1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
42 /* Get the ECOFF swapping routines. */
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type
{
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
61 (1) an absolute address
62 requires: abfd == NULL
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
78 /* One input bfd that needs the GOT entry. */
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
85 /* If abfd == NULL, an address that must be stored in the got. */
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry
*h
;
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type
;
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized
;
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
126 struct mips_elf_link_hash_entry
*h
;
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
135 struct mips_got_page_range
137 struct mips_got_page_range
*next
;
138 bfd_signed_vma min_addend
;
139 bfd_signed_vma max_addend
;
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
146 /* The section that these entries are based on. */
148 /* The ranges for this page entry. */
149 struct mips_got_page_range
*ranges
;
150 /* The maximum number of page entries needed for RANGES. */
154 /* This structure is used to hold .got information when linking. */
158 /* The number of global .got entries. */
159 unsigned int global_gotno
;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno
;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno
;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno
;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno
;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno
;
171 /* The number of relocations needed for the GOT entries. */
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno
;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno
;
177 /* A hash table holding members of the got. */
178 struct htab
*got_entries
;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab
*got_page_refs
;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab
*got_page_entries
;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info
*next
;
188 /* Structure passed when merging bfds' gots. */
190 struct mips_elf_got_per_bfd_arg
192 /* The output bfd. */
194 /* The link information. */
195 struct bfd_link_info
*info
;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
199 struct mips_got_info
*primary
;
200 /* A non-primary got we're trying to merge with other input bfd's
202 struct mips_got_info
*current
;
203 /* The maximum number of got entries that can be addressed with a
205 unsigned int max_count
;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages
;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
212 unsigned int global_count
;
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
218 struct mips_elf_traverse_got_arg
220 struct bfd_link_info
*info
;
221 struct mips_got_info
*g
;
225 struct _mips_elf_section_data
227 struct bfd_elf_section_data elf
;
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
260 #define GGA_RELOC_ONLY 1
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
267 addiu $25,$25,%lo(func)
269 immediately before a PIC function "func". The second is to add:
273 addiu $25,$25,%lo(func)
275 to a separate trampoline section.
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub
{
281 /* The generated section that contains this stub. */
282 asection
*stub_section
;
284 /* The offset of the stub from the start of STUB_SECTION. */
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry
*h
;
292 /* Macros for populating a mips_elf_la25_stub. */
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
308 struct mips_elf_hash_sort_data
310 /* The symbol in the global GOT with the lowest dynamic symbol table
312 struct elf_link_hash_entry
*low
;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx
;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx
;
320 /* The greatest dynamic symbol table index corresponding to a local
322 bfd_size_type max_local_dynindx
;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx
;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
340 /* Traditional SVR4 stub offset, or -1 if none. */
343 /* Standard PLT entry offset, or -1 if none. */
346 /* Compressed PLT entry offset, or -1 if none. */
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index
;
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips
: 1;
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp
: 1;
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
362 struct mips_elf_link_hash_entry
364 struct elf_link_hash_entry root
;
366 /* External symbol information. */
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub
*la25_stub
;
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
374 unsigned int possibly_dynamic_relocs
;
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection
*call_fp_stub
;
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc
;
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area
: 2;
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls
: 1;
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc
: 1;
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs
: 1;
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub
: 1;
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub
: 1;
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches
: 1;
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub
: 1;
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry
: 1;
431 /* MIPS ELF linker hash table. */
433 struct mips_elf_link_hash_table
435 struct elf_link_hash_table root
;
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count
;
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size
;
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bfd_boolean use_rld_obj_head
;
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry
*rld_symbol
;
450 /* This is set if we see any mips16 stub sections. */
451 bfd_boolean mips16_stubs_seen
;
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs
;
456 /* True if we can only use 32-bit microMIPS instructions. */
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa
;
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches
;
465 /* True if we already reported the small-data section overflow. */
466 bfd_boolean small_data_overflow_reported
;
468 /* True if we use the special `__gnu_absolute_zero' symbol. */
469 bfd_boolean use_absolute_zero
;
471 /* True if we have been configured for a GNU target. */
472 bfd_boolean gnu_target
;
474 /* Shortcuts to some dynamic sections, or NULL if they are not
479 /* The master GOT information. */
480 struct mips_got_info
*got_info
;
482 /* The global symbol in the GOT with the lowest index in the dynamic
484 struct elf_link_hash_entry
*global_gotsym
;
486 /* The size of the PLT header in bytes. */
487 bfd_vma plt_header_size
;
489 /* The size of a standard PLT entry in bytes. */
490 bfd_vma plt_mips_entry_size
;
492 /* The size of a compressed PLT entry in bytes. */
493 bfd_vma plt_comp_entry_size
;
495 /* The offset of the next standard PLT entry to create. */
496 bfd_vma plt_mips_offset
;
498 /* The offset of the next compressed PLT entry to create. */
499 bfd_vma plt_comp_offset
;
501 /* The index of the next .got.plt entry to create. */
502 bfd_vma plt_got_index
;
504 /* The number of functions that need a lazy-binding stub. */
505 bfd_vma lazy_stub_count
;
507 /* The size of a function stub entry in bytes. */
508 bfd_vma function_stub_size
;
510 /* The number of reserved entries at the beginning of the GOT. */
511 unsigned int reserved_gotno
;
513 /* The section used for mips_elf_la25_stub trampolines.
514 See the comment above that structure for details. */
515 asection
*strampoline
;
517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
521 /* A function FN (NAME, IS, OS) that creates a new input section
522 called NAME and links it to output section OS. If IS is nonnull,
523 the new section should go immediately before it, otherwise it
524 should go at the (current) beginning of OS.
526 The function returns the new section on success, otherwise it
528 asection
*(*add_stub_section
) (const char *, asection
*, asection
*);
530 /* Is the PLT header compressed? */
531 unsigned int plt_header_is_comp
: 1;
534 /* Get the MIPS ELF linker hash table from a link_info structure. */
536 #define mips_elf_hash_table(p) \
537 ((is_elf_hash_table ((p)->hash) \
538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \
539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
541 /* A structure used to communicate with htab_traverse callbacks. */
542 struct mips_htab_traverse_info
544 /* The usual link-wide information. */
545 struct bfd_link_info
*info
;
548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
552 /* MIPS ELF private object data. */
554 struct mips_elf_obj_tdata
556 /* Generic ELF private object data. */
557 struct elf_obj_tdata root
;
559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
565 /* The abiflags for this object. */
566 Elf_Internal_ABIFlags_v0 abiflags
;
567 bfd_boolean abiflags_valid
;
569 /* The GOT requirements of input bfds. */
570 struct mips_got_info
*got
;
572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
573 included directly in this one, but there's no point to wasting
574 the memory just for the infrequently called find_nearest_line. */
575 struct mips_elf_find_line
*find_line_info
;
577 /* An array of stub sections indexed by symbol number. */
578 asection
**local_stubs
;
579 asection
**local_call_stubs
;
581 /* The Irix 5 support uses two virtual sections, which represent
582 text/data symbols defined in dynamic objects. */
583 asymbol
*elf_data_symbol
;
584 asymbol
*elf_text_symbol
;
585 asection
*elf_data_section
;
586 asection
*elf_text_section
;
589 /* Get MIPS ELF private object data from BFD's tdata. */
591 #define mips_elf_tdata(bfd) \
592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
594 #define TLS_RELOC_P(r_type) \
595 (r_type == R_MIPS_TLS_DTPMOD32 \
596 || r_type == R_MIPS_TLS_DTPMOD64 \
597 || r_type == R_MIPS_TLS_DTPREL32 \
598 || r_type == R_MIPS_TLS_DTPREL64 \
599 || r_type == R_MIPS_TLS_GD \
600 || r_type == R_MIPS_TLS_LDM \
601 || r_type == R_MIPS_TLS_DTPREL_HI16 \
602 || r_type == R_MIPS_TLS_DTPREL_LO16 \
603 || r_type == R_MIPS_TLS_GOTTPREL \
604 || r_type == R_MIPS_TLS_TPREL32 \
605 || r_type == R_MIPS_TLS_TPREL64 \
606 || r_type == R_MIPS_TLS_TPREL_HI16 \
607 || r_type == R_MIPS_TLS_TPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GD \
609 || r_type == R_MIPS16_TLS_LDM \
610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GOTTPREL \
613 || r_type == R_MIPS16_TLS_TPREL_HI16 \
614 || r_type == R_MIPS16_TLS_TPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GD \
616 || r_type == R_MICROMIPS_TLS_LDM \
617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GOTTPREL \
620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
621 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
623 /* Structure used to pass information to mips_elf_output_extsym. */
628 struct bfd_link_info
*info
;
629 struct ecoff_debug_info
*debug
;
630 const struct ecoff_debug_swap
*swap
;
634 /* The names of the runtime procedure table symbols used on IRIX5. */
636 static const char * const mips_elf_dynsym_rtproc_names
[] =
639 "_procedure_string_table",
640 "_procedure_table_size",
644 /* These structures are used to generate the .compact_rel section on
649 unsigned long id1
; /* Always one? */
650 unsigned long num
; /* Number of compact relocation entries. */
651 unsigned long id2
; /* Always two? */
652 unsigned long offset
; /* The file offset of the first relocation. */
653 unsigned long reserved0
; /* Zero? */
654 unsigned long reserved1
; /* Zero? */
663 bfd_byte reserved0
[4];
664 bfd_byte reserved1
[4];
665 } Elf32_External_compact_rel
;
669 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
670 unsigned int rtype
: 4; /* Relocation types. See below. */
671 unsigned int dist2to
: 8;
672 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
673 unsigned long konst
; /* KONST field. See below. */
674 unsigned long vaddr
; /* VADDR to be relocated. */
679 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
680 unsigned int rtype
: 4; /* Relocation types. See below. */
681 unsigned int dist2to
: 8;
682 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
683 unsigned long konst
; /* KONST field. See below. */
691 } Elf32_External_crinfo
;
697 } Elf32_External_crinfo2
;
699 /* These are the constants used to swap the bitfields in a crinfo. */
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
710 /* A compact relocation info has long (3 words) or short (2 words)
711 formats. A short format doesn't have VADDR field and relvaddr
712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
713 #define CRF_MIPS_LONG 1
714 #define CRF_MIPS_SHORT 0
716 /* There are 4 types of compact relocation at least. The value KONST
717 has different meaning for each type:
720 CT_MIPS_REL32 Address in data
721 CT_MIPS_WORD Address in word (XXX)
722 CT_MIPS_GPHI_LO GP - vaddr
723 CT_MIPS_JMPAD Address to jump
726 #define CRT_MIPS_REL32 0xa
727 #define CRT_MIPS_WORD 0xb
728 #define CRT_MIPS_GPHI_LO 0xc
729 #define CRT_MIPS_JMPAD 0xd
731 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
736 /* The structure of the runtime procedure descriptor created by the
737 loader for use by the static exception system. */
739 typedef struct runtime_pdr
{
740 bfd_vma adr
; /* Memory address of start of procedure. */
741 long regmask
; /* Save register mask. */
742 long regoffset
; /* Save register offset. */
743 long fregmask
; /* Save floating point register mask. */
744 long fregoffset
; /* Save floating point register offset. */
745 long frameoffset
; /* Frame size. */
746 short framereg
; /* Frame pointer register. */
747 short pcreg
; /* Offset or reg of return pc. */
748 long irpss
; /* Index into the runtime string table. */
750 struct exception_info
*exception_info
;/* Pointer to exception array. */
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
755 static struct mips_got_entry
*mips_elf_create_local_got_entry
756 (bfd
*, struct bfd_link_info
*, bfd
*, bfd_vma
, unsigned long,
757 struct mips_elf_link_hash_entry
*, int);
758 static bfd_boolean mips_elf_sort_hash_table_f
759 (struct mips_elf_link_hash_entry
*, void *);
760 static bfd_vma mips_elf_high
762 static bfd_boolean mips_elf_create_dynamic_relocation
763 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
764 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
765 bfd_vma
*, asection
*);
766 static bfd_vma mips_elf_adjust_gp
767 (bfd
*, struct mips_got_info
*, bfd
*);
769 /* This will be used when we sort the dynamic relocation records. */
770 static bfd
*reldyn_sorting_bfd
;
772 /* True if ABFD is for CPUs with load interlocking that include
773 non-MIPS1 CPUs and R3900. */
774 #define LOAD_INTERLOCKS_P(abfd) \
775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779 This should be safe for all architectures. We enable this predicate
780 for RM9000 for now. */
781 #define JAL_TO_BAL_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785 This should be safe for all architectures. We enable this predicate for
787 #define JALR_TO_BAL_P(abfd) 1
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790 This should be safe for all architectures. We enable this predicate for
792 #define JR_TO_B_P(abfd) 1
794 /* True if ABFD is a PIC object. */
795 #define PIC_OBJECT_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
798 /* Nonzero if ABFD is using the O32 ABI. */
799 #define ABI_O32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
802 /* Nonzero if ABFD is using the N32 ABI. */
803 #define ABI_N32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
806 /* Nonzero if ABFD is using the N64 ABI. */
807 #define ABI_64_P(abfd) \
808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
810 /* Nonzero if ABFD is using NewABI conventions. */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
813 /* Nonzero if ABFD has microMIPS code. */
814 #define MICROMIPS_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
817 /* Nonzero if ABFD is MIPS R6. */
818 #define MIPSR6_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
822 /* The IRIX compatibility level we are striving for. */
823 #define IRIX_COMPAT(abfd) \
824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
826 /* Whether we are trying to be compatible with IRIX at all. */
827 #define SGI_COMPAT(abfd) \
828 (IRIX_COMPAT (abfd) != ict_none)
830 /* The name of the options section. */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.abiflags") == 0)
843 /* Whether the section is readonly. */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
848 /* The name of the stub section. */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
851 /* The size of an external REL relocation. */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rel)
855 /* The size of an external RELA relocation. */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rela)
859 /* The size of an external dynamic table entry. */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_dyn)
863 /* The size of a GOT entry. */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
871 /* The size of a symbol-table entry. */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->sizeof_sym)
875 /* The default alignment for sections, as a power of two. */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
877 (get_elf_backend_data (abfd)->s->log_file_align)
879 /* Get word-sized data. */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
883 /* Put out word-sized data. */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
886 ? bfd_put_64 (abfd, val, ptr) \
887 : bfd_put_32 (abfd, val, ptr))
889 /* The opcode for word-sized loads (LW or LD). */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
893 /* Add a dynamic symbol table-entry. */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
895 _bfd_elf_add_dynamic_entry (info, tag, val)
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
900 /* The name of the dynamic relocation section. */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903 ? ".rela.dyn" : ".rel.dyn")
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906 from smaller values. Start with zero, widen, *then* decrement. */
907 #define MINUS_ONE (((bfd_vma)0) - 1)
908 #define MINUS_TWO (((bfd_vma)0) - 2)
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911 a GNU object. The dynamic linker can then use got[1] to store the
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
916 /* The offset of $gp from the beginning of the .got section. */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
921 /* The maximum size of the GOT for it to be addressable using 16-bit
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
925 /* Instructions which appear in a stub. */
926 #define STUB_LW(abfd) \
928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
929 : 0x8f998010)) /* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
932 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL) \
938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
941 /* Likewise for the microMIPS ASE. */
942 #define STUB_LW_MICROMIPS(abfd) \
944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
945 : 0xff3c8010) /* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL) \
949 (0x41b80000 + (VAL)) /* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL) \
953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL) \
955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
968 /* The name of the dynamic interpreter. This is put in the .interp
971 #define ELF_DYNAMIC_INTERPRETER(abfd) \
972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
974 : "/usr/lib/libc.so.1")
977 #define MNAME(bfd,pre,pos) \
978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i) \
980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t) \
984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i) \
989 #define ELF_R_TYPE(bfd, i) \
991 #define ELF_R_INFO(bfd, s, t) \
992 (ELF32_R_INFO (s, t))
995 /* The mips16 compiler uses a couple of special sections to handle
996 floating point arguments.
998 Section names that look like .mips16.fn.FNNAME contain stubs that
999 copy floating point arguments from the fp regs to the gp regs and
1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1001 call should be redirected to the stub instead. If no 32 bit
1002 function calls FNNAME, the stub should be discarded. We need to
1003 consider any reference to the function, not just a call, because
1004 if the address of the function is taken we will need the stub,
1005 since the address might be passed to a 32 bit function.
1007 Section names that look like .mips16.call.FNNAME contain stubs
1008 that copy floating point arguments from the gp regs to the fp
1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1010 then any 16 bit function that calls FNNAME should be redirected
1011 to the stub instead. If FNNAME is not a 32 bit function, the
1012 stub should be discarded.
1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015 which call FNNAME and then copy the return value from the fp regs
1016 to the gp regs. These stubs store the return value in $18 while
1017 calling FNNAME; any function which might call one of these stubs
1018 must arrange to save $18 around the call. (This case is not
1019 needed for 32 bit functions that call 16 bit functions, because
1020 16 bit functions always return floating point values in both
1023 Note that in all cases FNNAME might be defined statically.
1024 Therefore, FNNAME is not used literally. Instead, the relocation
1025 information will indicate which symbol the section is for.
1027 We record any stubs that we find in the symbol table. */
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1033 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1034 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1037 /* The format of the first PLT entry in an O32 executable. */
1038 static const bfd_vma mips_o32_exec_plt0_entry
[] =
1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1043 0x031cc023, /* subu $24, $24, $28 */
1044 0x03e07825, /* or t7, ra, zero */
1045 0x0018c082, /* srl $24, $24, 2 */
1046 0x0320f809, /* jalr $25 */
1047 0x2718fffe /* subu $24, $24, 2 */
1050 /* The format of the first PLT entry in an O32 executable using compact
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact
[] =
1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1057 0x031cc023, /* subu $24, $24, $28 */
1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1059 0x0018c082, /* srl $24, $24, 2 */
1060 0x2718fffe, /* subu $24, $24, 2 */
1061 0xf8190000 /* jalrc $25 */
1064 /* The format of the first PLT entry in an N32 executable. Different
1065 because gp ($28) is not available; we use t2 ($14) instead. */
1066 static const bfd_vma mips_n32_exec_plt0_entry
[] =
1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1071 0x030ec023, /* subu $24, $24, $14 */
1072 0x03e07825, /* or t7, ra, zero */
1073 0x0018c082, /* srl $24, $24, 2 */
1074 0x0320f809, /* jalr $25 */
1075 0x2718fffe /* subu $24, $24, 2 */
1078 /* The format of the first PLT entry in an N32 executable using compact
1079 jumps. Different because gp ($28) is not available; we use t2 ($14)
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact
[] =
1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1086 0x030ec023, /* subu $24, $24, $14 */
1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1088 0x0018c082, /* srl $24, $24, 2 */
1089 0x2718fffe, /* subu $24, $24, 2 */
1090 0xf8190000 /* jalrc $25 */
1093 /* The format of the first PLT entry in an N64 executable. Different
1094 from N32 because of the increased size of GOT entries. */
1095 static const bfd_vma mips_n64_exec_plt0_entry
[] =
1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1100 0x030ec023, /* subu $24, $24, $14 */
1101 0x03e07825, /* or t7, ra, zero */
1102 0x0018c0c2, /* srl $24, $24, 3 */
1103 0x0320f809, /* jalr $25 */
1104 0x2718fffe /* subu $24, $24, 2 */
1107 /* The format of the first PLT entry in an N64 executable using compact
1108 jumps. Different from N32 because of the increased size of GOT
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact
[] =
1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1115 0x030ec023, /* subu $24, $24, $14 */
1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1117 0x0018c0c2, /* srl $24, $24, 3 */
1118 0x2718fffe, /* subu $24, $24, 2 */
1119 0xf8190000 /* jalrc $25 */
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124 We rely on v0 ($2) rather than t8 ($24) to contain the address
1125 of the GOTPLT entry handled, so this stub may only be used when
1126 all the subsequent PLT entries are microMIPS code too.
1128 The trailing NOP is for alignment and correct disassembly only. */
1129 static const bfd_vma micromips_o32_exec_plt0_entry
[] =
1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1132 0xff23, 0x0000, /* lw $25, 0($3) */
1133 0x0535, /* subu $2, $2, $3 */
1134 0x2525, /* srl $2, $2, 2 */
1135 0x3302, 0xfffe, /* subu $24, $2, 2 */
1136 0x0dff, /* move $15, $31 */
1137 0x45f9, /* jalrs $25 */
1138 0x0f83, /* move $28, $3 */
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143 in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry
[] =
1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1150 0x001f, 0x7a90, /* or $15, $31, zero */
1151 0x0318, 0x1040, /* srl $24, $24, 2 */
1152 0x03f9, 0x0f3c, /* jalr $25 */
1153 0x3318, 0xfffe /* subu $24, $24, 2 */
1156 /* The format of subsequent standard PLT entries. */
1157 static const bfd_vma mips_exec_plt_entry
[] =
1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1162 0x03200008 /* jr $25 */
1165 static const bfd_vma mipsr6_exec_plt_entry
[] =
1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1170 0x03200009 /* jr $25 */
1173 static const bfd_vma mipsr6_exec_plt_entry_compact
[] =
1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1178 0xd8190000 /* jic $25, 0 */
1181 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183 directly addressable. */
1184 static const bfd_vma mips16_o32_exec_plt_entry
[] =
1186 0xb203, /* lw $2, 12($pc) */
1187 0x9a60, /* lw $3, 0($2) */
1188 0x651a, /* move $24, $2 */
1190 0x653b, /* move $25, $3 */
1192 0x0000, 0x0000 /* .word (.got.plt entry) */
1195 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1197 static const bfd_vma micromips_o32_exec_plt_entry
[] =
1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1200 0xff22, 0x0000, /* lw $25, 0($2) */
1201 0x4599, /* jr $25 */
1202 0x0f02 /* move $24, $2 */
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry
[] =
1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1210 0x0019, 0x0f3c, /* jr $25 */
1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1214 /* The format of the first PLT entry in a VxWorks executable. */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry
[] =
1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1219 0x8f390008, /* lw t9, 8(t9) */
1220 0x00000000, /* nop */
1221 0x03200008, /* jr t9 */
1222 0x00000000 /* nop */
1225 /* The format of subsequent PLT entries. */
1226 static const bfd_vma mips_vxworks_exec_plt_entry
[] =
1228 0x10000000, /* b .PLT_resolver */
1229 0x24180000, /* li t8, <pltindex> */
1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1232 0x8f390000, /* lw t9, 0(t9) */
1233 0x00000000, /* nop */
1234 0x03200008, /* jr t9 */
1235 0x00000000 /* nop */
1238 /* The format of the first PLT entry in a VxWorks shared object. */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry
[] =
1241 0x8f990008, /* lw t9, 8(gp) */
1242 0x00000000, /* nop */
1243 0x03200008, /* jr t9 */
1244 0x00000000, /* nop */
1245 0x00000000, /* nop */
1246 0x00000000 /* nop */
1249 /* The format of subsequent PLT entries. */
1250 static const bfd_vma mips_vxworks_shared_plt_entry
[] =
1252 0x10000000, /* b .PLT_resolver */
1253 0x24180000 /* li t8, <pltindex> */
1256 /* microMIPS 32-bit opcode helper installer. */
1259 bfd_put_micromips_32 (const bfd
*abfd
, bfd_vma opcode
, bfd_byte
*ptr
)
1261 bfd_put_16 (abfd
, (opcode
>> 16) & 0xffff, ptr
);
1262 bfd_put_16 (abfd
, opcode
& 0xffff, ptr
+ 2);
1265 /* microMIPS 32-bit opcode helper retriever. */
1268 bfd_get_micromips_32 (const bfd
*abfd
, const bfd_byte
*ptr
)
1270 return (bfd_get_16 (abfd
, ptr
) << 16) | bfd_get_16 (abfd
, ptr
+ 2);
1273 /* Look up an entry in a MIPS ELF linker hash table. */
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1276 ((struct mips_elf_link_hash_entry *) \
1277 elf_link_hash_lookup (&(table)->root, (string), (create), \
1280 /* Traverse a MIPS ELF linker hash table. */
1282 #define mips_elf_link_hash_traverse(table, func, info) \
1283 (elf_link_hash_traverse \
1285 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1288 /* Find the base offsets for thread-local storage in this object,
1289 for GD/LD and IE/LE respectively. */
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1295 dtprel_base (struct bfd_link_info
*info
)
1297 /* If tls_sec is NULL, we should have signalled an error already. */
1298 if (elf_hash_table (info
)->tls_sec
== NULL
)
1300 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
1304 tprel_base (struct bfd_link_info
*info
)
1306 /* If tls_sec is NULL, we should have signalled an error already. */
1307 if (elf_hash_table (info
)->tls_sec
== NULL
)
1309 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
1312 /* Create an entry in a MIPS ELF linker hash table. */
1314 static struct bfd_hash_entry
*
1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1316 struct bfd_hash_table
*table
, const char *string
)
1318 struct mips_elf_link_hash_entry
*ret
=
1319 (struct mips_elf_link_hash_entry
*) entry
;
1321 /* Allocate the structure if it has not already been allocated by a
1324 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
1326 return (struct bfd_hash_entry
*) ret
;
1328 /* Call the allocation method of the superclass. */
1329 ret
= ((struct mips_elf_link_hash_entry
*)
1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1334 /* Set local fields. */
1335 memset (&ret
->esym
, 0, sizeof (EXTR
));
1336 /* We use -2 as a marker to indicate that the information has
1337 not been set. -1 means there is no associated ifd. */
1340 ret
->possibly_dynamic_relocs
= 0;
1341 ret
->fn_stub
= NULL
;
1342 ret
->call_stub
= NULL
;
1343 ret
->call_fp_stub
= NULL
;
1344 ret
->mipsxhash_loc
= 0;
1345 ret
->global_got_area
= GGA_NONE
;
1346 ret
->got_only_for_calls
= TRUE
;
1347 ret
->readonly_reloc
= FALSE
;
1348 ret
->has_static_relocs
= FALSE
;
1349 ret
->no_fn_stub
= FALSE
;
1350 ret
->need_fn_stub
= FALSE
;
1351 ret
->has_nonpic_branches
= FALSE
;
1352 ret
->needs_lazy_stub
= FALSE
;
1353 ret
->use_plt_entry
= FALSE
;
1356 return (struct bfd_hash_entry
*) ret
;
1359 /* Allocate MIPS ELF private object data. */
1362 _bfd_mips_elf_mkobject (bfd
*abfd
)
1364 return bfd_elf_allocate_object (abfd
, sizeof (struct mips_elf_obj_tdata
),
1369 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
1371 if (!sec
->used_by_bfd
)
1373 struct _mips_elf_section_data
*sdata
;
1374 size_t amt
= sizeof (*sdata
);
1376 sdata
= bfd_zalloc (abfd
, amt
);
1379 sec
->used_by_bfd
= sdata
;
1382 return _bfd_elf_new_section_hook (abfd
, sec
);
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386 ecoff_debug_info structure. */
1389 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
1390 struct ecoff_debug_info
*debug
)
1393 const struct ecoff_debug_swap
*swap
;
1396 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1397 memset (debug
, 0, sizeof (*debug
));
1399 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
1400 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
1403 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
1404 swap
->external_hdr_size
))
1407 symhdr
= &debug
->symbolic_header
;
1408 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
1410 /* The symbolic header contains absolute file offsets and sizes to
1412 #define READ(ptr, offset, count, size, type) \
1416 debug->ptr = NULL; \
1417 if (symhdr->count == 0) \
1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1421 bfd_set_error (bfd_error_file_too_big); \
1422 goto error_return; \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
1425 goto error_return; \
1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1427 if (debug->ptr == NULL) \
1428 goto error_return; \
1431 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
1432 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
1433 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
1434 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
1435 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
1436 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
1438 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
1439 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
1440 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
1441 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
1442 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
1452 free (debug
->external_dnr
);
1453 free (debug
->external_pdr
);
1454 free (debug
->external_sym
);
1455 free (debug
->external_opt
);
1456 free (debug
->external_aux
);
1458 free (debug
->ssext
);
1459 free (debug
->external_fdr
);
1460 free (debug
->external_rfd
);
1461 free (debug
->external_ext
);
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1468 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
1470 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
1471 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
1472 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
1473 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
1474 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
1475 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
1477 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
1478 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
1480 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
1483 /* Create a runtime procedure table from the .mdebug section. */
1486 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
1487 struct bfd_link_info
*info
, asection
*s
,
1488 struct ecoff_debug_info
*debug
)
1490 const struct ecoff_debug_swap
*swap
;
1491 HDRR
*hdr
= &debug
->symbolic_header
;
1493 struct rpdr_ext
*erp
;
1495 struct pdr_ext
*epdr
;
1496 struct sym_ext
*esym
;
1500 bfd_size_type count
;
1501 unsigned long sindex
;
1505 const char *no_name_func
= _("static procedure (no name)");
1513 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1515 sindex
= strlen (no_name_func
) + 1;
1516 count
= hdr
->ipdMax
;
1519 size
= swap
->external_pdr_size
;
1521 epdr
= bfd_malloc (size
* count
);
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1528 size
= sizeof (RPDR
);
1529 rp
= rpdr
= bfd_malloc (size
* count
);
1533 size
= sizeof (char *);
1534 sv
= bfd_malloc (size
* count
);
1538 count
= hdr
->isymMax
;
1539 size
= swap
->external_sym_size
;
1540 esym
= bfd_malloc (size
* count
);
1544 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1547 count
= hdr
->issMax
;
1548 ss
= bfd_malloc (count
);
1551 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1554 count
= hdr
->ipdMax
;
1555 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1557 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1558 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1559 rp
->adr
= sym
.value
;
1560 rp
->regmask
= pdr
.regmask
;
1561 rp
->regoffset
= pdr
.regoffset
;
1562 rp
->fregmask
= pdr
.fregmask
;
1563 rp
->fregoffset
= pdr
.fregoffset
;
1564 rp
->frameoffset
= pdr
.frameoffset
;
1565 rp
->framereg
= pdr
.framereg
;
1566 rp
->pcreg
= pdr
.pcreg
;
1568 sv
[i
] = ss
+ sym
.iss
;
1569 sindex
+= strlen (sv
[i
]) + 1;
1573 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1574 size
= BFD_ALIGN (size
, 16);
1575 rtproc
= bfd_alloc (abfd
, size
);
1578 mips_elf_hash_table (info
)->procedure_count
= 0;
1582 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1585 memset (erp
, 0, sizeof (struct rpdr_ext
));
1587 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1588 strcpy (str
, no_name_func
);
1589 str
+= strlen (no_name_func
) + 1;
1590 for (i
= 0; i
< count
; i
++)
1592 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1593 strcpy (str
, sv
[i
]);
1594 str
+= strlen (sv
[i
]) + 1;
1596 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1598 /* Set the size and contents of .rtproc section. */
1600 s
->contents
= rtproc
;
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s
->map_head
.link_order
= NULL
;
1622 /* We're going to create a stub for H. Create a symbol for the stub's
1623 value and size, to help make the disassembly easier to read. */
1626 mips_elf_create_stub_symbol (struct bfd_link_info
*info
,
1627 struct mips_elf_link_hash_entry
*h
,
1628 const char *prefix
, asection
*s
, bfd_vma value
,
1631 bfd_boolean micromips_p
= ELF_ST_IS_MICROMIPS (h
->root
.other
);
1632 struct bfd_link_hash_entry
*bh
;
1633 struct elf_link_hash_entry
*elfh
;
1640 /* Create a new symbol. */
1641 name
= concat (prefix
, h
->root
.root
.root
.string
, NULL
);
1643 res
= _bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1644 BSF_LOCAL
, s
, value
, NULL
,
1650 /* Make it a local function. */
1651 elfh
= (struct elf_link_hash_entry
*) bh
;
1652 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
1654 elfh
->forced_local
= 1;
1656 elfh
->other
= ELF_ST_SET_MICROMIPS (elfh
->other
);
1660 /* We're about to redefine H. Create a symbol to represent H's
1661 current value and size, to help make the disassembly easier
1665 mips_elf_create_shadow_symbol (struct bfd_link_info
*info
,
1666 struct mips_elf_link_hash_entry
*h
,
1669 struct bfd_link_hash_entry
*bh
;
1670 struct elf_link_hash_entry
*elfh
;
1676 /* Read the symbol's value. */
1677 BFD_ASSERT (h
->root
.root
.type
== bfd_link_hash_defined
1678 || h
->root
.root
.type
== bfd_link_hash_defweak
);
1679 s
= h
->root
.root
.u
.def
.section
;
1680 value
= h
->root
.root
.u
.def
.value
;
1682 /* Create a new symbol. */
1683 name
= concat (prefix
, h
->root
.root
.root
.string
, NULL
);
1685 res
= _bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1686 BSF_LOCAL
, s
, value
, NULL
,
1692 /* Make it local and copy the other attributes from H. */
1693 elfh
= (struct elf_link_hash_entry
*) bh
;
1694 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (h
->root
.type
));
1695 elfh
->other
= h
->root
.other
;
1696 elfh
->size
= h
->root
.size
;
1697 elfh
->forced_local
= 1;
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702 function rather than to a hard-float stub. */
1705 section_allows_mips16_refs_p (asection
*section
)
1709 name
= bfd_section_name (section
);
1710 return (FN_STUB_P (name
)
1711 || CALL_STUB_P (name
)
1712 || CALL_FP_STUB_P (name
)
1713 || strcmp (name
, ".pdr") == 0);
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717 stub section of some kind. Return the R_SYMNDX of the target
1718 function, or 0 if we can't decide which function that is. */
1720 static unsigned long
1721 mips16_stub_symndx (const struct elf_backend_data
*bed
,
1722 asection
*sec ATTRIBUTE_UNUSED
,
1723 const Elf_Internal_Rela
*relocs
,
1724 const Elf_Internal_Rela
*relend
)
1726 int int_rels_per_ext_rel
= bed
->s
->int_rels_per_ext_rel
;
1727 const Elf_Internal_Rela
*rel
;
1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730 one in a compound relocation. */
1731 for (rel
= relocs
; rel
< relend
; rel
+= int_rels_per_ext_rel
)
1732 if (ELF_R_TYPE (sec
->owner
, rel
->r_info
) == R_MIPS_NONE
)
1733 return ELF_R_SYM (sec
->owner
, rel
->r_info
);
1735 /* Otherwise trust the first relocation, whatever its kind. This is
1736 the traditional behavior. */
1737 if (relocs
< relend
)
1738 return ELF_R_SYM (sec
->owner
, relocs
->r_info
);
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1747 mips_elf_check_mips16_stubs (struct bfd_link_info
*info
,
1748 struct mips_elf_link_hash_entry
*h
)
1750 /* Dynamic symbols must use the standard call interface, in case other
1751 objects try to call them. */
1752 if (h
->fn_stub
!= NULL
1753 && h
->root
.dynindx
!= -1)
1755 mips_elf_create_shadow_symbol (info
, h
, ".mips16.");
1756 h
->need_fn_stub
= TRUE
;
1759 if (h
->fn_stub
!= NULL
1760 && ! h
->need_fn_stub
)
1762 /* We don't need the fn_stub; the only references to this symbol
1763 are 16 bit calls. Clobber the size to 0 to prevent it from
1764 being included in the link. */
1765 h
->fn_stub
->size
= 0;
1766 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1767 h
->fn_stub
->reloc_count
= 0;
1768 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1769 h
->fn_stub
->output_section
= bfd_abs_section_ptr
;
1772 if (h
->call_stub
!= NULL
1773 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1775 /* We don't need the call_stub; this is a 16 bit function, so
1776 calls from other 16 bit functions are OK. Clobber the size
1777 to 0 to prevent it from being included in the link. */
1778 h
->call_stub
->size
= 0;
1779 h
->call_stub
->flags
&= ~SEC_RELOC
;
1780 h
->call_stub
->reloc_count
= 0;
1781 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1782 h
->call_stub
->output_section
= bfd_abs_section_ptr
;
1785 if (h
->call_fp_stub
!= NULL
1786 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1788 /* We don't need the call_stub; this is a 16 bit function, so
1789 calls from other 16 bit functions are OK. Clobber the size
1790 to 0 to prevent it from being included in the link. */
1791 h
->call_fp_stub
->size
= 0;
1792 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1793 h
->call_fp_stub
->reloc_count
= 0;
1794 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1795 h
->call_fp_stub
->output_section
= bfd_abs_section_ptr
;
1799 /* Hashtable callbacks for mips_elf_la25_stubs. */
1802 mips_elf_la25_stub_hash (const void *entry_
)
1804 const struct mips_elf_la25_stub
*entry
;
1806 entry
= (struct mips_elf_la25_stub
*) entry_
;
1807 return entry
->h
->root
.root
.u
.def
.section
->id
1808 + entry
->h
->root
.root
.u
.def
.value
;
1812 mips_elf_la25_stub_eq (const void *entry1_
, const void *entry2_
)
1814 const struct mips_elf_la25_stub
*entry1
, *entry2
;
1816 entry1
= (struct mips_elf_la25_stub
*) entry1_
;
1817 entry2
= (struct mips_elf_la25_stub
*) entry2_
;
1818 return ((entry1
->h
->root
.root
.u
.def
.section
1819 == entry2
->h
->root
.root
.u
.def
.section
)
1820 && (entry1
->h
->root
.root
.u
.def
.value
1821 == entry2
->h
->root
.root
.u
.def
.value
));
1824 /* Called by the linker to set up the la25 stub-creation code. FN is
1825 the linker's implementation of add_stub_function. Return true on
1829 _bfd_mips_elf_init_stubs (struct bfd_link_info
*info
,
1830 asection
*(*fn
) (const char *, asection
*,
1833 struct mips_elf_link_hash_table
*htab
;
1835 htab
= mips_elf_hash_table (info
);
1839 htab
->add_stub_section
= fn
;
1840 htab
->la25_stubs
= htab_try_create (1, mips_elf_la25_stub_hash
,
1841 mips_elf_la25_stub_eq
, NULL
);
1842 if (htab
->la25_stubs
== NULL
)
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849 that it or its fn_stub might need $25 to be valid on entry.
1850 Note that MIPS16 functions set up $gp using PC-relative instructions,
1851 so they themselves never need $25 to be valid. Only non-MIPS16
1852 entry points are of interest here. */
1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry
*h
)
1857 return ((h
->root
.root
.type
== bfd_link_hash_defined
1858 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1859 && h
->root
.def_regular
1860 && !bfd_is_abs_section (h
->root
.root
.u
.def
.section
)
1861 && !bfd_is_und_section (h
->root
.root
.u
.def
.section
)
1862 && (!ELF_ST_IS_MIPS16 (h
->root
.other
)
1863 || (h
->fn_stub
&& h
->need_fn_stub
))
1864 && (PIC_OBJECT_P (h
->root
.root
.u
.def
.section
->owner
)
1865 || ELF_ST_IS_MIPS_PIC (h
->root
.other
)));
1868 /* Set *SEC to the input section that contains the target of STUB.
1869 Return the offset of the target from the start of that section. */
1872 mips_elf_get_la25_target (struct mips_elf_la25_stub
*stub
,
1875 if (ELF_ST_IS_MIPS16 (stub
->h
->root
.other
))
1877 BFD_ASSERT (stub
->h
->need_fn_stub
);
1878 *sec
= stub
->h
->fn_stub
;
1883 *sec
= stub
->h
->root
.root
.u
.def
.section
;
1884 return stub
->h
->root
.root
.u
.def
.value
;
1888 /* STUB describes an la25 stub that we have decided to implement
1889 by inserting an LUI/ADDIU pair before the target function.
1890 Create the section and redirect the function symbol to it. */
1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub
*stub
,
1894 struct bfd_link_info
*info
)
1896 struct mips_elf_link_hash_table
*htab
;
1898 asection
*s
, *input_section
;
1901 htab
= mips_elf_hash_table (info
);
1905 /* Create a unique name for the new section. */
1906 name
= bfd_malloc (11 + sizeof (".text.stub."));
1909 sprintf (name
, ".text.stub.%d", (int) htab_elements (htab
->la25_stubs
));
1911 /* Create the section. */
1912 mips_elf_get_la25_target (stub
, &input_section
);
1913 s
= htab
->add_stub_section (name
, input_section
,
1914 input_section
->output_section
);
1918 /* Make sure that any padding goes before the stub. */
1919 align
= input_section
->alignment_power
;
1920 if (!bfd_set_section_alignment (s
, align
))
1923 s
->size
= (1 << align
) - 8;
1925 /* Create a symbol for the stub. */
1926 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 8);
1927 stub
->stub_section
= s
;
1928 stub
->offset
= s
->size
;
1930 /* Allocate room for it. */
1935 /* STUB describes an la25 stub that we have decided to implement
1936 with a separate trampoline. Allocate room for it and redirect
1937 the function symbol to it. */
1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub
*stub
,
1941 struct bfd_link_info
*info
)
1943 struct mips_elf_link_hash_table
*htab
;
1946 htab
= mips_elf_hash_table (info
);
1950 /* Create a trampoline section, if we haven't already. */
1951 s
= htab
->strampoline
;
1954 asection
*input_section
= stub
->h
->root
.root
.u
.def
.section
;
1955 s
= htab
->add_stub_section (".text", NULL
,
1956 input_section
->output_section
);
1957 if (s
== NULL
|| !bfd_set_section_alignment (s
, 4))
1959 htab
->strampoline
= s
;
1962 /* Create a symbol for the stub. */
1963 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 16);
1964 stub
->stub_section
= s
;
1965 stub
->offset
= s
->size
;
1967 /* Allocate room for it. */
1972 /* H describes a symbol that needs an la25 stub. Make sure that an
1973 appropriate stub exists and point H at it. */
1976 mips_elf_add_la25_stub (struct bfd_link_info
*info
,
1977 struct mips_elf_link_hash_entry
*h
)
1979 struct mips_elf_link_hash_table
*htab
;
1980 struct mips_elf_la25_stub search
, *stub
;
1981 bfd_boolean use_trampoline_p
;
1986 /* Describe the stub we want. */
1987 search
.stub_section
= NULL
;
1991 /* See if we've already created an equivalent stub. */
1992 htab
= mips_elf_hash_table (info
);
1996 slot
= htab_find_slot (htab
->la25_stubs
, &search
, INSERT
);
2000 stub
= (struct mips_elf_la25_stub
*) *slot
;
2003 /* We can reuse the existing stub. */
2004 h
->la25_stub
= stub
;
2008 /* Create a permanent copy of ENTRY and add it to the hash table. */
2009 stub
= bfd_malloc (sizeof (search
));
2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016 of the section and if we would need no more than 2 nops. */
2017 value
= mips_elf_get_la25_target (stub
, &s
);
2018 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
2020 use_trampoline_p
= (value
!= 0 || s
->alignment_power
> 4);
2022 h
->la25_stub
= stub
;
2023 return (use_trampoline_p
2024 ? mips_elf_add_la25_trampoline (stub
, info
)
2025 : mips_elf_add_la25_intro (stub
, info
));
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029 sections. DATA points to a mips_htab_traverse_info structure. */
2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
2034 struct mips_htab_traverse_info
*hti
;
2036 hti
= (struct mips_htab_traverse_info
*) data
;
2037 if (!bfd_link_relocatable (hti
->info
))
2038 mips_elf_check_mips16_stubs (hti
->info
, h
);
2040 if (mips_elf_local_pic_function_p (h
))
2042 /* PR 12845: If H is in a section that has been garbage
2043 collected it will have its output section set to *ABS*. */
2044 if (bfd_is_abs_section (h
->root
.root
.u
.def
.section
->output_section
))
2047 /* H is a function that might need $25 to be valid on entry.
2048 If we're creating a non-PIC relocatable object, mark H as
2049 being PIC. If we're creating a non-relocatable object with
2050 non-PIC branches and jumps to H, make sure that H has an la25
2052 if (bfd_link_relocatable (hti
->info
))
2054 if (!PIC_OBJECT_P (hti
->output_bfd
))
2055 h
->root
.other
= ELF_ST_SET_MIPS_PIC (h
->root
.other
);
2057 else if (h
->has_nonpic_branches
&& !mips_elf_add_la25_stub (hti
->info
, h
))
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067 Most mips16 instructions are 16 bits, but these instructions
2070 The format of these instructions is:
2072 +--------------+--------------------------------+
2073 | JALX | X| Imm 20:16 | Imm 25:21 |
2074 +--------------+--------------------------------+
2076 +-----------------------------------------------+
2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2079 Note that the immediate value in the first word is swapped.
2081 When producing a relocatable object file, R_MIPS16_26 is
2082 handled mostly like R_MIPS_26. In particular, the addend is
2083 stored as a straight 26-bit value in a 32-bit instruction.
2084 (gas makes life simpler for itself by never adjusting a
2085 R_MIPS16_26 reloc to be against a section, so the addend is
2086 always zero). However, the 32 bit instruction is stored as 2
2087 16-bit values, rather than a single 32-bit value. In a
2088 big-endian file, the result is the same; in a little-endian
2089 file, the two 16-bit halves of the 32 bit value are swapped.
2090 This is so that a disassembler can recognize the jal
2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094 instruction stored as two 16-bit values. The addend A is the
2095 contents of the targ26 field. The calculation is the same as
2096 R_MIPS_26. When storing the calculated value, reorder the
2097 immediate value as shown above, and don't forget to store the
2098 value as two 16-bit values.
2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2104 +--------+----------------------+
2108 +--------+----------------------+
2111 +----------+------+-------------+
2115 +----------+--------------------+
2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117 ((sub1 << 16) | sub2)).
2119 When producing a relocatable object file, the calculation is
2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121 When producing a fully linked file, the calculation is
2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2125 The table below lists the other MIPS16 instruction relocations.
2126 Each one is calculated in the same way as the non-MIPS16 relocation
2127 given on the right, but using the extended MIPS16 layout of 16-bit
2130 R_MIPS16_GPREL R_MIPS_GPREL16
2131 R_MIPS16_GOT16 R_MIPS_GOT16
2132 R_MIPS16_CALL16 R_MIPS_CALL16
2133 R_MIPS16_HI16 R_MIPS_HI16
2134 R_MIPS16_LO16 R_MIPS_LO16
2136 A typical instruction will have a format like this:
2138 +--------------+--------------------------------+
2139 | EXTEND | Imm 10:5 | Imm 15:11 |
2140 +--------------+--------------------------------+
2141 | Major | rx | ry | Imm 4:0 |
2142 +--------------+--------------------------------+
2144 EXTEND is the five bit value 11110. Major is the instruction
2147 All we need to do here is shuffle the bits appropriately.
2148 As above, the two 16-bit halves must be swapped on a
2149 little-endian system.
2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152 relocatable field is shifted by 1 rather than 2 and the same bit
2153 shuffling is done as with the relocations above. */
2155 static inline bfd_boolean
2156 mips16_reloc_p (int r_type
)
2161 case R_MIPS16_GPREL
:
2162 case R_MIPS16_GOT16
:
2163 case R_MIPS16_CALL16
:
2166 case R_MIPS16_TLS_GD
:
2167 case R_MIPS16_TLS_LDM
:
2168 case R_MIPS16_TLS_DTPREL_HI16
:
2169 case R_MIPS16_TLS_DTPREL_LO16
:
2170 case R_MIPS16_TLS_GOTTPREL
:
2171 case R_MIPS16_TLS_TPREL_HI16
:
2172 case R_MIPS16_TLS_TPREL_LO16
:
2173 case R_MIPS16_PC16_S1
:
2181 /* Check if a microMIPS reloc. */
2183 static inline bfd_boolean
2184 micromips_reloc_p (unsigned int r_type
)
2186 return r_type
>= R_MICROMIPS_min
&& r_type
< R_MICROMIPS_max
;
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2193 static inline bfd_boolean
2194 micromips_reloc_shuffle_p (unsigned int r_type
)
2196 return (micromips_reloc_p (r_type
)
2197 && r_type
!= R_MICROMIPS_PC7_S1
2198 && r_type
!= R_MICROMIPS_PC10_S1
);
2201 static inline bfd_boolean
2202 got16_reloc_p (int r_type
)
2204 return (r_type
== R_MIPS_GOT16
2205 || r_type
== R_MIPS16_GOT16
2206 || r_type
== R_MICROMIPS_GOT16
);
2209 static inline bfd_boolean
2210 call16_reloc_p (int r_type
)
2212 return (r_type
== R_MIPS_CALL16
2213 || r_type
== R_MIPS16_CALL16
2214 || r_type
== R_MICROMIPS_CALL16
);
2217 static inline bfd_boolean
2218 got_disp_reloc_p (unsigned int r_type
)
2220 return r_type
== R_MIPS_GOT_DISP
|| r_type
== R_MICROMIPS_GOT_DISP
;
2223 static inline bfd_boolean
2224 got_page_reloc_p (unsigned int r_type
)
2226 return r_type
== R_MIPS_GOT_PAGE
|| r_type
== R_MICROMIPS_GOT_PAGE
;
2229 static inline bfd_boolean
2230 got_lo16_reloc_p (unsigned int r_type
)
2232 return r_type
== R_MIPS_GOT_LO16
|| r_type
== R_MICROMIPS_GOT_LO16
;
2235 static inline bfd_boolean
2236 call_hi16_reloc_p (unsigned int r_type
)
2238 return r_type
== R_MIPS_CALL_HI16
|| r_type
== R_MICROMIPS_CALL_HI16
;
2241 static inline bfd_boolean
2242 call_lo16_reloc_p (unsigned int r_type
)
2244 return r_type
== R_MIPS_CALL_LO16
|| r_type
== R_MICROMIPS_CALL_LO16
;
2247 static inline bfd_boolean
2248 hi16_reloc_p (int r_type
)
2250 return (r_type
== R_MIPS_HI16
2251 || r_type
== R_MIPS16_HI16
2252 || r_type
== R_MICROMIPS_HI16
2253 || r_type
== R_MIPS_PCHI16
);
2256 static inline bfd_boolean
2257 lo16_reloc_p (int r_type
)
2259 return (r_type
== R_MIPS_LO16
2260 || r_type
== R_MIPS16_LO16
2261 || r_type
== R_MICROMIPS_LO16
2262 || r_type
== R_MIPS_PCLO16
);
2265 static inline bfd_boolean
2266 mips16_call_reloc_p (int r_type
)
2268 return r_type
== R_MIPS16_26
|| r_type
== R_MIPS16_CALL16
;
2271 static inline bfd_boolean
2272 jal_reloc_p (int r_type
)
2274 return (r_type
== R_MIPS_26
2275 || r_type
== R_MIPS16_26
2276 || r_type
== R_MICROMIPS_26_S1
);
2279 static inline bfd_boolean
2280 b_reloc_p (int r_type
)
2282 return (r_type
== R_MIPS_PC26_S2
2283 || r_type
== R_MIPS_PC21_S2
2284 || r_type
== R_MIPS_PC16
2285 || r_type
== R_MIPS_GNU_REL16_S2
2286 || r_type
== R_MIPS16_PC16_S1
2287 || r_type
== R_MICROMIPS_PC16_S1
2288 || r_type
== R_MICROMIPS_PC10_S1
2289 || r_type
== R_MICROMIPS_PC7_S1
);
2292 static inline bfd_boolean
2293 aligned_pcrel_reloc_p (int r_type
)
2295 return (r_type
== R_MIPS_PC18_S3
2296 || r_type
== R_MIPS_PC19_S2
);
2299 static inline bfd_boolean
2300 branch_reloc_p (int r_type
)
2302 return (r_type
== R_MIPS_26
2303 || r_type
== R_MIPS_PC26_S2
2304 || r_type
== R_MIPS_PC21_S2
2305 || r_type
== R_MIPS_PC16
2306 || r_type
== R_MIPS_GNU_REL16_S2
);
2309 static inline bfd_boolean
2310 mips16_branch_reloc_p (int r_type
)
2312 return (r_type
== R_MIPS16_26
2313 || r_type
== R_MIPS16_PC16_S1
);
2316 static inline bfd_boolean
2317 micromips_branch_reloc_p (int r_type
)
2319 return (r_type
== R_MICROMIPS_26_S1
2320 || r_type
== R_MICROMIPS_PC16_S1
2321 || r_type
== R_MICROMIPS_PC10_S1
2322 || r_type
== R_MICROMIPS_PC7_S1
);
2325 static inline bfd_boolean
2326 tls_gd_reloc_p (unsigned int r_type
)
2328 return (r_type
== R_MIPS_TLS_GD
2329 || r_type
== R_MIPS16_TLS_GD
2330 || r_type
== R_MICROMIPS_TLS_GD
);
2333 static inline bfd_boolean
2334 tls_ldm_reloc_p (unsigned int r_type
)
2336 return (r_type
== R_MIPS_TLS_LDM
2337 || r_type
== R_MIPS16_TLS_LDM
2338 || r_type
== R_MICROMIPS_TLS_LDM
);
2341 static inline bfd_boolean
2342 tls_gottprel_reloc_p (unsigned int r_type
)
2344 return (r_type
== R_MIPS_TLS_GOTTPREL
2345 || r_type
== R_MIPS16_TLS_GOTTPREL
2346 || r_type
== R_MICROMIPS_TLS_GOTTPREL
);
2350 _bfd_mips_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
2351 bfd_boolean jal_shuffle
, bfd_byte
*data
)
2353 bfd_vma first
, second
, val
;
2355 if (!mips16_reloc_p (r_type
) && !micromips_reloc_shuffle_p (r_type
))
2358 /* Pick up the first and second halfwords of the instruction. */
2359 first
= bfd_get_16 (abfd
, data
);
2360 second
= bfd_get_16 (abfd
, data
+ 2);
2361 if (micromips_reloc_p (r_type
) || (r_type
== R_MIPS16_26
&& !jal_shuffle
))
2362 val
= first
<< 16 | second
;
2363 else if (r_type
!= R_MIPS16_26
)
2364 val
= (((first
& 0xf800) << 16) | ((second
& 0xffe0) << 11)
2365 | ((first
& 0x1f) << 11) | (first
& 0x7e0) | (second
& 0x1f));
2367 val
= (((first
& 0xfc00) << 16) | ((first
& 0x3e0) << 11)
2368 | ((first
& 0x1f) << 21) | second
);
2369 bfd_put_32 (abfd
, val
, data
);
2373 _bfd_mips_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
2374 bfd_boolean jal_shuffle
, bfd_byte
*data
)
2376 bfd_vma first
, second
, val
;
2378 if (!mips16_reloc_p (r_type
) && !micromips_reloc_shuffle_p (r_type
))
2381 val
= bfd_get_32 (abfd
, data
);
2382 if (micromips_reloc_p (r_type
) || (r_type
== R_MIPS16_26
&& !jal_shuffle
))
2384 second
= val
& 0xffff;
2387 else if (r_type
!= R_MIPS16_26
)
2389 second
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
2390 first
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
2394 second
= val
& 0xffff;
2395 first
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
2396 | ((val
>> 21) & 0x1f);
2398 bfd_put_16 (abfd
, second
, data
+ 2);
2399 bfd_put_16 (abfd
, first
, data
);
2402 bfd_reloc_status_type
2403 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
2404 arelent
*reloc_entry
, asection
*input_section
,
2405 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
2409 bfd_reloc_status_type status
;
2411 if (bfd_is_com_section (symbol
->section
))
2414 relocation
= symbol
->value
;
2416 relocation
+= symbol
->section
->output_section
->vma
;
2417 relocation
+= symbol
->section
->output_offset
;
2419 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2420 return bfd_reloc_outofrange
;
2422 /* Set val to the offset into the section or symbol. */
2423 val
= reloc_entry
->addend
;
2425 _bfd_mips_elf_sign_extend (val
, 16);
2427 /* Adjust val for the final section location and GP value. If we
2428 are producing relocatable output, we don't want to do this for
2429 an external symbol. */
2431 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2432 val
+= relocation
- gp
;
2434 if (reloc_entry
->howto
->partial_inplace
)
2436 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2438 + reloc_entry
->address
);
2439 if (status
!= bfd_reloc_ok
)
2443 reloc_entry
->addend
= val
;
2446 reloc_entry
->address
+= input_section
->output_offset
;
2448 return bfd_reloc_ok
;
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2453 that contains the relocation field and DATA points to the start of
2458 struct mips_hi16
*next
;
2460 asection
*input_section
;
2464 /* FIXME: This should not be a static variable. */
2466 static struct mips_hi16
*mips_hi16_list
;
2468 /* A howto special_function for REL *HI16 relocations. We can only
2469 calculate the correct value once we've seen the partnering
2470 *LO16 relocation, so just save the information for later.
2472 The ABI requires that the *LO16 immediately follow the *HI16.
2473 However, as a GNU extension, we permit an arbitrary number of
2474 *HI16s to be associated with a single *LO16. This significantly
2475 simplies the relocation handling in gcc. */
2477 bfd_reloc_status_type
2478 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2479 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
2480 asection
*input_section
, bfd
*output_bfd
,
2481 char **error_message ATTRIBUTE_UNUSED
)
2483 struct mips_hi16
*n
;
2485 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2486 return bfd_reloc_outofrange
;
2488 n
= bfd_malloc (sizeof *n
);
2490 return bfd_reloc_outofrange
;
2492 n
->next
= mips_hi16_list
;
2494 n
->input_section
= input_section
;
2495 n
->rel
= *reloc_entry
;
2498 if (output_bfd
!= NULL
)
2499 reloc_entry
->address
+= input_section
->output_offset
;
2501 return bfd_reloc_ok
;
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2505 like any other 16-bit relocation when applied to global symbols, but is
2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2508 bfd_reloc_status_type
2509 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2510 void *data
, asection
*input_section
,
2511 bfd
*output_bfd
, char **error_message
)
2513 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2514 || bfd_is_und_section (bfd_asymbol_section (symbol
))
2515 || bfd_is_com_section (bfd_asymbol_section (symbol
)))
2516 /* The relocation is against a global symbol. */
2517 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2518 input_section
, output_bfd
,
2521 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
2522 input_section
, output_bfd
, error_message
);
2525 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2526 is a straightforward 16 bit inplace relocation, but we must deal with
2527 any partnering high-part relocations as well. */
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2531 void *data
, asection
*input_section
,
2532 bfd
*output_bfd
, char **error_message
)
2535 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2537 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2538 return bfd_reloc_outofrange
;
2540 _bfd_mips_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2542 vallo
= bfd_get_32 (abfd
, location
);
2543 _bfd_mips_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2546 while (mips_hi16_list
!= NULL
)
2548 bfd_reloc_status_type ret
;
2549 struct mips_hi16
*hi
;
2551 hi
= mips_hi16_list
;
2553 /* R_MIPS*_GOT16 relocations are something of a special case. We
2554 want to install the addend in the same way as for a R_MIPS*_HI16
2555 relocation (with a rightshift of 16). However, since GOT16
2556 relocations can also be used with global symbols, their howto
2557 has a rightshift of 0. */
2558 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
2559 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
2560 else if (hi
->rel
.howto
->type
== R_MIPS16_GOT16
)
2561 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS16_HI16
, FALSE
);
2562 else if (hi
->rel
.howto
->type
== R_MICROMIPS_GOT16
)
2563 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MICROMIPS_HI16
, FALSE
);
2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2566 carry or borrow will induce a change of +1 or -1 in the high part. */
2567 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
2569 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
2570 hi
->input_section
, output_bfd
,
2572 if (ret
!= bfd_reloc_ok
)
2575 mips_hi16_list
= hi
->next
;
2579 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2580 input_section
, output_bfd
,
2584 /* A generic howto special_function. This calculates and installs the
2585 relocation itself, thus avoiding the oft-discussed problems in
2586 bfd_perform_relocation and bfd_install_relocation. */
2588 bfd_reloc_status_type
2589 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2590 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
2591 asection
*input_section
, bfd
*output_bfd
,
2592 char **error_message ATTRIBUTE_UNUSED
)
2595 bfd_reloc_status_type status
;
2596 bfd_boolean relocatable
;
2598 relocatable
= (output_bfd
!= NULL
);
2600 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2601 return bfd_reloc_outofrange
;
2603 /* Build up the field adjustment in VAL. */
2605 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2607 /* Either we're calculating the final field value or we have a
2608 relocation against a section symbol. Add in the section's
2609 offset or address. */
2610 val
+= symbol
->section
->output_section
->vma
;
2611 val
+= symbol
->section
->output_offset
;
2616 /* We're calculating the final field value. Add in the symbol's value
2617 and, if pc-relative, subtract the address of the field itself. */
2618 val
+= symbol
->value
;
2619 if (reloc_entry
->howto
->pc_relative
)
2621 val
-= input_section
->output_section
->vma
;
2622 val
-= input_section
->output_offset
;
2623 val
-= reloc_entry
->address
;
2627 /* VAL is now the final adjustment. If we're keeping this relocation
2628 in the output file, and if the relocation uses a separate addend,
2629 we just need to add VAL to that addend. Otherwise we need to add
2630 VAL to the relocation field itself. */
2631 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
2632 reloc_entry
->addend
+= val
;
2635 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2637 /* Add in the separate addend, if any. */
2638 val
+= reloc_entry
->addend
;
2640 /* Add VAL to the relocation field. */
2641 _bfd_mips_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2643 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2645 _bfd_mips_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2648 if (status
!= bfd_reloc_ok
)
2653 reloc_entry
->address
+= input_section
->output_offset
;
2655 return bfd_reloc_ok
;
2658 /* Swap an entry in a .gptab section. Note that these routines rely
2659 on the equivalence of the two elements of the union. */
2662 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
2665 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2666 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2670 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
2671 Elf32_External_gptab
*ex
)
2673 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2674 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2678 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
2679 Elf32_External_compact_rel
*ex
)
2681 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2682 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2683 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2684 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2685 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2686 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2690 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
2691 Elf32_External_crinfo
*ex
)
2695 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2696 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2697 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2698 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2699 H_PUT_32 (abfd
, l
, ex
->info
);
2700 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2701 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2704 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2705 routines swap this structure in and out. They are used outside of
2706 BFD, so they are globally visible. */
2709 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
2712 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2713 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2714 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2715 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2716 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2717 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2721 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
2722 Elf32_External_RegInfo
*ex
)
2724 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2725 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2726 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2727 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2728 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2729 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733 information in an Elf64_Reginfo structure. These routines swap
2734 them in and out. They are globally visible because they are used
2735 outside of BFD. These routines are here so that gas can call them
2736 without worrying about whether the 64 bit ABI has been included. */
2739 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
2740 Elf64_Internal_RegInfo
*in
)
2742 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2743 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2744 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2745 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2746 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2747 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2748 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2752 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
2753 Elf64_External_RegInfo
*ex
)
2755 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2756 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2757 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2758 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2759 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2760 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2761 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2764 /* Swap in an options header. */
2767 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
2768 Elf_Internal_Options
*in
)
2770 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2771 in
->size
= H_GET_8 (abfd
, ex
->size
);
2772 in
->section
= H_GET_16 (abfd
, ex
->section
);
2773 in
->info
= H_GET_32 (abfd
, ex
->info
);
2776 /* Swap out an options header. */
2779 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
2780 Elf_External_Options
*ex
)
2782 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2783 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2784 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2785 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2788 /* Swap in an abiflags structure. */
2791 bfd_mips_elf_swap_abiflags_v0_in (bfd
*abfd
,
2792 const Elf_External_ABIFlags_v0
*ex
,
2793 Elf_Internal_ABIFlags_v0
*in
)
2795 in
->version
= H_GET_16 (abfd
, ex
->version
);
2796 in
->isa_level
= H_GET_8 (abfd
, ex
->isa_level
);
2797 in
->isa_rev
= H_GET_8 (abfd
, ex
->isa_rev
);
2798 in
->gpr_size
= H_GET_8 (abfd
, ex
->gpr_size
);
2799 in
->cpr1_size
= H_GET_8 (abfd
, ex
->cpr1_size
);
2800 in
->cpr2_size
= H_GET_8 (abfd
, ex
->cpr2_size
);
2801 in
->fp_abi
= H_GET_8 (abfd
, ex
->fp_abi
);
2802 in
->isa_ext
= H_GET_32 (abfd
, ex
->isa_ext
);
2803 in
->ases
= H_GET_32 (abfd
, ex
->ases
);
2804 in
->flags1
= H_GET_32 (abfd
, ex
->flags1
);
2805 in
->flags2
= H_GET_32 (abfd
, ex
->flags2
);
2808 /* Swap out an abiflags structure. */
2811 bfd_mips_elf_swap_abiflags_v0_out (bfd
*abfd
,
2812 const Elf_Internal_ABIFlags_v0
*in
,
2813 Elf_External_ABIFlags_v0
*ex
)
2815 H_PUT_16 (abfd
, in
->version
, ex
->version
);
2816 H_PUT_8 (abfd
, in
->isa_level
, ex
->isa_level
);
2817 H_PUT_8 (abfd
, in
->isa_rev
, ex
->isa_rev
);
2818 H_PUT_8 (abfd
, in
->gpr_size
, ex
->gpr_size
);
2819 H_PUT_8 (abfd
, in
->cpr1_size
, ex
->cpr1_size
);
2820 H_PUT_8 (abfd
, in
->cpr2_size
, ex
->cpr2_size
);
2821 H_PUT_8 (abfd
, in
->fp_abi
, ex
->fp_abi
);
2822 H_PUT_32 (abfd
, in
->isa_ext
, ex
->isa_ext
);
2823 H_PUT_32 (abfd
, in
->ases
, ex
->ases
);
2824 H_PUT_32 (abfd
, in
->flags1
, ex
->flags1
);
2825 H_PUT_32 (abfd
, in
->flags2
, ex
->flags2
);
2828 /* This function is called via qsort() to sort the dynamic relocation
2829 entries by increasing r_symndx value. */
2832 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
2834 Elf_Internal_Rela int_reloc1
;
2835 Elf_Internal_Rela int_reloc2
;
2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
2841 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
2845 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
2847 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
2856 const void *arg2 ATTRIBUTE_UNUSED
)
2859 Elf_Internal_Rela int_reloc1
[3];
2860 Elf_Internal_Rela int_reloc2
[3];
2862 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2863 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
2864 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2865 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
2867 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
2869 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
2872 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
2874 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
2883 /* This routine is used to write out ECOFF debugging external symbol
2884 information. It is called via mips_elf_link_hash_traverse. The
2885 ECOFF external symbol information must match the ELF external
2886 symbol information. Unfortunately, at this point we don't know
2887 whether a symbol is required by reloc information, so the two
2888 tables may wind up being different. We must sort out the external
2889 symbol information before we can set the final size of the .mdebug
2890 section, and we must set the size of the .mdebug section before we
2891 can relocate any sections, and we can't know which symbols are
2892 required by relocation until we relocate the sections.
2893 Fortunately, it is relatively unlikely that any symbol will be
2894 stripped but required by a reloc. In particular, it can not happen
2895 when generating a final executable. */
2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
2900 struct extsym_info
*einfo
= data
;
2902 asection
*sec
, *output_section
;
2904 if (h
->root
.indx
== -2)
2906 else if ((h
->root
.def_dynamic
2907 || h
->root
.ref_dynamic
2908 || h
->root
.type
== bfd_link_hash_new
)
2909 && !h
->root
.def_regular
2910 && !h
->root
.ref_regular
)
2912 else if (einfo
->info
->strip
== strip_all
2913 || (einfo
->info
->strip
== strip_some
2914 && bfd_hash_lookup (einfo
->info
->keep_hash
,
2915 h
->root
.root
.root
.string
,
2916 FALSE
, FALSE
) == NULL
))
2924 if (h
->esym
.ifd
== -2)
2927 h
->esym
.cobol_main
= 0;
2928 h
->esym
.weakext
= 0;
2929 h
->esym
.reserved
= 0;
2930 h
->esym
.ifd
= ifdNil
;
2931 h
->esym
.asym
.value
= 0;
2932 h
->esym
.asym
.st
= stGlobal
;
2934 if (h
->root
.root
.type
== bfd_link_hash_undefined
2935 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
2939 /* Use undefined class. Also, set class and type for some
2941 name
= h
->root
.root
.root
.string
;
2942 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
2943 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
2945 h
->esym
.asym
.sc
= scData
;
2946 h
->esym
.asym
.st
= stLabel
;
2947 h
->esym
.asym
.value
= 0;
2949 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
2951 h
->esym
.asym
.sc
= scAbs
;
2952 h
->esym
.asym
.st
= stLabel
;
2953 h
->esym
.asym
.value
=
2954 mips_elf_hash_table (einfo
->info
)->procedure_count
;
2957 h
->esym
.asym
.sc
= scUndefined
;
2959 else if (h
->root
.root
.type
!= bfd_link_hash_defined
2960 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
2961 h
->esym
.asym
.sc
= scAbs
;
2966 sec
= h
->root
.root
.u
.def
.section
;
2967 output_section
= sec
->output_section
;
2969 /* When making a shared library and symbol h is the one from
2970 the another shared library, OUTPUT_SECTION may be null. */
2971 if (output_section
== NULL
)
2972 h
->esym
.asym
.sc
= scUndefined
;
2975 name
= bfd_section_name (output_section
);
2977 if (strcmp (name
, ".text") == 0)
2978 h
->esym
.asym
.sc
= scText
;
2979 else if (strcmp (name
, ".data") == 0)
2980 h
->esym
.asym
.sc
= scData
;
2981 else if (strcmp (name
, ".sdata") == 0)
2982 h
->esym
.asym
.sc
= scSData
;
2983 else if (strcmp (name
, ".rodata") == 0
2984 || strcmp (name
, ".rdata") == 0)
2985 h
->esym
.asym
.sc
= scRData
;
2986 else if (strcmp (name
, ".bss") == 0)
2987 h
->esym
.asym
.sc
= scBss
;
2988 else if (strcmp (name
, ".sbss") == 0)
2989 h
->esym
.asym
.sc
= scSBss
;
2990 else if (strcmp (name
, ".init") == 0)
2991 h
->esym
.asym
.sc
= scInit
;
2992 else if (strcmp (name
, ".fini") == 0)
2993 h
->esym
.asym
.sc
= scFini
;
2995 h
->esym
.asym
.sc
= scAbs
;
2999 h
->esym
.asym
.reserved
= 0;
3000 h
->esym
.asym
.index
= indexNil
;
3003 if (h
->root
.root
.type
== bfd_link_hash_common
)
3004 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
3005 else if (h
->root
.root
.type
== bfd_link_hash_defined
3006 || h
->root
.root
.type
== bfd_link_hash_defweak
)
3008 if (h
->esym
.asym
.sc
== scCommon
)
3009 h
->esym
.asym
.sc
= scBss
;
3010 else if (h
->esym
.asym
.sc
== scSCommon
)
3011 h
->esym
.asym
.sc
= scSBss
;
3013 sec
= h
->root
.root
.u
.def
.section
;
3014 output_section
= sec
->output_section
;
3015 if (output_section
!= NULL
)
3016 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
3017 + sec
->output_offset
3018 + output_section
->vma
);
3020 h
->esym
.asym
.value
= 0;
3024 struct mips_elf_link_hash_entry
*hd
= h
;
3026 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
3027 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
3029 if (hd
->needs_lazy_stub
)
3031 BFD_ASSERT (hd
->root
.plt
.plist
!= NULL
);
3032 BFD_ASSERT (hd
->root
.plt
.plist
->stub_offset
!= MINUS_ONE
);
3033 /* Set type and value for a symbol with a function stub. */
3034 h
->esym
.asym
.st
= stProc
;
3035 sec
= hd
->root
.root
.u
.def
.section
;
3037 h
->esym
.asym
.value
= 0;
3040 output_section
= sec
->output_section
;
3041 if (output_section
!= NULL
)
3042 h
->esym
.asym
.value
= (hd
->root
.plt
.plist
->stub_offset
3043 + sec
->output_offset
3044 + output_section
->vma
);
3046 h
->esym
.asym
.value
= 0;
3051 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
3052 h
->root
.root
.root
.string
,
3055 einfo
->failed
= TRUE
;
3062 /* A comparison routine used to sort .gptab entries. */
3065 gptab_compare (const void *p1
, const void *p2
)
3067 const Elf32_gptab
*a1
= p1
;
3068 const Elf32_gptab
*a2
= p2
;
3070 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
3073 /* Functions to manage the got entry hash table. */
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3078 static INLINE hashval_t
3079 mips_elf_hash_bfd_vma (bfd_vma addr
)
3082 return addr
+ (addr
>> 32);
3089 mips_elf_got_entry_hash (const void *entry_
)
3091 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
3093 return (entry
->symndx
3094 + ((entry
->tls_type
== GOT_TLS_LDM
) << 18)
3095 + (entry
->tls_type
== GOT_TLS_LDM
? 0
3096 : !entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
3097 : entry
->symndx
>= 0 ? (entry
->abfd
->id
3098 + mips_elf_hash_bfd_vma (entry
->d
.addend
))
3099 : entry
->d
.h
->root
.root
.root
.hash
));
3103 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
3105 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
3106 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
3108 return (e1
->symndx
== e2
->symndx
3109 && e1
->tls_type
== e2
->tls_type
3110 && (e1
->tls_type
== GOT_TLS_LDM
? TRUE
3111 : !e1
->abfd
? !e2
->abfd
&& e1
->d
.address
== e2
->d
.address
3112 : e1
->symndx
>= 0 ? (e1
->abfd
== e2
->abfd
3113 && e1
->d
.addend
== e2
->d
.addend
)
3114 : e2
->abfd
&& e1
->d
.h
== e2
->d
.h
));
3118 mips_got_page_ref_hash (const void *ref_
)
3120 const struct mips_got_page_ref
*ref
;
3122 ref
= (const struct mips_got_page_ref
*) ref_
;
3123 return ((ref
->symndx
>= 0
3124 ? (hashval_t
) (ref
->u
.abfd
->id
+ ref
->symndx
)
3125 : ref
->u
.h
->root
.root
.root
.hash
)
3126 + mips_elf_hash_bfd_vma (ref
->addend
));
3130 mips_got_page_ref_eq (const void *ref1_
, const void *ref2_
)
3132 const struct mips_got_page_ref
*ref1
, *ref2
;
3134 ref1
= (const struct mips_got_page_ref
*) ref1_
;
3135 ref2
= (const struct mips_got_page_ref
*) ref2_
;
3136 return (ref1
->symndx
== ref2
->symndx
3137 && (ref1
->symndx
< 0
3138 ? ref1
->u
.h
== ref2
->u
.h
3139 : ref1
->u
.abfd
== ref2
->u
.abfd
)
3140 && ref1
->addend
== ref2
->addend
);
3144 mips_got_page_entry_hash (const void *entry_
)
3146 const struct mips_got_page_entry
*entry
;
3148 entry
= (const struct mips_got_page_entry
*) entry_
;
3149 return entry
->sec
->id
;
3153 mips_got_page_entry_eq (const void *entry1_
, const void *entry2_
)
3155 const struct mips_got_page_entry
*entry1
, *entry2
;
3157 entry1
= (const struct mips_got_page_entry
*) entry1_
;
3158 entry2
= (const struct mips_got_page_entry
*) entry2_
;
3159 return entry1
->sec
== entry2
->sec
;
3162 /* Create and return a new mips_got_info structure. */
3164 static struct mips_got_info
*
3165 mips_elf_create_got_info (bfd
*abfd
)
3167 struct mips_got_info
*g
;
3169 g
= bfd_zalloc (abfd
, sizeof (struct mips_got_info
));
3173 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
3174 mips_elf_got_entry_eq
, NULL
);
3175 if (g
->got_entries
== NULL
)
3178 g
->got_page_refs
= htab_try_create (1, mips_got_page_ref_hash
,
3179 mips_got_page_ref_eq
, NULL
);
3180 if (g
->got_page_refs
== NULL
)
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187 CREATE_P and if ABFD doesn't already have a GOT. */
3189 static struct mips_got_info
*
3190 mips_elf_bfd_got (bfd
*abfd
, bfd_boolean create_p
)
3192 struct mips_elf_obj_tdata
*tdata
;
3194 if (!is_mips_elf (abfd
))
3197 tdata
= mips_elf_tdata (abfd
);
3198 if (!tdata
->got
&& create_p
)
3199 tdata
->got
= mips_elf_create_got_info (abfd
);
3203 /* Record that ABFD should use output GOT G. */
3206 mips_elf_replace_bfd_got (bfd
*abfd
, struct mips_got_info
*g
)
3208 struct mips_elf_obj_tdata
*tdata
;
3210 BFD_ASSERT (is_mips_elf (abfd
));
3211 tdata
= mips_elf_tdata (abfd
);
3214 /* The GOT structure itself and the hash table entries are
3215 allocated to a bfd, but the hash tables aren't. */
3216 htab_delete (tdata
->got
->got_entries
);
3217 htab_delete (tdata
->got
->got_page_refs
);
3218 if (tdata
->got
->got_page_entries
)
3219 htab_delete (tdata
->got
->got_page_entries
);
3224 /* Return the dynamic relocation section. If it doesn't exist, try to
3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3226 if creation fails. */
3229 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
3235 dname
= MIPS_ELF_REL_DYN_NAME (info
);
3236 dynobj
= elf_hash_table (info
)->dynobj
;
3237 sreloc
= bfd_get_linker_section (dynobj
, dname
);
3238 if (sreloc
== NULL
&& create_p
)
3240 sreloc
= bfd_make_section_anyway_with_flags (dynobj
, dname
,
3245 | SEC_LINKER_CREATED
3248 || !bfd_set_section_alignment (sreloc
,
3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3258 mips_elf_reloc_tls_type (unsigned int r_type
)
3260 if (tls_gd_reloc_p (r_type
))
3263 if (tls_ldm_reloc_p (r_type
))
3266 if (tls_gottprel_reloc_p (r_type
))
3269 return GOT_TLS_NONE
;
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3275 mips_tls_got_entries (unsigned int type
)
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293 access types from TLS_TYPE, and symbol H (or a local symbol if H
3297 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
3298 struct elf_link_hash_entry
*h
)
3301 bfd_boolean need_relocs
= FALSE
;
3302 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), h
)
3307 && (bfd_link_dll (info
) || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
3310 if ((bfd_link_dll (info
) || indx
!= 0)
3312 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3313 || h
->root
.type
!= bfd_link_hash_undefweak
))
3322 return indx
!= 0 ? 2 : 1;
3328 return bfd_link_dll (info
) ? 1 : 0;
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3339 mips_elf_count_got_entry (struct bfd_link_info
*info
,
3340 struct mips_got_info
*g
,
3341 struct mips_got_entry
*entry
)
3343 if (entry
->tls_type
)
3345 g
->tls_gotno
+= mips_tls_got_entries (entry
->tls_type
);
3346 g
->relocs
+= mips_tls_got_relocs (info
, entry
->tls_type
,
3348 ? &entry
->d
.h
->root
: NULL
);
3350 else if (entry
->symndx
>= 0 || entry
->d
.h
->global_got_area
== GGA_NONE
)
3351 g
->local_gotno
+= 1;
3353 g
->global_gotno
+= 1;
3356 /* Output a simple dynamic relocation into SRELOC. */
3359 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
3361 unsigned long reloc_index
,
3366 Elf_Internal_Rela rel
[3];
3368 memset (rel
, 0, sizeof (rel
));
3370 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
3371 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
3373 if (ABI_64_P (output_bfd
))
3375 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
3376 (output_bfd
, &rel
[0],
3378 + reloc_index
* sizeof (Elf64_Mips_External_Rel
)));
3381 bfd_elf32_swap_reloc_out
3382 (output_bfd
, &rel
[0],
3384 + reloc_index
* sizeof (Elf32_External_Rel
)));
3387 /* Initialize a set of TLS GOT entries for one symbol. */
3390 mips_elf_initialize_tls_slots (bfd
*abfd
, struct bfd_link_info
*info
,
3391 struct mips_got_entry
*entry
,
3392 struct mips_elf_link_hash_entry
*h
,
3395 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
3396 struct mips_elf_link_hash_table
*htab
;
3398 asection
*sreloc
, *sgot
;
3399 bfd_vma got_offset
, got_offset2
;
3400 bfd_boolean need_relocs
= FALSE
;
3402 htab
= mips_elf_hash_table (info
);
3406 sgot
= htab
->root
.sgot
;
3410 && h
->root
.dynindx
!= -1
3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), &h
->root
)
3412 && (bfd_link_dll (info
) || !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
3413 indx
= h
->root
.dynindx
;
3415 if (entry
->tls_initialized
)
3418 if ((bfd_link_dll (info
) || indx
!= 0)
3420 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
3421 || h
->root
.type
!= bfd_link_hash_undefweak
))
3424 /* MINUS_ONE means the symbol is not defined in this object. It may not
3425 be defined at all; assume that the value doesn't matter in that
3426 case. Otherwise complain if we would use the value. */
3427 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
3428 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
3430 /* Emit necessary relocations. */
3431 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
3432 got_offset
= entry
->gotidx
;
3434 switch (entry
->tls_type
)
3437 /* General Dynamic. */
3438 got_offset2
= got_offset
+ MIPS_ELF_GOT_SIZE (abfd
);
3442 mips_elf_output_dynamic_relocation
3443 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3444 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
3445 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3448 mips_elf_output_dynamic_relocation
3449 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3450 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
3451 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset2
);
3453 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
3454 sgot
->contents
+ got_offset2
);
3458 MIPS_ELF_PUT_WORD (abfd
, 1,
3459 sgot
->contents
+ got_offset
);
3460 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
3461 sgot
->contents
+ got_offset2
);
3466 /* Initial Exec model. */
3470 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
3471 sgot
->contents
+ got_offset
);
3473 MIPS_ELF_PUT_WORD (abfd
, 0,
3474 sgot
->contents
+ got_offset
);
3476 mips_elf_output_dynamic_relocation
3477 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3478 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
3479 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3482 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
3483 sgot
->contents
+ got_offset
);
3487 /* The initial offset is zero, and the LD offsets will include the
3488 bias by DTP_OFFSET. */
3489 MIPS_ELF_PUT_WORD (abfd
, 0,
3490 sgot
->contents
+ got_offset
3491 + MIPS_ELF_GOT_SIZE (abfd
));
3493 if (!bfd_link_dll (info
))
3494 MIPS_ELF_PUT_WORD (abfd
, 1,
3495 sgot
->contents
+ got_offset
);
3497 mips_elf_output_dynamic_relocation
3498 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3499 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
3500 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3507 entry
->tls_initialized
= TRUE
;
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511 for global symbol H. .got.plt comes before the GOT, so the offset
3512 will be negative. */
3515 mips_elf_gotplt_index (struct bfd_link_info
*info
,
3516 struct elf_link_hash_entry
*h
)
3518 bfd_vma got_address
, got_value
;
3519 struct mips_elf_link_hash_table
*htab
;
3521 htab
= mips_elf_hash_table (info
);
3522 BFD_ASSERT (htab
!= NULL
);
3524 BFD_ASSERT (h
->plt
.plist
!= NULL
);
3525 BFD_ASSERT (h
->plt
.plist
->gotplt_index
!= MINUS_ONE
);
3527 /* Calculate the address of the associated .got.plt entry. */
3528 got_address
= (htab
->root
.sgotplt
->output_section
->vma
3529 + htab
->root
.sgotplt
->output_offset
3530 + (h
->plt
.plist
->gotplt_index
3531 * MIPS_ELF_GOT_SIZE (info
->output_bfd
)));
3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3534 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
3535 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
3536 + htab
->root
.hgot
->root
.u
.def
.value
);
3538 return got_address
- got_value
;
3541 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3544 offset can be found. */
3547 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3548 bfd_vma value
, unsigned long r_symndx
,
3549 struct mips_elf_link_hash_entry
*h
, int r_type
)
3551 struct mips_elf_link_hash_table
*htab
;
3552 struct mips_got_entry
*entry
;
3554 htab
= mips_elf_hash_table (info
);
3555 BFD_ASSERT (htab
!= NULL
);
3557 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
,
3558 r_symndx
, h
, r_type
);
3562 if (entry
->tls_type
)
3563 mips_elf_initialize_tls_slots (abfd
, info
, entry
, h
, value
);
3564 return entry
->gotidx
;
3567 /* Return the GOT index of global symbol H in the primary GOT. */
3570 mips_elf_primary_global_got_index (bfd
*obfd
, struct bfd_link_info
*info
,
3571 struct elf_link_hash_entry
*h
)
3573 struct mips_elf_link_hash_table
*htab
;
3574 long global_got_dynindx
;
3575 struct mips_got_info
*g
;
3578 htab
= mips_elf_hash_table (info
);
3579 BFD_ASSERT (htab
!= NULL
);
3581 global_got_dynindx
= 0;
3582 if (htab
->global_gotsym
!= NULL
)
3583 global_got_dynindx
= htab
->global_gotsym
->dynindx
;
3585 /* Once we determine the global GOT entry with the lowest dynamic
3586 symbol table index, we must put all dynamic symbols with greater
3587 indices into the primary GOT. That makes it easy to calculate the
3589 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
3590 g
= mips_elf_bfd_got (obfd
, FALSE
);
3591 got_index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
3592 * MIPS_ELF_GOT_SIZE (obfd
));
3593 BFD_ASSERT (got_index
< htab
->root
.sgot
->size
);
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599 referenced by a relocation of type R_TYPE in IBFD. */
3602 mips_elf_global_got_index (bfd
*obfd
, struct bfd_link_info
*info
, bfd
*ibfd
,
3603 struct elf_link_hash_entry
*h
, int r_type
)
3605 struct mips_elf_link_hash_table
*htab
;
3606 struct mips_got_info
*g
;
3607 struct mips_got_entry lookup
, *entry
;
3610 htab
= mips_elf_hash_table (info
);
3611 BFD_ASSERT (htab
!= NULL
);
3613 g
= mips_elf_bfd_got (ibfd
, FALSE
);
3616 lookup
.tls_type
= mips_elf_reloc_tls_type (r_type
);
3617 if (!lookup
.tls_type
&& g
== mips_elf_bfd_got (obfd
, FALSE
))
3618 return mips_elf_primary_global_got_index (obfd
, info
, h
);
3622 lookup
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
3623 entry
= htab_find (g
->got_entries
, &lookup
);
3626 gotidx
= entry
->gotidx
;
3627 BFD_ASSERT (gotidx
> 0 && gotidx
< htab
->root
.sgot
->size
);
3629 if (lookup
.tls_type
)
3631 bfd_vma value
= MINUS_ONE
;
3633 if ((h
->root
.type
== bfd_link_hash_defined
3634 || h
->root
.type
== bfd_link_hash_defweak
)
3635 && h
->root
.u
.def
.section
->output_section
)
3636 value
= (h
->root
.u
.def
.value
3637 + h
->root
.u
.def
.section
->output_offset
3638 + h
->root
.u
.def
.section
->output_section
->vma
);
3640 mips_elf_initialize_tls_slots (obfd
, info
, entry
, lookup
.d
.h
, value
);
3645 /* Find a GOT page entry that points to within 32KB of VALUE. These
3646 entries are supposed to be placed at small offsets in the GOT, i.e.,
3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3648 entry could be created. If OFFSETP is nonnull, use it to return the
3649 offset of the GOT entry from VALUE. */
3652 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3653 bfd_vma value
, bfd_vma
*offsetp
)
3655 bfd_vma page
, got_index
;
3656 struct mips_got_entry
*entry
;
3658 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
3659 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, page
, 0,
3660 NULL
, R_MIPS_GOT_PAGE
);
3665 got_index
= entry
->gotidx
;
3668 *offsetp
= value
- entry
->d
.address
;
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674 EXTERNAL is true if the relocation was originally against a global
3675 symbol that binds locally. */
3678 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3679 bfd_vma value
, bfd_boolean external
)
3681 struct mips_got_entry
*entry
;
3683 /* GOT16 relocations against local symbols are followed by a LO16
3684 relocation; those against global symbols are not. Thus if the
3685 symbol was originally local, the GOT16 relocation should load the
3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3688 value
= mips_elf_high (value
) << 16;
3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3692 same in all cases. */
3693 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
, 0,
3694 NULL
, R_MIPS_GOT16
);
3696 return entry
->gotidx
;
3701 /* Returns the offset for the entry at the INDEXth position
3705 mips_elf_got_offset_from_index (struct bfd_link_info
*info
, bfd
*output_bfd
,
3706 bfd
*input_bfd
, bfd_vma got_index
)
3708 struct mips_elf_link_hash_table
*htab
;
3712 htab
= mips_elf_hash_table (info
);
3713 BFD_ASSERT (htab
!= NULL
);
3715 sgot
= htab
->root
.sgot
;
3716 gp
= _bfd_get_gp_value (output_bfd
)
3717 + mips_elf_adjust_gp (output_bfd
, htab
->got_info
, input_bfd
);
3719 return sgot
->output_section
->vma
+ sgot
->output_offset
+ got_index
- gp
;
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3727 static struct mips_got_entry
*
3728 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
3729 bfd
*ibfd
, bfd_vma value
,
3730 unsigned long r_symndx
,
3731 struct mips_elf_link_hash_entry
*h
,
3734 struct mips_got_entry lookup
, *entry
;
3736 struct mips_got_info
*g
;
3737 struct mips_elf_link_hash_table
*htab
;
3740 htab
= mips_elf_hash_table (info
);
3741 BFD_ASSERT (htab
!= NULL
);
3743 g
= mips_elf_bfd_got (ibfd
, FALSE
);
3746 g
= mips_elf_bfd_got (abfd
, FALSE
);
3747 BFD_ASSERT (g
!= NULL
);
3750 /* This function shouldn't be called for symbols that live in the global
3752 BFD_ASSERT (h
== NULL
|| h
->global_got_area
== GGA_NONE
);
3754 lookup
.tls_type
= mips_elf_reloc_tls_type (r_type
);
3755 if (lookup
.tls_type
)
3758 if (tls_ldm_reloc_p (r_type
))
3761 lookup
.d
.addend
= 0;
3765 lookup
.symndx
= r_symndx
;
3766 lookup
.d
.addend
= 0;
3774 entry
= (struct mips_got_entry
*) htab_find (g
->got_entries
, &lookup
);
3777 gotidx
= entry
->gotidx
;
3778 BFD_ASSERT (gotidx
> 0 && gotidx
< htab
->root
.sgot
->size
);
3785 lookup
.d
.address
= value
;
3786 loc
= htab_find_slot (g
->got_entries
, &lookup
, INSERT
);
3790 entry
= (struct mips_got_entry
*) *loc
;
3794 if (g
->assigned_low_gotno
> g
->assigned_high_gotno
)
3796 /* We didn't allocate enough space in the GOT. */
3798 (_("not enough GOT space for local GOT entries"));
3799 bfd_set_error (bfd_error_bad_value
);
3803 entry
= (struct mips_got_entry
*) bfd_alloc (abfd
, sizeof (*entry
));
3807 if (got16_reloc_p (r_type
)
3808 || call16_reloc_p (r_type
)
3809 || got_page_reloc_p (r_type
)
3810 || got_disp_reloc_p (r_type
))
3811 lookup
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_low_gotno
++;
3813 lookup
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_high_gotno
--;
3818 MIPS_ELF_PUT_WORD (abfd
, value
, htab
->root
.sgot
->contents
+ entry
->gotidx
);
3820 /* These GOT entries need a dynamic relocation on VxWorks. */
3821 if (htab
->root
.target_os
== is_vxworks
)
3823 Elf_Internal_Rela outrel
;
3826 bfd_vma got_address
;
3828 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3829 got_address
= (htab
->root
.sgot
->output_section
->vma
3830 + htab
->root
.sgot
->output_offset
3833 rloc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3834 outrel
.r_offset
= got_address
;
3835 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
3836 outrel
.r_addend
= value
;
3837 bfd_elf32_swap_reloca_out (abfd
, &outrel
, rloc
);
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844 The number might be exact or a worst-case estimate, depending on how
3845 much information is available to elf_backend_omit_section_dynsym at
3846 the current linking stage. */
3848 static bfd_size_type
3849 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
3851 bfd_size_type count
;
3854 if (bfd_link_pic (info
)
3855 || elf_hash_table (info
)->is_relocatable_executable
)
3858 const struct elf_backend_data
*bed
;
3860 bed
= get_elf_backend_data (output_bfd
);
3861 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
3862 if ((p
->flags
& SEC_EXCLUDE
) == 0
3863 && (p
->flags
& SEC_ALLOC
) != 0
3864 && elf_hash_table (info
)->dynamic_relocs
3865 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872 appear towards the end. */
3875 mips_elf_sort_hash_table (bfd
*abfd
, struct bfd_link_info
*info
)
3877 struct mips_elf_link_hash_table
*htab
;
3878 struct mips_elf_hash_sort_data hsd
;
3879 struct mips_got_info
*g
;
3881 htab
= mips_elf_hash_table (info
);
3882 BFD_ASSERT (htab
!= NULL
);
3884 if (htab
->root
.dynsymcount
== 0)
3892 hsd
.max_unref_got_dynindx
3893 = hsd
.min_got_dynindx
3894 = (htab
->root
.dynsymcount
- g
->reloc_only_gotno
);
3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3897 hsd
.max_local_dynindx
= count_section_dynsyms (abfd
, info
) + 1;
3898 hsd
.max_non_got_dynindx
= htab
->root
.local_dynsymcount
+ 1;
3899 hsd
.output_bfd
= abfd
;
3900 if (htab
->root
.dynobj
!= NULL
3901 && htab
->root
.dynamic_sections_created
3902 && info
->emit_gnu_hash
)
3904 asection
*s
= bfd_get_linker_section (htab
->root
.dynobj
, ".MIPS.xhash");
3905 BFD_ASSERT (s
!= NULL
);
3906 hsd
.mipsxhash
= s
->contents
;
3907 BFD_ASSERT (hsd
.mipsxhash
!= NULL
);
3910 hsd
.mipsxhash
= NULL
;
3911 mips_elf_link_hash_traverse (htab
, mips_elf_sort_hash_table_f
, &hsd
);
3913 /* There should have been enough room in the symbol table to
3914 accommodate both the GOT and non-GOT symbols. */
3915 BFD_ASSERT (hsd
.max_local_dynindx
<= htab
->root
.local_dynsymcount
+ 1);
3916 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
3917 BFD_ASSERT (hsd
.max_unref_got_dynindx
== htab
->root
.dynsymcount
);
3918 BFD_ASSERT (htab
->root
.dynsymcount
- hsd
.min_got_dynindx
== g
->global_gotno
);
3920 /* Now we know which dynamic symbol has the lowest dynamic symbol
3921 table index in the GOT. */
3922 htab
->global_gotsym
= hsd
.low
;
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928 index. Otherwise, assign it the lowest available dynamic
3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
3934 struct mips_elf_hash_sort_data
*hsd
= data
;
3936 /* Symbols without dynamic symbol table entries aren't interesting
3938 if (h
->root
.dynindx
== -1)
3941 switch (h
->global_got_area
)
3944 if (h
->root
.forced_local
)
3945 h
->root
.dynindx
= hsd
->max_local_dynindx
++;
3947 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
3951 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
3952 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3955 case GGA_RELOC_ONLY
:
3956 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
3957 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3958 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
3962 /* Populate the .MIPS.xhash translation table entry with
3963 the symbol dynindx. */
3964 if (h
->mipsxhash_loc
!= 0 && hsd
->mipsxhash
!= NULL
)
3965 bfd_put_32 (hsd
->output_bfd
, h
->root
.dynindx
,
3966 hsd
->mipsxhash
+ h
->mipsxhash_loc
);
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972 (which is owned by the caller and shouldn't be added to the
3973 hash table directly). */
3976 mips_elf_record_got_entry (struct bfd_link_info
*info
, bfd
*abfd
,
3977 struct mips_got_entry
*lookup
)
3979 struct mips_elf_link_hash_table
*htab
;
3980 struct mips_got_entry
*entry
;
3981 struct mips_got_info
*g
;
3982 void **loc
, **bfd_loc
;
3984 /* Make sure there's a slot for this entry in the master GOT. */
3985 htab
= mips_elf_hash_table (info
);
3987 loc
= htab_find_slot (g
->got_entries
, lookup
, INSERT
);
3991 /* Populate the entry if it isn't already. */
3992 entry
= (struct mips_got_entry
*) *loc
;
3995 entry
= (struct mips_got_entry
*) bfd_alloc (abfd
, sizeof (*entry
));
3999 lookup
->tls_initialized
= FALSE
;
4000 lookup
->gotidx
= -1;
4005 /* Reuse the same GOT entry for the BFD's GOT. */
4006 g
= mips_elf_bfd_got (abfd
, TRUE
);
4010 bfd_loc
= htab_find_slot (g
->got_entries
, lookup
, INSERT
);
4019 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4020 entry for it. FOR_CALL is true if the caller is only interested in
4021 using the GOT entry for calls. */
4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
4025 bfd
*abfd
, struct bfd_link_info
*info
,
4026 bfd_boolean for_call
, int r_type
)
4028 struct mips_elf_link_hash_table
*htab
;
4029 struct mips_elf_link_hash_entry
*hmips
;
4030 struct mips_got_entry entry
;
4031 unsigned char tls_type
;
4033 htab
= mips_elf_hash_table (info
);
4034 BFD_ASSERT (htab
!= NULL
);
4036 hmips
= (struct mips_elf_link_hash_entry
*) h
;
4038 hmips
->got_only_for_calls
= FALSE
;
4040 /* A global symbol in the GOT must also be in the dynamic symbol
4042 if (h
->dynindx
== -1)
4044 switch (ELF_ST_VISIBILITY (h
->other
))
4048 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
4051 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
4055 tls_type
= mips_elf_reloc_tls_type (r_type
);
4056 if (tls_type
== GOT_TLS_NONE
&& hmips
->global_got_area
> GGA_NORMAL
)
4057 hmips
->global_got_area
= GGA_NORMAL
;
4061 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
4062 entry
.tls_type
= tls_type
;
4063 return mips_elf_record_got_entry (info
, abfd
, &entry
);
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4070 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
4071 struct bfd_link_info
*info
, int r_type
)
4073 struct mips_elf_link_hash_table
*htab
;
4074 struct mips_got_info
*g
;
4075 struct mips_got_entry entry
;
4077 htab
= mips_elf_hash_table (info
);
4078 BFD_ASSERT (htab
!= NULL
);
4081 BFD_ASSERT (g
!= NULL
);
4084 entry
.symndx
= symndx
;
4085 entry
.d
.addend
= addend
;
4086 entry
.tls_type
= mips_elf_reloc_tls_type (r_type
);
4087 return mips_elf_record_got_entry (info
, abfd
, &entry
);
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091 H is the symbol's hash table entry, or null if SYMNDX is local
4095 mips_elf_record_got_page_ref (struct bfd_link_info
*info
, bfd
*abfd
,
4096 long symndx
, struct elf_link_hash_entry
*h
,
4097 bfd_signed_vma addend
)
4099 struct mips_elf_link_hash_table
*htab
;
4100 struct mips_got_info
*g1
, *g2
;
4101 struct mips_got_page_ref lookup
, *entry
;
4102 void **loc
, **bfd_loc
;
4104 htab
= mips_elf_hash_table (info
);
4105 BFD_ASSERT (htab
!= NULL
);
4107 g1
= htab
->got_info
;
4108 BFD_ASSERT (g1
!= NULL
);
4113 lookup
.u
.h
= (struct mips_elf_link_hash_entry
*) h
;
4117 lookup
.symndx
= symndx
;
4118 lookup
.u
.abfd
= abfd
;
4120 lookup
.addend
= addend
;
4121 loc
= htab_find_slot (g1
->got_page_refs
, &lookup
, INSERT
);
4125 entry
= (struct mips_got_page_ref
*) *loc
;
4128 entry
= bfd_alloc (abfd
, sizeof (*entry
));
4136 /* Add the same entry to the BFD's GOT. */
4137 g2
= mips_elf_bfd_got (abfd
, TRUE
);
4141 bfd_loc
= htab_find_slot (g2
->got_page_refs
, &lookup
, INSERT
);
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4154 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
4158 struct mips_elf_link_hash_table
*htab
;
4160 htab
= mips_elf_hash_table (info
);
4161 BFD_ASSERT (htab
!= NULL
);
4163 s
= mips_elf_rel_dyn_section (info
, FALSE
);
4164 BFD_ASSERT (s
!= NULL
);
4166 if (htab
->root
.target_os
== is_vxworks
)
4167 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
4172 /* Make room for a null element. */
4173 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
4176 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181 mips_elf_traverse_got_arg structure. Count the number of GOT
4182 entries and TLS relocs. Set DATA->value to true if we need
4183 to resolve indirect or warning symbols and then recreate the GOT. */
4186 mips_elf_check_recreate_got (void **entryp
, void *data
)
4188 struct mips_got_entry
*entry
;
4189 struct mips_elf_traverse_got_arg
*arg
;
4191 entry
= (struct mips_got_entry
*) *entryp
;
4192 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4193 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
4195 struct mips_elf_link_hash_entry
*h
;
4198 if (h
->root
.root
.type
== bfd_link_hash_indirect
4199 || h
->root
.root
.type
== bfd_link_hash_warning
)
4205 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4211 converting entries for indirect and warning symbols into entries
4212 for the target symbol. Set DATA->g to null on error. */
4215 mips_elf_recreate_got (void **entryp
, void *data
)
4217 struct mips_got_entry new_entry
, *entry
;
4218 struct mips_elf_traverse_got_arg
*arg
;
4221 entry
= (struct mips_got_entry
*) *entryp
;
4222 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4223 if (entry
->abfd
!= NULL
4224 && entry
->symndx
== -1
4225 && (entry
->d
.h
->root
.root
.type
== bfd_link_hash_indirect
4226 || entry
->d
.h
->root
.root
.type
== bfd_link_hash_warning
))
4228 struct mips_elf_link_hash_entry
*h
;
4235 BFD_ASSERT (h
->global_got_area
== GGA_NONE
);
4236 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4238 while (h
->root
.root
.type
== bfd_link_hash_indirect
4239 || h
->root
.root
.type
== bfd_link_hash_warning
);
4242 slot
= htab_find_slot (arg
->g
->got_entries
, entry
, INSERT
);
4250 if (entry
== &new_entry
)
4252 entry
= bfd_alloc (entry
->abfd
, sizeof (*entry
));
4261 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4266 /* Return the maximum number of GOT page entries required for RANGE. */
4269 mips_elf_pages_for_range (const struct mips_got_page_range
*range
)
4271 return (range
->max_addend
- range
->min_addend
+ 0x1ffff) >> 16;
4274 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg
*arg
,
4278 asection
*sec
, bfd_signed_vma addend
)
4280 struct mips_got_info
*g
= arg
->g
;
4281 struct mips_got_page_entry lookup
, *entry
;
4282 struct mips_got_page_range
**range_ptr
, *range
;
4283 bfd_vma old_pages
, new_pages
;
4286 /* Find the mips_got_page_entry hash table entry for this section. */
4288 loc
= htab_find_slot (g
->got_page_entries
, &lookup
, INSERT
);
4292 /* Create a mips_got_page_entry if this is the first time we've
4293 seen the section. */
4294 entry
= (struct mips_got_page_entry
*) *loc
;
4297 entry
= bfd_zalloc (arg
->info
->output_bfd
, sizeof (*entry
));
4305 /* Skip over ranges whose maximum extent cannot share a page entry
4307 range_ptr
= &entry
->ranges
;
4308 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
4309 range_ptr
= &(*range_ptr
)->next
;
4311 /* If we scanned to the end of the list, or found a range whose
4312 minimum extent cannot share a page entry with ADDEND, create
4313 a new singleton range. */
4315 if (!range
|| addend
< range
->min_addend
- 0xffff)
4317 range
= bfd_zalloc (arg
->info
->output_bfd
, sizeof (*range
));
4321 range
->next
= *range_ptr
;
4322 range
->min_addend
= addend
;
4323 range
->max_addend
= addend
;
4331 /* Remember how many pages the old range contributed. */
4332 old_pages
= mips_elf_pages_for_range (range
);
4334 /* Update the ranges. */
4335 if (addend
< range
->min_addend
)
4336 range
->min_addend
= addend
;
4337 else if (addend
> range
->max_addend
)
4339 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
4341 old_pages
+= mips_elf_pages_for_range (range
->next
);
4342 range
->max_addend
= range
->next
->max_addend
;
4343 range
->next
= range
->next
->next
;
4346 range
->max_addend
= addend
;
4349 /* Record any change in the total estimate. */
4350 new_pages
= mips_elf_pages_for_range (range
);
4351 if (old_pages
!= new_pages
)
4353 entry
->num_pages
+= new_pages
- old_pages
;
4354 g
->page_gotno
+= new_pages
- old_pages
;
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4362 whether the page reference described by *REFP needs a GOT page entry,
4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4366 mips_elf_resolve_got_page_ref (void **refp
, void *data
)
4368 struct mips_got_page_ref
*ref
;
4369 struct mips_elf_traverse_got_arg
*arg
;
4370 struct mips_elf_link_hash_table
*htab
;
4374 ref
= (struct mips_got_page_ref
*) *refp
;
4375 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4376 htab
= mips_elf_hash_table (arg
->info
);
4378 if (ref
->symndx
< 0)
4380 struct mips_elf_link_hash_entry
*h
;
4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4384 if (!SYMBOL_REFERENCES_LOCAL (arg
->info
, &h
->root
))
4387 /* Ignore undefined symbols; we'll issue an error later if
4389 if (!((h
->root
.root
.type
== bfd_link_hash_defined
4390 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4391 && h
->root
.root
.u
.def
.section
))
4394 sec
= h
->root
.root
.u
.def
.section
;
4395 addend
= h
->root
.root
.u
.def
.value
+ ref
->addend
;
4399 Elf_Internal_Sym
*isym
;
4401 /* Read in the symbol. */
4402 isym
= bfd_sym_from_r_symndx (&htab
->root
.sym_cache
, ref
->u
.abfd
,
4410 /* Get the associated input section. */
4411 sec
= bfd_section_from_elf_index (ref
->u
.abfd
, isym
->st_shndx
);
4418 /* If this is a mergable section, work out the section and offset
4419 of the merged data. For section symbols, the addend specifies
4420 of the offset _of_ the first byte in the data, otherwise it
4421 specifies the offset _from_ the first byte. */
4422 if (sec
->flags
& SEC_MERGE
)
4426 secinfo
= elf_section_data (sec
)->sec_info
;
4427 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
4428 addend
= _bfd_merged_section_offset (ref
->u
.abfd
, &sec
, secinfo
,
4429 isym
->st_value
+ ref
->addend
);
4431 addend
= _bfd_merged_section_offset (ref
->u
.abfd
, &sec
, secinfo
,
4432 isym
->st_value
) + ref
->addend
;
4435 addend
= isym
->st_value
+ ref
->addend
;
4437 if (!mips_elf_record_got_page_entry (arg
, sec
, addend
))
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446 replace them with entries for the target symbol. Convert g->got_page_refs
4447 into got_page_entry structures and estimate the number of page entries
4448 that they require. */
4451 mips_elf_resolve_final_got_entries (struct bfd_link_info
*info
,
4452 struct mips_got_info
*g
)
4454 struct mips_elf_traverse_got_arg tga
;
4455 struct mips_got_info oldg
;
4462 htab_traverse (g
->got_entries
, mips_elf_check_recreate_got
, &tga
);
4466 g
->got_entries
= htab_create (htab_size (oldg
.got_entries
),
4467 mips_elf_got_entry_hash
,
4468 mips_elf_got_entry_eq
, NULL
);
4469 if (!g
->got_entries
)
4472 htab_traverse (oldg
.got_entries
, mips_elf_recreate_got
, &tga
);
4476 htab_delete (oldg
.got_entries
);
4479 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4480 mips_got_page_entry_eq
, NULL
);
4481 if (g
->got_page_entries
== NULL
)
4486 htab_traverse (g
->got_page_refs
, mips_elf_resolve_got_page_ref
, &tga
);
4491 /* Return true if a GOT entry for H should live in the local rather than
4495 mips_use_local_got_p (struct bfd_link_info
*info
,
4496 struct mips_elf_link_hash_entry
*h
)
4498 /* Symbols that aren't in the dynamic symbol table must live in the
4499 local GOT. This includes symbols that are completely undefined
4500 and which therefore don't bind locally. We'll report undefined
4501 symbols later if appropriate. */
4502 if (h
->root
.dynindx
== -1)
4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506 to the local GOT, as they would be implicitly relocated by the
4507 base address by the dynamic loader. */
4508 if (bfd_is_abs_symbol (&h
->root
.root
))
4511 /* Symbols that bind locally can (and in the case of forced-local
4512 symbols, must) live in the local GOT. */
4513 if (h
->got_only_for_calls
4514 ? SYMBOL_CALLS_LOCAL (info
, &h
->root
)
4515 : SYMBOL_REFERENCES_LOCAL (info
, &h
->root
))
4518 /* If this is an executable that must provide a definition of the symbol,
4519 either though PLTs or copy relocations, then that address should go in
4520 the local rather than global GOT. */
4521 if (bfd_link_executable (info
) && h
->has_static_relocs
)
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528 link_info structure. Decide whether the hash entry needs an entry in
4529 the global part of the primary GOT, setting global_got_area accordingly.
4530 Count the number of global symbols that are in the primary GOT only
4531 because they have relocations against them (reloc_only_gotno). */
4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
4536 struct bfd_link_info
*info
;
4537 struct mips_elf_link_hash_table
*htab
;
4538 struct mips_got_info
*g
;
4540 info
= (struct bfd_link_info
*) data
;
4541 htab
= mips_elf_hash_table (info
);
4543 if (h
->global_got_area
!= GGA_NONE
)
4545 /* Make a final decision about whether the symbol belongs in the
4546 local or global GOT. */
4547 if (mips_use_local_got_p (info
, h
))
4548 /* The symbol belongs in the local GOT. We no longer need this
4549 entry if it was only used for relocations; those relocations
4550 will be against the null or section symbol instead of H. */
4551 h
->global_got_area
= GGA_NONE
;
4552 else if (htab
->root
.target_os
== is_vxworks
4553 && h
->got_only_for_calls
4554 && h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
4555 /* On VxWorks, calls can refer directly to the .got.plt entry;
4556 they don't need entries in the regular GOT. .got.plt entries
4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4558 h
->global_got_area
= GGA_NONE
;
4559 else if (h
->global_got_area
== GGA_RELOC_ONLY
)
4561 g
->reloc_only_gotno
++;
4568 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4572 mips_elf_add_got_entry (void **entryp
, void *data
)
4574 struct mips_got_entry
*entry
;
4575 struct mips_elf_traverse_got_arg
*arg
;
4578 entry
= (struct mips_got_entry
*) *entryp
;
4579 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4580 slot
= htab_find_slot (arg
->g
->got_entries
, entry
, INSERT
);
4589 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4594 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4598 mips_elf_add_got_page_entry (void **entryp
, void *data
)
4600 struct mips_got_page_entry
*entry
;
4601 struct mips_elf_traverse_got_arg
*arg
;
4604 entry
= (struct mips_got_page_entry
*) *entryp
;
4605 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4606 slot
= htab_find_slot (arg
->g
->got_page_entries
, entry
, INSERT
);
4615 arg
->g
->page_gotno
+= entry
->num_pages
;
4620 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4621 this would lead to overflow, 1 if they were merged successfully,
4622 and 0 if a merge failed due to lack of memory. (These values are chosen
4623 so that nonnegative return values can be returned by a htab_traverse
4627 mips_elf_merge_got_with (bfd
*abfd
, struct mips_got_info
*from
,
4628 struct mips_got_info
*to
,
4629 struct mips_elf_got_per_bfd_arg
*arg
)
4631 struct mips_elf_traverse_got_arg tga
;
4632 unsigned int estimate
;
4634 /* Work out how many page entries we would need for the combined GOT. */
4635 estimate
= arg
->max_pages
;
4636 if (estimate
>= from
->page_gotno
+ to
->page_gotno
)
4637 estimate
= from
->page_gotno
+ to
->page_gotno
;
4639 /* And conservatively estimate how many local and TLS entries
4641 estimate
+= from
->local_gotno
+ to
->local_gotno
;
4642 estimate
+= from
->tls_gotno
+ to
->tls_gotno
;
4644 /* If we're merging with the primary got, any TLS relocations will
4645 come after the full set of global entries. Otherwise estimate those
4646 conservatively as well. */
4647 if (to
== arg
->primary
&& from
->tls_gotno
+ to
->tls_gotno
)
4648 estimate
+= arg
->global_count
;
4650 estimate
+= from
->global_gotno
+ to
->global_gotno
;
4652 /* Bail out if the combined GOT might be too big. */
4653 if (estimate
> arg
->max_count
)
4656 /* Transfer the bfd's got information from FROM to TO. */
4657 tga
.info
= arg
->info
;
4659 htab_traverse (from
->got_entries
, mips_elf_add_got_entry
, &tga
);
4663 htab_traverse (from
->got_page_entries
, mips_elf_add_got_page_entry
, &tga
);
4667 mips_elf_replace_bfd_got (abfd
, to
);
4671 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4672 as possible of the primary got, since it doesn't require explicit
4673 dynamic relocations, but don't use bfds that would reference global
4674 symbols out of the addressable range. Failing the primary got,
4675 attempt to merge with the current got, or finish the current got
4676 and then make make the new got current. */
4679 mips_elf_merge_got (bfd
*abfd
, struct mips_got_info
*g
,
4680 struct mips_elf_got_per_bfd_arg
*arg
)
4682 unsigned int estimate
;
4685 if (!mips_elf_resolve_final_got_entries (arg
->info
, g
))
4688 /* Work out the number of page, local and TLS entries. */
4689 estimate
= arg
->max_pages
;
4690 if (estimate
> g
->page_gotno
)
4691 estimate
= g
->page_gotno
;
4692 estimate
+= g
->local_gotno
+ g
->tls_gotno
;
4694 /* We place TLS GOT entries after both locals and globals. The globals
4695 for the primary GOT may overflow the normal GOT size limit, so be
4696 sure not to merge a GOT which requires TLS with the primary GOT in that
4697 case. This doesn't affect non-primary GOTs. */
4698 estimate
+= (g
->tls_gotno
> 0 ? arg
->global_count
: g
->global_gotno
);
4700 if (estimate
<= arg
->max_count
)
4702 /* If we don't have a primary GOT, use it as
4703 a starting point for the primary GOT. */
4710 /* Try merging with the primary GOT. */
4711 result
= mips_elf_merge_got_with (abfd
, g
, arg
->primary
, arg
);
4716 /* If we can merge with the last-created got, do it. */
4719 result
= mips_elf_merge_got_with (abfd
, g
, arg
->current
, arg
);
4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4725 fits; if it turns out that it doesn't, we'll get relocation
4726 overflows anyway. */
4727 g
->next
= arg
->current
;
4733 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4734 to GOTIDX, duplicating the entry if it has already been assigned
4735 an index in a different GOT. */
4738 mips_elf_set_gotidx (void **entryp
, long gotidx
)
4740 struct mips_got_entry
*entry
;
4742 entry
= (struct mips_got_entry
*) *entryp
;
4743 if (entry
->gotidx
> 0)
4745 struct mips_got_entry
*new_entry
;
4747 new_entry
= bfd_alloc (entry
->abfd
, sizeof (*entry
));
4751 *new_entry
= *entry
;
4752 *entryp
= new_entry
;
4755 entry
->gotidx
= gotidx
;
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4760 mips_elf_traverse_got_arg in which DATA->value is the size of one
4761 GOT entry. Set DATA->g to null on failure. */
4764 mips_elf_initialize_tls_index (void **entryp
, void *data
)
4766 struct mips_got_entry
*entry
;
4767 struct mips_elf_traverse_got_arg
*arg
;
4769 /* We're only interested in TLS symbols. */
4770 entry
= (struct mips_got_entry
*) *entryp
;
4771 if (entry
->tls_type
== GOT_TLS_NONE
)
4774 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4775 if (!mips_elf_set_gotidx (entryp
, arg
->value
* arg
->g
->tls_assigned_gotno
))
4781 /* Account for the entries we've just allocated. */
4782 arg
->g
->tls_assigned_gotno
+= mips_tls_got_entries (entry
->tls_type
);
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787 mips_elf_traverse_got_arg. Set the global_got_area of each global
4788 symbol to DATA->value. */
4791 mips_elf_set_global_got_area (void **entryp
, void *data
)
4793 struct mips_got_entry
*entry
;
4794 struct mips_elf_traverse_got_arg
*arg
;
4796 entry
= (struct mips_got_entry
*) *entryp
;
4797 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4798 if (entry
->abfd
!= NULL
4799 && entry
->symndx
== -1
4800 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4801 entry
->d
.h
->global_got_area
= arg
->value
;
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4807 and record the number of relocations they require. DATA->value is
4808 the size of one GOT entry. Set DATA->g to null on failure. */
4811 mips_elf_set_global_gotidx (void **entryp
, void *data
)
4813 struct mips_got_entry
*entry
;
4814 struct mips_elf_traverse_got_arg
*arg
;
4816 entry
= (struct mips_got_entry
*) *entryp
;
4817 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4818 if (entry
->abfd
!= NULL
4819 && entry
->symndx
== -1
4820 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4822 if (!mips_elf_set_gotidx (entryp
, arg
->value
* arg
->g
->assigned_low_gotno
))
4827 arg
->g
->assigned_low_gotno
+= 1;
4829 if (bfd_link_pic (arg
->info
)
4830 || (elf_hash_table (arg
->info
)->dynamic_sections_created
4831 && entry
->d
.h
->root
.def_dynamic
4832 && !entry
->d
.h
->root
.def_regular
))
4833 arg
->g
->relocs
+= 1;
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840 bfd_link_info. Forbid any global symbols from having traditional
4841 lazy-binding stubs. */
4844 mips_elf_forbid_lazy_stubs (void **entryp
, void *data
)
4846 struct bfd_link_info
*info
;
4847 struct mips_elf_link_hash_table
*htab
;
4848 struct mips_got_entry
*entry
;
4850 entry
= (struct mips_got_entry
*) *entryp
;
4851 info
= (struct bfd_link_info
*) data
;
4852 htab
= mips_elf_hash_table (info
);
4853 BFD_ASSERT (htab
!= NULL
);
4855 if (entry
->abfd
!= NULL
4856 && entry
->symndx
== -1
4857 && entry
->d
.h
->needs_lazy_stub
)
4859 entry
->d
.h
->needs_lazy_stub
= FALSE
;
4860 htab
->lazy_stub_count
--;
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4869 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
4874 g
= mips_elf_bfd_got (ibfd
, FALSE
);
4878 BFD_ASSERT (g
->next
);
4882 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
4883 * MIPS_ELF_GOT_SIZE (abfd
);
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887 a sequence of GOTs, each one 16-bit addressable. */
4890 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
4891 asection
*got
, bfd_size_type pages
)
4893 struct mips_elf_link_hash_table
*htab
;
4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
4895 struct mips_elf_traverse_got_arg tga
;
4896 struct mips_got_info
*g
, *gg
;
4897 unsigned int assign
, needed_relocs
;
4900 dynobj
= elf_hash_table (info
)->dynobj
;
4901 htab
= mips_elf_hash_table (info
);
4902 BFD_ASSERT (htab
!= NULL
);
4906 got_per_bfd_arg
.obfd
= abfd
;
4907 got_per_bfd_arg
.info
= info
;
4908 got_per_bfd_arg
.current
= NULL
;
4909 got_per_bfd_arg
.primary
= NULL
;
4910 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
4911 / MIPS_ELF_GOT_SIZE (abfd
))
4912 - htab
->reserved_gotno
);
4913 got_per_bfd_arg
.max_pages
= pages
;
4914 /* The number of globals that will be included in the primary GOT.
4915 See the calls to mips_elf_set_global_got_area below for more
4917 got_per_bfd_arg
.global_count
= g
->global_gotno
;
4919 /* Try to merge the GOTs of input bfds together, as long as they
4920 don't seem to exceed the maximum GOT size, choosing one of them
4921 to be the primary GOT. */
4922 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
4924 gg
= mips_elf_bfd_got (ibfd
, FALSE
);
4925 if (gg
&& !mips_elf_merge_got (ibfd
, gg
, &got_per_bfd_arg
))
4929 /* If we do not find any suitable primary GOT, create an empty one. */
4930 if (got_per_bfd_arg
.primary
== NULL
)
4931 g
->next
= mips_elf_create_got_info (abfd
);
4933 g
->next
= got_per_bfd_arg
.primary
;
4934 g
->next
->next
= got_per_bfd_arg
.current
;
4936 /* GG is now the master GOT, and G is the primary GOT. */
4940 /* Map the output bfd to the primary got. That's what we're going
4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942 didn't mark in check_relocs, and we want a quick way to find it.
4943 We can't just use gg->next because we're going to reverse the
4945 mips_elf_replace_bfd_got (abfd
, g
);
4947 /* Every symbol that is referenced in a dynamic relocation must be
4948 present in the primary GOT, so arrange for them to appear after
4949 those that are actually referenced. */
4950 gg
->reloc_only_gotno
= gg
->global_gotno
- g
->global_gotno
;
4951 g
->global_gotno
= gg
->global_gotno
;
4954 tga
.value
= GGA_RELOC_ONLY
;
4955 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_area
, &tga
);
4956 tga
.value
= GGA_NORMAL
;
4957 htab_traverse (g
->got_entries
, mips_elf_set_global_got_area
, &tga
);
4959 /* Now go through the GOTs assigning them offset ranges.
4960 [assigned_low_gotno, local_gotno[ will be set to the range of local
4961 entries in each GOT. We can then compute the end of a GOT by
4962 adding local_gotno to global_gotno. We reverse the list and make
4963 it circular since then we'll be able to quickly compute the
4964 beginning of a GOT, by computing the end of its predecessor. To
4965 avoid special cases for the primary GOT, while still preserving
4966 assertions that are valid for both single- and multi-got links,
4967 we arrange for the main got struct to have the right number of
4968 global entries, but set its local_gotno such that the initial
4969 offset of the primary GOT is zero. Remember that the primary GOT
4970 will become the last item in the circular linked list, so it
4971 points back to the master GOT. */
4972 gg
->local_gotno
= -g
->global_gotno
;
4973 gg
->global_gotno
= g
->global_gotno
;
4980 struct mips_got_info
*gn
;
4982 assign
+= htab
->reserved_gotno
;
4983 g
->assigned_low_gotno
= assign
;
4984 g
->local_gotno
+= assign
;
4985 g
->local_gotno
+= (pages
< g
->page_gotno
? pages
: g
->page_gotno
);
4986 g
->assigned_high_gotno
= g
->local_gotno
- 1;
4987 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
4989 /* Take g out of the direct list, and push it onto the reversed
4990 list that gg points to. g->next is guaranteed to be nonnull after
4991 this operation, as required by mips_elf_initialize_tls_index. */
4996 /* Set up any TLS entries. We always place the TLS entries after
4997 all non-TLS entries. */
4998 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
5000 tga
.value
= MIPS_ELF_GOT_SIZE (abfd
);
5001 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, &tga
);
5004 BFD_ASSERT (g
->tls_assigned_gotno
== assign
);
5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5009 /* Forbid global symbols in every non-primary GOT from having
5010 lazy-binding stubs. */
5012 htab_traverse (g
->got_entries
, mips_elf_forbid_lazy_stubs
, info
);
5016 got
->size
= assign
* MIPS_ELF_GOT_SIZE (abfd
);
5019 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
5021 unsigned int save_assign
;
5023 /* Assign offsets to global GOT entries and count how many
5024 relocations they need. */
5025 save_assign
= g
->assigned_low_gotno
;
5026 g
->assigned_low_gotno
= g
->local_gotno
;
5028 tga
.value
= MIPS_ELF_GOT_SIZE (abfd
);
5030 htab_traverse (g
->got_entries
, mips_elf_set_global_gotidx
, &tga
);
5033 BFD_ASSERT (g
->assigned_low_gotno
== g
->local_gotno
+ g
->global_gotno
);
5034 g
->assigned_low_gotno
= save_assign
;
5036 if (bfd_link_pic (info
))
5038 g
->relocs
+= g
->local_gotno
- g
->assigned_low_gotno
;
5039 BFD_ASSERT (g
->assigned_low_gotno
== g
->next
->local_gotno
5040 + g
->next
->global_gotno
5041 + g
->next
->tls_gotno
5042 + htab
->reserved_gotno
);
5044 needed_relocs
+= g
->relocs
;
5046 needed_relocs
+= g
->relocs
;
5049 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
5056 /* Returns the first relocation of type r_type found, beginning with
5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5059 static const Elf_Internal_Rela
*
5060 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
5061 const Elf_Internal_Rela
*relocation
,
5062 const Elf_Internal_Rela
*relend
)
5064 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
5066 while (relocation
< relend
)
5068 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
5069 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
5075 /* We didn't find it. */
5079 /* Return whether an input relocation is against a local symbol. */
5082 mips_elf_local_relocation_p (bfd
*input_bfd
,
5083 const Elf_Internal_Rela
*relocation
,
5084 asection
**local_sections
)
5086 unsigned long r_symndx
;
5087 Elf_Internal_Shdr
*symtab_hdr
;
5090 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
5091 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5092 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
5094 if (r_symndx
< extsymoff
)
5096 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
5102 /* Sign-extend VALUE, which has the indicated number of BITS. */
5105 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
5107 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
5108 /* VALUE is negative. */
5109 value
|= ((bfd_vma
) - 1) << bits
;
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115 range expressible by a signed number with the indicated number of
5119 mips_elf_overflow_p (bfd_vma value
, int bits
)
5121 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
5123 if (svalue
> (1 << (bits
- 1)) - 1)
5124 /* The value is too big. */
5126 else if (svalue
< -(1 << (bits
- 1)))
5127 /* The value is too small. */
5134 /* Calculate the %high function. */
5137 mips_elf_high (bfd_vma value
)
5139 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
5142 /* Calculate the %higher function. */
5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
5148 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
5155 /* Calculate the %highest function. */
5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
5161 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5168 /* Create the .compact_rel section. */
5171 mips_elf_create_compact_rel_section
5172 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
5175 register asection
*s
;
5177 if (bfd_get_linker_section (abfd
, ".compact_rel") == NULL
)
5179 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
5182 s
= bfd_make_section_anyway_with_flags (abfd
, ".compact_rel", flags
);
5184 || !bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5187 s
->size
= sizeof (Elf32_External_compact_rel
);
5193 /* Create the .got section to hold the global offset table. */
5196 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
5199 register asection
*s
;
5200 struct elf_link_hash_entry
*h
;
5201 struct bfd_link_hash_entry
*bh
;
5202 struct mips_elf_link_hash_table
*htab
;
5204 htab
= mips_elf_hash_table (info
);
5205 BFD_ASSERT (htab
!= NULL
);
5207 /* This function may be called more than once. */
5208 if (htab
->root
.sgot
)
5211 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
5212 | SEC_LINKER_CREATED
);
5214 /* We have to use an alignment of 2**4 here because this is hardcoded
5215 in the function stub generation and in the linker script. */
5216 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
5218 || !bfd_set_section_alignment (s
, 4))
5220 htab
->root
.sgot
= s
;
5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5223 linker script because we don't want to define the symbol if we
5224 are not creating a global offset table. */
5226 if (! (_bfd_generic_link_add_one_symbol
5227 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
5228 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5231 h
= (struct elf_link_hash_entry
*) bh
;
5234 h
->type
= STT_OBJECT
;
5235 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
5236 elf_hash_table (info
)->hgot
= h
;
5238 if (bfd_link_pic (info
)
5239 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
5242 htab
->got_info
= mips_elf_create_got_info (abfd
);
5243 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
5244 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5246 /* We also need a .got.plt section when generating PLTs. */
5247 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt",
5248 SEC_ALLOC
| SEC_LOAD
5251 | SEC_LINKER_CREATED
);
5254 htab
->root
.sgotplt
= s
;
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260 __GOTT_INDEX__ symbols. These symbols are only special for
5261 shared objects; they are not used in executables. */
5264 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
5266 return (mips_elf_hash_table (info
)->root
.target_os
== is_vxworks
5267 && bfd_link_pic (info
)
5268 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
5269 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273 require an la25 stub. See also mips_elf_local_pic_function_p,
5274 which determines whether the destination function ever requires a
5278 mips_elf_relocation_needs_la25_stub (bfd
*input_bfd
, int r_type
,
5279 bfd_boolean target_is_16_bit_code_p
)
5281 /* We specifically ignore branches and jumps from EF_PIC objects,
5282 where the onus is on the compiler or programmer to perform any
5283 necessary initialization of $25. Sometimes such initialization
5284 is unnecessary; for example, -mno-shared functions do not use
5285 the incoming value of $25, and may therefore be called directly. */
5286 if (PIC_OBJECT_P (input_bfd
))
5293 case R_MIPS_PC21_S2
:
5294 case R_MIPS_PC26_S2
:
5295 case R_MICROMIPS_26_S1
:
5296 case R_MICROMIPS_PC7_S1
:
5297 case R_MICROMIPS_PC10_S1
:
5298 case R_MICROMIPS_PC16_S1
:
5299 case R_MICROMIPS_PC23_S2
:
5303 return !target_is_16_bit_code_p
;
5310 /* Obtain the field relocated by RELOCATION. */
5313 mips_elf_obtain_contents (reloc_howto_type
*howto
,
5314 const Elf_Internal_Rela
*relocation
,
5315 bfd
*input_bfd
, bfd_byte
*contents
)
5318 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5319 unsigned int size
= bfd_get_reloc_size (howto
);
5321 /* Obtain the bytes. */
5323 x
= bfd_get (8 * size
, input_bfd
, location
);
5328 /* Store the field relocated by RELOCATION. */
5331 mips_elf_store_contents (reloc_howto_type
*howto
,
5332 const Elf_Internal_Rela
*relocation
,
5333 bfd
*input_bfd
, bfd_byte
*contents
, bfd_vma x
)
5335 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5336 unsigned int size
= bfd_get_reloc_size (howto
);
5338 /* Put the value into the output. */
5340 bfd_put (8 * size
, input_bfd
, x
, location
);
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344 RELOCATION described by HOWTO, with a move of 0 to the load target
5345 register, returning TRUE if that is successful and FALSE otherwise.
5346 If DOIT is FALSE, then only determine it patching is possible and
5347 return status without actually changing CONTENTS.
5351 mips_elf_nullify_got_load (bfd
*input_bfd
, bfd_byte
*contents
,
5352 const Elf_Internal_Rela
*relocation
,
5353 reloc_howto_type
*howto
, bfd_boolean doit
)
5355 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5356 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5357 bfd_boolean nullified
= TRUE
;
5360 _bfd_mips_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
5362 /* Obtain the current value. */
5363 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5367 if (mips16_reloc_p (r_type
)
5368 && (((x
>> 22) & 0x3ff) == 0x3d3 /* LW */
5369 || ((x
>> 22) & 0x3ff) == 0x3c7)) /* LD */
5370 x
= (0x3cdU
<< 22) | (x
& (7 << 16)) << 3; /* LI */
5371 else if (micromips_reloc_p (r_type
)
5372 && ((x
>> 26) & 0x37) == 0x37) /* LW/LD */
5373 x
= (0xc << 26) | (x
& (0x1f << 21)); /* ADDIU */
5374 else if (((x
>> 26) & 0x3f) == 0x23 /* LW */
5375 || ((x
>> 26) & 0x3f) == 0x37) /* LD */
5376 x
= (0x9 << 26) | (x
& (0x1f << 16)); /* ADDIU */
5380 /* Put the value into the output. */
5381 if (doit
&& nullified
)
5382 mips_elf_store_contents (howto
, relocation
, input_bfd
, contents
, x
);
5384 _bfd_mips_elf_reloc_shuffle (input_bfd
, r_type
, FALSE
, location
);
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390 the INPUT_BFD). The ADDEND is the addend to use for this
5391 RELOCATION; RELOCATION->R_ADDEND is ignored.
5393 The result of the relocation calculation is stored in VALUEP.
5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5397 This function returns bfd_reloc_continue if the caller need take no
5398 further action regarding this relocation, bfd_reloc_notsupported if
5399 something goes dramatically wrong, bfd_reloc_overflow if an
5400 overflow occurs, and bfd_reloc_ok to indicate success. */
5402 static bfd_reloc_status_type
5403 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
5404 asection
*input_section
, bfd_byte
*contents
,
5405 struct bfd_link_info
*info
,
5406 const Elf_Internal_Rela
*relocation
,
5407 bfd_vma addend
, reloc_howto_type
*howto
,
5408 Elf_Internal_Sym
*local_syms
,
5409 asection
**local_sections
, bfd_vma
*valuep
,
5411 bfd_boolean
*cross_mode_jump_p
,
5412 bfd_boolean save_addend
)
5414 /* The eventual value we will return. */
5416 /* The address of the symbol against which the relocation is
5419 /* The final GP value to be used for the relocatable, executable, or
5420 shared object file being produced. */
5422 /* The place (section offset or address) of the storage unit being
5425 /* The value of GP used to create the relocatable object. */
5427 /* The offset into the global offset table at which the address of
5428 the relocation entry symbol, adjusted by the addend, resides
5429 during execution. */
5430 bfd_vma g
= MINUS_ONE
;
5431 /* The section in which the symbol referenced by the relocation is
5433 asection
*sec
= NULL
;
5434 struct mips_elf_link_hash_entry
*h
= NULL
;
5435 /* TRUE if the symbol referred to by this relocation is a local
5437 bfd_boolean local_p
, was_local_p
;
5438 /* TRUE if the symbol referred to by this relocation is a section
5440 bfd_boolean section_p
= FALSE
;
5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5442 bfd_boolean gp_disp_p
= FALSE
;
5443 /* TRUE if the symbol referred to by this relocation is
5444 "__gnu_local_gp". */
5445 bfd_boolean gnu_local_gp_p
= FALSE
;
5446 Elf_Internal_Shdr
*symtab_hdr
;
5448 unsigned long r_symndx
;
5450 /* TRUE if overflow occurred during the calculation of the
5451 relocation value. */
5452 bfd_boolean overflowed_p
;
5453 /* TRUE if this relocation refers to a MIPS16 function. */
5454 bfd_boolean target_is_16_bit_code_p
= FALSE
;
5455 bfd_boolean target_is_micromips_code_p
= FALSE
;
5456 struct mips_elf_link_hash_table
*htab
;
5458 bfd_boolean resolved_to_zero
;
5460 dynobj
= elf_hash_table (info
)->dynobj
;
5461 htab
= mips_elf_hash_table (info
);
5462 BFD_ASSERT (htab
!= NULL
);
5464 /* Parse the relocation. */
5465 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
5466 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5467 p
= (input_section
->output_section
->vma
5468 + input_section
->output_offset
5469 + relocation
->r_offset
);
5471 /* Assume that there will be no overflow. */
5472 overflowed_p
= FALSE
;
5474 /* Figure out whether or not the symbol is local, and get the offset
5475 used in the array of hash table entries. */
5476 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5477 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
5479 was_local_p
= local_p
;
5480 if (! elf_bad_symtab (input_bfd
))
5481 extsymoff
= symtab_hdr
->sh_info
;
5484 /* The symbol table does not follow the rule that local symbols
5485 must come before globals. */
5489 /* Figure out the value of the symbol. */
5492 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
5493 Elf_Internal_Sym
*sym
;
5495 sym
= local_syms
+ r_symndx
;
5496 sec
= local_sections
[r_symndx
];
5498 section_p
= ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
;
5500 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5501 if (!section_p
|| (sec
->flags
& SEC_MERGE
))
5502 symbol
+= sym
->st_value
;
5503 if ((sec
->flags
& SEC_MERGE
) && section_p
)
5505 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
5507 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
5510 /* MIPS16/microMIPS text labels should be treated as odd. */
5511 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
5514 /* Record the name of this symbol, for our caller. */
5515 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
5516 symtab_hdr
->sh_link
,
5518 if (*namep
== NULL
|| **namep
== '\0')
5519 *namep
= bfd_section_name (sec
);
5521 /* For relocations against a section symbol and ones against no
5522 symbol (absolute relocations) infer the ISA mode from the addend. */
5523 if (section_p
|| r_symndx
== STN_UNDEF
)
5525 target_is_16_bit_code_p
= (addend
& 1) && !micromips_p
;
5526 target_is_micromips_code_p
= (addend
& 1) && micromips_p
;
5528 /* For relocations against an absolute symbol infer the ISA mode
5529 from the value of the symbol plus addend. */
5530 else if (bfd_is_abs_section (sec
))
5532 target_is_16_bit_code_p
= ((symbol
+ addend
) & 1) && !micromips_p
;
5533 target_is_micromips_code_p
= ((symbol
+ addend
) & 1) && micromips_p
;
5535 /* Otherwise just use the regular symbol annotation available. */
5538 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (sym
->st_other
);
5539 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (sym
->st_other
);
5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5546 /* For global symbols we look up the symbol in the hash-table. */
5547 h
= ((struct mips_elf_link_hash_entry
*)
5548 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
5549 /* Find the real hash-table entry for this symbol. */
5550 while (h
->root
.root
.type
== bfd_link_hash_indirect
5551 || h
->root
.root
.type
== bfd_link_hash_warning
)
5552 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5554 /* Record the name of this symbol, for our caller. */
5555 *namep
= h
->root
.root
.root
.string
;
5557 /* See if this is the special _gp_disp symbol. Note that such a
5558 symbol must always be a global symbol. */
5559 if (strcmp (*namep
, "_gp_disp") == 0
5560 && ! NEWABI_P (input_bfd
))
5562 /* Relocations against _gp_disp are permitted only with
5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5564 if (!hi16_reloc_p (r_type
) && !lo16_reloc_p (r_type
))
5565 return bfd_reloc_notsupported
;
5569 /* See if this is the special _gp symbol. Note that such a
5570 symbol must always be a global symbol. */
5571 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
5572 gnu_local_gp_p
= TRUE
;
5575 /* If this symbol is defined, calculate its address. Note that
5576 _gp_disp is a magic symbol, always implicitly defined by the
5577 linker, so it's inappropriate to check to see whether or not
5579 else if ((h
->root
.root
.type
== bfd_link_hash_defined
5580 || h
->root
.root
.type
== bfd_link_hash_defweak
)
5581 && h
->root
.root
.u
.def
.section
)
5583 sec
= h
->root
.root
.u
.def
.section
;
5584 if (sec
->output_section
)
5585 symbol
= (h
->root
.root
.u
.def
.value
5586 + sec
->output_section
->vma
5587 + sec
->output_offset
);
5589 symbol
= h
->root
.root
.u
.def
.value
;
5591 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
5592 /* We allow relocations against undefined weak symbols, giving
5593 it the value zero, so that you can undefined weak functions
5594 and check to see if they exist by looking at their
5597 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
5598 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5600 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5603 /* If this is a dynamic link, we should have created a
5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 in _bfd_mips_elf_create_dynamic_sections.
5606 Otherwise, we should define the symbol with a value of 0.
5607 FIXME: It should probably get into the symbol table
5609 BFD_ASSERT (! bfd_link_pic (info
));
5610 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
5613 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
5615 /* This is an optional symbol - an Irix specific extension to the
5616 ELF spec. Ignore it for now.
5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 than simply ignoring them, but we do not handle this for now.
5619 For information see the "64-bit ELF Object File Specification"
5620 which is available from here:
5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5626 bfd_boolean reject_undefined
5627 = (info
->unresolved_syms_in_objects
== RM_DIAGNOSE
5628 && !info
->warn_unresolved_syms
)
5629 || ELF_ST_VISIBILITY (h
->root
.other
) != STV_DEFAULT
;
5631 info
->callbacks
->undefined_symbol
5632 (info
, h
->root
.root
.root
.string
, input_bfd
,
5633 input_section
, relocation
->r_offset
, reject_undefined
);
5635 if (reject_undefined
)
5636 return bfd_reloc_undefined
;
5641 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (h
->root
.other
);
5642 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (h
->root
.other
);
5645 /* If this is a reference to a 16-bit function with a stub, we need
5646 to redirect the relocation to the stub unless:
5648 (a) the relocation is for a MIPS16 JAL;
5650 (b) the relocation is for a MIPS16 PIC call, and there are no
5651 non-MIPS16 uses of the GOT slot; or
5653 (c) the section allows direct references to MIPS16 functions. */
5654 if (r_type
!= R_MIPS16_26
5655 && !bfd_link_relocatable (info
)
5657 && h
->fn_stub
!= NULL
5658 && (r_type
!= R_MIPS16_CALL16
|| h
->need_fn_stub
))
5660 && mips_elf_tdata (input_bfd
)->local_stubs
!= NULL
5661 && mips_elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
5662 && !section_allows_mips16_refs_p (input_section
))
5664 /* This is a 32- or 64-bit call to a 16-bit function. We should
5665 have already noticed that we were going to need the
5669 sec
= mips_elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
5674 BFD_ASSERT (h
->need_fn_stub
);
5677 /* If a LA25 header for the stub itself exists, point to the
5678 prepended LUI/ADDIU sequence. */
5679 sec
= h
->la25_stub
->stub_section
;
5680 value
= h
->la25_stub
->offset
;
5689 symbol
= sec
->output_section
->vma
+ sec
->output_offset
+ value
;
5690 /* The target is 16-bit, but the stub isn't. */
5691 target_is_16_bit_code_p
= FALSE
;
5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694 to a standard MIPS function, we need to redirect the call to the stub.
5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696 indirect calls should use an indirect stub instead. */
5697 else if (r_type
== R_MIPS16_26
&& !bfd_link_relocatable (info
)
5698 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
5700 && mips_elf_tdata (input_bfd
)->local_call_stubs
!= NULL
5701 && mips_elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
5702 && ((h
!= NULL
&& h
->use_plt_entry
) || !target_is_16_bit_code_p
))
5705 sec
= mips_elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
5708 /* If both call_stub and call_fp_stub are defined, we can figure
5709 out which one to use by checking which one appears in the input
5711 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5716 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5718 if (CALL_FP_STUB_P (bfd_section_name (o
)))
5720 sec
= h
->call_fp_stub
;
5727 else if (h
->call_stub
!= NULL
)
5730 sec
= h
->call_fp_stub
;
5733 BFD_ASSERT (sec
->size
> 0);
5734 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5736 /* If this is a direct call to a PIC function, redirect to the
5738 else if (h
!= NULL
&& h
->la25_stub
5739 && mips_elf_relocation_needs_la25_stub (input_bfd
, r_type
,
5740 target_is_16_bit_code_p
))
5742 symbol
= (h
->la25_stub
->stub_section
->output_section
->vma
5743 + h
->la25_stub
->stub_section
->output_offset
5744 + h
->la25_stub
->offset
);
5745 if (ELF_ST_IS_MICROMIPS (h
->root
.other
))
5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749 entry is used if a standard PLT entry has also been made. In this
5750 case the symbol will have been set by mips_elf_set_plt_sym_value
5751 to point to the standard PLT entry, so redirect to the compressed
5753 else if ((mips16_branch_reloc_p (r_type
)
5754 || micromips_branch_reloc_p (r_type
))
5755 && !bfd_link_relocatable (info
)
5758 && h
->root
.plt
.plist
->comp_offset
!= MINUS_ONE
5759 && h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
5761 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
5763 sec
= htab
->root
.splt
;
5764 symbol
= (sec
->output_section
->vma
5765 + sec
->output_offset
5766 + htab
->plt_header_size
5767 + htab
->plt_mips_offset
5768 + h
->root
.plt
.plist
->comp_offset
5771 target_is_16_bit_code_p
= !micromips_p
;
5772 target_is_micromips_code_p
= micromips_p
;
5775 /* Make sure MIPS16 and microMIPS are not used together. */
5776 if ((mips16_branch_reloc_p (r_type
) && target_is_micromips_code_p
)
5777 || (micromips_branch_reloc_p (r_type
) && target_is_16_bit_code_p
))
5780 (_("MIPS16 and microMIPS functions cannot call each other"));
5781 return bfd_reloc_notsupported
;
5784 /* Calls from 16-bit code to 32-bit code and vice versa require the
5785 mode change. However, we can ignore calls to undefined weak symbols,
5786 which should never be executed at runtime. This exception is important
5787 because the assembly writer may have "known" that any definition of the
5788 symbol would be 16-bit code, and that direct jumps were therefore
5790 *cross_mode_jump_p
= (!bfd_link_relocatable (info
)
5791 && !(h
&& h
->root
.root
.type
== bfd_link_hash_undefweak
)
5792 && ((mips16_branch_reloc_p (r_type
)
5793 && !target_is_16_bit_code_p
)
5794 || (micromips_branch_reloc_p (r_type
)
5795 && !target_is_micromips_code_p
)
5796 || ((branch_reloc_p (r_type
)
5797 || r_type
== R_MIPS_JALR
)
5798 && (target_is_16_bit_code_p
5799 || target_is_micromips_code_p
))));
5801 resolved_to_zero
= (h
!= NULL
5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, &h
->root
));
5806 case R_MIPS16_CALL16
:
5807 case R_MIPS16_GOT16
:
5810 case R_MIPS_GOT_PAGE
:
5811 case R_MIPS_GOT_DISP
:
5812 case R_MIPS_GOT_LO16
:
5813 case R_MIPS_CALL_LO16
:
5814 case R_MICROMIPS_CALL16
:
5815 case R_MICROMIPS_GOT16
:
5816 case R_MICROMIPS_GOT_PAGE
:
5817 case R_MICROMIPS_GOT_DISP
:
5818 case R_MICROMIPS_GOT_LO16
:
5819 case R_MICROMIPS_CALL_LO16
:
5820 if (resolved_to_zero
5821 && !bfd_link_relocatable (info
)
5822 && mips_elf_nullify_got_load (input_bfd
, contents
,
5823 relocation
, howto
, TRUE
))
5824 return bfd_reloc_continue
;
5827 case R_MIPS_GOT_HI16
:
5828 case R_MIPS_CALL_HI16
:
5829 case R_MICROMIPS_GOT_HI16
:
5830 case R_MICROMIPS_CALL_HI16
:
5831 if (resolved_to_zero
5832 && htab
->use_absolute_zero
5833 && bfd_link_pic (info
))
5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5836 h
= mips_elf_link_hash_lookup (htab
, "__gnu_absolute_zero",
5837 FALSE
, FALSE
, FALSE
);
5838 BFD_ASSERT (h
!= NULL
);
5843 local_p
= (h
== NULL
|| mips_use_local_got_p (info
, h
));
5845 gp0
= _bfd_get_gp_value (input_bfd
);
5846 gp
= _bfd_get_gp_value (abfd
);
5848 gp
+= mips_elf_adjust_gp (abfd
, htab
->got_info
, input_bfd
);
5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5856 if (got_page_reloc_p (r_type
) && !local_p
)
5858 r_type
= (micromips_reloc_p (r_type
)
5859 ? R_MICROMIPS_GOT_DISP
: R_MIPS_GOT_DISP
);
5863 /* If we haven't already determined the GOT offset, and we're going
5864 to need it, get it now. */
5867 case R_MIPS16_CALL16
:
5868 case R_MIPS16_GOT16
:
5871 case R_MIPS_GOT_DISP
:
5872 case R_MIPS_GOT_HI16
:
5873 case R_MIPS_CALL_HI16
:
5874 case R_MIPS_GOT_LO16
:
5875 case R_MIPS_CALL_LO16
:
5876 case R_MICROMIPS_CALL16
:
5877 case R_MICROMIPS_GOT16
:
5878 case R_MICROMIPS_GOT_DISP
:
5879 case R_MICROMIPS_GOT_HI16
:
5880 case R_MICROMIPS_CALL_HI16
:
5881 case R_MICROMIPS_GOT_LO16
:
5882 case R_MICROMIPS_CALL_LO16
:
5884 case R_MIPS_TLS_GOTTPREL
:
5885 case R_MIPS_TLS_LDM
:
5886 case R_MIPS16_TLS_GD
:
5887 case R_MIPS16_TLS_GOTTPREL
:
5888 case R_MIPS16_TLS_LDM
:
5889 case R_MICROMIPS_TLS_GD
:
5890 case R_MICROMIPS_TLS_GOTTPREL
:
5891 case R_MICROMIPS_TLS_LDM
:
5892 /* Find the index into the GOT where this value is located. */
5893 if (tls_ldm_reloc_p (r_type
))
5895 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5896 0, 0, NULL
, r_type
);
5898 return bfd_reloc_outofrange
;
5902 /* On VxWorks, CALL relocations should refer to the .got.plt
5903 entry, which is initialized to point at the PLT stub. */
5904 if (htab
->root
.target_os
== is_vxworks
5905 && (call_hi16_reloc_p (r_type
)
5906 || call_lo16_reloc_p (r_type
)
5907 || call16_reloc_p (r_type
)))
5909 BFD_ASSERT (addend
== 0);
5910 BFD_ASSERT (h
->root
.needs_plt
);
5911 g
= mips_elf_gotplt_index (info
, &h
->root
);
5915 BFD_ASSERT (addend
== 0);
5916 g
= mips_elf_global_got_index (abfd
, info
, input_bfd
,
5918 if (!TLS_RELOC_P (r_type
)
5919 && !elf_hash_table (info
)->dynamic_sections_created
)
5920 /* This is a static link. We must initialize the GOT entry. */
5921 MIPS_ELF_PUT_WORD (dynobj
, symbol
, htab
->root
.sgot
->contents
+ g
);
5924 else if (htab
->root
.target_os
!= is_vxworks
5925 && (call16_reloc_p (r_type
) || got16_reloc_p (r_type
)))
5926 /* The calculation below does not involve "g". */
5930 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5931 symbol
+ addend
, r_symndx
, h
, r_type
);
5933 return bfd_reloc_outofrange
;
5936 /* Convert GOT indices to actual offsets. */
5937 g
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, g
);
5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942 symbols are resolved by the loader. Add them to .rela.dyn. */
5943 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
5945 Elf_Internal_Rela outrel
;
5949 s
= mips_elf_rel_dyn_section (info
, FALSE
);
5950 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
5952 outrel
.r_offset
= (input_section
->output_section
->vma
5953 + input_section
->output_offset
5954 + relocation
->r_offset
);
5955 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
5956 outrel
.r_addend
= addend
;
5957 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
5959 /* If we've written this relocation for a readonly section,
5960 we need to set DF_TEXTREL again, so that we do not delete the
5962 if (MIPS_ELF_READONLY_SECTION (input_section
))
5963 info
->flags
|= DF_TEXTREL
;
5966 return bfd_reloc_ok
;
5969 /* Figure out what kind of relocation is being performed. */
5973 return bfd_reloc_continue
;
5976 if (howto
->partial_inplace
)
5977 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
5978 value
= symbol
+ addend
;
5979 overflowed_p
= mips_elf_overflow_p (value
, 16);
5985 if ((bfd_link_pic (info
)
5986 || (htab
->root
.dynamic_sections_created
5988 && h
->root
.def_dynamic
5989 && !h
->root
.def_regular
5990 && !h
->has_static_relocs
))
5991 && r_symndx
!= STN_UNDEF
5993 || h
->root
.root
.type
!= bfd_link_hash_undefweak
5994 || (ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
5995 && !resolved_to_zero
))
5996 && (input_section
->flags
& SEC_ALLOC
) != 0)
5998 /* If we're creating a shared library, then we can't know
5999 where the symbol will end up. So, we create a relocation
6000 record in the output, and leave the job up to the dynamic
6001 linker. We must do the same for executable references to
6002 shared library symbols, unless we've decided to use copy
6003 relocs or PLTs instead. */
6005 if (!mips_elf_create_dynamic_relocation (abfd
,
6013 return bfd_reloc_undefined
;
6017 if (r_type
!= R_MIPS_REL32
)
6018 value
= symbol
+ addend
;
6022 value
&= howto
->dst_mask
;
6026 value
= symbol
+ addend
- p
;
6027 value
&= howto
->dst_mask
;
6031 /* The calculation for R_MIPS16_26 is just the same as for an
6032 R_MIPS_26. It's only the storage of the relocated field into
6033 the output file that's different. That's handled in
6034 mips_elf_perform_relocation. So, we just fall through to the
6035 R_MIPS_26 case here. */
6037 case R_MICROMIPS_26_S1
:
6041 /* Shift is 2, unusually, for microMIPS JALX. */
6042 shift
= (!*cross_mode_jump_p
&& r_type
== R_MICROMIPS_26_S1
) ? 1 : 2;
6044 if (howto
->partial_inplace
&& !section_p
)
6045 value
= _bfd_mips_elf_sign_extend (addend
, 26 + shift
);
6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6051 be the correct ISA mode selector except for weak undefined
6053 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6054 && (*cross_mode_jump_p
6055 ? (value
& 3) != (r_type
== R_MIPS_26
)
6056 : (value
& ((1 << shift
) - 1)) != (r_type
!= R_MIPS_26
)))
6057 return bfd_reloc_outofrange
;
6060 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6061 overflowed_p
= (value
>> 26) != ((p
+ 4) >> (26 + shift
));
6062 value
&= howto
->dst_mask
;
6066 case R_MIPS_TLS_DTPREL_HI16
:
6067 case R_MIPS16_TLS_DTPREL_HI16
:
6068 case R_MICROMIPS_TLS_DTPREL_HI16
:
6069 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
6073 case R_MIPS_TLS_DTPREL_LO16
:
6074 case R_MIPS_TLS_DTPREL32
:
6075 case R_MIPS_TLS_DTPREL64
:
6076 case R_MIPS16_TLS_DTPREL_LO16
:
6077 case R_MICROMIPS_TLS_DTPREL_LO16
:
6078 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
6081 case R_MIPS_TLS_TPREL_HI16
:
6082 case R_MIPS16_TLS_TPREL_HI16
:
6083 case R_MICROMIPS_TLS_TPREL_HI16
:
6084 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
6088 case R_MIPS_TLS_TPREL_LO16
:
6089 case R_MIPS_TLS_TPREL32
:
6090 case R_MIPS_TLS_TPREL64
:
6091 case R_MIPS16_TLS_TPREL_LO16
:
6092 case R_MICROMIPS_TLS_TPREL_LO16
:
6093 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
6098 case R_MICROMIPS_HI16
:
6101 value
= mips_elf_high (addend
+ symbol
);
6102 value
&= howto
->dst_mask
;
6106 /* For MIPS16 ABI code we generate this sequence
6107 0: li $v0,%hi(_gp_disp)
6108 4: addiupc $v1,%lo(_gp_disp)
6112 So the offsets of hi and lo relocs are the same, but the
6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 ADDIUPC clears the low two bits of the instruction address,
6115 so the base is ($t9 + 4) & ~3. */
6116 if (r_type
== R_MIPS16_HI16
)
6117 value
= mips_elf_high (addend
+ gp
- ((p
+ 4) & ~(bfd_vma
) 0x3));
6118 /* The microMIPS .cpload sequence uses the same assembly
6119 instructions as the traditional psABI version, but the
6120 incoming $t9 has the low bit set. */
6121 else if (r_type
== R_MICROMIPS_HI16
)
6122 value
= mips_elf_high (addend
+ gp
- p
- 1);
6124 value
= mips_elf_high (addend
+ gp
- p
);
6130 case R_MICROMIPS_LO16
:
6131 case R_MICROMIPS_HI0_LO16
:
6133 value
= (symbol
+ addend
) & howto
->dst_mask
;
6136 /* See the comment for R_MIPS16_HI16 above for the reason
6137 for this conditional. */
6138 if (r_type
== R_MIPS16_LO16
)
6139 value
= addend
+ gp
- (p
& ~(bfd_vma
) 0x3);
6140 else if (r_type
== R_MICROMIPS_LO16
6141 || r_type
== R_MICROMIPS_HI0_LO16
)
6142 value
= addend
+ gp
- p
+ 3;
6144 value
= addend
+ gp
- p
+ 4;
6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 for overflow. But, on, say, IRIX5, relocations against
6147 _gp_disp are normally generated from the .cpload
6148 pseudo-op. It generates code that normally looks like
6151 lui $gp,%hi(_gp_disp)
6152 addiu $gp,$gp,%lo(_gp_disp)
6155 Here $t9 holds the address of the function being called,
6156 as required by the MIPS ELF ABI. The R_MIPS_LO16
6157 relocation can easily overflow in this situation, but the
6158 R_MIPS_HI16 relocation will handle the overflow.
6159 Therefore, we consider this a bug in the MIPS ABI, and do
6160 not check for overflow here. */
6164 case R_MIPS_LITERAL
:
6165 case R_MICROMIPS_LITERAL
:
6166 /* Because we don't merge literal sections, we can handle this
6167 just like R_MIPS_GPREL16. In the long run, we should merge
6168 shared literals, and then we will need to additional work
6173 case R_MIPS16_GPREL
:
6174 /* The R_MIPS16_GPREL performs the same calculation as
6175 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 order. We don't need to do anything special here; the
6177 differences are handled in mips_elf_perform_relocation. */
6178 case R_MIPS_GPREL16
:
6179 case R_MICROMIPS_GPREL7_S2
:
6180 case R_MICROMIPS_GPREL16
:
6181 /* Only sign-extend the addend if it was extracted from the
6182 instruction. If the addend was separate, leave it alone,
6183 otherwise we may lose significant bits. */
6184 if (howto
->partial_inplace
)
6185 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
6186 value
= symbol
+ addend
- gp
;
6187 /* If the symbol was local, any earlier relocatable links will
6188 have adjusted its addend with the gp offset, so compensate
6189 for that now. Don't do it for symbols forced local in this
6190 link, though, since they won't have had the gp offset applied
6194 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6195 overflowed_p
= mips_elf_overflow_p (value
, 16);
6198 case R_MIPS16_GOT16
:
6199 case R_MIPS16_CALL16
:
6202 case R_MICROMIPS_GOT16
:
6203 case R_MICROMIPS_CALL16
:
6204 /* VxWorks does not have separate local and global semantics for
6205 R_MIPS*_GOT16; every relocation evaluates to "G". */
6206 if (htab
->root
.target_os
!= is_vxworks
&& local_p
)
6208 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
6209 symbol
+ addend
, !was_local_p
);
6210 if (value
== MINUS_ONE
)
6211 return bfd_reloc_outofrange
;
6213 = mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
6214 overflowed_p
= mips_elf_overflow_p (value
, 16);
6221 case R_MIPS_TLS_GOTTPREL
:
6222 case R_MIPS_TLS_LDM
:
6223 case R_MIPS_GOT_DISP
:
6224 case R_MIPS16_TLS_GD
:
6225 case R_MIPS16_TLS_GOTTPREL
:
6226 case R_MIPS16_TLS_LDM
:
6227 case R_MICROMIPS_TLS_GD
:
6228 case R_MICROMIPS_TLS_GOTTPREL
:
6229 case R_MICROMIPS_TLS_LDM
:
6230 case R_MICROMIPS_GOT_DISP
:
6232 overflowed_p
= mips_elf_overflow_p (value
, 16);
6235 case R_MIPS_GPREL32
:
6236 value
= (addend
+ symbol
+ gp0
- gp
);
6238 value
&= howto
->dst_mask
;
6242 case R_MIPS_GNU_REL16_S2
:
6243 if (howto
->partial_inplace
)
6244 addend
= _bfd_mips_elf_sign_extend (addend
, 18);
6246 /* No need to exclude weak undefined symbols here as they resolve
6247 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 will never trigger for them. */
6249 if (*cross_mode_jump_p
6250 ? ((symbol
+ addend
) & 3) != 1
6251 : ((symbol
+ addend
) & 3) != 0)
6252 return bfd_reloc_outofrange
;
6254 value
= symbol
+ addend
- p
;
6255 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6256 overflowed_p
= mips_elf_overflow_p (value
, 18);
6257 value
>>= howto
->rightshift
;
6258 value
&= howto
->dst_mask
;
6261 case R_MIPS16_PC16_S1
:
6262 if (howto
->partial_inplace
)
6263 addend
= _bfd_mips_elf_sign_extend (addend
, 17);
6265 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6266 && (*cross_mode_jump_p
6267 ? ((symbol
+ addend
) & 3) != 0
6268 : ((symbol
+ addend
) & 1) == 0))
6269 return bfd_reloc_outofrange
;
6271 value
= symbol
+ addend
- p
;
6272 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6273 overflowed_p
= mips_elf_overflow_p (value
, 17);
6274 value
>>= howto
->rightshift
;
6275 value
&= howto
->dst_mask
;
6278 case R_MIPS_PC21_S2
:
6279 if (howto
->partial_inplace
)
6280 addend
= _bfd_mips_elf_sign_extend (addend
, 23);
6282 if ((symbol
+ addend
) & 3)
6283 return bfd_reloc_outofrange
;
6285 value
= symbol
+ addend
- p
;
6286 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6287 overflowed_p
= mips_elf_overflow_p (value
, 23);
6288 value
>>= howto
->rightshift
;
6289 value
&= howto
->dst_mask
;
6292 case R_MIPS_PC26_S2
:
6293 if (howto
->partial_inplace
)
6294 addend
= _bfd_mips_elf_sign_extend (addend
, 28);
6296 if ((symbol
+ addend
) & 3)
6297 return bfd_reloc_outofrange
;
6299 value
= symbol
+ addend
- p
;
6300 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6301 overflowed_p
= mips_elf_overflow_p (value
, 28);
6302 value
>>= howto
->rightshift
;
6303 value
&= howto
->dst_mask
;
6306 case R_MIPS_PC18_S3
:
6307 if (howto
->partial_inplace
)
6308 addend
= _bfd_mips_elf_sign_extend (addend
, 21);
6310 if ((symbol
+ addend
) & 7)
6311 return bfd_reloc_outofrange
;
6313 value
= symbol
+ addend
- ((p
| 7) ^ 7);
6314 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6315 overflowed_p
= mips_elf_overflow_p (value
, 21);
6316 value
>>= howto
->rightshift
;
6317 value
&= howto
->dst_mask
;
6320 case R_MIPS_PC19_S2
:
6321 if (howto
->partial_inplace
)
6322 addend
= _bfd_mips_elf_sign_extend (addend
, 21);
6324 if ((symbol
+ addend
) & 3)
6325 return bfd_reloc_outofrange
;
6327 value
= symbol
+ addend
- p
;
6328 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6329 overflowed_p
= mips_elf_overflow_p (value
, 21);
6330 value
>>= howto
->rightshift
;
6331 value
&= howto
->dst_mask
;
6335 value
= mips_elf_high (symbol
+ addend
- p
);
6336 value
&= howto
->dst_mask
;
6340 if (howto
->partial_inplace
)
6341 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
6342 value
= symbol
+ addend
- p
;
6343 value
&= howto
->dst_mask
;
6346 case R_MICROMIPS_PC7_S1
:
6347 if (howto
->partial_inplace
)
6348 addend
= _bfd_mips_elf_sign_extend (addend
, 8);
6350 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6351 && (*cross_mode_jump_p
6352 ? ((symbol
+ addend
+ 2) & 3) != 0
6353 : ((symbol
+ addend
+ 2) & 1) == 0))
6354 return bfd_reloc_outofrange
;
6356 value
= symbol
+ addend
- p
;
6357 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6358 overflowed_p
= mips_elf_overflow_p (value
, 8);
6359 value
>>= howto
->rightshift
;
6360 value
&= howto
->dst_mask
;
6363 case R_MICROMIPS_PC10_S1
:
6364 if (howto
->partial_inplace
)
6365 addend
= _bfd_mips_elf_sign_extend (addend
, 11);
6367 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6368 && (*cross_mode_jump_p
6369 ? ((symbol
+ addend
+ 2) & 3) != 0
6370 : ((symbol
+ addend
+ 2) & 1) == 0))
6371 return bfd_reloc_outofrange
;
6373 value
= symbol
+ addend
- p
;
6374 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6375 overflowed_p
= mips_elf_overflow_p (value
, 11);
6376 value
>>= howto
->rightshift
;
6377 value
&= howto
->dst_mask
;
6380 case R_MICROMIPS_PC16_S1
:
6381 if (howto
->partial_inplace
)
6382 addend
= _bfd_mips_elf_sign_extend (addend
, 17);
6384 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6385 && (*cross_mode_jump_p
6386 ? ((symbol
+ addend
) & 3) != 0
6387 : ((symbol
+ addend
) & 1) == 0))
6388 return bfd_reloc_outofrange
;
6390 value
= symbol
+ addend
- p
;
6391 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6392 overflowed_p
= mips_elf_overflow_p (value
, 17);
6393 value
>>= howto
->rightshift
;
6394 value
&= howto
->dst_mask
;
6397 case R_MICROMIPS_PC23_S2
:
6398 if (howto
->partial_inplace
)
6399 addend
= _bfd_mips_elf_sign_extend (addend
, 25);
6400 value
= symbol
+ addend
- ((p
| 3) ^ 3);
6401 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6402 overflowed_p
= mips_elf_overflow_p (value
, 25);
6403 value
>>= howto
->rightshift
;
6404 value
&= howto
->dst_mask
;
6407 case R_MIPS_GOT_HI16
:
6408 case R_MIPS_CALL_HI16
:
6409 case R_MICROMIPS_GOT_HI16
:
6410 case R_MICROMIPS_CALL_HI16
:
6411 /* We're allowed to handle these two relocations identically.
6412 The dynamic linker is allowed to handle the CALL relocations
6413 differently by creating a lazy evaluation stub. */
6415 value
= mips_elf_high (value
);
6416 value
&= howto
->dst_mask
;
6419 case R_MIPS_GOT_LO16
:
6420 case R_MIPS_CALL_LO16
:
6421 case R_MICROMIPS_GOT_LO16
:
6422 case R_MICROMIPS_CALL_LO16
:
6423 value
= g
& howto
->dst_mask
;
6426 case R_MIPS_GOT_PAGE
:
6427 case R_MICROMIPS_GOT_PAGE
:
6428 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
6429 if (value
== MINUS_ONE
)
6430 return bfd_reloc_outofrange
;
6431 value
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
6432 overflowed_p
= mips_elf_overflow_p (value
, 16);
6435 case R_MIPS_GOT_OFST
:
6436 case R_MICROMIPS_GOT_OFST
:
6438 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
6441 overflowed_p
= mips_elf_overflow_p (value
, 16);
6445 case R_MICROMIPS_SUB
:
6446 value
= symbol
- addend
;
6447 value
&= howto
->dst_mask
;
6451 case R_MICROMIPS_HIGHER
:
6452 value
= mips_elf_higher (addend
+ symbol
);
6453 value
&= howto
->dst_mask
;
6456 case R_MIPS_HIGHEST
:
6457 case R_MICROMIPS_HIGHEST
:
6458 value
= mips_elf_highest (addend
+ symbol
);
6459 value
&= howto
->dst_mask
;
6462 case R_MIPS_SCN_DISP
:
6463 case R_MICROMIPS_SCN_DISP
:
6464 value
= symbol
+ addend
- sec
->output_offset
;
6465 value
&= howto
->dst_mask
;
6469 case R_MICROMIPS_JALR
:
6470 /* This relocation is only a hint. In some cases, we optimize
6471 it into a bal instruction. But we don't try to optimize
6472 when the symbol does not resolve locally. */
6473 if (h
!= NULL
&& !SYMBOL_CALLS_LOCAL (info
, &h
->root
))
6474 return bfd_reloc_continue
;
6475 /* We can't optimize cross-mode jumps either. */
6476 if (*cross_mode_jump_p
)
6477 return bfd_reloc_continue
;
6478 value
= symbol
+ addend
;
6479 /* Neither we can non-instruction-aligned targets. */
6480 if (r_type
== R_MIPS_JALR
? (value
& 3) != 0 : (value
& 1) == 0)
6481 return bfd_reloc_continue
;
6485 case R_MIPS_GNU_VTINHERIT
:
6486 case R_MIPS_GNU_VTENTRY
:
6487 /* We don't do anything with these at present. */
6488 return bfd_reloc_continue
;
6491 /* An unrecognized relocation type. */
6492 return bfd_reloc_notsupported
;
6495 /* Store the VALUE for our caller. */
6497 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
6500 /* It has been determined that the result of the RELOCATION is the
6501 VALUE. Use HOWTO to place VALUE into the output file at the
6502 appropriate position. The SECTION is the section to which the
6504 CROSS_MODE_JUMP_P is true if the relocation field
6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6507 Returns FALSE if anything goes wrong. */
6510 mips_elf_perform_relocation (struct bfd_link_info
*info
,
6511 reloc_howto_type
*howto
,
6512 const Elf_Internal_Rela
*relocation
,
6513 bfd_vma value
, bfd
*input_bfd
,
6514 asection
*input_section
, bfd_byte
*contents
,
6515 bfd_boolean cross_mode_jump_p
)
6519 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
6521 /* Figure out where the relocation is occurring. */
6522 location
= contents
+ relocation
->r_offset
;
6524 _bfd_mips_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
6526 /* Obtain the current value. */
6527 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
6529 /* Clear the field we are setting. */
6530 x
&= ~howto
->dst_mask
;
6532 /* Set the field. */
6533 x
|= (value
& howto
->dst_mask
);
6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6536 if (!cross_mode_jump_p
&& jal_reloc_p (r_type
))
6538 bfd_vma opcode
= x
>> 26;
6540 if (r_type
== R_MIPS16_26
? opcode
== 0x7
6541 : r_type
== R_MICROMIPS_26_S1
? opcode
== 0x3c
6544 info
->callbacks
->einfo
6545 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 input_bfd
, input_section
, relocation
->r_offset
);
6550 if (cross_mode_jump_p
&& jal_reloc_p (r_type
))
6553 bfd_vma opcode
= x
>> 26;
6554 bfd_vma jalx_opcode
;
6556 /* Check to see if the opcode is already JAL or JALX. */
6557 if (r_type
== R_MIPS16_26
)
6559 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
6562 else if (r_type
== R_MICROMIPS_26_S1
)
6564 ok
= ((opcode
== 0x3d) || (opcode
== 0x3c));
6569 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6574 convert J or JALS to JALX. */
6577 info
->callbacks
->einfo
6578 (_("%X%H: unsupported jump between ISA modes; "
6579 "consider recompiling with interlinking enabled\n"),
6580 input_bfd
, input_section
, relocation
->r_offset
);
6584 /* Make this the JALX opcode. */
6585 x
= (x
& ~(0x3fu
<< 26)) | (jalx_opcode
<< 26);
6587 else if (cross_mode_jump_p
&& b_reloc_p (r_type
))
6589 bfd_boolean ok
= FALSE
;
6590 bfd_vma opcode
= x
>> 16;
6591 bfd_vma jalx_opcode
= 0;
6592 bfd_vma sign_bit
= 0;
6596 if (r_type
== R_MICROMIPS_PC16_S1
)
6598 ok
= opcode
== 0x4060;
6603 else if (r_type
== R_MIPS_PC16
|| r_type
== R_MIPS_GNU_REL16_S2
)
6605 ok
= opcode
== 0x411;
6611 if (ok
&& !bfd_link_pic (info
))
6613 addr
= (input_section
->output_section
->vma
6614 + input_section
->output_offset
6615 + relocation
->r_offset
6618 + (((value
& ((sign_bit
<< 1) - 1)) ^ sign_bit
) - sign_bit
));
6620 if ((addr
>> 28) << 28 != (dest
>> 28) << 28)
6622 info
->callbacks
->einfo
6623 (_("%X%H: cannot convert branch between ISA modes "
6624 "to JALX: relocation out of range\n"),
6625 input_bfd
, input_section
, relocation
->r_offset
);
6629 /* Make this the JALX opcode. */
6630 x
= ((dest
>> 2) & 0x3ffffff) | jalx_opcode
<< 26;
6632 else if (!mips_elf_hash_table (info
)->ignore_branch_isa
)
6634 info
->callbacks
->einfo
6635 (_("%X%H: unsupported branch between ISA modes\n"),
6636 input_bfd
, input_section
, relocation
->r_offset
);
6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6643 if (!bfd_link_relocatable (info
)
6644 && !cross_mode_jump_p
6645 && ((JAL_TO_BAL_P (input_bfd
)
6646 && r_type
== R_MIPS_26
6647 && (x
>> 26) == 0x3) /* jal addr */
6648 || (JALR_TO_BAL_P (input_bfd
)
6649 && r_type
== R_MIPS_JALR
6650 && x
== 0x0320f809) /* jalr t9 */
6651 || (JR_TO_B_P (input_bfd
)
6652 && r_type
== R_MIPS_JALR
6653 && (x
& ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6659 addr
= (input_section
->output_section
->vma
6660 + input_section
->output_offset
6661 + relocation
->r_offset
6663 if (r_type
== R_MIPS_26
)
6664 dest
= (value
<< 2) | ((addr
>> 28) << 28);
6668 if (off
<= 0x1ffff && off
>= -0x20000)
6670 if ((x
& ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6671 x
= 0x10000000 | (((bfd_vma
) off
>> 2) & 0xffff); /* b addr */
6673 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
6677 /* Put the value into the output. */
6678 mips_elf_store_contents (howto
, relocation
, input_bfd
, contents
, x
);
6680 _bfd_mips_elf_reloc_shuffle (input_bfd
, r_type
, !bfd_link_relocatable (info
),
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6687 is the original relocation, which is now being transformed into a
6688 dynamic relocation. The ADDENDP is adjusted if necessary; the
6689 caller should store the result in place of the original addend. */
6692 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
6693 struct bfd_link_info
*info
,
6694 const Elf_Internal_Rela
*rel
,
6695 struct mips_elf_link_hash_entry
*h
,
6696 asection
*sec
, bfd_vma symbol
,
6697 bfd_vma
*addendp
, asection
*input_section
)
6699 Elf_Internal_Rela outrel
[3];
6704 bfd_boolean defined_p
;
6705 struct mips_elf_link_hash_table
*htab
;
6707 htab
= mips_elf_hash_table (info
);
6708 BFD_ASSERT (htab
!= NULL
);
6710 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
6711 dynobj
= elf_hash_table (info
)->dynobj
;
6712 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
6713 BFD_ASSERT (sreloc
!= NULL
);
6714 BFD_ASSERT (sreloc
->contents
!= NULL
);
6715 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
6718 outrel
[0].r_offset
=
6719 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
6720 if (ABI_64_P (output_bfd
))
6722 outrel
[1].r_offset
=
6723 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
6724 outrel
[2].r_offset
=
6725 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
6728 if (outrel
[0].r_offset
== MINUS_ONE
)
6729 /* The relocation field has been deleted. */
6732 if (outrel
[0].r_offset
== MINUS_TWO
)
6734 /* The relocation field has been converted into a relative value of
6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6736 the field to be fully relocated, so add in the symbol's value. */
6741 /* We must now calculate the dynamic symbol table index to use
6742 in the relocation. */
6743 if (h
!= NULL
&& ! SYMBOL_REFERENCES_LOCAL (info
, &h
->root
))
6745 BFD_ASSERT (htab
->root
.target_os
== is_vxworks
6746 || h
->global_got_area
!= GGA_NONE
);
6747 indx
= h
->root
.dynindx
;
6748 if (SGI_COMPAT (output_bfd
))
6749 defined_p
= h
->root
.def_regular
;
6751 /* ??? glibc's ld.so just adds the final GOT entry to the
6752 relocation field. It therefore treats relocs against
6753 defined symbols in the same way as relocs against
6754 undefined symbols. */
6759 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
6761 else if (sec
== NULL
|| sec
->owner
== NULL
)
6763 bfd_set_error (bfd_error_bad_value
);
6768 indx
= elf_section_data (sec
->output_section
)->dynindx
;
6771 asection
*osec
= htab
->root
.text_index_section
;
6772 indx
= elf_section_data (osec
)->dynindx
;
6778 /* Instead of generating a relocation using the section
6779 symbol, we may as well make it a fully relative
6780 relocation. We want to avoid generating relocations to
6781 local symbols because we used to generate them
6782 incorrectly, without adding the original symbol value,
6783 which is mandated by the ABI for section symbols. In
6784 order to give dynamic loaders and applications time to
6785 phase out the incorrect use, we refrain from emitting
6786 section-relative relocations. It's not like they're
6787 useful, after all. This should be a bit more efficient
6789 /* ??? Although this behavior is compatible with glibc's ld.so,
6790 the ABI says that relocations against STN_UNDEF should have
6791 a symbol value of 0. Irix rld honors this, so relocations
6792 against STN_UNDEF have no effect. */
6793 if (!SGI_COMPAT (output_bfd
))
6798 /* If the relocation was previously an absolute relocation and
6799 this symbol will not be referred to by the relocation, we must
6800 adjust it by the value we give it in the dynamic symbol table.
6801 Otherwise leave the job up to the dynamic linker. */
6802 if (defined_p
&& r_type
!= R_MIPS_REL32
)
6805 if (htab
->root
.target_os
== is_vxworks
)
6806 /* VxWorks uses non-relative relocations for this. */
6807 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
6809 /* The relocation is always an REL32 relocation because we don't
6810 know where the shared library will wind up at load-time. */
6811 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
6814 /* For strict adherence to the ABI specification, we should
6815 generate a R_MIPS_64 relocation record by itself before the
6816 _REL32/_64 record as well, such that the addend is read in as
6817 a 64-bit value (REL32 is a 32-bit relocation, after all).
6818 However, since none of the existing ELF64 MIPS dynamic
6819 loaders seems to care, we don't waste space with these
6820 artificial relocations. If this turns out to not be true,
6821 mips_elf_allocate_dynamic_relocation() should be tweaked so
6822 as to make room for a pair of dynamic relocations per
6823 invocation if ABI_64_P, and here we should generate an
6824 additional relocation record with R_MIPS_64 by itself for a
6825 NULL symbol before this relocation record. */
6826 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
6827 ABI_64_P (output_bfd
)
6830 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
6832 /* Adjust the output offset of the relocation to reference the
6833 correct location in the output file. */
6834 outrel
[0].r_offset
+= (input_section
->output_section
->vma
6835 + input_section
->output_offset
);
6836 outrel
[1].r_offset
+= (input_section
->output_section
->vma
6837 + input_section
->output_offset
);
6838 outrel
[2].r_offset
+= (input_section
->output_section
->vma
6839 + input_section
->output_offset
);
6841 /* Put the relocation back out. We have to use the special
6842 relocation outputter in the 64-bit case since the 64-bit
6843 relocation format is non-standard. */
6844 if (ABI_64_P (output_bfd
))
6846 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
6847 (output_bfd
, &outrel
[0],
6849 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
6851 else if (htab
->root
.target_os
== is_vxworks
)
6853 /* VxWorks uses RELA rather than REL dynamic relocations. */
6854 outrel
[0].r_addend
= *addendp
;
6855 bfd_elf32_swap_reloca_out
6856 (output_bfd
, &outrel
[0],
6858 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
6861 bfd_elf32_swap_reloc_out
6862 (output_bfd
, &outrel
[0],
6863 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
6865 /* We've now added another relocation. */
6866 ++sreloc
->reloc_count
;
6868 /* Make sure the output section is writable. The dynamic linker
6869 will be writing to it. */
6870 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
6873 /* On IRIX5, make an entry of compact relocation info. */
6874 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
6876 asection
*scpt
= bfd_get_linker_section (dynobj
, ".compact_rel");
6881 Elf32_crinfo cptrel
;
6883 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
6884 cptrel
.vaddr
= (rel
->r_offset
6885 + input_section
->output_section
->vma
6886 + input_section
->output_offset
);
6887 if (r_type
== R_MIPS_REL32
)
6888 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
6890 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
6891 mips_elf_set_cr_dist2to (cptrel
, 0);
6892 cptrel
.konst
= *addendp
;
6894 cr
= (scpt
->contents
6895 + sizeof (Elf32_External_compact_rel
));
6896 mips_elf_set_cr_relvaddr (cptrel
, 0);
6897 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
6898 ((Elf32_External_crinfo
*) cr
6899 + scpt
->reloc_count
));
6900 ++scpt
->reloc_count
;
6904 /* If we've written this relocation for a readonly section,
6905 we need to set DF_TEXTREL again, so that we do not delete the
6907 if (MIPS_ELF_READONLY_SECTION (input_section
))
6908 info
->flags
|= DF_TEXTREL
;
6913 /* Return the MACH for a MIPS e_flags value. */
6916 _bfd_elf_mips_mach (flagword flags
)
6918 switch (flags
& EF_MIPS_MACH
)
6920 case E_MIPS_MACH_3900
:
6921 return bfd_mach_mips3900
;
6923 case E_MIPS_MACH_4010
:
6924 return bfd_mach_mips4010
;
6926 case E_MIPS_MACH_4100
:
6927 return bfd_mach_mips4100
;
6929 case E_MIPS_MACH_4111
:
6930 return bfd_mach_mips4111
;
6932 case E_MIPS_MACH_4120
:
6933 return bfd_mach_mips4120
;
6935 case E_MIPS_MACH_4650
:
6936 return bfd_mach_mips4650
;
6938 case E_MIPS_MACH_5400
:
6939 return bfd_mach_mips5400
;
6941 case E_MIPS_MACH_5500
:
6942 return bfd_mach_mips5500
;
6944 case E_MIPS_MACH_5900
:
6945 return bfd_mach_mips5900
;
6947 case E_MIPS_MACH_9000
:
6948 return bfd_mach_mips9000
;
6950 case E_MIPS_MACH_SB1
:
6951 return bfd_mach_mips_sb1
;
6953 case E_MIPS_MACH_LS2E
:
6954 return bfd_mach_mips_loongson_2e
;
6956 case E_MIPS_MACH_LS2F
:
6957 return bfd_mach_mips_loongson_2f
;
6959 case E_MIPS_MACH_GS464
:
6960 return bfd_mach_mips_gs464
;
6962 case E_MIPS_MACH_GS464E
:
6963 return bfd_mach_mips_gs464e
;
6965 case E_MIPS_MACH_GS264E
:
6966 return bfd_mach_mips_gs264e
;
6968 case E_MIPS_MACH_OCTEON3
:
6969 return bfd_mach_mips_octeon3
;
6971 case E_MIPS_MACH_OCTEON2
:
6972 return bfd_mach_mips_octeon2
;
6974 case E_MIPS_MACH_OCTEON
:
6975 return bfd_mach_mips_octeon
;
6977 case E_MIPS_MACH_XLR
:
6978 return bfd_mach_mips_xlr
;
6980 case E_MIPS_MACH_IAMR2
:
6981 return bfd_mach_mips_interaptiv_mr2
;
6984 switch (flags
& EF_MIPS_ARCH
)
6988 return bfd_mach_mips3000
;
6991 return bfd_mach_mips6000
;
6994 return bfd_mach_mips4000
;
6997 return bfd_mach_mips8000
;
7000 return bfd_mach_mips5
;
7002 case E_MIPS_ARCH_32
:
7003 return bfd_mach_mipsisa32
;
7005 case E_MIPS_ARCH_64
:
7006 return bfd_mach_mipsisa64
;
7008 case E_MIPS_ARCH_32R2
:
7009 return bfd_mach_mipsisa32r2
;
7011 case E_MIPS_ARCH_64R2
:
7012 return bfd_mach_mipsisa64r2
;
7014 case E_MIPS_ARCH_32R6
:
7015 return bfd_mach_mipsisa32r6
;
7017 case E_MIPS_ARCH_64R6
:
7018 return bfd_mach_mipsisa64r6
;
7025 /* Return printable name for ABI. */
7027 static INLINE
char *
7028 elf_mips_abi_name (bfd
*abfd
)
7032 flags
= elf_elfheader (abfd
)->e_flags
;
7033 switch (flags
& EF_MIPS_ABI
)
7036 if (ABI_N32_P (abfd
))
7038 else if (ABI_64_P (abfd
))
7042 case E_MIPS_ABI_O32
:
7044 case E_MIPS_ABI_O64
:
7046 case E_MIPS_ABI_EABI32
:
7048 case E_MIPS_ABI_EABI64
:
7051 return "unknown abi";
7055 /* MIPS ELF uses two common sections. One is the usual one, and the
7056 other is for small objects. All the small objects are kept
7057 together, and then referenced via the gp pointer, which yields
7058 faster assembler code. This is what we use for the small common
7059 section. This approach is copied from ecoff.c. */
7060 static asection mips_elf_scom_section
;
7061 static asymbol mips_elf_scom_symbol
;
7062 static asymbol
*mips_elf_scom_symbol_ptr
;
7064 /* MIPS ELF also uses an acommon section, which represents an
7065 allocated common symbol which may be overridden by a
7066 definition in a shared library. */
7067 static asection mips_elf_acom_section
;
7068 static asymbol mips_elf_acom_symbol
;
7069 static asymbol
*mips_elf_acom_symbol_ptr
;
7071 /* This is used for both the 32-bit and the 64-bit ABI. */
7074 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
7076 elf_symbol_type
*elfsym
;
7078 /* Handle the special MIPS section numbers that a symbol may use. */
7079 elfsym
= (elf_symbol_type
*) asym
;
7080 switch (elfsym
->internal_elf_sym
.st_shndx
)
7082 case SHN_MIPS_ACOMMON
:
7083 /* This section is used in a dynamically linked executable file.
7084 It is an allocated common section. The dynamic linker can
7085 either resolve these symbols to something in a shared
7086 library, or it can just leave them here. For our purposes,
7087 we can consider these symbols to be in a new section. */
7088 if (mips_elf_acom_section
.name
== NULL
)
7090 /* Initialize the acommon section. */
7091 mips_elf_acom_section
.name
= ".acommon";
7092 mips_elf_acom_section
.flags
= SEC_ALLOC
;
7093 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
7094 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
7095 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
7096 mips_elf_acom_symbol
.name
= ".acommon";
7097 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
7098 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
7099 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
7101 asym
->section
= &mips_elf_acom_section
;
7105 /* Common symbols less than the GP size are automatically
7106 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7107 if (asym
->value
> elf_gp_size (abfd
)
7108 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
7109 || IRIX_COMPAT (abfd
) == ict_irix6
)
7112 case SHN_MIPS_SCOMMON
:
7113 if (mips_elf_scom_section
.name
== NULL
)
7115 /* Initialize the small common section. */
7116 mips_elf_scom_section
.name
= ".scommon";
7117 mips_elf_scom_section
.flags
= SEC_IS_COMMON
| SEC_SMALL_DATA
;
7118 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
7119 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
7120 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
7121 mips_elf_scom_symbol
.name
= ".scommon";
7122 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
7123 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
7124 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
7126 asym
->section
= &mips_elf_scom_section
;
7127 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
7130 case SHN_MIPS_SUNDEFINED
:
7131 asym
->section
= bfd_und_section_ptr
;
7136 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
7138 if (section
!= NULL
)
7140 asym
->section
= section
;
7141 /* MIPS_TEXT is a bit special, the address is not an offset
7142 to the base of the .text section. So subtract the section
7143 base address to make it an offset. */
7144 asym
->value
-= section
->vma
;
7151 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
7153 if (section
!= NULL
)
7155 asym
->section
= section
;
7156 /* MIPS_DATA is a bit special, the address is not an offset
7157 to the base of the .data section. So subtract the section
7158 base address to make it an offset. */
7159 asym
->value
-= section
->vma
;
7165 /* If this is an odd-valued function symbol, assume it's a MIPS16
7166 or microMIPS one. */
7167 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_FUNC
7168 && (asym
->value
& 1) != 0)
7171 if (MICROMIPS_P (abfd
))
7172 elfsym
->internal_elf_sym
.st_other
7173 = ELF_ST_SET_MICROMIPS (elfsym
->internal_elf_sym
.st_other
);
7175 elfsym
->internal_elf_sym
.st_other
7176 = ELF_ST_SET_MIPS16 (elfsym
->internal_elf_sym
.st_other
);
7180 /* Implement elf_backend_eh_frame_address_size. This differs from
7181 the default in the way it handles EABI64.
7183 EABI64 was originally specified as an LP64 ABI, and that is what
7184 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7185 historically accepted the combination of -mabi=eabi and -mlong32,
7186 and this ILP32 variation has become semi-official over time.
7187 Both forms use elf32 and have pointer-sized FDE addresses.
7189 If an EABI object was generated by GCC 4.0 or above, it will have
7190 an empty .gcc_compiled_longXX section, where XX is the size of longs
7191 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7192 have no special marking to distinguish them from LP64 objects.
7194 We don't want users of the official LP64 ABI to be punished for the
7195 existence of the ILP32 variant, but at the same time, we don't want
7196 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7197 We therefore take the following approach:
7199 - If ABFD contains a .gcc_compiled_longXX section, use it to
7200 determine the pointer size.
7202 - Otherwise check the type of the first relocation. Assume that
7203 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7207 The second check is enough to detect LP64 objects generated by pre-4.0
7208 compilers because, in the kind of output generated by those compilers,
7209 the first relocation will be associated with either a CIE personality
7210 routine or an FDE start address. Furthermore, the compilers never
7211 used a special (non-pointer) encoding for this ABI.
7213 Checking the relocation type should also be safe because there is no
7214 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7218 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, const asection
*sec
)
7220 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
7222 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
7224 bfd_boolean long32_p
, long64_p
;
7226 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
7227 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
7228 if (long32_p
&& long64_p
)
7235 if (sec
->reloc_count
> 0
7236 && elf_section_data (sec
)->relocs
!= NULL
7237 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
7246 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7247 relocations against two unnamed section symbols to resolve to the
7248 same address. For example, if we have code like:
7250 lw $4,%got_disp(.data)($gp)
7251 lw $25,%got_disp(.text)($gp)
7254 then the linker will resolve both relocations to .data and the program
7255 will jump there rather than to .text.
7257 We can work around this problem by giving names to local section symbols.
7258 This is also what the MIPSpro tools do. */
7261 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
7263 return elf_elfheader (abfd
)->e_type
== ET_REL
&& SGI_COMPAT (abfd
);
7266 /* Work over a section just before writing it out. This routine is
7267 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7268 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7272 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
7274 if (hdr
->sh_type
== SHT_MIPS_REGINFO
7275 && hdr
->sh_size
> 0)
7279 BFD_ASSERT (hdr
->contents
== NULL
);
7281 if (hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
7284 (_("%pB: incorrect `.reginfo' section size; "
7285 "expected %" PRIu64
", got %" PRIu64
),
7286 abfd
, (uint64_t) sizeof (Elf32_External_RegInfo
),
7287 (uint64_t) hdr
->sh_size
);
7288 bfd_set_error (bfd_error_bad_value
);
7293 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
7296 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
7297 if (bfd_bwrite (buf
, 4, abfd
) != 4)
7301 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
7302 && hdr
->bfd_section
!= NULL
7303 && mips_elf_section_data (hdr
->bfd_section
) != NULL
7304 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
7306 bfd_byte
*contents
, *l
, *lend
;
7308 /* We stored the section contents in the tdata field in the
7309 set_section_contents routine. We save the section contents
7310 so that we don't have to read them again.
7311 At this point we know that elf_gp is set, so we can look
7312 through the section contents to see if there is an
7313 ODK_REGINFO structure. */
7315 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
7317 lend
= contents
+ hdr
->sh_size
;
7318 while (l
+ sizeof (Elf_External_Options
) <= lend
)
7320 Elf_Internal_Options intopt
;
7322 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
7324 if (intopt
.size
< sizeof (Elf_External_Options
))
7327 /* xgettext:c-format */
7328 (_("%pB: warning: bad `%s' option size %u smaller than"
7330 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
7333 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
7340 + sizeof (Elf_External_Options
)
7341 + (sizeof (Elf64_External_RegInfo
) - 8)),
7344 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
7345 if (bfd_bwrite (buf
, 8, abfd
) != 8)
7348 else if (intopt
.kind
== ODK_REGINFO
)
7355 + sizeof (Elf_External_Options
)
7356 + (sizeof (Elf32_External_RegInfo
) - 4)),
7359 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
7360 if (bfd_bwrite (buf
, 4, abfd
) != 4)
7367 if (hdr
->bfd_section
!= NULL
)
7369 const char *name
= bfd_section_name (hdr
->bfd_section
);
7371 /* .sbss is not handled specially here because the GNU/Linux
7372 prelinker can convert .sbss from NOBITS to PROGBITS and
7373 changing it back to NOBITS breaks the binary. The entry in
7374 _bfd_mips_elf_special_sections will ensure the correct flags
7375 are set on .sbss if BFD creates it without reading it from an
7376 input file, and without special handling here the flags set
7377 on it in an input file will be followed. */
7378 if (strcmp (name
, ".sdata") == 0
7379 || strcmp (name
, ".lit8") == 0
7380 || strcmp (name
, ".lit4") == 0)
7381 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
7382 else if (strcmp (name
, ".srdata") == 0)
7383 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
7384 else if (strcmp (name
, ".compact_rel") == 0)
7386 else if (strcmp (name
, ".rtproc") == 0)
7388 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
7390 unsigned int adjust
;
7392 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
7394 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
7402 /* Handle a MIPS specific section when reading an object file. This
7403 is called when elfcode.h finds a section with an unknown type.
7404 This routine supports both the 32-bit and 64-bit ELF ABI. */
7407 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
7408 Elf_Internal_Shdr
*hdr
,
7414 /* There ought to be a place to keep ELF backend specific flags, but
7415 at the moment there isn't one. We just keep track of the
7416 sections by their name, instead. Fortunately, the ABI gives
7417 suggested names for all the MIPS specific sections, so we will
7418 probably get away with this. */
7419 switch (hdr
->sh_type
)
7421 case SHT_MIPS_LIBLIST
:
7422 if (strcmp (name
, ".liblist") != 0)
7426 if (strcmp (name
, ".msym") != 0)
7429 case SHT_MIPS_CONFLICT
:
7430 if (strcmp (name
, ".conflict") != 0)
7433 case SHT_MIPS_GPTAB
:
7434 if (! CONST_STRNEQ (name
, ".gptab."))
7437 case SHT_MIPS_UCODE
:
7438 if (strcmp (name
, ".ucode") != 0)
7441 case SHT_MIPS_DEBUG
:
7442 if (strcmp (name
, ".mdebug") != 0)
7444 flags
= SEC_DEBUGGING
;
7446 case SHT_MIPS_REGINFO
:
7447 if (strcmp (name
, ".reginfo") != 0
7448 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
7450 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
7452 case SHT_MIPS_IFACE
:
7453 if (strcmp (name
, ".MIPS.interfaces") != 0)
7456 case SHT_MIPS_CONTENT
:
7457 if (! CONST_STRNEQ (name
, ".MIPS.content"))
7460 case SHT_MIPS_OPTIONS
:
7461 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
7464 case SHT_MIPS_ABIFLAGS
:
7465 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name
))
7467 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
7469 case SHT_MIPS_DWARF
:
7470 if (! CONST_STRNEQ (name
, ".debug_")
7471 && ! CONST_STRNEQ (name
, ".zdebug_"))
7474 case SHT_MIPS_SYMBOL_LIB
:
7475 if (strcmp (name
, ".MIPS.symlib") != 0)
7478 case SHT_MIPS_EVENTS
:
7479 if (! CONST_STRNEQ (name
, ".MIPS.events")
7480 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
7483 case SHT_MIPS_XHASH
:
7484 if (strcmp (name
, ".MIPS.xhash") != 0)
7490 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
7493 if (hdr
->sh_flags
& SHF_MIPS_GPREL
)
7494 flags
|= SEC_SMALL_DATA
;
7498 if (!bfd_set_section_flags (hdr
->bfd_section
,
7499 (bfd_section_flags (hdr
->bfd_section
)
7504 if (hdr
->sh_type
== SHT_MIPS_ABIFLAGS
)
7506 Elf_External_ABIFlags_v0 ext
;
7508 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
7509 &ext
, 0, sizeof ext
))
7511 bfd_mips_elf_swap_abiflags_v0_in (abfd
, &ext
,
7512 &mips_elf_tdata (abfd
)->abiflags
);
7513 if (mips_elf_tdata (abfd
)->abiflags
.version
!= 0)
7515 mips_elf_tdata (abfd
)->abiflags_valid
= TRUE
;
7518 /* FIXME: We should record sh_info for a .gptab section. */
7520 /* For a .reginfo section, set the gp value in the tdata information
7521 from the contents of this section. We need the gp value while
7522 processing relocs, so we just get it now. The .reginfo section
7523 is not used in the 64-bit MIPS ELF ABI. */
7524 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
7526 Elf32_External_RegInfo ext
;
7529 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
7530 &ext
, 0, sizeof ext
))
7532 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
7533 elf_gp (abfd
) = s
.ri_gp_value
;
7536 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7537 set the gp value based on what we find. We may see both
7538 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7539 they should agree. */
7540 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
7542 bfd_byte
*contents
, *l
, *lend
;
7544 contents
= bfd_malloc (hdr
->sh_size
);
7545 if (contents
== NULL
)
7547 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
7554 lend
= contents
+ hdr
->sh_size
;
7555 while (l
+ sizeof (Elf_External_Options
) <= lend
)
7557 Elf_Internal_Options intopt
;
7559 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
7561 if (intopt
.size
< sizeof (Elf_External_Options
))
7564 /* xgettext:c-format */
7565 (_("%pB: warning: bad `%s' option size %u smaller than"
7567 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
7570 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
7572 Elf64_Internal_RegInfo intreg
;
7574 bfd_mips_elf64_swap_reginfo_in
7576 ((Elf64_External_RegInfo
*)
7577 (l
+ sizeof (Elf_External_Options
))),
7579 elf_gp (abfd
) = intreg
.ri_gp_value
;
7581 else if (intopt
.kind
== ODK_REGINFO
)
7583 Elf32_RegInfo intreg
;
7585 bfd_mips_elf32_swap_reginfo_in
7587 ((Elf32_External_RegInfo
*)
7588 (l
+ sizeof (Elf_External_Options
))),
7590 elf_gp (abfd
) = intreg
.ri_gp_value
;
7600 /* Set the correct type for a MIPS ELF section. We do this by the
7601 section name, which is a hack, but ought to work. This routine is
7602 used by both the 32-bit and the 64-bit ABI. */
7605 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
7607 const char *name
= bfd_section_name (sec
);
7609 if (strcmp (name
, ".liblist") == 0)
7611 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
7612 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
7613 /* The sh_link field is set in final_write_processing. */
7615 else if (strcmp (name
, ".conflict") == 0)
7616 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
7617 else if (CONST_STRNEQ (name
, ".gptab."))
7619 hdr
->sh_type
= SHT_MIPS_GPTAB
;
7620 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
7621 /* The sh_info field is set in final_write_processing. */
7623 else if (strcmp (name
, ".ucode") == 0)
7624 hdr
->sh_type
= SHT_MIPS_UCODE
;
7625 else if (strcmp (name
, ".mdebug") == 0)
7627 hdr
->sh_type
= SHT_MIPS_DEBUG
;
7628 /* In a shared object on IRIX 5.3, the .mdebug section has an
7629 entsize of 0. FIXME: Does this matter? */
7630 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
7631 hdr
->sh_entsize
= 0;
7633 hdr
->sh_entsize
= 1;
7635 else if (strcmp (name
, ".reginfo") == 0)
7637 hdr
->sh_type
= SHT_MIPS_REGINFO
;
7638 /* In a shared object on IRIX 5.3, the .reginfo section has an
7639 entsize of 0x18. FIXME: Does this matter? */
7640 if (SGI_COMPAT (abfd
))
7642 if ((abfd
->flags
& DYNAMIC
) != 0)
7643 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
7645 hdr
->sh_entsize
= 1;
7648 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
7650 else if (SGI_COMPAT (abfd
)
7651 && (strcmp (name
, ".hash") == 0
7652 || strcmp (name
, ".dynamic") == 0
7653 || strcmp (name
, ".dynstr") == 0))
7655 if (SGI_COMPAT (abfd
))
7656 hdr
->sh_entsize
= 0;
7658 /* This isn't how the IRIX6 linker behaves. */
7659 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
7662 else if (strcmp (name
, ".got") == 0
7663 || strcmp (name
, ".srdata") == 0
7664 || strcmp (name
, ".sdata") == 0
7665 || strcmp (name
, ".sbss") == 0
7666 || strcmp (name
, ".lit4") == 0
7667 || strcmp (name
, ".lit8") == 0)
7668 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
7669 else if (strcmp (name
, ".MIPS.interfaces") == 0)
7671 hdr
->sh_type
= SHT_MIPS_IFACE
;
7672 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7674 else if (CONST_STRNEQ (name
, ".MIPS.content"))
7676 hdr
->sh_type
= SHT_MIPS_CONTENT
;
7677 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7678 /* The sh_info field is set in final_write_processing. */
7680 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
7682 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
7683 hdr
->sh_entsize
= 1;
7684 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7686 else if (CONST_STRNEQ (name
, ".MIPS.abiflags"))
7688 hdr
->sh_type
= SHT_MIPS_ABIFLAGS
;
7689 hdr
->sh_entsize
= sizeof (Elf_External_ABIFlags_v0
);
7691 else if (CONST_STRNEQ (name
, ".debug_")
7692 || CONST_STRNEQ (name
, ".zdebug_"))
7694 hdr
->sh_type
= SHT_MIPS_DWARF
;
7696 /* Irix facilities such as libexc expect a single .debug_frame
7697 per executable, the system ones have NOSTRIP set and the linker
7698 doesn't merge sections with different flags so ... */
7699 if (SGI_COMPAT (abfd
) && CONST_STRNEQ (name
, ".debug_frame"))
7700 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7702 else if (strcmp (name
, ".MIPS.symlib") == 0)
7704 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
7705 /* The sh_link and sh_info fields are set in
7706 final_write_processing. */
7708 else if (CONST_STRNEQ (name
, ".MIPS.events")
7709 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
7711 hdr
->sh_type
= SHT_MIPS_EVENTS
;
7712 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7713 /* The sh_link field is set in final_write_processing. */
7715 else if (strcmp (name
, ".msym") == 0)
7717 hdr
->sh_type
= SHT_MIPS_MSYM
;
7718 hdr
->sh_flags
|= SHF_ALLOC
;
7719 hdr
->sh_entsize
= 8;
7721 else if (strcmp (name
, ".MIPS.xhash") == 0)
7723 hdr
->sh_type
= SHT_MIPS_XHASH
;
7724 hdr
->sh_flags
|= SHF_ALLOC
;
7725 hdr
->sh_entsize
= get_elf_backend_data(abfd
)->s
->arch_size
== 64 ? 0 : 4;
7728 /* The generic elf_fake_sections will set up REL_HDR using the default
7729 kind of relocations. We used to set up a second header for the
7730 non-default kind of relocations here, but only NewABI would use
7731 these, and the IRIX ld doesn't like resulting empty RELA sections.
7732 Thus we create those header only on demand now. */
7737 /* Given a BFD section, try to locate the corresponding ELF section
7738 index. This is used by both the 32-bit and the 64-bit ABI.
7739 Actually, it's not clear to me that the 64-bit ABI supports these,
7740 but for non-PIC objects we will certainly want support for at least
7741 the .scommon section. */
7744 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
7745 asection
*sec
, int *retval
)
7747 if (strcmp (bfd_section_name (sec
), ".scommon") == 0)
7749 *retval
= SHN_MIPS_SCOMMON
;
7752 if (strcmp (bfd_section_name (sec
), ".acommon") == 0)
7754 *retval
= SHN_MIPS_ACOMMON
;
7760 /* Hook called by the linker routine which adds symbols from an object
7761 file. We must handle the special MIPS section numbers here. */
7764 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
7765 Elf_Internal_Sym
*sym
, const char **namep
,
7766 flagword
*flagsp ATTRIBUTE_UNUSED
,
7767 asection
**secp
, bfd_vma
*valp
)
7769 if (SGI_COMPAT (abfd
)
7770 && (abfd
->flags
& DYNAMIC
) != 0
7771 && strcmp (*namep
, "_rld_new_interface") == 0)
7773 /* Skip IRIX5 rld entry name. */
7778 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7779 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7780 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7781 a magic symbol resolved by the linker, we ignore this bogus definition
7782 of _gp_disp. New ABI objects do not suffer from this problem so this
7783 is not done for them. */
7785 && (sym
->st_shndx
== SHN_ABS
)
7786 && (strcmp (*namep
, "_gp_disp") == 0))
7792 switch (sym
->st_shndx
)
7795 /* Common symbols less than the GP size are automatically
7796 treated as SHN_MIPS_SCOMMON symbols. */
7797 if (sym
->st_size
> elf_gp_size (abfd
)
7798 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
7799 || IRIX_COMPAT (abfd
) == ict_irix6
)
7802 case SHN_MIPS_SCOMMON
:
7803 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
7804 (*secp
)->flags
|= SEC_IS_COMMON
| SEC_SMALL_DATA
;
7805 *valp
= sym
->st_size
;
7809 /* This section is used in a shared object. */
7810 if (mips_elf_tdata (abfd
)->elf_text_section
== NULL
)
7812 asymbol
*elf_text_symbol
;
7813 asection
*elf_text_section
;
7814 size_t amt
= sizeof (asection
);
7816 elf_text_section
= bfd_zalloc (abfd
, amt
);
7817 if (elf_text_section
== NULL
)
7820 amt
= sizeof (asymbol
);
7821 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
7822 if (elf_text_symbol
== NULL
)
7825 /* Initialize the section. */
7827 mips_elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
7828 mips_elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
7830 elf_text_section
->symbol
= elf_text_symbol
;
7831 elf_text_section
->symbol_ptr_ptr
= &mips_elf_tdata (abfd
)->elf_text_symbol
;
7833 elf_text_section
->name
= ".text";
7834 elf_text_section
->flags
= SEC_NO_FLAGS
;
7835 elf_text_section
->output_section
= NULL
;
7836 elf_text_section
->owner
= abfd
;
7837 elf_text_symbol
->name
= ".text";
7838 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
7839 elf_text_symbol
->section
= elf_text_section
;
7841 /* This code used to do *secp = bfd_und_section_ptr if
7842 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7843 so I took it out. */
7844 *secp
= mips_elf_tdata (abfd
)->elf_text_section
;
7847 case SHN_MIPS_ACOMMON
:
7848 /* Fall through. XXX Can we treat this as allocated data? */
7850 /* This section is used in a shared object. */
7851 if (mips_elf_tdata (abfd
)->elf_data_section
== NULL
)
7853 asymbol
*elf_data_symbol
;
7854 asection
*elf_data_section
;
7855 size_t amt
= sizeof (asection
);
7857 elf_data_section
= bfd_zalloc (abfd
, amt
);
7858 if (elf_data_section
== NULL
)
7861 amt
= sizeof (asymbol
);
7862 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
7863 if (elf_data_symbol
== NULL
)
7866 /* Initialize the section. */
7868 mips_elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
7869 mips_elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
7871 elf_data_section
->symbol
= elf_data_symbol
;
7872 elf_data_section
->symbol_ptr_ptr
= &mips_elf_tdata (abfd
)->elf_data_symbol
;
7874 elf_data_section
->name
= ".data";
7875 elf_data_section
->flags
= SEC_NO_FLAGS
;
7876 elf_data_section
->output_section
= NULL
;
7877 elf_data_section
->owner
= abfd
;
7878 elf_data_symbol
->name
= ".data";
7879 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
7880 elf_data_symbol
->section
= elf_data_section
;
7882 /* This code used to do *secp = bfd_und_section_ptr if
7883 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7884 so I took it out. */
7885 *secp
= mips_elf_tdata (abfd
)->elf_data_section
;
7888 case SHN_MIPS_SUNDEFINED
:
7889 *secp
= bfd_und_section_ptr
;
7893 if (SGI_COMPAT (abfd
)
7894 && ! bfd_link_pic (info
)
7895 && info
->output_bfd
->xvec
== abfd
->xvec
7896 && strcmp (*namep
, "__rld_obj_head") == 0)
7898 struct elf_link_hash_entry
*h
;
7899 struct bfd_link_hash_entry
*bh
;
7901 /* Mark __rld_obj_head as dynamic. */
7903 if (! (_bfd_generic_link_add_one_symbol
7904 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
7905 get_elf_backend_data (abfd
)->collect
, &bh
)))
7908 h
= (struct elf_link_hash_entry
*) bh
;
7911 h
->type
= STT_OBJECT
;
7913 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7916 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
7917 mips_elf_hash_table (info
)->rld_symbol
= h
;
7920 /* If this is a mips16 text symbol, add 1 to the value to make it
7921 odd. This will cause something like .word SYM to come up with
7922 the right value when it is loaded into the PC. */
7923 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
7929 /* This hook function is called before the linker writes out a global
7930 symbol. We mark symbols as small common if appropriate. This is
7931 also where we undo the increment of the value for a mips16 symbol. */
7934 _bfd_mips_elf_link_output_symbol_hook
7935 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
7936 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
7937 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
7939 /* If we see a common symbol, which implies a relocatable link, then
7940 if a symbol was small common in an input file, mark it as small
7941 common in the output file. */
7942 if (sym
->st_shndx
== SHN_COMMON
7943 && strcmp (input_sec
->name
, ".scommon") == 0)
7944 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
7946 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
7947 sym
->st_value
&= ~1;
7952 /* Functions for the dynamic linker. */
7954 /* Create dynamic sections when linking against a dynamic object. */
7957 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
7959 struct elf_link_hash_entry
*h
;
7960 struct bfd_link_hash_entry
*bh
;
7962 register asection
*s
;
7963 const char * const *namep
;
7964 struct mips_elf_link_hash_table
*htab
;
7966 htab
= mips_elf_hash_table (info
);
7967 BFD_ASSERT (htab
!= NULL
);
7969 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
7970 | SEC_LINKER_CREATED
| SEC_READONLY
);
7972 /* The psABI requires a read-only .dynamic section, but the VxWorks
7974 if (htab
->root
.target_os
!= is_vxworks
)
7976 s
= bfd_get_linker_section (abfd
, ".dynamic");
7979 if (!bfd_set_section_flags (s
, flags
))
7984 /* We need to create .got section. */
7985 if (!mips_elf_create_got_section (abfd
, info
))
7988 if (! mips_elf_rel_dyn_section (info
, TRUE
))
7991 /* Create .stub section. */
7992 s
= bfd_make_section_anyway_with_flags (abfd
,
7993 MIPS_ELF_STUB_SECTION_NAME (abfd
),
7996 || !bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
8000 if (!mips_elf_hash_table (info
)->use_rld_obj_head
8001 && bfd_link_executable (info
)
8002 && bfd_get_linker_section (abfd
, ".rld_map") == NULL
)
8004 s
= bfd_make_section_anyway_with_flags (abfd
, ".rld_map",
8005 flags
&~ (flagword
) SEC_READONLY
);
8007 || !bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
8011 /* Create .MIPS.xhash section. */
8012 if (info
->emit_gnu_hash
)
8013 s
= bfd_make_section_anyway_with_flags (abfd
, ".MIPS.xhash",
8014 flags
| SEC_READONLY
);
8016 /* On IRIX5, we adjust add some additional symbols and change the
8017 alignments of several sections. There is no ABI documentation
8018 indicating that this is necessary on IRIX6, nor any evidence that
8019 the linker takes such action. */
8020 if (IRIX_COMPAT (abfd
) == ict_irix5
)
8022 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
8025 if (! (_bfd_generic_link_add_one_symbol
8026 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
8027 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
8030 h
= (struct elf_link_hash_entry
*) bh
;
8034 h
->type
= STT_SECTION
;
8036 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8040 /* We need to create a .compact_rel section. */
8041 if (SGI_COMPAT (abfd
))
8043 if (!mips_elf_create_compact_rel_section (abfd
, info
))
8047 /* Change alignments of some sections. */
8048 s
= bfd_get_linker_section (abfd
, ".hash");
8050 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8052 s
= bfd_get_linker_section (abfd
, ".dynsym");
8054 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8056 s
= bfd_get_linker_section (abfd
, ".dynstr");
8058 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8061 s
= bfd_get_section_by_name (abfd
, ".reginfo");
8063 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8065 s
= bfd_get_linker_section (abfd
, ".dynamic");
8067 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8070 if (bfd_link_executable (info
))
8074 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8076 if (!(_bfd_generic_link_add_one_symbol
8077 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
8078 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
8081 h
= (struct elf_link_hash_entry
*) bh
;
8084 h
->type
= STT_SECTION
;
8086 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8089 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
8091 /* __rld_map is a four byte word located in the .data section
8092 and is filled in by the rtld to contain a pointer to
8093 the _r_debug structure. Its symbol value will be set in
8094 _bfd_mips_elf_finish_dynamic_symbol. */
8095 s
= bfd_get_linker_section (abfd
, ".rld_map");
8096 BFD_ASSERT (s
!= NULL
);
8098 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
8100 if (!(_bfd_generic_link_add_one_symbol
8101 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
8102 get_elf_backend_data (abfd
)->collect
, &bh
)))
8105 h
= (struct elf_link_hash_entry
*) bh
;
8108 h
->type
= STT_OBJECT
;
8110 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8112 mips_elf_hash_table (info
)->rld_symbol
= h
;
8116 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8117 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8118 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
8121 /* Do the usual VxWorks handling. */
8122 if (htab
->root
.target_os
== is_vxworks
8123 && !elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
8129 /* Return true if relocation REL against section SEC is a REL rather than
8130 RELA relocation. RELOCS is the first relocation in the section and
8131 ABFD is the bfd that contains SEC. */
8134 mips_elf_rel_relocation_p (bfd
*abfd
, asection
*sec
,
8135 const Elf_Internal_Rela
*relocs
,
8136 const Elf_Internal_Rela
*rel
)
8138 Elf_Internal_Shdr
*rel_hdr
;
8139 const struct elf_backend_data
*bed
;
8141 /* To determine which flavor of relocation this is, we depend on the
8142 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8143 rel_hdr
= elf_section_data (sec
)->rel
.hdr
;
8144 if (rel_hdr
== NULL
)
8146 bed
= get_elf_backend_data (abfd
);
8147 return ((size_t) (rel
- relocs
)
8148 < NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
);
8151 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8152 HOWTO is the relocation's howto and CONTENTS points to the contents
8153 of the section that REL is against. */
8156 mips_elf_read_rel_addend (bfd
*abfd
, const Elf_Internal_Rela
*rel
,
8157 reloc_howto_type
*howto
, bfd_byte
*contents
)
8160 unsigned int r_type
;
8164 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8165 location
= contents
+ rel
->r_offset
;
8167 /* Get the addend, which is stored in the input file. */
8168 _bfd_mips_elf_reloc_unshuffle (abfd
, r_type
, FALSE
, location
);
8169 bytes
= mips_elf_obtain_contents (howto
, rel
, abfd
, contents
);
8170 _bfd_mips_elf_reloc_shuffle (abfd
, r_type
, FALSE
, location
);
8172 addend
= bytes
& howto
->src_mask
;
8174 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8176 if (r_type
== R_MICROMIPS_26_S1
&& (bytes
>> 26) == 0x3c)
8182 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8183 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8184 and update *ADDEND with the final addend. Return true on success
8185 or false if the LO16 could not be found. RELEND is the exclusive
8186 upper bound on the relocations for REL's section. */
8189 mips_elf_add_lo16_rel_addend (bfd
*abfd
,
8190 const Elf_Internal_Rela
*rel
,
8191 const Elf_Internal_Rela
*relend
,
8192 bfd_byte
*contents
, bfd_vma
*addend
)
8194 unsigned int r_type
, lo16_type
;
8195 const Elf_Internal_Rela
*lo16_relocation
;
8196 reloc_howto_type
*lo16_howto
;
8199 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8200 if (mips16_reloc_p (r_type
))
8201 lo16_type
= R_MIPS16_LO16
;
8202 else if (micromips_reloc_p (r_type
))
8203 lo16_type
= R_MICROMIPS_LO16
;
8204 else if (r_type
== R_MIPS_PCHI16
)
8205 lo16_type
= R_MIPS_PCLO16
;
8207 lo16_type
= R_MIPS_LO16
;
8209 /* The combined value is the sum of the HI16 addend, left-shifted by
8210 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8211 code does a `lui' of the HI16 value, and then an `addiu' of the
8214 Scan ahead to find a matching LO16 relocation.
8216 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8217 be immediately following. However, for the IRIX6 ABI, the next
8218 relocation may be a composed relocation consisting of several
8219 relocations for the same address. In that case, the R_MIPS_LO16
8220 relocation may occur as one of these. We permit a similar
8221 extension in general, as that is useful for GCC.
8223 In some cases GCC dead code elimination removes the LO16 but keeps
8224 the corresponding HI16. This is strictly speaking a violation of
8225 the ABI but not immediately harmful. */
8226 lo16_relocation
= mips_elf_next_relocation (abfd
, lo16_type
, rel
, relend
);
8227 if (lo16_relocation
== NULL
)
8230 /* Obtain the addend kept there. */
8231 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, lo16_type
, FALSE
);
8232 l
= mips_elf_read_rel_addend (abfd
, lo16_relocation
, lo16_howto
, contents
);
8234 l
<<= lo16_howto
->rightshift
;
8235 l
= _bfd_mips_elf_sign_extend (l
, 16);
8242 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8243 store the contents in *CONTENTS on success. Assume that *CONTENTS
8244 already holds the contents if it is nonull on entry. */
8247 mips_elf_get_section_contents (bfd
*abfd
, asection
*sec
, bfd_byte
**contents
)
8252 /* Get cached copy if it exists. */
8253 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
8255 *contents
= elf_section_data (sec
)->this_hdr
.contents
;
8259 return bfd_malloc_and_get_section (abfd
, sec
, contents
);
8262 /* Make a new PLT record to keep internal data. */
8264 static struct plt_entry
*
8265 mips_elf_make_plt_record (bfd
*abfd
)
8267 struct plt_entry
*entry
;
8269 entry
= bfd_zalloc (abfd
, sizeof (*entry
));
8273 entry
->stub_offset
= MINUS_ONE
;
8274 entry
->mips_offset
= MINUS_ONE
;
8275 entry
->comp_offset
= MINUS_ONE
;
8276 entry
->gotplt_index
= MINUS_ONE
;
8280 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8281 for PIC code, as otherwise there is no load-time relocation involved
8282 and local GOT entries whose value is zero at static link time will
8283 retain their value at load time. */
8286 mips_elf_define_absolute_zero (bfd
*abfd
, struct bfd_link_info
*info
,
8287 struct mips_elf_link_hash_table
*htab
,
8288 unsigned int r_type
)
8292 struct elf_link_hash_entry
*eh
;
8293 struct bfd_link_hash_entry
*bh
;
8297 BFD_ASSERT (!htab
->use_absolute_zero
);
8298 BFD_ASSERT (bfd_link_pic (info
));
8301 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, "__gnu_absolute_zero",
8302 BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
8303 NULL
, FALSE
, FALSE
, &hzero
.bh
))
8306 BFD_ASSERT (hzero
.bh
!= NULL
);
8308 hzero
.eh
->type
= STT_NOTYPE
;
8309 hzero
.eh
->other
= STV_PROTECTED
;
8310 hzero
.eh
->def_regular
= 1;
8311 hzero
.eh
->non_elf
= 0;
8313 if (!mips_elf_record_global_got_symbol (hzero
.eh
, abfd
, info
, TRUE
, r_type
))
8316 htab
->use_absolute_zero
= TRUE
;
8321 /* Look through the relocs for a section during the first phase, and
8322 allocate space in the global offset table and record the need for
8323 standard MIPS and compressed procedure linkage table entries. */
8326 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
8327 asection
*sec
, const Elf_Internal_Rela
*relocs
)
8331 Elf_Internal_Shdr
*symtab_hdr
;
8332 struct elf_link_hash_entry
**sym_hashes
;
8334 const Elf_Internal_Rela
*rel
;
8335 const Elf_Internal_Rela
*rel_end
;
8337 const struct elf_backend_data
*bed
;
8338 struct mips_elf_link_hash_table
*htab
;
8341 reloc_howto_type
*howto
;
8343 if (bfd_link_relocatable (info
))
8346 htab
= mips_elf_hash_table (info
);
8347 BFD_ASSERT (htab
!= NULL
);
8349 dynobj
= elf_hash_table (info
)->dynobj
;
8350 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8351 sym_hashes
= elf_sym_hashes (abfd
);
8352 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
8354 bed
= get_elf_backend_data (abfd
);
8355 rel_end
= relocs
+ sec
->reloc_count
;
8357 /* Check for the mips16 stub sections. */
8359 name
= bfd_section_name (sec
);
8360 if (FN_STUB_P (name
))
8362 unsigned long r_symndx
;
8364 /* Look at the relocation information to figure out which symbol
8367 r_symndx
= mips16_stub_symndx (bed
, sec
, relocs
, rel_end
);
8371 /* xgettext:c-format */
8372 (_("%pB: warning: cannot determine the target function for"
8373 " stub section `%s'"),
8375 bfd_set_error (bfd_error_bad_value
);
8379 if (r_symndx
< extsymoff
8380 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
8384 /* This stub is for a local symbol. This stub will only be
8385 needed if there is some relocation in this BFD, other
8386 than a 16 bit function call, which refers to this symbol. */
8387 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8389 Elf_Internal_Rela
*sec_relocs
;
8390 const Elf_Internal_Rela
*r
, *rend
;
8392 /* We can ignore stub sections when looking for relocs. */
8393 if ((o
->flags
& SEC_RELOC
) == 0
8394 || o
->reloc_count
== 0
8395 || section_allows_mips16_refs_p (o
))
8399 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
8401 if (sec_relocs
== NULL
)
8404 rend
= sec_relocs
+ o
->reloc_count
;
8405 for (r
= sec_relocs
; r
< rend
; r
++)
8406 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
8407 && !mips16_call_reloc_p (ELF_R_TYPE (abfd
, r
->r_info
)))
8410 if (elf_section_data (o
)->relocs
!= sec_relocs
)
8419 /* There is no non-call reloc for this stub, so we do
8420 not need it. Since this function is called before
8421 the linker maps input sections to output sections, we
8422 can easily discard it by setting the SEC_EXCLUDE
8424 sec
->flags
|= SEC_EXCLUDE
;
8428 /* Record this stub in an array of local symbol stubs for
8430 if (mips_elf_tdata (abfd
)->local_stubs
== NULL
)
8432 unsigned long symcount
;
8436 if (elf_bad_symtab (abfd
))
8437 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
8439 symcount
= symtab_hdr
->sh_info
;
8440 amt
= symcount
* sizeof (asection
*);
8441 n
= bfd_zalloc (abfd
, amt
);
8444 mips_elf_tdata (abfd
)->local_stubs
= n
;
8447 sec
->flags
|= SEC_KEEP
;
8448 mips_elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
8450 /* We don't need to set mips16_stubs_seen in this case.
8451 That flag is used to see whether we need to look through
8452 the global symbol table for stubs. We don't need to set
8453 it here, because we just have a local stub. */
8457 struct mips_elf_link_hash_entry
*h
;
8459 h
= ((struct mips_elf_link_hash_entry
*)
8460 sym_hashes
[r_symndx
- extsymoff
]);
8462 while (h
->root
.root
.type
== bfd_link_hash_indirect
8463 || h
->root
.root
.type
== bfd_link_hash_warning
)
8464 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
8466 /* H is the symbol this stub is for. */
8468 /* If we already have an appropriate stub for this function, we
8469 don't need another one, so we can discard this one. Since
8470 this function is called before the linker maps input sections
8471 to output sections, we can easily discard it by setting the
8472 SEC_EXCLUDE flag. */
8473 if (h
->fn_stub
!= NULL
)
8475 sec
->flags
|= SEC_EXCLUDE
;
8479 sec
->flags
|= SEC_KEEP
;
8481 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
8484 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
8486 unsigned long r_symndx
;
8487 struct mips_elf_link_hash_entry
*h
;
8490 /* Look at the relocation information to figure out which symbol
8493 r_symndx
= mips16_stub_symndx (bed
, sec
, relocs
, rel_end
);
8497 /* xgettext:c-format */
8498 (_("%pB: warning: cannot determine the target function for"
8499 " stub section `%s'"),
8501 bfd_set_error (bfd_error_bad_value
);
8505 if (r_symndx
< extsymoff
8506 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
8510 /* This stub is for a local symbol. This stub will only be
8511 needed if there is some relocation (R_MIPS16_26) in this BFD
8512 that refers to this symbol. */
8513 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8515 Elf_Internal_Rela
*sec_relocs
;
8516 const Elf_Internal_Rela
*r
, *rend
;
8518 /* We can ignore stub sections when looking for relocs. */
8519 if ((o
->flags
& SEC_RELOC
) == 0
8520 || o
->reloc_count
== 0
8521 || section_allows_mips16_refs_p (o
))
8525 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
8527 if (sec_relocs
== NULL
)
8530 rend
= sec_relocs
+ o
->reloc_count
;
8531 for (r
= sec_relocs
; r
< rend
; r
++)
8532 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
8533 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
8536 if (elf_section_data (o
)->relocs
!= sec_relocs
)
8545 /* There is no non-call reloc for this stub, so we do
8546 not need it. Since this function is called before
8547 the linker maps input sections to output sections, we
8548 can easily discard it by setting the SEC_EXCLUDE
8550 sec
->flags
|= SEC_EXCLUDE
;
8554 /* Record this stub in an array of local symbol call_stubs for
8556 if (mips_elf_tdata (abfd
)->local_call_stubs
== NULL
)
8558 unsigned long symcount
;
8562 if (elf_bad_symtab (abfd
))
8563 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
8565 symcount
= symtab_hdr
->sh_info
;
8566 amt
= symcount
* sizeof (asection
*);
8567 n
= bfd_zalloc (abfd
, amt
);
8570 mips_elf_tdata (abfd
)->local_call_stubs
= n
;
8573 sec
->flags
|= SEC_KEEP
;
8574 mips_elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
8576 /* We don't need to set mips16_stubs_seen in this case.
8577 That flag is used to see whether we need to look through
8578 the global symbol table for stubs. We don't need to set
8579 it here, because we just have a local stub. */
8583 h
= ((struct mips_elf_link_hash_entry
*)
8584 sym_hashes
[r_symndx
- extsymoff
]);
8586 /* H is the symbol this stub is for. */
8588 if (CALL_FP_STUB_P (name
))
8589 loc
= &h
->call_fp_stub
;
8591 loc
= &h
->call_stub
;
8593 /* If we already have an appropriate stub for this function, we
8594 don't need another one, so we can discard this one. Since
8595 this function is called before the linker maps input sections
8596 to output sections, we can easily discard it by setting the
8597 SEC_EXCLUDE flag. */
8600 sec
->flags
|= SEC_EXCLUDE
;
8604 sec
->flags
|= SEC_KEEP
;
8606 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
8612 for (rel
= relocs
; rel
< rel_end
; ++rel
)
8614 unsigned long r_symndx
;
8615 unsigned int r_type
;
8616 struct elf_link_hash_entry
*h
;
8617 bfd_boolean can_make_dynamic_p
;
8618 bfd_boolean call_reloc_p
;
8619 bfd_boolean constrain_symbol_p
;
8621 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
8622 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8624 if (r_symndx
< extsymoff
)
8626 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
8629 /* xgettext:c-format */
8630 (_("%pB: malformed reloc detected for section %s"),
8632 bfd_set_error (bfd_error_bad_value
);
8637 h
= sym_hashes
[r_symndx
- extsymoff
];
8640 while (h
->root
.type
== bfd_link_hash_indirect
8641 || h
->root
.type
== bfd_link_hash_warning
)
8642 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8646 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8647 relocation into a dynamic one. */
8648 can_make_dynamic_p
= FALSE
;
8650 /* Set CALL_RELOC_P to true if the relocation is for a call,
8651 and if pointer equality therefore doesn't matter. */
8652 call_reloc_p
= FALSE
;
8654 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8655 into account when deciding how to define the symbol. */
8656 constrain_symbol_p
= TRUE
;
8661 case R_MIPS_CALL_HI16
:
8662 case R_MIPS_CALL_LO16
:
8663 case R_MIPS16_CALL16
:
8664 case R_MICROMIPS_CALL16
:
8665 case R_MICROMIPS_CALL_HI16
:
8666 case R_MICROMIPS_CALL_LO16
:
8667 call_reloc_p
= TRUE
;
8671 case R_MIPS_GOT_LO16
:
8672 case R_MIPS_GOT_PAGE
:
8673 case R_MIPS_GOT_DISP
:
8674 case R_MIPS16_GOT16
:
8675 case R_MICROMIPS_GOT16
:
8676 case R_MICROMIPS_GOT_LO16
:
8677 case R_MICROMIPS_GOT_PAGE
:
8678 case R_MICROMIPS_GOT_DISP
:
8679 /* If we have a symbol that will resolve to zero at static link
8680 time and it is used by a GOT relocation applied to code we
8681 cannot relax to an immediate zero load, then we will be using
8682 the special `__gnu_absolute_zero' symbol whose value is zero
8683 at dynamic load time. We ignore HI16-type GOT relocations at
8684 this stage, because their handling will depend entirely on
8685 the corresponding LO16-type GOT relocation. */
8686 if (!call_hi16_reloc_p (r_type
)
8688 && bfd_link_pic (info
)
8689 && !htab
->use_absolute_zero
8690 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
8692 bfd_boolean rel_reloc
;
8694 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8697 rel_reloc
= mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
);
8698 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, !rel_reloc
);
8700 if (!mips_elf_nullify_got_load (abfd
, contents
, rel
, howto
,
8702 if (!mips_elf_define_absolute_zero (abfd
, info
, htab
, r_type
))
8707 case R_MIPS_GOT_HI16
:
8708 case R_MIPS_GOT_OFST
:
8709 case R_MIPS_TLS_GOTTPREL
:
8711 case R_MIPS_TLS_LDM
:
8712 case R_MIPS16_TLS_GOTTPREL
:
8713 case R_MIPS16_TLS_GD
:
8714 case R_MIPS16_TLS_LDM
:
8715 case R_MICROMIPS_GOT_HI16
:
8716 case R_MICROMIPS_GOT_OFST
:
8717 case R_MICROMIPS_TLS_GOTTPREL
:
8718 case R_MICROMIPS_TLS_GD
:
8719 case R_MICROMIPS_TLS_LDM
:
8721 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
8722 if (!mips_elf_create_got_section (dynobj
, info
))
8724 if (htab
->root
.target_os
== is_vxworks
8725 && !bfd_link_pic (info
))
8728 /* xgettext:c-format */
8729 (_("%pB: GOT reloc at %#" PRIx64
" not expected in executables"),
8730 abfd
, (uint64_t) rel
->r_offset
);
8731 bfd_set_error (bfd_error_bad_value
);
8734 can_make_dynamic_p
= TRUE
;
8739 case R_MICROMIPS_JALR
:
8740 /* These relocations have empty fields and are purely there to
8741 provide link information. The symbol value doesn't matter. */
8742 constrain_symbol_p
= FALSE
;
8745 case R_MIPS_GPREL16
:
8746 case R_MIPS_GPREL32
:
8747 case R_MIPS16_GPREL
:
8748 case R_MICROMIPS_GPREL16
:
8749 /* GP-relative relocations always resolve to a definition in a
8750 regular input file, ignoring the one-definition rule. This is
8751 important for the GP setup sequence in NewABI code, which
8752 always resolves to a local function even if other relocations
8753 against the symbol wouldn't. */
8754 constrain_symbol_p
= FALSE
;
8760 /* In VxWorks executables, references to external symbols
8761 must be handled using copy relocs or PLT entries; it is not
8762 possible to convert this relocation into a dynamic one.
8764 For executables that use PLTs and copy-relocs, we have a
8765 choice between converting the relocation into a dynamic
8766 one or using copy relocations or PLT entries. It is
8767 usually better to do the former, unless the relocation is
8768 against a read-only section. */
8769 if ((bfd_link_pic (info
)
8771 && htab
->root
.target_os
!= is_vxworks
8772 && strcmp (h
->root
.root
.string
, "__gnu_local_gp") != 0
8773 && !(!info
->nocopyreloc
8774 && !PIC_OBJECT_P (abfd
)
8775 && MIPS_ELF_READONLY_SECTION (sec
))))
8776 && (sec
->flags
& SEC_ALLOC
) != 0)
8778 can_make_dynamic_p
= TRUE
;
8780 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
8786 case R_MIPS_PC21_S2
:
8787 case R_MIPS_PC26_S2
:
8789 case R_MIPS16_PC16_S1
:
8790 case R_MICROMIPS_26_S1
:
8791 case R_MICROMIPS_PC7_S1
:
8792 case R_MICROMIPS_PC10_S1
:
8793 case R_MICROMIPS_PC16_S1
:
8794 case R_MICROMIPS_PC23_S2
:
8795 call_reloc_p
= TRUE
;
8801 if (constrain_symbol_p
)
8803 if (!can_make_dynamic_p
)
8804 ((struct mips_elf_link_hash_entry
*) h
)->has_static_relocs
= 1;
8807 h
->pointer_equality_needed
= 1;
8809 /* We must not create a stub for a symbol that has
8810 relocations related to taking the function's address.
8811 This doesn't apply to VxWorks, where CALL relocs refer
8812 to a .got.plt entry instead of a normal .got entry. */
8813 if (htab
->root
.target_os
!= is_vxworks
8814 && (!can_make_dynamic_p
|| !call_reloc_p
))
8815 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
8818 /* Relocations against the special VxWorks __GOTT_BASE__ and
8819 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8820 room for them in .rela.dyn. */
8821 if (is_gott_symbol (info
, h
))
8825 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
8829 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8830 if (MIPS_ELF_READONLY_SECTION (sec
))
8831 /* We tell the dynamic linker that there are
8832 relocations against the text segment. */
8833 info
->flags
|= DF_TEXTREL
;
8836 else if (call_lo16_reloc_p (r_type
)
8837 || got_lo16_reloc_p (r_type
)
8838 || got_disp_reloc_p (r_type
)
8839 || (got16_reloc_p (r_type
)
8840 && htab
->root
.target_os
== is_vxworks
))
8842 /* We may need a local GOT entry for this relocation. We
8843 don't count R_MIPS_GOT_PAGE because we can estimate the
8844 maximum number of pages needed by looking at the size of
8845 the segment. Similar comments apply to R_MIPS*_GOT16 and
8846 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8847 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8848 R_MIPS_CALL_HI16 because these are always followed by an
8849 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8850 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
8851 rel
->r_addend
, info
, r_type
))
8856 && mips_elf_relocation_needs_la25_stub (abfd
, r_type
,
8857 ELF_ST_IS_MIPS16 (h
->other
)))
8858 ((struct mips_elf_link_hash_entry
*) h
)->has_nonpic_branches
= TRUE
;
8863 case R_MIPS16_CALL16
:
8864 case R_MICROMIPS_CALL16
:
8868 /* xgettext:c-format */
8869 (_("%pB: CALL16 reloc at %#" PRIx64
" not against global symbol"),
8870 abfd
, (uint64_t) rel
->r_offset
);
8871 bfd_set_error (bfd_error_bad_value
);
8876 case R_MIPS_CALL_HI16
:
8877 case R_MIPS_CALL_LO16
:
8878 case R_MICROMIPS_CALL_HI16
:
8879 case R_MICROMIPS_CALL_LO16
:
8882 /* Make sure there is room in the regular GOT to hold the
8883 function's address. We may eliminate it in favour of
8884 a .got.plt entry later; see mips_elf_count_got_symbols. */
8885 if (!mips_elf_record_global_got_symbol (h
, abfd
, info
, TRUE
,
8889 /* We need a stub, not a plt entry for the undefined
8890 function. But we record it as if it needs plt. See
8891 _bfd_elf_adjust_dynamic_symbol. */
8897 case R_MIPS_GOT_PAGE
:
8898 case R_MICROMIPS_GOT_PAGE
:
8899 case R_MIPS16_GOT16
:
8901 case R_MIPS_GOT_HI16
:
8902 case R_MIPS_GOT_LO16
:
8903 case R_MICROMIPS_GOT16
:
8904 case R_MICROMIPS_GOT_HI16
:
8905 case R_MICROMIPS_GOT_LO16
:
8906 if (!h
|| got_page_reloc_p (r_type
))
8908 /* This relocation needs (or may need, if h != NULL) a
8909 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8910 know for sure until we know whether the symbol is
8912 if (mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
))
8914 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8916 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
8917 addend
= mips_elf_read_rel_addend (abfd
, rel
,
8919 if (got16_reloc_p (r_type
))
8920 mips_elf_add_lo16_rel_addend (abfd
, rel
, rel_end
,
8923 addend
<<= howto
->rightshift
;
8926 addend
= rel
->r_addend
;
8927 if (!mips_elf_record_got_page_ref (info
, abfd
, r_symndx
,
8933 struct mips_elf_link_hash_entry
*hmips
=
8934 (struct mips_elf_link_hash_entry
*) h
;
8936 /* This symbol is definitely not overridable. */
8937 if (hmips
->root
.def_regular
8938 && ! (bfd_link_pic (info
) && ! info
->symbolic
8939 && ! hmips
->root
.forced_local
))
8943 /* If this is a global, overridable symbol, GOT_PAGE will
8944 decay to GOT_DISP, so we'll need a GOT entry for it. */
8947 case R_MIPS_GOT_DISP
:
8948 case R_MICROMIPS_GOT_DISP
:
8949 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
,
8954 case R_MIPS_TLS_GOTTPREL
:
8955 case R_MIPS16_TLS_GOTTPREL
:
8956 case R_MICROMIPS_TLS_GOTTPREL
:
8957 if (bfd_link_pic (info
))
8958 info
->flags
|= DF_STATIC_TLS
;
8961 case R_MIPS_TLS_LDM
:
8962 case R_MIPS16_TLS_LDM
:
8963 case R_MICROMIPS_TLS_LDM
:
8964 if (tls_ldm_reloc_p (r_type
))
8966 r_symndx
= STN_UNDEF
;
8972 case R_MIPS16_TLS_GD
:
8973 case R_MICROMIPS_TLS_GD
:
8974 /* This symbol requires a global offset table entry, or two
8975 for TLS GD relocations. */
8978 if (!mips_elf_record_global_got_symbol (h
, abfd
, info
,
8984 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
8994 /* In VxWorks executables, references to external symbols
8995 are handled using copy relocs or PLT stubs, so there's
8996 no need to add a .rela.dyn entry for this relocation. */
8997 if (can_make_dynamic_p
)
9001 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
9005 if (bfd_link_pic (info
) && h
== NULL
)
9007 /* When creating a shared object, we must copy these
9008 reloc types into the output file as R_MIPS_REL32
9009 relocs. Make room for this reloc in .rel(a).dyn. */
9010 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
9011 if (MIPS_ELF_READONLY_SECTION (sec
))
9012 /* We tell the dynamic linker that there are
9013 relocations against the text segment. */
9014 info
->flags
|= DF_TEXTREL
;
9018 struct mips_elf_link_hash_entry
*hmips
;
9020 /* For a shared object, we must copy this relocation
9021 unless the symbol turns out to be undefined and
9022 weak with non-default visibility, in which case
9023 it will be left as zero.
9025 We could elide R_MIPS_REL32 for locally binding symbols
9026 in shared libraries, but do not yet do so.
9028 For an executable, we only need to copy this
9029 reloc if the symbol is defined in a dynamic
9031 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9032 ++hmips
->possibly_dynamic_relocs
;
9033 if (MIPS_ELF_READONLY_SECTION (sec
))
9034 /* We need it to tell the dynamic linker if there
9035 are relocations against the text segment. */
9036 hmips
->readonly_reloc
= TRUE
;
9040 if (SGI_COMPAT (abfd
))
9041 mips_elf_hash_table (info
)->compact_rel_size
+=
9042 sizeof (Elf32_External_crinfo
);
9046 case R_MIPS_GPREL16
:
9047 case R_MIPS_LITERAL
:
9048 case R_MIPS_GPREL32
:
9049 case R_MICROMIPS_26_S1
:
9050 case R_MICROMIPS_GPREL16
:
9051 case R_MICROMIPS_LITERAL
:
9052 case R_MICROMIPS_GPREL7_S2
:
9053 if (SGI_COMPAT (abfd
))
9054 mips_elf_hash_table (info
)->compact_rel_size
+=
9055 sizeof (Elf32_External_crinfo
);
9058 /* This relocation describes the C++ object vtable hierarchy.
9059 Reconstruct it for later use during GC. */
9060 case R_MIPS_GNU_VTINHERIT
:
9061 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
9065 /* This relocation describes which C++ vtable entries are actually
9066 used. Record for later use during GC. */
9067 case R_MIPS_GNU_VTENTRY
:
9068 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
9076 /* Record the need for a PLT entry. At this point we don't know
9077 yet if we are going to create a PLT in the first place, but
9078 we only record whether the relocation requires a standard MIPS
9079 or a compressed code entry anyway. If we don't make a PLT after
9080 all, then we'll just ignore these arrangements. Likewise if
9081 a PLT entry is not created because the symbol is satisfied
9084 && (branch_reloc_p (r_type
)
9085 || mips16_branch_reloc_p (r_type
)
9086 || micromips_branch_reloc_p (r_type
))
9087 && !SYMBOL_CALLS_LOCAL (info
, h
))
9089 if (h
->plt
.plist
== NULL
)
9090 h
->plt
.plist
= mips_elf_make_plt_record (abfd
);
9091 if (h
->plt
.plist
== NULL
)
9094 if (branch_reloc_p (r_type
))
9095 h
->plt
.plist
->need_mips
= TRUE
;
9097 h
->plt
.plist
->need_comp
= TRUE
;
9100 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9101 if there is one. We only need to handle global symbols here;
9102 we decide whether to keep or delete stubs for local symbols
9103 when processing the stub's relocations. */
9105 && !mips16_call_reloc_p (r_type
)
9106 && !section_allows_mips16_refs_p (sec
))
9108 struct mips_elf_link_hash_entry
*mh
;
9110 mh
= (struct mips_elf_link_hash_entry
*) h
;
9111 mh
->need_fn_stub
= TRUE
;
9114 /* Refuse some position-dependent relocations when creating a
9115 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9116 not PIC, but we can create dynamic relocations and the result
9117 will be fine. Also do not refuse R_MIPS_LO16, which can be
9118 combined with R_MIPS_GOT16. */
9119 if (bfd_link_pic (info
))
9123 case R_MIPS_TLS_TPREL_HI16
:
9124 case R_MIPS16_TLS_TPREL_HI16
:
9125 case R_MICROMIPS_TLS_TPREL_HI16
:
9126 case R_MIPS_TLS_TPREL_LO16
:
9127 case R_MIPS16_TLS_TPREL_LO16
:
9128 case R_MICROMIPS_TLS_TPREL_LO16
:
9129 /* These are okay in PIE, but not in a shared library. */
9130 if (bfd_link_executable (info
))
9138 case R_MIPS_HIGHEST
:
9139 case R_MICROMIPS_HI16
:
9140 case R_MICROMIPS_HIGHER
:
9141 case R_MICROMIPS_HIGHEST
:
9142 /* Don't refuse a high part relocation if it's against
9143 no symbol (e.g. part of a compound relocation). */
9144 if (r_symndx
== STN_UNDEF
)
9147 /* Likewise an absolute symbol. */
9148 if (h
!= NULL
&& bfd_is_abs_symbol (&h
->root
))
9151 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9152 and has a special meaning. */
9153 if (!NEWABI_P (abfd
) && h
!= NULL
9154 && strcmp (h
->root
.root
.string
, "_gp_disp") == 0)
9157 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9158 if (is_gott_symbol (info
, h
))
9165 case R_MICROMIPS_26_S1
:
9166 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, NEWABI_P (abfd
));
9167 /* An error for unsupported relocations is raised as part
9168 of the above search, so we can skip the following. */
9170 info
->callbacks
->einfo
9171 /* xgettext:c-format */
9172 (_("%X%H: relocation %s against `%s' cannot be used"
9173 " when making a shared object; recompile with -fPIC\n"),
9174 abfd
, sec
, rel
->r_offset
, howto
->name
,
9175 (h
) ? h
->root
.root
.string
: "a local symbol");
9186 /* Allocate space for global sym dynamic relocs. */
9189 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
9191 struct bfd_link_info
*info
= inf
;
9193 struct mips_elf_link_hash_entry
*hmips
;
9194 struct mips_elf_link_hash_table
*htab
;
9196 htab
= mips_elf_hash_table (info
);
9197 BFD_ASSERT (htab
!= NULL
);
9199 dynobj
= elf_hash_table (info
)->dynobj
;
9200 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9202 /* VxWorks executables are handled elsewhere; we only need to
9203 allocate relocations in shared objects. */
9204 if (htab
->root
.target_os
== is_vxworks
&& !bfd_link_pic (info
))
9207 /* Ignore indirect symbols. All relocations against such symbols
9208 will be redirected to the target symbol. */
9209 if (h
->root
.type
== bfd_link_hash_indirect
)
9212 /* If this symbol is defined in a dynamic object, or we are creating
9213 a shared library, we will need to copy any R_MIPS_32 or
9214 R_MIPS_REL32 relocs against it into the output file. */
9215 if (! bfd_link_relocatable (info
)
9216 && hmips
->possibly_dynamic_relocs
!= 0
9217 && (h
->root
.type
== bfd_link_hash_defweak
9218 || (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
9219 || bfd_link_pic (info
)))
9221 bfd_boolean do_copy
= TRUE
;
9223 if (h
->root
.type
== bfd_link_hash_undefweak
)
9225 /* Do not copy relocations for undefined weak symbols that
9226 we are not going to export. */
9227 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
9230 /* Make sure undefined weak symbols are output as a dynamic
9232 else if (h
->dynindx
== -1 && !h
->forced_local
)
9234 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9241 /* Even though we don't directly need a GOT entry for this symbol,
9242 the SVR4 psABI requires it to have a dynamic symbol table
9243 index greater that DT_MIPS_GOTSYM if there are dynamic
9244 relocations against it.
9246 VxWorks does not enforce the same mapping between the GOT
9247 and the symbol table, so the same requirement does not
9249 if (htab
->root
.target_os
!= is_vxworks
)
9251 if (hmips
->global_got_area
> GGA_RELOC_ONLY
)
9252 hmips
->global_got_area
= GGA_RELOC_ONLY
;
9253 hmips
->got_only_for_calls
= FALSE
;
9256 mips_elf_allocate_dynamic_relocations
9257 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
9258 if (hmips
->readonly_reloc
)
9259 /* We tell the dynamic linker that there are relocations
9260 against the text segment. */
9261 info
->flags
|= DF_TEXTREL
;
9268 /* Adjust a symbol defined by a dynamic object and referenced by a
9269 regular object. The current definition is in some section of the
9270 dynamic object, but we're not including those sections. We have to
9271 change the definition to something the rest of the link can
9275 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
9276 struct elf_link_hash_entry
*h
)
9279 struct mips_elf_link_hash_entry
*hmips
;
9280 struct mips_elf_link_hash_table
*htab
;
9283 htab
= mips_elf_hash_table (info
);
9284 BFD_ASSERT (htab
!= NULL
);
9286 dynobj
= elf_hash_table (info
)->dynobj
;
9287 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9289 /* Make sure we know what is going on here. */
9292 && ! h
->is_weakalias
9293 && (! h
->def_dynamic
9295 || h
->def_regular
)))
9297 if (h
->type
== STT_GNU_IFUNC
)
9298 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9299 h
->root
.root
.string
);
9301 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9302 h
->root
.root
.string
);
9306 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9308 /* If there are call relocations against an externally-defined symbol,
9309 see whether we can create a MIPS lazy-binding stub for it. We can
9310 only do this if all references to the function are through call
9311 relocations, and in that case, the traditional lazy-binding stubs
9312 are much more efficient than PLT entries.
9314 Traditional stubs are only available on SVR4 psABI-based systems;
9315 VxWorks always uses PLTs instead. */
9316 if (htab
->root
.target_os
!= is_vxworks
9318 && !hmips
->no_fn_stub
)
9320 if (! elf_hash_table (info
)->dynamic_sections_created
)
9323 /* If this symbol is not defined in a regular file, then set
9324 the symbol to the stub location. This is required to make
9325 function pointers compare as equal between the normal
9326 executable and the shared library. */
9328 && !bfd_is_abs_section (htab
->sstubs
->output_section
))
9330 hmips
->needs_lazy_stub
= TRUE
;
9331 htab
->lazy_stub_count
++;
9335 /* As above, VxWorks requires PLT entries for externally-defined
9336 functions that are only accessed through call relocations.
9338 Both VxWorks and non-VxWorks targets also need PLT entries if there
9339 are static-only relocations against an externally-defined function.
9340 This can technically occur for shared libraries if there are
9341 branches to the symbol, although it is unlikely that this will be
9342 used in practice due to the short ranges involved. It can occur
9343 for any relative or absolute relocation in executables; in that
9344 case, the PLT entry becomes the function's canonical address. */
9345 else if (((h
->needs_plt
&& !hmips
->no_fn_stub
)
9346 || (h
->type
== STT_FUNC
&& hmips
->has_static_relocs
))
9347 && htab
->use_plts_and_copy_relocs
9348 && !SYMBOL_CALLS_LOCAL (info
, h
)
9349 && !(ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
9350 && h
->root
.type
== bfd_link_hash_undefweak
))
9352 bfd_boolean micromips_p
= MICROMIPS_P (info
->output_bfd
);
9353 bfd_boolean newabi_p
= NEWABI_P (info
->output_bfd
);
9355 /* If this is the first symbol to need a PLT entry, then make some
9356 basic setup. Also work out PLT entry sizes. We'll need them
9357 for PLT offset calculations. */
9358 if (htab
->plt_mips_offset
+ htab
->plt_comp_offset
== 0)
9360 BFD_ASSERT (htab
->root
.sgotplt
->size
== 0);
9361 BFD_ASSERT (htab
->plt_got_index
== 0);
9363 /* If we're using the PLT additions to the psABI, each PLT
9364 entry is 16 bytes and the PLT0 entry is 32 bytes.
9365 Encourage better cache usage by aligning. We do this
9366 lazily to avoid pessimizing traditional objects. */
9367 if (htab
->root
.target_os
!= is_vxworks
9368 && !bfd_set_section_alignment (htab
->root
.splt
, 5))
9371 /* Make sure that .got.plt is word-aligned. We do this lazily
9372 for the same reason as above. */
9373 if (!bfd_set_section_alignment (htab
->root
.sgotplt
,
9374 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
9377 /* On non-VxWorks targets, the first two entries in .got.plt
9379 if (htab
->root
.target_os
!= is_vxworks
)
9381 += (get_elf_backend_data (dynobj
)->got_header_size
9382 / MIPS_ELF_GOT_SIZE (dynobj
));
9384 /* On VxWorks, also allocate room for the header's
9385 .rela.plt.unloaded entries. */
9386 if (htab
->root
.target_os
== is_vxworks
9387 && !bfd_link_pic (info
))
9388 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
9390 /* Now work out the sizes of individual PLT entries. */
9391 if (htab
->root
.target_os
== is_vxworks
9392 && bfd_link_pic (info
))
9393 htab
->plt_mips_entry_size
9394 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
9395 else if (htab
->root
.target_os
== is_vxworks
)
9396 htab
->plt_mips_entry_size
9397 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
9399 htab
->plt_mips_entry_size
9400 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9401 else if (!micromips_p
)
9403 htab
->plt_mips_entry_size
9404 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9405 htab
->plt_comp_entry_size
9406 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry
);
9408 else if (htab
->insn32
)
9410 htab
->plt_mips_entry_size
9411 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9412 htab
->plt_comp_entry_size
9413 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry
);
9417 htab
->plt_mips_entry_size
9418 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9419 htab
->plt_comp_entry_size
9420 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry
);
9424 if (h
->plt
.plist
== NULL
)
9425 h
->plt
.plist
= mips_elf_make_plt_record (dynobj
);
9426 if (h
->plt
.plist
== NULL
)
9429 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9430 n32 or n64, so always use a standard entry there.
9432 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9433 all MIPS16 calls will go via that stub, and there is no benefit
9434 to having a MIPS16 entry. And in the case of call_stub a
9435 standard entry actually has to be used as the stub ends with a J
9438 || htab
->root
.target_os
== is_vxworks
9440 || hmips
->call_fp_stub
)
9442 h
->plt
.plist
->need_mips
= TRUE
;
9443 h
->plt
.plist
->need_comp
= FALSE
;
9446 /* Otherwise, if there are no direct calls to the function, we
9447 have a free choice of whether to use standard or compressed
9448 entries. Prefer microMIPS entries if the object is known to
9449 contain microMIPS code, so that it becomes possible to create
9450 pure microMIPS binaries. Prefer standard entries otherwise,
9451 because MIPS16 ones are no smaller and are usually slower. */
9452 if (!h
->plt
.plist
->need_mips
&& !h
->plt
.plist
->need_comp
)
9455 h
->plt
.plist
->need_comp
= TRUE
;
9457 h
->plt
.plist
->need_mips
= TRUE
;
9460 if (h
->plt
.plist
->need_mips
)
9462 h
->plt
.plist
->mips_offset
= htab
->plt_mips_offset
;
9463 htab
->plt_mips_offset
+= htab
->plt_mips_entry_size
;
9465 if (h
->plt
.plist
->need_comp
)
9467 h
->plt
.plist
->comp_offset
= htab
->plt_comp_offset
;
9468 htab
->plt_comp_offset
+= htab
->plt_comp_entry_size
;
9471 /* Reserve the corresponding .got.plt entry now too. */
9472 h
->plt
.plist
->gotplt_index
= htab
->plt_got_index
++;
9474 /* If the output file has no definition of the symbol, set the
9475 symbol's value to the address of the stub. */
9476 if (!bfd_link_pic (info
) && !h
->def_regular
)
9477 hmips
->use_plt_entry
= TRUE
;
9479 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9480 htab
->root
.srelplt
->size
+= (htab
->root
.target_os
== is_vxworks
9481 ? MIPS_ELF_RELA_SIZE (dynobj
)
9482 : MIPS_ELF_REL_SIZE (dynobj
));
9484 /* Make room for the .rela.plt.unloaded relocations. */
9485 if (htab
->root
.target_os
== is_vxworks
&& !bfd_link_pic (info
))
9486 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
9488 /* All relocations against this symbol that could have been made
9489 dynamic will now refer to the PLT entry instead. */
9490 hmips
->possibly_dynamic_relocs
= 0;
9495 /* If this is a weak symbol, and there is a real definition, the
9496 processor independent code will have arranged for us to see the
9497 real definition first, and we can just use the same value. */
9498 if (h
->is_weakalias
)
9500 struct elf_link_hash_entry
*def
= weakdef (h
);
9501 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
9502 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
9503 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
9507 /* Otherwise, there is nothing further to do for symbols defined
9508 in regular objects. */
9512 /* There's also nothing more to do if we'll convert all relocations
9513 against this symbol into dynamic relocations. */
9514 if (!hmips
->has_static_relocs
)
9517 /* We're now relying on copy relocations. Complain if we have
9518 some that we can't convert. */
9519 if (!htab
->use_plts_and_copy_relocs
|| bfd_link_pic (info
))
9521 _bfd_error_handler (_("non-dynamic relocations refer to "
9522 "dynamic symbol %s"),
9523 h
->root
.root
.string
);
9524 bfd_set_error (bfd_error_bad_value
);
9528 /* We must allocate the symbol in our .dynbss section, which will
9529 become part of the .bss section of the executable. There will be
9530 an entry for this symbol in the .dynsym section. The dynamic
9531 object will contain position independent code, so all references
9532 from the dynamic object to this symbol will go through the global
9533 offset table. The dynamic linker will use the .dynsym entry to
9534 determine the address it must put in the global offset table, so
9535 both the dynamic object and the regular object will refer to the
9536 same memory location for the variable. */
9538 if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
9540 s
= htab
->root
.sdynrelro
;
9541 srel
= htab
->root
.sreldynrelro
;
9545 s
= htab
->root
.sdynbss
;
9546 srel
= htab
->root
.srelbss
;
9548 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
9550 if (htab
->root
.target_os
== is_vxworks
)
9551 srel
->size
+= sizeof (Elf32_External_Rela
);
9553 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
9557 /* All relocations against this symbol that could have been made
9558 dynamic will now refer to the local copy instead. */
9559 hmips
->possibly_dynamic_relocs
= 0;
9561 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
9564 /* This function is called after all the input files have been read,
9565 and the input sections have been assigned to output sections. We
9566 check for any mips16 stub sections that we can discard. */
9569 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
9570 struct bfd_link_info
*info
)
9573 struct mips_elf_link_hash_table
*htab
;
9574 struct mips_htab_traverse_info hti
;
9576 htab
= mips_elf_hash_table (info
);
9577 BFD_ASSERT (htab
!= NULL
);
9579 /* The .reginfo section has a fixed size. */
9580 sect
= bfd_get_section_by_name (output_bfd
, ".reginfo");
9583 bfd_set_section_size (sect
, sizeof (Elf32_External_RegInfo
));
9584 sect
->flags
|= SEC_FIXED_SIZE
| SEC_HAS_CONTENTS
;
9587 /* The .MIPS.abiflags section has a fixed size. */
9588 sect
= bfd_get_section_by_name (output_bfd
, ".MIPS.abiflags");
9591 bfd_set_section_size (sect
, sizeof (Elf_External_ABIFlags_v0
));
9592 sect
->flags
|= SEC_FIXED_SIZE
| SEC_HAS_CONTENTS
;
9596 hti
.output_bfd
= output_bfd
;
9598 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
9599 mips_elf_check_symbols
, &hti
);
9606 /* If the link uses a GOT, lay it out and work out its size. */
9609 mips_elf_lay_out_got (bfd
*output_bfd
, struct bfd_link_info
*info
)
9613 struct mips_got_info
*g
;
9614 bfd_size_type loadable_size
= 0;
9615 bfd_size_type page_gotno
;
9617 struct mips_elf_traverse_got_arg tga
;
9618 struct mips_elf_link_hash_table
*htab
;
9620 htab
= mips_elf_hash_table (info
);
9621 BFD_ASSERT (htab
!= NULL
);
9623 s
= htab
->root
.sgot
;
9627 dynobj
= elf_hash_table (info
)->dynobj
;
9630 /* Allocate room for the reserved entries. VxWorks always reserves
9631 3 entries; other objects only reserve 2 entries. */
9632 BFD_ASSERT (g
->assigned_low_gotno
== 0);
9633 if (htab
->root
.target_os
== is_vxworks
)
9634 htab
->reserved_gotno
= 3;
9636 htab
->reserved_gotno
= 2;
9637 g
->local_gotno
+= htab
->reserved_gotno
;
9638 g
->assigned_low_gotno
= htab
->reserved_gotno
;
9640 /* Decide which symbols need to go in the global part of the GOT and
9641 count the number of reloc-only GOT symbols. */
9642 mips_elf_link_hash_traverse (htab
, mips_elf_count_got_symbols
, info
);
9644 if (!mips_elf_resolve_final_got_entries (info
, g
))
9647 /* Calculate the total loadable size of the output. That
9648 will give us the maximum number of GOT_PAGE entries
9650 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
9652 asection
*subsection
;
9654 for (subsection
= ibfd
->sections
;
9656 subsection
= subsection
->next
)
9658 if ((subsection
->flags
& SEC_ALLOC
) == 0)
9660 loadable_size
+= ((subsection
->size
+ 0xf)
9661 &~ (bfd_size_type
) 0xf);
9665 if (htab
->root
.target_os
== is_vxworks
)
9666 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9667 relocations against local symbols evaluate to "G", and the EABI does
9668 not include R_MIPS_GOT_PAGE. */
9671 /* Assume there are two loadable segments consisting of contiguous
9672 sections. Is 5 enough? */
9673 page_gotno
= (loadable_size
>> 16) + 5;
9675 /* Choose the smaller of the two page estimates; both are intended to be
9677 if (page_gotno
> g
->page_gotno
)
9678 page_gotno
= g
->page_gotno
;
9680 g
->local_gotno
+= page_gotno
;
9681 g
->assigned_high_gotno
= g
->local_gotno
- 1;
9683 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9684 s
->size
+= g
->global_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9685 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9687 /* VxWorks does not support multiple GOTs. It initializes $gp to
9688 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9690 if (htab
->root
.target_os
!= is_vxworks
9691 && s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
9693 if (!mips_elf_multi_got (output_bfd
, info
, s
, page_gotno
))
9698 /* Record that all bfds use G. This also has the effect of freeing
9699 the per-bfd GOTs, which we no longer need. */
9700 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
9701 if (mips_elf_bfd_got (ibfd
, FALSE
))
9702 mips_elf_replace_bfd_got (ibfd
, g
);
9703 mips_elf_replace_bfd_got (output_bfd
, g
);
9705 /* Set up TLS entries. */
9706 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
9709 tga
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
9710 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, &tga
);
9713 BFD_ASSERT (g
->tls_assigned_gotno
9714 == g
->global_gotno
+ g
->local_gotno
+ g
->tls_gotno
);
9716 /* Each VxWorks GOT entry needs an explicit relocation. */
9717 if (htab
->root
.target_os
== is_vxworks
&& bfd_link_pic (info
))
9718 g
->relocs
+= g
->global_gotno
+ g
->local_gotno
- htab
->reserved_gotno
;
9720 /* Allocate room for the TLS relocations. */
9722 mips_elf_allocate_dynamic_relocations (dynobj
, info
, g
->relocs
);
9728 /* Estimate the size of the .MIPS.stubs section. */
9731 mips_elf_estimate_stub_size (bfd
*output_bfd
, struct bfd_link_info
*info
)
9733 struct mips_elf_link_hash_table
*htab
;
9734 bfd_size_type dynsymcount
;
9736 htab
= mips_elf_hash_table (info
);
9737 BFD_ASSERT (htab
!= NULL
);
9739 if (htab
->lazy_stub_count
== 0)
9742 /* IRIX rld assumes that a function stub isn't at the end of the .text
9743 section, so add a dummy entry to the end. */
9744 htab
->lazy_stub_count
++;
9746 /* Get a worst-case estimate of the number of dynamic symbols needed.
9747 At this point, dynsymcount does not account for section symbols
9748 and count_section_dynsyms may overestimate the number that will
9750 dynsymcount
= (elf_hash_table (info
)->dynsymcount
9751 + count_section_dynsyms (output_bfd
, info
));
9753 /* Determine the size of one stub entry. There's no disadvantage
9754 from using microMIPS code here, so for the sake of pure-microMIPS
9755 binaries we prefer it whenever there's any microMIPS code in
9756 output produced at all. This has a benefit of stubs being
9757 shorter by 4 bytes each too, unless in the insn32 mode. */
9758 if (!MICROMIPS_P (output_bfd
))
9759 htab
->function_stub_size
= (dynsymcount
> 0x10000
9760 ? MIPS_FUNCTION_STUB_BIG_SIZE
9761 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
9762 else if (htab
->insn32
)
9763 htab
->function_stub_size
= (dynsymcount
> 0x10000
9764 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9765 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE
);
9767 htab
->function_stub_size
= (dynsymcount
> 0x10000
9768 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9769 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE
);
9771 htab
->sstubs
->size
= htab
->lazy_stub_count
* htab
->function_stub_size
;
9774 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9775 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9776 stub, allocate an entry in the stubs section. */
9779 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry
*h
, void *data
)
9781 struct mips_htab_traverse_info
*hti
= data
;
9782 struct mips_elf_link_hash_table
*htab
;
9783 struct bfd_link_info
*info
;
9787 output_bfd
= hti
->output_bfd
;
9788 htab
= mips_elf_hash_table (info
);
9789 BFD_ASSERT (htab
!= NULL
);
9791 if (h
->needs_lazy_stub
)
9793 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
9794 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9795 bfd_vma isa_bit
= micromips_p
;
9797 BFD_ASSERT (htab
->root
.dynobj
!= NULL
);
9798 if (h
->root
.plt
.plist
== NULL
)
9799 h
->root
.plt
.plist
= mips_elf_make_plt_record (htab
->sstubs
->owner
);
9800 if (h
->root
.plt
.plist
== NULL
)
9805 h
->root
.root
.u
.def
.section
= htab
->sstubs
;
9806 h
->root
.root
.u
.def
.value
= htab
->sstubs
->size
+ isa_bit
;
9807 h
->root
.plt
.plist
->stub_offset
= htab
->sstubs
->size
;
9808 h
->root
.other
= other
;
9809 htab
->sstubs
->size
+= htab
->function_stub_size
;
9814 /* Allocate offsets in the stubs section to each symbol that needs one.
9815 Set the final size of the .MIPS.stub section. */
9818 mips_elf_lay_out_lazy_stubs (struct bfd_link_info
*info
)
9820 bfd
*output_bfd
= info
->output_bfd
;
9821 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
9822 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9823 bfd_vma isa_bit
= micromips_p
;
9824 struct mips_elf_link_hash_table
*htab
;
9825 struct mips_htab_traverse_info hti
;
9826 struct elf_link_hash_entry
*h
;
9829 htab
= mips_elf_hash_table (info
);
9830 BFD_ASSERT (htab
!= NULL
);
9832 if (htab
->lazy_stub_count
== 0)
9835 htab
->sstubs
->size
= 0;
9837 hti
.output_bfd
= output_bfd
;
9839 mips_elf_link_hash_traverse (htab
, mips_elf_allocate_lazy_stub
, &hti
);
9842 htab
->sstubs
->size
+= htab
->function_stub_size
;
9843 BFD_ASSERT (htab
->sstubs
->size
9844 == htab
->lazy_stub_count
* htab
->function_stub_size
);
9846 dynobj
= elf_hash_table (info
)->dynobj
;
9847 BFD_ASSERT (dynobj
!= NULL
);
9848 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->sstubs
, "_MIPS_STUBS_");
9851 h
->root
.u
.def
.value
= isa_bit
;
9858 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9859 bfd_link_info. If H uses the address of a PLT entry as the value
9860 of the symbol, then set the entry in the symbol table now. Prefer
9861 a standard MIPS PLT entry. */
9864 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry
*h
, void *data
)
9866 struct bfd_link_info
*info
= data
;
9867 bfd_boolean micromips_p
= MICROMIPS_P (info
->output_bfd
);
9868 struct mips_elf_link_hash_table
*htab
;
9873 htab
= mips_elf_hash_table (info
);
9874 BFD_ASSERT (htab
!= NULL
);
9876 if (h
->use_plt_entry
)
9878 BFD_ASSERT (h
->root
.plt
.plist
!= NULL
);
9879 BFD_ASSERT (h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
9880 || h
->root
.plt
.plist
->comp_offset
!= MINUS_ONE
);
9882 val
= htab
->plt_header_size
;
9883 if (h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
9886 val
+= h
->root
.plt
.plist
->mips_offset
;
9892 val
+= htab
->plt_mips_offset
+ h
->root
.plt
.plist
->comp_offset
;
9893 other
= micromips_p
? STO_MICROMIPS
: STO_MIPS16
;
9896 /* For VxWorks, point at the PLT load stub rather than the lazy
9897 resolution stub; this stub will become the canonical function
9899 if (htab
->root
.target_os
== is_vxworks
)
9902 h
->root
.root
.u
.def
.section
= htab
->root
.splt
;
9903 h
->root
.root
.u
.def
.value
= val
;
9904 h
->root
.other
= other
;
9910 /* Set the sizes of the dynamic sections. */
9913 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
9914 struct bfd_link_info
*info
)
9917 asection
*s
, *sreldyn
;
9918 bfd_boolean reltext
;
9919 struct mips_elf_link_hash_table
*htab
;
9921 htab
= mips_elf_hash_table (info
);
9922 BFD_ASSERT (htab
!= NULL
);
9923 dynobj
= elf_hash_table (info
)->dynobj
;
9924 BFD_ASSERT (dynobj
!= NULL
);
9926 if (elf_hash_table (info
)->dynamic_sections_created
)
9928 /* Set the contents of the .interp section to the interpreter. */
9929 if (bfd_link_executable (info
) && !info
->nointerp
)
9931 s
= bfd_get_linker_section (dynobj
, ".interp");
9932 BFD_ASSERT (s
!= NULL
);
9934 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
9936 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
9939 /* Figure out the size of the PLT header if we know that we
9940 are using it. For the sake of cache alignment always use
9941 a standard header whenever any standard entries are present
9942 even if microMIPS entries are present as well. This also
9943 lets the microMIPS header rely on the value of $v0 only set
9944 by microMIPS entries, for a small size reduction.
9946 Set symbol table entry values for symbols that use the
9947 address of their PLT entry now that we can calculate it.
9949 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9950 haven't already in _bfd_elf_create_dynamic_sections. */
9951 if (htab
->root
.splt
&& htab
->plt_mips_offset
+ htab
->plt_comp_offset
!= 0)
9953 bfd_boolean micromips_p
= (MICROMIPS_P (output_bfd
)
9954 && !htab
->plt_mips_offset
);
9955 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9956 bfd_vma isa_bit
= micromips_p
;
9957 struct elf_link_hash_entry
*h
;
9960 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9961 BFD_ASSERT (htab
->root
.sgotplt
->size
== 0);
9962 BFD_ASSERT (htab
->root
.splt
->size
== 0);
9964 if (htab
->root
.target_os
== is_vxworks
&& bfd_link_pic (info
))
9965 size
= 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
9966 else if (htab
->root
.target_os
== is_vxworks
)
9967 size
= 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
9968 else if (ABI_64_P (output_bfd
))
9969 size
= 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry
);
9970 else if (ABI_N32_P (output_bfd
))
9971 size
= 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry
);
9972 else if (!micromips_p
)
9973 size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
9974 else if (htab
->insn32
)
9975 size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
);
9977 size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry
);
9979 htab
->plt_header_is_comp
= micromips_p
;
9980 htab
->plt_header_size
= size
;
9981 htab
->root
.splt
->size
= (size
9982 + htab
->plt_mips_offset
9983 + htab
->plt_comp_offset
);
9984 htab
->root
.sgotplt
->size
= (htab
->plt_got_index
9985 * MIPS_ELF_GOT_SIZE (dynobj
));
9987 mips_elf_link_hash_traverse (htab
, mips_elf_set_plt_sym_value
, info
);
9989 if (htab
->root
.hplt
== NULL
)
9991 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->root
.splt
,
9992 "_PROCEDURE_LINKAGE_TABLE_");
9993 htab
->root
.hplt
= h
;
9998 h
= htab
->root
.hplt
;
9999 h
->root
.u
.def
.value
= isa_bit
;
10001 h
->type
= STT_FUNC
;
10005 /* Allocate space for global sym dynamic relocs. */
10006 elf_link_hash_traverse (&htab
->root
, allocate_dynrelocs
, info
);
10008 mips_elf_estimate_stub_size (output_bfd
, info
);
10010 if (!mips_elf_lay_out_got (output_bfd
, info
))
10013 mips_elf_lay_out_lazy_stubs (info
);
10015 /* The check_relocs and adjust_dynamic_symbol entry points have
10016 determined the sizes of the various dynamic sections. Allocate
10017 memory for them. */
10019 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
10023 /* It's OK to base decisions on the section name, because none
10024 of the dynobj section names depend upon the input files. */
10025 name
= bfd_section_name (s
);
10027 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
10030 if (CONST_STRNEQ (name
, ".rel"))
10034 const char *outname
;
10037 /* If this relocation section applies to a read only
10038 section, then we probably need a DT_TEXTREL entry.
10039 If the relocation section is .rel(a).dyn, we always
10040 assert a DT_TEXTREL entry rather than testing whether
10041 there exists a relocation to a read only section or
10043 outname
= bfd_section_name (s
->output_section
);
10044 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
10045 if ((target
!= NULL
10046 && (target
->flags
& SEC_READONLY
) != 0
10047 && (target
->flags
& SEC_ALLOC
) != 0)
10048 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
10051 /* We use the reloc_count field as a counter if we need
10052 to copy relocs into the output file. */
10053 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
10054 s
->reloc_count
= 0;
10056 /* If combreloc is enabled, elf_link_sort_relocs() will
10057 sort relocations, but in a different way than we do,
10058 and before we're done creating relocations. Also, it
10059 will move them around between input sections'
10060 relocation's contents, so our sorting would be
10061 broken, so don't let it run. */
10062 info
->combreloc
= 0;
10065 else if (bfd_link_executable (info
)
10066 && ! mips_elf_hash_table (info
)->use_rld_obj_head
10067 && CONST_STRNEQ (name
, ".rld_map"))
10069 /* We add a room for __rld_map. It will be filled in by the
10070 rtld to contain a pointer to the _r_debug structure. */
10071 s
->size
+= MIPS_ELF_RLD_MAP_SIZE (output_bfd
);
10073 else if (SGI_COMPAT (output_bfd
)
10074 && CONST_STRNEQ (name
, ".compact_rel"))
10075 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
10076 else if (s
== htab
->root
.splt
)
10078 /* If the last PLT entry has a branch delay slot, allocate
10079 room for an extra nop to fill the delay slot. This is
10080 for CPUs without load interlocking. */
10081 if (! LOAD_INTERLOCKS_P (output_bfd
)
10082 && htab
->root
.target_os
!= is_vxworks
10086 else if (! CONST_STRNEQ (name
, ".init")
10087 && s
!= htab
->root
.sgot
10088 && s
!= htab
->root
.sgotplt
10089 && s
!= htab
->sstubs
10090 && s
!= htab
->root
.sdynbss
10091 && s
!= htab
->root
.sdynrelro
)
10093 /* It's not one of our sections, so don't allocate space. */
10099 s
->flags
|= SEC_EXCLUDE
;
10103 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
10106 /* Allocate memory for the section contents. */
10107 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
10108 if (s
->contents
== NULL
)
10110 bfd_set_error (bfd_error_no_memory
);
10115 if (elf_hash_table (info
)->dynamic_sections_created
)
10117 /* Add some entries to the .dynamic section. We fill in the
10118 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10119 must add the entries now so that we get the correct size for
10120 the .dynamic section. */
10122 /* SGI object has the equivalence of DT_DEBUG in the
10123 DT_MIPS_RLD_MAP entry. This must come first because glibc
10124 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10125 may only look at the first one they see. */
10126 if (!bfd_link_pic (info
)
10127 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
10130 if (bfd_link_executable (info
)
10131 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP_REL
, 0))
10134 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10135 used by the debugger. */
10136 if (bfd_link_executable (info
)
10137 && !SGI_COMPAT (output_bfd
)
10138 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
10142 && (SGI_COMPAT (output_bfd
)
10143 || htab
->root
.target_os
== is_vxworks
))
10144 info
->flags
|= DF_TEXTREL
;
10146 if ((info
->flags
& DF_TEXTREL
) != 0)
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
10151 /* Clear the DF_TEXTREL flag. It will be set again if we
10152 write out an actual text relocation; we may not, because
10153 at this point we do not know whether e.g. any .eh_frame
10154 absolute relocations have been converted to PC-relative. */
10155 info
->flags
&= ~DF_TEXTREL
;
10158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
10161 sreldyn
= mips_elf_rel_dyn_section (info
, FALSE
);
10162 if (htab
->root
.target_os
== is_vxworks
)
10164 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10165 use any of the DT_MIPS_* tags. */
10166 if (sreldyn
&& sreldyn
->size
> 0)
10168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
10171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
10174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
10180 if (sreldyn
&& sreldyn
->size
> 0
10181 && !bfd_is_abs_section (sreldyn
->output_section
))
10183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
10186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
10189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
10193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
10196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
10199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
10202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
10205 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
10208 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
10211 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
10214 if (info
->emit_gnu_hash
10215 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_XHASH
, 0))
10218 if (IRIX_COMPAT (dynobj
) == ict_irix5
10219 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
10222 if (IRIX_COMPAT (dynobj
) == ict_irix6
10223 && (bfd_get_section_by_name
10224 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
10225 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
10228 if (htab
->root
.splt
->size
> 0)
10230 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
10233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
10236 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
10239 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_PLTGOT
, 0))
10242 if (htab
->root
.target_os
== is_vxworks
10243 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
10250 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10251 Adjust its R_ADDEND field so that it is correct for the output file.
10252 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10253 and sections respectively; both use symbol indexes. */
10256 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
10257 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
10258 asection
**local_sections
, Elf_Internal_Rela
*rel
)
10260 unsigned int r_type
, r_symndx
;
10261 Elf_Internal_Sym
*sym
;
10264 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
10266 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
10267 if (gprel16_reloc_p (r_type
)
10268 || r_type
== R_MIPS_GPREL32
10269 || literal_reloc_p (r_type
))
10271 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
10272 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
10275 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
10276 sym
= local_syms
+ r_symndx
;
10278 /* Adjust REL's addend to account for section merging. */
10279 if (!bfd_link_relocatable (info
))
10281 sec
= local_sections
[r_symndx
];
10282 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
10285 /* This would normally be done by the rela_normal code in elflink.c. */
10286 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10287 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
10291 /* Handle relocations against symbols from removed linkonce sections,
10292 or sections discarded by a linker script. We use this wrapper around
10293 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10294 on 64-bit ELF targets. In this case for any relocation handled, which
10295 always be the first in a triplet, the remaining two have to be processed
10296 together with the first, even if they are R_MIPS_NONE. It is the symbol
10297 index referred by the first reloc that applies to all the three and the
10298 remaining two never refer to an object symbol. And it is the final
10299 relocation (the last non-null one) that determines the output field of
10300 the whole relocation so retrieve the corresponding howto structure for
10301 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10303 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10304 and therefore requires to be pasted in a loop. It also defines a block
10305 and does not protect any of its arguments, hence the extra brackets. */
10308 mips_reloc_against_discarded_section (bfd
*output_bfd
,
10309 struct bfd_link_info
*info
,
10310 bfd
*input_bfd
, asection
*input_section
,
10311 Elf_Internal_Rela
**rel
,
10312 const Elf_Internal_Rela
**relend
,
10313 bfd_boolean rel_reloc
,
10314 reloc_howto_type
*howto
,
10315 bfd_byte
*contents
)
10317 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
10318 int count
= bed
->s
->int_rels_per_ext_rel
;
10319 unsigned int r_type
;
10322 for (i
= count
- 1; i
> 0; i
--)
10324 r_type
= ELF_R_TYPE (output_bfd
, (*rel
)[i
].r_info
);
10325 if (r_type
!= R_MIPS_NONE
)
10327 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
, !rel_reloc
);
10333 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
10334 (*rel
), count
, (*relend
),
10335 howto
, i
, contents
);
10340 /* Relocate a MIPS ELF section. */
10343 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
10344 bfd
*input_bfd
, asection
*input_section
,
10345 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
10346 Elf_Internal_Sym
*local_syms
,
10347 asection
**local_sections
)
10349 Elf_Internal_Rela
*rel
;
10350 const Elf_Internal_Rela
*relend
;
10351 bfd_vma addend
= 0;
10352 bfd_boolean use_saved_addend_p
= FALSE
;
10354 relend
= relocs
+ input_section
->reloc_count
;
10355 for (rel
= relocs
; rel
< relend
; ++rel
)
10359 reloc_howto_type
*howto
;
10360 bfd_boolean cross_mode_jump_p
= FALSE
;
10361 /* TRUE if the relocation is a RELA relocation, rather than a
10363 bfd_boolean rela_relocation_p
= TRUE
;
10364 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
10366 unsigned long r_symndx
;
10368 Elf_Internal_Shdr
*symtab_hdr
;
10369 struct elf_link_hash_entry
*h
;
10370 bfd_boolean rel_reloc
;
10372 rel_reloc
= (NEWABI_P (input_bfd
)
10373 && mips_elf_rel_relocation_p (input_bfd
, input_section
,
10375 /* Find the relocation howto for this relocation. */
10376 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
, !rel_reloc
);
10378 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
10379 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
10380 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
10382 sec
= local_sections
[r_symndx
];
10387 unsigned long extsymoff
;
10390 if (!elf_bad_symtab (input_bfd
))
10391 extsymoff
= symtab_hdr
->sh_info
;
10392 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
10393 while (h
->root
.type
== bfd_link_hash_indirect
10394 || h
->root
.type
== bfd_link_hash_warning
)
10395 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10398 if (h
->root
.type
== bfd_link_hash_defined
10399 || h
->root
.type
== bfd_link_hash_defweak
)
10400 sec
= h
->root
.u
.def
.section
;
10403 if (sec
!= NULL
&& discarded_section (sec
))
10405 mips_reloc_against_discarded_section (output_bfd
, info
, input_bfd
,
10406 input_section
, &rel
, &relend
,
10407 rel_reloc
, howto
, contents
);
10411 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
10413 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10414 64-bit code, but make sure all their addresses are in the
10415 lowermost or uppermost 32-bit section of the 64-bit address
10416 space. Thus, when they use an R_MIPS_64 they mean what is
10417 usually meant by R_MIPS_32, with the exception that the
10418 stored value is sign-extended to 64 bits. */
10419 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
10421 /* On big-endian systems, we need to lie about the position
10423 if (bfd_big_endian (input_bfd
))
10424 rel
->r_offset
+= 4;
10427 if (!use_saved_addend_p
)
10429 /* If these relocations were originally of the REL variety,
10430 we must pull the addend out of the field that will be
10431 relocated. Otherwise, we simply use the contents of the
10432 RELA relocation. */
10433 if (mips_elf_rel_relocation_p (input_bfd
, input_section
,
10436 rela_relocation_p
= FALSE
;
10437 addend
= mips_elf_read_rel_addend (input_bfd
, rel
,
10439 if (hi16_reloc_p (r_type
)
10440 || (got16_reloc_p (r_type
)
10441 && mips_elf_local_relocation_p (input_bfd
, rel
,
10444 if (!mips_elf_add_lo16_rel_addend (input_bfd
, rel
, relend
,
10445 contents
, &addend
))
10448 name
= h
->root
.root
.string
;
10450 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
10451 local_syms
+ r_symndx
,
10454 /* xgettext:c-format */
10455 (_("%pB: can't find matching LO16 reloc against `%s'"
10456 " for %s at %#" PRIx64
" in section `%pA'"),
10458 howto
->name
, (uint64_t) rel
->r_offset
, input_section
);
10462 addend
<<= howto
->rightshift
;
10465 addend
= rel
->r_addend
;
10466 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
10467 local_syms
, local_sections
, rel
);
10470 if (bfd_link_relocatable (info
))
10472 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
10473 && bfd_big_endian (input_bfd
))
10474 rel
->r_offset
-= 4;
10476 if (!rela_relocation_p
&& rel
->r_addend
)
10478 addend
+= rel
->r_addend
;
10479 if (hi16_reloc_p (r_type
) || got16_reloc_p (r_type
))
10480 addend
= mips_elf_high (addend
);
10481 else if (r_type
== R_MIPS_HIGHER
)
10482 addend
= mips_elf_higher (addend
);
10483 else if (r_type
== R_MIPS_HIGHEST
)
10484 addend
= mips_elf_highest (addend
);
10486 addend
>>= howto
->rightshift
;
10488 /* We use the source mask, rather than the destination
10489 mask because the place to which we are writing will be
10490 source of the addend in the final link. */
10491 addend
&= howto
->src_mask
;
10493 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
10494 /* See the comment above about using R_MIPS_64 in the 32-bit
10495 ABI. Here, we need to update the addend. It would be
10496 possible to get away with just using the R_MIPS_32 reloc
10497 but for endianness. */
10503 if (addend
& ((bfd_vma
) 1 << 31))
10505 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
10512 /* If we don't know that we have a 64-bit type,
10513 do two separate stores. */
10514 if (bfd_big_endian (input_bfd
))
10516 /* Store the sign-bits (which are most significant)
10518 low_bits
= sign_bits
;
10519 high_bits
= addend
;
10524 high_bits
= sign_bits
;
10526 bfd_put_32 (input_bfd
, low_bits
,
10527 contents
+ rel
->r_offset
);
10528 bfd_put_32 (input_bfd
, high_bits
,
10529 contents
+ rel
->r_offset
+ 4);
10533 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
10534 input_bfd
, input_section
,
10539 /* Go on to the next relocation. */
10543 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10544 relocations for the same offset. In that case we are
10545 supposed to treat the output of each relocation as the addend
10547 if (rel
+ 1 < relend
10548 && rel
->r_offset
== rel
[1].r_offset
10549 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
10550 use_saved_addend_p
= TRUE
;
10552 use_saved_addend_p
= FALSE
;
10554 /* Figure out what value we are supposed to relocate. */
10555 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
10556 input_section
, contents
,
10557 info
, rel
, addend
, howto
,
10558 local_syms
, local_sections
,
10559 &value
, &name
, &cross_mode_jump_p
,
10560 use_saved_addend_p
))
10562 case bfd_reloc_continue
:
10563 /* There's nothing to do. */
10566 case bfd_reloc_undefined
:
10567 /* mips_elf_calculate_relocation already called the
10568 undefined_symbol callback. There's no real point in
10569 trying to perform the relocation at this point, so we
10570 just skip ahead to the next relocation. */
10573 case bfd_reloc_notsupported
:
10574 msg
= _("internal error: unsupported relocation error");
10575 info
->callbacks
->warning
10576 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
10579 case bfd_reloc_overflow
:
10580 if (use_saved_addend_p
)
10581 /* Ignore overflow until we reach the last relocation for
10582 a given location. */
10586 struct mips_elf_link_hash_table
*htab
;
10588 htab
= mips_elf_hash_table (info
);
10589 BFD_ASSERT (htab
!= NULL
);
10590 BFD_ASSERT (name
!= NULL
);
10591 if (!htab
->small_data_overflow_reported
10592 && (gprel16_reloc_p (howto
->type
)
10593 || literal_reloc_p (howto
->type
)))
10595 msg
= _("small-data section exceeds 64KB;"
10596 " lower small-data size limit (see option -G)");
10598 htab
->small_data_overflow_reported
= TRUE
;
10599 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
10601 (*info
->callbacks
->reloc_overflow
)
10602 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
10603 input_bfd
, input_section
, rel
->r_offset
);
10610 case bfd_reloc_outofrange
:
10612 if (jal_reloc_p (howto
->type
))
10613 msg
= (cross_mode_jump_p
10614 ? _("cannot convert a jump to JALX "
10615 "for a non-word-aligned address")
10616 : (howto
->type
== R_MIPS16_26
10617 ? _("jump to a non-word-aligned address")
10618 : _("jump to a non-instruction-aligned address")));
10619 else if (b_reloc_p (howto
->type
))
10620 msg
= (cross_mode_jump_p
10621 ? _("cannot convert a branch to JALX "
10622 "for a non-word-aligned address")
10623 : _("branch to a non-instruction-aligned address"));
10624 else if (aligned_pcrel_reloc_p (howto
->type
))
10625 msg
= _("PC-relative load from unaligned address");
10628 info
->callbacks
->einfo
10629 ("%X%H: %s\n", input_bfd
, input_section
, rel
->r_offset
, msg
);
10632 /* Fall through. */
10639 /* If we've got another relocation for the address, keep going
10640 until we reach the last one. */
10641 if (use_saved_addend_p
)
10647 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
10648 /* See the comment above about using R_MIPS_64 in the 32-bit
10649 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10650 that calculated the right value. Now, however, we
10651 sign-extend the 32-bit result to 64-bits, and store it as a
10652 64-bit value. We are especially generous here in that we
10653 go to extreme lengths to support this usage on systems with
10654 only a 32-bit VMA. */
10660 if (value
& ((bfd_vma
) 1 << 31))
10662 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
10669 /* If we don't know that we have a 64-bit type,
10670 do two separate stores. */
10671 if (bfd_big_endian (input_bfd
))
10673 /* Undo what we did above. */
10674 rel
->r_offset
-= 4;
10675 /* Store the sign-bits (which are most significant)
10677 low_bits
= sign_bits
;
10683 high_bits
= sign_bits
;
10685 bfd_put_32 (input_bfd
, low_bits
,
10686 contents
+ rel
->r_offset
);
10687 bfd_put_32 (input_bfd
, high_bits
,
10688 contents
+ rel
->r_offset
+ 4);
10692 /* Actually perform the relocation. */
10693 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
10694 input_bfd
, input_section
,
10695 contents
, cross_mode_jump_p
))
10702 /* A function that iterates over each entry in la25_stubs and fills
10703 in the code for each one. DATA points to a mips_htab_traverse_info. */
10706 mips_elf_create_la25_stub (void **slot
, void *data
)
10708 struct mips_htab_traverse_info
*hti
;
10709 struct mips_elf_link_hash_table
*htab
;
10710 struct mips_elf_la25_stub
*stub
;
10713 bfd_vma offset
, target
, target_high
, target_low
;
10715 bfd_signed_vma pcrel_offset
= 0;
10717 stub
= (struct mips_elf_la25_stub
*) *slot
;
10718 hti
= (struct mips_htab_traverse_info
*) data
;
10719 htab
= mips_elf_hash_table (hti
->info
);
10720 BFD_ASSERT (htab
!= NULL
);
10722 /* Create the section contents, if we haven't already. */
10723 s
= stub
->stub_section
;
10727 loc
= bfd_malloc (s
->size
);
10736 /* Work out where in the section this stub should go. */
10737 offset
= stub
->offset
;
10739 /* We add 8 here to account for the LUI/ADDIU instructions
10740 before the branch instruction. This cannot be moved down to
10741 where pcrel_offset is calculated as 's' is updated in
10742 mips_elf_get_la25_target. */
10743 branch_pc
= s
->output_section
->vma
+ s
->output_offset
+ offset
+ 8;
10745 /* Work out the target address. */
10746 target
= mips_elf_get_la25_target (stub
, &s
);
10747 target
+= s
->output_section
->vma
+ s
->output_offset
;
10749 target_high
= ((target
+ 0x8000) >> 16) & 0xffff;
10750 target_low
= (target
& 0xffff);
10752 /* Calculate the PC of the compact branch instruction (for the case where
10753 compact branches are used for either microMIPSR6 or MIPSR6 with
10754 compact branches. Add 4-bytes to account for BC using the PC of the
10755 next instruction as the base. */
10756 pcrel_offset
= target
- (branch_pc
+ 4);
10758 if (stub
->stub_section
!= htab
->strampoline
)
10760 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10761 of the section and write the two instructions at the end. */
10762 memset (loc
, 0, offset
);
10764 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
10766 bfd_put_micromips_32 (hti
->output_bfd
,
10767 LA25_LUI_MICROMIPS (target_high
),
10769 bfd_put_micromips_32 (hti
->output_bfd
,
10770 LA25_ADDIU_MICROMIPS (target_low
),
10775 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
10776 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
10781 /* This is trampoline. */
10783 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
10785 bfd_put_micromips_32 (hti
->output_bfd
,
10786 LA25_LUI_MICROMIPS (target_high
), loc
);
10787 bfd_put_micromips_32 (hti
->output_bfd
,
10788 LA25_J_MICROMIPS (target
), loc
+ 4);
10789 bfd_put_micromips_32 (hti
->output_bfd
,
10790 LA25_ADDIU_MICROMIPS (target_low
), loc
+ 8);
10791 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
10795 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
10796 if (MIPSR6_P (hti
->output_bfd
) && htab
->compact_branches
)
10798 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
10799 bfd_put_32 (hti
->output_bfd
, LA25_BC (pcrel_offset
), loc
+ 8);
10803 bfd_put_32 (hti
->output_bfd
, LA25_J (target
), loc
+ 4);
10804 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 8);
10806 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
10812 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10813 adjust it appropriately now. */
10816 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
10817 const char *name
, Elf_Internal_Sym
*sym
)
10819 /* The linker script takes care of providing names and values for
10820 these, but we must place them into the right sections. */
10821 static const char* const text_section_symbols
[] = {
10824 "__dso_displacement",
10826 "__program_header_table",
10830 static const char* const data_section_symbols
[] = {
10838 const char* const *p
;
10841 for (i
= 0; i
< 2; ++i
)
10842 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
10845 if (strcmp (*p
, name
) == 0)
10847 /* All of these symbols are given type STT_SECTION by the
10849 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
10850 sym
->st_other
= STO_PROTECTED
;
10852 /* The IRIX linker puts these symbols in special sections. */
10854 sym
->st_shndx
= SHN_MIPS_TEXT
;
10856 sym
->st_shndx
= SHN_MIPS_DATA
;
10862 /* Finish up dynamic symbol handling. We set the contents of various
10863 dynamic sections here. */
10866 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
10867 struct bfd_link_info
*info
,
10868 struct elf_link_hash_entry
*h
,
10869 Elf_Internal_Sym
*sym
)
10873 struct mips_got_info
*g
, *gg
;
10876 struct mips_elf_link_hash_table
*htab
;
10877 struct mips_elf_link_hash_entry
*hmips
;
10879 htab
= mips_elf_hash_table (info
);
10880 BFD_ASSERT (htab
!= NULL
);
10881 dynobj
= elf_hash_table (info
)->dynobj
;
10882 hmips
= (struct mips_elf_link_hash_entry
*) h
;
10884 BFD_ASSERT (htab
->root
.target_os
!= is_vxworks
);
10886 if (h
->plt
.plist
!= NULL
10887 && (h
->plt
.plist
->mips_offset
!= MINUS_ONE
10888 || h
->plt
.plist
->comp_offset
!= MINUS_ONE
))
10890 /* We've decided to create a PLT entry for this symbol. */
10892 bfd_vma header_address
, got_address
;
10893 bfd_vma got_address_high
, got_address_low
, load
;
10897 got_index
= h
->plt
.plist
->gotplt_index
;
10899 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10900 BFD_ASSERT (h
->dynindx
!= -1);
10901 BFD_ASSERT (htab
->root
.splt
!= NULL
);
10902 BFD_ASSERT (got_index
!= MINUS_ONE
);
10903 BFD_ASSERT (!h
->def_regular
);
10905 /* Calculate the address of the PLT header. */
10906 isa_bit
= htab
->plt_header_is_comp
;
10907 header_address
= (htab
->root
.splt
->output_section
->vma
10908 + htab
->root
.splt
->output_offset
+ isa_bit
);
10910 /* Calculate the address of the .got.plt entry. */
10911 got_address
= (htab
->root
.sgotplt
->output_section
->vma
10912 + htab
->root
.sgotplt
->output_offset
10913 + got_index
* MIPS_ELF_GOT_SIZE (dynobj
));
10915 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
10916 got_address_low
= got_address
& 0xffff;
10918 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10919 cannot be loaded in two instructions. */
10920 if (ABI_64_P (output_bfd
)
10921 && ((got_address
+ 0x80008000) & ~(bfd_vma
) 0xffffffff) != 0)
10924 /* xgettext:c-format */
10925 (_("%pB: `%pA' entry VMA of %#" PRIx64
" outside the 32-bit range "
10926 "supported; consider using `-Ttext-segment=...'"),
10928 htab
->root
.sgotplt
->output_section
,
10929 (int64_t) got_address
);
10930 bfd_set_error (bfd_error_no_error
);
10934 /* Initially point the .got.plt entry at the PLT header. */
10935 loc
= (htab
->root
.sgotplt
->contents
10936 + got_index
* MIPS_ELF_GOT_SIZE (dynobj
));
10937 if (ABI_64_P (output_bfd
))
10938 bfd_put_64 (output_bfd
, header_address
, loc
);
10940 bfd_put_32 (output_bfd
, header_address
, loc
);
10942 /* Now handle the PLT itself. First the standard entry (the order
10943 does not matter, we just have to pick one). */
10944 if (h
->plt
.plist
->mips_offset
!= MINUS_ONE
)
10946 const bfd_vma
*plt_entry
;
10947 bfd_vma plt_offset
;
10949 plt_offset
= htab
->plt_header_size
+ h
->plt
.plist
->mips_offset
;
10951 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
10953 /* Find out where the .plt entry should go. */
10954 loc
= htab
->root
.splt
->contents
+ plt_offset
;
10956 /* Pick the load opcode. */
10957 load
= MIPS_ELF_LOAD_WORD (output_bfd
);
10959 /* Fill in the PLT entry itself. */
10961 if (MIPSR6_P (output_bfd
))
10962 plt_entry
= htab
->compact_branches
? mipsr6_exec_plt_entry_compact
10963 : mipsr6_exec_plt_entry
;
10965 plt_entry
= mips_exec_plt_entry
;
10966 bfd_put_32 (output_bfd
, plt_entry
[0] | got_address_high
, loc
);
10967 bfd_put_32 (output_bfd
, plt_entry
[1] | got_address_low
| load
,
10970 if (! LOAD_INTERLOCKS_P (output_bfd
)
10971 || (MIPSR6_P (output_bfd
) && htab
->compact_branches
))
10973 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 8);
10974 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
10978 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 8);
10979 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
,
10984 /* Now the compressed entry. They come after any standard ones. */
10985 if (h
->plt
.plist
->comp_offset
!= MINUS_ONE
)
10987 bfd_vma plt_offset
;
10989 plt_offset
= (htab
->plt_header_size
+ htab
->plt_mips_offset
10990 + h
->plt
.plist
->comp_offset
);
10992 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
10994 /* Find out where the .plt entry should go. */
10995 loc
= htab
->root
.splt
->contents
+ plt_offset
;
10997 /* Fill in the PLT entry itself. */
10998 if (!MICROMIPS_P (output_bfd
))
11000 const bfd_vma
*plt_entry
= mips16_o32_exec_plt_entry
;
11002 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
11003 bfd_put_16 (output_bfd
, plt_entry
[1], loc
+ 2);
11004 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11005 bfd_put_16 (output_bfd
, plt_entry
[3], loc
+ 6);
11006 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11007 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
11008 bfd_put_32 (output_bfd
, got_address
, loc
+ 12);
11010 else if (htab
->insn32
)
11012 const bfd_vma
*plt_entry
= micromips_insn32_o32_exec_plt_entry
;
11014 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
11015 bfd_put_16 (output_bfd
, got_address_high
, loc
+ 2);
11016 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11017 bfd_put_16 (output_bfd
, got_address_low
, loc
+ 6);
11018 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11019 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
11020 bfd_put_16 (output_bfd
, plt_entry
[6], loc
+ 12);
11021 bfd_put_16 (output_bfd
, got_address_low
, loc
+ 14);
11025 const bfd_vma
*plt_entry
= micromips_o32_exec_plt_entry
;
11026 bfd_signed_vma gotpc_offset
;
11027 bfd_vma loc_address
;
11029 BFD_ASSERT (got_address
% 4 == 0);
11031 loc_address
= (htab
->root
.splt
->output_section
->vma
11032 + htab
->root
.splt
->output_offset
+ plt_offset
);
11033 gotpc_offset
= got_address
- ((loc_address
| 3) ^ 3);
11035 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11036 if (gotpc_offset
+ 0x1000000 >= 0x2000000)
11039 /* xgettext:c-format */
11040 (_("%pB: `%pA' offset of %" PRId64
" from `%pA' "
11041 "beyond the range of ADDIUPC"),
11043 htab
->root
.sgotplt
->output_section
,
11044 (int64_t) gotpc_offset
,
11045 htab
->root
.splt
->output_section
);
11046 bfd_set_error (bfd_error_no_error
);
11049 bfd_put_16 (output_bfd
,
11050 plt_entry
[0] | ((gotpc_offset
>> 18) & 0x7f), loc
);
11051 bfd_put_16 (output_bfd
, (gotpc_offset
>> 2) & 0xffff, loc
+ 2);
11052 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11053 bfd_put_16 (output_bfd
, plt_entry
[3], loc
+ 6);
11054 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11055 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
11059 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11060 mips_elf_output_dynamic_relocation (output_bfd
, htab
->root
.srelplt
,
11061 got_index
- 2, h
->dynindx
,
11062 R_MIPS_JUMP_SLOT
, got_address
);
11064 /* We distinguish between PLT entries and lazy-binding stubs by
11065 giving the former an st_other value of STO_MIPS_PLT. Set the
11066 flag and leave the value if there are any relocations in the
11067 binary where pointer equality matters. */
11068 sym
->st_shndx
= SHN_UNDEF
;
11069 if (h
->pointer_equality_needed
)
11070 sym
->st_other
= ELF_ST_SET_MIPS_PLT (sym
->st_other
);
11078 if (h
->plt
.plist
!= NULL
&& h
->plt
.plist
->stub_offset
!= MINUS_ONE
)
11080 /* We've decided to create a lazy-binding stub. */
11081 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
11082 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
11083 bfd_vma stub_size
= htab
->function_stub_size
;
11084 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
11085 bfd_vma isa_bit
= micromips_p
;
11086 bfd_vma stub_big_size
;
11089 stub_big_size
= MIPS_FUNCTION_STUB_BIG_SIZE
;
11090 else if (htab
->insn32
)
11091 stub_big_size
= MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
;
11093 stub_big_size
= MICROMIPS_FUNCTION_STUB_BIG_SIZE
;
11095 /* This symbol has a stub. Set it up. */
11097 BFD_ASSERT (h
->dynindx
!= -1);
11099 BFD_ASSERT (stub_size
== stub_big_size
|| h
->dynindx
<= 0xffff);
11101 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11102 sign extension at runtime in the stub, resulting in a negative
11104 if (h
->dynindx
& ~0x7fffffff)
11107 /* Fill the stub. */
11111 bfd_put_micromips_32 (output_bfd
, STUB_LW_MICROMIPS (output_bfd
),
11116 bfd_put_micromips_32 (output_bfd
,
11117 STUB_MOVE32_MICROMIPS
, stub
+ idx
);
11122 bfd_put_16 (output_bfd
, STUB_MOVE_MICROMIPS
, stub
+ idx
);
11125 if (stub_size
== stub_big_size
)
11127 long dynindx_hi
= (h
->dynindx
>> 16) & 0x7fff;
11129 bfd_put_micromips_32 (output_bfd
,
11130 STUB_LUI_MICROMIPS (dynindx_hi
),
11136 bfd_put_micromips_32 (output_bfd
, STUB_JALR32_MICROMIPS
,
11142 bfd_put_16 (output_bfd
, STUB_JALR_MICROMIPS
, stub
+ idx
);
11146 /* If a large stub is not required and sign extension is not a
11147 problem, then use legacy code in the stub. */
11148 if (stub_size
== stub_big_size
)
11149 bfd_put_micromips_32 (output_bfd
,
11150 STUB_ORI_MICROMIPS (h
->dynindx
& 0xffff),
11152 else if (h
->dynindx
& ~0x7fff)
11153 bfd_put_micromips_32 (output_bfd
,
11154 STUB_LI16U_MICROMIPS (h
->dynindx
& 0xffff),
11157 bfd_put_micromips_32 (output_bfd
,
11158 STUB_LI16S_MICROMIPS (output_bfd
,
11165 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
11167 bfd_put_32 (output_bfd
, STUB_MOVE
, stub
+ idx
);
11169 if (stub_size
== stub_big_size
)
11171 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
11176 if (!(MIPSR6_P (output_bfd
) && htab
->compact_branches
))
11178 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
11182 /* If a large stub is not required and sign extension is not a
11183 problem, then use legacy code in the stub. */
11184 if (stub_size
== stub_big_size
)
11185 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff),
11187 else if (h
->dynindx
& ~0x7fff)
11188 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff),
11191 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
11195 if (MIPSR6_P (output_bfd
) && htab
->compact_branches
)
11196 bfd_put_32 (output_bfd
, STUB_JALRC
, stub
+ idx
);
11199 BFD_ASSERT (h
->plt
.plist
->stub_offset
<= htab
->sstubs
->size
);
11200 memcpy (htab
->sstubs
->contents
+ h
->plt
.plist
->stub_offset
,
11203 /* Mark the symbol as undefined. stub_offset != -1 occurs
11204 only for the referenced symbol. */
11205 sym
->st_shndx
= SHN_UNDEF
;
11207 /* The run-time linker uses the st_value field of the symbol
11208 to reset the global offset table entry for this external
11209 to its stub address when unlinking a shared object. */
11210 sym
->st_value
= (htab
->sstubs
->output_section
->vma
11211 + htab
->sstubs
->output_offset
11212 + h
->plt
.plist
->stub_offset
11214 sym
->st_other
= other
;
11217 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11218 refer to the stub, since only the stub uses the standard calling
11220 if (h
->dynindx
!= -1 && hmips
->fn_stub
!= NULL
)
11222 BFD_ASSERT (hmips
->need_fn_stub
);
11223 sym
->st_value
= (hmips
->fn_stub
->output_section
->vma
11224 + hmips
->fn_stub
->output_offset
);
11225 sym
->st_size
= hmips
->fn_stub
->size
;
11226 sym
->st_other
= ELF_ST_VISIBILITY (sym
->st_other
);
11229 BFD_ASSERT (h
->dynindx
!= -1
11230 || h
->forced_local
);
11232 sgot
= htab
->root
.sgot
;
11233 g
= htab
->got_info
;
11234 BFD_ASSERT (g
!= NULL
);
11236 /* Run through the global symbol table, creating GOT entries for all
11237 the symbols that need them. */
11238 if (hmips
->global_got_area
!= GGA_NONE
)
11243 value
= sym
->st_value
;
11244 offset
= mips_elf_primary_global_got_index (output_bfd
, info
, h
);
11245 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
11248 if (hmips
->global_got_area
!= GGA_NONE
&& g
->next
)
11250 struct mips_got_entry e
, *p
;
11256 e
.abfd
= output_bfd
;
11259 e
.tls_type
= GOT_TLS_NONE
;
11261 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
11264 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
11267 offset
= p
->gotidx
;
11268 BFD_ASSERT (offset
> 0 && offset
< htab
->root
.sgot
->size
);
11269 if (bfd_link_pic (info
)
11270 || (elf_hash_table (info
)->dynamic_sections_created
11272 && p
->d
.h
->root
.def_dynamic
11273 && !p
->d
.h
->root
.def_regular
))
11275 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11276 the various compatibility problems, it's easier to mock
11277 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11278 mips_elf_create_dynamic_relocation to calculate the
11279 appropriate addend. */
11280 Elf_Internal_Rela rel
[3];
11282 memset (rel
, 0, sizeof (rel
));
11283 if (ABI_64_P (output_bfd
))
11284 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
11286 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
11287 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
11290 if (! (mips_elf_create_dynamic_relocation
11291 (output_bfd
, info
, rel
,
11292 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
11296 entry
= sym
->st_value
;
11297 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
11302 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11303 name
= h
->root
.root
.string
;
11304 if (h
== elf_hash_table (info
)->hdynamic
11305 || h
== elf_hash_table (info
)->hgot
)
11306 sym
->st_shndx
= SHN_ABS
;
11307 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
11308 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
11310 sym
->st_shndx
= SHN_ABS
;
11311 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11314 else if (SGI_COMPAT (output_bfd
))
11316 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
11317 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
11319 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11320 sym
->st_other
= STO_PROTECTED
;
11322 sym
->st_shndx
= SHN_MIPS_DATA
;
11324 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
11326 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11327 sym
->st_other
= STO_PROTECTED
;
11328 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
11329 sym
->st_shndx
= SHN_ABS
;
11331 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
11333 if (h
->type
== STT_FUNC
)
11334 sym
->st_shndx
= SHN_MIPS_TEXT
;
11335 else if (h
->type
== STT_OBJECT
)
11336 sym
->st_shndx
= SHN_MIPS_DATA
;
11340 /* Emit a copy reloc, if needed. */
11346 BFD_ASSERT (h
->dynindx
!= -1);
11347 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11349 s
= mips_elf_rel_dyn_section (info
, FALSE
);
11350 symval
= (h
->root
.u
.def
.section
->output_section
->vma
11351 + h
->root
.u
.def
.section
->output_offset
11352 + h
->root
.u
.def
.value
);
11353 mips_elf_output_dynamic_relocation (output_bfd
, s
, s
->reloc_count
++,
11354 h
->dynindx
, R_MIPS_COPY
, symval
);
11357 /* Handle the IRIX6-specific symbols. */
11358 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
11359 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
11361 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11362 to treat compressed symbols like any other. */
11363 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
11365 BFD_ASSERT (sym
->st_value
& 1);
11366 sym
->st_other
-= STO_MIPS16
;
11368 else if (ELF_ST_IS_MICROMIPS (sym
->st_other
))
11370 BFD_ASSERT (sym
->st_value
& 1);
11371 sym
->st_other
-= STO_MICROMIPS
;
11377 /* Likewise, for VxWorks. */
11380 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
11381 struct bfd_link_info
*info
,
11382 struct elf_link_hash_entry
*h
,
11383 Elf_Internal_Sym
*sym
)
11387 struct mips_got_info
*g
;
11388 struct mips_elf_link_hash_table
*htab
;
11389 struct mips_elf_link_hash_entry
*hmips
;
11391 htab
= mips_elf_hash_table (info
);
11392 BFD_ASSERT (htab
!= NULL
);
11393 dynobj
= elf_hash_table (info
)->dynobj
;
11394 hmips
= (struct mips_elf_link_hash_entry
*) h
;
11396 if (h
->plt
.plist
!= NULL
&& h
->plt
.plist
->mips_offset
!= MINUS_ONE
)
11399 bfd_vma plt_address
, got_address
, got_offset
, branch_offset
;
11400 Elf_Internal_Rela rel
;
11401 static const bfd_vma
*plt_entry
;
11402 bfd_vma gotplt_index
;
11403 bfd_vma plt_offset
;
11405 plt_offset
= htab
->plt_header_size
+ h
->plt
.plist
->mips_offset
;
11406 gotplt_index
= h
->plt
.plist
->gotplt_index
;
11408 BFD_ASSERT (h
->dynindx
!= -1);
11409 BFD_ASSERT (htab
->root
.splt
!= NULL
);
11410 BFD_ASSERT (gotplt_index
!= MINUS_ONE
);
11411 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
11413 /* Calculate the address of the .plt entry. */
11414 plt_address
= (htab
->root
.splt
->output_section
->vma
11415 + htab
->root
.splt
->output_offset
11418 /* Calculate the address of the .got.plt entry. */
11419 got_address
= (htab
->root
.sgotplt
->output_section
->vma
11420 + htab
->root
.sgotplt
->output_offset
11421 + gotplt_index
* MIPS_ELF_GOT_SIZE (output_bfd
));
11423 /* Calculate the offset of the .got.plt entry from
11424 _GLOBAL_OFFSET_TABLE_. */
11425 got_offset
= mips_elf_gotplt_index (info
, h
);
11427 /* Calculate the offset for the branch at the start of the PLT
11428 entry. The branch jumps to the beginning of .plt. */
11429 branch_offset
= -(plt_offset
/ 4 + 1) & 0xffff;
11431 /* Fill in the initial value of the .got.plt entry. */
11432 bfd_put_32 (output_bfd
, plt_address
,
11433 (htab
->root
.sgotplt
->contents
11434 + gotplt_index
* MIPS_ELF_GOT_SIZE (output_bfd
)));
11436 /* Find out where the .plt entry should go. */
11437 loc
= htab
->root
.splt
->contents
+ plt_offset
;
11439 if (bfd_link_pic (info
))
11441 plt_entry
= mips_vxworks_shared_plt_entry
;
11442 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
11443 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_index
, loc
+ 4);
11447 bfd_vma got_address_high
, got_address_low
;
11449 plt_entry
= mips_vxworks_exec_plt_entry
;
11450 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
11451 got_address_low
= got_address
& 0xffff;
11453 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
11454 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_index
, loc
+ 4);
11455 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
11456 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
11457 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11458 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11459 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
11460 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
11462 loc
= (htab
->srelplt2
->contents
11463 + (gotplt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
11465 /* Emit a relocation for the .got.plt entry. */
11466 rel
.r_offset
= got_address
;
11467 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
11468 rel
.r_addend
= plt_offset
;
11469 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11471 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11472 loc
+= sizeof (Elf32_External_Rela
);
11473 rel
.r_offset
= plt_address
+ 8;
11474 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11475 rel
.r_addend
= got_offset
;
11476 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11478 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11479 loc
+= sizeof (Elf32_External_Rela
);
11481 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11482 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11485 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11486 loc
= (htab
->root
.srelplt
->contents
11487 + gotplt_index
* sizeof (Elf32_External_Rela
));
11488 rel
.r_offset
= got_address
;
11489 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
11491 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11493 if (!h
->def_regular
)
11494 sym
->st_shndx
= SHN_UNDEF
;
11497 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
11499 sgot
= htab
->root
.sgot
;
11500 g
= htab
->got_info
;
11501 BFD_ASSERT (g
!= NULL
);
11503 /* See if this symbol has an entry in the GOT. */
11504 if (hmips
->global_got_area
!= GGA_NONE
)
11507 Elf_Internal_Rela outrel
;
11511 /* Install the symbol value in the GOT. */
11512 offset
= mips_elf_primary_global_got_index (output_bfd
, info
, h
);
11513 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
11515 /* Add a dynamic relocation for it. */
11516 s
= mips_elf_rel_dyn_section (info
, FALSE
);
11517 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
11518 outrel
.r_offset
= (sgot
->output_section
->vma
11519 + sgot
->output_offset
11521 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
11522 outrel
.r_addend
= 0;
11523 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
11526 /* Emit a copy reloc, if needed. */
11529 Elf_Internal_Rela rel
;
11533 BFD_ASSERT (h
->dynindx
!= -1);
11535 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
11536 + h
->root
.u
.def
.section
->output_offset
11537 + h
->root
.u
.def
.value
);
11538 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
11540 if (h
->root
.u
.def
.section
== htab
->root
.sdynrelro
)
11541 srel
= htab
->root
.sreldynrelro
;
11543 srel
= htab
->root
.srelbss
;
11544 loc
= srel
->contents
+ srel
->reloc_count
* sizeof (Elf32_External_Rela
);
11545 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11546 ++srel
->reloc_count
;
11549 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11550 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
11551 sym
->st_value
&= ~1;
11556 /* Write out a plt0 entry to the beginning of .plt. */
11559 mips_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11562 bfd_vma gotplt_value
, gotplt_value_high
, gotplt_value_low
;
11563 static const bfd_vma
*plt_entry
;
11564 struct mips_elf_link_hash_table
*htab
;
11566 htab
= mips_elf_hash_table (info
);
11567 BFD_ASSERT (htab
!= NULL
);
11569 if (ABI_64_P (output_bfd
))
11570 plt_entry
= (htab
->compact_branches
11571 ? mipsr6_n64_exec_plt0_entry_compact
11572 : mips_n64_exec_plt0_entry
);
11573 else if (ABI_N32_P (output_bfd
))
11574 plt_entry
= (htab
->compact_branches
11575 ? mipsr6_n32_exec_plt0_entry_compact
11576 : mips_n32_exec_plt0_entry
);
11577 else if (!htab
->plt_header_is_comp
)
11578 plt_entry
= (htab
->compact_branches
11579 ? mipsr6_o32_exec_plt0_entry_compact
11580 : mips_o32_exec_plt0_entry
);
11581 else if (htab
->insn32
)
11582 plt_entry
= micromips_insn32_o32_exec_plt0_entry
;
11584 plt_entry
= micromips_o32_exec_plt0_entry
;
11586 /* Calculate the value of .got.plt. */
11587 gotplt_value
= (htab
->root
.sgotplt
->output_section
->vma
11588 + htab
->root
.sgotplt
->output_offset
);
11589 gotplt_value_high
= ((gotplt_value
+ 0x8000) >> 16) & 0xffff;
11590 gotplt_value_low
= gotplt_value
& 0xffff;
11592 /* The PLT sequence is not safe for N64 if .got.plt's address can
11593 not be loaded in two instructions. */
11594 if (ABI_64_P (output_bfd
)
11595 && ((gotplt_value
+ 0x80008000) & ~(bfd_vma
) 0xffffffff) != 0)
11598 /* xgettext:c-format */
11599 (_("%pB: `%pA' start VMA of %#" PRIx64
" outside the 32-bit range "
11600 "supported; consider using `-Ttext-segment=...'"),
11602 htab
->root
.sgotplt
->output_section
,
11603 (int64_t) gotplt_value
);
11604 bfd_set_error (bfd_error_no_error
);
11608 /* Install the PLT header. */
11609 loc
= htab
->root
.splt
->contents
;
11610 if (plt_entry
== micromips_o32_exec_plt0_entry
)
11612 bfd_vma gotpc_offset
;
11613 bfd_vma loc_address
;
11616 BFD_ASSERT (gotplt_value
% 4 == 0);
11618 loc_address
= (htab
->root
.splt
->output_section
->vma
11619 + htab
->root
.splt
->output_offset
);
11620 gotpc_offset
= gotplt_value
- ((loc_address
| 3) ^ 3);
11622 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11623 if (gotpc_offset
+ 0x1000000 >= 0x2000000)
11626 /* xgettext:c-format */
11627 (_("%pB: `%pA' offset of %" PRId64
" from `%pA' "
11628 "beyond the range of ADDIUPC"),
11630 htab
->root
.sgotplt
->output_section
,
11631 (int64_t) gotpc_offset
,
11632 htab
->root
.splt
->output_section
);
11633 bfd_set_error (bfd_error_no_error
);
11636 bfd_put_16 (output_bfd
,
11637 plt_entry
[0] | ((gotpc_offset
>> 18) & 0x7f), loc
);
11638 bfd_put_16 (output_bfd
, (gotpc_offset
>> 2) & 0xffff, loc
+ 2);
11639 for (i
= 2; i
< ARRAY_SIZE (micromips_o32_exec_plt0_entry
); i
++)
11640 bfd_put_16 (output_bfd
, plt_entry
[i
], loc
+ (i
* 2));
11642 else if (plt_entry
== micromips_insn32_o32_exec_plt0_entry
)
11646 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
11647 bfd_put_16 (output_bfd
, gotplt_value_high
, loc
+ 2);
11648 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11649 bfd_put_16 (output_bfd
, gotplt_value_low
, loc
+ 6);
11650 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11651 bfd_put_16 (output_bfd
, gotplt_value_low
, loc
+ 10);
11652 for (i
= 6; i
< ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
); i
++)
11653 bfd_put_16 (output_bfd
, plt_entry
[i
], loc
+ (i
* 2));
11657 bfd_put_32 (output_bfd
, plt_entry
[0] | gotplt_value_high
, loc
);
11658 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_value_low
, loc
+ 4);
11659 bfd_put_32 (output_bfd
, plt_entry
[2] | gotplt_value_low
, loc
+ 8);
11660 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
11661 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11662 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11663 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
11664 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
11670 /* Install the PLT header for a VxWorks executable and finalize the
11671 contents of .rela.plt.unloaded. */
11674 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11676 Elf_Internal_Rela rela
;
11678 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
11679 static const bfd_vma
*plt_entry
;
11680 struct mips_elf_link_hash_table
*htab
;
11682 htab
= mips_elf_hash_table (info
);
11683 BFD_ASSERT (htab
!= NULL
);
11685 plt_entry
= mips_vxworks_exec_plt0_entry
;
11687 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11688 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
11689 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
11690 + htab
->root
.hgot
->root
.u
.def
.value
);
11692 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
11693 got_value_low
= got_value
& 0xffff;
11695 /* Calculate the address of the PLT header. */
11696 plt_address
= (htab
->root
.splt
->output_section
->vma
11697 + htab
->root
.splt
->output_offset
);
11699 /* Install the PLT header. */
11700 loc
= htab
->root
.splt
->contents
;
11701 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
11702 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
11703 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
11704 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
11705 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11706 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11708 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11709 loc
= htab
->srelplt2
->contents
;
11710 rela
.r_offset
= plt_address
;
11711 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11713 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
11714 loc
+= sizeof (Elf32_External_Rela
);
11716 /* Output the relocation for the following addiu of
11717 %lo(_GLOBAL_OFFSET_TABLE_). */
11718 rela
.r_offset
+= 4;
11719 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11720 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
11721 loc
+= sizeof (Elf32_External_Rela
);
11723 /* Fix up the remaining relocations. They may have the wrong
11724 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11725 in which symbols were output. */
11726 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
11728 Elf_Internal_Rela rel
;
11730 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11731 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
11732 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11733 loc
+= sizeof (Elf32_External_Rela
);
11735 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11736 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11737 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11738 loc
+= sizeof (Elf32_External_Rela
);
11740 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11741 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11742 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11743 loc
+= sizeof (Elf32_External_Rela
);
11747 /* Install the PLT header for a VxWorks shared library. */
11750 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11753 struct mips_elf_link_hash_table
*htab
;
11755 htab
= mips_elf_hash_table (info
);
11756 BFD_ASSERT (htab
!= NULL
);
11758 /* We just need to copy the entry byte-by-byte. */
11759 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
11760 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
11761 htab
->root
.splt
->contents
+ i
* 4);
11764 /* Finish up the dynamic sections. */
11767 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
11768 struct bfd_link_info
*info
)
11773 struct mips_got_info
*gg
, *g
;
11774 struct mips_elf_link_hash_table
*htab
;
11776 htab
= mips_elf_hash_table (info
);
11777 BFD_ASSERT (htab
!= NULL
);
11779 dynobj
= elf_hash_table (info
)->dynobj
;
11781 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
11783 sgot
= htab
->root
.sgot
;
11784 gg
= htab
->got_info
;
11786 if (elf_hash_table (info
)->dynamic_sections_created
)
11789 int dyn_to_skip
= 0, dyn_skipped
= 0;
11791 BFD_ASSERT (sdyn
!= NULL
);
11792 BFD_ASSERT (gg
!= NULL
);
11794 g
= mips_elf_bfd_got (output_bfd
, FALSE
);
11795 BFD_ASSERT (g
!= NULL
);
11797 for (b
= sdyn
->contents
;
11798 b
< sdyn
->contents
+ sdyn
->size
;
11799 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
11801 Elf_Internal_Dyn dyn
;
11805 bfd_boolean swap_out_p
;
11807 /* Read in the current dynamic entry. */
11808 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
11810 /* Assume that we're going to modify it and write it out. */
11816 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
11820 BFD_ASSERT (htab
->root
.target_os
== is_vxworks
);
11821 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
11825 /* Rewrite DT_STRSZ. */
11827 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
11831 s
= htab
->root
.sgot
;
11832 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
11835 case DT_MIPS_PLTGOT
:
11836 s
= htab
->root
.sgotplt
;
11837 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
11840 case DT_MIPS_RLD_VERSION
:
11841 dyn
.d_un
.d_val
= 1; /* XXX */
11844 case DT_MIPS_FLAGS
:
11845 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
11848 case DT_MIPS_TIME_STAMP
:
11852 dyn
.d_un
.d_val
= t
;
11856 case DT_MIPS_ICHECKSUM
:
11858 swap_out_p
= FALSE
;
11861 case DT_MIPS_IVERSION
:
11863 swap_out_p
= FALSE
;
11866 case DT_MIPS_BASE_ADDRESS
:
11867 s
= output_bfd
->sections
;
11868 BFD_ASSERT (s
!= NULL
);
11869 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
11872 case DT_MIPS_LOCAL_GOTNO
:
11873 dyn
.d_un
.d_val
= g
->local_gotno
;
11876 case DT_MIPS_UNREFEXTNO
:
11877 /* The index into the dynamic symbol table which is the
11878 entry of the first external symbol that is not
11879 referenced within the same object. */
11880 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
11883 case DT_MIPS_GOTSYM
:
11884 if (htab
->global_gotsym
)
11886 dyn
.d_un
.d_val
= htab
->global_gotsym
->dynindx
;
11889 /* In case if we don't have global got symbols we default
11890 to setting DT_MIPS_GOTSYM to the same value as
11891 DT_MIPS_SYMTABNO. */
11892 /* Fall through. */
11894 case DT_MIPS_SYMTABNO
:
11896 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
11897 s
= bfd_get_linker_section (dynobj
, name
);
11900 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
11902 dyn
.d_un
.d_val
= 0;
11905 case DT_MIPS_HIPAGENO
:
11906 dyn
.d_un
.d_val
= g
->local_gotno
- htab
->reserved_gotno
;
11909 case DT_MIPS_RLD_MAP
:
11911 struct elf_link_hash_entry
*h
;
11912 h
= mips_elf_hash_table (info
)->rld_symbol
;
11915 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11916 swap_out_p
= FALSE
;
11919 s
= h
->root
.u
.def
.section
;
11921 /* The MIPS_RLD_MAP tag stores the absolute address of the
11923 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
11924 + h
->root
.u
.def
.value
);
11928 case DT_MIPS_RLD_MAP_REL
:
11930 struct elf_link_hash_entry
*h
;
11931 bfd_vma dt_addr
, rld_addr
;
11932 h
= mips_elf_hash_table (info
)->rld_symbol
;
11935 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11936 swap_out_p
= FALSE
;
11939 s
= h
->root
.u
.def
.section
;
11941 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11942 pointer, relative to the address of the tag. */
11943 dt_addr
= (sdyn
->output_section
->vma
+ sdyn
->output_offset
11944 + (b
- sdyn
->contents
));
11945 rld_addr
= (s
->output_section
->vma
+ s
->output_offset
11946 + h
->root
.u
.def
.value
);
11947 dyn
.d_un
.d_ptr
= rld_addr
- dt_addr
;
11951 case DT_MIPS_OPTIONS
:
11952 s
= (bfd_get_section_by_name
11953 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
11954 dyn
.d_un
.d_ptr
= s
->vma
;
11958 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11959 if (htab
->root
.target_os
== is_vxworks
)
11960 dyn
.d_un
.d_val
= DT_RELA
;
11962 dyn
.d_un
.d_val
= DT_REL
;
11966 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11967 dyn
.d_un
.d_val
= htab
->root
.srelplt
->size
;
11971 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11972 dyn
.d_un
.d_ptr
= (htab
->root
.srelplt
->output_section
->vma
11973 + htab
->root
.srelplt
->output_offset
);
11977 /* If we didn't need any text relocations after all, delete
11978 the dynamic tag. */
11979 if (!(info
->flags
& DF_TEXTREL
))
11981 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11982 swap_out_p
= FALSE
;
11987 /* If we didn't need any text relocations after all, clear
11988 DF_TEXTREL from DT_FLAGS. */
11989 if (!(info
->flags
& DF_TEXTREL
))
11990 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
11992 swap_out_p
= FALSE
;
11995 case DT_MIPS_XHASH
:
11996 name
= ".MIPS.xhash";
11997 s
= bfd_get_linker_section (dynobj
, name
);
11998 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
12002 swap_out_p
= FALSE
;
12003 if (htab
->root
.target_os
== is_vxworks
12004 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
12009 if (swap_out_p
|| dyn_skipped
)
12010 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
12011 (dynobj
, &dyn
, b
- dyn_skipped
);
12015 dyn_skipped
+= dyn_to_skip
;
12020 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12021 if (dyn_skipped
> 0)
12022 memset (b
- dyn_skipped
, 0, dyn_skipped
);
12025 if (sgot
!= NULL
&& sgot
->size
> 0
12026 && !bfd_is_abs_section (sgot
->output_section
))
12028 if (htab
->root
.target_os
== is_vxworks
)
12030 /* The first entry of the global offset table points to the
12031 ".dynamic" section. The second is initialized by the
12032 loader and contains the shared library identifier.
12033 The third is also initialized by the loader and points
12034 to the lazy resolution stub. */
12035 MIPS_ELF_PUT_WORD (output_bfd
,
12036 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
12038 MIPS_ELF_PUT_WORD (output_bfd
, 0,
12039 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
12040 MIPS_ELF_PUT_WORD (output_bfd
, 0,
12042 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
12046 /* The first entry of the global offset table will be filled at
12047 runtime. The second entry will be used by some runtime loaders.
12048 This isn't the case of IRIX rld. */
12049 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
12050 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
12051 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
12054 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
12055 = MIPS_ELF_GOT_SIZE (output_bfd
);
12058 /* Generate dynamic relocations for the non-primary gots. */
12059 if (gg
!= NULL
&& gg
->next
)
12061 Elf_Internal_Rela rel
[3];
12062 bfd_vma addend
= 0;
12064 memset (rel
, 0, sizeof (rel
));
12065 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
12067 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
12069 bfd_vma got_index
= g
->next
->local_gotno
+ g
->next
->global_gotno
12070 + g
->next
->tls_gotno
;
12072 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
12073 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
12074 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
12076 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
12078 if (! bfd_link_pic (info
))
12081 for (; got_index
< g
->local_gotno
; got_index
++)
12083 if (got_index
>= g
->assigned_low_gotno
12084 && got_index
<= g
->assigned_high_gotno
)
12087 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
12088 = got_index
* MIPS_ELF_GOT_SIZE (output_bfd
);
12089 if (!(mips_elf_create_dynamic_relocation
12090 (output_bfd
, info
, rel
, NULL
,
12091 bfd_abs_section_ptr
,
12092 0, &addend
, sgot
)))
12094 BFD_ASSERT (addend
== 0);
12099 /* The generation of dynamic relocations for the non-primary gots
12100 adds more dynamic relocations. We cannot count them until
12103 if (elf_hash_table (info
)->dynamic_sections_created
)
12106 bfd_boolean swap_out_p
;
12108 BFD_ASSERT (sdyn
!= NULL
);
12110 for (b
= sdyn
->contents
;
12111 b
< sdyn
->contents
+ sdyn
->size
;
12112 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
12114 Elf_Internal_Dyn dyn
;
12117 /* Read in the current dynamic entry. */
12118 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
12120 /* Assume that we're going to modify it and write it out. */
12126 /* Reduce DT_RELSZ to account for any relocations we
12127 decided not to make. This is for the n64 irix rld,
12128 which doesn't seem to apply any relocations if there
12129 are trailing null entries. */
12130 s
= mips_elf_rel_dyn_section (info
, FALSE
);
12131 dyn
.d_un
.d_val
= (s
->reloc_count
12132 * (ABI_64_P (output_bfd
)
12133 ? sizeof (Elf64_Mips_External_Rel
)
12134 : sizeof (Elf32_External_Rel
)));
12135 /* Adjust the section size too. Tools like the prelinker
12136 can reasonably expect the values to the same. */
12137 BFD_ASSERT (!bfd_is_abs_section (s
->output_section
));
12138 elf_section_data (s
->output_section
)->this_hdr
.sh_size
12143 swap_out_p
= FALSE
;
12148 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
12155 Elf32_compact_rel cpt
;
12157 if (SGI_COMPAT (output_bfd
))
12159 /* Write .compact_rel section out. */
12160 s
= bfd_get_linker_section (dynobj
, ".compact_rel");
12164 cpt
.num
= s
->reloc_count
;
12166 cpt
.offset
= (s
->output_section
->filepos
12167 + sizeof (Elf32_External_compact_rel
));
12170 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
12171 ((Elf32_External_compact_rel
*)
12174 /* Clean up a dummy stub function entry in .text. */
12175 if (htab
->sstubs
!= NULL
12176 && htab
->sstubs
->contents
!= NULL
)
12178 file_ptr dummy_offset
;
12180 BFD_ASSERT (htab
->sstubs
->size
>= htab
->function_stub_size
);
12181 dummy_offset
= htab
->sstubs
->size
- htab
->function_stub_size
;
12182 memset (htab
->sstubs
->contents
+ dummy_offset
, 0,
12183 htab
->function_stub_size
);
12188 /* The psABI says that the dynamic relocations must be sorted in
12189 increasing order of r_symndx. The VxWorks EABI doesn't require
12190 this, and because the code below handles REL rather than RELA
12191 relocations, using it for VxWorks would be outright harmful. */
12192 if (htab
->root
.target_os
!= is_vxworks
)
12194 s
= mips_elf_rel_dyn_section (info
, FALSE
);
12196 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
12198 reldyn_sorting_bfd
= output_bfd
;
12200 if (ABI_64_P (output_bfd
))
12201 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
12202 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
12203 sort_dynamic_relocs_64
);
12205 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
12206 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
12207 sort_dynamic_relocs
);
12212 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
12214 if (htab
->root
.target_os
== is_vxworks
)
12216 if (bfd_link_pic (info
))
12217 mips_vxworks_finish_shared_plt (output_bfd
, info
);
12219 mips_vxworks_finish_exec_plt (output_bfd
, info
);
12223 BFD_ASSERT (!bfd_link_pic (info
));
12224 if (!mips_finish_exec_plt (output_bfd
, info
))
12232 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12235 mips_set_isa_flags (bfd
*abfd
)
12239 switch (bfd_get_mach (abfd
))
12242 if (ABI_N32_P (abfd
) || ABI_64_P (abfd
))
12243 val
= E_MIPS_ARCH_3
;
12245 val
= E_MIPS_ARCH_1
;
12248 case bfd_mach_mips3000
:
12249 val
= E_MIPS_ARCH_1
;
12252 case bfd_mach_mips3900
:
12253 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
12256 case bfd_mach_mips6000
:
12257 val
= E_MIPS_ARCH_2
;
12260 case bfd_mach_mips4010
:
12261 val
= E_MIPS_ARCH_2
| E_MIPS_MACH_4010
;
12264 case bfd_mach_mips4000
:
12265 case bfd_mach_mips4300
:
12266 case bfd_mach_mips4400
:
12267 case bfd_mach_mips4600
:
12268 val
= E_MIPS_ARCH_3
;
12271 case bfd_mach_mips4100
:
12272 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
12275 case bfd_mach_mips4111
:
12276 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
12279 case bfd_mach_mips4120
:
12280 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
12283 case bfd_mach_mips4650
:
12284 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
12287 case bfd_mach_mips5400
:
12288 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
12291 case bfd_mach_mips5500
:
12292 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
12295 case bfd_mach_mips5900
:
12296 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_5900
;
12299 case bfd_mach_mips9000
:
12300 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
12303 case bfd_mach_mips5000
:
12304 case bfd_mach_mips7000
:
12305 case bfd_mach_mips8000
:
12306 case bfd_mach_mips10000
:
12307 case bfd_mach_mips12000
:
12308 case bfd_mach_mips14000
:
12309 case bfd_mach_mips16000
:
12310 val
= E_MIPS_ARCH_4
;
12313 case bfd_mach_mips5
:
12314 val
= E_MIPS_ARCH_5
;
12317 case bfd_mach_mips_loongson_2e
:
12318 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2E
;
12321 case bfd_mach_mips_loongson_2f
:
12322 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2F
;
12325 case bfd_mach_mips_sb1
:
12326 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
12329 case bfd_mach_mips_gs464
:
12330 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS464
;
12333 case bfd_mach_mips_gs464e
:
12334 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS464E
;
12337 case bfd_mach_mips_gs264e
:
12338 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS264E
;
12341 case bfd_mach_mips_octeon
:
12342 case bfd_mach_mips_octeonp
:
12343 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON
;
12346 case bfd_mach_mips_octeon3
:
12347 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON3
;
12350 case bfd_mach_mips_xlr
:
12351 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_XLR
;
12354 case bfd_mach_mips_octeon2
:
12355 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON2
;
12358 case bfd_mach_mipsisa32
:
12359 val
= E_MIPS_ARCH_32
;
12362 case bfd_mach_mipsisa64
:
12363 val
= E_MIPS_ARCH_64
;
12366 case bfd_mach_mipsisa32r2
:
12367 case bfd_mach_mipsisa32r3
:
12368 case bfd_mach_mipsisa32r5
:
12369 val
= E_MIPS_ARCH_32R2
;
12372 case bfd_mach_mips_interaptiv_mr2
:
12373 val
= E_MIPS_ARCH_32R2
| E_MIPS_MACH_IAMR2
;
12376 case bfd_mach_mipsisa64r2
:
12377 case bfd_mach_mipsisa64r3
:
12378 case bfd_mach_mipsisa64r5
:
12379 val
= E_MIPS_ARCH_64R2
;
12382 case bfd_mach_mipsisa32r6
:
12383 val
= E_MIPS_ARCH_32R6
;
12386 case bfd_mach_mipsisa64r6
:
12387 val
= E_MIPS_ARCH_64R6
;
12390 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
12391 elf_elfheader (abfd
)->e_flags
|= val
;
12396 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12397 Don't do so for code sections. We want to keep ordering of HI16/LO16
12398 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12399 relocs to be sorted. */
12402 _bfd_mips_elf_sort_relocs_p (asection
*sec
)
12404 return (sec
->flags
& SEC_CODE
) == 0;
12408 /* The final processing done just before writing out a MIPS ELF object
12409 file. This gets the MIPS architecture right based on the machine
12410 number. This is used by both the 32-bit and the 64-bit ABI. */
12413 _bfd_mips_final_write_processing (bfd
*abfd
)
12416 Elf_Internal_Shdr
**hdrpp
;
12420 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12421 is nonzero. This is for compatibility with old objects, which used
12422 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12423 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
12424 mips_set_isa_flags (abfd
);
12426 /* Set the sh_info field for .gptab sections and other appropriate
12427 info for each special section. */
12428 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
12429 i
< elf_numsections (abfd
);
12432 switch ((*hdrpp
)->sh_type
)
12434 case SHT_MIPS_MSYM
:
12435 case SHT_MIPS_LIBLIST
:
12436 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
12438 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12441 case SHT_MIPS_GPTAB
:
12442 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12443 name
= bfd_section_name ((*hdrpp
)->bfd_section
);
12444 BFD_ASSERT (name
!= NULL
12445 && CONST_STRNEQ (name
, ".gptab."));
12446 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
12447 BFD_ASSERT (sec
!= NULL
);
12448 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
12451 case SHT_MIPS_CONTENT
:
12452 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12453 name
= bfd_section_name ((*hdrpp
)->bfd_section
);
12454 BFD_ASSERT (name
!= NULL
12455 && CONST_STRNEQ (name
, ".MIPS.content"));
12456 sec
= bfd_get_section_by_name (abfd
,
12457 name
+ sizeof ".MIPS.content" - 1);
12458 BFD_ASSERT (sec
!= NULL
);
12459 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12462 case SHT_MIPS_SYMBOL_LIB
:
12463 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
12465 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12466 sec
= bfd_get_section_by_name (abfd
, ".liblist");
12468 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
12471 case SHT_MIPS_EVENTS
:
12472 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12473 name
= bfd_section_name ((*hdrpp
)->bfd_section
);
12474 BFD_ASSERT (name
!= NULL
);
12475 if (CONST_STRNEQ (name
, ".MIPS.events"))
12476 sec
= bfd_get_section_by_name (abfd
,
12477 name
+ sizeof ".MIPS.events" - 1);
12480 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
12481 sec
= bfd_get_section_by_name (abfd
,
12483 + sizeof ".MIPS.post_rel" - 1));
12485 BFD_ASSERT (sec
!= NULL
);
12486 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12489 case SHT_MIPS_XHASH
:
12490 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
12492 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12498 _bfd_mips_elf_final_write_processing (bfd
*abfd
)
12500 _bfd_mips_final_write_processing (abfd
);
12501 return _bfd_elf_final_write_processing (abfd
);
12504 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12508 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
12509 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
12514 /* See if we need a PT_MIPS_REGINFO segment. */
12515 s
= bfd_get_section_by_name (abfd
, ".reginfo");
12516 if (s
&& (s
->flags
& SEC_LOAD
))
12519 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12520 if (bfd_get_section_by_name (abfd
, ".MIPS.abiflags"))
12523 /* See if we need a PT_MIPS_OPTIONS segment. */
12524 if (IRIX_COMPAT (abfd
) == ict_irix6
12525 && bfd_get_section_by_name (abfd
,
12526 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
12529 /* See if we need a PT_MIPS_RTPROC segment. */
12530 if (IRIX_COMPAT (abfd
) == ict_irix5
12531 && bfd_get_section_by_name (abfd
, ".dynamic")
12532 && bfd_get_section_by_name (abfd
, ".mdebug"))
12535 /* Allocate a PT_NULL header in dynamic objects. See
12536 _bfd_mips_elf_modify_segment_map for details. */
12537 if (!SGI_COMPAT (abfd
)
12538 && bfd_get_section_by_name (abfd
, ".dynamic"))
12544 /* Modify the segment map for an IRIX5 executable. */
12547 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
12548 struct bfd_link_info
*info
)
12551 struct elf_segment_map
*m
, **pm
;
12554 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12556 s
= bfd_get_section_by_name (abfd
, ".reginfo");
12557 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12559 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12560 if (m
->p_type
== PT_MIPS_REGINFO
)
12565 m
= bfd_zalloc (abfd
, amt
);
12569 m
->p_type
= PT_MIPS_REGINFO
;
12571 m
->sections
[0] = s
;
12573 /* We want to put it after the PHDR and INTERP segments. */
12574 pm
= &elf_seg_map (abfd
);
12576 && ((*pm
)->p_type
== PT_PHDR
12577 || (*pm
)->p_type
== PT_INTERP
))
12585 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12587 s
= bfd_get_section_by_name (abfd
, ".MIPS.abiflags");
12588 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12590 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12591 if (m
->p_type
== PT_MIPS_ABIFLAGS
)
12596 m
= bfd_zalloc (abfd
, amt
);
12600 m
->p_type
= PT_MIPS_ABIFLAGS
;
12602 m
->sections
[0] = s
;
12604 /* We want to put it after the PHDR and INTERP segments. */
12605 pm
= &elf_seg_map (abfd
);
12607 && ((*pm
)->p_type
== PT_PHDR
12608 || (*pm
)->p_type
== PT_INTERP
))
12616 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12617 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12618 PT_MIPS_OPTIONS segment immediately following the program header
12620 if (NEWABI_P (abfd
)
12621 /* On non-IRIX6 new abi, we'll have already created a segment
12622 for this section, so don't create another. I'm not sure this
12623 is not also the case for IRIX 6, but I can't test it right
12625 && IRIX_COMPAT (abfd
) == ict_irix6
)
12627 for (s
= abfd
->sections
; s
; s
= s
->next
)
12628 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
12633 struct elf_segment_map
*options_segment
;
12635 pm
= &elf_seg_map (abfd
);
12637 && ((*pm
)->p_type
== PT_PHDR
12638 || (*pm
)->p_type
== PT_INTERP
))
12641 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
12643 amt
= sizeof (struct elf_segment_map
);
12644 options_segment
= bfd_zalloc (abfd
, amt
);
12645 options_segment
->next
= *pm
;
12646 options_segment
->p_type
= PT_MIPS_OPTIONS
;
12647 options_segment
->p_flags
= PF_R
;
12648 options_segment
->p_flags_valid
= TRUE
;
12649 options_segment
->count
= 1;
12650 options_segment
->sections
[0] = s
;
12651 *pm
= options_segment
;
12657 if (IRIX_COMPAT (abfd
) == ict_irix5
)
12659 /* If there are .dynamic and .mdebug sections, we make a room
12660 for the RTPROC header. FIXME: Rewrite without section names. */
12661 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
12662 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
12663 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
12665 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12666 if (m
->p_type
== PT_MIPS_RTPROC
)
12671 m
= bfd_zalloc (abfd
, amt
);
12675 m
->p_type
= PT_MIPS_RTPROC
;
12677 s
= bfd_get_section_by_name (abfd
, ".rtproc");
12682 m
->p_flags_valid
= 1;
12687 m
->sections
[0] = s
;
12690 /* We want to put it after the DYNAMIC segment. */
12691 pm
= &elf_seg_map (abfd
);
12692 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
12702 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12703 .dynstr, .dynsym, and .hash sections, and everything in
12705 for (pm
= &elf_seg_map (abfd
); *pm
!= NULL
;
12707 if ((*pm
)->p_type
== PT_DYNAMIC
)
12710 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12711 glibc's dynamic linker has traditionally derived the number of
12712 tags from the p_filesz field, and sometimes allocates stack
12713 arrays of that size. An overly-big PT_DYNAMIC segment can
12714 be actively harmful in such cases. Making PT_DYNAMIC contain
12715 other sections can also make life hard for the prelinker,
12716 which might move one of the other sections to a different
12717 PT_LOAD segment. */
12718 if (SGI_COMPAT (abfd
)
12721 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
12723 static const char *sec_names
[] =
12725 ".dynamic", ".dynstr", ".dynsym", ".hash"
12729 struct elf_segment_map
*n
;
12731 low
= ~(bfd_vma
) 0;
12733 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
12735 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
12736 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12743 if (high
< s
->vma
+ sz
)
12744 high
= s
->vma
+ sz
;
12749 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
12750 if ((s
->flags
& SEC_LOAD
) != 0
12752 && s
->vma
+ s
->size
<= high
)
12755 amt
= sizeof *n
- sizeof (asection
*) + c
* sizeof (asection
*);
12756 n
= bfd_zalloc (abfd
, amt
);
12763 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
12765 if ((s
->flags
& SEC_LOAD
) != 0
12767 && s
->vma
+ s
->size
<= high
)
12769 n
->sections
[i
] = s
;
12778 /* Allocate a spare program header in dynamic objects so that tools
12779 like the prelinker can add an extra PT_LOAD entry.
12781 If the prelinker needs to make room for a new PT_LOAD entry, its
12782 standard procedure is to move the first (read-only) sections into
12783 the new (writable) segment. However, the MIPS ABI requires
12784 .dynamic to be in a read-only segment, and the section will often
12785 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12787 Although the prelinker could in principle move .dynamic to a
12788 writable segment, it seems better to allocate a spare program
12789 header instead, and avoid the need to move any sections.
12790 There is a long tradition of allocating spare dynamic tags,
12791 so allocating a spare program header seems like a natural
12794 If INFO is NULL, we may be copying an already prelinked binary
12795 with objcopy or strip, so do not add this header. */
12797 && !SGI_COMPAT (abfd
)
12798 && bfd_get_section_by_name (abfd
, ".dynamic"))
12800 for (pm
= &elf_seg_map (abfd
); *pm
!= NULL
; pm
= &(*pm
)->next
)
12801 if ((*pm
)->p_type
== PT_NULL
)
12805 m
= bfd_zalloc (abfd
, sizeof (*m
));
12809 m
->p_type
= PT_NULL
;
12817 /* Return the section that should be marked against GC for a given
12821 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
12822 struct bfd_link_info
*info
,
12823 Elf_Internal_Rela
*rel
,
12824 struct elf_link_hash_entry
*h
,
12825 Elf_Internal_Sym
*sym
)
12827 /* ??? Do mips16 stub sections need to be handled special? */
12830 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
12832 case R_MIPS_GNU_VTINHERIT
:
12833 case R_MIPS_GNU_VTENTRY
:
12837 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
12840 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12843 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info
*info
,
12844 elf_gc_mark_hook_fn gc_mark_hook
)
12848 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
12850 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
12854 if (! is_mips_elf (sub
))
12857 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12859 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o
)))
12861 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12869 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12870 hiding the old indirect symbol. Process additional relocation
12871 information. Also called for weakdefs, in which case we just let
12872 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12875 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
12876 struct elf_link_hash_entry
*dir
,
12877 struct elf_link_hash_entry
*ind
)
12879 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
12881 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
12883 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
12884 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
12885 /* Any absolute non-dynamic relocations against an indirect or weak
12886 definition will be against the target symbol. */
12887 if (indmips
->has_static_relocs
)
12888 dirmips
->has_static_relocs
= TRUE
;
12890 if (ind
->root
.type
!= bfd_link_hash_indirect
)
12893 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
12894 if (indmips
->readonly_reloc
)
12895 dirmips
->readonly_reloc
= TRUE
;
12896 if (indmips
->no_fn_stub
)
12897 dirmips
->no_fn_stub
= TRUE
;
12898 if (indmips
->fn_stub
)
12900 dirmips
->fn_stub
= indmips
->fn_stub
;
12901 indmips
->fn_stub
= NULL
;
12903 if (indmips
->need_fn_stub
)
12905 dirmips
->need_fn_stub
= TRUE
;
12906 indmips
->need_fn_stub
= FALSE
;
12908 if (indmips
->call_stub
)
12910 dirmips
->call_stub
= indmips
->call_stub
;
12911 indmips
->call_stub
= NULL
;
12913 if (indmips
->call_fp_stub
)
12915 dirmips
->call_fp_stub
= indmips
->call_fp_stub
;
12916 indmips
->call_fp_stub
= NULL
;
12918 if (indmips
->global_got_area
< dirmips
->global_got_area
)
12919 dirmips
->global_got_area
= indmips
->global_got_area
;
12920 if (indmips
->global_got_area
< GGA_NONE
)
12921 indmips
->global_got_area
= GGA_NONE
;
12922 if (indmips
->has_nonpic_branches
)
12923 dirmips
->has_nonpic_branches
= TRUE
;
12926 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12927 to hide it. It has to remain global (it will also be protected) so as to
12928 be assigned a global GOT entry, which will then remain unchanged at load
12932 _bfd_mips_elf_hide_symbol (struct bfd_link_info
*info
,
12933 struct elf_link_hash_entry
*entry
,
12934 bfd_boolean force_local
)
12936 struct mips_elf_link_hash_table
*htab
;
12938 htab
= mips_elf_hash_table (info
);
12939 BFD_ASSERT (htab
!= NULL
);
12940 if (htab
->use_absolute_zero
12941 && strcmp (entry
->root
.root
.string
, "__gnu_absolute_zero") == 0)
12944 _bfd_elf_link_hash_hide_symbol (info
, entry
, force_local
);
12947 #define PDR_SIZE 32
12950 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
12951 struct bfd_link_info
*info
)
12954 bfd_boolean ret
= FALSE
;
12955 unsigned char *tdata
;
12958 o
= bfd_get_section_by_name (abfd
, ".pdr");
12963 if (o
->size
% PDR_SIZE
!= 0)
12965 if (o
->output_section
!= NULL
12966 && bfd_is_abs_section (o
->output_section
))
12969 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
12973 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
12974 info
->keep_memory
);
12981 cookie
->rel
= cookie
->rels
;
12982 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
12984 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
12986 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
12995 mips_elf_section_data (o
)->u
.tdata
= tdata
;
12996 if (o
->rawsize
== 0)
12997 o
->rawsize
= o
->size
;
12998 o
->size
-= skip
* PDR_SIZE
;
13004 if (! info
->keep_memory
)
13005 free (cookie
->rels
);
13011 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
13013 if (strcmp (sec
->name
, ".pdr") == 0)
13019 _bfd_mips_elf_write_section (bfd
*output_bfd
,
13020 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
13021 asection
*sec
, bfd_byte
*contents
)
13023 bfd_byte
*to
, *from
, *end
;
13026 if (strcmp (sec
->name
, ".pdr") != 0)
13029 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
13033 end
= contents
+ sec
->size
;
13034 for (from
= contents
, i
= 0;
13036 from
+= PDR_SIZE
, i
++)
13038 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
13041 memcpy (to
, from
, PDR_SIZE
);
13044 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
13045 sec
->output_offset
, sec
->size
);
13049 /* microMIPS code retains local labels for linker relaxation. Omit them
13050 from output by default for clarity. */
13053 _bfd_mips_elf_is_target_special_symbol (bfd
*abfd
, asymbol
*sym
)
13055 return _bfd_elf_is_local_label_name (abfd
, sym
->name
);
13058 /* MIPS ELF uses a special find_nearest_line routine in order the
13059 handle the ECOFF debugging information. */
13061 struct mips_elf_find_line
13063 struct ecoff_debug_info d
;
13064 struct ecoff_find_line i
;
13068 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asymbol
**symbols
,
13069 asection
*section
, bfd_vma offset
,
13070 const char **filename_ptr
,
13071 const char **functionname_ptr
,
13072 unsigned int *line_ptr
,
13073 unsigned int *discriminator_ptr
)
13077 if (_bfd_dwarf2_find_nearest_line (abfd
, symbols
, NULL
, section
, offset
,
13078 filename_ptr
, functionname_ptr
,
13079 line_ptr
, discriminator_ptr
,
13080 dwarf_debug_sections
,
13081 &elf_tdata (abfd
)->dwarf2_find_line_info
)
13085 if (_bfd_dwarf1_find_nearest_line (abfd
, symbols
, section
, offset
,
13086 filename_ptr
, functionname_ptr
,
13089 if (!*functionname_ptr
)
13090 _bfd_elf_find_function (abfd
, symbols
, section
, offset
,
13091 *filename_ptr
? NULL
: filename_ptr
,
13096 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
13099 flagword origflags
;
13100 struct mips_elf_find_line
*fi
;
13101 const struct ecoff_debug_swap
* const swap
=
13102 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
13104 /* If we are called during a link, mips_elf_final_link may have
13105 cleared the SEC_HAS_CONTENTS field. We force it back on here
13106 if appropriate (which it normally will be). */
13107 origflags
= msec
->flags
;
13108 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
13109 msec
->flags
|= SEC_HAS_CONTENTS
;
13111 fi
= mips_elf_tdata (abfd
)->find_line_info
;
13114 bfd_size_type external_fdr_size
;
13117 struct fdr
*fdr_ptr
;
13118 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
13120 fi
= bfd_zalloc (abfd
, amt
);
13123 msec
->flags
= origflags
;
13127 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
13129 msec
->flags
= origflags
;
13133 /* Swap in the FDR information. */
13134 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
13135 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
13136 if (fi
->d
.fdr
== NULL
)
13138 msec
->flags
= origflags
;
13141 external_fdr_size
= swap
->external_fdr_size
;
13142 fdr_ptr
= fi
->d
.fdr
;
13143 fraw_src
= (char *) fi
->d
.external_fdr
;
13144 fraw_end
= (fraw_src
13145 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
13146 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
13147 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
13149 mips_elf_tdata (abfd
)->find_line_info
= fi
;
13151 /* Note that we don't bother to ever free this information.
13152 find_nearest_line is either called all the time, as in
13153 objdump -l, so the information should be saved, or it is
13154 rarely called, as in ld error messages, so the memory
13155 wasted is unimportant. Still, it would probably be a
13156 good idea for free_cached_info to throw it away. */
13159 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
13160 &fi
->i
, filename_ptr
, functionname_ptr
,
13163 msec
->flags
= origflags
;
13167 msec
->flags
= origflags
;
13170 /* Fall back on the generic ELF find_nearest_line routine. */
13172 return _bfd_elf_find_nearest_line (abfd
, symbols
, section
, offset
,
13173 filename_ptr
, functionname_ptr
,
13174 line_ptr
, discriminator_ptr
);
13178 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
13179 const char **filename_ptr
,
13180 const char **functionname_ptr
,
13181 unsigned int *line_ptr
)
13184 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
13185 functionname_ptr
, line_ptr
,
13186 & elf_tdata (abfd
)->dwarf2_find_line_info
);
13191 /* When are writing out the .options or .MIPS.options section,
13192 remember the bytes we are writing out, so that we can install the
13193 GP value in the section_processing routine. */
13196 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
13197 const void *location
,
13198 file_ptr offset
, bfd_size_type count
)
13200 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
13204 if (elf_section_data (section
) == NULL
)
13206 size_t amt
= sizeof (struct bfd_elf_section_data
);
13207 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
13208 if (elf_section_data (section
) == NULL
)
13211 c
= mips_elf_section_data (section
)->u
.tdata
;
13214 c
= bfd_zalloc (abfd
, section
->size
);
13217 mips_elf_section_data (section
)->u
.tdata
= c
;
13220 memcpy (c
+ offset
, location
, count
);
13223 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
13227 /* This is almost identical to bfd_generic_get_... except that some
13228 MIPS relocations need to be handled specially. Sigh. */
13231 _bfd_elf_mips_get_relocated_section_contents
13233 struct bfd_link_info
*link_info
,
13234 struct bfd_link_order
*link_order
,
13236 bfd_boolean relocatable
,
13239 /* Get enough memory to hold the stuff */
13240 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
13241 asection
*input_section
= link_order
->u
.indirect
.section
;
13244 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
13245 arelent
**reloc_vector
= NULL
;
13248 if (reloc_size
< 0)
13251 reloc_vector
= bfd_malloc (reloc_size
);
13252 if (reloc_vector
== NULL
&& reloc_size
!= 0)
13255 /* read in the section */
13256 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
13257 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
13260 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
13264 if (reloc_count
< 0)
13267 if (reloc_count
> 0)
13272 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
13275 struct bfd_hash_entry
*h
;
13276 struct bfd_link_hash_entry
*lh
;
13277 /* Skip all this stuff if we aren't mixing formats. */
13278 if (abfd
&& input_bfd
13279 && abfd
->xvec
== input_bfd
->xvec
)
13283 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
13284 lh
= (struct bfd_link_hash_entry
*) h
;
13291 case bfd_link_hash_undefined
:
13292 case bfd_link_hash_undefweak
:
13293 case bfd_link_hash_common
:
13296 case bfd_link_hash_defined
:
13297 case bfd_link_hash_defweak
:
13299 gp
= lh
->u
.def
.value
;
13301 case bfd_link_hash_indirect
:
13302 case bfd_link_hash_warning
:
13304 /* @@FIXME ignoring warning for now */
13306 case bfd_link_hash_new
:
13315 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
13317 char *error_message
= NULL
;
13318 bfd_reloc_status_type r
;
13320 /* Specific to MIPS: Deal with relocation types that require
13321 knowing the gp of the output bfd. */
13322 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
13324 /* If we've managed to find the gp and have a special
13325 function for the relocation then go ahead, else default
13326 to the generic handling. */
13328 && (*parent
)->howto
->special_function
13329 == _bfd_mips_elf32_gprel16_reloc
)
13330 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
13331 input_section
, relocatable
,
13334 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
13336 relocatable
? abfd
: NULL
,
13341 asection
*os
= input_section
->output_section
;
13343 /* A partial link, so keep the relocs */
13344 os
->orelocation
[os
->reloc_count
] = *parent
;
13348 if (r
!= bfd_reloc_ok
)
13352 case bfd_reloc_undefined
:
13353 (*link_info
->callbacks
->undefined_symbol
)
13354 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
13355 input_bfd
, input_section
, (*parent
)->address
, TRUE
);
13357 case bfd_reloc_dangerous
:
13358 BFD_ASSERT (error_message
!= NULL
);
13359 (*link_info
->callbacks
->reloc_dangerous
)
13360 (link_info
, error_message
,
13361 input_bfd
, input_section
, (*parent
)->address
);
13363 case bfd_reloc_overflow
:
13364 (*link_info
->callbacks
->reloc_overflow
)
13366 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
13367 (*parent
)->howto
->name
, (*parent
)->addend
,
13368 input_bfd
, input_section
, (*parent
)->address
);
13370 case bfd_reloc_outofrange
:
13379 free (reloc_vector
);
13383 free (reloc_vector
);
13388 mips_elf_relax_delete_bytes (bfd
*abfd
,
13389 asection
*sec
, bfd_vma addr
, int count
)
13391 Elf_Internal_Shdr
*symtab_hdr
;
13392 unsigned int sec_shndx
;
13393 bfd_byte
*contents
;
13394 Elf_Internal_Rela
*irel
, *irelend
;
13395 Elf_Internal_Sym
*isym
;
13396 Elf_Internal_Sym
*isymend
;
13397 struct elf_link_hash_entry
**sym_hashes
;
13398 struct elf_link_hash_entry
**end_hashes
;
13399 struct elf_link_hash_entry
**start_hashes
;
13400 unsigned int symcount
;
13402 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
13403 contents
= elf_section_data (sec
)->this_hdr
.contents
;
13405 irel
= elf_section_data (sec
)->relocs
;
13406 irelend
= irel
+ sec
->reloc_count
;
13408 /* Actually delete the bytes. */
13409 memmove (contents
+ addr
, contents
+ addr
+ count
,
13410 (size_t) (sec
->size
- addr
- count
));
13411 sec
->size
-= count
;
13413 /* Adjust all the relocs. */
13414 for (irel
= elf_section_data (sec
)->relocs
; irel
< irelend
; irel
++)
13416 /* Get the new reloc address. */
13417 if (irel
->r_offset
> addr
)
13418 irel
->r_offset
-= count
;
13421 BFD_ASSERT (addr
% 2 == 0);
13422 BFD_ASSERT (count
% 2 == 0);
13424 /* Adjust the local symbols defined in this section. */
13425 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
13426 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
13427 for (isymend
= isym
+ symtab_hdr
->sh_info
; isym
< isymend
; isym
++)
13428 if (isym
->st_shndx
== sec_shndx
&& isym
->st_value
> addr
)
13429 isym
->st_value
-= count
;
13431 /* Now adjust the global symbols defined in this section. */
13432 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
13433 - symtab_hdr
->sh_info
);
13434 sym_hashes
= start_hashes
= elf_sym_hashes (abfd
);
13435 end_hashes
= sym_hashes
+ symcount
;
13437 for (; sym_hashes
< end_hashes
; sym_hashes
++)
13439 struct elf_link_hash_entry
*sym_hash
= *sym_hashes
;
13441 if ((sym_hash
->root
.type
== bfd_link_hash_defined
13442 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
13443 && sym_hash
->root
.u
.def
.section
== sec
)
13445 bfd_vma value
= sym_hash
->root
.u
.def
.value
;
13447 if (ELF_ST_IS_MICROMIPS (sym_hash
->other
))
13448 value
&= MINUS_TWO
;
13450 sym_hash
->root
.u
.def
.value
-= count
;
13458 /* Opcodes needed for microMIPS relaxation as found in
13459 opcodes/micromips-opc.c. */
13461 struct opcode_descriptor
{
13462 unsigned long match
;
13463 unsigned long mask
;
13466 /* The $ra register aka $31. */
13470 /* 32-bit instruction format register fields. */
13472 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13473 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13475 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13477 #define OP16_VALID_REG(r) \
13478 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13481 /* 32-bit and 16-bit branches. */
13483 static const struct opcode_descriptor b_insns_32
[] = {
13484 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13485 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13486 { 0, 0 } /* End marker for find_match(). */
13489 static const struct opcode_descriptor bc_insn_32
=
13490 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13492 static const struct opcode_descriptor bz_insn_32
=
13493 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13495 static const struct opcode_descriptor bzal_insn_32
=
13496 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13498 static const struct opcode_descriptor beq_insn_32
=
13499 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13501 static const struct opcode_descriptor b_insn_16
=
13502 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13504 static const struct opcode_descriptor bz_insn_16
=
13505 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13508 /* 32-bit and 16-bit branch EQ and NE zero. */
13510 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13511 eq and second the ne. This convention is used when replacing a
13512 32-bit BEQ/BNE with the 16-bit version. */
13514 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13516 static const struct opcode_descriptor bz_rs_insns_32
[] = {
13517 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13518 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13519 { 0, 0 } /* End marker for find_match(). */
13522 static const struct opcode_descriptor bz_rt_insns_32
[] = {
13523 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13524 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13525 { 0, 0 } /* End marker for find_match(). */
13528 static const struct opcode_descriptor bzc_insns_32
[] = {
13529 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13530 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13531 { 0, 0 } /* End marker for find_match(). */
13534 static const struct opcode_descriptor bz_insns_16
[] = {
13535 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13536 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13537 { 0, 0 } /* End marker for find_match(). */
13540 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13542 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13543 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13546 /* 32-bit instructions with a delay slot. */
13548 static const struct opcode_descriptor jal_insn_32_bd16
=
13549 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13551 static const struct opcode_descriptor jal_insn_32_bd32
=
13552 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13554 static const struct opcode_descriptor jal_x_insn_32_bd32
=
13555 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13557 static const struct opcode_descriptor j_insn_32
=
13558 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13560 static const struct opcode_descriptor jalr_insn_32
=
13561 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13563 /* This table can be compacted, because no opcode replacement is made. */
13565 static const struct opcode_descriptor ds_insns_32_bd16
[] = {
13566 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13568 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13569 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13571 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13572 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13573 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13574 { 0, 0 } /* End marker for find_match(). */
13577 /* This table can be compacted, because no opcode replacement is made. */
13579 static const struct opcode_descriptor ds_insns_32_bd32
[] = {
13580 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13582 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13583 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13584 { 0, 0 } /* End marker for find_match(). */
13588 /* 16-bit instructions with a delay slot. */
13590 static const struct opcode_descriptor jalr_insn_16_bd16
=
13591 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13593 static const struct opcode_descriptor jalr_insn_16_bd32
=
13594 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13596 static const struct opcode_descriptor jr_insn_16
=
13597 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13599 #define JR16_REG(opcode) ((opcode) & 0x1f)
13601 /* This table can be compacted, because no opcode replacement is made. */
13603 static const struct opcode_descriptor ds_insns_16_bd16
[] = {
13604 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13606 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13607 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13608 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13609 { 0, 0 } /* End marker for find_match(). */
13613 /* LUI instruction. */
13615 static const struct opcode_descriptor lui_insn
=
13616 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13619 /* ADDIU instruction. */
13621 static const struct opcode_descriptor addiu_insn
=
13622 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13624 static const struct opcode_descriptor addiupc_insn
=
13625 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13627 #define ADDIUPC_REG_FIELD(r) \
13628 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13631 /* Relaxable instructions in a JAL delay slot: MOVE. */
13633 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13634 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13635 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13636 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13638 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13639 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13641 static const struct opcode_descriptor move_insns_32
[] = {
13642 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13643 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13644 { 0, 0 } /* End marker for find_match(). */
13647 static const struct opcode_descriptor move_insn_16
=
13648 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13651 /* NOP instructions. */
13653 static const struct opcode_descriptor nop_insn_32
=
13654 { /* "nop", "", */ 0x00000000, 0xffffffff };
13656 static const struct opcode_descriptor nop_insn_16
=
13657 { /* "nop", "", */ 0x0c00, 0xffff };
13660 /* Instruction match support. */
13662 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13665 find_match (unsigned long opcode
, const struct opcode_descriptor insn
[])
13667 unsigned long indx
;
13669 for (indx
= 0; insn
[indx
].mask
!= 0; indx
++)
13670 if (MATCH (opcode
, insn
[indx
]))
13677 /* Branch and delay slot decoding support. */
13679 /* If PTR points to what *might* be a 16-bit branch or jump, then
13680 return the minimum length of its delay slot, otherwise return 0.
13681 Non-zero results are not definitive as we might be checking against
13682 the second half of another instruction. */
13685 check_br16_dslot (bfd
*abfd
, bfd_byte
*ptr
)
13687 unsigned long opcode
;
13690 opcode
= bfd_get_16 (abfd
, ptr
);
13691 if (MATCH (opcode
, jalr_insn_16_bd32
) != 0)
13692 /* 16-bit branch/jump with a 32-bit delay slot. */
13694 else if (MATCH (opcode
, jalr_insn_16_bd16
) != 0
13695 || find_match (opcode
, ds_insns_16_bd16
) >= 0)
13696 /* 16-bit branch/jump with a 16-bit delay slot. */
13699 /* No delay slot. */
13705 /* If PTR points to what *might* be a 32-bit branch or jump, then
13706 return the minimum length of its delay slot, otherwise return 0.
13707 Non-zero results are not definitive as we might be checking against
13708 the second half of another instruction. */
13711 check_br32_dslot (bfd
*abfd
, bfd_byte
*ptr
)
13713 unsigned long opcode
;
13716 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13717 if (find_match (opcode
, ds_insns_32_bd32
) >= 0)
13718 /* 32-bit branch/jump with a 32-bit delay slot. */
13720 else if (find_match (opcode
, ds_insns_32_bd16
) >= 0)
13721 /* 32-bit branch/jump with a 16-bit delay slot. */
13724 /* No delay slot. */
13730 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13731 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13734 check_br16 (bfd
*abfd
, bfd_byte
*ptr
, unsigned long reg
)
13736 unsigned long opcode
;
13738 opcode
= bfd_get_16 (abfd
, ptr
);
13739 if (MATCH (opcode
, b_insn_16
)
13741 || (MATCH (opcode
, jr_insn_16
) && reg
!= JR16_REG (opcode
))
13743 || (MATCH (opcode
, bz_insn_16
) && reg
!= BZ16_REG (opcode
))
13744 /* BEQZ16, BNEZ16 */
13745 || (MATCH (opcode
, jalr_insn_16_bd32
)
13747 && reg
!= JR16_REG (opcode
) && reg
!= RA
))
13753 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13754 then return TRUE, otherwise FALSE. */
13757 check_br32 (bfd
*abfd
, bfd_byte
*ptr
, unsigned long reg
)
13759 unsigned long opcode
;
13761 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13762 if (MATCH (opcode
, j_insn_32
)
13764 || MATCH (opcode
, bc_insn_32
)
13765 /* BC1F, BC1T, BC2F, BC2T */
13766 || (MATCH (opcode
, jal_x_insn_32_bd32
) && reg
!= RA
)
13768 || (MATCH (opcode
, bz_insn_32
) && reg
!= OP32_SREG (opcode
))
13769 /* BGEZ, BGTZ, BLEZ, BLTZ */
13770 || (MATCH (opcode
, bzal_insn_32
)
13771 /* BGEZAL, BLTZAL */
13772 && reg
!= OP32_SREG (opcode
) && reg
!= RA
)
13773 || ((MATCH (opcode
, jalr_insn_32
) || MATCH (opcode
, beq_insn_32
))
13774 /* JALR, JALR.HB, BEQ, BNE */
13775 && reg
!= OP32_SREG (opcode
) && reg
!= OP32_TREG (opcode
)))
13781 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13782 IRELEND) at OFFSET indicate that there must be a compact branch there,
13783 then return TRUE, otherwise FALSE. */
13786 check_relocated_bzc (bfd
*abfd
, const bfd_byte
*ptr
, bfd_vma offset
,
13787 const Elf_Internal_Rela
*internal_relocs
,
13788 const Elf_Internal_Rela
*irelend
)
13790 const Elf_Internal_Rela
*irel
;
13791 unsigned long opcode
;
13793 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13794 if (find_match (opcode
, bzc_insns_32
) < 0)
13797 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
13798 if (irel
->r_offset
== offset
13799 && ELF32_R_TYPE (irel
->r_info
) == R_MICROMIPS_PC16_S1
)
13805 /* Bitsize checking. */
13806 #define IS_BITSIZE(val, N) \
13807 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13808 - (1ULL << ((N) - 1))) == (val))
13812 _bfd_mips_elf_relax_section (bfd
*abfd
, asection
*sec
,
13813 struct bfd_link_info
*link_info
,
13814 bfd_boolean
*again
)
13816 bfd_boolean insn32
= mips_elf_hash_table (link_info
)->insn32
;
13817 Elf_Internal_Shdr
*symtab_hdr
;
13818 Elf_Internal_Rela
*internal_relocs
;
13819 Elf_Internal_Rela
*irel
, *irelend
;
13820 bfd_byte
*contents
= NULL
;
13821 Elf_Internal_Sym
*isymbuf
= NULL
;
13823 /* Assume nothing changes. */
13826 /* We don't have to do anything for a relocatable link, if
13827 this section does not have relocs, or if this is not a
13830 if (bfd_link_relocatable (link_info
)
13831 || (sec
->flags
& SEC_RELOC
) == 0
13832 || sec
->reloc_count
== 0
13833 || (sec
->flags
& SEC_CODE
) == 0)
13836 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
13838 /* Get a copy of the native relocations. */
13839 internal_relocs
= (_bfd_elf_link_read_relocs
13840 (abfd
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
13841 link_info
->keep_memory
));
13842 if (internal_relocs
== NULL
)
13845 /* Walk through them looking for relaxing opportunities. */
13846 irelend
= internal_relocs
+ sec
->reloc_count
;
13847 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
13849 unsigned long r_symndx
= ELF32_R_SYM (irel
->r_info
);
13850 unsigned int r_type
= ELF32_R_TYPE (irel
->r_info
);
13851 bfd_boolean target_is_micromips_code_p
;
13852 unsigned long opcode
;
13858 /* The number of bytes to delete for relaxation and from where
13859 to delete these bytes starting at irel->r_offset. */
13863 /* If this isn't something that can be relaxed, then ignore
13865 if (r_type
!= R_MICROMIPS_HI16
13866 && r_type
!= R_MICROMIPS_PC16_S1
13867 && r_type
!= R_MICROMIPS_26_S1
)
13870 /* Get the section contents if we haven't done so already. */
13871 if (contents
== NULL
)
13873 /* Get cached copy if it exists. */
13874 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
13875 contents
= elf_section_data (sec
)->this_hdr
.contents
;
13876 /* Go get them off disk. */
13877 else if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
13880 ptr
= contents
+ irel
->r_offset
;
13882 /* Read this BFD's local symbols if we haven't done so already. */
13883 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
13885 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
13886 if (isymbuf
== NULL
)
13887 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
13888 symtab_hdr
->sh_info
, 0,
13890 if (isymbuf
== NULL
)
13894 /* Get the value of the symbol referred to by the reloc. */
13895 if (r_symndx
< symtab_hdr
->sh_info
)
13897 /* A local symbol. */
13898 Elf_Internal_Sym
*isym
;
13901 isym
= isymbuf
+ r_symndx
;
13902 if (isym
->st_shndx
== SHN_UNDEF
)
13903 sym_sec
= bfd_und_section_ptr
;
13904 else if (isym
->st_shndx
== SHN_ABS
)
13905 sym_sec
= bfd_abs_section_ptr
;
13906 else if (isym
->st_shndx
== SHN_COMMON
)
13907 sym_sec
= bfd_com_section_ptr
;
13909 sym_sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
13910 symval
= (isym
->st_value
13911 + sym_sec
->output_section
->vma
13912 + sym_sec
->output_offset
);
13913 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (isym
->st_other
);
13917 unsigned long indx
;
13918 struct elf_link_hash_entry
*h
;
13920 /* An external symbol. */
13921 indx
= r_symndx
- symtab_hdr
->sh_info
;
13922 h
= elf_sym_hashes (abfd
)[indx
];
13923 BFD_ASSERT (h
!= NULL
);
13925 if (h
->root
.type
!= bfd_link_hash_defined
13926 && h
->root
.type
!= bfd_link_hash_defweak
)
13927 /* This appears to be a reference to an undefined
13928 symbol. Just ignore it -- it will be caught by the
13929 regular reloc processing. */
13932 symval
= (h
->root
.u
.def
.value
13933 + h
->root
.u
.def
.section
->output_section
->vma
13934 + h
->root
.u
.def
.section
->output_offset
);
13935 target_is_micromips_code_p
= (!h
->needs_plt
13936 && ELF_ST_IS_MICROMIPS (h
->other
));
13940 /* For simplicity of coding, we are going to modify the
13941 section contents, the section relocs, and the BFD symbol
13942 table. We must tell the rest of the code not to free up this
13943 information. It would be possible to instead create a table
13944 of changes which have to be made, as is done in coff-mips.c;
13945 that would be more work, but would require less memory when
13946 the linker is run. */
13948 /* Only 32-bit instructions relaxed. */
13949 if (irel
->r_offset
+ 4 > sec
->size
)
13952 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13954 /* This is the pc-relative distance from the instruction the
13955 relocation is applied to, to the symbol referred. */
13957 - (sec
->output_section
->vma
+ sec
->output_offset
)
13960 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13961 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13962 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13964 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13966 where pcrval has first to be adjusted to apply against the LO16
13967 location (we make the adjustment later on, when we have figured
13968 out the offset). */
13969 if (r_type
== R_MICROMIPS_HI16
&& MATCH (opcode
, lui_insn
))
13971 bfd_boolean bzc
= FALSE
;
13972 unsigned long nextopc
;
13976 /* Give up if the previous reloc was a HI16 against this symbol
13978 if (irel
> internal_relocs
13979 && ELF32_R_TYPE (irel
[-1].r_info
) == R_MICROMIPS_HI16
13980 && ELF32_R_SYM (irel
[-1].r_info
) == r_symndx
)
13983 /* Or if the next reloc is not a LO16 against this symbol. */
13984 if (irel
+ 1 >= irelend
13985 || ELF32_R_TYPE (irel
[1].r_info
) != R_MICROMIPS_LO16
13986 || ELF32_R_SYM (irel
[1].r_info
) != r_symndx
)
13989 /* Or if the second next reloc is a LO16 against this symbol too. */
13990 if (irel
+ 2 >= irelend
13991 && ELF32_R_TYPE (irel
[2].r_info
) == R_MICROMIPS_LO16
13992 && ELF32_R_SYM (irel
[2].r_info
) == r_symndx
)
13995 /* See if the LUI instruction *might* be in a branch delay slot.
13996 We check whether what looks like a 16-bit branch or jump is
13997 actually an immediate argument to a compact branch, and let
13998 it through if so. */
13999 if (irel
->r_offset
>= 2
14000 && check_br16_dslot (abfd
, ptr
- 2)
14001 && !(irel
->r_offset
>= 4
14002 && (bzc
= check_relocated_bzc (abfd
,
14003 ptr
- 4, irel
->r_offset
- 4,
14004 internal_relocs
, irelend
))))
14006 if (irel
->r_offset
>= 4
14008 && check_br32_dslot (abfd
, ptr
- 4))
14011 reg
= OP32_SREG (opcode
);
14013 /* We only relax adjacent instructions or ones separated with
14014 a branch or jump that has a delay slot. The branch or jump
14015 must not fiddle with the register used to hold the address.
14016 Subtract 4 for the LUI itself. */
14017 offset
= irel
[1].r_offset
- irel
[0].r_offset
;
14018 switch (offset
- 4)
14023 if (check_br16 (abfd
, ptr
+ 4, reg
))
14027 if (check_br32 (abfd
, ptr
+ 4, reg
))
14034 nextopc
= bfd_get_micromips_32 (abfd
, contents
+ irel
[1].r_offset
);
14036 /* Give up unless the same register is used with both
14038 if (OP32_SREG (nextopc
) != reg
)
14041 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14042 and rounding up to take masking of the two LSBs into account. */
14043 pcrval
= ((pcrval
- offset
+ 3) | 3) ^ 3;
14045 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14046 if (IS_BITSIZE (symval
, 16))
14048 /* Fix the relocation's type. */
14049 irel
[1].r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_HI0_LO16
);
14051 /* Instructions using R_MICROMIPS_LO16 have the base or
14052 source register in bits 20:16. This register becomes $0
14053 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14054 nextopc
&= ~0x001f0000;
14055 bfd_put_16 (abfd
, (nextopc
>> 16) & 0xffff,
14056 contents
+ irel
[1].r_offset
);
14059 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14060 We add 4 to take LUI deletion into account while checking
14061 the PC-relative distance. */
14062 else if (symval
% 4 == 0
14063 && IS_BITSIZE (pcrval
+ 4, 25)
14064 && MATCH (nextopc
, addiu_insn
)
14065 && OP32_TREG (nextopc
) == OP32_SREG (nextopc
)
14066 && OP16_VALID_REG (OP32_TREG (nextopc
)))
14068 /* Fix the relocation's type. */
14069 irel
[1].r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC23_S2
);
14071 /* Replace ADDIU with the ADDIUPC version. */
14072 nextopc
= (addiupc_insn
.match
14073 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc
)));
14075 bfd_put_micromips_32 (abfd
, nextopc
,
14076 contents
+ irel
[1].r_offset
);
14079 /* Can't do anything, give up, sigh... */
14083 /* Fix the relocation's type. */
14084 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MIPS_NONE
);
14086 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14091 /* Compact branch relaxation -- due to the multitude of macros
14092 employed by the compiler/assembler, compact branches are not
14093 always generated. Obviously, this can/will be fixed elsewhere,
14094 but there is no drawback in double checking it here. */
14095 else if (r_type
== R_MICROMIPS_PC16_S1
14096 && irel
->r_offset
+ 5 < sec
->size
14097 && ((fndopc
= find_match (opcode
, bz_rs_insns_32
)) >= 0
14098 || (fndopc
= find_match (opcode
, bz_rt_insns_32
)) >= 0)
14100 && (delcnt
= MATCH (bfd_get_16 (abfd
, ptr
+ 4),
14101 nop_insn_16
) ? 2 : 0))
14102 || (irel
->r_offset
+ 7 < sec
->size
14103 && (delcnt
= MATCH (bfd_get_micromips_32 (abfd
,
14105 nop_insn_32
) ? 4 : 0))))
14109 reg
= OP32_SREG (opcode
) ? OP32_SREG (opcode
) : OP32_TREG (opcode
);
14111 /* Replace BEQZ/BNEZ with the compact version. */
14112 opcode
= (bzc_insns_32
[fndopc
].match
14113 | BZC32_REG_FIELD (reg
)
14114 | (opcode
& 0xffff)); /* Addend value. */
14116 bfd_put_micromips_32 (abfd
, opcode
, ptr
);
14118 /* Delete the delay slot NOP: two or four bytes from
14119 irel->offset + 4; delcnt has already been set above. */
14123 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14124 to check the distance from the next instruction, so subtract 2. */
14126 && r_type
== R_MICROMIPS_PC16_S1
14127 && IS_BITSIZE (pcrval
- 2, 11)
14128 && find_match (opcode
, b_insns_32
) >= 0)
14130 /* Fix the relocation's type. */
14131 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC10_S1
);
14133 /* Replace the 32-bit opcode with a 16-bit opcode. */
14136 | (opcode
& 0x3ff)), /* Addend value. */
14139 /* Delete 2 bytes from irel->r_offset + 2. */
14144 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14145 to check the distance from the next instruction, so subtract 2. */
14147 && r_type
== R_MICROMIPS_PC16_S1
14148 && IS_BITSIZE (pcrval
- 2, 8)
14149 && (((fndopc
= find_match (opcode
, bz_rs_insns_32
)) >= 0
14150 && OP16_VALID_REG (OP32_SREG (opcode
)))
14151 || ((fndopc
= find_match (opcode
, bz_rt_insns_32
)) >= 0
14152 && OP16_VALID_REG (OP32_TREG (opcode
)))))
14156 reg
= OP32_SREG (opcode
) ? OP32_SREG (opcode
) : OP32_TREG (opcode
);
14158 /* Fix the relocation's type. */
14159 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC7_S1
);
14161 /* Replace the 32-bit opcode with a 16-bit opcode. */
14163 (bz_insns_16
[fndopc
].match
14164 | BZ16_REG_FIELD (reg
)
14165 | (opcode
& 0x7f)), /* Addend value. */
14168 /* Delete 2 bytes from irel->r_offset + 2. */
14173 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14175 && r_type
== R_MICROMIPS_26_S1
14176 && target_is_micromips_code_p
14177 && irel
->r_offset
+ 7 < sec
->size
14178 && MATCH (opcode
, jal_insn_32_bd32
))
14180 unsigned long n32opc
;
14181 bfd_boolean relaxed
= FALSE
;
14183 n32opc
= bfd_get_micromips_32 (abfd
, ptr
+ 4);
14185 if (MATCH (n32opc
, nop_insn_32
))
14187 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14188 bfd_put_16 (abfd
, nop_insn_16
.match
, ptr
+ 4);
14192 else if (find_match (n32opc
, move_insns_32
) >= 0)
14194 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14196 (move_insn_16
.match
14197 | MOVE16_RD_FIELD (MOVE32_RD (n32opc
))
14198 | MOVE16_RS_FIELD (MOVE32_RS (n32opc
))),
14203 /* Other 32-bit instructions relaxable to 16-bit
14204 instructions will be handled here later. */
14208 /* JAL with 32-bit delay slot that is changed to a JALS
14209 with 16-bit delay slot. */
14210 bfd_put_micromips_32 (abfd
, jal_insn_32_bd16
.match
, ptr
);
14212 /* Delete 2 bytes from irel->r_offset + 6. */
14220 /* Note that we've changed the relocs, section contents, etc. */
14221 elf_section_data (sec
)->relocs
= internal_relocs
;
14222 elf_section_data (sec
)->this_hdr
.contents
= contents
;
14223 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
14225 /* Delete bytes depending on the delcnt and deloff. */
14226 if (!mips_elf_relax_delete_bytes (abfd
, sec
,
14227 irel
->r_offset
+ deloff
, delcnt
))
14230 /* That will change things, so we should relax again.
14231 Note that this is not required, and it may be slow. */
14236 if (isymbuf
!= NULL
14237 && symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
14239 if (! link_info
->keep_memory
)
14243 /* Cache the symbols for elf_link_input_bfd. */
14244 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
14248 if (contents
!= NULL
14249 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
14251 if (! link_info
->keep_memory
)
14255 /* Cache the section contents for elf_link_input_bfd. */
14256 elf_section_data (sec
)->this_hdr
.contents
= contents
;
14260 if (elf_section_data (sec
)->relocs
!= internal_relocs
)
14261 free (internal_relocs
);
14266 if (symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
14268 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
14270 if (elf_section_data (sec
)->relocs
!= internal_relocs
)
14271 free (internal_relocs
);
14276 /* Create a MIPS ELF linker hash table. */
14278 struct bfd_link_hash_table
*
14279 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
14281 struct mips_elf_link_hash_table
*ret
;
14282 size_t amt
= sizeof (struct mips_elf_link_hash_table
);
14284 ret
= bfd_zmalloc (amt
);
14288 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
14289 mips_elf_link_hash_newfunc
,
14290 sizeof (struct mips_elf_link_hash_entry
),
14296 ret
->root
.init_plt_refcount
.plist
= NULL
;
14297 ret
->root
.init_plt_offset
.plist
= NULL
;
14299 return &ret
->root
.root
;
14302 /* Likewise, but indicate that the target is VxWorks. */
14304 struct bfd_link_hash_table
*
14305 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
14307 struct bfd_link_hash_table
*ret
;
14309 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
14312 struct mips_elf_link_hash_table
*htab
;
14314 htab
= (struct mips_elf_link_hash_table
*) ret
;
14315 htab
->use_plts_and_copy_relocs
= TRUE
;
14320 /* A function that the linker calls if we are allowed to use PLTs
14321 and copy relocs. */
14324 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info
*info
)
14326 mips_elf_hash_table (info
)->use_plts_and_copy_relocs
= TRUE
;
14329 /* A function that the linker calls to select between all or only
14330 32-bit microMIPS instructions, and between making or ignoring
14331 branch relocation checks for invalid transitions between ISA modes.
14332 Also record whether we have been configured for a GNU target. */
14335 _bfd_mips_elf_linker_flags (struct bfd_link_info
*info
, bfd_boolean insn32
,
14336 bfd_boolean ignore_branch_isa
,
14337 bfd_boolean gnu_target
)
14339 mips_elf_hash_table (info
)->insn32
= insn32
;
14340 mips_elf_hash_table (info
)->ignore_branch_isa
= ignore_branch_isa
;
14341 mips_elf_hash_table (info
)->gnu_target
= gnu_target
;
14344 /* A function that the linker calls to enable use of compact branches in
14345 linker generated code for MIPSR6. */
14348 _bfd_mips_elf_compact_branches (struct bfd_link_info
*info
, bfd_boolean on
)
14350 mips_elf_hash_table (info
)->compact_branches
= on
;
14354 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14356 struct mips_mach_extension
14358 unsigned long extension
, base
;
14362 /* An array describing how BFD machines relate to one another. The entries
14363 are ordered topologically with MIPS I extensions listed last. */
14365 static const struct mips_mach_extension mips_mach_extensions
[] =
14367 /* MIPS64r2 extensions. */
14368 { bfd_mach_mips_octeon3
, bfd_mach_mips_octeon2
},
14369 { bfd_mach_mips_octeon2
, bfd_mach_mips_octeonp
},
14370 { bfd_mach_mips_octeonp
, bfd_mach_mips_octeon
},
14371 { bfd_mach_mips_octeon
, bfd_mach_mipsisa64r2
},
14372 { bfd_mach_mips_gs264e
, bfd_mach_mips_gs464e
},
14373 { bfd_mach_mips_gs464e
, bfd_mach_mips_gs464
},
14374 { bfd_mach_mips_gs464
, bfd_mach_mipsisa64r2
},
14376 /* MIPS64 extensions. */
14377 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
14378 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
14379 { bfd_mach_mips_xlr
, bfd_mach_mipsisa64
},
14381 /* MIPS V extensions. */
14382 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
14384 /* R10000 extensions. */
14385 { bfd_mach_mips12000
, bfd_mach_mips10000
},
14386 { bfd_mach_mips14000
, bfd_mach_mips10000
},
14387 { bfd_mach_mips16000
, bfd_mach_mips10000
},
14389 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14390 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14391 better to allow vr5400 and vr5500 code to be merged anyway, since
14392 many libraries will just use the core ISA. Perhaps we could add
14393 some sort of ASE flag if this ever proves a problem. */
14394 { bfd_mach_mips5500
, bfd_mach_mips5400
},
14395 { bfd_mach_mips5400
, bfd_mach_mips5000
},
14397 /* MIPS IV extensions. */
14398 { bfd_mach_mips5
, bfd_mach_mips8000
},
14399 { bfd_mach_mips10000
, bfd_mach_mips8000
},
14400 { bfd_mach_mips5000
, bfd_mach_mips8000
},
14401 { bfd_mach_mips7000
, bfd_mach_mips8000
},
14402 { bfd_mach_mips9000
, bfd_mach_mips8000
},
14404 /* VR4100 extensions. */
14405 { bfd_mach_mips4120
, bfd_mach_mips4100
},
14406 { bfd_mach_mips4111
, bfd_mach_mips4100
},
14408 /* MIPS III extensions. */
14409 { bfd_mach_mips_loongson_2e
, bfd_mach_mips4000
},
14410 { bfd_mach_mips_loongson_2f
, bfd_mach_mips4000
},
14411 { bfd_mach_mips8000
, bfd_mach_mips4000
},
14412 { bfd_mach_mips4650
, bfd_mach_mips4000
},
14413 { bfd_mach_mips4600
, bfd_mach_mips4000
},
14414 { bfd_mach_mips4400
, bfd_mach_mips4000
},
14415 { bfd_mach_mips4300
, bfd_mach_mips4000
},
14416 { bfd_mach_mips4100
, bfd_mach_mips4000
},
14417 { bfd_mach_mips5900
, bfd_mach_mips4000
},
14419 /* MIPS32r3 extensions. */
14420 { bfd_mach_mips_interaptiv_mr2
, bfd_mach_mipsisa32r3
},
14422 /* MIPS32r2 extensions. */
14423 { bfd_mach_mipsisa32r3
, bfd_mach_mipsisa32r2
},
14425 /* MIPS32 extensions. */
14426 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
14428 /* MIPS II extensions. */
14429 { bfd_mach_mips4000
, bfd_mach_mips6000
},
14430 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
14431 { bfd_mach_mips4010
, bfd_mach_mips6000
},
14433 /* MIPS I extensions. */
14434 { bfd_mach_mips6000
, bfd_mach_mips3000
},
14435 { bfd_mach_mips3900
, bfd_mach_mips3000
}
14438 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14441 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
14445 if (extension
== base
)
14448 if (base
== bfd_mach_mipsisa32
14449 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
14452 if (base
== bfd_mach_mipsisa32r2
14453 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
14456 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
14457 if (extension
== mips_mach_extensions
[i
].extension
)
14459 extension
= mips_mach_extensions
[i
].base
;
14460 if (extension
== base
)
14467 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14469 static unsigned long
14470 bfd_mips_isa_ext_mach (unsigned int isa_ext
)
14474 case AFL_EXT_3900
: return bfd_mach_mips3900
;
14475 case AFL_EXT_4010
: return bfd_mach_mips4010
;
14476 case AFL_EXT_4100
: return bfd_mach_mips4100
;
14477 case AFL_EXT_4111
: return bfd_mach_mips4111
;
14478 case AFL_EXT_4120
: return bfd_mach_mips4120
;
14479 case AFL_EXT_4650
: return bfd_mach_mips4650
;
14480 case AFL_EXT_5400
: return bfd_mach_mips5400
;
14481 case AFL_EXT_5500
: return bfd_mach_mips5500
;
14482 case AFL_EXT_5900
: return bfd_mach_mips5900
;
14483 case AFL_EXT_10000
: return bfd_mach_mips10000
;
14484 case AFL_EXT_LOONGSON_2E
: return bfd_mach_mips_loongson_2e
;
14485 case AFL_EXT_LOONGSON_2F
: return bfd_mach_mips_loongson_2f
;
14486 case AFL_EXT_SB1
: return bfd_mach_mips_sb1
;
14487 case AFL_EXT_OCTEON
: return bfd_mach_mips_octeon
;
14488 case AFL_EXT_OCTEONP
: return bfd_mach_mips_octeonp
;
14489 case AFL_EXT_OCTEON2
: return bfd_mach_mips_octeon2
;
14490 case AFL_EXT_XLR
: return bfd_mach_mips_xlr
;
14491 default: return bfd_mach_mips3000
;
14495 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14498 bfd_mips_isa_ext (bfd
*abfd
)
14500 switch (bfd_get_mach (abfd
))
14502 case bfd_mach_mips3900
: return AFL_EXT_3900
;
14503 case bfd_mach_mips4010
: return AFL_EXT_4010
;
14504 case bfd_mach_mips4100
: return AFL_EXT_4100
;
14505 case bfd_mach_mips4111
: return AFL_EXT_4111
;
14506 case bfd_mach_mips4120
: return AFL_EXT_4120
;
14507 case bfd_mach_mips4650
: return AFL_EXT_4650
;
14508 case bfd_mach_mips5400
: return AFL_EXT_5400
;
14509 case bfd_mach_mips5500
: return AFL_EXT_5500
;
14510 case bfd_mach_mips5900
: return AFL_EXT_5900
;
14511 case bfd_mach_mips10000
: return AFL_EXT_10000
;
14512 case bfd_mach_mips_loongson_2e
: return AFL_EXT_LOONGSON_2E
;
14513 case bfd_mach_mips_loongson_2f
: return AFL_EXT_LOONGSON_2F
;
14514 case bfd_mach_mips_sb1
: return AFL_EXT_SB1
;
14515 case bfd_mach_mips_octeon
: return AFL_EXT_OCTEON
;
14516 case bfd_mach_mips_octeonp
: return AFL_EXT_OCTEONP
;
14517 case bfd_mach_mips_octeon3
: return AFL_EXT_OCTEON3
;
14518 case bfd_mach_mips_octeon2
: return AFL_EXT_OCTEON2
;
14519 case bfd_mach_mips_xlr
: return AFL_EXT_XLR
;
14520 case bfd_mach_mips_interaptiv_mr2
:
14521 return AFL_EXT_INTERAPTIV_MR2
;
14526 /* Encode ISA level and revision as a single value. */
14527 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14529 /* Decode a single value into level and revision. */
14530 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14531 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14533 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14536 update_mips_abiflags_isa (bfd
*abfd
, Elf_Internal_ABIFlags_v0
*abiflags
)
14539 switch (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
)
14541 case E_MIPS_ARCH_1
: new_isa
= LEVEL_REV (1, 0); break;
14542 case E_MIPS_ARCH_2
: new_isa
= LEVEL_REV (2, 0); break;
14543 case E_MIPS_ARCH_3
: new_isa
= LEVEL_REV (3, 0); break;
14544 case E_MIPS_ARCH_4
: new_isa
= LEVEL_REV (4, 0); break;
14545 case E_MIPS_ARCH_5
: new_isa
= LEVEL_REV (5, 0); break;
14546 case E_MIPS_ARCH_32
: new_isa
= LEVEL_REV (32, 1); break;
14547 case E_MIPS_ARCH_32R2
: new_isa
= LEVEL_REV (32, 2); break;
14548 case E_MIPS_ARCH_32R6
: new_isa
= LEVEL_REV (32, 6); break;
14549 case E_MIPS_ARCH_64
: new_isa
= LEVEL_REV (64, 1); break;
14550 case E_MIPS_ARCH_64R2
: new_isa
= LEVEL_REV (64, 2); break;
14551 case E_MIPS_ARCH_64R6
: new_isa
= LEVEL_REV (64, 6); break;
14554 /* xgettext:c-format */
14555 (_("%pB: unknown architecture %s"),
14556 abfd
, bfd_printable_name (abfd
));
14559 if (new_isa
> LEVEL_REV (abiflags
->isa_level
, abiflags
->isa_rev
))
14561 abiflags
->isa_level
= ISA_LEVEL (new_isa
);
14562 abiflags
->isa_rev
= ISA_REV (new_isa
);
14565 /* Update the isa_ext if ABFD describes a further extension. */
14566 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags
->isa_ext
),
14567 bfd_get_mach (abfd
)))
14568 abiflags
->isa_ext
= bfd_mips_isa_ext (abfd
);
14571 /* Return true if the given ELF header flags describe a 32-bit binary. */
14574 mips_32bit_flags_p (flagword flags
)
14576 return ((flags
& EF_MIPS_32BITMODE
) != 0
14577 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
14578 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
14579 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
14580 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
14581 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
14582 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
14583 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R6
);
14586 /* Infer the content of the ABI flags based on the elf header. */
14589 infer_mips_abiflags (bfd
*abfd
, Elf_Internal_ABIFlags_v0
* abiflags
)
14591 obj_attribute
*in_attr
;
14593 memset (abiflags
, 0, sizeof (Elf_Internal_ABIFlags_v0
));
14594 update_mips_abiflags_isa (abfd
, abiflags
);
14596 if (mips_32bit_flags_p (elf_elfheader (abfd
)->e_flags
))
14597 abiflags
->gpr_size
= AFL_REG_32
;
14599 abiflags
->gpr_size
= AFL_REG_64
;
14601 abiflags
->cpr1_size
= AFL_REG_NONE
;
14603 in_attr
= elf_known_obj_attributes (abfd
)[OBJ_ATTR_GNU
];
14604 abiflags
->fp_abi
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
14606 if (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_SINGLE
14607 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_XX
14608 || (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_DOUBLE
14609 && abiflags
->gpr_size
== AFL_REG_32
))
14610 abiflags
->cpr1_size
= AFL_REG_32
;
14611 else if (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_DOUBLE
14612 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_64
14613 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_64A
)
14614 abiflags
->cpr1_size
= AFL_REG_64
;
14616 abiflags
->cpr2_size
= AFL_REG_NONE
;
14618 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
14619 abiflags
->ases
|= AFL_ASE_MDMX
;
14620 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
14621 abiflags
->ases
|= AFL_ASE_MIPS16
;
14622 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
)
14623 abiflags
->ases
|= AFL_ASE_MICROMIPS
;
14625 if (abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_ANY
14626 && abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_SOFT
14627 && abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_64A
14628 && abiflags
->isa_level
>= 32
14629 && abiflags
->ases
!= AFL_ASE_LOONGSON_EXT
)
14630 abiflags
->flags1
|= AFL_FLAGS1_ODDSPREG
;
14633 /* We need to use a special link routine to handle the .reginfo and
14634 the .mdebug sections. We need to merge all instances of these
14635 sections together, not write them all out sequentially. */
14638 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
14641 struct bfd_link_order
*p
;
14642 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
14643 asection
*rtproc_sec
, *abiflags_sec
;
14644 Elf32_RegInfo reginfo
;
14645 struct ecoff_debug_info debug
;
14646 struct mips_htab_traverse_info hti
;
14647 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14648 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
14649 HDRR
*symhdr
= &debug
.symbolic_header
;
14650 void *mdebug_handle
= NULL
;
14655 struct mips_elf_link_hash_table
*htab
;
14657 static const char * const secname
[] =
14659 ".text", ".init", ".fini", ".data",
14660 ".rodata", ".sdata", ".sbss", ".bss"
14662 static const int sc
[] =
14664 scText
, scInit
, scFini
, scData
,
14665 scRData
, scSData
, scSBss
, scBss
14668 htab
= mips_elf_hash_table (info
);
14669 BFD_ASSERT (htab
!= NULL
);
14671 /* Sort the dynamic symbols so that those with GOT entries come after
14673 if (!mips_elf_sort_hash_table (abfd
, info
))
14676 /* Create any scheduled LA25 stubs. */
14678 hti
.output_bfd
= abfd
;
14680 htab_traverse (htab
->la25_stubs
, mips_elf_create_la25_stub
, &hti
);
14684 /* Get a value for the GP register. */
14685 if (elf_gp (abfd
) == 0)
14687 struct bfd_link_hash_entry
*h
;
14689 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
14690 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
14691 elf_gp (abfd
) = (h
->u
.def
.value
14692 + h
->u
.def
.section
->output_section
->vma
14693 + h
->u
.def
.section
->output_offset
);
14694 else if (htab
->root
.target_os
== is_vxworks
14695 && (h
= bfd_link_hash_lookup (info
->hash
,
14696 "_GLOBAL_OFFSET_TABLE_",
14697 FALSE
, FALSE
, TRUE
))
14698 && h
->type
== bfd_link_hash_defined
)
14699 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
14700 + h
->u
.def
.section
->output_offset
14702 else if (bfd_link_relocatable (info
))
14704 bfd_vma lo
= MINUS_ONE
;
14706 /* Find the GP-relative section with the lowest offset. */
14707 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
14709 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
14712 /* And calculate GP relative to that. */
14713 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
14717 /* If the relocate_section function needs to do a reloc
14718 involving the GP value, it should make a reloc_dangerous
14719 callback to warn that GP is not defined. */
14723 /* Go through the sections and collect the .reginfo and .mdebug
14725 abiflags_sec
= NULL
;
14726 reginfo_sec
= NULL
;
14728 gptab_data_sec
= NULL
;
14729 gptab_bss_sec
= NULL
;
14730 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
14732 if (strcmp (o
->name
, ".MIPS.abiflags") == 0)
14734 /* We have found the .MIPS.abiflags section in the output file.
14735 Look through all the link_orders comprising it and remove them.
14736 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14737 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14739 asection
*input_section
;
14741 if (p
->type
!= bfd_indirect_link_order
)
14743 if (p
->type
== bfd_data_link_order
)
14748 input_section
= p
->u
.indirect
.section
;
14750 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14751 elf_link_input_bfd ignores this section. */
14752 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14755 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14756 BFD_ASSERT(o
->size
== sizeof (Elf_External_ABIFlags_v0
));
14758 /* Skip this section later on (I don't think this currently
14759 matters, but someday it might). */
14760 o
->map_head
.link_order
= NULL
;
14765 if (strcmp (o
->name
, ".reginfo") == 0)
14767 memset (®info
, 0, sizeof reginfo
);
14769 /* We have found the .reginfo section in the output file.
14770 Look through all the link_orders comprising it and merge
14771 the information together. */
14772 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14774 asection
*input_section
;
14776 Elf32_External_RegInfo ext
;
14780 if (p
->type
!= bfd_indirect_link_order
)
14782 if (p
->type
== bfd_data_link_order
)
14787 input_section
= p
->u
.indirect
.section
;
14788 input_bfd
= input_section
->owner
;
14790 sz
= (input_section
->size
< sizeof (ext
)
14791 ? input_section
->size
: sizeof (ext
));
14792 memset (&ext
, 0, sizeof (ext
));
14793 if (! bfd_get_section_contents (input_bfd
, input_section
,
14797 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
14799 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
14800 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
14801 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
14802 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
14803 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
14805 /* ri_gp_value is set by the function
14806 `_bfd_mips_elf_section_processing' when the section is
14807 finally written out. */
14809 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14810 elf_link_input_bfd ignores this section. */
14811 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14814 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14815 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
14817 /* Skip this section later on (I don't think this currently
14818 matters, but someday it might). */
14819 o
->map_head
.link_order
= NULL
;
14824 if (strcmp (o
->name
, ".mdebug") == 0)
14826 struct extsym_info einfo
;
14829 /* We have found the .mdebug section in the output file.
14830 Look through all the link_orders comprising it and merge
14831 the information together. */
14832 symhdr
->magic
= swap
->sym_magic
;
14833 /* FIXME: What should the version stamp be? */
14834 symhdr
->vstamp
= 0;
14835 symhdr
->ilineMax
= 0;
14836 symhdr
->cbLine
= 0;
14837 symhdr
->idnMax
= 0;
14838 symhdr
->ipdMax
= 0;
14839 symhdr
->isymMax
= 0;
14840 symhdr
->ioptMax
= 0;
14841 symhdr
->iauxMax
= 0;
14842 symhdr
->issMax
= 0;
14843 symhdr
->issExtMax
= 0;
14844 symhdr
->ifdMax
= 0;
14846 symhdr
->iextMax
= 0;
14848 /* We accumulate the debugging information itself in the
14849 debug_info structure. */
14851 debug
.external_dnr
= NULL
;
14852 debug
.external_pdr
= NULL
;
14853 debug
.external_sym
= NULL
;
14854 debug
.external_opt
= NULL
;
14855 debug
.external_aux
= NULL
;
14857 debug
.ssext
= debug
.ssext_end
= NULL
;
14858 debug
.external_fdr
= NULL
;
14859 debug
.external_rfd
= NULL
;
14860 debug
.external_ext
= debug
.external_ext_end
= NULL
;
14862 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
14863 if (mdebug_handle
== NULL
)
14867 esym
.cobol_main
= 0;
14871 esym
.asym
.iss
= issNil
;
14872 esym
.asym
.st
= stLocal
;
14873 esym
.asym
.reserved
= 0;
14874 esym
.asym
.index
= indexNil
;
14876 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
14878 esym
.asym
.sc
= sc
[i
];
14879 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
14882 esym
.asym
.value
= s
->vma
;
14883 last
= s
->vma
+ s
->size
;
14886 esym
.asym
.value
= last
;
14887 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
14888 secname
[i
], &esym
))
14892 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14894 asection
*input_section
;
14896 const struct ecoff_debug_swap
*input_swap
;
14897 struct ecoff_debug_info input_debug
;
14901 if (p
->type
!= bfd_indirect_link_order
)
14903 if (p
->type
== bfd_data_link_order
)
14908 input_section
= p
->u
.indirect
.section
;
14909 input_bfd
= input_section
->owner
;
14911 if (!is_mips_elf (input_bfd
))
14913 /* I don't know what a non MIPS ELF bfd would be
14914 doing with a .mdebug section, but I don't really
14915 want to deal with it. */
14919 input_swap
= (get_elf_backend_data (input_bfd
)
14920 ->elf_backend_ecoff_debug_swap
);
14922 BFD_ASSERT (p
->size
== input_section
->size
);
14924 /* The ECOFF linking code expects that we have already
14925 read in the debugging information and set up an
14926 ecoff_debug_info structure, so we do that now. */
14927 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
14931 if (! (bfd_ecoff_debug_accumulate
14932 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
14933 &input_debug
, input_swap
, info
)))
14936 /* Loop through the external symbols. For each one with
14937 interesting information, try to find the symbol in
14938 the linker global hash table and save the information
14939 for the output external symbols. */
14940 eraw_src
= input_debug
.external_ext
;
14941 eraw_end
= (eraw_src
14942 + (input_debug
.symbolic_header
.iextMax
14943 * input_swap
->external_ext_size
));
14945 eraw_src
< eraw_end
;
14946 eraw_src
+= input_swap
->external_ext_size
)
14950 struct mips_elf_link_hash_entry
*h
;
14952 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
14953 if (ext
.asym
.sc
== scNil
14954 || ext
.asym
.sc
== scUndefined
14955 || ext
.asym
.sc
== scSUndefined
)
14958 name
= input_debug
.ssext
+ ext
.asym
.iss
;
14959 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
14960 name
, FALSE
, FALSE
, TRUE
);
14961 if (h
== NULL
|| h
->esym
.ifd
!= -2)
14966 BFD_ASSERT (ext
.ifd
14967 < input_debug
.symbolic_header
.ifdMax
);
14968 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
14974 /* Free up the information we just read. */
14975 free (input_debug
.line
);
14976 free (input_debug
.external_dnr
);
14977 free (input_debug
.external_pdr
);
14978 free (input_debug
.external_sym
);
14979 free (input_debug
.external_opt
);
14980 free (input_debug
.external_aux
);
14981 free (input_debug
.ss
);
14982 free (input_debug
.ssext
);
14983 free (input_debug
.external_fdr
);
14984 free (input_debug
.external_rfd
);
14985 free (input_debug
.external_ext
);
14987 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14988 elf_link_input_bfd ignores this section. */
14989 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14992 if (SGI_COMPAT (abfd
) && bfd_link_pic (info
))
14994 /* Create .rtproc section. */
14995 rtproc_sec
= bfd_get_linker_section (abfd
, ".rtproc");
14996 if (rtproc_sec
== NULL
)
14998 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
14999 | SEC_LINKER_CREATED
| SEC_READONLY
);
15001 rtproc_sec
= bfd_make_section_anyway_with_flags (abfd
,
15004 if (rtproc_sec
== NULL
15005 || !bfd_set_section_alignment (rtproc_sec
, 4))
15009 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
15015 /* Build the external symbol information. */
15018 einfo
.debug
= &debug
;
15020 einfo
.failed
= FALSE
;
15021 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
15022 mips_elf_output_extsym
, &einfo
);
15026 /* Set the size of the .mdebug section. */
15027 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
15029 /* Skip this section later on (I don't think this currently
15030 matters, but someday it might). */
15031 o
->map_head
.link_order
= NULL
;
15036 if (CONST_STRNEQ (o
->name
, ".gptab."))
15038 const char *subname
;
15041 Elf32_External_gptab
*ext_tab
;
15044 /* The .gptab.sdata and .gptab.sbss sections hold
15045 information describing how the small data area would
15046 change depending upon the -G switch. These sections
15047 not used in executables files. */
15048 if (! bfd_link_relocatable (info
))
15050 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
15052 asection
*input_section
;
15054 if (p
->type
!= bfd_indirect_link_order
)
15056 if (p
->type
== bfd_data_link_order
)
15061 input_section
= p
->u
.indirect
.section
;
15063 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15064 elf_link_input_bfd ignores this section. */
15065 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
15068 /* Skip this section later on (I don't think this
15069 currently matters, but someday it might). */
15070 o
->map_head
.link_order
= NULL
;
15072 /* Really remove the section. */
15073 bfd_section_list_remove (abfd
, o
);
15074 --abfd
->section_count
;
15079 /* There is one gptab for initialized data, and one for
15080 uninitialized data. */
15081 if (strcmp (o
->name
, ".gptab.sdata") == 0)
15082 gptab_data_sec
= o
;
15083 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
15088 /* xgettext:c-format */
15089 (_("%pB: illegal section name `%pA'"), abfd
, o
);
15090 bfd_set_error (bfd_error_nonrepresentable_section
);
15094 /* The linker script always combines .gptab.data and
15095 .gptab.sdata into .gptab.sdata, and likewise for
15096 .gptab.bss and .gptab.sbss. It is possible that there is
15097 no .sdata or .sbss section in the output file, in which
15098 case we must change the name of the output section. */
15099 subname
= o
->name
+ sizeof ".gptab" - 1;
15100 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
15102 if (o
== gptab_data_sec
)
15103 o
->name
= ".gptab.data";
15105 o
->name
= ".gptab.bss";
15106 subname
= o
->name
+ sizeof ".gptab" - 1;
15107 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
15110 /* Set up the first entry. */
15112 amt
= c
* sizeof (Elf32_gptab
);
15113 tab
= bfd_malloc (amt
);
15116 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
15117 tab
[0].gt_header
.gt_unused
= 0;
15119 /* Combine the input sections. */
15120 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
15122 asection
*input_section
;
15124 bfd_size_type size
;
15125 unsigned long last
;
15126 bfd_size_type gpentry
;
15128 if (p
->type
!= bfd_indirect_link_order
)
15130 if (p
->type
== bfd_data_link_order
)
15135 input_section
= p
->u
.indirect
.section
;
15136 input_bfd
= input_section
->owner
;
15138 /* Combine the gptab entries for this input section one
15139 by one. We know that the input gptab entries are
15140 sorted by ascending -G value. */
15141 size
= input_section
->size
;
15143 for (gpentry
= sizeof (Elf32_External_gptab
);
15145 gpentry
+= sizeof (Elf32_External_gptab
))
15147 Elf32_External_gptab ext_gptab
;
15148 Elf32_gptab int_gptab
;
15154 if (! (bfd_get_section_contents
15155 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
15156 sizeof (Elf32_External_gptab
))))
15162 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
15164 val
= int_gptab
.gt_entry
.gt_g_value
;
15165 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
15168 for (look
= 1; look
< c
; look
++)
15170 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
15171 tab
[look
].gt_entry
.gt_bytes
+= add
;
15173 if (tab
[look
].gt_entry
.gt_g_value
== val
)
15179 Elf32_gptab
*new_tab
;
15182 /* We need a new table entry. */
15183 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
15184 new_tab
= bfd_realloc (tab
, amt
);
15185 if (new_tab
== NULL
)
15191 tab
[c
].gt_entry
.gt_g_value
= val
;
15192 tab
[c
].gt_entry
.gt_bytes
= add
;
15194 /* Merge in the size for the next smallest -G
15195 value, since that will be implied by this new
15198 for (look
= 1; look
< c
; look
++)
15200 if (tab
[look
].gt_entry
.gt_g_value
< val
15202 || (tab
[look
].gt_entry
.gt_g_value
15203 > tab
[max
].gt_entry
.gt_g_value
)))
15207 tab
[c
].gt_entry
.gt_bytes
+=
15208 tab
[max
].gt_entry
.gt_bytes
;
15213 last
= int_gptab
.gt_entry
.gt_bytes
;
15216 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15217 elf_link_input_bfd ignores this section. */
15218 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
15221 /* The table must be sorted by -G value. */
15223 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
15225 /* Swap out the table. */
15226 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
15227 ext_tab
= bfd_alloc (abfd
, amt
);
15228 if (ext_tab
== NULL
)
15234 for (j
= 0; j
< c
; j
++)
15235 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
15238 o
->size
= c
* sizeof (Elf32_External_gptab
);
15239 o
->contents
= (bfd_byte
*) ext_tab
;
15241 /* Skip this section later on (I don't think this currently
15242 matters, but someday it might). */
15243 o
->map_head
.link_order
= NULL
;
15247 /* Invoke the regular ELF backend linker to do all the work. */
15248 if (!bfd_elf_final_link (abfd
, info
))
15251 /* Now write out the computed sections. */
15253 if (abiflags_sec
!= NULL
)
15255 Elf_External_ABIFlags_v0 ext
;
15256 Elf_Internal_ABIFlags_v0
*abiflags
;
15258 abiflags
= &mips_elf_tdata (abfd
)->abiflags
;
15260 /* Set up the abiflags if no valid input sections were found. */
15261 if (!mips_elf_tdata (abfd
)->abiflags_valid
)
15263 infer_mips_abiflags (abfd
, abiflags
);
15264 mips_elf_tdata (abfd
)->abiflags_valid
= TRUE
;
15266 bfd_mips_elf_swap_abiflags_v0_out (abfd
, abiflags
, &ext
);
15267 if (! bfd_set_section_contents (abfd
, abiflags_sec
, &ext
, 0, sizeof ext
))
15271 if (reginfo_sec
!= NULL
)
15273 Elf32_External_RegInfo ext
;
15275 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
15276 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
15280 if (mdebug_sec
!= NULL
)
15282 BFD_ASSERT (abfd
->output_has_begun
);
15283 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
15285 mdebug_sec
->filepos
))
15288 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
15291 if (gptab_data_sec
!= NULL
)
15293 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
15294 gptab_data_sec
->contents
,
15295 0, gptab_data_sec
->size
))
15299 if (gptab_bss_sec
!= NULL
)
15301 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
15302 gptab_bss_sec
->contents
,
15303 0, gptab_bss_sec
->size
))
15307 if (SGI_COMPAT (abfd
))
15309 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
15310 if (rtproc_sec
!= NULL
)
15312 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
15313 rtproc_sec
->contents
,
15314 0, rtproc_sec
->size
))
15322 /* Merge object file header flags from IBFD into OBFD. Raise an error
15323 if there are conflicting settings. */
15326 mips_elf_merge_obj_e_flags (bfd
*ibfd
, struct bfd_link_info
*info
)
15328 bfd
*obfd
= info
->output_bfd
;
15329 struct mips_elf_obj_tdata
*out_tdata
= mips_elf_tdata (obfd
);
15330 flagword old_flags
;
15331 flagword new_flags
;
15334 new_flags
= elf_elfheader (ibfd
)->e_flags
;
15335 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
15336 old_flags
= elf_elfheader (obfd
)->e_flags
;
15338 /* Check flag compatibility. */
15340 new_flags
&= ~EF_MIPS_NOREORDER
;
15341 old_flags
&= ~EF_MIPS_NOREORDER
;
15343 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15344 doesn't seem to matter. */
15345 new_flags
&= ~EF_MIPS_XGOT
;
15346 old_flags
&= ~EF_MIPS_XGOT
;
15348 /* MIPSpro generates ucode info in n64 objects. Again, we should
15349 just be able to ignore this. */
15350 new_flags
&= ~EF_MIPS_UCODE
;
15351 old_flags
&= ~EF_MIPS_UCODE
;
15353 /* DSOs should only be linked with CPIC code. */
15354 if ((ibfd
->flags
& DYNAMIC
) != 0)
15355 new_flags
|= EF_MIPS_PIC
| EF_MIPS_CPIC
;
15357 if (new_flags
== old_flags
)
15362 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
15363 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
15366 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15371 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
15372 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
15373 if (! (new_flags
& EF_MIPS_PIC
))
15374 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
15376 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
15377 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
15379 /* Compare the ISAs. */
15380 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
15383 (_("%pB: linking 32-bit code with 64-bit code"),
15387 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
15389 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15390 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
15392 /* Copy the architecture info from IBFD to OBFD. Also copy
15393 the 32-bit flag (if set) so that we continue to recognise
15394 OBFD as a 32-bit binary. */
15395 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
15396 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
15397 elf_elfheader (obfd
)->e_flags
15398 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15400 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15401 update_mips_abiflags_isa (obfd
, &out_tdata
->abiflags
);
15403 /* Copy across the ABI flags if OBFD doesn't use them
15404 and if that was what caused us to treat IBFD as 32-bit. */
15405 if ((old_flags
& EF_MIPS_ABI
) == 0
15406 && mips_32bit_flags_p (new_flags
)
15407 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
15408 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
15412 /* The ISAs aren't compatible. */
15414 /* xgettext:c-format */
15415 (_("%pB: linking %s module with previous %s modules"),
15417 bfd_printable_name (ibfd
),
15418 bfd_printable_name (obfd
));
15423 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15424 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15426 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15427 does set EI_CLASS differently from any 32-bit ABI. */
15428 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
15429 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
15430 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
15432 /* Only error if both are set (to different values). */
15433 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
15434 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
15435 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
15438 /* xgettext:c-format */
15439 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15441 elf_mips_abi_name (ibfd
),
15442 elf_mips_abi_name (obfd
));
15445 new_flags
&= ~EF_MIPS_ABI
;
15446 old_flags
&= ~EF_MIPS_ABI
;
15449 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15450 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15451 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
15453 int old_micro
= old_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
;
15454 int new_micro
= new_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
;
15455 int old_m16
= old_flags
& EF_MIPS_ARCH_ASE_M16
;
15456 int new_m16
= new_flags
& EF_MIPS_ARCH_ASE_M16
;
15457 int micro_mis
= old_m16
&& new_micro
;
15458 int m16_mis
= old_micro
&& new_m16
;
15460 if (m16_mis
|| micro_mis
)
15463 /* xgettext:c-format */
15464 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15466 m16_mis
? "MIPS16" : "microMIPS",
15467 m16_mis
? "microMIPS" : "MIPS16");
15471 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
15473 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
15474 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
15477 /* Compare NaN encodings. */
15478 if ((new_flags
& EF_MIPS_NAN2008
) != (old_flags
& EF_MIPS_NAN2008
))
15480 /* xgettext:c-format */
15481 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15483 (new_flags
& EF_MIPS_NAN2008
15484 ? "-mnan=2008" : "-mnan=legacy"),
15485 (old_flags
& EF_MIPS_NAN2008
15486 ? "-mnan=2008" : "-mnan=legacy"));
15488 new_flags
&= ~EF_MIPS_NAN2008
;
15489 old_flags
&= ~EF_MIPS_NAN2008
;
15492 /* Compare FP64 state. */
15493 if ((new_flags
& EF_MIPS_FP64
) != (old_flags
& EF_MIPS_FP64
))
15495 /* xgettext:c-format */
15496 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15498 (new_flags
& EF_MIPS_FP64
15499 ? "-mfp64" : "-mfp32"),
15500 (old_flags
& EF_MIPS_FP64
15501 ? "-mfp64" : "-mfp32"));
15503 new_flags
&= ~EF_MIPS_FP64
;
15504 old_flags
&= ~EF_MIPS_FP64
;
15507 /* Warn about any other mismatches */
15508 if (new_flags
!= old_flags
)
15510 /* xgettext:c-format */
15512 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15514 ibfd
, new_flags
, old_flags
);
15521 /* Merge object attributes from IBFD into OBFD. Raise an error if
15522 there are conflicting attributes. */
15524 mips_elf_merge_obj_attributes (bfd
*ibfd
, struct bfd_link_info
*info
)
15526 bfd
*obfd
= info
->output_bfd
;
15527 obj_attribute
*in_attr
;
15528 obj_attribute
*out_attr
;
15532 abi_fp_bfd
= mips_elf_tdata (obfd
)->abi_fp_bfd
;
15533 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
15534 if (!abi_fp_bfd
&& in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= Val_GNU_MIPS_ABI_FP_ANY
)
15535 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15537 abi_msa_bfd
= mips_elf_tdata (obfd
)->abi_msa_bfd
;
15539 && in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= Val_GNU_MIPS_ABI_MSA_ANY
)
15540 mips_elf_tdata (obfd
)->abi_msa_bfd
= ibfd
;
15542 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
15544 /* This is the first object. Copy the attributes. */
15545 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
15547 /* Use the Tag_null value to indicate the attributes have been
15549 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
15554 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15555 non-conflicting ones. */
15556 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
15557 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
15561 out_fp
= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15562 in_fp
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15563 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
15564 if (out_fp
== Val_GNU_MIPS_ABI_FP_ANY
)
15565 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_fp
;
15566 else if (out_fp
== Val_GNU_MIPS_ABI_FP_XX
15567 && (in_fp
== Val_GNU_MIPS_ABI_FP_DOUBLE
15568 || in_fp
== Val_GNU_MIPS_ABI_FP_64
15569 || in_fp
== Val_GNU_MIPS_ABI_FP_64A
))
15571 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15572 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15574 else if (in_fp
== Val_GNU_MIPS_ABI_FP_XX
15575 && (out_fp
== Val_GNU_MIPS_ABI_FP_DOUBLE
15576 || out_fp
== Val_GNU_MIPS_ABI_FP_64
15577 || out_fp
== Val_GNU_MIPS_ABI_FP_64A
))
15578 /* Keep the current setting. */;
15579 else if (out_fp
== Val_GNU_MIPS_ABI_FP_64A
15580 && in_fp
== Val_GNU_MIPS_ABI_FP_64
)
15582 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15583 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15585 else if (in_fp
== Val_GNU_MIPS_ABI_FP_64A
15586 && out_fp
== Val_GNU_MIPS_ABI_FP_64
)
15587 /* Keep the current setting. */;
15588 else if (in_fp
!= Val_GNU_MIPS_ABI_FP_ANY
)
15590 const char *out_string
, *in_string
;
15592 out_string
= _bfd_mips_fp_abi_string (out_fp
);
15593 in_string
= _bfd_mips_fp_abi_string (in_fp
);
15594 /* First warn about cases involving unrecognised ABIs. */
15595 if (!out_string
&& !in_string
)
15596 /* xgettext:c-format */
15598 (_("warning: %pB uses unknown floating point ABI %d "
15599 "(set by %pB), %pB uses unknown floating point ABI %d"),
15600 obfd
, out_fp
, abi_fp_bfd
, ibfd
, in_fp
);
15601 else if (!out_string
)
15603 /* xgettext:c-format */
15604 (_("warning: %pB uses unknown floating point ABI %d "
15605 "(set by %pB), %pB uses %s"),
15606 obfd
, out_fp
, abi_fp_bfd
, ibfd
, in_string
);
15607 else if (!in_string
)
15609 /* xgettext:c-format */
15610 (_("warning: %pB uses %s (set by %pB), "
15611 "%pB uses unknown floating point ABI %d"),
15612 obfd
, out_string
, abi_fp_bfd
, ibfd
, in_fp
);
15615 /* If one of the bfds is soft-float, the other must be
15616 hard-float. The exact choice of hard-float ABI isn't
15617 really relevant to the error message. */
15618 if (in_fp
== Val_GNU_MIPS_ABI_FP_SOFT
)
15619 out_string
= "-mhard-float";
15620 else if (out_fp
== Val_GNU_MIPS_ABI_FP_SOFT
)
15621 in_string
= "-mhard-float";
15623 /* xgettext:c-format */
15624 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15625 obfd
, out_string
, abi_fp_bfd
, ibfd
, in_string
);
15630 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15631 non-conflicting ones. */
15632 if (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15634 out_attr
[Tag_GNU_MIPS_ABI_MSA
].type
= 1;
15635 if (out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
== Val_GNU_MIPS_ABI_MSA_ANY
)
15636 out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
= in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
;
15637 else if (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= Val_GNU_MIPS_ABI_MSA_ANY
)
15638 switch (out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15640 case Val_GNU_MIPS_ABI_MSA_128
:
15642 /* xgettext:c-format */
15643 (_("warning: %pB uses %s (set by %pB), "
15644 "%pB uses unknown MSA ABI %d"),
15645 obfd
, "-mmsa", abi_msa_bfd
,
15646 ibfd
, in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
);
15650 switch (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15652 case Val_GNU_MIPS_ABI_MSA_128
:
15654 /* xgettext:c-format */
15655 (_("warning: %pB uses unknown MSA ABI %d "
15656 "(set by %pB), %pB uses %s"),
15657 obfd
, out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
,
15658 abi_msa_bfd
, ibfd
, "-mmsa");
15663 /* xgettext:c-format */
15664 (_("warning: %pB uses unknown MSA ABI %d "
15665 "(set by %pB), %pB uses unknown MSA ABI %d"),
15666 obfd
, out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
,
15667 abi_msa_bfd
, ibfd
, in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
);
15673 /* Merge Tag_compatibility attributes and any common GNU ones. */
15674 return _bfd_elf_merge_object_attributes (ibfd
, info
);
15677 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15678 there are conflicting settings. */
15681 mips_elf_merge_obj_abiflags (bfd
*ibfd
, bfd
*obfd
)
15683 obj_attribute
*out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
15684 struct mips_elf_obj_tdata
*out_tdata
= mips_elf_tdata (obfd
);
15685 struct mips_elf_obj_tdata
*in_tdata
= mips_elf_tdata (ibfd
);
15687 /* Update the output abiflags fp_abi using the computed fp_abi. */
15688 out_tdata
->abiflags
.fp_abi
= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15690 #define max(a, b) ((a) > (b) ? (a) : (b))
15691 /* Merge abiflags. */
15692 out_tdata
->abiflags
.isa_level
= max (out_tdata
->abiflags
.isa_level
,
15693 in_tdata
->abiflags
.isa_level
);
15694 out_tdata
->abiflags
.isa_rev
= max (out_tdata
->abiflags
.isa_rev
,
15695 in_tdata
->abiflags
.isa_rev
);
15696 out_tdata
->abiflags
.gpr_size
= max (out_tdata
->abiflags
.gpr_size
,
15697 in_tdata
->abiflags
.gpr_size
);
15698 out_tdata
->abiflags
.cpr1_size
= max (out_tdata
->abiflags
.cpr1_size
,
15699 in_tdata
->abiflags
.cpr1_size
);
15700 out_tdata
->abiflags
.cpr2_size
= max (out_tdata
->abiflags
.cpr2_size
,
15701 in_tdata
->abiflags
.cpr2_size
);
15703 out_tdata
->abiflags
.ases
|= in_tdata
->abiflags
.ases
;
15704 out_tdata
->abiflags
.flags1
|= in_tdata
->abiflags
.flags1
;
15709 /* Merge backend specific data from an object file to the output
15710 object file when linking. */
15713 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
15715 bfd
*obfd
= info
->output_bfd
;
15716 struct mips_elf_obj_tdata
*out_tdata
;
15717 struct mips_elf_obj_tdata
*in_tdata
;
15718 bfd_boolean null_input_bfd
= TRUE
;
15722 /* Check if we have the same endianness. */
15723 if (! _bfd_generic_verify_endian_match (ibfd
, info
))
15726 (_("%pB: endianness incompatible with that of the selected emulation"),
15731 if (!is_mips_elf (ibfd
) || !is_mips_elf (obfd
))
15734 in_tdata
= mips_elf_tdata (ibfd
);
15735 out_tdata
= mips_elf_tdata (obfd
);
15737 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
15740 (_("%pB: ABI is incompatible with that of the selected emulation"),
15745 /* Check to see if the input BFD actually contains any sections. If not,
15746 then it has no attributes, and its flags may not have been initialized
15747 either, but it cannot actually cause any incompatibility. */
15748 /* FIXME: This excludes any input shared library from consideration. */
15749 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
15751 /* Ignore synthetic sections and empty .text, .data and .bss sections
15752 which are automatically generated by gas. Also ignore fake
15753 (s)common sections, since merely defining a common symbol does
15754 not affect compatibility. */
15755 if ((sec
->flags
& SEC_IS_COMMON
) == 0
15756 && strcmp (sec
->name
, ".reginfo")
15757 && strcmp (sec
->name
, ".mdebug")
15759 || (strcmp (sec
->name
, ".text")
15760 && strcmp (sec
->name
, ".data")
15761 && strcmp (sec
->name
, ".bss"))))
15763 null_input_bfd
= FALSE
;
15767 if (null_input_bfd
)
15770 /* Populate abiflags using existing information. */
15771 if (in_tdata
->abiflags_valid
)
15773 obj_attribute
*in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
15774 Elf_Internal_ABIFlags_v0 in_abiflags
;
15775 Elf_Internal_ABIFlags_v0 abiflags
;
15777 /* Set up the FP ABI attribute from the abiflags if it is not already
15779 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== Val_GNU_MIPS_ABI_FP_ANY
)
15780 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_tdata
->abiflags
.fp_abi
;
15782 infer_mips_abiflags (ibfd
, &abiflags
);
15783 in_abiflags
= in_tdata
->abiflags
;
15785 /* It is not possible to infer the correct ISA revision
15786 for R3 or R5 so drop down to R2 for the checks. */
15787 if (in_abiflags
.isa_rev
== 3 || in_abiflags
.isa_rev
== 5)
15788 in_abiflags
.isa_rev
= 2;
15790 if (LEVEL_REV (in_abiflags
.isa_level
, in_abiflags
.isa_rev
)
15791 < LEVEL_REV (abiflags
.isa_level
, abiflags
.isa_rev
))
15793 (_("%pB: warning: inconsistent ISA between e_flags and "
15794 ".MIPS.abiflags"), ibfd
);
15795 if (abiflags
.fp_abi
!= Val_GNU_MIPS_ABI_FP_ANY
15796 && in_abiflags
.fp_abi
!= abiflags
.fp_abi
)
15798 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15799 ".MIPS.abiflags"), ibfd
);
15800 if ((in_abiflags
.ases
& abiflags
.ases
) != abiflags
.ases
)
15802 (_("%pB: warning: inconsistent ASEs between e_flags and "
15803 ".MIPS.abiflags"), ibfd
);
15804 /* The isa_ext is allowed to be an extension of what can be inferred
15806 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags
.isa_ext
),
15807 bfd_mips_isa_ext_mach (in_abiflags
.isa_ext
)))
15809 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15810 ".MIPS.abiflags"), ibfd
);
15811 if (in_abiflags
.flags2
!= 0)
15813 (_("%pB: warning: unexpected flag in the flags2 field of "
15814 ".MIPS.abiflags (0x%lx)"), ibfd
,
15815 in_abiflags
.flags2
);
15819 infer_mips_abiflags (ibfd
, &in_tdata
->abiflags
);
15820 in_tdata
->abiflags_valid
= TRUE
;
15823 if (!out_tdata
->abiflags_valid
)
15825 /* Copy input abiflags if output abiflags are not already valid. */
15826 out_tdata
->abiflags
= in_tdata
->abiflags
;
15827 out_tdata
->abiflags_valid
= TRUE
;
15830 if (! elf_flags_init (obfd
))
15832 elf_flags_init (obfd
) = TRUE
;
15833 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
15834 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
15835 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
15837 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
15838 && (bfd_get_arch_info (obfd
)->the_default
15839 || mips_mach_extends_p (bfd_get_mach (obfd
),
15840 bfd_get_mach (ibfd
))))
15842 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
15843 bfd_get_mach (ibfd
)))
15846 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15847 update_mips_abiflags_isa (obfd
, &out_tdata
->abiflags
);
15853 ok
= mips_elf_merge_obj_e_flags (ibfd
, info
);
15855 ok
= mips_elf_merge_obj_attributes (ibfd
, info
) && ok
;
15857 ok
= mips_elf_merge_obj_abiflags (ibfd
, obfd
) && ok
;
15861 bfd_set_error (bfd_error_bad_value
);
15868 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15871 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
15873 BFD_ASSERT (!elf_flags_init (abfd
)
15874 || elf_elfheader (abfd
)->e_flags
== flags
);
15876 elf_elfheader (abfd
)->e_flags
= flags
;
15877 elf_flags_init (abfd
) = TRUE
;
15882 _bfd_mips_elf_get_target_dtag (bfd_vma dtag
)
15886 default: return "";
15887 case DT_MIPS_RLD_VERSION
:
15888 return "MIPS_RLD_VERSION";
15889 case DT_MIPS_TIME_STAMP
:
15890 return "MIPS_TIME_STAMP";
15891 case DT_MIPS_ICHECKSUM
:
15892 return "MIPS_ICHECKSUM";
15893 case DT_MIPS_IVERSION
:
15894 return "MIPS_IVERSION";
15895 case DT_MIPS_FLAGS
:
15896 return "MIPS_FLAGS";
15897 case DT_MIPS_BASE_ADDRESS
:
15898 return "MIPS_BASE_ADDRESS";
15900 return "MIPS_MSYM";
15901 case DT_MIPS_CONFLICT
:
15902 return "MIPS_CONFLICT";
15903 case DT_MIPS_LIBLIST
:
15904 return "MIPS_LIBLIST";
15905 case DT_MIPS_LOCAL_GOTNO
:
15906 return "MIPS_LOCAL_GOTNO";
15907 case DT_MIPS_CONFLICTNO
:
15908 return "MIPS_CONFLICTNO";
15909 case DT_MIPS_LIBLISTNO
:
15910 return "MIPS_LIBLISTNO";
15911 case DT_MIPS_SYMTABNO
:
15912 return "MIPS_SYMTABNO";
15913 case DT_MIPS_UNREFEXTNO
:
15914 return "MIPS_UNREFEXTNO";
15915 case DT_MIPS_GOTSYM
:
15916 return "MIPS_GOTSYM";
15917 case DT_MIPS_HIPAGENO
:
15918 return "MIPS_HIPAGENO";
15919 case DT_MIPS_RLD_MAP
:
15920 return "MIPS_RLD_MAP";
15921 case DT_MIPS_RLD_MAP_REL
:
15922 return "MIPS_RLD_MAP_REL";
15923 case DT_MIPS_DELTA_CLASS
:
15924 return "MIPS_DELTA_CLASS";
15925 case DT_MIPS_DELTA_CLASS_NO
:
15926 return "MIPS_DELTA_CLASS_NO";
15927 case DT_MIPS_DELTA_INSTANCE
:
15928 return "MIPS_DELTA_INSTANCE";
15929 case DT_MIPS_DELTA_INSTANCE_NO
:
15930 return "MIPS_DELTA_INSTANCE_NO";
15931 case DT_MIPS_DELTA_RELOC
:
15932 return "MIPS_DELTA_RELOC";
15933 case DT_MIPS_DELTA_RELOC_NO
:
15934 return "MIPS_DELTA_RELOC_NO";
15935 case DT_MIPS_DELTA_SYM
:
15936 return "MIPS_DELTA_SYM";
15937 case DT_MIPS_DELTA_SYM_NO
:
15938 return "MIPS_DELTA_SYM_NO";
15939 case DT_MIPS_DELTA_CLASSSYM
:
15940 return "MIPS_DELTA_CLASSSYM";
15941 case DT_MIPS_DELTA_CLASSSYM_NO
:
15942 return "MIPS_DELTA_CLASSSYM_NO";
15943 case DT_MIPS_CXX_FLAGS
:
15944 return "MIPS_CXX_FLAGS";
15945 case DT_MIPS_PIXIE_INIT
:
15946 return "MIPS_PIXIE_INIT";
15947 case DT_MIPS_SYMBOL_LIB
:
15948 return "MIPS_SYMBOL_LIB";
15949 case DT_MIPS_LOCALPAGE_GOTIDX
:
15950 return "MIPS_LOCALPAGE_GOTIDX";
15951 case DT_MIPS_LOCAL_GOTIDX
:
15952 return "MIPS_LOCAL_GOTIDX";
15953 case DT_MIPS_HIDDEN_GOTIDX
:
15954 return "MIPS_HIDDEN_GOTIDX";
15955 case DT_MIPS_PROTECTED_GOTIDX
:
15956 return "MIPS_PROTECTED_GOT_IDX";
15957 case DT_MIPS_OPTIONS
:
15958 return "MIPS_OPTIONS";
15959 case DT_MIPS_INTERFACE
:
15960 return "MIPS_INTERFACE";
15961 case DT_MIPS_DYNSTR_ALIGN
:
15962 return "DT_MIPS_DYNSTR_ALIGN";
15963 case DT_MIPS_INTERFACE_SIZE
:
15964 return "DT_MIPS_INTERFACE_SIZE";
15965 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
15966 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15967 case DT_MIPS_PERF_SUFFIX
:
15968 return "DT_MIPS_PERF_SUFFIX";
15969 case DT_MIPS_COMPACT_SIZE
:
15970 return "DT_MIPS_COMPACT_SIZE";
15971 case DT_MIPS_GP_VALUE
:
15972 return "DT_MIPS_GP_VALUE";
15973 case DT_MIPS_AUX_DYNAMIC
:
15974 return "DT_MIPS_AUX_DYNAMIC";
15975 case DT_MIPS_PLTGOT
:
15976 return "DT_MIPS_PLTGOT";
15977 case DT_MIPS_RWPLT
:
15978 return "DT_MIPS_RWPLT";
15979 case DT_MIPS_XHASH
:
15980 return "DT_MIPS_XHASH";
15984 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15988 _bfd_mips_fp_abi_string (int fp
)
15992 /* These strings aren't translated because they're simply
15994 case Val_GNU_MIPS_ABI_FP_DOUBLE
:
15995 return "-mdouble-float";
15997 case Val_GNU_MIPS_ABI_FP_SINGLE
:
15998 return "-msingle-float";
16000 case Val_GNU_MIPS_ABI_FP_SOFT
:
16001 return "-msoft-float";
16003 case Val_GNU_MIPS_ABI_FP_OLD_64
:
16004 return _("-mips32r2 -mfp64 (12 callee-saved)");
16006 case Val_GNU_MIPS_ABI_FP_XX
:
16009 case Val_GNU_MIPS_ABI_FP_64
:
16010 return "-mgp32 -mfp64";
16012 case Val_GNU_MIPS_ABI_FP_64A
:
16013 return "-mgp32 -mfp64 -mno-odd-spreg";
16021 print_mips_ases (FILE *file
, unsigned int mask
)
16023 if (mask
& AFL_ASE_DSP
)
16024 fputs ("\n\tDSP ASE", file
);
16025 if (mask
& AFL_ASE_DSPR2
)
16026 fputs ("\n\tDSP R2 ASE", file
);
16027 if (mask
& AFL_ASE_DSPR3
)
16028 fputs ("\n\tDSP R3 ASE", file
);
16029 if (mask
& AFL_ASE_EVA
)
16030 fputs ("\n\tEnhanced VA Scheme", file
);
16031 if (mask
& AFL_ASE_MCU
)
16032 fputs ("\n\tMCU (MicroController) ASE", file
);
16033 if (mask
& AFL_ASE_MDMX
)
16034 fputs ("\n\tMDMX ASE", file
);
16035 if (mask
& AFL_ASE_MIPS3D
)
16036 fputs ("\n\tMIPS-3D ASE", file
);
16037 if (mask
& AFL_ASE_MT
)
16038 fputs ("\n\tMT ASE", file
);
16039 if (mask
& AFL_ASE_SMARTMIPS
)
16040 fputs ("\n\tSmartMIPS ASE", file
);
16041 if (mask
& AFL_ASE_VIRT
)
16042 fputs ("\n\tVZ ASE", file
);
16043 if (mask
& AFL_ASE_MSA
)
16044 fputs ("\n\tMSA ASE", file
);
16045 if (mask
& AFL_ASE_MIPS16
)
16046 fputs ("\n\tMIPS16 ASE", file
);
16047 if (mask
& AFL_ASE_MICROMIPS
)
16048 fputs ("\n\tMICROMIPS ASE", file
);
16049 if (mask
& AFL_ASE_XPA
)
16050 fputs ("\n\tXPA ASE", file
);
16051 if (mask
& AFL_ASE_MIPS16E2
)
16052 fputs ("\n\tMIPS16e2 ASE", file
);
16053 if (mask
& AFL_ASE_CRC
)
16054 fputs ("\n\tCRC ASE", file
);
16055 if (mask
& AFL_ASE_GINV
)
16056 fputs ("\n\tGINV ASE", file
);
16057 if (mask
& AFL_ASE_LOONGSON_MMI
)
16058 fputs ("\n\tLoongson MMI ASE", file
);
16059 if (mask
& AFL_ASE_LOONGSON_CAM
)
16060 fputs ("\n\tLoongson CAM ASE", file
);
16061 if (mask
& AFL_ASE_LOONGSON_EXT
)
16062 fputs ("\n\tLoongson EXT ASE", file
);
16063 if (mask
& AFL_ASE_LOONGSON_EXT2
)
16064 fputs ("\n\tLoongson EXT2 ASE", file
);
16066 fprintf (file
, "\n\t%s", _("None"));
16067 else if ((mask
& ~AFL_ASE_MASK
) != 0)
16068 fprintf (stdout
, "\n\t%s (%x)", _("Unknown"), mask
& ~AFL_ASE_MASK
);
16072 print_mips_isa_ext (FILE *file
, unsigned int isa_ext
)
16077 fputs (_("None"), file
);
16080 fputs ("RMI XLR", file
);
16082 case AFL_EXT_OCTEON3
:
16083 fputs ("Cavium Networks Octeon3", file
);
16085 case AFL_EXT_OCTEON2
:
16086 fputs ("Cavium Networks Octeon2", file
);
16088 case AFL_EXT_OCTEONP
:
16089 fputs ("Cavium Networks OcteonP", file
);
16091 case AFL_EXT_OCTEON
:
16092 fputs ("Cavium Networks Octeon", file
);
16095 fputs ("Toshiba R5900", file
);
16098 fputs ("MIPS R4650", file
);
16101 fputs ("LSI R4010", file
);
16104 fputs ("NEC VR4100", file
);
16107 fputs ("Toshiba R3900", file
);
16109 case AFL_EXT_10000
:
16110 fputs ("MIPS R10000", file
);
16113 fputs ("Broadcom SB-1", file
);
16116 fputs ("NEC VR4111/VR4181", file
);
16119 fputs ("NEC VR4120", file
);
16122 fputs ("NEC VR5400", file
);
16125 fputs ("NEC VR5500", file
);
16127 case AFL_EXT_LOONGSON_2E
:
16128 fputs ("ST Microelectronics Loongson 2E", file
);
16130 case AFL_EXT_LOONGSON_2F
:
16131 fputs ("ST Microelectronics Loongson 2F", file
);
16133 case AFL_EXT_INTERAPTIV_MR2
:
16134 fputs ("Imagination interAptiv MR2", file
);
16137 fprintf (file
, "%s (%d)", _("Unknown"), isa_ext
);
16143 print_mips_fp_abi_value (FILE *file
, int val
)
16147 case Val_GNU_MIPS_ABI_FP_ANY
:
16148 fprintf (file
, _("Hard or soft float\n"));
16150 case Val_GNU_MIPS_ABI_FP_DOUBLE
:
16151 fprintf (file
, _("Hard float (double precision)\n"));
16153 case Val_GNU_MIPS_ABI_FP_SINGLE
:
16154 fprintf (file
, _("Hard float (single precision)\n"));
16156 case Val_GNU_MIPS_ABI_FP_SOFT
:
16157 fprintf (file
, _("Soft float\n"));
16159 case Val_GNU_MIPS_ABI_FP_OLD_64
:
16160 fprintf (file
, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16162 case Val_GNU_MIPS_ABI_FP_XX
:
16163 fprintf (file
, _("Hard float (32-bit CPU, Any FPU)\n"));
16165 case Val_GNU_MIPS_ABI_FP_64
:
16166 fprintf (file
, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16168 case Val_GNU_MIPS_ABI_FP_64A
:
16169 fprintf (file
, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16172 fprintf (file
, "??? (%d)\n", val
);
16178 get_mips_reg_size (int reg_size
)
16180 return (reg_size
== AFL_REG_NONE
) ? 0
16181 : (reg_size
== AFL_REG_32
) ? 32
16182 : (reg_size
== AFL_REG_64
) ? 64
16183 : (reg_size
== AFL_REG_128
) ? 128
16188 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
16192 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
16194 /* Print normal ELF private data. */
16195 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
16197 /* xgettext:c-format */
16198 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
16200 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
16201 fprintf (file
, _(" [abi=O32]"));
16202 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
16203 fprintf (file
, _(" [abi=O64]"));
16204 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
16205 fprintf (file
, _(" [abi=EABI32]"));
16206 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
16207 fprintf (file
, _(" [abi=EABI64]"));
16208 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
16209 fprintf (file
, _(" [abi unknown]"));
16210 else if (ABI_N32_P (abfd
))
16211 fprintf (file
, _(" [abi=N32]"));
16212 else if (ABI_64_P (abfd
))
16213 fprintf (file
, _(" [abi=64]"));
16215 fprintf (file
, _(" [no abi set]"));
16217 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
16218 fprintf (file
, " [mips1]");
16219 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
16220 fprintf (file
, " [mips2]");
16221 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
16222 fprintf (file
, " [mips3]");
16223 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
16224 fprintf (file
, " [mips4]");
16225 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
16226 fprintf (file
, " [mips5]");
16227 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
16228 fprintf (file
, " [mips32]");
16229 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
16230 fprintf (file
, " [mips64]");
16231 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
16232 fprintf (file
, " [mips32r2]");
16233 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
16234 fprintf (file
, " [mips64r2]");
16235 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R6
)
16236 fprintf (file
, " [mips32r6]");
16237 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R6
)
16238 fprintf (file
, " [mips64r6]");
16240 fprintf (file
, _(" [unknown ISA]"));
16242 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
16243 fprintf (file
, " [mdmx]");
16245 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
16246 fprintf (file
, " [mips16]");
16248 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
)
16249 fprintf (file
, " [micromips]");
16251 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NAN2008
)
16252 fprintf (file
, " [nan2008]");
16254 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_FP64
)
16255 fprintf (file
, " [old fp64]");
16257 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
16258 fprintf (file
, " [32bitmode]");
16260 fprintf (file
, _(" [not 32bitmode]"));
16262 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
16263 fprintf (file
, " [noreorder]");
16265 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
16266 fprintf (file
, " [PIC]");
16268 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
16269 fprintf (file
, " [CPIC]");
16271 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
16272 fprintf (file
, " [XGOT]");
16274 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
16275 fprintf (file
, " [UCODE]");
16277 fputc ('\n', file
);
16279 if (mips_elf_tdata (abfd
)->abiflags_valid
)
16281 Elf_Internal_ABIFlags_v0
*abiflags
= &mips_elf_tdata (abfd
)->abiflags
;
16282 fprintf (file
, "\nMIPS ABI Flags Version: %d\n", abiflags
->version
);
16283 fprintf (file
, "\nISA: MIPS%d", abiflags
->isa_level
);
16284 if (abiflags
->isa_rev
> 1)
16285 fprintf (file
, "r%d", abiflags
->isa_rev
);
16286 fprintf (file
, "\nGPR size: %d",
16287 get_mips_reg_size (abiflags
->gpr_size
));
16288 fprintf (file
, "\nCPR1 size: %d",
16289 get_mips_reg_size (abiflags
->cpr1_size
));
16290 fprintf (file
, "\nCPR2 size: %d",
16291 get_mips_reg_size (abiflags
->cpr2_size
));
16292 fputs ("\nFP ABI: ", file
);
16293 print_mips_fp_abi_value (file
, abiflags
->fp_abi
);
16294 fputs ("ISA Extension: ", file
);
16295 print_mips_isa_ext (file
, abiflags
->isa_ext
);
16296 fputs ("\nASEs:", file
);
16297 print_mips_ases (file
, abiflags
->ases
);
16298 fprintf (file
, "\nFLAGS 1: %8.8lx", abiflags
->flags1
);
16299 fprintf (file
, "\nFLAGS 2: %8.8lx", abiflags
->flags2
);
16300 fputc ('\n', file
);
16306 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
16308 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16309 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16310 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
16311 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16312 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16313 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
16314 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH
, SHF_ALLOC
},
16315 { NULL
, 0, 0, 0, 0 }
16318 /* Merge non visibility st_other attributes. Ensure that the
16319 STO_OPTIONAL flag is copied into h->other, even if this is not a
16320 definiton of the symbol. */
16322 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
16323 const Elf_Internal_Sym
*isym
,
16324 bfd_boolean definition
,
16325 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
16327 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
16329 unsigned char other
;
16331 other
= (definition
? isym
->st_other
: h
->other
);
16332 other
&= ~ELF_ST_VISIBILITY (-1);
16333 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
16337 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
16338 h
->other
|= STO_OPTIONAL
;
16341 /* Decide whether an undefined symbol is special and can be ignored.
16342 This is the case for OPTIONAL symbols on IRIX. */
16344 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
16346 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
16350 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
16352 return (sym
->st_shndx
== SHN_COMMON
16353 || sym
->st_shndx
== SHN_MIPS_ACOMMON
16354 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);
16357 /* Return address for Ith PLT stub in section PLT, for relocation REL
16358 or (bfd_vma) -1 if it should not be included. */
16361 _bfd_mips_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
16362 const arelent
*rel ATTRIBUTE_UNUSED
)
16365 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
)
16366 + i
* 4 * ARRAY_SIZE (mips_exec_plt_entry
));
16369 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16370 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16371 and .got.plt and also the slots may be of a different size each we walk
16372 the PLT manually fetching instructions and matching them against known
16373 patterns. To make things easier standard MIPS slots, if any, always come
16374 first. As we don't create proper ELF symbols we use the UDATA.I member
16375 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16376 with the ST_OTHER member of the ELF symbol. */
16379 _bfd_mips_elf_get_synthetic_symtab (bfd
*abfd
,
16380 long symcount ATTRIBUTE_UNUSED
,
16381 asymbol
**syms ATTRIBUTE_UNUSED
,
16382 long dynsymcount
, asymbol
**dynsyms
,
16385 static const char pltname
[] = "_PROCEDURE_LINKAGE_TABLE_";
16386 static const char microsuffix
[] = "@micromipsplt";
16387 static const char m16suffix
[] = "@mips16plt";
16388 static const char mipssuffix
[] = "@plt";
16390 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
16391 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
16392 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
16393 Elf_Internal_Shdr
*hdr
;
16394 bfd_byte
*plt_data
;
16395 bfd_vma plt_offset
;
16396 unsigned int other
;
16397 bfd_vma entry_size
;
16416 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0 || dynsymcount
<= 0)
16419 relplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
16420 if (relplt
== NULL
)
16423 hdr
= &elf_section_data (relplt
)->this_hdr
;
16424 if (hdr
->sh_link
!= elf_dynsymtab (abfd
) || hdr
->sh_type
!= SHT_REL
)
16427 plt
= bfd_get_section_by_name (abfd
, ".plt");
16431 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
16432 if (!(*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
16434 p
= relplt
->relocation
;
16436 /* Calculating the exact amount of space required for symbols would
16437 require two passes over the PLT, so just pessimise assuming two
16438 PLT slots per relocation. */
16439 count
= relplt
->size
/ hdr
->sh_entsize
;
16440 counti
= count
* bed
->s
->int_rels_per_ext_rel
;
16441 size
= 2 * count
* sizeof (asymbol
);
16442 size
+= count
* (sizeof (mipssuffix
) +
16443 (micromips_p
? sizeof (microsuffix
) : sizeof (m16suffix
)));
16444 for (pi
= 0; pi
< counti
; pi
+= bed
->s
->int_rels_per_ext_rel
)
16445 size
+= 2 * strlen ((*p
[pi
].sym_ptr_ptr
)->name
);
16447 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16448 size
+= sizeof (asymbol
) + sizeof (pltname
);
16450 if (!bfd_malloc_and_get_section (abfd
, plt
, &plt_data
))
16453 if (plt
->size
< 16)
16456 s
= *ret
= bfd_malloc (size
);
16459 send
= s
+ 2 * count
+ 1;
16461 names
= (char *) send
;
16462 nend
= (char *) s
+ size
;
16465 opcode
= bfd_get_micromips_32 (abfd
, plt_data
+ 12);
16466 if (opcode
== 0x3302fffe)
16470 plt0_size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry
);
16471 other
= STO_MICROMIPS
;
16473 else if (opcode
== 0x0398c1d0)
16477 plt0_size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
);
16478 other
= STO_MICROMIPS
;
16482 plt0_size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
16487 s
->flags
= BSF_SYNTHETIC
| BSF_FUNCTION
| BSF_LOCAL
;
16491 s
->udata
.i
= other
;
16492 memcpy (names
, pltname
, sizeof (pltname
));
16493 names
+= sizeof (pltname
);
16497 for (plt_offset
= plt0_size
;
16498 plt_offset
+ 8 <= plt
->size
&& s
< send
;
16499 plt_offset
+= entry_size
)
16501 bfd_vma gotplt_addr
;
16502 const char *suffix
;
16507 opcode
= bfd_get_micromips_32 (abfd
, plt_data
+ plt_offset
+ 4);
16509 /* Check if the second word matches the expected MIPS16 instruction. */
16510 if (opcode
== 0x651aeb00)
16514 /* Truncated table??? */
16515 if (plt_offset
+ 16 > plt
->size
)
16517 gotplt_addr
= bfd_get_32 (abfd
, plt_data
+ plt_offset
+ 12);
16518 entry_size
= 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry
);
16519 suffixlen
= sizeof (m16suffix
);
16520 suffix
= m16suffix
;
16521 other
= STO_MIPS16
;
16523 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16524 else if (opcode
== 0xff220000)
16528 gotplt_hi
= bfd_get_16 (abfd
, plt_data
+ plt_offset
) & 0x7f;
16529 gotplt_lo
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 2) & 0xffff;
16530 gotplt_hi
= ((gotplt_hi
^ 0x40) - 0x40) << 18;
16532 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16533 gotplt_addr
+= ((plt
->vma
+ plt_offset
) | 3) ^ 3;
16534 entry_size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry
);
16535 suffixlen
= sizeof (microsuffix
);
16536 suffix
= microsuffix
;
16537 other
= STO_MICROMIPS
;
16539 /* Likewise the expected microMIPS instruction (insn32 mode). */
16540 else if ((opcode
& 0xffff0000) == 0xff2f0000)
16542 gotplt_hi
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 2) & 0xffff;
16543 gotplt_lo
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 6) & 0xffff;
16544 gotplt_hi
= ((gotplt_hi
^ 0x8000) - 0x8000) << 16;
16545 gotplt_lo
= (gotplt_lo
^ 0x8000) - 0x8000;
16546 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16547 entry_size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry
);
16548 suffixlen
= sizeof (microsuffix
);
16549 suffix
= microsuffix
;
16550 other
= STO_MICROMIPS
;
16552 /* Otherwise assume standard MIPS code. */
16555 gotplt_hi
= bfd_get_32 (abfd
, plt_data
+ plt_offset
) & 0xffff;
16556 gotplt_lo
= bfd_get_32 (abfd
, plt_data
+ plt_offset
+ 4) & 0xffff;
16557 gotplt_hi
= ((gotplt_hi
^ 0x8000) - 0x8000) << 16;
16558 gotplt_lo
= (gotplt_lo
^ 0x8000) - 0x8000;
16559 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16560 entry_size
= 4 * ARRAY_SIZE (mips_exec_plt_entry
);
16561 suffixlen
= sizeof (mipssuffix
);
16562 suffix
= mipssuffix
;
16565 /* Truncated table??? */
16566 if (plt_offset
+ entry_size
> plt
->size
)
16570 i
< count
&& p
[pi
].address
!= gotplt_addr
;
16571 i
++, pi
= (pi
+ bed
->s
->int_rels_per_ext_rel
) % counti
);
16578 *s
= **p
[pi
].sym_ptr_ptr
;
16579 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16580 we are defining a symbol, ensure one of them is set. */
16581 if ((s
->flags
& BSF_LOCAL
) == 0)
16582 s
->flags
|= BSF_GLOBAL
;
16583 s
->flags
|= BSF_SYNTHETIC
;
16585 s
->value
= plt_offset
;
16587 s
->udata
.i
= other
;
16589 len
= strlen ((*p
[pi
].sym_ptr_ptr
)->name
);
16590 namelen
= len
+ suffixlen
;
16591 if (names
+ namelen
> nend
)
16594 memcpy (names
, (*p
[pi
].sym_ptr_ptr
)->name
, len
);
16596 memcpy (names
, suffix
, suffixlen
);
16597 names
+= suffixlen
;
16600 pi
= (pi
+ bed
->s
->int_rels_per_ext_rel
) % counti
;
16609 /* Return the ABI flags associated with ABFD if available. */
16611 Elf_Internal_ABIFlags_v0
*
16612 bfd_mips_elf_get_abiflags (bfd
*abfd
)
16614 struct mips_elf_obj_tdata
*tdata
= mips_elf_tdata (abfd
);
16616 return tdata
->abiflags_valid
? &tdata
->abiflags
: NULL
;
16619 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16620 field. Taken from `libc-abis.h' generated at GNU libc build time.
16621 Using a MIPS_ prefix as other libc targets use different values. */
16624 MIPS_LIBC_ABI_DEFAULT
= 0,
16625 MIPS_LIBC_ABI_MIPS_PLT
,
16626 MIPS_LIBC_ABI_UNIQUE
,
16627 MIPS_LIBC_ABI_MIPS_O32_FP64
,
16628 MIPS_LIBC_ABI_ABSOLUTE
,
16629 MIPS_LIBC_ABI_XHASH
,
16634 _bfd_mips_init_file_header (bfd
*abfd
, struct bfd_link_info
*link_info
)
16636 struct mips_elf_link_hash_table
*htab
= NULL
;
16637 Elf_Internal_Ehdr
*i_ehdrp
;
16639 if (!_bfd_elf_init_file_header (abfd
, link_info
))
16642 i_ehdrp
= elf_elfheader (abfd
);
16645 htab
= mips_elf_hash_table (link_info
);
16646 BFD_ASSERT (htab
!= NULL
);
16650 && htab
->use_plts_and_copy_relocs
16651 && htab
->root
.target_os
!= is_vxworks
)
16652 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_MIPS_PLT
;
16654 if (mips_elf_tdata (abfd
)->abiflags
.fp_abi
== Val_GNU_MIPS_ABI_FP_64
16655 || mips_elf_tdata (abfd
)->abiflags
.fp_abi
== Val_GNU_MIPS_ABI_FP_64A
)
16656 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_MIPS_O32_FP64
;
16658 /* Mark that we need support for absolute symbols in the dynamic loader. */
16659 if (htab
!= NULL
&& htab
->use_absolute_zero
&& htab
->gnu_target
)
16660 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_ABSOLUTE
;
16662 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16663 if it is the only hash section that will be created. */
16664 if (link_info
&& link_info
->emit_gnu_hash
&& !link_info
->emit_hash
)
16665 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_XHASH
;
16670 _bfd_mips_elf_compact_eh_encoding
16671 (struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
)
16673 return DW_EH_PE_pcrel
| DW_EH_PE_sdata4
;
16676 /* Return the opcode for can't unwind. */
16679 _bfd_mips_elf_cant_unwind_opcode
16680 (struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
)
16682 return COMPACT_EH_CANT_UNWIND_OPCODE
;
16685 /* Record a position XLAT_LOC in the xlat translation table, associated with
16686 the hash entry H. The entry in the translation table will later be
16687 populated with the real symbol dynindx. */
16690 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry
*h
,
16693 struct mips_elf_link_hash_entry
*hmips
;
16695 hmips
= (struct mips_elf_link_hash_entry
*) h
;
16696 hmips
->mipsxhash_loc
= xlat_loc
;