1 /* tc-avr.c -- Assembler code for the ATMEL AVR
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
4 Contributed by Denis Chertykov <denisc@overta.ru>
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
24 #include "safe-ctype.h"
26 #include "dwarf2dbg.h"
27 #include "dw2gencfi.h"
29 #include "elf32-avr.h"
31 /* For building a linked list of AVR_PROPERTY_RECORD structures. */
32 struct avr_property_record_link
34 struct avr_property_record record
;
35 struct avr_property_record_link
*next
;
41 const char * constraints
;
43 int insn_size
; /* In words. */
45 unsigned int bin_opcode
;
48 #define AVR_INSN(NAME, CONSTR, OPCODE, SIZE, ISA, BIN) \
49 {#NAME, CONSTR, OPCODE, SIZE, ISA, BIN},
51 struct avr_opcodes_s avr_opcodes
[] =
53 #include "opcode/avr.h"
54 {NULL
, NULL
, NULL
, 0, 0, 0}
58 /* Stuff for the `__gcc_isr' pseudo instruction.
60 Purpose of the pseudo instruction is to emit more efficient ISR prologues
61 and epilogues than GCC currently does. GCC has no explicit (on RTL level)
62 modelling of SREG, TMP_REG or ZERO_REG. These regs are used implicitly
63 during instruction printing. That doesn't hurt too much for ordinary
64 functions, however for small ISRs there might be some overhead.
66 As implementing http://gcc.gnu.org/PR20296 would imply an almost complete
67 rewite of GCC's AVR back-end (which might pop up less optimized code in
68 other places), we provide a pseudo-instruction which is resolved by GAS
69 into ISR prologue / epilogue as expected by GCC.
71 Using GAS for this purpose has the additional benefit that it can scan
72 code emit by inline asm which is opaque to GCC.
74 The pseudo-instruction is only supposed to handle the starting of
75 prologue and the ending of epilogues (without RETI) which deal with
76 SREG, TMP_REG and ZERO_REG and one additional, optional general purpose
79 __gcc_isr consists of 3 different "chunks":
82 Chunk 1 (ISR_CHUNK_Prologue)
83 Start the ISR code. Will be replaced by ISR prologue by next Done chunk.
84 Must be the 1st chunk in a file or follow a Done chunk from previous
85 ISR (which has been patched already).
87 It will finish the current frag and emit a new frag of
88 type rs_machine_dependent, subtype ISR_CHUNK_Prologue.
91 Chunk 2 (ISR_CHUNK_Epilogue)
92 Will be replaced by ISR epilogue by next Done chunk. Must follow
93 chunk 1 (Prologue) or chunk 2 (Epilogue). Functions might come
94 without epilogue or with more than one epilogue, and even code
95 located statically after the last epilogue might belong to a function.
97 It will finish the current frag and emit a new frag of
98 type rs_machine_dependent, subtype ISR_CHUNK_Epilogue.
101 Chunk 0 (ISR_CHUNK_Done)
102 Must follow chunk 1 (Prologue) or chunk 2 (Epilogue) and finishes
103 the ISR code. Only GCC can know where a function's code ends.
105 It triggers the patch-up of all rs_machine_dependent frags in the
106 current frag chain and turns them into ordinary rs_fill code frags.
108 If Rx is a register > ZERO_REG then GCC also wants to push / pop Rx.
109 If neither TMP_REG nor ZERO_REG are needed, Rx will be used in
110 the push / pop sequence avoiding the need for TMP_REG / ZERO_REG.
111 If Rx <= ZERO_REG then GCC doesn't assume anything about Rx.
115 o GCC takes care of code that is opaque to GAS like tail calls
118 o Using SEI / CLI does not count as clobbering SREG. This is
119 because a final RETI will restore the I-flag.
121 o Using OUT or ST* is supposed not to clobber SREG. Sequences like
123 IN-SREG + CLI + Atomic-Code + OUT-SREG
125 will still work as expected because the scan will reveal any
126 clobber of SREG other than I-flag and emit PUSH / POP of SREG.
132 ISR_CHUNK_Prologue
= 1,
133 ISR_CHUNK_Epilogue
= 2
138 /* Previous __gcc_isr chunk (one of the enums above)
139 and it's location for diagnostics. */
143 /* Replacer for __gcc_isr.n_pushed once we know how many regs are
144 pushed by the Prologue chunk. */
145 symbolS
*sym_n_pushed
;
147 /* Set and used during parse from chunk 1 (Prologue) up to chunk 0 (Done).
148 Set by `avr_update_gccisr' and used by `avr_patch_gccisr_frag'. */
154 static void avr_gccisr_operands (struct avr_opcodes_s
*, char**);
155 static void avr_update_gccisr (struct avr_opcodes_s
*, int, int);
156 static struct avr_opcodes_s
*avr_gccisr_opcode
;
158 const char comment_chars
[] = ";";
159 const char line_comment_chars
[] = "#";
160 const char line_separator_chars
[] = "$";
162 const char *md_shortopts
= "m:";
170 /* XXX - devices that don't seem to exist (renamed, replaced with larger
171 ones, or planned but never produced), left here for compatibility. */
173 static struct mcu_type_s mcu_types
[] =
175 {"avr1", AVR_ISA_AVR1
, bfd_mach_avr1
},
176 /* TODO: instruction set for avr2 architecture should be AVR_ISA_AVR2,
177 but set to AVR_ISA_AVR25 for some following version
178 of GCC (from 4.3) for backward compatibility. */
179 {"avr2", AVR_ISA_AVR25
, bfd_mach_avr2
},
180 {"avr25", AVR_ISA_AVR25
, bfd_mach_avr25
},
181 /* TODO: instruction set for avr3 architecture should be AVR_ISA_AVR3,
182 but set to AVR_ISA_AVR3_ALL for some following version
183 of GCC (from 4.3) for backward compatibility. */
184 {"avr3", AVR_ISA_AVR3_ALL
, bfd_mach_avr3
},
185 {"avr31", AVR_ISA_AVR31
, bfd_mach_avr31
},
186 {"avr35", AVR_ISA_AVR35
, bfd_mach_avr35
},
187 {"avr4", AVR_ISA_AVR4
, bfd_mach_avr4
},
188 /* TODO: instruction set for avr5 architecture should be AVR_ISA_AVR5,
189 but set to AVR_ISA_AVR51 for some following version
190 of GCC (from 4.3) for backward compatibility. */
191 {"avr5", AVR_ISA_AVR51
, bfd_mach_avr5
},
192 {"avr51", AVR_ISA_AVR51
, bfd_mach_avr51
},
193 {"avr6", AVR_ISA_AVR6
, bfd_mach_avr6
},
194 {"avrxmega1", AVR_ISA_XMEGA
, bfd_mach_avrxmega1
},
195 {"avrxmega2", AVR_ISA_XMEGA
, bfd_mach_avrxmega2
},
196 {"avrxmega3", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
197 {"avrxmega4", AVR_ISA_XMEGA
, bfd_mach_avrxmega4
},
198 {"avrxmega5", AVR_ISA_XMEGA
, bfd_mach_avrxmega5
},
199 {"avrxmega6", AVR_ISA_XMEGA
, bfd_mach_avrxmega6
},
200 {"avrxmega7", AVR_ISA_XMEGA
, bfd_mach_avrxmega7
},
201 {"avrtiny", AVR_ISA_AVRTINY
, bfd_mach_avrtiny
},
202 {"at90s1200", AVR_ISA_1200
, bfd_mach_avr1
},
203 {"attiny11", AVR_ISA_AVR1
, bfd_mach_avr1
},
204 {"attiny12", AVR_ISA_AVR1
, bfd_mach_avr1
},
205 {"attiny15", AVR_ISA_AVR1
, bfd_mach_avr1
},
206 {"attiny28", AVR_ISA_AVR1
, bfd_mach_avr1
},
207 {"at90s2313", AVR_ISA_AVR2
, bfd_mach_avr2
},
208 {"at90s2323", AVR_ISA_AVR2
, bfd_mach_avr2
},
209 {"at90s2333", AVR_ISA_AVR2
, bfd_mach_avr2
}, /* XXX -> 4433 */
210 {"at90s2343", AVR_ISA_AVR2
, bfd_mach_avr2
},
211 {"attiny22", AVR_ISA_AVR2
, bfd_mach_avr2
}, /* XXX -> 2343 */
212 {"attiny26", AVR_ISA_2xxe
, bfd_mach_avr2
},
213 {"at90s4414", AVR_ISA_AVR2
, bfd_mach_avr2
}, /* XXX -> 8515 */
214 {"at90s4433", AVR_ISA_AVR2
, bfd_mach_avr2
},
215 {"at90s4434", AVR_ISA_AVR2
, bfd_mach_avr2
}, /* XXX -> 8535 */
216 {"at90s8515", AVR_ISA_AVR2
, bfd_mach_avr2
},
217 {"at90c8534", AVR_ISA_AVR2
, bfd_mach_avr2
},
218 {"at90s8535", AVR_ISA_AVR2
, bfd_mach_avr2
},
219 {"ata5272", AVR_ISA_AVR25
, bfd_mach_avr25
},
220 {"attiny13", AVR_ISA_AVR25
, bfd_mach_avr25
},
221 {"attiny13a", AVR_ISA_AVR25
, bfd_mach_avr25
},
222 {"attiny2313", AVR_ISA_AVR25
, bfd_mach_avr25
},
223 {"attiny2313a",AVR_ISA_AVR25
, bfd_mach_avr25
},
224 {"attiny24", AVR_ISA_AVR25
, bfd_mach_avr25
},
225 {"attiny24a", AVR_ISA_AVR25
, bfd_mach_avr25
},
226 {"attiny4313", AVR_ISA_AVR25
, bfd_mach_avr25
},
227 {"attiny44", AVR_ISA_AVR25
, bfd_mach_avr25
},
228 {"attiny44a", AVR_ISA_AVR25
, bfd_mach_avr25
},
229 {"attiny84", AVR_ISA_AVR25
, bfd_mach_avr25
},
230 {"attiny84a", AVR_ISA_AVR25
, bfd_mach_avr25
},
231 {"attiny25", AVR_ISA_AVR25
, bfd_mach_avr25
},
232 {"attiny45", AVR_ISA_AVR25
, bfd_mach_avr25
},
233 {"attiny85", AVR_ISA_AVR25
, bfd_mach_avr25
},
234 {"attiny261", AVR_ISA_AVR25
, bfd_mach_avr25
},
235 {"attiny261a", AVR_ISA_AVR25
, bfd_mach_avr25
},
236 {"attiny461", AVR_ISA_AVR25
, bfd_mach_avr25
},
237 {"attiny461a", AVR_ISA_AVR25
, bfd_mach_avr25
},
238 {"attiny861", AVR_ISA_AVR25
, bfd_mach_avr25
},
239 {"attiny861a", AVR_ISA_AVR25
, bfd_mach_avr25
},
240 {"attiny87", AVR_ISA_AVR25
, bfd_mach_avr25
},
241 {"attiny43u", AVR_ISA_AVR25
, bfd_mach_avr25
},
242 {"attiny48", AVR_ISA_AVR25
, bfd_mach_avr25
},
243 {"attiny88", AVR_ISA_AVR25
, bfd_mach_avr25
},
244 {"attiny828", AVR_ISA_AVR25
, bfd_mach_avr25
},
245 {"at86rf401", AVR_ISA_RF401
, bfd_mach_avr25
},
246 {"at43usb355", AVR_ISA_AVR3
, bfd_mach_avr3
},
247 {"at76c711", AVR_ISA_AVR3
, bfd_mach_avr3
},
248 {"atmega103", AVR_ISA_AVR31
, bfd_mach_avr31
},
249 {"at43usb320", AVR_ISA_AVR31
, bfd_mach_avr31
},
250 {"attiny167", AVR_ISA_AVR35
, bfd_mach_avr35
},
251 {"at90usb82", AVR_ISA_AVR35
, bfd_mach_avr35
},
252 {"at90usb162", AVR_ISA_AVR35
, bfd_mach_avr35
},
253 {"ata5505", AVR_ISA_AVR35
, bfd_mach_avr35
},
254 {"atmega8u2", AVR_ISA_AVR35
, bfd_mach_avr35
},
255 {"atmega16u2", AVR_ISA_AVR35
, bfd_mach_avr35
},
256 {"atmega32u2", AVR_ISA_AVR35
, bfd_mach_avr35
},
257 {"attiny1634", AVR_ISA_AVR35
, bfd_mach_avr35
},
258 {"atmega8", AVR_ISA_M8
, bfd_mach_avr4
},
259 {"ata6289", AVR_ISA_AVR4
, bfd_mach_avr4
},
260 {"atmega8a", AVR_ISA_M8
, bfd_mach_avr4
},
261 {"ata6285", AVR_ISA_AVR4
, bfd_mach_avr4
},
262 {"ata6286", AVR_ISA_AVR4
, bfd_mach_avr4
},
263 {"atmega48", AVR_ISA_AVR4
, bfd_mach_avr4
},
264 {"atmega48a", AVR_ISA_AVR4
, bfd_mach_avr4
},
265 {"atmega48pa", AVR_ISA_AVR4
, bfd_mach_avr4
},
266 {"atmega48p", AVR_ISA_AVR4
, bfd_mach_avr4
},
267 {"atmega88", AVR_ISA_AVR4
, bfd_mach_avr4
},
268 {"atmega88a", AVR_ISA_AVR4
, bfd_mach_avr4
},
269 {"atmega88p", AVR_ISA_AVR4
, bfd_mach_avr4
},
270 {"atmega88pa", AVR_ISA_AVR4
, bfd_mach_avr4
},
271 {"atmega8515", AVR_ISA_M8
, bfd_mach_avr4
},
272 {"atmega8535", AVR_ISA_M8
, bfd_mach_avr4
},
273 {"atmega8hva", AVR_ISA_AVR4
, bfd_mach_avr4
},
274 {"at90pwm1", AVR_ISA_AVR4
, bfd_mach_avr4
},
275 {"at90pwm2", AVR_ISA_AVR4
, bfd_mach_avr4
},
276 {"at90pwm2b", AVR_ISA_AVR4
, bfd_mach_avr4
},
277 {"at90pwm3", AVR_ISA_AVR4
, bfd_mach_avr4
},
278 {"at90pwm3b", AVR_ISA_AVR4
, bfd_mach_avr4
},
279 {"at90pwm81", AVR_ISA_AVR4
, bfd_mach_avr4
},
280 {"at90pwm161", AVR_ISA_AVR5
, bfd_mach_avr5
},
281 {"ata5790", AVR_ISA_AVR5
, bfd_mach_avr5
},
282 {"ata5795", AVR_ISA_AVR5
, bfd_mach_avr5
},
283 {"atmega16", AVR_ISA_AVR5
, bfd_mach_avr5
},
284 {"atmega16a", AVR_ISA_AVR5
, bfd_mach_avr5
},
285 {"atmega161", AVR_ISA_M161
, bfd_mach_avr5
},
286 {"atmega162", AVR_ISA_AVR5
, bfd_mach_avr5
},
287 {"atmega163", AVR_ISA_M161
, bfd_mach_avr5
},
288 {"atmega164a", AVR_ISA_AVR5
, bfd_mach_avr5
},
289 {"atmega164p", AVR_ISA_AVR5
, bfd_mach_avr5
},
290 {"atmega164pa",AVR_ISA_AVR5
, bfd_mach_avr5
},
291 {"atmega165", AVR_ISA_AVR5
, bfd_mach_avr5
},
292 {"atmega165a", AVR_ISA_AVR5
, bfd_mach_avr5
},
293 {"atmega165p", AVR_ISA_AVR5
, bfd_mach_avr5
},
294 {"atmega165pa",AVR_ISA_AVR5
, bfd_mach_avr5
},
295 {"atmega168", AVR_ISA_AVR5
, bfd_mach_avr5
},
296 {"atmega168a", AVR_ISA_AVR5
, bfd_mach_avr5
},
297 {"atmega168p", AVR_ISA_AVR5
, bfd_mach_avr5
},
298 {"atmega168pa",AVR_ISA_AVR5
, bfd_mach_avr5
},
299 {"atmega169", AVR_ISA_AVR5
, bfd_mach_avr5
},
300 {"atmega169a", AVR_ISA_AVR5
, bfd_mach_avr5
},
301 {"atmega169p", AVR_ISA_AVR5
, bfd_mach_avr5
},
302 {"atmega169pa",AVR_ISA_AVR5
, bfd_mach_avr5
},
303 {"atmega32", AVR_ISA_AVR5
, bfd_mach_avr5
},
304 {"atmega32a", AVR_ISA_AVR5
, bfd_mach_avr5
},
305 {"atmega323", AVR_ISA_AVR5
, bfd_mach_avr5
},
306 {"atmega324a", AVR_ISA_AVR5
, bfd_mach_avr5
},
307 {"atmega324p", AVR_ISA_AVR5
, bfd_mach_avr5
},
308 {"atmega324pa",AVR_ISA_AVR5
, bfd_mach_avr5
},
309 {"atmega325", AVR_ISA_AVR5
, bfd_mach_avr5
},
310 {"atmega325a", AVR_ISA_AVR5
, bfd_mach_avr5
},
311 {"atmega325p", AVR_ISA_AVR5
, bfd_mach_avr5
},
312 {"atmega325pa",AVR_ISA_AVR5
, bfd_mach_avr5
},
313 {"atmega3250", AVR_ISA_AVR5
, bfd_mach_avr5
},
314 {"atmega3250a",AVR_ISA_AVR5
, bfd_mach_avr5
},
315 {"atmega3250p",AVR_ISA_AVR5
, bfd_mach_avr5
},
316 {"atmega3250pa",AVR_ISA_AVR5
, bfd_mach_avr5
},
317 {"atmega328", AVR_ISA_AVR5
, bfd_mach_avr5
},
318 {"atmega328p", AVR_ISA_AVR5
, bfd_mach_avr5
},
319 {"atmega329", AVR_ISA_AVR5
, bfd_mach_avr5
},
320 {"atmega329a", AVR_ISA_AVR5
, bfd_mach_avr5
},
321 {"atmega329p", AVR_ISA_AVR5
, bfd_mach_avr5
},
322 {"atmega329pa",AVR_ISA_AVR5
, bfd_mach_avr5
},
323 {"atmega3290", AVR_ISA_AVR5
, bfd_mach_avr5
},
324 {"atmega3290a",AVR_ISA_AVR5
, bfd_mach_avr5
},
325 {"atmega3290p",AVR_ISA_AVR5
, bfd_mach_avr5
},
326 {"atmega3290pa",AVR_ISA_AVR5
, bfd_mach_avr5
},
327 {"atmega406", AVR_ISA_AVR5
, bfd_mach_avr5
},
328 {"atmega64rfr2", AVR_ISA_AVR5
, bfd_mach_avr5
},
329 {"atmega644rfr2",AVR_ISA_AVR5
, bfd_mach_avr5
},
330 {"atmega64", AVR_ISA_AVR5
, bfd_mach_avr5
},
331 {"atmega64a", AVR_ISA_AVR5
, bfd_mach_avr5
},
332 {"atmega640", AVR_ISA_AVR5
, bfd_mach_avr5
},
333 {"atmega644", AVR_ISA_AVR5
, bfd_mach_avr5
},
334 {"atmega644a", AVR_ISA_AVR5
, bfd_mach_avr5
},
335 {"atmega644p", AVR_ISA_AVR5
, bfd_mach_avr5
},
336 {"atmega644pa",AVR_ISA_AVR5
, bfd_mach_avr5
},
337 {"atmega645", AVR_ISA_AVR5
, bfd_mach_avr5
},
338 {"atmega645a", AVR_ISA_AVR5
, bfd_mach_avr5
},
339 {"atmega645p", AVR_ISA_AVR5
, bfd_mach_avr5
},
340 {"atmega649", AVR_ISA_AVR5
, bfd_mach_avr5
},
341 {"atmega649a", AVR_ISA_AVR5
, bfd_mach_avr5
},
342 {"atmega649p", AVR_ISA_AVR5
, bfd_mach_avr5
},
343 {"atmega6450", AVR_ISA_AVR5
, bfd_mach_avr5
},
344 {"atmega6450a",AVR_ISA_AVR5
, bfd_mach_avr5
},
345 {"atmega6450p",AVR_ISA_AVR5
, bfd_mach_avr5
},
346 {"atmega6490", AVR_ISA_AVR5
, bfd_mach_avr5
},
347 {"atmega6490a",AVR_ISA_AVR5
, bfd_mach_avr5
},
348 {"atmega6490p",AVR_ISA_AVR5
, bfd_mach_avr5
},
349 {"atmega64rfr2",AVR_ISA_AVR5
, bfd_mach_avr5
},
350 {"atmega644rfr2",AVR_ISA_AVR5
, bfd_mach_avr5
},
351 {"atmega16hva",AVR_ISA_AVR5
, bfd_mach_avr5
},
352 {"atmega16hva2",AVR_ISA_AVR5
, bfd_mach_avr5
},
353 {"atmega16hvb",AVR_ISA_AVR5
, bfd_mach_avr5
},
354 {"atmega16hvbrevb",AVR_ISA_AVR5
,bfd_mach_avr5
},
355 {"atmega32hvb",AVR_ISA_AVR5
, bfd_mach_avr5
},
356 {"atmega32hvbrevb",AVR_ISA_AVR5
,bfd_mach_avr5
},
357 {"atmega64hve",AVR_ISA_AVR5
, bfd_mach_avr5
},
358 {"at90can32" , AVR_ISA_AVR5
, bfd_mach_avr5
},
359 {"at90can64" , AVR_ISA_AVR5
, bfd_mach_avr5
},
360 {"at90pwm161", AVR_ISA_AVR5
, bfd_mach_avr5
},
361 {"at90pwm216", AVR_ISA_AVR5
, bfd_mach_avr5
},
362 {"at90pwm316", AVR_ISA_AVR5
, bfd_mach_avr5
},
363 {"atmega32c1", AVR_ISA_AVR5
, bfd_mach_avr5
},
364 {"atmega64c1", AVR_ISA_AVR5
, bfd_mach_avr5
},
365 {"atmega16m1", AVR_ISA_AVR5
, bfd_mach_avr5
},
366 {"atmega32m1", AVR_ISA_AVR5
, bfd_mach_avr5
},
367 {"atmega64m1", AVR_ISA_AVR5
, bfd_mach_avr5
},
368 {"atmega16u4", AVR_ISA_AVR5
, bfd_mach_avr5
},
369 {"atmega32u4", AVR_ISA_AVR5
, bfd_mach_avr5
},
370 {"atmega32u6", AVR_ISA_AVR5
, bfd_mach_avr5
},
371 {"at90usb646", AVR_ISA_AVR5
, bfd_mach_avr5
},
372 {"at90usb647", AVR_ISA_AVR5
, bfd_mach_avr5
},
373 {"at90scr100", AVR_ISA_AVR5
, bfd_mach_avr5
},
374 {"at94k", AVR_ISA_94K
, bfd_mach_avr5
},
375 {"m3000", AVR_ISA_AVR5
, bfd_mach_avr5
},
376 {"atmega128", AVR_ISA_AVR51
, bfd_mach_avr51
},
377 {"atmega128a", AVR_ISA_AVR51
, bfd_mach_avr51
},
378 {"atmega1280", AVR_ISA_AVR51
, bfd_mach_avr51
},
379 {"atmega1281", AVR_ISA_AVR51
, bfd_mach_avr51
},
380 {"atmega1284", AVR_ISA_AVR51
, bfd_mach_avr51
},
381 {"atmega1284p",AVR_ISA_AVR51
, bfd_mach_avr51
},
382 {"atmega128rfa1",AVR_ISA_AVR51
, bfd_mach_avr51
},
383 {"atmega128rfr2",AVR_ISA_AVR51
, bfd_mach_avr51
},
384 {"atmega1284rfr2",AVR_ISA_AVR51
, bfd_mach_avr51
},
385 {"at90can128", AVR_ISA_AVR51
, bfd_mach_avr51
},
386 {"at90usb1286",AVR_ISA_AVR51
, bfd_mach_avr51
},
387 {"at90usb1287",AVR_ISA_AVR51
, bfd_mach_avr51
},
388 {"atmega2560", AVR_ISA_AVR6
, bfd_mach_avr6
},
389 {"atmega2561", AVR_ISA_AVR6
, bfd_mach_avr6
},
390 {"atmega256rfr2", AVR_ISA_AVR6
, bfd_mach_avr6
},
391 {"atmega2564rfr2", AVR_ISA_AVR6
, bfd_mach_avr6
},
392 {"atxmega16a4", AVR_ISA_XMEGA
, bfd_mach_avrxmega2
},
393 {"atxmega16a4u",AVR_ISA_XMEGAU
, bfd_mach_avrxmega2
},
394 {"atxmega16c4", AVR_ISA_XMEGAU
, bfd_mach_avrxmega2
},
395 {"atxmega16d4", AVR_ISA_XMEGA
, bfd_mach_avrxmega2
},
396 {"atxmega32a4", AVR_ISA_XMEGA
, bfd_mach_avrxmega2
},
397 {"atxmega32a4u",AVR_ISA_XMEGAU
, bfd_mach_avrxmega2
},
398 {"atxmega32c4", AVR_ISA_XMEGAU
, bfd_mach_avrxmega2
},
399 {"atxmega32d4", AVR_ISA_XMEGA
, bfd_mach_avrxmega2
},
400 {"atxmega32e5", AVR_ISA_XMEGA
, bfd_mach_avrxmega2
},
401 {"atxmega16e5", AVR_ISA_XMEGA
, bfd_mach_avrxmega2
},
402 {"atxmega8e5", AVR_ISA_XMEGA
, bfd_mach_avrxmega2
},
403 {"atxmega32x1", AVR_ISA_XMEGA
, bfd_mach_avrxmega2
},
404 {"attiny212", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
405 {"attiny214", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
406 {"attiny412", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
407 {"attiny414", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
408 {"attiny416", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
409 {"attiny417", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
410 {"attiny814", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
411 {"attiny816", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
412 {"attiny817", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
413 {"attiny1614", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
414 {"attiny1616", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
415 {"attiny1617", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
416 {"attiny3214", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
417 {"attiny3216", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
418 {"attiny3217", AVR_ISA_XMEGA
, bfd_mach_avrxmega3
},
419 {"atxmega64a3", AVR_ISA_XMEGA
, bfd_mach_avrxmega4
},
420 {"atxmega64a3u",AVR_ISA_XMEGAU
, bfd_mach_avrxmega4
},
421 {"atxmega64a4u",AVR_ISA_XMEGAU
, bfd_mach_avrxmega4
},
422 {"atxmega64b1", AVR_ISA_XMEGAU
, bfd_mach_avrxmega4
},
423 {"atxmega64b3", AVR_ISA_XMEGAU
, bfd_mach_avrxmega4
},
424 {"atxmega64c3", AVR_ISA_XMEGAU
, bfd_mach_avrxmega4
},
425 {"atxmega64d3", AVR_ISA_XMEGA
, bfd_mach_avrxmega4
},
426 {"atxmega64d4", AVR_ISA_XMEGA
, bfd_mach_avrxmega4
},
427 {"atxmega64a1", AVR_ISA_XMEGA
, bfd_mach_avrxmega5
},
428 {"atxmega64a1u",AVR_ISA_XMEGAU
, bfd_mach_avrxmega5
},
429 {"atxmega128a3", AVR_ISA_XMEGA
, bfd_mach_avrxmega6
},
430 {"atxmega128a3u",AVR_ISA_XMEGAU
,bfd_mach_avrxmega6
},
431 {"atxmega128b1", AVR_ISA_XMEGAU
, bfd_mach_avrxmega6
},
432 {"atxmega128b3", AVR_ISA_XMEGAU
,bfd_mach_avrxmega6
},
433 {"atxmega128c3", AVR_ISA_XMEGAU
,bfd_mach_avrxmega6
},
434 {"atxmega128d3", AVR_ISA_XMEGA
, bfd_mach_avrxmega6
},
435 {"atxmega128d4", AVR_ISA_XMEGA
, bfd_mach_avrxmega6
},
436 {"atxmega192a3", AVR_ISA_XMEGA
, bfd_mach_avrxmega6
},
437 {"atxmega192a3u",AVR_ISA_XMEGAU
,bfd_mach_avrxmega6
},
438 {"atxmega192c3", AVR_ISA_XMEGAU
, bfd_mach_avrxmega6
},
439 {"atxmega192d3", AVR_ISA_XMEGA
, bfd_mach_avrxmega6
},
440 {"atxmega256a3", AVR_ISA_XMEGA
, bfd_mach_avrxmega6
},
441 {"atxmega256a3u",AVR_ISA_XMEGAU
,bfd_mach_avrxmega6
},
442 {"atxmega256a3b",AVR_ISA_XMEGA
, bfd_mach_avrxmega6
},
443 {"atxmega256a3bu",AVR_ISA_XMEGAU
, bfd_mach_avrxmega6
},
444 {"atxmega256c3", AVR_ISA_XMEGAU
,bfd_mach_avrxmega6
},
445 {"atxmega256d3", AVR_ISA_XMEGA
, bfd_mach_avrxmega6
},
446 {"atxmega384c3", AVR_ISA_XMEGAU
,bfd_mach_avrxmega6
},
447 {"atxmega384d3", AVR_ISA_XMEGA
, bfd_mach_avrxmega6
},
448 {"atxmega128a1", AVR_ISA_XMEGA
, bfd_mach_avrxmega7
},
449 {"atxmega128a1u", AVR_ISA_XMEGAU
, bfd_mach_avrxmega7
},
450 {"atxmega128a4u", AVR_ISA_XMEGAU
, bfd_mach_avrxmega7
},
451 {"attiny4", AVR_ISA_AVRTINY
, bfd_mach_avrtiny
},
452 {"attiny5", AVR_ISA_AVRTINY
, bfd_mach_avrtiny
},
453 {"attiny9", AVR_ISA_AVRTINY
, bfd_mach_avrtiny
},
454 {"attiny10", AVR_ISA_AVRTINY
, bfd_mach_avrtiny
},
455 {"attiny20", AVR_ISA_AVRTINY
, bfd_mach_avrtiny
},
456 {"attiny40", AVR_ISA_AVRTINY
, bfd_mach_avrtiny
},
461 /* Current MCU type. */
462 static struct mcu_type_s default_mcu
= {"avr2", AVR_ISA_AVR2
, bfd_mach_avr2
};
463 static struct mcu_type_s specified_mcu
;
464 static struct mcu_type_s
* avr_mcu
= & default_mcu
;
466 /* AVR target-specific switches. */
469 int all_opcodes
; /* -mall-opcodes: accept all known AVR opcodes. */
470 int no_skip_bug
; /* -mno-skip-bug: no warnings for skipping 2-word insns. */
471 int no_wrap
; /* -mno-wrap: reject rjmp/rcall with 8K wrap-around. */
472 int no_link_relax
; /* -mno-link-relax / -mlink-relax: generate (or not)
473 relocations for linker relaxation. */
474 int have_gccisr
; /* Whether "__gcc_isr" is a known (pseudo) insn. */
477 static struct avr_opt_s avr_opt
= { 0, 0, 0, 0, 0 };
479 const char EXP_CHARS
[] = "eE";
480 const char FLT_CHARS
[] = "dD";
482 static void avr_set_arch (int);
484 /* The target specific pseudo-ops which we support. */
485 const pseudo_typeS md_pseudo_table
[] =
487 {"arch", avr_set_arch
, 0},
491 #define LDI_IMMEDIATE(x) (((x) & 0xf) | (((x) << 4) & 0xf00))
493 #define EXP_MOD_NAME(i) exp_mod[i].name
494 #define EXP_MOD_RELOC(i) exp_mod[i].reloc
495 #define EXP_MOD_NEG_RELOC(i) exp_mod[i].neg_reloc
496 #define HAVE_PM_P(i) exp_mod[i].have_pm
501 bfd_reloc_code_real_type reloc
;
502 bfd_reloc_code_real_type neg_reloc
;
506 static struct exp_mod_s exp_mod
[] =
508 {"hh8", BFD_RELOC_AVR_HH8_LDI
, BFD_RELOC_AVR_HH8_LDI_NEG
, 1},
509 {"pm_hh8", BFD_RELOC_AVR_HH8_LDI_PM
, BFD_RELOC_AVR_HH8_LDI_PM_NEG
, 0},
510 {"hi8", BFD_RELOC_AVR_HI8_LDI
, BFD_RELOC_AVR_HI8_LDI_NEG
, 1},
511 {"pm_hi8", BFD_RELOC_AVR_HI8_LDI_PM
, BFD_RELOC_AVR_HI8_LDI_PM_NEG
, 0},
512 {"lo8", BFD_RELOC_AVR_LO8_LDI
, BFD_RELOC_AVR_LO8_LDI_NEG
, 1},
513 {"pm_lo8", BFD_RELOC_AVR_LO8_LDI_PM
, BFD_RELOC_AVR_LO8_LDI_PM_NEG
, 0},
514 {"hlo8", BFD_RELOC_AVR_HH8_LDI
, BFD_RELOC_AVR_HH8_LDI_NEG
, 0},
515 {"hhi8", BFD_RELOC_AVR_MS8_LDI
, BFD_RELOC_AVR_MS8_LDI_NEG
, 0},
518 /* A union used to store indices into the exp_mod[] array
519 in a hash table which expects void * data types. */
526 /* Opcode hash table. */
527 static struct hash_control
*avr_hash
;
529 /* Reloc modifiers hash control (hh8,hi8,lo8,pm_xx). */
530 static struct hash_control
*avr_mod_hash
;
532 /* Whether some opcode does not change SREG. */
533 static struct hash_control
*avr_no_sreg_hash
;
535 static const char* const avr_no_sreg
[] =
538 "ldi", "swap", "mov", "movw",
539 /* Special instructions. I-Flag will be restored by RETI, and we don't
540 consider I-Flag as being clobbered when changed. */
541 "sei", "cli", "reti", "brie", "brid",
542 "nop", "wdr", "sleep",
544 "ld", "ldd", "lds", "pop", "in", "lpm", "elpm",
545 "st", "std", "sts", "push", "out",
546 /* Jumps and Calls. Calls might call code that changes SREG.
547 GCC has to filter out ABI calls. The non-ABI transparent calls
548 must use [R]CALL and are filtered out now by not mentioning them. */
549 "rjmp", "jmp", "ijmp", "ret",
550 /* Skipping. Branches need SREG to be set, hence we regard them
551 as if they changed SREG and don't list them here. */
552 "sbrc", "sbrs", "sbic", "sbis", "cpse",
553 /* I/O Manipulation */
555 /* Read-Modify-Write */
556 "lac", "las", "lat", "xch"
559 #define OPTION_MMCU 'm'
562 OPTION_ALL_OPCODES
= OPTION_MD_BASE
+ 1,
567 OPTION_NO_LINK_RELAX
,
571 struct option md_longopts
[] =
573 { "mmcu", required_argument
, NULL
, OPTION_MMCU
},
574 { "mall-opcodes", no_argument
, NULL
, OPTION_ALL_OPCODES
},
575 { "mno-skip-bug", no_argument
, NULL
, OPTION_NO_SKIP_BUG
},
576 { "mno-wrap", no_argument
, NULL
, OPTION_NO_WRAP
},
577 { "mrmw", no_argument
, NULL
, OPTION_ISA_RMW
},
578 { "mlink-relax", no_argument
, NULL
, OPTION_LINK_RELAX
},
579 { "mno-link-relax", no_argument
, NULL
, OPTION_NO_LINK_RELAX
},
580 { "mgcc-isr", no_argument
, NULL
, OPTION_HAVE_GCCISR
},
581 { NULL
, no_argument
, NULL
, 0 }
584 size_t md_longopts_size
= sizeof (md_longopts
);
586 /* Display nicely formatted list of known MCU names. */
589 show_mcu_list (FILE *stream
)
593 fprintf (stream
, _("Known MCU names:"));
596 for (i
= 0; mcu_types
[i
].name
; i
++)
598 int len
= strlen (mcu_types
[i
].name
);
603 fprintf (stream
, " %s", mcu_types
[i
].name
);
606 fprintf (stream
, "\n %s", mcu_types
[i
].name
);
611 fprintf (stream
, "\n");
617 while (*s
== ' ' || *s
== '\t')
622 /* Extract one word from FROM and copy it to TO. */
625 extract_word (char *from
, char *to
, int limit
)
630 /* Drop leading whitespace. */
631 from
= skip_space (from
);
634 /* Find the op code end. */
635 for (op_end
= from
; *op_end
!= 0 && is_part_of_name (*op_end
);)
637 to
[size
++] = *op_end
++;
638 if (size
+ 1 >= limit
)
647 md_estimate_size_before_relax (fragS
*fragp ATTRIBUTE_UNUSED
,
648 asection
*seg ATTRIBUTE_UNUSED
)
655 md_show_usage (FILE *stream
)
658 _("AVR Assembler options:\n"
659 " -mmcu=[avr-name] select microcontroller variant\n"
660 " [avr-name] can be:\n"
661 " avr1 - classic AVR core without data RAM\n"
662 " avr2 - classic AVR core with up to 8K program memory\n"
663 " avr25 - classic AVR core with up to 8K program memory\n"
664 " plus the MOVW instruction\n"
665 " avr3 - classic AVR core with up to 64K program memory\n"
666 " avr31 - classic AVR core with up to 128K program memory\n"
667 " avr35 - classic AVR core with up to 64K program memory\n"
668 " plus the MOVW instruction\n"
669 " avr4 - enhanced AVR core with up to 8K program memory\n"
670 " avr5 - enhanced AVR core with up to 64K program memory\n"
671 " avr51 - enhanced AVR core with up to 128K program memory\n"
672 " avr6 - enhanced AVR core with up to 256K program memory\n"
673 " avrxmega2 - XMEGA, > 8K, < 64K FLASH, < 64K RAM\n"
674 " avrxmega3 - XMEGA, RAM + FLASH < 64K, Flash visible in RAM\n"
675 " avrxmega4 - XMEGA, > 64K, <= 128K FLASH, <= 64K RAM\n"
676 " avrxmega5 - XMEGA, > 64K, <= 128K FLASH, > 64K RAM\n"
677 " avrxmega6 - XMEGA, > 128K, <= 256K FLASH, <= 64K RAM\n"
678 " avrxmega7 - XMEGA, > 128K, <= 256K FLASH, > 64K RAM\n"
679 " avrtiny - AVR Tiny core with 16 gp registers\n"));
681 _(" -mall-opcodes accept all AVR opcodes, even if not supported by MCU\n"
682 " -mno-skip-bug disable warnings for skipping two-word instructions\n"
683 " (default for avr4, avr5)\n"
684 " -mno-wrap reject rjmp/rcall instructions with 8K wrap-around\n"
685 " (default for avr3, avr5)\n"
686 " -mrmw accept Read-Modify-Write instructions\n"
687 " -mlink-relax generate relocations for linker relaxation (default)\n"
688 " -mno-link-relax don't generate relocations for linker relaxation.\n"
689 " -mgcc-isr accept the __gcc_isr pseudo-instruction.\n"
691 show_mcu_list (stream
);
695 avr_set_arch (int dummy ATTRIBUTE_UNUSED
)
699 input_line_pointer
= extract_word (input_line_pointer
, str
, 20);
700 md_parse_option (OPTION_MMCU
, str
);
701 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, avr_mcu
->mach
);
705 md_parse_option (int c
, const char *arg
)
713 for (i
= 0; mcu_types
[i
].name
; ++i
)
714 if (strcasecmp (mcu_types
[i
].name
, arg
) == 0)
717 if (!mcu_types
[i
].name
)
719 show_mcu_list (stderr
);
720 as_fatal (_("unknown MCU: %s\n"), arg
);
723 /* It is OK to redefine mcu type within the same avr[1-5] bfd machine
724 type - this for allows passing -mmcu=... via gcc ASM_SPEC as well
725 as .arch ... in the asm output at the same time. */
726 if (avr_mcu
== &default_mcu
|| avr_mcu
->mach
== mcu_types
[i
].mach
)
728 specified_mcu
.name
= mcu_types
[i
].name
;
729 specified_mcu
.isa
|= mcu_types
[i
].isa
;
730 specified_mcu
.mach
= mcu_types
[i
].mach
;
731 avr_mcu
= &specified_mcu
;
734 as_fatal (_("redefinition of mcu type `%s' to `%s'"),
735 avr_mcu
->name
, mcu_types
[i
].name
);
738 case OPTION_ALL_OPCODES
:
739 avr_opt
.all_opcodes
= 1;
741 case OPTION_NO_SKIP_BUG
:
742 avr_opt
.no_skip_bug
= 1;
748 specified_mcu
.isa
|= AVR_ISA_RMW
;
750 case OPTION_LINK_RELAX
:
751 avr_opt
.no_link_relax
= 0;
753 case OPTION_NO_LINK_RELAX
:
754 avr_opt
.no_link_relax
= 1;
756 case OPTION_HAVE_GCCISR
:
757 avr_opt
.have_gccisr
= 1;
765 /* Implement `md_undefined_symbol' */
766 /* If we are in `__gcc_isr' chunk, pop up `__gcc_isr.n_pushed.<NUM>'
767 instead of `__gcc_isr.n_pushed'. This will be resolved by the Done
768 chunk in `avr_patch_gccisr_frag' to the number of PUSHes produced by
769 the Prologue chunk. */
772 avr_undefined_symbol (char *name
)
774 if (ISR_CHUNK_Done
!= avr_isr
.prev_chunk
775 && 0 == strcmp (name
, "__gcc_isr.n_pushed"))
777 if (!avr_isr
.sym_n_pushed
)
779 static unsigned suffix
;
781 sprintf (xname
, "%s.%03u", name
, (++suffix
) % 1000);
782 avr_isr
.sym_n_pushed
= symbol_new (xname
, undefined_section
,
783 (valueT
) 0, &zero_address_frag
);
785 return avr_isr
.sym_n_pushed
;
792 md_atof (int type
, char *litP
, int *sizeP
)
794 return ieee_md_atof (type
, litP
, sizeP
, FALSE
);
798 md_convert_frag (bfd
*abfd ATTRIBUTE_UNUSED
,
799 asection
*sec ATTRIBUTE_UNUSED
,
800 fragS
*fragP ATTRIBUTE_UNUSED
)
809 struct avr_opcodes_s
*opcode
;
811 avr_hash
= hash_new ();
813 /* Insert unique names into hash table. This hash table then provides a
814 quick index to the first opcode with a particular name in the opcode
816 for (opcode
= avr_opcodes
; opcode
->name
; opcode
++)
817 hash_insert (avr_hash
, opcode
->name
, (char *) opcode
);
819 avr_mod_hash
= hash_new ();
821 for (i
= 0; i
< ARRAY_SIZE (exp_mod
); ++i
)
826 hash_insert (avr_mod_hash
, EXP_MOD_NAME (i
), m
.ptr
);
829 avr_no_sreg_hash
= hash_new ();
831 for (i
= 0; i
< ARRAY_SIZE (avr_no_sreg
); ++i
)
833 gas_assert (hash_find (avr_hash
, avr_no_sreg
[i
]));
834 hash_insert (avr_no_sreg_hash
, avr_no_sreg
[i
], (char*) 4 /* dummy */);
837 avr_gccisr_opcode
= (struct avr_opcodes_s
*) hash_find (avr_hash
, "__gcc_isr");
838 gas_assert (avr_gccisr_opcode
);
840 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, avr_mcu
->mach
);
841 linkrelax
= !avr_opt
.no_link_relax
;
844 /* Resolve STR as a constant expression and return the result.
845 If result greater than MAX then error. */
848 avr_get_constant (char *str
, int max
)
852 str
= skip_space (str
);
853 input_line_pointer
= str
;
856 if (ex
.X_op
!= O_constant
)
857 as_bad (_("constant value required"));
859 if (ex
.X_add_number
> max
|| ex
.X_add_number
< 0)
860 as_bad (_("number must be positive and less than %d"), max
+ 1);
862 return ex
.X_add_number
;
865 /* Parse for ldd/std offset. */
868 avr_offset_expression (expressionS
*exp
)
870 char *str
= input_line_pointer
;
875 str
= extract_word (str
, op
, sizeof (op
));
877 input_line_pointer
= tmp
;
880 /* Warn about expressions that fail to use lo8 (). */
881 if (exp
->X_op
== O_constant
)
883 int x
= exp
->X_add_number
;
885 if (x
< -255 || x
> 255)
886 as_warn (_("constant out of 8-bit range: %d"), x
);
890 /* Parse ordinary expression. */
893 parse_exp (char *s
, expressionS
*op
)
895 input_line_pointer
= s
;
897 if (op
->X_op
== O_absent
)
898 as_bad (_("missing operand"));
899 return input_line_pointer
;
902 /* Parse special expressions (needed for LDI command):
907 where xx is: hh, hi, lo. */
909 static bfd_reloc_code_real_type
910 avr_ldi_expression (expressionS
*exp
)
912 char *str
= input_line_pointer
;
916 int linker_stubs_should_be_generated
= 0;
920 str
= extract_word (str
, op
, sizeof (op
));
926 m
.ptr
= hash_find (avr_mod_hash
, op
);
934 str
= skip_space (str
);
938 bfd_reloc_code_real_type reloc_to_return
;
943 if (strncmp ("pm(", str
, 3) == 0
944 || strncmp ("gs(",str
,3) == 0
945 || strncmp ("-(gs(",str
,5) == 0
946 || strncmp ("-(pm(", str
, 5) == 0)
954 as_bad (_("illegal expression"));
956 if (str
[0] == 'g' || str
[2] == 'g')
957 linker_stubs_should_be_generated
= 1;
969 if (*str
== '-' && *(str
+ 1) == '(')
976 input_line_pointer
= str
;
981 if (*input_line_pointer
!= ')')
983 as_bad (_("`)' required"));
986 input_line_pointer
++;
991 neg_p
? EXP_MOD_NEG_RELOC (mod
) : EXP_MOD_RELOC (mod
);
992 if (linker_stubs_should_be_generated
)
994 switch (reloc_to_return
)
996 case BFD_RELOC_AVR_LO8_LDI_PM
:
997 reloc_to_return
= BFD_RELOC_AVR_LO8_LDI_GS
;
999 case BFD_RELOC_AVR_HI8_LDI_PM
:
1000 reloc_to_return
= BFD_RELOC_AVR_HI8_LDI_GS
;
1004 /* PR 5523: Do not generate a warning here,
1005 legitimate code can trigger this case. */
1009 return reloc_to_return
;
1014 input_line_pointer
= tmp
;
1017 /* Warn about expressions that fail to use lo8 (). */
1018 if (exp
->X_op
== O_constant
)
1020 int x
= exp
->X_add_number
;
1022 if (x
< -255 || x
> 255)
1023 as_warn (_("constant out of 8-bit range: %d"), x
);
1026 return BFD_RELOC_AVR_LDI
;
1029 /* Parse one instruction operand.
1030 Return operand bitmask. Also fixups can be generated. */
1033 avr_operand (struct avr_opcodes_s
*opcode
,
1039 expressionS op_expr
;
1040 unsigned int op_mask
= 0;
1041 char *str
= skip_space (*line
);
1045 /* Any register operand. */
1052 char * old_str
= str
;
1056 str
= extract_word (str
, r_name
, sizeof (r_name
));
1057 for (lower
= r_name
; *lower
; ++lower
)
1059 if (*lower
>= 'A' && *lower
<= 'Z')
1060 *lower
+= 'a' - 'A';
1063 if (r_name
[0] == 'r' && ISDIGIT (r_name
[1]) && r_name
[2] == 0)
1064 /* Single-digit register number, ie r0-r9. */
1065 op_mask
= r_name
[1] - '0';
1066 else if (r_name
[0] == 'r' && ISDIGIT (r_name
[1])
1067 && ISDIGIT (r_name
[2]) && r_name
[3] == 0)
1068 /* Double-digit register number, ie r10 - r32. */
1069 op_mask
= (r_name
[1] - '0') * 10 + r_name
[2] - '0';
1070 else if (r_name
[0] >= 'x' && r_name
[0] <= 'z'
1071 && (r_name
[1] == 'l' || r_name
[1] == 'h') && r_name
[2] == 0)
1072 /* Registers r26-r31 referred to by name, ie xl, xh, yl, yh, zl, zh. */
1073 op_mask
= (r_name
[0] - 'x') * 2 + (r_name
[1] == 'h') + 26;
1074 else if ((*op
== 'v' || *op
== 'w')
1075 && r_name
[0] >= 'x' && r_name
[0] <= 'z' && r_name
[1] == 0)
1076 /* For the movw and addiw instructions, refer to registers x, y and z by name. */
1077 op_mask
= (r_name
[0] - 'x') * 2 + 26;
1080 /* Numeric or symbolic constant register number. */
1081 op_mask
= avr_get_constant (old_str
, 31);
1082 str
= input_line_pointer
;
1089 if (avr_mcu
->mach
== bfd_mach_avrtiny
)
1091 if (op_mask
< 16 || op_mask
> 31)
1093 as_bad (_("register name or number from 16 to 31 required"));
1097 else if (op_mask
> 31)
1099 as_bad (_("register name or number from 0 to 31 required"));
1106 if (op_mask
< 16 || op_mask
> 23)
1107 as_bad (_("register r16-r23 required"));
1113 as_bad (_("register number above 15 required"));
1119 as_bad (_("even register number required"));
1124 if ((op_mask
& 1) || op_mask
< 24)
1125 as_bad (_("register r24, r26, r28 or r30 required"));
1126 op_mask
= (op_mask
- 24) >> 1;
1137 str
= skip_space (str
+ 1);
1146 as_bad (_("pointer register (X, Y or Z) required"));
1148 str
= skip_space (str
+ 1);
1153 as_bad (_("cannot both predecrement and postincrement"));
1157 /* avr1 can do "ld r,Z" and "st Z,r" but no other pointer
1158 registers, no predecrement, no postincrement. */
1159 if (!avr_opt
.all_opcodes
&& (op_mask
& 0x100F)
1160 && !(avr_mcu
->isa
& AVR_ISA_SRAM
))
1161 as_bad (_("addressing mode not supported"));
1167 as_bad (_("can't predecrement"));
1169 if (! (*str
== 'z' || *str
== 'Z'))
1170 as_bad (_("pointer register Z required"));
1172 str
= skip_space (str
+ 1);
1178 for (s
= opcode
->opcode
; *s
; ++s
)
1181 op_mask
|= (1 << (15 - (s
- opcode
->opcode
)));
1185 /* attiny26 can do "lpm" and "lpm r,Z" but not "lpm r,Z+". */
1186 if (!avr_opt
.all_opcodes
1187 && (op_mask
& 0x0001)
1188 && !(avr_mcu
->isa
& AVR_ISA_MOVW
))
1189 as_bad (_("postincrement not supported"));
1194 char c
= TOLOWER (*str
++);
1199 as_bad (_("pointer register (Y or Z) required"));
1200 str
= skip_space (str
);
1203 input_line_pointer
= str
;
1204 avr_offset_expression (& op_expr
);
1205 str
= input_line_pointer
;
1206 fix_new_exp (frag_now
, where
, 3,
1207 &op_expr
, FALSE
, BFD_RELOC_AVR_6
);
1213 str
= parse_exp (str
, &op_expr
);
1214 fix_new_exp (frag_now
, where
, opcode
->insn_size
* 2,
1215 &op_expr
, FALSE
, BFD_RELOC_AVR_CALL
);
1219 str
= parse_exp (str
, &op_expr
);
1220 fix_new_exp (frag_now
, where
, opcode
->insn_size
* 2,
1221 &op_expr
, TRUE
, BFD_RELOC_AVR_13_PCREL
);
1225 str
= parse_exp (str
, &op_expr
);
1226 fix_new_exp (frag_now
, where
, opcode
->insn_size
* 2,
1227 &op_expr
, TRUE
, BFD_RELOC_AVR_7_PCREL
);
1231 str
= parse_exp (str
, &op_expr
);
1232 fix_new_exp (frag_now
, where
+ 2, opcode
->insn_size
* 2,
1233 &op_expr
, FALSE
, BFD_RELOC_16
);
1237 str
= parse_exp (str
, &op_expr
);
1238 fix_new_exp (frag_now
, where
, opcode
->insn_size
* 2,
1239 &op_expr
, FALSE
, BFD_RELOC_AVR_LDS_STS_16
);
1244 bfd_reloc_code_real_type r_type
;
1246 input_line_pointer
= str
;
1247 r_type
= avr_ldi_expression (&op_expr
);
1248 str
= input_line_pointer
;
1249 fix_new_exp (frag_now
, where
, 3,
1250 &op_expr
, FALSE
, r_type
);
1258 x
= ~avr_get_constant (str
, 255);
1259 str
= input_line_pointer
;
1260 op_mask
|= (x
& 0xf) | ((x
<< 4) & 0xf00);
1268 x
= avr_get_constant (str
, 255);
1269 str
= input_line_pointer
;
1275 input_line_pointer
= str
;
1276 avr_offset_expression (& op_expr
);
1277 str
= input_line_pointer
;
1278 fix_new_exp (frag_now
, where
, 3,
1279 & op_expr
, FALSE
, BFD_RELOC_AVR_6_ADIW
);
1287 x
= avr_get_constant (str
, 7);
1288 str
= input_line_pointer
;
1296 str
= parse_exp (str
, &op_expr
);
1297 fix_new_exp (frag_now
, where
, opcode
->insn_size
* 2,
1298 &op_expr
, FALSE
, BFD_RELOC_AVR_PORT6
);
1302 str
= parse_exp (str
, &op_expr
);
1303 fix_new_exp (frag_now
, where
, opcode
->insn_size
* 2,
1304 &op_expr
, FALSE
, BFD_RELOC_AVR_PORT5
);
1311 x
= avr_get_constant (str
, 15);
1312 str
= input_line_pointer
;
1313 op_mask
|= (x
<< 4);
1321 as_bad (_("unknown constraint `%c'"), *op
);
1328 /* TC_FRAG_INIT hook */
1331 avr_frag_init (fragS
*frag
)
1333 memset (& frag
->tc_frag_data
, 0, sizeof frag
->tc_frag_data
);
1337 /* Parse instruction operands.
1338 Return binary opcode. */
1341 avr_operands (struct avr_opcodes_s
*opcode
, char **line
)
1343 const char *op
= opcode
->constraints
;
1344 unsigned int bin
= opcode
->bin_opcode
;
1345 char *frag
= frag_more (opcode
->insn_size
* 2);
1347 int where
= frag
- frag_now
->fr_literal
;
1351 /* Opcode have operands. */
1354 unsigned int reg1
= 0;
1355 unsigned int reg2
= 0;
1356 int reg1_present
= 0;
1357 int reg2_present
= 0;
1359 /* Parse first operand. */
1360 if (REGISTER_P (*op
))
1362 reg1
= avr_operand (opcode
, where
, op
, &str
, ®no1
);
1365 /* Parse second operand. */
1379 if (REGISTER_P (*op
))
1382 str
= skip_space (str
);
1384 as_bad (_("`,' required"));
1385 str
= skip_space (str
);
1387 reg2
= avr_operand (opcode
, where
, op
, &str
, ®no2
);
1390 if (reg1_present
&& reg2_present
)
1391 reg2
= (reg2
& 0xf) | ((reg2
<< 5) & 0x200);
1392 else if (reg2_present
)
1400 if (avr_opt
.have_gccisr
)
1401 avr_update_gccisr (opcode
, regno1
, regno2
);
1403 /* Detect undefined combinations (like ld r31,Z+). */
1404 if (!avr_opt
.all_opcodes
&& AVR_UNDEF_P (bin
))
1405 as_warn (_("undefined combination of operands"));
1407 if (opcode
->insn_size
== 2)
1409 /* Warn if the previous opcode was cpse/sbic/sbis/sbrc/sbrs
1410 (AVR core bug, fixed in the newer devices). */
1411 if (!(avr_opt
.no_skip_bug
||
1412 (avr_mcu
->isa
& (AVR_ISA_MUL
| AVR_ISA_MOVW
)))
1413 && AVR_SKIP_P (frag_now
->tc_frag_data
.prev_opcode
))
1414 as_warn (_("skipping two-word instruction"));
1416 bfd_putl32 ((bfd_vma
) bin
, frag
);
1419 bfd_putl16 ((bfd_vma
) bin
, frag
);
1421 frag_now
->tc_frag_data
.prev_opcode
= bin
;
1426 /* GAS will call this function for each section at the end of the assembly,
1427 to permit the CPU backend to adjust the alignment of a section. */
1430 md_section_align (asection
*seg
, valueT addr
)
1432 int align
= bfd_get_section_alignment (stdoutput
, seg
);
1433 return ((addr
+ (1 << align
) - 1) & (-1UL << align
));
1436 /* If you define this macro, it should return the offset between the
1437 address of a PC relative fixup and the position from which the PC
1438 relative adjustment should be made. On many processors, the base
1439 of a PC relative instruction is the next instruction, so this
1440 macro would return the length of an instruction. */
1443 md_pcrel_from_section (fixS
*fixp
, segT sec
)
1445 if (fixp
->fx_addsy
!= (symbolS
*) NULL
1446 && (!S_IS_DEFINED (fixp
->fx_addsy
)
1447 || (S_GET_SEGMENT (fixp
->fx_addsy
) != sec
)))
1450 return fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
1454 relaxable_section (asection
*sec
)
1456 return ((sec
->flags
& SEC_DEBUGGING
) == 0
1457 && (sec
->flags
& SEC_CODE
) != 0
1458 && (sec
->flags
& SEC_ALLOC
) != 0);
1461 /* Does whatever the xtensa port does. */
1463 avr_validate_fix_sub (fixS
*fix
)
1465 segT add_symbol_segment
, sub_symbol_segment
;
1467 /* The difference of two symbols should be resolved by the assembler when
1468 linkrelax is not set. If the linker may relax the section containing
1469 the symbols, then an Xtensa DIFF relocation must be generated so that
1470 the linker knows to adjust the difference value. */
1471 if (!linkrelax
|| fix
->fx_addsy
== NULL
)
1474 /* Make sure both symbols are in the same segment, and that segment is
1475 "normal" and relaxable. If the segment is not "normal", then the
1476 fix is not valid. If the segment is not "relaxable", then the fix
1477 should have been handled earlier. */
1478 add_symbol_segment
= S_GET_SEGMENT (fix
->fx_addsy
);
1479 if (! SEG_NORMAL (add_symbol_segment
) ||
1480 ! relaxable_section (add_symbol_segment
))
1483 sub_symbol_segment
= S_GET_SEGMENT (fix
->fx_subsy
);
1484 return (sub_symbol_segment
== add_symbol_segment
);
1487 /* TC_FORCE_RELOCATION hook */
1489 /* If linkrelax is turned on, and the symbol to relocate
1490 against is in a relaxable segment, don't compute the value -
1491 generate a relocation instead. */
1493 avr_force_relocation (fixS
*fix
)
1495 if (linkrelax
&& fix
->fx_addsy
1496 && relaxable_section (S_GET_SEGMENT (fix
->fx_addsy
)))
1499 return generic_force_reloc (fix
);
1502 /* GAS will call this for each fixup. It should store the correct
1503 value in the object file. */
1506 md_apply_fix (fixS
*fixP
, valueT
* valP
, segT seg
)
1508 unsigned char *where
;
1512 if (fixP
->fx_addsy
== (symbolS
*) NULL
)
1515 else if (fixP
->fx_pcrel
)
1517 segT s
= S_GET_SEGMENT (fixP
->fx_addsy
);
1519 if (s
== seg
|| s
== absolute_section
)
1521 value
+= S_GET_VALUE (fixP
->fx_addsy
);
1525 else if (linkrelax
&& fixP
->fx_subsy
)
1527 /* For a subtraction relocation expression, generate one
1528 of the DIFF relocs, with the value being the difference.
1529 Note that a sym1 - sym2 expression is adjusted into a
1530 section_start_sym + sym4_offset_from_section_start - sym1
1531 expression. fixP->fx_addsy holds the section start symbol,
1532 fixP->fx_offset holds sym2's offset, and fixP->fx_subsy
1533 holds sym1. Calculate the current difference and write value,
1534 but leave fx_offset as is - during relaxation,
1535 fx_offset - value gives sym1's value. */
1537 switch (fixP
->fx_r_type
)
1540 fixP
->fx_r_type
= BFD_RELOC_AVR_DIFF8
;
1543 fixP
->fx_r_type
= BFD_RELOC_AVR_DIFF16
;
1546 fixP
->fx_r_type
= BFD_RELOC_AVR_DIFF32
;
1549 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, _("expression too complex"));
1553 value
= S_GET_VALUE (fixP
->fx_addsy
) +
1554 fixP
->fx_offset
- S_GET_VALUE (fixP
->fx_subsy
);
1557 fixP
->fx_subsy
= NULL
;
1559 /* We don't actually support subtracting a symbol. */
1560 if (fixP
->fx_subsy
!= (symbolS
*) NULL
)
1561 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, _("expression too complex"));
1563 /* For the DIFF relocs, write the value into the object file while still
1564 keeping fx_done FALSE, as both the difference (recorded in the object file)
1565 and the sym offset (part of fixP) are needed at link relax time. */
1566 where
= (unsigned char *) fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
1567 switch (fixP
->fx_r_type
)
1570 fixP
->fx_no_overflow
= 1;
1572 case BFD_RELOC_AVR_7_PCREL
:
1573 case BFD_RELOC_AVR_13_PCREL
:
1577 case BFD_RELOC_AVR_DIFF8
:
1580 case BFD_RELOC_AVR_DIFF16
:
1581 bfd_putl16 ((bfd_vma
) value
, where
);
1583 case BFD_RELOC_AVR_DIFF32
:
1584 bfd_putl32 ((bfd_vma
) value
, where
);
1586 case BFD_RELOC_AVR_CALL
:
1592 /* Fetch the instruction, insert the fully resolved operand
1593 value, and stuff the instruction back again. */
1594 where
= (unsigned char *) fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
1595 insn
= bfd_getl16 (where
);
1597 switch (fixP
->fx_r_type
)
1599 case BFD_RELOC_AVR_7_PCREL
:
1601 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1602 _("odd address operand: %ld"), value
);
1604 /* Instruction addresses are always right-shifted by 1. */
1606 --value
; /* Correct PC. */
1608 if (value
< -64 || value
> 63)
1609 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1610 _("operand out of range: %ld"), value
);
1611 value
= (value
<< 3) & 0x3f8;
1612 bfd_putl16 ((bfd_vma
) (value
| insn
), where
);
1615 case BFD_RELOC_AVR_13_PCREL
:
1617 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1618 _("odd address operand: %ld"), value
);
1620 /* Instruction addresses are always right-shifted by 1. */
1622 --value
; /* Correct PC. */
1624 if (value
< -2048 || value
> 2047)
1626 /* No wrap for devices with >8K of program memory. */
1627 if ((avr_mcu
->isa
& AVR_ISA_MEGA
) || avr_opt
.no_wrap
)
1628 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1629 _("operand out of range: %ld"), value
);
1633 bfd_putl16 ((bfd_vma
) (value
| insn
), where
);
1637 bfd_putl32 ((bfd_vma
) value
, where
);
1641 bfd_putl16 ((bfd_vma
) value
, where
);
1645 if (value
> 255 || value
< -128)
1646 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
1647 _("operand out of range: %ld"), value
);
1651 case BFD_RELOC_AVR_16_PM
:
1652 bfd_putl16 ((bfd_vma
) (value
>> 1), where
);
1655 case BFD_RELOC_AVR_LDI
:
1657 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1658 _("operand out of range: %ld"), value
);
1659 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (value
), where
);
1662 case BFD_RELOC_AVR_LDS_STS_16
:
1663 if ((value
< 0x40) || (value
> 0xBF))
1664 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
1665 _("operand out of range: 0x%lx"),
1666 (unsigned long)value
);
1667 insn
|= ((value
& 0xF) | ((value
& 0x30) << 5) | ((value
& 0x40) << 2));
1668 bfd_putl16 ((bfd_vma
) insn
, where
);
1671 case BFD_RELOC_AVR_6
:
1672 if ((value
> 63) || (value
< 0))
1673 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1674 _("operand out of range: %ld"), value
);
1675 bfd_putl16 ((bfd_vma
) insn
| ((value
& 7) | ((value
& (3 << 3)) << 7)
1676 | ((value
& (1 << 5)) << 8)), where
);
1679 case BFD_RELOC_AVR_6_ADIW
:
1680 if ((value
> 63) || (value
< 0))
1681 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1682 _("operand out of range: %ld"), value
);
1683 bfd_putl16 ((bfd_vma
) insn
| (value
& 0xf) | ((value
& 0x30) << 2), where
);
1686 case BFD_RELOC_AVR_LO8_LDI
:
1687 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (value
), where
);
1690 case BFD_RELOC_AVR_HI8_LDI
:
1691 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (value
>> 8), where
);
1694 case BFD_RELOC_AVR_MS8_LDI
:
1695 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (value
>> 24), where
);
1698 case BFD_RELOC_AVR_HH8_LDI
:
1699 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (value
>> 16), where
);
1702 case BFD_RELOC_AVR_LO8_LDI_NEG
:
1703 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (-value
), where
);
1706 case BFD_RELOC_AVR_HI8_LDI_NEG
:
1707 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (-value
>> 8), where
);
1710 case BFD_RELOC_AVR_MS8_LDI_NEG
:
1711 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (-value
>> 24), where
);
1714 case BFD_RELOC_AVR_HH8_LDI_NEG
:
1715 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (-value
>> 16), where
);
1718 case BFD_RELOC_AVR_LO8_LDI_PM
:
1719 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (value
>> 1), where
);
1722 case BFD_RELOC_AVR_HI8_LDI_PM
:
1723 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (value
>> 9), where
);
1726 case BFD_RELOC_AVR_HH8_LDI_PM
:
1727 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (value
>> 17), where
);
1730 case BFD_RELOC_AVR_LO8_LDI_PM_NEG
:
1731 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (-value
>> 1), where
);
1734 case BFD_RELOC_AVR_HI8_LDI_PM_NEG
:
1735 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (-value
>> 9), where
);
1738 case BFD_RELOC_AVR_HH8_LDI_PM_NEG
:
1739 bfd_putl16 ((bfd_vma
) insn
| LDI_IMMEDIATE (-value
>> 17), where
);
1742 case BFD_RELOC_AVR_CALL
:
1746 x
= bfd_getl16 (where
);
1748 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1749 _("odd address operand: %ld"), value
);
1751 x
|= ((value
& 0x10000) | ((value
<< 3) & 0x1f00000)) >> 16;
1752 bfd_putl16 ((bfd_vma
) x
, where
);
1753 bfd_putl16 ((bfd_vma
) (value
& 0xffff), where
+ 2);
1757 case BFD_RELOC_AVR_8_LO
:
1758 *where
= 0xff & value
;
1761 case BFD_RELOC_AVR_8_HI
:
1762 *where
= 0xff & (value
>> 8);
1765 case BFD_RELOC_AVR_8_HLO
:
1766 *where
= 0xff & (value
>> 16);
1770 as_fatal (_("line %d: unknown relocation type: 0x%x"),
1771 fixP
->fx_line
, fixP
->fx_r_type
);
1774 case BFD_RELOC_AVR_PORT6
:
1776 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1777 _("operand out of range: %ld"), value
);
1778 bfd_putl16 ((bfd_vma
) insn
| ((value
& 0x30) << 5) | (value
& 0x0f), where
);
1781 case BFD_RELOC_AVR_PORT5
:
1783 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1784 _("operand out of range: %ld"), value
);
1785 bfd_putl16 ((bfd_vma
) insn
| ((value
& 0x1f) << 3), where
);
1791 switch ((int) fixP
->fx_r_type
)
1793 case -BFD_RELOC_AVR_HI8_LDI_NEG
:
1794 case -BFD_RELOC_AVR_HI8_LDI
:
1795 case -BFD_RELOC_AVR_LO8_LDI_NEG
:
1796 case -BFD_RELOC_AVR_LO8_LDI
:
1797 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1798 _("only constant expression allowed"));
1807 /* GAS will call this to generate a reloc, passing the resulting reloc
1808 to `bfd_install_relocation'. This currently works poorly, as
1809 `bfd_install_relocation' often does the wrong thing, and instances of
1810 `tc_gen_reloc' have been written to work around the problems, which
1811 in turns makes it difficult to fix `bfd_install_relocation'. */
1813 /* If while processing a fixup, a reloc really needs to be created
1814 then it is done here. */
1817 tc_gen_reloc (asection
*seg ATTRIBUTE_UNUSED
,
1821 bfd_reloc_code_real_type code
= fixp
->fx_r_type
;
1823 if (fixp
->fx_subsy
!= NULL
)
1825 as_bad_where (fixp
->fx_file
, fixp
->fx_line
, _("expression too complex"));
1829 reloc
= XNEW (arelent
);
1831 reloc
->sym_ptr_ptr
= XNEW (asymbol
*);
1832 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
1834 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
1836 if ((fixp
->fx_r_type
== BFD_RELOC_32
) && (fixp
->fx_pcrel
))
1838 if (seg
->use_rela_p
)
1839 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, seg
);
1841 fixp
->fx_offset
= reloc
->address
;
1843 code
= BFD_RELOC_32_PCREL
;
1846 reloc
->addend
= fixp
->fx_offset
;
1848 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
1850 if (reloc
->howto
== (reloc_howto_type
*) NULL
)
1852 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
1853 _("reloc %d not supported by object file format"),
1854 (int) fixp
->fx_r_type
);
1858 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
1859 || fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
1860 reloc
->address
= fixp
->fx_offset
;
1867 md_assemble (char *str
)
1869 struct avr_opcodes_s
*opcode
;
1872 str
= skip_space (extract_word (str
, op
, sizeof (op
)));
1875 as_bad (_("can't find opcode "));
1877 opcode
= (struct avr_opcodes_s
*) hash_find (avr_hash
, op
);
1879 if (opcode
&& !avr_opt
.all_opcodes
)
1881 /* Check if the instruction's ISA bit is ON in the ISA bits of the part
1882 specified by the user. If not look for other instructions
1883 specifications with same mnemonic who's ISA bits matches.
1885 This requires include/opcode/avr.h to have the instructions with
1886 same mnemonic to be specified in sequence. */
1888 while ((opcode
->isa
& avr_mcu
->isa
) != opcode
->isa
)
1892 if (opcode
->name
&& strcmp(op
, opcode
->name
))
1894 as_bad (_("illegal opcode %s for mcu %s"),
1895 opcode
->name
, avr_mcu
->name
);
1903 as_bad (_("unknown opcode `%s'"), op
);
1907 if (opcode
== avr_gccisr_opcode
1908 && !avr_opt
.have_gccisr
)
1910 as_bad (_("pseudo instruction `%s' not supported"), op
);
1914 /* Special case for opcodes with optional operands (lpm, elpm) -
1915 version with operands exists in avr_opcodes[] in the next entry. */
1917 if (*str
&& *opcode
->constraints
== '?')
1920 dwarf2_emit_insn (0);
1922 /* We used to set input_line_pointer to the result of get_operands,
1923 but that is wrong. Our caller assumes we don't change it. */
1925 char *t
= input_line_pointer
;
1927 if (opcode
== avr_gccisr_opcode
)
1928 avr_gccisr_operands (opcode
, &str
);
1930 avr_operands (opcode
, &str
);
1931 if (*skip_space (str
))
1932 as_bad (_("garbage at end of line"));
1933 input_line_pointer
= t
;
1937 const exp_mod_data_t exp_mod_data
[] =
1939 /* Default, must be first. */
1940 { "", 0, BFD_RELOC_16
, "" },
1941 /* Divides by 2 to get word address. Generate Stub. */
1942 { "gs", 2, BFD_RELOC_AVR_16_PM
, "`gs' " },
1943 { "pm", 2, BFD_RELOC_AVR_16_PM
, "`pm' " },
1944 /* The following are used together with avr-gcc's __memx address space
1945 in order to initialize a 24-bit pointer variable with a 24-bit address.
1946 For address in flash, hlo8 will contain the flash segment if the
1947 symbol is located in flash. If the symbol is located in RAM; hlo8
1948 will contain 0x80 which matches avr-gcc's notion of how 24-bit RAM/flash
1949 addresses linearize address space. */
1950 { "lo8", 1, BFD_RELOC_AVR_8_LO
, "`lo8' " },
1951 { "hi8", 1, BFD_RELOC_AVR_8_HI
, "`hi8' " },
1952 { "hlo8", 1, BFD_RELOC_AVR_8_HLO
, "`hlo8' " },
1953 { "hh8", 1, BFD_RELOC_AVR_8_HLO
, "`hh8' " },
1956 /* Parse special CONS expression: pm (expression) or alternatively
1957 gs (expression). These are used for addressing program memory. Moreover,
1958 define lo8 (expression), hi8 (expression) and hlo8 (expression). */
1960 const exp_mod_data_t
*
1961 avr_parse_cons_expression (expressionS
*exp
, int nbytes
)
1966 tmp
= input_line_pointer
= skip_space (input_line_pointer
);
1968 /* The first entry of exp_mod_data[] contains an entry if no
1969 expression modifier is present. Skip it. */
1971 for (i
= 0; i
< ARRAY_SIZE (exp_mod_data
); i
++)
1973 const exp_mod_data_t
*pexp
= &exp_mod_data
[i
];
1974 int len
= strlen (pexp
->name
);
1976 if (nbytes
== pexp
->nbytes
1977 && strncasecmp (input_line_pointer
, pexp
->name
, len
) == 0)
1979 input_line_pointer
= skip_space (input_line_pointer
+ len
);
1981 if (*input_line_pointer
== '(')
1983 input_line_pointer
= skip_space (input_line_pointer
+ 1);
1986 if (*input_line_pointer
== ')')
1988 ++input_line_pointer
;
1993 as_bad (_("`)' required"));
1994 return &exp_mod_data
[0];
1998 input_line_pointer
= tmp
;
2005 return &exp_mod_data
[0];
2009 avr_cons_fix_new (fragS
*frag
,
2013 const exp_mod_data_t
*pexp_mod_data
)
2017 switch (pexp_mod_data
->reloc
)
2021 fix_new_exp (frag
, where
, nbytes
, exp
, FALSE
, BFD_RELOC_8
);
2022 else if (nbytes
== 2)
2023 fix_new_exp (frag
, where
, nbytes
, exp
, FALSE
, BFD_RELOC_16
);
2024 else if (nbytes
== 4)
2025 fix_new_exp (frag
, where
, nbytes
, exp
, FALSE
, BFD_RELOC_32
);
2030 case BFD_RELOC_AVR_16_PM
:
2031 case BFD_RELOC_AVR_8_LO
:
2032 case BFD_RELOC_AVR_8_HI
:
2033 case BFD_RELOC_AVR_8_HLO
:
2034 if (nbytes
== pexp_mod_data
->nbytes
)
2035 fix_new_exp (frag
, where
, nbytes
, exp
, FALSE
, pexp_mod_data
->reloc
);
2042 as_bad (_("illegal %s relocation size: %d"), pexp_mod_data
->error
, nbytes
);
2046 mcu_has_3_byte_pc (void)
2048 int mach
= avr_mcu
->mach
;
2050 return mach
== bfd_mach_avr6
2051 || mach
== bfd_mach_avrxmega6
2052 || mach
== bfd_mach_avrxmega7
;
2056 tc_cfi_frame_initial_instructions (void)
2058 /* AVR6 pushes 3 bytes for calls. */
2059 int return_size
= (mcu_has_3_byte_pc () ? 3 : 2);
2061 /* The CFA is the caller's stack location before the call insn. */
2062 /* Note that the stack pointer is dwarf register number 32. */
2063 cfi_add_CFA_def_cfa (32, return_size
);
2065 /* Note that AVR consistently uses post-decrement, which means that things
2066 do not line up the same way as for targets that use pre-decrement. */
2067 cfi_add_CFA_offset (DWARF2_DEFAULT_RETURN_COLUMN
, 1-return_size
);
2071 avr_allow_local_subtract (expressionS
* left
,
2072 expressionS
* right
,
2075 /* If we are not in relaxation mode, subtraction is OK. */
2079 /* If the symbols are not in a code section then they are OK. */
2080 if ((section
->flags
& SEC_CODE
) == 0)
2083 if (left
->X_add_symbol
== right
->X_add_symbol
)
2086 /* We have to assume that there may be instructions between the
2087 two symbols and that relaxation may increase the distance between
2093 avr_elf_final_processing (void)
2096 elf_elfheader (stdoutput
)->e_flags
|= EF_AVR_LINKRELAX_PREPARED
;
2099 /* Write out the header of a .avr.prop section into the area pointed to by
2100 DATA. The RECORD_COUNT will be placed in the header as the number of
2101 records that are to follow.
2102 The area DATA must be big enough the receive the header, which is
2103 AVR_PROPERTY_SECTION_HEADER_SIZE bytes long. */
2106 avr_output_property_section_header (char *data
,
2107 unsigned int record_count
)
2109 char *orig_data
= data
;
2111 md_number_to_chars (data
, AVR_PROPERTY_RECORDS_VERSION
, 1);
2113 /* There's space for a single byte flags field, but right now there's
2114 nothing to go in here, so just set the value to zero. */
2115 md_number_to_chars (data
, 0, 1);
2117 md_number_to_chars (data
, record_count
, 2);
2120 gas_assert (data
- orig_data
== AVR_PROPERTY_SECTION_HEADER_SIZE
);
2125 /* Return the number of bytes required to store RECORD into the .avr.prop
2126 section. The size returned is the compressed size that corresponds to
2127 how the record will be written out in AVR_OUTPUT_PROPERTY_RECORD. */
2130 avr_record_size (const struct avr_property_record
*record
)
2132 /* The first 5 bytes are a 4-byte address, followed by a 1-byte type
2136 switch (record
->type
)
2139 size
+= 0; /* No extra information. */
2142 case RECORD_ORG_AND_FILL
:
2143 size
+= 4; /* A 4-byte fill value. */
2147 size
+= 4; /* A 4-byte alignment value. */
2150 case RECORD_ALIGN_AND_FILL
:
2151 size
+= 8; /* A 4-byte alignment, and 4-byte fill value. */
2155 as_fatal (_("unknown record type %d (in %s)"),
2156 record
->type
, __PRETTY_FUNCTION__
);
2162 /* Write out RECORD. FRAG_BASE points to the start of the data area setup
2163 to hold all of the .avr.prop content, FRAG_PTR points to the next
2164 writable location. The data area must be big enough to hold all of the
2165 records. The size of the data written out for this RECORD must match
2166 the size from AVR_RECORD_SIZE. */
2169 avr_output_property_record (char * const frag_base
, char *frag_ptr
,
2170 const struct avr_property_record
*record
)
2174 char *init_frag_ptr
= frag_ptr
;
2176 where
= frag_ptr
- frag_base
;
2177 fix
= fix_new (frag_now
, where
, 4,
2178 section_symbol (record
->section
),
2179 record
->offset
, FALSE
, BFD_RELOC_32
);
2180 fix
->fx_file
= "<internal>";
2184 md_number_to_chars (frag_ptr
, (bfd_byte
) record
->type
, 1);
2187 /* Write out the rest of the data. */
2188 switch (record
->type
)
2193 case RECORD_ORG_AND_FILL
:
2194 md_number_to_chars (frag_ptr
, record
->data
.org
.fill
, 4);
2199 md_number_to_chars (frag_ptr
, record
->data
.align
.bytes
, 4);
2203 case RECORD_ALIGN_AND_FILL
:
2204 md_number_to_chars (frag_ptr
, record
->data
.align
.bytes
, 4);
2205 md_number_to_chars (frag_ptr
+ 4, record
->data
.align
.fill
, 4);
2210 as_fatal (_("unknown record type %d (in %s)"),
2211 record
->type
, __PRETTY_FUNCTION__
);
2214 gas_assert (frag_ptr
- init_frag_ptr
== avr_record_size (record
));
2219 /* Create the section to hold the AVR property information. Return the
2223 avr_create_property_section (void)
2226 flagword flags
= (SEC_RELOC
| SEC_HAS_CONTENTS
| SEC_READONLY
);
2227 const char *section_name
= AVR_PROPERTY_RECORD_SECTION_NAME
;
2229 sec
= bfd_make_section (stdoutput
, section_name
);
2231 as_fatal (_("Failed to create property section `%s'\n"), section_name
);
2232 bfd_set_section_flags (stdoutput
, sec
, flags
);
2233 sec
->output_section
= sec
;
2237 /* This hook is called when alignment is performed, and allows us to
2238 capture the details of both .org and .align directives. */
2241 avr_handle_align (fragS
*fragP
)
2245 /* Ignore alignment requests at FR_ADDRESS 0, these are at the very
2246 start of a section, and will be handled by the standard section
2247 alignment mechanism. */
2248 if ((fragP
->fr_type
== rs_align
2249 || fragP
->fr_type
== rs_align_code
)
2250 && fragP
->fr_offset
> 0)
2252 char *p
= fragP
->fr_literal
+ fragP
->fr_fix
;
2254 fragP
->tc_frag_data
.is_align
= TRUE
;
2255 fragP
->tc_frag_data
.alignment
= fragP
->fr_offset
;
2256 fragP
->tc_frag_data
.fill
= *p
;
2257 fragP
->tc_frag_data
.has_fill
= (fragP
->tc_frag_data
.fill
!= 0);
2260 if (fragP
->fr_type
== rs_org
&& fragP
->fr_offset
> 0)
2262 char *p
= fragP
->fr_literal
+ fragP
->fr_fix
;
2264 fragP
->tc_frag_data
.is_org
= TRUE
;
2265 fragP
->tc_frag_data
.fill
= *p
;
2266 fragP
->tc_frag_data
.has_fill
= (fragP
->tc_frag_data
.fill
!= 0);
2271 /* Return TRUE if this section is not one for which we need to record
2272 information in the avr property section. */
2275 exclude_section_from_property_tables (segT sec
)
2277 /* Only generate property information for sections on which linker
2278 relaxation could be performed. */
2279 return !relaxable_section (sec
);
2282 /* Create a property record for fragment FRAGP from section SEC and place
2283 it into an AVR_PROPERTY_RECORD_LINK structure, which can then formed
2284 into a linked list by the caller. */
2286 static struct avr_property_record_link
*
2287 create_record_for_frag (segT sec
, fragS
*fragP
)
2289 struct avr_property_record_link
*prop_rec_link
;
2291 prop_rec_link
= XCNEW (struct avr_property_record_link
);
2292 gas_assert (fragP
->fr_next
!= NULL
);
2294 if (fragP
->tc_frag_data
.is_org
)
2296 prop_rec_link
->record
.offset
= fragP
->fr_next
->fr_address
;
2297 prop_rec_link
->record
.section
= sec
;
2299 if (fragP
->tc_frag_data
.has_fill
)
2301 prop_rec_link
->record
.data
.org
.fill
= fragP
->tc_frag_data
.fill
;
2302 prop_rec_link
->record
.type
= RECORD_ORG_AND_FILL
;
2305 prop_rec_link
->record
.type
= RECORD_ORG
;
2309 prop_rec_link
->record
.offset
= fragP
->fr_next
->fr_address
;
2310 prop_rec_link
->record
.section
= sec
;
2312 gas_assert (fragP
->tc_frag_data
.is_align
);
2313 if (fragP
->tc_frag_data
.has_fill
)
2315 prop_rec_link
->record
.data
.align
.fill
= fragP
->tc_frag_data
.fill
;
2316 prop_rec_link
->record
.type
= RECORD_ALIGN_AND_FILL
;
2319 prop_rec_link
->record
.type
= RECORD_ALIGN
;
2320 prop_rec_link
->record
.data
.align
.bytes
= fragP
->tc_frag_data
.alignment
;
2323 return prop_rec_link
;
2326 /* Build a list of AVR_PROPERTY_RECORD_LINK structures for section SEC, and
2327 merged them onto the list pointed to by NEXT_PTR. Return a pointer to
2328 the last list item created. */
2330 static struct avr_property_record_link
**
2331 append_records_for_section (segT sec
,
2332 struct avr_property_record_link
**next_ptr
)
2334 segment_info_type
*seginfo
= seg_info (sec
);
2337 if (seginfo
&& seginfo
->frchainP
)
2339 for (fragP
= seginfo
->frchainP
->frch_root
;
2341 fragP
= fragP
->fr_next
)
2343 if (fragP
->tc_frag_data
.is_align
2344 || fragP
->tc_frag_data
.is_org
)
2346 /* Create a single new entry. */
2347 struct avr_property_record_link
*new_link
2348 = create_record_for_frag (sec
, fragP
);
2350 *next_ptr
= new_link
;
2351 next_ptr
= &new_link
->next
;
2359 /* Create the AVR property section and fill it with records of .org and
2360 .align directives that were used. The section is only created if it
2361 will actually have any content. */
2364 avr_create_and_fill_property_section (void)
2368 struct avr_property_record_link
*r_list
, **next_ptr
;
2369 char *frag_ptr
, *frag_base
;
2370 bfd_size_type sec_size
;
2371 struct avr_property_record_link
*rec
;
2372 unsigned int record_count
;
2374 /* First walk over all sections. For sections on which linker
2375 relaxation could be applied, extend the record list. The record list
2376 holds information that the linker will need to know. */
2381 for (seclist
= &stdoutput
->sections
;
2382 seclist
&& *seclist
;
2383 seclist
= &(*seclist
)->next
)
2385 segT sec
= *seclist
;
2387 if (exclude_section_from_property_tables (sec
))
2390 next_ptr
= append_records_for_section (sec
, next_ptr
);
2393 /* Create property section and ensure the size is correct. We've already
2394 passed the point where gas could size this for us. */
2395 sec_size
= AVR_PROPERTY_SECTION_HEADER_SIZE
;
2397 for (rec
= r_list
; rec
!= NULL
; rec
= rec
->next
)
2400 sec_size
+= avr_record_size (&rec
->record
);
2403 if (record_count
== 0)
2406 prop_sec
= avr_create_property_section ();
2407 bfd_set_section_size (stdoutput
, prop_sec
, sec_size
);
2409 subseg_set (prop_sec
, 0);
2410 frag_base
= frag_more (sec_size
);
2413 avr_output_property_section_header (frag_base
, record_count
);
2415 for (rec
= r_list
; rec
!= NULL
; rec
= rec
->next
)
2416 frag_ptr
= avr_output_property_record (frag_base
, frag_ptr
, &rec
->record
);
2418 frag_wane (frag_now
);
2420 frag_wane (frag_now
);
2423 /* We're using this hook to build up the AVR property section. It's called
2424 late in the assembly process which suits our needs. */
2426 avr_post_relax_hook (void)
2428 avr_create_and_fill_property_section ();
2432 /* Accumulate information about instruction sequence to `avr_isr':
2433 wheter TMP_REG, ZERO_REG and SREG might be touched. Used during parse.
2434 REG1 is either -1 or a register number used by the instruction as input
2435 or output operand. Similar for REG2. */
2438 avr_update_gccisr (struct avr_opcodes_s
*opcode
, int reg1
, int reg2
)
2440 const int tiny_p
= avr_mcu
->mach
== bfd_mach_avrtiny
;
2441 const int reg_tmp
= tiny_p
? 16 : 0;
2442 const int reg_zero
= 1 + reg_tmp
;
2444 if (ISR_CHUNK_Done
== avr_isr
.prev_chunk
2445 || (avr_isr
.need_sreg
2446 && avr_isr
.need_reg_tmp
2447 && avr_isr
.need_reg_zero
))
2449 /* Nothing (more) to do */
2453 /* SREG: Look up instructions that don't clobber SREG. */
2455 if (!avr_isr
.need_sreg
2456 && !hash_find (avr_no_sreg_hash
, opcode
->name
))
2458 avr_isr
.need_sreg
= 1;
2461 /* Handle explicit register operands. Record *any* use as clobber.
2462 This is because TMP_REG and ZERO_REG are not global and using
2463 them makes no sense without a previous set. */
2465 avr_isr
.need_reg_tmp
|= reg1
== reg_tmp
|| reg2
== reg_tmp
;
2466 avr_isr
.need_reg_zero
|= reg1
== reg_zero
|| reg2
== reg_zero
;
2468 /* Handle implicit register operands and some opaque stuff. */
2470 if (strstr (opcode
->name
, "lpm")
2471 && '?' == *opcode
->constraints
)
2473 avr_isr
.need_reg_tmp
= 1;
2476 if (strstr (opcode
->name
, "call")
2477 || strstr (opcode
->name
, "mul")
2478 || 0 == strcmp (opcode
->name
, "des")
2479 || (0 == strcmp (opcode
->name
, "movw")
2480 && (reg1
== reg_tmp
|| reg2
== reg_tmp
)))
2482 avr_isr
.need_reg_tmp
= 1;
2483 avr_isr
.need_reg_zero
= 1;
2488 /* Emit some 1-word instruction to **PWHERE and advance *PWHERE by the number
2489 of octets written. INSN specifies the desired instruction and REG is the
2490 register used by it. This function is only used with restricted subset of
2491 instructions as might be emit by `__gcc_isr'. IN / OUT will use SREG
2495 avr_emit_insn (const char *insn
, int reg
, char **pwhere
)
2497 const int sreg
= 0x3f;
2499 const struct avr_opcodes_s
*op
2500 = (struct avr_opcodes_s
*) hash_find (avr_hash
, insn
);
2502 /* We only have to deal with: IN, OUT, PUSH, POP, CLR, LDI 0. All of
2503 these deal with at least one Reg and are 1-word instructions. */
2505 gas_assert (op
&& 1 == op
->insn_size
);
2506 gas_assert (reg
>= 0 && reg
<= 31);
2508 if (strchr (op
->constraints
, 'r'))
2510 bin
= op
->bin_opcode
| (reg
<< 4);
2512 else if (strchr (op
->constraints
, 'd'))
2514 gas_assert (reg
>= 16);
2515 bin
= op
->bin_opcode
| ((reg
& 0xf) << 4);
2520 if (strchr (op
->constraints
, 'P'))
2522 bin
|= ((sreg
& 0x30) << 5) | (sreg
& 0x0f);
2524 else if (0 == strcmp ("r=r", op
->constraints
))
2526 bin
|= ((reg
& 0x10) << 5) | (reg
& 0x0f);
2529 gas_assert (0 == strcmp ("r", op
->constraints
)
2530 || 0 == strcmp ("ldi", op
->name
));
2532 bfd_putl16 ((bfd_vma
) bin
, *pwhere
);
2533 (*pwhere
) += 2 * op
->insn_size
;
2537 /* Turn rs_machine_dependent frag *FR into an ordinary rs_fill code frag,
2538 using information gathered in `avr_isr'. REG is the register number as
2539 supplied by Done chunk "__gcc_isr 0,REG". */
2542 avr_patch_gccisr_frag (fragS
*fr
, int reg
)
2546 char *where
= fr
->fr_literal
;
2547 const int tiny_p
= avr_mcu
->mach
== bfd_mach_avrtiny
;
2548 const int reg_tmp
= tiny_p
? 16 : 0;
2549 const int reg_zero
= 1 + reg_tmp
;
2551 /* Clearing ZERO_REG on non-Tiny needs CLR which clobbers SREG. */
2553 avr_isr
.need_sreg
|= !tiny_p
&& avr_isr
.need_reg_zero
;
2555 /* A working register to PUSH / POP the SREG. We might use the register
2556 as supplied by ISR_CHUNK_Done for that purpose as GCC wants to push
2557 it anyways. If GCC passes ZERO_REG or TMP_REG, it has no clue (and
2558 no additional regs to safe) and we use that reg. */
2561 = avr_isr
.need_reg_tmp
? reg_tmp
2562 : avr_isr
.need_reg_zero
? reg_zero
2563 : avr_isr
.need_sreg
? reg
2564 : reg
> reg_zero
? reg
2569 /* Non-empty prologue / epilogue */
2571 if (ISR_CHUNK_Prologue
== fr
->fr_subtype
)
2573 avr_emit_insn ("push", treg
, &where
);
2576 if (avr_isr
.need_sreg
)
2578 avr_emit_insn ("in", treg
, &where
);
2579 avr_emit_insn ("push", treg
, &where
);
2583 if (avr_isr
.need_reg_zero
)
2585 if (reg_zero
!= treg
)
2587 avr_emit_insn ("push", reg_zero
, &where
);
2590 avr_emit_insn (tiny_p
? "ldi" : "clr", reg_zero
, &where
);
2593 if (reg
> reg_zero
&& reg
!= treg
)
2595 avr_emit_insn ("push", reg
, &where
);
2599 else if (ISR_CHUNK_Epilogue
== fr
->fr_subtype
)
2601 /* Same logic as in Prologue but in reverse order and with counter
2602 parts of either instruction: POP instead of PUSH and OUT instead
2603 of IN. Clearing ZERO_REG has no couter part. */
2605 if (reg
> reg_zero
&& reg
!= treg
)
2606 avr_emit_insn ("pop", reg
, &where
);
2608 if (avr_isr
.need_reg_zero
2609 && reg_zero
!= treg
)
2610 avr_emit_insn ("pop", reg_zero
, &where
);
2612 if (avr_isr
.need_sreg
)
2614 avr_emit_insn ("pop", treg
, &where
);
2615 avr_emit_insn ("out", treg
, &where
);
2618 avr_emit_insn ("pop", treg
, &where
);
2624 if (ISR_CHUNK_Prologue
== fr
->fr_subtype
2625 && avr_isr
.sym_n_pushed
)
2627 symbolS
*sy
= avr_isr
.sym_n_pushed
;
2628 /* Turn magic `__gcc_isr.n_pushed' into its now known value. */
2630 S_SET_VALUE (sy
, n_pushed
);
2631 S_SET_SEGMENT (sy
, expr_section
);
2632 avr_isr
.sym_n_pushed
= NULL
;
2635 /* Turn frag into ordinary code frag of now known size. */
2638 fr
->fr_fix
= where
- fr
->fr_literal
;
2639 gas_assert (fr
->fr_fix
<= (valueT
) fr
->fr_offset
);
2641 fr
->fr_type
= rs_fill
;
2646 /* Implements `__gcc_isr' pseudo-instruction. For Prologue and Epilogue
2647 chunks, emit a new rs_machine_dependent frag. For Done chunks, traverse
2648 the current segment and patch all rs_machine_dependent frags to become
2649 appropriate rs_fill code frags. If chunks are seen in an odd ordering,
2650 throw an error instead. */
2653 avr_gccisr_operands (struct avr_opcodes_s
*opcode
, char **line
)
2659 gas_assert (avr_opt
.have_gccisr
);
2661 /* We only use operands "N" and "r" which don't pop new fix-ups. */
2663 /* 1st operand: Which chunk of __gcc_isr: 0...2. */
2665 chunk
= avr_operand (opcode
, -1, "N", &str
, NULL
);
2666 if (chunk
< 0 || chunk
> 2)
2667 as_bad (_("%s requires value 0-2 as operand 1"), opcode
->name
);
2669 if (ISR_CHUNK_Done
== chunk
)
2671 /* 2nd operand: A register to push / pop. */
2673 str
= skip_space (str
);
2674 if (*str
== '\0' || *str
++ != ',')
2675 as_bad (_("`,' required"));
2677 avr_operand (opcode
, -1, "r", &str
, ®
);
2682 /* Chunks must follow in a specific order:
2683 - Prologue: Exactly one
2684 - Epilogue: Any number
2685 - Done: Exactly one. */
2686 bad
|= ISR_CHUNK_Prologue
== chunk
&& avr_isr
.prev_chunk
!= ISR_CHUNK_Done
;
2687 bad
|= ISR_CHUNK_Epilogue
== chunk
&& avr_isr
.prev_chunk
== ISR_CHUNK_Done
;
2688 bad
|= ISR_CHUNK_Done
== chunk
&& avr_isr
.prev_chunk
== ISR_CHUNK_Done
;
2692 as_bad (_("`%s %d' after `%s %d' from %s:%u"), opcode
->name
, chunk
,
2693 opcode
->name
, avr_isr
.prev_chunk
, avr_isr
.file
, avr_isr
.line
);
2695 as_bad (_("`%s %d' but no chunk open yet"), opcode
->name
, chunk
);
2700 /* The longest sequence (prologue) might have up to 6 insns (words):
2709 unsigned int size
= 2 * 6;
2714 case ISR_CHUNK_Prologue
:
2715 avr_isr
.need_reg_tmp
= 0;
2716 avr_isr
.need_reg_zero
= 0;
2717 avr_isr
.need_sreg
= 0;
2718 avr_isr
.sym_n_pushed
= NULL
;
2721 case ISR_CHUNK_Epilogue
:
2722 /* Emit a new rs_machine_dependent fragment into the fragment chain.
2723 It will be patched and cleaned up once we see the matching
2725 frag_wane (frag_now
);
2729 frag_now
->fr_var
= 1;
2730 frag_now
->fr_offset
= size
;
2731 frag_now
->fr_fix
= 0;
2732 frag_now
->fr_type
= rs_machine_dependent
;
2733 frag_now
->fr_subtype
= chunk
;
2737 case ISR_CHUNK_Done
:
2738 /* Traverse all frags of the current subseg and turn ones of type
2739 rs_machine_dependent into ordinary code as expected by GCC. */
2741 for (fr
= frchain_now
->frch_root
; fr
; fr
= fr
->fr_next
)
2742 if (fr
->fr_type
== rs_machine_dependent
)
2743 avr_patch_gccisr_frag (fr
, reg
);
2752 avr_isr
.prev_chunk
= chunk
;
2753 avr_isr
.file
= as_where (&avr_isr
.line
);
2757 /* Callback used by the function below. Diagnose any dangling stuff from
2758 `__gcc_isr', i.e. frags of type rs_machine_dependent. Such frags should
2759 have been resolved during parse by ISR_CHUNK_Done. If such a frag is
2760 seen, report an error and turn it into something harmless. */
2763 avr_check_gccisr_done (bfd
*abfd ATTRIBUTE_UNUSED
,
2765 void *xxx ATTRIBUTE_UNUSED
)
2767 segment_info_type
*info
= seg_info (section
);
2769 if (SEG_NORMAL (section
)
2770 /* BFD may have introduced its own sections without using
2771 subseg_new, so it is possible that seg_info is NULL. */
2777 for (frch
= info
->frchainP
; frch
; frch
= frch
->frch_next
)
2778 for (fr
= frch
->frch_root
; fr
; fr
= fr
->fr_next
)
2779 if (fr
->fr_type
== rs_machine_dependent
)
2782 as_bad_where (avr_isr
.file
, avr_isr
.line
,
2783 _("dangling `__gcc_isr %d'"), avr_isr
.prev_chunk
);
2784 else if (!had_errors())
2785 as_bad (_("dangling `__gcc_isr'"));
2787 avr_isr
.file
= NULL
;
2789 /* Avoid Internal errors due to rs_machine_dependent in the
2790 remainder: Turn frag into something harmless. */
2794 fr
->fr_type
= rs_fill
;
2801 /* Implement `md_pre_output_hook' */
2802 /* Run over all relevant sections and diagnose any dangling `__gcc_isr'.
2803 This runs after parsing all inputs but before relaxing and writing. */
2806 avr_pre_output_hook (void)
2808 if (avr_opt
.have_gccisr
)
2809 bfd_map_over_sections (stdoutput
, avr_check_gccisr_done
, NULL
);