1 /* GNU/Linux on ARM target support.
3 Copyright (C) 1999-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "extract-store-integer.h"
27 #include "solib-svr4.h"
30 #include "trad-frame.h"
31 #include "tramp-frame.h"
32 #include "breakpoint.h"
34 #include "xml-syscall.h"
37 #include "aarch32-tdep.h"
39 #include "arch/arm-get-next-pcs.h"
40 #include "arch/arm-linux.h"
42 #include "arm-linux-tdep.h"
43 #include "linux-tdep.h"
44 #include "glibc-tdep.h"
45 #include "arch-utils.h"
48 #include "gdbthread.h"
51 #include "record-full.h"
52 #include "linux-record.h"
54 #include "cli/cli-utils.h"
55 #include "stap-probe.h"
56 #include "parser-defs.h"
57 #include "user-regs.h"
59 #include "elf/common.h"
61 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
62 is to execute a particular software interrupt, rather than use a
63 particular undefined instruction to provoke a trap. Upon execution
64 of the software interrupt the kernel stops the inferior with a
65 SIGTRAP, and wakes the debugger. */
67 static const gdb_byte arm_linux_arm_le_breakpoint
[] = { 0x01, 0x00, 0x9f, 0xef };
69 static const gdb_byte arm_linux_arm_be_breakpoint
[] = { 0xef, 0x9f, 0x00, 0x01 };
71 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
72 the operand of the swi if old-ABI compatibility is disabled. Therefore,
73 use an undefined instruction instead. This is supported as of kernel
74 version 2.5.70 (May 2003), so should be a safe assumption for EABI
77 static const gdb_byte eabi_linux_arm_le_breakpoint
[] = { 0xf0, 0x01, 0xf0, 0xe7 };
79 static const gdb_byte eabi_linux_arm_be_breakpoint
[] = { 0xe7, 0xf0, 0x01, 0xf0 };
81 /* All the kernels which support Thumb support using a specific undefined
82 instruction for the Thumb breakpoint. */
84 static const gdb_byte arm_linux_thumb_be_breakpoint
[] = {0xde, 0x01};
86 static const gdb_byte arm_linux_thumb_le_breakpoint
[] = {0x01, 0xde};
88 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
89 we must use a length-appropriate breakpoint for 32-bit Thumb
90 instructions. See also thumb_get_next_pc. */
92 static const gdb_byte arm_linux_thumb2_be_breakpoint
[] = { 0xf7, 0xf0, 0xa0, 0x00 };
94 static const gdb_byte arm_linux_thumb2_le_breakpoint
[] = { 0xf0, 0xf7, 0x00, 0xa0 };
96 /* Description of the longjmp buffer. The buffer is treated as an array of
97 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
99 The location of saved registers in this buffer (in particular the PC
100 to use after longjmp is called) varies depending on the ABI (in
101 particular the FP model) and also (possibly) the C Library.
103 For glibc, eglibc, and uclibc the following holds: If the FP model is
104 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
105 buffer. This is also true for the SoftFPA model. However, for the FPA
106 model the PC is at offset 21 in the buffer. */
107 #define ARM_LINUX_JB_ELEMENT_SIZE ARM_INT_REGISTER_SIZE
108 #define ARM_LINUX_JB_PC_FPA 21
109 #define ARM_LINUX_JB_PC_EABI 9
112 Dynamic Linking on ARM GNU/Linux
113 --------------------------------
115 Note: PLT = procedure linkage table
116 GOT = global offset table
118 As much as possible, ELF dynamic linking defers the resolution of
119 jump/call addresses until the last minute. The technique used is
120 inspired by the i386 ELF design, and is based on the following
123 1) The calling technique should not force a change in the assembly
124 code produced for apps; it MAY cause changes in the way assembly
125 code is produced for position independent code (i.e. shared
128 2) The technique must be such that all executable areas must not be
129 modified; and any modified areas must not be executed.
131 To do this, there are three steps involved in a typical jump:
135 3) using a pointer from the GOT
137 When the executable or library is first loaded, each GOT entry is
138 initialized to point to the code which implements dynamic name
139 resolution and code finding. This is normally a function in the
140 program interpreter (on ARM GNU/Linux this is usually
141 ld-linux.so.2, but it does not have to be). On the first
142 invocation, the function is located and the GOT entry is replaced
143 with the real function address. Subsequent calls go through steps
144 1, 2 and 3 and end up calling the real code.
151 This is typical ARM code using the 26 bit relative branch or branch
152 and link instructions. The target of the instruction
153 (function_call is usually the address of the function to be called.
154 In position independent code, the target of the instruction is
155 actually an entry in the PLT when calling functions in a shared
156 library. Note that this call is identical to a normal function
157 call, only the target differs.
161 The PLT is a synthetic area, created by the linker. It exists in
162 both executables and libraries. It is an array of stubs, one per
163 imported function call. It looks like this:
166 str lr, [sp, #-4]! @push the return address (lr)
167 ldr lr, [pc, #16] @load from 6 words ahead
168 add lr, pc, lr @form an address for GOT[0]
169 ldr pc, [lr, #8]! @jump to the contents of that addr
171 The return address (lr) is pushed on the stack and used for
172 calculations. The load on the second line loads the lr with
173 &GOT[3] - . - 20. The addition on the third leaves:
175 lr = (&GOT[3] - . - 20) + (. + 8)
179 On the fourth line, the pc and lr are both updated, so that:
185 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
186 "tight", but allows us to keep all the PLT entries the same size.
189 ldr ip, [pc, #4] @load offset from gotoff
190 add ip, pc, ip @add the offset to the pc
191 ldr pc, [ip] @jump to that address
192 gotoff: .word GOT[n+3] - .
194 The load on the first line, gets an offset from the fourth word of
195 the PLT entry. The add on the second line makes ip = &GOT[n+3],
196 which contains either a pointer to PLT[0] (the fixup trampoline) or
197 a pointer to the actual code.
201 The GOT contains helper pointers for both code (PLT) fixups and
202 data fixups. The first 3 entries of the GOT are special. The next
203 M entries (where M is the number of entries in the PLT) belong to
204 the PLT fixups. The next D (all remaining) entries belong to
205 various data fixups. The actual size of the GOT is 3 + M + D.
207 The GOT is also a synthetic area, created by the linker. It exists
208 in both executables and libraries. When the GOT is first
209 initialized , all the GOT entries relating to PLT fixups are
210 pointing to code back at PLT[0].
212 The special entries in the GOT are:
214 GOT[0] = linked list pointer used by the dynamic loader
215 GOT[1] = pointer to the reloc table for this module
216 GOT[2] = pointer to the fixup/resolver code
218 The first invocation of function call comes through and uses the
219 fixup/resolver code. On the entry to the fixup/resolver code:
223 stack[0] = return address (lr) of the function call
224 [r0, r1, r2, r3] are still the arguments to the function call
226 This is enough information for the fixup/resolver code to work
227 with. Before the fixup/resolver code returns, it actually calls
228 the requested function and repairs &GOT[n+3]. */
230 /* The constants below were determined by examining the following files
231 in the linux kernel sources:
233 arch/arm/kernel/signal.c
234 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
235 include/asm-arm/unistd.h
236 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
238 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
239 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
241 /* For ARM EABI, the syscall number is not in the SWI instruction
242 (instead it is loaded into r7). We recognize the pattern that
243 glibc uses... alternatively, we could arrange to do this by
244 function name, but they are not always exported. */
245 #define ARM_SET_R7_SIGRETURN 0xe3a07077
246 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
247 #define ARM_EABI_SYSCALL 0xef000000
249 /* Equivalent patterns for Thumb2. */
250 #define THUMB2_SET_R7_SIGRETURN1 0xf04f
251 #define THUMB2_SET_R7_SIGRETURN2 0x0777
252 #define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
253 #define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
254 #define THUMB2_EABI_SYSCALL 0xdf00
256 /* OABI syscall restart trampoline, used for EABI executables too
257 whenever OABI support has been enabled in the kernel. */
258 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
259 #define ARM_LDR_PC_SP_12 0xe49df00c
260 #define ARM_LDR_PC_SP_4 0xe49df004
262 /* Syscall number for sigreturn. */
263 #define ARM_SIGRETURN 119
264 /* Syscall number for rt_sigreturn. */
265 #define ARM_RT_SIGRETURN 173
268 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs
*self
);
270 /* Operation function pointers for get_next_pcs. */
271 static struct arm_get_next_pcs_ops arm_linux_get_next_pcs_ops
= {
272 arm_get_next_pcs_read_memory_unsigned_integer
,
273 arm_linux_get_next_pcs_syscall_next_pc
,
274 arm_get_next_pcs_addr_bits_remove
,
275 arm_get_next_pcs_is_thumb
,
276 arm_linux_get_next_pcs_fixup
,
280 arm_linux_sigtramp_cache (const frame_info_ptr
&this_frame
,
281 struct trad_frame_cache
*this_cache
,
282 CORE_ADDR func
, int regs_offset
)
284 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, ARM_SP_REGNUM
);
285 CORE_ADDR base
= sp
+ regs_offset
;
288 for (i
= 0; i
< 16; i
++)
289 trad_frame_set_reg_addr (this_cache
, i
, base
+ i
* 4);
291 trad_frame_set_reg_addr (this_cache
, ARM_PS_REGNUM
, base
+ 16 * 4);
293 /* The VFP or iWMMXt registers may be saved on the stack, but there's
294 no reliable way to restore them (yet). */
296 /* Save a frame ID. */
297 trad_frame_set_id (this_cache
, frame_id_build (sp
, func
));
300 /* See arm-linux.h for stack layout details. */
302 arm_linux_sigreturn_init (const struct tramp_frame
*self
,
303 const frame_info_ptr
&this_frame
,
304 struct trad_frame_cache
*this_cache
,
307 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
308 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
309 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, ARM_SP_REGNUM
);
310 ULONGEST uc_flags
= read_memory_unsigned_integer (sp
, 4, byte_order
);
312 if (uc_flags
== ARM_NEW_SIGFRAME_MAGIC
)
313 arm_linux_sigtramp_cache (this_frame
, this_cache
, func
,
314 ARM_UCONTEXT_SIGCONTEXT
315 + ARM_SIGCONTEXT_R0
);
317 arm_linux_sigtramp_cache (this_frame
, this_cache
, func
,
322 arm_linux_rt_sigreturn_init (const struct tramp_frame
*self
,
323 const frame_info_ptr
&this_frame
,
324 struct trad_frame_cache
*this_cache
,
327 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
328 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
329 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, ARM_SP_REGNUM
);
330 ULONGEST pinfo
= read_memory_unsigned_integer (sp
, 4, byte_order
);
332 if (pinfo
== sp
+ ARM_OLD_RT_SIGFRAME_SIGINFO
)
333 arm_linux_sigtramp_cache (this_frame
, this_cache
, func
,
334 ARM_OLD_RT_SIGFRAME_UCONTEXT
335 + ARM_UCONTEXT_SIGCONTEXT
336 + ARM_SIGCONTEXT_R0
);
338 arm_linux_sigtramp_cache (this_frame
, this_cache
, func
,
339 ARM_NEW_RT_SIGFRAME_UCONTEXT
340 + ARM_UCONTEXT_SIGCONTEXT
341 + ARM_SIGCONTEXT_R0
);
345 arm_linux_restart_syscall_init (const struct tramp_frame
*self
,
346 const frame_info_ptr
&this_frame
,
347 struct trad_frame_cache
*this_cache
,
350 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
351 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, ARM_SP_REGNUM
);
352 CORE_ADDR pc
= get_frame_memory_unsigned (this_frame
, sp
, 4);
353 CORE_ADDR cpsr
= get_frame_register_unsigned (this_frame
, ARM_PS_REGNUM
);
354 ULONGEST t_bit
= arm_psr_thumb_bit (gdbarch
);
357 /* There are two variants of this trampoline; with older kernels, the
358 stub is placed on the stack, while newer kernels use the stub from
359 the vector page. They are identical except that the older version
360 increments SP by 12 (to skip stored PC and the stub itself), while
361 the newer version increments SP only by 4 (just the stored PC). */
362 if (self
->insn
[1].bytes
== ARM_LDR_PC_SP_4
)
367 /* Update Thumb bit in CPSR. */
373 /* Remove Thumb bit from PC. */
374 pc
= gdbarch_addr_bits_remove (gdbarch
, pc
);
376 /* Save previous register values. */
377 trad_frame_set_reg_value (this_cache
, ARM_SP_REGNUM
, sp
+ sp_offset
);
378 trad_frame_set_reg_value (this_cache
, ARM_PC_REGNUM
, pc
);
379 trad_frame_set_reg_value (this_cache
, ARM_PS_REGNUM
, cpsr
);
381 /* Save a frame ID. */
382 trad_frame_set_id (this_cache
, frame_id_build (sp
, func
));
385 static struct tramp_frame arm_linux_sigreturn_tramp_frame
= {
389 { ARM_LINUX_SIGRETURN_INSTR
, ULONGEST_MAX
},
390 { TRAMP_SENTINEL_INSN
}
392 arm_linux_sigreturn_init
395 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame
= {
399 { ARM_LINUX_RT_SIGRETURN_INSTR
, ULONGEST_MAX
},
400 { TRAMP_SENTINEL_INSN
}
402 arm_linux_rt_sigreturn_init
405 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame
= {
409 { ARM_SET_R7_SIGRETURN
, ULONGEST_MAX
},
410 { ARM_EABI_SYSCALL
, ULONGEST_MAX
},
411 { TRAMP_SENTINEL_INSN
}
413 arm_linux_sigreturn_init
416 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame
= {
420 { ARM_SET_R7_RT_SIGRETURN
, ULONGEST_MAX
},
421 { ARM_EABI_SYSCALL
, ULONGEST_MAX
},
422 { TRAMP_SENTINEL_INSN
}
424 arm_linux_rt_sigreturn_init
427 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame
= {
431 { THUMB2_SET_R7_SIGRETURN1
, ULONGEST_MAX
},
432 { THUMB2_SET_R7_SIGRETURN2
, ULONGEST_MAX
},
433 { THUMB2_EABI_SYSCALL
, ULONGEST_MAX
},
434 { TRAMP_SENTINEL_INSN
}
436 arm_linux_sigreturn_init
439 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame
= {
443 { THUMB2_SET_R7_RT_SIGRETURN1
, ULONGEST_MAX
},
444 { THUMB2_SET_R7_RT_SIGRETURN2
, ULONGEST_MAX
},
445 { THUMB2_EABI_SYSCALL
, ULONGEST_MAX
},
446 { TRAMP_SENTINEL_INSN
}
448 arm_linux_rt_sigreturn_init
451 static struct tramp_frame arm_linux_restart_syscall_tramp_frame
= {
455 { ARM_OABI_SYSCALL_RESTART_SYSCALL
, ULONGEST_MAX
},
456 { ARM_LDR_PC_SP_12
, ULONGEST_MAX
},
457 { TRAMP_SENTINEL_INSN
}
459 arm_linux_restart_syscall_init
462 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame
= {
466 { ARM_OABI_SYSCALL_RESTART_SYSCALL
, ULONGEST_MAX
},
467 { ARM_LDR_PC_SP_4
, ULONGEST_MAX
},
468 { TRAMP_SENTINEL_INSN
}
470 arm_linux_restart_syscall_init
473 /* Core file and register set support. */
475 #define ARM_LINUX_SIZEOF_GREGSET (18 * ARM_INT_REGISTER_SIZE)
478 arm_linux_supply_gregset (const struct regset
*regset
,
479 struct regcache
*regcache
,
480 int regnum
, const void *gregs_buf
, size_t len
)
482 struct gdbarch
*gdbarch
= regcache
->arch ();
483 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
484 const gdb_byte
*gregs
= (const gdb_byte
*) gregs_buf
;
487 gdb_byte pc_buf
[ARM_INT_REGISTER_SIZE
];
489 for (regno
= ARM_A1_REGNUM
; regno
< ARM_PC_REGNUM
; regno
++)
490 if (regnum
== -1 || regnum
== regno
)
491 regcache
->raw_supply (regno
, gregs
+ ARM_INT_REGISTER_SIZE
* regno
);
493 if (regnum
== ARM_PS_REGNUM
|| regnum
== -1)
496 regcache
->raw_supply (ARM_PS_REGNUM
,
497 gregs
+ ARM_INT_REGISTER_SIZE
* ARM_CPSR_GREGNUM
);
499 regcache
->raw_supply (ARM_PS_REGNUM
,
500 gregs
+ ARM_INT_REGISTER_SIZE
* ARM_PC_REGNUM
);
503 if (regnum
== ARM_PC_REGNUM
|| regnum
== -1)
505 reg_pc
= extract_unsigned_integer (
506 gregs
+ ARM_INT_REGISTER_SIZE
* ARM_PC_REGNUM
,
507 ARM_INT_REGISTER_SIZE
, byte_order
);
508 reg_pc
= gdbarch_addr_bits_remove (gdbarch
, reg_pc
);
509 store_unsigned_integer (pc_buf
, ARM_INT_REGISTER_SIZE
, byte_order
,
511 regcache
->raw_supply (ARM_PC_REGNUM
, pc_buf
);
516 arm_linux_collect_gregset (const struct regset
*regset
,
517 const struct regcache
*regcache
,
518 int regnum
, void *gregs_buf
, size_t len
)
520 gdb_byte
*gregs
= (gdb_byte
*) gregs_buf
;
523 for (regno
= ARM_A1_REGNUM
; regno
< ARM_PC_REGNUM
; regno
++)
524 if (regnum
== -1 || regnum
== regno
)
525 regcache
->raw_collect (regno
,
526 gregs
+ ARM_INT_REGISTER_SIZE
* regno
);
528 if (regnum
== ARM_PS_REGNUM
|| regnum
== -1)
531 regcache
->raw_collect (ARM_PS_REGNUM
,
532 gregs
+ ARM_INT_REGISTER_SIZE
* ARM_CPSR_GREGNUM
);
534 regcache
->raw_collect (ARM_PS_REGNUM
,
535 gregs
+ ARM_INT_REGISTER_SIZE
* ARM_PC_REGNUM
);
538 if (regnum
== ARM_PC_REGNUM
|| regnum
== -1)
539 regcache
->raw_collect (ARM_PC_REGNUM
,
540 gregs
+ ARM_INT_REGISTER_SIZE
* ARM_PC_REGNUM
);
543 /* Support for register format used by the NWFPE FPA emulator. */
545 #define typeNone 0x00
546 #define typeSingle 0x01
547 #define typeDouble 0x02
548 #define typeExtended 0x03
551 supply_nwfpe_register (struct regcache
*regcache
, int regno
,
552 const gdb_byte
*regs
)
554 const gdb_byte
*reg_data
;
556 gdb_byte buf
[ARM_FP_REGISTER_SIZE
];
558 reg_data
= regs
+ (regno
- ARM_F0_REGNUM
) * ARM_FP_REGISTER_SIZE
;
559 reg_tag
= regs
[(regno
- ARM_F0_REGNUM
) + NWFPE_TAGS_OFFSET
];
560 memset (buf
, 0, ARM_FP_REGISTER_SIZE
);
565 memcpy (buf
, reg_data
, 4);
568 memcpy (buf
, reg_data
+ 4, 4);
569 memcpy (buf
+ 4, reg_data
, 4);
572 /* We want sign and exponent, then least significant bits,
573 then most significant. NWFPE does sign, most, least. */
574 memcpy (buf
, reg_data
, 4);
575 memcpy (buf
+ 4, reg_data
+ 8, 4);
576 memcpy (buf
+ 8, reg_data
+ 4, 4);
582 regcache
->raw_supply (regno
, buf
);
586 collect_nwfpe_register (const struct regcache
*regcache
, int regno
,
591 gdb_byte buf
[ARM_FP_REGISTER_SIZE
];
593 regcache
->raw_collect (regno
, buf
);
595 /* NOTE drow/2006-06-07: This code uses the tag already in the
596 register buffer. I've preserved that when moving the code
597 from the native file to the target file. But this doesn't
598 always make sense. */
600 reg_data
= regs
+ (regno
- ARM_F0_REGNUM
) * ARM_FP_REGISTER_SIZE
;
601 reg_tag
= regs
[(regno
- ARM_F0_REGNUM
) + NWFPE_TAGS_OFFSET
];
606 memcpy (reg_data
, buf
, 4);
609 memcpy (reg_data
, buf
+ 4, 4);
610 memcpy (reg_data
+ 4, buf
, 4);
613 memcpy (reg_data
, buf
, 4);
614 memcpy (reg_data
+ 4, buf
+ 8, 4);
615 memcpy (reg_data
+ 8, buf
+ 4, 4);
623 arm_linux_supply_nwfpe (const struct regset
*regset
,
624 struct regcache
*regcache
,
625 int regnum
, const void *regs_buf
, size_t len
)
627 const gdb_byte
*regs
= (const gdb_byte
*) regs_buf
;
630 if (regnum
== ARM_FPS_REGNUM
|| regnum
== -1)
631 regcache
->raw_supply (ARM_FPS_REGNUM
,
632 regs
+ NWFPE_FPSR_OFFSET
);
634 for (regno
= ARM_F0_REGNUM
; regno
<= ARM_F7_REGNUM
; regno
++)
635 if (regnum
== -1 || regnum
== regno
)
636 supply_nwfpe_register (regcache
, regno
, regs
);
640 arm_linux_collect_nwfpe (const struct regset
*regset
,
641 const struct regcache
*regcache
,
642 int regnum
, void *regs_buf
, size_t len
)
644 gdb_byte
*regs
= (gdb_byte
*) regs_buf
;
647 for (regno
= ARM_F0_REGNUM
; regno
<= ARM_F7_REGNUM
; regno
++)
648 if (regnum
== -1 || regnum
== regno
)
649 collect_nwfpe_register (regcache
, regno
, regs
);
651 if (regnum
== ARM_FPS_REGNUM
|| regnum
== -1)
652 regcache
->raw_collect (ARM_FPS_REGNUM
,
653 regs
+ ARM_INT_REGISTER_SIZE
* ARM_FPS_REGNUM
);
656 /* Support VFP register format. */
658 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
661 arm_linux_supply_vfp (const struct regset
*regset
,
662 struct regcache
*regcache
,
663 int regnum
, const void *regs_buf
, size_t len
)
665 const gdb_byte
*regs
= (const gdb_byte
*) regs_buf
;
668 if (regnum
== ARM_FPSCR_REGNUM
|| regnum
== -1)
669 regcache
->raw_supply (ARM_FPSCR_REGNUM
, regs
+ 32 * 8);
671 for (regno
= ARM_D0_REGNUM
; regno
<= ARM_D31_REGNUM
; regno
++)
672 if (regnum
== -1 || regnum
== regno
)
673 regcache
->raw_supply (regno
, regs
+ (regno
- ARM_D0_REGNUM
) * 8);
677 arm_linux_collect_vfp (const struct regset
*regset
,
678 const struct regcache
*regcache
,
679 int regnum
, void *regs_buf
, size_t len
)
681 gdb_byte
*regs
= (gdb_byte
*) regs_buf
;
684 if (regnum
== ARM_FPSCR_REGNUM
|| regnum
== -1)
685 regcache
->raw_collect (ARM_FPSCR_REGNUM
, regs
+ 32 * 8);
687 for (regno
= ARM_D0_REGNUM
; regno
<= ARM_D31_REGNUM
; regno
++)
688 if (regnum
== -1 || regnum
== regno
)
689 regcache
->raw_collect (regno
, regs
+ (regno
- ARM_D0_REGNUM
) * 8);
692 static const struct regset arm_linux_gregset
=
694 NULL
, arm_linux_supply_gregset
, arm_linux_collect_gregset
697 static const struct regset arm_linux_fpregset
=
699 NULL
, arm_linux_supply_nwfpe
, arm_linux_collect_nwfpe
702 static const struct regset arm_linux_vfpregset
=
704 NULL
, arm_linux_supply_vfp
, arm_linux_collect_vfp
707 /* Iterate over core file register note sections. */
710 arm_linux_iterate_over_regset_sections (struct gdbarch
*gdbarch
,
711 iterate_over_regset_sections_cb
*cb
,
713 const struct regcache
*regcache
)
715 arm_gdbarch_tdep
*tdep
= gdbarch_tdep
<arm_gdbarch_tdep
> (gdbarch
);
717 cb (".reg", ARM_LINUX_SIZEOF_GREGSET
, ARM_LINUX_SIZEOF_GREGSET
,
718 &arm_linux_gregset
, NULL
, cb_data
);
720 if (tdep
->vfp_register_count
> 0)
721 cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP
, ARM_LINUX_SIZEOF_VFP
,
722 &arm_linux_vfpregset
, "VFP floating-point", cb_data
);
723 else if (tdep
->have_fpa_registers
)
724 cb (".reg2", ARM_LINUX_SIZEOF_NWFPE
, ARM_LINUX_SIZEOF_NWFPE
,
725 &arm_linux_fpregset
, "FPA floating-point", cb_data
);
728 /* Determine target description from core file. */
730 static const struct target_desc
*
731 arm_linux_core_read_description (struct gdbarch
*gdbarch
,
732 struct target_ops
*target
,
735 std::optional
<gdb::byte_vector
> auxv
= target_read_auxv_raw (target
);
736 CORE_ADDR arm_hwcap
= linux_get_hwcap (auxv
, target
, gdbarch
);
738 if (arm_hwcap
& HWCAP_VFP
)
740 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
741 Neon with VFPv3-D32. */
742 if (arm_hwcap
& HWCAP_NEON
)
743 return aarch32_read_description (false);
744 else if ((arm_hwcap
& (HWCAP_VFPv3
| HWCAP_VFPv3D16
)) == HWCAP_VFPv3
)
745 return arm_read_description (ARM_FP_TYPE_VFPV3
, false);
747 return arm_read_description (ARM_FP_TYPE_VFPV2
, false);
754 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
755 return 1. In addition, set IS_THUMB depending on whether we
756 will return to ARM or Thumb code. Return 0 if it is not a
757 rt_sigreturn/sigreturn syscall. */
759 arm_linux_sigreturn_return_addr (const frame_info_ptr
&frame
,
760 unsigned long svc_number
,
761 CORE_ADDR
*pc
, int *is_thumb
)
763 /* Is this a sigreturn or rt_sigreturn syscall? */
764 if (svc_number
== 119 || svc_number
== 173)
766 if (get_frame_type (frame
) == SIGTRAMP_FRAME
)
768 ULONGEST t_bit
= arm_psr_thumb_bit (frame_unwind_arch (frame
));
770 = frame_unwind_register_unsigned (frame
, ARM_PS_REGNUM
);
772 *is_thumb
= (cpsr
& t_bit
) != 0;
773 *pc
= frame_unwind_caller_pc (frame
);
780 /* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
781 based on current processor state. In addition, set IS_THUMB depending
782 on whether we will return to ARM or Thumb code. */
785 arm_linux_sigreturn_next_pc (struct regcache
*regcache
,
786 unsigned long svc_number
, int *is_thumb
)
789 unsigned long sp_data
;
790 CORE_ADDR next_pc
= 0;
791 struct gdbarch
*gdbarch
= regcache
->arch ();
792 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
794 int is_sigreturn
= 0;
797 gdb_assert (svc_number
== ARM_SIGRETURN
798 || svc_number
== ARM_RT_SIGRETURN
);
800 is_sigreturn
= (svc_number
== ARM_SIGRETURN
);
801 regcache_cooked_read_unsigned (regcache
, ARM_SP_REGNUM
, &sp
);
802 sp_data
= read_memory_unsigned_integer (sp
, 4, byte_order
);
804 pc_offset
= arm_linux_sigreturn_next_pc_offset (sp
, sp_data
, svc_number
,
807 next_pc
= read_memory_unsigned_integer (sp
+ pc_offset
, 4, byte_order
);
809 /* Set IS_THUMB according the CPSR saved on the stack. */
810 cpsr
= read_memory_unsigned_integer (sp
+ pc_offset
+ 4, 4, byte_order
);
811 *is_thumb
= ((cpsr
& arm_psr_thumb_bit (gdbarch
)) != 0);
816 /* Return true if we're at execve syscall-exit-stop. */
819 is_execve_syscall_exit (struct regcache
*regs
)
823 /* Check that lr is 0. */
824 regcache_cooked_read_unsigned (regs
, ARM_LR_REGNUM
, ®
);
828 /* Check that r0-r8 is 0. */
829 for (int i
= 0; i
<= 8; ++i
)
832 regcache_cooked_read_unsigned (regs
, ARM_A1_REGNUM
+ i
, ®
);
840 #define arm_sys_execve 11
842 /* At a ptrace syscall-stop, return the syscall number. This either
843 comes from the SWI instruction (OABI) or from r7 (EABI).
845 When the function fails, it should return -1. */
848 arm_linux_get_syscall_number (struct gdbarch
*gdbarch
,
851 struct regcache
*regs
= get_thread_regcache (thread
);
855 ULONGEST t_bit
= arm_psr_thumb_bit (gdbarch
);
857 ULONGEST svc_number
= -1;
859 if (is_execve_syscall_exit (regs
))
860 return arm_sys_execve
;
862 regcache_cooked_read_unsigned (regs
, ARM_PC_REGNUM
, &pc
);
863 regcache_cooked_read_unsigned (regs
, ARM_PS_REGNUM
, &cpsr
);
864 is_thumb
= (cpsr
& t_bit
) != 0;
868 regcache_cooked_read_unsigned (regs
, 7, &svc_number
);
872 enum bfd_endian byte_order_for_code
=
873 gdbarch_byte_order_for_code (gdbarch
);
875 /* PC gets incremented before the syscall-stop, so read the
876 previous instruction. */
877 unsigned long this_instr
;
880 if (!safe_read_memory_unsigned_integer (pc
- 4, 4, byte_order_for_code
,
885 unsigned long svc_operand
= (0x00ffffff & this_instr
);
890 svc_number
= svc_operand
- 0x900000;
895 regcache_cooked_read_unsigned (regs
, 7, &svc_number
);
903 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs
*self
)
905 CORE_ADDR next_pc
= 0;
907 = gdb::checked_static_cast
<struct regcache
*> (self
->regcache
);
908 CORE_ADDR pc
= regcache_read_pc (regcache
);
909 int is_thumb
= arm_is_thumb (regcache
);
910 ULONGEST svc_number
= 0;
914 svc_number
= regcache_raw_get_unsigned (self
->regcache
, 7);
919 struct gdbarch
*gdbarch
= regcache
->arch ();
920 enum bfd_endian byte_order_for_code
=
921 gdbarch_byte_order_for_code (gdbarch
);
922 unsigned long this_instr
=
923 read_memory_unsigned_integer (pc
, 4, byte_order_for_code
);
925 unsigned long svc_operand
= (0x00ffffff & this_instr
);
926 if (svc_operand
) /* OABI. */
928 svc_number
= svc_operand
- 0x900000;
932 svc_number
= regcache_raw_get_unsigned (self
->regcache
, 7);
938 if (svc_number
== ARM_SIGRETURN
|| svc_number
== ARM_RT_SIGRETURN
)
940 /* SIGRETURN or RT_SIGRETURN may affect the arm thumb mode, so
942 next_pc
= arm_linux_sigreturn_next_pc (regcache
, svc_number
, &is_thumb
);
945 /* Addresses for calling Thumb functions have the bit 0 set. */
947 next_pc
= MAKE_THUMB_ADDR (next_pc
);
953 /* Insert a single step breakpoint at the next executed instruction. */
955 static std::vector
<CORE_ADDR
>
956 arm_linux_software_single_step (struct regcache
*regcache
)
958 struct gdbarch
*gdbarch
= regcache
->arch ();
959 struct arm_get_next_pcs next_pcs_ctx
;
961 /* If the target does have hardware single step, GDB doesn't have
962 to bother software single step. */
963 if (target_can_do_single_step () == 1)
966 arm_get_next_pcs_ctor (&next_pcs_ctx
,
967 &arm_linux_get_next_pcs_ops
,
968 gdbarch_byte_order (gdbarch
),
969 gdbarch_byte_order_for_code (gdbarch
),
973 std::vector
<CORE_ADDR
> next_pcs
= arm_get_next_pcs (&next_pcs_ctx
);
975 for (CORE_ADDR
&pc_ref
: next_pcs
)
976 pc_ref
= gdbarch_addr_bits_remove (gdbarch
, pc_ref
);
981 /* Support for displaced stepping of Linux SVC instructions. */
984 arm_linux_cleanup_svc (struct gdbarch
*gdbarch
,
985 struct regcache
*regs
,
986 arm_displaced_step_copy_insn_closure
*dsc
)
988 ULONGEST apparent_pc
;
991 regcache_cooked_read_unsigned (regs
, ARM_PC_REGNUM
, &apparent_pc
);
993 within_scratch
= (apparent_pc
>= dsc
->scratch_base
994 && apparent_pc
< (dsc
->scratch_base
995 + ARM_DISPLACED_MODIFIED_INSNS
* 4 + 4));
997 displaced_debug_printf ("PC is apparently %.8lx after SVC step %s",
998 (unsigned long) apparent_pc
,
1000 ? "(within scratch space)"
1001 : "(outside scratch space)"));
1004 displaced_write_reg (regs
, dsc
, ARM_PC_REGNUM
,
1005 dsc
->insn_addr
+ dsc
->insn_size
, BRANCH_WRITE_PC
);
1009 arm_linux_copy_svc (struct gdbarch
*gdbarch
, struct regcache
*regs
,
1010 arm_displaced_step_copy_insn_closure
*dsc
)
1012 CORE_ADDR return_to
= 0;
1014 frame_info_ptr frame
;
1015 unsigned int svc_number
= displaced_read_reg (regs
, dsc
, 7);
1016 int is_sigreturn
= 0;
1019 frame
= get_current_frame ();
1021 is_sigreturn
= arm_linux_sigreturn_return_addr(frame
, svc_number
,
1022 &return_to
, &is_thumb
);
1025 struct symtab_and_line sal
;
1027 displaced_debug_printf ("found sigreturn/rt_sigreturn SVC call. "
1028 "PC in frame = %lx",
1029 (unsigned long) get_frame_pc (frame
));
1031 displaced_debug_printf ("unwind pc = %lx. Setting momentary breakpoint.",
1032 (unsigned long) return_to
);
1034 gdb_assert (inferior_thread ()->control
.step_resume_breakpoint
1037 sal
= find_pc_line (return_to
, 0);
1039 sal
.section
= find_pc_overlay (return_to
);
1040 sal
.explicit_pc
= 1;
1042 frame
= get_prev_frame (frame
);
1046 inferior_thread ()->control
.step_resume_breakpoint
1047 = set_momentary_breakpoint (gdbarch
, sal
, get_frame_id (frame
),
1048 bp_step_resume
).release ();
1050 /* We need to make sure we actually insert the momentary
1051 breakpoint set above. */
1052 insert_breakpoints ();
1055 displaced_debug_printf ("couldn't find previous frame to set momentary "
1056 "breakpoint for sigreturn/rt_sigreturn");
1059 displaced_debug_printf ("found SVC call");
1061 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1062 location, else nothing.
1063 Insn: unmodified svc.
1064 Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
1065 else leave pc alone. */
1068 dsc
->cleanup
= &arm_linux_cleanup_svc
;
1069 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1071 dsc
->wrote_to_pc
= 1;
1077 /* The following two functions implement single-stepping over calls to Linux
1078 kernel helper routines, which perform e.g. atomic operations on architecture
1079 variants which don't support them natively.
1081 When this function is called, the PC will be pointing at the kernel helper
1082 (at an address inaccessible to GDB), and r14 will point to the return
1083 address. Displaced stepping always executes code in the copy area:
1084 so, make the copy-area instruction branch back to the kernel helper (the
1085 "from" address), and make r14 point to the breakpoint in the copy area. In
1086 that way, we regain control once the kernel helper returns, and can clean
1087 up appropriately (as if we had just returned from the kernel helper as it
1088 would have been called from the non-displaced location). */
1091 cleanup_kernel_helper_return (struct gdbarch
*gdbarch
,
1092 struct regcache
*regs
,
1093 arm_displaced_step_copy_insn_closure
*dsc
)
1095 displaced_write_reg (regs
, dsc
, ARM_LR_REGNUM
, dsc
->tmp
[0], CANNOT_WRITE_PC
);
1096 displaced_write_reg (regs
, dsc
, ARM_PC_REGNUM
, dsc
->tmp
[0], BRANCH_WRITE_PC
);
1100 arm_catch_kernel_helper_return (struct gdbarch
*gdbarch
, CORE_ADDR from
,
1101 CORE_ADDR to
, struct regcache
*regs
,
1102 arm_displaced_step_copy_insn_closure
*dsc
)
1104 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1107 dsc
->insn_addr
= from
;
1108 dsc
->cleanup
= &cleanup_kernel_helper_return
;
1109 /* Say we wrote to the PC, else cleanup will set PC to the next
1110 instruction in the helper, which isn't helpful. */
1111 dsc
->wrote_to_pc
= 1;
1113 /* Preparation: tmp[0] <- r14
1114 r14 <- <scratch space>+4
1115 *(<scratch space>+8) <- from
1116 Insn: ldr pc, [r14, #4]
1117 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1119 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, ARM_LR_REGNUM
);
1120 displaced_write_reg (regs
, dsc
, ARM_LR_REGNUM
, (ULONGEST
) to
+ 4,
1122 write_memory_unsigned_integer (to
+ 8, 4, byte_order
, from
);
1124 dsc
->modinsn
[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1127 /* Linux-specific displaced step instruction copying function. Detects when
1128 the program has stepped into a Linux kernel helper routine (which must be
1129 handled as a special case). */
1131 static displaced_step_copy_insn_closure_up
1132 arm_linux_displaced_step_copy_insn (struct gdbarch
*gdbarch
,
1133 CORE_ADDR from
, CORE_ADDR to
,
1134 struct regcache
*regs
)
1136 std::unique_ptr
<arm_displaced_step_copy_insn_closure
> dsc
1137 (new arm_displaced_step_copy_insn_closure
);
1139 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1140 stop at the return location. */
1141 if (from
> 0xffff0000)
1143 displaced_debug_printf ("detected kernel helper at %.8lx",
1144 (unsigned long) from
);
1146 arm_catch_kernel_helper_return (gdbarch
, from
, to
, regs
, dsc
.get ());
1150 /* Override the default handling of SVC instructions. */
1151 dsc
->u
.svc
.copy_svc_os
= arm_linux_copy_svc
;
1153 arm_process_displaced_insn (gdbarch
, from
, to
, regs
, dsc
.get ());
1156 arm_displaced_init_closure (gdbarch
, from
, to
, dsc
.get ());
1158 /* This is a work around for a problem with g++ 4.8. */
1159 return displaced_step_copy_insn_closure_up (dsc
.release ());
1162 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1166 arm_stap_is_single_operand (struct gdbarch
*gdbarch
, const char *s
)
1168 return (*s
== '#' || *s
== '$' || isdigit (*s
) /* Literal number. */
1169 || *s
== '[' /* Register indirection or
1171 || isalpha (*s
)); /* Register value. */
1174 /* This routine is used to parse a special token in ARM's assembly.
1176 The special tokens parsed by it are:
1178 - Register displacement (e.g, [fp, #-8])
1180 It returns one if the special token has been parsed successfully,
1181 or zero if the current token is not considered special. */
1183 static expr::operation_up
1184 arm_stap_parse_special_token (struct gdbarch
*gdbarch
,
1185 struct stap_parse_info
*p
)
1189 /* Temporary holder for lookahead. */
1190 const char *tmp
= p
->arg
;
1192 /* Used to save the register name. */
1202 /* Register name. */
1203 while (isalnum (*tmp
))
1210 regname
= (char *) alloca (len
+ 2);
1213 if (isdigit (*start
))
1215 /* If we are dealing with a register whose name begins with a
1216 digit, it means we should prefix the name with the letter
1217 `r', because GDB expects this name pattern. Otherwise (e.g.,
1218 we are dealing with the register `fp'), we don't need to
1219 add such a prefix. */
1224 strncpy (regname
+ offset
, start
, len
);
1226 regname
[len
] = '\0';
1228 if (user_reg_map_name_to_regnum (gdbarch
, regname
, len
) == -1)
1229 error (_("Invalid register name `%s' on expression `%s'."),
1230 regname
, p
->saved_arg
);
1233 tmp
= skip_spaces (tmp
);
1234 if (*tmp
== '#' || *tmp
== '$')
1243 displacement
= strtol (tmp
, &endp
, 10);
1246 /* Skipping last `]'. */
1251 using namespace expr
;
1253 /* The displacement. */
1254 struct type
*long_type
= builtin_type (gdbarch
)->builtin_long
;
1256 displacement
= -displacement
;
1257 operation_up disp
= make_operation
<long_const_operation
> (long_type
,
1260 /* The register name. */
1262 = make_operation
<register_operation
> (regname
);
1265 = make_operation
<add_operation
> (std::move (reg
), std::move (disp
));
1267 /* Casting to the expected type. */
1268 struct type
*arg_ptr_type
= lookup_pointer_type (p
->arg_type
);
1269 sum
= make_operation
<unop_cast_operation
> (std::move (sum
),
1271 return make_operation
<unop_ind_operation
> (std::move (sum
));
1277 /* ARM process record-replay constructs: syscall, signal etc. */
1279 static linux_record_tdep arm_linux_record_tdep
;
1281 /* arm_canonicalize_syscall maps from the native arm Linux set
1282 of syscall ids into a canonical set of syscall ids used by
1285 static enum gdb_syscall
1286 arm_canonicalize_syscall (int syscall
)
1290 case 0: return gdb_sys_restart_syscall
;
1291 case 1: return gdb_sys_exit
;
1292 case 2: return gdb_sys_fork
;
1293 case 3: return gdb_sys_read
;
1294 case 4: return gdb_sys_write
;
1295 case 5: return gdb_sys_open
;
1296 case 6: return gdb_sys_close
;
1297 case 8: return gdb_sys_creat
;
1298 case 9: return gdb_sys_link
;
1299 case 10: return gdb_sys_unlink
;
1300 case arm_sys_execve
: return gdb_sys_execve
;
1301 case 12: return gdb_sys_chdir
;
1302 case 13: return gdb_sys_time
;
1303 case 14: return gdb_sys_mknod
;
1304 case 15: return gdb_sys_chmod
;
1305 case 16: return gdb_sys_lchown16
;
1306 case 19: return gdb_sys_lseek
;
1307 case 20: return gdb_sys_getpid
;
1308 case 21: return gdb_sys_mount
;
1309 case 22: return gdb_sys_oldumount
;
1310 case 23: return gdb_sys_setuid16
;
1311 case 24: return gdb_sys_getuid16
;
1312 case 25: return gdb_sys_stime
;
1313 case 26: return gdb_sys_ptrace
;
1314 case 27: return gdb_sys_alarm
;
1315 case 29: return gdb_sys_pause
;
1316 case 30: return gdb_sys_utime
;
1317 case 33: return gdb_sys_access
;
1318 case 34: return gdb_sys_nice
;
1319 case 36: return gdb_sys_sync
;
1320 case 37: return gdb_sys_kill
;
1321 case 38: return gdb_sys_rename
;
1322 case 39: return gdb_sys_mkdir
;
1323 case 40: return gdb_sys_rmdir
;
1324 case 41: return gdb_sys_dup
;
1325 case 42: return gdb_sys_pipe
;
1326 case 43: return gdb_sys_times
;
1327 case 45: return gdb_sys_brk
;
1328 case 46: return gdb_sys_setgid16
;
1329 case 47: return gdb_sys_getgid16
;
1330 case 49: return gdb_sys_geteuid16
;
1331 case 50: return gdb_sys_getegid16
;
1332 case 51: return gdb_sys_acct
;
1333 case 52: return gdb_sys_umount
;
1334 case 54: return gdb_sys_ioctl
;
1335 case 55: return gdb_sys_fcntl
;
1336 case 57: return gdb_sys_setpgid
;
1337 case 60: return gdb_sys_umask
;
1338 case 61: return gdb_sys_chroot
;
1339 case 62: return gdb_sys_ustat
;
1340 case 63: return gdb_sys_dup2
;
1341 case 64: return gdb_sys_getppid
;
1342 case 65: return gdb_sys_getpgrp
;
1343 case 66: return gdb_sys_setsid
;
1344 case 67: return gdb_sys_sigaction
;
1345 case 70: return gdb_sys_setreuid16
;
1346 case 71: return gdb_sys_setregid16
;
1347 case 72: return gdb_sys_sigsuspend
;
1348 case 73: return gdb_sys_sigpending
;
1349 case 74: return gdb_sys_sethostname
;
1350 case 75: return gdb_sys_setrlimit
;
1351 case 76: return gdb_sys_getrlimit
;
1352 case 77: return gdb_sys_getrusage
;
1353 case 78: return gdb_sys_gettimeofday
;
1354 case 79: return gdb_sys_settimeofday
;
1355 case 80: return gdb_sys_getgroups16
;
1356 case 81: return gdb_sys_setgroups16
;
1357 case 82: return gdb_sys_select
;
1358 case 83: return gdb_sys_symlink
;
1359 case 85: return gdb_sys_readlink
;
1360 case 86: return gdb_sys_uselib
;
1361 case 87: return gdb_sys_swapon
;
1362 case 88: return gdb_sys_reboot
;
1363 case 89: return gdb_old_readdir
;
1364 case 90: return gdb_old_mmap
;
1365 case 91: return gdb_sys_munmap
;
1366 case 92: return gdb_sys_truncate
;
1367 case 93: return gdb_sys_ftruncate
;
1368 case 94: return gdb_sys_fchmod
;
1369 case 95: return gdb_sys_fchown16
;
1370 case 96: return gdb_sys_getpriority
;
1371 case 97: return gdb_sys_setpriority
;
1372 case 99: return gdb_sys_statfs
;
1373 case 100: return gdb_sys_fstatfs
;
1374 case 102: return gdb_sys_socketcall
;
1375 case 103: return gdb_sys_syslog
;
1376 case 104: return gdb_sys_setitimer
;
1377 case 105: return gdb_sys_getitimer
;
1378 case 106: return gdb_sys_stat
;
1379 case 107: return gdb_sys_lstat
;
1380 case 108: return gdb_sys_fstat
;
1381 case 111: return gdb_sys_vhangup
;
1382 case 113: /* sys_syscall */
1383 return gdb_sys_no_syscall
;
1384 case 114: return gdb_sys_wait4
;
1385 case 115: return gdb_sys_swapoff
;
1386 case 116: return gdb_sys_sysinfo
;
1387 case 117: return gdb_sys_ipc
;
1388 case 118: return gdb_sys_fsync
;
1389 case 119: return gdb_sys_sigreturn
;
1390 case 120: return gdb_sys_clone
;
1391 case 121: return gdb_sys_setdomainname
;
1392 case 122: return gdb_sys_uname
;
1393 case 124: return gdb_sys_adjtimex
;
1394 case 125: return gdb_sys_mprotect
;
1395 case 126: return gdb_sys_sigprocmask
;
1396 case 128: return gdb_sys_init_module
;
1397 case 129: return gdb_sys_delete_module
;
1398 case 131: return gdb_sys_quotactl
;
1399 case 132: return gdb_sys_getpgid
;
1400 case 133: return gdb_sys_fchdir
;
1401 case 134: return gdb_sys_bdflush
;
1402 case 135: return gdb_sys_sysfs
;
1403 case 136: return gdb_sys_personality
;
1404 case 138: return gdb_sys_setfsuid16
;
1405 case 139: return gdb_sys_setfsgid16
;
1406 case 140: return gdb_sys_llseek
;
1407 case 141: return gdb_sys_getdents
;
1408 case 142: return gdb_sys_select
;
1409 case 143: return gdb_sys_flock
;
1410 case 144: return gdb_sys_msync
;
1411 case 145: return gdb_sys_readv
;
1412 case 146: return gdb_sys_writev
;
1413 case 147: return gdb_sys_getsid
;
1414 case 148: return gdb_sys_fdatasync
;
1415 case 149: return gdb_sys_sysctl
;
1416 case 150: return gdb_sys_mlock
;
1417 case 151: return gdb_sys_munlock
;
1418 case 152: return gdb_sys_mlockall
;
1419 case 153: return gdb_sys_munlockall
;
1420 case 154: return gdb_sys_sched_setparam
;
1421 case 155: return gdb_sys_sched_getparam
;
1422 case 156: return gdb_sys_sched_setscheduler
;
1423 case 157: return gdb_sys_sched_getscheduler
;
1424 case 158: return gdb_sys_sched_yield
;
1425 case 159: return gdb_sys_sched_get_priority_max
;
1426 case 160: return gdb_sys_sched_get_priority_min
;
1427 case 161: return gdb_sys_sched_rr_get_interval
;
1428 case 162: return gdb_sys_nanosleep
;
1429 case 163: return gdb_sys_mremap
;
1430 case 164: return gdb_sys_setresuid16
;
1431 case 165: return gdb_sys_getresuid16
;
1432 case 168: return gdb_sys_poll
;
1433 case 169: return gdb_sys_nfsservctl
;
1434 case 170: return gdb_sys_setresgid
;
1435 case 171: return gdb_sys_getresgid
;
1436 case 172: return gdb_sys_prctl
;
1437 case 173: return gdb_sys_rt_sigreturn
;
1438 case 174: return gdb_sys_rt_sigaction
;
1439 case 175: return gdb_sys_rt_sigprocmask
;
1440 case 176: return gdb_sys_rt_sigpending
;
1441 case 177: return gdb_sys_rt_sigtimedwait
;
1442 case 178: return gdb_sys_rt_sigqueueinfo
;
1443 case 179: return gdb_sys_rt_sigsuspend
;
1444 case 180: return gdb_sys_pread64
;
1445 case 181: return gdb_sys_pwrite64
;
1446 case 182: return gdb_sys_chown
;
1447 case 183: return gdb_sys_getcwd
;
1448 case 184: return gdb_sys_capget
;
1449 case 185: return gdb_sys_capset
;
1450 case 186: return gdb_sys_sigaltstack
;
1451 case 187: return gdb_sys_sendfile
;
1452 case 190: return gdb_sys_vfork
;
1453 case 191: return gdb_sys_getrlimit
;
1454 case 192: return gdb_sys_mmap2
;
1455 case 193: return gdb_sys_truncate64
;
1456 case 194: return gdb_sys_ftruncate64
;
1457 case 195: return gdb_sys_stat64
;
1458 case 196: return gdb_sys_lstat64
;
1459 case 197: return gdb_sys_fstat64
;
1460 case 198: return gdb_sys_lchown
;
1461 case 199: return gdb_sys_getuid
;
1462 case 200: return gdb_sys_getgid
;
1463 case 201: return gdb_sys_geteuid
;
1464 case 202: return gdb_sys_getegid
;
1465 case 203: return gdb_sys_setreuid
;
1466 case 204: return gdb_sys_setregid
;
1467 case 205: return gdb_sys_getgroups
;
1468 case 206: return gdb_sys_setgroups
;
1469 case 207: return gdb_sys_fchown
;
1470 case 208: return gdb_sys_setresuid
;
1471 case 209: return gdb_sys_getresuid
;
1472 case 210: return gdb_sys_setresgid
;
1473 case 211: return gdb_sys_getresgid
;
1474 case 212: return gdb_sys_chown
;
1475 case 213: return gdb_sys_setuid
;
1476 case 214: return gdb_sys_setgid
;
1477 case 215: return gdb_sys_setfsuid
;
1478 case 216: return gdb_sys_setfsgid
;
1479 case 217: return gdb_sys_getdents64
;
1480 case 218: return gdb_sys_pivot_root
;
1481 case 219: return gdb_sys_mincore
;
1482 case 220: return gdb_sys_madvise
;
1483 case 221: return gdb_sys_fcntl64
;
1484 case 224: return gdb_sys_gettid
;
1485 case 225: return gdb_sys_readahead
;
1486 case 226: return gdb_sys_setxattr
;
1487 case 227: return gdb_sys_lsetxattr
;
1488 case 228: return gdb_sys_fsetxattr
;
1489 case 229: return gdb_sys_getxattr
;
1490 case 230: return gdb_sys_lgetxattr
;
1491 case 231: return gdb_sys_fgetxattr
;
1492 case 232: return gdb_sys_listxattr
;
1493 case 233: return gdb_sys_llistxattr
;
1494 case 234: return gdb_sys_flistxattr
;
1495 case 235: return gdb_sys_removexattr
;
1496 case 236: return gdb_sys_lremovexattr
;
1497 case 237: return gdb_sys_fremovexattr
;
1498 case 238: return gdb_sys_tkill
;
1499 case 239: return gdb_sys_sendfile64
;
1500 case 240: return gdb_sys_futex
;
1501 case 241: return gdb_sys_sched_setaffinity
;
1502 case 242: return gdb_sys_sched_getaffinity
;
1503 case 243: return gdb_sys_io_setup
;
1504 case 244: return gdb_sys_io_destroy
;
1505 case 245: return gdb_sys_io_getevents
;
1506 case 246: return gdb_sys_io_submit
;
1507 case 247: return gdb_sys_io_cancel
;
1508 case 248: return gdb_sys_exit_group
;
1509 case 249: return gdb_sys_lookup_dcookie
;
1510 case 250: return gdb_sys_epoll_create
;
1511 case 251: return gdb_sys_epoll_ctl
;
1512 case 252: return gdb_sys_epoll_wait
;
1513 case 253: return gdb_sys_remap_file_pages
;
1514 case 256: return gdb_sys_set_tid_address
;
1515 case 257: return gdb_sys_timer_create
;
1516 case 258: return gdb_sys_timer_settime
;
1517 case 259: return gdb_sys_timer_gettime
;
1518 case 260: return gdb_sys_timer_getoverrun
;
1519 case 261: return gdb_sys_timer_delete
;
1520 case 262: return gdb_sys_clock_settime
;
1521 case 263: return gdb_sys_clock_gettime
;
1522 case 264: return gdb_sys_clock_getres
;
1523 case 265: return gdb_sys_clock_nanosleep
;
1524 case 266: return gdb_sys_statfs64
;
1525 case 267: return gdb_sys_fstatfs64
;
1526 case 268: return gdb_sys_tgkill
;
1527 case 269: return gdb_sys_utimes
;
1529 case 270: return gdb_sys_arm_fadvise64_64;
1530 case 271: return gdb_sys_pciconfig_iobase;
1531 case 272: return gdb_sys_pciconfig_read;
1532 case 273: return gdb_sys_pciconfig_write;
1534 case 274: return gdb_sys_mq_open
;
1535 case 275: return gdb_sys_mq_unlink
;
1536 case 276: return gdb_sys_mq_timedsend
;
1537 case 277: return gdb_sys_mq_timedreceive
;
1538 case 278: return gdb_sys_mq_notify
;
1539 case 279: return gdb_sys_mq_getsetattr
;
1540 case 280: return gdb_sys_waitid
;
1541 case 281: return gdb_sys_socket
;
1542 case 282: return gdb_sys_bind
;
1543 case 283: return gdb_sys_connect
;
1544 case 284: return gdb_sys_listen
;
1545 case 285: return gdb_sys_accept
;
1546 case 286: return gdb_sys_getsockname
;
1547 case 287: return gdb_sys_getpeername
;
1548 case 288: return gdb_sys_socketpair
;
1549 case 289: /* send */ return gdb_sys_no_syscall
;
1550 case 290: return gdb_sys_sendto
;
1551 case 291: return gdb_sys_recv
;
1552 case 292: return gdb_sys_recvfrom
;
1553 case 293: return gdb_sys_shutdown
;
1554 case 294: return gdb_sys_setsockopt
;
1555 case 295: return gdb_sys_getsockopt
;
1556 case 296: return gdb_sys_sendmsg
;
1557 case 297: return gdb_sys_recvmsg
;
1558 case 298: return gdb_sys_semop
;
1559 case 299: return gdb_sys_semget
;
1560 case 300: return gdb_sys_semctl
;
1561 case 301: return gdb_sys_msgsnd
;
1562 case 302: return gdb_sys_msgrcv
;
1563 case 303: return gdb_sys_msgget
;
1564 case 304: return gdb_sys_msgctl
;
1565 case 305: return gdb_sys_shmat
;
1566 case 306: return gdb_sys_shmdt
;
1567 case 307: return gdb_sys_shmget
;
1568 case 308: return gdb_sys_shmctl
;
1569 case 309: return gdb_sys_add_key
;
1570 case 310: return gdb_sys_request_key
;
1571 case 311: return gdb_sys_keyctl
;
1572 case 312: return gdb_sys_semtimedop
;
1573 case 313: /* vserver */ return gdb_sys_no_syscall
;
1574 case 314: return gdb_sys_ioprio_set
;
1575 case 315: return gdb_sys_ioprio_get
;
1576 case 316: return gdb_sys_inotify_init
;
1577 case 317: return gdb_sys_inotify_add_watch
;
1578 case 318: return gdb_sys_inotify_rm_watch
;
1579 case 319: return gdb_sys_mbind
;
1580 case 320: return gdb_sys_get_mempolicy
;
1581 case 321: return gdb_sys_set_mempolicy
;
1582 case 322: return gdb_sys_openat
;
1583 case 323: return gdb_sys_mkdirat
;
1584 case 324: return gdb_sys_mknodat
;
1585 case 325: return gdb_sys_fchownat
;
1586 case 326: return gdb_sys_futimesat
;
1587 case 327: return gdb_sys_fstatat64
;
1588 case 328: return gdb_sys_unlinkat
;
1589 case 329: return gdb_sys_renameat
;
1590 case 330: return gdb_sys_linkat
;
1591 case 331: return gdb_sys_symlinkat
;
1592 case 332: return gdb_sys_readlinkat
;
1593 case 333: return gdb_sys_fchmodat
;
1594 case 334: return gdb_sys_faccessat
;
1595 case 335: return gdb_sys_pselect6
;
1596 case 336: return gdb_sys_ppoll
;
1597 case 337: return gdb_sys_unshare
;
1598 case 338: return gdb_sys_set_robust_list
;
1599 case 339: return gdb_sys_get_robust_list
;
1600 case 340: return gdb_sys_splice
;
1601 /*case 341: return gdb_sys_arm_sync_file_range;*/
1602 case 342: return gdb_sys_tee
;
1603 case 343: return gdb_sys_vmsplice
;
1604 case 344: return gdb_sys_move_pages
;
1605 case 345: return gdb_sys_getcpu
;
1606 case 346: return gdb_sys_epoll_pwait
;
1607 case 347: return gdb_sys_kexec_load
;
1609 case 348: return gdb_sys_utimensat;
1610 case 349: return gdb_sys_signalfd;
1611 case 350: return gdb_sys_timerfd_create;
1612 case 351: return gdb_sys_eventfd;
1614 case 352: return gdb_sys_fallocate
;
1616 case 353: return gdb_sys_timerfd_settime;
1617 case 354: return gdb_sys_timerfd_gettime;
1618 case 355: return gdb_sys_signalfd4;
1620 case 356: return gdb_sys_eventfd2
;
1621 case 357: return gdb_sys_epoll_create1
;
1622 case 358: return gdb_sys_dup3
;
1623 case 359: return gdb_sys_pipe2
;
1624 case 360: return gdb_sys_inotify_init1
;
1626 case 361: return gdb_sys_preadv;
1627 case 362: return gdb_sys_pwritev;
1628 case 363: return gdb_sys_rt_tgsigqueueinfo;
1629 case 364: return gdb_sys_perf_event_open;
1630 case 365: return gdb_sys_recvmmsg;
1631 case 366: return gdb_sys_accept4;
1632 case 367: return gdb_sys_fanotify_init;
1633 case 368: return gdb_sys_fanotify_mark;
1634 case 369: return gdb_sys_prlimit64;
1635 case 370: return gdb_sys_name_to_handle_at;
1636 case 371: return gdb_sys_open_by_handle_at;
1637 case 372: return gdb_sys_clock_adjtime;
1638 case 373: return gdb_sys_syncfs;
1639 case 374: return gdb_sys_sendmmsg;
1640 case 375: return gdb_sys_setns;
1641 case 376: return gdb_sys_process_vm_readv;
1642 case 377: return gdb_sys_process_vm_writev;
1643 case 378: return gdb_sys_kcmp;
1644 case 379: return gdb_sys_finit_module;
1646 case 384: return gdb_sys_getrandom
;
1647 case 983041: /* ARM_breakpoint */ return gdb_sys_no_syscall
;
1648 case 983042: /* ARM_cacheflush */ return gdb_sys_no_syscall
;
1649 case 983043: /* ARM_usr26 */ return gdb_sys_no_syscall
;
1650 case 983044: /* ARM_usr32 */ return gdb_sys_no_syscall
;
1651 case 983045: /* ARM_set_tls */ return gdb_sys_no_syscall
;
1652 default: return gdb_sys_no_syscall
;
1656 /* Record all registers but PC register for process-record. */
1659 arm_all_but_pc_registers_record (struct regcache
*regcache
)
1663 for (i
= 0; i
< ARM_PC_REGNUM
; i
++)
1665 if (record_full_arch_list_add_reg (regcache
, ARM_A1_REGNUM
+ i
))
1669 if (record_full_arch_list_add_reg (regcache
, ARM_PS_REGNUM
))
1675 /* Handler for arm system call instruction recording. */
1678 arm_linux_syscall_record (struct regcache
*regcache
, unsigned long svc_number
)
1681 enum gdb_syscall syscall_gdb
;
1683 syscall_gdb
= arm_canonicalize_syscall (svc_number
);
1685 if (syscall_gdb
== gdb_sys_no_syscall
)
1687 gdb_printf (gdb_stderr
,
1688 _("Process record and replay target doesn't "
1689 "support syscall number %s\n"),
1690 plongest (svc_number
));
1694 if (syscall_gdb
== gdb_sys_sigreturn
1695 || syscall_gdb
== gdb_sys_rt_sigreturn
)
1697 if (arm_all_but_pc_registers_record (regcache
))
1702 ret
= record_linux_system_call (syscall_gdb
, regcache
,
1703 &arm_linux_record_tdep
);
1707 /* Record the return value of the system call. */
1708 if (record_full_arch_list_add_reg (regcache
, ARM_A1_REGNUM
))
1711 if (record_full_arch_list_add_reg (regcache
, ARM_LR_REGNUM
))
1714 if (record_full_arch_list_add_reg (regcache
, ARM_PS_REGNUM
))
1720 /* Implement the skip_trampoline_code gdbarch method. */
1723 arm_linux_skip_trampoline_code (const frame_info_ptr
&frame
, CORE_ADDR pc
)
1725 CORE_ADDR target_pc
= arm_skip_stub (frame
, pc
);
1730 return find_solib_trampoline_target (frame
, pc
);
1733 /* Implement the gcc_target_options gdbarch method. */
1736 arm_linux_gcc_target_options (struct gdbarch
*gdbarch
)
1738 /* GCC doesn't know "-m32". */
1743 arm_linux_init_abi (struct gdbarch_info info
,
1744 struct gdbarch
*gdbarch
)
1746 static const char *const stap_integer_prefixes
[] = { "#", "$", "", NULL
};
1747 static const char *const stap_register_prefixes
[] = { "r", NULL
};
1748 static const char *const stap_register_indirection_prefixes
[] = { "[",
1750 static const char *const stap_register_indirection_suffixes
[] = { "]",
1752 arm_gdbarch_tdep
*tdep
= gdbarch_tdep
<arm_gdbarch_tdep
> (gdbarch
);
1754 linux_init_abi (info
, gdbarch
, 1);
1756 tdep
->lowest_pc
= 0x8000;
1757 if (info
.byte_order_for_code
== BFD_ENDIAN_BIG
)
1759 if (tdep
->arm_abi
== ARM_ABI_AAPCS
)
1760 tdep
->arm_breakpoint
= eabi_linux_arm_be_breakpoint
;
1762 tdep
->arm_breakpoint
= arm_linux_arm_be_breakpoint
;
1763 tdep
->thumb_breakpoint
= arm_linux_thumb_be_breakpoint
;
1764 tdep
->thumb2_breakpoint
= arm_linux_thumb2_be_breakpoint
;
1768 if (tdep
->arm_abi
== ARM_ABI_AAPCS
)
1769 tdep
->arm_breakpoint
= eabi_linux_arm_le_breakpoint
;
1771 tdep
->arm_breakpoint
= arm_linux_arm_le_breakpoint
;
1772 tdep
->thumb_breakpoint
= arm_linux_thumb_le_breakpoint
;
1773 tdep
->thumb2_breakpoint
= arm_linux_thumb2_le_breakpoint
;
1775 tdep
->arm_breakpoint_size
= sizeof (arm_linux_arm_le_breakpoint
);
1776 tdep
->thumb_breakpoint_size
= sizeof (arm_linux_thumb_le_breakpoint
);
1777 tdep
->thumb2_breakpoint_size
= sizeof (arm_linux_thumb2_le_breakpoint
);
1779 if (tdep
->fp_model
== ARM_FLOAT_AUTO
)
1780 tdep
->fp_model
= ARM_FLOAT_FPA
;
1782 switch (tdep
->fp_model
)
1785 tdep
->jb_pc
= ARM_LINUX_JB_PC_FPA
;
1787 case ARM_FLOAT_SOFT_FPA
:
1788 case ARM_FLOAT_SOFT_VFP
:
1790 tdep
->jb_pc
= ARM_LINUX_JB_PC_EABI
;
1794 (_("arm_linux_init_abi: Floating point model not supported"));
1797 tdep
->jb_elt_size
= ARM_LINUX_JB_ELEMENT_SIZE
;
1799 set_solib_svr4_fetch_link_map_offsets
1800 (gdbarch
, linux_ilp32_fetch_link_map_offsets
);
1802 /* Single stepping. */
1803 set_gdbarch_software_single_step (gdbarch
, arm_linux_software_single_step
);
1805 /* Shared library handling. */
1806 set_gdbarch_skip_trampoline_code (gdbarch
, arm_linux_skip_trampoline_code
);
1807 set_gdbarch_skip_solib_resolver (gdbarch
, glibc_skip_solib_resolver
);
1809 /* Enable TLS support. */
1810 set_gdbarch_fetch_tls_load_module_address (gdbarch
,
1811 svr4_fetch_objfile_link_map
);
1813 tramp_frame_prepend_unwinder (gdbarch
,
1814 &arm_linux_sigreturn_tramp_frame
);
1815 tramp_frame_prepend_unwinder (gdbarch
,
1816 &arm_linux_rt_sigreturn_tramp_frame
);
1817 tramp_frame_prepend_unwinder (gdbarch
,
1818 &arm_eabi_linux_sigreturn_tramp_frame
);
1819 tramp_frame_prepend_unwinder (gdbarch
,
1820 &arm_eabi_linux_rt_sigreturn_tramp_frame
);
1821 tramp_frame_prepend_unwinder (gdbarch
,
1822 &thumb2_eabi_linux_sigreturn_tramp_frame
);
1823 tramp_frame_prepend_unwinder (gdbarch
,
1824 &thumb2_eabi_linux_rt_sigreturn_tramp_frame
);
1825 tramp_frame_prepend_unwinder (gdbarch
,
1826 &arm_linux_restart_syscall_tramp_frame
);
1827 tramp_frame_prepend_unwinder (gdbarch
,
1828 &arm_kernel_linux_restart_syscall_tramp_frame
);
1830 /* Core file support. */
1831 set_gdbarch_iterate_over_regset_sections
1832 (gdbarch
, arm_linux_iterate_over_regset_sections
);
1833 set_gdbarch_core_read_description (gdbarch
, arm_linux_core_read_description
);
1835 /* Displaced stepping. */
1836 set_gdbarch_displaced_step_copy_insn (gdbarch
,
1837 arm_linux_displaced_step_copy_insn
);
1838 set_gdbarch_displaced_step_fixup (gdbarch
, arm_displaced_step_fixup
);
1840 /* Reversible debugging, process record. */
1841 set_gdbarch_process_record (gdbarch
, arm_process_record
);
1843 /* SystemTap functions. */
1844 set_gdbarch_stap_integer_prefixes (gdbarch
, stap_integer_prefixes
);
1845 set_gdbarch_stap_register_prefixes (gdbarch
, stap_register_prefixes
);
1846 set_gdbarch_stap_register_indirection_prefixes (gdbarch
,
1847 stap_register_indirection_prefixes
);
1848 set_gdbarch_stap_register_indirection_suffixes (gdbarch
,
1849 stap_register_indirection_suffixes
);
1850 set_gdbarch_stap_gdb_register_prefix (gdbarch
, "r");
1851 set_gdbarch_stap_is_single_operand (gdbarch
, arm_stap_is_single_operand
);
1852 set_gdbarch_stap_parse_special_token (gdbarch
,
1853 arm_stap_parse_special_token
);
1855 /* `catch syscall' */
1856 set_xml_syscall_file_name (gdbarch
, "syscalls/arm-linux.xml");
1857 set_gdbarch_get_syscall_number (gdbarch
, arm_linux_get_syscall_number
);
1859 /* Syscall record. */
1860 tdep
->arm_syscall_record
= arm_linux_syscall_record
;
1862 /* Initialize the arm_linux_record_tdep. */
1863 /* These values are the size of the type that will be used in a system
1864 call. They are obtained from Linux Kernel source. */
1865 arm_linux_record_tdep
.size_pointer
1866 = gdbarch_ptr_bit (gdbarch
) / TARGET_CHAR_BIT
;
1867 arm_linux_record_tdep
.size__old_kernel_stat
= 32;
1868 arm_linux_record_tdep
.size_tms
= 16;
1869 arm_linux_record_tdep
.size_loff_t
= 8;
1870 arm_linux_record_tdep
.size_flock
= 16;
1871 arm_linux_record_tdep
.size_oldold_utsname
= 45;
1872 arm_linux_record_tdep
.size_ustat
= 20;
1873 arm_linux_record_tdep
.size_old_sigaction
= 16;
1874 arm_linux_record_tdep
.size_old_sigset_t
= 4;
1875 arm_linux_record_tdep
.size_rlimit
= 8;
1876 arm_linux_record_tdep
.size_rusage
= 72;
1877 arm_linux_record_tdep
.size_timeval
= 8;
1878 arm_linux_record_tdep
.size_timezone
= 8;
1879 arm_linux_record_tdep
.size_old_gid_t
= 2;
1880 arm_linux_record_tdep
.size_old_uid_t
= 2;
1881 arm_linux_record_tdep
.size_fd_set
= 128;
1882 arm_linux_record_tdep
.size_old_dirent
= 268;
1883 arm_linux_record_tdep
.size_statfs
= 64;
1884 arm_linux_record_tdep
.size_statfs64
= 84;
1885 arm_linux_record_tdep
.size_sockaddr
= 16;
1886 arm_linux_record_tdep
.size_int
1887 = gdbarch_int_bit (gdbarch
) / TARGET_CHAR_BIT
;
1888 arm_linux_record_tdep
.size_long
1889 = gdbarch_long_bit (gdbarch
) / TARGET_CHAR_BIT
;
1890 arm_linux_record_tdep
.size_ulong
1891 = gdbarch_long_bit (gdbarch
) / TARGET_CHAR_BIT
;
1892 arm_linux_record_tdep
.size_msghdr
= 28;
1893 arm_linux_record_tdep
.size_itimerval
= 16;
1894 arm_linux_record_tdep
.size_stat
= 88;
1895 arm_linux_record_tdep
.size_old_utsname
= 325;
1896 arm_linux_record_tdep
.size_sysinfo
= 64;
1897 arm_linux_record_tdep
.size_msqid_ds
= 88;
1898 arm_linux_record_tdep
.size_shmid_ds
= 84;
1899 arm_linux_record_tdep
.size_new_utsname
= 390;
1900 arm_linux_record_tdep
.size_timex
= 128;
1901 arm_linux_record_tdep
.size_mem_dqinfo
= 24;
1902 arm_linux_record_tdep
.size_if_dqblk
= 68;
1903 arm_linux_record_tdep
.size_fs_quota_stat
= 68;
1904 arm_linux_record_tdep
.size_timespec
= 8;
1905 arm_linux_record_tdep
.size_pollfd
= 8;
1906 arm_linux_record_tdep
.size_NFS_FHSIZE
= 32;
1907 arm_linux_record_tdep
.size_knfsd_fh
= 132;
1908 arm_linux_record_tdep
.size_TASK_COMM_LEN
= 16;
1909 arm_linux_record_tdep
.size_sigaction
= 20;
1910 arm_linux_record_tdep
.size_sigset_t
= 8;
1911 arm_linux_record_tdep
.size_siginfo_t
= 128;
1912 arm_linux_record_tdep
.size_cap_user_data_t
= 12;
1913 arm_linux_record_tdep
.size_stack_t
= 12;
1914 arm_linux_record_tdep
.size_off_t
= arm_linux_record_tdep
.size_long
;
1915 arm_linux_record_tdep
.size_stat64
= 96;
1916 arm_linux_record_tdep
.size_gid_t
= 4;
1917 arm_linux_record_tdep
.size_uid_t
= 4;
1918 arm_linux_record_tdep
.size_PAGE_SIZE
= 4096;
1919 arm_linux_record_tdep
.size_flock64
= 24;
1920 arm_linux_record_tdep
.size_user_desc
= 16;
1921 arm_linux_record_tdep
.size_io_event
= 32;
1922 arm_linux_record_tdep
.size_iocb
= 64;
1923 arm_linux_record_tdep
.size_epoll_event
= 12;
1924 arm_linux_record_tdep
.size_itimerspec
1925 = arm_linux_record_tdep
.size_timespec
* 2;
1926 arm_linux_record_tdep
.size_mq_attr
= 32;
1927 arm_linux_record_tdep
.size_termios
= 36;
1928 arm_linux_record_tdep
.size_termios2
= 44;
1929 arm_linux_record_tdep
.size_pid_t
= 4;
1930 arm_linux_record_tdep
.size_winsize
= 8;
1931 arm_linux_record_tdep
.size_serial_struct
= 60;
1932 arm_linux_record_tdep
.size_serial_icounter_struct
= 80;
1933 arm_linux_record_tdep
.size_hayes_esp_config
= 12;
1934 arm_linux_record_tdep
.size_size_t
= 4;
1935 arm_linux_record_tdep
.size_iovec
= 8;
1936 arm_linux_record_tdep
.size_time_t
= 4;
1938 /* These values are the second argument of system call "sys_ioctl".
1939 They are obtained from Linux Kernel source. */
1940 arm_linux_record_tdep
.ioctl_TCGETS
= 0x5401;
1941 arm_linux_record_tdep
.ioctl_TCSETS
= 0x5402;
1942 arm_linux_record_tdep
.ioctl_TCSETSW
= 0x5403;
1943 arm_linux_record_tdep
.ioctl_TCSETSF
= 0x5404;
1944 arm_linux_record_tdep
.ioctl_TCGETA
= 0x5405;
1945 arm_linux_record_tdep
.ioctl_TCSETA
= 0x5406;
1946 arm_linux_record_tdep
.ioctl_TCSETAW
= 0x5407;
1947 arm_linux_record_tdep
.ioctl_TCSETAF
= 0x5408;
1948 arm_linux_record_tdep
.ioctl_TCSBRK
= 0x5409;
1949 arm_linux_record_tdep
.ioctl_TCXONC
= 0x540a;
1950 arm_linux_record_tdep
.ioctl_TCFLSH
= 0x540b;
1951 arm_linux_record_tdep
.ioctl_TIOCEXCL
= 0x540c;
1952 arm_linux_record_tdep
.ioctl_TIOCNXCL
= 0x540d;
1953 arm_linux_record_tdep
.ioctl_TIOCSCTTY
= 0x540e;
1954 arm_linux_record_tdep
.ioctl_TIOCGPGRP
= 0x540f;
1955 arm_linux_record_tdep
.ioctl_TIOCSPGRP
= 0x5410;
1956 arm_linux_record_tdep
.ioctl_TIOCOUTQ
= 0x5411;
1957 arm_linux_record_tdep
.ioctl_TIOCSTI
= 0x5412;
1958 arm_linux_record_tdep
.ioctl_TIOCGWINSZ
= 0x5413;
1959 arm_linux_record_tdep
.ioctl_TIOCSWINSZ
= 0x5414;
1960 arm_linux_record_tdep
.ioctl_TIOCMGET
= 0x5415;
1961 arm_linux_record_tdep
.ioctl_TIOCMBIS
= 0x5416;
1962 arm_linux_record_tdep
.ioctl_TIOCMBIC
= 0x5417;
1963 arm_linux_record_tdep
.ioctl_TIOCMSET
= 0x5418;
1964 arm_linux_record_tdep
.ioctl_TIOCGSOFTCAR
= 0x5419;
1965 arm_linux_record_tdep
.ioctl_TIOCSSOFTCAR
= 0x541a;
1966 arm_linux_record_tdep
.ioctl_FIONREAD
= 0x541b;
1967 arm_linux_record_tdep
.ioctl_TIOCINQ
= arm_linux_record_tdep
.ioctl_FIONREAD
;
1968 arm_linux_record_tdep
.ioctl_TIOCLINUX
= 0x541c;
1969 arm_linux_record_tdep
.ioctl_TIOCCONS
= 0x541d;
1970 arm_linux_record_tdep
.ioctl_TIOCGSERIAL
= 0x541e;
1971 arm_linux_record_tdep
.ioctl_TIOCSSERIAL
= 0x541f;
1972 arm_linux_record_tdep
.ioctl_TIOCPKT
= 0x5420;
1973 arm_linux_record_tdep
.ioctl_FIONBIO
= 0x5421;
1974 arm_linux_record_tdep
.ioctl_TIOCNOTTY
= 0x5422;
1975 arm_linux_record_tdep
.ioctl_TIOCSETD
= 0x5423;
1976 arm_linux_record_tdep
.ioctl_TIOCGETD
= 0x5424;
1977 arm_linux_record_tdep
.ioctl_TCSBRKP
= 0x5425;
1978 arm_linux_record_tdep
.ioctl_TIOCTTYGSTRUCT
= 0x5426;
1979 arm_linux_record_tdep
.ioctl_TIOCSBRK
= 0x5427;
1980 arm_linux_record_tdep
.ioctl_TIOCCBRK
= 0x5428;
1981 arm_linux_record_tdep
.ioctl_TIOCGSID
= 0x5429;
1982 arm_linux_record_tdep
.ioctl_TCGETS2
= 0x802c542a;
1983 arm_linux_record_tdep
.ioctl_TCSETS2
= 0x402c542b;
1984 arm_linux_record_tdep
.ioctl_TCSETSW2
= 0x402c542c;
1985 arm_linux_record_tdep
.ioctl_TCSETSF2
= 0x402c542d;
1986 arm_linux_record_tdep
.ioctl_TIOCGPTN
= 0x80045430;
1987 arm_linux_record_tdep
.ioctl_TIOCSPTLCK
= 0x40045431;
1988 arm_linux_record_tdep
.ioctl_FIONCLEX
= 0x5450;
1989 arm_linux_record_tdep
.ioctl_FIOCLEX
= 0x5451;
1990 arm_linux_record_tdep
.ioctl_FIOASYNC
= 0x5452;
1991 arm_linux_record_tdep
.ioctl_TIOCSERCONFIG
= 0x5453;
1992 arm_linux_record_tdep
.ioctl_TIOCSERGWILD
= 0x5454;
1993 arm_linux_record_tdep
.ioctl_TIOCSERSWILD
= 0x5455;
1994 arm_linux_record_tdep
.ioctl_TIOCGLCKTRMIOS
= 0x5456;
1995 arm_linux_record_tdep
.ioctl_TIOCSLCKTRMIOS
= 0x5457;
1996 arm_linux_record_tdep
.ioctl_TIOCSERGSTRUCT
= 0x5458;
1997 arm_linux_record_tdep
.ioctl_TIOCSERGETLSR
= 0x5459;
1998 arm_linux_record_tdep
.ioctl_TIOCSERGETMULTI
= 0x545a;
1999 arm_linux_record_tdep
.ioctl_TIOCSERSETMULTI
= 0x545b;
2000 arm_linux_record_tdep
.ioctl_TIOCMIWAIT
= 0x545c;
2001 arm_linux_record_tdep
.ioctl_TIOCGICOUNT
= 0x545d;
2002 arm_linux_record_tdep
.ioctl_TIOCGHAYESESP
= 0x545e;
2003 arm_linux_record_tdep
.ioctl_TIOCSHAYESESP
= 0x545f;
2004 arm_linux_record_tdep
.ioctl_FIOQSIZE
= 0x5460;
2006 /* These values are the second argument of system call "sys_fcntl"
2007 and "sys_fcntl64". They are obtained from Linux Kernel source. */
2008 arm_linux_record_tdep
.fcntl_F_GETLK
= 5;
2009 arm_linux_record_tdep
.fcntl_F_GETLK64
= 12;
2010 arm_linux_record_tdep
.fcntl_F_SETLK64
= 13;
2011 arm_linux_record_tdep
.fcntl_F_SETLKW64
= 14;
2013 arm_linux_record_tdep
.arg1
= ARM_A1_REGNUM
;
2014 arm_linux_record_tdep
.arg2
= ARM_A1_REGNUM
+ 1;
2015 arm_linux_record_tdep
.arg3
= ARM_A1_REGNUM
+ 2;
2016 arm_linux_record_tdep
.arg4
= ARM_A1_REGNUM
+ 3;
2017 arm_linux_record_tdep
.arg5
= ARM_A1_REGNUM
+ 4;
2018 arm_linux_record_tdep
.arg6
= ARM_A1_REGNUM
+ 5;
2019 arm_linux_record_tdep
.arg7
= ARM_A1_REGNUM
+ 6;
2021 set_gdbarch_gcc_target_options (gdbarch
, arm_linux_gcc_target_options
);
2024 void _initialize_arm_linux_tdep ();
2026 _initialize_arm_linux_tdep ()
2028 gdbarch_register_osabi (bfd_arch_arm
, 0, GDB_OSABI_LINUX
,
2029 arm_linux_init_abi
);