
14745 " branch notoc %lu\n"
14746 " branch both %lu\n"
14747 " long branch %lu\n"
14748 " long toc adj %lu\n"
14749 " long notoc %lu\n"
14752 " plt call save %lu\n"
14753 " plt call notoc %lu\n"
14754 " plt call both %lu\n"
14755 " global entry %lu"),
14757 htab
->stub_count
[ppc_stub_long_branch
- 1],
14758 htab
->stub_count
[ppc_stub_long_branch_r2off
- 1],
14759 htab
->stub_count
[ppc_stub_long_branch_notoc
- 1],
14760 htab
->stub_count
[ppc_stub_long_branch_both
- 1],
14761 htab
->stub_count
[ppc_stub_plt_branch
- 1],
14762 htab
->stub_count
[ppc_stub_plt_branch_r2off
- 1],
14763 htab
->stub_count
[ppc_stub_plt_branch_notoc
- 1],
14764 htab
->stub_count
[ppc_stub_plt_branch_both
- 1],
14765 htab
->stub_count
[ppc_stub_plt_call
- 1],
14766 htab
->stub_count
[ppc_stub_plt_call_r2save
- 1],
14767 htab
->stub_count
[ppc_stub_plt_call_notoc
- 1],
14768 htab
->stub_count
[ppc_stub_plt_call_both
- 1],
14769 htab
->stub_count
[ppc_stub_global_entry
- 1]) < 0)
14777 /* What to do when ld finds relocations against symbols defined in
14778 discarded sections. */
14780 static unsigned int
14781 ppc64_elf_action_discarded (asection
*sec
)
14783 if (strcmp (".opd", sec
->name
) == 0)
14786 if (strcmp (".toc", sec
->name
) == 0)
14789 if (strcmp (".toc1", sec
->name
) == 0)
14792 return _bfd_elf_default_action_discarded (sec
);
14795 /* These are the dynamic relocations supported by glibc. */
14798 ppc64_glibc_dynamic_reloc (enum elf_ppc64_reloc_type r_type
)
14802 case R_PPC64_RELATIVE
:
14804 case R_PPC64_ADDR64
:
14805 case R_PPC64_GLOB_DAT
:
14806 case R_PPC64_IRELATIVE
:
14807 case R_PPC64_JMP_IREL
:
14808 case R_PPC64_JMP_SLOT
:
14809 case R_PPC64_DTPMOD64
:
14810 case R_PPC64_DTPREL64
:
14811 case R_PPC64_TPREL64
:
14812 case R_PPC64_TPREL16_LO_DS
:
14813 case R_PPC64_TPREL16_DS
:
14814 case R_PPC64_TPREL16
:
14815 case R_PPC64_TPREL16_LO
:
14816 case R_PPC64_TPREL16_HI
:
14817 case R_PPC64_TPREL16_HIGH
:
14818 case R_PPC64_TPREL16_HA
:
14819 case R_PPC64_TPREL16_HIGHA
:
14820 case R_PPC64_TPREL16_HIGHER
:
14821 case R_PPC64_TPREL16_HIGHEST
:
14822 case R_PPC64_TPREL16_HIGHERA
:
14823 case R_PPC64_TPREL16_HIGHESTA
:
14824 case R_PPC64_ADDR16_LO_DS
:
14825 case R_PPC64_ADDR16_LO
:
14826 case R_PPC64_ADDR16_HI
:
14827 case R_PPC64_ADDR16_HIGH
:
14828 case R_PPC64_ADDR16_HA
:
14829 case R_PPC64_ADDR16_HIGHA
:
14830 case R_PPC64_REL30
:
14832 case R_PPC64_UADDR64
:
14833 case R_PPC64_UADDR32
:
14834 case R_PPC64_ADDR32
:
14835 case R_PPC64_ADDR24
:
14836 case R_PPC64_ADDR16
:
14837 case R_PPC64_UADDR16
:
14838 case R_PPC64_ADDR16_DS
:
14839 case R_PPC64_ADDR16_HIGHER
:
14840 case R_PPC64_ADDR16_HIGHEST
:
14841 case R_PPC64_ADDR16_HIGHERA
:
14842 case R_PPC64_ADDR16_HIGHESTA
:
14843 case R_PPC64_ADDR14
:
14844 case R_PPC64_ADDR14_BRTAKEN
:
14845 case R_PPC64_ADDR14_BRNTAKEN
:
14846 case R_PPC64_REL32
:
14847 case R_PPC64_REL64
:
14855 /* The RELOCATE_SECTION function is called by the ELF backend linker
14856 to handle the relocations for a section.
14858 The relocs are always passed as Rela structures; if the section
14859 actually uses Rel structures, the r_addend field will always be
14862 This function is responsible for adjust the section contents as
14863 necessary, and (if using Rela relocs and generating a
14864 relocatable output file) adjusting the reloc addend as
14867 This function does not have to worry about setting the reloc
14868 address or the reloc symbol index.
14870 LOCAL_SYMS is a pointer to the swapped in local symbols.
14872 LOCAL_SECTIONS is an array giving the section in the input file
14873 corresponding to the st_shndx field of each local symbol.
14875 The global hash table entry for the global symbols can be found
14876 via elf_sym_hashes (input_bfd).
14878 When generating relocatable output, this function must handle
14879 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14880 going to be the section symbol corresponding to the output
14881 section, which means that the addend must be adjusted
14885 ppc64_elf_relocate_section (bfd
*output_bfd
,
14886 struct bfd_link_info
*info
,
14888 asection
*input_section
,
14889 bfd_byte
*contents
,
14890 Elf_Internal_Rela
*relocs
,
14891 Elf_Internal_Sym
*local_syms
,
14892 asection
**local_sections
)
14894 struct ppc_link_hash_table
*htab
;
14895 Elf_Internal_Shdr
*symtab_hdr
;
14896 struct elf_link_hash_entry
**sym_hashes
;
14897 Elf_Internal_Rela
*rel
;
14898 Elf_Internal_Rela
*wrel
;
14899 Elf_Internal_Rela
*relend
;
14900 Elf_Internal_Rela outrel
;
14902 struct got_entry
**local_got_ents
;
14904 bfd_boolean ret
= TRUE
;
14905 bfd_boolean is_opd
;
14906 /* Assume 'at' branch hints. */
14907 bfd_boolean is_isa_v2
= TRUE
;
14908 bfd_boolean warned_dynamic
= FALSE
;
14909 bfd_vma d_offset
= (bfd_big_endian (input_bfd
) ? 2 : 0);
14911 /* Initialize howto table if needed. */
14912 if (!ppc64_elf_howto_table
[R_PPC64_ADDR32
])
14915 htab
= ppc_hash_table (info
);
14919 /* Don't relocate stub sections. */
14920 if (input_section
->owner
== htab
->params
->stub_bfd
)
14923 if (!is_ppc64_elf (input_bfd
))
14925 bfd_set_error (bfd_error_wrong_format
);
14929 local_got_ents
= elf_local_got_ents (input_bfd
);
14930 TOCstart
= elf_gp (output_bfd
);
14931 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
14932 sym_hashes
= elf_sym_hashes (input_bfd
);
14933 is_opd
= ppc64_elf_section_data (input_section
)->sec_type
== sec_opd
;
14935 rel
= wrel
= relocs
;
14936 relend
= relocs
+ input_section
->reloc_count
;
14937 for (; rel
< relend
; wrel
++, rel
++)
14939 enum elf_ppc64_reloc_type r_type
;
14941 bfd_reloc_status_type r
;
14942 Elf_Internal_Sym
*sym
;
14944 struct elf_link_hash_entry
*h_elf
;
14945 struct ppc_link_hash_entry
*h
;
14946 struct ppc_link_hash_entry
*fdh
;
14947 const char *sym_name
;
14948 unsigned long r_symndx
, toc_symndx
;
14949 bfd_vma toc_addend
;
14950 unsigned char tls_mask
, tls_gd
, tls_type
;
14951 unsigned char sym_type
;
14952 bfd_vma relocation
;
14953 bfd_boolean unresolved_reloc
, save_unresolved_reloc
;
14954 bfd_boolean warned
;
14955 enum { DEST_NORMAL
, DEST_OPD
, DEST_STUB
} reloc_dest
;
14958 struct ppc_stub_hash_entry
*stub_entry
;
14959 bfd_vma max_br_offset
;
14961 Elf_Internal_Rela orig_rel
;
14962 reloc_howto_type
*howto
;
14963 struct reloc_howto_struct alt_howto
;
14970 r_type
= ELF64_R_TYPE (rel
->r_info
);
14971 r_symndx
= ELF64_R_SYM (rel
->r_info
);
14973 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
14974 symbol of the previous ADDR64 reloc. The symbol gives us the
14975 proper TOC base to use. */
14976 if (rel
->r_info
== ELF64_R_INFO (0, R_PPC64_TOC
)
14978 && ELF64_R_TYPE (wrel
[-1].r_info
) == R_PPC64_ADDR64
14980 r_symndx
= ELF64_R_SYM (wrel
[-1].r_info
);
14986 unresolved_reloc
= FALSE
;
14989 if (r_symndx
< symtab_hdr
->sh_info
)
14991 /* It's a local symbol. */
14992 struct _opd_sec_data
*opd
;
14994 sym
= local_syms
+ r_symndx
;
14995 sec
= local_sections
[r_symndx
];
14996 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
, sec
);
14997 sym_type
= ELF64_ST_TYPE (sym
->st_info
);
14998 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
14999 opd
= get_opd_info (sec
);
15000 if (opd
!= NULL
&& opd
->adjust
!= NULL
)
15002 long adjust
= opd
->adjust
[OPD_NDX (sym
->st_value
15008 /* If this is a relocation against the opd section sym
15009 and we have edited .opd, adjust the reloc addend so
15010 that ld -r and ld --emit-relocs output is correct.
15011 If it is a reloc against some other .opd symbol,
15012 then the symbol value will be adjusted later. */
15013 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
15014 rel
->r_addend
+= adjust
;
15016 relocation
+= adjust
;
15022 bfd_boolean ignored
;
15024 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
15025 r_symndx
, symtab_hdr
, sym_hashes
,
15026 h_elf
, sec
, relocation
,
15027 unresolved_reloc
, warned
, ignored
);
15028 sym_name
= h_elf
->root
.root
.string
;
15029 sym_type
= h_elf
->type
;
15031 && sec
->owner
== output_bfd
15032 && strcmp (sec
->name
, ".opd") == 0)
15034 /* This is a symbol defined in a linker script. All
15035 such are defined in output sections, even those
15036 defined by simple assignment from a symbol defined in
15037 an input section. Transfer the symbol to an
15038 appropriate input .opd section, so that a branch to
15039 this symbol will be mapped to the location specified
15040 by the opd entry. */
15041 struct bfd_link_order
*lo
;
15042 for (lo
= sec
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
15043 if (lo
->type
== bfd_indirect_link_order
)
15045 asection
*isec
= lo
->u
.indirect
.section
;
15046 if (h_elf
->root
.u
.def
.value
>= isec
->output_offset
15047 && h_elf
->root
.u
.def
.value
< (isec
->output_offset
15050 h_elf
->root
.u
.def
.value
-= isec
->output_offset
;
15051 h_elf
->root
.u
.def
.section
= isec
;
15058 h
= ppc_elf_hash_entry (h_elf
);
15060 if (sec
!= NULL
&& discarded_section (sec
))
15062 _bfd_clear_contents (ppc64_elf_howto_table
[r_type
],
15063 input_bfd
, input_section
,
15064 contents
, rel
->r_offset
);
15065 wrel
->r_offset
= rel
->r_offset
;
15067 wrel
->r_addend
= 0;
15069 /* For ld -r, remove relocations in debug sections against
15070 symbols defined in discarded sections. Not done for
15071 non-debug to preserve relocs in .eh_frame which the
15072 eh_frame editing code expects to be present. */
15073 if (bfd_link_relocatable (info
)
15074 && (input_section
->flags
& SEC_DEBUGGING
))
15080 if (bfd_link_relocatable (info
))
15083 if (h
!= NULL
&& &h
->elf
== htab
->elf
.hgot
)
15085 relocation
= TOCstart
+ htab
->sec_info
[input_section
->id
].toc_off
;
15086 sec
= bfd_abs_section_ptr
;
15087 unresolved_reloc
= FALSE
;
15090 /* TLS optimizations. Replace instruction sequences and relocs
15091 based on information we collected in tls_optimize. We edit
15092 RELOCS so that --emit-relocs will output something sensible
15093 for the final instruction stream. */
15098 tls_mask
= h
->tls_mask
;
15099 else if (local_got_ents
!= NULL
)
15101 struct plt_entry
**local_plt
= (struct plt_entry
**)
15102 (local_got_ents
+ symtab_hdr
->sh_info
);
15103 unsigned char *lgot_masks
= (unsigned char *)
15104 (local_plt
+ symtab_hdr
->sh_info
);
15105 tls_mask
= lgot_masks
[r_symndx
];
15107 if (((tls_mask
& TLS_TLS
) == 0 || tls_mask
== (TLS_TLS
| TLS_MARK
))
15108 && (r_type
== R_PPC64_TLS
15109 || r_type
== R_PPC64_TLSGD
15110 || r_type
== R_PPC64_TLSLD
))
15112 /* Check for toc tls entries. */
15113 unsigned char *toc_tls
;
15115 if (!get_tls_mask (&toc_tls
, &toc_symndx
, &toc_addend
,
15116 &local_syms
, rel
, input_bfd
))
15120 tls_mask
= *toc_tls
;
15123 /* Check that tls relocs are used with tls syms, and non-tls
15124 relocs are used with non-tls syms. */
15125 if (r_symndx
!= STN_UNDEF
15126 && r_type
!= R_PPC64_NONE
15128 || h
->elf
.root
.type
== bfd_link_hash_defined
15129 || h
->elf
.root
.type
== bfd_link_hash_defweak
)
15130 && IS_PPC64_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
15132 if ((tls_mask
& TLS_TLS
) != 0
15133 && (r_type
== R_PPC64_TLS
15134 || r_type
== R_PPC64_TLSGD
15135 || r_type
== R_PPC64_TLSLD
))
15136 /* R_PPC64_TLS is OK against a symbol in the TOC. */
15139 info
->callbacks
->einfo
15140 (!IS_PPC64_TLS_RELOC (r_type
)
15141 /* xgettext:c-format */
15142 ? _("%H: %s used with TLS symbol `%pT'\n")
15143 /* xgettext:c-format */
15144 : _("%H: %s used with non-TLS symbol `%pT'\n"),
15145 input_bfd
, input_section
, rel
->r_offset
,
15146 ppc64_elf_howto_table
[r_type
]->name
,
15150 /* Ensure reloc mapping code below stays sane. */
15151 if (R_PPC64_TOC16_LO_DS
!= R_PPC64_TOC16_DS
+ 1
15152 || R_PPC64_TOC16_LO
!= R_PPC64_TOC16
+ 1
15153 || (R_PPC64_GOT_TLSLD16
& 3) != (R_PPC64_GOT_TLSGD16
& 3)
15154 || (R_PPC64_GOT_TLSLD16_LO
& 3) != (R_PPC64_GOT_TLSGD16_LO
& 3)
15155 || (R_PPC64_GOT_TLSLD16_HI
& 3) != (R_PPC64_GOT_TLSGD16_HI
& 3)
15156 || (R_PPC64_GOT_TLSLD16_HA
& 3) != (R_PPC64_GOT_TLSGD16_HA
& 3)
15157 || (R_PPC64_GOT_TLSLD16
& 3) != (R_PPC64_GOT_TPREL16_DS
& 3)
15158 || (R_PPC64_GOT_TLSLD16_LO
& 3) != (R_PPC64_GOT_TPREL16_LO_DS
& 3)
15159 || (R_PPC64_GOT_TLSLD16_HI
& 3) != (R_PPC64_GOT_TPREL16_HI
& 3)
15160 || (R_PPC64_GOT_TLSLD16_HA
& 3) != (R_PPC64_GOT_TPREL16_HA
& 3))
15168 case R_PPC64_LO_DS_OPT
:
15169 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
- d_offset
);
15170 if ((insn
& (0x3fu
<< 26)) != 58u << 26)
15172 insn
+= (14u << 26) - (58u << 26);
15173 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
- d_offset
);
15174 r_type
= R_PPC64_TOC16_LO
;
15175 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15178 case R_PPC64_TOC16
:
15179 case R_PPC64_TOC16_LO
:
15180 case R_PPC64_TOC16_DS
:
15181 case R_PPC64_TOC16_LO_DS
:
15183 /* Check for toc tls entries. */
15184 unsigned char *toc_tls
;
15187 retval
= get_tls_mask (&toc_tls
, &toc_symndx
, &toc_addend
,
15188 &local_syms
, rel
, input_bfd
);
15194 tls_mask
= *toc_tls
;
15195 if (r_type
== R_PPC64_TOC16_DS
15196 || r_type
== R_PPC64_TOC16_LO_DS
)
15198 if ((tls_mask
& TLS_TLS
) != 0
15199 && (tls_mask
& (TLS_DTPREL
| TLS_TPREL
)) == 0)
15204 /* If we found a GD reloc pair, then we might be
15205 doing a GD->IE transition. */
15209 if ((tls_mask
& TLS_TLS
) != 0
15210 && (tls_mask
& TLS_GD
) == 0)
15213 else if (retval
== 3)
15215 if ((tls_mask
& TLS_TLS
) != 0
15216 && (tls_mask
& TLS_LD
) == 0)
15224 case R_PPC64_GOT_TPREL16_HI
:
15225 case R_PPC64_GOT_TPREL16_HA
:
15226 if ((tls_mask
& TLS_TLS
) != 0
15227 && (tls_mask
& TLS_TPREL
) == 0)
15229 rel
->r_offset
-= d_offset
;
15230 bfd_put_32 (input_bfd
, NOP
, contents
+ rel
->r_offset
);
15231 r_type
= R_PPC64_NONE
;
15232 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15236 case R_PPC64_GOT_TPREL16_DS
:
15237 case R_PPC64_GOT_TPREL16_LO_DS
:
15238 if ((tls_mask
& TLS_TLS
) != 0
15239 && (tls_mask
& TLS_TPREL
) == 0)
15242 insn
= bfd_get_32 (input_bfd
,
15243 contents
+ rel
->r_offset
- d_offset
);
15245 insn
|= 0x3c0d0000; /* addis 0,13,0 */
15246 bfd_put_32 (input_bfd
, insn
,
15247 contents
+ rel
->r_offset
- d_offset
);
15248 r_type
= R_PPC64_TPREL16_HA
;
15249 if (toc_symndx
!= 0)
15251 rel
->r_info
= ELF64_R_INFO (toc_symndx
, r_type
);
15252 rel
->r_addend
= toc_addend
;
15253 /* We changed the symbol. Start over in order to
15254 get h, sym, sec etc. right. */
15258 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15262 case R_PPC64_GOT_TPREL_PCREL34
:
15263 if ((tls_mask
& TLS_TLS
) != 0
15264 && (tls_mask
& TLS_TPREL
) == 0)
15266 /* pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel */
15267 pinsn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
15269 pinsn
|= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
15270 pinsn
+= ((2ULL << 56) + (-1ULL << 52)
15271 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
15272 bfd_put_32 (input_bfd
, pinsn
>> 32,
15273 contents
+ rel
->r_offset
);
15274 bfd_put_32 (input_bfd
, pinsn
& 0xffffffff,
15275 contents
+ rel
->r_offset
+ 4);
15276 r_type
= R_PPC64_TPREL34
;
15277 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15282 if ((tls_mask
& TLS_TLS
) != 0
15283 && (tls_mask
& TLS_TPREL
) == 0)
15285 insn
= bfd_get_32 (input_bfd
, contents
+ (rel
->r_offset
& ~3));
15286 insn
= _bfd_elf_ppc_at_tls_transform (insn
, 13);
15289 if ((rel
->r_offset
& 3) == 0)
15291 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
15292 /* Was PPC64_TLS which sits on insn boundary, now
15293 PPC64_TPREL16_LO which is at low-order half-word. */
15294 rel
->r_offset
+= d_offset
;
15295 r_type
= R_PPC64_TPREL16_LO
;
15296 if (toc_symndx
!= 0)
15298 rel
->r_info
= ELF64_R_INFO (toc_symndx
, r_type
);
15299 rel
->r_addend
= toc_addend
;
15300 /* We changed the symbol. Start over in order to
15301 get h, sym, sec etc. right. */
15305 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15307 else if ((rel
->r_offset
& 3) == 1)
15309 /* For pcrel IE to LE we already have the full
15310 offset and thus don't need an addi here. A nop
15312 if ((insn
& (0x3fu
<< 26)) == 14 << 26)
15314 /* Extract regs from addi rt,ra,si. */
15315 unsigned int rt
= (insn
>> 21) & 0x1f;
15316 unsigned int ra
= (insn
>> 16) & 0x1f;
15321 /* Build or ra,rs,rb with rb==rs, ie. mr ra,rs. */
15322 insn
= (rt
<< 16) | (ra
<< 21) | (ra
<< 11);
15323 insn
|= (31u << 26) | (444u << 1);
15326 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
- 1);
15331 case R_PPC64_GOT_TLSGD16_HI
:
15332 case R_PPC64_GOT_TLSGD16_HA
:
15334 if ((tls_mask
& TLS_TLS
) != 0 && (tls_mask
& TLS_GD
) == 0)
15338 case R_PPC64_GOT_TLSLD16_HI
:
15339 case R_PPC64_GOT_TLSLD16_HA
:
15340 if ((tls_mask
& TLS_TLS
) != 0 && (tls_mask
& TLS_LD
) == 0)
15343 if ((tls_mask
& tls_gd
) != 0)
15344 r_type
= (((r_type
- (R_PPC64_GOT_TLSGD16
& 3)) & 3)
15345 + R_PPC64_GOT_TPREL16_DS
);
15348 rel
->r_offset
-= d_offset
;
15349 bfd_put_32 (input_bfd
, NOP
, contents
+ rel
->r_offset
);
15350 r_type
= R_PPC64_NONE
;
15352 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15356 case R_PPC64_GOT_TLSGD16
:
15357 case R_PPC64_GOT_TLSGD16_LO
:
15359 if ((tls_mask
& TLS_TLS
) != 0 && (tls_mask
& TLS_GD
) == 0)
15363 case R_PPC64_GOT_TLSLD16
:
15364 case R_PPC64_GOT_TLSLD16_LO
:
15365 if ((tls_mask
& TLS_TLS
) != 0 && (tls_mask
& TLS_LD
) == 0)
15367 unsigned int insn1
, insn2
;
15370 offset
= (bfd_vma
) -1;
15371 /* If not using the newer R_PPC64_TLSGD/LD to mark
15372 __tls_get_addr calls, we must trust that the call
15373 stays with its arg setup insns, ie. that the next
15374 reloc is the __tls_get_addr call associated with
15375 the current reloc. Edit both insns. */
15376 if (input_section
->nomark_tls_get_addr
15377 && rel
+ 1 < relend
15378 && branch_reloc_hash_match (input_bfd
, rel
+ 1,
15379 htab
->tls_get_addr_fd
,
15381 htab
->tls_get_addr
,
15383 offset
= rel
[1].r_offset
;
15384 /* We read the low GOT_TLS (or TOC16) insn because we
15385 need to keep the destination reg. It may be
15386 something other than the usual r3, and moved to r3
15387 before the call by intervening code. */
15388 insn1
= bfd_get_32 (input_bfd
,
15389 contents
+ rel
->r_offset
- d_offset
);
15390 if ((tls_mask
& tls_gd
) != 0)
15393 insn1
&= (0x1f << 21) | (0x1f << 16);
15394 insn1
|= 58u << 26; /* ld */
15395 insn2
= 0x7c636a14; /* add 3,3,13 */
15396 if (offset
!= (bfd_vma
) -1)
15397 rel
[1].r_info
= ELF64_R_INFO (STN_UNDEF
, R_PPC64_NONE
);
15398 if (r_type
== R_PPC64_TOC16
15399 || r_type
== R_PPC64_TOC16_LO
)
15400 r_type
+= R_PPC64_TOC16_DS
- R_PPC64_TOC16
;
15402 r_type
= (((r_type
- (R_PPC64_GOT_TLSGD16
& 1)) & 1)
15403 + R_PPC64_GOT_TPREL16_DS
);
15404 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15409 insn1
&= 0x1f << 21;
15410 insn1
|= 0x3c0d0000; /* addis r,13,0 */
15411 insn2
= 0x38630000; /* addi 3,3,0 */
15414 /* Was an LD reloc. */
15415 r_symndx
= STN_UNDEF
;
15416 rel
->r_addend
= htab
->elf
.tls_sec
->vma
+ DTP_OFFSET
;
15418 else if (toc_symndx
!= 0)
15420 r_symndx
= toc_symndx
;
15421 rel
->r_addend
= toc_addend
;
15423 r_type
= R_PPC64_TPREL16_HA
;
15424 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15425 if (offset
!= (bfd_vma
) -1)
15427 rel
[1].r_info
= ELF64_R_INFO (r_symndx
,
15428 R_PPC64_TPREL16_LO
);
15429 rel
[1].r_offset
= offset
+ d_offset
;
15430 rel
[1].r_addend
= rel
->r_addend
;
15433 bfd_put_32 (input_bfd
, insn1
,
15434 contents
+ rel
->r_offset
- d_offset
);
15435 if (offset
!= (bfd_vma
) -1)
15437 bfd_put_32 (input_bfd
, insn2
, contents
+ offset
);
15438 if (offset
+ 8 <= input_section
->size
)
15440 insn2
= bfd_get_32 (input_bfd
, contents
+ offset
+ 4);
15441 if (insn2
== LD_R2_0R1
+ STK_TOC (htab
))
15442 bfd_put_32 (input_bfd
, NOP
, contents
+ offset
+ 4);
15445 if ((tls_mask
& tls_gd
) == 0
15446 && (tls_gd
== 0 || toc_symndx
!= 0))
15448 /* We changed the symbol. Start over in order
15449 to get h, sym, sec etc. right. */
15455 case R_PPC64_GOT_TLSGD_PCREL34
:
15456 if ((tls_mask
& TLS_TLS
) != 0 && (tls_mask
& TLS_GD
) == 0)
15458 pinsn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
15460 pinsn
|= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
15461 if ((tls_mask
& TLS_GDIE
) != 0)
15463 /* IE, pla -> pld */
15464 pinsn
+= (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
15465 r_type
= R_PPC64_GOT_TPREL_PCREL34
;
15469 /* LE, pla pcrel -> paddi r13 */
15470 pinsn
+= (-1ULL << 52) + (13ULL << 16);
15471 r_type
= R_PPC64_TPREL34
;
15473 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15474 bfd_put_32 (input_bfd
, pinsn
>> 32,
15475 contents
+ rel
->r_offset
);
15476 bfd_put_32 (input_bfd
, pinsn
& 0xffffffff,
15477 contents
+ rel
->r_offset
+ 4);
15481 case R_PPC64_GOT_TLSLD_PCREL34
:
15482 if ((tls_mask
& TLS_TLS
) != 0 && (tls_mask
& TLS_LD
) == 0)
15484 pinsn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
15486 pinsn
|= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
15487 pinsn
+= (-1ULL << 52) + (13ULL << 16);
15488 bfd_put_32 (input_bfd
, pinsn
>> 32,
15489 contents
+ rel
->r_offset
);
15490 bfd_put_32 (input_bfd
, pinsn
& 0xffffffff,
15491 contents
+ rel
->r_offset
+ 4);
15492 rel
->r_addend
= htab
->elf
.tls_sec
->vma
+ DTP_OFFSET
;
15493 r_symndx
= STN_UNDEF
;
15494 r_type
= R_PPC64_TPREL34
;
15495 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15500 case R_PPC64_TLSGD
:
15501 if ((tls_mask
& TLS_TLS
) != 0 && (tls_mask
& TLS_GD
) == 0
15502 && rel
+ 1 < relend
)
15504 unsigned int insn2
;
15505 enum elf_ppc64_reloc_type r_type1
= ELF64_R_TYPE (rel
[1].r_info
);
15507 offset
= rel
->r_offset
;
15508 if (is_plt_seq_reloc (r_type1
))
15510 bfd_put_32 (output_bfd
, NOP
, contents
+ offset
);
15511 if (r_type1
== R_PPC64_PLT_PCREL34
15512 || r_type1
== R_PPC64_PLT_PCREL34_NOTOC
)
15513 bfd_put_32 (output_bfd
, NOP
, contents
+ offset
+ 4);
15514 rel
[1].r_info
= ELF64_R_INFO (STN_UNDEF
, R_PPC64_NONE
);
15518 if (ELF64_R_TYPE (rel
[1].r_info
) == R_PPC64_PLTCALL
)
15519 bfd_put_32 (output_bfd
, NOP
, contents
+ offset
+ 4);
15521 if ((tls_mask
& TLS_GDIE
) != 0)
15524 r_type
= R_PPC64_NONE
;
15525 insn2
= 0x7c636a14; /* add 3,3,13 */
15530 if (toc_symndx
!= 0)
15532 r_symndx
= toc_symndx
;
15533 rel
->r_addend
= toc_addend
;
15535 if (r_type1
== R_PPC64_REL24_NOTOC
15536 || r_type1
== R_PPC64_PLTCALL_NOTOC
)
15538 r_type
= R_PPC64_NONE
;
15543 rel
->r_offset
= offset
+ d_offset
;
15544 r_type
= R_PPC64_TPREL16_LO
;
15545 insn2
= 0x38630000; /* addi 3,3,0 */
15548 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15549 /* Zap the reloc on the _tls_get_addr call too. */
15550 BFD_ASSERT (offset
== rel
[1].r_offset
);
15551 rel
[1].r_info
= ELF64_R_INFO (STN_UNDEF
, R_PPC64_NONE
);
15552 bfd_put_32 (input_bfd
, insn2
, contents
+ offset
);
15553 if ((tls_mask
& TLS_GDIE
) == 0
15555 && r_type
!= R_PPC64_NONE
)
15560 case R_PPC64_TLSLD
:
15561 if ((tls_mask
& TLS_TLS
) != 0 && (tls_mask
& TLS_LD
) == 0
15562 && rel
+ 1 < relend
)
15564 unsigned int insn2
;
15565 enum elf_ppc64_reloc_type r_type1
= ELF64_R_TYPE (rel
[1].r_info
);
15567 offset
= rel
->r_offset
;
15568 if (is_plt_seq_reloc (r_type1
))
15570 bfd_put_32 (output_bfd
, NOP
, contents
+ offset
);
15571 if (r_type1
== R_PPC64_PLT_PCREL34
15572 || r_type1
== R_PPC64_PLT_PCREL34_NOTOC
)
15573 bfd_put_32 (output_bfd
, NOP
, contents
+ offset
+ 4);
15574 rel
[1].r_info
= ELF64_R_INFO (STN_UNDEF
, R_PPC64_NONE
);
15578 if (ELF64_R_TYPE (rel
[1].r_info
) == R_PPC64_PLTCALL
)
15579 bfd_put_32 (output_bfd
, NOP
, contents
+ offset
+ 4);
15581 if (r_type1
== R_PPC64_REL24_NOTOC
15582 || r_type1
== R_PPC64_PLTCALL_NOTOC
)
15584 r_type
= R_PPC64_NONE
;
15589 rel
->r_offset
= offset
+ d_offset
;
15590 r_symndx
= STN_UNDEF
;
15591 r_type
= R_PPC64_TPREL16_LO
;
15592 rel
->r_addend
= htab
->elf
.tls_sec
->vma
+ DTP_OFFSET
;
15593 insn2
= 0x38630000; /* addi 3,3,0 */
15595 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15596 /* Zap the reloc on the _tls_get_addr call too. */
15597 BFD_ASSERT (offset
== rel
[1].r_offset
);
15598 rel
[1].r_info
= ELF64_R_INFO (STN_UNDEF
, R_PPC64_NONE
);
15599 bfd_put_32 (input_bfd
, insn2
, contents
+ offset
);
15600 if (r_type
!= R_PPC64_NONE
)
15605 case R_PPC64_DTPMOD64
:
15606 if (rel
+ 1 < relend
15607 && rel
[1].r_info
== ELF64_R_INFO (r_symndx
, R_PPC64_DTPREL64
)
15608 && rel
[1].r_offset
== rel
->r_offset
+ 8)
15610 if ((tls_mask
& TLS_GD
) == 0)
15612 rel
[1].r_info
= ELF64_R_INFO (r_symndx
, R_PPC64_NONE
);
15613 if ((tls_mask
& TLS_GDIE
) != 0)
15614 r_type
= R_PPC64_TPREL64
;
15617 bfd_put_64 (output_bfd
, 1, contents
+ rel
->r_offset
);
15618 r_type
= R_PPC64_NONE
;
15620 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15625 if ((tls_mask
& TLS_LD
) == 0)
15627 bfd_put_64 (output_bfd
, 1, contents
+ rel
->r_offset
);
15628 r_type
= R_PPC64_NONE
;
15629 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15634 case R_PPC64_TPREL64
:
15635 if ((tls_mask
& TLS_TPREL
) == 0)
15637 r_type
= R_PPC64_NONE
;
15638 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15642 case R_PPC64_ENTRY
:
15643 relocation
= TOCstart
+ htab
->sec_info
[input_section
->id
].toc_off
;
15644 if (!bfd_link_pic (info
)
15645 && !info
->traditional_format
15646 && relocation
+ 0x80008000 <= 0xffffffff)
15648 unsigned int insn1
, insn2
;
15650 insn1
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
15651 insn2
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
15652 if ((insn1
& ~0xfffc) == LD_R2_0R12
15653 && insn2
== ADD_R2_R2_R12
)
15655 bfd_put_32 (input_bfd
,
15656 LIS_R2
+ PPC_HA (relocation
),
15657 contents
+ rel
->r_offset
);
15658 bfd_put_32 (input_bfd
,
15659 ADDI_R2_R2
+ PPC_LO (relocation
),
15660 contents
+ rel
->r_offset
+ 4);
15665 relocation
-= (rel
->r_offset
15666 + input_section
->output_offset
15667 + input_section
->output_section
->vma
);
15668 if (relocation
+ 0x80008000 <= 0xffffffff)
15670 unsigned int insn1
, insn2
;
15672 insn1
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
15673 insn2
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
15674 if ((insn1
& ~0xfffc) == LD_R2_0R12
15675 && insn2
== ADD_R2_R2_R12
)
15677 bfd_put_32 (input_bfd
,
15678 ADDIS_R2_R12
+ PPC_HA (relocation
),
15679 contents
+ rel
->r_offset
);
15680 bfd_put_32 (input_bfd
,
15681 ADDI_R2_R2
+ PPC_LO (relocation
),
15682 contents
+ rel
->r_offset
+ 4);
15688 case R_PPC64_REL16_HA
:
15689 /* If we are generating a non-PIC executable, edit
15690 . 0: addis 2,12,.TOC.-0b@ha
15691 . addi 2,2,.TOC.-0b@l
15692 used by ELFv2 global entry points to set up r2, to
15695 if .TOC. is in range. */
15696 if (!bfd_link_pic (info
)
15697 && !info
->traditional_format
15699 && rel
->r_addend
== d_offset
15700 && h
!= NULL
&& &h
->elf
== htab
->elf
.hgot
15701 && rel
+ 1 < relend
15702 && rel
[1].r_info
== ELF64_R_INFO (r_symndx
, R_PPC64_REL16_LO
)
15703 && rel
[1].r_offset
== rel
->r_offset
+ 4
15704 && rel
[1].r_addend
== rel
->r_addend
+ 4
15705 && relocation
+ 0x80008000 <= 0xffffffff)
15707 unsigned int insn1
, insn2
;
15708 offset
= rel
->r_offset
- d_offset
;
15709 insn1
= bfd_get_32 (input_bfd
, contents
+ offset
);
15710 insn2
= bfd_get_32 (input_bfd
, contents
+ offset
+ 4);
15711 if ((insn1
& 0xffff0000) == ADDIS_R2_R12
15712 && (insn2
& 0xffff0000) == ADDI_R2_R2
)
15714 r_type
= R_PPC64_ADDR16_HA
;
15715 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
15716 rel
->r_addend
-= d_offset
;
15717 rel
[1].r_info
= ELF64_R_INFO (r_symndx
, R_PPC64_ADDR16_LO
);
15718 rel
[1].r_addend
-= d_offset
+ 4;
15719 bfd_put_32 (input_bfd
, LIS_R2
, contents
+ offset
);
15725 /* Handle other relocations that tweak non-addend part of insn. */
15727 max_br_offset
= 1 << 25;
15728 addend
= rel
->r_addend
;
15729 reloc_dest
= DEST_NORMAL
;
15735 case R_PPC64_TOCSAVE
:
15736 if (relocation
+ addend
== (rel
->r_offset
15737 + input_section
->output_offset
15738 + input_section
->output_section
->vma
)
15739 && tocsave_find (htab
, NO_INSERT
,
15740 &local_syms
, rel
, input_bfd
))
15742 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
15744 || insn
== CROR_151515
|| insn
== CROR_313131
)
15745 bfd_put_32 (input_bfd
,
15746 STD_R2_0R1
+ STK_TOC (htab
),
15747 contents
+ rel
->r_offset
);
15751 /* Branch taken prediction relocations. */
15752 case R_PPC64_ADDR14_BRTAKEN
:
15753 case R_PPC64_REL14_BRTAKEN
:
15754 insn
= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
15755 /* Fall through. */
15757 /* Branch not taken prediction relocations. */
15758 case R_PPC64_ADDR14_BRNTAKEN
:
15759 case R_PPC64_REL14_BRNTAKEN
:
15760 insn
|= bfd_get_32 (input_bfd
,
15761 contents
+ rel
->r_offset
) & ~(0x01 << 21);
15762 /* Fall through. */
15764 case R_PPC64_REL14
:
15765 max_br_offset
= 1 << 15;
15766 /* Fall through. */
15768 case R_PPC64_REL24
:
15769 case R_PPC64_REL24_NOTOC
:
15770 case R_PPC64_PLTCALL
:
15771 case R_PPC64_PLTCALL_NOTOC
:
15772 /* Calls to functions with a different TOC, such as calls to
15773 shared objects, need to alter the TOC pointer. This is
15774 done using a linkage stub. A REL24 branching to these
15775 linkage stubs needs to be followed by a nop, as the nop
15776 will be replaced with an instruction to restore the TOC
15781 && h
->oh
->is_func_descriptor
)
15782 fdh
= ppc_follow_link (h
->oh
);
15783 stub_entry
= ppc_get_stub_entry (input_section
, sec
, fdh
, &orig_rel
,
15785 if ((r_type
== R_PPC64_PLTCALL
15786 || r_type
== R_PPC64_PLTCALL_NOTOC
)
15787 && stub_entry
!= NULL
15788 && stub_entry
->stub_type
>= ppc_stub_plt_call
15789 && stub_entry
->stub_type
<= ppc_stub_plt_call_both
)
15792 if (stub_entry
!= NULL
15793 && ((stub_entry
->stub_type
>= ppc_stub_plt_call
15794 && stub_entry
->stub_type
<= ppc_stub_plt_call_both
)
15795 || stub_entry
->stub_type
== ppc_stub_plt_branch_r2off
15796 || stub_entry
->stub_type
== ppc_stub_plt_branch_both
15797 || stub_entry
->stub_type
== ppc_stub_long_branch_r2off
15798 || stub_entry
->stub_type
== ppc_stub_long_branch_both
))
15800 bfd_boolean can_plt_call
= FALSE
;
15802 if (stub_entry
->stub_type
== ppc_stub_plt_call
15804 && htab
->params
->plt_localentry0
!= 0
15806 && is_elfv2_localentry0 (&h
->elf
))
15808 /* The function doesn't use or change r2. */
15809 can_plt_call
= TRUE
;
15811 else if (r_type
== R_PPC64_REL24_NOTOC
)
15813 /* NOTOC calls don't need to restore r2. */
15814 can_plt_call
= TRUE
;
15817 /* All of these stubs may modify r2, so there must be a
15818 branch and link followed by a nop. The nop is
15819 replaced by an insn to restore r2. */
15820 else if (rel
->r_offset
+ 8 <= input_section
->size
)
15824 br
= bfd_get_32 (input_bfd
,
15825 contents
+ rel
->r_offset
);
15830 nop
= bfd_get_32 (input_bfd
,
15831 contents
+ rel
->r_offset
+ 4);
15832 if (nop
== LD_R2_0R1
+ STK_TOC (htab
))
15833 can_plt_call
= TRUE
;
15834 else if (nop
== NOP
15835 || nop
== CROR_151515
15836 || nop
== CROR_313131
)
15839 && is_tls_get_addr (&h
->elf
, htab
)
15840 && htab
->params
->tls_get_addr_opt
)
15842 /* Special stub used, leave nop alone. */
15845 bfd_put_32 (input_bfd
,
15846 LD_R2_0R1
+ STK_TOC (htab
),
15847 contents
+ rel
->r_offset
+ 4);
15848 can_plt_call
= TRUE
;
15853 if (!can_plt_call
&& h
!= NULL
)
15855 const char *name
= h
->elf
.root
.root
.string
;
15860 if (strncmp (name
, "__libc_start_main", 17) == 0
15861 && (name
[17] == 0 || name
[17] == '@'))
15863 /* Allow crt1 branch to go via a toc adjusting
15864 stub. Other calls that never return could do
15865 the same, if we could detect such. */
15866 can_plt_call
= TRUE
;
15872 /* g++ as of 20130507 emits self-calls without a
15873 following nop. This is arguably wrong since we
15874 have conflicting information. On the one hand a
15875 global symbol and on the other a local call
15876 sequence, but don't error for this special case.
15877 It isn't possible to cheaply verify we have
15878 exactly such a call. Allow all calls to the same
15880 asection
*code_sec
= sec
;
15882 if (get_opd_info (sec
) != NULL
)
15884 bfd_vma off
= (relocation
+ addend
15885 - sec
->output_section
->vma
15886 - sec
->output_offset
);
15888 opd_entry_value (sec
, off
, &code_sec
, NULL
, FALSE
);
15890 if (code_sec
== input_section
)
15891 can_plt_call
= TRUE
;
15896 if (stub_entry
->stub_type
>= ppc_stub_plt_call
15897 && stub_entry
->stub_type
<= ppc_stub_plt_call_both
)
15898 info
->callbacks
->einfo
15899 /* xgettext:c-format */
15900 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15901 "(plt call stub)\n"),
15902 input_bfd
, input_section
, rel
->r_offset
, sym_name
);
15904 info
->callbacks
->einfo
15905 /* xgettext:c-format */
15906 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15907 "(toc save/adjust stub)\n"),
15908 input_bfd
, input_section
, rel
->r_offset
, sym_name
);
15910 bfd_set_error (bfd_error_bad_value
);
15915 && stub_entry
->stub_type
>= ppc_stub_plt_call
15916 && stub_entry
->stub_type
<= ppc_stub_plt_call_both
)
15917 unresolved_reloc
= FALSE
;
15920 if ((stub_entry
== NULL
15921 || stub_entry
->stub_type
== ppc_stub_long_branch
15922 || stub_entry
->stub_type
== ppc_stub_plt_branch
)
15923 && get_opd_info (sec
) != NULL
)
15925 /* The branch destination is the value of the opd entry. */
15926 bfd_vma off
= (relocation
+ addend
15927 - sec
->output_section
->vma
15928 - sec
->output_offset
);
15929 bfd_vma dest
= opd_entry_value (sec
, off
, NULL
, NULL
, FALSE
);
15930 if (dest
!= (bfd_vma
) -1)
15934 reloc_dest
= DEST_OPD
;
15938 /* If the branch is out of reach we ought to have a long
15940 from
= (rel
->r_offset
15941 + input_section
->output_offset
15942 + input_section
->output_section
->vma
);
15944 relocation
+= PPC64_LOCAL_ENTRY_OFFSET (fdh
15948 if (stub_entry
!= NULL
15949 && (stub_entry
->stub_type
== ppc_stub_long_branch
15950 || stub_entry
->stub_type
== ppc_stub_plt_branch
)
15951 && (r_type
== R_PPC64_ADDR14_BRTAKEN
15952 || r_type
== R_PPC64_ADDR14_BRNTAKEN
15953 || (relocation
+ addend
- from
+ max_br_offset
15954 < 2 * max_br_offset
)))
15955 /* Don't use the stub if this branch is in range. */
15958 if (stub_entry
!= NULL
15959 && (stub_entry
->stub_type
== ppc_stub_long_branch_notoc
15960 || stub_entry
->stub_type
== ppc_stub_long_branch_both
15961 || stub_entry
->stub_type
== ppc_stub_plt_branch_notoc
15962 || stub_entry
->stub_type
== ppc_stub_plt_branch_both
)
15963 && (r_type
!= R_PPC64_REL24_NOTOC
15964 || ((fdh
? fdh
->elf
.other
: sym
->st_other
)
15965 & STO_PPC64_LOCAL_MASK
) <= 1 << STO_PPC64_LOCAL_BIT
)
15966 && (relocation
+ addend
- from
+ max_br_offset
15967 < 2 * max_br_offset
))
15970 if (stub_entry
!= NULL
15971 && (stub_entry
->stub_type
== ppc_stub_long_branch_r2off
15972 || stub_entry
->stub_type
== ppc_stub_long_branch_both
15973 || stub_entry
->stub_type
== ppc_stub_plt_branch_r2off
15974 || stub_entry
->stub_type
== ppc_stub_plt_branch_both
)
15975 && r_type
== R_PPC64_REL24_NOTOC
15976 && (relocation
+ addend
- from
+ max_br_offset
15977 < 2 * max_br_offset
))
15980 if (stub_entry
!= NULL
)
15982 /* Munge up the value and addend so that we call the stub
15983 rather than the procedure directly. */
15984 asection
*stub_sec
= stub_entry
->group
->stub_sec
;
15986 if (stub_entry
->stub_type
== ppc_stub_save_res
)
15987 relocation
+= (stub_sec
->output_offset
15988 + stub_sec
->output_section
->vma
15989 + stub_sec
->size
- htab
->sfpr
->size
15990 - htab
->sfpr
->output_offset
15991 - htab
->sfpr
->output_section
->vma
);
15993 relocation
= (stub_entry
->stub_offset
15994 + stub_sec
->output_offset
15995 + stub_sec
->output_section
->vma
);
15997 reloc_dest
= DEST_STUB
;
15999 if ((((stub_entry
->stub_type
== ppc_stub_plt_call
16000 && ALWAYS_EMIT_R2SAVE
)
16001 || stub_entry
->stub_type
== ppc_stub_plt_call_r2save
16002 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
16003 && rel
+ 1 < relend
16004 && rel
[1].r_offset
== rel
->r_offset
+ 4
16005 && ELF64_R_TYPE (rel
[1].r_info
) == R_PPC64_TOCSAVE
)
16006 || ((stub_entry
->stub_type
== ppc_stub_long_branch_both
16007 || stub_entry
->stub_type
== ppc_stub_plt_branch_both
16008 || stub_entry
->stub_type
== ppc_stub_plt_call_both
)
16009 && r_type
== R_PPC64_REL24_NOTOC
))
16011 /* Skip over the r2 store at the start of the stub. */
16012 if (!(stub_entry
->stub_type
>= ppc_stub_plt_call
16013 && htab
->params
->tls_get_addr_opt
16015 && is_tls_get_addr (&h
->elf
, htab
)))
16019 if (r_type
== R_PPC64_REL24_NOTOC
16020 && (stub_entry
->stub_type
== ppc_stub_plt_call_notoc
16021 || stub_entry
->stub_type
== ppc_stub_plt_call_both
))
16022 htab
->notoc_plt
= 1;
16029 /* Set 'a' bit. This is 0b00010 in BO field for branch
16030 on CR(BI) insns (BO == 001at or 011at), and 0b01000
16031 for branch on CTR insns (BO == 1a00t or 1a01t). */
16032 if ((insn
& (0x14 << 21)) == (0x04 << 21))
16033 insn
|= 0x02 << 21;
16034 else if ((insn
& (0x14 << 21)) == (0x10 << 21))
16035 insn
|= 0x08 << 21;
16041 /* Invert 'y' bit if not the default. */
16042 if ((bfd_signed_vma
) (relocation
+ addend
- from
) < 0)
16043 insn
^= 0x01 << 21;
16046 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
16049 /* NOP out calls to undefined weak functions.
16050 We can thus call a weak function without first
16051 checking whether the function is defined. */
16053 && h
->elf
.root
.type
== bfd_link_hash_undefweak
16054 && h
->elf
.dynindx
== -1
16055 && (r_type
== R_PPC64_REL24
16056 || r_type
== R_PPC64_REL24_NOTOC
)
16060 bfd_put_32 (input_bfd
, NOP
, contents
+ rel
->r_offset
);
16065 case R_PPC64_GOT16_DS
:
16066 if ((h
? h
->elf
.type
: ELF_ST_TYPE (sym
->st_info
)) == STT_GNU_IFUNC
16067 || !htab
->do_toc_opt
)
16069 from
= TOCstart
+ htab
->sec_info
[input_section
->id
].toc_off
;
16070 if (relocation
+ addend
- from
+ 0x8000 < 0x10000
16071 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, &h
->elf
)))
16073 insn
= bfd_get_32 (input_bfd
, contents
+ (rel
->r_offset
& ~3));
16074 if ((insn
& (0x3fu
<< 26 | 0x3)) == 58u << 26 /* ld */)
16076 insn
+= (14u << 26) - (58u << 26);
16077 bfd_put_32 (input_bfd
, insn
, contents
+ (rel
->r_offset
& ~3));
16078 r_type
= R_PPC64_TOC16
;
16079 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
16084 case R_PPC64_GOT16_LO_DS
:
16085 case R_PPC64_GOT16_HA
:
16086 if ((h
? h
->elf
.type
: ELF_ST_TYPE (sym
->st_info
)) == STT_GNU_IFUNC
16087 || !htab
->do_toc_opt
)
16089 from
= TOCstart
+ htab
->sec_info
[input_section
->id
].toc_off
;
16090 if (relocation
+ addend
- from
+ 0x80008000ULL
< 0x100000000ULL
16091 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, &h
->elf
)))
16093 insn
= bfd_get_32 (input_bfd
, contents
+ (rel
->r_offset
& ~3));
16094 if (r_type
== R_PPC64_GOT16_LO_DS
16095 && (insn
& (0x3fu
<< 26 | 0x3)) == 58u << 26 /* ld */)
16097 insn
+= (14u << 26) - (58u << 26);
16098 bfd_put_32 (input_bfd
, insn
, contents
+ (rel
->r_offset
& ~3));
16099 r_type
= R_PPC64_TOC16_LO
;
16100 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
16102 else if (r_type
== R_PPC64_GOT16_HA
16103 && (insn
& (0x3fu
<< 26)) == 15u << 26 /* addis */)
16105 r_type
= R_PPC64_TOC16_HA
;
16106 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
16111 case R_PPC64_GOT_PCREL34
:
16112 if ((h
? h
->elf
.type
: ELF_ST_TYPE (sym
->st_info
)) == STT_GNU_IFUNC
16113 || !htab
->do_toc_opt
)
16115 from
= (rel
->r_offset
16116 + input_section
->output_section
->vma
16117 + input_section
->output_offset
);
16118 if (!(relocation
- from
+ (1ULL << 33) < 1ULL << 34
16119 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, &h
->elf
))))
16122 offset
= rel
->r_offset
;
16123 pinsn
= bfd_get_32 (input_bfd
, contents
+ offset
);
16125 pinsn
|= bfd_get_32 (input_bfd
, contents
+ offset
+ 4);
16126 if ((pinsn
& ((-1ULL << 50) | (63ULL << 26)))
16127 != ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
16130 /* Replace with paddi. */
16131 pinsn
+= (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
16132 r_type
= R_PPC64_PCREL34
;
16133 rel
->r_info
= ELF64_R_INFO (r_symndx
, r_type
);
16134 bfd_put_32 (input_bfd
, pinsn
>> 32, contents
+ offset
);
16135 bfd_put_32 (input_bfd
, pinsn
, contents
+ offset
+ 4);
16136 /* Fall through. */
16138 case R_PPC64_PCREL34
:
16139 if (!htab
->params
->no_pcrel_opt
16140 && rel
+ 1 < relend
16141 && rel
[1].r_offset
== rel
->r_offset
16142 && rel
[1].r_info
== ELF64_R_INFO (0, R_PPC64_PCREL_OPT
)
16143 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, &h
->elf
)))
16145 offset
= rel
->r_offset
;
16146 pinsn
= bfd_get_32 (input_bfd
, contents
+ offset
);
16148 pinsn
|= bfd_get_32 (input_bfd
, contents
+ offset
+ 4);
16149 if ((pinsn
& ((-1ULL << 50) | (63ULL << 26)))
16150 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
16151 | (14ULL << 26) /* paddi */))
16153 bfd_vma off2
= rel
[1].r_addend
;
16155 /* zero means next insn. */
16158 if (off2
+ 4 <= input_section
->size
)
16161 bfd_signed_vma addend_off
;
16162 pinsn2
= bfd_get_32 (input_bfd
, contents
+ off2
);
16164 if ((pinsn2
& (63ULL << 58)) == 1ULL << 58)
16166 if (off2
+ 8 > input_section
->size
)
16168 pinsn2
|= bfd_get_32 (input_bfd
,
16169 contents
+ off2
+ 4);
16171 if (xlate_pcrel_opt (&pinsn
, &pinsn2
, &addend_off
))
16173 addend
+= addend_off
;
16174 rel
->r_addend
= addend
;
16175 bfd_put_32 (input_bfd
, pinsn
>> 32,
16176 contents
+ offset
);
16177 bfd_put_32 (input_bfd
, pinsn
,
16178 contents
+ offset
+ 4);
16179 bfd_put_32 (input_bfd
, pinsn2
>> 32,
16181 if ((pinsn2
& (63ULL << 58)) == 1ULL << 58)
16182 bfd_put_32 (input_bfd
, pinsn2
,
16183 contents
+ off2
+ 4);
16192 save_unresolved_reloc
= unresolved_reloc
;
16196 /* xgettext:c-format */
16197 _bfd_error_handler (_("%pB: %s unsupported"),
16198 input_bfd
, ppc64_elf_howto_table
[r_type
]->name
);
16200 bfd_set_error (bfd_error_bad_value
);
16206 case R_PPC64_TLSGD
:
16207 case R_PPC64_TLSLD
:
16208 case R_PPC64_TOCSAVE
:
16209 case R_PPC64_GNU_VTINHERIT
:
16210 case R_PPC64_GNU_VTENTRY
:
16211 case R_PPC64_ENTRY
:
16212 case R_PPC64_PCREL_OPT
:
16215 /* GOT16 relocations. Like an ADDR16 using the symbol's
16216 address in the GOT as relocation value instead of the
16217 symbol's value itself. Also, create a GOT entry for the
16218 symbol and put the symbol value there. */
16219 case R_PPC64_GOT_TLSGD16
:
16220 case R_PPC64_GOT_TLSGD16_LO
:
16221 case R_PPC64_GOT_TLSGD16_HI
:
16222 case R_PPC64_GOT_TLSGD16_HA
:
16223 case R_PPC64_GOT_TLSGD_PCREL34
:
16224 tls_type
= TLS_TLS
| TLS_GD
;
16227 case R_PPC64_GOT_TLSLD16
:
16228 case R_PPC64_GOT_TLSLD16_LO
:
16229 case R_PPC64_GOT_TLSLD16_HI
:
16230 case R_PPC64_GOT_TLSLD16_HA
:
16231 case R_PPC64_GOT_TLSLD_PCREL34
:
16232 tls_type
= TLS_TLS
| TLS_LD
;
16235 case R_PPC64_GOT_TPREL16_DS
:
16236 case R_PPC64_GOT_TPREL16_LO_DS
:
16237 case R_PPC64_GOT_TPREL16_HI
:
16238 case R_PPC64_GOT_TPREL16_HA
:
16239 case R_PPC64_GOT_TPREL_PCREL34
:
16240 tls_type
= TLS_TLS
| TLS_TPREL
;
16243 case R_PPC64_GOT_DTPREL16_DS
:
16244 case R_PPC64_GOT_DTPREL16_LO_DS
:
16245 case R_PPC64_GOT_DTPREL16_HI
:
16246 case R_PPC64_GOT_DTPREL16_HA
:
16247 case R_PPC64_GOT_DTPREL_PCREL34
:
16248 tls_type
= TLS_TLS
| TLS_DTPREL
;
16251 case R_PPC64_GOT16
:
16252 case R_PPC64_GOT16_LO
:
16253 case R_PPC64_GOT16_HI
:
16254 case R_PPC64_GOT16_HA
:
16255 case R_PPC64_GOT16_DS
:
16256 case R_PPC64_GOT16_LO_DS
:
16257 case R_PPC64_GOT_PCREL34
:
16260 /* Relocation is to the entry for this symbol in the global
16265 unsigned long indx
= 0;
16266 struct got_entry
*ent
;
16268 if (tls_type
== (TLS_TLS
| TLS_LD
)
16269 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, &h
->elf
)))
16270 ent
= ppc64_tlsld_got (input_bfd
);
16275 if (!htab
->elf
.dynamic_sections_created
16276 || h
->elf
.dynindx
== -1
16277 || SYMBOL_REFERENCES_LOCAL (info
, &h
->elf
)
16278 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, &h
->elf
))
16279 /* This is actually a static link, or it is a
16280 -Bsymbolic link and the symbol is defined
16281 locally, or the symbol was forced to be local
16282 because of a version file. */
16286 indx
= h
->elf
.dynindx
;
16287 unresolved_reloc
= FALSE
;
16289 ent
= h
->elf
.got
.glist
;
16293 if (local_got_ents
== NULL
)
16295 ent
= local_got_ents
[r_symndx
];
16298 for (; ent
!= NULL
; ent
= ent
->next
)
16299 if (ent
->addend
== orig_rel
.r_addend
16300 && ent
->owner
== input_bfd
16301 && ent
->tls_type
== tls_type
)
16307 if (ent
->is_indirect
)
16308 ent
= ent
->got
.ent
;
16309 offp
= &ent
->got
.offset
;
16310 got
= ppc64_elf_tdata (ent
->owner
)->got
;
16314 /* The offset must always be a multiple of 8. We use the
16315 least significant bit to record whether we have already
16316 processed this entry. */
16318 if ((off
& 1) != 0)
16322 /* Generate relocs for the dynamic linker, except in
16323 the case of TLSLD where we'll use one entry per
16331 ? h
->elf
.type
== STT_GNU_IFUNC
16332 : ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
);
16335 relgot
= htab
->elf
.irelplt
;
16336 if (indx
== 0 || is_static_defined (&h
->elf
))
16337 htab
->elf
.ifunc_resolvers
= TRUE
;
16340 || (bfd_link_pic (info
)
16342 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, &h
->elf
))
16344 && bfd_link_executable (info
)
16346 || SYMBOL_REFERENCES_LOCAL (info
,
16348 relgot
= ppc64_elf_tdata (ent
->owner
)->relgot
;
16349 if (relgot
!= NULL
)
16351 outrel
.r_offset
= (got
->output_section
->vma
16352 + got
->output_offset
16354 outrel
.r_addend
= orig_rel
.r_addend
;
16355 if (tls_type
& (TLS_LD
| TLS_GD
))
16357 outrel
.r_addend
= 0;
16358 outrel
.r_info
= ELF64_R_INFO (indx
, R_PPC64_DTPMOD64
);
16359 if (tls_type
== (TLS_TLS
| TLS_GD
))
16361 loc
= relgot
->contents
;
16362 loc
+= (relgot
->reloc_count
++
16363 * sizeof (Elf64_External_Rela
));
16364 bfd_elf64_swap_reloca_out (output_bfd
,
16366 outrel
.r_offset
+= 8;
16367 outrel
.r_addend
= orig_rel
.r_addend
;
16369 = ELF64_R_INFO (indx
, R_PPC64_DTPREL64
);
16372 else if (tls_type
== (TLS_TLS
| TLS_DTPREL
))
16373 outrel
.r_info
= ELF64_R_INFO (indx
, R_PPC64_DTPREL64
);
16374 else if (tls_type
== (TLS_TLS
| TLS_TPREL
))
16375 outrel
.r_info
= ELF64_R_INFO (indx
, R_PPC64_TPREL64
);
16376 else if (indx
!= 0)
16377 outrel
.r_info
= ELF64_R_INFO (indx
, R_PPC64_GLOB_DAT
);
16381 outrel
.r_info
= ELF64_R_INFO (0, R_PPC64_IRELATIVE
);
16383 outrel
.r_info
= ELF64_R_INFO (0, R_PPC64_RELATIVE
);
16385 /* Write the .got section contents for the sake
16387 loc
= got
->contents
+ off
;
16388 bfd_put_64 (output_bfd
, outrel
.r_addend
+ relocation
,
16392 if (indx
== 0 && tls_type
!= (TLS_TLS
| TLS_LD
))
16394 outrel
.r_addend
+= relocation
;
16395 if (tls_type
& (TLS_GD
| TLS_DTPREL
| TLS_TPREL
))
16397 if (htab
->elf
.tls_sec
== NULL
)
16398 outrel
.r_addend
= 0;
16400 outrel
.r_addend
-= htab
->elf
.tls_sec
->vma
;
16403 loc
= relgot
->contents
;
16404 loc
+= (relgot
->reloc_count
++
16405 * sizeof (Elf64_External_Rela
));
16406 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
16409 /* Init the .got section contents here if we're not
16410 emitting a reloc. */
16413 relocation
+= orig_rel
.r_addend
;
16416 if (htab
->elf
.tls_sec
== NULL
)
16420 if (tls_type
& TLS_LD
)
16423 relocation
-= htab
->elf
.tls_sec
->vma
+ DTP_OFFSET
;
16424 if (tls_type
& TLS_TPREL
)
16425 relocation
+= DTP_OFFSET
- TP_OFFSET
;
16428 if (tls_type
& (TLS_GD
| TLS_LD
))
16430 bfd_put_64 (output_bfd
, relocation
,
16431 got
->contents
+ off
+ 8);
16435 bfd_put_64 (output_bfd
, relocation
,
16436 got
->contents
+ off
);
16440 if (off
>= (bfd_vma
) -2)
16443 relocation
= got
->output_section
->vma
+ got
->output_offset
+ off
;
16445 if (!(r_type
== R_PPC64_GOT_PCREL34
16446 || r_type
== R_PPC64_GOT_TLSGD_PCREL34
16447 || r_type
== R_PPC64_GOT_TLSLD_PCREL34
16448 || r_type
== R_PPC64_GOT_TPREL_PCREL34
16449 || r_type
== R_PPC64_GOT_DTPREL_PCREL34
))
16450 addend
= -(TOCstart
+ htab
->sec_info
[input_section
->id
].toc_off
);
16454 case R_PPC64_PLT16_HA
:
16455 case R_PPC64_PLT16_HI
:
16456 case R_PPC64_PLT16_LO
:
16457 case R_PPC64_PLT16_LO_DS
:
16458 case R_PPC64_PLT_PCREL34
:
16459 case R_PPC64_PLT_PCREL34_NOTOC
:
16460 case R_PPC64_PLT32
:
16461 case R_PPC64_PLT64
:
16462 case R_PPC64_PLTSEQ
:
16463 case R_PPC64_PLTSEQ_NOTOC
:
16464 case R_PPC64_PLTCALL
:
16465 case R_PPC64_PLTCALL_NOTOC
:
16466 /* Relocation is to the entry for this symbol in the
16467 procedure linkage table. */
16468 unresolved_reloc
= TRUE
;
16470 struct plt_entry
**plt_list
= NULL
;
16472 plt_list
= &h
->elf
.plt
.plist
;
16473 else if (local_got_ents
!= NULL
)
16475 struct plt_entry
**local_plt
= (struct plt_entry
**)
16476 (local_got_ents
+ symtab_hdr
->sh_info
);
16477 plt_list
= local_plt
+ r_symndx
;
16481 struct plt_entry
*ent
;
16483 for (ent
= *plt_list
; ent
!= NULL
; ent
= ent
->next
)
16484 if (ent
->plt
.offset
!= (bfd_vma
) -1
16485 && ent
->addend
== orig_rel
.r_addend
)
16490 plt
= htab
->elf
.splt
;
16491 if (!htab
->elf
.dynamic_sections_created
16493 || h
->elf
.dynindx
== -1)
16496 ? h
->elf
.type
== STT_GNU_IFUNC
16497 : ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
16498 plt
= htab
->elf
.iplt
;
16500 plt
= htab
->pltlocal
;
16502 relocation
= (plt
->output_section
->vma
16503 + plt
->output_offset
16504 + ent
->plt
.offset
);
16505 if (r_type
== R_PPC64_PLT16_HA
16506 || r_type
== R_PPC64_PLT16_HI
16507 || r_type
== R_PPC64_PLT16_LO
16508 || r_type
== R_PPC64_PLT16_LO_DS
)
16510 got
= (elf_gp (output_bfd
)
16511 + htab
->sec_info
[input_section
->id
].toc_off
);
16515 unresolved_reloc
= FALSE
;
16523 /* Relocation value is TOC base. */
16524 relocation
= TOCstart
;
16525 if (r_symndx
== STN_UNDEF
)
16526 relocation
+= htab
->sec_info
[input_section
->id
].toc_off
;
16527 else if (unresolved_reloc
)
16529 else if (sec
!= NULL
&& sec
->id
< htab
->sec_info_arr_size
)
16530 relocation
+= htab
->sec_info
[sec
->id
].toc_off
;
16532 unresolved_reloc
= TRUE
;
16535 /* TOC16 relocs. We want the offset relative to the TOC base,
16536 which is the address of the start of the TOC plus 0x8000.
16537 The TOC consists of sections .got, .toc, .tocbss, and .plt,
16539 case R_PPC64_TOC16
:
16540 case R_PPC64_TOC16_LO
:
16541 case R_PPC64_TOC16_HI
:
16542 case R_PPC64_TOC16_DS
:
16543 case R_PPC64_TOC16_LO_DS
:
16544 case R_PPC64_TOC16_HA
:
16545 addend
-= TOCstart
+ htab
->sec_info
[input_section
->id
].toc_off
;
16550 /* Relocate against the beginning of the section. */
16551 case R_PPC64_SECTOFF
:
16552 case R_PPC64_SECTOFF_LO
:
16553 case R_PPC64_SECTOFF_HI
:
16554 case R_PPC64_SECTOFF_DS
:
16555 case R_PPC64_SECTOFF_LO_DS
:
16556 case R_PPC64_SECTOFF_HA
:
16558 addend
-= sec
->output_section
->vma
;
16561 case R_PPC64_REL16
:
16562 case R_PPC64_REL16_LO
:
16563 case R_PPC64_REL16_HI
:
16564 case R_PPC64_REL16_HA
:
16565 case R_PPC64_REL16_HIGH
:
16566 case R_PPC64_REL16_HIGHA
:
16567 case R_PPC64_REL16_HIGHER
:
16568 case R_PPC64_REL16_HIGHERA
:
16569 case R_PPC64_REL16_HIGHEST
:
16570 case R_PPC64_REL16_HIGHESTA
:
16571 case R_PPC64_REL16_HIGHER34
:
16572 case R_PPC64_REL16_HIGHERA34
:
16573 case R_PPC64_REL16_HIGHEST34
:
16574 case R_PPC64_REL16_HIGHESTA34
:
16575 case R_PPC64_REL16DX_HA
:
16576 case R_PPC64_REL14
:
16577 case R_PPC64_REL14_BRNTAKEN
:
16578 case R_PPC64_REL14_BRTAKEN
:
16579 case R_PPC64_REL24
:
16580 case R_PPC64_REL24_NOTOC
:
16581 case R_PPC64_PCREL34
:
16582 case R_PPC64_PCREL28
:
16585 case R_PPC64_TPREL16
:
16586 case R_PPC64_TPREL16_LO
:
16587 case R_PPC64_TPREL16_HI
:
16588 case R_PPC64_TPREL16_HA
:
16589 case R_PPC64_TPREL16_DS
:
16590 case R_PPC64_TPREL16_LO_DS
:
16591 case R_PPC64_TPREL16_HIGH
:
16592 case R_PPC64_TPREL16_HIGHA
:
16593 case R_PPC64_TPREL16_HIGHER
:
16594 case R_PPC64_TPREL16_HIGHERA
:
16595 case R_PPC64_TPREL16_HIGHEST
:
16596 case R_PPC64_TPREL16_HIGHESTA
:
16597 case R_PPC64_TPREL34
:
16599 && h
->elf
.root
.type
== bfd_link_hash_undefweak
16600 && h
->elf
.dynindx
== -1)
16602 /* Make this relocation against an undefined weak symbol
16603 resolve to zero. This is really just a tweak, since
16604 code using weak externs ought to check that they are
16605 defined before using them. */
16606 bfd_byte
*p
= contents
+ rel
->r_offset
- d_offset
;
16608 insn
= bfd_get_32 (input_bfd
, p
);
16609 insn
= _bfd_elf_ppc_at_tprel_transform (insn
, 13);
16611 bfd_put_32 (input_bfd
, insn
, p
);
16614 if (htab
->elf
.tls_sec
!= NULL
)
16615 addend
-= htab
->elf
.tls_sec
->vma
+ TP_OFFSET
;
16616 /* The TPREL16 relocs shouldn't really be used in shared
16617 libs or with non-local symbols as that will result in
16618 DT_TEXTREL being set, but support them anyway. */
16621 case R_PPC64_DTPREL16
:
16622 case R_PPC64_DTPREL16_LO
:
16623 case R_PPC64_DTPREL16_HI
:
16624 case R_PPC64_DTPREL16_HA
:
16625 case R_PPC64_DTPREL16_DS
:
16626 case R_PPC64_DTPREL16_LO_DS
:
16627 case R_PPC64_DTPREL16_HIGH
:
16628 case R_PPC64_DTPREL16_HIGHA
:
16629 case R_PPC64_DTPREL16_HIGHER
:
16630 case R_PPC64_DTPREL16_HIGHERA
:
16631 case R_PPC64_DTPREL16_HIGHEST
:
16632 case R_PPC64_DTPREL16_HIGHESTA
:
16633 case R_PPC64_DTPREL34
:
16634 if (htab
->elf
.tls_sec
!= NULL
)
16635 addend
-= htab
->elf
.tls_sec
->vma
+ DTP_OFFSET
;
16638 case R_PPC64_ADDR64_LOCAL
:
16639 addend
+= PPC64_LOCAL_ENTRY_OFFSET (h
!= NULL
16644 case R_PPC64_DTPMOD64
:
16649 case R_PPC64_TPREL64
:
16650 if (htab
->elf
.tls_sec
!= NULL
)
16651 addend
-= htab
->elf
.tls_sec
->vma
+ TP_OFFSET
;
16654 case R_PPC64_DTPREL64
:
16655 if (htab
->elf
.tls_sec
!= NULL
)
16656 addend
-= htab
->elf
.tls_sec
->vma
+ DTP_OFFSET
;
16657 /* Fall through. */
16659 /* Relocations that may need to be propagated if this is a
16661 case R_PPC64_REL30
:
16662 case R_PPC64_REL32
:
16663 case R_PPC64_REL64
:
16664 case R_PPC64_ADDR14
:
16665 case R_PPC64_ADDR14_BRNTAKEN
:
16666 case R_PPC64_ADDR14_BRTAKEN
:
16667 case R_PPC64_ADDR16
:
16668 case R_PPC64_ADDR16_DS
:
16669 case R_PPC64_ADDR16_HA
:
16670 case R_PPC64_ADDR16_HI
:
16671 case R_PPC64_ADDR16_HIGH
:
16672 case R_PPC64_ADDR16_HIGHA
:
16673 case R_PPC64_ADDR16_HIGHER
:
16674 case R_PPC64_ADDR16_HIGHERA
:
16675 case R_PPC64_ADDR16_HIGHEST
:
16676 case R_PPC64_ADDR16_HIGHESTA
:
16677 case R_PPC64_ADDR16_LO
:
16678 case R_PPC64_ADDR16_LO_DS
:
16679 case R_PPC64_ADDR16_HIGHER34
:
16680 case R_PPC64_ADDR16_HIGHERA34
:
16681 case R_PPC64_ADDR16_HIGHEST34
:
16682 case R_PPC64_ADDR16_HIGHESTA34
:
16683 case R_PPC64_ADDR24
:
16684 case R_PPC64_ADDR32
:
16685 case R_PPC64_ADDR64
:
16686 case R_PPC64_UADDR16
:
16687 case R_PPC64_UADDR32
:
16688 case R_PPC64_UADDR64
:
16690 case R_PPC64_D34_LO
:
16691 case R_PPC64_D34_HI30
:
16692 case R_PPC64_D34_HA30
:
16695 if ((input_section
->flags
& SEC_ALLOC
) == 0)
16698 if (NO_OPD_RELOCS
&& is_opd
)
16701 if (bfd_link_pic (info
)
16703 || h
->elf
.dyn_relocs
!= NULL
)
16704 && ((h
!= NULL
&& pc_dynrelocs (h
))
16705 || must_be_dyn_reloc (info
, r_type
)))
16707 ? h
->elf
.dyn_relocs
!= NULL
16708 : ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
))
16710 bfd_boolean skip
, relocate
;
16715 /* When generating a dynamic object, these relocations
16716 are copied into the output file to be resolved at run
16722 out_off
= _bfd_elf_section_offset (output_bfd
, info
,
16723 input_section
, rel
->r_offset
);
16724 if (out_off
== (bfd_vma
) -1)
16726 else if (out_off
== (bfd_vma
) -2)
16727 skip
= TRUE
, relocate
= TRUE
;
16728 out_off
+= (input_section
->output_section
->vma
16729 + input_section
->output_offset
);
16730 outrel
.r_offset
= out_off
;
16731 outrel
.r_addend
= rel
->r_addend
;
16733 /* Optimize unaligned reloc use. */
16734 if ((r_type
== R_PPC64_ADDR64
&& (out_off
& 7) != 0)
16735 || (r_type
== R_PPC64_UADDR64
&& (out_off
& 7) == 0))
16736 r_type
^= R_PPC64_ADDR64
^ R_PPC64_UADDR64
;
16737 else if ((r_type
== R_PPC64_ADDR32
&& (out_off
& 3) != 0)
16738 || (r_type
== R_PPC64_UADDR32
&& (out_off
& 3) == 0))
16739 r_type
^= R_PPC64_ADDR32
^ R_PPC64_UADDR32
;
16740 else if ((r_type
== R_PPC64_ADDR16
&& (out_off
& 1) != 0)
16741 || (r_type
== R_PPC64_UADDR16
&& (out_off
& 1) == 0))
16742 r_type
^= R_PPC64_ADDR16
^ R_PPC64_UADDR16
;
16745 memset (&outrel
, 0, sizeof outrel
);
16747 && !SYMBOL_REFERENCES_LOCAL (info
, &h
->elf
)
16749 && r_type
!= R_PPC64_TOC
)
16751 indx
= h
->elf
.dynindx
;
16752 BFD_ASSERT (indx
!= -1);
16753 outrel
.r_info
= ELF64_R_INFO (indx
, r_type
);
16757 /* This symbol is local, or marked to become local,
16758 or this is an opd section reloc which must point
16759 at a local function. */
16760 outrel
.r_addend
+= relocation
;
16761 if (r_type
== R_PPC64_ADDR64
|| r_type
== R_PPC64_TOC
)
16763 if (is_opd
&& h
!= NULL
)
16765 /* Lie about opd entries. This case occurs
16766 when building shared libraries and we
16767 reference a function in another shared
16768 lib. The same thing happens for a weak
16769 definition in an application that's
16770 overridden by a strong definition in a
16771 shared lib. (I believe this is a generic
16772 bug in binutils handling of weak syms.)
16773 In these cases we won't use the opd
16774 entry in this lib. */
16775 unresolved_reloc
= FALSE
;
16778 && r_type
== R_PPC64_ADDR64
16780 ? h
->elf
.type
== STT_GNU_IFUNC
16781 : ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
))
16782 outrel
.r_info
= ELF64_R_INFO (0, R_PPC64_IRELATIVE
);
16785 outrel
.r_info
= ELF64_R_INFO (0, R_PPC64_RELATIVE
);
16787 /* We need to relocate .opd contents for ld.so.
16788 Prelink also wants simple and consistent rules
16789 for relocs. This make all RELATIVE relocs have
16790 *r_offset equal to r_addend. */
16797 ? h
->elf
.type
== STT_GNU_IFUNC
16798 : ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
16800 info
->callbacks
->einfo
16801 /* xgettext:c-format */
16802 (_("%H: %s for indirect "
16803 "function `%pT' unsupported\n"),
16804 input_bfd
, input_section
, rel
->r_offset
,
16805 ppc64_elf_howto_table
[r_type
]->name
,
16809 else if (r_symndx
== STN_UNDEF
|| bfd_is_abs_section (sec
))
16811 else if (sec
== NULL
|| sec
->owner
== NULL
)
16813 bfd_set_error (bfd_error_bad_value
);
16818 asection
*osec
= sec
->output_section
;
16820 if ((osec
->flags
& SEC_THREAD_LOCAL
) != 0)
16822 /* TLS symbol values are relative to the
16823 TLS segment. Dynamic relocations for
16824 local TLS symbols therefore can't be
16825 reduced to a relocation against their
16826 section symbol because it holds the
16827 address of the section, not a value
16828 relative to the TLS segment. We could
16829 change the .tdata dynamic section symbol
16830 to be zero value but STN_UNDEF works
16831 and is used elsewhere, eg. for TPREL64
16832 GOT relocs against local TLS symbols. */
16833 osec
= htab
->elf
.tls_sec
;
16838 indx
= elf_section_data (osec
)->dynindx
;
16841 if ((osec
->flags
& SEC_READONLY
) == 0
16842 && htab
->elf
.data_index_section
!= NULL
)
16843 osec
= htab
->elf
.data_index_section
;
16845 osec
= htab
->elf
.text_index_section
;
16846 indx
= elf_section_data (osec
)->dynindx
;
16848 BFD_ASSERT (indx
!= 0);
16851 /* We are turning this relocation into one
16852 against a section symbol, so subtract out
16853 the output section's address but not the
16854 offset of the input section in the output
16856 outrel
.r_addend
-= osec
->vma
;
16859 outrel
.r_info
= ELF64_R_INFO (indx
, r_type
);
16863 sreloc
= elf_section_data (input_section
)->sreloc
;
16865 ? h
->elf
.type
== STT_GNU_IFUNC
16866 : ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
16868 sreloc
= htab
->elf
.irelplt
;
16869 if (indx
== 0 || is_static_defined (&h
->elf
))
16870 htab
->elf
.ifunc_resolvers
= TRUE
;
16872 if (sreloc
== NULL
)
16875 if (sreloc
->reloc_count
* sizeof (Elf64_External_Rela
)
16878 loc
= sreloc
->contents
;
16879 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
16880 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
16882 if (!warned_dynamic
16883 && !ppc64_glibc_dynamic_reloc (ELF64_R_TYPE (outrel
.r_info
)))
16885 info
->callbacks
->einfo
16886 /* xgettext:c-format */
16887 (_("%X%P: %pB: %s against %pT "
16888 "is not supported by glibc as a dynamic relocation\n"),
16890 ppc64_elf_howto_table
[ELF64_R_TYPE (outrel
.r_info
)]->name
,
16892 warned_dynamic
= TRUE
;
16895 /* If this reloc is against an external symbol, it will
16896 be computed at runtime, so there's no need to do
16897 anything now. However, for the sake of prelink ensure
16898 that the section contents are a known value. */
16901 unresolved_reloc
= FALSE
;
16902 /* The value chosen here is quite arbitrary as ld.so
16903 ignores section contents except for the special
16904 case of .opd where the contents might be accessed
16905 before relocation. Choose zero, as that won't
16906 cause reloc overflow. */
16909 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
16910 to improve backward compatibility with older
16912 if (r_type
== R_PPC64_ADDR64
)
16913 addend
= outrel
.r_addend
;
16914 /* Adjust pc_relative relocs to have zero in *r_offset. */
16915 else if (ppc64_elf_howto_table
[r_type
]->pc_relative
)
16916 addend
= outrel
.r_offset
;
16922 case R_PPC64_GLOB_DAT
:
16923 case R_PPC64_JMP_SLOT
:
16924 case R_PPC64_JMP_IREL
:
16925 case R_PPC64_RELATIVE
:
16926 /* We shouldn't ever see these dynamic relocs in relocatable
16928 /* Fall through. */
16930 case R_PPC64_PLTGOT16
:
16931 case R_PPC64_PLTGOT16_DS
:
16932 case R_PPC64_PLTGOT16_HA
:
16933 case R_PPC64_PLTGOT16_HI
:
16934 case R_PPC64_PLTGOT16_LO
:
16935 case R_PPC64_PLTGOT16_LO_DS
:
16936 case R_PPC64_PLTREL32
:
16937 case R_PPC64_PLTREL64
:
16938 /* These ones haven't been implemented yet. */
16940 info
->callbacks
->einfo
16941 /* xgettext:c-format */
16942 (_("%P: %pB: %s is not supported for `%pT'\n"),
16944 ppc64_elf_howto_table
[r_type
]->name
, sym_name
);
16946 bfd_set_error (bfd_error_invalid_operation
);
16951 /* Multi-instruction sequences that access the TOC can be
16952 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16953 to nop; addi rb,r2,x; */
16959 case R_PPC64_GOT_TLSLD16_HI
:
16960 case R_PPC64_GOT_TLSGD16_HI
:
16961 case R_PPC64_GOT_TPREL16_HI
:
16962 case R_PPC64_GOT_DTPREL16_HI
:
16963 case R_PPC64_GOT16_HI
:
16964 case R_PPC64_TOC16_HI
:
16965 /* These relocs would only be useful if building up an
16966 offset to later add to r2, perhaps in an indexed
16967 addressing mode instruction. Don't try to optimize.
16968 Unfortunately, the possibility of someone building up an
16969 offset like this or even with the HA relocs, means that
16970 we need to check the high insn when optimizing the low
16974 case R_PPC64_PLTCALL_NOTOC
:
16975 if (!unresolved_reloc
)
16976 htab
->notoc_plt
= 1;
16977 /* Fall through. */
16978 case R_PPC64_PLTCALL
:
16979 if (unresolved_reloc
)
16981 /* No plt entry. Make this into a direct call. */
16982 bfd_byte
*p
= contents
+ rel
->r_offset
;
16983 insn
= bfd_get_32 (input_bfd
, p
);
16985 bfd_put_32 (input_bfd
, B_DOT
| insn
, p
);
16986 if (r_type
== R_PPC64_PLTCALL
)
16987 bfd_put_32 (input_bfd
, NOP
, p
+ 4);
16988 unresolved_reloc
= save_unresolved_reloc
;
16989 r_type
= R_PPC64_REL24
;
16993 case R_PPC64_PLTSEQ_NOTOC
:
16994 case R_PPC64_PLTSEQ
:
16995 if (unresolved_reloc
)
16997 unresolved_reloc
= FALSE
;
17002 case R_PPC64_PLT_PCREL34_NOTOC
:
17003 if (!unresolved_reloc
)
17004 htab
->notoc_plt
= 1;
17005 /* Fall through. */
17006 case R_PPC64_PLT_PCREL34
:
17007 if (unresolved_reloc
)
17009 bfd_byte
*p
= contents
+ rel
->r_offset
;
17010 bfd_put_32 (input_bfd
, PNOP
>> 32, p
);
17011 bfd_put_32 (input_bfd
, PNOP
, p
+ 4);
17012 unresolved_reloc
= FALSE
;
17017 case R_PPC64_PLT16_HA
:
17018 if (unresolved_reloc
)
17020 unresolved_reloc
= FALSE
;
17023 /* Fall through. */
17024 case R_PPC64_GOT_TLSLD16_HA
:
17025 case R_PPC64_GOT_TLSGD16_HA
:
17026 case R_PPC64_GOT_TPREL16_HA
:
17027 case R_PPC64_GOT_DTPREL16_HA
:
17028 case R_PPC64_GOT16_HA
:
17029 case R_PPC64_TOC16_HA
:
17030 if (htab
->do_toc_opt
&& relocation
+ addend
+ 0x8000 < 0x10000
17031 && !ppc64_elf_tdata (input_bfd
)->unexpected_toc_insn
)
17035 p
= contents
+ (rel
->r_offset
& ~3);
17036 bfd_put_32 (input_bfd
, NOP
, p
);
17041 case R_PPC64_PLT16_LO
:
17042 case R_PPC64_PLT16_LO_DS
:
17043 if (unresolved_reloc
)
17045 unresolved_reloc
= FALSE
;
17048 /* Fall through. */
17049 case R_PPC64_GOT_TLSLD16_LO
:
17050 case R_PPC64_GOT_TLSGD16_LO
:
17051 case R_PPC64_GOT_TPREL16_LO_DS
:
17052 case R_PPC64_GOT_DTPREL16_LO_DS
:
17053 case R_PPC64_GOT16_LO
:
17054 case R_PPC64_GOT16_LO_DS
:
17055 case R_PPC64_TOC16_LO
:
17056 case R_PPC64_TOC16_LO_DS
:
17057 if (htab
->do_toc_opt
&& relocation
+ addend
+ 0x8000 < 0x10000
17058 && !ppc64_elf_tdata (input_bfd
)->unexpected_toc_insn
)
17060 bfd_byte
*p
= contents
+ (rel
->r_offset
& ~3);
17061 insn
= bfd_get_32 (input_bfd
, p
);
17062 if ((insn
& (0x3fu
<< 26)) == 12u << 26 /* addic */)
17064 /* Transform addic to addi when we change reg. */
17065 insn
&= ~((0x3fu
<< 26) | (0x1f << 16));
17066 insn
|= (14u << 26) | (2 << 16);
17070 insn
&= ~(0x1f << 16);
17073 bfd_put_32 (input_bfd
, insn
, p
);
17077 case R_PPC64_TPREL16_HA
:
17078 if (htab
->do_tls_opt
&& relocation
+ addend
+ 0x8000 < 0x10000)
17080 bfd_byte
*p
= contents
+ (rel
->r_offset
& ~3);
17081 bfd_put_32 (input_bfd
, NOP
, p
);
17086 case R_PPC64_TPREL16_LO
:
17087 case R_PPC64_TPREL16_LO_DS
:
17088 if (htab
->do_tls_opt
&& relocation
+ addend
+ 0x8000 < 0x10000)
17090 bfd_byte
*p
= contents
+ (rel
->r_offset
& ~3);
17091 insn
= bfd_get_32 (input_bfd
, p
);
17092 insn
&= ~(0x1f << 16);
17094 bfd_put_32 (input_bfd
, insn
, p
);
17099 /* Do any further special processing. */
17105 case R_PPC64_REL16_HA
:
17106 case R_PPC64_REL16_HIGHA
:
17107 case R_PPC64_REL16_HIGHERA
:
17108 case R_PPC64_REL16_HIGHESTA
:
17109 case R_PPC64_REL16DX_HA
:
17110 case R_PPC64_ADDR16_HA
:
17111 case R_PPC64_ADDR16_HIGHA
:
17112 case R_PPC64_ADDR16_HIGHERA
:
17113 case R_PPC64_ADDR16_HIGHESTA
:
17114 case R_PPC64_TOC16_HA
:
17115 case R_PPC64_SECTOFF_HA
:
17116 case R_PPC64_TPREL16_HA
:
17117 case R_PPC64_TPREL16_HIGHA
:
17118 case R_PPC64_TPREL16_HIGHERA
:
17119 case R_PPC64_TPREL16_HIGHESTA
:
17120 case R_PPC64_DTPREL16_HA
:
17121 case R_PPC64_DTPREL16_HIGHA
:
17122 case R_PPC64_DTPREL16_HIGHERA
:
17123 case R_PPC64_DTPREL16_HIGHESTA
:
17124 /* It's just possible that this symbol is a weak symbol
17125 that's not actually defined anywhere. In that case,
17126 'sec' would be NULL, and we should leave the symbol
17127 alone (it will be set to zero elsewhere in the link). */
17130 /* Fall through. */
17132 case R_PPC64_GOT16_HA
:
17133 case R_PPC64_PLTGOT16_HA
:
17134 case R_PPC64_PLT16_HA
:
17135 case R_PPC64_GOT_TLSGD16_HA
:
17136 case R_PPC64_GOT_TLSLD16_HA
:
17137 case R_PPC64_GOT_TPREL16_HA
:
17138 case R_PPC64_GOT_DTPREL16_HA
:
17139 /* Add 0x10000 if sign bit in 0:15 is set.
17140 Bits 0:15 are not used. */
17144 case R_PPC64_D34_HA30
:
17145 case R_PPC64_ADDR16_HIGHERA34
:
17146 case R_PPC64_ADDR16_HIGHESTA34
:
17147 case R_PPC64_REL16_HIGHERA34
:
17148 case R_PPC64_REL16_HIGHESTA34
:
17150 addend
+= 1ULL << 33;
17153 case R_PPC64_ADDR16_DS
:
17154 case R_PPC64_ADDR16_LO_DS
:
17155 case R_PPC64_GOT16_DS
:
17156 case R_PPC64_GOT16_LO_DS
:
17157 case R_PPC64_PLT16_LO_DS
:
17158 case R_PPC64_SECTOFF_DS
:
17159 case R_PPC64_SECTOFF_LO_DS
:
17160 case R_PPC64_TOC16_DS
:
17161 case R_PPC64_TOC16_LO_DS
:
17162 case R_PPC64_PLTGOT16_DS
:
17163 case R_PPC64_PLTGOT16_LO_DS
:
17164 case R_PPC64_GOT_TPREL16_DS
:
17165 case R_PPC64_GOT_TPREL16_LO_DS
:
17166 case R_PPC64_GOT_DTPREL16_DS
:
17167 case R_PPC64_GOT_DTPREL16_LO_DS
:
17168 case R_PPC64_TPREL16_DS
:
17169 case R_PPC64_TPREL16_LO_DS
:
17170 case R_PPC64_DTPREL16_DS
:
17171 case R_PPC64_DTPREL16_LO_DS
:
17172 insn
= bfd_get_32 (input_bfd
, contents
+ (rel
->r_offset
& ~3));
17174 /* If this reloc is against an lq, lxv, or stxv insn, then
17175 the value must be a multiple of 16. This is somewhat of
17176 a hack, but the "correct" way to do this by defining _DQ
17177 forms of all the _DS relocs bloats all reloc switches in
17178 this file. It doesn't make much sense to use these
17179 relocs in data, so testing the insn should be safe. */
17180 if ((insn
& (0x3fu
<< 26)) == (56u << 26)
17181 || ((insn
& (0x3fu
<< 26)) == (61u << 26) && (insn
& 3) == 1))
17183 relocation
+= addend
;
17184 addend
= insn
& (mask
^ 3);
17185 if ((relocation
& mask
) != 0)
17187 relocation
^= relocation
& mask
;
17188 info
->callbacks
->einfo
17189 /* xgettext:c-format */
17190 (_("%H: error: %s not a multiple of %u\n"),
17191 input_bfd
, input_section
, rel
->r_offset
,
17192 ppc64_elf_howto_table
[r_type
]->name
,
17194 bfd_set_error (bfd_error_bad_value
);
17201 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
17202 because such sections are not SEC_ALLOC and thus ld.so will
17203 not process them. */
17204 howto
= ppc64_elf_howto_table
[(int) r_type
];
17205 if (unresolved_reloc
17206 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
17207 && h
->elf
.def_dynamic
)
17208 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
17209 rel
->r_offset
) != (bfd_vma
) -1)
17211 info
->callbacks
->einfo
17212 /* xgettext:c-format */
17213 (_("%H: unresolvable %s against `%pT'\n"),
17214 input_bfd
, input_section
, rel
->r_offset
,
17216 h
->elf
.root
.root
.string
);
17220 /* 16-bit fields in insns mostly have signed values, but a
17221 few insns have 16-bit unsigned values. Really, we should
17222 have different reloc types. */
17223 if (howto
->complain_on_overflow
!= complain_overflow_dont
17224 && howto
->dst_mask
== 0xffff
17225 && (input_section
->flags
& SEC_CODE
) != 0)
17227 enum complain_overflow complain
= complain_overflow_signed
;
17229 insn
= bfd_get_32 (input_bfd
, contents
+ (rel
->r_offset
& ~3));
17230 if ((insn
& (0x3fu
<< 26)) == 10u << 26 /* cmpli */)
17231 complain
= complain_overflow_bitfield
;
17232 else if (howto
->rightshift
== 0
17233 ? ((insn
& (0x3fu
<< 26)) == 28u << 26 /* andi */
17234 || (insn
& (0x3fu
<< 26)) == 24u << 26 /* ori */
17235 || (insn
& (0x3fu
<< 26)) == 26u << 26 /* xori */)
17236 : ((insn
& (0x3fu
<< 26)) == 29u << 26 /* andis */
17237 || (insn
& (0x3fu
<< 26)) == 25u << 26 /* oris */
17238 || (insn
& (0x3fu
<< 26)) == 27u << 26 /* xoris */))
17239 complain
= complain_overflow_unsigned
;
17240 if (howto
->complain_on_overflow
!= complain
)
17242 alt_howto
= *howto
;
17243 alt_howto
.complain_on_overflow
= complain
;
17244 howto
= &alt_howto
;
17250 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
17252 case R_PPC64_D34_LO
:
17253 case R_PPC64_D34_HI30
:
17254 case R_PPC64_D34_HA30
:
17255 case R_PPC64_PCREL34
:
17256 case R_PPC64_GOT_PCREL34
:
17257 case R_PPC64_TPREL34
:
17258 case R_PPC64_DTPREL34
:
17259 case R_PPC64_GOT_TLSGD_PCREL34
:
17260 case R_PPC64_GOT_TLSLD_PCREL34
:
17261 case R_PPC64_GOT_TPREL_PCREL34
:
17262 case R_PPC64_GOT_DTPREL_PCREL34
:
17263 case R_PPC64_PLT_PCREL34
:
17264 case R_PPC64_PLT_PCREL34_NOTOC
:
17266 case R_PPC64_PCREL28
:
17267 if (rel
->r_offset
+ 8 > input_section
->size
)
17268 r
= bfd_reloc_outofrange
;
17271 relocation
+= addend
;
17272 if (howto
->pc_relative
)
17273 relocation
-= (rel
->r_offset
17274 + input_section
->output_offset
17275 + input_section
->output_section
->vma
);
17276 relocation
>>= howto
->rightshift
;
17278 pinsn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
17280 pinsn
|= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
17282 pinsn
&= ~howto
->dst_mask
;
17283 pinsn
|= (((relocation
<< 16) | (relocation
& 0xffff))
17284 & howto
->dst_mask
);
17285 bfd_put_32 (input_bfd
, pinsn
>> 32, contents
+ rel
->r_offset
);
17286 bfd_put_32 (input_bfd
, pinsn
, contents
+ rel
->r_offset
+ 4);
17288 if (howto
->complain_on_overflow
== complain_overflow_signed
17289 && (relocation
+ (1ULL << (howto
->bitsize
- 1))
17290 >= 1ULL << howto
->bitsize
))
17291 r
= bfd_reloc_overflow
;
17295 case R_PPC64_REL16DX_HA
:
17296 if (rel
->r_offset
+ 4 > input_section
->size
)
17297 r
= bfd_reloc_outofrange
;
17300 relocation
+= addend
;
17301 relocation
-= (rel
->r_offset
17302 + input_section
->output_offset
17303 + input_section
->output_section
->vma
);
17304 relocation
= (bfd_signed_vma
) relocation
>> 16;
17305 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
17307 insn
|= (relocation
& 0xffc1) | ((relocation
& 0x3e) << 15);
17308 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
17310 if (relocation
+ 0x8000 > 0xffff)
17311 r
= bfd_reloc_overflow
;
17316 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
17317 contents
, rel
->r_offset
,
17318 relocation
, addend
);
17321 if (r
!= bfd_reloc_ok
)
17323 char *more_info
= NULL
;
17324 const char *reloc_name
= howto
->name
;
17326 if (reloc_dest
!= DEST_NORMAL
)
17328 more_info
= bfd_malloc (strlen (reloc_name
) + 8);
17329 if (more_info
!= NULL
)
17331 strcpy (more_info
, reloc_name
);
17332 strcat (more_info
, (reloc_dest
== DEST_OPD
17333 ? " (OPD)" : " (stub)"));
17334 reloc_name
= more_info
;
17338 if (r
== bfd_reloc_overflow
)
17340 /* On code like "if (foo) foo();" don't report overflow
17341 on a branch to zero when foo is undefined. */
17343 && (reloc_dest
== DEST_STUB
17345 && (h
->elf
.root
.type
== bfd_link_hash_undefweak
17346 || h
->elf
.root
.type
== bfd_link_hash_undefined
)
17347 && is_branch_reloc (r_type
))))
17348 info
->callbacks
->reloc_overflow
17349 (info
, (struct bfd_link_hash_entry
*) h
, sym_name
,
17350 reloc_name
, orig_rel
.r_addend
, input_bfd
, input_section
,
17355 info
->callbacks
->einfo
17356 /* xgettext:c-format */
17357 (_("%H: %s against `%pT': error %d\n"),
17358 input_bfd
, input_section
, rel
->r_offset
,
17359 reloc_name
, sym_name
, (int) r
);
17371 Elf_Internal_Shdr
*rel_hdr
;
17372 size_t deleted
= rel
- wrel
;
17374 rel_hdr
= _bfd_elf_single_rel_hdr (input_section
->output_section
);
17375 rel_hdr
->sh_size
-= rel_hdr
->sh_entsize
* deleted
;
17376 if (rel_hdr
->sh_size
== 0)
17378 /* It is too late to remove an empty reloc section. Leave
17380 ??? What is wrong with an empty section??? */
17381 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
;
17384 rel_hdr
= _bfd_elf_single_rel_hdr (input_section
);
17385 rel_hdr
->sh_size
-= rel_hdr
->sh_entsize
* deleted
;
17386 input_section
->reloc_count
-= deleted
;
17389 /* If we're emitting relocations, then shortly after this function
17390 returns, reloc offsets and addends for this section will be
17391 adjusted. Worse, reloc symbol indices will be for the output
17392 file rather than the input. Save a copy of the relocs for
17393 opd_entry_value. */
17394 if (is_opd
&& (info
->emitrelocations
|| bfd_link_relocatable (info
)))
17397 amt
= input_section
->reloc_count
* sizeof (Elf_Internal_Rela
);
17398 rel
= bfd_alloc (input_bfd
, amt
);
17399 BFD_ASSERT (ppc64_elf_tdata (input_bfd
)->opd
.relocs
== NULL
);
17400 ppc64_elf_tdata (input_bfd
)->opd
.relocs
= rel
;
17403 memcpy (rel
, relocs
, amt
);
17408 /* Adjust the value of any local symbols in opd sections. */
17411 ppc64_elf_output_symbol_hook (struct bfd_link_info
*info
,
17412 const char *name ATTRIBUTE_UNUSED
,
17413 Elf_Internal_Sym
*elfsym
,
17414 asection
*input_sec
,
17415 struct elf_link_hash_entry
*h
)
17417 struct _opd_sec_data
*opd
;
17424 opd
= get_opd_info (input_sec
);
17425 if (opd
== NULL
|| opd
->adjust
== NULL
)
17428 value
= elfsym
->st_value
- input_sec
->output_offset
;
17429 if (!bfd_link_relocatable (info
))
17430 value
-= input_sec
->output_section
->vma
;
17432 adjust
= opd
->adjust
[OPD_NDX (value
)];
17436 elfsym
->st_value
+= adjust
;
17440 /* Finish up dynamic symbol handling. We set the contents of various
17441 dynamic sections here. */
17444 ppc64_elf_finish_dynamic_symbol (bfd
*output_bfd
,
17445 struct bfd_link_info
*info
,
17446 struct elf_link_hash_entry
*h
,
17447 Elf_Internal_Sym
*sym
)
17449 struct ppc_link_hash_table
*htab
;
17450 struct plt_entry
*ent
;
17452 htab
= ppc_hash_table (info
);
17456 if (!htab
->opd_abi
&& !h
->def_regular
)
17457 for (ent
= h
->plt
.plist
; ent
!= NULL
; ent
= ent
->next
)
17458 if (ent
->plt
.offset
!= (bfd_vma
) -1)
17460 /* Mark the symbol as undefined, rather than as
17461 defined in glink. Leave the value if there were
17462 any relocations where pointer equality matters
17463 (this is a clue for the dynamic linker, to make
17464 function pointer comparisons work between an
17465 application and shared library), otherwise set it
17467 sym
->st_shndx
= SHN_UNDEF
;
17468 if (!h
->pointer_equality_needed
)
17470 else if (!h
->ref_regular_nonweak
)
17472 /* This breaks function pointer comparisons, but
17473 that is better than breaking tests for a NULL
17474 function pointer. */
17481 && (h
->root
.type
== bfd_link_hash_defined
17482 || h
->root
.type
== bfd_link_hash_defweak
)
17483 && (h
->root
.u
.def
.section
== htab
->elf
.sdynbss
17484 || h
->root
.u
.def
.section
== htab
->elf
.sdynrelro
))
17486 /* This symbol needs a copy reloc. Set it up. */
17487 Elf_Internal_Rela rela
;
17491 if (h
->dynindx
== -1)
17494 rela
.r_offset
= defined_sym_val (h
);
17495 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_PPC64_COPY
);
17497 if (h
->root
.u
.def
.section
== htab
->elf
.sdynrelro
)
17498 srel
= htab
->elf
.sreldynrelro
;
17500 srel
= htab
->elf
.srelbss
;
17501 loc
= srel
->contents
;
17502 loc
+= srel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
17503 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
17509 /* Used to decide how to sort relocs in an optimal manner for the
17510 dynamic linker, before writing them out. */
17512 static enum elf_reloc_type_class
17513 ppc64_elf_reloc_type_class (const struct bfd_link_info
*info
,
17514 const asection
*rel_sec
,
17515 const Elf_Internal_Rela
*rela
)
17517 enum elf_ppc64_reloc_type r_type
;
17518 struct ppc_link_hash_table
*htab
= ppc_hash_table (info
);
17520 if (rel_sec
== htab
->elf
.irelplt
)
17521 return reloc_class_ifunc
;
17523 r_type
= ELF64_R_TYPE (rela
->r_info
);
17526 case R_PPC64_RELATIVE
:
17527 return reloc_class_relative
;
17528 case R_PPC64_JMP_SLOT
:
17529 return reloc_class_plt
;
17531 return reloc_class_copy
;
17533 return reloc_class_normal
;
17537 /* Finish up the dynamic sections. */
17540 ppc64_elf_finish_dynamic_sections (bfd
*output_bfd
,
17541 struct bfd_link_info
*info
)
17543 struct ppc_link_hash_table
*htab
;
17547 htab
= ppc_hash_table (info
);
17551 dynobj
= htab
->elf
.dynobj
;
17552 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
17554 if (htab
->elf
.dynamic_sections_created
)
17556 Elf64_External_Dyn
*dyncon
, *dynconend
;
17558 if (sdyn
== NULL
|| htab
->elf
.sgot
== NULL
)
17561 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
17562 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
17563 for (; dyncon
< dynconend
; dyncon
++)
17565 Elf_Internal_Dyn dyn
;
17568 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
17575 case DT_PPC64_GLINK
:
17577 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
17578 /* We stupidly defined DT_PPC64_GLINK to be the start
17579 of glink rather than the first entry point, which is
17580 what ld.so needs, and now have a bigger stub to
17581 support automatic multiple TOCs. */
17582 dyn
.d_un
.d_ptr
+= GLINK_PLTRESOLVE_SIZE (htab
) - 8 * 4;
17586 s
= bfd_get_section_by_name (output_bfd
, ".opd");
17589 dyn
.d_un
.d_ptr
= s
->vma
;
17593 if ((htab
->do_multi_toc
&& htab
->multi_toc_needed
)
17594 || htab
->notoc_plt
)
17595 dyn
.d_un
.d_val
|= PPC64_OPT_MULTI_TOC
;
17596 if (htab
->has_plt_localentry0
)
17597 dyn
.d_un
.d_val
|= PPC64_OPT_LOCALENTRY
;
17600 case DT_PPC64_OPDSZ
:
17601 s
= bfd_get_section_by_name (output_bfd
, ".opd");
17604 dyn
.d_un
.d_val
= s
->size
;
17608 s
= htab
->elf
.splt
;
17609 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
17613 s
= htab
->elf
.srelplt
;
17614 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
17618 dyn
.d_un
.d_val
= htab
->elf
.srelplt
->size
;
17622 if (htab
->elf
.ifunc_resolvers
)
17623 info
->callbacks
->einfo
17624 (_("%P: warning: text relocations and GNU indirect "
17625 "functions may result in a segfault at runtime\n"));
17629 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17633 if (htab
->elf
.sgot
!= NULL
&& htab
->elf
.sgot
->size
!= 0
17634 && htab
->elf
.sgot
->output_section
!= bfd_abs_section_ptr
)
17636 /* Fill in the first entry in the global offset table.
17637 We use it to hold the link-time TOCbase. */
17638 bfd_put_64 (output_bfd
,
17639 elf_gp (output_bfd
) + TOC_BASE_OFF
,
17640 htab
->elf
.sgot
->contents
);
17642 /* Set .got entry size. */
17643 elf_section_data (htab
->elf
.sgot
->output_section
)->this_hdr
.sh_entsize
17647 if (htab
->elf
.splt
!= NULL
&& htab
->elf
.splt
->size
!= 0
17648 && htab
->elf
.splt
->output_section
!= bfd_abs_section_ptr
)
17650 /* Set .plt entry size. */
17651 elf_section_data (htab
->elf
.splt
->output_section
)->this_hdr
.sh_entsize
17652 = PLT_ENTRY_SIZE (htab
);
17655 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
17656 brlt ourselves if emitrelocations. */
17657 if (htab
->brlt
!= NULL
17658 && htab
->brlt
->reloc_count
!= 0
17659 && !_bfd_elf_link_output_relocs (output_bfd
,
17661 elf_section_data (htab
->brlt
)->rela
.hdr
,
17662 elf_section_data (htab
->brlt
)->relocs
,
17666 if (htab
->glink
!= NULL
17667 && htab
->glink
->reloc_count
!= 0
17668 && !_bfd_elf_link_output_relocs (output_bfd
,
17670 elf_section_data (htab
->glink
)->rela
.hdr
,
17671 elf_section_data (htab
->glink
)->relocs
,
17676 if (htab
->glink_eh_frame
!= NULL
17677 && htab
->glink_eh_frame
->size
!= 0
17678 && htab
->glink_eh_frame
->sec_info_type
== SEC_INFO_TYPE_EH_FRAME
17679 && !_bfd_elf_write_section_eh_frame (output_bfd
, info
,
17680 htab
->glink_eh_frame
,
17681 htab
->glink_eh_frame
->contents
))
17684 /* We need to handle writing out multiple GOT sections ourselves,
17685 since we didn't add them to DYNOBJ. We know dynobj is the first
17687 while ((dynobj
= dynobj
->link
.next
) != NULL
)
17691 if (!is_ppc64_elf (dynobj
))
17694 s
= ppc64_elf_tdata (dynobj
)->got
;
17697 && s
->output_section
!= bfd_abs_section_ptr
17698 && !bfd_set_section_contents (output_bfd
, s
->output_section
,
17699 s
->contents
, s
->output_offset
,
17702 s
= ppc64_elf_tdata (dynobj
)->relgot
;
17705 && s
->output_section
!= bfd_abs_section_ptr
17706 && !bfd_set_section_contents (output_bfd
, s
->output_section
,
17707 s
->contents
, s
->output_offset
,
17715 #include "elf64-target.h"
17717 /* FreeBSD support */
17719 #undef TARGET_LITTLE_SYM
17720 #define TARGET_LITTLE_SYM powerpc_elf64_fbsd_le_vec
17721 #undef TARGET_LITTLE_NAME
17722 #define TARGET_LITTLE_NAME "elf64-powerpcle-freebsd"
17724 #undef TARGET_BIG_SYM
17725 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
17726 #undef TARGET_BIG_NAME
17727 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
17730 #define ELF_OSABI ELFOSABI_FREEBSD
17733 #define elf64_bed elf64_powerpc_fbsd_bed
17735 #include "elf64-target.h"