Update copyright year in gdbarch.sh doc/gdb.texinfo and doc/refcard.tex
[binutils-gdb.git] / gdb / solib-frv.c
bloba96bfa049417e4db7fce661a8c85a851d5d4b1fb
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
49 struct ext_elf32_fdpic_loadseg
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
110 /* Problem reading the target's memory. */
111 return NULL;
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
118 if (version != 0)
120 /* We only handle version 0. */
121 return NULL;
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
129 if (nsegs <= 0)
130 return NULL;
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
175 xfree (ext_ldmbuf);
176 return int_ldmbuf;
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
181 typedef gdb_byte ext_ptr[4];
183 struct ext_elf32_fdpic_loadaddr
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
189 struct ext_link_map
191 struct ext_elf32_fdpic_loadaddr l_addr;
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
203 /* Link map info to include in an allocated so_list entry. */
205 struct lm_info_frv : public lm_info_base
207 ~lm_info_frv ()
209 xfree (this->map);
210 xfree (this->dyn_syms);
211 xfree (this->dyn_relocs);
214 /* The loadmap, digested into an easier to use form. */
215 int_elf32_fdpic_loadmap *map = NULL;
216 /* The GOT address for this link map entry. */
217 CORE_ADDR got_value = 0;
218 /* The link map address, needed for frv_fetch_objfile_link_map(). */
219 CORE_ADDR lm_addr = 0;
221 /* Cached dynamic symbol table and dynamic relocs initialized and
222 used only by find_canonical_descriptor_in_load_object().
224 Note: kevinb/2004-02-26: It appears that calls to
225 bfd_canonicalize_dynamic_reloc() will use the same symbols as
226 those supplied to the first call to this function. Therefore,
227 it's important to NOT free the asymbol ** data structure
228 supplied to the first call. Thus the caching of the dynamic
229 symbols (dyn_syms) is critical for correct operation. The
230 caching of the dynamic relocations could be dispensed with. */
231 asymbol **dyn_syms = NULL;
232 arelent **dyn_relocs = NULL;
233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
236 /* The load map, got value, etc. are not available from the chain
237 of loaded shared objects. ``main_executable_lm_info'' provides
238 a way to get at this information so that it doesn't need to be
239 frequently recomputed. Initialized by frv_relocate_main_executable(). */
240 static lm_info_frv *main_executable_lm_info;
242 static void frv_relocate_main_executable (void);
243 static CORE_ADDR main_got (void);
244 static int enable_break2 (void);
246 /* Implement the "open_symbol_file_object" target_so_ops method. */
248 static int
249 open_symbol_file_object (int from_tty)
251 /* Unimplemented. */
252 return 0;
255 /* Cached value for lm_base(), below. */
256 static CORE_ADDR lm_base_cache = 0;
258 /* Link map address for main module. */
259 static CORE_ADDR main_lm_addr = 0;
261 /* Return the address from which the link map chain may be found. On
262 the FR-V, this may be found in a number of ways. Assuming that the
263 main executable has already been relocated, the easiest way to find
264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
265 pointer to the start of the link map will be located at the word found
266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
267 reserve area mandated by the ABI.) */
269 static CORE_ADDR
270 lm_base (void)
272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
273 struct bound_minimal_symbol got_sym;
274 CORE_ADDR addr;
275 gdb_byte buf[FRV_PTR_SIZE];
277 /* One of our assumptions is that the main executable has been relocated.
278 Bail out if this has not happened. (Note that post_create_inferior()
279 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
280 If we allow this to happen, lm_base_cache will be initialized with
281 a bogus value. */
282 if (main_executable_lm_info == 0)
283 return 0;
285 /* If we already have a cached value, return it. */
286 if (lm_base_cache)
287 return lm_base_cache;
289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
290 symfile_objfile);
291 if (got_sym.minsym == 0)
293 if (solib_frv_debug)
294 fprintf_unfiltered (gdb_stdlog,
295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
296 return 0;
299 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
301 if (solib_frv_debug)
302 fprintf_unfiltered (gdb_stdlog,
303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
304 hex_string_custom (addr, 8));
306 if (target_read_memory (addr, buf, sizeof buf) != 0)
307 return 0;
308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
310 if (solib_frv_debug)
311 fprintf_unfiltered (gdb_stdlog,
312 "lm_base: lm_base_cache = %s\n",
313 hex_string_custom (lm_base_cache, 8));
315 return lm_base_cache;
319 /* Implement the "current_sos" target_so_ops method. */
321 static struct so_list *
322 frv_current_sos (void)
324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
325 CORE_ADDR lm_addr, mgot;
326 struct so_list *sos_head = NULL;
327 struct so_list **sos_next_ptr = &sos_head;
329 /* Make sure that the main executable has been relocated. This is
330 required in order to find the address of the global offset table,
331 which in turn is used to find the link map info. (See lm_base()
332 for details.)
334 Note that the relocation of the main executable is also performed
335 by solib_create_inferior_hook(), however, in the case of core
336 files, this hook is called too late in order to be of benefit to
337 solib_add. solib_add eventually calls this this function,
338 frv_current_sos, and also precedes the call to
339 solib_create_inferior_hook(). (See post_create_inferior() in
340 infcmd.c.) */
341 if (main_executable_lm_info == 0 && core_bfd != NULL)
342 frv_relocate_main_executable ();
344 /* Fetch the GOT corresponding to the main executable. */
345 mgot = main_got ();
347 /* Locate the address of the first link map struct. */
348 lm_addr = lm_base ();
350 /* We have at least one link map entry. Fetch the lot of them,
351 building the solist chain. */
352 while (lm_addr)
354 struct ext_link_map lm_buf;
355 CORE_ADDR got_addr;
357 if (solib_frv_debug)
358 fprintf_unfiltered (gdb_stdlog,
359 "current_sos: reading link_map entry at %s\n",
360 hex_string_custom (lm_addr, 8));
362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
363 sizeof (lm_buf)) != 0)
365 warning (_("frv_current_sos: Unable to read link map entry. "
366 "Shared object chain may be incomplete."));
367 break;
370 got_addr
371 = extract_unsigned_integer (lm_buf.l_addr.got_value,
372 sizeof (lm_buf.l_addr.got_value),
373 byte_order);
374 /* If the got_addr is the same as mgotr, then we're looking at the
375 entry for the main executable. By convention, we don't include
376 this in the list of shared objects. */
377 if (got_addr != mgot)
379 int errcode;
380 gdb::unique_xmalloc_ptr<char> name_buf;
381 struct int_elf32_fdpic_loadmap *loadmap;
382 struct so_list *sop;
383 CORE_ADDR addr;
385 /* Fetch the load map address. */
386 addr = extract_unsigned_integer (lm_buf.l_addr.map,
387 sizeof lm_buf.l_addr.map,
388 byte_order);
389 loadmap = fetch_loadmap (addr);
390 if (loadmap == NULL)
392 warning (_("frv_current_sos: Unable to fetch load map. "
393 "Shared object chain may be incomplete."));
394 break;
397 sop = XCNEW (struct so_list);
398 lm_info_frv *li = new lm_info_frv;
399 sop->lm_info = li;
400 li->map = loadmap;
401 li->got_value = got_addr;
402 li->lm_addr = lm_addr;
403 /* Fetch the name. */
404 addr = extract_unsigned_integer (lm_buf.l_name,
405 sizeof (lm_buf.l_name),
406 byte_order);
407 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
408 &errcode);
410 if (solib_frv_debug)
411 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
412 name_buf.get ());
414 if (errcode != 0)
415 warning (_("Can't read pathname for link map entry: %s."),
416 safe_strerror (errcode));
417 else
419 strncpy (sop->so_name, name_buf.get (),
420 SO_NAME_MAX_PATH_SIZE - 1);
421 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
422 strcpy (sop->so_original_name, sop->so_name);
425 *sos_next_ptr = sop;
426 sos_next_ptr = &sop->next;
428 else
430 main_lm_addr = lm_addr;
433 lm_addr = extract_unsigned_integer (lm_buf.l_next,
434 sizeof (lm_buf.l_next), byte_order);
437 enable_break2 ();
439 return sos_head;
443 /* Return 1 if PC lies in the dynamic symbol resolution code of the
444 run time loader. */
446 static CORE_ADDR interp_text_sect_low;
447 static CORE_ADDR interp_text_sect_high;
448 static CORE_ADDR interp_plt_sect_low;
449 static CORE_ADDR interp_plt_sect_high;
451 static int
452 frv_in_dynsym_resolve_code (CORE_ADDR pc)
454 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
455 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
456 || in_plt_section (pc));
459 /* Given a loadmap and an address, return the displacement needed
460 to relocate the address. */
462 static CORE_ADDR
463 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
464 CORE_ADDR addr)
466 int seg;
468 for (seg = 0; seg < map->nsegs; seg++)
470 if (map->segs[seg].p_vaddr <= addr
471 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
473 return map->segs[seg].addr - map->segs[seg].p_vaddr;
477 return 0;
480 /* Print a warning about being unable to set the dynamic linker
481 breakpoint. */
483 static void
484 enable_break_failure_warning (void)
486 warning (_("Unable to find dynamic linker breakpoint function.\n"
487 "GDB will be unable to debug shared library initializers\n"
488 "and track explicitly loaded dynamic code."));
491 /* Helper function for gdb_bfd_lookup_symbol. */
493 static int
494 cmp_name (const asymbol *sym, const void *data)
496 return (strcmp (sym->name, (const char *) data) == 0);
499 /* Arrange for dynamic linker to hit breakpoint.
501 The dynamic linkers has, as part of its debugger interface, support
502 for arranging for the inferior to hit a breakpoint after mapping in
503 the shared libraries. This function enables that breakpoint.
505 On the FR-V, using the shared library (FDPIC) ABI, the symbol
506 _dl_debug_addr points to the r_debug struct which contains
507 a field called r_brk. r_brk is the address of the function
508 descriptor upon which a breakpoint must be placed. Being a
509 function descriptor, we must extract the entry point in order
510 to set the breakpoint.
512 Our strategy will be to get the .interp section from the
513 executable. This section will provide us with the name of the
514 interpreter. We'll open the interpreter and then look up
515 the address of _dl_debug_addr. We then relocate this address
516 using the interpreter's loadmap. Once the relocated address
517 is known, we fetch the value (address) corresponding to r_brk
518 and then use that value to fetch the entry point of the function
519 we're interested in. */
521 static int enable_break2_done = 0;
523 static int
524 enable_break2 (void)
526 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
527 asection *interp_sect;
529 if (enable_break2_done)
530 return 1;
532 interp_text_sect_low = interp_text_sect_high = 0;
533 interp_plt_sect_low = interp_plt_sect_high = 0;
535 /* Find the .interp section; if not found, warn the user and drop
536 into the old breakpoint at symbol code. */
537 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
538 if (interp_sect)
540 unsigned int interp_sect_size;
541 char *buf;
542 int status;
543 CORE_ADDR addr, interp_loadmap_addr;
544 gdb_byte addr_buf[FRV_PTR_SIZE];
545 struct int_elf32_fdpic_loadmap *ldm;
547 /* Read the contents of the .interp section into a local buffer;
548 the contents specify the dynamic linker this program uses. */
549 interp_sect_size = bfd_section_size (interp_sect);
550 buf = (char *) alloca (interp_sect_size);
551 bfd_get_section_contents (exec_bfd, interp_sect,
552 buf, 0, interp_sect_size);
554 /* Now we need to figure out where the dynamic linker was
555 loaded so that we can load its symbols and place a breakpoint
556 in the dynamic linker itself.
558 This address is stored on the stack. However, I've been unable
559 to find any magic formula to find it for Solaris (appears to
560 be trivial on GNU/Linux). Therefore, we have to try an alternate
561 mechanism to find the dynamic linker's base address. */
563 gdb_bfd_ref_ptr tmp_bfd;
566 tmp_bfd = solib_bfd_open (buf);
568 catch (const gdb_exception &ex)
572 if (tmp_bfd == NULL)
574 enable_break_failure_warning ();
575 return 0;
578 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
579 &interp_loadmap_addr, 0);
580 if (status < 0)
582 warning (_("Unable to determine dynamic linker loadmap address."));
583 enable_break_failure_warning ();
584 return 0;
587 if (solib_frv_debug)
588 fprintf_unfiltered (gdb_stdlog,
589 "enable_break: interp_loadmap_addr = %s\n",
590 hex_string_custom (interp_loadmap_addr, 8));
592 ldm = fetch_loadmap (interp_loadmap_addr);
593 if (ldm == NULL)
595 warning (_("Unable to load dynamic linker loadmap at address %s."),
596 hex_string_custom (interp_loadmap_addr, 8));
597 enable_break_failure_warning ();
598 return 0;
601 /* Record the relocated start and end address of the dynamic linker
602 text and plt section for svr4_in_dynsym_resolve_code. */
603 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
604 if (interp_sect)
606 interp_text_sect_low = bfd_section_vma (interp_sect);
607 interp_text_sect_low
608 += displacement_from_map (ldm, interp_text_sect_low);
609 interp_text_sect_high
610 = interp_text_sect_low + bfd_section_size (interp_sect);
612 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
613 if (interp_sect)
615 interp_plt_sect_low = bfd_section_vma (interp_sect);
616 interp_plt_sect_low
617 += displacement_from_map (ldm, interp_plt_sect_low);
618 interp_plt_sect_high =
619 interp_plt_sect_low + bfd_section_size (interp_sect);
622 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
624 if (addr == 0)
626 warning (_("Could not find symbol _dl_debug_addr "
627 "in dynamic linker"));
628 enable_break_failure_warning ();
629 return 0;
632 if (solib_frv_debug)
633 fprintf_unfiltered (gdb_stdlog,
634 "enable_break: _dl_debug_addr "
635 "(prior to relocation) = %s\n",
636 hex_string_custom (addr, 8));
638 addr += displacement_from_map (ldm, addr);
640 if (solib_frv_debug)
641 fprintf_unfiltered (gdb_stdlog,
642 "enable_break: _dl_debug_addr "
643 "(after relocation) = %s\n",
644 hex_string_custom (addr, 8));
646 /* Fetch the address of the r_debug struct. */
647 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
649 warning (_("Unable to fetch contents of _dl_debug_addr "
650 "(at address %s) from dynamic linker"),
651 hex_string_custom (addr, 8));
653 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
655 if (solib_frv_debug)
656 fprintf_unfiltered (gdb_stdlog,
657 "enable_break: _dl_debug_addr[0..3] = %s\n",
658 hex_string_custom (addr, 8));
660 /* If it's zero, then the ldso hasn't initialized yet, and so
661 there are no shared libs yet loaded. */
662 if (addr == 0)
664 if (solib_frv_debug)
665 fprintf_unfiltered (gdb_stdlog,
666 "enable_break: ldso not yet initialized\n");
667 /* Do not warn, but mark to run again. */
668 return 0;
671 /* Fetch the r_brk field. It's 8 bytes from the start of
672 _dl_debug_addr. */
673 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
675 warning (_("Unable to fetch _dl_debug_addr->r_brk "
676 "(at address %s) from dynamic linker"),
677 hex_string_custom (addr + 8, 8));
678 enable_break_failure_warning ();
679 return 0;
681 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
683 /* Now fetch the function entry point. */
684 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
686 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
687 "(at address %s) from dynamic linker"),
688 hex_string_custom (addr, 8));
689 enable_break_failure_warning ();
690 return 0;
692 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
694 /* We're done with the loadmap. */
695 xfree (ldm);
697 /* Remove all the solib event breakpoints. Their addresses
698 may have changed since the last time we ran the program. */
699 remove_solib_event_breakpoints ();
701 /* Now (finally!) create the solib breakpoint. */
702 create_solib_event_breakpoint (target_gdbarch (), addr);
704 enable_break2_done = 1;
706 return 1;
709 /* Tell the user we couldn't set a dynamic linker breakpoint. */
710 enable_break_failure_warning ();
712 /* Failure return. */
713 return 0;
716 static int
717 enable_break (void)
719 asection *interp_sect;
720 CORE_ADDR entry_point;
722 if (symfile_objfile == NULL)
724 if (solib_frv_debug)
725 fprintf_unfiltered (gdb_stdlog,
726 "enable_break: No symbol file found.\n");
727 return 0;
730 if (!entry_point_address_query (&entry_point))
732 if (solib_frv_debug)
733 fprintf_unfiltered (gdb_stdlog,
734 "enable_break: Symbol file has no entry point.\n");
735 return 0;
738 /* Check for the presence of a .interp section. If there is no
739 such section, the executable is statically linked. */
741 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
743 if (interp_sect == NULL)
745 if (solib_frv_debug)
746 fprintf_unfiltered (gdb_stdlog,
747 "enable_break: No .interp section found.\n");
748 return 0;
751 create_solib_event_breakpoint (target_gdbarch (), entry_point);
753 if (solib_frv_debug)
754 fprintf_unfiltered (gdb_stdlog,
755 "enable_break: solib event breakpoint "
756 "placed at entry point: %s\n",
757 hex_string_custom (entry_point, 8));
758 return 1;
761 static void
762 frv_relocate_main_executable (void)
764 int status;
765 CORE_ADDR exec_addr, interp_addr;
766 struct int_elf32_fdpic_loadmap *ldm;
767 int changed;
768 struct obj_section *osect;
770 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
771 &interp_addr, &exec_addr);
773 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
775 /* Not using FDPIC ABI, so do nothing. */
776 return;
779 /* Fetch the loadmap located at ``exec_addr''. */
780 ldm = fetch_loadmap (exec_addr);
781 if (ldm == NULL)
782 error (_("Unable to load the executable's loadmap."));
784 delete main_executable_lm_info;
785 main_executable_lm_info = new lm_info_frv;
786 main_executable_lm_info->map = ldm;
788 gdb::unique_xmalloc_ptr<struct section_offsets> new_offsets
789 (XCNEWVEC (struct section_offsets, symfile_objfile->num_sections));
790 changed = 0;
792 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
794 CORE_ADDR orig_addr, addr, offset;
795 int osect_idx;
796 int seg;
798 osect_idx = osect - symfile_objfile->sections;
800 /* Current address of section. */
801 addr = obj_section_addr (osect);
802 /* Offset from where this section started. */
803 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
804 /* Original address prior to any past relocations. */
805 orig_addr = addr - offset;
807 for (seg = 0; seg < ldm->nsegs; seg++)
809 if (ldm->segs[seg].p_vaddr <= orig_addr
810 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
812 new_offsets->offsets[osect_idx]
813 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
815 if (new_offsets->offsets[osect_idx] != offset)
816 changed = 1;
817 break;
822 if (changed)
823 objfile_relocate (symfile_objfile, new_offsets.get ());
825 /* Now that symfile_objfile has been relocated, we can compute the
826 GOT value and stash it away. */
827 main_executable_lm_info->got_value = main_got ();
830 /* Implement the "create_inferior_hook" target_solib_ops method.
832 For the FR-V shared library ABI (FDPIC), the main executable needs
833 to be relocated. The shared library breakpoints also need to be
834 enabled. */
836 static void
837 frv_solib_create_inferior_hook (int from_tty)
839 /* Relocate main executable. */
840 frv_relocate_main_executable ();
842 /* Enable shared library breakpoints. */
843 if (!enable_break ())
845 warning (_("shared library handler failed to enable breakpoint"));
846 return;
850 static void
851 frv_clear_solib (void)
853 lm_base_cache = 0;
854 enable_break2_done = 0;
855 main_lm_addr = 0;
857 delete main_executable_lm_info;
858 main_executable_lm_info = NULL;
861 static void
862 frv_free_so (struct so_list *so)
864 lm_info_frv *li = (lm_info_frv *) so->lm_info;
866 delete li;
869 static void
870 frv_relocate_section_addresses (struct so_list *so,
871 struct target_section *sec)
873 int seg;
874 lm_info_frv *li = (lm_info_frv *) so->lm_info;
875 int_elf32_fdpic_loadmap *map = li->map;
877 for (seg = 0; seg < map->nsegs; seg++)
879 if (map->segs[seg].p_vaddr <= sec->addr
880 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
882 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
884 sec->addr += displ;
885 sec->endaddr += displ;
886 break;
891 /* Return the GOT address associated with the main executable. Return
892 0 if it can't be found. */
894 static CORE_ADDR
895 main_got (void)
897 struct bound_minimal_symbol got_sym;
899 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
900 NULL, symfile_objfile);
901 if (got_sym.minsym == 0)
902 return 0;
904 return BMSYMBOL_VALUE_ADDRESS (got_sym);
907 /* Find the global pointer for the given function address ADDR. */
909 CORE_ADDR
910 frv_fdpic_find_global_pointer (CORE_ADDR addr)
912 struct so_list *so;
914 so = master_so_list ();
915 while (so)
917 int seg;
918 lm_info_frv *li = (lm_info_frv *) so->lm_info;
919 int_elf32_fdpic_loadmap *map = li->map;
921 for (seg = 0; seg < map->nsegs; seg++)
923 if (map->segs[seg].addr <= addr
924 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
925 return li->got_value;
928 so = so->next;
931 /* Didn't find it in any of the shared objects. So assume it's in the
932 main executable. */
933 return main_got ();
936 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
937 static CORE_ADDR find_canonical_descriptor_in_load_object
938 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
940 /* Given a function entry point, attempt to find the canonical descriptor
941 associated with that entry point. Return 0 if no canonical descriptor
942 could be found. */
944 CORE_ADDR
945 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
947 const char *name;
948 CORE_ADDR addr;
949 CORE_ADDR got_value;
950 struct symbol *sym;
952 /* Fetch the corresponding global pointer for the entry point. */
953 got_value = frv_fdpic_find_global_pointer (entry_point);
955 /* Attempt to find the name of the function. If the name is available,
956 it'll be used as an aid in finding matching functions in the dynamic
957 symbol table. */
958 sym = find_pc_function (entry_point);
959 if (sym == 0)
960 name = 0;
961 else
962 name = sym->linkage_name ();
964 /* Check the main executable. */
965 addr = find_canonical_descriptor_in_load_object
966 (entry_point, got_value, name, symfile_objfile->obfd,
967 main_executable_lm_info);
969 /* If descriptor not found via main executable, check each load object
970 in list of shared objects. */
971 if (addr == 0)
973 struct so_list *so;
975 so = master_so_list ();
976 while (so)
978 lm_info_frv *li = (lm_info_frv *) so->lm_info;
980 addr = find_canonical_descriptor_in_load_object
981 (entry_point, got_value, name, so->abfd, li);
983 if (addr != 0)
984 break;
986 so = so->next;
990 return addr;
993 static CORE_ADDR
994 find_canonical_descriptor_in_load_object
995 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
996 lm_info_frv *lm)
998 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
999 arelent *rel;
1000 unsigned int i;
1001 CORE_ADDR addr = 0;
1003 /* Nothing to do if no bfd. */
1004 if (abfd == 0)
1005 return 0;
1007 /* Nothing to do if no link map. */
1008 if (lm == 0)
1009 return 0;
1011 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1012 (More about this later.) But in order to fetch the relocs, we
1013 need to first fetch the dynamic symbols. These symbols need to
1014 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1015 works. (See the comments in the declaration of struct lm_info
1016 for more information.) */
1017 if (lm->dyn_syms == NULL)
1019 long storage_needed;
1020 unsigned int number_of_symbols;
1022 /* Determine amount of space needed to hold the dynamic symbol table. */
1023 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1025 /* If there are no dynamic symbols, there's nothing to do. */
1026 if (storage_needed <= 0)
1027 return 0;
1029 /* Allocate space for the dynamic symbol table. */
1030 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1032 /* Fetch the dynamic symbol table. */
1033 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1035 if (number_of_symbols == 0)
1036 return 0;
1039 /* Fetch the dynamic relocations if not already cached. */
1040 if (lm->dyn_relocs == NULL)
1042 long storage_needed;
1044 /* Determine amount of space needed to hold the dynamic relocs. */
1045 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1047 /* Bail out if there are no dynamic relocs. */
1048 if (storage_needed <= 0)
1049 return 0;
1051 /* Allocate space for the relocs. */
1052 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1054 /* Fetch the dynamic relocs. */
1055 lm->dyn_reloc_count
1056 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1059 /* Search the dynamic relocs. */
1060 for (i = 0; i < lm->dyn_reloc_count; i++)
1062 rel = lm->dyn_relocs[i];
1064 /* Relocs of interest are those which meet the following
1065 criteria:
1067 - the names match (assuming the caller could provide
1068 a name which matches ``entry_point'').
1069 - the relocation type must be R_FRV_FUNCDESC. Relocs
1070 of this type are used (by the dynamic linker) to
1071 look up the address of a canonical descriptor (allocating
1072 it if need be) and initializing the GOT entry referred
1073 to by the offset to the address of the descriptor.
1075 These relocs of interest may be used to obtain a
1076 candidate descriptor by first adjusting the reloc's
1077 address according to the link map and then dereferencing
1078 this address (which is a GOT entry) to obtain a descriptor
1079 address. */
1080 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1081 && rel->howto->type == R_FRV_FUNCDESC)
1083 gdb_byte buf [FRV_PTR_SIZE];
1085 /* Compute address of address of candidate descriptor. */
1086 addr = rel->address + displacement_from_map (lm->map, rel->address);
1088 /* Fetch address of candidate descriptor. */
1089 if (target_read_memory (addr, buf, sizeof buf) != 0)
1090 continue;
1091 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1093 /* Check for matching entry point. */
1094 if (target_read_memory (addr, buf, sizeof buf) != 0)
1095 continue;
1096 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1097 != entry_point)
1098 continue;
1100 /* Check for matching got value. */
1101 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1102 continue;
1103 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1104 != got_value)
1105 continue;
1107 /* Match was successful! Exit loop. */
1108 break;
1112 return addr;
1115 /* Given an objfile, return the address of its link map. This value is
1116 needed for TLS support. */
1117 CORE_ADDR
1118 frv_fetch_objfile_link_map (struct objfile *objfile)
1120 struct so_list *so;
1122 /* Cause frv_current_sos() to be run if it hasn't been already. */
1123 if (main_lm_addr == 0)
1124 solib_add (0, 0, 1);
1126 /* frv_current_sos() will set main_lm_addr for the main executable. */
1127 if (objfile == symfile_objfile)
1128 return main_lm_addr;
1130 /* The other link map addresses may be found by examining the list
1131 of shared libraries. */
1132 for (so = master_so_list (); so; so = so->next)
1134 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1136 if (so->objfile == objfile)
1137 return li->lm_addr;
1140 /* Not found! */
1141 return 0;
1144 struct target_so_ops frv_so_ops;
1146 void
1147 _initialize_frv_solib (void)
1149 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1150 frv_so_ops.free_so = frv_free_so;
1151 frv_so_ops.clear_solib = frv_clear_solib;
1152 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1153 frv_so_ops.current_sos = frv_current_sos;
1154 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1155 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1156 frv_so_ops.bfd_open = solib_bfd_open;
1158 /* Debug this file's internals. */
1159 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1160 &solib_frv_debug, _("\
1161 Set internal debugging of shared library code for FR-V."), _("\
1162 Show internal debugging of shared library code for FR-V."), _("\
1163 When non-zero, FR-V solib specific internal debugging is enabled."),
1164 NULL,
1165 NULL, /* FIXME: i18n: */
1166 &setdebuglist, &showdebuglist);